Index: head/sys/amd64/amd64/cpu_switch.S =================================================================== --- head/sys/amd64/amd64/cpu_switch.S (revision 354094) +++ head/sys/amd64/amd64/cpu_switch.S (revision 354095) @@ -1,495 +1,496 @@ /*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include "assym.inc" #include "opt_sched.h" /*****************************************************************************/ /* Scheduling */ /*****************************************************************************/ .text /* * cpu_throw() * * This is the second half of cpu_switch(). It is used when the current * thread is either a dummy or slated to die, and we no longer care * about its state. This is only a slight optimization and is probably * not worth it anymore. Note that we need to clear the pm_active bits so * we do need the old proc if it still exists. * %rdi = oldtd * %rsi = newtd */ ENTRY(cpu_throw) movq %rsi,%r12 movq %rsi,%rdi call pmap_activate_sw jmp sw1 END(cpu_throw) /* * cpu_switch(old, new, mtx) * * Save the current thread state, then select the next thread to run * and load its state. * %rdi = oldtd * %rsi = newtd * %rdx = mtx */ ENTRY(cpu_switch) /* Switch to new thread. First, save context. */ - movq TD_PCB(%rdi),%r8 + leaq TD_MD_PCB(%rdi),%r8 movq (%rsp),%rax /* Hardware registers */ movq %r15,PCB_R15(%r8) movq %r14,PCB_R14(%r8) movq %r13,PCB_R13(%r8) movq %r12,PCB_R12(%r8) movq %rbp,PCB_RBP(%r8) movq %rsp,PCB_RSP(%r8) movq %rbx,PCB_RBX(%r8) movq %rax,PCB_RIP(%r8) testl $PCB_FULL_IRET,PCB_FLAGS(%r8) jnz 2f orl $PCB_FULL_IRET,PCB_FLAGS(%r8) testl $TDP_KTHREAD,TD_PFLAGS(%rdi) jnz 2f testb $CPUID_STDEXT_FSGSBASE,cpu_stdext_feature(%rip) jz 2f movl %fs,%eax cmpl $KUF32SEL,%eax jne 1f rdfsbase %rax movq %rax,PCB_FSBASE(%r8) 1: movl %gs,%eax cmpl $KUG32SEL,%eax jne 2f movq %rdx,%r12 movl $MSR_KGSBASE,%ecx /* Read user gs base */ rdmsr shlq $32,%rdx orq %rdx,%rax movq %rax,PCB_GSBASE(%r8) movq %r12,%rdx 2: testl $PCB_DBREGS,PCB_FLAGS(%r8) jnz store_dr /* static predict not taken */ done_store_dr: /* have we used fp, and need a save? */ cmpq %rdi,PCPU(FPCURTHREAD) jne 2f movq PCB_SAVEFPU(%r8),%r8 clts cmpl $0,use_xsave(%rip) jne 1f fxsave (%r8) jmp 2f 1: movq %rdx,%rcx movl xsave_mask,%eax movl xsave_mask+4,%edx .globl ctx_switch_xsave ctx_switch_xsave: /* This is patched to xsaveopt if supported, see fpuinit_bsp1() */ xsave (%r8) movq %rcx,%rdx 2: /* Save is done. Now fire up new thread. Leave old vmspace. */ movq %rsi,%r12 movq %rdi,%r13 movq %rdx,%r15 movq %rsi,%rdi callq pmap_activate_sw movq %r15,TD_LOCK(%r13) /* Release the old thread */ sw1: - movq TD_PCB(%r12),%r8 + leaq TD_MD_PCB(%r12),%r8 #if defined(SCHED_ULE) && defined(SMP) movq $blocked_lock, %rdx movq TD_LOCK(%r12),%rcx cmpq %rcx, %rdx je sw1wait sw1cont: #endif /* * At this point, we've switched address spaces and are ready * to load up the rest of the next context. */ /* Skip loading LDT and user fsbase/gsbase for kthreads */ testl $TDP_KTHREAD,TD_PFLAGS(%r12) jnz do_kthread /* * Load ldt register */ movq TD_PROC(%r12),%rcx cmpq $0, P_MD+MD_LDT(%rcx) jne do_ldt xorl %eax,%eax ld_ldt: lldt %ax /* Restore fs base in GDT */ movl PCB_FSBASE(%r8),%eax movq PCPU(FS32P),%rdx movw %ax,2(%rdx) shrl $16,%eax movb %al,4(%rdx) shrl $8,%eax movb %al,7(%rdx) /* Restore gs base in GDT */ movl PCB_GSBASE(%r8),%eax movq PCPU(GS32P),%rdx movw %ax,2(%rdx) shrl $16,%eax movb %al,4(%rdx) shrl $8,%eax movb %al,7(%rdx) do_kthread: /* Do we need to reload tss ? */ movq PCPU(TSSP),%rax movq PCB_TSSP(%r8),%rdx testq %rdx,%rdx cmovzq PCPU(COMMONTSSP),%rdx cmpq %rax,%rdx jne do_tss done_tss: - movq %r8,PCPU(RSP0) + movq TD_MD_STACK_BASE(%r12),%r9 + movq %r9,PCPU(RSP0) movq %r8,PCPU(CURPCB) movq PCPU(PTI_RSP0),%rax cmpq $~0,PCPU(UCR3) - cmove %r8,%rax + cmove %r9,%rax movq %rax,TSS_RSP0(%rdx) movq %r12,PCPU(CURTHREAD) /* into next thread */ /* Test if debug registers should be restored. */ testl $PCB_DBREGS,PCB_FLAGS(%r8) jnz load_dr /* static predict not taken */ done_load_dr: /* Restore context. */ movq PCB_R15(%r8),%r15 movq PCB_R14(%r8),%r14 movq PCB_R13(%r8),%r13 movq PCB_R12(%r8),%r12 movq PCB_RBP(%r8),%rbp movq PCB_RSP(%r8),%rsp movq PCB_RBX(%r8),%rbx movq PCB_RIP(%r8),%rax movq %rax,(%rsp) movq PCPU(CURTHREAD),%rdi call fpu_activate_sw ret /* * We order these strangely for several reasons. * 1: I wanted to use static branch prediction hints * 2: Most athlon64/opteron cpus don't have them. They define * a forward branch as 'predict not taken'. Intel cores have * the 'rep' prefix to invert this. * So, to make it work on both forms of cpu we do the detour. * We use jumps rather than call in order to avoid the stack. */ store_dr: movq %dr7,%rax /* yes, do the save */ movq %dr0,%r15 movq %dr1,%r14 movq %dr2,%r13 movq %dr3,%r12 movq %dr6,%r11 movq %r15,PCB_DR0(%r8) movq %r14,PCB_DR1(%r8) movq %r13,PCB_DR2(%r8) movq %r12,PCB_DR3(%r8) movq %r11,PCB_DR6(%r8) movq %rax,PCB_DR7(%r8) andq $0x0000fc00, %rax /* disable all watchpoints */ movq %rax,%dr7 jmp done_store_dr load_dr: movq %dr7,%rax movq PCB_DR0(%r8),%r15 movq PCB_DR1(%r8),%r14 movq PCB_DR2(%r8),%r13 movq PCB_DR3(%r8),%r12 movq PCB_DR6(%r8),%r11 movq PCB_DR7(%r8),%rcx movq %r15,%dr0 movq %r14,%dr1 /* Preserve reserved bits in %dr7 */ andq $0x0000fc00,%rax andq $~0x0000fc00,%rcx movq %r13,%dr2 movq %r12,%dr3 orq %rcx,%rax movq %r11,%dr6 movq %rax,%dr7 jmp done_load_dr do_tss: movq %rdx,PCPU(TSSP) movq %rdx,%rcx movq PCPU(TSS),%rax movw %cx,2(%rax) shrq $16,%rcx movb %cl,4(%rax) shrq $8,%rcx movb %cl,7(%rax) shrq $8,%rcx movl %ecx,8(%rax) movb $0x89,5(%rax) /* unset busy */ movl $TSSSEL,%eax ltr %ax jmp done_tss do_ldt: movq PCPU(LDT),%rax movq P_MD+MD_LDT_SD(%rcx),%rdx movq %rdx,(%rax) movq P_MD+MD_LDT_SD+8(%rcx),%rdx movq %rdx,8(%rax) movl $LDTSEL,%eax jmp ld_ldt END(cpu_switch) /* * savectx(pcb) * Update pcb, saving current processor state. */ ENTRY(savectx) /* Save caller's return address. */ movq (%rsp),%rax movq %rax,PCB_RIP(%rdi) movq %rbx,PCB_RBX(%rdi) movq %rsp,PCB_RSP(%rdi) movq %rbp,PCB_RBP(%rdi) movq %r12,PCB_R12(%rdi) movq %r13,PCB_R13(%rdi) movq %r14,PCB_R14(%rdi) movq %r15,PCB_R15(%rdi) movq %cr0,%rax movq %rax,PCB_CR0(%rdi) movq %cr2,%rax movq %rax,PCB_CR2(%rdi) movq %cr3,%rax movq %rax,PCB_CR3(%rdi) movq %cr4,%rax movq %rax,PCB_CR4(%rdi) movq %dr0,%rax movq %rax,PCB_DR0(%rdi) movq %dr1,%rax movq %rax,PCB_DR1(%rdi) movq %dr2,%rax movq %rax,PCB_DR2(%rdi) movq %dr3,%rax movq %rax,PCB_DR3(%rdi) movq %dr6,%rax movq %rax,PCB_DR6(%rdi) movq %dr7,%rax movq %rax,PCB_DR7(%rdi) movl $MSR_FSBASE,%ecx rdmsr movl %eax,PCB_FSBASE(%rdi) movl %edx,PCB_FSBASE+4(%rdi) movl $MSR_GSBASE,%ecx rdmsr movl %eax,PCB_GSBASE(%rdi) movl %edx,PCB_GSBASE+4(%rdi) movl $MSR_KGSBASE,%ecx rdmsr movl %eax,PCB_KGSBASE(%rdi) movl %edx,PCB_KGSBASE+4(%rdi) movl $MSR_EFER,%ecx rdmsr movl %eax,PCB_EFER(%rdi) movl %edx,PCB_EFER+4(%rdi) movl $MSR_STAR,%ecx rdmsr movl %eax,PCB_STAR(%rdi) movl %edx,PCB_STAR+4(%rdi) movl $MSR_LSTAR,%ecx rdmsr movl %eax,PCB_LSTAR(%rdi) movl %edx,PCB_LSTAR+4(%rdi) movl $MSR_CSTAR,%ecx rdmsr movl %eax,PCB_CSTAR(%rdi) movl %edx,PCB_CSTAR+4(%rdi) movl $MSR_SF_MASK,%ecx rdmsr movl %eax,PCB_SFMASK(%rdi) movl %edx,PCB_SFMASK+4(%rdi) sgdt PCB_GDT(%rdi) sidt PCB_IDT(%rdi) sldt PCB_LDT(%rdi) str PCB_TR(%rdi) movl $1,%eax ret END(savectx) /* * resumectx(pcb) * Resuming processor state from pcb. */ ENTRY(resumectx) /* Switch to KPML4phys. */ movq KPML4phys,%rax movq %rax,%cr3 /* Force kernel segment registers. */ movl $KDSEL,%eax movw %ax,%ds movw %ax,%es movw %ax,%ss movl $KUF32SEL,%eax movw %ax,%fs movl $KUG32SEL,%eax movw %ax,%gs movl $MSR_FSBASE,%ecx movl PCB_FSBASE(%rdi),%eax movl 4 + PCB_FSBASE(%rdi),%edx wrmsr movl $MSR_GSBASE,%ecx movl PCB_GSBASE(%rdi),%eax movl 4 + PCB_GSBASE(%rdi),%edx wrmsr movl $MSR_KGSBASE,%ecx movl PCB_KGSBASE(%rdi),%eax movl 4 + PCB_KGSBASE(%rdi),%edx wrmsr /* Restore EFER one more time. */ movl $MSR_EFER,%ecx movl PCB_EFER(%rdi),%eax wrmsr /* Restore fast syscall stuff. */ movl $MSR_STAR,%ecx movl PCB_STAR(%rdi),%eax movl 4 + PCB_STAR(%rdi),%edx wrmsr movl $MSR_LSTAR,%ecx movl PCB_LSTAR(%rdi),%eax movl 4 + PCB_LSTAR(%rdi),%edx wrmsr movl $MSR_CSTAR,%ecx movl PCB_CSTAR(%rdi),%eax movl 4 + PCB_CSTAR(%rdi),%edx wrmsr movl $MSR_SF_MASK,%ecx movl PCB_SFMASK(%rdi),%eax wrmsr /* Restore CR0, CR2, CR4 and CR3. */ movq PCB_CR0(%rdi),%rax movq %rax,%cr0 movq PCB_CR2(%rdi),%rax movq %rax,%cr2 movq PCB_CR4(%rdi),%rax movq %rax,%cr4 movq PCB_CR3(%rdi),%rax movq %rax,%cr3 /* Restore descriptor tables. */ lidt PCB_IDT(%rdi) lldt PCB_LDT(%rdi) #define SDT_SYSTSS 9 #define SDT_SYSBSY 11 /* Clear "task busy" bit and reload TR. */ movq PCPU(TSS),%rax andb $(~SDT_SYSBSY | SDT_SYSTSS),5(%rax) movw PCB_TR(%rdi),%ax ltr %ax #undef SDT_SYSTSS #undef SDT_SYSBSY /* Restore debug registers. */ movq PCB_DR0(%rdi),%rax movq %rax,%dr0 movq PCB_DR1(%rdi),%rax movq %rax,%dr1 movq PCB_DR2(%rdi),%rax movq %rax,%dr2 movq PCB_DR3(%rdi),%rax movq %rax,%dr3 movq PCB_DR6(%rdi),%rax movq %rax,%dr6 movq PCB_DR7(%rdi),%rax movq %rax,%dr7 /* Restore other callee saved registers. */ movq PCB_R15(%rdi),%r15 movq PCB_R14(%rdi),%r14 movq PCB_R13(%rdi),%r13 movq PCB_R12(%rdi),%r12 movq PCB_RBP(%rdi),%rbp movq PCB_RSP(%rdi),%rsp movq PCB_RBX(%rdi),%rbx /* Restore return address. */ movq PCB_RIP(%rdi),%rax movq %rax,(%rsp) xorl %eax,%eax ret END(resumectx) /* Wait for the new thread to become unblocked */ #if defined(SCHED_ULE) && defined(SMP) sw1wait: 1: pause movq TD_LOCK(%r12),%rcx cmpq %rcx, %rdx je 1b jmp sw1cont #endif Index: head/sys/amd64/amd64/genassym.c =================================================================== --- head/sys/amd64/amd64/genassym.c (revision 354094) +++ head/sys/amd64/amd64/genassym.c (revision 354095) @@ -1,275 +1,277 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)genassym.c 5.11 (Berkeley) 5/10/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_hwpmc_hooks.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ASSYM(P_VMSPACE, offsetof(struct proc, p_vmspace)); ASSYM(VM_PMAP, offsetof(struct vmspace, vm_pmap)); ASSYM(PM_ACTIVE, offsetof(struct pmap, pm_active)); ASSYM(P_MD, offsetof(struct proc, p_md)); ASSYM(MD_LDT, offsetof(struct mdproc, md_ldt)); ASSYM(MD_LDT_SD, offsetof(struct mdproc, md_ldt_sd)); ASSYM(MD_EFIRT_TMP, offsetof(struct mdthread, md_efirt_tmp)); ASSYM(TD_LOCK, offsetof(struct thread, td_lock)); ASSYM(TD_FLAGS, offsetof(struct thread, td_flags)); ASSYM(TD_PCB, offsetof(struct thread, td_pcb)); ASSYM(TD_PFLAGS, offsetof(struct thread, td_pflags)); ASSYM(TD_PROC, offsetof(struct thread, td_proc)); ASSYM(TD_FRAME, offsetof(struct thread, td_frame)); ASSYM(TD_MD, offsetof(struct thread, td_md)); +ASSYM(TD_MD_PCB, offsetof(struct thread, td_md.md_pcb)); +ASSYM(TD_MD_STACK_BASE, offsetof(struct thread, td_md.md_stack_base)); ASSYM(TDF_ASTPENDING, TDF_ASTPENDING); ASSYM(TDF_NEEDRESCHED, TDF_NEEDRESCHED); ASSYM(TDP_CALLCHAIN, TDP_CALLCHAIN); ASSYM(TDP_KTHREAD, TDP_KTHREAD); ASSYM(PAGE_SIZE, PAGE_SIZE); ASSYM(NPTEPG, NPTEPG); ASSYM(NPDEPG, NPDEPG); ASSYM(addr_PTmap, addr_PTmap); ASSYM(addr_PDmap, addr_PDmap); ASSYM(addr_PDPmap, addr_PDPmap); ASSYM(addr_PML4map, addr_PML4map); ASSYM(addr_PML4pml4e, addr_PML4pml4e); ASSYM(PDESIZE, sizeof(pd_entry_t)); ASSYM(PTESIZE, sizeof(pt_entry_t)); ASSYM(PAGE_SHIFT, PAGE_SHIFT); ASSYM(PAGE_MASK, PAGE_MASK); ASSYM(PDRSHIFT, PDRSHIFT); ASSYM(PDPSHIFT, PDPSHIFT); ASSYM(PML4SHIFT, PML4SHIFT); ASSYM(val_KPDPI, KPDPI); ASSYM(val_KPML4I, KPML4I); ASSYM(val_PML4PML4I, PML4PML4I); ASSYM(VM_MAXUSER_ADDRESS, VM_MAXUSER_ADDRESS); ASSYM(KERNBASE, KERNBASE); ASSYM(DMAP_MIN_ADDRESS, DMAP_MIN_ADDRESS); ASSYM(DMAP_MAX_ADDRESS, DMAP_MAX_ADDRESS); ASSYM(PCB_R15, offsetof(struct pcb, pcb_r15)); ASSYM(PCB_R14, offsetof(struct pcb, pcb_r14)); ASSYM(PCB_R13, offsetof(struct pcb, pcb_r13)); ASSYM(PCB_R12, offsetof(struct pcb, pcb_r12)); ASSYM(PCB_RBP, offsetof(struct pcb, pcb_rbp)); ASSYM(PCB_RSP, offsetof(struct pcb, pcb_rsp)); ASSYM(PCB_RBX, offsetof(struct pcb, pcb_rbx)); ASSYM(PCB_RIP, offsetof(struct pcb, pcb_rip)); ASSYM(PCB_FSBASE, offsetof(struct pcb, pcb_fsbase)); ASSYM(PCB_GSBASE, offsetof(struct pcb, pcb_gsbase)); ASSYM(PCB_KGSBASE, offsetof(struct pcb, pcb_kgsbase)); ASSYM(PCB_CR0, offsetof(struct pcb, pcb_cr0)); ASSYM(PCB_CR2, offsetof(struct pcb, pcb_cr2)); ASSYM(PCB_CR3, offsetof(struct pcb, pcb_cr3)); ASSYM(PCB_CR4, offsetof(struct pcb, pcb_cr4)); ASSYM(PCB_DR0, offsetof(struct pcb, pcb_dr0)); ASSYM(PCB_DR1, offsetof(struct pcb, pcb_dr1)); ASSYM(PCB_DR2, offsetof(struct pcb, pcb_dr2)); ASSYM(PCB_DR3, offsetof(struct pcb, pcb_dr3)); ASSYM(PCB_DR6, offsetof(struct pcb, pcb_dr6)); ASSYM(PCB_DR7, offsetof(struct pcb, pcb_dr7)); ASSYM(PCB_GDT, offsetof(struct pcb, pcb_gdt)); ASSYM(PCB_IDT, offsetof(struct pcb, pcb_idt)); ASSYM(PCB_LDT, offsetof(struct pcb, pcb_ldt)); ASSYM(PCB_TR, offsetof(struct pcb, pcb_tr)); ASSYM(PCB_FLAGS, offsetof(struct pcb, pcb_flags)); ASSYM(PCB_ONFAULT, offsetof(struct pcb, pcb_onfault)); ASSYM(PCB_SAVED_UCR3, offsetof(struct pcb, pcb_saved_ucr3)); ASSYM(PCB_TSSP, offsetof(struct pcb, pcb_tssp)); ASSYM(PCB_SAVEFPU, offsetof(struct pcb, pcb_save)); ASSYM(PCB_EFER, offsetof(struct pcb, pcb_efer)); ASSYM(PCB_STAR, offsetof(struct pcb, pcb_star)); ASSYM(PCB_LSTAR, offsetof(struct pcb, pcb_lstar)); ASSYM(PCB_CSTAR, offsetof(struct pcb, pcb_cstar)); ASSYM(PCB_SFMASK, offsetof(struct pcb, pcb_sfmask)); ASSYM(PCB_SIZE, sizeof(struct pcb)); ASSYM(PCB_FULL_IRET, PCB_FULL_IRET); ASSYM(PCB_DBREGS, PCB_DBREGS); ASSYM(PCB_32BIT, PCB_32BIT); ASSYM(TSS_RSP0, offsetof(struct amd64tss, tss_rsp0)); ASSYM(TF_R15, offsetof(struct trapframe, tf_r15)); ASSYM(TF_R14, offsetof(struct trapframe, tf_r14)); ASSYM(TF_R13, offsetof(struct trapframe, tf_r13)); ASSYM(TF_R12, offsetof(struct trapframe, tf_r12)); ASSYM(TF_R11, offsetof(struct trapframe, tf_r11)); ASSYM(TF_R10, offsetof(struct trapframe, tf_r10)); ASSYM(TF_R9, offsetof(struct trapframe, tf_r9)); ASSYM(TF_R8, offsetof(struct trapframe, tf_r8)); ASSYM(TF_RDI, offsetof(struct trapframe, tf_rdi)); ASSYM(TF_RSI, offsetof(struct trapframe, tf_rsi)); ASSYM(TF_RBP, offsetof(struct trapframe, tf_rbp)); ASSYM(TF_RBX, offsetof(struct trapframe, tf_rbx)); ASSYM(TF_RDX, offsetof(struct trapframe, tf_rdx)); ASSYM(TF_RCX, offsetof(struct trapframe, tf_rcx)); ASSYM(TF_RAX, offsetof(struct trapframe, tf_rax)); ASSYM(TF_TRAPNO, offsetof(struct trapframe, tf_trapno)); ASSYM(TF_ADDR, offsetof(struct trapframe, tf_addr)); ASSYM(TF_ERR, offsetof(struct trapframe, tf_err)); ASSYM(TF_RIP, offsetof(struct trapframe, tf_rip)); ASSYM(TF_CS, offsetof(struct trapframe, tf_cs)); ASSYM(TF_RFLAGS, offsetof(struct trapframe, tf_rflags)); ASSYM(TF_RSP, offsetof(struct trapframe, tf_rsp)); ASSYM(TF_SS, offsetof(struct trapframe, tf_ss)); ASSYM(TF_DS, offsetof(struct trapframe, tf_ds)); ASSYM(TF_ES, offsetof(struct trapframe, tf_es)); ASSYM(TF_FS, offsetof(struct trapframe, tf_fs)); ASSYM(TF_GS, offsetof(struct trapframe, tf_gs)); ASSYM(TF_FLAGS, offsetof(struct trapframe, tf_flags)); ASSYM(TF_SIZE, sizeof(struct trapframe)); ASSYM(TF_HASSEGS, TF_HASSEGS); ASSYM(PTI_RDX, offsetof(struct