Index: head/sys/amd64/amd64/machdep.c =================================================================== --- head/sys/amd64/amd64/machdep.c (revision 355435) +++ head/sys/amd64/amd64/machdep.c (revision 355436) @@ -1,2792 +1,2799 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_atpic.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_isa.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_pci.h" #include "opt_platform.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #ifndef KDB #error KDB must be enabled in order for DDB to work! #endif #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifdef FDT #include #endif #ifdef DEV_ATPIC #include #else #include #endif #include #include #include /* Sanity check for __curthread() */ CTASSERT(offsetof(struct pcpu, pc_curthread) == 0); /* * The PTI trampoline stack needs enough space for a hardware trapframe and a * couple of scratch registers, as well as the trapframe left behind after an * iret fault. */ CTASSERT(PC_PTI_STACK_SZ * sizeof(register_t) >= 2 * sizeof(struct pti_frame) - offsetof(struct pti_frame, pti_rip)); extern u_int64_t hammer_time(u_int64_t, u_int64_t); #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) static void cpu_startup(void *); static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len); static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* Preload data parse function */ static caddr_t native_parse_preload_data(u_int64_t); /* Native function to fetch and parse the e820 map */ static void native_parse_memmap(caddr_t, vm_paddr_t *, int *); /* Default init_ops implementation. */ struct init_ops init_ops = { .parse_preload_data = native_parse_preload_data, .early_clock_source_init = i8254_init, .early_delay = i8254_delay, .parse_memmap = native_parse_memmap, #ifdef SMP .mp_bootaddress = mp_bootaddress, .start_all_aps = native_start_all_aps, #endif #ifdef DEV_PCI .msi_init = msi_init, #endif }; /* * Physical address of the EFI System Table. Stashed from the metadata hints * passed into the kernel and used by the EFI code to call runtime services. */ vm_paddr_t efi_systbl_phys; /* Intel ICH registers */ #define ICH_PMBASE 0x400 #define ICH_SMI_EN ICH_PMBASE + 0x30 int _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel; int cold = 1; long Maxmem = 0; long realmem = 0; struct kva_md_info kmi; static struct trapframe proc0_tf; struct region_descriptor r_idt; struct pcpu *__pcpu; struct pcpu temp_bsp_pcpu; struct mtx icu_lock; struct mem_range_softc mem_range_softc; struct mtx dt_lock; /* lock for GDT and LDT */ void (*vmm_resume_p)(void); static void cpu_startup(dummy) void *dummy; { uintmax_t memsize; char *sysenv; /* * On MacBooks, we need to disallow the legacy USB circuit to * generate an SMI# because this can cause several problems, * namely: incorrect CPU frequency detection and failure to * start the APs. * We do this by disabling a bit in the SMI_EN (SMI Control and * Enable register) of the Intel ICH LPC Interface Bridge. */ sysenv = kern_getenv("smbios.system.product"); if (sysenv != NULL) { if (strncmp(sysenv, "MacBook1,1", 10) == 0 || strncmp(sysenv, "MacBook3,1", 10) == 0 || strncmp(sysenv, "MacBook4,1", 10) == 0 || strncmp(sysenv, "MacBookPro1,1", 13) == 0 || strncmp(sysenv, "MacBookPro1,2", 13) == 0 || strncmp(sysenv, "MacBookPro3,1", 13) == 0 || strncmp(sysenv, "MacBookPro4,1", 13) == 0 || strncmp(sysenv, "Macmini1,1", 10) == 0) { if (bootverbose) printf("Disabling LEGACY_USB_EN bit on " "Intel ICH.\n"); outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8); } freeenv(sysenv); } /* * Good {morning,afternoon,evening,night}. */ startrtclock(); printcpuinfo(); /* * Display physical memory if SMBIOS reports reasonable amount. */ memsize = 0; sysenv = kern_getenv("smbios.memory.enabled"); if (sysenv != NULL) { memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10; freeenv(sysenv); } if (memsize < ptoa((uintmax_t)vm_free_count())) memsize = ptoa((uintmax_t)Maxmem); printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20); realmem = atop(memsize); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size; size = phys_avail[indx + 1] - phys_avail[indx]; printf( "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", ptoa((uintmax_t)vm_free_count()), ptoa((uintmax_t)vm_free_count()) / 1048576); #ifdef DEV_PCI if (bootverbose && intel_graphics_stolen_base != 0) printf("intel stolen mem: base %#jx size %ju MB\n", (uintmax_t)intel_graphics_stolen_base, (uintmax_t)intel_graphics_stolen_size / 1024 / 1024); #endif /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); cpu_setregs(); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by call * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct sigframe sf, *sfp; struct pcb *pcb; struct proc *p; struct thread *td; struct sigacts *psp; char *sp; struct trapframe *regs; char *xfpusave; size_t xfpusave_len; int sig; int oonstack; td = curthread; pcb = td->td_pcb; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) { xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu); xfpusave = __builtin_alloca(xfpusave_len); } else { xfpusave_len = 0; xfpusave = NULL; } /* Save user context. */ bzero(&sf, sizeof(sf)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs)); sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */ get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len); fpstate_drop(td); update_pcb_bases(pcb); sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase; sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase; bzero(sf.sf_uc.uc_mcontext.mc_spare, sizeof(sf.sf_uc.uc_mcontext.mc_spare)); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size; #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else sp = (char *)regs->tf_rsp - 128; if (xfpusave != NULL) { sp -= xfpusave_len; sp = (char *)((unsigned long)sp & ~0x3Ful); sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp; } sp -= sizeof(struct sigframe); /* Align to 16 bytes. */ sfp = (struct sigframe *)((unsigned long)sp & ~0xFul); /* Build the argument list for the signal handler. */ regs->tf_rdi = sig; /* arg 1 in %rdi */ regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */ bzero(&sf.sf_si, sizeof(sf.sf_si)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */ sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* Fill in POSIX parts */ sf.sf_si = ksi->ksi_info; sf.sf_si.si_signo = sig; /* maybe a translated signal */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ } else { /* Old FreeBSD-style arguments. */ regs->tf_rsi = ksi->ksi_code; /* arg 2 in %rsi */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0 || (xfpusave != NULL && copyout(xfpusave, (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len) != 0)) { #ifdef DEBUG printf("process %ld has trashed its stack\n", (long)p->p_pid); #endif PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_rsp = (long)sfp; regs->tf_rip = p->p_sysent->sv_sigcode_base; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_ss = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. * * MPSAFE */ int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { ucontext_t uc; struct pcb *pcb; struct proc *p; struct trapframe *regs; ucontext_t *ucp; char *xfpustate; size_t xfpustate_len; long rflags; int cs, error, ret; ksiginfo_t ksi; pcb = td->td_pcb; p = td->td_proc; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) { uprintf("pid %d (%s): sigreturn copyin failed\n", p->p_pid, td->td_name); return (error); } ucp = &uc; if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) { uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid, td->td_name, ucp->uc_mcontext.mc_flags); return (EINVAL); } regs = td->td_frame; rflags = ucp->uc_mcontext.mc_rflags; /* * Don't allow users to change privileged or reserved flags. */ if (!EFL_SECURE(rflags, regs->tf_rflags)) { uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid, td->td_name, rflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid, td->td_name, cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return (EINVAL); } if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) { xfpustate_len = uc.uc_mcontext.mc_xfpustate_len; if (xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) { uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n", p->p_pid, td->td_name, xfpustate_len); return (EINVAL); } xfpustate = __builtin_alloca(xfpustate_len); error = copyin((const void *)uc.uc_mcontext.mc_xfpustate, xfpustate, xfpustate_len); if (error != 0) { uprintf( "pid %d (%s): sigreturn copying xfpustate failed\n", p->p_pid, td->td_name); return (error); } } else { xfpustate = NULL; xfpustate_len = 0; } ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len); if (ret != 0) { uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n", p->p_pid, td->td_name, ret); return (ret); } bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs)); update_pcb_bases(pcb); pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase; pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase; #if defined(COMPAT_43) if (ucp->uc_mcontext.mc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); return (EJUSTRETURN); } #ifdef COMPAT_FREEBSD4 int freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap) { return sys_sigreturn(td, (struct sigreturn_args *)uap); } #endif /* * Reset registers to default values on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *regs; struct pcb *pcb; register_t saved_rflags; regs = td->td_frame; pcb = td->td_pcb; if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); update_pcb_bases(pcb); pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; clear_pcb_flags(pcb, PCB_32BIT); pcb->pcb_initial_fpucw = __INITIAL_FPUCW__; saved_rflags = regs->tf_rflags & PSL_T; bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; regs->tf_rdi = stack; /* argv */ regs->tf_rflags = PSL_USER | saved_rflags; regs->tf_ss = _udatasel; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; /* * Reset the hardware debug registers if they were in use. * They won't have any meaning for the newly exec'd process. */ if (pcb->pcb_flags & PCB_DBREGS) { pcb->pcb_dr0 = 0; pcb->pcb_dr1 = 0; pcb->pcb_dr2 = 0; pcb->pcb_dr3 = 0; pcb->pcb_dr6 = 0; pcb->pcb_dr7 = 0; if (pcb == curpcb) { /* * Clear the debug registers on the running * CPU, otherwise they will end up affecting * the next process we switch to. */ reset_dbregs(); } clear_pcb_flags(pcb, PCB_DBREGS); } /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } void cpu_setregs(void) { register_t cr0; cr0 = rcr0(); /* * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the * BSP. See the comments there about why we set them. */ cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM; load_cr0(cr0); } /* * Initialize amd64 and configure to run kernel */ /* * Initialize segments & interrupt table */ static struct gate_descriptor idt0[NIDT]; struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ static char dblfault_stack[PAGE_SIZE] __aligned(16); static char mce0_stack[PAGE_SIZE] __aligned(16); static char nmi0_stack[PAGE_SIZE] __aligned(16); static char dbg0_stack[PAGE_SIZE] __aligned(16); CTASSERT(sizeof(struct nmi_pcpu) == 16); /* * Software prototypes -- in more palatable form. * * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same * slots as corresponding segments for i386 kernel. */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GNULL2_SEL 1 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUFS32_SEL 2 32 bit %gs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUGS32_SEL 3 32 bit %fs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GCODE_SEL 4 Code Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GDATA_SEL 5 Data Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GUCODE32_SEL 6 32 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUDATA_SEL 7 32/64 bit Data Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUCODE_SEL 8 64 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GPROC0_SEL 9 Proc 0 Tss Descriptor */ { .ssd_base = 0x0, .ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1, .ssd_type = SDT_SYSTSS, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Actually, the TSS is a system descriptor which is double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 11 LDT Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 12 LDT Descriptor, double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, }; _Static_assert(nitems(gdt_segs) == NGDT, "Stale NGDT"); void setidt(int idx, inthand_t *func, int typ, int dpl, int ist) { struct gate_descriptor *ip; ip = idt + idx; ip->gd_looffset = (uintptr_t)func; ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL); ip->gd_ist = ist; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((uintptr_t)func)>>16 ; } extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(xmm), IDTVEC(dblfault), IDTVEC(div_pti), IDTVEC(bpt_pti), IDTVEC(ofl_pti), IDTVEC(bnd_pti), IDTVEC(ill_pti), IDTVEC(dna_pti), IDTVEC(fpusegm_pti), IDTVEC(tss_pti), IDTVEC(missing_pti), IDTVEC(stk_pti), IDTVEC(prot_pti), IDTVEC(page_pti), IDTVEC(rsvd_pti), IDTVEC(fpu_pti), IDTVEC(align_pti), IDTVEC(xmm_pti), #ifdef KDTRACE_HOOKS IDTVEC(dtrace_ret), IDTVEC(dtrace_ret_pti), #endif #ifdef XENHVM IDTVEC(xen_intr_upcall), IDTVEC(xen_intr_upcall_pti), #endif IDTVEC(fast_syscall), IDTVEC(fast_syscall32), IDTVEC(fast_syscall_pti); #ifdef DDB /* * Display the index and function name of any IDT entries that don't use * the default 'rsvd' entry point. */ DB_SHOW_COMMAND(idt, db_show_idt) { struct gate_descriptor *ip; int idx; uintptr_t func; ip = idt; for (idx = 0; idx < NIDT && !db_pager_quit; idx++) { func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset); if (func != (uintptr_t)&IDTVEC(rsvd)) { db_printf("%3d\t", idx); db_printsym(func, DB_STGY_PROC); db_printf("\n"); } ip++; } } /* Show privileged registers. */ DB_SHOW_COMMAND(sysregs, db_show_sysregs) { struct { uint16_t limit; uint64_t base; } __packed idtr, gdtr; uint16_t ldt, tr; __asm __volatile("sidt %0" : "=m" (idtr)); db_printf("idtr\t0x%016lx/%04x\n", (u_long)idtr.base, (u_int)idtr.limit); __asm __volatile("sgdt %0" : "=m" (gdtr)); db_printf("gdtr\t0x%016lx/%04x\n", (u_long)gdtr.base, (u_int)gdtr.limit); __asm __volatile("sldt %0" : "=r" (ldt)); db_printf("ldtr\t0x%04x\n", ldt); __asm __volatile("str %0" : "=r" (tr)); db_printf("tr\t0x%04x\n", tr); db_printf("cr0\t0x%016lx\n", rcr0()); db_printf("cr2\t0x%016lx\n", rcr2()); db_printf("cr3\t0x%016lx\n", rcr3()); db_printf("cr4\t0x%016lx\n", rcr4()); if (rcr4() & CR4_XSAVE) db_printf("xcr0\t0x%016lx\n", rxcr(0)); db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER)); if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX)) db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL)); db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR)); db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT)); db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE)); } DB_SHOW_COMMAND(dbregs, db_show_dbregs) { db_printf("dr0\t0x%016lx\n", rdr0()); db_printf("dr1\t0x%016lx\n", rdr1()); db_printf("dr2\t0x%016lx\n", rdr2()); db_printf("dr3\t0x%016lx\n", rdr3()); db_printf("dr6\t0x%016lx\n", rdr6()); db_printf("dr7\t0x%016lx\n", rdr7()); } #endif void sdtossd(sd, ssd) struct user_segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_long = sd->sd_long; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } void ssdtosd(ssd, sd) struct soft_segment_descriptor *ssd; struct user_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_long = ssd->ssd_long; sd->sd_def32 = ssd->ssd_def32; sd->sd_gran = ssd->ssd_gran; } void ssdtosyssd(ssd, sd) struct soft_segment_descriptor *ssd; struct system_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_gran = ssd->ssd_gran; } #if !defined(DEV_ATPIC) && defined(DEV_ISA) #include #include /* * Return a bitmap of the current interrupt requests. This is 8259-specific * and is only suitable for use at probe time. * This is only here to pacify sio. It is NOT FATAL if this doesn't work. * It shouldn't be here. There should probably be an APIC centric * implementation in the apic driver code, if at all. */ intrmask_t isa_irq_pending(void) { u_char irr1; u_char irr2; irr1 = inb(IO_ICU1); irr2 = inb(IO_ICU2); return ((irr2 << 8) | irr1); } #endif u_int basemem; static int add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap, int *physmap_idxp) { int i, insert_idx, physmap_idx; physmap_idx = *physmap_idxp; if (length == 0) return (1); /* * Find insertion point while checking for overlap. Start off by * assuming the new entry will be added to the end. * * NB: physmap_idx points to the next free slot. */ insert_idx = physmap_idx; for (i = 0; i <= physmap_idx; i += 2) { if (base < physmap[i + 1]) { if (base + length <= physmap[i]) { insert_idx = i; break; } if (boothowto & RB_VERBOSE) printf( "Overlapping memory regions, ignoring second region\n"); return (1); } } /* See if we can prepend to the next entry. */ if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) { physmap[insert_idx] = base; return (1); } /* See if we can append to the previous entry. */ if (insert_idx > 0 && base == physmap[insert_idx - 1]) { physmap[insert_idx - 1] += length; return (1); } physmap_idx += 2; *physmap_idxp = physmap_idx; if (physmap_idx == PHYS_AVAIL_ENTRIES) { printf( "Too many segments in the physical address map, giving up\n"); return (0); } /* * Move the last 'N' entries down to make room for the new * entry if needed. */ for (i = (physmap_idx - 2); i > insert_idx; i -= 2) { physmap[i] = physmap[i - 2]; physmap[i + 1] = physmap[i - 1]; } /* Insert the new entry. */ physmap[insert_idx] = base; physmap[insert_idx + 1] = base + length; return (1); } void bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize, vm_paddr_t *physmap, int *physmap_idx) { struct bios_smap *smap, *smapend; smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize); for (smap = smapbase; smap < smapend; smap++) { if (boothowto & RB_VERBOSE) printf("SMAP type=%02x base=%016lx len=%016lx\n", smap->type, smap->base, smap->length); if (smap->type != SMAP_TYPE_MEMORY) continue; if (!add_physmap_entry(smap->base, smap->length, physmap, physmap_idx)) break; } } static void add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap, int *physmap_idx) { struct efi_md *map, *p; const char *type; size_t efisz; int ndesc, i; static const char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode", "PersistentMemory" }; /* * Memory map data provided by UEFI via the GetMemoryMap * Boot Services API. */ efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return; ndesc = efihdr->memory_size / efihdr->descriptor_size; if (boothowto & RB_VERBOSE) printf("%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, efihdr->descriptor_size)) { if (boothowto & RB_VERBOSE) { if (p->md_type < nitems(types)) type = types[p->md_type]; else type = ""; printf("%23s %012lx %12p %08lx ", type, p->md_phys, p->md_virt, p->md_pages); if (p->md_attr & EFI_MD_ATTR_UC) printf("UC "); if (p->md_attr & EFI_MD_ATTR_WC) printf("WC "); if (p->md_attr & EFI_MD_ATTR_WT) printf("WT "); if (p->md_attr & EFI_MD_ATTR_WB) printf("WB "); if (p->md_attr & EFI_MD_ATTR_UCE) printf("UCE "); if (p->md_attr & EFI_MD_ATTR_WP) printf("WP "); if (p->md_attr & EFI_MD_ATTR_RP) printf("RP "); if (p->md_attr & EFI_MD_ATTR_XP) printf("XP "); if (p->md_attr & EFI_MD_ATTR_NV) printf("NV "); if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE) printf("MORE_RELIABLE "); if (p->md_attr & EFI_MD_ATTR_RO) printf("RO "); if (p->md_attr & EFI_MD_ATTR_RT) printf("RUNTIME"); printf("\n"); } switch (p->md_type) { case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ break; default: continue; } if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE), physmap, physmap_idx)) break; } } static char bootmethod[16] = ""; SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0, "System firmware boot method"); static void native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) { struct bios_smap *smap; struct efi_map_header *efihdr; u_int32_t size; /* * Memory map from INT 15:E820. * * subr_module.c says: * "Consumer may safely assume that size value precedes data." * ie: an int32_t immediately precedes smap. */ efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); smap = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (efihdr == NULL && smap == NULL) panic("No BIOS smap or EFI map info from loader!"); if (efihdr != NULL) { add_efi_map_entries(efihdr, physmap, physmap_idx); strlcpy(bootmethod, "UEFI", sizeof(bootmethod)); } else { size = *((u_int32_t *)smap - 1); bios_add_smap_entries(smap, size, physmap, physmap_idx); strlcpy(bootmethod, "BIOS", sizeof(bootmethod)); } } #define PAGES_PER_GB (1024 * 1024 * 1024 / PAGE_SIZE) /* * Populate the (physmap) array with base/bound pairs describing the * available physical memory in the system, then test this memory and * build the phys_avail array describing the actually-available memory. * * Total memory size may be set by the kernel environment variable * hw.physmem or the compile-time define MAXMEM. * * XXX first should be vm_paddr_t. */ static void getmemsize(caddr_t kmdp, u_int64_t first) { int i, physmap_idx, pa_indx, da_indx; vm_paddr_t pa, physmap[PHYS_AVAIL_ENTRIES]; u_long physmem_start, physmem_tunable, memtest; pt_entry_t *pte; quad_t dcons_addr, dcons_size; int page_counter; /* * Tell the physical memory allocator about pages used to store * the kernel and preloaded data. See kmem_bootstrap_free(). */ vm_phys_add_seg((vm_paddr_t)kernphys, trunc_page(first)); bzero(physmap, sizeof(physmap)); physmap_idx = 0; init_ops.parse_memmap(kmdp, physmap, &physmap_idx); physmap_idx -= 2; /* * Find the 'base memory' segment for SMP */ basemem = 0; for (i = 0; i <= physmap_idx; i += 2) { if (physmap[i] <= 0xA0000) { basemem = physmap[i + 1] / 1024; break; } } if (basemem == 0 || basemem > 640) { if (bootverbose) printf( "Memory map doesn't contain a basemem segment, faking it"); basemem = 640; } /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". We may