Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dbuf_stats.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dbuf_stats.c (revision 353567) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dbuf_stats.c (revision 353568) @@ -1,242 +1,242 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ #include #include #include /* * Calculate the index of the arc header for the state, disabled by default. */ int zfs_dbuf_state_index = 0; /* * ========================================================================== * Dbuf Hash Read Routines * ========================================================================== */ typedef struct dbuf_stats_t { kmutex_t lock; kstat_t *kstat; dbuf_hash_table_t *hash; int idx; } dbuf_stats_t; static dbuf_stats_t dbuf_stats_hash_table; static int dbuf_stats_hash_table_headers(char *buf, size_t size) { size = snprintf(buf, size - 1, "%-88s | %-124s | %s\n" "%-16s %-8s %-8s %-8s %-8s %-8s %-8s %-5s %-5s %5s | " "%-5s %-5s %-6s %-8s %-6s %-8s %-12s " "%-6s %-6s %-6s %-6s %-6s %-8s %-8s %-8s %-5s | " "%-6s %-6s %-8s %-8s %-6s %-6s %-5s %-8s %-8s\n", "dbuf", "arcbuf", "dnode", "pool", "objset", "object", "level", "blkid", "offset", "dbsize", "meta", "state", "dbholds", "list", "atype", "index", "flags", "count", "asize", "access", "mru", "gmru", "mfu", "gmfu", "l2", "l2_dattr", "l2_asize", "l2_comp", "aholds", "dtype", "btype", "data_bs", "meta_bs", "bsize", "lvls", "dholds", "blocks", "dsize"); buf[size] = '\0'; return (0); } int __dbuf_stats_hash_table_data(char *buf, size_t size, dmu_buf_impl_t *db) { arc_buf_info_t abi = { 0 }; dmu_object_info_t doi = { 0 }; dnode_t *dn = DB_DNODE(db); if (db->db_buf) arc_buf_info(db->db_buf, &abi, zfs_dbuf_state_index); if (dn) __dmu_object_info_from_dnode(dn, &doi); size = snprintf(buf, size - 1, "%-16s %-8llu %-8lld %-8lld %-8lld %-8llu %-8llu %-5d %-5d %-5lu | " "%-5d %-5d %-6lld 0x%-6x %-6lu %-8llu %-12llu " "%-6lu %-6lu %-6lu %-6lu %-6lu %-8llu %-8llu %-8d %-5lu | " "%-6d %-6d %-8lu %-8lu %-6llu %-6lu %-5lu %-8llu %-8llu\n", /* dmu_buf_impl_t */ spa_name(dn->dn_objset->os_spa), (u_longlong_t)dmu_objset_id(db->db_objset), (longlong_t)db->db.db_object, (longlong_t)db->db_level, (longlong_t)db->db_blkid, (u_longlong_t)db->db.db_offset, (u_longlong_t)db->db.db_size, !!dbuf_is_metadata(db), db->db_state, - (ulong_t)refcount_count(&db->db_holds), + (ulong_t)zfs_refcount_count(&db->db_holds), /* arc_buf_info_t */ abi.abi_state_type, abi.abi_state_contents, (longlong_t)abi.abi_state_index, abi.abi_flags, (ulong_t)abi.abi_bufcnt, (u_longlong_t)abi.abi_size, (u_longlong_t)abi.abi_access, (ulong_t)abi.abi_mru_hits, (ulong_t)abi.abi_mru_ghost_hits, (ulong_t)abi.abi_mfu_hits, (ulong_t)abi.abi_mfu_ghost_hits, (ulong_t)abi.abi_l2arc_hits, (u_longlong_t)abi.abi_l2arc_dattr, (u_longlong_t)abi.abi_l2arc_asize, abi.abi_l2arc_compress, (ulong_t)abi.abi_holds, /* dmu_object_info_t */ doi.doi_type, doi.doi_bonus_type, (ulong_t)doi.doi_data_block_size, (ulong_t)doi.doi_metadata_block_size, (u_longlong_t)doi.doi_bonus_size, (ulong_t)doi.doi_indirection, - (ulong_t)refcount_count(&dn->dn_holds), + (ulong_t)zfs_refcount_count(&dn->dn_holds), (u_longlong_t)doi.doi_fill_count, (u_longlong_t)doi.doi_max_offset); buf[size] = '\0'; return (size); } static int dbuf_stats_hash_table_data(char *buf, size_t size, void *data) { dbuf_stats_t *dsh = (dbuf_stats_t *)data; dbuf_hash_table_t *h = dsh->hash; dmu_buf_impl_t *db; int length, error = 0; ASSERT3S(dsh->idx, >=, 0); ASSERT3S(dsh->idx, <=, h->hash_table_mask); memset(buf, 0, size); mutex_enter(DBUF_HASH_MUTEX(h, dsh->idx)); for (db = h->hash_table[dsh->idx]; db != NULL; db = db->db_hash_next) { /* * Returning ENOMEM will cause the data and header functions * to be called with a larger scratch buffers. */ if (size < 512) { error = ENOMEM; break; } mutex_enter(&db->db_mtx); mutex_exit(DBUF_HASH_MUTEX(h, dsh->idx)); length = __dbuf_stats_hash_table_data(buf, size, db); buf += length; size -= length; mutex_exit(&db->db_mtx); mutex_enter(DBUF_HASH_MUTEX(h, dsh->idx)); } mutex_exit(DBUF_HASH_MUTEX(h, dsh->idx)); return (error); } static void * dbuf_stats_hash_table_addr(kstat_t *ksp, off_t n) { dbuf_stats_t *dsh = ksp->ks_private; ASSERT(MUTEX_HELD(&dsh->lock)); if (n <= dsh->hash->hash_table_mask) { dsh->idx = n; return (dsh); } return (NULL); } #ifndef __FreeBSD__ /* * XXX The FreeBSD SPL is missing support for KSTAT_TYPE_RAW * we can enable this as soon as that's implemented. See the * lindebugfs module for similar callback semantics. */ static void dbuf_stats_hash_table_init(dbuf_hash_table_t *hash) { dbuf_stats_t *dsh = &dbuf_stats_hash_table; kstat_t *ksp; mutex_init(&dsh->lock, NULL, MUTEX_DEFAULT, NULL); dsh->hash = hash; ksp = kstat_create("zfs", 0, "dbufs", "misc", KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); dsh->kstat = ksp; if (ksp) { ksp->ks_lock = &dsh->lock; ksp->ks_ndata = UINT32_MAX; ksp->ks_private = dsh; kstat_set_raw_ops(ksp, dbuf_stats_hash_table_headers, dbuf_stats_hash_table_data, dbuf_stats_hash_table_addr); kstat_install(ksp); } } static void dbuf_stats_hash_table_destroy(void) { dbuf_stats_t *dsh = &dbuf_stats_hash_table; kstat_t *ksp; ksp = dsh->kstat; if (ksp) kstat_delete(ksp); mutex_destroy(&dsh->lock); } #else static void dbuf_stats_hash_table_init(dbuf_hash_table_t *hash) { } static void dbuf_stats_hash_table_destroy(void) { } #endif void dbuf_stats_init(dbuf_hash_table_t *hash) { dbuf_stats_hash_table_init(hash); } void dbuf_stats_destroy(void) { dbuf_stats_hash_table_destroy(); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dsl_scan.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dsl_scan.c (revision 353567) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dsl_scan.c (revision 353568) @@ -1,3977 +1,3977 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2016 Gary Mills * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif /* * Grand theory statement on scan queue sorting * * Scanning is implemented by recursively traversing all indirection levels * in an object and reading all blocks referenced from said objects. This * results in us approximately traversing the object from lowest logical * offset to the highest. For best performance, we would want the logical * blocks to be physically contiguous. However, this is frequently not the * case with pools given the allocation patterns of copy-on-write filesystems. * So instead, we put the I/Os into a reordering queue and issue them in a * way that will most benefit physical disks (LBA-order). * * Queue management: * * Ideally, we would want to scan all metadata and queue up all block I/O * prior to starting to issue it, because that allows us to do an optimal * sorting job. This can however consume large amounts of memory. Therefore * we continuously monitor the size of the queues and constrain them to 5% * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this * limit, we clear out a few of the largest extents at the head of the queues * to make room for more scanning. Hopefully, these extents will be fairly * large and contiguous, allowing us to approach sequential I/O throughput * even without a fully sorted tree. * * Metadata scanning takes place in dsl_scan_visit(), which is called from * dsl_scan_sync() every spa_sync(). If we have either fully scanned all * metadata on the pool, or we need to make room in memory because our * queues are too large, dsl_scan_visit() is postponed and * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies * that metadata scanning and queued I/O issuing are mutually exclusive. This * allows us to provide maximum sequential I/O throughput for the majority of * I/O's issued since sequential I/O performance is significantly negatively * impacted if it is interleaved with random I/O. * * Implementation Notes * * One side effect of the queued scanning algorithm is that the scanning code * needs to be notified whenever a block is freed. This is needed to allow * the scanning code to remove these I/Os from the issuing queue. Additionally, * we do not attempt to queue gang blocks to be issued sequentially since this * is very hard to do and would have an extremely limitted performance benefit. * Instead, we simply issue gang I/Os as soon as we find them using the legacy * algorithm. * * Backwards compatibility * * This new algorithm is backwards compatible with the legacy on-disk data * structures (and therefore does not require a new feature flag). * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan * will stop scanning metadata (in logical order) and wait for all outstanding * sorted I/O to complete. Once this is done, we write out a checkpoint * bookmark, indicating that we have scanned everything logically before it. * If the pool is imported on a machine without the new sorting algorithm, * the scan simply resumes from the last checkpoint using the legacy algorithm. */ typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, const zbookmark_phys_t *); static scan_cb_t dsl_scan_scrub_cb; static int scan_ds_queue_compare(const void *a, const void *b); static int scan_prefetch_queue_compare(const void *a, const void *b); static void scan_ds_queue_clear(dsl_scan_t *scn); static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg); static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); extern int zfs_vdev_async_write_active_min_dirty_percent; /* * By default zfs will check to ensure it is not over the hard memory * limit before each txg. If finer-grained control of this is needed * this value can be set to 1 to enable checking before scanning each * block. */ int zfs_scan_strict_mem_lim = B_FALSE; /* * Maximum number of parallelly executing I/Os per top-level vdev. * Tune with care. Very high settings (hundreds) are known to trigger * some firmware bugs and resets on certain SSDs. */ int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver -- 2 is a good number */ unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub -- 4 is a good number */ unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ /* * Maximum number of parallelly executed bytes per leaf vdev. We attempt * to strike a balance here between keeping the vdev queues full of I/Os * at all times and not overflowing the queues to cause long latency, * which would cause long txg sync times. No matter what, we will not * overload the drives with I/O, since that is protected by * zfs_vdev_scrub_max_active. */ unsigned long zfs_scan_vdev_limit = 4 << 20; int zfs_scan_issue_strategy = 0; int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) /* * fill_weight is non-tunable at runtime, so we copy it at module init from * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would * break queue sorting. */ uint64_t zfs_scan_fill_weight = 3; static uint64_t fill_weight; /* See dsl_scan_should_clear() for details on the memory limit tunables */ uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ unsigned int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ unsigned int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ SYSCTL_DECL(_vfs_zfs); SYSCTL_UINT(_vfs_zfs, OID_AUTO, top_maxinflight, CTLFLAG_RWTUN, &zfs_top_maxinflight, 0, "Maximum I/Os per top-level vdev"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, resilver_delay, CTLFLAG_RWTUN, &zfs_resilver_delay, 0, "Number of ticks to delay resilver"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, scrub_delay, CTLFLAG_RWTUN, &zfs_scrub_delay, 0, "Number of ticks to delay scrub"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, scan_idle, CTLFLAG_RWTUN, &zfs_scan_idle, 0, "Idle scan window in clock ticks"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, scan_min_time_ms, CTLFLAG_RWTUN, &zfs_scrub_min_time_ms, 0, "Min millisecs to scrub per txg"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, free_min_time_ms, CTLFLAG_RWTUN, &zfs_free_min_time_ms, 0, "Min millisecs to free per txg"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, resilver_min_time_ms, CTLFLAG_RWTUN, &zfs_resilver_min_time_ms, 0, "Min millisecs to resilver per txg"); SYSCTL_INT(_vfs_zfs, OID_AUTO, no_scrub_io, CTLFLAG_RWTUN, &zfs_no_scrub_io, 0, "Disable scrub I/O"); SYSCTL_INT(_vfs_zfs, OID_AUTO, no_scrub_prefetch, CTLFLAG_RWTUN, &zfs_no_scrub_prefetch, 0, "Disable scrub prefetching"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, zfs_scan_legacy, CTLFLAG_RWTUN, &zfs_scan_legacy, 0, "Scrub using legacy non-sequential method"); SYSCTL_UINT(_vfs_zfs, OID_AUTO, zfs_scan_checkpoint_interval, CTLFLAG_RWTUN, &zfs_scan_checkpoint_intval, 0, "Scan progress on-disk checkpointing interval"); enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; /* max number of blocks to free in a single TXG */ uint64_t zfs_async_block_max_blocks = UINT64_MAX; SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, free_max_blocks, CTLFLAG_RWTUN, &zfs_async_block_max_blocks, 0, "Maximum number of blocks to free in one TXG"); /* * We wait a few txgs after importing a pool to begin scanning so that * the import / mounting code isn't held up by scrub / resilver IO. * Unfortunately, it is a bit difficult to determine exactly how long * this will take since userspace will trigger fs mounts asynchronously * and the kernel will create zvol minors asynchronously. As a result, * the value provided here is a bit arbitrary, but represents a * reasonable estimate of how many txgs it will take to finish fully * importing a pool */ #define SCAN_IMPORT_WAIT_TXGS 5 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) extern int zfs_txg_timeout; /* * Enable/disable the processing of the free_bpobj object. */ boolean_t zfs_free_bpobj_enabled = B_TRUE; SYSCTL_INT(_vfs_zfs, OID_AUTO, free_bpobj_enabled, CTLFLAG_RWTUN, &zfs_free_bpobj_enabled, 0, "Enable free_bpobj processing"); /* the order has to match pool_scan_type */ static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { NULL, dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ }; /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ typedef struct { uint64_t sds_dsobj; uint64_t