Index: head/sys/dev/sge/if_sge.c =================================================================== --- head/sys/dev/sge/if_sge.c (revision 353824) +++ head/sys/dev/sge/if_sge.c (revision 353825) @@ -1,1905 +1,1907 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2008-2010 Nikolay Denev * Copyright (c) 2007-2008 Alexander Pohoyda * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * SiS 190/191 PCI Ethernet NIC driver. * * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu * . Thanks to Pyun YongHyeon for * review and very useful comments. * * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the * Linux and Solaris drivers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(sge, pci, 1, 1, 1); MODULE_DEPEND(sge, ether, 1, 1, 1); MODULE_DEPEND(sge, miibus, 1, 1, 1); /* "device miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static struct sge_type sge_devs[] = { { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" }, { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" }, { 0, 0, NULL } }; static int sge_probe(device_t); static int sge_attach(device_t); static int sge_detach(device_t); static int sge_shutdown(device_t); static int sge_suspend(device_t); static int sge_resume(device_t); static int sge_miibus_readreg(device_t, int, int); static int sge_miibus_writereg(device_t, int, int, int); static void sge_miibus_statchg(device_t); static int sge_newbuf(struct sge_softc *, int); static int sge_encap(struct sge_softc *, struct mbuf **); static __inline void sge_discard_rxbuf(struct sge_softc *, int); static void sge_rxeof(struct sge_softc *); static void sge_txeof(struct sge_softc *); static void sge_intr(void *); static void sge_tick(void *); static void sge_start(struct ifnet *); static void sge_start_locked(struct ifnet *); static int sge_ioctl(struct ifnet *, u_long, caddr_t); static void sge_init(void *); static void sge_init_locked(struct sge_softc *); static void sge_stop(struct sge_softc *); static void sge_watchdog(struct sge_softc *); static int sge_ifmedia_upd(struct ifnet *); static void sge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int sge_get_mac_addr_apc(struct sge_softc *, uint8_t *); static int sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *); static uint16_t sge_read_eeprom(struct sge_softc *, int); static void sge_rxfilter(struct sge_softc *); static void sge_setvlan(struct sge_softc *); static void sge_reset(struct sge_softc *); static int sge_list_rx_init(struct sge_softc *); static int sge_list_rx_free(struct sge_softc *); static int sge_list_tx_init(struct sge_softc *); static int sge_list_tx_free(struct sge_softc *); static int sge_dma_alloc(struct sge_softc *); static void sge_dma_free(struct sge_softc *); static void sge_dma_map_addr(void *, bus_dma_segment_t *, int, int); static device_method_t sge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sge_probe), DEVMETHOD(device_attach, sge_attach), DEVMETHOD(device_detach, sge_detach), DEVMETHOD(device_suspend, sge_suspend), DEVMETHOD(device_resume, sge_resume), DEVMETHOD(device_shutdown, sge_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, sge_miibus_readreg), DEVMETHOD(miibus_writereg, sge_miibus_writereg), DEVMETHOD(miibus_statchg, sge_miibus_statchg), DEVMETHOD_END }; static driver_t sge_driver = { "sge", sge_methods, sizeof(struct sge_softc) }; static devclass_t sge_devclass; DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0); DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0); /* * Register space access macros. */ #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sge_res, reg, val) #define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->sge_res, reg, val) #define CSR_WRITE_1(cs, reg, val) bus_write_1(sc->sge_res, reg, val) #define CSR_READ_4(sc, reg) bus_read_4(sc->sge_res, reg) #define CSR_READ_2(sc, reg) bus_read_2(sc->sge_res, reg) #define CSR_READ_1(sc, reg) bus_read_1(sc->sge_res, reg) /* Define to show Tx/Rx error status. */ #undef SGE_SHOW_ERRORS #define SGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) static void sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *p; if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); p = arg; *p = segs->ds_addr; } /* * Read a sequence of words from the EEPROM. */ static uint16_t sge_read_eeprom(struct sge_softc *sc, int offset) { uint32_t val; int i; KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big")); CSR_WRITE_4(sc, ROMInterface, EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT)); DELAY(500); for (i = 0; i < SGE_TIMEOUT; i++) { val = CSR_READ_4(sc, ROMInterface); if ((val & EI_REQ) == 0) break; DELAY(100); } if (i == SGE_TIMEOUT) { device_printf(sc->sge_dev, "EEPROM read timeout : 0x%08x\n", val); return (0xffff); } return ((val & EI_DATA) >> EI_DATA_SHIFT); } static int sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest) { uint16_t val; int i; val = sge_read_eeprom(sc, EEPROMSignature); if (val == 0xffff || val == 0) { device_printf(sc->sge_dev, "invalid EEPROM signature : 0x%04x\n", val); return (EINVAL); } for (i = 0; i < ETHER_ADDR_LEN; i += 2) { val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2); dest[i + 0] = (uint8_t)val; dest[i + 1] = (uint8_t)(val >> 8); } if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0) sc->sge_flags |= SGE_FLAG_RGMII; return (0); } /* * For SiS96x, APC CMOS RAM is used to store ethernet address. * APC CMOS RAM is accessed through ISA bridge. */ static int sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest) { #if defined(__amd64__) || defined(__i386__) devclass_t pci; device_t bus, dev = NULL; device_t *kids; struct apc_tbl { uint16_t vid; uint16_t did; } *tp, apc_tbls[] = { { SIS_VENDORID, 0x0965 }, { SIS_VENDORID, 0x0966 }, { SIS_VENDORID, 0x0968 } }; uint8_t reg; int busnum, i, j, numkids; pci = devclass_find("pci"); for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { bus = devclass_get_device(pci, busnum); if (!bus) continue; if (device_get_children(bus, &kids, &numkids) != 0) continue; for (i = 0; i < numkids; i++) { dev = kids[i]; if (pci_get_class(dev) == PCIC_BRIDGE && pci_get_subclass(dev) == PCIS_BRIDGE_ISA) { tp = apc_tbls; for (j = 0; j < nitems(apc_tbls); j++) { if (pci_get_vendor(dev) == tp->vid && pci_get_device(dev) == tp->did) { free(kids, M_TEMP); goto apc_found; } tp++; } } } free(kids, M_TEMP); } device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n"); return (EINVAL); apc_found: /* Enable port 0x78 and 0x79 to access APC registers. */ reg = pci_read_config(dev, 0x48, 1); pci_write_config(dev, 0x48, reg & ~0x02, 1); DELAY(50); pci_read_config(dev, 0x48, 1); /* Read stored ethernet address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) { outb(0x78, 0x09 + i); dest[i] = inb(0x79); } outb(0x78, 0x12); if ((inb(0x79) & 0x80) != 0) sc->sge_flags |= SGE_FLAG_RGMII; /* Restore access to APC registers. */ pci_write_config(dev, 0x48, reg, 1); return (0); #else return (EINVAL); #endif } static int sge_miibus_readreg(device_t dev, int phy, int reg) { struct sge_softc *sc; uint32_t val; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ); DELAY(10); for (i = 0; i < SGE_TIMEOUT; i++) { val = CSR_READ_4(sc, GMIIControl); if ((val & GMI_REQ) == 0) break; DELAY(10); } if (i == SGE_TIMEOUT) { device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg); return (0); } return ((val & GMI_DATA) >> GMI_DATA_SHIFT); } static int sge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct sge_softc *sc; uint32_t val; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) | GMI_OP_WR | GMI_REQ); DELAY(10); for (i = 0; i < SGE_TIMEOUT; i++) { val = CSR_READ_4(sc, GMIIControl); if ((val & GMI_REQ) == 0) break; DELAY(10); } if (i == SGE_TIMEOUT) device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg); return (0); } static void sge_miibus_statchg(device_t dev) { struct sge_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t ctl, speed; sc = device_get_softc(dev); mii = device_get_softc(sc->sge_miibus); ifp = sc->sge_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; speed = 0; sc->sge_flags &= ~SGE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: sc->sge_flags |= SGE_FLAG_LINK; speed = SC_SPEED_10; break; case IFM_100_TX: sc->sge_flags |= SGE_FLAG_LINK; speed = SC_SPEED_100; break; case IFM_1000_T: if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) { sc->sge_flags |= SGE_FLAG_LINK; speed = SC_SPEED_1000; } break; default: break; } } if ((sc->sge_flags & SGE_FLAG_LINK) == 0) return; /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */ ctl = CSR_READ_4(sc, StationControl); ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK); if (speed == SC_SPEED_1000) { ctl |= 0x07000000; sc->sge_flags |= SGE_FLAG_SPEED_1000; } else { ctl |= 0x04000000; sc->sge_flags &= ~SGE_FLAG_SPEED_1000; } #ifdef notyet if ((sc->sge_flags & SGE_FLAG_GMII) != 0) ctl |= 0x03000000; #endif ctl |= speed; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { ctl |= SC_FDX; sc->sge_flags |= SGE_FLAG_FDX; } else sc->sge_flags &= ~SGE_FLAG_FDX; CSR_WRITE_4(sc, StationControl, ctl); if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) { CSR_WRITE_4(sc, RGMIIDelay, 0x0441); CSR_WRITE_4(sc, RGMIIDelay, 0x0440); } } +static u_int +sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count) +{ + uint32_t crc, *hashes = arg; + + crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); + hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); + + return (1); +} + static void sge_rxfilter(struct sge_softc *sc) { struct ifnet *ifp; - struct ifmultiaddr *ifma; - uint32_t crc, hashes[2]; + uint32_t hashes[2]; uint16_t rxfilt; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; rxfilt = CSR_READ_2(sc, RxMacControl); rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast); rxfilt |= AcceptMyPhys; if ((ifp->if_flags & IFF_BROADCAST) != 0) rxfilt |= AcceptBroadcast; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) rxfilt |= AcceptAllPhys; rxfilt |= AcceptMulticast; hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { rxfilt |= AcceptMulticast; hashes[0] = hashes[1] = 0; /* Now program new ones. */ - if_maddr_rlock(ifp); - CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { - if (ifma->ifma_addr->sa_family != AF_LINK) - continue; - crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) - ifma->ifma_addr), ETHER_ADDR_LEN); - hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); - } - if_maddr_runlock(ifp); + if_foreach_llmaddr(ifp, sge_hash_maddr, hashes); } CSR_WRITE_2(sc, RxMacControl, rxfilt); CSR_WRITE_4(sc, RxHashTable, hashes[0]); CSR_WRITE_4(sc, RxHashTable2, hashes[1]); } static void sge_setvlan(struct sge_softc *sc) { struct ifnet *ifp; uint16_t rxfilt; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0) return; rxfilt = CSR_READ_2(sc, RxMacControl); if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) rxfilt |= RXMAC_STRIP_VLAN; else rxfilt &= ~RXMAC_STRIP_VLAN; CSR_WRITE_2(sc, RxMacControl, rxfilt); } static void sge_reset(struct sge_softc *sc) { CSR_WRITE_4(sc, IntrMask, 0); CSR_WRITE_4(sc, IntrStatus, 0xffffffff); /* Soft reset. */ CSR_WRITE_4(sc, IntrControl, 0x8000); CSR_READ_4(sc, IntrControl); DELAY(100); CSR_WRITE_4(sc, IntrControl, 0); /* Stop MAC. */ CSR_WRITE_4(sc, TX_CTL, 0x1a00); CSR_WRITE_4(sc, RX_CTL, 0x1a00); CSR_WRITE_4(sc, IntrMask, 0); CSR_WRITE_4(sc, IntrStatus, 0xffffffff); CSR_WRITE_4(sc, GMIIControl, 0); } /* * Probe for an SiS chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int sge_probe(device_t dev) { struct sge_type *t; t = sge_devs; while (t->sge_name != NULL) { if ((pci_get_vendor(dev) == t->sge_vid) && (pci_get_device(dev) == t->sge_did)) { device_set_desc(dev, t->sge_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int sge_attach(device_t dev) { struct sge_softc *sc; struct ifnet *ifp; uint8_t eaddr[ETHER_ADDR_LEN]; int error = 0, rid; sc = device_get_softc(dev); sc->sge_dev = dev; mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); /* Allocate resources. */ sc->sge_res_id = PCIR_BAR(0); sc->sge_res_type = SYS_RES_MEMORY; sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type, &sc->sge_res_id, RF_ACTIVE); if (sc->sge_res == NULL) { device_printf(dev, "couldn't allocate resource\n"); error = ENXIO; goto fail; } rid = 0; sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->sge_irq == NULL) { device_printf(dev, "couldn't allocate IRQ resources\n"); error = ENXIO; goto fail; } sc->sge_rev = pci_get_revid(dev); if (pci_get_device(dev) == SIS_DEVICEID_190) sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190; /* Reset the adapter. */ sge_reset(sc); /* Get MAC address from the EEPROM. */ if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0) sge_get_mac_addr_apc(sc, eaddr); else sge_get_mac_addr_eeprom(sc, eaddr); if ((error = sge_dma_alloc(sc)) != 0) goto fail; ifp = sc->sge_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure.\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sge_ioctl; ifp->if_start = sge_start; ifp->if_init = sge_init; ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4; ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO; ifp->if_capenable = ifp->if_capabilities; /* * Do MII setup. */ error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd, sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* VLAN setup. */ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; /* Tell the upper layer(s) we support long frames. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, sge_intr, sc, &sc->sge_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) sge_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int sge_detach(device_t dev) { struct sge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->sge_ifp; /* These should only be active if attach succeeded. */ if (device_is_attached(dev)) { ether_ifdetach(ifp); SGE_LOCK(sc); sge_stop(sc); SGE_UNLOCK(sc); callout_drain(&sc->sge_stat_ch); } if (sc->sge_miibus) device_delete_child(dev, sc->sge_miibus); bus_generic_detach(dev); if (sc->sge_intrhand) bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand); if (sc->sge_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq); if (sc->sge_res) bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id, sc->sge_res); if (ifp) if_free(ifp); sge_dma_free(sc); mtx_destroy(&sc->sge_mtx); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int