Index: head/sys/x86/x86/tsc.c =================================================================== --- head/sys/x86/x86/tsc.c (revision 352683) +++ head/sys/x86/x86/tsc.c (revision 352684) @@ -1,820 +1,834 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1998-2003 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_clock.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpufreq_if.h" uint64_t tsc_freq; int tsc_is_invariant; int tsc_perf_stat; static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag; SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN, &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant"); #ifdef SMP int smp_tsc; SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0, "Indicates whether the TSC is safe to use in SMP mode"); int smp_tsc_adjust = 0; SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN, &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP"); #endif static int tsc_shift = 1; SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN, &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency"); static int tsc_disabled; SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0, "Disable x86 Time Stamp Counter"); static int tsc_skip_calibration; SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &tsc_skip_calibration, 0, "Disable TSC frequency calibration"); static void tsc_freq_changed(void *arg, const struct cf_level *level, int status); static void tsc_freq_changing(void *arg, const struct cf_level *level, int *status); static unsigned tsc_get_timecount(struct timecounter *tc); static inline unsigned tsc_get_timecount_low(struct timecounter *tc); static unsigned tsc_get_timecount_lfence(struct timecounter *tc); static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc); static unsigned tsc_get_timecount_mfence(struct timecounter *tc); static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc); static void tsc_levels_changed(void *arg, int unit); static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc); #ifdef COMPAT_FREEBSD32 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32, struct timecounter *tc); #endif static struct timecounter tsc_timecounter = { .tc_get_timecount = tsc_get_timecount, .tc_counter_mask = ~0u, .tc_name = "TSC", .tc_quality = 800, /* adjusted in code */ .tc_fill_vdso_timehands = x86_tsc_vdso_timehands, #ifdef COMPAT_FREEBSD32 .tc_fill_vdso_timehands32 = x86_tsc_vdso_timehands32, #endif }; static void tsc_freq_vmware(void) { u_int regs[4]; if (hv_high >= 0x40000010) { do_cpuid(0x40000010, regs); tsc_freq = regs[0] * 1000; } else { vmware_hvcall(VMW_HVCMD_GETHZ, regs); if (regs[1] != UINT_MAX) tsc_freq = regs[0] | ((uint64_t)regs[1] << 32); } tsc_is_invariant = 1; } /* * Calculate TSC frequency using information from the CPUID leaf 0x15 - * 'Time Stamp Counter and Nominal Core Crystal Clock'. It should be + * 'Time Stamp Counter and Nominal Core Crystal Clock'. If leaf 0x15 + * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor + * Frequency Information'. Leaf 0x16 is described in the SDM as + * informational only, but if 0x15 did not work, and TSC calibration + * is disabled, it is the best we can get at all. It should still be * an improvement over the parsing of the CPU model name in * tsc_freq_intel(), when available. */ static bool tsc_freq_cpuid(void) { u_int regs[4]; if (cpu_high < 0x15) return (false); do_cpuid(0x15, regs); - if (regs[0] == 0 || regs[1] == 0 || regs[2] == 0) + if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) { + tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0]; + return (true); + } + + if (cpu_high < 0x16) return (false); - tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0]; - return (true); + do_cpuid(0x16, regs); + if (regs[0] != 0) { + tsc_freq = (uint64_t)regs[0] * 1000000; + return (true); + } + + return (false); } static void tsc_freq_intel(void) { char