Index: head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.cpp =================================================================== --- head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.cpp (revision 354981) +++ head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.cpp (revision 354982) @@ -1,289 +1,290 @@ //===--- Mips.cpp - Implement Mips target feature support -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements Mips TargetInfo objects. // //===----------------------------------------------------------------------===// #include "Mips.h" #include "Targets.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/MacroBuilder.h" #include "clang/Basic/TargetBuiltins.h" #include "llvm/ADT/StringSwitch.h" using namespace clang; using namespace clang::targets; const Builtin::Info MipsTargetInfo::BuiltinInfo[] = { #define BUILTIN(ID, TYPE, ATTRS) \ {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr}, #define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \ {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr}, #include "clang/Basic/BuiltinsMips.def" }; bool MipsTargetInfo::processorSupportsGPR64() const { return llvm::StringSwitch(CPU) .Case("mips3", true) .Case("mips4", true) .Case("mips5", true) .Case("mips64", true) .Case("mips64r2", true) .Case("mips64r3", true) .Case("mips64r5", true) .Case("mips64r6", true) .Case("octeon", true) + .Case("octeon+", true) .Default(false); return false; } static constexpr llvm::StringLiteral ValidCPUNames[] = { {"mips1"}, {"mips2"}, {"mips3"}, {"mips4"}, {"mips5"}, {"mips32"}, {"mips32r2"}, {"mips32r3"}, {"mips32r5"}, {"mips32r6"}, {"mips64"}, {"mips64r2"}, {"mips64r3"}, {"mips64r5"}, {"mips64r6"}, - {"octeon"}, {"p5600"}}; + {"octeon"}, {"octeon+"}, {"p5600"}}; bool MipsTargetInfo::isValidCPUName(StringRef Name) const { return llvm::find(ValidCPUNames, Name) != std::end(ValidCPUNames); } void MipsTargetInfo::fillValidCPUList( SmallVectorImpl &Values) const { Values.append(std::begin(ValidCPUNames), std::end(ValidCPUNames)); } unsigned MipsTargetInfo::getISARev() const { return llvm::StringSwitch(getCPU()) .Cases("mips32", "mips64", 1) .Cases("mips32r2", "mips64r2", 2) .Cases("mips32r3", "mips64r3", 3) .Cases("mips32r5", "mips64r5", 5) .Cases("mips32r6", "mips64r6", 6) .Default(0); } void MipsTargetInfo::getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const { if (BigEndian) { DefineStd(Builder, "MIPSEB", Opts); Builder.defineMacro("_MIPSEB"); } else { DefineStd(Builder, "MIPSEL", Opts); Builder.defineMacro("_MIPSEL"); } Builder.defineMacro("__mips__"); Builder.defineMacro("_mips"); if (Opts.GNUMode) Builder.defineMacro("mips"); if (ABI == "o32") { Builder.defineMacro("__mips", "32"); Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS32"); } else { Builder.defineMacro("__mips", "64"); Builder.defineMacro("__mips64"); Builder.defineMacro("__mips64__"); Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS64"); } const std::string ISARev = std::to_string(getISARev()); if (!ISARev.empty()) Builder.defineMacro("__mips_isa_rev", ISARev); if (ABI == "o32") { Builder.defineMacro("__mips_o32"); Builder.defineMacro("_ABIO32", "1"); Builder.defineMacro("_MIPS_SIM", "_ABIO32"); } else if (ABI == "n32") { Builder.defineMacro("__mips_n32"); Builder.defineMacro("_ABIN32", "2"); Builder.defineMacro("_MIPS_SIM", "_ABIN32"); } else if (ABI == "n64") { Builder.defineMacro("__mips_n64"); Builder.defineMacro("_ABI64", "3"); Builder.defineMacro("_MIPS_SIM", "_ABI64"); } else llvm_unreachable("Invalid ABI."); if (!IsNoABICalls) { Builder.defineMacro("__mips_abicalls"); if (CanUseBSDABICalls) Builder.defineMacro("__ABICALLS__"); } Builder.defineMacro("__REGISTER_PREFIX__", ""); switch (FloatABI) { case HardFloat: Builder.defineMacro("__mips_hard_float", Twine(1)); break; case SoftFloat: Builder.defineMacro("__mips_soft_float", Twine(1)); break; } if (IsSingleFloat) Builder.defineMacro("__mips_single_float", Twine(1)); switch (FPMode) { case FPXX: Builder.defineMacro("__mips_fpr", Twine(0)); break; case FP32: Builder.defineMacro("__mips_fpr", Twine(32)); break; case FP64: Builder.defineMacro("__mips_fpr", Twine(64)); break; } if (FPMode == FP64 || IsSingleFloat) Builder.defineMacro("_MIPS_FPSET", Twine(32)); else Builder.defineMacro("_MIPS_FPSET", Twine(16)); if (IsMips16) Builder.defineMacro("__mips16", Twine(1)); if (IsMicromips) Builder.defineMacro("__mips_micromips", Twine(1)); if (IsNan2008) Builder.defineMacro("__mips_nan2008", Twine(1)); if (IsAbs2008) Builder.defineMacro("__mips_abs2008", Twine(1)); switch (DspRev) { default: break; case DSP1: Builder.defineMacro("__mips_dsp_rev", Twine(1)); Builder.defineMacro("__mips_dsp", Twine(1)); break; case DSP2: Builder.defineMacro("__mips_dsp_rev", Twine(2)); Builder.defineMacro("__mips_dspr2", Twine(1)); Builder.defineMacro("__mips_dsp", Twine(1)); break; } if (HasMSA) Builder.defineMacro("__mips_msa", Twine(1)); if (DisableMadd4) Builder.defineMacro("__mips_no_madd4", Twine(1)); Builder.defineMacro("_MIPS_SZPTR", Twine(getPointerWidth(0))); Builder.defineMacro("_MIPS_SZINT", Twine(getIntWidth())); Builder.defineMacro("_MIPS_SZLONG", Twine(getLongWidth())); Builder.defineMacro("_MIPS_ARCH", "\"" + CPU + "\""); Builder.defineMacro("_MIPS_ARCH_" + StringRef(CPU).upper()); // These shouldn't be defined for MIPS-I but there's no need to check // for that since MIPS-I isn't supported. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1"); Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2"); Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4"); // 32-bit MIPS processors don't have the necessary lld/scd instructions // found in 64-bit processors. In the case of O32 on a 64-bit processor, // the instructions exist but using them violates the ABI since they // require 64-bit GPRs and O32 only supports 32-bit GPRs. if (ABI == "n32" || ABI == "n64") Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8"); } bool MipsTargetInfo::hasFeature(StringRef Feature) const { return llvm::StringSwitch(Feature) .Case("mips", true) .Case("fp64", FPMode == FP64) .Default(false); } ArrayRef MipsTargetInfo::getTargetBuiltins() const { return llvm::makeArrayRef(BuiltinInfo, clang::Mips::LastTSBuiltin - Builtin::FirstTSBuiltin); } unsigned MipsTargetInfo::getUnwindWordWidth() const { return llvm::StringSwitch(ABI) .Case("o32", 32) .Case("n32", 64) .Case("n64", 64) .Default(getPointerWidth(0)); } bool MipsTargetInfo::validateTarget(DiagnosticsEngine &Diags) const { // microMIPS64R6 backend was removed. if (getTriple().isMIPS64() && IsMicromips && (ABI == "n32" || ABI == "n64")) { Diags.Report(diag::err_target_unsupported_cpu_for_micromips) << CPU; return false; } // FIXME: It's valid to use O32 on a 64-bit CPU but the backend can't handle // this yet. It's better to fail here than on the backend assertion. if (processorSupportsGPR64() && ABI == "o32") { Diags.Report(diag::err_target_unsupported_abi) << ABI << CPU; return false; } // 64-bit ABI's require 64-bit CPU's. if (!processorSupportsGPR64() && (ABI == "n32" || ABI == "n64")) { Diags.Report(diag::err_target_unsupported_abi) << ABI << CPU; return false; } // FIXME: It's valid to use O32 on a mips64/mips64el triple but the backend // can't handle this yet. It's better to fail here than on the // backend assertion. if (getTriple().isMIPS64() && ABI == "o32") { Diags.Report(diag::err_target_unsupported_abi_for_triple) << ABI << getTriple().str(); return false; } // FIXME: It's valid to use N32/N64 on a mips/mipsel triple but the backend // can't handle this yet. It's better to fail here than on the // backend assertion. if (getTriple().isMIPS32() && (ABI == "n32" || ABI == "n64")) { Diags.Report(diag::err_target_unsupported_abi_for_triple) << ABI << getTriple().str(); return false; } // -fpxx is valid only for the o32 ABI if (FPMode == FPXX && (ABI == "n32" || ABI == "n64")) { Diags.Report(diag::err_unsupported_abi_for_opt) << "-mfpxx" << "o32"; return false; } // -mfp32 and n32/n64 ABIs are incompatible if (FPMode != FP64 && FPMode != FPXX && !IsSingleFloat && (ABI == "n32" || ABI == "n64")) { Diags.Report(diag::err_opt_not_valid_with_opt) << "-mfpxx" << CPU; return false; } // Mips revision 6 and -mfp32 are incompatible if (FPMode != FP64 && FPMode != FPXX && (CPU == "mips32r6" || CPU == "mips64r6")) { Diags.Report(diag::err_opt_not_valid_with_opt) << "-mfp32" << CPU; return false; } // Option -mfp64 permitted on Mips32 iff revision 2 or higher is present if (FPMode == FP64 && (CPU == "mips1" || CPU == "mips2" || getISARev() < 2) && ABI == "o32") { Diags.Report(diag::err_mips_fp64_req) << "-mfp64"; return false; } return true; } Index: head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.h =================================================================== --- head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.h (revision 354981) +++ head/contrib/llvm/tools/clang/lib/Basic/Targets/Mips.h (revision 354982) @@ -1,411 +1,413 @@ //===--- Mips.h - Declare Mips target feature support -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares Mips TargetInfo objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H #define LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Compiler.h" namespace clang { namespace targets { class LLVM_LIBRARY_VISIBILITY MipsTargetInfo : public TargetInfo { void setDataLayout() { StringRef Layout; if (ABI == "o32") Layout = "m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64"; else if (ABI == "n32") Layout = "m:e-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128"; else if (ABI == "n64") Layout = "m:e-i8:8:32-i16:16:32-i64:64-n32:64-S128"; else llvm_unreachable("Invalid ABI"); if (BigEndian) resetDataLayout(("E-" + Layout).str()); else resetDataLayout(("e-" + Layout).str()); } static const Builtin::Info BuiltinInfo[]; std::string CPU; bool IsMips16; bool IsMicromips; bool IsNan2008; bool IsAbs2008; bool IsSingleFloat; bool IsNoABICalls; bool CanUseBSDABICalls; enum MipsFloatABI { HardFloat, SoftFloat } FloatABI; enum DspRevEnum { NoDSP, DSP1, DSP2 } DspRev; bool HasMSA; bool DisableMadd4; bool UseIndirectJumpHazard; protected: enum FPModeEnum { FPXX, FP32, FP64 } FPMode; std::string ABI; public: MipsTargetInfo(const llvm::Triple &Triple, const TargetOptions &) : TargetInfo(Triple), IsMips16(false), IsMicromips(false), IsNan2008(false), IsAbs2008(false), IsSingleFloat(false), IsNoABICalls(false), CanUseBSDABICalls(false), FloatABI(HardFloat), DspRev(NoDSP), HasMSA(false), DisableMadd4(false), UseIndirectJumpHazard(false), FPMode(FPXX) { TheCXXABI.set(TargetCXXABI::GenericMIPS); if (Triple.isMIPS32()) setABI("o32"); else if (Triple.getEnvironment() == llvm::Triple::GNUABIN32) setABI("n32"); else setABI("n64"); CPU = ABI == "o32" ? "mips32r2" : "mips64r2"; CanUseBSDABICalls = Triple.isOSFreeBSD() || Triple.isOSOpenBSD(); } bool isIEEE754_2008Default() const { return CPU == "mips32r6" || CPU == "mips64r6"; } bool isFP64Default() const { return CPU == "mips32r6" || ABI == "n32" || ABI == "n64" || ABI == "64"; } bool isNan2008() const override { return IsNan2008; } bool processorSupportsGPR64() const; StringRef getABI() const override { return ABI; } bool setABI(const std::string &Name) override { if (Name == "o32") { setO32ABITypes(); ABI = Name; return true; } if (Name == "n32") { setN32ABITypes(); ABI = Name; return true; } if (Name == "n64") { setN64ABITypes(); ABI = Name; return true; } return false; } void setO32ABITypes() { Int64Type = SignedLongLong; IntMaxType = Int64Type; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); LongDoubleWidth = LongDoubleAlign = 64; LongWidth = LongAlign = 32; MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32; PointerWidth = PointerAlign = 32; PtrDiffType = SignedInt; SizeType = UnsignedInt; SuitableAlign = 64; } void setN32N64ABITypes() { LongDoubleWidth = LongDoubleAlign = 128; LongDoubleFormat = &llvm::APFloat::IEEEquad(); if (getTriple().isOSFreeBSD()) { LongDoubleWidth = LongDoubleAlign = 64; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); } MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64; SuitableAlign = 128; } void setN64ABITypes() { setN32N64ABITypes(); if (getTriple().isOSOpenBSD()) { Int64Type = SignedLongLong; } else { Int64Type = SignedLong; } IntMaxType = Int64Type; LongWidth = LongAlign = 64; PointerWidth = PointerAlign = 64; PtrDiffType = SignedLong; SizeType = UnsignedLong; } void setN32ABITypes() { setN32N64ABITypes(); Int64Type = SignedLongLong; IntMaxType = Int64Type; LongWidth = LongAlign = 32; PointerWidth = PointerAlign = 32; PtrDiffType = SignedInt; SizeType = UnsignedInt; } bool isValidCPUName(StringRef Name) const override; void fillValidCPUList(SmallVectorImpl &Values) const override; bool setCPU(const std::string &Name) override { CPU = Name; return isValidCPUName(Name); } const std::string &getCPU() const { return CPU; } bool initFeatureMap(llvm::StringMap &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector &FeaturesVec) const override { if (CPU.empty()) CPU = getCPU(); if (CPU == "octeon") Features["mips64r2"] = Features["cnmips"] = true; + else if (CPU == "octeon+") + Features["mips64r2"] = Features["cnmips"] = Features["cnmipsp"] = true; else Features[CPU] = true; return TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec); } unsigned getISARev() const; void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override; ArrayRef getTargetBuiltins() const override; bool hasFeature(StringRef Feature) const override; BuiltinVaListKind getBuiltinVaListKind() const override { return TargetInfo::VoidPtrBuiltinVaList; } ArrayRef getGCCRegNames() const override { static const char *const GCCRegNames[] = { // CPU register names // Must match second column of GCCRegAliases "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31", // Floating point register names "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", // Hi/lo and condition register names "hi", "lo", "", "$fcc0", "$fcc1", "$fcc2", "$fcc3", "$fcc4", "$fcc5", "$fcc6", "$fcc7", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo", // MSA register names "$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7", "$w8", "$w9", "$w10", "$w11", "$w12", "$w13", "$w14", "$w15", "$w16", "$w17", "$w18", "$w19", "$w20", "$w21", "$w22", "$w23", "$w24", "$w25", "$w26", "$w27", "$w28", "$w29", "$w30", "$w31", // MSA control register names "$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify", "$msarequest", "$msamap", "$msaunmap" }; return llvm::makeArrayRef(GCCRegNames); } bool validateAsmConstraint(const char *&Name, TargetInfo::ConstraintInfo &Info) const override { switch (*Name) { default: return false; case 'r': // CPU registers. case 'd': // Equivalent to "r" unless generating MIPS16 code. case 'y': // Equivalent to "r", backward compatibility only. case 'f': // floating-point registers. case 'c': // $25 for indirect jumps case 'l': // lo register case 'x': // hilo register pair Info.setAllowsRegister(); return true; case 'I': // Signed 16-bit constant case 'J': // Integer 0 case 'K': // Unsigned 16-bit constant case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui) case 'M': // Constants not loadable via lui, addiu, or ori case 'N': // Constant -1 to -65535 case 'O': // A signed 15-bit constant case 'P': // A constant between 1 go 65535 return true; case 'R': // An address that can be used in a non-macro load or store Info.setAllowsMemory(); return true; case 'Z': if (Name[1] == 'C') { // An address usable by ll, and sc. Info.setAllowsMemory(); Name++; // Skip over 'Z'. return true; } return false; } } std::string convertConstraint(const char *&Constraint) const override { std::string R; switch (*Constraint) { case 'Z': // Two-character constraint; add "^" hint for later parsing. if (Constraint[1] == 'C') { R = std::string("^") + std::string(Constraint, 2); Constraint++; return R; } break; } return TargetInfo::convertConstraint(Constraint); } const char *getClobbers() const override { // In GCC, $1 is not widely used in generated code (it's used only in a few // specific situations), so there is no real need for users to add it to // the clobbers list if they want to use it in their inline assembly code. // // In LLVM, $1 is treated as a normal GPR and is always allocatable during // code generation, so using it in inline assembly without adding it to the // clobbers list can cause conflicts between the inline assembly code and // the surrounding generated code. // // Another problem is that LLVM is allowed to choose $1 for inline assembly // operands, which will conflict with the ".set at" assembler option (which // we use only for inline assembly, in order to maintain compatibility with // GCC) and will also conflict with the user's usage of $1. // // The easiest way to avoid these conflicts and keep $1 as an allocatable // register for generated code is to automatically clobber $1 for all inline // assembly code. // // FIXME: We should automatically clobber $1 only for inline assembly code // which actually uses it. This would allow LLVM to use $1 for inline // assembly operands if the user's assembly code doesn't use it. return "~{$1}"; } bool handleTargetFeatures(std::vector &Features, DiagnosticsEngine &Diags) override { IsMips16 = false; IsMicromips = false; IsNan2008 = isIEEE754_2008Default(); IsAbs2008 = isIEEE754_2008Default(); IsSingleFloat = false; FloatABI = HardFloat; DspRev = NoDSP; FPMode = isFP64Default() ? FP64 : FPXX; for (const auto &Feature : Features) { if (Feature == "+single-float") IsSingleFloat = true; else if (Feature == "+soft-float") FloatABI = SoftFloat; else if (Feature == "+mips16") IsMips16 = true; else if (Feature == "+micromips") IsMicromips = true; else if (Feature == "+dsp") DspRev = std::max(DspRev, DSP1); else if (Feature == "+dspr2") DspRev = std::max(DspRev, DSP2); else if (Feature == "+msa") HasMSA = true; else if (Feature == "+nomadd4") DisableMadd4 = true; else if (Feature == "+fp64") FPMode = FP64; else if (Feature == "-fp64") FPMode = FP32; else if (Feature == "+fpxx") FPMode = FPXX; else if (Feature == "+nan2008") IsNan2008 = true; else if (Feature == "-nan2008") IsNan2008 = false; else if (Feature == "+abs2008") IsAbs2008 = true; else if (Feature == "-abs2008") IsAbs2008 = false; else if (Feature == "+noabicalls") IsNoABICalls = true; else if (Feature == "+use-indirect-jump-hazard") UseIndirectJumpHazard = true; } setDataLayout(); return true; } int getEHDataRegisterNumber(unsigned RegNo) const override { if (RegNo == 0) return 4; if (RegNo == 1) return 5; return -1; } bool isCLZForZeroUndef() const override { return false; } ArrayRef getGCCRegAliases() const override { static const TargetInfo::GCCRegAlias O32RegAliases[] = { {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, {{"a3"}, "$7"}, {{"t0"}, "$8"}, {{"t1"}, "$9"}, {{"t2"}, "$10"}, {{"t3"}, "$11"}, {{"t4"}, "$12"}, {{"t5"}, "$13"}, {{"t6"}, "$14"}, {{"t7"}, "$15"}, {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, {{"ra"}, "$31"} }; static const TargetInfo::GCCRegAlias NewABIRegAliases[] = { {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, {{"a3"}, "$7"}, {{"a4"}, "$8"}, {{"a5"}, "$9"}, {{"a6"}, "$10"}, {{"a7"}, "$11"}, {{"t0"}, "$12"}, {{"t1"}, "$13"}, {{"t2"}, "$14"}, {{"t3"}, "$15"}, {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, {{"ra"}, "$31"} }; if (ABI == "o32") return llvm::makeArrayRef(O32RegAliases); return llvm::makeArrayRef(NewABIRegAliases); } bool hasInt128Type() const override { return (ABI == "n32" || ABI == "n64") || getTargetOpts().ForceEnableInt128; } unsigned getUnwindWordWidth() const override; bool validateTarget(DiagnosticsEngine &Diags) const override; }; } // namespace targets } // namespace clang #endif // LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H Index: head/contrib/llvm/tools/clang/lib/Driver/ToolChains/Gnu.cpp =================================================================== --- head/contrib/llvm/tools/clang/lib/Driver/ToolChains/Gnu.cpp (revision 354981) +++ head/contrib/llvm/tools/clang/lib/Driver/ToolChains/Gnu.cpp (revision 354982) @@ -1,2732 +1,2733 @@ //===--- Gnu.cpp - Gnu Tool and ToolChain Implementations -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Gnu.h" #include "Arch/ARM.h" #include "Arch/Mips.h" #include "Arch/PPC.h" #include "Arch/RISCV.h" #include "Arch/Sparc.h" #include "Arch/SystemZ.h" #include "CommonArgs.h" #include "Linux.h" #include "clang/Config/config.h" // for GCC_INSTALL_PREFIX #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/VirtualFileSystem.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang; using namespace llvm::opt; using tools::addMultilibFlag; void tools::GnuTool::anchor() {} static bool forwardToGCC(const Option &O) { // Don't forward inputs from the original command line. They are added from // InputInfoList. return O.getKind() != Option::InputClass && !O.hasFlag(options::DriverOption) && !O.hasFlag(options::LinkerInput); } // Switch CPU names not recognized by GNU assembler to a close CPU that it does // recognize, instead of a lower march from being picked in the absence of a cpu // flag. static void normalizeCPUNamesForAssembler(const ArgList &Args, ArgStringList &CmdArgs) { if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) { StringRef CPUArg(A->getValue()); if (CPUArg.equals_lower("krait")) CmdArgs.push_back("-mcpu=cortex-a15"); else if(CPUArg.equals_lower("kryo")) CmdArgs.push_back("-mcpu=cortex-a57"); else Args.AddLastArg(CmdArgs, options::OPT_mcpu_EQ); } } void tools::gcc::Common::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const Driver &D = getToolChain().getDriver(); ArgStringList CmdArgs; for (const auto &A : Args) { if (forwardToGCC(A->getOption())) { // It is unfortunate that we have to claim here, as this means // we will basically never report anything interesting for // platforms using a generic gcc, even if we are just using gcc // to get to the assembler. A->claim(); // Don't forward any -g arguments to assembly steps. if (isa(JA) && A->getOption().matches(options::OPT_g_Group)) continue; // Don't forward any -W arguments to assembly and link steps. if ((isa(JA) || isa(JA)) && A->getOption().matches(options::OPT_W_Group)) continue; // Don't forward -mno-unaligned-access since GCC doesn't understand // it and because it doesn't affect the assembly or link steps. if ((isa(JA) || isa(JA)) && (A->getOption().matches(options::OPT_munaligned_access) || A->getOption().matches(options::OPT_mno_unaligned_access))) continue; A->render(Args, CmdArgs); } } RenderExtraToolArgs(JA, CmdArgs); // If using a driver driver, force the arch. if (getToolChain().getTriple().isOSDarwin()) { CmdArgs.push_back("-arch"); CmdArgs.push_back( Args.MakeArgString(getToolChain().getDefaultUniversalArchName())); } // Try to force gcc to match the tool chain we want, if we recognize // the arch. // // FIXME: The triple class should directly provide the information we want // here. switch (getToolChain().getArch()) { default: break; case llvm::Triple::x86: case llvm::Triple::ppc: CmdArgs.push_back("-m32"); break; case llvm::Triple::x86_64: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: CmdArgs.push_back("-m64"); break; case llvm::Triple::sparcel: CmdArgs.push_back("-EL"); break; } if (Output.isFilename()) { CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); } else { assert(Output.isNothing() && "Unexpected output"); CmdArgs.push_back("-fsyntax-only"); } Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler); // Only pass -x if gcc will understand it; otherwise hope gcc // understands the suffix correctly. The main use case this would go // wrong in is for linker inputs if they happened to have an odd // suffix; really the only way to get this to happen is a command // like '-x foobar a.c' which will treat a.c like a linker input. // // FIXME: For the linker case specifically, can we safely convert // inputs into '-Wl,' options? for (const auto &II : Inputs) { // Don't try to pass LLVM or AST inputs to a generic gcc. if (types::isLLVMIR(II.getType())) D.Diag(clang::diag::err_drv_no_linker_llvm_support) << getToolChain().getTripleString(); else if (II.getType() == types::TY_AST) D.Diag(diag::err_drv_no_ast_support) << getToolChain().getTripleString(); else if (II.getType() == types::TY_ModuleFile) D.Diag(diag::err_drv_no_module_support) << getToolChain().getTripleString(); if (types::canTypeBeUserSpecified(II.getType())) { CmdArgs.push_back("-x"); CmdArgs.push_back(types::getTypeName(II.getType())); } if (II.isFilename()) CmdArgs.push_back(II.getFilename()); else { const Arg &A = II.getInputArg(); // Reverse translate some rewritten options. if (A.getOption().matches(options::OPT_Z_reserved_lib_stdcxx)) { CmdArgs.push_back("-lstdc++"); continue; } // Don't render as input, we need gcc to do the translations. A.render(Args, CmdArgs); } } const std::string &customGCCName = D.getCCCGenericGCCName(); const char *GCCName; if (!customGCCName.empty()) GCCName = customGCCName.c_str(); else if (D.CCCIsCXX()) { GCCName = "g++"; } else GCCName = "gcc"; const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath(GCCName)); C.addCommand(llvm::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } void tools::gcc::Preprocessor::RenderExtraToolArgs( const JobAction &JA, ArgStringList &CmdArgs) const { CmdArgs.push_back("-E"); } void tools::gcc::Compiler::RenderExtraToolArgs(const JobAction &JA, ArgStringList &CmdArgs) const { const Driver &D = getToolChain().getDriver(); switch (JA.getType()) { // If -flto, etc. are present then make sure not to force assembly output. case types::TY_LLVM_IR: case types::TY_LTO_IR: case types::TY_LLVM_BC: case types::TY_LTO_BC: CmdArgs.push_back("-c"); break; // We assume we've got an "integrated" assembler in that gcc will produce an // object file itself. case types::TY_Object: CmdArgs.push_back("-c"); break; case types::TY_PP_Asm: CmdArgs.push_back("-S"); break; case types::TY_Nothing: CmdArgs.push_back("-fsyntax-only"); break; default: D.Diag(diag::err_drv_invalid_gcc_output_type) << getTypeName(JA.getType()); } } void