Index: head/sys/dev/ioat/ioat.c =================================================================== --- head/sys/dev/ioat/ioat.c (revision 354752) +++ head/sys/dev/ioat/ioat.c (revision 354753) @@ -1,2131 +1,2130 @@ /*- * Copyright (C) 2012 Intel Corporation * All rights reserved. * Copyright (C) 2018 Alexander Motin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include "ioat.h" #include "ioat_hw.h" #include "ioat_internal.h" #ifndef BUS_SPACE_MAXADDR_40BIT #define BUS_SPACE_MAXADDR_40BIT MIN(BUS_SPACE_MAXADDR, 0xFFFFFFFFFFULL) #endif #ifndef BUS_SPACE_MAXADDR_46BIT #define BUS_SPACE_MAXADDR_46BIT MIN(BUS_SPACE_MAXADDR, 0x3FFFFFFFFFFFULL) #endif static int ioat_probe(device_t device); static int ioat_attach(device_t device); static int ioat_detach(device_t device); static int ioat_setup_intr(struct ioat_softc *ioat); static int ioat_teardown_intr(struct ioat_softc *ioat); static int ioat3_attach(device_t device); static int ioat_start_channel(struct ioat_softc *ioat); static int ioat_map_pci_bar(struct ioat_softc *ioat); static void ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error); static void ioat_interrupt_handler(void *arg); static boolean_t ioat_model_resets_msix(struct ioat_softc *ioat); static int chanerr_to_errno(uint32_t); static void ioat_process_events(struct ioat_softc *ioat, boolean_t intr); static inline uint32_t ioat_get_active(struct ioat_softc *ioat); static inline uint32_t ioat_get_ring_space(struct ioat_softc *ioat); static void ioat_free_ring(struct ioat_softc *, uint32_t size, struct ioat_descriptor *); static int ioat_reserve_space(struct ioat_softc *, uint32_t, int mflags); static union ioat_hw_descriptor *ioat_get_descriptor(struct ioat_softc *, uint32_t index); static struct ioat_descriptor *ioat_get_ring_entry(struct ioat_softc *, uint32_t index); static void ioat_halted_debug(struct ioat_softc *, uint32_t); static void ioat_poll_timer_callback(void *arg); static void dump_descriptor(void *hw_desc); static void ioat_submit_single(struct ioat_softc *ioat); static void ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg, int error); static int ioat_reset_hw(struct ioat_softc *ioat); static void ioat_reset_hw_task(void *, int); static void ioat_setup_sysctl(device_t device); static int sysctl_handle_reset(SYSCTL_HANDLER_ARGS); static void ioat_get(struct ioat_softc *); static void ioat_put(struct ioat_softc *); static void ioat_drain_locked(struct ioat_softc *); #define ioat_log_message(v, ...) do { \ if ((v) <= g_ioat_debug_level) { \ device_printf(ioat->device, __VA_ARGS__); \ } \ } while (0) MALLOC_DEFINE(M_IOAT, "ioat", "ioat driver memory allocations"); SYSCTL_NODE(_hw, OID_AUTO, ioat, CTLFLAG_RD, 0, "ioat node"); static int g_force_legacy_interrupts; SYSCTL_INT(_hw_ioat, OID_AUTO, force_legacy_interrupts, CTLFLAG_RDTUN, &g_force_legacy_interrupts, 0, "Set to non-zero to force MSI-X disabled"); int g_ioat_debug_level = 0; SYSCTL_INT(_hw_ioat, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ioat_debug_level, 0, "Set log level (0-3) for ioat(4). Higher is more verbose."); unsigned g_ioat_ring_order = 13; SYSCTL_UINT(_hw_ioat, OID_AUTO, ring_order, CTLFLAG_RDTUN, &g_ioat_ring_order, 0, "Set IOAT ring order. (1 << this) == ring size."); /* * OS <-> Driver interface structures */ static device_method_t ioat_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ioat_probe), DEVMETHOD(device_attach, ioat_attach), DEVMETHOD(device_detach, ioat_detach), DEVMETHOD_END }; static driver_t ioat_pci_driver = { "ioat", ioat_pci_methods, sizeof(struct ioat_softc), }; static devclass_t ioat_devclass; DRIVER_MODULE(ioat, pci, ioat_pci_driver, ioat_devclass, 0, 0); MODULE_VERSION(ioat, 1); /* * Private data structures */ static struct ioat_softc *ioat_channel[IOAT_MAX_CHANNELS]; static unsigned ioat_channel_index = 0; SYSCTL_UINT(_hw_ioat, OID_AUTO, channels, CTLFLAG_RD, &ioat_channel_index, 0, "Number of IOAT channels attached"); static struct mtx ioat_list_mtx; MTX_SYSINIT(ioat_list_mtx, &ioat_list_mtx, "ioat list mtx", MTX_DEF); static struct _pcsid { u_int32_t type; const char *desc; } pci_ids[] = { { 0x34308086, "TBG IOAT Ch0" }, { 0x34318086, "TBG IOAT Ch1" }, { 0x34328086, "TBG IOAT Ch2" }, { 0x34338086, "TBG IOAT Ch3" }, { 0x34298086, "TBG IOAT Ch4" }, { 0x342a8086, "TBG IOAT Ch5" }, { 0x342b8086, "TBG IOAT Ch6" }, { 0x342c8086, "TBG IOAT Ch7" }, { 0x37108086, "JSF IOAT Ch0" }, { 0x37118086, "JSF IOAT Ch1" }, { 0x37128086, "JSF IOAT Ch2" }, { 0x37138086, "JSF IOAT Ch3" }, { 0x37148086, "JSF IOAT Ch4" }, { 0x37158086, "JSF IOAT Ch5" }, { 0x37168086, "JSF IOAT Ch6" }, { 0x37178086, "JSF IOAT Ch7" }, { 0x37188086, "JSF IOAT Ch0 (RAID)" }, { 0x37198086, "JSF IOAT Ch1 (RAID)" }, { 0x3c208086, "SNB IOAT Ch0" }, { 0x3c218086, "SNB IOAT Ch1" }, { 0x3c228086, "SNB IOAT Ch2" }, { 0x3c238086, "SNB IOAT Ch3" }, { 0x3c248086, "SNB IOAT Ch4" }, { 0x3c258086, "SNB IOAT Ch5" }, { 0x3c268086, "SNB IOAT Ch6" }, { 0x3c278086, "SNB IOAT Ch7" }, { 0x3c2e8086, "SNB IOAT Ch0 (RAID)" }, { 0x3c2f8086, "SNB IOAT Ch1 (RAID)" }, { 0x0e208086, "IVB IOAT Ch0" }, { 0x0e218086, "IVB IOAT Ch1" }, { 0x0e228086, "IVB IOAT Ch2" }, { 0x0e238086, "IVB IOAT Ch3" }, { 0x0e248086, "IVB IOAT Ch4" }, { 0x0e258086, "IVB IOAT Ch5" }, { 0x0e268086, "IVB IOAT Ch6" }, { 0x0e278086, "IVB IOAT Ch7" }, { 0x0e2e8086, "IVB IOAT Ch0 (RAID)" }, { 0x0e2f8086, "IVB IOAT Ch1 (RAID)" }, { 0x2f208086, "HSW IOAT Ch0" }, { 0x2f218086, "HSW IOAT Ch1" }, { 0x2f228086, "HSW IOAT Ch2" }, { 0x2f238086, "HSW IOAT Ch3" }, { 0x2f248086, "HSW IOAT Ch4" }, { 0x2f258086, "HSW IOAT Ch5" }, { 0x2f268086, "HSW IOAT Ch6" }, { 0x2f278086, "HSW IOAT Ch7" }, { 0x2f2e8086, "HSW IOAT Ch0 (RAID)" }, { 0x2f2f8086, "HSW IOAT Ch1 (RAID)" }, { 0x0c508086, "BWD IOAT Ch0" }, { 0x0c518086, "BWD IOAT Ch1" }, { 0x0c528086, "BWD IOAT Ch2" }, { 0x0c538086, "BWD IOAT Ch3" }, { 0x6f508086, "BDXDE IOAT Ch0" }, { 0x6f518086, "BDXDE IOAT Ch1" }, { 0x6f528086, "BDXDE IOAT Ch2" }, { 0x6f538086, "BDXDE IOAT Ch3" }, { 0x6f208086, "BDX IOAT Ch0" }, { 0x6f218086, "BDX IOAT Ch1" }, { 0x6f228086, "BDX IOAT Ch2" }, { 0x6f238086, "BDX IOAT Ch3" }, { 0x6f248086, "BDX IOAT Ch4" }, { 0x6f258086, "BDX IOAT Ch5" }, { 0x6f268086, "BDX IOAT Ch6" }, { 0x6f278086, "BDX IOAT Ch7" }, { 0x6f2e8086, "BDX IOAT Ch0 (RAID)" }, { 0x6f2f8086, "BDX IOAT Ch1 (RAID)" }, { 0x20218086, "SKX IOAT" }, }; MODULE_PNP_INFO("W32:vendor/device;D:#", pci, ioat, pci_ids, nitems(pci_ids)); /* * OS <-> Driver linkage functions */ static int ioat_probe(device_t device) { struct _pcsid *ep; u_int32_t type; type = pci_get_devid(device); for (ep = pci_ids; ep < &pci_ids[nitems(pci_ids)]; ep++) { if (ep->type == type) { device_set_desc(device, ep->desc); return (0); } } return (ENXIO); } static int ioat_attach(device_t device) { struct ioat_softc *ioat; int error, i; ioat = DEVICE2SOFTC(device); ioat->device = device; if (bus_get_domain(device, &ioat->domain) != 0) ioat->domain = 0; ioat->cpu = CPU_FFS(&cpuset_domain[ioat->domain]) - 1; if (ioat->cpu < 0) ioat->cpu = CPU_FIRST(); error = ioat_map_pci_bar(ioat); if (error != 0) goto err; ioat->version = ioat_read_cbver(ioat); if (ioat->version < IOAT_VER_3_0) { error = ENODEV; goto err; } error = ioat3_attach(device); if (error != 0) goto err; error = pci_enable_busmaster(device); if (error != 0) goto err; error = ioat_setup_intr(ioat); if (error != 0) goto err; error = ioat_reset_hw(ioat); if (error != 0) goto err; ioat_process_events(ioat, FALSE); ioat_setup_sysctl(device); mtx_lock(&ioat_list_mtx); for (i = 0; i < IOAT_MAX_CHANNELS; i++) { if (ioat_channel[i] == NULL) break; } if (i >= IOAT_MAX_CHANNELS) { mtx_unlock(&ioat_list_mtx); device_printf(device, "Too many I/OAT devices in system\n"); error = ENXIO; goto err; } ioat->chan_idx = i; ioat_channel[i] = ioat; if (i >= ioat_channel_index) ioat_channel_index = i + 1; mtx_unlock(&ioat_list_mtx); ioat_test_attach(); err: if (error != 0) ioat_detach(device); return (error); } static inline int ioat_bus_dmamap_destroy(struct ioat_softc *ioat, const char *func, bus_dma_tag_t dmat, bus_dmamap_t map) { int error; error = bus_dmamap_destroy(dmat, map); if (error != 0) { ioat_log_message(0, "%s: bus_dmamap_destroy failed %d\n", func, error); } return (error); } static int ioat_detach(device_t device) { struct ioat_softc *ioat; int i, error; ioat = DEVICE2SOFTC(device); mtx_lock(&ioat_list_mtx); ioat_channel[ioat->chan_idx] = NULL; while (ioat_channel_index > 0 && ioat_channel[ioat_channel_index - 1] == NULL) ioat_channel_index--; mtx_unlock(&ioat_list_mtx); ioat_test_detach(); taskqueue_drain(taskqueue_thread, &ioat->reset_task); mtx_lock(&ioat->submit_lock); ioat->quiescing = TRUE; ioat->destroying = TRUE; wakeup(&ioat->quiescing); wakeup(&ioat->resetting); ioat_drain_locked(ioat); mtx_unlock(&ioat->submit_lock); mtx_lock(&ioat->cleanup_lock); while (ioat_get_active(ioat) > 0) msleep(&ioat->tail, &ioat->cleanup_lock, 0, "ioat_drain", 1); mtx_unlock(&ioat->cleanup_lock); ioat_teardown_intr(ioat); callout_drain(&ioat->poll_timer); pci_disable_busmaster(device); if (ioat->pci_resource != NULL) bus_release_resource(device, SYS_RES_MEMORY, ioat->pci_resource_id, ioat->pci_resource); if (ioat->data_tag != NULL) { for (i = 0; i < 1 << ioat->ring_size_order; i++) { error = ioat_bus_dmamap_destroy(ioat, __func__, ioat->data_tag, ioat->ring[i].src_dmamap); if (error != 0) return (error); } for (i = 0; i < 1 << ioat->ring_size_order; i++) { error = ioat_bus_dmamap_destroy(ioat, __func__, ioat->data_tag, ioat->ring[i].dst_dmamap); if (error != 0) return (error); } for (i = 0; i < 1 << ioat->ring_size_order; i++) { error = ioat_bus_dmamap_destroy(ioat, __func__, ioat->data_tag, ioat->ring[i].src2_dmamap); if (error != 0) return (error); } for (i = 0; i < 1 << ioat->ring_size_order; i++) { error = ioat_bus_dmamap_destroy(ioat, __func__, ioat->data_tag, ioat->ring[i].dst2_dmamap); if (error != 0) return (error); } bus_dma_tag_destroy(ioat->data_tag); } if (ioat->ring != NULL) ioat_free_ring(ioat, 1 << ioat->ring_size_order, ioat->ring); if (ioat->comp_update != NULL) { bus_dmamap_unload(ioat->comp_update_tag, ioat->comp_update_map); bus_dmamem_free(ioat->comp_update_tag, ioat->comp_update, ioat->comp_update_map); bus_dma_tag_destroy(ioat->comp_update_tag); } if (ioat->hw_desc_ring != NULL) { bus_dmamap_unload(ioat->hw_desc_tag, ioat->hw_desc_map); bus_dmamem_free(ioat->hw_desc_tag, ioat->hw_desc_ring, ioat->hw_desc_map); bus_dma_tag_destroy(ioat->hw_desc_tag); } return (0); } static int ioat_teardown_intr(struct ioat_softc *ioat) { if (ioat->tag != NULL) bus_teardown_intr(ioat->device, ioat->res, ioat->tag); if (ioat->res != NULL) bus_release_resource(ioat->device, SYS_RES_IRQ, rman_get_rid(ioat->res), ioat->res); pci_release_msi(ioat->device); return (0); } static int ioat_start_channel(struct ioat_softc *ioat) { struct ioat_dma_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct bus_dmadesc *dmadesc; uint64_t status; uint32_t chanerr; int i; ioat_acquire(&ioat->dmaengine); /* Submit 'NULL' operation manually to avoid quiescing flag */ desc = ioat_get_ring_entry(ioat, ioat->head); hw_desc = &ioat_get_descriptor(ioat, ioat->head)->dma; dmadesc = &desc->bus_dmadesc; dmadesc->callback_fn = NULL; dmadesc->callback_arg = NULL; hw_desc->u.control_raw = 0; hw_desc->u.control_generic.op = IOAT_OP_COPY; hw_desc->u.control_generic.completion_update = 1; hw_desc->size = 8; hw_desc->src_addr = 0; hw_desc->dest_addr = 0; hw_desc->u.control.null = 1; ioat_submit_single(ioat); ioat_release(&ioat->dmaengine); for (i = 0; i < 100; i++) { DELAY(1); status = ioat_get_chansts(ioat); if (is_ioat_idle(status)) return (0); } chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET); ioat_log_message(0, "could not start channel: " "status = %#jx error = %b\n", (uintmax_t)status, (int)chanerr, IOAT_CHANERR_STR); return (ENXIO); } /* * Initialize Hardware */ static int ioat3_attach(device_t device) { struct ioat_softc *ioat; struct ioat_descriptor *ring; struct ioat_dma_hw_descriptor *dma_hw_desc; void *hw_desc; bus_addr_t lowaddr; size_t ringsz; int i, num_descriptors; int error; uint8_t xfercap; error = 0; ioat = DEVICE2SOFTC(device); ioat->capabilities = ioat_read_dmacapability(ioat); ioat_log_message(0, "Capabilities: %b\n", (int)ioat->capabilities, IOAT_DMACAP_STR); xfercap = ioat_read_xfercap(ioat); ioat->max_xfer_size = 1 << xfercap; ioat->intrdelay_supported = (ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) & IOAT_INTRDELAY_SUPPORTED) != 0; if (ioat->intrdelay_supported) ioat->intrdelay_max = IOAT_INTRDELAY_US_MASK; /* TODO: need to check DCA here if we ever do XOR/PQ */ mtx_init(&ioat->submit_lock, "ioat_submit", NULL, MTX_DEF); mtx_init(&ioat->cleanup_lock, "ioat_cleanup", NULL, MTX_DEF); callout_init(&ioat->poll_timer, 1); TASK_INIT(&ioat->reset_task, 0, ioat_reset_hw_task, ioat); /* Establish lock order for Witness */ mtx_lock(&ioat->cleanup_lock); mtx_lock(&ioat->submit_lock); mtx_unlock(&ioat->submit_lock); mtx_unlock(&ioat->cleanup_lock); ioat->is_submitter_processing = FALSE; if (ioat->version >= IOAT_VER_3_3) lowaddr = BUS_SPACE_MAXADDR_48BIT; else if (ioat->version >= IOAT_VER_3_2) lowaddr = BUS_SPACE_MAXADDR_46BIT; else lowaddr = BUS_SPACE_MAXADDR_40BIT; error = bus_dma_tag_create(bus_get_dma_tag(ioat->device), sizeof(uint64_t), 0x0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(uint64_t), 1, sizeof(uint64_t), 0, NULL, NULL, &ioat->comp_update_tag); if (error != 0) return (error); error = bus_dmamem_alloc(ioat->comp_update_tag, (void **)&ioat->comp_update, BUS_DMA_ZERO | BUS_DMA_WAITOK, &ioat->comp_update_map); if (error != 0) return (error); error = bus_dmamap_load(ioat->comp_update_tag, ioat->comp_update_map, ioat->comp_update, sizeof(uint64_t), ioat_comp_update_map, ioat, BUS_DMA_NOWAIT); if (error != 0) return (error); ioat->ring_size_order = g_ioat_ring_order; num_descriptors = 1 << ioat->ring_size_order; ringsz = sizeof(struct ioat_dma_hw_descriptor) * num_descriptors; error = bus_dma_tag_create(bus_get_dma_tag(ioat->device), 2 * 1024 * 1024, 0x0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, ringsz, 1, ringsz, 0, NULL, NULL, &ioat->hw_desc_tag); if (error != 0) return (error); error = bus_dmamem_alloc(ioat->hw_desc_tag, &hw_desc, BUS_DMA_ZERO | BUS_DMA_WAITOK, &ioat->hw_desc_map); if (error != 0) return (error); error = bus_dmamap_load(ioat->hw_desc_tag, ioat->hw_desc_map, hw_desc, ringsz, ioat_dmamap_cb, &ioat->hw_desc_bus_addr, BUS_DMA_NOWAIT); if (error) return (error); ioat->hw_desc_ring = hw_desc; error = bus_dma_tag_create(bus_get_dma_tag(ioat->device), 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, ioat->max_xfer_size, 1, ioat->max_xfer_size, 0, NULL, NULL, &ioat->data_tag); if (error != 0) return (error); ioat->ring = malloc_domainset(num_descriptors * sizeof(*ring), M_IOAT, DOMAINSET_PREF(ioat->domain), M_ZERO | M_WAITOK); ring = ioat->ring; for (i = 0; i < num_descriptors; i++) { memset(&ring[i].bus_dmadesc, 0, sizeof(ring[i].bus_dmadesc)); ring[i].id = i; error = bus_dmamap_create(ioat->data_tag, 0, &ring[i].src_dmamap); if (error != 0) { ioat_log_message(0, "%s: bus_dmamap_create failed %d\n", __func__, error); return (error); } error = bus_dmamap_create(ioat->data_tag, 0, &ring[i].dst_dmamap); if (error != 0) { ioat_log_message(0, "%s: bus_dmamap_create failed %d\n", __func__, error); return (error); } error = bus_dmamap_create(ioat->data_tag, 0, &ring[i].src2_dmamap); if (error != 0) { ioat_log_message(0, "%s: bus_dmamap_create failed %d\n", __func__, error); return (error); } error = bus_dmamap_create(ioat->data_tag, 0, &ring[i].dst2_dmamap); if (error != 0) { ioat_log_message(0, "%s: bus_dmamap_create failed %d\n", __func__, error); return (error); } } for (i = 0; i < num_descriptors; i++) { dma_hw_desc = &ioat->hw_desc_ring[i].dma; dma_hw_desc->next = RING_PHYS_ADDR(ioat, i + 1); } - ioat->head = 0; - ioat->tail = 0; - ioat->last_seen = 0; - *ioat->comp_update = 0; + ioat->tail = ioat->head = 0; + *ioat->comp_update = ioat->last_seen = + RING_PHYS_ADDR(ioat, ioat->tail - 1); return (0); } static int ioat_map_pci_bar(struct ioat_softc *ioat) { ioat->pci_resource_id = PCIR_BAR(0); ioat->pci_resource = bus_alloc_resource_any(ioat->device, SYS_RES_MEMORY, &ioat->pci_resource_id, RF_ACTIVE); if (ioat->pci_resource == NULL) { ioat_log_message(0, "unable to allocate pci resource\n"); return (ENODEV); } ioat->pci_bus_tag = rman_get_bustag(ioat->pci_resource); ioat->pci_bus_handle = rman_get_bushandle(ioat->pci_resource); return (0); } static void ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) { struct ioat_softc *ioat = arg; KASSERT(error == 0, ("%s: error:%d", __func__, error)); ioat->comp_update_bus_addr = seg[0].ds_addr; } static void ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *baddr; KASSERT(error == 0, ("%s: error:%d", __func__, error)); baddr = arg; *baddr = segs->ds_addr; } /* * Interrupt setup and handlers */ static int ioat_setup_intr(struct ioat_softc *ioat) { uint32_t num_vectors; int error; boolean_t use_msix; boolean_t force_legacy_interrupts; use_msix = FALSE; force_legacy_interrupts = FALSE; if (!g_force_legacy_interrupts && pci_msix_count(ioat->device) >= 1) { num_vectors = 1; pci_alloc_msix(ioat->device, &num_vectors); if (num_vectors == 1) use_msix = TRUE; } if (use_msix) { ioat->rid = 1; ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ, &ioat->rid, RF_ACTIVE); } else { ioat->rid = 0; ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ, &ioat->rid, RF_SHAREABLE | RF_ACTIVE); } if (ioat->res == NULL) { ioat_log_message(0, "bus_alloc_resource failed\n"); return (ENOMEM); } ioat->tag = NULL; error = bus_setup_intr(ioat->device, ioat->res, INTR_MPSAFE | INTR_TYPE_MISC, NULL, ioat_interrupt_handler, ioat, &ioat->tag); if (error != 0) { ioat_log_message(0, "bus_setup_intr failed\n"); return (error); } ioat_write_intrctrl(ioat, IOAT_INTRCTRL_MASTER_INT_EN); return (0); } static boolean_t ioat_model_resets_msix(struct ioat_softc *ioat) { u_int32_t pciid; pciid = pci_get_devid(ioat->device); switch (pciid) { /* BWD: */ case 0x0c508086: case 0x0c518086: case 0x0c528086: case 0x0c538086: /* BDXDE: */ case 0x6f508086: case 0x6f518086: case 0x6f528086: case 0x6f538086: return (TRUE); } return (FALSE); } static void ioat_interrupt_handler(void *arg) { struct ioat_softc *ioat = arg; ioat->stats.interrupts++; ioat_process_events(ioat, TRUE); } static int chanerr_to_errno(uint32_t chanerr) { if (chanerr == 0) return (0); if ((chanerr & (IOAT_CHANERR_XSADDERR | IOAT_CHANERR_XDADDERR)) != 0) return (EFAULT); if ((chanerr & (IOAT_CHANERR_RDERR | IOAT_CHANERR_WDERR)) != 0) return (EIO); /* This one is probably our fault: */ if ((chanerr & IOAT_CHANERR_NDADDERR) != 0) return (EIO); return (EIO); } static void ioat_process_events(struct ioat_softc *ioat, boolean_t intr) { struct ioat_descriptor *desc; struct bus_dmadesc *dmadesc; uint64_t comp_update, status; uint32_t completed, chanerr; int error; mtx_lock(&ioat->cleanup_lock); /* * Don't run while the hardware is being reset. Reset is responsible * for blocking new work and draining & completing existing work, so * there is nothing to do until new work is queued after reset anyway. */ if (ioat->resetting_cleanup) { mtx_unlock(&ioat->cleanup_lock); return; } completed = 0; comp_update = *ioat->comp_update; status = comp_update & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK; if (status < ioat->hw_desc_bus_addr || status >= ioat->hw_desc_bus_addr + (1 << ioat->ring_size_order) * sizeof(struct ioat_generic_hw_descriptor)) panic("Bogus completion address %jx (channel %u)", (uintmax_t)status, ioat->chan_idx); if (status == ioat->last_seen) { /* * If we landed in process_events