Index: head/sys/arm/ralink/if_fv.c =================================================================== --- head/sys/arm/ralink/if_fv.c (revision 353863) +++ head/sys/arm/ralink/if_fv.c (revision 353864) @@ -1,1873 +1,1875 @@ /*- * Copyright (c) 2016 Hiroki Mori. All rights reserved. * Copyright (C) 2007 * Oleksandr Tymoshenko . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWFV IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE FV DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWFV, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $Id: $ * */ #include __FBSDID("$FreeBSD$"); /* * FV Ethernet interface driver * copy from mips/idt/if_kr.c and netbsd code */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Todo: move to options.arm */ /*#define FV_MDIO*/ #ifdef FV_MDIO #include #include #include "mdio_if.h" #endif MODULE_DEPEND(are, ether, 1, 1, 1); MODULE_DEPEND(are, miibus, 1, 1, 1); #ifdef FV_MDIO MODULE_DEPEND(are, mdio, 1, 1, 1); #endif #include "miibus_if.h" #include #ifdef FV_DEBUG void dump_txdesc(struct fv_softc *, int); void dump_status_reg(struct fv_softc *); #endif static int fv_attach(device_t); static int fv_detach(device_t); static int fv_ifmedia_upd(struct ifnet *); static void fv_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int fv_ioctl(struct ifnet *, u_long, caddr_t); static void fv_init(void *); static void fv_init_locked(struct fv_softc *); static void fv_link_task(void *, int); static int fv_miibus_readreg(device_t, int, int); static void fv_miibus_statchg(device_t); static int fv_miibus_writereg(device_t, int, int, int); static int fv_probe(device_t); static void fv_reset(struct fv_softc *); static int fv_resume(device_t); static int fv_rx_ring_init(struct fv_softc *); static int fv_tx_ring_init(struct fv_softc *); static int fv_shutdown(device_t); static void fv_start(struct ifnet *); static void fv_start_locked(struct ifnet *); static void fv_stop(struct fv_softc *); static int fv_suspend(device_t); static void fv_rx(struct fv_softc *); static void fv_tx(struct fv_softc *); static void fv_intr(void *); static void fv_tick(void *); static void fv_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int fv_dma_alloc(struct fv_softc *); static void fv_dma_free(struct fv_softc *); static int fv_newbuf(struct fv_softc *, int); static __inline void fv_fixup_rx(struct mbuf *); static void fv_hinted_child(device_t bus, const char *dname, int dunit); static void fv_setfilt(struct fv_softc *sc); static device_method_t fv_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fv_probe), DEVMETHOD(device_attach, fv_attach), DEVMETHOD(device_detach, fv_detach), DEVMETHOD(device_suspend, fv_suspend), DEVMETHOD(device_resume, fv_resume), DEVMETHOD(device_shutdown, fv_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, fv_miibus_readreg), DEVMETHOD(miibus_writereg, fv_miibus_writereg), #if !defined(FV_MDIO) DEVMETHOD(miibus_statchg, fv_miibus_statchg), #endif /* bus interface */ DEVMETHOD(bus_add_child, device_add_child_ordered), DEVMETHOD(bus_hinted_child, fv_hinted_child), DEVMETHOD_END }; static driver_t fv_driver = { "fv", fv_methods, sizeof(struct fv_softc) }; static devclass_t fv_devclass; DRIVER_MODULE(fv, simplebus, fv_driver, fv_devclass, 0, 0); #ifdef MII DRIVER_MODULE(miibus, fv, miibus_driver, miibus_devclass, 0, 0); #endif static struct mtx miibus_mtx; MTX_SYSINIT(miibus_mtx, &miibus_mtx, "are mii lock", MTX_DEF); #ifdef FV_MDIO static int fvmdio_probe(device_t); static int fvmdio_attach(device_t); static int fvmdio_detach(device_t); /* * Declare an additional, separate driver for accessing the MDIO bus. */ static device_method_t fvmdio_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fvmdio_probe), DEVMETHOD(device_attach, fvmdio_attach), DEVMETHOD(device_detach, fvmdio_detach), /* bus interface */ DEVMETHOD(bus_add_child, device_add_child_ordered), /* MDIO access */ DEVMETHOD(mdio_readreg, fv_miibus_readreg), DEVMETHOD(mdio_writereg, fv_miibus_writereg), }; DEFINE_CLASS_0(fvmdio, fvmdio_driver, fvmdio_methods, sizeof(struct fv_softc)); static devclass_t fvmdio_devclass; DRIVER_MODULE(miiproxy, fv, miiproxy_driver, miiproxy_devclass, 0, 0); DRIVER_MODULE(fvmdio, simplebus, fvmdio_driver, fvmdio_devclass, 0, 0); DRIVER_MODULE(mdio, fvmdio, mdio_driver, mdio_devclass, 0, 0); #endif -/* setup frame code refer dc code */ +static u_int +fv_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) +{ + uint16_t *sp = arg; + uint8_t *ma; + int i; + ma = LLADDR(sdl); + i = cnt * 