sds_txg; avl_node_t sds_node; } scan_ds_t; /* * This controls what conditions are placed on dsl_scan_sync_state(): * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise * write out the scn_phys_cached version. * See dsl_scan_sync_state for details. */ typedef enum { SYNC_OPTIONAL, SYNC_MANDATORY, SYNC_CACHED } state_sync_type_t; /* * This struct represents the minimum information needed to reconstruct a * zio for sequential scanning. This is useful because many of these will * accumulate in the sequential IO queues before being issued, so saving * memory matters here. */ typedef struct scan_io { /* fields from blkptr_t */ uint64_t sio_offset; uint64_t sio_blk_prop; uint64_t sio_phys_birth; uint64_t sio_birth; zio_cksum_t sio_cksum; uint32_t sio_asize; /* fields from zio_t */ int sio_flags; zbookmark_phys_t sio_zb; /* members for queue sorting */ union { avl_node_t sio_addr_node; /* link into issueing queue */ list_node_t sio_list_node; /* link for issuing to disk */ } sio_nodes; } scan_io_t; struct dsl_scan_io_queue { dsl_scan_t *q_scn; /* associated dsl_scan_t */ vdev_t *q_vd; /* top-level vdev that this queue represents */ /* trees used for sorting I/Os and extents of I/Os */ range_tree_t *q_exts_by_addr; avl_tree_t q_exts_by_size; avl_tree_t q_sios_by_addr; /* members for zio rate limiting */ uint64_t q_maxinflight_bytes; uint64_t q_inflight_bytes; kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ /* per txg statistics */ uint64_t q_total_seg_size_this_txg; uint64_t q_segs_this_txg; uint64_t q_total_zio_size_this_txg; uint64_t q_zios_this_txg; }; /* private data for dsl_scan_prefetch_cb() */ typedef struct scan_prefetch_ctx { - refcount_t spc_refcnt; /* refcount for memory management */ + zfs_refcount_t spc_refcnt; /* refcount for memory management */ dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ boolean_t spc_root; /* is this prefetch for an objset? */ uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ } scan_prefetch_ctx_t; /* private data for dsl_scan_prefetch() */ typedef struct scan_prefetch_issue_ctx { avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ blkptr_t spic_bp; /* bp to prefetch */ zbookmark_phys_t spic_zb; /* bookmark to prefetch */ } scan_prefetch_issue_ctx_t; static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio); static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); static void scan_io_queues_destroy(dsl_scan_t *scn); static kmem_cache_t *sio_cache; void scan_init(void) { /* * This is used in ext_size_compare() to weight segments * based on how sparse they are. This cannot be changed * mid-scan and the tree comparison functions don't currently * have a mechansim for passing additional context to the * compare functions. Thus we store this value globally and * we only allow it to be set at module intiailization time */ fill_weight = zfs_scan_fill_weight; sio_cache = kmem_cache_create("sio_cache", sizeof (scan_io_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void scan_fini(void) { kmem_cache_destroy(sio_cache); } static inline boolean_t dsl_scan_is_running(const dsl_scan_t *scn) { return (scn->scn_phys.scn_state == DSS_SCANNING); } boolean_t dsl_scan_resilvering(dsl_pool_t *dp) { return (dsl_scan_is_running(dp->dp_scan) && dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); } static inline void sio2bp(const scan_io_t *sio, blkptr_t *bp, uint64_t vdev_id) { bzero(bp, sizeof (*bp)); DVA_SET_ASIZE(&bp->blk_dva[0], sio->sio_asize); DVA_SET_VDEV(&bp->blk_dva[0], vdev_id); DVA_SET_OFFSET(&bp->blk_dva[0], sio->sio_offset); bp->blk_prop = sio->sio_blk_prop; bp->blk_phys_birth = sio->sio_phys_birth; bp->blk_birth = sio->sio_birth; bp->blk_fill = 1; /* we always only work with data pointers */ bp->blk_cksum = sio->sio_cksum; } static inline void bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) { /* we discard the vdev id, since we can deduce it from the queue */ sio->sio_offset = DVA_GET_OFFSET(&bp->blk_dva[dva_i]); sio->sio_asize = DVA_GET_ASIZE(&bp->blk_dva[dva_i]); sio->sio_blk_prop = bp->blk_prop; sio->sio_phys_birth = bp->blk_phys_birth; sio->sio_birth = bp->blk_birth; sio->sio_cksum = bp->blk_cksum; } void dsl_scan_global_init(void) { /* * This is used in ext_size_compare() to weight segments * based on how sparse they are. This cannot be changed * mid-scan and the tree comparison functions don't currently * have a mechansim for passing additional context to the * compare functions. Thus we store this value globally and * we only allow it to be set at module intiailization time */ fill_weight = zfs_scan_fill_weight; } int dsl_scan_init(dsl_pool_t *dp, uint64_t txg) { int err; dsl_scan_t *scn; spa_t *spa = dp->dp_spa; uint64_t f; scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); scn->scn_dp = dp; /* * It's possible that we're resuming a scan after a reboot so * make sure that the scan_async_destroying flag is initialized * appropriately. */ ASSERT(!scn->scn_async_destroying); scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY); bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), offsetof(scan_ds_t, sds_node)); avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, sizeof (scan_prefetch_issue_ctx_t), offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_func", sizeof (uint64_t), 1, &f); if (err == 0) { /* * There was an old-style scrub in progress. Restart a * new-style scrub from the beginning. */ scn->scn_restart_txg = txg; zfs_dbgmsg("old-style scrub was in progress; " "restarting new-style scrub in txg %llu", (longlong_t)scn->scn_restart_txg); /* * Load the queue obj from the old location so that it * can be freed by dsl_scan_done(). */ (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_queue", sizeof (uint64_t), 1, &scn->scn_phys.scn_queue_obj); } else { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys); if (err == ENOENT) return (0); else if (err) return (err); /* * We might be restarting after a reboot, so jump the issued * counter to how far we've scanned. We know we're consistent * up to here. */ scn->scn_issued_before_pass = scn->scn_phys.scn_examined; if (dsl_scan_is_running(scn) && spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { /* * A new-type scrub was in progress on an old * pool, and the pool was accessed by old * software. Restart from the beginning, since * the old software may have changed the pool in * the meantime. */ scn->scn_restart_txg = txg; zfs_dbgmsg("new-style scrub was modified " "by old software; restarting in txg %llu", (longlong_t)scn->scn_restart_txg); } } /* reload the queue into the in-core state */ if (scn->scn_phys.scn_queue_obj != 0) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, scn->scn_phys.scn_queue_obj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { scan_ds_queue_insert(scn, zfs_strtonum(za.za_name, NULL), za.za_first_integer); } zap_cursor_fini(&zc); } spa_scan_stat_init(spa); return (0); } void dsl_scan_fini(dsl_pool_t *dp) { if (dp->dp_scan != NULL) { dsl_scan_t *scn = dp->dp_scan; if (scn->scn_taskq != NULL) taskq_destroy(scn->scn_taskq); scan_ds_queue_clear(scn); avl_destroy(&scn->scn_queue); avl_destroy(&scn->scn_prefetch_queue); kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); dp->dp_scan = NULL; } } static boolean_t dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) { return (scn->scn_restart_txg != 0 && scn->scn_restart_txg <= tx->tx_txg); } boolean_t dsl_scan_scrubbing(const dsl_pool_t *dp) { dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; return (scn_phys->scn_state == DSS_SCANNING && scn_phys->scn_func == POOL_SCAN_SCRUB); } boolean_t dsl_scan_is_paused_scrub(const dsl_scan_t *scn) { return (dsl_scan_scrubbing(scn->scn_dp) && scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); } /* * Writes out a persistent dsl_scan_phys_t record to the pool directory. * Because we can be running in the block sorting algorithm, we do not always * want to write out the record, only when it is "safe" to do so. This safety * condition is achieved by making sure that the sorting queues are empty * (scn_bytes_pending == 0). When this condition is not true, the sync'd state * is inconsistent with how much actual scanning progress has been made. The * kind of sync to be performed is specified by the sync_type argument. If the * sync is optional, we only sync if the queues are empty. If the sync is * mandatory, we do a hard ASSERT to make sure that the queues are empty. The * third possible state is a "cached" sync. This is done in response to: * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been * destroyed, so we wouldn't be able to restart scanning from it. * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been * superseded by a newer snapshot. * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been * swapped with its clone. * In all cases, a cached sync simply rewrites the last record we've written, * just slightly modified. For the modifications that are performed to the * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. */ static void dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) { int i; spa_t *spa = scn->scn_dp->dp_spa; ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); if (scn->scn_bytes_pending == 0) { for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; if (q == NULL) continue; mutex_enter(&vd->vdev_scan_io_queue_lock); ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL); ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); mutex_exit(&vd->vdev_scan_io_queue_lock); } if (scn->scn_phys.scn_queue_obj != 0) scan_ds_queue_sync(scn, tx); VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys, tx)); bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); if (scn->scn_checkpointing) zfs_dbgmsg("finish scan checkpoint"); scn->scn_checkpointing = B_FALSE; scn->scn_last_checkpoint = ddi_get_lbolt(); } else if (sync_type == SYNC_CACHED) { VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys_cached, tx)); } } /* ARGSUSED */ static int dsl_scan_setup_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (dsl_scan_is_running(scn)) return (SET_ERROR(EBUSY)); return (0); } static void dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; pool_scan_func_t *funcp = arg; dmu_object_type_t ot = 0; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; ASSERT(!dsl_scan_is_running(scn)); ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); bzero(&scn->scn_phys, sizeof (scn->scn_phys)); scn->scn_phys.scn_func = *funcp; scn->scn_phys.scn_state = DSS_SCANNING; scn->scn_phys.scn_min_txg = 0; scn->scn_phys.scn_max_txg = tx->tx_txg; scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ scn->scn_phys.scn_start_time = gethrestime_sec(); scn->scn_phys.scn_errors = 0; scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; scn->scn_issued_before_pass = 0; scn->scn_restart_txg = 0; scn->scn_done_txg = 0; scn->scn_last_checkpoint = 0; scn->scn_checkpointing = B_FALSE; spa_scan_stat_init(spa); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; /* rewrite all disk labels */ vdev_config_dirty(spa->spa_root_vdev); if (vdev_resilver_needed(spa->spa_root_vdev, &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { spa_event_notify(spa, NULL, NULL, ESC_ZFS_RESILVER_START); } else { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); } spa->spa_scrub_started = B_TRUE; /* * If this is an incremental scrub, limit the DDT scrub phase * to just the auto-ditto class (for correctness); the rest * of the scrub should go faster using top-down pruning. */ if (scn->scn_phys.scn_min_txg > TXG_INITIAL) scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; } /* back to the generic stuff */ if (dp->dp_blkstats == NULL) { dp->dp_blkstats = kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); mutex_init(&dp->dp_blkstats->zab_lock, NULL, MUTEX_DEFAULT, NULL); } bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) ot = DMU_OT_ZAP_OTHER; scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); spa_history_log_internal(spa, "scan setup", tx, "func=%u mintxg=%llu maxtxg=%llu", *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); } /* * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. * Can also be called to resume a paused scrub. */ int dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) { spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; /* * Purge all vdev caches and probe all devices. We do this here * rather than in sync context because this requires a writer lock * on the spa_config lock, which we can't do from sync context. The * spa_scrub_reopen flag indicates that vdev_open() should not * attempt to start another scrub. */ spa_vdev_state_enter(spa, SCL_NONE); spa->spa_scrub_reopen = B_TRUE; vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { /* got scrub start cmd, resume paused scrub */ int err = dsl_scrub_set_pause_resume(scn->scn_dp, POOL_SCRUB_NORMAL); if (err == 0) { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); return (ECANCELED); } return (SET_ERROR(err)); } return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } /* ARGSUSED */ static void dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) { static const char *old_names[] = { "scrub_bookmark", "scrub_ddt_bookmark", "scrub_ddt_class_max", "scrub_queue", "scrub_min_txg", "scrub_max_txg", "scrub_func", "scrub_errors", NULL }; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; int i; /* Remove any remnants of an old-style scrub. */ for (i = 0; old_names[i]; i++) { (void) zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); } if (scn->scn_phys.scn_queue_obj != 0) { VERIFY0(dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = 0; } scan_ds_queue_clear(scn); scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; /* * If we were "restarted" from a stopped state, don't bother * with anything else. */ if (!dsl_scan_is_running(scn)) { ASSERT(!scn->scn_is_sorted); return; } if (scn->scn_is_sorted) { scan_io_queues_destroy(scn); scn->scn_is_sorted = B_FALSE; if (scn->scn_taskq != NULL) { taskq_destroy(scn->scn_taskq); scn->scn_taskq = NULL; } } scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; if (dsl_scan_restarting(scn, tx)) spa_history_log_internal(spa, "scan aborted, restarting", tx, "errors=%llu", spa_get_errlog_size(spa)); else if (!complete) spa_history_log_internal(spa, "scan cancelled", tx, "errors=%llu", spa_get_errlog_size(spa)); else spa_history_log_internal(spa, "scan done", tx, "errors=%llu", spa_get_errlog_size(spa)); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { spa->spa_scrub_started = B_FALSE; spa->spa_scrub_active = B_FALSE; /* * If the scrub/resilver completed, update all DTLs to * reflect this. Whether it succeeded or not, vacate * all temporary scrub DTLs. * * As the scrub does not currently support traversing * data that have been freed but are part of a checkpoint, * we don't mark the scrub as done in the DTLs as faults * may still exist in those vdevs. */ if (complete && !