brand[48]; u_int regs[4]; uint64_t freq; char *p; u_int i; /* * Intel Processor Identification and the CPUID Instruction * Application Note 485. * http://www.intel.com/assets/pdf/appnote/241618.pdf */ if (cpu_exthigh >= 0x80000004) { p = brand; for (i = 0x80000002; i < 0x80000005; i++) { do_cpuid(i, regs); memcpy(p, regs, sizeof(regs)); p += sizeof(regs); } p = NULL; for (i = 0; i < sizeof(brand) - 1; i++) if (brand[i] == 'H' && brand[i + 1] == 'z') p = brand + i; if (p != NULL) { p -= 5; switch (p[4]) { case 'M': i = 1; break; case 'G': i = 1000; break; case 'T': i = 1000000; break; default: return; } #define C2D(c) ((c) - '0') if (p[1] == '.') { freq = C2D(p[0]) * 1000; freq += C2D(p[2]) * 100; freq += C2D(p[3]) * 10; freq *= i * 1000; } else { freq = C2D(p[0]) * 1000; freq += C2D(p[1]) * 100; freq += C2D(p[2]) * 10; freq += C2D(p[3]); freq *= i * 1000000; } #undef C2D tsc_freq = freq; } } } static void probe_tsc_freq(void) { u_int regs[4]; uint64_t tsc1, tsc2; uint16_t bootflags; if (cpu_high >= 6) { do_cpuid(6, regs); if ((regs[2] & CPUID_PERF_STAT) != 0) { /* * XXX Some emulators expose host CPUID without actual * support for these MSRs. We must test whether they * really work. */ wrmsr(MSR_MPERF, 0); wrmsr(MSR_APERF, 0); DELAY(10); if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0) tsc_perf_stat = 1; } } if (vm_guest == VM_GUEST_VMWARE) { tsc_freq_vmware(); return; } switch (cpu_vendor_id) { case CPU_VENDOR_AMD: if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 || (vm_guest == VM_GUEST_NO && CPUID_TO_FAMILY(cpu_id) >= 0x10)) tsc_is_invariant = 1; if (cpu_feature & CPUID_SSE2) { tsc_timecounter.tc_get_timecount = tsc_get_timecount_mfence; } break; case CPU_VENDOR_INTEL: if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 || (vm_guest == VM_GUEST_NO && ((CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) >= 0xe) || (CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x3)))) tsc_is_invariant = 1; if (cpu_feature & CPUID_SSE2) { tsc_timecounter.tc_get_timecount = tsc_get_timecount_lfence; } break; case CPU_VENDOR_CENTAUR: if (vm_guest == VM_GUEST_NO && CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) >= 0xf && (rdmsr(0x1203) & 0x100000000ULL) == 0) tsc_is_invariant = 1; if (cpu_feature & CPUID_SSE2) { tsc_timecounter.tc_get_timecount = tsc_get_timecount_lfence; } break; } if (!TUNABLE_INT_FETCH("machdep.disable_tsc_calibration", &tsc_skip_calibration)) { /* * User did not give the order about calibration. * If he did, we do not try to guess. * * Otherwise, if ACPI FADT reports that the platform * is legacy-free and CPUID provides TSC frequency, * use it. The calibration could fail anyway since * ISA timer can be absent or power gated. */ if (acpi_get_fadt_bootflags(&bootflags) && (bootflags & ACPI_FADT_LEGACY_DEVICES) == 0 && tsc_freq_cpuid()) { printf("Skipping TSC calibration since no legacy " "devices reported by FADT and CPUID works\n"); tsc_skip_calibration = 1; } } if (tsc_skip_calibration) { if (tsc_freq_cpuid()) ; else if (cpu_vendor_id == CPU_VENDOR_INTEL) tsc_freq_intel(); } else { if (bootverbose) printf("Calibrating TSC clock ... "); tsc1 = rdtsc(); DELAY(1000000); tsc2 = rdtsc(); tsc_freq = tsc2 - tsc1; } if (bootverbose) printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq); } void init_TSC(void) { if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled) return; #ifdef __i386__ /* The TSC is known to be broken on certain CPUs. */ switch (cpu_vendor_id) { case CPU_VENDOR_AMD: switch (cpu_id & 0xFF0) { case 0x500: /* K5 Model 0 */ return; } break; case CPU_VENDOR_CENTAUR: switch (cpu_id & 0xff0) { case 0x540: /* * http://www.centtech.com/c6_data_sheet.pdf * * I-12 RDTSC may return incoherent values in EDX:EAX * I-13 RDTSC hangs when certain event counters are used */ return; } break; case CPU_VENDOR_NSC: switch (cpu_id & 0xff0) { case 0x540: if ((cpu_id & CPUID_STEPPING) == 0) return; break; } break; } #endif probe_tsc_freq(); /* * Inform CPU accounting about our boot-time clock rate. This will * be updated if someone loads a cpufreq driver after boot that * discovers a new max frequency. */ if (tsc_freq != 0) set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant); if (tsc_is_invariant) return; /* Register to find out about changes in CPU frequency. */ tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change, tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST); tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change, tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST); tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed, tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY); } #ifdef SMP /* * RDTSC is not a serializing instruction, and does not drain * instruction stream, so we need to drain the stream before executing * it. It could be fixed by use of RDTSCP, except the instruction is * not available everywhere. * * Use CPUID for draining in the boot-time SMP constistency test. The * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel * and VIA) when SSE2 is present, and nothing on older machines which * also do not issue RDTSC prematurely. There, testing for SSE2 and * vendor is too cumbersome, and we learn about TSC presence from CPUID. * * Do not use do_cpuid(), since we do not need CPUID results, which * have to be written into memory with do_cpuid(). */ #define TSC_READ(x) \ static void \ tsc_read_##x(void *arg) \ { \ uint64_t *tsc = arg; \ u_int cpu = PCPU_GET(cpuid); \ \ __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx"); \ tsc[cpu * 3 + x] = rdtsc(); \ } TSC_READ(0) TSC_READ(1) TSC_READ(2) #undef TSC_READ #define N 1000 static void comp_smp_tsc(void *arg) { uint64_t *tsc; int64_t d1, d2; u_int cpu = PCPU_GET(cpuid); u_int i, j, size; size = (mp_maxid + 1) * 3; for (i = 0, tsc = arg; i < N; i++, tsc += size) CPU_FOREACH(j) { if (j == cpu) continue; d1 = tsc[cpu * 3 + 1] - tsc[j * 3]; d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1]; if (d1 <= 0 || d2 <= 0) { smp_tsc = 0; return; } } } static void adj_smp_tsc(void *arg) { uint64_t *tsc; int64_t d, min, max; u_int cpu = PCPU_GET(cpuid); u_int first, i, size; first = CPU_FIRST(); if (cpu == first) return; min = INT64_MIN; max = INT64_MAX; size = (mp_maxid + 1) * 3; for (i = 0, tsc = arg; i < N; i++, tsc += size) { d = tsc[first * 3] - tsc[cpu * 3 + 1]; if (d > min) min = d; d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2]; if (d > min) min = d; d = tsc[first * 3 + 1] - tsc[cpu * 3]; if (d < max) max = d; d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1]; if (d < max) max = d; } if (min > max) return; d = min / 2 + max / 2; __asm __volatile ( "movl $0x10, %%ecx\n\t" "rdmsr\n\t" "addl %%edi, %%eax\n\t" "adcl %%esi, %%edx\n\t" "wrmsr\n" : /* No output */ : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32)) : "ax", "cx", "dx", "cc" ); } static int test_tsc(int adj_max_count) { uint64_t *data, *tsc; u_int i, size, adj; if ((!smp_tsc && !tsc_is_invariant) || vm_guest) return (-100); size = (mp_maxid + 1) * 3; data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK); adj = 0; retry: for (i = 0, tsc = data; i < N; i++, tsc += size) smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc); smp_tsc = 1; /* XXX */ smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc, smp_no_rendezvous_barrier, data); if (!smp_tsc && adj < adj_max_count) { adj++; smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc, smp_no_rendezvous_barrier, data); goto retry; } free(data, M_TEMP); if (bootverbose) printf("SMP: %sed TSC synchronization test%s\n", smp_tsc ? "pass" : "fail", adj > 0 ? " after adjustment" : ""); if (smp_tsc && tsc_is_invariant) { switch (cpu_vendor_id) { case CPU_VENDOR_AMD: /* * Starting with Family 15h processors, TSC