pti_frame, pti_rdx)); ASSYM(PTI_RAX, offsetof(struct pti_frame, pti_rax)); ASSYM(PTI_ERR, offsetof(struct pti_frame, pti_err)); ASSYM(PTI_RIP, offsetof(struct pti_frame, pti_rip)); ASSYM(PTI_CS, offsetof(struct pti_frame, pti_cs)); ASSYM(PTI_RFLAGS, offsetof(struct pti_frame, pti_rflags)); ASSYM(PTI_RSP, offsetof(struct pti_frame, pti_rsp)); ASSYM(PTI_SS, offsetof(struct pti_frame, pti_ss)); ASSYM(PTI_SIZE, sizeof(struct pti_frame)); ASSYM(SIGF_HANDLER, offsetof(struct sigframe, sf_ahu.sf_handler)); ASSYM(SIGF_UC, offsetof(struct sigframe, sf_uc)); ASSYM(UC_EFLAGS, offsetof(ucontext_t, uc_mcontext.mc_rflags)); ASSYM(ENOENT, ENOENT); ASSYM(EFAULT, EFAULT); ASSYM(ENAMETOOLONG, ENAMETOOLONG); ASSYM(MAXCOMLEN, MAXCOMLEN); ASSYM(MAXPATHLEN, MAXPATHLEN); ASSYM(PC_SIZEOF, sizeof(struct pcpu)); ASSYM(PC_PRVSPACE, offsetof(struct pcpu, pc_prvspace)); ASSYM(PC_CURTHREAD, offsetof(struct pcpu, pc_curthread)); ASSYM(PC_FPCURTHREAD, offsetof(struct pcpu, pc_fpcurthread)); ASSYM(PC_IDLETHREAD, offsetof(struct pcpu, pc_idlethread)); ASSYM(PC_CURPCB, offsetof(struct pcpu, pc_curpcb)); ASSYM(PC_CPUID, offsetof(struct pcpu, pc_cpuid)); ASSYM(PC_SCRATCH_RSP, offsetof(struct pcpu, pc_scratch_rsp)); ASSYM(PC_SCRATCH_RAX, offsetof(struct pcpu, pc_scratch_rax)); ASSYM(PC_CURPMAP, offsetof(struct pcpu, pc_curpmap)); ASSYM(PC_TSSP, offsetof(struct pcpu, pc_tssp)); ASSYM(PC_RSP0, offsetof(struct pcpu, pc_rsp0)); ASSYM(PC_FS32P, offsetof(struct pcpu, pc_fs32p)); ASSYM(PC_GS32P, offsetof(struct pcpu, pc_gs32p)); ASSYM(PC_LDT, offsetof(struct pcpu, pc_ldt)); ASSYM(PC_COMMONTSSP, offsetof(struct pcpu, pc_commontssp)); ASSYM(PC_TSS, offsetof(struct pcpu, pc_tss)); ASSYM(PC_PM_SAVE_CNT, offsetof(struct pcpu, pc_pm_save_cnt)); ASSYM(PC_KCR3, offsetof(struct pcpu, pc_kcr3)); ASSYM(PC_UCR3, offsetof(struct pcpu, pc_ucr3)); ASSYM(PC_SAVED_UCR3, offsetof(struct pcpu, pc_saved_ucr3)); ASSYM(PC_PTI_STACK, offsetof(struct pcpu, pc_pti_stack)); ASSYM(PC_PTI_STACK_SZ, PC_PTI_STACK_SZ); ASSYM(PC_PTI_RSP0, offsetof(struct pcpu, pc_pti_rsp0)); ASSYM(PC_IBPB_SET, offsetof(struct pcpu, pc_ibpb_set)); ASSYM(PC_MDS_TMP, offsetof(struct pcpu, pc_mds_tmp)); ASSYM(PC_MDS_BUF, offsetof(struct pcpu, pc_mds_buf)); ASSYM(PC_MDS_BUF64, offsetof(struct pcpu, pc_mds_buf64)); ASSYM(LA_EOI, LAPIC_EOI * LAPIC_MEM_MUL); ASSYM(LA_ISR, LAPIC_ISR0 * LAPIC_MEM_MUL); ASSYM(KCSEL, GSEL(GCODE_SEL, SEL_KPL)); ASSYM(KDSEL, GSEL(GDATA_SEL, SEL_KPL)); ASSYM(KUCSEL, GSEL(GUCODE_SEL, SEL_UPL)); ASSYM(KUDSEL, GSEL(GUDATA_SEL, SEL_UPL)); ASSYM(KUC32SEL, GSEL(GUCODE32_SEL, SEL_UPL)); ASSYM(KUF32SEL, GSEL(GUFS32_SEL, SEL_UPL)); ASSYM(KUG32SEL, GSEL(GUGS32_SEL, SEL_UPL)); ASSYM(TSSSEL, GSEL(GPROC0_SEL, SEL_KPL)); ASSYM(LDTSEL, GSEL(GUSERLDT_SEL, SEL_KPL)); ASSYM(SEL_RPL_MASK, SEL_RPL_MASK); ASSYM(__FreeBSD_version, __FreeBSD_version); #ifdef HWPMC_HOOKS ASSYM(PMC_FN_USER_CALLCHAIN, PMC_FN_USER_CALLCHAIN); #endif ASSYM(EC_EFI_STATUS, offsetof(struct efirt_callinfo, ec_efi_status)); ASSYM(EC_FPTR, offsetof(struct efirt_callinfo, ec_fptr)); ASSYM(EC_ARGCNT, offsetof(struct efirt_callinfo, ec_argcnt)); ASSYM(EC_ARG1, offsetof(struct efirt_callinfo, ec_arg1)); ASSYM(EC_ARG2, offsetof(struct efirt_callinfo, ec_arg2)); ASSYM(EC_ARG3, offsetof(struct efirt_callinfo, ec_arg3)); ASSYM(EC_ARG4, offsetof(struct efirt_callinfo, ec_arg4)); ASSYM(EC_ARG5, offsetof(struct efirt_callinfo, ec_arg5)); ASSYM(EC_RBX, offsetof(struct efirt_callinfo, ec_rbx)); ASSYM(EC_RSP, offsetof(struct efirt_callinfo, ec_rsp)); ASSYM(EC_RBP, offsetof(struct efirt_callinfo, ec_rbp)); ASSYM(EC_R12, offsetof(struct efirt_callinfo, ec_r12)); ASSYM(EC_R13, offsetof(struct efirt_callinfo, ec_r13)); ASSYM(EC_R14, offsetof(struct efirt_callinfo, ec_r14)); ASSYM(EC_R15, offsetof(struct efirt_callinfo, ec_r15)); ASSYM(EC_RFLAGS, offsetof(struct efirt_callinfo, ec_rflags)); Index: head/sys/amd64/amd64/machdep.c =================================================================== --- head/sys/amd64/amd64/machdep.c (revision 354094) +++ head/sys/amd64/amd64/machdep.c (revision 354095) @@ -1,2754 +1,2753 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_atpic.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_isa.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_pci.h" #include "opt_platform.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #ifndef KDB #error KDB must be enabled in order for DDB to work! #endif #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifdef FDT #include #endif #ifdef DEV_ATPIC #include #else #include #endif #include #include #include /* Sanity check for __curthread() */ CTASSERT(offsetof(struct pcpu, pc_curthread) == 0); /* * The PTI trampoline stack needs enough space for a hardware trapframe and a * couple of scratch registers, as well as the trapframe left behind after an * iret fault. */ CTASSERT(PC_PTI_STACK_SZ * sizeof(register_t) >= 2 * sizeof(struct pti_frame) - offsetof(struct pti_frame, pti_rip)); extern u_int64_t hammer_time(u_int64_t, u_int64_t); #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) static void cpu_startup(void *); static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len); static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* Preload data parse function */ static caddr_t native_parse_preload_data(u_int64_t); /* Native function to fetch and parse the e820 map */ static void native_parse_memmap(caddr_t, vm_paddr_t *, int *); /* Default init_ops implementation. */ struct init_ops init_ops = { .parse_preload_data = native_parse_preload_data, .early_clock_source_init = i8254_init, .early_delay = i8254_delay, .parse_memmap = native_parse_memmap, #ifdef SMP .mp_bootaddress = mp_bootaddress, .start_all_aps = native_start_all_aps, #endif #ifdef DEV_PCI .msi_init = msi_init, #endif }; /* * Physical address of the EFI System Table. Stashed from the metadata hints * passed into the kernel and used by the EFI code to call runtime services. */ vm_paddr_t efi_systbl_phys; /* Intel ICH registers */ #define ICH_PMBASE 0x400 #define ICH_SMI_EN ICH_PMBASE + 0x30 int _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel; int cold = 1; long Maxmem = 0; long realmem = 0; struct kva_md_info kmi; static struct trapframe proc0_tf; struct region_descriptor r_gdt, r_idt; struct pcpu *__pcpu; struct pcpu temp_bsp_pcpu; struct mtx icu_lock; struct mem_range_softc mem_range_softc; struct mtx dt_lock; /* lock for GDT and LDT */ void (*vmm_resume_p)(void); static void cpu_startup(dummy) void *dummy; { uintmax_t memsize; char *sysenv; /* * On MacBooks, we need to disallow the legacy USB circuit to * generate an SMI# because this can cause several problems, * namely: incorrect CPU frequency detection and failure to * start the APs. * We do this by disabling a bit in the SMI_EN (SMI Control and * Enable register) of the Intel ICH LPC Interface Bridge. */ sysenv = kern_getenv("smbios.system.product"); if (sysenv != NULL) { if (strncmp(sysenv, "MacBook1,1", 10) == 0 || strncmp(sysenv, "MacBook3,1", 10) == 0 || strncmp(sysenv, "MacBook4,1", 10) == 0 || strncmp(sysenv, "MacBookPro1,1", 13) == 0 || strncmp(sysenv, "MacBookPro1,2", 13) == 0 || strncmp(sysenv, "MacBookPro3,1", 13) == 0 || strncmp(sysenv, "MacBookPro4,1", 13) == 0 || strncmp(sysenv, "Macmini1,1", 10) == 0) { if (bootverbose) printf("Disabling LEGACY_USB_EN bit on " "Intel ICH.\n"); outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8); } freeenv(sysenv); } /* * Good {morning,afternoon,evening,night}. */ startrtclock(); printcpuinfo(); /* * Display physical memory if SMBIOS reports reasonable amount. */ memsize = 0; sysenv = kern_getenv("smbios.memory.enabled"); if (sysenv != NULL) { memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10; freeenv(sysenv); } if (memsize < ptoa((uintmax_t)vm_free_count())) memsize = ptoa((uintmax_t)Maxmem); printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20); realmem = atop(memsize); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size; size = phys_avail[indx + 1] - phys_avail[indx]; printf( "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", ptoa((uintmax_t)vm_free_count()), ptoa((uintmax_t)vm_free_count()) / 1048576); #ifdef DEV_PCI if (bootverbose && intel_graphics_stolen_base != 0) printf("intel stolen mem: base %#jx size %ju MB\n", (uintmax_t)intel_graphics_stolen_base, (uintmax_t)intel_graphics_stolen_size / 1024 / 1024); #endif /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); cpu_setregs(); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by call * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct sigframe sf, *sfp; struct pcb *pcb; struct proc *p; struct thread *td; struct sigacts *psp; char *sp; struct trapframe *regs; char *xfpusave; size_t xfpusave_len; int sig; int oonstack; td = curthread; pcb = td->td_pcb; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) { xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu); xfpusave = __builtin_alloca(xfpusave_len); } else { xfpusave_len = 0; xfpusave = NULL; } /* Save user context. */ bzero(&sf, sizeof(sf)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs)); sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */ get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len); fpstate_drop(td); update_pcb_bases(pcb); sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase; sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase; bzero(sf.sf_uc.uc_mcontext.mc_spare, sizeof(sf.sf_uc.uc_mcontext.mc_spare)); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size; #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else sp = (char *)regs->tf_rsp - 128; if (xfpusave != NULL) { sp -= xfpusave_len; sp = (char *)((unsigned long)sp & ~0x3Ful); sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp; } sp -= sizeof(struct sigframe); /* Align to 16 bytes. */ sfp = (struct sigframe *)((unsigned long)sp & ~0xFul); /* Build the argument list for the signal handler. */ regs->tf_rdi = sig; /* arg 1 in %rdi */ regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */ bzero(&sf.sf_si, sizeof(sf.sf_si)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */ sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* Fill in POSIX parts */ sf.sf_si = ksi->ksi_info; sf.sf_si.si_signo = sig; /* maybe a translated signal */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ } else { /* Old FreeBSD-style arguments. */ regs->tf_rsi = ksi->ksi_code; /* arg 2 in %rsi */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0 || (xfpusave != NULL && copyout(xfpusave, (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len) != 0)) { #ifdef DEBUG printf("process %ld has trashed its stack\n", (long)p->p_pid); #endif PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_rsp = (long)sfp; regs->tf_rip = p->p_sysent->sv_sigcode_base; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_ss = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. * * MPSAFE */ int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { ucontext_t uc; struct pcb *pcb; struct proc *p; struct trapframe *regs; ucontext_t *ucp; char *xfpustate; size_t xfpustate_len; long rflags; int cs, error, ret; ksiginfo_t ksi; pcb = td->td_pcb; p = td->td_proc; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) { uprintf("pid %d (%s): sigreturn copyin failed\n", p->p_pid, td->td_name); return (error); } ucp = &uc; if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) { uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid, td->td_name, ucp->uc_mcontext.mc_flags); return (EINVAL); } regs = td->td_frame; rflags = ucp->uc_mcontext.mc_rflags; /* * Don't allow users to change privileged or reserved flags. */ if (!EFL_SECURE(rflags, regs->tf_rflags)) { uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid, td->td_name, rflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid, td->td_name, cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return (EINVAL); } if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) { xfpustate_len = uc.uc_mcontext.mc_xfpustate_len; if (xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) { uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n", p->p_pid, td->td_name, xfpustate_len); return (EINVAL); } xfpustate = __builtin_alloca(xfpustate_len); error = copyin((const void *)uc.uc_mcontext.mc_xfpustate, xfpustate, xfpustate_len); if (error != 0) { uprintf( "pid %d (%s): sigreturn copying xfpustate failed\n", p->p_pid, td->td_name); return (error); } } else { xfpustate = NULL; xfpustate_len = 0; } ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len); if (ret != 0) { uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n", p->p_pid, td->td_name, ret); return (ret); } bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs)); update_pcb_bases(pcb); pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase; pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase; #if defined(COMPAT_43) if (ucp->uc_mcontext.mc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); return (EJUSTRETURN); } #ifdef COMPAT_FREEBSD4 int freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap) { return sys_sigreturn(td, (struct sigreturn_args *)uap); } #endif /* * Reset registers to default values on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *regs; struct pcb *pcb; register_t saved_rflags; regs = td->td_frame; pcb = td->td_pcb; if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); update_pcb_bases(pcb); pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; clear_pcb_flags(pcb, PCB_32BIT); pcb->pcb_initial_fpucw = __INITIAL_FPUCW__; saved_rflags = regs->tf_rflags & PSL_T; bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; regs->tf_rdi = stack; /* argv */ regs->tf_rflags = PSL_USER | saved_rflags; regs->tf_ss = _udatasel; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; /* * Reset the hardware debug registers if they were in use. * They won't have any meaning for the newly exec'd process. */ if (pcb->pcb_flags & PCB_DBREGS) { pcb->pcb_dr0 = 0; pcb->pcb_dr1 = 0; pcb->pcb_dr2 = 0; pcb->pcb_dr3 = 0; pcb->pcb_dr6 = 0; pcb->pcb_dr7 = 0; if (pcb == curpcb) { /* * Clear the debug registers on the running * CPU, otherwise they will end up affecting * the next process we switch to. */ reset_dbregs(); } clear_pcb_flags(pcb, PCB_DBREGS); } /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } void cpu_setregs(void) { register_t cr0; cr0 = rcr0(); /* * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the * BSP. See the comments there about why we set them. */ cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM; load_cr0(cr0); } /* * Initialize amd64 and configure to run kernel */ /* * Initialize segments & interrupt table */ struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */ static struct gate_descriptor idt0[NIDT]; struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ static char dblfault_stack[PAGE_SIZE] __aligned(16); static char mce0_stack[PAGE_SIZE] __aligned(16); static char nmi0_stack[PAGE_SIZE] __aligned(16); static char dbg0_stack[PAGE_SIZE] __aligned(16); CTASSERT(sizeof(struct nmi_pcpu) == 16); struct amd64tss common_tss[MAXCPU]; /* * Software prototypes -- in more palatable form. * * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same * slots as corresponding segments for i386 kernel. */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GNULL2_SEL 1 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUFS32_SEL 2 32 bit %gs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUGS32_SEL 3 32 bit %fs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GCODE_SEL 4 Code Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GDATA_SEL 5 Data Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GUCODE32_SEL 6 32 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUDATA_SEL 7 32/64 bit Data Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUCODE_SEL 8 64 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GPROC0_SEL 9 Proc 0 Tss Descriptor */ { .ssd_base = 0x0, .ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1, .ssd_type = SDT_SYSTSS, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Actually, the TSS is a system descriptor which is double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 11 LDT Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 12 LDT Descriptor, double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, }; void setidt(int idx, inthand_t *func, int typ, int dpl, int ist) { struct gate_descriptor *ip; ip = idt + idx; ip->gd_looffset = (uintptr_t)func; ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL); ip->gd_ist = ist; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((uintptr_t)func)>>16 ; } extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(xmm), IDTVEC(dblfault), IDTVEC(div_pti), IDTVEC(bpt_pti), IDTVEC(ofl_pti), IDTVEC(bnd_pti), IDTVEC(ill_pti), IDTVEC(dna_pti), IDTVEC(fpusegm_pti), IDTVEC(tss_pti), IDTVEC(missing_pti), IDTVEC(stk_pti), IDTVEC(prot_pti), IDTVEC(page_pti), IDTVEC(rsvd_pti), IDTVEC(fpu_pti), IDTVEC(align_pti), IDTVEC(xmm_pti), #ifdef KDTRACE_HOOKS IDTVEC(dtrace_ret), IDTVEC(dtrace_ret_pti), #endif #ifdef XENHVM IDTVEC(xen_intr_upcall), IDTVEC(xen_intr_upcall_pti), #endif IDTVEC(fast_syscall), IDTVEC(fast_syscall32), IDTVEC(fast_syscall_pti); #ifdef DDB /* * Display the index and function name of any IDT entries that don't use * the default 'rsvd' entry point. */ DB_SHOW_COMMAND(idt, db_show_idt) { struct gate_descriptor *ip; int idx; uintptr_t func; ip = idt; for (idx = 0; idx < NIDT && !db_pager_quit; idx++) { func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset); if (func != (uintptr_t)&IDTVEC(rsvd)) { db_printf("%3d\t", idx); db_printsym(func, DB_STGY_PROC); db_printf("\n"); } ip++; } } /* Show privileged registers. */ DB_SHOW_COMMAND(sysregs, db_show_sysregs) { struct { uint16_t limit; uint64_t base; } __packed idtr, gdtr; uint16_t ldt, tr; __asm __volatile("sidt %0" : "=m" (idtr)); db_printf("idtr\t0x%016lx/%04x\n", (u_long)idtr.base, (u_int)idtr.limit); __asm __volatile("sgdt %0" : "=m" (gdtr)); db_printf("gdtr\t0x%016lx/%04x\n", (u_long)gdtr.base, (u_int)gdtr.limit); __asm __volatile("sldt %0" : "=r" (ldt)); db_printf("ldtr\t0x%04x\n", ldt); __asm __volatile("str %0" : "=r" (tr)); db_printf("tr\t0x%04x\n", tr); db_printf("cr0\t0x%016lx\n", rcr0()); db_printf("cr2\t0x%016lx\n", rcr2()); db_printf("cr3\t0x%016lx\n", rcr3()); db_printf("cr4\t0x%016lx\n", rcr4()); if (rcr4() & CR4_XSAVE) db_printf("xcr0\t0x%016lx\n", rxcr(0)); db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER)); if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX)) db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL)); db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR)); db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT)); db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE)); } DB_SHOW_COMMAND(dbregs, db_show_dbregs) { db_printf("dr0\t0x%016lx\n", rdr0()); db_printf("dr1\t0x%016lx\n", rdr1()); db_printf("dr2\t0x%016lx\n", rdr2()); db_printf("dr3\t0x%016lx\n", rdr3()); db_printf("dr6\t0x%016lx\n", rdr6()); db_printf("dr7\t0x%016lx\n", rdr7()); } #endif void sdtossd(sd, ssd) struct user_segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_long = sd->sd_long; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } void ssdtosd(ssd, sd) struct soft_segment_descriptor *ssd; struct user_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_long = ssd->ssd_long; sd->sd_def32 = ssd->ssd_def32; sd->sd_gran = ssd->ssd_gran; } void ssdtosyssd(ssd, sd) struct soft_segment_descriptor *ssd; struct system_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_gran = ssd->ssd_gran; } #if !defined(DEV_ATPIC) && defined(DEV_ISA) #include #include /* * Return a bitmap of the current interrupt requests. This is 8259-specific * and is only suitable for use at probe time. * This is only here to pacify sio. It is NOT FATAL if this doesn't work. * It shouldn't be here. There should probably be an APIC centric * implementation in the apic driver code, if at all. */ intrmask_t isa_irq_pending(void) { u_char irr1; u_char irr2; irr1 = inb(IO_ICU1); irr2 = inb(IO_ICU2); return ((irr2 << 8) | irr1); } #endif u_int basemem; static int add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap, int *physmap_idxp) { int i, insert_idx, physmap_idx; physmap_idx = *physmap_idxp; if (length == 0) return (1); /* * Find insertion point while checking for overlap. Start off by * assuming the new entry will be added to the end. * * NB: physmap_idx points to the next free slot. */ insert_idx = physmap_idx; for (i = 0; i <= physmap_idx; i += 2) { if (base < physmap[i + 1]) { if (base + length <= physmap[i]) { insert_idx = i; break; } if (boothowto & RB_VERBOSE) printf( "Overlapping memory regions, ignoring second region\n"); return (1); } } /* See if we can prepend to the next entry. */ if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) { physmap[insert_idx] = base; return (1); } /* See if we can append to the previous entry. */ if (insert_idx > 0 && base == physmap[insert_idx - 1]) { physmap[insert_idx - 1] += length; return (1); } physmap_idx += 2; *physmap_idxp = physmap_idx; if (physmap_idx == PHYS_AVAIL_ENTRIES) { printf( "Too many segments in the physical address map, giving up\n"); return (0); } /* * Move the last 'N' entries down to make room for the new * entry if needed. */ for (i = (physmap_idx - 2); i > insert_idx; i -= 2) { physmap[i] = physmap[i - 2]; physmap[i + 1] = physmap[i - 1]; } /* Insert the new entry. */ physmap[insert_idx] = base; physmap[insert_idx + 1] = base + length; return (1); } void bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize, vm_paddr_t *physmap, int *physmap_idx) { struct bios_smap *smap, *smapend; smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize); for (smap = smapbase; smap < smapend; smap++) { if (boothowto & RB_VERBOSE) printf("SMAP type=%02x base=%016lx len=%016lx\n", smap->type, smap->base, smap->length); if (smap->type != SMAP_TYPE_MEMORY) continue; if (!add_physmap_entry(smap->base, smap->length, physmap, physmap_idx)) break; } } static void add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap, int *physmap_idx) { struct efi_md *map, *p; const char *type; size_t efisz; int ndesc, i; static const char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode", "PersistentMemory" }; /* * Memory map data provided by UEFI via the GetMemoryMap * Boot Services API. */ efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return; ndesc = efihdr->memory_size / efihdr->descriptor_size; if (boothowto & RB_VERBOSE) printf("%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, efihdr->descriptor_size)) { if (boothowto & RB_VERBOSE) { if (p->md_type < nitems(types)) type = types[p->md_type]; else type = ""; printf("%23s %012lx %12p %08lx ", type, p->md_phys, p->md_virt, p->md_pages); if (p->md_attr & EFI_MD_ATTR_UC) printf("UC "); if (p->md_attr & EFI_MD_ATTR_WC) printf("WC "); if (p->md_attr & EFI_MD_ATTR_WT) printf("WT "); if (p->md_attr & EFI_MD_ATTR_WB) printf("WB "); if (p->md_attr & EFI_MD_ATTR_UCE) printf("UCE "); if (p->md_attr & EFI_MD_ATTR_WP) printf("WP "); if (p->md_attr & EFI_MD_ATTR_RP) printf("RP "); if (p->md_attr & EFI_MD_ATTR_XP) printf("XP "); if (p->md_attr & EFI_MD_ATTR_NV) printf("NV "); if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE) printf("MORE_RELIABLE "); if (p->md_attr & EFI_MD_ATTR_RO) printf("RO "); if (p->md_attr & EFI_MD_ATTR_RT) printf("RUNTIME"); printf("\n"); } switch (p->md_type) { case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ break; default: continue; } if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE), physmap, physmap_idx)) break; } } static char bootmethod[16] = ""; SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0, "System firmware boot method"); static void native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) { struct bios_smap *smap; struct efi_map_header *efihdr; u_int32_t size; /* * Memory map from INT 15:E820. * * subr_module.c says: * "Consumer may safely assume that size value precedes data." * ie: an int32_t immediately precedes smap. */ efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); smap = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (efihdr == NULL && smap == NULL) panic("No BIOS smap or EFI map info from loader!"); if (efihdr != NULL) { add_efi_map_entries(efihdr, physmap, physmap_idx); strlcpy(bootmethod, "UEFI", sizeof(bootmethod)); } else { size = *((u_int32_t *)smap - 1); bios_add_smap_entries(smap, size, physmap, physmap_idx); strlcpy(bootmethod, "BIOS", sizeof(bootmethod)); } } #define PAGES_PER_GB (1024 * 1024 * 1024 / PAGE_SIZE) /* * Populate the (physmap) array with base/bound pairs describing the * available physical memory in the system, then test this memory and * build the phys_avail array describing the actually-available memory. * * Total memory size may be set by the kernel environment variable * hw.physmem or the compile-time define MAXMEM. * * XXX first should be vm_paddr_t. */ static void getmemsize(caddr_t kmdp, u_int64_t first) { int i, physmap_idx, pa_indx, da_indx; vm_paddr_t pa, physmap[PHYS_AVAIL_ENTRIES]; u_long physmem_start, physmem_tunable, memtest; pt_entry_t *pte; quad_t dcons_addr, dcons_size; int page_counter; /* * Tell the physical memory allocator about pages used to store * the kernel and preloaded data. See kmem_bootstrap_free(). */ vm_phys_add_seg((vm_paddr_t)kernphys, trunc_page(first)); bzero(physmap, sizeof(physmap)); physmap_idx = 0; init_ops.parse_memmap(kmdp, physmap, &physmap_idx); physmap_idx -= 2; /* * Find the 'base memory' segment for SMP */ basemem = 0; for (i = 0; i <= physmap_idx; i += 2) { if (physmap[i] <= 0xA0000) { basemem = physmap[i + 1] / 1024; break; } } if (basemem == 0 || basemem > 640) { if (bootverbose) printf( "Memory map doesn't contain a basemem segment, faking it"); basemem = 640; } /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". We may adjust this * based on ``hw.physmem'' and the results of the memory test. */ Maxmem = atop(physmap[physmap_idx + 1]); #ifdef MAXMEM Maxmem = MAXMEM / 4; #endif if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable)) Maxmem = atop(physmem_tunable); /* * The boot memory test is disabled by default, as it takes a * significant amount of time on large-memory systems, and is * unfriendly to virtual machines as it unnecessarily touches all * pages. * * A general name is used as the code may be extended to support * additional tests beyond the current "page present" test. */ memtest = 0; TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); /* * Don't allow MAXMEM or hw.physmem to extend the amount of memory * in the system. */ if (Maxmem > atop(physmap[physmap_idx + 1])) Maxmem = atop(physmap[physmap_idx + 1]); if (atop(physmap[physmap_idx + 1]) != Maxmem && (boothowto & RB_VERBOSE)) printf("Physical memory use set to %ldK\n", Maxmem * 4); /* * Make hole for "AP -> long mode" bootstrap code. The * mp_bootaddress vector is only available when the kernel * is configured to support APs and APs for the system start * in real mode mode (e.g. SMP bare metal). */ if (init_ops.mp_bootaddress) init_ops.mp_bootaddress(physmap, &physmap_idx); /* call pmap initialization to make new kernel address space */ pmap_bootstrap(&first); /* * Size up each available chunk of physical memory. * * XXX Some BIOSes corrupt low 64KB between suspend and resume. * By default, mask off the first 16 pages unless we appear to be * running in a VM. */ physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT; TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start); if (physmap[0] < physmem_start) { if (physmem_start < PAGE_SIZE) physmap[0] = PAGE_SIZE; else if (physmem_start >= physmap[1]) physmap[0] = round_page(physmap[1] - PAGE_SIZE); else physmap[0] = round_page(physmem_start); } pa_indx = 0; da_indx = 1; phys_avail[pa_indx++] = physmap[0]; phys_avail[pa_indx] = physmap[0]; dump_avail[da_indx] = physmap[0]; pte = CMAP1; /* * Get dcons buffer address */ if (getenv_quad("dcons.addr", &dcons_addr) == 0 || getenv_quad("dcons.size", &dcons_size) == 0) dcons_addr = 0; /* * physmap is in bytes, so when converting to page boundaries, * round up the start address and round down the end address. */ page_counter = 0; if (memtest != 0) printf("Testing system memory"); for (i = 0; i <= physmap_idx; i += 2) { vm_paddr_t end; end = ptoa((vm_paddr_t)Maxmem); if (physmap[i + 1] < end) end = trunc_page(physmap[i + 1]); for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { int tmp, page_bad, full; int *ptr = (int *)CADDR1; full = FALSE; /* * block out kernel memory as not available. */ if (pa >= (vm_paddr_t)kernphys && pa < first) goto do_dump_avail; /* * block out dcons buffer */ if (dcons_addr > 0 && pa >= trunc_page(dcons_addr) && pa < dcons_addr + dcons_size) goto do_dump_avail; page_bad = FALSE; if (memtest == 0) goto skip_memtest; /* * Print a "." every GB to show we're making * progress. */ page_counter++; if ((page_counter % PAGES_PER_GB) == 0) printf("."); /* * map page into kernel: valid, read/write,non-cacheable */ *pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD; invltlb(); tmp = *(int *)ptr; /* * Test for alternating 1's and 0's */ *(volatile int *)ptr = 0xaaaaaaaa; if (*(volatile int *)ptr != 0xaaaaaaaa) page_bad = TRUE; /* * Test for alternating 0's and 1's */ *(volatile int *)ptr = 0x55555555; if (*(volatile int *)ptr != 0x55555555) page_bad = TRUE; /* * Test for all 1's */ *(volatile int *)ptr = 0xffffffff; if (*(volatile int *)ptr != 0xffffffff) page_bad = TRUE; /* * Test for all 0's */ *(volatile int *)ptr = 0x0; if (*(volatile int *)ptr != 0x0) page_bad = TRUE; /* * Restore original value. */ *(int *)ptr = tmp; skip_memtest: /* * Adjust array of valid/good pages. */ if (page_bad == TRUE) continue; /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == pa) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ENTRIES) { printf( "Too many holes in the physical address space, giving up\n"); pa_indx--; full = TRUE; goto do_dump_avail; } phys_avail[pa_indx++] = pa; /* start */ phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ } physmem++; do_dump_avail: if (dump_avail[da_indx] == pa) { dump_avail[da_indx] += PAGE_SIZE; } else { da_indx++; if (da_indx == PHYS_AVAIL_ENTRIES) { da_indx--; goto do_next; } dump_avail[da_indx++] = pa; /* start */ dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ } do_next: if (full) break; } } *pte = 0; invltlb(); if (memtest != 0) printf("\n"); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(msgbufsize) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(msgbufsize); /* Map the message buffer. */ msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]); } static caddr_t native_parse_preload_data(u_int64_t modulep) { caddr_t kmdp; char *envp; #ifdef DDB vm_offset_t ksym_start; vm_offset_t ksym_end; #endif preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE); preload_bootstrap_relocate(KERNBASE); kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); if (envp != NULL) envp += KERNBASE; init_static_kenv(envp, 0); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); db_fetch_ksymtab(ksym_start, ksym_end); #endif efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t); return (kmdp); } static void amd64_kdb_init(void) { kdb_init(); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif } /* Set up the fast syscall stuff */ void amd64_conf_fast_syscall(void) { uint64_t msr; msr = rdmsr(MSR_EFER) | EFER_SCE; wrmsr(MSR_EFER, msr); wrmsr(MSR_LSTAR, pti ? (u_int64_t)IDTVEC(fast_syscall_pti) : (u_int64_t)IDTVEC(fast_syscall)); wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32)); msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) | ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48); wrmsr(MSR_STAR, msr); wrmsr(MSR_SF_MASK, PSL_NT | PSL_T | PSL_I | PSL_C | PSL_D | PSL_AC); } void amd64_bsp_pcpu_init1(struct pcpu *pc) { PCPU_SET(prvspace, pc); PCPU_SET(curthread, &thread0); PCPU_SET(tssp, &common_tss[0]); PCPU_SET(commontssp, &common_tss[0]); PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]); PCPU_SET(fs32p, &gdt[GUFS32_SEL]); PCPU_SET(gs32p, &gdt[GUGS32_SEL]); } void amd64_bsp_pcpu_init2(uint64_t rsp0) { PCPU_SET(rsp0, rsp0); PCPU_SET(pti_rsp0, ((vm_offset_t)PCPU_PTR(pti_stack) + PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful); PCPU_SET(curpcb, thread0.td_pcb); } void amd64_bsp_ist_init(struct pcpu *pc) { struct nmi_pcpu *np; /* doublefault stack space, runs on ist1 */ common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)]; /* * NMI stack, runs on ist2. The pcpu pointer is stored just * above the start of the ist2 stack. */ np = ((struct nmi_pcpu *)&nmi0_stack[sizeof(nmi0_stack)]) - 1; np->np_pcpu = (register_t)pc; common_tss[0].tss_ist2 = (long)np; /* * MC# stack, runs on ist3. The pcpu pointer is stored just * above the start of the ist3 stack. */ np = ((struct nmi_pcpu *)&mce0_stack[sizeof(mce0_stack)]) - 1; np->np_pcpu = (register_t)pc; common_tss[0].tss_ist3 = (long)np; /* * DB# stack, runs on ist4. */ np = ((struct nmi_pcpu *)&dbg0_stack[sizeof(dbg0_stack)]) - 1; np->np_pcpu = (register_t)pc; common_tss[0].tss_ist4 = (long)np; } u_int64_t hammer_time(u_int64_t modulep, u_int64_t physfree) { caddr_t kmdp; int gsel_tss, x; struct pcpu *pc; struct xstate_hdr *xhdr; u_int64_t rsp0; char *env; size_t kstack0_sz; int late_console; TSRAW(&thread0, TS_ENTER, __func__, NULL); kmdp = init_ops.parse_preload_data(modulep); physfree += ucode_load_bsp(physfree + KERNBASE); physfree = roundup2(physfree, PAGE_SIZE); identify_cpu1(); identify_hypervisor(); identify_cpu_fixup_bsp(); identify_cpu2(); initializecpucache(); /* * Check for pti, pcid, and invpcid before ifuncs are * resolved, to correctly select the implementation for * pmap_activate_sw_mode(). */ pti = pti_get_default(); TUNABLE_INT_FETCH("vm.pmap.pti", &pti); TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled); if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) { invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID) != 0; } else { pmap_pcid_enabled = 0; } link_elf_ireloc(kmdp); /* * This may be done better later if it gets more high level * components in it. If so just link td->td_proc here. */ proc_linkup0(&proc0, &thread0); /* Init basic tunables, hz etc */ init_param1(); thread0.td_kstack = physfree + KERNBASE; thread0.td_kstack_pages = kstack_pages; kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE; bzero((void *)thread0.td_kstack, kstack0_sz); physfree += kstack0_sz; /* * Initialize enough of thread0 for delayed invalidation to * work very early. Rely on thread0.td_base_pri * zero-initialization, it is reset to PVM at proc0_init(). */ pmap_thread_init_invl_gen(&thread0); /* * make gdt memory segments */ for (x = 0; x < NGDT; x++) { if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) && x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1) ssdtosd(&gdt_segs[x], &gdt[x]); } gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0]; ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (long) gdt; lgdt(&r_gdt); pc = &temp_bsp_pcpu; wrmsr(MSR_FSBASE, 0); /* User value */ wrmsr(MSR_GSBASE, (u_int64_t)pc); wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */ pcpu_init(pc, 0, sizeof(struct pcpu)); dpcpu_init((void *)(physfree + KERNBASE), 0); physfree += DPCPU_SIZE; amd64_bsp_pcpu_init1(pc); /* Non-late cninit() and printf() can be moved up to here. */ /* * Initialize mutexes. * * icu_lock: in order to allow an interrupt to occur in a critical * section, to set pcpu->ipending (etc...) properly, we * must be able to get the icu lock, so it can't be * under witness. */ mutex_init(); mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS); mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF); /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, pti ? &IDTVEC(rsvd_pti) : &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DE, pti ? &IDTVEC(div_pti) : &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 4); setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 2); setidt(IDT_BP, pti ? &IDTVEC(bpt_pti) : &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0); setidt(IDT_OF, pti ? &IDTVEC(ofl_pti) : &IDTVEC(ofl), SDT_SYSIGT, SEL_UPL, 0); setidt(IDT_BR, pti ? &IDTVEC(bnd_pti) : &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_UD, pti ? &IDTVEC(ill_pti) : &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NM, pti ? &IDTVEC(dna_pti) : &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1); setidt(IDT_FPUGP, pti ? &IDTVEC(fpusegm_pti) : &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_TS, pti ? &IDTVEC(tss_pti) : &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NP, pti ? &IDTVEC(missing_pti) : &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_SS, pti ? &IDTVEC(stk_pti) : &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_GP, pti ? &IDTVEC(prot_pti) : &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_PF, pti ? &IDTVEC(page_pti) : &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MF, pti ? &IDTVEC(fpu_pti) : &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_AC, pti ? &IDTVEC(align_pti) : &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 3); setidt(IDT_XF, pti ? &IDTVEC(xmm_pti) : &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0); #ifdef KDTRACE_HOOKS setidt(IDT_DTRACE_RET, pti ? &IDTVEC(dtrace_ret_pti) : &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0); #endif #ifdef XENHVM setidt(IDT_EVTCHN, pti ? &IDTVEC(xen_intr_upcall_pti) : &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_KPL, 0); #endif r_idt.rd_limit = sizeof(idt0) - 1; r_idt.rd_base = (long) idt; lidt(&r_idt); /* * Initialize the clock before the console so that console * initialization can use DELAY(). */ clock_init(); /* * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4) * transition). * Once bootblocks have updated, we can test directly for * efi_systbl != NULL here... */ if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL) vty_set_preferred(VTY_VT); TUNABLE_INT_FETCH("hw.ibrs_disable", &hw_ibrs_disable); TUNABLE_INT_FETCH("hw.spec_store_bypass_disable", &hw_ssb_disable); TUNABLE_INT_FETCH("machdep.syscall_ret_l1d_flush", &syscall_ret_l1d_flush_mode); TUNABLE_INT_FETCH("hw.mds_disable", &hw_mds_disable); finishidentcpu(); /* Final stage of CPU initialization */ initializecpu(); /* Initialize CPU registers */ amd64_bsp_ist_init(pc); /* Set the IO permission bitmap (empty due to tss seg limit) */ common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); ltr(gsel_tss); amd64_conf_fast_syscall(); /* - * Temporary forge some valid pointer to PCB, for exception - * handlers. It is reinitialized properly below after FPU is - * set up. Also set up td_critnest to short-cut the page - * fault handler. + * We initialize the PCB pointer early so that exception + * handlers will work. Also set up td_critnest to short-cut + * the page fault handler. */ cpu_max_ext_state_size = sizeof(struct savefpu); + set_top_of_stack_td(&thread0); thread0.td_pcb = get_pcb_td(&thread0); thread0.td_critnest = 1; /* * The console and kdb should be initialized even earlier than here, * but some console drivers don't work until after getmemsize(). * Default to late console initialization to support these drivers. * This loses mainly printf()s in getmemsize() and early debugging. */ late_console = 1; TUNABLE_INT_FETCH("debug.late_console", &late_console); if (!late_console) { cninit(); amd64_kdb_init(); } getmemsize(kmdp, physfree); init_param2(physmem); /* now running on new page tables, configured,and u/iom is accessible */ #ifdef DEV_PCI /* This call might adjust phys_avail[]. */ pci_early_quirks(); #endif if (late_console) cninit(); #ifdef DEV_ISA #ifdef DEV_ATPIC elcr_probe(); atpic_startup(); #else /* Reset and mask the atpics and leave them shut down. */ atpic_reset(); /* * Point the ICU spurious interrupt vectors at the APIC spurious * interrupt handler. */ setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); #endif #else #error "have you forgotten the isa device?"; #endif if (late_console) amd64_kdb_init(); msgbufinit(msgbufp, msgbufsize); fpuinit(); /* - * Set up thread0 pcb after fpuinit calculated pcb + fpu save + * Set up thread0 pcb save area after fpuinit calculated fpu save * area size. Zero out the extended state header in fpu save * area. */ - thread0.td_pcb = get_pcb_td(&thread0); thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0); bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size); if (use_xsave) { xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) + 1); xhdr->xstate_bv = xsave_mask; } /* make an initial tss so cpu can get interrupt stack on syscall! */ - rsp0 = (vm_offset_t)thread0.td_pcb; + rsp0 = thread0.td_md.md_stack_base; /* Ensure the stack is aligned to 16 bytes */ rsp0 &= ~0xFul; common_tss[0].tss_rsp0 = rsp0; amd64_bsp_pcpu_init2(rsp0); /* transfer to user mode */ _ucodesel = GSEL(GUCODE_SEL, SEL_UPL); _udatasel = GSEL(GUDATA_SEL, SEL_UPL); _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL); _ufssel = GSEL(GUFS32_SEL, SEL_UPL); _ugssel = GSEL(GUGS32_SEL, SEL_UPL); load_ds(_udatasel); load_es(_udatasel); load_fs(_ufssel); /* setup proc 0's pcb */ thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; env = kern_getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); cpu_probe_amdc1e(); #ifdef FDT x86_init_fdt(); #endif thread0.td_critnest = 0; TSEXIT(); /* Location of kernel stack for locore */ - return ((u_int64_t)thread0.td_pcb); + return (thread0.td_md.md_stack_base); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } static int smap_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct bios_smap *smapbase; struct bios_smap_xattr smap; caddr_t kmdp; uint32_t *smapattr; int count, error, i; /* Retrieve the system memory map from the loader. */ kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (smapbase == NULL) return (0); smapattr = (uint32_t *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP_XATTR); count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase); error = 0; for (i = 0; i < count; i++) { smap.base = smapbase[i].base; smap.length = smapbase[i].length; smap.type = smapbase[i].type; if (smapattr != NULL) smap.xattr = smapattr[i]; else smap.xattr = 0; error = SYSCTL_OUT(req, &smap, sizeof(smap)); } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0, smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data"); static int efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct efi_map_header *efihdr; caddr_t kmdp; uint32_t efisize; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); if (efihdr == NULL) return (0); efisize = *((uint32_t *)efihdr - 1); return (SYSCTL_OUT(req, efihdr, efisize)); } SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0, efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map"); void spinlock_enter(void) { struct thread *td; register_t flags; td = curthread; if (td->td_md.md_spinlock_count == 0) { flags = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = flags; critical_enter(); } else td->td_md.md_spinlock_count++; } void spinlock_exit(void) { struct thread *td; register_t flags; td = curthread; flags = td->td_md.md_saved_flags; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { critical_exit(); intr_restore(flags); } } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_r12 = tf->tf_r12; pcb->pcb_r13 = tf->tf_r13; pcb->pcb_r14 = tf->tf_r14; pcb->pcb_r15 = tf->tf_r15; pcb->pcb_rbp = tf->tf_rbp; pcb->pcb_rbx = tf->tf_rbx; pcb->pcb_rip = tf->tf_rip; pcb->pcb_rsp = tf->tf_rsp; } int ptrace_set_pc(struct thread *td, unsigned long addr) { td->td_frame->tf_rip = addr; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (0); } int ptrace_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); if ((td->td_frame->tf_rflags & PSL_T) == 0) { td->td_frame->tf_rflags |= PSL_T; td->td_dbgflags |= TDB_STEP; } return (0); } int ptrace_clear_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); td->td_frame->tf_rflags &= ~PSL_T; td->td_dbgflags &= ~TDB_STEP; return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; tp = td->td_frame; return (fill_frame_regs(tp, regs)); } int fill_frame_regs(struct trapframe *tp, struct reg *regs) { regs->r_r15 = tp->tf_r15; regs->r_r14 = tp->tf_r14; regs->r_r13 = tp->tf_r13; regs->r_r12 = tp->tf_r12; regs->r_r11 = tp->tf_r11; regs->r_r10 = tp->tf_r10; regs->r_r9 = tp->tf_r9; regs->r_r8 = tp->tf_r8; regs->r_rdi = tp->tf_rdi; regs->r_rsi = tp->tf_rsi; regs->r_rbp = tp->tf_rbp; regs->r_rbx = tp->tf_rbx; regs->r_rdx = tp->tf_rdx; regs->r_rcx = tp->tf_rcx; regs->r_rax = tp->tf_rax; regs->r_rip = tp->tf_rip; regs->r_cs = tp->tf_cs; regs->r_rflags = tp->tf_rflags; regs->r_rsp = tp->tf_rsp; regs->r_ss = tp->tf_ss; if (tp->tf_flags & TF_HASSEGS) { regs->r_ds = tp->tf_ds; regs->r_es = tp->tf_es; regs->r_fs = tp->tf_fs; regs->r_gs = tp->tf_gs; } else { regs->r_ds = 0; regs->r_es = 0; regs->r_fs = 0; regs->r_gs = 0; } regs->r_err = 0; regs->r_trapno = 0; return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; register_t rflags; tp = td->td_frame; rflags = regs->r_rflags & 0xffffffff; if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); tp->tf_r15 = regs->r_r15; tp->tf_r14 = regs->r_r14; tp->tf_r13 = regs->r_r13; tp->tf_r12 = regs->r_r12; tp->tf_r11 = regs->r_r11; tp->tf_r10 = regs->r_r10; tp->tf_r9 = regs->r_r9; tp->tf_r8 = regs->r_r8; tp->tf_rdi = regs->r_rdi; tp->tf_rsi = regs->r_rsi; tp->tf_rbp = regs->r_rbp; tp->tf_rbx = regs->r_rbx; tp->tf_rdx = regs->r_rdx; tp->tf_rcx = regs->r_rcx; tp->tf_rax = regs->r_rax; tp->tf_rip = regs->r_rip; tp->tf_cs = regs->r_cs; tp->tf_rflags = rflags; tp->tf_rsp = regs->r_rsp; tp->tf_ss = regs->r_ss; if (0) { /* XXXKIB */ tp->tf_ds = regs->r_ds; tp->tf_es = regs->r_es; tp->tf_fs = regs->r_fs; tp->tf_gs = regs->r_gs; tp->tf_flags = TF_HASSEGS; } set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (0); } /* XXX check all this stuff! */ /* externalize from sv_xmm */ static void fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs) { struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; struct envxmm *penv_xmm = &sv_xmm->sv_env; int i; /* pcb -> fpregs */ bzero(fpregs, sizeof(*fpregs)); /* FPU control/status */ penv_fpreg->en_cw = penv_xmm->en_cw; penv_fpreg->en_sw = penv_xmm->en_sw; penv_fpreg->en_tw = penv_xmm->en_tw; penv_fpreg->en_opcode = penv_xmm->en_opcode; penv_fpreg->en_rip = penv_xmm->en_rip; penv_fpreg->en_rdp = penv_xmm->en_rdp; penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr; penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16); } /* internalize from fpregs into sv_xmm */ static void set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm) { struct envxmm *penv_xmm = &sv_xmm->sv_env; struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; int i; /* fpregs -> pcb */ /* FPU control/status */ penv_xmm->en_cw = penv_fpreg->en_cw; penv_xmm->en_sw = penv_fpreg->en_sw; penv_xmm->en_tw = penv_fpreg->en_tw; penv_xmm->en_opcode = penv_fpreg->en_opcode; penv_xmm->en_rip = penv_fpreg->en_rip; penv_xmm->en_rdp = penv_fpreg->en_rdp; penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr; penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16); } /* externalize from td->pcb */ int fill_fpregs(struct thread *td, struct fpreg *fpregs) { KASSERT(td == curthread || TD_IS_SUSPENDED(td) || P_SHOULDSTOP(td->td_proc), ("not suspended thread %p", td)); fpugetregs(td); fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs); return (0); } /* internalize to td->pcb */ int set_fpregs(struct thread *td, struct fpreg *fpregs) { critical_enter(); set_fpregs_xmm(fpregs, get_pcb_user_save_td(td)); fpuuserinited(td); critical_exit(); return (0); } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct pcb *pcb; struct trapframe *tp; pcb = td->td_pcb; tp = td->td_frame; PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(tp->tf_rsp); PROC_UNLOCK(curthread->td_proc); mcp->mc_r15 = tp->tf_r15; mcp->mc_r14 = tp->tf_r14; mcp->mc_r13 = tp->tf_r13; mcp->mc_r12 = tp->tf_r12; mcp->mc_r11 = tp->tf_r11; mcp->mc_r10 = tp->tf_r10; mcp->mc_r9 = tp->tf_r9; mcp->mc_r8 = tp->tf_r8; mcp->mc_rdi = tp->tf_rdi; mcp->mc_rsi = tp->tf_rsi; mcp->mc_rbp = tp->tf_rbp; mcp->mc_rbx = tp->tf_rbx; mcp->mc_rcx = tp->tf_rcx; mcp->mc_rflags = tp->tf_rflags; if (flags & GET_MC_CLEAR_RET) { mcp->mc_rax = 0; mcp->mc_rdx = 0; mcp->mc_rflags &= ~PSL_C; } else { mcp->mc_rax = tp->tf_rax; mcp->mc_rdx = tp->tf_rdx; } mcp->mc_rip = tp->tf_rip; mcp->mc_cs = tp->tf_cs; mcp->mc_rsp = tp->tf_rsp; mcp->mc_ss = tp->tf_ss; mcp->mc_ds = tp->tf_ds; mcp->mc_es = tp->tf_es; mcp->mc_fs = tp->tf_fs; mcp->mc_gs = tp->tf_gs; mcp->mc_flags = tp->tf_flags; mcp->mc_len = sizeof(*mcp); get_fpcontext(td, mcp, NULL, 0); update_pcb_bases(pcb); mcp->mc_fsbase = pcb->pcb_fsbase; mcp->mc_gsbase = pcb->pcb_gsbase; mcp->mc_xfpustate = 0; mcp->mc_xfpustate_len = 0; bzero(mcp->mc_spare, sizeof(mcp->mc_spare)); return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, mcontext_t *mcp) { struct pcb *pcb; struct trapframe *tp; char *xfpustate; long rflags; int ret; pcb = td->td_pcb; tp = td->td_frame; if (mcp->mc_len != sizeof(*mcp) || (mcp->mc_flags & ~_MC_FLAG_MASK) != 0) return (EINVAL); rflags = (mcp->mc_rflags & PSL_USERCHANGE) | (tp->tf_rflags & ~PSL_USERCHANGE); if (mcp->mc_flags & _MC_HASFPXSTATE) { if (mcp->mc_xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) return (EINVAL); xfpustate = __builtin_alloca(mcp->mc_xfpustate_len); ret = copyin((void *)mcp->mc_xfpustate, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); } else xfpustate = NULL; ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); tp->tf_r15 = mcp->mc_r15; tp->tf_r14 = mcp->mc_r14; tp->tf_r13 = mcp->mc_r13; tp->tf_r12 = mcp->mc_r12; tp->tf_r11 = mcp->mc_r11; tp->tf_r10 = mcp->mc_r10; tp->tf_r9 = mcp->mc_r9; tp->tf_r8 = mcp->mc_r8; tp->tf_rdi = mcp->mc_rdi; tp->tf_rsi = mcp->mc_rsi; tp->tf_rbp = mcp->mc_rbp; tp->tf_rbx = mcp->mc_rbx; tp->tf_rdx = mcp->mc_rdx; tp->tf_rcx = mcp->mc_rcx; tp->tf_rax = mcp->mc_rax; tp->tf_rip = mcp->mc_rip; tp->tf_rflags = rflags; tp->tf_rsp = mcp->mc_rsp; tp->tf_ss = mcp->mc_ss; tp->tf_flags = mcp->mc_flags; if (tp->tf_flags & TF_HASSEGS) { tp->tf_ds = mcp->mc_ds; tp->tf_es = mcp->mc_es; tp->tf_fs = mcp->mc_fs; tp->tf_gs = mcp->mc_gs; } set_pcb_flags(pcb, PCB_FULL_IRET); if (mcp->mc_flags & _MC_HASBASES) { pcb->pcb_fsbase = mcp->mc_fsbase; pcb->pcb_gsbase = mcp->mc_gsbase; } return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len) { size_t max_len, len; mcp->mc_ownedfp = fpugetregs(td); bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0], sizeof(mcp->mc_fpstate)); mcp->mc_fpformat = fpuformat(); if (!use_xsave || xfpusave_len == 0) return; max_len = cpu_max_ext_state_size - sizeof(struct savefpu); len = xfpusave_len; if (len > max_len) { len = max_len; bzero(xfpusave + max_len, len - max_len); } mcp->mc_flags |= _MC_HASFPXSTATE; mcp->mc_xfpustate_len = len; bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len); } static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len) { int error; if (mcp->mc_fpformat == _MC_FPFMT_NODEV) return (0); else if (mcp->mc_fpformat != _MC_FPFMT_XMM) return (EINVAL); else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) { /* We don't care what state is left in the FPU or PCB. */ fpstate_drop(td); error = 0; } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU || mcp->mc_ownedfp == _MC_FPOWNED_PCB) { error = fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate, xfpustate, xfpustate_len); } else return (EINVAL); return (error); } void fpstate_drop(struct thread *td) { KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu")); critical_enter(); if (PCPU_GET(fpcurthread) == td) fpudrop(); /* * XXX force a full drop of the fpu. The above only drops it if we * owned it. * * XXX I don't much like fpugetuserregs()'s semantics of doing a full * drop. Dropping only to the pcb matches fnsave's behaviour. * We only need to drop to !PCB_INITDONE in sendsig(). But * sendsig() is the only caller of fpugetuserregs()... perhaps we just * have too many layers. */ clear_pcb_flags(curthread->td_pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); critical_exit(); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; if (td == NULL) { dbregs->dr[0] = rdr0(); dbregs->dr[1] = rdr1(); dbregs->dr[2] = rdr2(); dbregs->dr[3] = rdr3(); dbregs->dr[6] = rdr6(); dbregs->dr[7] = rdr7(); } else { pcb = td->td_pcb; dbregs->dr[0] = pcb->pcb_dr0; dbregs->dr[1] = pcb->pcb_dr1; dbregs->dr[2] = pcb->pcb_dr2; dbregs->dr[3] = pcb->pcb_dr3; dbregs->dr[6] = pcb->pcb_dr6; dbregs->dr[7] = pcb->pcb_dr7; } dbregs->dr[4] = 0; dbregs->dr[5] = 0; dbregs->dr[8] = 0; dbregs->dr[9] = 0; dbregs->dr[10] = 0; dbregs->dr[11] = 0; dbregs->dr[12] = 0; dbregs->dr[13] = 0; dbregs->dr[14] = 0; dbregs->dr[15] = 0; return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; int i; if (td == NULL) { load_dr0(dbregs->dr[0]); load_dr1(dbregs->dr[1]); load_dr2(dbregs->dr[2]); load_dr3(dbregs->dr[3]); load_dr6(dbregs->dr[6]); load_dr7(dbregs->dr[7]); } else { /* * Don't let an illegal value for dr7 get set. Specifically, * check for undefined settings. Setting these bit patterns * result in undefined behaviour and can lead to an unexpected * TRCTRAP or a general protection fault right here. * Upper bits of dr6 and dr7 must not be set */ for (i = 0; i < 4; i++) { if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02) return (EINVAL); if (td->td_frame->tf_cs == _ucode32sel && DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8) return (EINVAL); } if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 || (dbregs->dr[7] & 0xffffffff00000000ul) != 0) return (EINVAL); pcb = td->td_pcb; /* * Don't let a process set a breakpoint that is not within the * process's address space. If a process could do this, it * could halt the system by setting a breakpoint in the kernel * (if ddb was enabled). Thus, we need to check to make sure * that no breakpoints are being enabled for addresses outside * process's address space. * * XXX - what about when the watched area of the user's * address space is written into from within the kernel * ... wouldn't that still cause a breakpoint to be generated * from within kernel mode? */ if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) { /* dr0 is enabled */ if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) { /* dr1 is enabled */ if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) { /* dr2 is enabled */ if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) { /* dr3 is enabled */ if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS) return (EINVAL); } pcb->pcb_dr0 = dbregs->dr[0]; pcb->pcb_dr1 = dbregs->dr[1]; pcb->pcb_dr2 = dbregs->dr[2]; pcb->pcb_dr3 = dbregs->dr[3]; pcb->pcb_dr6 = dbregs->dr[6]; pcb->pcb_dr7 = dbregs->dr[7]; set_pcb_flags(pcb, PCB_DBREGS); } return (0); } void reset_dbregs(void) { load_dr7(0); /* Turn off the control bits first */ load_dr0(0); load_dr1(0); load_dr2(0); load_dr3(0); load_dr6(0); } /* * Return > 0 if a hardware breakpoint has been hit, and the * breakpoint was in user space. Return 0, otherwise. */ int user_dbreg_trap(register_t dr6) { u_int64_t dr7; u_int64_t bp; /* breakpoint bits extracted from dr6 */ int nbp; /* number of breakpoints that triggered */ caddr_t addr[4]; /* breakpoint addresses */ int i; bp = dr6 & DBREG_DR6_BMASK; if (bp == 0) { /* * None of the breakpoint bits are set meaning this * trap was not caused by any of the debug registers */ return 0; } dr7 = rdr7(); if ((dr7 & 0x000000ff) == 0) { /* * all GE and LE bits in the dr7 register are zero, * thus the trap couldn't have been caused by the * hardware debug registers */ return 0; } nbp = 0; /* * at least one of the breakpoints were hit, check to see * which ones and if any of them are user space addresses */ if (bp & 0x01) { addr[nbp++] = (caddr_t)rdr0(); } if (bp & 0x02) { addr[nbp++] = (caddr_t)rdr1(); } if (bp & 0x04) { addr[nbp++] = (caddr_t)rdr2(); } if (bp & 0x08) { addr[nbp++] = (caddr_t)rdr3(); } for (i = 0; i < nbp; i++) { if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) { /* * addr[i] is in user space */ return nbp; } } /* * None of the breakpoints are in user space. */ return 0; } /* * The pcb_flags is only modified by current thread, or by other threads * when current thread is stopped. However, current thread may change it * from the interrupt context in cpu_switch(), or in the trap handler. * When we read-modify-write pcb_flags from C sources, compiler may generate * code that is not atomic regarding the interrupt handler. If a trap or * interrupt happens and any flag is modified from the handler, it can be * clobbered with the cached value later. Therefore, we implement setting * and clearing flags with single-instruction functions, which do not race * with possible modification of the flags from the trap or interrupt context, * because traps and interrupts are executed only on instruction boundary. */ void set_pcb_flags_raw(struct pcb *pcb, const u_int flags) { __asm __volatile("orl %1,%0" : "=m" (pcb->pcb_flags) : "ir" (flags), "m" (pcb->pcb_flags) : "cc", "memory"); } /* * The support for RDFSBASE, WRFSBASE and similar instructions for %gs * base requires that kernel saves MSR_FSBASE and MSR_{K,}GSBASE into * pcb if user space modified the bases. We must save on the context * switch or if the return to usermode happens through the doreti. * * Tracking of both events is performed by the pcb flag PCB_FULL_IRET, * which have a consequence that the base MSRs must be saved each time * the PCB_FULL_IRET flag is set. We disable interrupts to sync with * context switches. */ static void set_pcb_flags_fsgsbase(struct pcb *pcb, const u_int flags) { register_t r; if (curpcb == pcb && (flags & PCB_FULL_IRET) != 0 && (pcb->pcb_flags & PCB_FULL_IRET) == 0) { r = intr_disable(); if ((pcb->pcb_flags & PCB_FULL_IRET) == 0) { if (rfs() == _ufssel) pcb->pcb_fsbase = rdfsbase(); if (rgs() == _ugssel) pcb->pcb_gsbase = rdmsr(MSR_KGSBASE); } set_pcb_flags_raw(pcb, flags); intr_restore(r); } else { set_pcb_flags_raw(pcb, flags); } } DEFINE_IFUNC(, void, set_pcb_flags, (struct pcb *, const u_int)) { return ((cpu_stdext_feature & CPUID_STDEXT_FSGSBASE) != 0 ? set_pcb_flags_fsgsbase : set_pcb_flags_raw); } void clear_pcb_flags(struct pcb *pcb, const u_int flags) { __asm __volatile("andl %1,%0" : "=m" (pcb->pcb_flags) : "ir" (~flags), "m" (pcb->pcb_flags) : "cc", "memory"); } #ifdef KDB /* * Provide inb() and outb() as functions. They are normally only available as * inline functions, thus cannot be called from the debugger. */ /* silence compiler warnings */ u_char inb_(u_short); void outb_(u_short, u_char); u_char inb_(u_short port) { return inb(port); } void outb_(u_short port, u_char data) { outb(port, data); } #endif /* KDB */ #undef memset #undef memmove #undef memcpy void *memset_std(void *buf, int c, size_t len); void *memset_erms(void *buf, int c, size_t len); DEFINE_IFUNC(, void *, memset, (void *, int, size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memset_erms : memset_std); } void *memmove_std(void * _Nonnull dst, const void * _Nonnull src, size_t len); void *memmove_erms(void * _Nonnull dst, const void * _Nonnull src, size_t len); DEFINE_IFUNC(, void *, memmove, (void * _Nonnull, const void * _Nonnull, size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memmove_erms : memmove_std); } void *memcpy_std(void * _Nonnull dst, const void * _Nonnull src, size_t len); void *memcpy_erms(void * _Nonnull dst, const void * _Nonnull src, size_t len); DEFINE_IFUNC(, void *, memcpy, (void * _Nonnull, const void * _Nonnull,size_t)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? memcpy_erms : memcpy_std); } void pagezero_std(void *addr); void pagezero_erms(void *addr); DEFINE_IFUNC(, void , pagezero, (void *)) { return ((cpu_stdext_feature & CPUID_STDEXT_ERMS) != 0 ? pagezero_erms : pagezero_std); } Index: head/sys/amd64/amd64/vm_machdep.c =================================================================== --- head/sys/amd64/amd64/vm_machdep.c (revision 354094) +++ head/sys/amd64/amd64/vm_machdep.c (revision 354095) @@ -1,661 +1,665 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include __FBSDID("$FreeBSD$"); #include "opt_isa.h" #include "opt_cpu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include _Static_assert(OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf), "OFFSETOF_MONITORBUF does not correspond with offset of pc_monitorbuf."); -struct savefpu * -get_pcb_user_save_td(struct thread *td) +void +set_top_of_stack_td(struct thread *td) { - vm_offset_t p; - - p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - + td->td_md.md_stack_base = td->td_kstack + + td->td_kstack_pages * PAGE_SIZE - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN); - KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area")); - return ((struct savefpu *)p); } struct savefpu * -get_pcb_user_save_pcb(struct pcb *pcb) +get_pcb_user_save_td(struct thread *td) { vm_offset_t p; - p = (vm_offset_t)(pcb + 1); + p = td->td_md.md_stack_base; + KASSERT((p % XSAVE_AREA_ALIGN) == 0, + ("Unaligned pcb_user_save area ptr %#lx td %p", p, td)); return ((struct savefpu *)p); } struct pcb * get_pcb_td(struct thread *td) { - vm_offset_t p; - p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) - - sizeof(struct pcb); - return ((struct pcb *)p); + return (&td->td_md.md_pcb); } +struct savefpu * +get_pcb_user_save_pcb(struct pcb *pcb) +{ + struct thread *td; + + td = __containerof(pcb, struct thread, td_md.md_pcb); + return (get_pcb_user_save_td(td)); +} + void * alloc_fpusave(int flags) { void *res; struct savefpu_ymm *sf; res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); if (use_xsave) { sf = (struct savefpu_ymm *)res; bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; } return (res); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct proc *p1; struct pcb *pcb2; struct mdproc *mdp1, *mdp2; struct proc_ldt *pldt; p1 = td1->td_proc; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ mdp1 = &p1->p_md; mtx_lock(&dt_lock); if ((pldt = mdp1->md_ldt) != NULL && pldt->ldt_refcnt > 1 && user_ldt_alloc(p1, 1) == NULL) panic("could not copy LDT"); mtx_unlock(&dt_lock); } return; } /* Ensure that td1's pcb is up to date. */ fpuexit(td1); update_pcb_bases(td1->td_pcb); - /* Point the pcb to the top of the stack */ - pcb2 = get_pcb_td(td2); - td2->td_pcb = pcb2; + /* Point the stack and pcb to the actual location */ + set_top_of_stack_td(td2); + td2->td_pcb = pcb2 = get_pcb_td(td2); /* Copy td1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Properly initialize pcb_save */ pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), cpu_max_ext_state_size); /* Point mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ - td2->td_frame = (struct trapframe *)td2->td_pcb - 1; + td2->td_frame = (struct trapframe *)td2->td_md.md_stack_base - 1; bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); td2->td_frame->tf_rax = 0; /* Child returns zero */ td2->td_frame->tf_rflags &= ~PSL_C; /* success */ td2->td_frame->tf_rdx = 1; /* * If the parent process has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame unless the debugger had set PF_FORK * on the parent. Otherwise, the child will receive a (likely * unexpected) SIGTRAP when it executes the first instruction after * returning to userland. */ if ((p1->p_pfsflags & PF_FORK) == 0) td2->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_r12 = (register_t)fork_return; /* fork_trampoline argument */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *); pcb2->pcb_rbx = (register_t)td2; /* fork_trampoline argument */ pcb2->pcb_rip = (register_t)fork_trampoline; /*- * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; pmap_thread_init_invl_gen(td2); /* As an i386, do not copy io permission bitmap. */ pcb2->pcb_tssp = NULL; /* New segment registers. */ set_pcb_flags_raw(pcb2, PCB_FULL_IRET); /* Copy the LDT, if necessary. */ mdp1 = &td1->td_proc->p_md; mdp2 = &p2->p_md; if (mdp1->md_ldt == NULL) { mdp2->md_ldt = NULL; return; } mtx_lock(&dt_lock); if (mdp1->md_ldt != NULL) { if (flags & RFMEM) { mdp1->md_ldt->ldt_refcnt++; mdp2->md_ldt = mdp1->md_ldt; bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct system_segment_descriptor)); } else { mdp2->md_ldt = NULL; mdp2->md_ldt = user_ldt_alloc(p2, 0); if (mdp2->md_ldt == NULL) panic("could not copy LDT"); amd64_set_ldt_data(td2, 0, max_ldt_segment, (struct user_segment_descriptor *) mdp1->md_ldt->ldt_base); } } else mdp2->md_ldt = NULL; mtx_unlock(&dt_lock); /* * Now, cpu_switch() can schedule the new process. * pcb_rsp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new proc's pointer. fork_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ td->td_pcb->pcb_r12 = (long) func; /* function */ td->td_pcb->pcb_rbx = (long) arg; /* first arg */ } void cpu_exit(struct thread *td) { /* * If this process has a custom LDT, release it. */ if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); } void cpu_thread_exit(struct thread *td) { struct pcb *pcb; critical_enter(); if (td == PCPU_GET(fpcurthread)) fpudrop(); critical_exit(); pcb = td->td_pcb; /* Disable any hardware breakpoints. */ if (pcb->pcb_flags & PCB_DBREGS) { reset_dbregs(); clear_pcb_flags(pcb, PCB_DBREGS); } } void cpu_thread_clean(struct thread *td) { struct pcb *pcb; pcb = td->td_pcb; /* * Clean TSS/iomap */ if (pcb->pcb_tssp != NULL) { pmap_pti_remove_kva((vm_offset_t)pcb->pcb_tssp, (vm_offset_t)pcb->pcb_tssp + ctob(IOPAGES + 1)); kmem_free((vm_offset_t)pcb->pcb_tssp, ctob(IOPAGES + 1)); pcb->pcb_tssp = NULL; } } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; struct xstate_hdr *xhdr; + set_top_of_stack_td(td); td->td_pcb = pcb = get_pcb_td(td); - td->td_frame = (struct trapframe *)pcb - 1; + td->td_frame = (struct trapframe *)td->td_md.md_stack_base - 1; pcb->pcb_save = get_pcb_user_save_pcb(pcb); if (use_xsave) { xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); bzero(xhdr, sizeof(*xhdr)); xhdr->xstate_bv = xsave_mask; } } void cpu_thread_free(struct thread *td) { cpu_thread_clean(td); } bool cpu_exec_vmspace_reuse(struct proc *p, vm_map_t map) { return (((curproc->p_md.md_flags & P_MD_KPTI) != 0) == (vm_map_pmap(map)->pm_ucr3 != PMAP_NO_CR3)); } static void cpu_procctl_kpti(struct proc *p, int com, int *val) { if (com == PROC_KPTI_CTL) { if (pti && *val == PROC_KPTI_CTL_ENABLE_ON_EXEC) p->p_md.md_flags |= P_MD_KPTI; if (*val == PROC_KPTI_CTL_DISABLE_ON_EXEC) p->p_md.md_flags &= ~P_MD_KPTI; } else /* PROC_KPTI_STATUS */ { *val = (p->p_md.md_flags & P_MD_KPTI) != 0 ? PROC_KPTI_CTL_ENABLE_ON_EXEC: PROC_KPTI_CTL_DISABLE_ON_EXEC; if (vmspace_pmap(p->p_vmspace)->pm_ucr3 != PMAP_NO_CR3) *val |= PROC_KPTI_STATUS_ACTIVE; } } int cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data) { struct proc *p; int error, val; switch (com) { case PROC_KPTI_CTL: case PROC_KPTI_STATUS: if (idtype != P_PID) { error = EINVAL; break; } if (com == PROC_KPTI_CTL) { /* sad but true and not a joke */ error = priv_check(td, PRIV_IO); if (error != 0) break; error = copyin(data, &val, sizeof(val)); if (error != 0) break; if (val != PROC_KPTI_CTL_ENABLE_ON_EXEC && val != PROC_KPTI_CTL_DISABLE_ON_EXEC) { error = EINVAL; break; } } error = pget(id, PGET_CANSEE | PGET_NOTWEXIT | PGET_NOTID, &p); if (error == 0) { cpu_procctl_kpti(p, com, &val); PROC_UNLOCK(p); if (com == PROC_KPTI_STATUS) error = copyout(&val, data, sizeof(val)); } break; default: error = EINVAL; break; } return (error); } void cpu_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; if (__predict_true(error == 0)) { frame->tf_rax = td->td_retval[0]; frame->tf_rdx = td->td_retval[1]; frame->tf_rflags &= ~PSL_C; return; } switch (error) { case ERESTART: /* * Reconstruct pc, we know that 'syscall' is 2 bytes, * lcall $X,y is 7 bytes, int 0x80 is 2 bytes. * We saved this in tf_err. * %r10 (which was holding the value of %rcx) is restored * for the next iteration. * %r10 restore is only required for freebsd/amd64 processes, * but shall be innocent for any ia32 ABI. * * Require full context restore to get the arguments * in the registers reloaded at return to usermode. */ frame->tf_rip -= frame->tf_err; frame->tf_r10 = frame->tf_rcx; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); break; case EJUSTRETURN: break; default: frame->tf_rax = SV_ABI_ERRNO(td->td_proc, error); frame->tf_rflags |= PSL_C; break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { struct pcb *pcb2; - /* Point the pcb to the top of the stack. */ pcb2 = td->td_pcb; /* * Copy the upcall pcb. This loads kernel regs. * Those not loaded individually below get their default * values here. */ update_pcb_bases(td0->td_pcb); bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE | PCB_KERNFPU); pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save, cpu_max_ext_state_size); set_pcb_flags_raw(pcb2, PCB_FULL_IRET); /* * Create a new fresh stack for the new thread. */ bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); /* If the current thread has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame. Otherwise, the new thread will * receive a (likely unexpected) SIGTRAP when it executes the first * instruction after returning to userland. */ td->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_r12 = (register_t)fork_return; /* trampoline arg */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *); /* trampoline arg */ pcb2->pcb_rbx = (register_t)td; /* trampoline arg */ pcb2->pcb_rip = (register_t)fork_trampoline; /* * If we didn't copy the pcb, we'd need to do the following registers: * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; pmap_thread_init_invl_gen(td); } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { /* * Do any extra cleaning that needs to be done. * The thread may have optional components * that are not present in a fresh thread. * This may be a recycled thread so make it look * as though it's newly allocated. */ cpu_thread_clean(td); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { /* * Set the trap frame to point at the beginning of the entry * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; td->td_frame->tf_rip = (uintptr_t)entry; /* Return address sentinel value to stop stack unwinding. */ suword32((void *)td->td_frame->tf_rsp, 0); /* Pass the argument to the entry point. */ suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)), (uint32_t)(uintptr_t)arg); return; } #endif /* * Set the trap frame to point at the beginning of the uts * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f; td->td_frame->tf_rsp -= 8; td->td_frame->tf_rip = (register_t)entry; td->td_frame->tf_ds = _udatasel; td->td_frame->tf_es = _udatasel; td->td_frame->tf_fs = _ufssel; td->td_frame->tf_gs = _ugssel; td->td_frame->tf_flags = TF_HASSEGS; /* Return address sentinel value to stop stack unwinding. */ suword((void *)td->td_frame->tf_rsp, 0); /* Pass the argument to the entry point. */ td->td_frame->tf_rdi = (register_t)arg; } int cpu_set_user_tls(struct thread *td, void *tls_base) { struct pcb *pcb; if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS) return (EINVAL); pcb = td->td_pcb; set_pcb_flags(pcb, PCB_FULL_IRET); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { pcb->pcb_gsbase = (register_t)tls_base; return (0); } #endif pcb->pcb_fsbase = (register_t)tls_base; return (0); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(vm_paddr_t addr) { #ifdef DEV_ISA /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; } Index: head/sys/amd64/include/md_var.h =================================================================== --- head/sys/amd64/include/md_var.h (revision 354094) +++ head/sys/amd64/include/md_var.h (revision 354095) @@ -1,90 +1,91 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1995 Bruce D. Evans. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_MD_VAR_H_ #define _MACHINE_MD_VAR_H_ #include extern uint64_t *vm_page_dump; extern int hw_lower_amd64_sharedpage; extern int hw_ibrs_disable; extern int hw_ssb_disable; extern int nmi_flush_l1d_sw; extern int syscall_ret_l1d_flush_mode; extern vm_paddr_t intel_graphics_stolen_base; extern vm_paddr_t intel_graphics_stolen_size; /* * The file "conf/ldscript.amd64" defines the symbol "kernphys". Its * value is the physical address at which the kernel is loaded. */ extern char kernphys[]; struct savefpu; struct sysentvec; void amd64_conf_fast_syscall(void); void amd64_db_resume_dbreg(void); void amd64_lower_shared_page(struct sysentvec *); void amd64_bsp_pcpu_init1(struct pcpu *pc); void amd64_bsp_pcpu_init2(uint64_t rsp0); void amd64_bsp_ist_init(struct pcpu *pc); void amd64_syscall(struct thread *td, int traced); void amd64_syscall_ret_flush_l1d(int error); void amd64_syscall_ret_flush_l1d_recalc(void); void doreti_iret(void) __asm(__STRING(doreti_iret)); void doreti_iret_fault(void) __asm(__STRING(doreti_iret_fault)); void flush_l1d_sw_abi(void); void ld_ds(void) __asm(__STRING(ld_ds)); void ld_es(void) __asm(__STRING(ld_es)); void ld_fs(void) __asm(__STRING(ld_fs)); void ld_gs(void) __asm(__STRING(ld_gs)); void ld_fsbase(void) __asm(__STRING(ld_fsbase)); void ld_gsbase(void) __asm(__STRING(ld_gsbase)); void ds_load_fault(void) __asm(__STRING(ds_load_fault)); void es_load_fault(void) __asm(__STRING(es_load_fault)); void fs_load_fault(void) __asm(__STRING(fs_load_fault)); void gs_load_fault(void) __asm(__STRING(gs_load_fault)); void fsbase_load_fault(void) __asm(__STRING(fsbase_load_fault)); void gsbase_load_fault(void) __asm(__STRING(gsbase_load_fault)); void fpstate_drop(struct thread *td); void pagezero(void *addr); void setidt(int idx, alias_for_inthand_t *func, int typ, int dpl, int ist); void sse2_pagezero(void *addr); +void set_top_of_stack_td(struct thread *td); struct savefpu *get_pcb_user_save_td(struct thread *td); struct savefpu *get_pcb_user_save_pcb(struct pcb *pcb); void pci_early_quirks(void); #endif /* !