tools::gcc::Linker::RenderExtraToolArgs(const JobAction &JA, ArgStringList &CmdArgs) const { // The types are (hopefully) good enough. } // On Arm the endianness of the output file is determined by the target and // can be overridden by the pseudo-target flags '-mlittle-endian'/'-EL' and // '-mbig-endian'/'-EB'. Unlike other targets the flag does not result in a // normalized triple so we must handle the flag here. static bool isArmBigEndian(const llvm::Triple &Triple, const ArgList &Args) { bool IsBigEndian = false; switch (Triple.getArch()) { case llvm::Triple::armeb: case llvm::Triple::thumbeb: IsBigEndian = true; LLVM_FALLTHROUGH; case llvm::Triple::arm: case llvm::Triple::thumb: if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, options::OPT_mbig_endian)) IsBigEndian = !A->getOption().matches(options::OPT_mlittle_endian); break; default: break; } return IsBigEndian; } static const char *getLDMOption(const llvm::Triple &T, const ArgList &Args) { switch (T.getArch()) { case llvm::Triple::x86: if (T.isOSIAMCU()) return "elf_iamcu"; return "elf_i386"; case llvm::Triple::aarch64: return "aarch64linux"; case llvm::Triple::aarch64_be: return "aarch64linuxb"; case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::armeb: case llvm::Triple::thumbeb: return isArmBigEndian(T, Args) ? "armelfb_linux_eabi" : "armelf_linux_eabi"; case llvm::Triple::ppc: return "elf32ppclinux"; case llvm::Triple::ppc64: return "elf64ppc"; case llvm::Triple::ppc64le: return "elf64lppc"; case llvm::Triple::riscv32: return "elf32lriscv"; case llvm::Triple::riscv64: return "elf64lriscv"; case llvm::Triple::sparc: case llvm::Triple::sparcel: return "elf32_sparc"; case llvm::Triple::sparcv9: return "elf64_sparc"; case llvm::Triple::mips: return "elf32btsmip"; case llvm::Triple::mipsel: return "elf32ltsmip"; case llvm::Triple::mips64: if (tools::mips::hasMipsAbiArg(Args, "n32") || T.getEnvironment() == llvm::Triple::GNUABIN32) return "elf32btsmipn32"; return "elf64btsmip"; case llvm::Triple::mips64el: if (tools::mips::hasMipsAbiArg(Args, "n32") || T.getEnvironment() == llvm::Triple::GNUABIN32) return "elf32ltsmipn32"; return "elf64ltsmip"; case llvm::Triple::systemz: return "elf64_s390"; case llvm::Triple::x86_64: if (T.getEnvironment() == llvm::Triple::GNUX32) return "elf32_x86_64"; return "elf_x86_64"; default: return nullptr; } } static bool getPIE(const ArgList &Args, const toolchains::Linux &ToolChain) { if (Args.hasArg(options::OPT_shared) || Args.hasArg(options::OPT_static) || Args.hasArg(options::OPT_r) || Args.hasArg(options::OPT_static_pie)) return false; Arg *A = Args.getLastArg(options::OPT_pie, options::OPT_no_pie, options::OPT_nopie); if (!A) return ToolChain.isPIEDefault(); return A->getOption().matches(options::OPT_pie); } static bool getStaticPIE(const ArgList &Args, const toolchains::Linux &ToolChain) { bool HasStaticPIE = Args.hasArg(options::OPT_static_pie); // -no-pie is an alias for -nopie. So, handling -nopie takes care of // -no-pie as well. if (HasStaticPIE && Args.hasArg(options::OPT_nopie)) { const Driver &D = ToolChain.getDriver(); const llvm::opt::OptTable &Opts = D.getOpts(); const char *StaticPIEName = Opts.getOptionName(options::OPT_static_pie); const char *NoPIEName = Opts.getOptionName(options::OPT_nopie); D.Diag(diag::err_drv_cannot_mix_options) << StaticPIEName << NoPIEName; } return HasStaticPIE; } static bool getStatic(const ArgList &Args) { return Args.hasArg(options::OPT_static) && !Args.hasArg(options::OPT_static_pie); } void tools::gnutools::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const toolchains::Linux &ToolChain = static_cast(getToolChain()); const Driver &D = ToolChain.getDriver(); const llvm::Triple &Triple = getToolChain().getEffectiveTriple(); const llvm::Triple::ArchType Arch = ToolChain.getArch(); const bool isAndroid = ToolChain.getTriple().isAndroid(); const bool IsIAMCU = ToolChain.getTriple().isOSIAMCU(); const bool IsPIE = getPIE(Args, ToolChain); const bool IsStaticPIE = getStaticPIE(Args, ToolChain); const bool IsStatic = getStatic(Args); const bool HasCRTBeginEndFiles = ToolChain.getTriple().hasEnvironment() || (ToolChain.getTriple().getVendor() != llvm::Triple::MipsTechnologies); ArgStringList CmdArgs; // Silence warning for "clang -g foo.o -o foo" Args.ClaimAllArgs(options::OPT_g_Group); // and "clang -emit-llvm foo.o -o foo" Args.ClaimAllArgs(options::OPT_emit_llvm); // and for "clang -w foo.o -o foo". Other warning options are already // handled somewhere else. Args.ClaimAllArgs(options::OPT_w); if (!D.SysRoot.empty()) CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot)); if (IsPIE) CmdArgs.push_back("-pie"); if (IsStaticPIE) { CmdArgs.push_back("-static"); CmdArgs.push_back("-pie"); CmdArgs.push_back("--no-dynamic-linker"); CmdArgs.push_back("-z"); CmdArgs.push_back("text"); } if (ToolChain.isNoExecStackDefault()) { CmdArgs.push_back("-z"); CmdArgs.push_back("noexecstack"); } if (Args.hasArg(options::OPT_rdynamic)) CmdArgs.push_back("-export-dynamic"); if (Args.hasArg(options::OPT_s)) CmdArgs.push_back("-s"); if (Triple.isARM() || Triple.isThumb() || Triple.isAArch64()) { bool IsBigEndian = isArmBigEndian(Triple, Args); if (IsBigEndian) arm::appendBE8LinkFlag(Args, CmdArgs, Triple); IsBigEndian = IsBigEndian || Arch == llvm::Triple::aarch64_be; CmdArgs.push_back(IsBigEndian ? "-EB" : "-EL"); } // Most Android ARM64 targets should enable the linker fix for erratum // 843419. Only non-Cortex-A53 devices are allowed to skip this flag. if (Arch == llvm::Triple::aarch64 && isAndroid) { std::string CPU = getCPUName(Args, Triple); if (CPU.empty() || CPU == "generic" || CPU == "cortex-a53") CmdArgs.push_back("--fix-cortex-a53-843419"); } // Android does not allow shared text relocations. Emit a warning if the // user's code contains any. if (isAndroid) CmdArgs.push_back("--warn-shared-textrel"); for (const auto &Opt : ToolChain.ExtraOpts) CmdArgs.push_back(Opt.c_str()); CmdArgs.push_back("--eh-frame-hdr"); if (const char *LDMOption = getLDMOption(ToolChain.getTriple(), Args)) { CmdArgs.push_back("-m"); CmdArgs.push_back(LDMOption); } else { D.Diag(diag::err_target_unknown_triple) << Triple.str(); return; } if (IsStatic) { if (Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb) CmdArgs.push_back("-Bstatic"); else CmdArgs.push_back("-static"); } else if (Args.hasArg(options::OPT_shared)) { CmdArgs.push_back("-shared"); } if (!IsStatic) { if (Args.hasArg(options::OPT_rdynamic)) CmdArgs.push_back("-export-dynamic"); if (!Args.hasArg(options::OPT_shared) && !IsStaticPIE) { const std::string Loader = D.DyldPrefix + ToolChain.getDynamicLinker(Args); CmdArgs.push_back("-dynamic-linker"); CmdArgs.push_back(Args.MakeArgString(Loader)); } } CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); if (!Args.hasArg(options::OPT_nostdlib, options::OPT_nostartfiles)) { if (!isAndroid && !IsIAMCU) { const char *crt1 = nullptr; if (!Args.hasArg(options::OPT_shared)) { if (Args.hasArg(options::OPT_pg)) crt1 = "gcrt1.o"; else if (IsPIE) crt1 = "Scrt1.o"; else if (IsStaticPIE) crt1 = "rcrt1.o"; else crt1 = "crt1.o"; } if (crt1) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crt1))); CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crti.o"))); } if (IsIAMCU) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crt0.o"))); else if (HasCRTBeginEndFiles) { std::string P; if (ToolChain.GetRuntimeLibType(Args) == ToolChain::RLT_CompilerRT && !isAndroid) { std::string crtbegin = ToolChain.getCompilerRT(Args, "crtbegin", ToolChain::FT_Object); if (ToolChain.getVFS().exists(crtbegin)) P = crtbegin; } if (P.empty()) { const char *crtbegin; if (IsStatic) crtbegin = isAndroid ? "crtbegin_static.o" : "crtbeginT.o"; else if (Args.hasArg(options::OPT_shared)) crtbegin = isAndroid ? "crtbegin_so.o" : "crtbeginS.o"; else if (IsPIE || IsStaticPIE) crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbeginS.o"; else crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbegin.o"; P = ToolChain.GetFilePath(crtbegin); } CmdArgs.push_back(Args.MakeArgString(P)); } // Add crtfastmath.o if available and fast math is enabled. ToolChain.AddFastMathRuntimeIfAvailable(Args, CmdArgs); } Args.AddAllArgs(CmdArgs, options::OPT_L); Args.AddAllArgs(CmdArgs, options::OPT_u); ToolChain.AddFilePathLibArgs(Args, CmdArgs); if (D.isUsingLTO()) { assert(!Inputs.empty() && "Must have at least one input."); AddGoldPlugin(ToolChain, Args, CmdArgs, Output, Inputs[0], D.getLTOMode() == LTOK_Thin); } if (Args.hasArg(options::OPT_Z_Xlinker__no_demangle)) CmdArgs.push_back("--no-demangle"); bool NeedsSanitizerDeps = addSanitizerRuntimes(ToolChain, Args, CmdArgs); bool NeedsXRayDeps = addXRayRuntime(ToolChain, Args, CmdArgs); AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs, JA); // The profile runtime also needs access to system libraries. getToolChain().addProfileRTLibs(Args, CmdArgs); if (D.CCCIsCXX() && !Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs)) { if (ToolChain.ShouldLinkCXXStdlib(Args)) { bool OnlyLibstdcxxStatic = Args.hasArg(options::OPT_static_libstdcxx) && !Args.hasArg(options::OPT_static); if (OnlyLibstdcxxStatic) CmdArgs.push_back("-Bstatic"); ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs); if (OnlyLibstdcxxStatic) CmdArgs.push_back("-Bdynamic"); } CmdArgs.push_back("-lm"); } // Silence warnings when linking C code with a C++ '-stdlib' argument. Args.ClaimAllArgs(options::OPT_stdlib_EQ); if (!Args.hasArg(options::OPT_nostdlib)) { if (!Args.hasArg(options::OPT_nodefaultlibs)) { if (IsStatic || IsStaticPIE) CmdArgs.push_back("--start-group"); if (NeedsSanitizerDeps) linkSanitizerRuntimeDeps(ToolChain, CmdArgs); if (NeedsXRayDeps) linkXRayRuntimeDeps(ToolChain, CmdArgs); bool WantPthread = Args.hasArg(options::OPT_pthread) || Args.hasArg(options::OPT_pthreads); // FIXME: Only pass GompNeedsRT = true for platforms with libgomp that // require librt. Most modern Linux platforms do, but some may not. if (addOpenMPRuntime(CmdArgs, ToolChain, Args, JA.isHostOffloading(Action::OFK_OpenMP), /* GompNeedsRT= */ true)) // OpenMP runtimes implies pthreads when using the GNU toolchain. // FIXME: Does this really make sense for all GNU toolchains? WantPthread = true; AddRunTimeLibs(ToolChain, D, CmdArgs, Args); if (WantPthread && !isAndroid) CmdArgs.push_back("-lpthread"); if (Args.hasArg(options::OPT_fsplit_stack)) CmdArgs.push_back("--wrap=pthread_create"); if (!Args.hasArg(options::OPT_nolibc)) CmdArgs.push_back("-lc"); // Add IAMCU specific libs, if needed. if (IsIAMCU) CmdArgs.push_back("-lgloss"); if (IsStatic || IsStaticPIE) CmdArgs.push_back("--end-group"); else AddRunTimeLibs(ToolChain, D, CmdArgs, Args); // Add IAMCU specific libs (outside the group), if needed. if (IsIAMCU) { CmdArgs.push_back("--as-needed"); CmdArgs.push_back("-lsoftfp"); CmdArgs.push_back("--no-as-needed"); } } if (!Args.hasArg(options::OPT_nostartfiles) && !IsIAMCU) { if (HasCRTBeginEndFiles) { std::string P; if (ToolChain.GetRuntimeLibType(Args) == ToolChain::RLT_CompilerRT && !isAndroid) { std::string crtend = ToolChain.getCompilerRT(Args, "crtend", ToolChain::FT_Object); if (ToolChain.getVFS().exists(crtend)) P = crtend; } if (P.empty()) { const char *crtend; if (Args.hasArg(options::OPT_shared)) crtend = isAndroid ? "crtend_so.o" : "crtendS.o"; else if (IsPIE || IsStaticPIE) crtend = isAndroid ? "crtend_android.o" : "crtendS.o"; else crtend = isAndroid ? "crtend_android.o" : "crtend.o"; P = ToolChain.GetFilePath(crtend); } CmdArgs.push_back(Args.MakeArgString(P)); } if (!isAndroid) CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtn.o"))); } } // Add OpenMP offloading linker script args if required. AddOpenMPLinkerScript(getToolChain(), C, Output, Inputs, Args, CmdArgs, JA); // Add HIP offloading linker script args if required. AddHIPLinkerScript(getToolChain(), C, Output, Inputs, Args, CmdArgs, JA, *this); const char *Exec = Args.MakeArgString(ToolChain.GetLinkerPath()); C.addCommand(llvm::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } void tools::gnutools::Assembler::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &D = getToolChain().getDriver(); claimNoWarnArgs(Args); ArgStringList CmdArgs; llvm::Reloc::Model RelocationModel; unsigned PICLevel; bool IsPIE; std::tie(RelocationModel, PICLevel, IsPIE) = ParsePICArgs(getToolChain(), Args); if (const Arg *A = Args.getLastArg(options::OPT_gz, options::OPT_gz_EQ)) { if (A->getOption().getID() == options::OPT_gz) { CmdArgs.push_back("--compress-debug-sections"); } else { StringRef Value = A->getValue(); if (Value == "none" || Value == "zlib" || Value == "zlib-gnu") { CmdArgs.push_back( Args.MakeArgString("--compress-debug-sections=" + Twine(Value))); } else { D.Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() << Value; } } } if (getToolChain().isNoExecStackDefault()) { CmdArgs.push_back("--noexecstack"); } switch (getToolChain().getArch()) { default: break; // Add --32/--64 to make sure we get the format we want. // This is incomplete case llvm::Triple::x86: CmdArgs.push_back("--32"); break; case llvm::Triple::x86_64: if (getToolChain().getTriple().getEnvironment() == llvm::Triple::GNUX32) CmdArgs.push_back("--x32"); else CmdArgs.push_back("--64"); break; case llvm::Triple::ppc: { CmdArgs.push_back("-a32"); CmdArgs.push_back("-mppc"); CmdArgs.push_back( ppc::getPPCAsmModeForCPU(getCPUName(Args, getToolChain().getTriple()))); break; } case llvm::Triple::ppc64: { CmdArgs.push_back("-a64"); CmdArgs.push_back("-mppc64"); CmdArgs.push_back( ppc::getPPCAsmModeForCPU(getCPUName(Args, getToolChain().getTriple()))); break; } case llvm::Triple::ppc64le: { CmdArgs.push_back("-a64"); CmdArgs.push_back("-mppc64"); CmdArgs.push_back("-mlittle-endian"); CmdArgs.push_back( ppc::getPPCAsmModeForCPU(getCPUName(Args, getToolChain().getTriple()))); break; } case llvm::Triple::riscv32: case llvm::Triple::riscv64: { StringRef ABIName = riscv::getRISCVABI(Args, getToolChain().getTriple()); CmdArgs.push_back("-mabi"); CmdArgs.push_back(ABIName.data()); if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) { StringRef MArch = A->getValue(); CmdArgs.push_back("-march"); CmdArgs.push_back(MArch.data()); } break; } case llvm::Triple::sparc: case llvm::Triple::sparcel: { CmdArgs.push_back("-32"); std::string CPU = getCPUName(Args, getToolChain().getTriple()); CmdArgs.push_back( sparc::getSparcAsmModeForCPU(CPU, getToolChain().getTriple())); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::sparcv9: { CmdArgs.push_back("-64"); std::string CPU = getCPUName(Args, getToolChain().getTriple()); CmdArgs.push_back( sparc::getSparcAsmModeForCPU(CPU, getToolChain().getTriple())); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { const llvm::Triple &Triple2 = getToolChain().getTriple(); CmdArgs.push_back(isArmBigEndian(Triple2, Args) ? "-EB" : "-EL"); switch (Triple2.getSubArch()) { case llvm::Triple::ARMSubArch_v7: CmdArgs.push_back("-mfpu=neon"); break; case llvm::Triple::ARMSubArch_v8: CmdArgs.push_back("-mfpu=crypto-neon-fp-armv8"); break; default: break; } switch (arm::getARMFloatABI(getToolChain(), Args)) { case arm::FloatABI::Invalid: llvm_unreachable("must have an ABI!"); case arm::FloatABI::Soft: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=soft")); break; case arm::FloatABI::SoftFP: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=softfp")); break; case arm::FloatABI::Hard: CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=hard")); break; } Args.AddLastArg(CmdArgs, options::OPT_march_EQ); normalizeCPUNamesForAssembler(Args, CmdArgs); Args.AddLastArg(CmdArgs, options::OPT_mfpu_EQ); break; } case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: { CmdArgs.push_back( getToolChain().getArch() == llvm::Triple::aarch64_be ? "-EB" : "-EL"); Args.AddLastArg(CmdArgs, options::OPT_march_EQ); normalizeCPUNamesForAssembler(Args, CmdArgs); break; } case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: { StringRef CPUName; StringRef ABIName; mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName); ABIName = mips::getGnuCompatibleMipsABIName(ABIName); CmdArgs.push_back("-march"); CmdArgs.push_back(CPUName.data()); CmdArgs.push_back("-mabi"); CmdArgs.push_back(ABIName.data()); // -mno-shared should be emitted unless -fpic, -fpie, -fPIC, -fPIE, // or -mshared (not implemented) is in effect. if (RelocationModel == llvm::Reloc::Static) CmdArgs.push_back("-mno-shared"); // LLVM doesn't support -mplt yet and acts as if it is always given. // However, -mplt has no effect with the N64 ABI. if (ABIName != "64" && !Args.hasArg(options::OPT_mno_abicalls)) CmdArgs.push_back("-call_nonpic"); if (getToolChain().getTriple().isLittleEndian()) CmdArgs.push_back("-EL"); else CmdArgs.push_back("-EB"); if (Arg *A = Args.getLastArg(options::OPT_mnan_EQ)) { if (StringRef(A->getValue()) == "2008") CmdArgs.push_back(Args.MakeArgString("-mnan=2008")); } // Add the last -mfp32/-mfpxx/-mfp64 or -mfpxx if it is enabled by default. if (Arg *A = Args.getLastArg(options::OPT_mfp32, options::OPT_mfpxx, options::OPT_mfp64)) { A->claim(); A->render(Args, CmdArgs); } else if (mips::shouldUseFPXX( Args, getToolChain().getTriple(), CPUName, ABIName, mips::getMipsFloatABI(getToolChain().getDriver(), Args, getToolChain().getTriple()))) CmdArgs.push_back("-mfpxx"); // Pass on -mmips16 or -mno-mips16. However, the assembler equivalent of // -mno-mips16 is actually -no-mips16. if (Arg *A = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16)) { if (A->getOption().matches(options::OPT_mips16)) { A->claim(); A->render(Args, CmdArgs); } else { A->claim(); CmdArgs.push_back("-no-mips16"); } } Args.AddLastArg(CmdArgs, options::OPT_mmicromips, options::OPT_mno_micromips); Args.AddLastArg(CmdArgs, options::OPT_mdsp, options::OPT_mno_dsp); Args.AddLastArg(CmdArgs, options::OPT_mdspr2, options::OPT_mno_dspr2); if (Arg *A = Args.getLastArg(options::OPT_mmsa, options::OPT_mno_msa)) { // Do not use AddLastArg because not all versions of MIPS assembler // support -mmsa / -mno-msa options. if (A->getOption().matches(options::OPT_mmsa)) CmdArgs.push_back(Args.MakeArgString("-mmsa")); } Args.AddLastArg(CmdArgs, options::OPT_mhard_float, options::OPT_msoft_float); Args.AddLastArg(CmdArgs, options::OPT_mdouble_float, options::OPT_msingle_float); Args.AddLastArg(CmdArgs, options::OPT_modd_spreg, options::OPT_mno_odd_spreg); AddAssemblerKPIC(getToolChain(), Args, CmdArgs); break; } case llvm::Triple::systemz: { // Always pass an -march option, since our default of z10 is later // than the GNU assembler's default. StringRef CPUName = systemz::getSystemZTargetCPU(Args); CmdArgs.push_back(Args.MakeArgString("-march=" + CPUName)); break; } } Args.AddAllArgs(CmdArgs, options::OPT_I); Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler); CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); for (const auto &II : Inputs) CmdArgs.push_back(II.getFilename()); const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as")); C.addCommand(llvm::make_unique(JA, *this, Exec, CmdArgs, Inputs)); // Handle the debug info splitting at object creation time if we're // creating an object. // TODO: Currently only works on linux with newer objcopy. if (Args.hasArg(options::OPT_gsplit_dwarf) && getToolChain().getTriple().isOSLinux()) SplitDebugInfo(getToolChain(), C, *this, JA, Args, Output, SplitDebugName(Args, Inputs[0], Output)); } namespace { // Filter to remove Multilibs that don't exist as a suffix to Path class FilterNonExistent { StringRef Base, File; llvm::vfs::FileSystem &VFS; public: FilterNonExistent(StringRef Base, StringRef File, llvm::vfs::FileSystem &VFS) : Base(Base), File(File), VFS(VFS) {} bool operator()(const Multilib &M) { return !VFS.exists(Base + M.gccSuffix() + File); } }; } // end anonymous namespace static bool isSoftFloatABI(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float, options::OPT_mfloat_abi_EQ); if (!A) return false; return A->getOption().matches(options::OPT_msoft_float) || (A->getOption().matches(options::OPT_mfloat_abi_EQ) && A->getValue() == StringRef("soft")); } static bool isArmOrThumbArch(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb; } static bool isMipsEL(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64el; } static bool isMips16(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16); return A && A->getOption().matches(options::OPT_mips16); } static bool isMicroMips(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mmicromips, options::OPT_mno_micromips); return A && A->getOption().matches(options::OPT_mmicromips); } static bool isMSP430(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::msp430; } static Multilib makeMultilib(StringRef commonSuffix) { return Multilib(commonSuffix, commonSuffix, commonSuffix); } static bool findMipsCsMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Check for Code Sourcery toolchain multilibs MultilibSet CSMipsMultilibs; { auto MArchMips16 = makeMultilib("/mips16").flag("+m32").flag("+mips16"); auto MArchMicroMips = makeMultilib("/micromips").flag("+m32").flag("+mmicromips"); auto MArchDefault = makeMultilib("").flag("-mips16").flag("-mmicromips"); auto UCLibc = makeMultilib("/uclibc").flag("+muclibc"); auto SoftFloat = makeMultilib("/soft-float").flag("+msoft-float"); auto Nan2008 = makeMultilib("/nan2008").flag("+mnan=2008"); auto DefaultFloat = makeMultilib("").flag("-msoft-float").flag("-mnan=2008"); auto BigEndian = makeMultilib("").flag("+EB").flag("-EL"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); // Note that this one's osSuffix is "" auto MAbi64 = makeMultilib("") .gccSuffix("/64") .includeSuffix("/64") .flag("+mabi=n64") .flag("-mabi=n32") .flag("-m32"); CSMipsMultilibs = MultilibSet() .Either(MArchMips16, MArchMicroMips, MArchDefault) .Maybe(UCLibc) .Either(SoftFloat, Nan2008, DefaultFloat) .FilterOut("/micromips/nan2008") .FilterOut("/mips16/nan2008") .Either(BigEndian, LittleEndian) .Maybe(MAbi64) .FilterOut("/mips16.*/64") .FilterOut("/micromips.*/64") .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).startswith("/uclibc")) Dirs.push_back( "/../../../../mips-linux-gnu/libc/uclibc/usr/include"); else Dirs.push_back("/../../../../mips-linux-gnu/libc/usr/include"); return Dirs; }); } MultilibSet DebianMipsMultilibs; { Multilib MAbiN32 = Multilib().gccSuffix("/n32").includeSuffix("/n32").flag("+mabi=n32"); Multilib M64 = Multilib() .gccSuffix("/64") .includeSuffix("/64") .flag("+m64") .flag("-m32") .flag("-mabi=n32"); Multilib M32 = Multilib().flag("-m64").flag("+m32").flag("-mabi=n32"); DebianMipsMultilibs = MultilibSet().Either(M32, M64, MAbiN32).FilterOut(NonExistent); } // Sort candidates. Toolchain that best meets the directories tree goes first. // Then select the first toolchains matches command line flags. MultilibSet *Candidates[] = {&CSMipsMultilibs, &DebianMipsMultilibs}; if (CSMipsMultilibs.size() < DebianMipsMultilibs.size()) std::iter_swap(Candidates, Candidates + 1); for (const MultilibSet *Candidate : Candidates) { if (Candidate->select(Flags, Result.SelectedMultilib)) { if (Candidate == &DebianMipsMultilibs) Result.BiarchSibling = Multilib(); Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsAndroidMultilibs(llvm::vfs::FileSystem &VFS, StringRef Path, const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { MultilibSet AndroidMipsMultilibs = MultilibSet() .Maybe(Multilib("/mips-r2").flag("+march=mips32r2")) .Maybe(Multilib("/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet AndroidMipselMultilibs = MultilibSet() .Either(Multilib().flag("+march=mips32"), Multilib("/mips-r2", "", "/mips-r2").flag("+march=mips32r2"), Multilib("/mips-r6", "", "/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet AndroidMips64elMultilibs = MultilibSet() .Either( Multilib().flag("+march=mips64r6"), Multilib("/32/mips-r1", "", "/mips-r1").flag("+march=mips32"), Multilib("/32/mips-r2", "", "/mips-r2").flag("+march=mips32r2"), Multilib("/32/mips-r6", "", "/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet *MS = &AndroidMipsMultilibs; if (VFS.exists(Path + "/mips-r6")) MS = &AndroidMipselMultilibs; else if (VFS.exists(Path + "/32")) MS = &AndroidMips64elMultilibs; if (MS->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *MS; return true; } return false; } static bool findMipsMuslMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Musl toolchain multilibs MultilibSet MuslMipsMultilibs; { auto MArchMipsR2 = makeMultilib("") .osSuffix("/mips-r2-hard-musl") .flag("+EB") .flag("-EL") .flag("+march=mips32r2"); auto MArchMipselR2 = makeMultilib("/mipsel-r2-hard-musl") .flag("-EB") .flag("+EL") .flag("+march=mips32r2"); MuslMipsMultilibs = MultilibSet().Either(MArchMipsR2, MArchMipselR2); // Specify the callback that computes the include directories. MuslMipsMultilibs.setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/../sysroot" + M.osSuffix() + "/usr/include"}); }); } if (MuslMipsMultilibs.select(Flags, Result.SelectedMultilib)) { Result.Multilibs = MuslMipsMultilibs; return true; } return false; } static bool findMipsMtiMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape MTI toolchain v1.2 and early. MultilibSet MtiMipsMultilibsV1; { auto MArchMips32 = makeMultilib("/mips32") .flag("+m32") .flag("-m64") .flag("-mmicromips") .flag("+march=mips32"); auto MArchMicroMips = makeMultilib("/micromips") .flag("+m32") .flag("-m64") .flag("+mmicromips"); auto MArchMips64r2 = makeMultilib("/mips64r2") .flag("-m32") .flag("+m64") .flag("+march=mips64r2"); auto MArchMips64 = makeMultilib("/mips64").flag("-m32").flag("+m64").flag( "-march=mips64r2"); auto MArchDefault = makeMultilib("") .flag("+m32") .flag("-m64") .flag("-mmicromips") .flag("+march=mips32r2"); auto Mips16 = makeMultilib("/mips16").flag("+mips16"); auto UCLibc = makeMultilib("/uclibc").flag("+muclibc"); auto MAbi64 = makeMultilib("/64").flag("+mabi=n64").flag("-mabi=n32").flag("-m32"); auto BigEndian = makeMultilib("").flag("+EB").flag("-EL"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); auto SoftFloat = makeMultilib("/sof").flag("+msoft-float"); auto Nan2008 = makeMultilib("/nan2008").flag("+mnan=2008"); MtiMipsMultilibsV1 = MultilibSet() .Either(MArchMips32, MArchMicroMips, MArchMips64r2, MArchMips64, MArchDefault) .Maybe(UCLibc) .Maybe(Mips16) .FilterOut("/mips64/mips16") .FilterOut("/mips64r2/mips16") .FilterOut("/micromips/mips16") .Maybe(MAbi64) .FilterOut("/micromips/64") .FilterOut("/mips32/64") .FilterOut("^/64") .FilterOut("/mips16/64") .Either(BigEndian, LittleEndian) .Maybe(SoftFloat) .Maybe(Nan2008) .FilterOut(".