Index: head/sys/ddb/db_ps.c =================================================================== --- head/sys/ddb/db_ps.c (revision 351571) +++ head/sys/ddb/db_ps.c (revision 351572) @@ -1,525 +1,537 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define PRINT_NONE 0 #define PRINT_ARGS 1 static void dumpthread(volatile struct proc *p, volatile struct thread *td, int all); +static void db_ps_proc(struct proc *p); static int ps_mode; /* * At least one non-optional show-command must be implemented using * DB_SHOW_ALL_COMMAND() so that db_show_all_cmd_set gets created. * Here is one. */ DB_SHOW_ALL_COMMAND(procs, db_procs_cmd) { db_ps(addr, have_addr, count, modif); } static void dump_args(volatile struct proc *p) { char *args; int i, len; if (p->p_args == NULL) return; args = p->p_args->ar_args; len = (int)p->p_args->ar_length; for (i = 0; i < len; i++) { if (args[i] == '\0') db_printf(" "); else db_printf("%c", args[i]); } } /* * Layout: * - column counts * - header * - single-threaded process * - multi-threaded process * - thread in a MT process * * 1 2 3 4 5 6 7 * 1234567890123456789012345678901234567890123456789012345678901234567890 * pid ppid pgrp uid state wmesg wchan cmd * * (threaded) * * * For machines with 64-bit pointers, we expand the wchan field 8 more * characters. */ void db_ps(db_expr_t addr, bool hasaddr, db_expr_t count, char *modif) { - volatile struct proc *p, *pp; - volatile struct thread *td; - struct ucred *cred; - struct pgrp *pgrp; - char state[9]; - int np, rflag, sflag, dflag, lflag, wflag; + struct proc *p; + int i, j; ps_mode = modif[0] == 'a' ? PRINT_ARGS : PRINT_NONE; - np = nprocs; - if (!LIST_EMPTY(&allproc)) - p = LIST_FIRST(&allproc); - else - p = &proc0; - #ifdef __LP64__ db_printf(" pid ppid pgrp uid state wmesg wchan cmd\n"); #else db_printf(" pid ppid pgrp uid state wmesg wchan cmd\n"); #endif - while (--np >= 0 && !db_pager_quit) { - if (p == NULL) { - db_printf("oops, ran out of processes early!\n"); - break; + + if (!LIST_EMPTY(&allproc)) + p = LIST_FIRST(&allproc); + else + p = &proc0; + for (; p != NULL && !db_pager_quit; p = LIST_NEXT(p, p_list)) + db_ps_proc(p); + + /* + * Do zombies. + */ + for (i = 0; i < pidhashlock + 1 && !db_pager_quit; i++) { + for (j = i; j <= pidhash && !db_pager_quit; j += pidhashlock + 1) { + LIST_FOREACH(p, &pidhashtbl[j], p_hash) { + if (p->p_state == PRS_ZOMBIE) + db_ps_proc(p); + } } - pp = p->p_pptr; - if (pp == NULL) - pp = p; + } +} - cred = p->p_ucred; - pgrp = p->p_pgrp; - db_printf("%5d %5d %5d %5d ", p->p_pid, pp->p_pid, - pgrp != NULL ? pgrp->pg_id : 0, - cred != NULL ? cred->cr_ruid : 0); +static void +db_ps_proc(struct proc *p) +{ + volatile struct proc *pp; + volatile struct thread *td; + struct ucred *cred; + struct pgrp *pgrp; + char state[9]; + int rflag, sflag, dflag, lflag, wflag; - /* Determine our primary process state. */ - switch (p->p_state) { - case PRS_NORMAL: - if (P_SHOULDSTOP(p)) - state[0] = 'T'; - else { - /* - * One of D, L, R, S, W. For a - * multithreaded process we will use - * the state of the thread with the - * highest precedence. The - * precendence order from high to low - * is R, L, D, S, W. If no thread is - * in a sane state we use '?' for our - * primary state. - */ - rflag = sflag = dflag = lflag = wflag = 0; - FOREACH_THREAD_IN_PROC(p, td) { - if (td->td_state == TDS_RUNNING || - td->td_state == TDS_RUNQ || - td->td_state == TDS_CAN_RUN) - rflag++; - if (TD_ON_LOCK(td)) - lflag++; - if (TD_IS_SLEEPING(td)) { - if (!(td->td_flags & TDF_SINTR)) - dflag++; - else - sflag++; - } - if (TD_AWAITING_INTR(td)) - wflag++; + pp = p->p_pptr; + if (pp == NULL) + pp = p; + + cred = p->p_ucred; + pgrp = p->p_pgrp; + db_printf("%5d %5d %5d %5d ", p->p_pid, pp->p_pid, + pgrp != NULL ? pgrp->pg_id : 0, + cred != NULL ? cred->cr_ruid : 0); + + /* Determine our primary process state. */ + switch (p->p_state) { + case PRS_NORMAL: + if (P_SHOULDSTOP(p)) + state[0] = 'T'; + else { + /* + * One of D, L, R, S, W. For a + * multithreaded process we will use + * the state of the thread with the + * highest precedence. The + * precendence order from high to low + * is R, L, D, S, W. If no thread is + * in a sane state we use '?' for our + * primary state. + */ + rflag = sflag = dflag = lflag = wflag = 0; + FOREACH_THREAD_IN_PROC(p, td) { + if (td->td_state == TDS_RUNNING || + td->td_state == TDS_RUNQ || + td->td_state == TDS_CAN_RUN) + rflag++; + if (TD_ON_LOCK(td)) + lflag++; + if (TD_IS_SLEEPING(td)) { + if (!(td->td_flags & TDF_SINTR)) + dflag++; + else + sflag++; } - if (rflag) - state[0] = 'R'; - else if (lflag) - state[0] = 'L'; - else if (dflag) - state[0] = 'D'; - else if (sflag) - state[0] = 'S'; - else if (wflag) - state[0] = 'W'; - else - state[0] = '?'; + if (TD_AWAITING_INTR(td)) + wflag++; } - break; - case PRS_NEW: - state[0] = 'N'; - break; - case PRS_ZOMBIE: - state[0] = 'Z'; - break; - default: - state[0] = 'U'; - break; + if (rflag) + state[0] = 'R'; + else if (lflag) + state[0] = 'L'; + else if (dflag) + state[0] = 'D'; + else if (sflag) + state[0] = 'S'; + else if (wflag) + state[0] = 'W'; + else + state[0] = '?'; } - state[1] = '\0'; + break; + case PRS_NEW: + state[0] = 'N'; + break; + case PRS_ZOMBIE: + state[0] = 'Z'; + break; + default: + state[0] = 'U'; + break; + } + state[1] = '\0'; - /* Additional process state flags. */ - if (!(p->p_flag & P_INMEM)) - strlcat(state, "W", sizeof(state)); - if (p->p_flag & P_TRACED) - strlcat(state, "X", sizeof(state)); - if (p->p_flag & P_WEXIT && p->p_state != PRS_ZOMBIE) - strlcat(state, "E", sizeof(state)); - if (p->p_flag & P_PPWAIT) - strlcat(state, "V", sizeof(state)); - if (p->p_flag & P_SYSTEM || p->p_lock > 0) - strlcat(state, "L", sizeof(state)); - if (p->p_pgrp != NULL && p->p_session != NULL && - SESS_LEADER(p)) - strlcat(state, "s", sizeof(state)); - /* Cheated here and didn't compare pgid's. */ - if (p->p_flag & P_CONTROLT) - strlcat(state, "+", sizeof(state)); - if (cred != NULL && jailed(cred)) - strlcat(state, "J", sizeof(state)); - db_printf(" %-6.6s ", state); - if (p->p_flag & P_HADTHREADS) { + /* Additional process state flags. */ + if (!(p->p_flag & P_INMEM)) + strlcat(state, "W", sizeof(state)); + if (p->p_flag & P_TRACED) + strlcat(state, "X", sizeof(state)); + if (p->p_flag & P_WEXIT && p->p_state != PRS_ZOMBIE) + strlcat(state, "E", sizeof(state)); + if (p->p_flag & P_PPWAIT) + strlcat(state, "V", sizeof(state)); + if (p->p_flag & P_SYSTEM || p->p_lock > 0) + strlcat(state, "L", sizeof(state)); + if (p->p_pgrp != NULL && p->p_session != NULL && + SESS_LEADER(p)) + strlcat(state, "s", sizeof(state)); + /* Cheated here and didn't compare pgid's. */ + if (p->p_flag & P_CONTROLT) + strlcat(state, "+", sizeof(state)); + if (cred != NULL && jailed(cred)) + strlcat(state, "J", sizeof(state)); + db_printf(" %-6.6s ", state); + if (p->p_flag & P_HADTHREADS) { #ifdef __LP64__ - db_printf(" (threaded) "); + db_printf(" (threaded) "); #else - db_printf(" (threaded) "); + db_printf(" (threaded) "); #endif - if (p->p_flag & P_SYSTEM) - db_printf("["); - db_printf("%s", p->p_comm); - if (p->p_flag & P_SYSTEM) - db_printf("]"); - if (ps_mode == PRINT_ARGS) { - db_printf(" "); - dump_args(p); - } - db_printf("\n"); + if (p->p_flag & P_SYSTEM) + db_printf("["); + db_printf("%s", p->p_comm); + if (p->p_flag & P_SYSTEM) + db_printf("]"); + if (ps_mode == PRINT_ARGS) { + db_printf(" "); + dump_args(p); } - FOREACH_THREAD_IN_PROC(p, td) { - dumpthread(p, td, p->p_flag & P_HADTHREADS); - if (db_pager_quit) - break; - } - - p = LIST_NEXT(p, p_list); - if (p == NULL && np > 0) - p = LIST_FIRST(&zombproc); + db_printf("\n"); + } + FOREACH_THREAD_IN_PROC(p, td) { + dumpthread(p, td, p->p_flag & P_HADTHREADS); + if (db_pager_quit) + break; } } static void dumpthread(volatile struct proc *p, volatile struct thread *td, int all) { char state[9], wprefix; const char *wmesg; void *wchan; if (all) { db_printf("%6d ", td->td_tid); switch (td->td_state) { case TDS_RUNNING: snprintf(state, sizeof(state), "Run"); break; case TDS_RUNQ: snprintf(state, sizeof(state), "RunQ"); break; case TDS_CAN_RUN: snprintf(state, sizeof(state), "CanRun"); break; case TDS_INACTIVE: snprintf(state, sizeof(state), "Inactv"); break; case TDS_INHIBITED: state[0] = '\0'; if (TD_ON_LOCK(td)) strlcat(state, "L", sizeof(state)); if (TD_IS_SLEEPING(td)) { if (td->td_flags & TDF_SINTR) strlcat(state, "S", sizeof(state)); else strlcat(state, "D", sizeof(state)); } if (TD_IS_SWAPPED(td)) strlcat(state, "W", sizeof(state)); if (TD_AWAITING_INTR(td)) strlcat(state, "I", sizeof(state)); if (TD_IS_SUSPENDED(td)) strlcat(state, "s", sizeof(state)); if (state[0] != '\0') break; default: snprintf(state, sizeof(state), "???"); } db_printf(" %-6.6s ", state); } wprefix = ' '; if (TD_ON_LOCK(td)) { wprefix = '*'; wmesg = td->td_lockname; wchan = td->td_blocked; } else if (TD_ON_SLEEPQ(td)) { wmesg = td->td_wmesg; wchan = td->td_wchan; } else if (TD_IS_RUNNING(td)) { snprintf(state, sizeof(state), "CPU %d", td->td_oncpu); wmesg = state; wchan = NULL; } else { wmesg = ""; wchan = NULL; } db_printf("%c%-7.7s ", wprefix, wmesg); if (wchan == NULL) #ifdef __LP64__ db_printf("%18s ", ""); #else db_printf("%10s ", ""); #endif else db_printf("%p ", wchan); if (p->p_flag & P_SYSTEM) db_printf("["); if (td->td_name[0] != '\0') db_printf("%s", td->td_name); else db_printf("%s", td->td_proc->p_comm); if (p->p_flag & P_SYSTEM) db_printf("]"); if (ps_mode == PRINT_ARGS && all == 0) { db_printf(" "); dump_args(p); } db_printf("\n"); } DB_SHOW_COMMAND(thread, db_show_thread) { struct thread *td; struct lock_object *lock; u_int delta; bool comma; /* Determine which thread to examine. */ if (have_addr) td = db_lookup_thread(addr, false); else td = kdb_thread; lock = (struct lock_object *)td->td_lock; db_printf("Thread %d at %p:\n", td->td_tid, td); db_printf(" proc (pid %d): %p\n", td->td_proc->p_pid, td->td_proc); if (td->td_name[0] != '\0') db_printf(" name: %s\n", td->td_name); db_printf(" pcb: %p\n", td->td_pcb); db_printf(" stack: %p-%p\n", (void *)td->td_kstack, (void *)(td->td_kstack + td->td_kstack_pages * PAGE_SIZE - 1)); db_printf(" flags: %#x ", td->td_flags); db_printf(" pflags: %#x\n", td->td_pflags); db_printf(" state: "); switch (td->td_state) { case TDS_INACTIVE: db_printf("INACTIVE\n"); break; case TDS_CAN_RUN: db_printf("CAN RUN\n"); break; case TDS_RUNQ: db_printf("RUNQ\n"); break; case TDS_RUNNING: db_printf("RUNNING (CPU %d)\n", td->td_oncpu); break; case TDS_INHIBITED: db_printf("INHIBITED: {"); comma = false; if (TD_IS_SLEEPING(td)) { db_printf("SLEEPING"); comma = true; } if (TD_IS_SUSPENDED(td)) { if (comma) db_printf(", "); db_printf("SUSPENDED"); comma = true; } if (TD_IS_SWAPPED(td)) { if (comma) db_printf(", "); db_printf("SWAPPED"); comma = true; } if (TD_ON_LOCK(td)) { if (comma) db_printf(", "); db_printf("LOCK"); comma = true; } if (TD_AWAITING_INTR(td)) { if (comma) db_printf(", "); db_printf("IWAIT"); } db_printf("}\n"); break; default: db_printf("??? (%#x)\n", td->td_state); break; } if (TD_ON_LOCK(td)) db_printf(" lock: %s turnstile: %p\n", td->td_lockname, td->td_blocked); if (TD_ON_SLEEPQ(td)) db_printf( " wmesg: %s wchan: %p sleeptimo %lx. %jx (curr %lx. %jx)\n", td->td_wmesg, td->td_wchan, (long)sbttobt(td->td_sleeptimo).sec, (uintmax_t)sbttobt(td->td_sleeptimo).frac, (long)sbttobt(sbinuptime()).sec, (uintmax_t)sbttobt(sbinuptime()).frac); db_printf(" priority: %d\n", td->td_priority); db_printf(" container lock: %s (%p)\n", lock->lo_name, lock); if (td->td_swvoltick != 0) { delta = ticks - td->td_swvoltick; db_printf(" last voluntary switch: %u.%03u s ago\n", delta / hz, (delta % hz) * 1000 / hz); } if (td->td_swinvoltick != 0) { delta = ticks - td->td_swinvoltick; db_printf(" last involuntary switch: %u.%03u s ago\n", delta / hz, (delta % hz) * 1000 / hz); } } DB_SHOW_COMMAND(proc, db_show_proc) { struct thread *td; struct proc *p; int i; /* Determine which process to examine. */ if (have_addr) p = db_lookup_proc(addr); else p = kdb_thread->td_proc; db_printf("Process %d (%s) at %p:\n", p->p_pid, p->p_comm, p); db_printf(" state: "); switch (p->p_state) { case PRS_NEW: db_printf("NEW\n"); break; case PRS_NORMAL: db_printf("NORMAL\n"); break; case PRS_ZOMBIE: db_printf("ZOMBIE\n"); break; default: db_printf("??? (%#x)\n", p->p_state); } if (p->p_ucred != NULL) { db_printf(" uid: %d gids: ", p->p_ucred->cr_uid); for (i = 0; i < p->p_ucred->cr_ngroups; i++) { db_printf("%d", p->p_ucred->cr_groups[i]); if (i < (p->p_ucred->cr_ngroups - 1)) db_printf(", "); } db_printf("\n"); } if (p->p_pptr != NULL) db_printf(" parent: pid %d at %p\n", p->p_pptr->p_pid, p->p_pptr); if (p->p_leader != NULL && p->p_leader != p) db_printf(" leader: pid %d at %p\n", p->p_leader->p_pid, p->p_leader); if (p->p_sysent != NULL) db_printf(" ABI: %s\n", p->p_sysent->sv_name); if (p->p_args != NULL) { db_printf(" arguments: "); dump_args(p); db_printf("\n"); } db_printf(" reaper: %p reapsubtree: %d\n", p->p_reaper, p->p_reapsubtree); db_printf(" sigparent: %d\n", p->p_sigparent); db_printf(" vmspace: %p\n", p->p_vmspace); db_printf(" (map %p)\n", (p->p_vmspace != NULL) ? &p->p_vmspace->vm_map : 0); db_printf(" (map.pmap %p)\n", (p->p_vmspace != NULL) ? &p->p_vmspace->vm_map.pmap : 0); db_printf(" (pmap %p)\n", (p->p_vmspace != NULL) ? &p->p_vmspace->vm_pmap : 0); db_printf(" threads: %d\n", p->p_numthreads); FOREACH_THREAD_IN_PROC(p, td) { dumpthread(p, td, 1); if (db_pager_quit) break; } } void db_findstack_cmd(db_expr_t addr, bool have_addr, db_expr_t dummy3 __unused, char *dummy4 __unused) { struct proc *p; struct thread *td; vm_offset_t saddr; if (have_addr) saddr = addr; else { db_printf("Usage: findstack