_MACHINE_MD_VAR_H_ */ Index: head/sys/amd64/include/pcpu_aux.h =================================================================== --- head/sys/amd64/include/pcpu_aux.h (revision 354094) +++ head/sys/amd64/include/pcpu_aux.h (revision 354095) @@ -1,72 +1,62 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2019 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_PCPU_AUX_H_ #define _MACHINE_PCPU_AUX_H_ #ifndef _KERNEL #error "Not for userspace" #endif #ifndef _SYS_PCPU_H_ #error "Do not include machine/pcpu_aux.h directly" #endif /* Required for counters(9) to work on x86. */ _Static_assert(sizeof(struct pcpu) == UMA_PCPU_ALLOC_SIZE, "fix pcpu size"); extern struct pcpu *__pcpu; extern struct pcpu temp_bsp_pcpu; static __inline __pure2 struct thread * __curthread(void) { struct thread *td; __asm("movq %%gs:%P1,%0" : "=r" (td) : "n" (offsetof(struct pcpu, pc_curthread))); return (td); } #define curthread (__curthread()) - -static __inline __pure2 struct pcb * -__curpcb(void) -{ - struct pcb *pcb; - - __asm("movq %%gs:%P1,%0" : "=r" (pcb) : "n" (offsetof(struct pcpu, - pc_curpcb))); - return (pcb); -} -#define curpcb (__curpcb()) +#define curpcb (&curthread->td_md.md_pcb) #endif /* _MACHINE_PCPU_AUX_H_ */ Index: head/sys/amd64/include/proc.h =================================================================== --- head/sys/amd64/include/proc.h (revision 354094) +++ head/sys/amd64/include/proc.h (revision 354095) @@ -1,120 +1,123 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)proc.h 7.1 (Berkeley) 5/15/91 * $FreeBSD$ */ #ifndef _MACHINE_PROC_H_ #define _MACHINE_PROC_H_ #include +#include #include /* * List of locks * c - proc lock * k - only accessed by curthread * pp - pmap.c:invl_gen_mtx */ struct proc_ldt { caddr_t ldt_base; int ldt_refcnt; }; #define PMAP_INVL_GEN_NEXT_INVALID 0x1ULL struct pmap_invl_gen { u_long gen; /* (k) */ union { LIST_ENTRY(pmap_invl_gen) link; /* (pp) */ struct { struct pmap_invl_gen *next; u_char saved_pri; }; }; } __aligned(16); /* * Machine-dependent part of the proc structure for AMD64. */ struct mdthread { int md_spinlock_count; /* (k) */ register_t md_saved_flags; /* (k) */ register_t md_spurflt_addr; /* (k) Spurious page fault address. */ struct pmap_invl_gen md_invl_gen; register_t md_efirt_tmp; /* (k) */ int md_efirt_dis_pf; /* (k) */ + struct pcb md_pcb; + vm_offset_t md_stack_base; }; struct mdproc { struct proc_ldt *md_ldt; /* (t) per-process ldt */ struct system_segment_descriptor md_ldt_sd; u_int md_flags; /* (c) md process flags P_MD */ }; #define P_MD_KPTI 0x00000001 /* Enable KPTI on exec */ #define KINFO_PROC_SIZE 1088 #define KINFO_PROC32_SIZE 768 struct syscall_args { u_int code; struct sysent *callp; register_t args[8]; int narg; }; #ifdef _KERNEL /* Get the current kernel thread stack usage. */ #define GET_STACK_USAGE(total, used) do { \ struct thread *td = curthread; \ (total) = td->td_kstack_pages * PAGE_SIZE; \ (used) = (char *)td->td_kstack + \ td->td_kstack_pages * PAGE_SIZE - \ (char *)&td; \ } while (0) struct proc_ldt *user_ldt_alloc(struct proc *, int); void user_ldt_free(struct thread *); struct sysarch_args; int sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space); int amd64_set_ldt_data(struct thread *td, int start, int num, struct user_segment_descriptor *descs); extern struct mtx dt_lock; extern int max_ldt_segment; #define NARGREGS 6 #endif /* _KERNEL */ #endif /* !_MACHINE_PROC_H_ */ Index: head/sys/kern/kern_thread.c =================================================================== --- head/sys/kern/kern_thread.c (revision 354094) +++ head/sys/kern/kern_thread.c (revision 354095) @@ -1,1272 +1,1272 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2001 Julian Elischer . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include "opt_witness.h" #include "opt_hwpmc_hooks.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #include #include /* * Asserts below verify the stability of struct thread and struct proc * layout, as exposed by KBI to modules. On head, the KBI is allowed * to drift, change to the structures must be accompanied by the * assert update. * * On the stable branches after KBI freeze, conditions must not be * violated. Typically new fields are moved to the end of the * structures. */ #ifdef __amd64__ _Static_assert(offsetof(struct thread, td_flags) == 0xfc, "struct thread KBI td_flags"); _Static_assert(offsetof(struct thread, td_pflags) == 0x104, "struct thread KBI td_pflags"); _Static_assert(offsetof(struct thread, td_frame) == 0x478, "struct thread KBI td_frame"); -_Static_assert(offsetof(struct thread, td_emuldata) == 0x540, +_Static_assert(offsetof(struct thread, td_emuldata) == 0x690, "struct thread KBI td_emuldata"); _Static_assert(offsetof(struct proc, p_flag) == 0xb0, "struct proc KBI p_flag"); _Static_assert(offsetof(struct proc, p_pid) == 0xbc, "struct proc KBI p_pid"); _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8, "struct proc KBI p_filemon"); _Static_assert(offsetof(struct proc, p_comm) == 0x3e0, "struct proc KBI p_comm"); _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0, "struct proc KBI p_emuldata"); #endif #ifdef __i386__ _Static_assert(offsetof(struct thread, td_flags) == 0x98, "struct thread KBI td_flags"); _Static_assert(offsetof(struct thread, td_pflags) == 0xa0, "struct thread KBI td_pflags"); _Static_assert(offsetof(struct thread, td_frame) == 0x2f0, "struct thread KBI td_frame"); _Static_assert(offsetof(struct thread, td_emuldata) == 0x338, "struct thread KBI td_emuldata"); _Static_assert(offsetof(struct proc, p_flag) == 0x68, "struct proc KBI p_flag"); _Static_assert(offsetof(struct proc, p_pid) == 0x74, "struct proc KBI p_pid"); _Static_assert(offsetof(struct proc, p_filemon) == 0x278, "struct proc KBI p_filemon"); _Static_assert(offsetof(struct proc, p_comm) == 0x28c, "struct proc KBI p_comm"); _Static_assert(offsetof(struct proc, p_emuldata) == 0x318, "struct proc KBI p_emuldata"); #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE(proc, , , lwp__exit); /* * thread related storage. */ static uma_zone_t thread_zone; TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); static struct mtx zombie_lock; MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); static void thread_zombie(struct thread *); static int thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary); #define TID_BUFFER_SIZE 1024 struct mtx tid_lock; static struct unrhdr *tid_unrhdr; static lwpid_t tid_buffer[TID_BUFFER_SIZE]; static int tid_head, tid_tail; static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); struct tidhashhead *tidhashtbl; u_long tidhash; struct rwlock tidhash_lock; EVENTHANDLER_LIST_DEFINE(thread_ctor); EVENTHANDLER_LIST_DEFINE(thread_dtor); EVENTHANDLER_LIST_DEFINE(thread_init); EVENTHANDLER_LIST_DEFINE(thread_fini); static lwpid_t tid_alloc(void) { lwpid_t tid; tid = alloc_unr(tid_unrhdr); if (tid != -1) return (tid); mtx_lock(&tid_lock); if (tid_head == tid_tail) { mtx_unlock(&tid_lock); return (-1); } tid = tid_buffer[tid_head]; tid_head = (tid_head + 1) % TID_BUFFER_SIZE; mtx_unlock(&tid_lock); return (tid); } static void tid_free(lwpid_t tid) { lwpid_t tmp_tid = -1; mtx_lock(&tid_lock); if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) { tmp_tid = tid_buffer[tid_head]; tid_head = (tid_head + 1) % TID_BUFFER_SIZE; } tid_buffer[tid_tail] = tid; tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE; mtx_unlock(&tid_lock); if (tmp_tid != -1) free_unr(tid_unrhdr, tmp_tid); } /* * Prepare a thread for use. */ static int thread_ctor(void *mem, int size, void *arg, int flags) { struct thread *td; td = (struct thread *)mem; td->td_state = TDS_INACTIVE; td->td_lastcpu = td->td_oncpu = NOCPU; td->td_tid = tid_alloc(); /* * Note that td_critnest begins life as 1 because the thread is not * running and is thereby implicitly waiting to be on the receiving * end of a context switch. */ td->td_critnest = 1; td->td_lend_user_pri = PRI_MAX; EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); #ifdef AUDIT audit_thread_alloc(td); #endif umtx_thread_alloc(td); return (0); } /* * Reclaim a thread after use. */ static void thread_dtor(void *mem, int size, void *arg) { struct thread *td; td = (struct thread *)mem; #ifdef INVARIANTS /* Verify that this thread is in a safe state to free. */ switch (td->td_state) { case TDS_INHIBITED: case TDS_RUNNING: case TDS_CAN_RUN: case TDS_RUNQ: /* * We must never unlink a thread that is in one of * these states, because it is currently active. */ panic("bad state for thread unlinking"); /* NOTREACHED */ case TDS_INACTIVE: break; default: panic("bad thread state"); /* NOTREACHED */ } #endif #ifdef AUDIT audit_thread_free(td); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); td_softdep_cleanup(td); MPASS(td->td_su == NULL); EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); tid_free(td->td_tid); } /* * Initialize type-stable parts of a thread (when newly created). */ static int thread_init(void *mem, int size, int flags) { struct thread *td; td = (struct thread *)mem; td->td_sleepqueue = sleepq_alloc(); td->td_turnstile = turnstile_alloc(); td->td_rlqe = NULL; EVENTHANDLER_DIRECT_INVOKE(thread_init, td); umtx_thread_init(td); td->td_kstack = 0; td->td_sel = NULL; return (0); } /* * Tear down type-stable parts of a thread (just before being discarded). */ static void thread_fini(void *mem, int size) { struct thread *td; td = (struct thread *)mem; EVENTHANDLER_DIRECT_INVOKE(thread_fini, td); rlqentry_free(td->td_rlqe); turnstile_free(td->td_turnstile); sleepq_free(td->td_sleepqueue); umtx_thread_fini(td); seltdfini(td); } /* * For a newly created process, * link up all the structures and its initial threads etc. * called from: * {arch}/{arch}/machdep.c {arch}_init(), init386() etc. * proc_dtor() (should go away) * proc_init() */ void proc_linkup0(struct proc *p, struct thread *td) { TAILQ_INIT(&p->p_threads); /* all threads in proc */ proc_linkup(p, td); } void proc_linkup(struct proc *p, struct thread *td) { sigqueue_init(&p->p_sigqueue, p); p->p_ksi = ksiginfo_alloc(1); if (p->p_ksi != NULL) { /* XXX p_ksi may be null if ksiginfo zone is not ready */ p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; } LIST_INIT(&p->p_mqnotifier); p->p_numthreads = 0; thread_link(td, p); } /* * Initialize global thread allocation resources. */ void threadinit(void) { mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); /* * pid_max cannot be greater than PID_MAX. * leave one number for thread0. */ tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), thread_ctor, thread_dtor, thread_init, thread_fini, 32 - 1, UMA_ZONE_NOFREE); tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); rw_init(&tidhash_lock, "tidhash"); } /* * Place an unused thread on the zombie list. * Use the slpq as that must be unused by now. */ void thread_zombie(struct thread *td) { mtx_lock_spin(&zombie_lock); TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); mtx_unlock_spin(&zombie_lock); } /* * Release a thread that has exited after cpu_throw(). */ void thread_stash(struct thread *td) { atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); thread_zombie(td); } /* * Reap zombie resources. */ void thread_reap(void) { struct thread *td_first, *td_next; /* * Don't even bother to lock if none at this instant, * we really don't care about the next instant. */ if (!TAILQ_EMPTY(&zombie_threads)) { mtx_lock_spin(&zombie_lock); td_first = TAILQ_FIRST(&zombie_threads); if (td_first) TAILQ_INIT(&zombie_threads); mtx_unlock_spin(&zombie_lock); while (td_first) { td_next = TAILQ_NEXT(td_first, td_slpq); thread_cow_free(td_first); thread_free(td_first); td_first = td_next; } } } /* * Allocate a thread. */ struct thread * thread_alloc(int pages) { struct thread *td; thread_reap(); /* check if any zombies to get */ td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); if (!vm_thread_new(td, pages)) { uma_zfree(thread_zone, td); return (NULL); } cpu_thread_alloc(td); return (td); } int thread_alloc_stack(struct thread *td, int pages) { KASSERT(td->td_kstack == 0, ("thread_alloc_stack called on a thread with kstack")); if (!vm_thread_new(td, pages)) return (0); cpu_thread_alloc(td); return (1); } /* * Deallocate a thread. */ void thread_free(struct thread *td) { lock_profile_thread_exit(td); if (td->td_cpuset) cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_free(td); if (td->td_kstack != 0) vm_thread_dispose(td); callout_drain(&td->td_slpcallout); uma_zfree(thread_zone, td); } void thread_cow_get_proc(struct thread *newtd, struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); newtd->td_ucred = crhold(p->p_ucred); newtd->td_limit = lim_hold(p->p_limit); newtd->td_cowgen = p->p_cowgen; } void thread_cow_get(struct thread *newtd, struct thread *td) { newtd->td_ucred = crhold(td->td_ucred); newtd->td_limit = lim_hold(td->td_limit); newtd->td_cowgen = td->td_cowgen; } void thread_cow_free(struct thread *td) { if (td->td_ucred != NULL) crfree(td->td_ucred); if (td->td_limit != NULL) lim_free(td->td_limit); } void thread_cow_update(struct thread *td) { struct proc *p; struct ucred *oldcred; struct plimit *oldlimit; p = td->td_proc; oldcred = NULL; oldlimit = NULL; PROC_LOCK(p); if (td->td_ucred != p->p_ucred) { oldcred = td->td_ucred; td->td_ucred = crhold(p->p_ucred); } if (td->td_limit != p->p_limit) { oldlimit = td->td_limit; td->td_limit = lim_hold(p->p_limit); } td->td_cowgen = p->p_cowgen; PROC_UNLOCK(p); if (oldcred != NULL) crfree(oldcred); if (oldlimit != NULL) lim_free(oldlimit); } /* * Discard the current thread and exit from its context. * Always called with scheduler locked. * * Because we can't free a thread while we're operating under its context, * push the current thread into our CPU's deadthread holder. This means * we needn't worry about someone else grabbing our context before we * do a cpu_throw(). */ void thread_exit(void) { uint64_t runtime, new_switchtime; struct thread *td; struct thread *td2; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p != NULL, ("thread exiting without a process")); CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, (long)p->p_pid, td->td_name); SDT_PROBE0(proc, , , lwp__exit); KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); /* * drop FPU & debug register state storage, or any other * architecture specific resources that * would not be on a new untouched process. */ cpu_thread_exit(td); /* * The last thread is left attached to the process * So that the whole bundle gets recycled. Skip * all this stuff if we never had threads. * EXIT clears all sign of other threads when * it goes to single threading, so the last thread always * takes the short path. */ if (p->p_flag & P_HADTHREADS) { if (p->p_numthreads > 1) { atomic_add_int(&td->td_proc->p_exitthreads, 1); thread_unlink(td); td2 = FIRST_THREAD_IN_PROC(p); sched_exit_thread(td2, td); /* * The test below is NOT true if we are the * sole exiting thread. P_STOPPED_SINGLE is unset * in exit1() after it is the only survivor. */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } PCPU_SET(deadthread, td); } else { /* * The last thread is exiting.. but not through exit() */ panic ("thread_exit: Last thread exiting on its own"); } } #ifdef HWPMC_HOOKS /* * If this thread is part of a process that is being tracked by hwpmc(4), * inform the module of the thread's impending exit. */ if (PMC_PROC_IS_USING_PMCS(td->td_proc)) { PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL); } else if (PMC_SYSTEM_SAMPLING_ACTIVE()) PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL); #endif PROC_UNLOCK(p); PROC_STATLOCK(p); thread_lock(td); PROC_SUNLOCK(p); /* Do the same timestamp bookkeeping that mi_switch() would do. */ new_switchtime = cpu_ticks(); runtime = new_switchtime - PCPU_GET(switchtime); td->td_runtime += runtime; td->td_incruntime += runtime; PCPU_SET(switchtime, new_switchtime); PCPU_SET(switchticks, ticks); VM_CNT_INC(v_swtch); /* Save our resource usage in our process. */ td->td_ru.ru_nvcsw++; ruxagg(p, td); rucollect(&p->p_ru, &td->td_ru); PROC_STATUNLOCK(p); td->td_state = TDS_INACTIVE; #ifdef WITNESS witness_thread_exit(td); #endif CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); sched_throw(td); panic("I'm a teapot!"); /* NOTREACHED */ } /* * Do any thread specific cleanups that may be needed in wait() * called with Giant, proc and schedlock not held. */ void thread_wait(struct proc *p) { struct thread *td; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()")); KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking")); td = FIRST_THREAD_IN_PROC(p); /* Lock the last thread so we spin until it exits cpu_throw(). */ thread_lock(td); thread_unlock(td); lock_profile_thread_exit(td); cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_clean(td); thread_cow_free(td); callout_drain(&td->td_slpcallout); thread_reap(); /* check for zombie threads etc. */ } /* * Link a thread to a process. * set up anything that needs to be initialized for it to * be used by the process. */ void thread_link(struct thread *td, struct proc *p) { /* * XXX This can't be enabled because it's called for proc0 before * its lock has been created. * PROC_LOCK_ASSERT(p, MA_OWNED); */ td->td_state = TDS_INACTIVE; td->td_proc = p; td->td_flags = TDF_INMEM; LIST_INIT(&td->td_contested); LIST_INIT(&td->td_lprof[0]); LIST_INIT(&td->td_lprof[1]); #ifdef EPOCH_TRACE SLIST_INIT(&td->td_epochs); #endif sigqueue_init(&td->td_sigqueue, p); callout_init(&td->td_slpcallout, 1); TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist); p->p_numthreads++; } /* * Called from: * thread_exit() */ void thread_unlink(struct thread *td) { struct proc *p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); #ifdef EPOCH_TRACE MPASS(SLIST_EMPTY(&td->td_epochs)); #endif TAILQ_REMOVE(&p->p_threads, td, td_plist); p->p_numthreads--; /* could clear a few other things here */ /* Must NOT clear links to proc! */ } static int calc_remaining(struct proc *p, int mode) { int remaining; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); if (mode == SINGLE_EXIT) remaining = p->p_numthreads; else if (mode == SINGLE_BOUNDARY) remaining = p->p_numthreads - p->p_boundary_count; else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC) remaining = p->p_numthreads - p->p_suspcount; else panic("calc_remaining: wrong mode %d", mode); return (remaining); } static int remain_for_mode(int mode) { return (mode == SINGLE_ALLPROC ? 