*sof/nan2008") .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).startswith("/uclibc")) Dirs.push_back("/../../../../sysroot/uclibc/usr/include"); else Dirs.push_back("/../../../../sysroot/usr/include"); return Dirs; }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet MtiMipsMultilibsV2; { auto BeHard = makeMultilib("/mips-r2-hard") .flag("+EB") .flag("-msoft-float") .flag("-mnan=2008") .flag("-muclibc"); auto BeSoft = makeMultilib("/mips-r2-soft") .flag("+EB") .flag("+msoft-float") .flag("-mnan=2008"); auto ElHard = makeMultilib("/mipsel-r2-hard") .flag("+EL") .flag("-msoft-float") .flag("-mnan=2008") .flag("-muclibc"); auto ElSoft = makeMultilib("/mipsel-r2-soft") .flag("+EL") .flag("+msoft-float") .flag("-mnan=2008") .flag("-mmicromips"); auto BeHardNan = makeMultilib("/mips-r2-hard-nan2008") .flag("+EB") .flag("-msoft-float") .flag("+mnan=2008") .flag("-muclibc"); auto ElHardNan = makeMultilib("/mipsel-r2-hard-nan2008") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("-muclibc") .flag("-mmicromips"); auto BeHardNanUclibc = makeMultilib("/mips-r2-hard-nan2008-uclibc") .flag("+EB") .flag("-msoft-float") .flag("+mnan=2008") .flag("+muclibc"); auto ElHardNanUclibc = makeMultilib("/mipsel-r2-hard-nan2008-uclibc") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("+muclibc"); auto BeHardUclibc = makeMultilib("/mips-r2-hard-uclibc") .flag("+EB") .flag("-msoft-float") .flag("-mnan=2008") .flag("+muclibc"); auto ElHardUclibc = makeMultilib("/mipsel-r2-hard-uclibc") .flag("+EL") .flag("-msoft-float") .flag("-mnan=2008") .flag("+muclibc"); auto ElMicroHardNan = makeMultilib("/micromipsel-r2-hard-nan2008") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("+mmicromips"); auto ElMicroSoft = makeMultilib("/micromipsel-r2-soft") .flag("+EL") .flag("+msoft-float") .flag("-mnan=2008") .flag("+mmicromips"); auto O32 = makeMultilib("/lib").osSuffix("").flag("-mabi=n32").flag("-mabi=n64"); auto N32 = makeMultilib("/lib32").osSuffix("").flag("+mabi=n32").flag("-mabi=n64"); auto N64 = makeMultilib("/lib64").osSuffix("").flag("-mabi=n32").flag("+mabi=n64"); MtiMipsMultilibsV2 = MultilibSet() .Either({BeHard, BeSoft, ElHard, ElSoft, BeHardNan, ElHardNan, BeHardNanUclibc, ElHardNanUclibc, BeHardUclibc, ElHardUclibc, ElMicroHardNan, ElMicroSoft}) .Either(O32, N32, N64) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-mti-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto Candidate : {&MtiMipsMultilibsV1, &MtiMipsMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsImgMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape IMG toolchain v1.2 and early. MultilibSet ImgMultilibsV1; { auto Mips64r6 = makeMultilib("/mips64r6").flag("+m64").flag("-m32"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); auto MAbi64 = makeMultilib("/64").flag("+mabi=n64").flag("-mabi=n32").flag("-m32"); ImgMultilibsV1 = MultilibSet() .Maybe(Mips64r6) .Maybe(MAbi64) .Maybe(LittleEndian) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/include", "/../../../../sysroot/usr/include"}); }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet ImgMultilibsV2; { auto BeHard = makeMultilib("/mips-r6-hard") .flag("+EB") .flag("-msoft-float") .flag("-mmicromips"); auto BeSoft = makeMultilib("/mips-r6-soft") .flag("+EB") .flag("+msoft-float") .flag("-mmicromips"); auto ElHard = makeMultilib("/mipsel-r6-hard") .flag("+EL") .flag("-msoft-float") .flag("-mmicromips"); auto ElSoft = makeMultilib("/mipsel-r6-soft") .flag("+EL") .flag("+msoft-float") .flag("-mmicromips"); auto BeMicroHard = makeMultilib("/micromips-r6-hard") .flag("+EB") .flag("-msoft-float") .flag("+mmicromips"); auto BeMicroSoft = makeMultilib("/micromips-r6-soft") .flag("+EB") .flag("+msoft-float") .flag("+mmicromips"); auto ElMicroHard = makeMultilib("/micromipsel-r6-hard") .flag("+EL") .flag("-msoft-float") .flag("+mmicromips"); auto ElMicroSoft = makeMultilib("/micromipsel-r6-soft") .flag("+EL") .flag("+msoft-float") .flag("+mmicromips"); auto O32 = makeMultilib("/lib").osSuffix("").flag("-mabi=n32").flag("-mabi=n64"); auto N32 = makeMultilib("/lib32").osSuffix("").flag("+mabi=n32").flag("-mabi=n64"); auto N64 = makeMultilib("/lib64").osSuffix("").flag("-mabi=n32").flag("+mabi=n64"); ImgMultilibsV2 = MultilibSet() .Either({BeHard, BeSoft, ElHard, ElSoft, BeMicroHard, BeMicroSoft, ElMicroHard, ElMicroSoft}) .Either(O32, N32, N64) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-img-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto Candidate : {&ImgMultilibsV1, &ImgMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *Candidate; return true; } } return false; } bool clang::driver::findMIPSMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); StringRef CPUName; StringRef ABIName; tools::mips::getMipsCPUAndABI(Args, TargetTriple, CPUName, ABIName); llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); Multilib::flags_list Flags; addMultilibFlag(TargetTriple.isMIPS32(), "m32", Flags); addMultilibFlag(TargetTriple.isMIPS64(), "m64", Flags); addMultilibFlag(isMips16(Args), "mips16", Flags); addMultilibFlag(CPUName == "mips32", "march=mips32", Flags); addMultilibFlag(CPUName == "mips32r2" || CPUName == "mips32r3" || CPUName == "mips32r5" || CPUName == "p5600", "march=mips32r2", Flags); addMultilibFlag(CPUName == "mips32r6", "march=mips32r6", Flags); addMultilibFlag(CPUName == "mips64", "march=mips64", Flags); addMultilibFlag(CPUName == "mips64r2" || CPUName == "mips64r3" || - CPUName == "mips64r5" || CPUName == "octeon", + CPUName == "mips64r5" || CPUName == "octeon" || + CPUName == "octeon+", "march=mips64r2", Flags); addMultilibFlag(CPUName == "mips64r6", "march=mips64r6", Flags); addMultilibFlag(isMicroMips(Args), "mmicromips", Flags); addMultilibFlag(tools::mips::isUCLibc(Args), "muclibc", Flags); addMultilibFlag(tools::mips::isNaN2008(Args, TargetTriple), "mnan=2008", Flags); addMultilibFlag(ABIName == "n32", "mabi=n32", Flags); addMultilibFlag(ABIName == "n64", "mabi=n64", Flags); addMultilibFlag(isSoftFloatABI(Args), "msoft-float", Flags); addMultilibFlag(!isSoftFloatABI(Args), "mhard-float", Flags); addMultilibFlag(isMipsEL(TargetArch), "EL", Flags); addMultilibFlag(!isMipsEL(TargetArch), "EB", Flags); if (TargetTriple.isAndroid()) return findMipsAndroidMultilibs(D.getVFS(), Path, Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.getEnvironment() == llvm::Triple::UnknownEnvironment) return findMipsMuslMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.isGNUEnvironment()) return findMipsMtiMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::ImaginationTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.isGNUEnvironment()) return findMipsImgMultilibs(Flags, NonExistent, Result); if (findMipsCsMultilibs(Flags, NonExistent, Result)) return true; // Fallback to the regular toolchain-tree structure. Multilib Default; Result.Multilibs.push_back(Default); Result.Multilibs.FilterOut(NonExistent); if (Result.Multilibs.select(Flags, Result.SelectedMultilib)) { Result.BiarchSibling = Multilib(); return true; } return false; } static void findAndroidArmMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { // Find multilibs with subdirectories like armv7-a, thumb, armv7-a/thumb. FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); Multilib ArmV7Multilib = makeMultilib("/armv7-a") .flag("+march=armv7-a") .flag("-mthumb"); Multilib ThumbMultilib = makeMultilib("/thumb") .flag("-march=armv7-a") .flag("+mthumb"); Multilib ArmV7ThumbMultilib = makeMultilib("/armv7-a/thumb") .flag("+march=armv7-a") .flag("+mthumb"); Multilib DefaultMultilib = makeMultilib("") .flag("-march=armv7-a") .flag("-mthumb"); MultilibSet AndroidArmMultilibs = MultilibSet() .Either(ThumbMultilib, ArmV7Multilib, ArmV7ThumbMultilib, DefaultMultilib) .FilterOut(NonExistent); Multilib::flags_list Flags; llvm::StringRef Arch = Args.getLastArgValue(options::OPT_march_EQ); bool IsArmArch = TargetTriple.getArch() == llvm::Triple::arm; bool IsThumbArch = TargetTriple.getArch() == llvm::Triple::thumb; bool IsV7SubArch = TargetTriple.getSubArch() == llvm::Triple::ARMSubArch_v7; bool IsThumbMode = IsThumbArch || Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, false) || (IsArmArch && llvm::ARM::parseArchISA(Arch) == llvm::ARM::ISAKind::THUMB); bool IsArmV7Mode = (IsArmArch || IsThumbArch) && (llvm::ARM::parseArchVersion(Arch) == 7 || (IsArmArch && Arch == "" && IsV7SubArch)); addMultilibFlag(IsArmV7Mode, "march=armv7-a", Flags); addMultilibFlag(IsThumbMode, "mthumb", Flags); if (AndroidArmMultilibs.select(Flags, Result.SelectedMultilib)) Result.Multilibs = AndroidArmMultilibs; } static bool findMSP430Multilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); Multilib MSP430Multilib = makeMultilib("/430"); // FIXME: when clang starts to support msp430x ISA additional logic // to select between multilib must be implemented // Multilib MSP430xMultilib = makeMultilib("/large"); Result.Multilibs.push_back(MSP430Multilib); Result.Multilibs.FilterOut(NonExistent); Multilib::flags_list Flags; if (Result.Multilibs.select(Flags, Result.SelectedMultilib)) return true; return false; } static void findRISCVMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); Multilib Ilp32 = makeMultilib("lib32/ilp32").flag("+m32").flag("+mabi=ilp32"); Multilib Ilp32f = makeMultilib("lib32/ilp32f").flag("+m32").flag("+mabi=ilp32f"); Multilib Ilp32d = makeMultilib("lib32/ilp32d").flag("+m32").flag("+mabi=ilp32d"); Multilib Lp64 = makeMultilib("lib64/lp64").flag("+m64").flag("+mabi=lp64"); Multilib Lp64f = makeMultilib("lib64/lp64f").flag("+m64").flag("+mabi=lp64f"); Multilib Lp64d = makeMultilib("lib64/lp64d").flag("+m64").flag("+mabi=lp64d"); MultilibSet RISCVMultilibs = MultilibSet() .Either({Ilp32, Ilp32f, Ilp32d, Lp64, Lp64f, Lp64d}) .FilterOut(NonExistent); Multilib::flags_list Flags; bool IsRV64 = TargetTriple.getArch() == llvm::Triple::riscv64; StringRef ABIName = tools::riscv::getRISCVABI(Args, TargetTriple); addMultilibFlag(!IsRV64, "m32", Flags); addMultilibFlag(IsRV64, "m64", Flags); addMultilibFlag(ABIName == "ilp32", "mabi=ilp32", Flags); addMultilibFlag(ABIName == "ilp32f", "mabi=ilp32f", Flags); addMultilibFlag(ABIName == "ilp32d", "mabi=ilp32d", Flags); addMultilibFlag(ABIName == "lp64", "mabi=lp64", Flags); addMultilibFlag(ABIName == "lp64f", "mabi=lp64f", Flags); addMultilibFlag(ABIName == "lp64d", "mabi=lp64d", Flags); if (RISCVMultilibs.select(Flags, Result.SelectedMultilib)) Result.Multilibs = RISCVMultilibs; } static bool findBiarchMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, bool NeedsBiarchSuffix, DetectedMultilibs &Result) { Multilib Default; // Some versions of SUSE and Fedora on ppc64 put 32-bit libs // in what would normally be GCCInstallPath and put the 64-bit // libs in a subdirectory named 64. The simple logic we follow is that // *if* there is a subdirectory of the right name with crtbegin.o in it, // we use that. If not, and if not a biarch triple alias, we look for // crtbegin.o without the subdirectory. StringRef Suff64 = "/64"; // Solaris uses platform-specific suffixes instead of /64. if (TargetTriple.getOS() == llvm::Triple::Solaris) { switch (TargetTriple.getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: Suff64 = "/amd64"; break; case llvm::Triple::sparc: case llvm::Triple::sparcv9: Suff64 = "/sparcv9"; break; default: break; } } Multilib Alt64 = Multilib() .gccSuffix(Suff64) .includeSuffix(Suff64) .flag("-m32") .flag("+m64") .flag("-mx32"); Multilib Alt32 = Multilib() .gccSuffix("/32") .includeSuffix("/32") .flag("+m32") .flag("-m64") .flag("-mx32"); Multilib Altx32 = Multilib() .gccSuffix("/x32") .includeSuffix("/x32") .flag("-m32") .flag("-m64") .flag("+mx32"); // GCC toolchain for IAMCU doesn't have crtbegin.o, so look for libgcc.a. FilterNonExistent NonExistent( Path, TargetTriple.isOSIAMCU() ? "/libgcc.a" : "/crtbegin.o", D.getVFS()); // Determine default multilib from: 32, 64, x32 // Also handle cases such as 64 on 32, 32 on 64, etc. enum { UNKNOWN, WANT32, WANT64, WANTX32 } Want = UNKNOWN; const bool IsX32 = TargetTriple.getEnvironment() == llvm::Triple::GNUX32; if (TargetTriple.isArch32Bit() && !NonExistent(Alt32)) Want = WANT64; else if (TargetTriple.isArch64Bit() && IsX32 && !NonExistent(Altx32)) Want = WANT64; else if (TargetTriple.isArch64Bit() && !IsX32 && !NonExistent(Alt64)) Want = WANT32; else { if (TargetTriple.isArch32Bit()) Want = NeedsBiarchSuffix ? WANT64 : WANT32; else if (IsX32) Want = NeedsBiarchSuffix ? WANT64 : WANTX32; else Want = NeedsBiarchSuffix ? WANT32 : WANT64; } if (Want == WANT32) Default.flag("+m32").flag("-m64").flag("-mx32"); else