Index: head/sys/powerpc/ofw/ofw_machdep.c =================================================================== --- head/sys/powerpc/ofw/ofw_machdep.c (revision 353896) +++ head/sys/powerpc/ofw/ofw_machdep.c (revision 353897) @@ -1,873 +1,873 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (C) 1996 Wolfgang Solfrank. * Copyright (C) 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef POWERNV #include #endif static void *fdt; int ofw_real_mode; #ifdef AIM extern register_t ofmsr[5]; extern void *openfirmware_entry; char save_trap_init[0x2f00]; /* EXC_LAST */ char save_trap_of[0x2f00]; /* EXC_LAST */ int ofwcall(void *); static int openfirmware(void *args); __inline void ofw_save_trap_vec(char *save_trap_vec) { if (!ofw_real_mode || !hw_direct_map) return; bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST); } static __inline void ofw_restore_trap_vec(char *restore_trap_vec) { if (!ofw_real_mode || !hw_direct_map) return; bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST), EXC_LAST - EXC_RST); __syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD); } /* * Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback. */ register_t ofw_sprg0_save; static __inline void ofw_sprg_prepare(void) { if (ofw_real_mode) return; /* * Assume that interrupt are disabled at this point, or * SPRG1-3 could be trashed */ #ifdef __powerpc64__ __asm __volatile("mtsprg1 %0\n\t" "mtsprg2 %1\n\t" "mtsprg3 %2\n\t" : : "r"(ofmsr[2]), "r"(ofmsr[3]), "r"(ofmsr[4])); #else __asm __volatile("mfsprg0 %0\n\t" "mtsprg0 %1\n\t" "mtsprg1 %2\n\t" "mtsprg2 %3\n\t" "mtsprg3 %4\n\t" : "=&r"(ofw_sprg0_save) : "r"(ofmsr[1]), "r"(ofmsr[2]), "r"(ofmsr[3]), "r"(ofmsr[4])); #endif } static __inline void ofw_sprg_restore(void) { if (ofw_real_mode) return; /* * Note that SPRG1-3 contents are irrelevant. They are scratch * registers used in the early portion of trap handling when * interrupts are disabled. * * PCPU data cannot be used until this routine is called ! */ #ifndef __powerpc64__ __asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save)); #endif } #endif static int parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output) { cell_t address_cells, size_cells; cell_t OFmem[4 * PHYS_AVAIL_SZ]; int sz, i, j; phandle_t phandle; sz = 0; /* * Get #address-cells from root node, defaulting to 1 if it cannot * be found. */ phandle = OF_finddevice("/"); if (OF_getencprop(phandle, "#address-cells", &address_cells, sizeof(address_cells)) < (ssize_t)sizeof(address_cells)) address_cells = 1; if (OF_getencprop(phandle, "#size-cells", &size_cells, sizeof(size_cells)) < (ssize_t)sizeof(size_cells)) size_cells = 1; /* * Get memory. */ if (node == -1 || (sz = OF_getencprop(node, prop, OFmem, sizeof(OFmem))) <= 0) panic("Physical memory map not found"); i = 0; j = 0; while (i < sz/sizeof(cell_t)) { output[j].mr_start = OFmem[i++]; if (address_cells == 2) { output[j].mr_start <<= 32; output[j].mr_start += OFmem[i++]; } output[j].mr_size = OFmem[i++]; if (size_cells == 2) { output[j].mr_size <<= 32; output[j].mr_size += OFmem[i++]; } if (output[j].mr_start > BUS_SPACE_MAXADDR) continue; /* * Constrain memory to that which we can access. * 32-bit AIM can only reference 32 bits of address currently, * but Book-E can access 36 bits. */ if (((uint64_t)output[j].mr_start + (uint64_t)output[j].mr_size - 1) > BUS_SPACE_MAXADDR) { output[j].mr_size = BUS_SPACE_MAXADDR - output[j].mr_start + 1; } j++; } return (j); } static int parse_numa_ofw_memory(phandle_t node, const char *prop, struct numa_mem_region *output) { cell_t address_cells, size_cells; cell_t OFmem[4 * PHYS_AVAIL_SZ]; int sz, i, j; phandle_t phandle; sz = 0; /* * Get #address-cells from root node, defaulting to 1 if it cannot * be found. */ phandle = OF_finddevice("/"); if (OF_getencprop(phandle, "#address-cells", &address_cells, sizeof(address_cells)) < (ssize_t)sizeof(address_cells)) address_cells = 1; if (OF_getencprop(phandle, "#size-cells", &size_cells, sizeof(size_cells)) < (ssize_t)sizeof(size_cells)) size_cells = 1; /* * Get memory. */ if (node == -1 || (sz = OF_getencprop(node, prop, OFmem, sizeof(OFmem))) <= 0) panic("Physical memory map not found"); i = 0; j = 0; while (i < sz/sizeof(cell_t)) { output[j].mr_start = OFmem[i++]; if (address_cells == 2) { output[j].mr_start <<= 32; output[j].mr_start += OFmem[i++]; } output[j].mr_size = OFmem[i++]; if (size_cells == 2) { output[j].mr_size <<= 32; output[j].mr_size += OFmem[i++]; } j++; } return (j); } #ifdef FDT static int excise_reserved_regions(struct mem_region *avail, int asz, struct mem_region *exclude, int esz) { int i, j, k; for (i = 0; i < asz; i++) { for (j = 0; j < esz; j++) { /* * Case 1: Exclusion region encloses complete * available entry. Drop it and move on. */ if (exclude[j].mr_start <= avail[i].mr_start && exclude[j].mr_start + exclude[j].mr_size >= avail[i].mr_start + avail[i].mr_size) { for (k = i+1; k < asz; k++) avail[k-1] = avail[k]; asz--; i--; /* Repeat some entries */ continue; } /* * Case 2: Exclusion region starts in available entry. * Trim it to where the entry begins and append * a new available entry with the region after * the excluded region, if any. */ if (exclude[j].mr_start >= avail[i].mr_start && exclude[j].mr_start < avail[i].mr_start + avail[i].mr_size) { if (exclude[j].mr_start + exclude[j].mr_size < avail[i].mr_start + avail[i].mr_size) { avail[asz].mr_start = exclude[j].mr_start + exclude[j].mr_size; avail[asz].mr_size = avail[i].mr_start + avail[i].mr_size - avail[asz].mr_start; asz++; } avail[i].mr_size = exclude[j].mr_start - avail[i].mr_start; } /* * Case 3: Exclusion region ends in available entry. * Move start point to where the exclusion zone ends. * The case of a contained exclusion zone has already * been caught in case 2. */ if (exclude[j].mr_start + exclude[j].mr_size >= avail[i].mr_start && exclude[j].mr_start + exclude[j].mr_size < avail[i].mr_start + avail[i].mr_size) { avail[i].mr_size += avail[i].mr_start; avail[i].mr_start = exclude[j].mr_start + exclude[j].mr_size; avail[i].mr_size -= avail[i].mr_start; } } } return (asz); } static int excise_initrd_region(struct mem_region *avail, int asz) { phandle_t chosen; uint64_t start, end; ssize_t size; struct mem_region initrdmap[1]; pcell_t cell[2]; chosen = OF_finddevice("/chosen"); size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell)); if (size < 0) return (asz); else if (size == 4) start = cell[0]; else if (size == 8) start = (uint64_t)cell[0] << 32 | cell[1]; else { /* Invalid value length */ printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n"); return (asz); } size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell)); if (size < 0) return (asz); else if (size == 4) end = cell[0]; else if (size == 8) end = (uint64_t)cell[0] << 32 | cell[1]; else { /* Invalid value length */ printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n"); return (asz); } if (end <= start) return (asz); initrdmap[0].mr_start = start; initrdmap[0].mr_size = end - start; asz = excise_reserved_regions(avail, asz, initrdmap, 1); return (asz); } #ifdef POWERNV static int excise_msi_region(struct mem_region *avail, int asz) { uint64_t start, end; struct mem_region initrdmap[1]; /* * This range of physical addresses is used to implement optimized * 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally * using it for DMA, as this will cause an immediate PHB fence. * While we could theoretically turn off this behavior in the ETU, * doing so would break 32-bit MSI, so just reserve the range in * the physical map instead. * See section 4.4.2.8 of the PHB4 specification. */ start = 0x00000000ffff0000ul; end = 0x00000000fffffffful; initrdmap[0].mr_start = start; initrdmap[0].mr_size = end - start; asz = excise_reserved_regions(avail, asz, initrdmap, 1); return (asz); } #endif static int excise_fdt_reserved(struct mem_region *avail, int asz) { struct mem_region fdtmap[32]; ssize_t