0 : 1); } static int weed_inhib(int mode, struct thread *td2, struct proc *p) { int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td2, MA_OWNED); wakeup_swapper = 0; switch (mode) { case SINGLE_EXIT: if (TD_IS_SUSPENDED(td2)) wakeup_swapper |= thread_unsuspend_one(td2, p, true); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) wakeup_swapper |= sleepq_abort(td2, EINTR); break; case SINGLE_BOUNDARY: case SINGLE_NO_EXIT: if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0) wakeup_swapper |= thread_unsuspend_one(td2, p, false); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) wakeup_swapper |= sleepq_abort(td2, ERESTART); break; case SINGLE_ALLPROC: /* * ALLPROC suspend tries to avoid spurious EINTR for * threads sleeping interruptable, by suspending the * thread directly, similarly to sig_suspend_threads(). * Since such sleep is not performed at the user * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP * is used to avoid immediate un-suspend. */ if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY | TDF_ALLPROCSUSP)) == 0) wakeup_swapper |= thread_unsuspend_one(td2, p, false); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) { if ((td2->td_flags & TDF_SBDRY) == 0) { thread_suspend_one(td2); td2->td_flags |= TDF_ALLPROCSUSP; } else { wakeup_swapper |= sleepq_abort(td2, ERESTART); } } break; } return (wakeup_swapper); } /* * Enforce single-threading. * * Returns 1 if the caller must abort (another thread is waiting to * exit the process or similar). Process is locked! * Returns 0 when you are successfully the only thread running. * A process has successfully single threaded in the suspend mode when * There are no threads in user mode. Threads in the kernel must be * allowed to continue until they get to the user boundary. They may even * copy out their return values and data before suspending. They may however be * accelerated in reaching the user boundary as we will wake up * any sleeping threads that are interruptable. (PCATCH). */ int thread_single(struct proc *p, int mode) { struct thread *td; struct thread *td2; int remaining, wakeup_swapper; td = curthread; KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, ("invalid mode %d", mode)); /* * If allowing non-ALLPROC singlethreading for non-curproc * callers, calc_remaining() and remain_for_mode() should be * adjusted to also account for td->td_proc != p. For now * this is not implemented because it is not used. */ KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) || (mode != SINGLE_ALLPROC && td->td_proc == p), ("mode %d proc %p curproc %p", mode, p, td->td_proc)); mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC) return (0); /* Is someone already single threading? */ if (p->p_singlethread != NULL && p->p_singlethread != td) return (1); if (mode == SINGLE_EXIT) { p->p_flag |= P_SINGLE_EXIT; p->p_flag &= ~P_SINGLE_BOUNDARY; } else { p->p_flag &= ~P_SINGLE_EXIT; if (mode == SINGLE_BOUNDARY) p->p_flag |= P_SINGLE_BOUNDARY; else p->p_flag &= ~P_SINGLE_BOUNDARY; } if (mode == SINGLE_ALLPROC) p->p_flag |= P_TOTAL_STOP; p->p_flag |= P_STOPPED_SINGLE; PROC_SLOCK(p); p->p_singlethread = td; remaining = calc_remaining(p, mode); while (remaining != remain_for_mode(mode)) { if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) goto stopme; wakeup_swapper = 0; FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; thread_lock(td2); td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; if (TD_IS_INHIBITED(td2)) { wakeup_swapper |= weed_inhib(mode, td2, p); #ifdef SMP } else if (TD_IS_RUNNING(td2) && td != td2) { forward_signal(td2); #endif } thread_unlock(td2); } if (wakeup_swapper) kick_proc0(); remaining = calc_remaining(p, mode); /* * Maybe we suspended some threads.. was it enough? */ if (remaining == remain_for_mode(mode)) break; stopme: /* * Wake us up when everyone else has suspended. * In the mean time we suspend as well. */ thread_suspend_switch(td, p); remaining = calc_remaining(p, mode); } if (mode == SINGLE_EXIT) { /* * Convert the process to an unthreaded process. The * SINGLE_EXIT is called by exit1() or execve(), in * both cases other threads must be retired. */ KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads")); p->p_singlethread = NULL; p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS); /* * Wait for any remaining threads to exit cpu_throw(). */ while (p->p_exitthreads != 0) { PROC_SUNLOCK(p); PROC_UNLOCK(p); sched_relinquish(td); PROC_LOCK(p); PROC_SLOCK(p); } } else if (mode == SINGLE_BOUNDARY) { /* * Wait until all suspended threads are removed from * the processors. The thread_suspend_check() * increments p_boundary_count while it is still * running, which makes it possible for the execve() * to destroy vmspace while our other threads are * still using the address space. * * We lock the thread, which is only allowed to * succeed after context switch code finished using * the address space. */ FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; thread_lock(td2); KASSERT((td2->td_flags & TDF_BOUNDARY) != 0, ("td %p not on boundary", td2)); KASSERT(TD_IS_SUSPENDED(td2), ("td %p is not suspended", td2)); thread_unlock(td2); } } PROC_SUNLOCK(p); return (0); } bool thread_suspend_check_needed(void) { struct proc *p; struct thread *td; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 && (td->td_dbgflags & TDB_SUSPEND) != 0)); } /* * Called in from locations that can safely check to see * whether we have to suspend or at least throttle for a * single-thread event (e.g. fork). * * Such locations include userret(). * If the "return_instead" argument is non zero, the thread must be able to * accept 0 (caller may continue), or 1 (caller must abort) as a result. * * The 'return_instead' argument tells the function if it may do a * thread_exit() or suspend, or whether the caller must abort and back * out instead. * * If the thread that set the single_threading request has set the * P_SINGLE_EXIT bit in the process flags then this call will never return * if 'return_instead' is false, but will exit. * * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 *---------------+--------------------+--------------------- * 0 | returns 0 | returns 0 or 1 * | when ST ends | immediately *---------------+--------------------+--------------------- * 1 | thread exits | returns 1 * | | immediately * 0 = thread_exit() or suspension ok, * other = return error instead of stopping the thread. * * While a full suspension is under effect, even a single threading * thread would be suspended if it made this call (but it shouldn't). * This call should only be made from places where * thread_exit() would be safe as that may be the outcome unless * return_instead is set. */ int thread_suspend_check(int return_instead) { struct thread *td; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); while (thread_suspend_check_needed()) { if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { KASSERT(p->p_singlethread != NULL, ("singlethread not set")); /* * The only suspension in action is a * single-threading. Single threader need not stop. * It is safe to access p->p_singlethread unlocked * because it can only be set to our address by us. */ if (p->p_singlethread == td) return (0); /* Exempt from stopping. */ } if ((p->p_flag & P_SINGLE_EXIT) && return_instead) return (EINTR); /* Should we goto user boundary if we didn't come from there? */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) return (ERESTART); /* * Ignore suspend requests if they are deferred. */ if ((td->td_flags & TDF_SBDRY) != 0) { KASSERT(return_instead, ("TDF_SBDRY set for unsafe thread_suspend_check")); KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != (TDF_SEINTR | TDF_SERESTART), ("both TDF_SEINTR and TDF_SERESTART")); return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0); } /* * If the process is waiting for us to exit, * this thread should just suicide. * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. */ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { PROC_UNLOCK(p); /* * Allow Linux emulation layer to do some work * before thread suicide. */ if (__predict_false(p->p_sysent->sv_thread_detach != NULL)) (p->p_sysent->sv_thread_detach)(td); umtx_thread_exit(td); kern_thr_exit(td); panic("stopped thread did not exit"); } PROC_SLOCK(p); thread_stopped(p); if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount + 1) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } PROC_UNLOCK(p); thread_lock(td); /* * When a thread suspends, it just * gets taken off all queues. */ thread_suspend_one(td); if (return_instead == 0) { p->p_boundary_count++; td->td_flags |= TDF_BOUNDARY; } PROC_SUNLOCK(p); mi_switch(SW_INVOL | SWT_SUSPEND, NULL); thread_unlock(td); PROC_LOCK(p); } return (0); } void thread_suspend_switch(struct thread *td, struct proc *p) { KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); /* * We implement thread_suspend_one in stages here to avoid * dropping the proc lock while the thread lock is owned. */ if (p == td->td_proc) { thread_stopped(p); p->p_suspcount++; } PROC_UNLOCK(p); thread_lock(td); td->td_flags &= ~TDF_NEEDSUSPCHK; TD_SET_SUSPENDED(td); sched_sleep(td, 0); PROC_SUNLOCK(p); DROP_GIANT(); mi_switch(SW_VOL | SWT_SUSPEND, NULL); thread_unlock(td); PICKUP_GIANT(); PROC_LOCK(p); PROC_SLOCK(p); } void thread_suspend_one(struct thread *td) { struct proc *p; p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); p->p_suspcount++; td->td_flags &= ~TDF_NEEDSUSPCHK; TD_SET_SUSPENDED(td); sched_sleep(td, 0); } static int thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary) { THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); TD_CLR_SUSPENDED(td); td->td_flags &= ~TDF_ALLPROCSUSP; if (td->td_proc == p) { PROC_SLOCK_ASSERT(p, MA_OWNED); p->p_suspcount--; if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) { td->td_flags &= ~TDF_BOUNDARY; p->p_boundary_count--; } } return (setrunnable(td)); } /* * Allow all threads blocked by single threading to continue running. */ void thread_unsuspend(struct proc *p) { struct thread *td; int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); wakeup_swapper = 0; if (!P_SHOULDSTOP(p)) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td, p, true); } thread_unlock(td); } } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && p->p_numthreads == p->p_suspcount) { /* * Stopping everything also did the job for the single * threading request. Now we've downgraded to single-threaded, * let it continue. */ if (p->p_singlethread->td_proc == p) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); } } if (wakeup_swapper) kick_proc0(); } /* * End the single threading mode.. */ void thread_single_end(struct proc *p, int mode) { struct thread *td; int wakeup_swapper; KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, ("invalid mode %d", mode)); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) || (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0), ("mode %d does not match P_TOTAL_STOP", mode)); KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread, ("thread_single_end from other thread %p %p", curthread, p->p_singlethread)); KASSERT(mode != SINGLE_BOUNDARY || (p->p_flag & P_SINGLE_BOUNDARY) != 0, ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag)); p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY | P_TOTAL_STOP); PROC_SLOCK(p); p->p_singlethread = NULL; wakeup_swapper = 0; /* * If there are other threads they may now run, * unless of course there is a blanket 'stop order' * on the process. The single threader must be allowed * to continue however as this is a bad place to stop. */ if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td, p, mode == SINGLE_BOUNDARY); } thread_unlock(td); } } KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0, ("inconsistent boundary count %d", p->p_boundary_count)); PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); } struct thread * thread_find(struct proc *p, lwpid_t tid) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) break; } return (td); } /* Locate a thread by number; return with proc lock held. */ struct thread * tdfind(lwpid_t tid, pid_t pid) { #define RUN_THRESH 16 struct thread *td; int run = 0; rw_rlock(&tidhash_lock); LIST_FOREACH(td, TIDHASH(tid), td_hash) { if (td->td_tid == tid) { if (pid != -1 && td->td_proc->p_pid != pid) { td = NULL; break; } PROC_LOCK(td->td_proc); if (td->td_proc->p_state == PRS_NEW) { PROC_UNLOCK(td->td_proc); td = NULL; break; } if (run > RUN_THRESH) { if (rw_try_upgrade(&tidhash_lock)) { LIST_REMOVE(td, td_hash); LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); rw_wunlock(&tidhash_lock); return (td); } } break; } run++; } rw_runlock(&tidhash_lock); return (td); } void tidhash_add(struct thread *td) { rw_wlock(&tidhash_lock); LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); rw_wunlock(&tidhash_lock); } void tidhash_remove(struct thread *td) { rw_wlock(&tidhash_lock); LIST_REMOVE(td, td_hash); rw_wunlock(&tidhash_lock); }