Index: head/share/man/man4/ntb_transport.4 =================================================================== --- head/share/man/man4/ntb_transport.4 (revision 354580) +++ head/share/man/man4/ntb_transport.4 (revision 354581) @@ -1,107 +1,114 @@ .\" .\" Copyright (c) 2016-2019 Alexander Motin .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd August 29, 2019 +.Dd November 9, 2019 .Dt NTB_TRANSPORT 4 .Os .Sh NAME .Nm ntb_transport .Nd Packet-oriented transport for Non-Transparent Bridges .Sh SYNOPSIS To compile this driver into your kernel, place the following lines in your kernel configuration file: .Bd -ragged -offset indent .Cd "device ntb" .Cd "device ntb_transport" .Ed .Pp Or, to load the driver as a module at boot, place the following line in .Xr loader.conf 5 : .Bd -literal -offset indent ntb_transport_load="YES" .Ed .Pp The following tunables are settable from the .Xr loader 8 : .Bl -ohang .It Va hw.ntb_transport.debug_level Driver debug level. The default value is 0, higher means more verbose. .It Va hw.ntb_transport.max_mw_size Limits maximum memory window usage. Allocation of big physically contiguous memory buffer may be a problem, while too big buffers makes no much sense for low latency network interface. .It Va hint.ntb_transport. Ns Ar X Ns Va .config Configures a set of the transport consumers, separated by commas. Each consumer can be configured as: "[][:]", where: .Va name is a name of the driver to attach (empty means any), .Va queues is a number of queues to allocate (empty means automatic). The default configuration is empty string, which means single consumer with one queue per memory window, allowing any driver to attach. +.It Va hint.ntb_transport. Ns Ar X Ns Va .compact +Non-zero value enables compact version of sratchpad protocol, using twice +less registers. +Enabled automatically if there is not enough registers to negotiate all +available memory windows. +The compact version does not support memory windows of 4GB and above. .El .Sh DESCRIPTION The .Nm driver attaches on top of the .Nm ntb driver to utilize its resources to create a set of bidirectional queues, delivering packets between the systems. The primary purpose of this driver is to be used by .Nm if_ntb network interface, but other consumers may also be developed using KPI. .Pp Each .Nm require from underlying .Nm ntb instance: .Bl -bullet -compact .It 1 or more memory windows; .It -6 scratchpads, plus 2 more for each additional memory window; +6 scratchpads, plus 2 more for each additional memory window, +or 3 plus 1 in case of compact protocol; .It 1 doorbell for each memory window or configured queue. .El .Sh SEE ALSO .Xr if_ntb 4 , .Xr ntb 4 , .Xr ntb_hw_amd 4 , .Xr ntb_hw_intel 4 , .Xr ntb_hw_plx 4 .Sh AUTHORS .An -nosplit The .Nm driver was developed by Intel and originally written by .An Carl Delsey Aq Mt carl@FreeBSD.org . Later improvements were done by .An Conrad E. Meyer Aq Mt cem@FreeBSD.org and .An Alexander Motin Aq Mt mav@FreeBSD.org . Index: head/sys/dev/ntb/ntb_transport.c =================================================================== --- head/sys/dev/ntb/ntb_transport.c (revision 354580) +++ head/sys/dev/ntb/ntb_transport.c (revision 354581) @@ -1,1644 +1,1700 @@ /*- * Copyright (c) 2016-2017 Alexander Motin * Copyright (C) 2013 Intel Corporation * Copyright (C) 2015 EMC Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The Non-Transparent Bridge (NTB) is a device that allows you to connect * two or more systems using a PCI-e links, providing remote memory access. * * This module contains a transport for sending and receiving messages by * writing to remote memory window(s) provided by underlying NTB device. * * NOTE: Much of the code in this module is shared with Linux. Any patches may * be picked up and redistributed in Linux with a dual GPL/BSD license. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ntb.h" #include "ntb_transport.h" #define KTR_NTB KTR_SPARE3 #define NTB_TRANSPORT_VERSION 4 static SYSCTL_NODE(_hw, OID_AUTO, ntb_transport, CTLFLAG_RW, 0, "ntb_transport"); static unsigned g_ntb_transport_debug_level; SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ntb_transport_debug_level, 0, "ntb_transport log level -- higher is more verbose"); #define ntb_printf(lvl, ...) do { \ if ((lvl) <= g_ntb_transport_debug_level) { \ printf(__VA_ARGS__); \ } \ } while (0) static unsigned transport_mtu = 0x10000; static uint64_t max_mw_size = 256*1024*1024; SYSCTL_UQUAD(_hw_ntb_transport, OID_AUTO, max_mw_size, CTLFLAG_RDTUN, &max_mw_size, 0, "If enabled (non-zero), limit the size of large memory windows. " "Both sides of the NTB MUST set the same value here."); static unsigned enable_xeon_watchdog; SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, enable_xeon_watchdog, CTLFLAG_RDTUN, &enable_xeon_watchdog, 0, "If non-zero, write a register every second to " "keep a watchdog from tearing down the NTB link"); STAILQ_HEAD(ntb_queue_list, ntb_queue_entry); typedef uint32_t ntb_q_idx_t; struct ntb_queue_entry { /* ntb_queue list reference */ STAILQ_ENTRY(ntb_queue_entry) entry; /* info on data to be transferred */ void *cb_data; void *buf; uint32_t len; uint32_t flags; struct ntb_transport_qp *qp; struct ntb_payload_header *x_hdr; ntb_q_idx_t index; }; struct ntb_rx_info { ntb_q_idx_t entry; }; struct ntb_transport_qp { struct ntb_transport_ctx *transport; device_t dev; void *cb_data; bool client_ready; volatile bool link_is_up; uint8_t qp_num; /* Only 64 QPs are allowed. 