\n"); return; } FOREACH_PROC_IN_SYSTEM(p) { FOREACH_THREAD_IN_PROC(p, td) { if (td->td_kstack <= saddr && saddr < td->td_kstack + PAGE_SIZE * td->td_kstack_pages) { db_printf("Thread %p\n", td); return; } } } } Index: head/sys/ddb/db_thread.c =================================================================== --- head/sys/ddb/db_thread.c (revision 351571) +++ head/sys/ddb/db_thread.c (revision 351572) @@ -1,164 +1,156 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include void db_print_thread(void) { pid_t pid; pid = -1; if (kdb_thread->td_proc != NULL) pid = kdb_thread->td_proc->p_pid; db_printf("[ thread pid %d tid %ld ]\n", pid, (long)kdb_thread->td_tid); } void db_set_thread(db_expr_t tid, bool hastid, db_expr_t cnt, char *mod) { struct thread *thr; int err; if (hastid) { thr = db_lookup_thread(tid, false); if (thr != NULL) { err = kdb_thr_select(thr); if (err != 0) { db_printf("unable to switch to thread %ld\n", (long)thr->td_tid); return; } db_dot = PC_REGS(); } else { db_printf("%d: invalid thread\n", (int)tid); return; } } db_print_thread(); db_print_loc_and_inst(PC_REGS()); } void db_show_threads(db_expr_t addr, bool hasaddr, db_expr_t cnt, char *mod) { jmp_buf jb; void *prev_jb; struct thread *thr; thr = kdb_thr_first(); while (!db_pager_quit && thr != NULL) { db_printf(" %6ld (%p) (stack %p) ", (long)thr->td_tid, thr, (void *)thr->td_kstack); prev_jb = kdb_jmpbuf(jb); if (setjmp(jb) == 0) { if (db_trace_thread(thr, 1) != 0) db_printf("***\n"); } kdb_jmpbuf(prev_jb); thr = kdb_thr_next(thr); } } /* * Lookup a thread based on a db expression address. We assume that the * address was parsed in hexadecimal. We reparse the address in decimal * first and try to treat it as a thread ID to find an associated thread. * If that fails and check_pid is true, we treat the decimal value as a * PID. If that matches a process, we return the first thread in that * process. Otherwise, we treat the addr as a pointer to a thread. */ struct thread * db_lookup_thread(db_expr_t addr, bool check_pid) { struct thread *td; db_expr_t decaddr; struct proc *p; /* * If the parsed address was not a valid decimal expression, * assume it is a thread pointer. */ decaddr = db_hex2dec(addr); if (decaddr == -1) return ((struct thread *)addr); td = kdb_thr_lookup(decaddr); if (td != NULL) return (td); if (check_pid) { - FOREACH_PROC_IN_SYSTEM(p) { + LIST_FOREACH(p, PIDHASH(decaddr), p_hash) { if (p->p_pid == decaddr) return (FIRST_THREAD_IN_PROC(p)); } - LIST_FOREACH(p, &zombproc, p_list) { - if (p->p_pid == decaddr) - return (FIRST_THREAD_IN_PROC(p)); - } } return ((struct thread *)addr); } /* * Lookup a process based on a db expression address. We assume that the * address was parsed in hexadecimal. We reparse the address in decimal * first and try to treat it as a PID to find an associated process. * If that fails we treat the addr as a pointer to a process. */ struct proc * db_lookup_proc(db_expr_t addr) { db_expr_t decaddr; struct proc *p; decaddr = db_hex2dec(addr); if (decaddr != -1) { - FOREACH_PROC_IN_SYSTEM(p) { - if (p->p_pid == decaddr) - return (p); - } - LIST_FOREACH(p, &zombproc, p_list) { + LIST_FOREACH(p, PIDHASH(decaddr), p_hash) { if (p->p_pid == decaddr) return (p); } } return ((struct proc *)addr); } Index: head/sys/kern/kern_exit.c =================================================================== --- head/sys/kern/kern_exit.c (revision 351571) +++ head/sys/kern/kern_exit.c (revision 351572) @@ -1,1403 +1,1397 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for acct_process() function prototype */ #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exit; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exit, "int"); /* Hook for NFS teardown procedure. */ void (*nlminfo_release_p)(struct proc *p); struct proc * proc_realparent(struct proc *child) { struct proc *p, *parent; sx_assert(&proctree_lock, SX_LOCKED); if ((child->p_treeflag & P_TREE_ORPHANED) == 0) return (child->p_pptr->p_pid == child->p_oppid ? child->p_pptr : initproc); for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { /* Cannot use LIST_PREV(), since the list head is not known. */ p = __containerof(p->p_orphan.le_prev, struct proc, p_orphan.le_next); KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, ("missing P_ORPHAN %p", p)); } parent = __containerof(p->p_orphan.le_prev, struct proc, p_orphans.lh_first); return (parent); } void reaper_abandon_children(struct proc *p, bool exiting) { struct proc *p1, *p2, *ptmp; sx_assert(&proctree_lock, SX_LOCKED); KASSERT(p != initproc, ("reaper_abandon_children for initproc")); if ((p->p_treeflag & P_TREE_REAPER) == 0) return; p1 = p->p_reaper; LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { LIST_REMOVE(p2, p_reapsibling); p2->p_reaper = p1; p2->p_reapsubtree = p->p_reapsubtree; LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); if (exiting && p2->p_pptr == p) { PROC_LOCK(p2); proc_reparent(p2, p1, true); PROC_UNLOCK(p2); } } KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); p->p_treeflag &= ~P_TREE_REAPER; } static void reaper_clear(struct proc *p) { struct proc *p1; bool clear; sx_assert(&proctree_lock, SX_LOCKED); LIST_REMOVE(p, p_reapsibling); if (p->p_reapsubtree == 1) return; clear = true; LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { if (p1->p_reapsubtree == p->p_reapsubtree) { clear = false; break; } } if (clear) proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); } void proc_clear_orphan(struct proc *p) { struct proc *p1; sx_assert(&proctree_lock, SA_XLOCKED); if ((p->p_treeflag & P_TREE_ORPHANED) == 0) return; if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { p1 = LIST_NEXT(p, p_orphan); if (p1 != NULL) p1->p_treeflag |= P_TREE_FIRST_ORPHAN; p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; } LIST_REMOVE(p, p_orphan); p->p_treeflag &= ~P_TREE_ORPHANED; } /* * exit -- death of process. */ void sys_sys_exit(struct thread *td, struct sys_exit_args *uap) { exit1(td, uap->rval, 0); /* NOTREACHED */ } /* * Exit: deallocate address space and other resources, change proc state to * zombie, and unlink proc from allproc and parent's lists. Save exit status * and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct thread *td, int rval, int signo) { struct proc *p, *nq, *q, *t; struct thread *tdt; ksiginfo_t *ksi, *ksi1; int signal_parent; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); p = td->td_proc; /* * XXX in case we're rebooting we just let init die in order to * work around an unsolved stack overflow seen very late during * shutdown on sparc64 when the gmirror worker process exists. */ if (p == initproc && rebooting == 0) { printf("init died (signal %d, exit %d)\n", signo, rval); panic("Going nowhere without my init!"); } /* * Deref SU mp, since the thread does not return to userspace. */ td_softdep_cleanup(td); /* * MUST abort all other threads before proceeding past here. */ PROC_LOCK(p); /* * First check if some other thread or external request got * here before us. If so, act appropriately: exit or suspend. * We must ensure that stop requests are handled before we set * P_WEXIT. */ thread_suspend_check(0); while (p->p_flag & P_HADTHREADS) { /* * Kill off the other threads. This requires * some co-operation from other parts of the kernel * so it may not be instantaneous. With this state set * any thread entering the kernel from userspace will * thread_exit() in trap(). Any thread attempting to * sleep will return immediately with EINTR or EWOULDBLOCK * which will hopefully force them to back out to userland * freeing resources as they go. Any thread attempting * to return to userland will thread_exit() from userret(). * thread_exit() will unsuspend us when the last of the * other threads exits. * If there is already a thread singler after resumption, * calling thread_single will fail; in that case, we just * re-check all suspension request, the thread should * either be suspended there or exit. */ if (!thread_single(p, SINGLE_EXIT)) /* * All other activity in this process is now * stopped. Threading support has been turned * off. */ break; /* * Recheck for new stop or suspend requests which * might appear while process lock was dropped in * thread_single(). */ thread_suspend_check(0); } KASSERT(p->p_numthreads == 1, ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); racct_sub(p, RACCT_NTHR, 1); /* Let event handler change exit status */ p->p_xexit = rval; p->p_xsig = signo; /* * Wakeup anyone in procfs' PIOCWAIT. They should have a hold * on our vmspace, so we should block below until they have * released their reference to us. Note that if they have * requested S_EXIT stops we will block here until they ack * via PIOCCONT. */ _STOPEVENT(p, S_EXIT, 0); /* * Ignore any pending request to stop due to a stop signal. * Once P_WEXIT is set, future requests will be ignored as * well. */ p->p_flag &= ~P_STOPPED_SIG; KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); /* * Note that we are exiting and do another wakeup of anyone in * PIOCWAIT in case they aren't listening for S_EXIT stops or * decided to wait again after we told them we are exiting. */ p->p_flag |= P_WEXIT; wakeup(&p->p_stype); /* * Wait for any processes that have a hold on our vmspace to * release their reference. */ while (p->p_lock > 0) msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); PROC_UNLOCK(p); /* Drain the limit callout while we don't have the proc locked */ callout_drain(&p->p_limco); #ifdef AUDIT /* * The Sun BSM exit token contains two components: an exit status as * passed to exit(), and a return value to indicate what sort of exit * it was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG_EXIT(rval, 0); AUDIT_SYSCALL_EXIT(0, td); #endif /* Are we a task leader with peers? */ if (p->p_peers != NULL && p == p->p_leader) { mtx_lock(&ppeers_lock); q = p->p_peers; while (q != NULL) { PROC_LOCK(q); kern_psignal(q, SIGKILL); PROC_UNLOCK(q); q = q->p_peers; } while (p->p_peers != NULL) msleep(p, &ppeers_lock, PWAIT, "exit1", 0); mtx_unlock(&ppeers_lock); } /* * Check if any loadable modules need anything done at process exit. * E.g. SYSV IPC stuff. * Event handler could change exit status. * XXX what if one of these generates an error? */ EVENTHANDLER_DIRECT_INVOKE(process_exit, p); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ PROC_LOCK(p); stopprofclock(p); p->p_ptevents = 0; /* * Stop the real interval timer. If the handler is currently * executing, prevent it from rearming itself