sge_shutdown(device_t dev) { struct sge_softc *sc; sc = device_get_softc(dev); SGE_LOCK(sc); sge_stop(sc); SGE_UNLOCK(sc); return (0); } static int sge_suspend(device_t dev) { struct sge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); SGE_LOCK(sc); ifp = sc->sge_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) sge_stop(sc); SGE_UNLOCK(sc); return (0); } static int sge_resume(device_t dev) { struct sge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); SGE_LOCK(sc); ifp = sc->sge_ifp; if ((ifp->if_flags & IFF_UP) != 0) sge_init_locked(sc); SGE_UNLOCK(sc); return (0); } static int sge_dma_alloc(struct sge_softc *sc) { struct sge_chain_data *cd; struct sge_list_data *ld; struct sge_rxdesc *rxd; struct sge_txdesc *txd; int error, i; cd = &sc->sge_cdata; ld = &sc->sge_ldata; error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev), 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &cd->sge_tag); if (error != 0) { device_printf(sc->sge_dev, "could not create parent DMA tag.\n"); goto fail; } /* RX descriptor ring */ error = bus_dma_tag_create(cd->sge_tag, SGE_DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SGE_RX_RING_SZ, 1, /* maxsize,nsegments */ SGE_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &cd->sge_rx_tag); if (error != 0) { device_printf(sc->sge_dev, "could not create Rx ring DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load DMA map for RX ring. */ error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &cd->sge_rx_dmamap); if (error != 0) { device_printf(sc->sge_dev, "could not allocate DMA'able memory for Rx ring.\n"); goto fail; } error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap, ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr, &ld->sge_rx_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sge_dev, "could not load DMA'able memory for Rx ring.\n"); } /* TX descriptor ring */ error = bus_dma_tag_create(cd->sge_tag, SGE_DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SGE_TX_RING_SZ, 1, /* maxsize,nsegments */ SGE_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &cd->sge_tx_tag); if (error != 0) { device_printf(sc->sge_dev, "could not create Rx ring DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load DMA map for TX ring. */ error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &cd->sge_tx_dmamap); if (error != 0) { device_printf(sc->sge_dev, "could not allocate DMA'able memory for Tx ring.\n"); goto fail; } error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap, ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr, &ld->sge_tx_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sge_dev, "could not load DMA'able memory for Rx ring.\n"); goto fail; } /* Create DMA tag for Tx buffers. */ error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS, SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag); if (error != 0) { device_printf(sc->sge_dev, "could not create Tx mbuf DMA tag.\n"); goto fail; } /* Create DMA tag for Rx buffers. */ error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag); if (error != 0) { device_printf(sc->sge_dev, "could not create Rx mbuf DMA tag.\n"); goto fail; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < SGE_TX_RING_CNT; i++) { txd = &cd->sge_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; txd->tx_ndesc = 0; error = bus_dmamap_create(cd->sge_txmbuf_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->sge_dev, "could not create Tx DMA map.\n"); goto fail; } } /* Create spare DMA map for Rx buffer. */ error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map); if (error != 0) { device_printf(sc->sge_dev, "could not create spare Rx DMA map.\n"); goto fail; } /* Create DMA maps for Rx buffers. */ for (i = 0; i < SGE_RX_RING_CNT; i++) { rxd = &cd->sge_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &rxd->rx_dmamap); if (error) { device_printf(sc->sge_dev, "could not create Rx DMA map.\n"); goto fail; } } fail: return (error); } static void sge_dma_free(struct sge_softc *sc) { struct sge_chain_data *cd; struct sge_list_data *ld; struct sge_rxdesc *rxd; struct sge_txdesc *txd; int i; cd = &sc->sge_cdata; ld = &sc->sge_ldata; /* Rx ring. */ if (cd->sge_rx_tag != NULL) { if (ld->sge_rx_paddr != 0) bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap); if (ld->sge_rx_ring != NULL) bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring, cd->sge_rx_dmamap); ld->sge_rx_ring = NULL; ld->sge_rx_paddr = 0; bus_dma_tag_destroy(cd->sge_rx_tag); cd->sge_rx_tag = NULL; } /* Tx ring. */ if (cd->sge_tx_tag != NULL) { if (ld->sge_tx_paddr != 0) bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap); if (ld->sge_tx_ring != NULL) bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring, cd->sge_tx_dmamap); ld->sge_tx_ring = NULL; ld->sge_tx_paddr = 0; bus_dma_tag_destroy(cd->sge_tx_tag); cd->sge_tx_tag = NULL; } /* Rx buffers. */ if (cd->sge_rxmbuf_tag != NULL) { for (i = 0; i < SGE_RX_RING_CNT; i++) { rxd = &cd->sge_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(cd->sge_rxmbuf_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (cd->sge_rx_spare_map != NULL) { bus_dmamap_destroy(cd->sge_rxmbuf_tag, cd->sge_rx_spare_map); cd->sge_rx_spare_map = NULL; } bus_dma_tag_destroy(cd->sge_rxmbuf_tag); cd->sge_rxmbuf_tag = NULL; } /* Tx buffers. */ if (cd->sge_txmbuf_tag != NULL) { for (i = 0; i < SGE_TX_RING_CNT; i++) { txd = &cd->sge_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(cd->sge_txmbuf_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(cd->sge_txmbuf_tag); cd->sge_txmbuf_tag = NULL; } if (cd->sge_tag != NULL) bus_dma_tag_destroy(cd->sge_tag); cd->sge_tag = NULL; } /* * Initialize the TX descriptors. */ static int sge_list_tx_init(struct sge_softc *sc) { struct sge_list_data *ld; struct sge_chain_data *cd; SGE_LOCK_ASSERT(sc); ld = &sc->sge_ldata; cd = &sc->sge_cdata; bzero(ld->sge_tx_ring, SGE_TX_RING_SZ); ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END); bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); cd->sge_tx_prod = 0; cd->sge_tx_cons = 0; cd->sge_tx_cnt = 0; return (0); } static int sge_list_tx_free(struct sge_softc *sc) { struct sge_chain_data *cd; struct sge_txdesc *txd; int i; SGE_LOCK_ASSERT(sc); cd = &sc->sge_cdata; for (i = 0; i < SGE_TX_RING_CNT; i++) { txd = &cd->sge_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; txd->tx_ndesc = 0; } } return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * has RING_END flag set. */ static int sge_list_rx_init(struct sge_softc *sc) { struct sge_chain_data *cd; int i; SGE_LOCK_ASSERT(sc); cd = &sc->sge_cdata; cd->sge_rx_cons = 0; bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ); for (i = 0; i < SGE_RX_RING_CNT; i++) { if (sge_newbuf(sc, i) != 0) return (ENOBUFS); } bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static int sge_list_rx_free(struct sge_softc *sc) { struct sge_chain_data *cd; struct sge_rxdesc *rxd; int i; SGE_LOCK_ASSERT(sc); cd = &sc->sge_cdata; for (i = 0; i < SGE_RX_RING_CNT; i++) { rxd = &cd->sge_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int sge_newbuf(struct sge_softc *sc, int prod) { struct mbuf *m; struct sge_desc *desc; struct sge_chain_data *cd; struct sge_rxdesc *rxd; bus_dma_segment_t segs[1]; bus_dmamap_t map; int error, nsegs; SGE_LOCK_ASSERT(sc); cd = &sc->sge_cdata; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, SGE_RX_BUF_ALIGN); error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag, cd->sge_rx_spare_map, m, segs, &nsegs, 0); if (error != 0) { m_freem(m); return (error); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &cd->sge_rxdesc[prod]; if (rxd->rx_m != NULL) { bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = cd->sge_rx_spare_map; cd->sge_rx_spare_map = map; bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; desc = &sc->sge_ldata.sge_rx_ring[prod]; desc->sge_sts_size = 0; desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr)); desc->sge_flags = htole32(segs[0].ds_len); if (prod == SGE_RX_RING_CNT - 1) desc->sge_flags |= htole32(RING_END); desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR); return (0); } static __inline void sge_discard_rxbuf(struct sge_softc *sc, int index) { struct sge_desc *desc; desc = &sc->sge_ldata.sge_rx_ring[index]; desc->sge_sts_size = 0; desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN); if (index == SGE_RX_RING_CNT - 1) desc->sge_flags |= htole32(RING_END); desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void sge_rxeof(struct sge_softc *sc) { struct ifnet *ifp; struct mbuf *m; struct sge_chain_data *cd; struct sge_desc *cur_rx; uint32_t rxinfo, rxstat; int cons, prog; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; cd = &sc->sge_cdata; bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cons = cd->sge_rx_cons; for (prog = 0; prog < SGE_RX_RING_CNT; prog++, SGE_INC(cons, SGE_RX_RING_CNT)) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; cur_rx = &sc->sge_ldata.sge_rx_ring[cons]; rxinfo = le32toh(cur_rx->sge_cmdsts); if ((rxinfo & RDC_OWN) != 0) break; rxstat = le32toh(cur_rx->sge_sts_size); if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 || SGE_RX_NSEGS(rxstat) != 1) { /* XXX We don't support multi-segment frames yet. */ #ifdef SGE_SHOW_ERRORS device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat, RX_ERR_BITS); #endif sge_discard_rxbuf(sc, cons); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); continue; } m = cd->sge_rxdesc[cons].rx_m; if (sge_newbuf(sc, cons) != 