0-63 */ struct ntb_rx_info *rx_info; struct ntb_rx_info *remote_rx_info; void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, void *data, int len); struct ntb_queue_list tx_free_q; struct mtx ntb_tx_free_q_lock; caddr_t tx_mw; bus_addr_t tx_mw_phys; ntb_q_idx_t tx_index; ntb_q_idx_t tx_max_entry; uint64_t tx_max_frame; void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, void *data, int len); struct ntb_queue_list rx_post_q; struct ntb_queue_list rx_pend_q; /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ struct mtx ntb_rx_q_lock; struct task rxc_db_work; struct taskqueue *rxc_tq; caddr_t rx_buff; ntb_q_idx_t rx_index; ntb_q_idx_t rx_max_entry; uint64_t rx_max_frame; void (*event_handler)(void *data, enum ntb_link_event status); struct callout link_work; struct callout rx_full; uint64_t last_rx_no_buf; /* Stats */ uint64_t rx_bytes; uint64_t rx_pkts; uint64_t rx_ring_empty; uint64_t rx_err_no_buf; uint64_t rx_err_oflow; uint64_t rx_err_ver; uint64_t tx_bytes; uint64_t tx_pkts; uint64_t tx_ring_full; uint64_t tx_err_no_buf; struct mtx tx_lock; }; struct ntb_transport_mw { vm_paddr_t phys_addr; size_t phys_size; size_t xlat_align; size_t xlat_align_size; bus_addr_t addr_limit; /* Tx buff is vbase / phys_addr / tx_size */ caddr_t vbase; size_t tx_size; /* Rx buff is virt_addr / dma_addr / rx_size */ bus_dma_tag_t dma_tag; bus_dmamap_t dma_map; caddr_t virt_addr; bus_addr_t dma_addr; size_t rx_size; /* rx_size increased to size alignment requirements of the hardware. */ size_t buff_size; }; struct ntb_transport_child { device_t dev; int consumer; int qpoff; int qpcnt; struct ntb_transport_child *next; }; struct ntb_transport_ctx { device_t dev; struct ntb_transport_child *child; struct ntb_transport_mw *mw_vec; struct ntb_transport_qp *qp_vec; + int compact; unsigned mw_count; unsigned qp_count; uint64_t qp_bitmap; volatile bool link_is_up; enum ntb_speed link_speed; enum ntb_width link_width; struct callout link_work; struct callout link_watchdog; struct task link_cleanup; }; enum { NTBT_DESC_DONE_FLAG = 1 << 0, NTBT_LINK_DOWN_FLAG = 1 << 1, }; struct ntb_payload_header { ntb_q_idx_t ver; uint32_t len; uint32_t flags; }; enum { /* * The order of this enum is part of the remote protocol. Do not * reorder without bumping protocol version (and it's probably best * to keep the protocol in lock-step with the Linux NTB driver. */ NTBT_VERSION = 0, NTBT_QP_LINKS, NTBT_NUM_QPS, NTBT_NUM_MWS, /* * N.B.: transport_link_work assumes MW1 enums = MW0 + 2. */ NTBT_MW0_SZ_HIGH, NTBT_MW0_SZ_LOW, NTBT_MW1_SZ_HIGH, NTBT_MW1_SZ_LOW, /* * Some NTB-using hardware have a watchdog to work around NTB hangs; if * a register or doorbell isn't written every few seconds, the link is * torn down. Write an otherwise unused register every few seconds to * work around this watchdog. */ NTBT_WATCHDOG_SPAD = 15 }; +/* + * Compart version of sratchpad protocol, using twice less registers. + */ +enum { + NTBTC_PARAMS = 0, /* NUM_QPS << 24 + NUM_MWS << 16 + VERSION */ + NTBTC_QP_LINKS, /* QP links status */ + NTBTC_MW0_SZ, /* MW size limited to 32 bits. */ +}; + #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) #define NTB_QP_DEF_NUM_ENTRIES 100 #define NTB_LINK_DOWN_TIMEOUT 100 static int ntb_transport_probe(device_t dev); static int ntb_transport_attach(device_t dev); static int ntb_transport_detach(device_t dev); static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num); static int ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry); static void ntb_transport_rxc_db(void *arg, int pending); static int ntb_process_rxc(struct ntb_transport_qp *qp); static void ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, void *offset); static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data); static void ntb_complete_rxc(struct ntb_transport_qp *qp); static void ntb_transport_doorbell_callback(void *data, uint32_t vector); static void ntb_transport_event_callback(void *data); static void ntb_transport_link_work(void *arg); static int ntb_set_mw(struct ntb_transport_ctx *, int num_mw, size_t size); static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw); static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num); static void ntb_qp_link_work(void *arg); static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt); static void ntb_transport_link_cleanup_work(void *, int); static void ntb_qp_link_down(struct ntb_transport_qp *qp); static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp); static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp); static void ntb_send_link_down(struct ntb_transport_qp *qp); static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, struct ntb_queue_list *list); static struct ntb_queue_entry *ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list); static struct ntb_queue_entry *ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, struct ntb_queue_list *to); static void xeon_link_watchdog_hb(void *); static const struct ntb_ctx_ops ntb_transport_ops = { .link_event = ntb_transport_event_callback, .db_event = ntb_transport_doorbell_callback, }; MALLOC_DEFINE(M_NTB_T, "ntb_transport", "ntb transport driver"); static inline void iowrite32(uint32_t val, void *addr) { bus_space_write_4(X86_BUS_SPACE_MEM, 0/* HACK */, (uintptr_t)addr, val); } /* Transport Init and teardown */ static void xeon_link_watchdog_hb(void *arg) { struct ntb_transport_ctx *nt; nt = arg; ntb_spad_write(nt->dev, NTBT_WATCHDOG_SPAD, 0); callout_reset(&nt->link_watchdog, 1 * hz, xeon_link_watchdog_hb, nt); } static int ntb_transport_probe(device_t dev) { device_set_desc(dev, "NTB Transport"); return (0); } static int ntb_transport_attach(device_t dev) { struct ntb_transport_ctx *nt = device_get_softc(dev); struct ntb_transport_child **cpp = &nt->child; struct ntb_transport_child *nc; struct ntb_transport_mw *mw; uint64_t db_bitmap; int rc, i, db_count, spad_count, qp, qpu, qpo, qpt; char cfg[128] = ""; char buf[32]; char *n, *np, *c, *name; nt->dev = dev; nt->mw_count = ntb_mw_count(dev); spad_count = ntb_spad_count(dev); db_bitmap = ntb_db_valid_mask(dev); db_count = flsll(db_bitmap); KASSERT(db_bitmap == (1 << db_count) - 1, ("Doorbells are not sequential (%jx).