if (Want == WANT64) Default.flag("-m32").flag("+m64").flag("-mx32"); else if (Want == WANTX32) Default.flag("-m32").flag("-m64").flag("+mx32"); else return false; Result.Multilibs.push_back(Default); Result.Multilibs.push_back(Alt64); Result.Multilibs.push_back(Alt32); Result.Multilibs.push_back(Altx32); Result.Multilibs.FilterOut(NonExistent); Multilib::flags_list Flags; addMultilibFlag(TargetTriple.isArch64Bit() && !IsX32, "m64", Flags); addMultilibFlag(TargetTriple.isArch32Bit(), "m32", Flags); addMultilibFlag(TargetTriple.isArch64Bit() && IsX32, "mx32", Flags); if (!Result.Multilibs.select(Flags, Result.SelectedMultilib)) return false; if (Result.SelectedMultilib == Alt64 || Result.SelectedMultilib == Alt32 || Result.SelectedMultilib == Altx32) Result.BiarchSibling = Default; return true; } /// Generic_GCC - A tool chain using the 'gcc' command to perform /// all subcommands; this relies on gcc translating the majority of /// command line options. /// Less-than for GCCVersion, implementing a Strict Weak Ordering. bool Generic_GCC::GCCVersion::isOlderThan(int RHSMajor, int RHSMinor, int RHSPatch, StringRef RHSPatchSuffix) const { if (Major != RHSMajor) return Major < RHSMajor; if (Minor != RHSMinor) return Minor < RHSMinor; if (Patch != RHSPatch) { // Note that versions without a specified patch sort higher than those with // a patch. if (RHSPatch == -1) return true; if (Patch == -1) return false; // Otherwise just sort on the patch itself. return Patch < RHSPatch; } if (PatchSuffix != RHSPatchSuffix) { // Sort empty suffixes higher. if (RHSPatchSuffix.empty()) return true; if (PatchSuffix.empty()) return false; // Provide a lexicographic sort to make this a total ordering. return PatchSuffix < RHSPatchSuffix; } // The versions are equal. return false; } /// Parse a GCCVersion object out of a string of text. /// /// This is the primary means of forming GCCVersion objects. /*static*/ Generic_GCC::GCCVersion Generic_GCC::GCCVersion::Parse(StringRef VersionText) { const GCCVersion BadVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; std::pair First = VersionText.split('.'); std::pair Second = First.second.split('.'); GCCVersion GoodVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; if (First.first.getAsInteger(10, GoodVersion.Major) || GoodVersion.Major < 0) return BadVersion; GoodVersion.MajorStr = First.first.str(); if (First.second.empty()) return GoodVersion; StringRef MinorStr = Second.first; if (Second.second.empty()) { if (size_t EndNumber = MinorStr.find_first_not_of("0123456789")) { GoodVersion.PatchSuffix = MinorStr.substr(EndNumber); MinorStr = MinorStr.slice(0, EndNumber); } } if (MinorStr.getAsInteger(10, GoodVersion.Minor) || GoodVersion.Minor < 0) return BadVersion; GoodVersion.MinorStr = MinorStr.str(); // First look for a number prefix and parse that if present. Otherwise just // stash the entire patch string in the suffix, and leave the number // unspecified. This covers versions strings such as: // 5 (handled above) // 4.4 // 4.4-patched // 4.4.0 // 4.4.x // 4.4.2-rc4 // 4.4.x-patched // And retains any patch number it finds. StringRef PatchText = Second.second; if (!PatchText.empty()) { if (size_t EndNumber = PatchText.find_first_not_of("0123456789")) { // Try to parse the number and any suffix. if (PatchText.slice(0, EndNumber).getAsInteger(10, GoodVersion.Patch) || GoodVersion.Patch < 0) return BadVersion; GoodVersion.PatchSuffix = PatchText.substr(EndNumber); } } return GoodVersion; } static llvm::StringRef getGCCToolchainDir(const ArgList &Args, llvm::StringRef SysRoot) { const Arg *A = Args.getLastArg(clang::driver::options::OPT_gcc_toolchain); if (A) return A->getValue(); // If we have a SysRoot, ignore GCC_INSTALL_PREFIX. // GCC_INSTALL_PREFIX specifies the gcc installation for the default // sysroot and is likely not valid with a different sysroot. if (!SysRoot.empty()) return ""; return GCC_INSTALL_PREFIX; } /// Initialize a GCCInstallationDetector from the driver. /// /// This performs all of the autodetection and sets up the various paths. /// Once constructed, a GCCInstallationDetector is essentially immutable. /// /// FIXME: We shouldn't need an explicit TargetTriple parameter here, and /// should instead pull the target out of the driver. This is currently /// necessary because the driver doesn't store the final version of the target /// triple. void Generic_GCC::GCCInstallationDetector::init( const llvm::Triple &TargetTriple, const ArgList &Args, ArrayRef ExtraTripleAliases) { llvm::Triple BiarchVariantTriple = TargetTriple.isArch32Bit() ? TargetTriple.get64BitArchVariant() : TargetTriple.get32BitArchVariant(); // The library directories which may contain GCC installations. SmallVector CandidateLibDirs, CandidateBiarchLibDirs; // The compatible GCC triples for this particular architecture. SmallVector CandidateTripleAliases; SmallVector CandidateBiarchTripleAliases; CollectLibDirsAndTriples(TargetTriple, BiarchVariantTriple, CandidateLibDirs, CandidateTripleAliases, CandidateBiarchLibDirs, CandidateBiarchTripleAliases); // Compute the set of prefixes for our search. SmallVector Prefixes(D.PrefixDirs.begin(), D.PrefixDirs.end()); StringRef GCCToolchainDir = getGCCToolchainDir(Args, D.SysRoot); if (GCCToolchainDir != "") { if (GCCToolchainDir.back() == '/') GCCToolchainDir = GCCToolchainDir.drop_back(); // remove the / Prefixes.push_back(GCCToolchainDir); } else { // If we have a SysRoot, try that first. if (!D.SysRoot.empty()) { Prefixes.push_back(D.SysRoot); AddDefaultGCCPrefixes(TargetTriple, Prefixes, D.SysRoot); } // Then look for gcc installed alongside clang. Prefixes.push_back(D.InstalledDir + "/.."); // Next, look for prefix(es) that correspond to distribution-supplied gcc // installations. if (D.SysRoot.empty()) { // Typically /usr. AddDefaultGCCPrefixes(TargetTriple, Prefixes, D.SysRoot); } } // Try to respect gcc-config on Gentoo. However, do that only // if --gcc-toolchain is not provided or equal to the Gentoo install // in /usr. This avoids accidentally enforcing the system GCC version // when using a custom toolchain. if (GCCToolchainDir == "" || GCCToolchainDir == D.SysRoot + "/usr") { SmallVector GentooTestTriples; // Try to match an exact triple as target triple first. // e.g. crossdev -S x86_64-gentoo-linux-gnu will install gcc libs for // x86_64-gentoo-linux-gnu. But "clang -target x86_64-gentoo-linux-gnu" // may pick the libraries for x86_64-pc-linux-gnu even when exact matching // triple x86_64-gentoo-linux-gnu is present. GentooTestTriples.push_back(TargetTriple.str()); // Check rest of triples. GentooTestTriples.append(ExtraTripleAliases.begin(), ExtraTripleAliases.end()); GentooTestTriples.append(CandidateTripleAliases.begin(), CandidateTripleAliases.end()); if (ScanGentooConfigs(TargetTriple, Args, GentooTestTriples, CandidateBiarchTripleAliases)) return; } // Loop over the various components which exist and select the best GCC // installation available. GCC installs are ranked by version number. Version = GCCVersion::Parse("0.0.0"); for (const std::string &Prefix : Prefixes) { if (!D.getVFS().exists(Prefix)) continue; for (StringRef Suffix : CandidateLibDirs) { const std::string LibDir = Prefix + Suffix.str(); if (!D.getVFS().exists(LibDir)) continue; // Try to match the exact target triple first. ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, TargetTriple.str()); // Try rest of possible triples. for (StringRef Candidate : ExtraTripleAliases) // Try these first. ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate); for (StringRef Candidate : CandidateTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate); } for (StringRef Suffix : CandidateBiarchLibDirs) { const std::string LibDir = Prefix + Suffix.str(); if (!D.getVFS().exists(LibDir)) continue; for (StringRef Candidate : CandidateBiarchTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate, /*NeedsBiarchSuffix=*/ true); } } } void Generic_GCC::GCCInstallationDetector::print(raw_ostream &OS) const { for (const auto &InstallPath : CandidateGCCInstallPaths) OS << "Found candidate GCC installation: " << InstallPath << "\n"; if (!GCCInstallPath.empty()) OS << "Selected GCC installation: " << GCCInstallPath << "\n"; for (const auto &Multilib : Multilibs) OS << "Candidate multilib: " << Multilib << "\n"; if (Multilibs.size() != 0 || !SelectedMultilib.isDefault()) OS << "Selected multilib: " << SelectedMultilib << "\n"; } bool Generic_GCC::GCCInstallationDetector::getBiarchSibling(Multilib &M) const { if (BiarchSibling.hasValue()) { M = BiarchSibling.getValue(); return true; } return false; } void Generic_GCC::GCCInstallationDetector::AddDefaultGCCPrefixes( const llvm::Triple &TargetTriple, SmallVectorImpl &Prefixes, StringRef SysRoot) { if (TargetTriple.getOS() == llvm::Triple::Solaris) { // Solaris is a special case. // The GCC installation is under // /usr/gcc/./lib/gcc//../ // so we need to find those /usr/gcc/*/lib/gcc libdirs and go with // /usr/gcc/ as a prefix. std::string PrefixDir = SysRoot.str() + "/usr/gcc"; std::error_code EC; for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(PrefixDir, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); // Filter out obviously bad entries. if (CandidateVersion.Major == -1 || CandidateVersion.isOlderThan(4, 1, 1)) continue; std::string CandidatePrefix = PrefixDir + "/" + VersionText.str(); std::string CandidateLibPath = CandidatePrefix + "/lib/gcc"; if (!D.getVFS().exists(CandidateLibPath)) continue; Prefixes.push_back(CandidatePrefix); } return; } // Non-Solaris is much simpler - most systems just go with "/usr". if (SysRoot.empty() && TargetTriple.getOS() == llvm::Triple::Linux) { // Yet, still look for RHEL devtoolsets. Prefixes.push_back("/opt/rh/devtoolset-8/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-7/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-6/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-4/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-3/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-2/root/usr"); } Prefixes.push_back(SysRoot.str() + "/usr"); } /*static*/ void Generic_GCC::GCCInstallationDetector::CollectLibDirsAndTriples( const llvm::Triple &TargetTriple, const llvm::Triple &BiarchTriple, SmallVectorImpl &LibDirs, SmallVectorImpl &TripleAliases, SmallVectorImpl &BiarchLibDirs, SmallVectorImpl &BiarchTripleAliases) { // Declare a bunch of static data sets that we'll select between below. These // are specifically designed to always refer to string literals to avoid any // lifetime or initialization issues. static const char *const AArch64LibDirs[] = {"/lib64", "/lib"}; static const char *const AArch64Triples[] = { "aarch64-none-linux-gnu", "aarch64-linux-gnu", "aarch64-redhat-linux", "aarch64-suse-linux", "aarch64-linux-android"}; static const char *const AArch64beLibDirs[] = {"/lib"}; static const char *const AArch64beTriples[] = {"aarch64_be-none-linux-gnu", "aarch64_be-linux-gnu"}; static const char *const ARMLibDirs[] = {"/lib"}; static const char *const ARMTriples[] = {"arm-linux-gnueabi", "arm-linux-androideabi"}; static const char *const ARMHFTriples[] = {"arm-linux-gnueabihf", "armv7hl-redhat-linux-gnueabi", "armv6hl-suse-linux-gnueabi", "armv7hl-suse-linux-gnueabi"}; static const char *const ARMebLibDirs[] = {"/lib"}; static const char *const ARMebTriples[] = {"armeb-linux-gnueabi", "armeb-linux-androideabi"}; static const char *const ARMebHFTriples[] = { "armeb-linux-gnueabihf", "armebv7hl-redhat-linux-gnueabi"}; static const char *const AVRLibDirs[] = {"/lib"}; static const char *const AVRTriples[] = {"avr"}; static const char *const X86_64LibDirs[] = {"/lib64", "/lib"}; static const char *const X86_64Triples[] = { "x86_64-linux-gnu", "x86_64-unknown-linux-gnu", "x86_64-pc-linux-gnu", "x86_64-redhat-linux6E", "x86_64-redhat-linux", "x86_64-suse-linux", "x86_64-manbo-linux-gnu", "x86_64-linux-gnu", "x86_64-slackware-linux", "x86_64-unknown-linux", "x86_64-amazon-linux", "x86_64-linux-android"}; static const char *const X32LibDirs[] = {"/libx32"}; static const char *const X86LibDirs[] = {"/lib32", "/lib"}; static const char *const X86Triples[] = { "i686-linux-gnu", "i686-pc-linux-gnu", "i486-linux-gnu", "i386-linux-gnu", "i386-redhat-linux6E", "i686-redhat-linux", "i586-redhat-linux", "i386-redhat-linux", "i586-suse-linux", "i486-slackware-linux", "i686-montavista-linux", "i586-linux-gnu", "i686-linux-android", "i386-gnu", "i486-gnu", "i586-gnu", "i686-gnu"}; static const char *const MIPSLibDirs[] = {"/lib"}; static const char *const MIPSTriples[] = { "mips-linux-gnu", "mips-mti-linux", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mipsisa32r6-linux-gnu"}; static const char *const MIPSELLibDirs[] = {"/lib"}; static const char *const MIPSELTriples[] = { "mipsel-linux-gnu", "mips-img-linux-gnu", "mipsisa32r6el-linux-gnu", "mipsel-linux-android"}; static const char *const MIPS64LibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64Triples[] = { "mips64-linux-gnu", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64-linux-gnuabi64", "mipsisa64r6-linux-gnu", "mipsisa64r6-linux-gnuabi64"}; static