6; + sp[i] = sp[i+1] = (ma[1] << 8 | ma[0]); + i += 2; + sp[i] = sp[i+1] = (ma[3] << 8 | ma[2]); + i += 2; + sp[i] = sp[i+1] = (ma[5] << 8 | ma[4]); + + return (1); +} + +/* setup frame code refer dc code */ static void fv_setfilt(struct fv_softc *sc) { uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; struct fv_desc *sframe; int i; struct ifnet *ifp; - struct ifmultiaddr *ifma; uint16_t *sp; - uint8_t *ma; ifp = sc->fv_ifp; i = sc->fv_cdata.fv_tx_prod; FV_INC(sc->fv_cdata.fv_tx_prod, FV_TX_RING_CNT); sc->fv_cdata.fv_tx_cnt++; sframe = &sc->fv_rdata.fv_tx_ring[i]; sp = (uint16_t *)sc->fv_cdata.fv_sf_buff; memset(sp, 0xff, FV_SFRAME_LEN); sframe->fv_addr = sc->fv_rdata.fv_sf_paddr; sframe->fv_devcs = ADCTL_Tx_SETUP | FV_DMASIZE(FV_SFRAME_LEN); - i = 0; - if_maddr_rlock(ifp); - CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { - if (ifma->ifma_addr->sa_family != AF_LINK) - continue; - ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); - sp[i] = sp[i+1] = (ma[1] << 8 | ma[0]); - i += 2; - sp[i] = sp[i+1] = (ma[3] << 8 | ma[2]); - i += 2; - sp[i] = sp[i+1] = (ma[5] << 8 | ma[4]); - i += 2; - } - if_maddr_runlock(ifp); + i = if_foreach_llmaddr(ifp, fv_set_maddr, sp) * 6; bcopy(IF_LLADDR(sc->fv_ifp), eaddr, ETHER_ADDR_LEN); sp[90] = sp[91] = eaddr[0]; sp[92] = sp[93] = eaddr[1]; sp[94] = sp[95] = eaddr[2]; sframe->fv_stat = ADSTAT_OWN; bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->fv_cdata.fv_sf_tag, sc->fv_cdata.fv_sf_buff_map, BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, CSR_TXPOLL, 0xFFFFFFFF); DELAY(10000); } static int fv_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "fv,ethernet")) return (ENXIO); device_set_desc(dev, "FV Ethernet interface"); return (BUS_PROBE_DEFAULT); } static int fv_attach(device_t dev) { struct ifnet *ifp; struct fv_softc *sc; int error = 0, rid; int unit; int i; sc = device_get_softc(dev); unit = device_get_unit(dev); sc->fv_dev = dev; sc->fv_ofw = ofw_bus_get_node(dev); i = OF_getprop(sc->fv_ofw, "local-mac-address", (void *)&sc->fv_eaddr, 6); if (i != 6) { /* hardcode macaddress */ sc->fv_eaddr[0] = 0x00; sc->fv_eaddr[1] = 0x0C; sc->fv_eaddr[2] = 0x42; sc->fv_eaddr[3] = 0x09; sc->fv_eaddr[4] = 0x5E; sc->fv_eaddr[5] = 0x6B; } mtx_init(&sc->fv_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->fv_stat_callout, &sc->fv_mtx, 0); TASK_INIT(&sc->fv_link_task, 0, fv_link_task, sc); /* Map control/status registers. */ sc->fv_rid = 0; sc->fv_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->fv_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->fv_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } sc->fv_btag = rman_get_bustag(sc->fv_res); sc->fv_bhandle = rman_get_bushandle(sc->fv_res); /* Allocate interrupts */ rid = 0; sc->fv_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->fv_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Allocate ifnet structure. */ ifp = sc->fv_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "couldn't allocate ifnet structure\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fv_ioctl; ifp->if_start = fv_start; ifp->if_init = fv_init; /* ifqmaxlen is sysctl value in net/if.c */ IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ifp->if_capenable = ifp->if_capabilities; if (fv_dma_alloc(sc) != 0) { error = ENXIO; goto fail; } /* TODO: calculate prescale */ /* CSR_WRITE_4(sc, FV_ETHMCP, (165000000 / (1250000 + 1)) & ~1); CSR_WRITE_4(sc, FV_MIIMCFG, FV_MIIMCFG_R); DELAY(1000); CSR_WRITE_4(sc, FV_MIIMCFG, 0); */ CSR_WRITE_4(sc, CSR_BUSMODE, BUSMODE_SWR); DELAY(1000); #ifdef FV_MDIO sc->fv_miiproxy = mii_attach_proxy(sc->fv_dev); #endif #ifdef MII /* Do MII setup. */ error = mii_attach(dev, &sc->fv_miibus, ifp, fv_ifmedia_upd, fv_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } #else ifmedia_init(&sc->fv_ifmedia, 0, fv_ifmedia_upd, fv_ifmedia_sts); ifmedia_add(&sc->fv_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->fv_ifmedia, IFM_ETHER | IFM_AUTO); #endif /* Call MI attach routine. */ ether_ifattach(ifp, sc->fv_eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->fv_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, fv_intr, sc, &sc->fv_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) fv_detach(dev); return (error); } static int fv_detach(device_t dev) { struct fv_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->fv_ifp; KASSERT(mtx_initialized(&sc->fv_mtx), ("vr mutex not initialized")); /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { FV_LOCK(sc); sc->fv_detach = 