and let it finish. */ if (timevalisset(&p->p_realtimer.it_value) && _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { timevalclear(&p->p_realtimer.it_interval); msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); KASSERT(!timevalisset(&p->p_realtimer.it_value), ("realtime timer is still armed")); } PROC_UNLOCK(p); umtx_thread_exit(td); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pid. */ funsetownlst(&p->p_sigiolst); /* * If this process has an nlminfo data area (for lockd), release it */ if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) (*nlminfo_release_p)(p); /* * Close open files and release open-file table. * This may block! */ fdescfree(td); /* * If this thread tickled GEOM, we need to wait for the giggling to * stop before we return to userland */ if (td->td_pflags & TDP_GEOM) g_waitidle(); /* * Remove ourself from our leader's peer list and wake our leader. */ if (p->p_leader->p_peers != NULL) { mtx_lock(&ppeers_lock); if (p->p_leader->p_peers != NULL) { q = p->p_leader; while (q->p_peers != p) q = q->p_peers; q->p_peers = p->p_peers; wakeup(p->p_leader); } mtx_unlock(&ppeers_lock); } vmspace_exit(td); killjobc(); (void)acct_process(td); #ifdef KTRACE ktrprocexit(td); #endif /* * Release reference to text vnode */ if (p->p_textvp != NULL) { vrele(p->p_textvp); p->p_textvp = NULL; } /* * Release our limits structure. */ lim_free(p->p_limit); p->p_limit = NULL; tidhash_remove(td); /* * Call machine-dependent code to release any * machine-dependent resources other than the address space. * The address space is released by "vmspace_exitfree(p)" in * vm_waitproc(). */ cpu_exit(td); WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); /* - * Move proc from allproc queue to zombproc. + * Remove from allproc. It still sits in the hash. */ sx_xlock(&allproc_lock); - sx_xlock(&zombproc_lock); LIST_REMOVE(p, p_list); - LIST_INSERT_HEAD(&zombproc, p, p_list); - sx_xunlock(&zombproc_lock); sx_xunlock(&allproc_lock); sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); PROC_UNLOCK(p); /* * Reparent all children processes: * - traced ones to the original parent (or init if we are that parent) * - the rest to init */ q = LIST_FIRST(&p->p_children); if (q != NULL) /* only need this if any child is S_ZOMB */ wakeup(q->p_reaper); for (; q != NULL; q = nq) { nq = LIST_NEXT(q, p_sibling); ksi = ksiginfo_alloc(TRUE); PROC_LOCK(q); q->p_sigparent = SIGCHLD; if ((q->p_flag & P_TRACED) == 0) { proc_reparent(q, q->p_reaper, true); if (q->p_state == PRS_ZOMBIE) { /* * Inform reaper about the reparented * zombie, since wait(2) has something * new to report. Guarantee queueing * of the SIGCHLD signal, similar to * the _exit() behaviour, by providing * our ksiginfo. Ksi is freed by the * signal delivery. */ if (q->p_ksi == NULL) { ksi1 = NULL; } else { ksiginfo_copy(q->p_ksi, ksi); ksi->ksi_flags |= KSI_INS; ksi1 = ksi; ksi = NULL; } PROC_LOCK(q->p_reaper); pksignal(q->p_reaper, SIGCHLD, ksi1); PROC_UNLOCK(q->p_reaper); } else if (q->p_pdeathsig > 0) { /* * The child asked to received a signal * when we exit. */ kern_psignal(q, q->p_pdeathsig); } } else { /* * Traced processes are killed since their existence * means someone is screwing up. */ t = proc_realparent(q); if (t == p) { proc_reparent(q, q->p_reaper, true); } else { PROC_LOCK(t); proc_reparent(q, t, true); PROC_UNLOCK(t); } /* * Since q was found on our children list, the * proc_reparent() call moved q to the orphan * list due to present P_TRACED flag. Clear * orphan link for q now while q is locked. */ proc_clear_orphan(q); q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); q->p_flag2 &= ~P2_PTRACE_FSTP; q->p_ptevents = 0; FOREACH_THREAD_IN_PROC(q, tdt) { tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | TDB_FSTP); } kern_psignal(q, SIGKILL); } PROC_UNLOCK(q); if (ksi != NULL) ksiginfo_free(ksi); } /* * Also get rid of our orphans. */ while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { PROC_LOCK(q); KASSERT(q->p_oppid == p->p_pid, ("orphan %p of %p has unexpected oppid %d", q, p, q->p_oppid)); q->p_oppid = q->p_reaper->p_pid; /* * If we are the real parent of this process * but it has been reparented to a debugger, then * check if it asked for a signal when we exit. */ if (q->p_pdeathsig > 0) kern_psignal(q, q->p_pdeathsig); CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, q->p_pid); proc_clear_orphan(q); PROC_UNLOCK(q); } #ifdef KDTRACE_HOOKS if (SDT_PROBES_ENABLED()) { int reason = CLD_EXITED; if (WCOREDUMP(signo)) reason = CLD_DUMPED; else if (WIFSIGNALED(signo)) reason = CLD_KILLED; SDT_PROBE1(proc, , , exit, reason); } #endif /* Save exit status. */ PROC_LOCK(p); p->p_xthread = td; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exit if it * has declared an interest. */ if (dtrace_fasttrap_exit) dtrace_fasttrap_exit(p); #endif /* * Notify interested parties of our demise. */ KNOTE_LOCKED(p->p_klist, NOTE_EXIT); /* * If this is a process with a descriptor, we may not need to deliver * a signal to the parent. proctree_lock is held over * procdesc_exit() to serialize concurrent calls to close() and * exit(). */ signal_parent = 0; if (p->p_procdesc == NULL || procdesc_exit(p)) { /* * Notify parent that we're gone. If parent has the * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, * notify process 1 instead (and hope it will handle this * situation). */ PROC_LOCK(p->p_pptr); mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { struct proc *pp; mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); pp = p->p_pptr; PROC_UNLOCK(pp); proc_reparent(p, p->p_reaper, true); p->p_sigparent = SIGCHLD; PROC_LOCK(p->p_pptr); /* * Notify parent, so in case he was wait(2)ing or * executing waitpid(2) with our pid, he will * continue. */ wakeup(pp); } else mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { signal_parent = 1; } else if (p->p_sigparent != 0) { if (p->p_sigparent == SIGCHLD) { signal_parent = 1; } else { /* LINUX thread */ signal_parent = 2; } } } else PROC_LOCK(p->p_pptr); sx_xunlock(&proctree_lock); if (signal_parent == 1) { childproc_exited(p); } else if (signal_parent == 2) { kern_psignal(p->p_pptr, p->p_sigparent); } /* Tell the prison that we are gone. */ prison_proc_free(p->p_ucred->cr_prison); /* * The state PRS_ZOMBIE prevents other proesses from sending * signal to the process, to avoid memory leak, we free memory * for signal queue at the time when the state is set. */ sigqueue_flush(&p->p_sigqueue); sigqueue_flush(&td->td_sigqueue); /* * We have to wait until after acquiring all locks before * changing p_state. We need to avoid all possible context * switches (including ones from blocking on a mutex) while * marked as a zombie. We also have to set the zombie state * before we release the parent process' proc lock to avoid * a lost wakeup. So, we first call wakeup, then we grab the * sched lock, update the state, and release the parent process' * proc lock. */ wakeup(p->p_pptr); cv_broadcast(&p->p_pwait); sched_exit(p->p_pptr, td); PROC_SLOCK(p); p->p_state = PRS_ZOMBIE; PROC_UNLOCK(p->p_pptr); /* * Save our children's rusage information in our exit rusage. */ PROC_STATLOCK(p); ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); PROC_STATUNLOCK(p); /* * Make sure the scheduler takes this thread out of its tables etc. * This will also release this thread's reference to the ucred. * Other thread parts to release include pcb bits and such. */ thread_exit(); } #ifndef _SYS_SYSPROTO_H_ struct abort2_args { char *why; int nargs; void **args; }; #endif int sys_abort2(struct thread *td, struct abort2_args *uap) { struct proc *p = td->td_proc; struct sbuf *sb; void *uargs[16]; int error, i, sig; /* * Do it right now so we can log either proper call of abort2(), or * note, that invalid argument was passed. 512 is big enough to * handle 16 arguments' descriptions with additional comments. */ sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); sbuf_clear(sb); sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", p->p_comm, p->p_pid, td->td_ucred->cr_uid); /* * Since we can't return from abort2(), send SIGKILL in cases, where * abort2() was called improperly */ sig = SIGKILL; /* Prevent from DoSes from user-space. */ if (uap->nargs < 0 || uap->nargs > 16) goto out; if (uap->nargs > 0) { if (uap->args == NULL) goto out; error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); if (error != 0) goto out; } /* * Limit size of 'reason' string to 128. Will fit even when * maximal number of arguments was chosen to be logged. */ if (uap->why != NULL) { error = sbuf_copyin(sb, uap->why, 128); if (error < 0) goto out; } else { sbuf_printf(sb, "(null)"); } if (uap->nargs > 0) { sbuf_printf(sb, "("); for (i = 0;i < uap->nargs; i++) sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); sbuf_printf(sb, ")"); } /* * Final stage: arguments were proper, string has been * successfully copied from userspace, and copying pointers * from user-space succeed. */ sig = SIGABRT; out: if (sig == SIGKILL) { sbuf_trim(sb); sbuf_printf(sb, " (Reason text inaccessible)"); } sbuf_cat(sb, "\n"); sbuf_finish(sb); log(LOG_INFO, "%s", sbuf_data(sb)); sbuf_delete(sb); exit1(td, 0, sig); return (0); } #ifdef COMPAT_43 /* * The dirty work is handled by kern_wait(). */ int owait(struct thread *td, struct owait_args *uap __unused) { int error, status; error = kern_wait(td, WAIT_ANY, &status, 0, NULL); if (error == 0) td->td_retval[1] = status; return (error); } #endif /* COMPAT_43 */ /* * The dirty work is handled by kern_wait(). */ int sys_wait4(struct thread *td, struct wait4_args *uap) { struct rusage ru, *rup; int error, status; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&ru, uap->rusage, sizeof(struct rusage)); return (error); } int sys_wait6(struct thread *td, struct wait6_args *uap) { struct __wrusage wru, *wrup; siginfo_t si, *sip; idtype_t idtype; id_t id; int error, status; idtype = uap->idtype; id = uap->id; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; /* * We expect all callers of wait6() to know about WEXITED and * WTRAPPED. */ error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&wru, uap->wrusage, sizeof(wru)); if (uap->info != NULL && error == 0) error = copyout(&si, uap->info, sizeof(si)); return (error); } /* * Reap the remains of a zombie process and optionally return status and * rusage. Asserts and will release both the proctree_lock and the process * lock as part of its work. */ void proc_reap(struct thread *td, struct proc *p, int *status, int options) { struct proc *q, *t; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); mtx_spin_wait_unlocked(&p->p_slock); q = td->td_proc; if (status) *status = KW_EXITCODE(p->p_xexit, p->p_xsig); if (options & WNOWAIT) { /* * Only poll, returning the status. Caller does not wish to * release the proc struct just yet. */ PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return; } PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); /* * If we got the child via a ptrace 'attach', we need to give it back * to the old parent. */ if (p->p_oppid != p->p_pptr->p_pid) { PROC_UNLOCK(p); t = proc_realparent(p); PROC_LOCK(t); PROC_LOCK(p); CTR2(KTR_PTRACE, "wait: traced child %d moved back to parent %d", p->p_pid, t->p_pid); proc_reparent(p, t, false); PROC_UNLOCK(p); pksignal(t, SIGCHLD, p->p_ksi); wakeup(t); cv_broadcast(&p->p_pwait); PROC_UNLOCK(t); sx_xunlock(&proctree_lock); return; } PROC_UNLOCK(p); /* * Remove other references to this process to ensure we have an * exclusive reference. */ - sx_xlock(&zombproc_lock); - LIST_REMOVE(p, p_list); /* off zombproc */ - sx_xunlock(&zombproc_lock); sx_xlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_hash); sx_xunlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_sibling); reaper_abandon_children(p, true); reaper_clear(p); proc_id_clear(PROC_ID_PID, p->p_pid); PROC_LOCK(p); proc_clear_orphan(p); PROC_UNLOCK(p); leavepgrp(p); if (p->p_procdesc != NULL) procdesc_reap(p); sx_xunlock(&proctree_lock); PROC_LOCK(p); knlist_detach(p->p_klist); p->p_klist = NULL; PROC_UNLOCK(p); /* * Removal from allproc list and