\n", db_bitmap)); if (nt->mw_count == 0) { device_printf(dev, "At least 1 memory window required.\n"); return (ENXIO); } - if (spad_count < 6) { - device_printf(dev, "At least 6 scratchpads required.\n"); - return (ENXIO); + nt->compact = (spad_count < 4 + 2 * nt->mw_count); + snprintf(buf, sizeof(buf), "hint.%s.%d.compact", device_get_name(dev), + device_get_unit(dev)); + TUNABLE_INT_FETCH(buf, &nt->compact); + if (nt->compact) { + if (spad_count < 3) { + device_printf(dev, "At least 3 scratchpads required.\n"); + return (ENXIO); + } + if (spad_count < 2 + nt->mw_count) { + nt->mw_count = spad_count - 2; + device_printf(dev, "Scratchpads enough only for %d " + "memory windows.\n", nt->mw_count); + } + } else { + if (spad_count < 6) { + device_printf(dev, "At least 6 scratchpads required.\n"); + return (ENXIO); + } + if (spad_count < 4 + 2 * nt->mw_count) { + nt->mw_count = (spad_count - 4) / 2; + device_printf(dev, "Scratchpads enough only for %d " + "memory windows.\n", nt->mw_count); + } } - if (spad_count < 4 + 2 * nt->mw_count) { - nt->mw_count = (spad_count - 4) / 2; - device_printf(dev, "Scratchpads enough only for %d " - "memory windows.\n", nt->mw_count); - } if (db_bitmap == 0) { device_printf(dev, "At least one doorbell required.\n"); return (ENXIO); } nt->mw_vec = malloc(nt->mw_count * sizeof(*nt->mw_vec), M_NTB_T, M_WAITOK | M_ZERO); for (i = 0; i < nt->mw_count; i++) { mw = &nt->mw_vec[i]; rc = ntb_mw_get_range(dev, i, &mw->phys_addr, &mw->vbase, &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size, &mw->addr_limit); if (rc != 0) goto err; mw->tx_size = mw->phys_size; if (max_mw_size != 0 && mw->tx_size > max_mw_size) { device_printf(dev, "Memory window %d limited from " - "%ju to %ju\n", i, (uintmax_t)mw->phys_size, + "%ju to %ju\n", i, (uintmax_t)mw->tx_size, max_mw_size); mw->tx_size = max_mw_size; } + if (nt->compact && mw->tx_size > UINT32_MAX) { + device_printf(dev, "Memory window %d is too big " + "(%ju)\n", i, (uintmax_t)mw->tx_size); + rc = ENXIO; + goto err; + } mw->rx_size = 0; mw->buff_size = 0; mw->virt_addr = NULL; mw->dma_addr = 0; rc = ntb_mw_set_wc(dev, i, VM_MEMATTR_WRITE_COMBINING); if (rc) ntb_printf(0, "Unable to set mw%d caching\n", i); /* * Try to preallocate receive memory early, since there may * be not enough contiguous memory later. It is quite likely * that NTB windows are symmetric and this allocation remain, * but even if not, we will just reallocate it later. */ ntb_set_mw(nt, i, mw->tx_size); } qpu = 0; qpo = imin(db_count, nt->mw_count); qpt = db_count; snprintf(buf, sizeof(buf), "hint.%s.%d.config", device_get_name(dev), device_get_unit(dev)); TUNABLE_STR_FETCH(buf, cfg, sizeof(cfg)); n = cfg; i = 0; while ((c = strsep(&n, ",")) != NULL) { np = c; name = strsep(&np, ":"); if (name != NULL && name[0] == 0) name = NULL; qp = (np && np[0] != 0) ? strtol(np, NULL, 10) : qpo - qpu; if (qp <= 0) qp = 1; if (qp > qpt - qpu) { device_printf(dev, "Not enough resources for config\n"); break; } nc = malloc(sizeof(*nc), M_DEVBUF, M_WAITOK | M_ZERO); nc->consumer = i; nc->qpoff = qpu; nc->qpcnt = qp; nc->dev = device_add_child(dev, name, -1); if (nc->dev == NULL) { device_printf(dev, "Can not add child.\n"); break; } device_set_ivars(nc->dev, nc); *cpp = nc; cpp = &nc->next; if (bootverbose) { device_printf(dev, "%d \"%s\": queues %d", i, name, qpu); if (qp > 1) printf("-%d", qpu + qp - 1); printf("\n"); } qpu += qp; i++; } nt->qp_count = qpu; nt->qp_vec = malloc(nt->qp_count * sizeof(*nt->qp_vec), M_NTB_T, M_WAITOK | M_ZERO); for (i = 0; i < nt->qp_count; i++) ntb_transport_init_queue(nt, i); callout_init(&nt->link_work, 0); callout_init(&nt->link_watchdog, 0); TASK_INIT(&nt->link_cleanup, 0, ntb_transport_link_cleanup_work, nt); nt->link_is_up = false; rc = ntb_set_ctx(dev, nt, &ntb_transport_ops); if (rc != 0) goto err; ntb_link_enable(dev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); for (i = 0; i < nt->mw_count; i++) { mw = &nt->mw_vec[i]; rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); if (rc != 0) ntb_printf(0, "load time mw%d xlat fails, rc %d\n", i, rc); } if (enable_xeon_watchdog != 0) callout_reset(&nt->link_watchdog, 0, xeon_link_watchdog_hb, nt); bus_generic_attach(dev); return (0); err: free(nt->qp_vec, M_NTB_T); free(nt->mw_vec, M_NTB_T); return (rc); } static int ntb_transport_detach(device_t dev) { struct ntb_transport_ctx *nt = device_get_softc(dev); struct ntb_transport_child **cpp = &nt->child; struct ntb_transport_child *nc; int error = 0, i; while ((nc = *cpp) != NULL) { *cpp = (*cpp)->next; error = device_delete_child(dev, nc->dev); if (error) break; free(nc, M_DEVBUF); } KASSERT(nt->qp_bitmap == 0, ("Some queues not freed on detach (%jx)", nt->qp_bitmap)); ntb_transport_link_cleanup(nt); taskqueue_drain(taskqueue_swi, &nt->link_cleanup); callout_drain(&nt->link_work); callout_drain(&nt->link_watchdog); ntb_link_disable(dev); ntb_clear_ctx(dev); for (i = 0; i < nt->mw_count; i++) ntb_free_mw(nt, i); free(nt->qp_vec, M_NTB_T); free(nt->mw_vec, M_NTB_T); return (0); } static int ntb_transport_print_child(device_t dev, device_t child) { struct ntb_transport_child *nc = device_get_ivars(child); int retval; retval = bus_print_child_header(dev, child); if (nc->qpcnt > 0) { printf(" queue %d", nc->qpoff); if (nc->qpcnt > 1) printf("-%d", nc->qpoff + nc->qpcnt - 1); } retval += printf(" at consumer %d", nc->consumer); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } static int ntb_transport_child_location_str(device_t dev, device_t child, char *buf, size_t buflen) { struct ntb_transport_child *nc = device_get_ivars(child); snprintf(buf, buflen, "consumer=%d", nc->consumer); return (0); } int ntb_transport_queue_count(device_t dev) { struct ntb_transport_child *nc = device_get_ivars(dev); return (nc->qpcnt); } static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num) { struct ntb_transport_mw *mw; struct ntb_transport_qp *qp; vm_paddr_t mw_base; uint64_t qp_offset; size_t tx_size; unsigned num_qps_mw, mw_num, mw_count; mw_count = nt->mw_count; mw_num = QP_TO_MW(nt, qp_num); mw = &nt->mw_vec[mw_num]; qp = &nt->qp_vec[qp_num]; qp->qp_num = qp_num; qp->transport = nt; qp->dev = nt->dev; qp->client_ready = false; qp->event_handler = NULL; ntb_qp_link_down_reset(qp); if (mw_num < nt->qp_count % mw_count) num_qps_mw = nt->qp_count / mw_count + 1; else num_qps_mw = nt->qp_count / mw_count; mw_base = mw->phys_addr; tx_size = mw->tx_size / num_qps_mw; qp_offset = tx_size * (qp_num / mw_count); qp->tx_mw = mw->vbase + qp_offset; KASSERT(qp->tx_mw != NULL, ("uh oh?")); /* XXX Assumes that a vm_paddr_t is equivalent to bus_addr_t */ qp->tx_mw_phys = mw_base + qp_offset; KASSERT(qp->tx_mw_phys != 0, ("uh oh?")); tx_size -= sizeof(struct ntb_rx_info); qp->rx_info = (void *)(qp->tx_mw + tx_size); /* Due to house-keeping, there must be at least 2 buffs */ qp->tx_max_frame = qmin(transport_mtu, tx_size / 2); qp->tx_max_entry = tx_size / qp->tx_max_frame; callout_init(&qp->link_work, 0); callout_init(&qp->rx_full, 1); mtx_init(&qp->ntb_rx_q_lock, "ntb rx q", NULL, MTX_SPIN); mtx_init(&qp->ntb_tx_free_q_lock, "ntb tx free q", NULL, MTX_SPIN); mtx_init(&qp->tx_lock, "ntb transport tx", NULL, MTX_DEF); TASK_INIT(&qp->rxc_db_work, 0, ntb_transport_rxc_db, qp); qp->rxc_tq = taskqueue_create("ntbt_rx", M_WAITOK, taskqueue_thread_enqueue, &qp->rxc_tq); taskqueue_start_threads(&qp->rxc_tq, 1, PI_NET, "%s rx%d", device_get_nameunit(nt->dev), qp_num); STAILQ_INIT(&qp->rx_post_q); STAILQ_INIT(&qp->rx_pend_q); STAILQ_INIT(&qp->tx_free_q); } void ntb_transport_free_queue(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; struct ntb_queue_entry *entry; callout_drain(&qp->link_work); ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); taskqueue_drain_all(qp->rxc_tq); taskqueue_free(qp->rxc_tq); qp->cb_data = NULL; qp->rx_handler = NULL; qp->tx_handler = NULL; qp->event_handler = NULL; while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) free(entry, M_NTB_T); while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) free(entry, M_NTB_T); while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) free(entry, M_NTB_T); nt->qp_bitmap &= ~(1 << qp->qp_num); } /** * ntb_transport_create_queue - Create a new NTB transport layer queue * @rx_handler: receive callback function * @tx_handler: transmit callback function * @event_handler: event callback function * * Create a new NTB transport layer queue and provide the queue with a callback * routine for both transmit and receive. The receive callback routine will be * used to pass up data when the transport has received it on the queue. The * transmit callback routine will be called when the transport has completed the * transmission of the data on the queue and the data is ready to be freed. * * RETURNS: pointer to newly created ntb_queue, NULL on error. */ struct ntb_transport_qp * ntb_transport_create_queue(device_t dev, int q, const struct ntb_queue_handlers *handlers, void *data) { struct ntb_transport_child *nc = device_get_ivars(dev); struct ntb_transport_ctx *nt = device_get_softc(device_get_parent(dev)); struct ntb_queue_entry *entry; struct ntb_transport_qp *qp; int i; if (q < 0 || q >= nc->qpcnt) return (NULL); qp = &nt->qp_vec[nc->qpoff + q]; nt->qp_bitmap |= (1 << qp->qp_num); qp->cb_data = data; qp->rx_handler = handlers->rx_handler; qp->tx_handler = handlers->tx_handler; qp->event_handler = handlers->event_handler; for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); entry->cb_data = data; entry->buf = NULL; entry->len = transport_mtu; entry->qp = qp; ntb_list_add(&qp->ntb_rx_q_lock, entry, &qp->rx_pend_q); } for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); entry->qp = qp; ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); } ntb_db_clear(dev, 1ull << qp->qp_num); return (qp); } /** * ntb_transport_link_up - Notify NTB transport of client readiness to use queue * @qp: NTB transport layer queue to be enabled * * Notify NTB transport layer of client readiness to use queue */ void ntb_transport_link_up(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; qp->client_ready = true; ntb_printf(2, "qp %d client ready\n", qp->qp_num); if (nt->link_is_up) callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); } /* Transport Tx */ /** * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry * @qp: NTB