adjust this * based on ``hw.physmem'' and the results of the memory test. */ Maxmem = atop(physmap[physmap_idx + 1]); #ifdef MAXMEM Maxmem = MAXMEM / 4; #endif if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable)) Maxmem = atop(physmem_tunable); /* * The boot memory test is disabled by default, as it takes a * significant amount of time on large-memory systems, and is * unfriendly to virtual machines as it unnecessarily touches all * pages. * * A general name is used as the code may be extended to support * additional tests beyond the current "page present" test. */ memtest = 0; TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); /* * Don't allow MAXMEM or hw.physmem to extend the amount of memory * in the system. */ if (Maxmem > atop(physmap[physmap_idx + 1])) Maxmem = atop(physmap[physmap_idx + 1]); if (atop(physmap[physmap_idx + 1]) != Maxmem && (boothowto & RB_VERBOSE)) printf("Physical memory use set to %ldK\n", Maxmem * 4); /* * Make hole for "AP -> long mode" bootstrap code. The * mp_bootaddress vector is only available when the kernel * is configured to support APs and APs for the system start * in real mode mode (e.g. SMP bare metal). */ if (init_ops.mp_bootaddress) init_ops.mp_bootaddress(physmap, &physmap_idx); /* call pmap initialization to make new kernel address space */ pmap_bootstrap(&first); /* * Size up each available chunk of physical memory. * * XXX Some BIOSes corrupt low 64KB between suspend and resume. * By default, mask off the first 16 pages unless we appear to be * running in a VM. */ physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT; TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start); if (physmap[0] < physmem_start) { if (physmem_start < PAGE_SIZE) physmap[0] = PAGE_SIZE; else if (physmem_start >= physmap[1]) physmap[0] = round_page(physmap[1] - PAGE_SIZE); else physmap[0] = round_page(physmem_start); } pa_indx = 0; da_indx = 1; phys_avail[pa_indx++] = physmap[0]; phys_avail[pa_indx] = physmap[0]; dump_avail[da_indx] = physmap[0]; pte = CMAP1; /* * Get dcons buffer address */ if (getenv_quad("dcons.addr", &dcons_addr) == 0 || getenv_quad("dcons.size", &dcons_size) == 0) dcons_addr = 0; /* * physmap is in bytes, so when converting to page boundaries, * round up the start address and round down the end address. */ page_counter = 0; if (memtest != 0) printf("Testing system memory"); for (i = 0; i <= physmap_idx; i += 2) { vm_paddr_t end; end = ptoa((vm_paddr_t)Maxmem); if (physmap[i + 1] < end) end = trunc_page(physmap[i + 1]); for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { int tmp, page_bad, full; int *ptr = (int *)CADDR1; full = FALSE; /* * block out kernel memory as not available. */ if (pa >= (vm_paddr_t)kernphys && pa < first) goto do_dump_avail; /* * block out dcons buffer */ if (dcons_addr > 0 && pa >= trunc_page(dcons_addr) && pa < dcons_addr + dcons_size) goto do_dump_avail; page_bad = FALSE; if (memtest == 0) goto skip_memtest; /* * Print a "." every GB to show we're making * progress. */ page_counter++; if ((page_counter % PAGES_PER_GB) == 0) printf("."); /* * map page into kernel: valid, read/write,non-cacheable */ *pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD; invltlb(); tmp = *(int *)ptr; /* * Test for alternating 1's and 0's */ *(volatile int *)ptr = 0xaaaaaaaa; if (*(volatile int *)ptr != 0xaaaaaaaa) page_bad = TRUE; /* * Test for alternating 0's and 1's */ *(volatile int *)ptr = 0x55555555; if (*(volatile int *)ptr != 0x55555555) page_bad = TRUE; /* * Test for all 1's */ *(volatile int *)ptr = 0xffffffff; if (*(volatile int *)ptr != 0xffffffff) page_bad = TRUE; /* * Test for all 0's */ *(volatile int *)ptr = 0x0; if (*(volatile int *)ptr != 0x0) page_bad = TRUE; /* * Restore original value. */ *(int *)ptr = tmp; skip_memtest: /* * Adjust array of valid/good pages. */ if (page_bad == TRUE) continue; /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == pa) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ENTRIES) { printf( "Too many holes in the physical address space, giving up\n"); pa_indx--; full = TRUE; goto do_dump_avail; } phys_avail[pa_indx++] = pa; /* start */ phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ } physmem++; do_dump_avail: if (dump_avail[da_indx] == pa) { dump_avail[da_indx] += PAGE_SIZE; } else { da_indx++; if (da_indx == PHYS_AVAIL_ENTRIES) { da_indx--; goto do_next; } dump_avail[da_indx++] = pa; /* start */ dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ } do_next: if (full) break; } } *pte = 0; invltlb(); if (memtest != 0) printf("\n"); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(msgbufsize) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(msgbufsize); /* Map the message buffer. */ msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]); } static caddr_t native_parse_preload_data(u_int64_t modulep) { caddr_t kmdp; char *envp; #ifdef DDB vm_offset_t ksym_start; vm_offset_t ksym_end; #endif preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE); preload_bootstrap_relocate(KERNBASE); kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); if (envp != NULL) envp += KERNBASE; init_static_kenv(envp, 0); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); db_fetch_ksymtab(ksym_start, ksym_end); #endif efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t); return (kmdp); } static void amd64_kdb_init(void) { kdb_init(); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif } /* Set up the fast syscall stuff */ void amd64_conf_fast_syscall(void) { uint64_t msr; msr = rdmsr(MSR_EFER) | EFER_SCE; wrmsr(MSR_EFER, msr); wrmsr(MSR_LSTAR, pti ? (u_int64_t)IDTVEC(fast_syscall_pti) : (u_int64_t)IDTVEC(fast_syscall)); wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32)); msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) | ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48); wrmsr(MSR_STAR, msr); wrmsr(MSR_SF_MASK, PSL_NT | PSL_T | PSL_I | PSL_C | PSL_D | PSL_AC); } void amd64_bsp_pcpu_init1(struct pcpu *pc) { struct user_segment_descriptor *gdt; PCPU_SET(prvspace, pc); gdt = *PCPU_PTR(gdt); PCPU_SET(curthread, &thread0); PCPU_SET(tssp, PCPU_PTR(common_tss)); PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]); PCPU_SET(fs32p, &gdt[GUFS32_SEL]); PCPU_SET(gs32p, &gdt[GUGS32_SEL]); } void amd64_bsp_pcpu_init2(uint64_t rsp0) { PCPU_SET(rsp0, rsp0); PCPU_SET(pti_rsp0, ((vm_offset_t)PCPU_PTR(pti_stack) + PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful); PCPU_SET(curpcb, thread0.td_pcb); } void amd64_bsp_ist_init(struct pcpu *pc) { struct nmi_pcpu *np; struct amd64tss *tssp; tssp = &pc->pc_common_tss; /* doublefault stack space, runs on ist1 */ np = ((struct nmi_pcpu *)&dblfault_stack[sizeof(dblfault_stack)]) - 1; np->np_pcpu = (register_t)pc; tssp->tss_ist1 = (long)np; /* * NMI stack, runs on ist2. The pcpu pointer is stored just * above the start of the ist2 stack. */ np = ((struct nmi_pcpu *)&nmi0_stack[sizeof(nmi0_stack)]) - 1; np->np_pcpu = (register_t)pc; tssp->tss_ist2 = (long)np; /* * MC# stack, runs on ist3. The pcpu pointer is stored just * above the start of the ist3 stack. */ np = ((struct nmi_pcpu *)&mce0_stack[sizeof(mce0_stack)]) - 1; np->np_pcpu = (register_t)pc; tssp->tss_ist3 = (long)np; /* * DB# stack, runs on ist4. */ np = ((struct nmi_pcpu *)&dbg0_stack[sizeof(dbg0_stack)]) - 1; np->np_pcpu = (register_t)pc; tssp->tss_ist4 = (long)np; } u_int64_t hammer_time(u_int64_t modulep, u_int64_t physfree) { caddr_t kmdp; int gsel_tss, x; struct pcpu *pc; struct xstate_hdr *xhdr; u_int64_t rsp0; char *env; struct user_segment_descriptor *gdt; struct region_descriptor r_gdt; size_t kstack0_sz; int late_console; TSRAW(&thread0, TS_ENTER, __func__, NULL); kmdp = init_ops.parse_preload_data(modulep); physfree += ucode_load_bsp(physfree + KERNBASE); physfree = roundup2(physfree, PAGE_SIZE); identify_cpu1(); identify_hypervisor(); identify_cpu_fixup_bsp(); identify_cpu2(); initializecpucache(); /* * Check for pti, pcid, and invpcid before ifuncs are * resolved, to correctly select the implementation for * pmap_activate_sw_mode(). */ pti = pti_get_default(); TUNABLE_INT_FETCH("vm.pmap.pti", &pti); TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled); if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) { invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID) != 0; } else { pmap_pcid_enabled = 0; } link_elf_ireloc(kmdp); /* * This may be done better later if it gets more high level * components in it. If so just link td->td_proc here. */ proc_linkup0(&proc0, &thread0); /* Init basic tunables, hz etc */ init_param1(); thread0.td_kstack = physfree + KERNBASE; thread0.td_kstack_pages = kstack_pages; kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE; bzero((void *)thread0.td_kstack, kstack0_sz); physfree += kstack0_sz; /* * Initialize enough of thread0 for delayed invalidation to * work very early. Rely on thread0.td_base_pri * zero-initialization, it is reset to PVM at proc0_init(). */ pmap_thread_init_invl_gen(&thread0); pc = &temp_bsp_pcpu; pcpu_init(pc, 0, sizeof(struct pcpu)); gdt = &temp_bsp_pcpu.pc_gdt[0]; /* * make gdt memory segments */ for (x = 0; x < NGDT; x++) { if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) && x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1) ssdtosd(&gdt_segs[x], &gdt[x]); } gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&pc->pc_common_tss; ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (long)gdt; lgdt(&r_gdt); wrmsr(MSR_FSBASE, 0); /* User value */ wrmsr(MSR_GSBASE, (u_int64_t)pc); wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */ dpcpu_init((void *)(physfree + KERNBASE), 0); physfree += DPCPU_SIZE; amd64_bsp_pcpu_init1(pc); /* Non-late cninit() and printf() can be moved up to here. */ /* * Initialize mutexes. * * icu_lock: in order to allow an interrupt to occur in a critical * section, to set pcpu->ipending (etc...) properly, we * must be able to get the icu lock, so it can't be * under witness. */ mutex_init(); mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS); mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF); /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, pti ? &IDTVEC(rsvd_pti) : &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DE, pti ? &IDTVEC(div_pti) : &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 4); setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 2); setidt(IDT_BP, pti ? &IDTVEC(bpt_pti) : &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0); setidt(IDT_OF, pti ? &IDTVEC(ofl_pti) : &IDTVEC(ofl), SDT_SYSIGT, SEL_UPL, 0); setidt(IDT_BR, pti ? &IDTVEC(bnd_pti) : &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_UD, pti ? &IDTVEC(ill_pti) : &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NM, pti ? &IDTVEC(dna_pti) : &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1); setidt(IDT_FPUGP, pti ? &IDTVEC(fpusegm_pti) : &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_TS, pti ? &IDTVEC(tss_pti) : &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NP, pti ? &IDTVEC(missing_pti) : &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_SS, pti ? &IDTVEC(stk_pti) : &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_GP, pti ? &IDTVEC(prot_pti) : &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_PF, pti ? &IDTVEC(page_pti) : &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MF, pti ? &IDTVEC(fpu_pti) : &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_AC, pti ? &IDTVEC(align_pti) : &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 3); setidt(IDT_XF, pti ? &IDTVEC(xmm_pti) : &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0); #ifdef KDTRACE_HOOKS setidt(IDT_DTRACE_RET, pti ? &IDTVEC(dtrace_ret_pti) : &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0); #endif #ifdef XENHVM setidt(IDT_EVTCHN, pti ? &IDTVEC(xen_intr_upcall_pti) : &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_KPL, 0); #endif r_idt.rd_limit = sizeof(idt0) - 1; r_idt.rd_base = (long) idt; lidt(&r_idt); /* * Initialize the clock before the console so that console * initialization can use DELAY(). */ clock_init(); /* * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4) * transition). * Once bootblocks have updated, we can test directly for * efi_systbl != NULL here... */ if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL) vty_set_preferred(VTY_VT); TUNABLE_INT_FETCH("hw.ibrs_disable", &hw_ibrs_disable); + TUNABLE_INT_FETCH("machdep.mitigations.ibrs.disable", &hw_ibrs_disable); + TUNABLE_INT_FETCH("hw.spec_store_bypass_disable", &hw_ssb_disable); + TUNABLE_INT_FETCH("machdep.mitigations.ssb.disable", &hw_ssb_disable); + TUNABLE_INT_FETCH("machdep.syscall_ret_l1d_flush", &syscall_ret_l1d_flush_mode); + TUNABLE_INT_FETCH("hw.mds_disable", &hw_mds_disable); + TUNABLE_INT_FETCH("machdep.mitigations.mds.disable", &hw_mds_disable); + TUNABLE_INT_FETCH("machdep.mitigations.taa.enable", &x86_taa_enable); finishidentcpu(); /* Final stage of CPU initialization */ initializecpu(); /* Initialize CPU registers */ amd64_bsp_ist_init(pc); /* Set the IO permission bitmap (empty due to tss seg limit) */ pc->pc_common_tss.tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); ltr(gsel_tss); amd64_conf_fast_syscall(); /* * We initialize the PCB pointer early so that exception * handlers will work. Also set up td_critnest to short-cut * the page fault handler. */ cpu_max_ext_state_size = sizeof(struct savefpu); set_top_of_stack_td(&thread0); thread0.td_pcb = get_pcb_td(&thread0); thread0.td_critnest = 1; /* * The console and kdb should be initialized even earlier than here, * but some console drivers don't work until after getmemsize(). * Default to late console initialization to support these drivers. * This loses mainly printf()s in getmemsize() and early debugging. */ late_console = 1; TUNABLE_INT_FETCH("debug.late_console", &late_console); if (!late_console) { cninit(); amd64_kdb_init(); } getmemsize(kmdp, physfree); init_param2(physmem); /* now running on new page tables, configured,and u/iom is accessible */ #ifdef DEV_PCI /* This call might adjust phys_avail[]. */ pci_early_quirks(); #endif if (late_console) cninit(); #ifdef DEV_ISA #ifdef DEV_ATPIC elcr_probe(); atpic_startup(); #else /* Reset and mask the atpics and leave them shut down. */ atpic_reset(); /* * Point the ICU spurious interrupt vectors at the APIC spurious * interrupt handler. */ setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); #endif #else #error "have you forgotten the isa device?"; #endif if (late_console) amd64_kdb_init(); msgbufinit(msgbufp, msgbufsize); fpuinit(); /* * Set up thread0 pcb save area after fpuinit calculated fpu save * area size. Zero out the extended state header in fpu save * area. */ thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0); bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size); if (use_xsave) { xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) + 1); xhdr->xstate_bv = xsave_mask; } /* make an initial tss so cpu can get interrupt stack on syscall! */ rsp0 = thread0.td_md.md_stack_base; /* Ensure the stack is aligned to 16 bytes */ rsp0 &= ~0xFul; __pcpu[0].pc_common_tss.tss_rsp0 = rsp0; amd64_bsp_pcpu_init2(rsp0); /* transfer to user mode */ _ucodesel = GSEL(GUCODE_SEL, SEL_UPL); _udatasel = GSEL(GUDATA_SEL, SEL_UPL); _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL); _ufssel = GSEL(GUFS32_SEL, SEL_UPL); _ugssel = GSEL(GUGS32_SEL, SEL_UPL); load_ds(_udatasel); load_es(_udatasel); load_fs(_ufssel); /* setup proc 0's pcb */ thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; env = kern_getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); cpu_probe_amdc1e(); kcsan_cpu_init(0); #ifdef FDT x86_init_fdt(); #endif thread0.td_critnest = 0; TSEXIT(); /* Location of kernel stack for locore */ return (thread0.td_md.md_stack_base); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } static int smap_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct bios_smap *smapbase; struct bios_smap_xattr smap; caddr_t kmdp; uint32_t *smapattr; int count, error, i; /* Retrieve the system memory map from the loader. */ kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (smapbase == NULL) return (0); smapattr = (uint32_t *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP_XATTR); count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase); error = 0; for (i = 0; i < count; i++) { smap.base = smapbase[i].base; smap.length = smapbase[i].length; smap.type = smapbase[i].type; if (smapattr != NULL) smap.xattr = smapattr[i]; else smap.xattr = 0; error = SYSCTL_OUT(req, &smap, sizeof(smap)); } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0, smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data"); static int efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct efi_map_header *efihdr; caddr_t kmdp; uint32_t efisize; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); if (efihdr == NULL) return (0); efisize = *((uint32_t *)efihdr - 1); return (SYSCTL_OUT(req, efihdr, efisize)); } SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0, efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map"); void spinlock_enter(void) { struct thread *td; register_t flags; td = curthread; if (td->td_md.md_spinlock_count == 0) { flags = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = flags; critical_enter(); } else td->td_md.md_spinlock_count++; } void spinlock_exit(void) { struct thread *td; register_t flags; td = curthread; flags = td->td_md.md_saved_flags; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { critical_exit(); intr_restore(flags); } } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_r12 = tf->tf_r12; pcb->pcb_r13 = tf->tf_r13; pcb->pcb_r14 = tf->tf_r14; pcb->pcb_r15 = tf->tf_r15; pcb->pcb_rbp = tf->tf_rbp; pcb->pcb_rbx = tf->tf_rbx; pcb->pcb_rip = tf->tf_rip; pcb->pcb_rsp = tf->tf_rsp; } int ptrace_set_pc(struct thread *td, unsigned long addr) { td->td_frame->tf_rip = addr; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (0); } int ptrace_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); if ((td->td_frame->tf_rflags & PSL_T) == 0) { td->td_frame->tf_rflags |= PSL_T; td->td_dbgflags |= TDB_STEP; } return (0); } int ptrace_clear_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); td->td_frame->tf_rflags &= ~PSL_T; td->td_dbgflags &= ~TDB_STEP; return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; tp = td->td_frame; return (fill_frame_regs(tp, regs)); } int fill_frame_regs(struct trapframe *tp, struct reg *regs) { regs->r_r15 = tp->tf_r15; regs->r_r14 = tp->tf_r14; regs->r_r13 = tp->tf_r13; regs->r_r12 = tp->tf_r12; regs->r_r11 = tp->tf_r11; regs->r_r10 = tp->tf_r10; regs->r_r9 = tp->tf_r9; regs->r_r8 = tp->tf_r8; regs->r_rdi = tp->tf_rdi; regs->r_rsi = tp->tf_rsi; regs->r_rbp = tp->tf_rbp; regs->r_rbx = tp->tf_rbx; regs->r_rdx = tp->tf_rdx; regs->r_rcx = tp->tf_rcx; regs->r_rax = tp->tf_rax; regs->r_rip = tp->tf_rip; regs->r_cs = tp->tf_cs; regs->r_rflags = tp->tf_rflags; regs->r_rsp = tp->tf_rsp; regs->r_ss = tp->tf_ss; if (tp->tf_flags & TF_HASSEGS) { regs->r_ds = tp->tf_ds; regs->r_es = tp->tf_es; regs->r_fs = tp->tf_fs; regs->r_gs = tp->tf_gs; } else { regs->r_ds = 0; regs->r_es = 0; regs->r_fs = 0; regs->r_gs = 0; } regs->r_err = 0; regs->r_trapno = 0; return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; register_t rflags; tp = td->td_frame; rflags = regs->r_rflags & 0xffffffff; if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); tp->tf_r15 = regs->r_r15; tp->tf_r14 = regs->r_r14; tp->tf_r13 = regs->r_r13; tp->tf_r12 = regs->r_r12; tp->tf_r11 = regs->r_r11; tp->tf_r10 = regs->r_r10; tp->tf_r9 = regs->r_r9; tp->tf_r8 = regs->r_r8; tp->tf_rdi = regs->r_rdi; tp->tf_rsi = regs->r_rsi; tp->tf_rbp = regs->r_rbp; tp->tf_rbx = regs->r_rbx; tp->tf_rdx = regs->r_rdx; tp->tf_rcx = regs->r_rcx; tp->tf_rax = regs->r_rax; tp->tf_rip = regs->r_rip; tp->tf_cs = regs->r_cs; tp->tf_rflags = rflags; tp->tf_rsp = regs->r_rsp; tp->tf_ss = regs->r_ss; if (0) { /* XXXKIB */ tp->tf_ds = regs->r_ds; tp->tf_es = regs->r_es; tp->tf_fs = regs->r_fs; tp->tf_gs = regs->r_gs; tp->tf_flags = TF_HASSEGS; } set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (0); } /* XXX check all this stuff! */ /* externalize from sv_xmm */ static void fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs) { struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; struct envxmm *penv_xmm = &sv_xmm->sv_env; int i; /* pcb -> fpregs */ bzero(fpregs, sizeof(*fpregs)); /* FPU control/status */ penv_fpreg->en_cw = penv_xmm->en_cw; penv_fpreg->en_sw = penv_xmm->en_sw; penv_fpreg->en_tw = penv_xmm->en_tw; penv_fpreg->en_opcode = penv_xmm->en_opcode; penv_fpreg->en_rip = penv_xmm->en_rip; penv_fpreg->en_rdp = penv_xmm->en_rdp; penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr; penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16); } /* internalize from fpregs into sv_xmm */ static void set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm) { struct envxmm *penv_xmm = &sv_xmm->sv_env; struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; int i; /* fpregs -> pcb */ /* FPU control/status */ penv_xmm->en_cw = penv_fpreg->en_cw; penv_xmm->en_sw = penv_fpreg->en_sw; penv_xmm->en_tw = penv_fpreg->en_tw; penv_xmm->en_opcode = penv_fpreg->en_opcode; penv_xmm->en_rip = penv_fpreg->en_rip; penv_xmm->en_rdp = penv_fpreg->en_rdp; penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr; penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16); } /* externalize from td->pcb */ int fill_fpregs(struct thread *td, struct fpreg *fpregs) { KASSERT(td == curthread || TD_IS_SUSPENDED(td) || P_SHOULDSTOP(td->td_proc), ("not suspended thread %p", td)); fpugetregs(td); fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs); return (0); } /* internalize to td->pcb */ int set_fpregs(struct thread *td, struct fpreg *fpregs) { critical_enter(); set_fpregs_xmm(fpregs, get_pcb_user_save_td(td)); fpuuserinited(td); critical_exit(); return (0); } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct pcb *pcb; struct trapframe *tp; pcb = td->td_pcb; tp = td->td_frame; PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(tp->tf_rsp); PROC_UNLOCK(curthread->td_proc); mcp->mc_r15 = tp->tf_r15; mcp->mc_r14 = tp->tf_r14; mcp->mc_r13 = tp->tf_r13; mcp->mc_r12 = tp->tf_r12; mcp->mc_r11 = tp->tf_r11; mcp->mc_r10 = tp->tf_r10; mcp->mc_r9 = tp->tf_r9; mcp->mc_r8 = tp->tf_r8; mcp->mc_rdi = tp->tf_rdi; mcp->mc_rsi = tp->tf_rsi; mcp->mc_rbp = tp->tf_rbp; mcp->mc_rbx = tp->tf_rbx; mcp->mc_rcx = tp->tf_rcx; mcp->mc_rflags = tp->tf_rflags; if (flags & GET_MC_CLEAR_RET) { mcp->mc_rax = 0; mcp->mc_rdx = 0; mcp->mc_rflags &= ~PSL_C; } else { mcp->mc_rax = tp->tf_rax; mcp->mc_rdx = tp->tf_rdx; } mcp->mc_rip = tp->tf_rip; mcp->mc_cs = tp->tf_cs; mcp->mc_rsp = tp->tf_rsp; mcp->mc_ss = tp->tf_ss; mcp->mc_ds = tp->tf_ds; mcp->mc_es = tp->tf_es; mcp->mc_fs = tp->tf_fs; mcp->mc_gs = tp->tf_gs; mcp->mc_flags = tp->tf_flags; mcp->mc_len = sizeof(*mcp); get_fpcontext(td, mcp, NULL, 0); update_pcb_bases(pcb); mcp->mc_fsbase = pcb->pcb_fsbase; mcp->mc_gsbase = pcb->pcb_gsbase; mcp->mc_xfpustate = 0; mcp->mc_xfpustate_len = 0; bzero(mcp->mc_spare, sizeof(mcp->mc_spare)); return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, mcontext_t *mcp) { struct pcb *pcb; struct trapframe *tp; char *xfpustate; long rflags; int ret; pcb = td->td_pcb; tp = td->td_frame; if (mcp->mc_len != sizeof(*mcp) || (mcp->mc_flags & ~_MC_FLAG_MASK) != 0) return (EINVAL); rflags = (mcp->mc_rflags & PSL_USERCHANGE) | (tp->tf_rflags & ~PSL_USERCHANGE); if (mcp->mc_flags & _MC_HASFPXSTATE) { if (mcp->mc_xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) return (EINVAL); xfpustate = __builtin_alloca(mcp->mc_xfpustate_len); ret = copyin((void *)mcp->mc_xfpustate, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); } else xfpustate = NULL; ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); tp->tf_r15 = mcp->mc_r15; tp->tf_r14 = mcp->mc_r14; tp->tf_r13 = mcp->mc_r13; tp->tf_r12 = mcp->mc_r12; tp->tf_r11 = mcp->mc_r11; tp->tf_r10 = mcp->mc_r10; tp->tf_r9 = mcp->mc_r9; tp->tf_r8 = mcp->mc_r8; tp->tf_rdi = mcp->mc_rdi; tp->tf_rsi = mcp->mc_rsi; tp->tf_rbp = mcp->mc_rbp; tp->tf_rbx = mcp->mc_rbx; tp->tf_rdx = mcp->mc_rdx; tp->tf_rcx = mcp->mc_rcx; tp->tf_rax = mcp->mc_rax; tp->tf_rip = mcp->mc_rip; tp->tf_rflags = rflags; tp->tf_rsp = mcp->mc_rsp; tp->tf_ss = mcp->mc_ss; tp->tf_flags = mcp->mc_flags; if (tp->tf_flags & TF_HASSEGS) { tp->tf_ds = mcp->mc_ds; tp->tf_es = mcp->mc_es; tp->tf_fs = mcp->mc_fs; tp->tf_gs = mcp->mc_gs; } set_pcb_flags(pcb, PCB_FULL_IRET); if (mcp->mc_flags & _MC_HASBASES) { pcb->pcb_fsbase = mcp->mc_fsbase; pcb->pcb_gsbase = mcp->mc_gsbase; } return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len) { size_t max_len, len; mcp->mc_ownedfp = fpugetregs(td); bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0], sizeof(mcp->mc_fpstate)); mcp->mc_fpformat = fpuformat(); if (!use_xsave || xfpusave_len == 0) return; max_len = cpu_max_ext_state_size - sizeof(struct savefpu); len = xfpusave_len; if (len > max_len) { len = max_len; bzero(xfpusave + max_len, len - max_len); } mcp->mc_flags |= _MC_HASFPXSTATE; mcp->mc_xfpustate_len = len; bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len); } static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len) { int error; if (mcp->mc_fpformat == _MC_FPFMT_NODEV) return (0); else if (mcp->mc_fpformat != _MC_FPFMT_XMM) return (EINVAL); else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) { /* We don't care what state is left in the FPU or PCB. */ fpstate_drop(td); error = 0; } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU || mcp->mc_ownedfp == _MC_FPOWNED_PCB) { error = fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate, xfpustate, xfpustate_len); } else return (EINVAL); return (error); } void fpstate_drop(struct thread *td) { KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu")); critical_enter(); if (PCPU_GET(fpcurthread) == td) fpudrop(); /* * XXX force a full drop of the fpu. The above only drops it if we * owned it. * * XXX I don't much like fpugetuserregs()'s semantics of doing a full * drop. Dropping only to the pcb matches fnsave's behaviour. * We only need to drop to !PCB_INITDONE in sendsig(). But * sendsig() is the only caller of fpugetuserregs()... perhaps we just * have too many layers. */ clear_pcb_flags(curthread->td_pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); critical_exit(); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; if (td == NULL) { dbregs->dr[0] = rdr0(); dbregs->dr[1] = rdr1(); dbregs->dr[2] = rdr2(); dbregs->dr[3] = rdr3(); dbregs->dr[6] = rdr6(); dbregs->dr[7] = rdr7(); } else { pcb = td->td_pcb; dbregs->dr[0] = pcb->pcb_dr0; dbregs->dr[1] = pcb->pcb_dr1; dbregs->dr[2] = pcb->pcb_dr2; dbregs->dr[3] = pcb->pcb_dr3; dbregs->dr[6] = pcb->pcb_dr6; dbregs->dr[7] = pcb->pcb_dr7; } dbregs->dr[4] = 0; dbregs->dr[5] = 0; dbregs->dr[8] = 0; dbregs->dr[9] = 0; dbregs->dr[10] = 0; dbregs->dr[11] = 0; dbregs->dr[12] = 0; dbregs->dr[13] = 0; dbregs->dr[14] = 0; dbregs->dr[15] = 0; return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; int i; if (td == NULL) { load_dr0(dbregs->dr[0]); load_dr1(dbregs->dr[1]); load_dr2(dbregs->dr[2]); load_dr3(dbregs->dr[3]); load_dr6(dbregs->dr[6]); load_dr7(dbregs->dr[7]); } else { /* * Don't let an illegal value for dr7 get set. Specifically, * check for undefined settings. Setting these bit patterns * result in undefined behaviour and can lead to an unexpected * TRCTRAP or a general protection fault right here. * Upper bits of dr6 and dr7 must not be set */ for (i = 0; i < 4; i++) { if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02) return (EINVAL); if (td->td_frame->tf_cs == _ucode32sel && DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8) return (EINVAL); } if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 || (dbregs->dr[7] & 0xffffffff00000000ul) != 0) return (EINVAL); pcb = td->td_pcb; /* * Don't let a process set a breakpoint that is not within the * process's address space. If a process could do this, it * could halt the system by setting a breakpoint in the kernel * (if ddb was enabled). Thus, we need to check to make sure * that no breakpoints are being enabled for addresses outside * process's address space. * * XXX - what about when the watched area of the user's * address space is written into from within the kernel * ... wouldn't that still cause a breakpoint to be generated * from within kernel mode? */ if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) { /* dr0 is enabled */ if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) { /* dr1 is enabled */ if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) { /* dr2 is enabled */ if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) { /* dr3 is enabled */ if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS) return (EINVAL); } pcb->pcb_dr0 = dbregs->dr[0]; pcb->pcb_dr1 = dbregs->dr[1]; pcb->pcb_dr2 = dbregs->dr[2]; pcb->pcb_dr3 = dbregs->dr[3]; pcb->pcb_dr6 = dbregs->dr[6]; pcb->pcb_dr7 = dbregs->dr[7]; set_pcb_flags(pcb, PCB_DBREGS); } return (0); } void reset_dbregs(void) { load_dr7(0); /* Turn off the control bits first */ load_dr0(0); load_dr1(0); load_dr2(0); load_dr3(0); load_dr6(0); } /* * Return > 0 if a hardware breakpoint has been hit, and the * breakpoint was in user space. Return 0, otherwise. */ int user_dbreg_trap(register_t dr6) { u_int64_t dr7; u_int64_t bp; /* breakpoint bits extracted from dr6 */ int nbp; /* number of breakpoints that triggered */ caddr_t addr[4]; /* breakpoint addresses */ int i; bp = dr6 & DBREG_DR6_BMASK; if (bp == 0) { /* * None of the breakpoint bits are set meaning this * trap was not caused by any of the debug registers */ return 0; } dr7 = rdr7(); if ((dr7 & 0x000000ff) == 0) { /* * all GE and LE bits in the dr7 register are zero, * thus the trap couldn't have been caused by the * hardware debug registers */ return 0; } nbp = 0; /* * at least one of the breakpoints were hit, check to see * which ones and if any of them are user space addresses */ if (bp & 0x01) { addr[nbp++] = (caddr_t)rdr0(); } if (bp & 0x02) { addr[nbp++] = (caddr_t)rdr1(); } if (bp & 0x04) { addr[nbp++] = (caddr_t)rdr2(); } if (bp & 0x08) { addr[nbp++] = (caddr_t)rdr3(); } for (i = 0; i < nbp; i++) { if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) { /* * addr[i] is in user space */ return nbp; } } /* * None of the breakpoints are in user space. */ return 0; } /* * The pcb_flags is only modified by current thread, or by other threads * when current thread is stopped. However, current thread may change it * from the interrupt context in cpu_switch(), or in the trap handler. * When we read-modify-write pcb_flags from C sources, compiler may generate * code that is not atomic regarding the interrupt handler. If a trap or * interrupt happens and any flag is modified from the handler, it can be * clobbered with the cached value later. Therefore, we implement setting * and clearing flags with single-instruction functions, which do not race * with possible modification of the flags from the trap or interrupt context, * because traps and interrupts are executed only on instruction boundary. */ void set_pcb_flags_raw(struct pcb *pcb, const u_int flags) { __asm __volatile("orl %1,%0" : "=m" (pcb->pcb_flags) : "ir" (flags), "m" (pcb->pcb_flags) : "cc", "memory"); } /* * The support for RDFSBASE, WRFSBASE and similar instructions for %gs * base requires that kernel saves MSR_FSBASE and MSR_{K,}GSBASE into * pcb if user space modified the bases. We must save on the context * switch or if the return to usermode happens through the doreti. * * Tracking of both events is performed by the pcb flag PCB_FULL_IRET, * which have a consequence that the base MSRs must be saved each time * the PCB_FULL_IRET flag is set. We disable interrupts to sync with * context switches. */ static void set_pcb_flags_fsgsbase(struct pcb *pcb, const u_int flags) { register_t r; if (curpcb == pcb && (flags & PCB_FULL_IRET) != 0 && (pcb->pcb_flags & PCB_FULL_IRET) == 0) { r = intr_disable(); if ((pcb->pcb_flags & PCB_FULL_IRET) == 0) { if (rfs() == _ufssel) pcb->pcb_fsbase = rdfsbase(); if (rgs() == _ugssel) pcb->pcb_gsbase = rdmsr(MSR_KGSBASE); } set_pcb_flags_raw(pcb, flags); intr_restore(r); } else { set_pcb_flags_raw(pcb, flags); } } DEFINE_IFUNC(, void, set_pcb_flags, (struct pcb *, const u_int)) { return ((cpu_stdext_feature & CPUID_STDEXT_FSGSBASE) != 0 ? set_pcb_flags_fsgsbase : set_pcb_flags_raw); } void clear_pcb_flags(struct pcb *pcb, const u_int flags) { __asm __volatile("andl %1,%0" : "=m" (pcb->pcb_flags) : "ir" (~flags), "m" (pcb->pcb_flags) : "cc", "memory"); } #ifdef KDB /* * Provide inb() and outb() as functions. They are normally only available as * inline functions, thus cannot be called from the debugger. */ /* silence compiler warnings */ u_char inb_(u_short); void outb_(u_short, u_char); u_char inb_(u_short port) { return inb(port); } void