process group list paired with * PROC_LOCK which was executed during that time should guarantee * nothing can reach this process anymore. As such further locking * is unnecessary. */ p->p_xexit = p->p_xsig = 0; /* XXX: why? */ PROC_LOCK(q); ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); PROC_UNLOCK(q); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); /* * Destroy resource accounting information associated with the process. */ #ifdef RACCT if (racct_enable) { PROC_LOCK(p); racct_sub(p, RACCT_NPROC, 1); PROC_UNLOCK(p); } #endif racct_proc_exit(p); /* * Free credentials, arguments, and sigacts. */ crfree(p->p_ucred); proc_set_cred(p, NULL); pargs_drop(p->p_args); p->p_args = NULL; sigacts_free(p->p_sigacts); p->p_sigacts = NULL; /* * Do any thread-system specific cleanups. */ thread_wait(p); /* * Give vm and machine-dependent layer a chance to free anything that * cpu_exit couldn't release while still running in process context. */ vm_waitproc(p); #ifdef MAC mac_proc_destroy(p); #endif KASSERT(FIRST_THREAD_IN_PROC(p), ("proc_reap: no residual thread!")); uma_zfree(proc_zone, p); atomic_add_int(&nprocs, -1); } static int proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, int check_only) { struct rusage *rup; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK(p); switch (idtype) { case P_ALL: if (p->p_procdesc != NULL) { PROC_UNLOCK(p); return (0); } break; case P_PID: if (p->p_pid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_PGID: if (p->p_pgid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_SID: if (p->p_session->s_sid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_UID: if (p->p_ucred->cr_uid != (uid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_GID: if (p->p_ucred->cr_gid != (gid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_JAILID: if (p->p_ucred->cr_prison->pr_id != (int)id) { PROC_UNLOCK(p); return (0); } break; /* * It seems that the thread structures get zeroed out * at process exit. This makes it impossible to * support P_SETID, P_CID or P_CPUID. */ default: PROC_UNLOCK(p); return (0); } if (p_canwait(td, p)) { PROC_UNLOCK(p); return (0); } if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); return (0); } /* * This special case handles a kthread spawned by linux_clone * (see linux_misc.c). The linux_wait4 and linux_waitpid * functions need to be able to distinguish between waiting * on a process and waiting on a thread. It is a thread if * p_sigparent is not SIGCHLD, and the WLINUXCLONE option * signifies we want to wait for threads and not processes. */ if ((p->p_sigparent != SIGCHLD) ^ ((options & WLINUXCLONE) != 0)) { PROC_UNLOCK(p); return (0); } if (siginfo != NULL) { bzero(siginfo, sizeof(*siginfo)); siginfo->si_errno = 0; /* * SUSv4 requires that the si_signo value is always * SIGCHLD. Obey it despite the rfork(2) interface * allows to request other signal for child exit * notification. */ siginfo->si_signo = SIGCHLD; /* * This is still a rough estimate. We will fix the * cases TRAPPED, STOPPED, and CONTINUED later. */ if (WCOREDUMP(p->p_xsig)) { siginfo->si_code = CLD_DUMPED; siginfo->si_status = WTERMSIG(p->p_xsig); } else if (WIFSIGNALED(p->p_xsig)) { siginfo->si_code = CLD_KILLED; siginfo->si_status = WTERMSIG(p->p_xsig); } else { siginfo->si_code = CLD_EXITED; siginfo->si_status = p->p_xexit; } siginfo->si_pid = p->p_pid; siginfo->si_uid = p->p_ucred->cr_uid; /* * The si_addr field would be useful additional * detail, but apparently the PC value may be lost * when we reach this point. bzero() above sets * siginfo->si_addr to NULL. */ } /* * There should be no reason to limit resources usage info to * exited processes only. A snapshot about any resources used * by a stopped process may be exactly what is needed. */ if (wrusage != NULL) { rup = &wrusage->wru_self; *rup = p->p_ru; PROC_STATLOCK(p); calcru(p, &rup->ru_utime, &rup->ru_stime); PROC_STATUNLOCK(p); rup = &wrusage->wru_children; *rup = p->p_stats->p_cru; calccru(p, &rup->ru_utime, &rup->ru_stime); } if (p->p_state == PRS_ZOMBIE && !check_only) { proc_reap(td, p, status, options); return (-1); } return (1); } int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rusage) { struct __wrusage wru, *wrup; idtype_t idtype; id_t id; int ret; /* * Translate the special pid values into the (idtype, pid) * pair for kern_wait6. The WAIT_MYPGRP case is handled by * kern_wait6() on its own. */ if (pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (pid < 0) { idtype = P_PGID; id = (id_t)-pid; } else { idtype = P_PID; id = (id_t)pid; } if (rusage != NULL) wrup = &wru; else wrup = NULL; /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); if (rusage != NULL) *rusage = wru.wru_self; return (ret); } static void report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, int *status, int options, int si_code) { bool cont; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SA_XLOCKED); MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || si_code == CLD_CONTINUED); cont = si_code == CLD_CONTINUED; if ((options & WNOWAIT) == 0) { if (cont) p->p_flag &= ~P_CONTINUED; else p->p_flag |= P_WAITED; PROC_LOCK(td->td_proc); sigqueue_take(p->p_ksi); PROC_UNLOCK(td->td_proc); } sx_xunlock(&proctree_lock); if (siginfo != NULL) { siginfo->si_code = si_code; siginfo->si_status = cont ? SIGCONT : p->p_xsig; } if (status != NULL) *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); PROC_UNLOCK(p); td->td_retval[0] = p->p_pid; } int kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo) { struct proc *p, *q; pid_t pid; int error, nfound, ret; bool report; AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ AUDIT_ARG_VALUE(options); q = td->td_proc; if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { PROC_LOCK(q); id = (id_t)q->p_pgid; PROC_UNLOCK(q); idtype = P_PGID; } /* If we don't know the option, just return. */ if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | WEXITED | WTRAPPED | WLINUXCLONE)) != 0) return (EINVAL); if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { /* * We will be unable to find any matching processes, * because there are no known events to look for. * Prefer to return error instead of blocking * indefinitely. */ return (EINVAL); } loop: if (q->p_flag & P_STATCHILD) { PROC_LOCK(q); q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); } sx_xlock(&proctree_lock); loop_locked: nfound = 0; LIST_FOREACH(p, &q->p_children, p_sibling) { pid = p->p_pid; ret = proc_to_reap(td, p, idtype, id, status, options, wrusage, siginfo, 0); if (ret == 0) continue; else if (ret != 1) { td->td_retval[0] = pid; return (0); } nfound++; PROC_LOCK_ASSERT(p, MA_OWNED); if ((options & WTRAPPED) != 0 && (p->p_flag & P_TRACED) != 0) { PROC_SLOCK(p); report = ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && p->p_suspcount == p->p_numthreads && (p->p_flag & P_WAITED) == 0); PROC_SUNLOCK(p); if (report) { CTR4(KTR_PTRACE, "wait: returning trapped pid %d status %#x " "(xstat %d) xthread %d", p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, p->p_xthread != NULL ? p->p_xthread->td_tid : -1); report_alive_proc(td, p, siginfo, status, options, CLD_TRAPPED); return (0); } } if ((options & WUNTRACED) != 0 && (p->p_flag & P_STOPPED_SIG) != 0) { PROC_SLOCK(p); report = (p->p_suspcount == p->p_numthreads && ((p->p_flag & P_WAITED) == 0)); PROC_SUNLOCK(p); if (report) { report_alive_proc(td, p, siginfo, status, options, CLD_STOPPED); return (0); } } if ((options & WCONTINUED) != 0 && (p->p_flag & P_CONTINUED) != 0) { report_alive_proc(td, p, siginfo, status, options, CLD_CONTINUED); return (0); } PROC_UNLOCK(p); } /* * Look in the orphans list too, to allow the parent to * collect it's child exit status even if child is being * debugged. * * Debugger detaches from the parent upon successful * switch-over from parent to child. At this point due to * re-parenting the parent loses the child to debugger and a * wait4(2) call would report that it has no children to wait * for. By maintaining a list of orphans we allow the parent * to successfully wait until the child becomes a zombie. */ if (nfound == 0) { LIST_FOREACH(p, &q->p_orphans, p_orphan) { ret = proc_to_reap(td, p, idtype, id, NULL, options, NULL, NULL, 1); if (ret != 0) { KASSERT(ret != -1, ("reaped an orphan (pid %d)", (int)td->td_retval[0])); PROC_UNLOCK(p); nfound++; break; } } } if (nfound == 0) { sx_xunlock(&proctree_lock); return (ECHILD); } if (options & WNOHANG) { sx_xunlock(&proctree_lock); td->td_retval[0] = 0; return (0); } PROC_LOCK(q); if (q->p_flag & P_STATCHILD) { q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); goto loop_locked; } sx_xunlock(&proctree_lock); error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); if (error) return (error); goto loop; } void proc_add_orphan(struct proc *child, struct proc *parent) { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT((child->p_flag & P_TRACED) != 0, ("proc_add_orphan: not traced")); if (LIST_EMPTY(&parent->p_orphans)) { child->p_treeflag |= P_TREE_FIRST_ORPHAN; LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan); } else { LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans), child, p_orphan); } child->p_treeflag |= P_TREE_ORPHANED; } /* * Make process 'parent' the new parent of process 'child'. * Must be called with an exclusive hold of proctree lock. */ void proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(child, MA_OWNED); if (child->p_pptr == parent) return; PROC_LOCK(child->p_pptr); sigqueue_take(child->p_ksi); PROC_UNLOCK(child->p_pptr); LIST_REMOVE(child, p_sibling); LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); proc_clear_orphan(child); if ((child->p_flag & P_TRACED) != 0) { proc_add_orphan(child, child->p_pptr); } child->p_pptr = parent; if (set_oppid) child->p_oppid = parent->p_pid; } Index: head/sys/kern/kern_proc.c =================================================================== --- head/sys/kern/kern_proc.c (revision 351571) +++ head/sys/kern/kern_proc.c (revision 351572) @@ -1,3229 +1,3225 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #endif SDT_PROVIDER_DEFINE(proc); MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread); static void pgadjustjobc(struct pgrp *pgrp, int entering); static void pgdelete(struct pgrp *); static int proc_ctor(void *mem, int size, void *arg, int flags); static void proc_dtor(void *mem, int size, void *arg); static int proc_init(void *mem, int size, int flags); static void proc_fini(void *mem, int size); static void pargs_free(struct pargs *pa); /* * Other process lists */ struct pidhashhead *pidhashtbl; struct sx *pidhashtbl_lock; u_long pidhash; u_long pidhashlock; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; -struct proclist zombproc; struct sx __exclusive_cache_line allproc_lock; -struct sx __exclusive_cache_line zombproc_lock; struct sx __exclusive_cache_line proctree_lock; struct mtx __exclusive_cache_line ppeers_lock; struct mtx __exclusive_cache_line procid_lock; uma_zone_t proc_zone; /* * The offset of various fields in struct proc and struct thread. * These are used by kernel debuggers to enumerate kernel threads and * processes. */ const int proc_off_p_pid = offsetof(struct proc, p_pid); const int proc_off_p_comm = offsetof(struct proc, p_comm); const int proc_off_p_list = offsetof(struct proc, p_list); const int proc_off_p_threads = offsetof(struct proc, p_threads); const int thread_off_td_tid = offsetof(struct thread, td_tid); const int thread_off_td_name = offsetof(struct thread, td_name); const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); const int thread_off_td_pcb = offsetof(struct thread, td_pcb); const int thread_off_td_plist = offsetof(struct thread, td_plist); EVENTHANDLER_LIST_DEFINE(process_ctor); EVENTHANDLER_LIST_DEFINE(process_dtor); EVENTHANDLER_LIST_DEFINE(process_init); EVENTHANDLER_LIST_DEFINE(process_fini); EVENTHANDLER_LIST_DEFINE(process_exit); EVENTHANDLER_LIST_DEFINE(process_fork); EVENTHANDLER_LIST_DEFINE(process_exec); int kstack_pages = KSTACK_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "Kernel stack size in pages"); static