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, scn->scn_phys.scn_max_txg, B_TRUE); spa_event_notify(spa, NULL, NULL, scn->scn_phys.scn_min_txg ? ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); } else { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 0, B_TRUE); } spa_errlog_rotate(spa); /* * We may have finished replacing a device. * Let the async thread assess this and handle the detach. */ spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); } scn->scn_phys.scn_end_time = gethrestime_sec(); ASSERT(!dsl_scan_is_running(scn)); } /* ARGSUSED */ static int dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (!dsl_scan_is_running(scn)) return (SET_ERROR(ENOENT)); return (0); } /* ARGSUSED */ static void dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; dsl_scan_done(scn, B_FALSE, tx); dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); } int dsl_scan_cancel(dsl_pool_t *dp) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); } static int dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ if (!dsl_scan_scrubbing(dp)) return (SET_ERROR(ENOENT)); /* can't pause a paused scrub */ if (dsl_scan_is_paused_scrub(scn)) return (SET_ERROR(EBUSY)); } else if (*cmd != POOL_SCRUB_NORMAL) { return (SET_ERROR(ENOTSUP)); } return (0); } static void dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ spa->spa_scan_pass_scrub_pause = gethrestime_sec(); scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx, SYNC_CACHED); spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); } else { ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); if (dsl_scan_is_paused_scrub(scn)) { /* * We need to keep track of how much time we spend * paused per pass so that we can adjust the scrub rate * shown in the output of 'zpool status' */ spa->spa_scan_pass_scrub_spent_paused += gethrestime_sec() - spa->spa_scan_pass_scrub_pause; spa->spa_scan_pass_scrub_pause = 0; scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx, SYNC_CACHED); } } } /* * Set scrub pause/resume state if it makes sense to do so */ int dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, ZFS_SPACE_CHECK_RESERVED)); } /* start a new scan, or restart an existing one. */ void dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) { if (txg == 0) { dmu_tx_t *tx; tx = dmu_tx_create_dd(dp->dp_mos_dir); VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); txg = dmu_tx_get_txg(tx); dp->dp_scan->scn_restart_txg = txg; dmu_tx_commit(tx); } else { dp->dp_scan->scn_restart_txg = txg; } zfs_dbgmsg("restarting resilver txg=%llu", txg); } void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) { zio_free(dp->dp_spa, txg, bp); } void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) { ASSERT(dsl_pool_sync_context(dp)); zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, BP_GET_PSIZE(bpp), pio->io_flags)); } static int scan_ds_queue_compare(const void *a, const void *b) { const scan_ds_t *sds_a = a, *sds_b = b; if (sds_a->sds_dsobj < sds_b->sds_dsobj) return (-1); if (sds_a->sds_dsobj == sds_b->sds_dsobj) return (0); return (1); } static void scan_ds_queue_clear(dsl_scan_t *scn) { void *cookie = NULL; scan_ds_t *sds; while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { kmem_free(sds, sizeof (*sds)); } } static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) { scan_ds_t srch, *sds; srch.sds_dsobj = dsobj; sds = avl_find(&scn->scn_queue, &srch, NULL); if (sds != NULL && txg != NULL) *txg = sds->sds_txg; return (sds != NULL); } static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) { scan_ds_t *sds; avl_index_t where; sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); sds->sds_dsobj = dsobj; sds->sds_txg = txg; VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); avl_insert(&scn->scn_queue, sds, where); } static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) { scan_ds_t srch, *sds; srch.sds_dsobj = dsobj; sds = avl_find(&scn->scn_queue, &srch, NULL); VERIFY(sds != NULL); avl_remove(&scn->scn_queue, sds); kmem_free(sds, sizeof (*sds)); } static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; ASSERT0(scn->scn_bytes_pending); ASSERT(scn->scn_phys.scn_queue_obj != 0); VERIFY0(dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, DMU_OT_NONE, 0, tx); for (scan_ds_t *sds = avl_first(&scn->scn_queue); sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { VERIFY0(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, sds->sds_dsobj, sds->sds_txg, tx)); } } /* * Computes the memory limit state that we're currently in. A sorted scan * needs quite a bit of memory to hold the sorting queue, so we need to * reasonably constrain the size so it doesn't impact overall system * performance. We compute two limits: * 1) Hard memory limit: if the amount of memory used by the sorting * queues on a pool gets above this value, we stop the metadata * scanning portion and start issuing the queued up and sorted * I/Os to reduce memory usage. * This limit is calculated as a fraction of physmem (by default 5%). * We constrain the lower bound of the hard limit to an absolute * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain * the upper bound to 5% of the total pool size - no chance we'll * ever need that much memory, but just to keep the value in check. * 2) Soft memory limit: once we hit the hard memory limit, we start * issuing I/O to reduce queue memory usage, but we don't want to * completely empty out the queues, since we might be able to find I/Os * that will fill in the gaps of our non-sequential IOs at some point * in the future. So we stop the issuing of I/Os once the amount of * memory used drops below the soft limit (at which point we stop issuing * I/O and start scanning metadata again). * * This limit is calculated by subtracting a fraction of the hard * limit from the hard limit. By default this fraction is 5%, so * the soft limit is 95% of the hard limit. We cap the size of the * difference between the hard and soft limits at an absolute * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is * sufficient to not cause too frequent switching between the * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's * worth of queues is about 1.2 GiB of on-pool data, so scanning * that should take at least a decent fraction of a second). */ static boolean_t dsl_scan_should_clear(dsl_scan_t *scn) { vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; uint64_t mlim_hard, mlim_soft, mused; uint64_t alloc = metaslab_class_get_alloc(spa_normal_class( scn->scn_dp->dp_spa)); mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, zfs_scan_mem_lim_min); mlim_hard = MIN(mlim_hard, alloc / 20); mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, zfs_scan_mem_lim_soft_max); mused = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *tvd = rvd->vdev_child[i]; dsl_scan_io_queue_t *queue; mutex_enter(&tvd->vdev_scan_io_queue_lock); queue = tvd->vdev_scan_io_queue; if (queue != NULL) { /* #extents in exts_by_size = # in exts_by_addr */ mused += avl_numnodes(&queue->q_exts_by_size) * sizeof (range_seg_t) + avl_numnodes(&queue->q_sios_by_addr) * sizeof (scan_io_t); } mutex_exit(&tvd->vdev_scan_io_queue_lock); } dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); if (mused == 0) ASSERT0(scn->scn_bytes_pending); /* * If we are above our hard limit, we need to clear out memory. * If we are below our soft limit, we need to accumulate sequential IOs. * Otherwise, we should keep doing whatever we are currently doing. */ if (mused >= mlim_hard) return (B_TRUE); else if (mused < mlim_soft) return (B_FALSE); else return (scn->scn_clearing); } static boolean_t dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) { /* we never skip user/group accounting objects */ if (zb && (int64_t)zb->zb_object < 0) return (B_FALSE); if (scn->scn_suspending) return (B_TRUE); /* we're already suspending */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) return (B_FALSE); /* we're resuming */ /* We only know how to resume from level-0 blocks. */ if (zb && zb->zb_level != 0) return (B_FALSE); /* * We suspend if: * - we have scanned for at least the minimum time (default 1 sec * for scrub, 3 sec for resilver), and either we have sufficient * dirty data that we are starting to write more quickly * (default 30%), or someone is explicitly waiting for this txg * to complete. * or * - the spa is shutting down because this pool is being exported * or the machine is rebooting. * or * - the scan queue has reached its memory use limit */ uint64_t elapsed_nanosecs = gethrtime(); uint64_t curr_time_ns = gethrtime(); uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; uint64_t sync_time_ns = curr_time_ns - scn->scn_dp->dp_spa->spa_sync_starttime; int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; if ((NSEC2MSEC(scan_time_ns) > mintime && (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || txg_sync_waiting(scn->scn_dp) || NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || spa_shutting_down(scn->scn_dp->dp_spa) || (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { if (zb) { dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); scn->scn_phys.scn_bookmark = *zb; } else { dsl_scan_phys_t *scnp = &scn->scn_phys; dprintf("suspending at at DDT bookmark " "%llx/%llx/%llx/%llx\n", (longlong_t)scnp->scn_ddt_bookmark.ddb_class, (longlong_t)scnp->scn_ddt_bookmark.ddb_type, (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); } scn->scn_suspending = B_TRUE; return (B_TRUE); } return (B_FALSE); } typedef struct zil_scan_arg { dsl_pool_t *zsa_dp; zil_header_t *zsa_zh; } zil_scan_arg_t; /* ARGSUSED */ static int dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * One block ("stubby") can be allocated a long time ago; we * want to visit that one because it has been allocated * (on-disk) even if it hasn't been claimed (even though for * scrub there's nothing to do to it). */ if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); return (0); } /* ARGSUSED */ static int dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) { if (lrc->lrc_txtype == TX_WRITE) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * birth can be < claim_txg if this record's txg is * already txg sync'ed (but this log block contains * other records that are not synced) */ if (claim_txg == 0 || bp->blk_birth < claim_txg) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); } return (0); } static void dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) { uint64_t claim_txg = zh->zh_claim_txg; zil_scan_arg_t zsa = { dp, zh }; zilog_t *zilog; ASSERT(spa_writeable(dp->dp_spa)); /* * We only want to visit blocks that have been claimed * but not yet replayed. */ if (claim_txg == 0) return; zilog = zil_alloc(dp->dp_meta_objset, zh); (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, claim_txg); zil_free(zilog); } /* * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea * here is to sort the AVL tree by the order each block will be needed. */ static int scan_prefetch_queue_compare(const void *a, const void *b) { const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; return (zbookmark_compare(spc_a->spc_datablkszsec, spc_a->spc_indblkshift, spc_b->spc_datablkszsec, spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); } static void scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) { - if (refcount_remove(&spc->spc_refcnt, tag) == 0) { - refcount_destroy(&spc->spc_refcnt); + if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { + zfs_refcount_destroy(&spc->spc_refcnt); kmem_free(spc, sizeof (scan_prefetch_ctx_t)); } } static scan_prefetch_ctx_t * scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) { scan_prefetch_ctx_t *spc; spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); - refcount_create(&spc->spc_refcnt); - refcount_add(&spc->spc_refcnt, tag); + zfs_refcount_create(&spc->spc_refcnt); + zfs_refcount_add(&spc->spc_refcnt, tag); spc->spc_scn = scn; if (dnp != NULL) { spc->spc_datablkszsec = dnp->dn_datablkszsec; spc->spc_indblkshift = dnp->dn_indblkshift; spc->spc_root = B_FALSE; } else { spc->spc_datablkszsec = 0; spc->spc_indblkshift = 0; spc->spc_root = B_TRUE; } return (spc); } static void scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) { - refcount_add(&spc->spc_refcnt, tag); + zfs_refcount_add(&spc->spc_refcnt, tag); } static boolean_t dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, const zbookmark_phys_t *zb) { zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; dnode_phys_t tmp_dnp; dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; if (zb->zb_objset != last_zb->zb_objset) return (B_TRUE); if ((int64_t)zb->zb_object < 0) return (B_FALSE); tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; tmp_dnp.dn_indblkshift = spc->spc_indblkshift; if (zbookmark_subtree_completed(dnp, zb, last_zb)) return (B_TRUE); return (B_FALSE); } static void dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) { avl_index_t idx; dsl_scan_t *scn = spc->spc_scn; spa_t *spa = scn->scn_dp->dp_spa; scan_prefetch_issue_ctx_t *spic; if (zfs_no_scrub_prefetch) return; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) return; if (dsl_scan_check_prefetch_resume(spc, zb)) return; scan_prefetch_ctx_add_ref(spc, scn); spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); spic->spic_spc = spc; spic->spic_bp = *bp; spic->spic_zb = *zb; /* * Add the IO to the queue of blocks to prefetch. This allows us to * prioritize blocks that we will need first for the main traversal * thread. */ mutex_enter(&spa->spa_scrub_lock); if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { /* this block is already queued for prefetch */ kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); scan_prefetch_ctx_rele(spc, scn); mutex_exit(&spa->spa_scrub_lock); return; } avl_insert(&scn->scn_prefetch_queue, spic, idx); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } static void dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, uint64_t objset, uint64_t object) { int i; zbookmark_phys_t zb; scan_prefetch_ctx_t *spc; if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) return; SET_BOOKMARK(&zb, objset, object, 0, 0); spc = scan_prefetch_ctx_create(scn, dnp, FTAG); for (i = 0; i < dnp->dn_nblkptr; i++) { zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); zb.zb_blkid = i; dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zb.zb_level = 0; zb.zb_blkid = DMU_SPILL_BLKID; dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); } scan_prefetch_ctx_rele(spc, FTAG); } void dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *private) { scan_prefetch_ctx_t *spc = private; dsl_scan_t *scn = spc->spc_scn; spa_t *spa = scn->scn_dp->dp_spa; /* broadcast that the IO has completed for rate limitting purposes */ mutex_enter(&spa->spa_scrub_lock); ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); /* if there was an error or we are done prefetching, just cleanup */ if (buf == NULL || scn->scn_suspending) goto out; if (BP_GET_LEVEL(bp) > 0) { int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; zbookmark_phys_t czb; for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_prefetch(spc, cbp, &czb); } } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { dnode_phys_t *cdnp = buf->b_data; int i; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; for (i = 0, cdnp = buf->b_data; i < epb; i += cdnp->dn_extra_slots + 1, cdnp += cdnp->dn_extra_slots + 1) { dsl_scan_prefetch_dnode(scn, cdnp, zb->zb_objset, zb->zb_blkid * epb + i); } } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { objset_phys_t *osp = buf->b_data; dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, zb->zb_objset, DMU_META_DNODE_OBJECT); if (OBJSET_BUF_HAS_USERUSED(buf)) { dsl_scan_prefetch_dnode(scn, &osp->os_groupused_dnode, zb->zb_objset, DMU_GROUPUSED_OBJECT); dsl_scan_prefetch_dnode(scn, &osp->os_userused_dnode, zb->zb_objset, DMU_USERUSED_OBJECT); } } out: if (buf != NULL) arc_buf_destroy(buf, private); scan_prefetch_ctx_rele(spc, scn); } /* ARGSUSED */ static void dsl_scan_prefetch_thread(void *arg) { dsl_scan_t *scn = arg; spa_t *spa = scn->scn_dp->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; scan_prefetch_issue_ctx_t *spic; /* loop until we are told to stop */ while (!scn->scn_prefetch_stop) { arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; mutex_enter(&spa->spa_scrub_lock); /* * Wait until we have an IO to issue and are not above our * maximum in flight limit. */ while (!scn->scn_prefetch_stop && (avl_numnodes(&scn->scn_prefetch_queue) == 0 || spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } /* recheck if we should stop since we waited for the cv */ if (scn->scn_prefetch_stop) { mutex_exit(&spa->spa_scrub_lock); break; } /* remove the prefetch IO from the tree */ spic = avl_first(&scn->scn_prefetch_queue); spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); avl_remove(&scn->scn_prefetch_queue, spic); mutex_exit(&spa->spa_scrub_lock); /* issue the prefetch asynchronously */ (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); } ASSERT(scn->scn_prefetch_stop); /* free any prefetches we didn't get to complete */ mutex_enter(&spa->spa_scrub_lock); while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { avl_remove(&scn->scn_prefetch_queue, spic); scan_prefetch_ctx_rele(spic->spic_spc, scn); kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); } ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); mutex_exit(&spa->spa_scrub_lock); } static boolean_t dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, const zbookmark_phys_t *zb) { /* * We never skip over user/group accounting objects (obj<0) */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && (int64_t)zb->zb_object >= 0) { /* * If we already visited this bp & everything below (in * a prior txg sync), don't bother doing it again. */ if (zbookmark_subtree_completed(dnp, zb, &scn->scn_phys.scn_bookmark)) return (B_TRUE); /* * If we found the block we're trying to resume from, or * we went past it to a different object, zero it out to * indicate that it's OK to start checking for suspending * again. */ if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { dprintf("resuming at %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); } } return (B_FALSE); } static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx); static void dsl_scan_visitdnode( dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); /* * Return nonzero on i/o error. * Return new buf to write out in *bufp. */ static int dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; int err; if (BP_GET_LEVEL(bp) > 0) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_visitbp(cbp, &czb, dnp, ds, scn, ostype, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { arc_flags_t flags = ARC_FLAG_WAIT; dnode_phys_t *cdnp; int i; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cdnp = buf->b_data; i < epb; i += cdnp->dn_extra_slots + 1, cdnp += cdnp->dn_extra_slots + 1) { dsl_scan_visitdnode(scn, ds, ostype, cdnp, zb->zb_blkid * epb + i, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { arc_flags_t flags = ARC_FLAG_WAIT; objset_phys_t *osp; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } osp = buf->b_data; dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); if (OBJSET_BUF_HAS_USERUSED(buf)) { /* * We also always visit user/group accounting * objects, and never skip them, even if we are * suspending. This is necessary so that the space * deltas from this txg get integrated. */ dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_groupused_dnode, DMU_GROUPUSED_OBJECT, tx); dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_userused_dnode, DMU_USERUSED_OBJECT, tx); } arc_buf_destroy(buf, &buf); } return (0); } static void dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx) { int j; for (j = 0; j < dnp->dn_nblkptr; j++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, dnp->dn_nlevels - 1, j); dsl_scan_visitbp(&dnp->dn_blkptr[j], &czb, dnp, ds, scn, ostype, tx); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 0, DMU_SPILL_BLKID); dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), &czb, dnp, ds, scn, ostype, tx); } } /* * The arguments are in this order because mdb can only print the * first 5; we want them to be useful. */ static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; blkptr_t *bp_toread = NULL; if (dsl_scan_check_suspend(scn, zb)) return; if (dsl_scan_check_resume(scn, dnp, zb)) return; scn->scn_visited_this_txg++; dprintf_bp(bp, "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", ds, ds ? ds->ds_object : 0, zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, bp); if (BP_IS_HOLE(bp)) { scn->scn_holes_this_txg++; return; } if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { scn->scn_lt_min_this_txg++; return; } bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); *bp_toread = *bp; if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) return; /* * If dsl_scan_ddt() has already visited this block, it will have * already done any translations or scrubbing, so don't call the * callback again. */ if (ddt_class_contains(dp->dp_spa, scn->scn_phys.scn_ddt_class_max, bp)) { scn->scn_ddt_contained_this_txg++; goto out; } /* * If this block is from the future (after cur_max_txg), then we * are doing this on behalf of a deleted snapshot, and we will * revisit the future block on the next pass of this dataset. * Don't scan it now unless we need to because something * under it was modified. */ if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { scn->scn_gt_max_this_txg++; goto out; } scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); out: kmem_free(bp_toread, sizeof (blkptr_t)); } static void dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { zbookmark_phys_t zb; scan_prefetch_ctx_t *spc; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { SET_BOOKMARK(&scn->scn_prefetch_bookmark, zb.zb_objset, 0, 0, 0); } else { scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; } scn->scn_objsets_visited_this_txg++; spc = scan_prefetch_ctx_create(scn, NULL, FTAG); dsl_scan_prefetch(spc, bp, &zb); scan_prefetch_ctx_rele(spc, FTAG); dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); dprintf_ds(ds, "finished scan%s", ""); } static void ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) { if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { if (ds->ds_is_snapshot) { /* * Note: * - scn_cur_{min,max}_txg stays the same. * - Setting the flag is not really necessary if * scn_cur_max_txg == scn_max_txg, because there * is nothing after this snapshot that we care * about. However, we set it anyway and then * ignore it when we retraverse it in * dsl_scan_visitds(). */ scn_phys->scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_next_snap_obj; zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; } else { SET_BOOKMARK(&scn_phys->scn_bookmark, ZB_DESTROYED_OBJSET, 0, 0, 0); zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset bookmark to -1,0,0,0", (u_longlong_t)ds->ds_object); } } } /* * Invoked when a dataset is destroyed. We need to make sure that: * * 1) If it is the dataset that was currently being scanned, we write * a new dsl_scan_phys_t and marking the objset reference in it * as destroyed. * 2) Remove it from the work queue, if it was present. * * If the dataset was actually a snapshot, instead of marking the dataset * as destroyed, we instead substitute the next snapshot in line. */ void dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (!dsl_scan_is_running(scn)) return; ds_destroyed_scn_phys(ds, &scn->scn_phys); ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { scan_ds_queue_remove(scn, ds->ds_object); if (ds->ds_is_snapshot) scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); if (ds->ds_is_snapshot) { /* * We keep the same mintxg; it could be > * ds_creation_txg if the previous snapshot was * deleted too. */ VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("destroying ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); } else { zfs_dbgmsg("destroying ds %llu; in queue; removing", (u_longlong_t)ds->ds_object); } } /* * dsl_scan_sync() should be called after this, and should sync * out our changed state, but just to be safe, do it here. */ dsl_scan_sync_state(scn, tx, SYNC_CACHED); } static void ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) { if (scn_bookmark->zb_objset == ds->ds_object) { scn_bookmark->zb_objset = dsl_dataset_phys(ds)->ds_prev_snap_obj; zfs_dbgmsg("snapshotting ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } } /* * Called when a dataset is snapshotted. If we were currently traversing * this snapshot, we reset our bookmark to point at the newly created * snapshot. We also modify our work queue to remove the old snapshot and * replace with the new one. */ void dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (!dsl_scan_is_running(scn)) return; ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { scan_ds_queue_remove(scn, ds->ds_object); scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("snapshotting ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } dsl_scan_sync_state(scn, tx, SYNC_CACHED); } static void ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, zbookmark_phys_t *scn_bookmark) { if (scn_bookmark->zb_objset == ds1->ds_object) { scn_bookmark->zb_objset = ds2->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (scn_bookmark->zb_objset == ds2->ds_object) { scn_bookmark->zb_objset = ds1->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } } /* * Called when an origin dataset and its clone are swapped. If we were * currently traversing the dataset, we need to switch to traversing the * newly promoted clone. */ void dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) { dsl_pool_t *dp = ds1->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg1, mintxg2; boolean_t ds1_queued, ds2_queued; if (!dsl_scan_is_running(scn)) return; ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); /* * Handle the in-memory scan queue. */ ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); /* Sanity checking. */ if (ds1_queued) { ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds2_queued) { ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds1_queued && ds2_queued) { /* * If both are queued, we don't need to do anything. * The swapping code below would not handle this case correctly, * since we can't insert ds2 if it is already there. That's * because scan_ds_queue_insert() prohibits a duplicate insert * and panics. */ } else if (ds1_queued) { scan_ds_queue_remove(scn, ds1->ds_object); scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); } else if (ds2_queued) { scan_ds_queue_remove(scn, ds2->ds_object); scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); } /* * Handle the on-disk scan queue. * The on-disk state is an out-of-date version of the in-memory state, * so the in-memory and on-disk values for ds1_queued and ds2_queued may * be different. Therefore we need to apply the swap logic to the * on-disk state independently of the in-memory state. */ ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; /* Sanity checking. */ if (ds1_queued) { ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds2_queued) { ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); } if (ds1_queued && ds2_queued) { /* * If both are queued, we don't need to do anything. * Alternatively, we could check for EEXIST from * zap_add_int_key() and back out to the original state, but * that would be more work than checking for this case upfront. */ } else if (ds1_queued) { VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (ds2_queued) { VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } dsl_scan_sync_state(scn, tx, SYNC_CACHED); } /* ARGSUSED */ static int enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { uint64_t originobj = *(uint64_t *)arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) return (0); err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); dsl_dataset_rele(ds, FTAG); if (err) return (err); ds = prev; } scan_ds_queue_insert(scn, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; dsl_dataset_t *ds; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (scn->scn_phys.scn_cur_min_txg >= scn->scn_phys.scn_max_txg) { /* * This can happen if this snapshot was created after the * scan started, and we already completed a previous snapshot * that was created after the scan started. This snapshot * only references blocks with: * * birth < our ds_creation_txg * cur_min_txg is no less than ds_creation_txg. * We have already visited these blocks. * or * birth > scn_max_txg * The scan requested not to visit these blocks. * * Subsequent snapshots (and clones) can reference our * blocks, or blocks with even higher birth times. * Therefore we do not need to visit them either, * so we do not add them to the work queue. * * Note that checking for cur_min_txg >= cur_max_txg * is not sufficient, because in that case we may need to * visit subsequent snapshots. This happens when min_txg > 0, * which raises cur_min_txg. In this case we will visit * this dataset but skip all of its blocks, because the * rootbp's birth time is < cur_min_txg. Then we will * add the next snapshots/clones to the work queue. */ char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " "cur_min_txg (%llu) >= max_txg (%llu)", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_max_txg); kmem_free(dsname, MAXNAMELEN); goto out; } /* * Only the ZIL in the head (non-snapshot) is valid. Even though * snapshots can have ZIL block pointers (which may be the same * BP as in the head), they must be ignored. In addition, $ORIGIN * doesn't have a objset (i.e. its ds_bp is a hole) so we don't * need to look for a ZIL in it either. So we traverse the ZIL here, * rather than in scan_recurse(), because the regular snapshot * block-sharing rules don't apply to it. */ if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && (dp->dp_origin_snap == NULL || ds->ds_dir != dp->dp_origin_snap->ds_dir)) { objset_t *os; if (dmu_objset_from_ds(ds, &os) != 0) { goto out; } dsl_scan_zil(dp, &os->os_zil_header); } /* * Iterate over the bps in this ds. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); rrw_exit(&ds->ds_bp_rwlock, FTAG); char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " "suspending=%u", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_cur_max_txg, (int)scn->scn_suspending); kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); if (scn->scn_suspending) goto out; /* * We've finished this pass over this dataset. */ /* * If we did not completely visit this dataset, do another pass. */ if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { zfs_dbgmsg("incomplete pass; visiting again"); scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; scan_ds_queue_insert(scn, ds->ds_object, scn->scn_phys.scn_cur_max_txg); goto out; } /* * Add descendent datasets to work queue. */ if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { scan_ds_queue_insert(scn, dsl_dataset_phys(ds)->ds_next_snap_obj, dsl_dataset_phys(ds)->ds_creation_txg); } if (dsl_dataset_phys(ds)->ds_num_children > 1) { boolean_t usenext = B_FALSE; if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { uint64_t count; /* * A bug in a previous version of the code could * cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a * missing entry. Therefore we can only use the * next_clones_obj when its count is correct. */ int err = zap_count(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, &count); if (err == 0 && count == dsl_dataset_phys(ds)->ds_num_children - 1) usenext = B_TRUE; } if (usenext) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { scan_ds_queue_insert(scn, zfs_strtonum(za.za_name, NULL), dsl_dataset_phys(ds)->ds_creation_txg); } zap_cursor_fini(&zc); } else { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_clones_cb, &ds->ds_object, DS_FIND_CHILDREN)); } } out: dsl_dataset_rele(ds, FTAG); } /* ARGSUSED */ static int enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } /* * If this is a clone, we don't need to worry about it for now. */ if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(prev, FTAG); return (0); } dsl_dataset_rele(ds, FTAG); ds = prev; } scan_ds_queue_insert(scn, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg); dsl_dataset_rele(ds, FTAG); return (0); } /* ARGSUSED */ void dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, ddt_entry_t *dde, dmu_tx_t *tx) { const ddt_key_t *ddk = &dde->dde_key; ddt_phys_t *ddp = dde->dde_phys; blkptr_t bp; zbookmark_phys_t zb = { 0 }; int p; if (scn->scn_phys.scn_state != DSS_SCANNING) return; for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) continue; ddt_bp_create(checksum, ddk, ddp, &bp); scn->scn_visited_this_txg++; scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); } } /* * Scrub/dedup interaction. * * If there are N references to a deduped block, we don't want to scrub it * N times -- ideally, we should scrub it exactly once. * * We leverage the fact that the dde's replication class (enum ddt_class) * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. * * To prevent excess scrubbing, the scrub begins by walking the DDT * to find all blocks with refcnt > 1, and scrubs each of these once. * Since there are two replication classes which contain blocks with * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. * * There would be nothing more to say if a block's refcnt couldn't change * during a scrub, but of course it can so we must account for changes * in a block's replication class. * * Here's an example of what can occur: * * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 * when visited during the top-down scrub phase, it will be scrubbed twice. * This negates our scrub optimization, but is otherwise harmless. * * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 * on each visit during the top-down scrub phase, it will never be scrubbed. * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 * while a scrub is in progress, it scrubs the block right then. */ static void dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) { ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; ddt_entry_t dde = { 0 }; int error; uint64_t n = 0; while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { ddt_t *ddt; if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) break; dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", (longlong_t)ddb->ddb_class, (longlong_t)ddb->ddb_type, (longlong_t)ddb->ddb_checksum, (longlong_t)ddb->ddb_cursor); /* There should be no pending changes to the dedup table */ ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; ASSERT(avl_first(&ddt->ddt_tree) == NULL); dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); n++; if (dsl_scan_check_suspend(scn, NULL)) break; } zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " "suspending=%u", (longlong_t)n, (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); ASSERT(error == 0 || error == ENOENT); ASSERT(error != ENOENT || ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); } static uint64_t dsl_scan_ds_maxtxg(dsl_dataset_t *ds) { uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; if (ds->ds_is_snapshot) return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); return (smt); } static void dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) { scan_ds_t *sds; dsl_pool_t *dp = scn->scn_dp; if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_ddt(scn, tx); if (scn->scn_suspending) return; } if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { /* First do the MOS & ORIGIN */ scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_visit_rootbp(scn, NULL, &dp->dp_meta_rootbp, tx); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); if (scn->scn_suspending) return; if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_cb, NULL, DS_FIND_CHILDREN)); } else { dsl_scan_visitds(scn, dp->dp_origin_snap->ds_object, tx); } ASSERT(!scn->scn_suspending); } else if (scn->scn_phys.scn_bookmark.zb_objset != ZB_DESTROYED_OBJSET) { uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; /* * If we were suspended, continue from here. Note if the * ds we were suspended on was deleted, the zb_objset may * be -1, so we will skip this and find a new objset * below. */ dsl_scan_visitds(scn, dsobj, tx); if (scn->scn_suspending) return; } /* * In case we suspended right at the end of the ds, zero the * bookmark so we don't think that we're still trying to resume. */ bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); /* * Keep pulling things out of the dataset avl queue. Updates to the * persistent zap-object-as-queue happen only at checkpoints. */ while ((sds = avl_first(&scn->scn_queue)) != NULL) { dsl_dataset_t *ds; uint64_t dsobj = sds->sds_dsobj; uint64_t txg = sds->sds_txg; /* dequeue and free the ds from the queue */ scan_ds_queue_remove(scn, dsobj); sds = NULL; /* must not be touched after removal */ /* Set up min / max txg */ VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (txg != 0) { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, txg); } else { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, dsl_dataset_phys(ds)->ds_prev_snap_txg); } scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); dsl_dataset_rele(ds, FTAG); dsl_scan_visitds(scn, dsobj, tx); if (scn->scn_suspending) return; } /* No more objsets to fetch, we're done */ scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; ASSERT0(scn->scn_suspending); } static uint64_t dsl_scan_count_leaves(vdev_t *vd) { uint64_t i, leaves = 0; /* we only count leaves that belong to the main pool and are readable */ if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache || !vdev_readable(vd)) return (0); if (vd->vdev_ops->vdev_op_leaf) return (1); for (i = 0; i < vd->vdev_children; i++) { leaves += dsl_scan_count_leaves(vd->vdev_child[i]); } return (leaves); } static void scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) { int i; uint64_t cur_size = 0; for (i = 0; i < BP_GET_NDVAS(bp); i++) { cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); } q->q_total_zio_size_this_txg += cur_size; q->q_zios_this_txg++; } static void scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, uint64_t end) { q->q_total_seg_size_this_txg += end - start; q->q_segs_this_txg++; } static boolean_t scan_io_queue_check_suspend(dsl_scan_t *scn) { /* See comment in dsl_scan_check_suspend() */ uint64_t curr_time_ns = gethrtime(); uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; uint64_t sync_time_ns = curr_time_ns - scn->scn_dp->dp_spa->spa_sync_starttime; int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; return ((NSEC2MSEC(scan_time_ns) > mintime && (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || txg_sync_waiting(scn->scn_dp) || NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || spa_shutting_down(scn->scn_dp->dp_spa)); } /* * Given a list of scan_io_t's in io_list, this issues the io's out to * disk. This consumes the io_list and frees the scan_io_t's. This is * called when emptying queues, either when we're up against the memory * limit or when we have finished scanning. Returns B_TRUE if we stopped * processing the list before we finished. Any zios that were not issued * will remain in the io_list. */ static boolean_t scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) { dsl_scan_t *scn = queue->q_scn; scan_io_t *sio; int64_t bytes_issued = 0; boolean_t suspended = B_FALSE; while ((sio = list_head(io_list)) != NULL) { blkptr_t bp; if (scan_io_queue_check_suspend(scn)) { suspended = B_TRUE; break; } sio2bp(sio, &bp, queue->q_vd->vdev_id); bytes_issued += sio->sio_asize; scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, &sio->sio_zb, queue); (void) list_remove_head(io_list); scan_io_queues_update_zio_stats(queue, &bp); kmem_free(sio, sizeof (*sio)); } atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); return (suspended); } /* * Given a range_seg_t (extent) and a list, this function passes over a * scan queue and gathers up the appropriate ios which fit into that * scan seg (starting from lowest LBA). At the end, we remove the segment * from the q_exts_by_addr range tree. */ static boolean_t scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) { scan_io_t srch_sio, *sio, *next_sio; avl_index_t idx; uint_t num_sios = 0; int64_t bytes_issued = 0; ASSERT(rs != NULL); ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); srch_sio.sio_offset = rs->rs_start; /* * The exact start of the extent might not contain any matching zios, * so if that's the case, examine the next one in the tree. */ sio = avl_find(&queue->q_sios_by_addr, &srch_sio, &idx); if (sio == NULL) sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); while (sio != NULL && sio->sio_offset < rs->rs_end && num_sios <= 32) { ASSERT3U(sio->sio_offset, >=, rs->rs_start); ASSERT3U(sio->sio_offset + sio->sio_asize, <=, rs->rs_end); next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); avl_remove(&queue->q_sios_by_addr, sio); bytes_issued += sio->sio_asize; num_sios++; list_insert_tail(list, sio); sio = next_sio; } /* * We limit the number of sios we process at once to 32 to avoid * biting off more than we can chew. If we didn't take everything * in the segment we update it to reflect the work we were able to * complete. Otherwise, we remove it from the range tree entirely. */ if (sio != NULL && sio->sio_offset < rs->rs_end) { range_tree_adjust_fill(queue->q_exts_by_addr, rs, -bytes_issued); range_tree_resize_segment(queue->q_exts_by_addr, rs, sio->sio_offset, rs->rs_end - sio->sio_offset); return (B_TRUE); } else { range_tree_remove(queue->q_exts_by_addr, rs->rs_start, rs->rs_end - rs->rs_start); return (B_FALSE); } } /* * This is called from the queue emptying thread and selects the next * extent from which we are to issue io's. The behavior of this function * depends on the state of the scan, the current memory consumption and * whether or not we are performing a scan shutdown. * 1) We select extents in an elevator algorithm (LBA-order) if the scan * needs to perform a checkpoint * 2) We select the largest available extent if we are up against the * memory limit. * 3) Otherwise we don't select any extents. */ static const range_seg_t * scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) { dsl_scan_t *scn = queue->q_scn; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); ASSERT(scn->scn_is_sorted); /* handle tunable overrides */ if (scn->scn_checkpointing || scn->scn_clearing) { if (zfs_scan_issue_strategy == 1) { return (range_tree_first(queue->q_exts_by_addr)); } else if (zfs_scan_issue_strategy == 2) { return (avl_first(&queue->q_exts_by_size)); } } /* * During normal clearing, we want to issue our largest segments * first, keeping IO as sequential as possible, and leaving the * smaller extents for later with the hope that they might eventually * grow to larger sequential segments. However, when the scan is * checkpointing, no new extents will be added to the sorting queue, * so the way we are sorted now is as good as it will ever get. * In this case, we instead switch to issuing extents in LBA order. */ if (scn->scn_checkpointing) { return (range_tree_first(queue->q_exts_by_addr)); } else if (scn->scn_clearing) { return (avl_first(&queue->q_exts_by_size)); } else { return (NULL); } } static void scan_io_queues_run_one(void *arg) { dsl_scan_io_queue_t *queue = arg; kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; boolean_t suspended = B_FALSE; range_seg_t *rs = NULL; scan_io_t *sio = NULL; list_t sio_list; uint64_t bytes_per_leaf = zfs_scan_vdev_limit; uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); ASSERT(queue->q_scn->scn_is_sorted); list_create(&sio_list, sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_list_node)); mutex_enter(q_lock); /* calculate maximum in-flight bytes for this txg (min 1MB) */ queue->q_maxinflight_bytes = MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); /* reset per-queue scan statistics for this txg */ queue->q_total_seg_size_this_txg = 0; queue->q_segs_this_txg = 0; queue->q_total_zio_size_this_txg = 0; queue->q_zios_this_txg = 0; /* loop until we have run out of time or sios */ while ((rs = (range_seg_t*)scan_io_queue_fetch_ext(queue)) != NULL) { uint64_t seg_start = 0, seg_end = 0; boolean_t more_left = B_TRUE; ASSERT(list_is_empty(&sio_list)); /* loop while we still have sios left to process in this rs */ while (more_left) { scan_io_t *first_sio, *last_sio; /* * We have selected which extent needs to be * processed next. Gather up the corresponding sios. */ more_left = scan_io_queue_gather(queue, rs, &sio_list); ASSERT(!list_is_empty(&sio_list)); first_sio = list_head(&sio_list); last_sio = list_tail(&sio_list); seg_end = last_sio->sio_offset + last_sio->sio_asize; if (seg_start == 0) seg_start = first_sio->sio_offset; /* * Issuing sios can take a long time so drop the * queue lock. The sio queue won't be updated by * other threads since we're in syncing context so * we can be sure that our trees will remain exactly * as we left them. */ mutex_exit(q_lock); suspended = scan_io_queue_issue(queue, &sio_list); mutex_enter(q_lock); if (suspended) break; } /* update statistics for debugging purposes */ scan_io_queues_update_seg_stats(queue, seg_start, seg_end); if (suspended) break; } /* If we were suspended in the middle of processing, * requeue any unfinished sios and exit. */ while ((sio = list_head(&sio_list)) != NULL) { list_remove(&sio_list, sio); scan_io_queue_insert_impl(queue, sio); } mutex_exit(q_lock); list_destroy(&sio_list); } /* * Performs an emptying run on all scan queues in the pool. This just * punches out one thread per top-level vdev, each of which processes * only that vdev's scan queue. We can parallelize the I/O here because * we know that each queue's io's only affect its own top-level vdev. * * This function waits for the queue runs to complete, and must be * called from dsl_scan_sync (or in general, syncing context). */ static void scan_io_queues_run(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; ASSERT(scn->scn_is_sorted); ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (scn->scn_bytes_pending == 0) return; if (scn->scn_taskq == NULL) { char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, KM_SLEEP); int nthreads = spa->spa_root_vdev->vdev_children; /* * We need to make this taskq *always* execute as many * threads in parallel as we have top-level vdevs and no * less, otherwise strange serialization of the calls to * scan_io_queues_run_one can occur during spa_sync runs * and that significantly impacts performance. */ (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, "dsl_scan_tq_%s", spa->spa_name); scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); } for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; mutex_enter(&vd->vdev_scan_io_queue_lock); if (vd->vdev_scan_io_queue != NULL) { VERIFY(taskq_dispatch(scn->scn_taskq, scan_io_queues_run_one, vd->vdev_scan_io_queue, TQ_SLEEP) != TASKQID_INVALID); } mutex_exit(&vd->vdev_scan_io_queue_lock); } /* * Wait for the queues to finish issuing thir IOs for this run * before we return. There may still be IOs in flight at this * point. */ taskq_wait(scn->scn_taskq); } static boolean_t dsl_scan_async_block_should_pause(dsl_scan_t *scn) { uint64_t elapsed_nanosecs; if (zfs_recover) return (B_FALSE); if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) return (B_TRUE); elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && txg_sync_waiting(scn->scn_dp)) || spa_shutting_down(scn->scn_dp->dp_spa)); } static int dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; if (!scn->scn_is_bptree || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); } zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, dmu_tx_get_txg(tx), bp, BP_GET_PSIZE(bp), 0)); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); scn->scn_visited_this_txg++; return (0); } static void dsl_scan_update_stats(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t i; uint64_t seg_size_total = 0, zio_size_total = 0; uint64_t seg_count_total = 0, zio_count_total = 0; for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; if (queue == NULL) continue; seg_size_total += queue->q_total_seg_size_this_txg; zio_size_total += queue->q_total_zio_size_this_txg; seg_count_total += queue->q_segs_this_txg; zio_count_total += queue->q_zios_this_txg; } if (seg_count_total == 0 || zio_count_total == 0) { scn->scn_avg_seg_size_this_txg = 0; scn->scn_avg_zio_size_this_txg = 0; scn->scn_segs_this_txg = 0; scn->scn_zios_this_txg = 0; return; } scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; scn->scn_segs_this_txg = seg_count_total; scn->scn_zios_this_txg = zio_count_total; } static int dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; const dva_t *dva = &bp->blk_dva[0]; if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), tx); scn->scn_visited_this_txg++; return (0); } boolean_t dsl_scan_active(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t used = 0, comp, uncomp; if (spa->spa_load_state != SPA_LOAD_NONE) return (B_FALSE); if (spa_shutting_down(spa)) return (B_FALSE); if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || (scn->scn_async_destroying && !scn->scn_async_stalled)) return (B_TRUE); if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, &used, &comp, &uncomp); } return (used != 0); } static boolean_t dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, uint64_t phys_birth) { vdev_t *vd; vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); if (vd->vdev_ops == &vdev_indirect_ops) { /* * The indirect vdev can point to multiple * vdevs. For simplicity, always create * the resilver zio_t. zio_vdev_io_start() * will bypass the child resilver i/o's if * they are on vdevs that don't have DTL's. */ return (B_TRUE); } if (DVA_GET_GANG(dva)) { /* * Gang members may be spread across multiple * vdevs, so the best estimate we have is the * scrub range, which has already been checked. * XXX -- it would be better to change our * allocation policy to ensure that all * gang members reside on the same vdev. */ return (B_TRUE); } /* * Check if the txg falls within the range which must be * resilvered. DVAs outside this range can always be skipped. */ if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) return (B_FALSE); /* * Check if the top-level vdev must resilver this offset. * When the offset does not intersect with a dirty leaf DTL * then it may be possible to skip the resilver IO. The psize * is provided instead of asize to simplify the check for RAIDZ. */ if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) return (B_FALSE); return (B_TRUE); } static int dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) { int err = 0; dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; if (spa_suspend_async_destroy(spa)) return (0); if (zfs_free_bpobj_enabled && spa_version(spa) >= SPA_VERSION_DEADLISTS) { scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; scn->scn_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bpobj_iterate(&dp->dp_free_bpobj, dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); scn->scn_zio_root = NULL; if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); } if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { ASSERT(scn->scn_async_destroying); scn->scn_is_bptree = B_TRUE; scn->scn_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bptree_iterate(dp->dp_meta_objset, dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); scn->scn_zio_root = NULL; if (err == EIO || err == ECKSUM) { err = 0; } else if (err != 0 && err != ERESTART) { zfs_panic_recover("error %u from " "traverse_dataset_destroyed()", err); } if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { /* finished; deactivate async destroy feature */ spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); ASSERT(!spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)); VERIFY0(zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, tx)); VERIFY0(bptree_free(dp->dp_meta_objset, dp->dp_bptree_obj, tx)); dp->dp_bptree_obj = 0; scn->scn_async_destroying = B_FALSE; scn->scn_async_stalled = B_FALSE; } else { /* * If we didn't make progress, mark the async * destroy as stalled, so that we will not initiate * a spa_sync() on its behalf. Note that we only * check this if we are not finished, because if the * bptree had no blocks for us to visit, we can * finish without "making progress". */ scn->scn_async_stalled = (scn->scn_visited_this_txg == 0); } } if (scn->scn_visited_this_txg) { zfs_dbgmsg("freed %llu blocks in %llums from " "free_bpobj/bptree txg %llu; err=%d", (longlong_t)scn->scn_visited_this_txg, (longlong_t) NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)tx->tx_txg, err); scn->scn_visited_this_txg = 0; /* * Write out changes to the DDT that may be required as a * result of the blocks freed. This ensures that the DDT * is clean when a scrub/resilver runs. */ ddt_sync(spa, tx->tx_txg); } if (err != 0) return (err); if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && zfs_free_leak_on_eio && (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { /* * We have finished background destroying, but there is still * some space left in the dp_free_dir. Transfer this leaked * space to the dp_leak_dir. */ if (dp->dp_leak_dir == NULL) { rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); (void) dsl_dir_create_sync(dp, dp->dp_root_dir, LEAK_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, &dp->dp_leak_dir)); rrw_exit(&dp->dp_config_rwlock, FTAG); } dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); } if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { /* finished; verify that space accounting went to zero */ ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); } EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_OBSOLETE_BPOBJ)); if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)); scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; err = bpobj_iterate(&dp->dp_obsolete_bpobj, dsl_scan_obsolete_block_cb, scn, tx); if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) dsl_pool_destroy_obsolete_bpobj(dp, tx); } return (0); } /* * This is the primary entry point for scans that is called from syncing * context. Scans must happen entirely during syncing context so that we * cna guarantee that blocks we are currently scanning will not change out * from under us. While a scan is active, this funciton controls how quickly * transaction groups proceed, instead of the normal handling provided by * txg_sync_thread(). */ void dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; int err = 0; state_sync_type_t sync_type = SYNC_OPTIONAL; /* * Check for scn_restart_txg before checking spa_load_state, so * that we can restart an old-style scan while the pool is being * imported (see dsl_scan_init). */ if (dsl_scan_restarting(scn, tx)) { pool_scan_func_t func = POOL_SCAN_SCRUB; dsl_scan_done(scn, B_FALSE, tx); if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) func = POOL_SCAN_RESILVER; zfs_dbgmsg("restarting scan func=%u txg=%llu", func, (longlong_t)tx->tx_txg); dsl_scan_setup_sync(&func, tx); } /* * Only process scans in sync