transport layer queue the entry is to be enqueued on * @cb: per buffer pointer for callback function to use * @data: pointer to data buffer that will be sent * @len: length of the data buffer * * Enqueue a new transmit buffer onto the transport queue from which a NTB * payload will be transmitted. This assumes that a lock is being held to * serialize access to the qp. * * RETURNS: An appropriate ERRNO error value on error, or zero for success. */ int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, unsigned int len) { struct ntb_queue_entry *entry; int rc; if (!qp->link_is_up || len == 0) { CTR0(KTR_NTB, "TX: link not up"); return (EINVAL); } entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); if (entry == NULL) { CTR0(KTR_NTB, "TX: could not get entry from tx_free_q"); qp->tx_err_no_buf++; return (EBUSY); } CTR1(KTR_NTB, "TX: got entry %p from tx_free_q", entry); entry->cb_data = cb; entry->buf = data; entry->len = len; entry->flags = 0; mtx_lock(&qp->tx_lock); rc = ntb_process_tx(qp, entry); mtx_unlock(&qp->tx_lock); if (rc != 0) { ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); CTR1(KTR_NTB, "TX: process_tx failed. Returning entry %p to tx_free_q", entry); } return (rc); } static void ntb_tx_copy_callback(void *data) { struct ntb_queue_entry *entry = data; struct ntb_transport_qp *qp = entry->qp; struct ntb_payload_header *hdr = entry->x_hdr; iowrite32(entry->flags | NTBT_DESC_DONE_FLAG, &hdr->flags); CTR1(KTR_NTB, "TX: hdr %p set DESC_DONE", hdr); ntb_peer_db_set(qp->dev, 1ull << qp->qp_num); /* * The entry length can only be zero if the packet is intended to be a * "link down" or similar. Since no payload is being sent in these * cases, there is nothing to add to the completion queue. */ if (entry->len > 0) { qp->tx_bytes += entry->len; if (qp->tx_handler) qp->tx_handler(qp, qp->cb_data, entry->buf, entry->len); else m_freem(entry->buf); entry->buf = NULL; } CTR3(KTR_NTB, "TX: entry %p sent. hdr->ver = %u, hdr->flags = 0x%x, Returning " "to tx_free_q", entry, hdr->ver, hdr->flags); ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); } static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void *offset) { CTR2(KTR_NTB, "TX: copying %d bytes to offset %p", entry->len, offset); if (entry->buf != NULL) { m_copydata((struct mbuf *)entry->buf, 0, entry->len, offset); /* * Ensure that the data is fully copied before setting the * flags */ wmb(); } ntb_tx_copy_callback(entry); } static void ntb_async_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) { struct ntb_payload_header *hdr; void *offset; offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index; hdr = (struct ntb_payload_header *)((char *)offset + qp->tx_max_frame - sizeof(struct ntb_payload_header)); entry->x_hdr = hdr; iowrite32(entry->len, &hdr->len); iowrite32(qp->tx_pkts, &hdr->ver); ntb_memcpy_tx(entry, offset); } static int ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) { CTR3(KTR_NTB, "TX: process_tx: tx_pkts=%lu, tx_index=%u, remote entry=%u", qp->tx_pkts, qp->tx_index, qp->remote_rx_info->entry); if (qp->tx_index == qp->remote_rx_info->entry) { CTR0(KTR_NTB, "TX: ring full"); qp->tx_ring_full++; return (EAGAIN); } if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { if (qp->tx_handler != NULL) qp->tx_handler(qp, qp->cb_data, entry->buf, EIO); else m_freem(entry->buf); entry->buf = NULL; ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); CTR1(KTR_NTB, "TX: frame too big. returning entry %p to tx_free_q", entry); return (0); } CTR2(KTR_NTB, "TX: copying entry %p to index %u", entry, qp->tx_index); ntb_async_tx(qp, entry); qp->tx_index++; qp->tx_index %= qp->tx_max_entry; qp->tx_pkts++; return (0); } /* Transport Rx */ static void ntb_transport_rxc_db(void *arg, int pending __unused) { struct ntb_transport_qp *qp = arg; uint64_t qp_mask = 1ull << qp->qp_num; int rc; CTR0(KTR_NTB, "RX: transport_rx"); again: while ((rc = ntb_process_rxc(qp)) == 0) ; CTR1(KTR_NTB, "RX: process_rxc returned %d", rc); if ((ntb_db_read(qp->dev) & qp_mask) != 0) { /* If db is set, clear it and check queue once more. */ ntb_db_clear(qp->dev, qp_mask); goto again; } if (qp->link_is_up) ntb_db_clear_mask(qp->dev, qp_mask); } static int ntb_process_rxc(struct ntb_transport_qp *qp) { struct ntb_payload_header *hdr; struct ntb_queue_entry *entry; caddr_t offset; offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; hdr = (void *)(offset + qp->rx_max_frame - sizeof(struct ntb_payload_header)); CTR1(KTR_NTB, "RX: process_rxc rx_index = %u", qp->rx_index); if ((hdr->flags & NTBT_DESC_DONE_FLAG) == 0) { CTR0(KTR_NTB, "RX: hdr not done"); qp->rx_ring_empty++; return (EAGAIN); } if ((hdr->flags & NTBT_LINK_DOWN_FLAG) != 0) { CTR0(KTR_NTB, "RX: link down"); ntb_qp_link_down(qp); hdr->flags = 0; return (EAGAIN); } if (hdr->ver != (uint32_t)qp->rx_pkts) { CTR2(KTR_NTB,"RX: ver != rx_pkts (%x != %lx). " "Returning entry to rx_pend_q", hdr->ver, qp->rx_pkts); qp->rx_err_ver++; return (EIO); } entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); if (entry == NULL) { qp->rx_err_no_buf++; CTR0(KTR_NTB, "RX: No entries in rx_pend_q"); return (EAGAIN); } callout_stop(&qp->rx_full); CTR1(KTR_NTB, "RX: rx entry %p from rx_pend_q", entry); entry->x_hdr = hdr; entry->index = qp->rx_index; if (hdr->len > entry->len) { CTR2(KTR_NTB, "RX: len too long. Wanted %ju got %ju", (uintmax_t)hdr->len, (uintmax_t)entry->len); qp->rx_err_oflow++; entry->len = -EIO; entry->flags |= NTBT_DESC_DONE_FLAG; ntb_complete_rxc(qp); } else { qp->rx_bytes += hdr->len; qp->rx_pkts++; CTR1(KTR_NTB, "RX: received %ld rx_pkts", qp->rx_pkts); entry->len = hdr->len; ntb_memcpy_rx(qp, entry, offset); } qp->rx_index++; qp->rx_index %= qp->rx_max_entry; return (0); } static void ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, void *offset) { struct ifnet *ifp = entry->cb_data; unsigned int len = entry->len; CTR2(KTR_NTB, "RX: copying %d bytes from offset %p", len, offset); entry->buf = (void *)m_devget(offset, len, 0, ifp, NULL); if (entry->buf == NULL) entry->len = -ENOMEM; /* Ensure that the data is globally visible before clearing the flag */ wmb(); CTR2(KTR_NTB, "RX: copied entry %p to mbuf %p.", entry, entry->buf); ntb_rx_copy_callback(qp, entry); } static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data) { struct ntb_queue_entry *entry; entry = data; entry->flags |= NTBT_DESC_DONE_FLAG; ntb_complete_rxc(qp); } static void ntb_complete_rxc(struct ntb_transport_qp *qp) { struct ntb_queue_entry *entry; struct mbuf *m; unsigned len; CTR0(KTR_NTB, "RX: rx_completion_task"); mtx_lock_spin(&qp->ntb_rx_q_lock); while (!STAILQ_EMPTY(&qp->rx_post_q)) { entry = STAILQ_FIRST(&qp->rx_post_q); if ((entry->flags & NTBT_DESC_DONE_FLAG) == 0) break; entry->x_hdr->flags = 0; iowrite32(entry->index, &qp->rx_info->entry); STAILQ_REMOVE_HEAD(&qp->rx_post_q, entry); len = entry->len; m = entry->buf; /* * Re-initialize queue_entry for reuse; rx_handler takes * ownership of the mbuf. */ entry->buf = NULL; entry->len = transport_mtu; entry->cb_data = qp->cb_data; STAILQ_INSERT_TAIL(&qp->rx_pend_q, entry, entry); mtx_unlock_spin(&qp->ntb_rx_q_lock); CTR2(KTR_NTB, "RX: completing entry %p, mbuf %p", entry, m); if (qp->rx_handler != NULL && qp->client_ready) qp->rx_handler(qp, qp->cb_data, m, len); else m_freem(m); mtx_lock_spin(&qp->ntb_rx_q_lock); } mtx_unlock_spin(&qp->ntb_rx_q_lock); } static void ntb_transport_doorbell_callback(void *data, uint32_t vector) { struct ntb_transport_ctx *nt = data; struct ntb_transport_qp *qp; uint64_t vec_mask; unsigned qp_num; vec_mask = ntb_db_vector_mask(nt->dev, vector); vec_mask &= nt->qp_bitmap; if ((vec_mask & (vec_mask - 1)) != 0) vec_mask &= ntb_db_read(nt->dev); if (vec_mask != 0) { ntb_db_set_mask(nt->dev, vec_mask); ntb_db_clear(nt->dev, vec_mask); } while (vec_mask != 0) { qp_num = ffsll(vec_mask) - 1; qp = &nt->qp_vec[qp_num]; if (qp->link_is_up) taskqueue_enqueue(qp->rxc_tq, &qp->rxc_db_work); vec_mask &= ~(1ull << qp_num); } } /* Link Event handler */ static void ntb_transport_event_callback(void *data) { struct ntb_transport_ctx *nt = data; if (ntb_link_is_up(nt->dev, &nt->link_speed, &nt->link_width)) { ntb_printf(1, "HW link up\n"); callout_reset(&nt->link_work, 0, ntb_transport_link_work, nt); } else { ntb_printf(1, "HW link down\n"); taskqueue_enqueue(taskqueue_swi, &nt->link_cleanup); } } /* Link bring up */ static void ntb_transport_link_work(void *arg) { struct ntb_transport_ctx *nt = arg; struct ntb_transport_mw *mw; device_t dev = nt->dev; struct ntb_transport_qp *qp; uint64_t val64, size; uint32_t val; unsigned i; int rc; /* send the local info, in the opposite order of the way we read it */ - for (i = 0; i < nt->mw_count; i++) { - size = nt->mw_vec[i].tx_size; - ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), - size >> 32); - ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); + if (nt->compact) { + for (i = 0; i < nt->mw_count; i++) { + size = nt->mw_vec[i].tx_size; + KASSERT(size <= UINT32_MAX, ("size too big (%jx)", size)); + ntb_peer_spad_write(dev, NTBTC_MW0_SZ + i, size); + } + ntb_peer_spad_write(dev, NTBTC_QP_LINKS, 0); + ntb_peer_spad_write(dev, NTBTC_PARAMS, + (nt->qp_count << 24) | (nt->mw_count << 16) | + NTB_TRANSPORT_VERSION); + } else { + for (i = 0; i < nt->mw_count; i++) { + size = nt->mw_vec[i].tx_size; + ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), + size >> 32); + ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); + } + ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); + ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); + ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); + ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); } - ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); - ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); - ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); - ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); /* Query the remote side for its info */ val = 0; - ntb_spad_read(dev, NTBT_VERSION, &val); - if (val != NTB_TRANSPORT_VERSION) - goto out; + if (nt->compact) { + ntb_spad_read(dev, NTBTC_PARAMS, &val); + if (val != ((nt->qp_count << 24) | (nt->mw_count << 16) | + NTB_TRANSPORT_VERSION)) + goto out; + } else { + ntb_spad_read(dev, NTBT_VERSION, &val); + if (val != NTB_TRANSPORT_VERSION) + goto out; - ntb_spad_read(dev, NTBT_NUM_QPS, &val); - if (val != nt->qp_count) - goto out; + ntb_spad_read(dev, NTBT_NUM_QPS, &val); + if (val != nt->qp_count) + goto out; - ntb_spad_read(dev, NTBT_NUM_MWS, &val); - if (val != nt->mw_count) - goto out; + ntb_spad_read(dev, NTBT_NUM_MWS, &val); + if (val != nt->mw_count) + goto out; + } for (i = 0; i < nt->mw_count; i++) { - ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); - val64 = (uint64_t)val << 32; + if (nt->compact) { + ntb_spad_read(dev, NTBTC_MW0_SZ + i, &val); + val64 = val; + } else { + ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); + val64 = (uint64_t)val << 32; - ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); - val64 |= val; + ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); + val64 |= val; + } mw = &nt->mw_vec[i]; mw->rx_size = val64; val64 = roundup(val64, mw->xlat_align_size); if (mw->buff_size != val64) { rc = ntb_set_mw(nt, i, val64); if (rc != 0) { ntb_printf(0, "link up set mw%d fails, rc %d\n", i, rc); goto free_mws; } /* Notify HW the memory location of the receive buffer */ rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); if (rc != 0) { ntb_printf(0, "link up mw%d xlat fails, rc %d\n", i, rc); goto free_mws; } } } nt->link_is_up = true; ntb_printf(1, "transport link up\n"); for (i = 0; i < nt->qp_count; i++) { qp = &nt->qp_vec[i]; ntb_transport_setup_qp_mw(nt, i); if (qp->client_ready) callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); } return; free_mws: for (i = 0; i < nt->mw_count; i++) ntb_free_mw(nt, i); out: if (ntb_link_is_up(dev, &nt->link_speed, &nt->link_width)) callout_reset(&nt->link_work, NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_transport_link_work, nt); } struct ntb_load_cb_args { bus_addr_t addr; int error; }; static void ntb_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct ntb_load_cb_args *cba = (struct ntb_load_cb_args *)xsc; if (!(cba->error = error)) cba->addr = segs[0].ds_addr; } static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, size_t size) { struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; struct ntb_load_cb_args cba; size_t buff_size; if (size == 0) return (EINVAL); buff_size = roundup(size, mw->xlat_align_size); /* No need to re-setup */ if (mw->buff_size == buff_size) return (0); if (mw->buff_size != 0) ntb_free_mw(nt, num_mw); /* Alloc memory for receiving data. Must be aligned */ mw->buff_size = buff_size; if (bus_dma_tag_create(bus_get_dma_tag(nt->dev), mw->xlat_align, 0, mw->addr_limit, BUS_SPACE_MAXADDR, NULL, NULL, mw->buff_size, 1, mw->buff_size, 0, NULL, NULL, &mw->dma_tag)) { ntb_printf(0, "Unable to create MW tag of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } if (bus_dmamem_alloc(mw->dma_tag, (void **)&mw->virt_addr, BUS_DMA_WAITOK | BUS_DMA_ZERO, &mw->dma_map)) { bus_dma_tag_destroy(mw->dma_tag); ntb_printf(0, "Unable to allocate MW buffer of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } if (bus_dmamap_load(mw->dma_tag, mw->dma_map, mw->virt_addr, mw->buff_size, ntb_load_cb, &cba, BUS_DMA_NOWAIT) || cba.error) { bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); bus_dma_tag_destroy(mw->dma_tag); ntb_printf(0, "Unable to load MW buffer of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } mw->dma_addr = cba.addr; return (0); } static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) { struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; if (mw->virt_addr == NULL) return; ntb_mw_clear_trans(nt->dev, num_mw); bus_dmamap_unload(mw->dma_tag, mw->dma_map); bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); bus_dma_tag_destroy(mw->dma_tag); mw->buff_size = 0; mw->virt_addr = NULL; } static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num) { struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; struct ntb_transport_mw *mw; void *offset; ntb_q_idx_t i; size_t rx_size; unsigned num_qps_mw, mw_num, mw_count; mw_count = nt->mw_count; mw_num = QP_TO_MW(nt, qp_num); mw = &nt->mw_vec[mw_num]; if (mw->virt_addr == NULL) return (ENOMEM); if (mw_num < nt->qp_count % mw_count) num_qps_mw = nt->qp_count / mw_count + 1; else num_qps_mw = nt->qp_count / mw_count; rx_size = mw->rx_size / num_qps_mw; qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); rx_size -= sizeof(struct ntb_rx_info); qp->remote_rx_info = (void*)(qp->rx_buff + rx_size); /* Due to house-keeping, there must be at least 2 buffs */ qp->rx_max_frame = qmin(transport_mtu, rx_size / 2); qp->rx_max_entry = rx_size / qp->rx_max_frame; qp->rx_index = 0; qp->remote_rx_info->entry = qp->rx_max_entry - 1; /* Set up the hdr offsets with 0s */ for (i = 0; i < qp->rx_max_entry; i++) { offset = (void *)(qp->rx_buff + qp->rx_max_frame * (i + 1) - sizeof(struct ntb_payload_header)); memset(offset, 0, sizeof(struct ntb_payload_header)); } qp->rx_pkts = 0; qp->tx_pkts = 0; qp->tx_index = 0; return (0); } static void ntb_qp_link_work(void *arg) { struct ntb_transport_qp *qp = arg; device_t dev = qp->dev; struct ntb_transport_ctx *nt = qp->transport; int i; uint32_t val; /* Report queues that are up on our side */ for (i = 0, val = 0; i < nt->qp_count; i++) { if (nt->qp_vec[i].client_ready) val |= (1 << i); } ntb_peer_spad_write(dev, NTBT_QP_LINKS, val); /* See if the remote side is up */ ntb_spad_read(dev, NTBT_QP_LINKS, &val); if ((val & (1ull << qp->qp_num)) != 0) { ntb_printf(2, "qp %d link up\n", qp->qp_num); qp->link_is_up = true; if (qp->event_handler != NULL) qp->event_handler(qp->cb_data, NTB_LINK_UP); ntb_db_clear_mask(dev, 1ull << qp->qp_num); } else if (nt->link_is_up) callout_reset(&qp->link_work, NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_qp_link_work, qp); } /* Link down event*/ static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) { struct ntb_transport_qp *qp; int i; callout_drain(&nt->link_work); nt->link_is_up = 0; /* Pass along the info to any clients */ for (i = 0; i < nt->qp_count; i++) { if ((nt->qp_bitmap & (1 << i)) != 0) { qp = &nt->qp_vec[i]; ntb_qp_link_cleanup(qp); callout_drain(&qp->link_work); } } /* * The scratchpad registers keep the values if the remote side * goes down, blast them now to give them a sane value the next * time they are accessed */ ntb_spad_clear(nt->dev); } static