fdtmapsize; phandle_t chosen; int j, fdtentries; chosen = OF_finddevice("/chosen"); fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap)); for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) { fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK; fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size)); } KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap), ("Exceeded number of FDT reservations")); /* Add a virtual entry for the FDT itself */ if (fdt != NULL) { fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK; fdtmap[j].mr_size = round_page(fdt_totalsize(fdt)); fdtmapsize += sizeof(fdtmap[0]); } fdtentries = fdtmapsize/sizeof(fdtmap[0]); asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries); return (asz); } #endif /* * This is called during powerpc_init, before the system is really initialized. * It shall provide the total and the available regions of RAM. * The available regions need not take the kernel into account. */ void ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz) { phandle_t phandle; int res, count, msz; char name[31]; cell_t associativity[5]; struct numa_mem_region *curmemp; msz = 0; /* * Get memory from all the /memory nodes. */ for (phandle = OF_child(OF_peer(0)); phandle != 0; phandle = OF_peer(phandle)) { if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0) continue; if (strncmp(name, "memory@", strlen("memory@")) != 0) continue; count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]); if (count == 0) continue; curmemp = &memp[msz]; res = OF_getproplen(phandle, "ibm,associativity"); if (res <= 0) continue; MPASS(count == 1); OF_getencprop(phandle, "ibm,associativity", associativity, res); - curmemp->mr_domain = associativity[3] - 1; + curmemp->mr_domain = associativity[3]; if (bootverbose) printf("%s %#jx-%#jx domain(%ju)\n", name, (uintmax_t)curmemp->mr_start, (uintmax_t)curmemp->mr_start + curmemp->mr_size, (uintmax_t)curmemp->mr_domain); msz += count; } *memsz = msz; } /* * This is called during powerpc_init, before the system is really initialized. * It shall provide the total and the available regions of RAM. * The available regions need not take the kernel into account. */ void ofw_mem_regions(struct mem_region *memp, int *memsz, struct mem_region *availp, int *availsz) { phandle_t phandle; int asz, msz; int res; char name[31]; asz = msz = 0; /* * Get memory from all the /memory nodes. */ for (phandle = OF_child(OF_peer(0)); phandle != 0; phandle = OF_peer(phandle)) { if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0) continue; if (strncmp(name, "memory", sizeof(name)) != 0 && strncmp(name, "memory@", strlen("memory@")) != 0) continue; res = parse_ofw_memory(phandle, "reg", &memp[msz]); msz += res; /* * On POWER9 Systems we might have both linux,usable-memory and * reg properties. 'reg' denotes all available memory, but we * must use 'linux,usable-memory', a subset, as some memory * regions are reserved for NVLink. */ if (OF_getproplen(phandle, "linux,usable-memory") >= 0) res = parse_ofw_memory(phandle, "linux,usable-memory", &availp[asz]); else if (OF_getproplen(phandle, "available") >= 0) res = parse_ofw_memory(phandle, "available", &availp[asz]); else res = parse_ofw_memory(phandle, "reg", &availp[asz]); asz += res; } #ifdef FDT phandle = OF_finddevice("/chosen"); if (OF_hasprop(phandle, "fdtmemreserv")) asz = excise_fdt_reserved(availp, asz); /* If the kernel is being loaded through kexec, initrd region is listed * in /chosen but the region is not marked as reserved, so, we might exclude * it here. */ if (OF_hasprop(phandle, "linux,initrd-start")) asz = excise_initrd_region(availp, asz); #endif #ifdef POWERNV if (opal_check() == 0) asz = excise_msi_region(availp, asz); #endif *memsz = msz; *availsz = asz; } void OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *)) { #ifdef AIM ofmsr[0] = mfmsr(); #ifdef __powerpc64__ ofmsr[0] &= ~PSL_SF; #else __asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1])); #endif __asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2])); __asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3])); __asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4])); openfirmware_entry = openfirm; if (ofmsr[0] & PSL_DR) ofw_real_mode = 0; else ofw_real_mode = 1; ofw_save_trap_vec(save_trap_init); #else ofw_real_mode = 1; #endif fdt = fdt_ptr; } boolean_t OF_bootstrap() { boolean_t status = FALSE; int err = 0; #ifdef AIM if (openfirmware_entry != NULL) { if (ofw_real_mode) { status = OF_install(OFW_STD_REAL, 0); } else { #ifdef __powerpc64__ status = OF_install(OFW_STD_32BIT, 0); #else status = OF_install(OFW_STD_DIRECT, 0); #endif } if (status != TRUE) return status; err = OF_init(openfirmware); } else #endif if (fdt != NULL) { #ifdef FDT #ifdef AIM bus_space_tag_t fdt_bt; vm_offset_t tmp_fdt_ptr; vm_size_t fdt_size; uintptr_t fdt_va; #endif status = OF_install(OFW_FDT, 0); if (status != TRUE) return status; #ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */ /* Get the FDT size for mapping if we can */ tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE); if (fdt_check_header((void *)tmp_fdt_ptr) != 0) { pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE); return FALSE; } fdt_size = fdt_totalsize((void *)tmp_fdt_ptr); pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE); /* * Map this for real. Use bus_space_map() to take advantage * of its auto-remapping function once the kernel is loaded. * This is a dirty hack, but what we have. */ #ifdef _LITTLE_ENDIAN fdt_bt = &bs_le_tag; #else fdt_bt = &bs_be_tag; #endif bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va); err = OF_init((void *)fdt_va); #else err = OF_init(fdt); #endif #endif } #ifdef FDT_DTB_STATIC /* * Check for a statically included blob already in the kernel and * needing no mapping. */ else { status = OF_install(OFW_FDT, 0); if (status != TRUE) return status; err = OF_init(&fdt_static_dtb); } #endif if (err != 0) { OF_install(NULL, 0); status = FALSE; } return (status); } #ifdef AIM void ofw_quiesce(void) { struct { cell_t name; cell_t nargs; cell_t nreturns; } args; KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up")); args.name = (cell_t)(uintptr_t)"quiesce"; args.nargs = 0; args.nreturns = 0; openfirmware(&args); } static int openfirmware_core(void *args) { int result; register_t oldmsr; if (openfirmware_entry == NULL) return (-1); /* * Turn off exceptions - we really don't want to end up * anywhere unexpected with PCPU set to something strange * or the stack pointer wrong. */ oldmsr = intr_disable(); ofw_sprg_prepare(); /* Save trap vectors */ ofw_save_trap_vec(save_trap_of); /* Restore initially saved trap vectors */ ofw_restore_trap_vec(save_trap_init); #ifndef __powerpc64__ /* * Clear battable[] translations */ if (!(cpu_features & PPC_FEATURE_64)) __asm __volatile("mtdbatu 2, %0\n" "mtdbatu 3, %0" : : "r" (0)); isync(); #endif result = ofwcall(args); /* Restore trap vecotrs */ ofw_restore_trap_vec(save_trap_of); ofw_sprg_restore(); intr_restore(oldmsr); return (result); } #ifdef SMP struct ofw_rv_args { void *args; int retval; volatile int in_progress; }; static void ofw_rendezvous_dispatch(void *xargs) { struct ofw_rv_args *rv_args = xargs; /* NOTE: Interrupts are disabled here */ if (PCPU_GET(cpuid) == 0) { /* * Execute all OF calls on CPU 0 */ rv_args->retval = openfirmware_core(rv_args->args); rv_args->in_progress = 0; } else { /* * Spin with interrupts off on other CPUs while OF has * control of the machine. */ while (rv_args->in_progress) cpu_spinwait(); } } #endif static int openfirmware(void *args) { int result; #ifdef SMP struct ofw_rv_args rv_args; #endif if (openfirmware_entry == NULL) return (-1); #ifdef SMP if (cold) { result = openfirmware_core(args); } else { rv_args.args = args; rv_args.in_progress = 1; smp_rendezvous(smp_no_rendezvous_barrier, ofw_rendezvous_dispatch, smp_no_rendezvous_barrier, &rv_args); result = rv_args.retval; } #else