const char *const MIPS64ELLibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64ELTriples[] = { "mips64el-linux-gnu", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64el-linux-gnuabi64", "mipsisa64r6el-linux-gnu", "mipsisa64r6el-linux-gnuabi64", "mips64el-linux-android"}; static const char *const MIPSN32LibDirs[] = {"/lib32"}; static const char *const MIPSN32Triples[] = {"mips64-linux-gnuabin32", "mipsisa64r6-linux-gnuabin32"}; static const char *const MIPSN32ELLibDirs[] = {"/lib32"}; static const char *const MIPSN32ELTriples[] = { "mips64el-linux-gnuabin32", "mipsisa64r6el-linux-gnuabin32"}; static const char *const MSP430LibDirs[] = {"/lib"}; static const char *const MSP430Triples[] = {"msp430-elf"}; static const char *const PPCLibDirs[] = {"/lib32", "/lib"}; static const char *const PPCTriples[] = { "powerpc-linux-gnu", "powerpc-unknown-linux-gnu", "powerpc-linux-gnuspe", "powerpc-suse-linux", "powerpc-montavista-linuxspe"}; static const char *const PPC64LibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64Triples[] = { "powerpc64-linux-gnu", "powerpc64-unknown-linux-gnu", "powerpc64-suse-linux", "ppc64-redhat-linux"}; static const char *const PPC64LELibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64LETriples[] = { "powerpc64le-linux-gnu", "powerpc64le-unknown-linux-gnu", "powerpc64le-suse-linux", "ppc64le-redhat-linux"}; static const char *const RISCV32LibDirs[] = {"/lib32", "/lib"}; static const char *const RISCV32Triples[] = {"riscv32-unknown-linux-gnu", "riscv32-linux-gnu", "riscv32-unknown-elf"}; static const char *const RISCV64LibDirs[] = {"/lib64", "/lib"}; static const char *const RISCV64Triples[] = {"riscv64-unknown-linux-gnu", "riscv64-linux-gnu", "riscv64-unknown-elf"}; static const char *const SPARCv8LibDirs[] = {"/lib32", "/lib"}; static const char *const SPARCv8Triples[] = {"sparc-linux-gnu", "sparcv8-linux-gnu"}; static const char *const SPARCv9LibDirs[] = {"/lib64", "/lib"}; static const char *const SPARCv9Triples[] = {"sparc64-linux-gnu", "sparcv9-linux-gnu"}; static const char *const SystemZLibDirs[] = {"/lib64", "/lib"}; static const char *const SystemZTriples[] = { "s390x-linux-gnu", "s390x-unknown-linux-gnu", "s390x-ibm-linux-gnu", "s390x-suse-linux", "s390x-redhat-linux"}; using std::begin; using std::end; if (TargetTriple.getOS() == llvm::Triple::Solaris) { static const char *const SolarisLibDirs[] = {"/lib"}; static const char *const SolarisSparcV8Triples[] = { "sparc-sun-solaris2.11", "sparc-sun-solaris2.12"}; static const char *const SolarisSparcV9Triples[] = { "sparcv9-sun-solaris2.11", "sparcv9-sun-solaris2.12"}; static const char *const SolarisX86Triples[] = {"i386-pc-solaris2.11", "i386-pc-solaris2.12"}; static const char *const SolarisX86_64Triples[] = {"x86_64-pc-solaris2.11", "x86_64-pc-solaris2.12"}; LibDirs.append(begin(SolarisLibDirs), end(SolarisLibDirs)); BiarchLibDirs.append(begin(SolarisLibDirs), end(SolarisLibDirs)); switch (TargetTriple.getArch()) { case llvm::Triple::x86: TripleAliases.append(begin(SolarisX86Triples), end(SolarisX86Triples)); BiarchTripleAliases.append(begin(SolarisX86_64Triples), end(SolarisX86_64Triples)); break; case llvm::Triple::x86_64: TripleAliases.append(begin(SolarisX86_64Triples), end(SolarisX86_64Triples)); BiarchTripleAliases.append(begin(SolarisX86Triples), end(SolarisX86Triples)); break; case llvm::Triple::sparc: TripleAliases.append(begin(SolarisSparcV8Triples), end(SolarisSparcV8Triples)); BiarchTripleAliases.append(begin(SolarisSparcV9Triples), end(SolarisSparcV9Triples)); break; case llvm::Triple::sparcv9: TripleAliases.append(begin(SolarisSparcV9Triples), end(SolarisSparcV9Triples)); BiarchTripleAliases.append(begin(SolarisSparcV8Triples), end(SolarisSparcV8Triples)); break; default: break; } return; } // Android targets should not use GNU/Linux tools or libraries. if (TargetTriple.isAndroid()) { static const char *const AArch64AndroidTriples[] = { "aarch64-linux-android"}; static const char *const ARMAndroidTriples[] = {"arm-linux-androideabi"}; static const char *const MIPSELAndroidTriples[] = {"mipsel-linux-android"}; static const char *const MIPS64ELAndroidTriples[] = { "mips64el-linux-android"}; static const char *const X86AndroidTriples[] = {"i686-linux-android"}; static const char *const X86_64AndroidTriples[] = {"x86_64-linux-android"}; switch (TargetTriple.getArch()) { case llvm::Triple::aarch64: LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); TripleAliases.append(begin(AArch64AndroidTriples), end(AArch64AndroidTriples)); break; case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs)); TripleAliases.append(begin(ARMAndroidTriples), end(ARMAndroidTriples)); break; case llvm::Triple::mipsel: LibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); TripleAliases.append(begin(MIPSELAndroidTriples), end(MIPSELAndroidTriples)); BiarchLibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); BiarchTripleAliases.append(begin(MIPS64ELAndroidTriples), end(MIPS64ELAndroidTriples)); break; case llvm::Triple::mips64el: LibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); TripleAliases.append(begin(MIPS64ELAndroidTriples), end(MIPS64ELAndroidTriples)); BiarchLibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); BiarchTripleAliases.append(begin(MIPSELAndroidTriples), end(MIPSELAndroidTriples)); break; case llvm::Triple::x86_64: LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.append(begin(X86_64AndroidTriples), end(X86_64AndroidTriples)); BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs)); BiarchTripleAliases.append(begin(X86AndroidTriples), end(X86AndroidTriples)); break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); TripleAliases.append(begin(X86AndroidTriples), end(X86AndroidTriples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64AndroidTriples), end(X86_64AndroidTriples)); break; default: break; } return; } switch (TargetTriple.getArch()) { case llvm::Triple::aarch64: LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); TripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); BiarchLibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); BiarchTripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); break; case llvm::Triple::aarch64_be: LibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); TripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); BiarchLibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); BiarchTripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); break; case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) { TripleAliases.append(begin(ARMHFTriples), end(ARMHFTriples)); } else { TripleAliases.append(begin(ARMTriples), end(ARMTriples)); } break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: LibDirs.append(begin(ARMebLibDirs), end(ARMebLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) { TripleAliases.append(begin(ARMebHFTriples), end(ARMebHFTriples)); } else { TripleAliases.append(begin(ARMebTriples), end(ARMebTriples)); } break; case llvm::Triple::avr: LibDirs.append(begin(AVRLibDirs), end(AVRLibDirs)); TripleAliases.append(begin(AVRTriples), end(AVRTriples)); break; case llvm::Triple::x86_64: LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); // x32 is always available when x86_64 is available, so adding it as // secondary arch with x86_64 triples if (TargetTriple.getEnvironment() == llvm::Triple::GNUX32) { BiarchLibDirs.append(begin(X32LibDirs), end(X32LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); } else { BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs)); BiarchTripleAliases.append(begin(X86Triples), end(X86Triples)); } break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); // MCU toolchain is 32 bit only and its triple alias is TargetTriple // itself, which will be appended below. if (!TargetTriple.isOSIAMCU()) { TripleAliases.append(begin(X86Triples), end(X86Triples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); } break; case llvm::Triple::mips: LibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); BiarchTripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); BiarchLibDirs.append(begin(MIPSN32LibDirs), end(MIPSN32LibDirs)); BiarchTripleAliases.append(begin(MIPSN32Triples), end(MIPSN32Triples)); break; case llvm::Triple::mipsel: LibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); TripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); BiarchTripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); BiarchLibDirs.append(begin(MIPSN32ELLibDirs), end(MIPSN32ELLibDirs)); BiarchTripleAliases.append(begin(MIPSN32ELTriples), end(MIPSN32ELTriples)); break; case llvm::Triple::mips64: LibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); TripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); BiarchLibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPSN32LibDirs), end(MIPSN32LibDirs)); BiarchTripleAliases.append(begin(MIPSN32Triples), end(MIPSN32Triples)); break; case llvm::Triple::mips64el: LibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); TripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); BiarchLibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); BiarchTripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); BiarchLibDirs.append(begin(MIPSN32ELLibDirs), end(MIPSN32ELLibDirs)); BiarchTripleAliases.append(begin(MIPSN32ELTriples), end(MIPSN32ELTriples)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); break; case llvm::Triple::msp430: LibDirs.append(begin(MSP430LibDirs), end(MSP430LibDirs)); TripleAliases.append(begin(MSP430Triples), end(MSP430Triples)); break; case llvm::Triple::ppc: LibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); TripleAliases.append(begin(PPCTriples), end(PPCTriples)); BiarchLibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); BiarchTripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); break; case llvm::Triple::ppc64: LibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); TripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); BiarchLibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); BiarchTripleAliases.append(begin(PPCTriples), end(PPCTriples)); break; case llvm::Triple::ppc64le: LibDirs.append(begin(PPC64LELibDirs), end(PPC64LELibDirs)); TripleAliases.append(begin(PPC64LETriples), end(PPC64LETriples)); break; case llvm::Triple::riscv32: LibDirs.append(begin(RISCV32LibDirs), end(RISCV32LibDirs)); TripleAliases.append(begin(RISCV32Triples), end(RISCV32Triples)); BiarchLibDirs.append(begin(RISCV64LibDirs), end(RISCV64LibDirs)); BiarchTripleAliases.append(begin(RISCV64Triples), end(RISCV64Triples)); break; case llvm::Triple::riscv64: LibDirs.append(begin(RISCV64LibDirs), end(RISCV64LibDirs)); TripleAliases.append(begin(RISCV64Triples), end(RISCV64Triples)); BiarchLibDirs.append(begin(RISCV32LibDirs), end(RISCV32LibDirs)); BiarchTripleAliases.append(begin(RISCV32Triples), end(RISCV32Triples)); break; case llvm::Triple::sparc: case llvm::Triple::sparcel: LibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); TripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); BiarchLibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); BiarchTripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); break; case llvm::Triple::sparcv9: LibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); TripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); BiarchLibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); BiarchTripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); break; case llvm::Triple::systemz: LibDirs.append(begin(SystemZLibDirs), end(SystemZLibDirs)); TripleAliases.append(begin(SystemZTriples), end(SystemZTriples)); break; default: // By default, just rely on the standard lib directories and the original // triple. break; } // Always append the drivers target triple to the end, in case it doesn't // match any of our aliases. TripleAliases.push_back(TargetTriple.str()); // Also include the multiarch variant if it's different. if (TargetTriple.str() != BiarchTriple.str()) BiarchTripleAliases.push_back(BiarchTriple.str()); } bool Generic_GCC::GCCInstallationDetector::ScanGCCForMultilibs( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef Path, bool NeedsBiarchSuffix) { llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); DetectedMultilibs Detected; // Android standalone toolchain could have multilibs for ARM and Thumb. // Debian mips multilibs behave more like the rest of the biarch ones, // so handle them there if (isArmOrThumbArch(TargetArch) && TargetTriple.isAndroid()) { // It should also work without multilibs in a simplified toolchain. findAndroidArmMultilibs(D, TargetTriple, Path, Args, Detected); } else if (TargetTriple.isMIPS()) { if (!findMIPSMultilibs(D, TargetTriple, Path, Args, Detected)) return false; } else if (TargetTriple.isRISCV()) { findRISCVMultilibs(D, TargetTriple, Path, Args, Detected); } else if (isMSP430(TargetArch)) { findMSP430Multilibs(D, TargetTriple, Path, Args, Detected); } else