void ntb_transport_link_cleanup_work(void *arg, int pending __unused) { ntb_transport_link_cleanup(arg); } static void ntb_qp_link_down(struct ntb_transport_qp *qp) { ntb_qp_link_cleanup(qp); } static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp) { qp->link_is_up = false; ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); qp->tx_index = qp->rx_index = 0; qp->tx_bytes = qp->rx_bytes = 0; qp->tx_pkts = qp->rx_pkts = 0; qp->rx_ring_empty = 0; qp->tx_ring_full = 0; qp->rx_err_no_buf = qp->tx_err_no_buf = 0; qp->rx_err_oflow = qp->rx_err_ver = 0; } static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp) { callout_drain(&qp->link_work); ntb_qp_link_down_reset(qp); if (qp->event_handler != NULL) qp->event_handler(qp->cb_data, NTB_LINK_DOWN); } /* Link commanded down */ /** * ntb_transport_link_down - Notify NTB transport to no longer enqueue data * @qp: NTB transport layer queue to be disabled * * Notify NTB transport layer of client's desire to no longer receive data on * transport queue specified. It is the client's responsibility to ensure all * entries on queue are purged or otherwise handled appropriately. */ void ntb_transport_link_down(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; int i; uint32_t val; qp->client_ready = false; for (i = 0, val = 0; i < nt->qp_count; i++) { if (nt->qp_vec[i].client_ready) val |= (1 << i); } ntb_peer_spad_write(qp->dev, NTBT_QP_LINKS, val); if (qp->link_is_up) ntb_send_link_down(qp); else callout_drain(&qp->link_work); } /** * ntb_transport_link_query - Query transport link state * @qp: NTB transport layer queue to be queried * * Query connectivity to the remote system of the NTB transport queue * * RETURNS: true for link up or false for link down */ bool ntb_transport_link_query(struct ntb_transport_qp *qp) { return (qp->link_is_up); } /** * ntb_transport_link_speed - Query transport link speed * @qp: NTB transport layer queue to be queried * * Query connection speed to the remote system of the NTB transport queue * * RETURNS: link speed in bits per second */ uint64_t ntb_transport_link_speed(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; uint64_t rate; if (!nt->link_is_up) return (0); switch (nt->link_speed) { case NTB_SPEED_GEN1: rate = 2500000000 * 8 / 10; break; case NTB_SPEED_GEN2: rate = 5000000000 * 8 / 10; break; case NTB_SPEED_GEN3: rate = 8000000000 * 128 / 130; break; case NTB_SPEED_GEN4: rate = 16000000000 * 128 / 130; break; default: return (0); } if (nt->link_width <= 0) return (0); return (rate * nt->link_width); } static void ntb_send_link_down(struct ntb_transport_qp *qp) { struct ntb_queue_entry *entry; int i, rc; if (!qp->link_is_up) return; for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); if (entry != NULL) break; pause("NTB Wait for link down", hz / 10); } if (entry == NULL) return; entry->cb_data = NULL; entry->buf = NULL; entry->len = 0; entry->flags = NTBT_LINK_DOWN_FLAG; mtx_lock(&qp->tx_lock); rc = ntb_process_tx(qp, entry); mtx_unlock(&qp->tx_lock); if (rc != 0) printf("ntb: Failed to send link down\n"); ntb_qp_link_down_reset(qp); } /* List Management */ static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, struct ntb_queue_list *list) { mtx_lock_spin(lock); STAILQ_INSERT_TAIL(list, entry, entry); mtx_unlock_spin(lock); } static struct ntb_queue_entry * ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list) { struct ntb_queue_entry *entry; mtx_lock_spin(lock); if (STAILQ_EMPTY(list)) { entry = NULL; goto out; } entry = STAILQ_FIRST(list); STAILQ_REMOVE_HEAD(list, entry); out: mtx_unlock_spin(lock); return (entry); } static struct ntb_queue_entry * ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, struct ntb_queue_list *to) { struct ntb_queue_entry *entry; mtx_lock_spin(lock); if (STAILQ_EMPTY(from)) { entry = NULL; goto out; } entry = STAILQ_FIRST(from); STAILQ_REMOVE_HEAD(from, entry); STAILQ_INSERT_TAIL(to, entry, entry); out: mtx_unlock_spin(lock); return (entry); } /** * ntb_transport_qp_num - Query the qp number * @qp: NTB transport layer queue to be queried * * Query qp number of the NTB transport queue * * RETURNS: a zero based number specifying the qp number */ unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) { return (qp->qp_num); } /** * ntb_transport_max_size - Query the max payload size of a qp * @qp: NTB transport layer queue to be queried * * Query the maximum payload size permissible on the given qp * * RETURNS: the max payload size of a qp */ unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp) { return (qp->tx_max_frame - sizeof(struct ntb_payload_header)); } unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) { unsigned int head = qp->tx_index; unsigned int tail = qp->remote_rx_info->entry; return (tail >= head ? tail - head : qp->tx_max_entry + tail - head); } static device_method_t ntb_transport_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ntb_transport_probe), DEVMETHOD(device_attach, ntb_transport_attach), DEVMETHOD(device_detach, ntb_transport_detach), /* Bus interface */ DEVMETHOD(bus_child_location_str, ntb_transport_child_location_str), DEVMETHOD(bus_print_child, ntb_transport_print_child), DEVMETHOD_END }; devclass_t ntb_transport_devclass; static DEFINE_CLASS_0(ntb_transport, ntb_transport_driver, ntb_transport_methods, sizeof(struct ntb_transport_ctx)); DRIVER_MODULE(ntb_transport, ntb_hw, ntb_transport_driver, ntb_transport_devclass, NULL, NULL); MODULE_DEPEND(ntb_transport, ntb, 1, 1, 1); MODULE_VERSION(ntb_transport, 1);