result = openfirmware_core(args); #endif return (result); } void OF_reboot() { struct { cell_t name; cell_t nargs; cell_t nreturns; cell_t arg; } args; args.name = (cell_t)(uintptr_t)"interpret"; args.nargs = 1; args.nreturns = 0; args.arg = (cell_t)(uintptr_t)"reset-all"; openfirmware_core(&args); /* Don't do rendezvous! */ for (;;); /* just in case */ } #endif /* AIM */ void OF_getetheraddr(device_t dev, u_char *addr) { phandle_t node; node = ofw_bus_get_node(dev); OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN); } /* * Return a bus handle and bus tag that corresponds to the register * numbered regno for the device referenced by the package handle * dev. This function is intended to be used by console drivers in * early boot only. It works by mapping the address of the device's * register in the address space of its parent and recursively walk * the device tree upward this way. */ int OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag, bus_space_handle_t *handle, bus_size_t *sz) { bus_addr_t addr; bus_size_t size; pcell_t pci_hi; int flags, res; res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi); if (res < 0) return (res); if (pci_hi == OFW_PADDR_NOT_PCI) { *tag = &bs_be_tag; flags = 0; } else { *tag = &bs_le_tag; flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ? BUS_SPACE_MAP_PREFETCHABLE: 0; } if (sz != NULL) *sz = size; return (bus_space_map(*tag, addr, size, flags, handle)); } Index: head/sys/powerpc/ofw/ofw_pcibus.c =================================================================== --- head/sys/powerpc/ofw/ofw_pcibus.c (revision 353896) +++ head/sys/powerpc/ofw/ofw_pcibus.c (revision 353897) @@ -1,461 +1,461 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2000, BSDi * Copyright (c) 2003, Thomas Moestl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ofw_pcibus.h" #include "pcib_if.h" #include "pci_if.h" typedef uint32_t ofw_pci_intr_t; /* Methods */ static device_probe_t ofw_pcibus_probe; static device_attach_t ofw_pcibus_attach; static pci_alloc_devinfo_t ofw_pcibus_alloc_devinfo; static pci_assign_interrupt_t ofw_pcibus_assign_interrupt; static ofw_bus_get_devinfo_t ofw_pcibus_get_devinfo; static bus_child_deleted_t ofw_pcibus_child_deleted; static int ofw_pcibus_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, size_t buflen); static void ofw_pcibus_enum_devtree(device_t dev, u_int domain, u_int busno); static void ofw_pcibus_enum_bus(device_t dev, u_int domain, u_int busno); static device_method_t ofw_pcibus_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ofw_pcibus_probe), DEVMETHOD(device_attach, ofw_pcibus_attach), /* Bus interface */ DEVMETHOD(bus_child_deleted, ofw_pcibus_child_deleted), DEVMETHOD(bus_child_pnpinfo_str, ofw_pcibus_child_pnpinfo_str_method), DEVMETHOD(bus_rescan, bus_null_rescan), DEVMETHOD(bus_get_cpus, ofw_pcibus_get_cpus), DEVMETHOD(bus_get_domain, ofw_pcibus_get_domain), /* PCI interface */ DEVMETHOD(pci_alloc_devinfo, ofw_pcibus_alloc_devinfo), DEVMETHOD(pci_assign_interrupt, ofw_pcibus_assign_interrupt), /* ofw_bus interface */ DEVMETHOD(ofw_bus_get_devinfo, ofw_pcibus_get_devinfo), DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), DEVMETHOD_END }; static devclass_t pci_devclass; DEFINE_CLASS_1(pci, ofw_pcibus_driver, ofw_pcibus_methods, sizeof(struct pci_softc), pci_driver); EARLY_DRIVER_MODULE(ofw_pcibus, pcib, ofw_pcibus_driver, pci_devclass, 0, 0, BUS_PASS_BUS); MODULE_VERSION(ofw_pcibus, 1); MODULE_DEPEND(ofw_pcibus, pci, 1, 1, 1); static int ofw_devices_only = 0; TUNABLE_INT("hw.pci.ofw_devices_only", &ofw_devices_only); static int ofw_pcibus_probe(device_t dev) { if (ofw_bus_get_node(dev) == -1) return (ENXIO); device_set_desc(dev, "OFW PCI bus"); return (BUS_PROBE_DEFAULT); } static int ofw_pcibus_attach(device_t dev) { u_int busno, domain; int error; error = pci_attach_common(dev); if (error) return (error); domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); /* * Attach those