pass 1. */ if (spa_sync_pass(dp->dp_spa) > 1) return; /* * If the spa is shutting down, then stop scanning. This will * ensure that the scan does not dirty any new data during the * shutdown phase. */ if (spa_shutting_down(spa)) return; /* * If the scan is inactive due to a stalled async destroy, try again. */ if (!scn->scn_async_stalled && !dsl_scan_active(scn)) return; /* reset scan statistics */ scn->scn_visited_this_txg = 0; scn->scn_holes_this_txg = 0; scn->scn_lt_min_this_txg = 0; scn->scn_gt_max_this_txg = 0; scn->scn_ddt_contained_this_txg = 0; scn->scn_objsets_visited_this_txg = 0; scn->scn_avg_seg_size_this_txg = 0; scn->scn_segs_this_txg = 0; scn->scn_avg_zio_size_this_txg = 0; scn->scn_zios_this_txg = 0; scn->scn_suspending = B_FALSE; scn->scn_sync_start_time = gethrtime(); spa->spa_scrub_active = B_TRUE; /* * First process the async destroys. If we pause, don't do * any scrubbing or resilvering. This ensures that there are no * async destroys while we are scanning, so the scan code doesn't * have to worry about traversing it. It is also faster to free the * blocks than to scrub them. */ err = dsl_process_async_destroys(dp, tx); if (err != 0) return; if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) return; /* * Wait a few txgs after importing to begin scanning so that * we can get the pool imported quickly. */ if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) return; /* * It is possible to switch from unsorted to sorted at any time, * but afterwards the scan will remain sorted unless reloaded from * a checkpoint after a reboot. */ if (!zfs_scan_legacy) { scn->scn_is_sorted = B_TRUE; if (scn->scn_last_checkpoint == 0) scn->scn_last_checkpoint = ddi_get_lbolt(); } /* * For sorted scans, determine what kind of work we will be doing * this txg based on our memory limitations and whether or not we * need to perform a checkpoint. */ if (scn->scn_is_sorted) { /* * If we are over our checkpoint interval, set scn_clearing * so that we can begin checkpointing immediately. The * checkpoint allows us to save a consisent bookmark * representing how much data we have scrubbed so far. * Otherwise, use the memory limit to determine if we should * scan for metadata or start issue scrub IOs. We accumulate * metadata until we hit our hard memory limit at which point * we issue scrub IOs until we are at our soft memory limit. */ if (scn->scn_checkpointing || ddi_get_lbolt() - scn->scn_last_checkpoint > SEC_TO_TICK(zfs_scan_checkpoint_intval)) { if (!scn->scn_checkpointing) zfs_dbgmsg("begin scan checkpoint"); scn->scn_checkpointing = B_TRUE; scn->scn_clearing = B_TRUE; } else { boolean_t should_clear = dsl_scan_should_clear(scn); if (should_clear && !scn->scn_clearing) { zfs_dbgmsg("begin scan clearing"); scn->scn_clearing = B_TRUE; } else if (!should_clear && scn->scn_clearing) { zfs_dbgmsg("finish scan clearing"); scn->scn_clearing = B_FALSE; } } } else { ASSERT0(scn->scn_checkpointing); ASSERT0(scn->scn_clearing); } if (!scn->scn_clearing && scn->scn_done_txg == 0) { /* Need to scan metadata for more blocks to scrub */ dsl_scan_phys_t *scnp = &scn->scn_phys; taskqid_t prefetch_tqid; uint64_t bytes_per_leaf = zfs_scan_vdev_limit; uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); /* * Calculate the max number of in-flight bytes for pool-wide * scanning operations (minimum 1MB). Limits for the issuing * phase are done per top-level vdev and are handled separately. */ scn->scn_maxinflight_bytes = MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); if (scnp->scn_ddt_bookmark.ddb_class <= scnp->scn_ddt_class_max) { ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); zfs_dbgmsg("doing scan sync txg %llu; " "ddt bm=%llu/%llu/%llu/%llx", (longlong_t)tx->tx_txg, (longlong_t)scnp->scn_ddt_bookmark.ddb_class, (longlong_t)scnp->scn_ddt_bookmark.ddb_type, (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); } else { zfs_dbgmsg("doing scan sync txg %llu; " "bm=%llu/%llu/%llu/%llu", (longlong_t)tx->tx_txg, (longlong_t)scnp->scn_bookmark.zb_objset, (longlong_t)scnp->scn_bookmark.zb_object, (longlong_t)scnp->scn_bookmark.zb_level, (longlong_t)scnp->scn_bookmark.zb_blkid); } scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); scn->scn_prefetch_stop = B_FALSE; prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, dsl_scan_prefetch_thread, scn, TQ_SLEEP); ASSERT(prefetch_tqid != TASKQID_INVALID); dsl_pool_config_enter(dp, FTAG); dsl_scan_visit(scn, tx); dsl_pool_config_exit(dp, FTAG); mutex_enter(&dp->dp_spa->spa_scrub_lock); scn->scn_prefetch_stop = B_TRUE; cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&dp->dp_spa->spa_scrub_lock); taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; zfs_dbgmsg("scan visited %llu blocks in %llums " "(%llu os's, %llu holes, %llu < mintxg, " "%llu in ddt, %llu > maxtxg)", (longlong_t)scn->scn_visited_this_txg, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)scn->scn_objsets_visited_this_txg, (longlong_t)scn->scn_holes_this_txg, (longlong_t)scn->scn_lt_min_this_txg, (longlong_t)scn->scn_ddt_contained_this_txg, (longlong_t)scn->scn_gt_max_this_txg); if (!scn->scn_suspending) { ASSERT0(avl_numnodes(&scn->scn_queue)); scn->scn_done_txg = tx->tx_txg + 1; if (scn->scn_is_sorted) { scn->scn_checkpointing = B_TRUE; scn->scn_clearing = B_TRUE; } zfs_dbgmsg("scan complete txg %llu", (longlong_t)tx->tx_txg); } } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { /* need to issue scrubbing IOs from per-vdev queues */ scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); scan_io_queues_run(scn); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; /* calculate and dprintf the current memory usage */ (void) dsl_scan_should_clear(scn); dsl_scan_update_stats(scn); zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " "(avg_block_size = %llu, avg_seg_size = %llu)", (longlong_t)scn->scn_zios_this_txg, (longlong_t)scn->scn_segs_this_txg, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)scn->scn_avg_zio_size_this_txg, (longlong_t)scn->scn_avg_seg_size_this_txg); } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { /* Finished with everything. Mark the scrub as complete */ zfs_dbgmsg("scan issuing complete txg %llu", (longlong_t)tx->tx_txg); ASSERT3U(scn->scn_done_txg, !=, 0); ASSERT0(spa->spa_scrub_inflight); ASSERT0(scn->scn_bytes_pending); dsl_scan_done(scn, B_TRUE, tx); sync_type = SYNC_MANDATORY; } dsl_scan_sync_state(scn, tx, sync_type); } static void count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) { int i; /* update the spa's stats on how many bytes we have issued */ for (i = 0; i < BP_GET_NDVAS(bp); i++) { atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, DVA_GET_ASIZE(&bp->blk_dva[i])); } /* * If we resume after a reboot, zab will be NULL; don't record * incomplete stats in that case. */ if (zab == NULL) return; mutex_enter(&zab->zab_lock); for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; if (t & DMU_OT_NEWTYPE) t = DMU_OT_OTHER; zfs_blkstat_t *zb = &zab->zab_type[l][t]; int equal; zb->zb_count++; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_2_of_2_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal == 1) zb->zb_ditto_2_of_3_samevdev++; else if (equal == 3) zb->zb_ditto_3_of_3_samevdev++; break; } } mutex_exit(&zab->zab_lock); } static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) { avl_index_t idx; int64_t asize = sio->sio_asize; dsl_scan_t *scn = queue->q_scn; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { /* block is already scheduled for reading */ atomic_add_64(&scn->scn_bytes_pending, -asize); kmem_free(sio, sizeof (*sio)); return; } avl_insert(&queue->q_sios_by_addr, sio, idx); range_tree_add(queue->q_exts_by_addr, sio->sio_offset, asize); } /* * Given all the info we got from our metadata scanning process, we * construct a scan_io_t and insert it into the scan sorting queue. The * I/O must already be suitable for us to process. This is controlled * by dsl_scan_enqueue(). */ static void scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, int zio_flags, const zbookmark_phys_t *zb) { dsl_scan_t *scn = queue->q_scn; scan_io_t *sio = kmem_zalloc(sizeof (*sio), KM_SLEEP); ASSERT0(BP_IS_GANG(bp)); ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); bp2sio(bp, sio, dva_i); sio->sio_flags = zio_flags; sio->sio_zb = *zb; /* * Increment the bytes pending counter now so that we can't * get an integer underflow in case the worker processes the * zio before we get to incrementing this counter. */ atomic_add_64(&scn->scn_bytes_pending, sio->sio_asize); scan_io_queue_insert_impl(queue, sio); } /* * Given a set of I/O parameters as discovered by the metadata traversal * process, attempts to place the I/O into the sorted queues (if allowed), * or immediately executes the I/O. */ static void dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb) { spa_t *spa = dp->dp_spa; ASSERT(!BP_IS_EMBEDDED(bp)); /* * Gang blocks are hard to issue sequentially, so we just issue them * here immediately instead of queuing them. */ if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { scan_exec_io(dp, bp, zio_flags, zb, NULL); return; } for (int i = 0; i < BP_GET_NDVAS(bp); i++) { dva_t dva; vdev_t *vdev; dva = bp->blk_dva[i]; vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); ASSERT(vdev != NULL); mutex_enter(&vdev->vdev_scan_io_queue_lock); if (vdev->vdev_scan_io_queue == NULL) vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); ASSERT(dp->dp_scan != NULL); scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, i, zio_flags, zb); mutex_exit(&vdev->vdev_scan_io_queue_lock); } } static int dsl_scan_scrub_cb(dsl_pool_t *dp, const blkptr_t *bp, const zbookmark_phys_t *zb) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); size_t psize = BP_GET_PSIZE(bp); boolean_t needs_io; int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; int d; if (phys_birth <= scn->scn_phys.scn_min_txg || phys_birth >= scn->scn_phys.scn_max_txg) { count_block(scn, dp->dp_blkstats, bp); return (0); } /* Embedded BP's have phys_birth==0, so we reject them above. */ ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { zio_flags |= ZIO_FLAG_SCRUB; needs_io = B_TRUE; } else { ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); zio_flags |= ZIO_FLAG_RESILVER; needs_io = B_FALSE; } /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) zio_flags |= ZIO_FLAG_SPECULATIVE; for (d = 0; d < BP_GET_NDVAS(bp); d++) { const dva_t *dva = &bp->blk_dva[d]; /* * Keep track of how much data we've examined so that * zpool(1M) status can make useful progress reports. */ scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); /* if it's a resilver, this may not be in the target range */ if (!needs_io) needs_io = dsl_scan_need_resilver(spa, dva, psize, phys_birth); } if (needs_io && !zfs_no_scrub_io) { dsl_scan_enqueue(dp, bp, zio_flags, zb); } else { count_block(scn, dp->dp_blkstats, bp); } /* do not relocate this block */ return (0); } static void dsl_scan_scrub_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; dsl_scan_io_queue_t *queue = zio->io_private; abd_free(zio->io_abd); if (queue == NULL) { mutex_enter(&spa->spa_scrub_lock); ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } else { mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); queue->q_inflight_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&queue->q_zio_cv); mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); } if (zio->io_error && (zio->io_error != ECKSUM || !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); } } /* * Given a scanning zio's information, executes the zio. The zio need * not necessarily be only sortable, this function simply executes the * zio, no matter what it is. The optional queue argument allows the * caller to specify that they want per top level vdev IO rate limiting * instead of the legacy global limiting. */ static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) { spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; size_t size = BP_GET_PSIZE(bp); abd_t *data = abd_alloc_for_io(size, B_FALSE); unsigned int scan_delay = 0; if (queue == NULL) { mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight += BP_GET_PSIZE(bp); mutex_exit(&spa->spa_scrub_lock); } else { kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; mutex_enter(q_lock); while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) cv_wait(&queue->q_zio_cv, q_lock); queue->q_inflight_bytes += BP_GET_PSIZE(bp); mutex_exit(q_lock); } if (zio_flags & ZIO_FLAG_RESILVER) scan_delay = zfs_resilver_delay; else { ASSERT(zio_flags & ZIO_FLAG_SCRUB); scan_delay = zfs_scrub_delay; } if (scan_delay && (ddi_get_lbolt64() - spa->spa_last_io <= zfs_scan_idle)) delay(MAX((int)scan_delay, 0)); count_block(dp->dp_scan, dp->dp_blkstats, bp); zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); } /* * This is the primary extent sorting algorithm. We balance two parameters: * 1) how many bytes of I/O are in an extent * 2) how well the extent is filled with I/O (as a fraction of its total size) * Since we allow extents to have gaps between their constituent I/Os, it's * possible to have a fairly large extent that contains the same amount of * I/O bytes than a much smaller extent, which just packs the I/O more tightly. * The algorithm sorts based on a score calculated from the extent's size, * the relative fill volume (in %) and a "fill weight" parameter that controls * the split between whether we prefer larger extents or more well populated * extents: * * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) * * Example: * 1) assume extsz = 64 MiB * 2) assume fill = 32 MiB (extent is half full) * 3) assume fill_weight = 3 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 * SCORE = 32M + (50 * 3 * 32M) / 100 * SCORE = 32M + (4800M / 100) * SCORE = 32M + 48M * ^ ^ * | +--- final total relative fill-based score * +--------- final total fill-based score * SCORE = 80M * * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards * extents that are more completely filled (in a 3:2 ratio) vs just larger. * Note that as an optimization, we replace multiplication and division by * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). */ static int ext_size_compare(const void *x, const void *y) { const range_seg_t *rsa = x, *rsb = y; uint64_t sa = rsa->rs_end - rsa->rs_start, sb = rsb->rs_end - rsb->rs_start; uint64_t score_a, score_b; score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * fill_weight * rsa->rs_fill) >> 7); score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * fill_weight * rsb->rs_fill) >> 7); if (score_a > score_b) return (-1); if (score_a == score_b) { if (rsa->rs_start < rsb->rs_start) return (-1); if (rsa->rs_start == rsb->rs_start) return (0); return (1); } return (1); } /* * Comparator for the q_sios_by_addr tree. Sorting is simply performed * based on LBA-order (from lowest to highest). */ static int io_addr_compare(const void *x, const void *y) { const scan_io_t *a = x, *b = y; if (a->sio_offset < b->sio_offset) return (-1); if (a->sio_offset == b->sio_offset) return (0); return (1); } /* IO queues are created on demand when they are needed. */ static dsl_scan_io_queue_t * scan_io_queue_create(vdev_t *vd) { dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); q->q_scn = scn; q->q_vd = vd; cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops, &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap); avl_create(&q->q_sios_by_addr, io_addr_compare, sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); return (q); } /* * Destroys a scan queue and all segments and scan_io_t's contained in it. * No further execution of I/O occurs, anything pending in the queue is * simply freed without being executed. */ void dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) { dsl_scan_t *scn = queue->q_scn; scan_io_t *sio; void *cookie = NULL; int64_t bytes_dequeued = 0; ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != NULL) { ASSERT(range_tree_contains(queue->q_exts_by_addr, sio->sio_offset, sio->sio_asize)); bytes_dequeued += sio->sio_asize; kmem_free(sio, sizeof (*sio)); } atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); range_tree_vacate(queue->q_exts_by_addr, NULL, queue); range_tree_destroy(queue->q_exts_by_addr); avl_destroy(&queue->q_sios_by_addr); cv_destroy(&queue->q_zio_cv); kmem_free(queue, sizeof (*queue)); } /* * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is * called on behalf of vdev_top_transfer when creating or destroying * a mirror vdev due to zpool attach/detach. */ void dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) { mutex_enter(&svd->vdev_scan_io_queue_lock); mutex_enter(&tvd->vdev_scan_io_queue_lock); VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; svd->vdev_scan_io_queue = NULL; if (tvd->vdev_scan_io_queue != NULL) tvd->vdev_scan_io_queue->q_vd = tvd; mutex_exit(&tvd->vdev_scan_io_queue_lock); mutex_exit(&svd->vdev_scan_io_queue_lock); } static void scan_io_queues_destroy(dsl_scan_t *scn) { vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *tvd = rvd->vdev_child[i]; mutex_enter(&tvd->vdev_scan_io_queue_lock); if (tvd->vdev_scan_io_queue != NULL) dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); tvd->vdev_scan_io_queue = NULL; mutex_exit(&tvd->vdev_scan_io_queue_lock); } } static void dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) { dsl_pool_t *dp = spa->spa_dsl_pool; dsl_scan_t *scn = dp->dp_scan; vdev_t *vdev; kmutex_t *q_lock; dsl_scan_io_queue_t *queue; scan_io_t srch, *sio; avl_index_t idx; uint64_t start, size; vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); ASSERT(vdev != NULL); q_lock = &vdev->vdev_scan_io_queue_lock; queue = vdev->vdev_scan_io_queue; mutex_enter(q_lock); if (queue == NULL) { mutex_exit(q_lock); return; } bp2sio(bp, &srch, dva_i); start = srch.sio_offset; size = srch.sio_asize; /* * We can find the zio in two states: * 1) Cold, just sitting in the queue of zio's to be issued at * some point in the future. In this case, all we do is * remove the zio from the q_sios_by_addr tree, decrement * its data volume from the containing range_seg_t and * resort the q_exts_by_size tree to reflect that the * range_seg_t has lost some of its 'fill'. We don't shorten * the range_seg_t - this is usually rare enough not to be * worth the extra hassle of trying keep track of precise * extent boundaries. * 2) Hot, where the zio is currently in-flight in * dsl_scan_issue_ios. In this case, we can't simply * reach in and stop the in-flight zio's, so we instead * block the caller. Eventually, dsl_scan_issue_ios will * be done with issuing the zio's it gathered and will * signal us. */ sio = avl_find(&queue->q_sios_by_addr, &srch, &idx); if (sio != NULL) { int64_t asize = sio->sio_asize; blkptr_t tmpbp; /* Got it while it was cold in the queue */ ASSERT3U(start, ==, sio->sio_offset); ASSERT3U(size, ==, asize); avl_remove(&queue->q_sios_by_addr, sio); ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); range_tree_remove_fill(queue->q_exts_by_addr, start, size); /* * We only update scn_bytes_pending in the cold path, * otherwise it will already have been accounted for as * part of the zio's execution. */ atomic_add_64(&scn->scn_bytes_pending, -asize); /* count the block as though we issued it */ sio2bp(sio, &tmpbp, dva_i); count_block(scn, dp->dp_blkstats, &tmpbp); kmem_free(sio, sizeof (*sio)); } mutex_exit(q_lock); } /* * Callback invoked when a zio_free() zio is executing. This needs to be * intercepted to prevent the zio from deallocating a particular portion * of disk space and it then getting reallocated and written to, while we * still have it queued up for processing. */ void dsl_scan_freed(spa_t *spa, const blkptr_t *bp) { dsl_pool_t *dp = spa->spa_dsl_pool; dsl_scan_t *scn = dp->dp_scan; ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(scn != NULL); if (!dsl_scan_is_running(scn)) return; for (int i = 0; i < BP_GET_NDVAS(bp); i++) dsl_scan_freed_dva(spa, bp, i); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/arc.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/arc.h (revision 353567) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/arc.h (revision 353568) @@ -1,290 +1,290 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ #ifndef _SYS_ARC_H #define _SYS_ARC_H #include #ifdef __cplusplus extern "C" { #endif #include #include #include /* * Used by arc_flush() to inform arc_evict_state() that it should evict * all available buffers from the arc state being passed in. */ #define ARC_EVICT_ALL -1ULL #define HDR_SET_LSIZE(hdr, x) do { \ ASSERT(IS_P2ALIGNED(x, 1U << SPA_MINBLOCKSHIFT)); \ (hdr)->b_lsize = ((x) >> SPA_MINBLOCKSHIFT); \ _NOTE(CONSTCOND) } while (0) #define HDR_SET_PSIZE(hdr, x) do { \ ASSERT(IS_P2ALIGNED((x), 1U << SPA_MINBLOCKSHIFT)); \ (hdr)->b_psize = ((x) >> SPA_MINBLOCKSHIFT); \ _NOTE(CONSTCOND) } while (0) #define HDR_GET_LSIZE(hdr) ((hdr)->b_lsize << SPA_MINBLOCKSHIFT) #define HDR_GET_PSIZE(hdr) ((hdr)->b_psize << SPA_MINBLOCKSHIFT) typedef struct arc_buf_hdr arc_buf_hdr_t; typedef struct arc_buf arc_buf_t; typedef struct arc_prune arc_prune_t; /* * Because the ARC can store encrypted data, errors (not due to bugs) may arise * while transforming data into its desired format - specifically, when * decrypting, the key may not be present, or the HMAC may not be correct * which signifies deliberate tampering with the on-disk state * (assuming that the checksum was correct). If any error occurs, the "buf" * parameter will be NULL. */ typedef void arc_read_done_func_t(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, arc_buf_t *buf, void *priv); typedef void arc_write_done_func_t(zio_t *zio, arc_buf_t *buf, void *priv); typedef void arc_prune_func_t(int64_t bytes, void *priv); /* Shared module parameters */ extern uint64_t zfs_arc_average_blocksize; /* generic arc_done_func_t's which you can use */ arc_read_done_func_t arc_bcopy_func; arc_read_done_func_t arc_getbuf_func; /* generic arc_prune_func_t wrapper for callbacks */ struct arc_prune { arc_prune_func_t *p_pfunc; void *p_private; uint64_t p_adjust; list_node_t p_node; - refcount_t p_refcnt; + zfs_refcount_t p_refcnt; }; typedef enum arc_strategy { ARC_STRATEGY_META_ONLY = 0, /* Evict only meta data buffers */ ARC_STRATEGY_META_BALANCED = 1, /* Evict data buffers if needed */ } arc_strategy_t; typedef enum arc_flags { /* * Public flags that can be passed into the ARC by external consumers. */ ARC_FLAG_WAIT = 1 << 0, /* perform sync I/O */ ARC_FLAG_NOWAIT = 1 << 1, /* perform async I/O */ ARC_FLAG_PREFETCH = 1 << 2, /* I/O is a prefetch */ ARC_FLAG_CACHED = 1 << 3, /* I/O was in cache */ ARC_FLAG_L2CACHE = 1 << 4, /* cache in L2ARC */ ARC_FLAG_PREDICTIVE_PREFETCH = 1 << 5, /* I/O from zfetch */ ARC_FLAG_PRESCIENT_PREFETCH = 1 << 6, /* long min lifespan */ /* * Private ARC flags. These flags are private ARC only flags that * will show up in b_flags in the arc_hdr_buf_t. These flags should * only be set by ARC code. */ ARC_FLAG_IN_HASH_TABLE = 1 << 7, /* buffer is hashed */ ARC_FLAG_IO_IN_PROGRESS = 1 << 8, /* I/O in progress */ ARC_FLAG_IO_ERROR = 1 << 9, /* I/O failed for buf */ ARC_FLAG_INDIRECT = 1 << 10, /* indirect block */ /* Indicates that block was read with ASYNC priority. */ ARC_FLAG_PRIO_ASYNC_READ = 1 << 11, ARC_FLAG_L2_WRITING = 1 << 12, /* write in progress */ ARC_FLAG_L2_EVICTED = 1 << 13, /* evicted during I/O */ ARC_FLAG_L2_WRITE_HEAD = 1 << 14, /* head of write list */ /* indicates that the buffer contains metadata (otherwise, data) */ ARC_FLAG_BUFC_METADATA = 1 << 15, /* Flags specifying whether optional hdr struct fields are defined */ ARC_FLAG_HAS_L1HDR = 1 << 16, ARC_FLAG_HAS_L2HDR = 1 << 17, /* * Indicates the arc_buf_hdr_t's b_pdata matches the on-disk data. * This allows the l2arc to use the blkptr's checksum to verify * the data without having to store the checksum in the hdr. */ ARC_FLAG_COMPRESSED_ARC = 1 << 18, ARC_FLAG_SHARED_DATA = 1 << 19, /* * The arc buffer's compression mode is stored in the top 7 bits of the * flags field, so these dummy flags are included so that MDB can * interpret the enum properly. */ ARC_FLAG_COMPRESS_0 = 1 << 24, ARC_FLAG_COMPRESS_1 = 1 << 25, ARC_FLAG_COMPRESS_2 = 1 << 26, ARC_FLAG_COMPRESS_3 = 1 << 27, ARC_FLAG_COMPRESS_4 = 1 << 28, ARC_FLAG_COMPRESS_5 = 1 << 29, ARC_FLAG_COMPRESS_6 = 1 << 30 } arc_flags_t; typedef enum arc_buf_flags { ARC_BUF_FLAG_SHARED = 1 << 0, ARC_BUF_FLAG_COMPRESSED = 1 << 1 } arc_buf_flags_t; struct arc_buf { arc_buf_hdr_t *b_hdr; arc_buf_t *b_next; kmutex_t b_evict_lock; void *b_data; arc_buf_flags_t b_flags; }; typedef enum arc_buf_contents { ARC_BUFC_INVALID, /* invalid type */ ARC_BUFC_DATA, /* buffer contains data */ ARC_BUFC_METADATA, /* buffer contains metadata */ ARC_BUFC_NUMTYPES } arc_buf_contents_t; /* * The following breakdows of arc_size exist for kstat only. */ typedef enum arc_space_type { ARC_SPACE_DATA, ARC_SPACE_META, ARC_SPACE_HDRS, ARC_SPACE_L2HDRS, ARC_SPACE_DBUF, ARC_SPACE_DNODE, ARC_SPACE_BONUS, ARC_SPACE_NUMTYPES } arc_space_type_t; typedef enum arc_state_type { ARC_STATE_ANON, ARC_STATE_MRU, ARC_STATE_MRU_GHOST, ARC_STATE_MFU, ARC_STATE_MFU_GHOST, ARC_STATE_L2C_ONLY, ARC_STATE_NUMTYPES } arc_state_type_t; typedef struct arc_buf_info { arc_state_type_t abi_state_type; arc_buf_contents_t abi_state_contents; uint64_t abi_state_index; uint32_t abi_flags; uint32_t abi_bufcnt; uint64_t abi_size; uint64_t abi_spa; uint64_t abi_access; uint32_t abi_mru_hits; uint32_t abi_mru_ghost_hits; uint32_t abi_mfu_hits; uint32_t abi_mfu_ghost_hits; uint32_t abi_l2arc_hits; uint32_t abi_holds; uint64_t abi_l2arc_dattr; uint64_t abi_l2arc_asize; enum zio_compress abi_l2arc_compress; } arc_buf_info_t; void arc_space_consume(uint64_t space, arc_space_type_t type); void arc_space_return(uint64_t space, arc_space_type_t type); boolean_t arc_is_metadata(arc_buf_t *buf); enum zio_compress arc_get_compression(arc_buf_t *buf); int arc_decompress(arc_buf_t *buf); arc_buf_t *arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size); arc_buf_t *arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, enum zio_compress compression_type); arc_buf_t *arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size); arc_buf_t *arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, enum zio_compress compression_type); void arc_return_buf(arc_buf_t *buf, void *tag); void arc_loan_inuse_buf(arc_buf_t *buf, void *tag); void arc_buf_destroy(arc_buf_t *buf, void *tag); void arc_buf_info(arc_buf_t *buf, arc_buf_info_t *abi, int state_index); int arc_buf_size(arc_buf_t *buf); int arc_buf_lsize(arc_buf_t *buf); void arc_buf_access(arc_buf_t *buf); void arc_release(arc_buf_t *buf, void *tag); int arc_released(arc_buf_t *buf); void arc_buf_freeze(arc_buf_t *buf); void arc_buf_thaw(arc_buf_t *buf); #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf); #endif int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, void *priv, zio_priority_t priority, int flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb); zio_t *arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, arc_write_done_func_t *child_ready, arc_write_done_func_t *physdone, arc_write_done_func_t *done, void *priv, zio_priority_t priority, int zio_flags, const zbookmark_phys_t *zb); arc_prune_t *arc_add_prune_callback(arc_prune_func_t *func, void *priv); void arc_remove_prune_callback(arc_prune_t *p); void arc_freed(spa_t *spa, const blkptr_t *bp); void arc_flush(spa_t *spa, boolean_t retry); void arc_tempreserve_clear(uint64_t reserve); int arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg); uint64_t arc_max_bytes(void); void arc_init(void); void arc_fini(void); /* * Level 2 ARC */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd); void l2arc_remove_vdev(vdev_t *vd); boolean_t l2arc_vdev_present(vdev_t *vd); void l2arc_init(void); void l2arc_fini(void); void l2arc_start(void); void l2arc_stop(void); #ifdef illumos #ifndef _KERNEL extern boolean_t arc_watch; extern int arc_procfd; #endif #endif /* illumos */ #ifdef __cplusplus } #endif #endif /* _SYS_ARC_H */