if (TargetArch == llvm::Triple::avr) { // AVR has no multilibs. } else if (!findBiarchMultilibs(D, TargetTriple, Path, Args, NeedsBiarchSuffix, Detected)) { return false; } Multilibs = Detected.Multilibs; SelectedMultilib = Detected.SelectedMultilib; BiarchSibling = Detected.BiarchSibling; return true; } void Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple( const llvm::Triple &TargetTriple, const ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix) { llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); // Locations relative to the system lib directory where GCC's triple-specific // directories might reside. struct GCCLibSuffix { // Path from system lib directory to GCC triple-specific directory. std::string LibSuffix; // Path from GCC triple-specific directory back to system lib directory. // This is one '..' component per component in LibSuffix. StringRef ReversePath; // Whether this library suffix is relevant for the triple. bool Active; } Suffixes[] = { // This is the normal place. {"gcc/" + CandidateTriple.str(), "../..", true}, // Debian puts cross-compilers in gcc-cross. {"gcc-cross/" + CandidateTriple.str(), "../..", TargetTriple.getOS() != llvm::Triple::Solaris}, // The Freescale PPC SDK has the gcc libraries in // /usr/lib//x.y.z so have a look there as well. Only do // this on Freescale triples, though, since some systems put a *lot* of // files in that location, not just GCC installation data. {CandidateTriple.str(), "..", TargetTriple.getVendor() == llvm::Triple::Freescale || TargetTriple.getVendor() == llvm::Triple::OpenEmbedded}, // Natively multiarch systems sometimes put the GCC triple-specific // directory within their multiarch lib directory, resulting in the // triple appearing twice. {CandidateTriple.str() + "/gcc/" + CandidateTriple.str(), "../../..", TargetTriple.getOS() != llvm::Triple::Solaris}, // Deal with cases (on Ubuntu) where the system architecture could be i386 // but the GCC target architecture could be (say) i686. // FIXME: It may be worthwhile to generalize this and look for a second // triple. {"i386-linux-gnu/gcc/" + CandidateTriple.str(), "../../..", (TargetArch == llvm::Triple::x86 && TargetTriple.getOS() != llvm::Triple::Solaris)}, {"i386-gnu/gcc/" + CandidateTriple.str(), "../../..", (TargetArch == llvm::Triple::x86 && TargetTriple.getOS() != llvm::Triple::Solaris)}}; for (auto &Suffix : Suffixes) { if (!Suffix.Active) continue; StringRef LibSuffix = Suffix.LibSuffix; std::error_code EC; for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(LibDir + "/" + LibSuffix, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); if (CandidateVersion.Major != -1) // Filter obviously bad entries. if (!CandidateGCCInstallPaths.insert(LI->path()).second) continue; // Saw this path before; no need to look at it again. if (CandidateVersion.isOlderThan(4, 1, 1)) continue; if (CandidateVersion <= Version) continue; if (!ScanGCCForMultilibs(TargetTriple, Args, LI->path(), NeedsBiarchSuffix)) continue; Version = CandidateVersion; GCCTriple.setTriple(CandidateTriple); // FIXME: We hack together the directory name here instead of // using LI to ensure stable path separators across Windows and // Linux. GCCInstallPath = (LibDir + "/" + LibSuffix + "/" + VersionText).str(); GCCParentLibPath = (GCCInstallPath + "/../" + Suffix.ReversePath).str(); IsValid = true; } } } bool Generic_GCC::GCCInstallationDetector::ScanGentooConfigs( const llvm::Triple &TargetTriple, const ArgList &Args, const SmallVectorImpl &CandidateTriples, const SmallVectorImpl &CandidateBiarchTriples) { for (StringRef CandidateTriple : CandidateTriples) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple)) return true; } for (StringRef CandidateTriple : CandidateBiarchTriples) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple, true)) return true; } return false; } bool Generic_GCC::GCCInstallationDetector::ScanGentooGccConfig( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef CandidateTriple, bool NeedsBiarchSuffix) { llvm::ErrorOr> File = D.getVFS().getBufferForFile(D.SysRoot + "/etc/env.d/gcc/config-" + CandidateTriple.str()); if (File) { SmallVector Lines; File.get()->getBuffer().split(Lines, "\n"); for (StringRef Line : Lines) { Line = Line.trim(); // CURRENT=triple-version if (!Line.consume_front("CURRENT=")) continue; // Process the config file pointed to by CURRENT. llvm::ErrorOr> ConfigFile = D.getVFS().getBufferForFile(D.SysRoot + "/etc/env.d/gcc/" + Line.str()); std::pair ActiveVersion = Line.rsplit('-'); // List of paths to scan for libraries. SmallVector GentooScanPaths; // Scan the Config file to find installed GCC libraries path. // Typical content of the GCC config file: // LDPATH="/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.x:/usr/lib/gcc/ // (continued from previous line) x86_64-pc-linux-gnu/4.9.x/32" // MANPATH="/usr/share/gcc-data/x86_64-pc-linux-gnu/4.9.x/man" // INFOPATH="/usr/share/gcc-data/x86_64-pc-linux-gnu/4.9.x/info" // STDCXX_INCDIR="/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.x/include/g++-v4" // We are looking for the paths listed in LDPATH=... . if (ConfigFile) { SmallVector ConfigLines; ConfigFile.get()->getBuffer().split(ConfigLines, "\n"); for (StringRef ConfLine : ConfigLines) { ConfLine = ConfLine.trim(); if (ConfLine.consume_front("LDPATH=")) { // Drop '"' from front and back if present. ConfLine.consume_back("\""); ConfLine.consume_front("\""); // Get all paths sperated by ':' ConfLine.split(GentooScanPaths, ':', -1, /*AllowEmpty*/ false); } } } // Test the path based on the version in /etc/env.d/gcc/config-{tuple}. std::string basePath = "/usr/lib/gcc/" + ActiveVersion.first.str() + "/" + ActiveVersion.second.str(); GentooScanPaths.push_back(StringRef(basePath)); // Scan all paths for GCC libraries. for (const auto &GentooScanPath : GentooScanPaths) { std::string GentooPath = D.SysRoot + std::string(GentooScanPath); if (D.getVFS().exists(GentooPath + "/crtbegin.o")) { if (!ScanGCCForMultilibs(TargetTriple, Args, GentooPath, NeedsBiarchSuffix)) continue; Version = GCCVersion::Parse(ActiveVersion.second); GCCInstallPath = GentooPath; GCCParentLibPath = GentooPath + std::string("/../../.."); GCCTriple.setTriple(ActiveVersion.first); IsValid = true; return true; } } } } return false; } Generic_GCC::Generic_GCC(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args), GCCInstallation(D), CudaInstallation(D, Triple, Args) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); } Generic_GCC::~Generic_GCC() {} Tool *Generic_GCC::getTool(Action::ActionClass AC) const { switch (AC) { case Action::PreprocessJobClass: if (!Preprocess) Preprocess.reset(new clang::driver::tools::gcc::Preprocessor(*this)); return Preprocess.get(); case Action::CompileJobClass: if (!Compile) Compile.reset(new tools::gcc::Compiler(*this)); return Compile.get(); default: return ToolChain::getTool(AC); } } Tool *Generic_GCC::buildAssembler() const { return new tools::gnutools::Assembler(*this); } Tool *Generic_GCC::buildLinker() const { return new tools::gcc::Linker(*this); } void Generic_GCC::printVerboseInfo(raw_ostream &OS) const { // Print the information about how we detected the GCC installation. GCCInstallation.print(OS); CudaInstallation.print(OS); } bool Generic_GCC::IsUnwindTablesDefault(const ArgList &Args) const { return getArch() == llvm::Triple::x86_64; } bool Generic_GCC::isPICDefault() const { switch (getArch()) { case llvm::Triple::x86_64: return getTriple().isOSWindows(); case llvm::Triple::ppc64: // Big endian PPC is PIC by default return !getTriple().isOSBinFormatMachO() && !getTriple().isMacOSX(); case llvm::Triple::mips64: case llvm::Triple::mips64el: return true; default: return false; } } bool Generic_GCC::isPIEDefault() const { return false; } bool Generic_GCC::isPICDefaultForced() const { return getArch() == llvm::Triple::x86_64 && getTriple().isOSWindows(); } bool Generic_GCC::IsIntegratedAssemblerDefault() const { switch (getTriple().getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::avr: case llvm::Triple::bpfel: case llvm::Triple::bpfeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: case llvm::Triple::ppc: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: case llvm::Triple::riscv32: case llvm::Triple::riscv64: case llvm::Triple::systemz: case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: case llvm::Triple::msp430: return true; case llvm::Triple::sparc: case llvm::Triple::sparcel: case llvm::Triple::sparcv9: if (getTriple().isOSFreeBSD() || getTriple().isOSOpenBSD() || getTriple().isOSSolaris()) return true; return false; default: return false; } } void Generic_GCC::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; switch (GetCXXStdlibType(DriverArgs)) { case ToolChain::CST_Libcxx: addLibCxxIncludePaths(DriverArgs, CC1Args); break; case ToolChain::CST_Libstdcxx: addLibStdCxxIncludePaths(DriverArgs, CC1Args); break; } } void Generic_GCC::addLibCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { // FIXME: The Linux behavior would probaby be a better approach here. addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/usr/include/c++/v1"); } void Generic_GCC::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { // By default, we don't assume we know where libstdc++ might be installed. // FIXME: If we have a valid GCCInstallation, use it. } /// Helper to add the variant paths of a libstdc++ installation. bool Generic_GCC::addLibStdCXXIncludePaths( Twine Base, Twine Suffix, StringRef GCCTriple, StringRef GCCMultiarchTriple, StringRef TargetMultiarchTriple, Twine IncludeSuffix, const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!getVFS().exists(Base + Suffix)) return false; addSystemInclude(DriverArgs, CC1Args, Base + Suffix); // The vanilla GCC layout of libstdc++ headers uses a triple subdirectory. If // that path exists or we have neither a GCC nor target multiarch triple, use // this vanilla search path. if ((GCCMultiarchTriple.empty() && TargetMultiarchTriple.empty()) || getVFS().exists(Base + Suffix + "/" + GCCTriple + IncludeSuffix)) { addSystemInclude(DriverArgs, CC1Args, Base + Suffix + "/" + GCCTriple + IncludeSuffix); } else { // Otherwise try to use multiarch naming schemes which have normalized the // triples and put the triple before the suffix. // // GCC surprisingly uses *both* the GCC triple with a multilib suffix and // the target triple, so we support that here. addSystemInclude(DriverArgs, CC1Args, Base + "/" + GCCMultiarchTriple + Suffix + IncludeSuffix); addSystemInclude(DriverArgs, CC1Args, Base + "/" + TargetMultiarchTriple + Suffix); } addSystemInclude(DriverArgs, CC1Args, Base + Suffix + "/backward"); return true; } llvm::opt::DerivedArgList * Generic_GCC::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef, Action::OffloadKind DeviceOffloadKind) const { // If this tool chain is used for an OpenMP offloading device we have to make // sure we always generate a shared library regardless of the commands the // user passed to the host. This is required because the runtime library // is required to load the device image dynamically at run time. if (DeviceOffloadKind == Action::OFK_OpenMP) { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // Request the shared library. Given that these options are decided // implicitly, they do not refer to any base argument. DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_shared)); DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_fPIC)); // Filter all the arguments we don't care passing to the offloading // toolchain as they can mess up with the creation of a shared library. for (auto *A : Args) { switch ((options::ID)A->getOption().getID()) { default: DAL->append(A); break; case options::OPT_shared: case options::OPT_dynamic: case options::OPT_static: case options::OPT_fPIC: case options::OPT_fno_PIC: case options::OPT_fpic: case options::OPT_fno_pic: case options::OPT_fPIE: case options::OPT_fno_PIE: case options::OPT_fpie: case options::OPT_fno_pie: break; } } return DAL; } return nullptr; } void Generic_ELF::anchor() {} void Generic_ELF::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args, Action::OffloadKind) const { const Generic_GCC::GCCVersion &V = GCCInstallation.getVersion(); bool UseInitArrayDefault = getTriple().getArch() == llvm::Triple::aarch64 || getTriple().getArch() == llvm::Triple::aarch64_be || (getTriple().isOSFreeBSD() && getTriple().getOSMajorVersion() >= 12) || (getTriple().getOS() == llvm::Triple::Linux && ((!GCCInstallation.isValid() || !V.isOlderThan(4, 7, 0)) || getTriple().isAndroid())) || getTriple().getOS() == llvm::Triple::NaCl || (getTriple().getVendor() == llvm::Triple::MipsTechnologies && !getTriple().hasEnvironment()) || getTriple().getOS() == llvm::Triple::Solaris || getTriple().getArch() == llvm::Triple::riscv32 || getTriple().getArch() == llvm::Triple::riscv64; if (DriverArgs.hasFlag(options::OPT_fuse_init_array, options::OPT_fno_use_init_array, UseInitArrayDefault)) CC1Args.push_back("-fuse-init-array"); }