children represented in the device tree. */ ofw_pcibus_enum_devtree(dev, domain, busno); /* * We now attach any laggard devices. FDT, for instance, allows * the device tree to enumerate only some PCI devices. Apple's * OF device tree on some Grackle-based hardware can also miss * functions on multi-function cards. */ if (!ofw_devices_only) ofw_pcibus_enum_bus(dev, domain, busno); return (bus_generic_attach(dev)); } struct pci_devinfo * ofw_pcibus_alloc_devinfo(device_t dev) { struct ofw_pcibus_devinfo *dinfo; dinfo = malloc(sizeof(*dinfo), M_DEVBUF, M_WAITOK | M_ZERO); return (&dinfo->opd_dinfo); } static void ofw_pcibus_enum_devtree(device_t dev, u_int domain, u_int busno) { device_t pcib; struct ofw_pci_register pcir; struct ofw_pcibus_devinfo *dinfo; phandle_t node, child; u_int func, slot; int intline; pcib = device_get_parent(dev); node = ofw_bus_get_node(dev); for (child = OF_child(node); child != 0; child = OF_peer(child)) { if (OF_getencprop(child, "reg", (pcell_t *)&pcir, sizeof(pcir)) == -1) continue; slot = OFW_PCI_PHYS_HI_DEVICE(pcir.phys_hi); func = OFW_PCI_PHYS_HI_FUNCTION(pcir.phys_hi); /* Some OFW device trees contain dupes. */ if (pci_find_dbsf(domain, busno, slot, func) != NULL) continue; /* * The preset in the intline register is usually bogus. Reset * it such that the PCI code will reroute the interrupt if * needed. */ intline = PCI_INVALID_IRQ; if (OF_getproplen(child, "interrupts") > 0) intline = 0; PCIB_WRITE_CONFIG(pcib, busno, slot, func, PCIR_INTLINE, intline, 1); /* * Now set up the PCI and OFW bus layer devinfo and add it * to the PCI bus. */ dinfo = (struct ofw_pcibus_devinfo *)pci_read_device(pcib, dev, domain, busno, slot, func); if (dinfo == NULL) continue; if (ofw_bus_gen_setup_devinfo(&dinfo->opd_obdinfo, child) != 0) { pci_freecfg((struct pci_devinfo *)dinfo); continue; } dinfo->opd_dma_tag = NULL; pci_add_child(dev, (struct pci_devinfo *)dinfo); /* * Some devices don't have an intpin set, but do have * interrupts. These are fully specified, and set in the * interrupts property, so add that value to the device's * resource list. */ if (dinfo->opd_dinfo.cfg.intpin == 0) ofw_bus_intr_to_rl(dev, child, &dinfo->opd_dinfo.resources, NULL); } } /* * The following is an almost exact clone of pci_add_children(), with the * addition that it (a) will not add children that have already been added, * and (b) will set up the OFW devinfo to point to invalid values. This is * to handle non-enumerated PCI children as exist in FDT and on the second * function of the Rage 128 in my Blue & White G3. */ static void ofw_pcibus_enum_bus(device_t dev, u_int domain, u_int busno) { device_t pcib; struct ofw_pcibus_devinfo *dinfo; int maxslots; int s, f, pcifunchigh; uint8_t hdrtype; pcib = device_get_parent(dev); maxslots = PCIB_MAXSLOTS(pcib); for (s = 0; s <= maxslots; s++) { pcifunchigh = 0; f = 0; DELAY(1); hdrtype = PCIB_READ_CONFIG(pcib, busno, s, f, PCIR_HDRTYPE, 1); if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) continue; if (hdrtype & PCIM_MFDEV) pcifunchigh = PCI_FUNCMAX; for (f = 0; f <= pcifunchigh; f++) { /* Filter devices we have already added */ if (pci_find_dbsf(domain, busno, s, f) != NULL) continue; dinfo = (struct ofw_pcibus_devinfo *)pci_read_device( pcib, dev, domain, busno, s, f); if (dinfo == NULL) continue; dinfo->opd_dma_tag = NULL; dinfo->opd_obdinfo.obd_node = -1; dinfo->opd_obdinfo.obd_name = NULL; dinfo->opd_obdinfo.obd_compat = NULL; dinfo->opd_obdinfo.obd_type = NULL; dinfo->opd_obdinfo.obd_model = NULL; /* * For non OFW-devices, don't believe 0 * for an interrupt. */ if (dinfo->opd_dinfo.cfg.intline == 0) { dinfo->opd_dinfo.cfg.intline = PCI_INVALID_IRQ; PCIB_WRITE_CONFIG(pcib, busno, s, f, PCIR_INTLINE, PCI_INVALID_IRQ, 1); } pci_add_child(dev, (struct pci_devinfo *)dinfo); } } } static void ofw_pcibus_child_deleted(device_t dev, device_t child) { struct ofw_pcibus_devinfo *dinfo; dinfo = device_get_ivars(child); ofw_bus_gen_destroy_devinfo(&dinfo->opd_obdinfo); pci_child_deleted(dev, child); } static int ofw_pcibus_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, size_t buflen) { pci_child_pnpinfo_str_method(cbdev, child, buf, buflen); if (ofw_bus_get_node(child) != -1) { strlcat(buf, " ", buflen); /* Separate info */ ofw_bus_gen_child_pnpinfo_str(cbdev, child, buf, buflen); } return (0); } static int ofw_pcibus_assign_interrupt(device_t dev, device_t child) { ofw_pci_intr_t intr[2]; phandle_t node, iparent; int isz, icells; node = ofw_bus_get_node(child); if (node == -1) { /* Non-firmware enumerated child, use standard routing */ intr[0] = pci_get_intpin(child); return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, intr[0])); } /* * Try to determine the node's interrupt parent so we know which * PIC to use. */ iparent = -1; if (OF_getencprop(node, "interrupt-parent", &iparent, sizeof(iparent)) < 0) iparent = -1; icells = 1; if (iparent != -1) OF_getencprop(OF_node_from_xref(iparent), "#interrupt-cells", &icells, sizeof(icells)); /* * Any AAPL,interrupts property gets priority and is * fully specified (i.e. does not need routing) */ isz = OF_getencprop(node, "AAPL,interrupts", intr, sizeof(intr)); if (isz == sizeof(intr[0])*icells) return ((iparent == -1) ? intr[0] : ofw_bus_map_intr(dev, iparent, icells, intr)); isz = OF_getencprop(node, "interrupts", intr, sizeof(intr)); if (isz == sizeof(intr[0])*icells) { if (iparent != -1) intr[0] = ofw_bus_map_intr(dev, iparent, icells, intr); } else { /* No property: our best guess is the intpin. */ intr[0] = pci_get_intpin(child); } /* * If we got intr from a property, it may or may not be an intpin. * For on-board devices, it frequently is not, and is completely out * of the valid intpin range. For PCI slots, it hopefully is, * otherwise we will have trouble interfacing with non-OFW buses * such as cardbus. * Since we cannot tell which it is without violating layering, we * will always use the route_interrupt method, and treat exceptions * on the level they become apparent. */ return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, intr[0])); } static const struct ofw_bus_devinfo * ofw_pcibus_get_devinfo(device_t bus, device_t dev) { struct ofw_pcibus_devinfo *dinfo; dinfo = device_get_ivars(dev); return (&dinfo->opd_obdinfo); } static int ofw_pcibus_parse_associativity(device_t dev, int *domain) { phandle_t node; cell_t associativity[5]; int res; if ((node = ofw_bus_get_node(dev)) == -1) { if (bootverbose) device_printf(dev, "no ofw node found\n"); return (ENXIO); } res = OF_getproplen(node, "ibm,associativity"); if (res <= 0) return (ENXIO); OF_getencprop(node, "ibm,associativity", associativity, res); - *domain = associativity[3] - 1; + *domain = associativity[3]; if (bootverbose) device_printf(dev, "domain(%d)\n", *domain); return (0); } int ofw_pcibus_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { int d, error; error = ofw_pcibus_parse_associativity(child, &d); if (error) return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); switch (op) { case LOCAL_CPUS: if (setsize != sizeof(cpuset_t)) return (EINVAL); *cpuset = cpuset_domain[d]; return (0); case INTR_CPUS: error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); if (error != 0) return (error); if (setsize != sizeof(cpuset_t)) return (EINVAL); CPU_AND(cpuset, &cpuset_domain[d]); return (0); default: return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); } return (0); } /* * Fetch the NUMA domain for the given device 'dev'. * * If a device has a _PXM method, map that to a NUMA domain. * Otherwise, pass the request up to the parent. * If there's no matching domain or the domain cannot be * determined, return ENOENT. */ int ofw_pcibus_get_domain(device_t dev, device_t child, int *domain) { int d, error; error = ofw_pcibus_parse_associativity(child, &d); /* No ofw node; go up a level */ if (error) return (bus_generic_get_domain(dev, child, domain)); *domain = d; return (0); }