clock * source is in the north bridge. Check whether * we have a single-socket/multi-core platform. * XXX Need more work for complex cases. */ if (CPUID_TO_FAMILY(cpu_id) < 0x15 || (amd_feature2 & AMDID2_CMP) == 0 || smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1) break; return (1000); case CPU_VENDOR_INTEL: /* * XXX Assume Intel platforms have synchronized TSCs. */ return (1000); } return (800); } return (-100); } #undef N #endif /* SMP */ static void init_TSC_tc(void) { uint64_t max_freq; int shift; if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled) return; /* * Limit timecounter frequency to fit in an int and prevent it from * overflowing too fast. */ max_freq = UINT_MAX; /* * We can not use the TSC if we support APM. Precise timekeeping * on an APM'ed machine is at best a fools pursuit, since * any and all of the time spent in various SMM code can't * be reliably accounted for. Reading the RTC is your only * source of reliable time info. The i8254 loses too, of course, * but we need to have some kind of time... * We don't know at this point whether APM is going to be used * or not, nor when it might be activated. Play it safe. */ if (power_pm_get_type() == POWER_PM_TYPE_APM) { tsc_timecounter.tc_quality = -1000; if (bootverbose) printf("TSC timecounter disabled: APM enabled.\n"); goto init; } /* * Intel CPUs without a C-state invariant TSC can stop the TSC * in either C2 or C3. Disable use of C2 and C3 while using * the TSC as the timecounter. The timecounter can be changed * to enable C2 and C3. * * Note that the TSC is used as the cputicker for computing * thread runtime regardless of the timecounter setting, so * using an alternate timecounter and enabling C2 or C3 can * result incorrect runtimes for kernel idle threads (but not * for any non-idle threads). */ if (cpu_vendor_id == CPU_VENDOR_INTEL && (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) { tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP; if (bootverbose) printf("TSC timecounter disables C2 and C3.\n"); } /* * We can not use the TSC in SMP mode unless the TSCs on all CPUs * are synchronized. If the user is sure that the system has * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a * non-zero value. The TSC seems unreliable in virtualized SMP * environments, so it is set to a negative quality in those cases. */ #ifdef SMP if (mp_ncpus > 1) tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust); else #endif /* SMP */ if (tsc_is_invariant) tsc_timecounter.tc_quality = 1000; max_freq >>= tsc_shift; init: for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++) ; if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) { if (cpu_vendor_id == CPU_VENDOR_AMD) { tsc_timecounter.tc_get_timecount = shift > 0 ? tsc_get_timecount_low_mfence : tsc_get_timecount_mfence; } else { tsc_timecounter.tc_get_timecount = shift > 0 ? tsc_get_timecount_low_lfence : tsc_get_timecount_lfence; } } else { tsc_timecounter.tc_get_timecount = shift > 0 ? tsc_get_timecount_low : tsc_get_timecount; } if (shift > 0) { tsc_timecounter.tc_name = "TSC-low"; if (bootverbose) printf("TSC timecounter discards lower %d bit(s)\n", shift); } if (tsc_freq != 0) { tsc_timecounter.tc_frequency = tsc_freq >> shift; tsc_timecounter.tc_priv = (void *)(intptr_t)shift; tc_init(&tsc_timecounter); } } SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL); void resume_TSC(void) { #ifdef SMP int quality; /* If TSC was not good on boot, it is unlikely to become good now. */ if (tsc_timecounter.tc_quality < 0) return; /* Nothing to do with UP. */ if (mp_ncpus < 2) return; /* * If TSC was good, a single synchronization should be enough, * but honour smp_tsc_adjust if it's set. */ quality = test_tsc(MAX(smp_tsc_adjust, 1)); if (quality != tsc_timecounter.tc_quality) { printf("TSC timecounter quality changed: %d -> %d\n", tsc_timecounter.tc_quality, quality); tsc_timecounter.tc_quality = quality; } #endif /* SMP */ } /* * When cpufreq levels change, find out about the (new) max frequency. We * use this to update CPU accounting in case it got a lower estimate at boot. */ static void tsc_levels_changed(void *arg, int unit) { device_t cf_dev; struct cf_level *levels; int count, error; uint64_t max_freq; /* Only use values from the first CPU, assuming all are equal. */ if (unit != 0) return; /* Find the appropriate cpufreq device instance. */ cf_dev = devclass_get_device(devclass_find("cpufreq"), unit); if (cf_dev == NULL) { printf("tsc_levels_changed() called but no cpufreq device?\n"); return; } /* Get settings from the device and find the max frequency. */ count = 64; levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); if (levels == NULL) return; error = CPUFREQ_LEVELS(cf_dev, levels, &count); if (error == 0 && count != 0) { max_freq = (uint64_t)levels[0].total_set.freq * 1000000; set_cputicker(rdtsc, max_freq, 1); } else printf("tsc_levels_changed: no max freq found\n"); free(levels, M_TEMP); } /* * If the TSC timecounter is in use, veto the pending change. It may be * possible in the future to handle a dynamically-changing timecounter rate. */ static void tsc_freq_changing(void *arg, const struct cf_level *level, int *status) { if (*status != 0 || timecounter != &tsc_timecounter) return; printf("timecounter TSC must not be in use when " "changing frequencies; change denied\n"); *status = EBUSY; } /* Update TSC freq with the value indicated by the caller. */ static void tsc_freq_changed(void *arg, const struct cf_level *level, int status) { uint64_t freq; /* If there was an error during the transition, don't do anything. */ if (tsc_disabled || status != 0) return; /* Total setting for this level gives the new frequency in MHz. */ freq = (uint64_t)level->total_set.freq * 1000000; atomic_store_rel_64(&tsc_freq, freq); tsc_timecounter.tc_frequency = freq >> (int)(intptr_t)tsc_timecounter.tc_priv; } static int sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS) { int error; uint64_t freq; freq = atomic_load_acq_64(&tsc_freq); if (freq == 0) return (EOPNOTSUPP); error = sysctl_handle_64(oidp, &freq, 0, req); if (error == 0 && req->newptr != NULL) { atomic_store_rel_64(&tsc_freq, freq); atomic_store_rel_64(&tsc_timecounter.tc_frequency, freq >> (int)(intptr_t)tsc_timecounter.tc_priv); } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW, 0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency"); static u_int tsc_get_timecount(struct timecounter *tc __unused) { return (rdtsc32()); } static inline u_int tsc_get_timecount_low(struct timecounter *tc) { uint32_t rv; __asm __volatile("rdtsc; shrd %%cl, %%edx, %0" : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx"); return (rv); } static u_int tsc_get_timecount_lfence(struct timecounter *tc __unused) { lfence(); return (rdtsc32()); } static u_int tsc_get_timecount_low_lfence(struct timecounter *tc) { lfence(); return (tsc_get_timecount_low(tc)); } static u_int tsc_get_timecount_mfence(struct timecounter *tc __unused) { mfence(); return (rdtsc32()); } static u_int tsc_get_timecount_low_mfence(struct timecounter *tc) { mfence(); return (tsc_get_timecount_low(tc)); } static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc) { vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC; vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv; vdso_th->th_x86_hpet_idx = 0xffffffff; bzero(vdso_th->th_res, sizeof(vdso_th->th_res)); return (1); } #ifdef COMPAT_FREEBSD32 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32, struct timecounter *tc) { vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC; vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv; vdso_th32->th_x86_hpet_idx = 0xffffffff; bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res)); return (1); } #endif