outb_(u_short port, u_char data) { outb(port, data); } #endif /* KDB */ #undef memset #undef memmove #undef memcpy void *memset_std(void *buf, int c, size_t len); void *memset_erms(void *buf, int c, size_t len); void *memmove_std(void * _Nonnull dst, const void * _Nonnull src, size_t len); void *memmove_erms(void * _Nonnull dst, const void * _Nonnull src, size_t len); void *memcpy_std(void * _Nonnull dst, const void * _Nonnull src, size_t len); void *memcpy_erms(void * _Nonnull dst, const void * _Nonnull src, size_t len); #ifdef KCSAN /* * These fail to build as ifuncs when used with KCSAN. */ void * memset(void *buf, int c, size_t len) { return (memset_std(buf, c, len)); } void * memmove(void * _Nonnull dst, const void * _Nonnull src, size_t len) { return (memmove_std(dst, src, len)); } void * memcpy(void * _Nonnull dst, const void * _Nonnull src, size_t len) { return (memcpy_std(dst, src, len)); } #else DEFINE_IFUNC(, void *, memset, (void *, int, size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memset_erms : memset_std); } DEFINE_IFUNC(, void *, memmove, (void * _Nonnull, const void * _Nonnull, size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memmove_erms : memmove_std); } DEFINE_IFUNC(, void *, memcpy, (void * _Nonnull, const void * _Nonnull,size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memcpy_erms : memcpy_std); } #endif void pagezero_std(void *addr); void pagezero_erms(void *addr); DEFINE_IFUNC(, void , pagezero, (void *)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? pagezero_erms : pagezero_std); } Index: head/sys/x86/x86/cpu_machdep.c =================================================================== --- head/sys/x86/x86/cpu_machdep.c (revision 355435) +++ head/sys/x86/x86/cpu_machdep.c (revision 355436) @@ -1,1392 +1,1427 @@ /*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include "opt_atpic.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_isa.h" #include "opt_kdb.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_platform.h" #ifdef __i386__ #include "opt_apic.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifdef CPU_ELAN #include #endif #include #include #include #include #include #include #include #include #include #include #include #define STATE_RUNNING 0x0 #define STATE_MWAIT 0x1 #define STATE_SLEEPING 0x2 #ifdef SMP static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif struct msr_op_arg { u_int msr; int op; uint64_t arg1; }; static void x86_msr_op_one(void *argp) { struct msr_op_arg *a; uint64_t v; a = argp; switch (a->op) { case MSR_OP_ANDNOT: v = rdmsr(a->msr); v &= ~a->arg1; wrmsr(a->msr, v); break; case MSR_OP_OR: v = rdmsr(a->msr); v |= a->arg1; wrmsr(a->msr, v); break; case MSR_OP_WRITE: wrmsr(a->msr, a->arg1); break; } } #define MSR_OP_EXMODE_MASK 0xf0000000 #define MSR_OP_OP_MASK 0x000000ff void x86_msr_op(u_int msr, u_int op, uint64_t arg1) { struct thread *td; struct msr_op_arg a; u_int exmode; int bound_cpu, i, is_bound; a.op = op & MSR_OP_OP_MASK; MPASS(a.op == MSR_OP_ANDNOT || a.op == MSR_OP_OR || a.op == MSR_OP_WRITE); exmode = op & MSR_OP_EXMODE_MASK; MPASS(exmode == MSR_OP_LOCAL || exmode == MSR_OP_SCHED || exmode == MSR_OP_RENDEZVOUS); a.msr = msr; a.arg1 = arg1; switch (exmode) { case MSR_OP_LOCAL: x86_msr_op_one(&a); break; case MSR_OP_SCHED: td = curthread; thread_lock(td); is_bound = sched_is_bound(td); bound_cpu = td->td_oncpu; CPU_FOREACH(i) { sched_bind(td, i); x86_msr_op_one(&a); } if (is_bound) sched_bind(td, bound_cpu); else sched_unbind(td); thread_unlock(td); break; case MSR_OP_RENDEZVOUS: smp_rendezvous(NULL, x86_msr_op_one, NULL, &a); break; } } /* * Automatically initialized per CPU errata in cpu_idle_tun below. */ bool mwait_cpustop_broken = false; SYSCTL_BOOL(_machdep, OID_AUTO, mwait_cpustop_broken, CTLFLAG_RDTUN, &mwait_cpustop_broken, 0, "Can not reliably wake MONITOR/MWAIT cpus without interrupts"); /* * Machine dependent boot() routine * * I haven't seen anything to put here yet * Possibly some stuff might be grafted back here from boot() */ void cpu_boot(int howto) { } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { /* Not applicable */ } void acpi_cpu_c1(void) { __asm __volatile("sti; hlt"); } /* * Use mwait to pause execution while waiting for an interrupt or * another thread to signal that there is more work. * * NOTE: Interrupts will cause a wakeup; however, this function does * not enable interrupt handling. The caller is responsible to enable * interrupts. */ void acpi_cpu_idle_mwait(uint32_t mwait_hint) { int *state; uint64_t v; /* * A comment in Linux patch claims that 'CPUs run faster with * speculation protection disabled. All CPU threads in a core * must disable speculation protection for it to be * disabled. Disable it while we are idle so the other * hyperthread can run fast.' * * XXXKIB. Software coordination mode should be supported, * but all Intel CPUs provide hardware coordination. */ state = &PCPU_PTR(monitorbuf)->idle_state; KASSERT(atomic_load_int(state) == STATE_SLEEPING, ("cpu_mwait_cx: wrong monitorbuf state")); atomic_store_int(state, STATE_MWAIT); if (PCPU_GET(ibpb_set) || hw_ssb_active) { v = rdmsr(MSR_IA32_SPEC_CTRL); wrmsr(MSR_IA32_SPEC_CTRL, v & ~(IA32_SPEC_CTRL_IBRS | IA32_SPEC_CTRL_STIBP | IA32_SPEC_CTRL_SSBD)); } else { v = 0; } cpu_monitor(state, 0, 0); if (atomic_load_int(state) == STATE_MWAIT) cpu_mwait(MWAIT_INTRBREAK, mwait_hint); /* * SSB cannot be disabled while we sleep, or rather, if it was * disabled, the sysctl thread will bind to our cpu to tweak * MSR. */ if (v != 0) wrmsr(MSR_IA32_SPEC_CTRL, v); /* * We should exit on any event that interrupts mwait, because * that event might be a wanted interrupt. */ atomic_store_int(state, STATE_RUNNING); } /* Get current clock frequency for the given cpu id. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { uint64_t tsc1, tsc2; uint64_t acnt, mcnt, perf; register_t reg; if (pcpu_find(cpu_id) == NULL || rate == NULL) return (EINVAL); #ifdef __i386__ if ((cpu_feature & CPUID_TSC) == 0) return (EOPNOTSUPP); #endif /* * If TSC is P-state invariant and APERF/MPERF MSRs do not exist, * DELAY(9) based logic fails. */ if (tsc_is_invariant && !tsc_perf_stat) return (EOPNOTSUPP); #ifdef SMP if (smp_cpus > 1) { /* Schedule ourselves on the indicated cpu. */ thread_lock(curthread); sched_bind(curthread, cpu_id); thread_unlock(curthread); } #endif /* Calibrate by measuring a short delay. */ reg = intr_disable(); if (tsc_is_invariant) { wrmsr(MSR_MPERF, 0); wrmsr(MSR_APERF, 0); tsc1 = rdtsc(); DELAY(1000); mcnt = rdmsr(MSR_MPERF); acnt = rdmsr(MSR_APERF); tsc2 = rdtsc(); intr_restore(reg); perf = 1000 * acnt / mcnt; *rate = (tsc2 - tsc1) * perf; } else { tsc1 = rdtsc(); DELAY(1000); tsc2 = rdtsc(); intr_restore(reg); *rate = (tsc2 - tsc1) * 1000; } #ifdef SMP if (smp_cpus > 1) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } #endif return (0); } /* * Shutdown the CPU as much as possible */ void cpu_halt(void) { for (;;) halt(); } static void cpu_reset_real(void) { struct region_descriptor null_idt; int b; disable_intr(); #ifdef CPU_ELAN if (elan_mmcr != NULL) elan_mmcr->RESCFG = 1; #endif #ifdef __i386__ if (cpu == CPU_GEODE1100) { /* Attempt Geode's own reset */ outl(0xcf8, 0x80009044ul); outl(0xcfc, 0xf); } #endif #if !defined(BROKEN_KEYBOARD_RESET) /* * Attempt to do a CPU reset via the keyboard controller, * do not turn off GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ #endif /* * Attempt to force a reset via the Reset Control register at * I/O port 0xcf9. Bit 2 forces a system reset when it * transitions from 0 to 1. Bit 1 selects the type of reset * to attempt: 0 selects a "soft" reset, and 1 selects a * "hard" reset. We try a "hard" reset. The first write sets * bit 1 to select a "hard" reset and clears bit 2. The * second write forces a 0 -> 1 transition in bit 2 to trigger * a reset. */ outb(0xcf9, 0x2); outb(0xcf9, 0x6); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Fast A20 and Init register * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. * Bit 0 asserts INIT# when set to 1. We are careful to only * preserve bit 1 while setting bit 0. We also must clear bit * 0 before setting it if it isn't already clear. */ b = inb(0x92); if (b != 0xff) { if ((b & 0x1) != 0) outb(0x92, b & 0xfe); outb(0x92, b | 0x1); DELAY(500000); /* wait 0.5 sec to see if that did it */ } printf("No known reset method worked, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ /* Wipe the IDT. */ null_idt.rd_limit = 0; null_idt.rd_base = 0; lidt(&null_idt); /* "good night, sweet prince .... " */ breakpoint(); /* NOTREACHED */ while(1); } #ifdef SMP static void cpu_reset_proxy(void) { cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ia32_pause(); /* Wait for other cpu to see that we've started */ printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); DELAY(1000000); cpu_reset_real(); } #endif void cpu_reset(void) { #ifdef SMP struct monitorbuf *mb; cpuset_t map; u_int cnt; if (smp_started) { map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) { printf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); } if (PCPU_GET(cpuid) != 0) { cpu_reset_proxyid = PCPU_GET(cpuid); cpustop_restartfunc = cpu_reset_proxy; cpu_reset_proxy_active = 0; printf("cpu_reset: Restarting BSP\n"); /* Restart CPU #0. */ CPU_SETOF(0, &started_cpus); mb = &pcpu_find(0)->pc_monitorbuf; atomic_store_int(&mb->stop_state, MONITOR_STOPSTATE_RUNNING); cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) { ia32_pause(); cnt++; /* Wait for BSP to announce restart */ } if (cpu_reset_proxy_active == 0) { printf("cpu_reset: Failed to restart BSP\n"); } else { cpu_reset_proxy_active = 2; while (1) ia32_pause(); /* NOTREACHED */ } } DELAY(1000000); } #endif cpu_reset_real(); /* NOTREACHED */ } bool cpu_mwait_usable(void) { return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags & (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) == (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK))); } void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */ static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */ static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */ SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait, 0, "Use MONITOR/MWAIT for short idle"); static void cpu_idle_acpi(sbintime_t sbt) { int *state; state = &PCPU_PTR(monitorbuf)->idle_state; atomic_store_int(state, STATE_SLEEPING); /* See comments in cpu_idle_hlt(). */ disable_intr(); if (sched_runnable()) enable_intr(); else if (cpu_idle_hook) cpu_idle_hook(sbt); else acpi_cpu_c1(); atomic_store_int(state, STATE_RUNNING); } static void cpu_idle_hlt(sbintime_t sbt) { int *state; state = &PCPU_PTR(monitorbuf)->idle_state; atomic_store_int(state, STATE_SLEEPING); /* * Since we may be in a critical section from cpu_idle(), if * an interrupt fires during that critical section we may have * a pending preemption. If the CPU halts, then that thread * may not execute until a later interrupt awakens the CPU. * To handle