0) { sge_discard_rxbuf(sc, cons); if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); continue; } if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { if ((rxinfo & RDC_IP_CSUM) != 0 && (rxinfo & RDC_IP_CSUM_OK) != 0) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; if (((rxinfo & RDC_TCP_CSUM) != 0 && (rxinfo & RDC_TCP_CSUM_OK) != 0) || ((rxinfo & RDC_UDP_CSUM) != 0 && (rxinfo & RDC_UDP_CSUM_OK) != 0)) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } /* Check for VLAN tagged frame. */ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && (rxstat & RDS_VLAN) != 0) { m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK; m->m_flags |= M_VLANTAG; } /* * Account for 10bytes auto padding which is used * to align IP header on 32bit boundary. Also note, * CRC bytes is automatically removed by the * hardware. */ m->m_data += SGE_RX_PAD_BYTES; m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) - SGE_RX_PAD_BYTES; m->m_pkthdr.rcvif = ifp; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); SGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); SGE_LOCK(sc); } if (prog > 0) { bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); cd->sge_rx_cons = cons; } } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void sge_txeof(struct sge_softc *sc) { struct ifnet *ifp; struct sge_list_data *ld; struct sge_chain_data *cd; struct sge_txdesc *txd; uint32_t txstat; int cons, nsegs, prod; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; ld = &sc->sge_ldata; cd = &sc->sge_cdata; if (cd->sge_tx_cnt == 0) return; bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cons = cd->sge_tx_cons; prod = cd->sge_tx_prod; for (; cons != prod;) { txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts); if ((txstat & TDC_OWN) != 0) break; /* * Only the first descriptor of multi-descriptor transmission * is updated by controller. Driver should skip entire * chained buffers for the transmitted frame. In other words * TDC_OWN bit is valid only at the first descriptor of a * multi-descriptor transmission. */ if (SGE_TX_ERROR(txstat) != 0) { #ifdef SGE_SHOW_ERRORS device_printf(sc->sge_dev, "Tx error : 0x%b\n", txstat, TX_ERR_BITS); #endif if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } else { #ifdef notyet if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1); #endif if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } txd = &cd->sge_txdesc[cons]; for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { ld->sge_tx_ring[cons].sge_cmdsts = 0; SGE_INC(cons, SGE_TX_RING_CNT); } /* Reclaim transmitted mbuf. */ KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf\n", __func__)); bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; cd->sge_tx_cnt -= txd->tx_ndesc; KASSERT(cd->sge_tx_cnt >= 0, ("%s: Active Tx desc counter was garbled\n", __func__)); txd->tx_ndesc = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } cd->sge_tx_cons = cons; if (cd->sge_tx_cnt == 0) sc->sge_timer = 0; } static void sge_tick(void *arg) { struct sge_softc *sc; struct mii_data *mii; struct ifnet *ifp; sc = arg; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; mii = device_get_softc(sc->sge_miibus); mii_tick(mii); if ((sc->sge_flags & SGE_FLAG_LINK) == 0) { sge_miibus_statchg(sc->sge_dev); if ((sc->sge_flags & SGE_FLAG_LINK) != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) sge_start_locked(ifp); } /* * Reclaim transmitted frames here as we do not request * Tx completion interrupt for every queued frames to * reduce excessive interrupts. */ sge_txeof(sc); sge_watchdog(sc); callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc); } static void sge_intr(void *arg) { struct sge_softc *sc; struct ifnet *ifp; uint32_t status; sc = arg; SGE_LOCK(sc); ifp = sc->sge_ifp; status = CSR_READ_4(sc, IntrStatus); if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) { /* Not ours. */ SGE_UNLOCK(sc); return; } /* Acknowledge interrupts. */ CSR_WRITE_4(sc, IntrStatus, status); /* Disable further interrupts. */ CSR_WRITE_4(sc, IntrMask, 0); /* * It seems the controller supports some kind of interrupt * moderation mechanism but we still don't know how to * enable that. To reduce number of generated interrupts * under load we check pending interrupts in a loop. This * will increase number of register access and is not correct * way to handle interrupt moderation but there seems to be * no other way at this time. */ for (;;) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) { sge_rxeof(sc); /* Wakeup Rx MAC. */ if ((status & INTR_RX_IDLE) != 0) CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB); } if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0) sge_txeof(sc); status = CSR_READ_4(sc, IntrStatus); if ((status & SGE_INTRS) == 0) break; /* Acknowledge interrupts. */ CSR_WRITE_4(sc, IntrStatus, status); } if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { /* Re-enable interrupts */ CSR_WRITE_4(sc, IntrMask, SGE_INTRS); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) sge_start_locked(ifp); } SGE_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int sge_encap(struct sge_softc *sc, struct mbuf **m_head) { struct mbuf *m; struct sge_desc *desc; struct sge_txdesc *txd; bus_dma_segment_t txsegs[SGE_MAXTXSEGS]; uint32_t cflags, mss; int error, i, nsegs, prod, si; SGE_LOCK_ASSERT(sc); si = prod = sc->sge_cdata.sge_tx_prod; txd = &sc->sge_cdata.sge_txdesc[prod]; if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { struct ether_header *eh; struct ip *ip; struct tcphdr *tcp; uint32_t ip_off, poff; if (M_WRITABLE(*m_head) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } ip_off = sizeof(struct ether_header); m = m_pullup(*m_head, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* Check the existence of VLAN tag. */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } tcp = (struct tcphdr *)(mtod(m, char *) + poff); m = m_pullup(m, poff + (tcp->th_off << 2)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } /* * Reset IP checksum and recompute TCP pseudo * checksum that NDIS specification requires. */ ip = (struct ip *)(mtod(m, char *) + ip_off); ip->ip_sum = 0; tcp = (struct tcphdr *)(mtod(m, char *) + poff); tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); *m_head = m; } error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); KASSERT(nsegs != 0, ("zero segment returned")); /* Check descriptor overrun. */ if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) { bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap); return (ENOBUFS); } bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); m = *m_head; cflags = 0; mss = 0; if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { cflags |= TDC_LS; mss = (uint32_t)m->m_pkthdr.tso_segsz; mss <<= 16; } else { if (m->m_pkthdr.csum_flags & CSUM_IP) cflags |= TDC_IP_CSUM; if (m->m_pkthdr.csum_flags & CSUM_TCP) cflags |= TDC_TCP_CSUM; if (m->m_pkthdr.csum_flags & CSUM_UDP) cflags |= TDC_UDP_CSUM; } for (i = 0; i < nsegs; i++) { desc = &sc->sge_ldata.sge_tx_ring[prod]; if (i == 0) { desc->sge_sts_size = htole32(m->m_pkthdr.len | mss); desc->sge_cmdsts = 0; } else { desc->sge_sts_size = 0; desc->sge_cmdsts = htole32(TDC_OWN); } desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr)); desc->sge_flags = htole32(txsegs[i].ds_len); if (prod == SGE_TX_RING_CNT - 1) desc->sge_flags |= htole32(RING_END); sc->sge_cdata.sge_tx_cnt++; SGE_INC(prod, SGE_TX_RING_CNT); } /* Update producer index. */ sc->sge_cdata.sge_tx_prod = prod; desc = &sc->sge_ldata.sge_tx_ring[si]; /* Configure VLAN. */ if((m->m_flags & M_VLANTAG) != 0) { cflags |= m->m_pkthdr.ether_vtag; desc->sge_sts_size |= htole32(TDS_INS_VLAN); } desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags); #if 1 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0) desc->sge_cmdsts |= htole32(TDC_BST); #else if ((sc->sge_flags & SGE_FLAG_FDX) == 0) { desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF); if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0) desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST); } #endif /* Request interrupt and give ownership to controller. */ desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR); txd->tx_m = m; txd->tx_ndesc = nsegs; return (0); } static void sge_start(struct ifnet *ifp) { struct sge_softc *sc; sc = ifp->if_softc; SGE_LOCK(sc); sge_start_locked(ifp); SGE_UNLOCK(sc); } static void sge_start_locked(struct ifnet *ifp) { struct sge_softc *sc; struct mbuf *m_head; int queued = 0; sc = ifp->if_softc; SGE_LOCK_ASSERT(sc); if ((sc->sge_flags & SGE_FLAG_LINK) == 0 || (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT - SGE_MAXTXSEGS)) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sge_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (queued > 0) { bus_dmamap_sync(sc->sge_cdata.sge_tx_tag, sc->sge_cdata.sge_tx_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL); sc->sge_timer = 5; } } static void sge_init(void *arg) { struct sge_softc *sc; sc = arg; SGE_LOCK(sc); sge_init_locked(sc); SGE_UNLOCK(sc); } static void sge_init_locked(struct sge_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint16_t rxfilt; int i; SGE_LOCK_ASSERT(sc); ifp = sc->sge_ifp; mii = device_get_softc(sc->sge_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel pending I/O and free all RX/TX buffers. */ sge_stop(sc); sge_reset(sc); /* Init circular RX list. */ if (sge_list_rx_init(sc) == ENOBUFS) { device_printf(sc->sge_dev, "no memory for Rx buffers\n"); sge_stop(sc); return; } /* Init TX descriptors. */ sge_list_tx_init(sc); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr)); CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr)); CSR_WRITE_4(sc, TxMacControl, 