and nothing has been * completed, check for a timeout due to channel halt. */ goto out; } CTR4(KTR_IOAT, "%s channel=%u hw_status=0x%lx last_seen=0x%lx", __func__, ioat->chan_idx, comp_update, ioat->last_seen); while (RING_PHYS_ADDR(ioat, ioat->tail - 1) != status) { desc = ioat_get_ring_entry(ioat, ioat->tail); dmadesc = &desc->bus_dmadesc; CTR5(KTR_IOAT, "channel=%u completing desc idx %u (%p) ok cb %p(%p)", ioat->chan_idx, ioat->tail, dmadesc, dmadesc->callback_fn, dmadesc->callback_arg); bus_dmamap_unload(ioat->data_tag, desc->src_dmamap); bus_dmamap_unload(ioat->data_tag, desc->dst_dmamap); bus_dmamap_unload(ioat->data_tag, desc->src2_dmamap); bus_dmamap_unload(ioat->data_tag, desc->dst2_dmamap); if (dmadesc->callback_fn != NULL) dmadesc->callback_fn(dmadesc->callback_arg, 0); completed++; ioat->tail++; } CTR5(KTR_IOAT, "%s channel=%u head=%u tail=%u active=%u", __func__, ioat->chan_idx, ioat->head, ioat->tail, ioat_get_active(ioat)); if (completed != 0) { ioat->last_seen = RING_PHYS_ADDR(ioat, ioat->tail - 1); ioat->stats.descriptors_processed += completed; wakeup(&ioat->tail); } out: ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN); mtx_unlock(&ioat->cleanup_lock); /* * The device doesn't seem to reliably push suspend/halt statuses to * the channel completion memory address, so poll the device register * here. For performance reasons skip it on interrupts, do it only * on much more rare polling events. */ if (!intr) comp_update = ioat_get_chansts(ioat) & IOAT_CHANSTS_STATUS; if (!is_ioat_halted(comp_update) && !is_ioat_suspended(comp_update)) return; ioat->stats.channel_halts++; /* * Fatal programming error on this DMA channel. Flush any outstanding * work with error status and restart the engine. */ mtx_lock(&ioat->submit_lock); ioat->quiescing = TRUE; mtx_unlock(&ioat->submit_lock); /* * This is safe to do here because the submit queue is quiesced. We * know that we will drain all outstanding events, so ioat_reset_hw * can't deadlock. It is necessary to protect other ioat_process_event * threads from racing ioat_reset_hw, reading an indeterminate hw * state, and attempting to continue issuing completions. */ mtx_lock(&ioat->cleanup_lock); ioat->resetting_cleanup = TRUE; chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET); if (1 <= g_ioat_debug_level) ioat_halted_debug(ioat, chanerr); ioat->stats.last_halt_chanerr = chanerr; while (ioat_get_active(ioat) > 0) { desc = ioat_get_ring_entry(ioat, ioat->tail); dmadesc = &desc->bus_dmadesc; CTR5(KTR_IOAT, "channel=%u completing desc idx %u (%p) err cb %p(%p)", ioat->chan_idx, ioat->tail, dmadesc, dmadesc->callback_fn, dmadesc->callback_arg); if (dmadesc->callback_fn != NULL) dmadesc->callback_fn(dmadesc->callback_arg, chanerr_to_errno(chanerr)); ioat->tail++; ioat->stats.descriptors_processed++; ioat->stats.descriptors_error++; } CTR5(KTR_IOAT, "%s channel=%u head=%u tail=%u active=%u", __func__, ioat->chan_idx, ioat->head, ioat->tail, ioat_get_active(ioat)); /* Clear error status */ ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr); mtx_unlock(&ioat->cleanup_lock); ioat_log_message(0, "Resetting channel to recover from error\n"); error = taskqueue_enqueue(taskqueue_thread, &ioat->reset_task); KASSERT(error == 0, ("%s: taskqueue_enqueue failed: %d", __func__, error)); } static void ioat_reset_hw_task(void *ctx, int pending __unused) { struct ioat_softc *ioat; int error; ioat = ctx; ioat_log_message(1, "%s: Resetting channel\n", __func__); error = ioat_reset_hw(ioat); KASSERT(error == 0, ("%s: reset failed: %d", __func__, error)); (void)error; } /* * User API functions */ unsigned ioat_get_nchannels(void) { return (ioat_channel_index); } bus_dmaengine_t ioat_get_dmaengine(uint32_t index, int flags) { struct ioat_softc *ioat; KASSERT((flags & ~(M_NOWAIT | M_WAITOK)) == 0, ("invalid flags: 0x%08x", flags)); KASSERT((flags & (M_NOWAIT | M_WAITOK)) != (M_NOWAIT | M_WAITOK), ("invalid wait | nowait")); mtx_lock(&ioat_list_mtx); if (index >= ioat_channel_index || (ioat = ioat_channel[index]) == NULL) { mtx_unlock(&ioat_list_mtx); return (NULL); } mtx_lock(&ioat->submit_lock); mtx_unlock(&ioat_list_mtx); if (ioat->destroying) { mtx_unlock(&ioat->submit_lock); return (NULL); } ioat_get(ioat); if (ioat->quiescing) { if ((flags & M_NOWAIT) != 0) { ioat_put(ioat); mtx_unlock(&ioat->submit_lock); return (NULL); } while (ioat->quiescing && !ioat->destroying) msleep(&ioat->quiescing, &ioat->submit_lock, 0, "getdma", 0); if (ioat->destroying) { ioat_put(ioat); mtx_unlock(&ioat->submit_lock); return (NULL); } } mtx_unlock(&ioat->submit_lock); return (&ioat->dmaengine); } void ioat_put_dmaengine(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); mtx_lock(&ioat->submit_lock); ioat_put(ioat); mtx_unlock(&ioat->submit_lock); } int ioat_get_hwversion(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); return (ioat->version); } size_t ioat_get_max_io_size(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); return (ioat->max_xfer_size); } uint32_t ioat_get_capabilities(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); return (ioat->capabilities); } int ioat_set_interrupt_coalesce(bus_dmaengine_t dmaengine, uint16_t delay) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); if (!ioat->intrdelay_supported) return (ENODEV); if (delay > ioat->intrdelay_max) return (ERANGE); ioat_write_2(ioat, IOAT_INTRDELAY_OFFSET, delay); ioat->cached_intrdelay = ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) & IOAT_INTRDELAY_US_MASK; return (0); } uint16_t ioat_get_max_coalesce_period(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); return (ioat->intrdelay_max); } void ioat_acquire(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); mtx_lock(&ioat->submit_lock); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); ioat->acq_head = ioat->head; } int ioat_acquire_reserve(bus_dmaengine_t dmaengine, unsigned n, int mflags) { struct ioat_softc *ioat; int error; ioat = to_ioat_softc(dmaengine); ioat_acquire(dmaengine); error = ioat_reserve_space(ioat, n, mflags); if (error != 0) ioat_release(dmaengine); return (error); } void ioat_release(bus_dmaengine_t dmaengine) { struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); CTR3(KTR_IOAT, "%s channel=%u dispatch1 head=%u", __func__, ioat->chan_idx, ioat->head); KFAIL_POINT_CODE(DEBUG_FP, ioat_release, /* do nothing */); CTR3(KTR_IOAT, "%s channel=%u dispatch2 head=%u", __func__, ioat->chan_idx, ioat->head); if (ioat->acq_head != ioat->head) { ioat_write_2(ioat, IOAT_DMACOUNT_OFFSET, (uint16_t)ioat->head); if (!callout_pending(&ioat->poll_timer)) { callout_reset_on(&ioat->poll_timer, 1, ioat_poll_timer_callback, ioat, ioat->cpu); } } mtx_unlock(&ioat->submit_lock); } static struct ioat_descriptor * ioat_op_generic(struct ioat_softc *ioat, uint8_t op, uint32_t size, uint64_t src, uint64_t dst, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_generic_hw_descriptor *hw_desc; struct ioat_descriptor *desc; bus_dma_segment_t seg; int mflags, nseg, error; mtx_assert(&ioat->submit_lock, MA_OWNED); KASSERT((flags & ~_DMA_GENERIC_FLAGS) == 0, ("Unrecognized flag(s): %#x", flags & ~_DMA_GENERIC_FLAGS)); KASSERT(size <= ioat->max_xfer_size, ("%s: size too big (%u > %u)", __func__, (unsigned)size, ioat->max_xfer_size)); if ((flags & DMA_NO_WAIT) != 0) mflags = M_NOWAIT; else mflags = M_WAITOK; if (ioat_reserve_space(ioat, 1, mflags) != 0) return (NULL); desc = ioat_get_ring_entry(ioat, ioat->head); hw_desc = &ioat_get_descriptor(ioat, ioat->head)->generic; hw_desc->u.control_raw = 0; hw_desc->u.control_generic.op = op; hw_desc->u.control_generic.completion_update = 1; if ((flags & DMA_INT_EN) != 0) hw_desc->u.control_generic.int_enable = 1; if ((flags & DMA_FENCE) != 0) hw_desc->u.control_generic.fence = 1; hw_desc->size = size; if (src != 0) { nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->src_dmamap, src, size, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->src_addr = seg.ds_addr; } if (dst != 0) { nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst_dmamap, dst, size, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->dest_addr = seg.ds_addr; } desc->bus_dmadesc.callback_fn = callback_fn; desc->bus_dmadesc.callback_arg = callback_arg; return (desc); } struct bus_dmadesc * ioat_null(bus_dmaengine_t dmaengine, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_dma_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); desc = ioat_op_generic(ioat, IOAT_OP_COPY, 8, 0, 0, callback_fn, callback_arg, flags); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma; hw_desc->u.control.null = 1; ioat_submit_single(ioat); return (&desc->bus_dmadesc); } struct bus_dmadesc * ioat_copy(bus_dmaengine_t dmaengine, bus_addr_t dst, bus_addr_t src, bus_size_t len, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_dma_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); desc = ioat_op_generic(ioat, IOAT_OP_COPY, len, src, dst, callback_fn, callback_arg, flags); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma; if (g_ioat_debug_level >= 3) dump_descriptor(hw_desc); ioat_submit_single(ioat); CTR6(KTR_IOAT, "%s channel=%u desc=%p dest=%lx src=%lx len=%lx", __func__, ioat->chan_idx, &desc->bus_dmadesc, dst, src, len); return (&desc->bus_dmadesc); } struct bus_dmadesc * ioat_copy_8k_aligned(bus_dmaengine_t dmaengine, bus_addr_t dst1, bus_addr_t dst2, bus_addr_t src1, bus_addr_t src2, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_dma_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; bus_size_t src1_len, dst1_len; bus_dma_segment_t seg; int nseg, error; ioat = to_ioat_softc(dmaengine); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); KASSERT(((src1 | src2 | dst1 | dst2) & PAGE_MASK) == 0, ("%s: addresses are not page-aligned", __func__)); desc = ioat_op_generic(ioat, IOAT_OP_COPY, 2 * PAGE_SIZE, 0, 0, callback_fn, callback_arg, flags); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->dma; src1_len = (src2 != src1 + PAGE_SIZE) ? PAGE_SIZE : 2 * PAGE_SIZE; nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->src_dmamap, src1, src1_len, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->src_addr = seg.ds_addr; if (src1_len != 2 * PAGE_SIZE) { hw_desc->u.control.src_page_break = 1; nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->src2_dmamap, src2, PAGE_SIZE, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->next_src_addr = seg.ds_addr; } dst1_len = (dst2 != dst1 + PAGE_SIZE) ? PAGE_SIZE : 2 * PAGE_SIZE; nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst_dmamap, dst1, dst1_len, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->dest_addr = seg.ds_addr; if (dst1_len != 2 * PAGE_SIZE) { hw_desc->u.control.dest_page_break = 1; nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst2_dmamap, dst2, PAGE_SIZE, 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->next_dest_addr = seg.ds_addr; } if (g_ioat_debug_level >= 3) dump_descriptor(hw_desc); ioat_submit_single(ioat); return (&desc->bus_dmadesc); } struct bus_dmadesc * ioat_copy_crc(bus_dmaengine_t dmaengine, bus_addr_t dst, bus_addr_t src, bus_size_t len, uint32_t *initialseed, bus_addr_t crcptr, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_crc32_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; uint32_t teststore; uint8_t op; bus_dma_segment_t seg; int nseg, error; ioat = to_ioat_softc(dmaengine); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); KASSERT((ioat->capabilities & IOAT_DMACAP_MOVECRC) != 0, ("%s: device lacks MOVECRC capability", __func__)); teststore = (flags & _DMA_CRC_TESTSTORE); KASSERT(teststore != _DMA_CRC_TESTSTORE, ("%s: TEST and STORE invalid", __func__)); KASSERT(teststore != 0 || (flags & DMA_CRC_INLINE) == 0, ("%s: INLINE invalid without TEST or STORE", __func__)); switch (teststore) { case DMA_CRC_STORE: op = IOAT_OP_MOVECRC_STORE; break; case DMA_CRC_TEST: op = IOAT_OP_MOVECRC_TEST; break; default: KASSERT(teststore == 0, ("bogus")); op = IOAT_OP_MOVECRC; break; } desc = ioat_op_generic(ioat, op, len, src, dst, callback_fn, callback_arg, flags & ~_DMA_CRC_FLAGS); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->crc32; if ((flags & DMA_CRC_INLINE) == 0) { nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst2_dmamap, crcptr, sizeof(uint32_t), 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->crc_address = seg.ds_addr; } else hw_desc->u.control.crc_location = 1; if (initialseed != NULL) { hw_desc->u.control.use_seed = 1; hw_desc->seed = *initialseed; } if (g_ioat_debug_level >= 3) dump_descriptor(hw_desc); ioat_submit_single(ioat); return (&desc->bus_dmadesc); } struct bus_dmadesc * ioat_crc(bus_dmaengine_t dmaengine, bus_addr_t src, bus_size_t len, uint32_t *initialseed, bus_addr_t crcptr, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_crc32_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; uint32_t teststore; uint8_t op; bus_dma_segment_t seg; int nseg, error; ioat = to_ioat_softc(dmaengine); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); KASSERT((ioat->capabilities & IOAT_DMACAP_CRC) != 0, ("%s: device lacks CRC capability", __func__)); teststore = (flags & _DMA_CRC_TESTSTORE); KASSERT(teststore != _DMA_CRC_TESTSTORE, ("%s: TEST and STORE invalid", __func__)); KASSERT(teststore != 0 || (flags & DMA_CRC_INLINE) == 0, ("%s: INLINE invalid without TEST or STORE", __func__)); switch (teststore) { case DMA_CRC_STORE: op = IOAT_OP_CRC_STORE; break; case DMA_CRC_TEST: op = IOAT_OP_CRC_TEST; break; default: KASSERT(teststore == 0, ("bogus")); op = IOAT_OP_CRC; break; } desc = ioat_op_generic(ioat, op, len, src, 0, callback_fn, callback_arg, flags & ~_DMA_CRC_FLAGS); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->crc32; if ((flags & DMA_CRC_INLINE) == 0) { nseg = -1; error = _bus_dmamap_load_phys(ioat->data_tag, desc->dst2_dmamap, crcptr, sizeof(uint32_t), 0, &seg, &nseg); if (error != 0) { ioat_log_message(0, "%s: _bus_dmamap_load_phys" " failed %d\n", __func__, error); return (NULL); } hw_desc->crc_address = seg.ds_addr; } else hw_desc->u.control.crc_location = 1; if (initialseed != NULL) { hw_desc->u.control.use_seed = 1; hw_desc->seed = *initialseed; } if (g_ioat_debug_level >= 3) dump_descriptor(hw_desc); ioat_submit_single(ioat); return (&desc->bus_dmadesc); } struct bus_dmadesc * ioat_blockfill(bus_dmaengine_t dmaengine, bus_addr_t dst, uint64_t fillpattern, bus_size_t len, bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags) { struct ioat_fill_hw_descriptor *hw_desc; struct ioat_descriptor *desc; struct ioat_softc *ioat; ioat = to_ioat_softc(dmaengine); CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); KASSERT((ioat->capabilities & IOAT_DMACAP_BFILL) != 0, ("%s: device lacks BFILL capability", __func__)); desc = ioat_op_generic(ioat, IOAT_OP_FILL, len, 0, dst, callback_fn, callback_arg, flags); if (desc == NULL) return (NULL); hw_desc = &ioat_get_descriptor(ioat, desc->id)->fill; hw_desc->src_data = fillpattern; if (g_ioat_debug_level >= 3) dump_descriptor(hw_desc); ioat_submit_single(ioat); return (&desc->bus_dmadesc); } /* * Ring Management */ static inline uint32_t ioat_get_active(struct ioat_softc *ioat) { return ((ioat->head - ioat->tail) & ((1 << ioat->ring_size_order) - 1)); } static inline uint32_t ioat_get_ring_space(struct ioat_softc *ioat) { return ((1 << ioat->ring_size_order) - ioat_get_active(ioat) - 1); } /* * Reserves space in this IOAT descriptor ring by ensuring enough slots remain * for 'num_descs'. * * If mflags contains M_WAITOK, blocks until enough space is available. * * Returns zero on success, or an errno on error. If num_descs is beyond the * maximum ring size, returns EINVAl; if allocation would block and mflags * contains M_NOWAIT, returns EAGAIN. * * Must be called with the submit_lock held; returns with the lock held. The * lock may be dropped to allocate the ring. * * (The submit_lock is needed to add any entries to the ring, so callers are * assured enough room is available.) */ static int ioat_reserve_space(struct ioat_softc *ioat, uint32_t num_descs, int mflags) { boolean_t dug; int error; mtx_assert(&ioat->submit_lock, MA_OWNED); error = 0; dug = FALSE; if (num_descs < 1 || num_descs >= (1 << ioat->ring_size_order)) { error = EINVAL; goto out; } for (;;) { if (ioat->quiescing) { error = ENXIO; goto out; } if (ioat_get_ring_space(ioat) >= num_descs) goto out; CTR3(KTR_IOAT, "%s channel=%u starved (%u)", __func__, ioat->chan_idx, num_descs); if (!dug && !ioat->is_submitter_processing) { ioat->is_submitter_processing = TRUE; mtx_unlock(&ioat->submit_lock); CTR2(KTR_IOAT, "%s channel=%u attempting to process events", __func__, ioat->chan_idx); ioat_process_events(ioat, FALSE); mtx_lock(&ioat->submit_lock); dug = TRUE; KASSERT(ioat->is_submitter_processing == TRUE, ("is_submitter_processing")); ioat->is_submitter_processing = FALSE; wakeup(&ioat->tail); continue; } if ((mflags & M_WAITOK) == 0) { error = EAGAIN; break; } CTR2(KTR_IOAT, "%s channel=%u blocking on completions", __func__, ioat->chan_idx); msleep(&ioat->tail, &ioat->submit_lock, 0, "ioat_full", 0); continue; } out: mtx_assert(&ioat->submit_lock, MA_OWNED); KASSERT(!ioat->quiescing || error == ENXIO, ("reserved during quiesce")); return (error); } static void ioat_free_ring(struct ioat_softc *ioat, uint32_t size, struct ioat_descriptor *ring) { free_domain(ring, M_IOAT); } static struct ioat_descriptor * ioat_get_ring_entry(struct ioat_softc *ioat, uint32_t index) { return (&ioat->ring[index % (1 << ioat->ring_size_order)]); } static union ioat_hw_descriptor * ioat_get_descriptor(struct ioat_softc *ioat, uint32_t index) { return (&ioat->hw_desc_ring[index % (1 << ioat->ring_size_order)]); } static void ioat_halted_debug(struct ioat_softc *ioat, uint32_t chanerr) { union ioat_hw_descriptor *desc; ioat_log_message(0, "Channel halted (%b)\n", (int)chanerr, IOAT_CHANERR_STR); if (chanerr == 0) return; mtx_assert(&ioat->cleanup_lock, MA_OWNED); desc = ioat_get_descriptor(ioat, ioat->tail + 0); dump_descriptor(desc); desc = ioat_get_descriptor(ioat, ioat->tail + 1); dump_descriptor(desc); } static void ioat_poll_timer_callback(void *arg) { struct ioat_softc *ioat; ioat = arg; CTR1(KTR_IOAT, "%s", __func__); ioat_process_events(ioat, FALSE); mtx_lock(&ioat->submit_lock); if (ioat_get_active(ioat) > 0) callout_schedule(&ioat->poll_timer, 1); mtx_unlock(&ioat->submit_lock); } /* * Support Functions */ static void ioat_submit_single(struct ioat_softc *ioat) { mtx_assert(&ioat->submit_lock, MA_OWNED); ioat->head++; CTR4(KTR_IOAT, "%s channel=%u head=%u tail=%u", __func__, ioat->chan_idx, ioat->head, ioat->tail); ioat->stats.descriptors_submitted++; } static int ioat_reset_hw(struct ioat_softc *ioat) { uint64_t status; uint32_t chanerr; unsigned timeout; int error; CTR2(KTR_IOAT, "%s channel=%u", __func__, ioat->chan_idx); mtx_lock(&ioat->submit_lock); while (ioat->resetting && !ioat->destroying) msleep(&ioat->resetting, &ioat->submit_lock, 0, "IRH_drain", 0); if (ioat->destroying) { mtx_unlock(&ioat->submit_lock); return (ENXIO); } ioat->resetting = TRUE; ioat->quiescing = TRUE; mtx_unlock(&ioat->submit_lock); mtx_lock(&ioat->cleanup_lock); while (ioat_get_active(ioat) > 0) msleep(&ioat->tail, &ioat->cleanup_lock, 0, "ioat_drain", 1); /* * Suspend ioat_process_events while the hardware and softc are in an * indeterminate state. */ ioat->resetting_cleanup = TRUE; mtx_unlock(&ioat->cleanup_lock); CTR2(KTR_IOAT, "%s channel=%u quiesced and drained", __func__, ioat->chan_idx); status = ioat_get_chansts(ioat); if (is_ioat_active(status) || is_ioat_idle(status)) ioat_suspend(ioat); /* Wait at most 20 ms */ for (timeout = 0; (is_ioat_active(status) || is_ioat_idle(status)) && timeout < 20; timeout++) { DELAY(1000); status = ioat_get_chansts(ioat); } if (timeout == 20) { error = ETIMEDOUT; goto out; } KASSERT(ioat_get_active(ioat) == 0, ("active after quiesce")); chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET); ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr); CTR2(KTR_IOAT, "%s channel=%u hardware suspended", __func__, ioat->chan_idx); /* * IOAT v3 workaround - CHANERRMSK_INT with 3E07h to masks out errors * that can cause stability issues for IOAT v3. */ pci_write_config(ioat->device, IOAT_CFG_CHANERRMASK_INT_OFFSET, 0x3e07, 4); chanerr = pci_read_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, 4); pci_write_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, chanerr, 4); /* * BDXDE and BWD models reset MSI-X registers on device reset. * Save/restore their contents manually. */ if (ioat_model_resets_msix(ioat)) { ioat_log_message(1, "device resets MSI-X registers; saving\n"); pci_save_state(ioat->device); } ioat_reset(ioat); CTR2(KTR_IOAT, "%s channel=%u hardware reset", __func__, ioat->chan_idx); /* Wait at most 20 ms */ for (timeout = 0; ioat_reset_pending(ioat) && timeout < 20; timeout++) DELAY(1000); if (timeout == 20) { error = ETIMEDOUT; goto out; } if (ioat_model_resets_msix(ioat)) { ioat_log_message(1, "device resets registers; restored\n"); pci_restore_state(ioat->device); } /* Reset attempts to return the hardware to "halted." */ status = ioat_get_chansts(ioat); if (is_ioat_active(status) || is_ioat_idle(status)) { /* So this really shouldn't happen... */ ioat_log_message(0, "Device is active after a reset?\n"); ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN); error = 0; goto out; } chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET); if (chanerr != 0) { mtx_lock(&ioat->cleanup_lock); ioat_halted_debug(ioat, chanerr); mtx_unlock(&ioat->cleanup_lock); error = EIO; goto out; } /* * Bring device back online after reset. Writing CHAINADDR brings the * device back to active. * * The internal ring counter resets to zero, so we have to start over * at zero as well. */ ioat->tail = ioat->head = 0; - ioat->last_seen = 0; - *ioat->comp_update = 0; + *ioat->comp_update = ioat->last_seen = + RING_PHYS_ADDR(ioat, ioat->tail - 1); ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN); ioat_write_chancmp(ioat, ioat->comp_update_bus_addr); ioat_write_chainaddr(ioat, RING_PHYS_ADDR(ioat, 0)); error = 0; CTR2(KTR_IOAT, "%s channel=%u configured channel", __func__, ioat->chan_idx); out: /* Enqueues a null operation and ensures it completes. */ if (error == 0) { error = ioat_start_channel(ioat); CTR2(KTR_IOAT, "%s channel=%u started channel", __func__, ioat->chan_idx); } /* * Resume completions now that ring state is consistent. */ mtx_lock(&ioat->cleanup_lock); ioat->resetting_cleanup = FALSE; mtx_unlock(&ioat->cleanup_lock); /* Unblock submission of new work */ mtx_lock(&ioat->submit_lock); ioat->quiescing = FALSE; wakeup(&ioat->quiescing); ioat->resetting = FALSE; wakeup(&ioat->resetting); CTR2(KTR_IOAT, "%s channel=%u reset done", __func__, ioat->chan_idx); mtx_unlock(&ioat->submit_lock); return (error); } static int sysctl_handle_chansts(SYSCTL_HANDLER_ARGS) { struct ioat_softc *ioat; struct sbuf sb; uint64_t status; int error; ioat = arg1; status = ioat_get_chansts(ioat) & IOAT_CHANSTS_STATUS; sbuf_new_for_sysctl(&sb, NULL, 256, req); switch (status) { case IOAT_CHANSTS_ACTIVE: sbuf_printf(&sb, "ACTIVE"); break; case IOAT_CHANSTS_IDLE: sbuf_printf(&sb, "IDLE"); break; case IOAT_CHANSTS_SUSPENDED: sbuf_printf(&sb, "SUSPENDED"); break; case IOAT_CHANSTS_HALTED: sbuf_printf(&sb, "HALTED"); break; case IOAT_CHANSTS_ARMED: sbuf_printf(&sb, "ARMED"); break; default: sbuf_printf(&sb, "UNKNOWN"); break; } error = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0 || req->newptr == NULL) return (error); return (EINVAL); } static int sysctl_handle_dpi(SYSCTL_HANDLER_ARGS) { struct ioat_softc *ioat; struct sbuf sb; #define PRECISION "1" const uintmax_t factor = 10; uintmax_t rate; int error; ioat = arg1; sbuf_new_for_sysctl(&sb, NULL, 16, req); if (ioat->stats.interrupts == 0) { sbuf_printf(&sb, "NaN"); goto out; } rate = ioat->stats.descriptors_processed * factor / ioat->stats.interrupts; sbuf_printf(&sb, "%ju.%." PRECISION "ju", rate / factor, rate % factor); #undef PRECISION out: error = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0 || req->newptr == NULL) return (error); return (EINVAL); } static int sysctl_handle_reset(SYSCTL_HANDLER_ARGS) { struct ioat_softc *ioat; int error, arg; ioat = arg1; arg = 0; error = SYSCTL_OUT(req, &arg, sizeof(arg)); if (error != 0 || req->newptr == NULL) return (error); error = SYSCTL_IN(req, &arg, sizeof(arg)); if (error != 0) return (error); if (arg != 0) error = ioat_reset_hw(ioat); return (error); } static void dump_descriptor(void *hw_desc) { int i, j; for (i = 0; i < 2; i++) { for (j = 0; j < 8; j++) printf("%08x ", ((uint32_t *)hw_desc)[i * 8 + j]); printf("\n"); } } static void ioat_setup_sysctl(device_t device) { struct sysctl_oid_list *par, *statpar, *state, *hammer; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree, *tmp; struct ioat_softc *ioat; ioat = DEVICE2SOFTC(device); ctx = device_get_sysctl_ctx(device); tree = device_get_sysctl_tree(device); par = SYSCTL_CHILDREN(tree); SYSCTL_ADD_INT(ctx, par, OID_AUTO, "version", CTLFLAG_RD, &ioat->version, 0, "HW version (0xMM form)"); SYSCTL_ADD_UINT(ctx, par, OID_AUTO, "max_xfer_size", CTLFLAG_RD, &ioat->max_xfer_size, 0, "HW maximum transfer size"); SYSCTL_ADD_INT(ctx, par, OID_AUTO, "intrdelay_supported", CTLFLAG_RD, &ioat->intrdelay_supported, 0, "Is INTRDELAY supported"); SYSCTL_ADD_U16(ctx, par, OID_AUTO, "intrdelay_max", CTLFLAG_RD, &ioat->intrdelay_max, 0, "Maximum configurable INTRDELAY on this channel (microseconds)"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "state", CTLFLAG_RD, NULL, "IOAT channel internal state"); state = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "ring_size_order", CTLFLAG_RD, &ioat->ring_size_order, 0, "SW descriptor ring size order"); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "head", CTLFLAG_RD, &ioat->head, 0, "SW descriptor head pointer index"); SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "tail", CTLFLAG_RD, &ioat->tail, 0, "SW descriptor tail pointer index"); SYSCTL_ADD_UQUAD(ctx, state, OID_AUTO, "last_completion", CTLFLAG_RD, ioat->comp_update, "HW addr of last completion"); SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_submitter_processing", CTLFLAG_RD, &ioat->is_submitter_processing, 