this race, check for a runnable thread after * disabling interrupts and immediately return if one is * found. Also, we must absolutely guarentee that hlt is * the next instruction after sti. This ensures that any * interrupt that fires after the call to disable_intr() will * immediately awaken the CPU from hlt. Finally, please note * that on x86 this works fine because of interrupts enabled only * after the instruction following sti takes place, while IF is set * to 1 immediately, allowing hlt instruction to acknowledge the * interrupt. */ disable_intr(); if (sched_runnable()) enable_intr(); else acpi_cpu_c1(); atomic_store_int(state, STATE_RUNNING); } static void cpu_idle_mwait(sbintime_t sbt) { int *state; state = &PCPU_PTR(monitorbuf)->idle_state; atomic_store_int(state, STATE_MWAIT); /* See comments in cpu_idle_hlt(). */ disable_intr(); if (sched_runnable()) { atomic_store_int(state, STATE_RUNNING); enable_intr(); return; } cpu_monitor(state, 0, 0); if (atomic_load_int(state) == STATE_MWAIT) __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0)); else enable_intr(); atomic_store_int(state, STATE_RUNNING); } static void cpu_idle_spin(sbintime_t sbt) { int *state; int i; state = &PCPU_PTR(monitorbuf)->idle_state; atomic_store_int(state, STATE_RUNNING); /* * The sched_runnable() call is racy but as long as there is * a loop missing it one time will have just a little impact if any * (and it is much better than missing the check at all). */ for (i = 0; i < 1000; i++) { if (sched_runnable()) return; cpu_spinwait(); } } /* * C1E renders the local APIC timer dead, so we disable it by * reading the Interrupt Pending Message register and clearing * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27). * * Reference: * "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors" * #32559 revision 3.00+ */ #define MSR_AMDK8_IPM 0xc0010055 #define AMDK8_SMIONCMPHALT (1ULL << 27) #define AMDK8_C1EONCMPHALT (1ULL << 28) #define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT) void cpu_probe_amdc1e(void) { /* * Detect the presence of C1E capability mostly on latest * dual-cores (or future) k8 family. */ if (cpu_vendor_id == CPU_VENDOR_AMD && (cpu_id & 0x00000f00) == 0x00000f00 && (cpu_id & 0x0fff0000) >= 0x00040000) { cpu_ident_amdc1e = 1; } } void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi; void cpu_idle(int busy) { uint64_t msr; sbintime_t sbt = -1; CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu); #ifdef MP_WATCHDOG ap_watchdog(PCPU_GET(cpuid)); #endif /* If we are busy - try to use fast methods. */ if (busy) { if ((cpu_feature2 & CPUID2_MON) && idle_mwait) { cpu_idle_mwait(busy); goto out; } } /* If we have time - switch timers into idle mode. */ if (!busy) { critical_enter(); sbt = cpu_idleclock(); } /* Apply AMD APIC timer C1E workaround. */ if (cpu_ident_amdc1e && cpu_disable_c3_sleep) { msr = rdmsr(MSR_AMDK8_IPM); if (msr & AMDK8_CMPHALT) wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT); } /* Call main idle method. */ cpu_idle_fn(sbt); /* Switch timers back into active mode. */ if (!busy) { cpu_activeclock(); critical_exit(); } out: CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu); } static int cpu_idle_apl31_workaround; SYSCTL_INT(_machdep, OID_AUTO, idle_apl31, CTLFLAG_RW, &cpu_idle_apl31_workaround, 0, "Apollo Lake APL31 MWAIT bug workaround"); int cpu_idle_wakeup(int cpu) { struct monitorbuf *mb; int *state; mb = &pcpu_find(cpu)->pc_monitorbuf; state = &mb->idle_state; switch (atomic_load_int(state)) { case STATE_SLEEPING: return (0); case STATE_MWAIT: atomic_store_int(state, STATE_RUNNING); return (cpu_idle_apl31_workaround ? 0 : 1); case STATE_RUNNING: return (1); default: panic("bad monitor state"); return (1); } } /* * Ordered by speed/power consumption. */ static struct { void *id_fn; char *id_name; int id_cpuid2_flag; } idle_tbl[] = { { .id_fn = cpu_idle_spin, .id_name = "spin" }, { .id_fn = cpu_idle_mwait, .id_name = "mwait", .id_cpuid2_flag = CPUID2_MON }, { .id_fn = cpu_idle_hlt, .id_name = "hlt" }, { .id_fn = cpu_idle_acpi, .id_name = "acpi" }, }; static int idle_sysctl_available(SYSCTL_HANDLER_ARGS) { char *avail, *p; int error; int i; avail = malloc(256, M_TEMP, M_WAITOK); p = avail; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_cpuid2_flag != 0 && (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) continue; if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; p += sprintf(p, "%s%s", p != avail ? ", " : "", idle_tbl[i].id_name); } error = sysctl_handle_string(oidp, avail, 0, req); free(avail, M_TEMP); return (error); } SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD, 0, 0, idle_sysctl_available, "A", "list of available idle functions"); static bool cpu_idle_selector(const char *new_idle_name) { int i; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_cpuid2_flag != 0 && (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) continue; if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; if (strcmp(idle_tbl[i].id_name, new_idle_name)) continue; cpu_idle_fn = idle_tbl[i].id_fn; if (bootverbose) printf("CPU idle set to %s\n", idle_tbl[i].id_name); return (true); } return (false); } static int cpu_idle_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16], *p; int error, i; p = "unknown"; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_fn == cpu_idle_fn) { p = idle_tbl[i].id_name; break; } } strncpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); return (cpu_idle_selector(buf) ? 0 : EINVAL); } SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, cpu_idle_sysctl, "A", "currently selected idle function"); static void cpu_idle_tun(void *unused __unused) { char tunvar[16]; if (TUNABLE_STR_FETCH("machdep.idle", tunvar, sizeof(tunvar))) cpu_idle_selector(tunvar); else if (cpu_vendor_id == CPU_VENDOR_AMD && CPUID_TO_FAMILY(cpu_id) == 0x17 && CPUID_TO_MODEL(cpu_id) == 0x1) { /* Ryzen erratas 1057, 1109. */ cpu_idle_selector("hlt"); idle_mwait = 0; mwait_cpustop_broken = true; } if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_id == 0x506c9) { /* * Apollo Lake errata APL31 (public errata APL30). * Stores to the armed address range may not trigger * MWAIT to resume execution. OS needs to use * interrupts to wake processors from MWAIT-induced * sleep states. */ cpu_idle_apl31_workaround = 1; mwait_cpustop_broken = true; } TUNABLE_INT_FETCH("machdep.idle_apl31", &cpu_idle_apl31_workaround); } SYSINIT(cpu_idle_tun, SI_SUB_CPU, SI_ORDER_MIDDLE, cpu_idle_tun, NULL); static int panic_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN, &panic_on_nmi, 0, "Panic on NMI raised by hardware failure"); int nmi_is_broadcast = 1; SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN, &nmi_is_broadcast, 0, "Chipset NMI is broadcast"); #ifdef KDB int kdb_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RWTUN, &kdb_on_nmi, 0, "Go to KDB on NMI with unknown source"); #endif void nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame) { bool claimed = false; #ifdef DEV_ISA /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(frame->tf_err)) { claimed = true; if (panic_on_nmi) panic("NMI indicates hardware failure"); } #endif /* DEV_ISA */ #ifdef KDB if (!claimed && kdb_on_nmi) { /* * NMI can be hooked up to a pushbutton for debugging. */ printf("NMI/cpu%d ... going to debugger\n", cpu); kdb_trap(type, 0, frame); } #endif /* KDB */ } void nmi_handle_intr(u_int type, struct trapframe *frame) { #ifdef SMP if (nmi_is_broadcast) { nmi_call_kdb_smp(type, frame); return; } #endif nmi_call_kdb(PCPU_GET(cpuid), type, frame); } int hw_ibrs_active; int hw_ibrs_disable = 1; SYSCTL_INT(_hw, OID_AUTO, ibrs_active, CTLFLAG_RD, &hw_ibrs_active, 0, "Indirect Branch Restricted Speculation active"); +SYSCTL_NODE(_machdep_mitigations, OID_AUTO, ibrs, CTLFLAG_RW, 0, + "Indirect Branch Restricted Speculation active"); + +SYSCTL_INT(_machdep_mitigations_ibrs, OID_AUTO, active, CTLFLAG_RD, + &hw_ibrs_active, 0, "Indirect Branch Restricted Speculation active"); + void hw_ibrs_recalculate(void) { if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_IBRS_ALL) != 0) { x86_msr_op(MSR_IA32_SPEC_CTRL, MSR_OP_LOCAL | (hw_ibrs_disable ? MSR_OP_ANDNOT : MSR_OP_OR), IA32_SPEC_CTRL_IBRS); return; } hw_ibrs_active = (cpu_stdext_feature3 & CPUID_STDEXT3_IBPB) != 0 && !hw_ibrs_disable; } static int hw_ibrs_disable_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = hw_ibrs_disable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); hw_ibrs_disable = val != 0; hw_ibrs_recalculate(); return (0); } SYSCTL_PROC(_hw, OID_AUTO, ibrs_disable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ibrs_disable_handler, "I", "Disable Indirect Branch Restricted Speculation"); +SYSCTL_PROC(_machdep_mitigations_ibrs, OID_AUTO, disable, CTLTYPE_INT | + CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, + hw_ibrs_disable_handler, "I", + "Disable Indirect Branch Restricted Speculation"); + int hw_ssb_active; int hw_ssb_disable; SYSCTL_INT(_hw, OID_AUTO, spec_store_bypass_disable_active, CTLFLAG_RD, &hw_ssb_active, 0, "Speculative Store Bypass Disable active"); +SYSCTL_NODE(_machdep_mitigations, OID_AUTO, ssb, CTLFLAG_RW, 0, + "Speculative Store Bypass Disable active"); + +SYSCTL_INT(_machdep_mitigations_ssb, OID_AUTO, active, CTLFLAG_RD, + &hw_ssb_active, 0, "Speculative Store Bypass Disable active"); + static void hw_ssb_set(bool enable, bool for_all_cpus) { if ((cpu_stdext_feature3 & CPUID_STDEXT3_SSBD) == 0) { hw_ssb_active = 0; return; } hw_ssb_active = enable; x86_msr_op(MSR_IA32_SPEC_CTRL, (enable ? MSR_OP_OR : MSR_OP_ANDNOT) | (for_all_cpus ? MSR_OP_SCHED : MSR_OP_LOCAL), IA32_SPEC_CTRL_SSBD); } void hw_ssb_recalculate(bool all_cpus) { switch (hw_ssb_disable) { default: hw_ssb_disable = 0; /* FALLTHROUGH */ case 0: /* off */ hw_ssb_set(false, all_cpus); break; case 1: /* on */ hw_ssb_set(true, all_cpus); break; case 2: /* auto */ hw_ssb_set((cpu_ia32_arch_caps & IA32_ARCH_CAP_SSB_NO) != 0 ? false : true, all_cpus); break; } } static int hw_ssb_disable_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = hw_ssb_disable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); hw_ssb_disable = val; hw_ssb_recalculate(true); return (0); } SYSCTL_PROC(_hw, OID_AUTO, spec_store_bypass_disable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ssb_disable_handler, "I", "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto"); +SYSCTL_PROC(_machdep_mitigations_ssb, OID_AUTO, disable, CTLTYPE_INT | + CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, + hw_ssb_disable_handler, "I", + "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto"); + int hw_mds_disable; /* * Handler for Microarchitectural Data Sampling issues. Really not a * pointer to C function: on amd64 the code must not change any CPU * architectural state except possibly %rflags. Also, it is always * called with interrupts disabled. */ void mds_handler_void(void); void mds_handler_verw(void); void mds_handler_ivb(void); void mds_handler_bdw(void); void