0x60); CSR_WRITE_4(sc, RxWakeOnLan, 0); CSR_WRITE_4(sc, RxWakeOnLanData, 0); /* Allow receiving VLAN frames. */ CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN + SGE_RX_PAD_BYTES); for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]); /* Configure RX MAC. */ rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB; CSR_WRITE_2(sc, RxMacControl, rxfilt); sge_rxfilter(sc); sge_setvlan(sc); /* Initialize default speed/duplex information. */ if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) sc->sge_flags |= SGE_FLAG_SPEED_1000; sc->sge_flags |= SGE_FLAG_FDX; if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) CSR_WRITE_4(sc, StationControl, 0x04008001); else CSR_WRITE_4(sc, StationControl, 0x04000001); /* * XXX Try to mitigate interrupts. */ CSR_WRITE_4(sc, IntrControl, 0x08880000); #ifdef notyet if (sc->sge_intrcontrol != 0) CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol); if (sc->sge_intrtimer != 0) CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer); #endif /* * Clear and enable interrupts. */ CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF); CSR_WRITE_4(sc, IntrMask, SGE_INTRS); /* Enable receiver and transmitter. */ CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB); CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sge_flags &= ~SGE_FLAG_LINK; mii_mediachg(mii); callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc); } /* * Set media options. */ static int sge_ifmedia_upd(struct ifnet *ifp) { struct sge_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; SGE_LOCK(sc); mii = device_get_softc(sc->sge_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); SGE_UNLOCK(sc); return (error); } /* * Report current media status. */ static void sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; SGE_LOCK(sc); mii = device_get_softc(sc->sge_miibus); if ((ifp->if_flags & IFF_UP) == 0) { SGE_UNLOCK(sc); return; } mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; SGE_UNLOCK(sc); } static int sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct sge_softc *sc; struct ifreq *ifr; struct mii_data *mii; int error = 0, mask, reinit; sc = ifp->if_softc; ifr = (struct ifreq *)data; switch(command) { case SIOCSIFFLAGS: SGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->sge_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) sge_rxfilter(sc); else sge_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) sge_stop(sc); sc->sge_if_flags = ifp->if_flags; SGE_UNLOCK(sc); break; case SIOCSIFCAP: SGE_LOCK(sc); reinit = 0; mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= SGE_CSUM_FEATURES; else ifp->if_hwassist &= ~SGE_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_TSO4) != 0 && (ifp->if_capabilities & IFCAP_TSO4) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((ifp->if_capenable & IFCAP_TSO4) != 0) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if ((mask & IFCAP_VLAN_HWTSO) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { /* * Due to unknown reason, toggling VLAN hardware * tagging require interface reinitialization. */ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); reinit = 1; } if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sge_init_locked(sc); } SGE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; case SIOCADDMULTI: case SIOCDELMULTI: SGE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) sge_rxfilter(sc); SGE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->sge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void sge_watchdog(struct sge_softc *sc) { struct ifnet *ifp; SGE_LOCK_ASSERT(sc); if (sc->sge_timer == 0 || --sc->sge_timer > 0) return; ifp = sc->sge_ifp; if ((sc->sge_flags & SGE_FLAG_LINK) == 0) { if (1 || bootverbose) device_printf(sc->sge_dev, "watchdog timeout (lost link)\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sge_init_locked(sc); return; } device_printf(sc->sge_dev, "watchdog timeout\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sge_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd)) sge_start_locked(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void sge_stop(struct sge_softc *sc) { struct ifnet *ifp; ifp = sc->sge_ifp; SGE_LOCK_ASSERT(sc); sc->sge_timer = 0; callout_stop(&sc->sge_stat_ch); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); CSR_WRITE_4(sc, IntrMask, 0); CSR_READ_4(sc, IntrMask); CSR_WRITE_4(sc, IntrStatus, 0xffffffff); /* Stop TX/RX MAC. */ CSR_WRITE_4(sc, TX_CTL, 0x1a00); CSR_WRITE_4(sc, RX_CTL, 0x1a00); /* XXX Can we assume active DMA cycles gone? */ DELAY(2000); CSR_WRITE_4(sc, IntrMask, 0); CSR_WRITE_4(sc, IntrStatus, 0xffffffff); sc->sge_flags &= ~SGE_FLAG_LINK; sge_list_rx_free(sc); sge_list_tx_free(sc); }