0, "submitter processing"); SYSCTL_ADD_PROC(ctx, state, OID_AUTO, "chansts", CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_chansts, "A", "String of the channel status"); SYSCTL_ADD_U16(ctx, state, OID_AUTO, "intrdelay", CTLFLAG_RD, &ioat->cached_intrdelay, 0, "Current INTRDELAY on this channel (cached, microseconds)"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "hammer", CTLFLAG_RD, NULL, "Big hammers (mostly for testing)"); hammer = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_reset", CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_reset, "I", "Set to non-zero to reset the hardware"); tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "stats", CTLFLAG_RD, NULL, "IOAT channel statistics"); statpar = SYSCTL_CHILDREN(tmp); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "interrupts", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.interrupts, "Number of interrupts processed on this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "descriptors", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_processed, "Number of descriptors processed on this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "submitted", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_submitted, "Number of descriptors submitted to this channel"); SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "errored", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.descriptors_error, "Number of descriptors failed by channel errors"); SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "halts", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.channel_halts, 0, "Number of times the channel has halted"); SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "last_halt_chanerr", CTLFLAG_RW | CTLFLAG_STATS, &ioat->stats.last_halt_chanerr, 0, "The raw CHANERR when the channel was last halted"); SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "desc_per_interrupt", CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_dpi, "A", "Descriptors per interrupt"); } static void ioat_get(struct ioat_softc *ioat) { mtx_assert(&ioat->submit_lock, MA_OWNED); KASSERT(ioat->refcnt < UINT32_MAX, ("refcnt overflow")); ioat->refcnt++; } static void ioat_put(struct ioat_softc *ioat) { mtx_assert(&ioat->submit_lock, MA_OWNED); KASSERT(ioat->refcnt >= 1, ("refcnt error")); if (--ioat->refcnt == 0) wakeup(&ioat->refcnt); } static void ioat_drain_locked(struct ioat_softc *ioat) { mtx_assert(&ioat->submit_lock, MA_OWNED); while (ioat->refcnt > 0) msleep(&ioat->refcnt, &ioat->submit_lock, 0, "ioat_drain", 0); } #ifdef DDB #define _db_show_lock(lo) LOCK_CLASS(lo)->lc_ddb_show(lo) #define db_show_lock(lk) _db_show_lock(&(lk)->lock_object) DB_SHOW_COMMAND(ioat, db_show_ioat) { struct ioat_softc *sc; unsigned idx; if (!have_addr) goto usage; idx = (unsigned)addr; if (idx >= ioat_channel_index) goto usage; sc = ioat_channel[idx]; db_printf("ioat softc at %p\n", sc); if (sc == NULL) return; db_printf(" version: %d\n", sc->version); db_printf(" chan_idx: %u\n", sc->chan_idx); db_printf(" submit_lock: "); db_show_lock(&sc->submit_lock); db_printf(" capabilities: %b\n", (int)sc->capabilities, IOAT_DMACAP_STR); db_printf(" cached_intrdelay: %u\n", sc->cached_intrdelay); db_printf(" *comp_update: 0x%jx\n", (uintmax_t)*sc->comp_update); db_printf(" poll_timer:\n"); db_printf(" c_time: %ju\n", (uintmax_t)sc->poll_timer.c_time); db_printf(" c_arg: %p\n", sc->poll_timer.c_arg); db_printf(" c_func: %p\n", sc->poll_timer.c_func); db_printf(" c_lock: %p\n", sc->poll_timer.c_lock); db_printf(" c_flags: 0x%x\n", (unsigned)sc->poll_timer.c_flags); db_printf(" quiescing: %d\n", (int)sc->quiescing); db_printf(" destroying: %d\n", (int)sc->destroying); db_printf(" is_submitter_processing: %d\n", (int)sc->is_submitter_processing); db_printf(" intrdelay_supported: %d\n", (int)sc->intrdelay_supported); db_printf(" resetting: %d\n", (int)sc->resetting); db_printf(" head: %u\n", sc->head); db_printf(" tail: %u\n", sc->tail); db_printf(" ring_size_order: %u\n", sc->ring_size_order); db_printf(" last_seen: 0x%lx\n", sc->last_seen); db_printf(" ring: %p\n", sc->ring); db_printf(" descriptors: %p\n", sc->hw_desc_ring); db_printf(" descriptors (phys): 0x%jx\n", (uintmax_t)sc->hw_desc_bus_addr); db_printf(" ring[%u] (tail):\n", sc->tail % (1 << sc->ring_size_order)); db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->tail)->id); db_printf(" addr: 0x%lx\n", RING_PHYS_ADDR(sc, sc->tail)); db_printf(" next: 0x%lx\n", ioat_get_descriptor(sc, sc->tail)->generic.next); db_printf(" ring[%u] (head - 1):\n", (sc->head - 1) % (1 << sc->ring_size_order)); db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->head - 1)->id); db_printf(" addr: 0x%lx\n", RING_PHYS_ADDR(sc, sc->head - 1)); db_printf(" next: 0x%lx\n", ioat_get_descriptor(sc, sc->head - 1)->generic.next); db_printf(" ring[%u] (head):\n", (sc->head) % (1 << sc->ring_size_order)); db_printf(" id: %u\n", ioat_get_ring_entry(sc, sc->head)->id); db_printf(" addr: 0x%lx\n", RING_PHYS_ADDR(sc, sc->head)); db_printf(" next: 0x%lx\n", ioat_get_descriptor(sc, sc->head)->generic.next); for (idx = 0; idx < (1 << sc->ring_size_order); idx++) if ((*sc->comp_update & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK) == RING_PHYS_ADDR(sc, idx)) db_printf(" ring[%u] == hardware tail\n", idx); db_printf(" cleanup_lock: "); db_show_lock(&sc->cleanup_lock); db_printf(" refcnt: %u\n", sc->refcnt); db_printf(" stats:\n"); db_printf(" interrupts: %lu\n", sc->stats.interrupts); db_printf(" descriptors_processed: %lu\n", sc->stats.descriptors_processed); db_printf(" descriptors_error: %lu\n", sc->stats.descriptors_error); db_printf(" descriptors_submitted: %lu\n", sc->stats.descriptors_submitted); db_printf(" channel_halts: %u\n", sc->stats.channel_halts); db_printf(" last_halt_chanerr: %u\n", sc->stats.last_halt_chanerr); if (db_pager_quit) return; db_printf(" hw status:\n"); db_printf(" status: 0x%lx\n", ioat_get_chansts(sc)); db_printf(" chanctrl: 0x%x\n", (unsigned)ioat_read_2(sc, IOAT_CHANCTRL_OFFSET)); db_printf(" chancmd: 0x%x\n", (unsigned)ioat_read_1(sc, IOAT_CHANCMD_OFFSET)); db_printf(" dmacount: 0x%x\n", (unsigned)ioat_read_2(sc, IOAT_DMACOUNT_OFFSET)); db_printf(" chainaddr: 0x%lx\n", ioat_read_double_4(sc, IOAT_CHAINADDR_OFFSET_LOW)); db_printf(" chancmp: 0x%lx\n", ioat_read_double_4(sc, IOAT_CHANCMP_OFFSET_LOW)); db_printf(" chanerr: %b\n", (int)ioat_read_4(sc, IOAT_CHANERR_OFFSET), IOAT_CHANERR_STR); return; usage: db_printf("usage: show ioat <0-%u>\n", ioat_channel_index); return; } #endif /* DDB */