mds_handler_skl_sse(void); void mds_handler_skl_avx(void); void mds_handler_skl_avx512(void); void mds_handler_silvermont(void); void (*mds_handler)(void) = mds_handler_void; static int sysctl_hw_mds_disable_state_handler(SYSCTL_HANDLER_ARGS) { const char *state; if (mds_handler == mds_handler_void) state = "inactive"; else if (mds_handler == mds_handler_verw) state = "VERW"; else if (mds_handler == mds_handler_ivb) state = "software IvyBridge"; else if (mds_handler == mds_handler_bdw) state = "software Broadwell"; else if (mds_handler == mds_handler_skl_sse) state = "software Skylake SSE"; else if (mds_handler == mds_handler_skl_avx) state = "software Skylake AVX"; else if (mds_handler == mds_handler_skl_avx512) state = "software Skylake AVX512"; else if (mds_handler == mds_handler_silvermont) state = "software Silvermont"; else state = "unknown"; return (SYSCTL_OUT(req, state, strlen(state))); } SYSCTL_PROC(_hw, OID_AUTO, mds_disable_state, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_hw_mds_disable_state_handler, "A", "Microarchitectural Data Sampling Mitigation state"); +SYSCTL_NODE(_machdep_mitigations, OID_AUTO, mds, CTLFLAG_RW, 0, + "Microarchitectural Data Sampling Mitigation state"); + +SYSCTL_PROC(_machdep_mitigations_mds, OID_AUTO, state, + CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, + sysctl_hw_mds_disable_state_handler, "A", + "Microarchitectural Data Sampling Mitigation state"); + _Static_assert(__offsetof(struct pcpu, pc_mds_tmp) % 64 == 0, "MDS AVX512"); void hw_mds_recalculate(void) { struct pcpu *pc; vm_offset_t b64; u_long xcr0; int i; /* * Allow user to force VERW variant even if MD_CLEAR is not * reported. For instance, hypervisor might unknowingly * filter the cap out. * For the similar reasons, and for testing, allow to enable * mitigation even for RDCL_NO or MDS_NO caps. */ if (cpu_vendor_id != CPU_VENDOR_INTEL || hw_mds_disable == 0 || ((cpu_ia32_arch_caps & (IA32_ARCH_CAP_RDCL_NO | IA32_ARCH_CAP_MDS_NO)) != 0 && hw_mds_disable == 3)) { mds_handler = mds_handler_void; } else if (((cpu_stdext_feature3 & CPUID_STDEXT3_MD_CLEAR) != 0 && hw_mds_disable == 3) || hw_mds_disable == 1) { mds_handler = mds_handler_verw; } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && (CPUID_TO_MODEL(cpu_id) == 0x2e || CPUID_TO_MODEL(cpu_id) == 0x1e || CPUID_TO_MODEL(cpu_id) == 0x1f || CPUID_TO_MODEL(cpu_id) == 0x1a || CPUID_TO_MODEL(cpu_id) == 0x2f || CPUID_TO_MODEL(cpu_id) == 0x25 || CPUID_TO_MODEL(cpu_id) == 0x2c || CPUID_TO_MODEL(cpu_id) == 0x2d || CPUID_TO_MODEL(cpu_id) == 0x2a || CPUID_TO_MODEL(cpu_id) == 0x3e || CPUID_TO_MODEL(cpu_id) == 0x3a) && (hw_mds_disable == 2 || hw_mds_disable == 3)) { /* * Nehalem, SandyBridge, IvyBridge */ CPU_FOREACH(i) { pc = pcpu_find(i); if (pc->pc_mds_buf == NULL) { pc->pc_mds_buf = malloc_domainset(672, M_TEMP, DOMAINSET_PREF(pc->pc_domain), M_WAITOK); bzero(pc->pc_mds_buf, 16); } } mds_handler = mds_handler_ivb; } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && (CPUID_TO_MODEL(cpu_id) == 0x3f || CPUID_TO_MODEL(cpu_id) == 0x3c || CPUID_TO_MODEL(cpu_id) == 0x45 || CPUID_TO_MODEL(cpu_id) == 0x46 || CPUID_TO_MODEL(cpu_id) == 0x56 || CPUID_TO_MODEL(cpu_id) == 0x4f || CPUID_TO_MODEL(cpu_id) == 0x47 || CPUID_TO_MODEL(cpu_id) == 0x3d) && (hw_mds_disable == 2 || hw_mds_disable == 3)) { /* * Haswell, Broadwell */ CPU_FOREACH(i) { pc = pcpu_find(i); if (pc->pc_mds_buf == NULL) { pc->pc_mds_buf = malloc_domainset(1536, M_TEMP, DOMAINSET_PREF(pc->pc_domain), M_WAITOK); bzero(pc->pc_mds_buf, 16); } } mds_handler = mds_handler_bdw; } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && ((CPUID_TO_MODEL(cpu_id) == 0x55 && (cpu_id & CPUID_STEPPING) <= 5) || CPUID_TO_MODEL(cpu_id) == 0x4e || CPUID_TO_MODEL(cpu_id) == 0x5e || (CPUID_TO_MODEL(cpu_id) == 0x8e && (cpu_id & CPUID_STEPPING) <= 0xb) || (CPUID_TO_MODEL(cpu_id) == 0x9e && (cpu_id & CPUID_STEPPING) <= 0xc)) && (hw_mds_disable == 2 || hw_mds_disable == 3)) { /* * Skylake, KabyLake, CoffeeLake, WhiskeyLake, * CascadeLake */ CPU_FOREACH(i) { pc = pcpu_find(i); if (pc->pc_mds_buf == NULL) { pc->pc_mds_buf = malloc_domainset(6 * 1024, M_TEMP, DOMAINSET_PREF(pc->pc_domain), M_WAITOK); b64 = (vm_offset_t)malloc_domainset(64 + 63, M_TEMP, DOMAINSET_PREF(pc->pc_domain), M_WAITOK); pc->pc_mds_buf64 = (void *)roundup2(b64, 64); bzero(pc->pc_mds_buf64, 64); } } xcr0 = rxcr(0); if ((xcr0 & XFEATURE_ENABLED_ZMM_HI256) != 0 && (cpu_stdext_feature & CPUID_STDEXT_AVX512DQ) != 0) mds_handler = mds_handler_skl_avx512; else if ((xcr0 & XFEATURE_ENABLED_AVX) != 0 && (cpu_feature2 & CPUID2_AVX) != 0) mds_handler = mds_handler_skl_avx; else mds_handler = mds_handler_skl_sse; } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && ((CPUID_TO_MODEL(cpu_id) == 0x37 || CPUID_TO_MODEL(cpu_id) == 0x4a || CPUID_TO_MODEL(cpu_id) == 0x4c || CPUID_TO_MODEL(cpu_id) == 0x4d || CPUID_TO_MODEL(cpu_id) == 0x5a || CPUID_TO_MODEL(cpu_id) == 0x5d || CPUID_TO_MODEL(cpu_id) == 0x6e || CPUID_TO_MODEL(cpu_id) == 0x65 || CPUID_TO_MODEL(cpu_id) == 0x75 || CPUID_TO_MODEL(cpu_id) == 0x1c || CPUID_TO_MODEL(cpu_id) == 0x26 || CPUID_TO_MODEL(cpu_id) == 0x27 || CPUID_TO_MODEL(cpu_id) == 0x35 || CPUID_TO_MODEL(cpu_id) == 0x36 || CPUID_TO_MODEL(cpu_id) == 0x7a))) { /* Silvermont, Airmont */ CPU_FOREACH(i) { pc = pcpu_find(i); if (pc->pc_mds_buf == NULL) pc->pc_mds_buf = malloc(256, M_TEMP, M_WAITOK); } mds_handler = mds_handler_silvermont; } else { hw_mds_disable = 0; mds_handler = mds_handler_void; } } static void hw_mds_recalculate_boot(void *arg __unused) { hw_mds_recalculate(); } SYSINIT(mds_recalc, SI_SUB_SMP, SI_ORDER_ANY, hw_mds_recalculate_boot, NULL); static int sysctl_mds_disable_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = hw_mds_disable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val < 0 || val > 3) return (EINVAL); hw_mds_disable = val; hw_mds_recalculate(); return (0); } SYSCTL_PROC(_hw, OID_AUTO, mds_disable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, sysctl_mds_disable_handler, "I", "Microarchitectural Data Sampling Mitigation " "(0 - off, 1 - on VERW, 2 - on SW, 3 - on AUTO"); +SYSCTL_PROC(_machdep_mitigations_mds, OID_AUTO, disable, CTLTYPE_INT | + CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, + sysctl_mds_disable_handler, "I", + "Microarchitectural Data Sampling Mitigation " + "(0 - off, 1 - on VERW, 2 - on SW, 3 - on AUTO"); /* * Intel Transactional Memory Asynchronous Abort Mitigation * CVE-2019-11135 */ int x86_taa_enable; int x86_taa_state; enum { TAA_NONE = 0, /* No mitigation enabled */ TAA_TSX_DISABLE = 1, /* Disable TSX via MSR */ TAA_VERW = 2, /* Use VERW mitigation */ TAA_AUTO = 3, /* Automatically select the mitigation */ /* The states below are not selectable by the operator */ TAA_TAA_UC = 4, /* Mitigation present in microcode */ TAA_NOT_PRESENT = 5 /* TSX is not present */ }; static void taa_set(bool enable, bool all) { x86_msr_op(MSR_IA32_TSX_CTRL, (enable ? MSR_OP_OR : MSR_OP_ANDNOT) | (all ? MSR_OP_RENDEZVOUS : MSR_OP_LOCAL), IA32_TSX_CTRL_RTM_DISABLE | IA32_TSX_CTRL_TSX_CPUID_CLEAR); } void x86_taa_recalculate(void) { static int taa_saved_mds_disable = 0; int taa_need = 0, taa_state = 0; int mds_disable = 0, need_mds_recalc = 0; /* Check CPUID.07h.EBX.HLE and RTM for the presence of TSX */ if ((cpu_stdext_feature & CPUID_STDEXT_HLE) == 0 || (cpu_stdext_feature & CPUID_STDEXT_RTM) == 0) { /* TSX is not present */ x86_taa_state = TAA_NOT_PRESENT; return; } /* Check to see what mitigation options the CPU gives us */ if (cpu_ia32_arch_caps & IA32_ARCH_CAP_TAA_NO) { /* CPU is not suseptible to TAA */ taa_need = TAA_NONE; taa_state = TAA_TAA_UC; } else if (cpu_ia32_arch_caps & IA32_ARCH_CAP_TSX_CTRL) { /* * CPU can turn off TSX. This is the next best option * if TAA_NO hardware mitigation isn't present */ taa_need = TAA_TSX_DISABLE; } else { /* No TSX/TAA specific remedies are available. */ if (x86_taa_enable == TAA_TSX_DISABLE) { if (bootverbose) printf("TSX control not available\n"); return; } else taa_need = TAA_VERW; } /* Can we automatically take action, or are we being forced? */ if (x86_taa_enable == TAA_AUTO) taa_state = taa_need; else taa_state = x86_taa_enable; /* No state change, nothing to do */ if (taa_state == x86_taa_state) { if (bootverbose) printf("No TSX change made\n"); return; } /* Does the MSR need to be turned on or off? */ if (taa_state == TAA_TSX_DISABLE) taa_set(true, true); else if (x86_taa_state == TAA_TSX_DISABLE) taa_set(false, true); /* Does MDS need to be set to turn on VERW? */ if (taa_state == TAA_VERW) { taa_saved_mds_disable = hw_mds_disable; mds_disable = hw_mds_disable = 1; need_mds_recalc = 1; } else if (x86_taa_state == TAA_VERW) { mds_disable = hw_mds_disable = taa_saved_mds_disable; need_mds_recalc = 1; } if (need_mds_recalc) { hw_mds_recalculate(); if (mds_disable != hw_mds_disable) { if (bootverbose) printf("Cannot change MDS state for TAA\n"); /* Don't update our state */ return; } } x86_taa_state = taa_state; return; } static void taa_recalculate_boot(void * arg __unused) { x86_taa_recalculate(); } SYSINIT(taa_recalc, SI_SUB_SMP, SI_ORDER_ANY, taa_recalculate_boot, NULL); SYSCTL_NODE(_machdep_mitigations, OID_AUTO, taa, CTLFLAG_RW, 0, "TSX Asynchronous Abort Mitigation"); static int sysctl_taa_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = x86_taa_enable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val < TAA_NONE || val > TAA_AUTO) return (EINVAL); x86_taa_enable = val; x86_taa_recalculate(); return (0); } SYSCTL_PROC(_machdep_mitigations_taa, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, sysctl_taa_handler, "I", "TAA Mitigation enablement control " "(0 - off, 1 - disable TSX, 2 - VERW, 3 - on AUTO"); static int sysctl_taa_state_handler(SYSCTL_HANDLER_ARGS) { const char *state; switch (x86_taa_state) { case TAA_NONE: state = "inactive"; break; case TAA_TSX_DISABLE: state = "TSX disabled"; break; case TAA_VERW: state = "VERW"; break; case TAA_TAA_UC: state = "Mitigated in microcode"; break; case TAA_NOT_PRESENT: state = "TSX not present"; break; default: state = "unknown"; } return (SYSCTL_OUT(req, state, strlen(state))); } SYSCTL_PROC(_machdep_mitigations_taa, OID_AUTO, state, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_taa_state_handler, "A", "TAA Mitigation state"); /* * Enable and restore kernel text write permissions. * Callers must ensure that disable_wp()/restore_wp() are executed * without rescheduling on the same core. */ bool disable_wp(void) { u_int cr0; cr0 = rcr0(); if ((cr0 & CR0_WP) == 0) return (false); load_cr0(cr0 & ~CR0_WP); return (true); } void restore_wp(bool old_wp) { if (old_wp) load_cr0(rcr0() | CR0_WP); } bool acpi_get_fadt_bootflags(uint16_t *flagsp) { #ifdef DEV_ACPI ACPI_TABLE_FADT *fadt; vm_paddr_t physaddr; physaddr = acpi_find_table(ACPI_SIG_FADT); if (physaddr == 0) return (false); fadt = acpi_map_table(physaddr, ACPI_SIG_FADT); if (fadt == NULL) return (false); *flagsp = fadt->BootFlags; acpi_unmap_table(fadt); return (true); #else return (false); #endif }