1; fv_stop(sc); FV_UNLOCK(sc); taskqueue_drain(taskqueue_swi, &sc->fv_link_task); ether_ifdetach(ifp); } #ifdef MII if (sc->fv_miibus) device_delete_child(dev, sc->fv_miibus); #endif bus_generic_detach(dev); if (sc->fv_intrhand) bus_teardown_intr(dev, sc->fv_irq, sc->fv_intrhand); if (sc->fv_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->fv_irq); if (sc->fv_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->fv_rid, sc->fv_res); if (ifp) if_free(ifp); fv_dma_free(sc); mtx_destroy(&sc->fv_mtx); return (0); } static int fv_suspend(device_t dev) { panic("%s", __func__); return 0; } static int fv_resume(device_t dev) { panic("%s", __func__); return 0; } static int fv_shutdown(device_t dev) { struct fv_softc *sc; sc = device_get_softc(dev); FV_LOCK(sc); fv_stop(sc); FV_UNLOCK(sc); return (0); } static int fv_miibus_readbits(struct fv_softc *sc, int count) { int result; result = 0; while(count--) { result <<= 1; CSR_WRITE_4(sc, CSR_MIIMNG, MII_RD); DELAY(10); CSR_WRITE_4(sc, CSR_MIIMNG, MII_RD | MII_CLK); DELAY(10); if (CSR_READ_4(sc, CSR_MIIMNG) & MII_DIN) result |= 1; } return (result); } static int fv_miibus_writebits(struct fv_softc *sc, int data, int count) { int bit; while(count--) { bit = ((data) >> count) & 0x1 ? MII_DOUT : 0; CSR_WRITE_4(sc, CSR_MIIMNG, bit | MII_WR); DELAY(10); CSR_WRITE_4(sc, CSR_MIIMNG, bit | MII_WR | MII_CLK); DELAY(10); } return (0); } static void fv_miibus_turnaround(struct fv_softc *sc, int cmd) { if (cmd == MII_WRCMD) { fv_miibus_writebits(sc, 0x02, 2); } else { fv_miibus_readbits(sc, 1); } } static int fv_miibus_readreg(device_t dev, int phy, int reg) { struct fv_softc * sc = device_get_softc(dev); int result; mtx_lock(&miibus_mtx); fv_miibus_writebits(sc, MII_PREAMBLE, 32); fv_miibus_writebits(sc, MII_RDCMD, 4); fv_miibus_writebits(sc, phy, 5); fv_miibus_writebits(sc, reg, 5); fv_miibus_turnaround(sc, MII_RDCMD); result = fv_miibus_readbits(sc, 16); fv_miibus_turnaround(sc, MII_RDCMD); mtx_unlock(&miibus_mtx); return (result); } static int fv_miibus_writereg(device_t dev, int phy, int reg, int data) { struct fv_softc * sc = device_get_softc(dev); mtx_lock(&miibus_mtx); fv_miibus_writebits(sc, MII_PREAMBLE, 32); fv_miibus_writebits(sc, MII_WRCMD, 4); fv_miibus_writebits(sc, phy, 5); fv_miibus_writebits(sc, reg, 5); fv_miibus_turnaround(sc, MII_WRCMD); fv_miibus_writebits(sc, data, 16); mtx_unlock(&miibus_mtx); return (0); } #if !defined(FV_MDIO) static void fv_miibus_statchg(device_t dev) { struct fv_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_swi, &sc->fv_link_task); } #endif static void fv_link_task(void *arg, int pending) { #ifdef MII struct fv_softc *sc; struct mii_data *mii; struct ifnet *ifp; /* int lfdx, mfdx; */ sc = (struct fv_softc *)arg; FV_LOCK(sc); mii = device_get_softc(sc->fv_miibus); ifp = sc->fv_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { FV_UNLOCK(sc); return; } if (mii->mii_media_status & IFM_ACTIVE) { if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->fv_link_status = 1; } else sc->fv_link_status = 0; FV_UNLOCK(sc); #endif } static void fv_reset(struct fv_softc *sc) { int i; CSR_WRITE_4(sc, CSR_BUSMODE, BUSMODE_SWR); /* * The chip doesn't take itself out of reset automatically. * We need to do so after 2us. */ DELAY(1000); CSR_WRITE_4(sc, CSR_BUSMODE, 0); for (i = 0; i < 1000; i++) { /* * Wait a bit for the reset to complete before peeking * at the chip again. */ DELAY(1000); if ((CSR_READ_4(sc, CSR_BUSMODE) & BUSMODE_SWR) == 0) break; } if (CSR_READ_4(sc, CSR_BUSMODE) & BUSMODE_SWR) device_printf(sc->fv_dev, "reset time out\n"); DELAY(1000); } static void fv_init(void *xsc) { struct fv_softc *sc = xsc; FV_LOCK(sc); fv_init_locked(sc); FV_UNLOCK(sc); } static void fv_init_locked(struct fv_softc *sc) { struct ifnet *ifp = sc->fv_ifp; #ifdef MII struct mii_data *mii; #endif FV_LOCK_ASSERT(sc); #ifdef MII mii = device_get_softc(sc->fv_miibus); #endif fv_stop(sc); fv_reset(sc); /* Init circular RX list. */ if (fv_rx_ring_init(sc) != 0) { device_printf(sc->fv_dev, "initialization failed: no memory for rx buffers\n"); fv_stop(sc); return; } /* Init tx descriptors. */ fv_tx_ring_init(sc); /* * Initialize the BUSMODE register. */ CSR_WRITE_4(sc, CSR_BUSMODE, /* XXX: not sure if this is a good thing or not... */ BUSMODE_BAR | BUSMODE_PBL_32LW); /* * Initialize the interrupt mask and enable interrupts. */ /* normal interrupts */ sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS; /* abnormal interrupts */ sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF | STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS; sc->sc_rxint_mask = STATUS_RI|STATUS_RU; sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT; sc->sc_rxint_mask &= sc->sc_inten; sc->sc_txint_mask &= sc->sc_inten; CSR_WRITE_4(sc, CSR_INTEN, sc->sc_inten); CSR_WRITE_4(sc, CSR_STATUS, 0xffffffff); /* * Give the transmit and receive rings to the chip. */ CSR_WRITE_4(sc, CSR_TXLIST, FV_TX_RING_ADDR(sc, 0)); CSR_WRITE_4(sc, CSR_RXLIST, FV_RX_RING_ADDR(sc, 0)); /* * Set the station address. */ fv_setfilt(sc); /* * Write out the opmode. */ CSR_WRITE_4(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST | OPMODE_TR_128 | OPMODE_FDX | OPMODE_SPEED); /* * Start the receive process. */ CSR_WRITE_4(sc, CSR_RXPOLL, RXPOLL_RPD); sc->fv_link_status = 1; #ifdef MII mii_mediachg(mii); #endif ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->fv_stat_callout, hz, fv_tick, sc); } static void fv_start(struct ifnet *ifp) { struct fv_softc *sc; sc = ifp->if_softc; FV_LOCK(sc); fv_start_locked(ifp); FV_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. * Use Implicit Chain implementation. */ static int fv_encap(struct fv_softc *sc, struct mbuf **m_head) { struct fv_txdesc *txd; struct fv_desc *desc; struct mbuf *m; bus_dma_segment_t txsegs[FV_MAXFRAGS]; int error, i, nsegs, prod, si; int padlen; int txstat; FV_LOCK_ASSERT(sc); /* * Some VIA Rhine wants packet buffers to be longword * aligned, but very often our mbufs aren't. Rather than * waste time trying to decide when to copy and when not * to copy, just do it all the time. */ m = m_defrag(*m_head, M_NOWAIT); if (m == NULL) { device_printf(sc->fv_dev, "fv_encap m_defrag error\n"); m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; /* * The Rhine chip doesn't auto-pad, so we have to make * sure to pad short frames out to the minimum frame length * ourselves. */ if ((*m_head)->m_pkthdr.len < FV_MIN_FRAMELEN) { m = *m_head; padlen = FV_MIN_FRAMELEN - m->m_pkthdr.len; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { device_printf(sc->fv_dev, "fv_encap m_dup error\n"); *m_head = NULL; return (ENOBUFS); } *m_head = m; } if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { m = m_defrag(m, M_NOWAIT); if (m == NULL) { device_printf(sc->fv_dev, "fv_encap m_defrag error\n"); m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } } /* * Manually pad short frames, and zero the pad space * to avoid leaking data. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; *m_head = m; } prod = sc->fv_cdata.fv_tx_prod; txd = &sc->fv_cdata.fv_txdesc[prod]; error = bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { device_printf(sc->fv_dev, "fv_encap EFBIG error\n"); m = m_defrag(*m_head, M_NOWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check number of available descriptors. */ if (sc->fv_cdata.fv_tx_cnt + nsegs >= (FV_TX_RING_CNT - 1)) { bus_dmamap_unload(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap); return (ENOBUFS); } txd->tx_m = *m_head; bus_dmamap_sync(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); si = prod; /* * Make a list of descriptors for this packet. */ desc = NULL; for (i = 0; i < nsegs; i++) { desc = &sc->fv_rdata.fv_tx_ring[prod]; desc->fv_stat = ADSTAT_OWN; desc->fv_devcs = txsegs[i].ds_len; /* end of descriptor */ if (prod == FV_TX_RING_CNT - 1) desc->fv_devcs |= ADCTL_ER; desc->fv_addr = txsegs[i].ds_addr; ++sc->fv_cdata.fv_tx_cnt; FV_INC(prod, FV_TX_RING_CNT); } /* * Set mark last fragment with Last/Intr flag */ if (desc) { desc->fv_devcs |= ADCTL_Tx_IC; desc->fv_devcs |= ADCTL_Tx_LS; } /* Update producer index. */ sc->fv_cdata.fv_tx_prod = prod; /* Sync descriptors. */ bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); txstat = (CSR_READ_4(sc, CSR_STATUS) >> 20) & 7; if (txstat == 0 || txstat == 6) { /* Transmit Process Stat is stop or suspended */ desc = &sc->fv_rdata.fv_tx_ring[si]; desc->fv_devcs |= ADCTL_Tx_FS; } else { /* Get previous descriptor */ si = (si + FV_TX_RING_CNT - 1) % FV_TX_RING_CNT; desc = &sc->fv_rdata.fv_tx_ring[si]; /* join remain data and flugs */ desc->fv_devcs &= ~ADCTL_Tx_IC; desc->fv_devcs &= ~ADCTL_Tx_LS; } return (0); } static void fv_start_locked(struct ifnet *ifp) { struct fv_softc *sc; struct mbuf *m_head; int enq; int txstat; sc = ifp->if_softc; FV_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || sc->fv_link_status == 0 ) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->fv_cdata.fv_tx_cnt < FV_TX_RING_CNT - 2; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (fv_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { txstat = (CSR_READ_4(sc, CSR_STATUS) >> 20) & 7; if (txstat == 0 || txstat == 6) CSR_WRITE_4(sc, CSR_TXPOLL, TXPOLL_TPD); } } static void fv_stop(struct fv_softc *sc) { struct ifnet *ifp; FV_LOCK_ASSERT(sc); ifp = sc->fv_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); callout_stop(&sc->fv_stat_callout); /* Disable interrupts. */ CSR_WRITE_4(sc, CSR_INTEN, 0); /* Stop the transmit and receive processes. */ CSR_WRITE_4(sc, CSR_OPMODE, 0); CSR_WRITE_4(sc, CSR_RXLIST, 0); CSR_WRITE_4(sc, CSR_TXLIST, 0); } static int fv_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct fv_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; #ifdef MII struct mii_data *mii; #endif int error; int csr; switch (command) { case SIOCSIFFLAGS: FV_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->fv_if_flags) & IFF_PROMISC) { csr = CSR_READ_4(sc, CSR_OPMODE); CSR_WRITE_4(sc, CSR_OPMODE, csr | OPMODE_PM | OPMODE_PR); } if ((ifp->if_flags ^ sc->fv_if_flags) & IFF_ALLMULTI) { csr = CSR_READ_4(sc, CSR_OPMODE); CSR_WRITE_4(sc, CSR_OPMODE, csr | OPMODE_PM); } } else { if (sc->fv_detach == 0) fv_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) fv_stop(sc); } sc->fv_if_flags = ifp->if_flags; FV_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: #if 0 FV_LOCK(sc); fv_set_filter(sc); FV_UNLOCK(sc); #endif error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: #ifdef MII mii = device_get_softc(sc->fv_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); #else error = ifmedia_ioctl(ifp, ifr, &sc->fv_ifmedia, command); #endif break; case SIOCSIFCAP: error = 0; #if 0 mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_HWCSUM) != 0) { ifp->if_capenable ^= IFCAP_HWCSUM; if ((IFCAP_HWCSUM & ifp->if_capenable) && (IFCAP_HWCSUM & ifp->if_capabilities)) ifp->if_hwassist = FV_CSUM_FEATURES; else ifp->if_hwassist = 0; } if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (IFCAP_VLAN_HWTAGGING & ifp->if_capenable && IFCAP_VLAN_HWTAGGING & ifp->if_capabilities && ifp->if_drv_flags & IFF_DRV_RUNNING) { FV_LOCK(sc); fv_vlan_setup(sc); FV_UNLOCK(sc); } } VLAN_CAPABILITIES(ifp); #endif break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Set media options. */ static int fv_ifmedia_upd(struct ifnet *ifp) { #ifdef MII struct fv_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; FV_LOCK(sc); mii = device_get_softc(sc->fv_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); FV_UNLOCK(sc); return (error); #else return (0); #endif } /* * Report current media status. */ static void fv_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { #ifdef MII struct fv_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->fv_miibus); FV_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; FV_UNLOCK(sc); #else ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; #endif } struct fv_dmamap_arg { bus_addr_t fv_busaddr; }; static void fv_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct fv_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->fv_busaddr = segs[0].ds_addr; } static int fv_dma_alloc(struct fv_softc *sc) { struct fv_dmamap_arg ctx; struct fv_txdesc *txd; struct fv_rxdesc *rxd; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->fv_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_parent_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create parent DMA tag\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create( sc->fv_cdata.fv_parent_tag, /* parent */ FV_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ FV_TX_RING_SIZE, /* maxsize */ 1, /* nsegments */ FV_TX_RING_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_tx_ring_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create Tx ring DMA tag\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create( sc->fv_cdata.fv_parent_tag, /* parent */ FV_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ FV_RX_RING_SIZE, /* maxsize */ 1, /* nsegments */ FV_RX_RING_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_rx_ring_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create Rx ring DMA tag\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create( sc->fv_cdata.fv_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * FV_MAXFRAGS, /* maxsize */ FV_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_tx_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create Tx DMA tag\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create( sc->fv_cdata.fv_parent_tag, /* parent */ FV_RX_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_rx_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create Rx DMA tag\n"); goto fail; } /* Create tag for setup frame buffers. */ error = bus_dma_tag_create( sc->fv_cdata.fv_parent_tag, /* parent */ sizeof(uint32_t), 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ FV_SFRAME_LEN + FV_MIN_FRAMELEN, /* maxsize */ 1, /* nsegments */ FV_SFRAME_LEN + FV_MIN_FRAMELEN, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->fv_cdata.fv_sf_tag); if (error != 0) { device_printf(sc->fv_dev, "failed to create setup frame DMA tag\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->fv_cdata.fv_tx_ring_tag, (void **)&sc->fv_rdata.fv_tx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_tx_ring_map); if (error != 0) { device_printf(sc->fv_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.fv_busaddr = 0; error = bus_dmamap_load(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, sc->fv_rdata.fv_tx_ring, FV_TX_RING_SIZE, fv_dmamap_cb, &ctx, 0); if (error != 0 || ctx.fv_busaddr == 0) { device_printf(sc->fv_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc->fv_rdata.fv_tx_ring_paddr = ctx.fv_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->fv_cdata.fv_rx_ring_tag, (void **)&sc->fv_rdata.fv_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_rx_ring_map); if (error != 0) { device_printf(sc->fv_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.fv_busaddr = 0; error = bus_dmamap_load(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map, sc->fv_rdata.fv_rx_ring, FV_RX_RING_SIZE, fv_dmamap_cb, &ctx, 0); if (error != 0 || ctx.fv_busaddr == 0) { device_printf(sc->fv_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc->fv_rdata.fv_rx_ring_paddr = ctx.fv_busaddr; /* Allocate DMA'able memory and load the DMA map for setup frame. */ error = bus_dmamem_alloc(sc->fv_cdata.fv_sf_tag, (void **)&sc->fv_cdata.fv_sf_buff, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fv_cdata.fv_sf_buff_map); if (error != 0) { device_printf(sc->fv_dev, "failed to allocate DMA'able memory for setup frame\n"); goto fail; } ctx.fv_busaddr = 0; error = bus_dmamap_load(sc->fv_cdata.fv_sf_tag, sc->fv_cdata.fv_sf_buff_map, sc->fv_cdata.fv_sf_buff, FV_SFRAME_LEN, fv_dmamap_cb, &ctx, 0); if (error != 0 || ctx.fv_busaddr == 0) { device_printf(sc->fv_dev, "failed to load DMA'able memory for setup frame\n"); goto fail; } sc->fv_rdata.fv_sf_paddr = ctx.fv_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < FV_TX_RING_CNT; i++) { txd = &sc->fv_cdata.fv_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->fv_cdata.fv_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->fv_dev, "failed to create Tx dmamap\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->fv_cdata.fv_rx_tag, 0, &sc->fv_cdata.fv_rx_sparemap)) != 0) { device_printf(sc->fv_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < FV_RX_RING_CNT; i++) { rxd = &sc->fv_cdata.fv_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->fv_cdata.fv_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->fv_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static void fv_dma_free(struct fv_softc *sc) { struct fv_txdesc *txd; struct fv_rxdesc *rxd; int i; /* Tx ring. */ if (sc->fv_cdata.fv_tx_ring_tag) { if (sc->fv_rdata.fv_tx_ring_paddr) bus_dmamap_unload(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map); if (sc->fv_rdata.fv_tx_ring) bus_dmamem_free(sc->fv_cdata.fv_tx_ring_tag, sc->fv_rdata.fv_tx_ring, sc->fv_cdata.fv_tx_ring_map); sc->fv_rdata.fv_tx_ring = NULL; sc->fv_rdata.fv_tx_ring_paddr = 0; bus_dma_tag_destroy(sc->fv_cdata.fv_tx_ring_tag); sc->fv_cdata.fv_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->fv_cdata.fv_rx_ring_tag) { if (sc->fv_rdata.fv_rx_ring_paddr) bus_dmamap_unload(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map); if (sc->fv_rdata.fv_rx_ring) bus_dmamem_free(sc->fv_cdata.fv_rx_ring_tag, sc->fv_rdata.fv_rx_ring, sc->fv_cdata.fv_rx_ring_map); sc->fv_rdata.fv_rx_ring = NULL; sc->fv_rdata.fv_rx_ring_paddr = 0; bus_dma_tag_destroy(sc->fv_cdata.fv_rx_ring_tag); sc->fv_cdata.fv_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc->fv_cdata.fv_tx_tag) { for (i = 0; i < FV_TX_RING_CNT; i++) { txd = &sc->fv_cdata.fv_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->fv_cdata.fv_tx_tag); sc->fv_cdata.fv_tx_tag = NULL; } /* Rx buffers. */ if (sc->fv_cdata.fv_rx_tag) { for (i = 0; i < FV_RX_RING_CNT; i++) { rxd = &sc->fv_cdata.fv_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->fv_cdata.fv_rx_sparemap) { bus_dmamap_destroy(sc->fv_cdata.fv_rx_tag, sc->fv_cdata.fv_rx_sparemap); sc->fv_cdata.fv_rx_sparemap = 0; } bus_dma_tag_destroy(sc->fv_cdata.fv_rx_tag); sc->fv_cdata.fv_rx_tag = NULL; } if (sc->fv_cdata.fv_parent_tag) { bus_dma_tag_destroy(sc->fv_cdata.fv_parent_tag); sc->fv_cdata.fv_parent_tag = NULL; } } /* * Initialize the transmit descriptors. */ static int fv_tx_ring_init(struct fv_softc *sc) { struct fv_ring_data *rd; struct fv_txdesc *txd; bus_addr_t addr; int i; sc->fv_cdata.fv_tx_prod = 0; sc->fv_cdata.fv_tx_cons = 0; sc->fv_cdata.fv_tx_cnt = 0; sc->fv_cdata.fv_tx_pkts = 0; rd = &sc->fv_rdata; bzero(rd->fv_tx_ring, FV_TX_RING_SIZE); for (i = 0; i < FV_TX_RING_CNT; i++) { if (i == FV_TX_RING_CNT - 1) addr = FV_TX_RING_ADDR(sc, 0); else addr = FV_TX_RING_ADDR(sc, i + 1); rd->fv_tx_ring[i].fv_stat = 0; rd->fv_tx_ring[i].fv_devcs = 0; rd->fv_tx_ring[i].fv_addr = 0; rd->fv_tx_ring[i].fv_link = addr; txd = &sc->fv_cdata.fv_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int fv_rx_ring_init(struct fv_softc *sc) { struct fv_ring_data *rd; struct fv_rxdesc *rxd; int i; sc->fv_cdata.fv_rx_cons = 0; rd = &sc->fv_rdata; bzero(rd->fv_rx_ring, FV_RX_RING_SIZE); for (i = 0; i < FV_RX_RING_CNT; i++) { rxd = &sc->fv_cdata.fv_rxdesc[i]; rxd->rx_m = NULL; rxd->desc = &rd->fv_rx_ring[i]; rd->fv_rx_ring[i].fv_stat = ADSTAT_OWN; rd->fv_rx_ring[i].fv_devcs = 0; if (i == FV_RX_RING_CNT - 1) rd->fv_rx_ring[i].fv_devcs |= ADCTL_ER; rd->fv_rx_ring[i].fv_addr = 0; if (fv_newbuf(sc, i) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int fv_newbuf(struct fv_softc *sc, int idx) { struct fv_desc *desc; struct fv_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; /* tcp header boundary alignment margin */ m_adj(m, 4); if (bus_dmamap_load_mbuf_sg(sc->fv_cdata.fv_rx_tag, sc->fv_cdata.fv_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc->fv_cdata.fv_rxdesc[idx]; if (rxd->rx_m != NULL) { /* This code make bug. Make scranble on buffer data. bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); */ bus_dmamap_unload(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->fv_cdata.fv_rx_sparemap; sc->fv_cdata.fv_rx_sparemap = map; bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; desc = rxd->desc; desc->fv_addr = segs[0].ds_addr; desc->fv_devcs |= FV_DMASIZE(segs[0].ds_len); rxd->saved_ca = desc->fv_addr ; rxd->saved_ctl = desc->fv_stat ; return (0); } static __inline void fv_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < m->m_len / sizeof(uint16_t); i++) { *dst++ = *src++; } if (m->m_len % sizeof(uint16_t)) *(uint8_t *)dst = *(uint8_t *)src; m->m_data -= ETHER_ALIGN; } static void fv_tx(struct fv_softc *sc) { struct fv_txdesc *txd; struct fv_desc *cur_tx; struct ifnet *ifp; uint32_t ctl, devcs; int cons, prod, prev_cons; FV_LOCK_ASSERT(sc); cons = sc->fv_cdata.fv_tx_cons; prod = sc->fv_cdata.fv_tx_prod; if (cons == prod) return; bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ifp = sc->fv_ifp; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ prev_cons = cons; for (; cons != prod; FV_INC(cons, FV_TX_RING_CNT)) { cur_tx = &sc->fv_rdata.fv_tx_ring[cons]; ctl = cur_tx->fv_stat; devcs = cur_tx->fv_devcs; /* Check if descriptor has "finished" flag */ if (FV_DMASIZE(devcs) == 0) break; sc->fv_cdata.fv_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; txd = &sc->fv_cdata.fv_txdesc[cons]; if ((ctl & ADSTAT_Tx_ES) == 0) if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); else if (ctl & ADSTAT_Tx_UF) { /* only underflow not check collision */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } bus_dmamap_sync(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fv_cdata.fv_tx_tag, txd->tx_dmamap); /* Free only if it's first descriptor in list */ if (txd->tx_m) m_freem(txd->tx_m); txd->tx_m = NULL; /* reset descriptor */ cur_tx->fv_stat = 0; cur_tx->fv_devcs = 0; cur_tx->fv_addr = 0; } sc->fv_cdata.fv_tx_cons = cons; bus_dmamap_sync(sc->fv_cdata.fv_tx_ring_tag, sc->fv_cdata.fv_tx_ring_map, BUS_DMASYNC_PREWRITE); } static void fv_rx(struct fv_softc *sc) { struct fv_rxdesc *rxd; struct ifnet *ifp = sc->fv_ifp; int cons, prog, packet_len, error; struct fv_desc *cur_rx; struct mbuf *m; FV_LOCK_ASSERT(sc); cons = sc->fv_cdata.fv_rx_cons; bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (prog = 0; prog < FV_RX_RING_CNT; FV_INC(cons, FV_RX_RING_CNT)) { cur_rx = &sc->fv_rdata.fv_rx_ring[cons]; rxd = &sc->fv_cdata.fv_rxdesc[cons]; m = rxd->rx_m; if ((cur_rx->fv_stat & ADSTAT_OWN) == ADSTAT_OWN) break; prog++; if (cur_rx->fv_stat & (ADSTAT_ES | ADSTAT_Rx_TL)) { device_printf(sc->fv_dev, "Receive Descriptor error %x\n", cur_rx->fv_stat); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); packet_len = 0; } else { packet_len = ADSTAT_Rx_LENGTH(cur_rx->fv_stat); } /* Assume it's error */ error = 1; if (packet_len < 64) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); else if ((cur_rx->fv_stat & ADSTAT_Rx_DE) == 0) { error = 0; bus_dmamap_sync(sc->fv_cdata.fv_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); m = rxd->rx_m; /* Skip 4 bytes of CRC */ m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN; fv_fixup_rx(m); m->m_pkthdr.rcvif = ifp; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); FV_UNLOCK(sc); (*ifp->if_input)(ifp, m); FV_LOCK(sc); } if (error) { /* Restore CONTROL and CA values, reset DEVCS */ cur_rx->fv_stat = rxd->saved_ctl; cur_rx->fv_addr = rxd->saved_ca; cur_rx->fv_devcs = 0; } else { /* Reinit descriptor */ cur_rx->fv_stat = ADSTAT_OWN; cur_rx->fv_devcs = 0; if (cons == FV_RX_RING_CNT - 1) cur_rx->fv_devcs |= ADCTL_ER; cur_rx->fv_addr = 0; if (fv_newbuf(sc, cons) != 0) { device_printf(sc->fv_dev, "Failed to allocate buffer\n"); break; } } bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } if (prog > 0) { sc->fv_cdata.fv_rx_cons = cons; bus_dmamap_sync(sc->fv_cdata.fv_rx_ring_tag, sc->fv_cdata.fv_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static void fv_intr(void *arg) { struct fv_softc *sc = arg; uint32_t status; struct ifnet *ifp = sc->fv_ifp; FV_LOCK(sc); status = CSR_READ_4(sc, CSR_STATUS); /* mask out interrupts */ while((status & sc->sc_inten) != 0) { if (status) { CSR_WRITE_4(sc, CSR_STATUS, status); } if (status & STATUS_UNF) { device_printf(sc->fv_dev, "Transmit Underflow\n"); } if (status & sc->sc_rxint_mask) { fv_rx(sc); } if (status & sc->sc_txint_mask) { fv_tx(sc); } if (status & STATUS_AIS) { device_printf(sc->fv_dev, "Abnormal Interrupt %x\n", status); } CSR_WRITE_4(sc, CSR_FULLDUP, FULLDUP_CS | (1 << FULLDUP_TT_SHIFT) | (3 << FULLDUP_NTP_SHIFT) | (2 << FULLDUP_RT_SHIFT) | (2 << FULLDUP_NRP_SHIFT)); status = CSR_READ_4(sc, CSR_STATUS); } /* Try to get more packets going. */ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) fv_start_locked(ifp); FV_UNLOCK(sc); } static void fv_tick(void *xsc) { struct fv_softc *sc = xsc; #ifdef MII struct mii_data *mii; FV_LOCK_ASSERT(sc); mii = device_get_softc(sc->fv_miibus); mii_tick(mii); #endif callout_reset(&sc->fv_stat_callout, hz, fv_tick, sc); } static void fv_hinted_child(device_t bus, const char *dname, int dunit) { BUS_ADD_CHILD(bus, 0, dname, dunit); device_printf(bus, "hinted child %s%d\n", dname, dunit); } #ifdef FV_MDIO static int fvmdio_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "fv,mdio")) return (ENXIO); device_set_desc(dev, "FV built-in ethernet interface, MDIO controller"); return(0); } static int fvmdio_attach(device_t dev) { struct fv_softc *sc; int error; sc = device_get_softc(dev); sc->fv_dev = dev; sc->fv_rid = 0; sc->fv_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->fv_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->fv_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } sc->fv_btag = rman_get_bustag(sc->fv_res); sc->fv_bhandle = rman_get_bushandle(sc->fv_res); bus_generic_probe(dev); bus_enumerate_hinted_children(dev); error = bus_generic_attach(dev); fail: return(error); } static int fvmdio_detach(device_t dev) { return(0); } #endif #ifdef FV_DEBUG void dump_txdesc(struct fv_softc *sc, int pos) { struct fv_desc *desc; desc = &sc->fv_rdata.fv_tx_ring[pos]; device_printf(sc->fv_dev, "CSR_TXLIST %08x\n", CSR_READ_4(sc, CSR_TXLIST)); device_printf(sc->fv_dev, "%d TDES0:%08x TDES1:%08x TDES2:%08x TDES3:%08x\n", pos, desc->fv_stat, desc->fv_devcs, desc->fv_addr, desc->fv_link); } void dump_status_reg(struct fv_softc *sc) { uint32_t status; /* mask out interrupts */ status = CSR_READ_4(sc, CSR_STATUS); device_printf(sc->fv_dev, "CSR5 Status Register EB:%d TS:%d RS:%d NIS:%d AIS:%d ER:%d SE:%d LNF:%d TM:%d RWT:%d RPS:%d RU:%d RI:%d UNF:%d LNP/ANC:%d TJT:%d TU:%d TPS:%d TI:%d\n", (status >> 23 ) & 7, (status >> 20 ) & 7, (status >> 17 ) & 7, (status >> 16 ) & 1, (status >> 15 ) & 1, (status >> 14 ) & 1, (status >> 13 ) & 1, (status >> 12 ) & 1, (status >> 11 ) & 1, (status >> 9 ) & 1, (status >> 8 ) & 1, (status >> 7 ) & 1, (status >> 6 ) & 1, (status >> 5 ) & 1, (status >> 4 ) & 1, (status >> 3 ) & 1, (status >> 2 ) & 1, (status >> 1 ) & 1, (status >> 0 ) & 1); } #endif