int vmmap_skip_res_cnt = 0; SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, &vmmap_skip_res_cnt, 0, "Skip calculation of the pages resident count in kern.proc.vmmap"); CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #ifdef COMPAT_FREEBSD32 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); #endif /* * Initialize global process hashing structures. */ void procinit(void) { u_long i; sx_init(&allproc_lock, "allproc"); - sx_init(&zombproc_lock, "zombproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); mtx_init(&procid_lock, "procid", NULL, MTX_DEF); LIST_INIT(&allproc); - LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pidhashlock = (pidhash + 1) / 64; if (pidhashlock > 0) pidhashlock--; pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), M_PROC, M_WAITOK | M_ZERO); for (i = 0; i < pidhashlock + 1; i++) sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; struct thread *td; p = (struct proc *)mem; EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { /* Make sure all thread constructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); } return (0); } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); td_softdep_cleanup(td); MPASS(td->td_su == NULL); /* Make sure all thread destructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); } EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); } /* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); cv_init(&p->p_pwait, "ppwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ EVENTHANDLER_DIRECT_INVOKE(process_init, p); p->p_stats = pstats_alloc(); p->p_pgrp = NULL; return (0); } /* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; EVENTHANDLER_DIRECT_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif } /* * PID space management. * * These bitmaps are used by fork_findpid. */ bitstr_t bit_decl(proc_id_pidmap, PID_MAX); bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); bitstr_t bit_decl(proc_id_reapmap, PID_MAX); static bitstr_t *proc_id_array[] = { proc_id_pidmap, proc_id_grpidmap, proc_id_sessidmap, proc_id_reapmap, }; void proc_id_set(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); mtx_lock(&procid_lock); KASSERT(bit_test(proc_id_array[type], id) == 0, ("bit %d already set in %d\n", id, type)); bit_set(proc_id_array[type], id); mtx_unlock(&procid_lock); } void proc_id_set_cond(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); if (bit_test(proc_id_array[type], id)) return; mtx_lock(&procid_lock); bit_set(proc_id_array[type], id); mtx_unlock(&procid_lock); } void proc_id_clear(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); mtx_lock(&procid_lock); KASSERT(bit_test(proc_id_array[type], id) != 0, ("bit %d not set in %d\n", id, type)); bit_clear(proc_id_array[type], id); mtx_unlock(&procid_lock); } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); for (; p != curproc; p = proc_realparent(p)) { if (p->p_pid == 0) return (0); } return (1); } /* * Shared lock all the pid hash lists. */ void pidhash_slockall(void) { u_long i; for (i = 0; i < pidhashlock + 1; i++) sx_slock(&pidhashtbl_lock[i]); } /* * Shared unlock all the pid hash lists. */ void pidhash_sunlockall(void) { u_long i; for (i = 0; i < pidhashlock + 1; i++) sx_sunlock(&pidhashtbl_lock[i]); } /* * Similar to pfind_any(), this function finds zombies. */ struct proc * pfind_any_locked(pid_t pid) { struct proc *p; sx_assert(PIDHASHLOCK(pid), SX_LOCKED); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); p = NULL; } break; } } return (p); } /* * Locate a process by number. * * By not returning processes in the PRS_NEW state, we allow callers to avoid * testing for that condition to avoid dereferencing p_ucred, et al. */ static __always_inline struct proc * _pfind(pid_t pid, bool zombie) { struct proc *p; p = curproc; if (p->p_pid == pid) { PROC_LOCK(p); return (p); } sx_slock(PIDHASHLOCK(pid)); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW || (!zombie && p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); p = NULL; } break; } } sx_sunlock(PIDHASHLOCK(pid)); return (p); } struct proc * pfind(pid_t pid) { return (_pfind(pid, false)); } /* * Same as pfind but allow zombies. */ struct proc * pfind_any(pid_t pid) { return (_pfind(pid, true)); } static struct proc * pfind_tid(pid_t tid) { struct proc *p; struct thread *td; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) goto found; } PROC_UNLOCK(p); } found: sx_sunlock(&allproc_lock); return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pid_t pgid) { struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Locate process and do additional manipulations, depending on flags. */ int pget(pid_t pid, int flags, struct proc **pp) { struct proc *p; int error; p = curproc; if (p->p_pid == pid) { PROC_LOCK(p); } else { p = NULL; if (pid <= PID_MAX) { if ((flags & PGET_NOTWEXIT) == 0) p = pfind_any(pid); else p = pfind(pid); } else if ((flags & PGET_NOTID) == 0) { p = pfind_tid(pid); } if (p == NULL) return (ESRCH); if ((flags & PGET_CANSEE) != 0) { error = p_cansee(curthread, p); if (error != 0) goto errout; } } if ((flags & PGET_CANDEBUG) != 0) { error = p_candebug(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { error = EPERM; goto errout; } if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto errout; } if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { /* * XXXRW: Not clear ESRCH is the right error during proc * execve(). */ error = ESRCH; goto errout; } if ((flags & PGET_HOLD) != 0) { _PHOLD(p); PROC_UNLOCK(p); } *pp = p; return (0); errout: PROC_UNLOCK(p); return (error); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); KASSERT(pgfind(pgid) == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; proc_id_set(PROC_ID_SESSION, p->p_pid); refcount_init(&sess->s_count, 1); sess->s_ttyvp = NULL; sess->s_ttydp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; proc_id_set(PROC_ID_GROUP, p->p_pid); LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(struct proc *p, struct pgrp *pgrp) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(struct proc *p, struct pgrp *pgrp) { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(struct proc *p) { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(struct pgrp *pgrp) { struct session *savesess; struct tty *tp; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); tp = pgrp->pg_session->s_ttyp; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; PGRP_UNLOCK(pgrp); /* Remove the reference to the pgrp before deallocating it. */ if (tp != NULL) { tty_lock(tp); tty_rel_pgrp(tp, pgrp); } proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); mtx_destroy(&pgrp->pg_mtx); free(pgrp, M_PGRP); sess_release(savesess); } static void pgadjustjobc(struct pgrp *pgrp, int entering) { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(struct proc *p, struct pgrp *pgrp, int entering) { struct pgrp *hispgrp; struct session *mysession; struct proc *q; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) pgadjustjobc(pgrp, entering); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(q, &p->p_children, p_sibling) { hispgrp = q->p_pgrp; if (hispgrp == pgrp || hispgrp->pg_session != mysession) continue; if (q->p_state == PRS_ZOMBIE) continue; pgadjustjobc(hispgrp, entering); } } void killjobc(void) { struct session *sp; struct tty *tp; struct proc *p; struct vnode *ttyvp; p = curproc; MPASS(p->p_flag & P_WEXIT); /* * Do a quick check to see if there is anything to do with the * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). */ PROC_LOCK(p); if (!SESS_LEADER(p) && (p->p_pgrp == p->p_pptr->p_pgrp) && LIST_EMPTY(&p->p_children)) { PROC_UNLOCK(p); return; } PROC_UNLOCK(p); sx_xlock(&proctree_lock); if (SESS_LEADER(p)) { sp = p->p_session; /* * s_ttyp is not zero'd; we use this to indicate that * the session once had a controlling terminal. (for * logging and informational purposes) */ SESS_LOCK(sp); ttyvp = sp->s_ttyvp; tp = sp->s_ttyp; sp->s_ttyvp = NULL; sp->s_ttydp = NULL; sp->s_leader = NULL; SESS_UNLOCK(sp); /* * Signal foreground pgrp and revoke access to * controlling terminal if it has not been revoked * already. * * Because the TTY may have been revoked in the mean * time and could already have a new session associated * with it, make sure we don't send a SIGHUP to a * foreground process group that does not belong to this * session. */ if (tp != NULL) { tty_lock(tp); if (tp->t_session == sp) tty_signal_pgrp(tp, SIGHUP); tty_unlock(tp); } if (ttyvp != NULL) { sx_xunlock(&proctree_lock); if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { VOP_REVOKE(ttyvp, REVOKEALL); VOP_UNLOCK(ttyvp, 0); } vrele(ttyvp); sx_xlock(&proctree_lock); } } fixjobc(p, p->p_pgrp, 0); sx_xunlock(&proctree_lock); } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(struct pgrp *pg) { struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); kern_psignal(p, SIGHUP); kern_psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } void sess_hold(struct session *s) { refcount_acquire(&s->s_count); } void sess_release(struct session *s) { if (refcount_release(&s->s_count)) { if (s->s_ttyp != NULL) { tty_lock(s->s_ttyp); tty_rel_sess(s->s_ttyp, s); } proc_id_clear(PROC_ID_SESSION, s->s_sid); mtx_destroy(&s->s_mtx); free(s, M_SESSION); } } #ifdef DDB DB_SHOW_COMMAND(pgrpdump, pgrpdump) { struct pgrp *pgrp; struct proc *p; int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Calculate the kinfo_proc members which contain process-wide * informations. * Must be called with the target process locked. */ static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_estcpu = 0; kp->ki_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); kp->ki_pctcpu += sched_pctcpu(td); kp->ki_estcpu += sched_estcpu(td); thread_unlock(td); } } /* * Clear kinfo_proc and fill in any information that is common * to all threads in the process. * Must be called with the target process locked. */ static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) { struct thread *td0; struct tty *tp; struct session *sp; struct ucred *cred; struct sigacts *ps; struct timeval boottime; PROC_LOCK_ASSERT(p, MA_OWNED); bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; kp->ki_addr =/* p->p_addr; */0; /* XXX */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracevp; kp->ki_traceflag = p->p_traceflag; #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; kp->ki_flag = p->p_flag; kp->ki_flag2 = p->p_flag2; cred = p->p_ucred; if (cred) { kp->ki_uid = cred->cr_uid; kp->ki_ruid = cred->cr_ruid; kp->ki_svuid = cred->cr_svuid; kp->ki_cr_flags = 0; if (cred->cr_flags & CRED_FLAG_CAPMODE) kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; /* XXX bde doesn't like KI_NGROUPS */ if (cred->cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = cred->cr_ngroups; bcopy(cred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = cred->cr_rgid; kp->ki_svgid = cred->cr_svgid; /* If jailed(cred), emulate the old P_JAILED flag. */ if (jailed(cred)) { kp->ki_flag |= P_JAILED; /* If inside the jail, use 0 as a jail ID. */ if (cred->cr_prison != curthread->td_ucred->cr_prison) kp->ki_jid = cred->cr_prison->pr_id; } strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, sizeof(kp->ki_loginclass)); } ps = p->p_sigacts; if (ps) { mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ FOREACH_THREAD_IN_PROC(p, td0) { if (!TD_IS_SWAPPED(td0)) kp->ki_rssize += td0->td_kstack_pages; } kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } else if (p->p_state == PRS_ZOMBIE) kp->ki_stat = SZOMB; if (kp->ki_flag & P_INMEM) kp->ki_sflag = PS_INMEM; else kp->ki_sflag = 0; /* Calculate legacy swtime as seconds since 'swtick'. */ kp->ki_swtime = (ticks - p->p_swtick) / hz; kp->ki_pid = p->p_pid; kp->ki_nice = p->p_nice; kp->ki_fibnum = p->p_fibnum; kp->ki_start = p->p_stats->p_start; getboottime(&boottime); timevaladd(&kp->ki_start, &boottime); PROC_STATLOCK(p); rufetch(p, &kp->ki_rusage); kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); PROC_STATUNLOCK(p); calccru(p, &kp->ki_childutime, &kp->ki_childstime); /* Some callers want child times in a single value. */ kp->ki_childtime = kp->ki_childstime; timevaladd(&kp->ki_childtime, &kp->ki_childutime); FOREACH_THREAD_IN_PROC(p, td0) kp->ki_cow += td0->td_cow; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; /* XXX proctree_lock */ tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = tty_udev(tp); kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else { kp->ki_tdev = NODEV; kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ } if (p->p_comm[0] != '\0') strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); if (p->p_sysent && p->p_sysent->sv_name != NULL && p->p_sysent->sv_name[0] != '\0') strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); kp->ki_siglist = p->p_siglist; kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); kp->ki_acflag = p->p_acflag; kp->ki_lock = p->p_lock; if (p->p_pptr) { kp->ki_ppid = p->p_oppid; if (p->p_flag & P_TRACED) kp->ki_tracer = p->p_pptr->p_pid; } } /* * Fill in information that is thread specific. Must be called with * target process locked. If 'preferthread' is set, overwrite certain * process-related fields that are maintained for both threads and * processes. */ static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) { struct proc *p; p = td->td_proc; kp->ki_tdaddr = td; PROC_LOCK_ASSERT(p, MA_OWNED); if (preferthread) PROC_STATLOCK(p); thread_lock(td); if (td->td_wmesg != NULL) strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); else bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= sizeof(kp->ki_tdname)) { strlcpy(kp->ki_moretdname, td->td_name + sizeof(kp->ki_tdname) - 1, sizeof(kp->ki_moretdname)); } else { bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } else { kp->ki_kiflag &= ~KI_LOCKBLOCK; bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* approximate. */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else if (p->p_state == PRS_ZOMBIE) { kp->ki_stat = SZOMB; } else { kp->ki_stat = SIDL; } /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; /* * Note: legacy fields; clamp at the old NOCPU value and/or * the maximum u_char CPU value. */ if (td->td_lastcpu == NOCPU) kp->ki_lastcpu_old = NOCPU_OLD; else if (td->td_lastcpu > MAXCPU_OLD) kp->ki_lastcpu_old = MAXCPU_OLD; else kp->ki_lastcpu_old = td->td_lastcpu; if (td->td_oncpu == NOCPU) kp->ki_oncpu_old = NOCPU_OLD; else if (td->td_oncpu > MAXCPU_OLD) kp->ki_oncpu_old = MAXCPU_OLD; else kp->ki_oncpu_old = td->td_oncpu; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_tid = td->td_tid; kp->ki_numthreads = p->p_numthreads; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; kp->ki_slptime = (ticks - td->td_slptick) / hz; kp->ki_pri.pri_class = td->td_pri_class; kp->ki_pri.pri_user = td->td_user_pri; if (preferthread) { rufetchtd(td, &kp->ki_rusage); kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); kp->ki_pctcpu = sched_pctcpu(td); kp->ki_estcpu = sched_estcpu(td); kp->ki_cow = td->td_cow; } /* We can't get this anymore but ps etc never used it anyway. */ kp->ki_rqindex = 0; if (preferthread) kp->ki_siglist = td->td_siglist; kp->ki_sigmask = td->td_sigmask; thread_unlock(td); if (preferthread) PROC_STATUNLOCK(p); } /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { MPASS(FIRST_THREAD_IN_PROC(p) != NULL); fill_kinfo_proc_only(p, kp); fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); fill_kinfo_aggregate(p, kp); } struct pstats * pstats_alloc(void) { return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); } /* * Copy parts of p_stats; zero the rest of p_stats (statistics). */ void pstats_fork(struct pstats *src, struct pstats *dst) { bzero(&dst->pstat_startzero, __rangeof(struct pstats, pstat_startzero, pstat_endzero)); bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); } void pstats_free(struct pstats *ps) { free(ps, M_SUBPROC); } #ifdef COMPAT_FREEBSD32 /* * This function is typically used to copy out the kernel address, so * it can be replaced by assignment of zero. */ static inline uint32_t ptr32_trim(void *ptr) { uintptr_t uptr; uptr = (uintptr_t)ptr; return ((uptr > UINT_MAX) ? 0 : uptr); } #define PTRTRIM_CP(src,dst,fld) \ do { (dst).fld = ptr32_trim((src).fld); } while (0) static void freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) { int i; bzero(ki32, sizeof(struct kinfo_proc32)); ki32->ki_structsize = sizeof(struct kinfo_proc32); CP(*ki, *ki32, ki_layout); PTRTRIM_CP(*ki, *ki32, ki_args); PTRTRIM_CP(*ki, *ki32, ki_paddr); PTRTRIM_CP(*ki, *ki32, ki_addr); PTRTRIM_CP(*ki, *ki32, ki_tracep); PTRTRIM_CP(*ki, *ki32, ki_textvp); PTRTRIM_CP(*ki, *ki32, ki_fd); PTRTRIM_CP(*ki, *ki32, ki_vmspace); PTRTRIM_CP(*ki, *ki32, ki_wchan); CP(*ki, *ki32, ki_pid); CP(*ki, *ki32, ki_ppid); CP(*ki, *ki32, ki_pgid); CP(*ki, *ki32, ki_tpgid); CP(*ki, *ki32, ki_sid); CP(*ki, *ki32, ki_tsid); CP(*ki, *ki32, ki_jobc); CP(*ki, *ki32, ki_tdev); CP(*ki, *ki32, ki_tdev_freebsd11); CP(*ki, *ki32, ki_siglist); CP(*ki, *ki32, ki_sigmask); CP(*ki, *ki32, ki_sigignore); CP(*ki, *ki32, ki_sigcatch); CP(*ki, *ki32, ki_uid); CP(*ki, *ki32, ki_ruid); CP(*ki, *ki32, ki_svuid); CP(*ki, *ki32, ki_rgid); CP(*ki, *ki32, ki_svgid); CP(*ki, *ki32, ki_ngroups); for (i = 0; i < KI_NGROUPS; i++) CP(*ki, *ki32, ki_groups[i]); CP(*ki, *ki32, ki_size); CP(*ki, *ki32, ki_rssize); CP(*ki, *ki32, ki_swrss); CP(*ki, *ki32, ki_tsize); CP(*ki, *ki32, ki_dsize); CP(*ki, *ki32, ki_ssize); CP(*ki, *ki32, ki_xstat); CP(*ki, *ki32, ki_acflag); CP(*ki, *ki32, ki_pctcpu); CP(*ki, *ki32, ki_estcpu); CP(*ki, *ki32, ki_slptime); CP(*ki, *ki32, ki_swtime); CP(*ki, *ki32, ki_cow); CP(*ki, *ki32, ki_runtime); TV_CP(*ki, *ki32, ki_start); TV_CP(*ki, *ki32, ki_childtime); CP(*ki, *ki32, ki_flag); CP(*ki, *ki32, ki_kiflag); CP(*ki, *ki32, ki_traceflag); CP(*ki, *ki32, ki_stat); CP(*ki, *ki32, ki_nice); CP(*ki, *ki32, ki_lock); CP(*ki, *ki32, ki_rqindex); CP(*ki, *ki32, ki_oncpu); CP(*ki, *ki32, ki_lastcpu); /* XXX TODO: wrap cpu value as appropriate */ CP(*ki, *ki32, ki_oncpu_old); CP(*ki, *ki32, ki_lastcpu_old); bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); CP(*ki, *ki32, ki_tracer); CP(*ki, *ki32, ki_flag2); CP(*ki, *ki32, ki_fibnum); CP(*ki, *ki32, ki_cr_flags); CP(*ki, *ki32, ki_jid); CP(*ki, *ki32, ki_numthreads); CP(*ki, *ki32, ki_tid); CP(*ki, *ki32, ki_pri); freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); PTRTRIM_CP(*ki, *ki32, ki_pcb); PTRTRIM_CP(*ki, *ki32, ki_kstack); PTRTRIM_CP(*ki, *ki32, ki_udata); PTRTRIM_CP(*ki, *ki32, ki_tdaddr); CP(*ki, *ki32, ki_sflag); CP(*ki, *ki32, ki_tdflags); } #endif static ssize_t kern_proc_out_size(struct proc *p, int flags) { ssize_t size = 0; PROC_LOCK_ASSERT(p, MA_OWNED); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { size += sizeof(struct kinfo_proc32); } else #endif size += sizeof(struct kinfo_proc); } else { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) size += sizeof(struct kinfo_proc32) * p->p_numthreads; else #endif size += sizeof(struct kinfo_proc) * p->p_numthreads; } PROC_UNLOCK(p); return (size); } int kern_proc_out(struct proc *p, struct sbuf *sb, int flags) { struct thread *td; struct kinfo_proc ki; #ifdef COMPAT_FREEBSD32 struct kinfo_proc32 ki32; #endif int error; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(FIRST_THREAD_IN_PROC(p) != NULL); error = 0; fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; } else { FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &ki, 1); #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; if (error != 0) break; } } PROC_UNLOCK(p); return (error); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) { struct sbuf sb; struct kinfo_proc ki; int error, error2; if (req->oldptr == NULL) return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = kern_proc_out(p, &sb, flags); error2 = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0) return (error); else if (error2 != 0) return (error2); return (0); } int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) { struct proc *p; int error, i, j; for (i = 0; i < pidhashlock + 1; i++) { sx_slock(&pidhashtbl_lock[i]); for (j = i; j <= pidhash; j += pidhashlock + 1) { LIST_FOREACH(p, &pidhashtbl[j], p_hash) { if (p->p_state == PRS_NEW) continue; error = cb(p, cbarg); PROC_LOCK_ASSERT(p, MA_NOTOWNED); if (error != 0) { sx_sunlock(&pidhashtbl_lock[i]); return (error); } } } sx_sunlock(&pidhashtbl_lock[i]); } return (0); } struct kern_proc_out_args { struct sysctl_req *req; int flags; int oid_number; int *name; }; static int sysctl_kern_proc_iterate(struct proc *p, void *origarg) { struct kern_proc_out_args *arg = origarg; int *name = arg->name; int oid_number = arg->oid_number; int flags = arg->flags; struct sysctl_req *req = arg->req; int error = 0; PROC_LOCK(p); KASSERT(p->p_ucred != NULL, ("process credential is NULL for non-NEW proc")); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) goto skip; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid_number) { case KERN_PROC_GID: if (p->p_ucred->cr_gid != (gid_t)name[0]) goto skip; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) goto skip; break; case KERN_PROC_RGID: if (p->p_ucred->cr_rgid != (gid_t)name[0]) goto skip; break; case KERN_PROC_SESSION: if (p->p_session == NULL || p->p_session->s_sid != (pid_t)name[0]) goto skip; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) goto skip; /* XXX proctree_lock */ SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || tty_udev(p->p_session->s_ttyp) != (dev_t)name[0]) { SESS_UNLOCK(p->p_session); goto skip; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[0]) goto skip; break; case KERN_PROC_RUID: if (p->p_ucred->cr_ruid != (uid_t)name[0]) goto skip; break; case KERN_PROC_PROC: break; default: break; } error = sysctl_out_proc(p, req, flags); PROC_LOCK_ASSERT(p, MA_NOTOWNED); return (error); skip: PROC_UNLOCK(p); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { struct kern_proc_out_args iterarg; int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, oid_number; int error = 0; oid_number = oidp->oid_number; if (oid_number != KERN_PROC_ALL && (oid_number & KERN_PROC_INC_THREAD) == 0) flags = KERN_PROC_NOTHREADS; else { flags = 0; oid_number &= ~KERN_PROC_INC_THREAD; } #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) flags |= KERN_PROC_MASK32; #endif if (oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error == 0) error = sysctl_out_proc(p, req, flags); return (error); } switch (oid_number) { case KERN_PROC_ALL: if (namelen != 0) return (EINVAL); break; case KERN_PROC_PROC: if (namelen != 0 && namelen != 1) return (EINVAL); break; default: if (namelen != 1) return (EINVAL); break; } if (req->oldptr == NULL) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } else { error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); } iterarg.flags = flags; iterarg.oid_number = oid_number; iterarg.req = req; iterarg.name = name; error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); return (error); } struct pargs * pargs_alloc(int len) { struct pargs *pa; pa = malloc(sizeof(struct pargs) + len, M_PARGS, M_WAITOK); refcount_init(&pa->ar_ref, 1); pa->ar_length = len; return (pa); } static void pargs_free(struct pargs *pa) { free(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; refcount_acquire(&pa->ar_ref); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; if (refcount_release(&pa->ar_ref)) pargs_free(pa); } static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len) { ssize_t n; /* * This may return a short read if the string is shorter than the chunk * and is aligned at the end of the page, and the following page is not * mapped. */ n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); if (n <= 0) return (ENOMEM); return (0); } #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ enum proc_vector_type { PROC_ARG, PROC_ENV, PROC_AUX, }; #ifdef COMPAT_FREEBSD32 static int get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct freebsd32_ps_strings pss; Elf32_Auxinfo aux; vm_offset_t vptr, ptr; uint32_t *proc_vector32; char **proc_vector; size_t vsize, size; int i, error; error = 0; if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_ENV: vptr = (vm_offset_t)PTRIN(pss.ps_envstr); vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_AUX: vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + (pss.ps_nenvstr + 1) * sizeof(int32_t); if (vptr % 4 != 0) return (ENOEXEC); for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); } proc_vector32 = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { error = ENOMEM; goto done; } if (type == PROC_AUX) { *proc_vectorp = (char **)proc_vector32; *vsizep = vsize; return (0); } proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); for (i = 0; i < (int)vsize; i++) proc_vector[i] = PTRIN(proc_vector32[i]); *proc_vectorp = proc_vector; *vsizep = vsize; done: free(proc_vector32, M_TEMP); return (error); } #endif static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct ps_strings pss; Elf_Auxinfo aux; vm_offset_t vptr, ptr; char **proc_vector; size_t vsize, size; int i; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); #endif if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)pss.ps_argvstr; vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_ENV: vptr = (vm_offset_t)pss.ps_envstr; vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_AUX: /* * The aux array is just above env array on the stack. Check * that the address is naturally aligned. */ vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) * sizeof(char *); #if __ELF_WORD_SIZE == 64 if (vptr % sizeof(uint64_t) != 0) #else if (vptr % sizeof(uint32_t) != 0) #endif return (ENOEXEC); /* * We count the array size reading the aux vectors from the * stack until AT_NULL vector is returned. So (to keep the code * simple) we read the process stack twice: the first time here * to find the size and the second time when copying the vectors * to the allocated proc_vector. */ for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } /* * If the PROC_AUXV_MAX entries are iterated over, and we have * not reached AT_NULL, it is most likely we are reading wrong * data: either the process doesn't have auxv array or data has * been modified. Return the error in this case. */ if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); /* In case we are built without INVARIANTS. */ } proc_vector = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector, size) != size) { free(proc_vector, M_TEMP); return (ENOMEM); } *proc_vectorp = proc_vector; *vsizep = vsize; return (0); } #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type) { size_t done, len, nchr, vsize; int error, i; char **proc_vector, *sptr; char pss_string[GET_PS_STRINGS_CHUNK_SZ]; PROC_ASSERT_HELD(p); /* * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. */ nchr = 2 * (PATH_MAX + ARG_MAX); error = get_proc_vector(td, p, &proc_vector, &vsize, type); if (error != 0) return (error); for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { /* * The program may have scribbled into its argv array, e.g. to * remove some arguments. If that has happened, break out * before trying to read from NULL. */ if (proc_vector[i] == NULL) break; for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { error = proc_read_string(td, p, sptr, pss_string, sizeof(pss_string)); if (error != 0) goto done; len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); if (done + len >= nchr) len = nchr - done - 1; sbuf_bcat(sb, pss_string, len); if (len != GET_PS_STRINGS_CHUNK_SZ) break; done += GET_PS_STRINGS_CHUNK_SZ; } sbuf_bcat(sb, "", 1); done += len + 1; } done: free(proc_vector, M_TEMP); return (error); } int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ARG)); } int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ENV)); } int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) { size_t vsize, size; char **auxv; int error; error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); if (error == 0) { #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) size = vsize * sizeof(Elf32_Auxinfo); else #endif size = vsize * sizeof(Elf_Auxinfo); if (sbuf_bcat(sb, auxv, size) != 0) error = ENOMEM; free(auxv, M_TEMP); } return (error); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; struct sbuf sb; int flags, error = 0, error2; pid_t pid; if (namelen != 1) return (EINVAL); pid = (pid_t)name[0]; /* * If the query is for this process and it is single-threaded, there * is nobody to modify pargs, thus we can just read. */ p = curproc; if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && (pa = p->p_args) != NULL) return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); flags = PGET_CANSEE; if (req->newptr != NULL) flags |= PGET_ISCURRENT; error = pget(pid, flags, &p); if (error) return (error); pa = p->p_args; if (pa != NULL) { pargs_hold(pa); PROC_UNLOCK(p); error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { _PHOLD(p); PROC_UNLOCK(p); sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getargv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); if (error == 0 && error2 != 0) error = error2; } else { PROC_UNLOCK(p); } if (error != 0 || req->newptr == NULL) return (error); if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) return (ENOMEM); if (req->newlen == 0) { /* * Clear the argument pointer, so that we'll fetch arguments * with proc_getargv() until further notice. */ newpa = NULL; } else { newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } /* * This sysctl allows a process to retrieve environment of another process. */ static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getenvv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve ELF auxiliary vector of * another process. */ static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getauxv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve the path of the executable for * itself or another process. */ static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct vnode *vp; char *retbuf, *freebuf; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } vp = p->p_textvp; if (vp == NULL) { if (*pidp != -1) PROC_UNLOCK(p); return (0); } vref(vp); if (*pidp != -1) PROC_UNLOCK(p); error = vn_fullpath(req->td, vp, &retbuf, &freebuf); vrele(vp); if (error) return (error); error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); free(freebuf, M_TEMP); return (error); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; int error; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } #ifdef KINFO_OVMENTRY_SIZE CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) { vm_map_entry_t entry, tmp_entry; unsigned int last_timestamp; char *fullpath, *freepath; struct kinfo_ovmentry *kve; struct vattr va; struct ucred *cred; int error, *name; struct vnode *vp; struct proc *p; vm_map_t map; struct vmspace *vm; name = (int *)arg1; error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { vm_object_t obj, tobj, lobj; vm_offset_t addr; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; bzero(kve, sizeof(*kve)); kve->kve_structsize = sizeof(*kve); kve->kve_private_resident = 0; obj = entry->object.vm_object; if (obj != NULL) { VM_OBJECT_RLOCK(obj); if (obj->shadow_count == 1) kve->kve_private_resident = obj->resident_page_count; } kve->kve_resident = 0; addr = entry->start; while (addr < entry->end) { if (pmap_extract(map->pmap, addr)) kve->kve_resident++; addr += PAGE_SIZE; } for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { if (tobj != obj) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } kve->kve_start = (void*)entry->start; kve->kve_end = (void*)entry->end; kve->kve_offset += (off_t)entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; last_timestamp = map->timestamp; vm_map_unlock_read(map); kve->kve_fileid = 0; kve->kve_fsid = 0; freepath = NULL; fullpath = ""; if (lobj) { kve->kve_type = vm_object_kvme_type(lobj, &vp); if (kve->kve_type == KVME_TYPE_MGTDEVICE) kve->kve_type = KVME_TYPE_UNKNOWN; if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_fileid = va.va_fileid; /* truncate */ kve->kve_fsid = va.va_fsid; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kve, sizeof(*kve)); vm_map_lock_read(map); if (error) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, int *resident_count, bool *super) { vm_object_t obj, tobj; vm_page_t m, m_adv; vm_offset_t addr; vm_paddr_t locked_pa; vm_pindex_t pi, pi_adv, pindex; *super = false; *resident_count = 0; if (vmmap_skip_res_cnt) return; locked_pa = 0; obj = entry->object.vm_object; addr = entry->start; m_adv = NULL; pi = OFF_TO_IDX(entry->offset); for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { if (m_adv != NULL) { m = m_adv; } else { pi_adv = atop(entry->end - addr); pindex = pi; for (tobj = obj;; tobj = tobj->backing_object) { m = vm_page_find_least(tobj, pindex); if (m != NULL) { if (m->pindex == pindex) break; if (pi_adv > m->pindex - pindex) { pi_adv = m->pindex - pindex; m_adv = m; } } if (tobj->backing_object == NULL) goto next; pindex += OFF_TO_IDX(tobj-> backing_object_offset); } } m_adv = NULL; if (m->psind != 0 && addr + pagesizes[1] <= entry->end && (addr & (pagesizes[1] - 1)) == 0 && (pmap_mincore(map->pmap, addr, &locked_pa) & MINCORE_SUPER) != 0) { *super = true; pi_adv = atop(pagesizes[1]); } else { /* * We do not test the found page on validity. * Either the page is busy and being paged in, * or it was invalidated. The first case * should be counted as resident, the second * is not so clear; we do account both. */ pi_adv = 1; } *resident_count += pi_adv; next:; } PA_UNLOCK_COND(locked_pa); } /* * Must be called with the process locked and will return unlocked. */ int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) { vm_map_entry_t entry, tmp_entry; struct vattr va; vm_map_t map; vm_object_t obj, tobj, lobj; char *fullpath, *freepath; struct kinfo_vmentry *kve; struct ucred *cred; struct vnode *vp; struct vmspace *vm; vm_offset_t addr; unsigned int last_timestamp; int error; bool super; PROC_LOCK_ASSERT(p, MA_OWNED); _PHOLD(p); PROC_UNLOCK(p); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); error = 0; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; addr = entry->end; bzero(kve, sizeof(*kve)); obj = entry->object.vm_object; if (obj != NULL) { for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; lobj = tobj; } if (obj->backing_object == NULL) kve->kve_private_resident = obj->resident_page_count; kern_proc_vmmap_resident(map, entry, &kve->kve_resident, &super); if (super) kve->kve_flags |= KVME_FLAG_SUPER; for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj && tobj != lobj) VM_OBJECT_RUNLOCK(tobj); } } else { lobj = NULL; } kve->kve_start = entry->start; kve->kve_end = entry->end; kve->kve_offset += entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; if (entry->eflags & MAP_ENTRY_GROWS_UP) kve->kve_flags |= KVME_FLAG_GROWS_UP; if (entry->eflags & MAP_ENTRY_GROWS_DOWN) kve->kve_flags |= KVME_FLAG_GROWS_DOWN; if (entry->eflags & MAP_ENTRY_USER_WIRED) kve->kve_flags |= KVME_FLAG_USER_WIRED; last_timestamp = map->timestamp; vm_map_unlock_read(map); freepath = NULL; fullpath = ""; if (lobj != NULL) { kve->kve_type = vm_object_kvme_type(lobj, &vp); if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); kve->kve_vn_type = vntype_to_kinfo(vp->v_type); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_vn_fileid = va.va_fileid; kve->kve_vn_fsid = va.va_fsid; kve->kve_vn_fsid_freebsd11 = kve->kve_vn_fsid; /* truncate */ kve->kve_vn_mode = MAKEIMODE(va.va_type, va.va_mode); kve->kve_vn_size = va.va_size; kve->kve_vn_rdev = va.va_rdev; kve->kve_vn_rdev_freebsd11 = kve->kve_vn_rdev; /* truncate */ kve->kve_status = KF_ATTR_VALID; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); /* Pack record size down */ if ((flags & KERN_VMMAP_PACK_KINFO) != 0) kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + strlen(kve->kve_path) + 1; else kve->kve_structsize = sizeof(*kve); kve->kve_structsize = roundup(kve->kve_structsize, sizeof(uint64_t)); /* Halt filling and truncate rather than exceeding maxlen */ if (maxlen != -1 && maxlen < kve->kve_structsize) { error = 0; vm_map_lock_read(map); break; } else if (maxlen != -1) maxlen -= kve->kve_structsize; if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) error = ENOMEM; vm_map_lock_read(map); if (error != 0) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) { struct proc *p; struct sbuf sb; int error, error2, *name; name = (int *)arg1; sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); if (error != 0) { sbuf_delete(&sb); return (error); } error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); error2 = sbuf_finish(&sb); sbuf_delete(&sb); return (error != 0 ? error : error2); } #if defined(STACK) || defined(DDB) static int sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) { struct kinfo_kstack *kkstp; int error, i, *name, numthreads; lwpid_t *lwpidarray; struct thread *td; struct stack *st; struct sbuf sb; struct proc *p; name = (int *)arg1; error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); if (error != 0) return (error); kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); st = stack_create(M_WAITOK); lwpidarray = NULL; PROC_LOCK(p); do { if (lwpidarray != NULL) { free(lwpidarray, M_TEMP); lwpidarray = NULL; } numthreads = p->p_numthreads; PROC_UNLOCK(p); lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, M_WAITOK | M_ZERO); PROC_LOCK(p); } while (numthreads < p->p_numthreads); /* * XXXRW: During the below loop, execve(2) and countless other sorts * of changes could have taken place. Should we check to see if the * vmspace has been replaced, or the like, in order to prevent * giving a snapshot that spans, say, execve(2), with some threads * before and some after? Among other things, the credentials could * have changed, in which case the right to extract debug info might * no longer be assured. */ i = 0; FOREACH_THREAD_IN_PROC(p, td) { KASSERT(i < numthreads, ("sysctl_kern_proc_kstack: numthreads")); lwpidarray[i] = td->td_tid; i++; } numthreads = i; for (i = 0; i < numthreads; i++) { td = thread_find(p, lwpidarray[i]); if (td == NULL) { continue; } bzero(kkstp, sizeof(*kkstp)); (void)sbuf_new(&sb, kkstp->kkst_trace, sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); thread_lock(td); kkstp->kkst_tid = td->td_tid; if (TD_IS_SWAPPED(td)) { kkstp->kkst_state = KKST_STATE_SWAPPED; } else if (TD_IS_RUNNING(td)) { if (stack_save_td_running(st, td) == 0) kkstp->kkst_state = KKST_STATE_STACKOK; else kkstp->kkst_state = KKST_STATE_RUNNING; } else { kkstp->kkst_state = KKST_STATE_STACKOK; stack_save_td(st, td); } thread_unlock(td); PROC_UNLOCK(p); stack_sbuf_print(&sb, st); sbuf_finish(&sb); sbuf_delete(&sb); error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); PROC_LOCK(p); if (error) break; } _PRELE(p); PROC_UNLOCK(p); if (lwpidarray != NULL) free(lwpidarray, M_TEMP); stack_destroy(st); free(kkstp, M_TEMP); return (error); } #endif /* * This sysctl allows a process to retrieve the full list of groups from * itself or another process. */ static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct ucred *cred; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; PROC_LOCK(p); } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } cred = crhold(p->p_ucred); PROC_UNLOCK(p); error = SYSCTL_OUT(req, cred->cr_groups, cred->cr_ngroups * sizeof(gid_t)); crfree(cred); return (error); } /* * This sysctl allows a process to retrieve or/and set the resource limit for * another process. */ static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct rlimit rlim; struct proc *p; u_int which; int flags, error; if (namelen != 2) return (EINVAL); which = (u_int)name[1]; if (which >= RLIM_NLIMITS) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(rlim)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); /* * Retrieve limit. */ if (req->oldptr != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); } error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); if (error != 0) goto errout; /* * Set limit. */ if (req->newptr != NULL) { error = SYSCTL_IN(req, &rlim, sizeof(rlim)); if (error == 0) error = kern_proc_setrlimit(curthread, p, which, &rlim); } errout: PRELE(p); return (error); } /* * This sysctl allows a process to retrieve ps_strings structure location of * another process. */ static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; vm_offset_t ps_strings; int error; #ifdef COMPAT_FREEBSD32 uint32_t ps_strings32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { /* * We return 0 if the 32 bit emulation request is for a 64 bit * process. */ ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? PTROUT(p->p_sysent->sv_psstrings) : 0; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); return (error); } #endif ps_strings = p->p_sysent->sv_psstrings; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); return (error); } /* * This sysctl allows a process to retrieve umask of another process. */ static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int error; u_short fd_cmask; pid_t pid; if (namelen != 1) return (EINVAL); pid = (pid_t)name[0]; p = curproc; if (pid == p->p_pid || pid == 0) { fd_cmask = p->p_fd->fd_cmask; goto out; } error = pget(pid, PGET_WANTREAD, &p); if (error != 0) return (error); fd_cmask = p->p_fd->fd_cmask; PRELE(p); out: error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); return (error); } /* * This sysctl allows a process to set and retrieve binary osreldate of * another process. */ static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, error, osrel; if (namelen != 1) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(osrel)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); if (error != 0) goto errout; if (req->newptr != NULL) { error = SYSCTL_IN(req, &osrel, sizeof(osrel)); if (error != 0) goto errout; if (osrel < 0) { error = EINVAL; goto errout; } p->p_osrel = osrel; } errout: PRELE(p); return (error); } static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct kinfo_sigtramp kst; const struct sysentvec *sv; int error; #ifdef COMPAT_FREEBSD32 struct kinfo_sigtramp32 kst32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); sv = p->p_sysent; #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { bzero(&kst32, sizeof(kst32)); if (SV_PROC_FLAG(p, SV_ILP32)) { if (sv->sv_sigcode_base != 0) { kst32.ksigtramp_start = sv->sv_sigcode_base; kst32.ksigtramp_end = sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst32.ksigtramp_start = sv->sv_psstrings - *sv->sv_szsigcode; kst32.ksigtramp_end = sv->sv_psstrings; } } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); return (error); } #endif bzero(&kst, sizeof(kst)); if (sv->sv_sigcode_base != 0) { kst.ksigtramp_start = (char *)sv->sv_sigcode_base; kst.ksigtramp_end = (char *)sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst.ksigtramp_start = (char *)sv->sv_psstrings - *sv->sv_szsigcode; kst.ksigtramp_end = (char *)sv->sv_psstrings; } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst, sizeof(kst)); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_args, "Process argument list"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_env, "Process environment"); static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); #ifdef COMPAT_FREEBSD7 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); #if defined(STACK) || defined(DDB) static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, "Process ps_strings location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, "Process binary osreldate"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, "Process signal trampoline location"); int allproc_gen; /* * stop_all_proc() purpose is to stop all process which have usermode, * except current process for obvious reasons. This makes it somewhat * unreliable when invoked from multithreaded process. The service * must not be user-callable anyway. */ void stop_all_proc(void) { struct proc *cp, *p; int r, gen; bool restart, seen_stopped, seen_exiting, stopped_some; cp = curproc; allproc_loop: sx_xlock(&allproc_lock); gen = allproc_gen; seen_exiting = seen_stopped = stopped_some = restart = false; LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { PROC_UNLOCK(p); continue; } if ((p->p_flag & P_WEXIT) != 0) { seen_exiting = true; PROC_UNLOCK(p); continue; } if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { /* * Stopped processes are tolerated when there * are no other processes which might continue * them. P_STOPPED_SINGLE but not * P_TOTAL_STOP process still has at least one * thread running. */ seen_stopped = true; PROC_UNLOCK(p); continue; } sx_xunlock(&allproc_lock); _PHOLD(p); r = thread_single(p, SINGLE_ALLPROC); if (r != 0) restart = true; else stopped_some = true; _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } /* Catch forked children we did not see in iteration. */ if (gen != allproc_gen) restart = true; sx_xunlock(&allproc_lock); if (restart || stopped_some || seen_exiting || seen_stopped) { kern_yield(PRI_USER); goto allproc_loop; } } void resume_all_proc(void) { struct proc *cp, *p; cp = curproc; sx_xlock(&allproc_lock); again: LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & P_TOTAL_STOP) != 0) { sx_xunlock(&allproc_lock); _PHOLD(p); thread_single_end(p, SINGLE_ALLPROC); _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } else { PROC_UNLOCK(p); } } /* Did the loop above missed any stopped process ? */ FOREACH_PROC_IN_SYSTEM(p) { /* No need for proc lock. */ if ((p->p_flag & P_TOTAL_STOP) != 0) goto again; } sx_xunlock(&allproc_lock); } /* #define TOTAL_STOP_DEBUG 1 */ #ifdef TOTAL_STOP_DEBUG volatile static int ap_resume; #include static int sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) { int error, val; val = 0; ap_resume = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0) { stop_all_proc(); syncer_suspend(); while (ap_resume == 0) ; syncer_resume(); resume_all_proc(); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, sysctl_debug_stop_all_proc, "I", ""); #endif Index: head/sys/kern/kern_racct.c =================================================================== --- head/sys/kern/kern_racct.c (revision 351571) +++ head/sys/kern/kern_racct.c (revision 351572) @@ -1,1370 +1,1364 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010 The FreeBSD Foundation * All rights reserved. * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RCTL #include #endif #ifdef RACCT FEATURE(racct, "Resource Accounting"); /* * Do not block processes that have their %cpu usage <= pcpu_threshold. */ static int pcpu_threshold = 1; #ifdef RACCT_DEFAULT_TO_DISABLED bool __read_frequently racct_enable = false; #else bool __read_frequently racct_enable = true; #endif SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting"); SYSCTL_BOOL(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable, 0, "Enable RACCT/RCTL"); SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold, 0, "Processes with higher %cpu usage than this value can be throttled."); /* * How many seconds it takes to use the scheduler %cpu calculations. When a * process starts, we compute its %cpu usage by dividing its runtime by the * process wall clock time. After RACCT_PCPU_SECS pass, we use the value * provided by the scheduler. */ #define RACCT_PCPU_SECS 3 struct mtx racct_lock; MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF); static uma_zone_t racct_zone; static void racct_sub_racct(struct racct *dest, const struct racct *src); static void racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount); static void racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount); SDT_PROVIDER_DEFINE(racct); SDT_PROBE_DEFINE3(racct, , rusage, add, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, add__failure, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, add__buf, "struct proc *", "const struct buf *", "int"); SDT_PROBE_DEFINE3(racct, , rusage, add__cred, "struct ucred *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, add__force, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, set, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, set__failure, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, set__force, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, sub, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, , rusage, sub__cred, "struct ucred *", "int", "uint64_t"); SDT_PROBE_DEFINE1(racct, , racct, create, "struct racct *"); SDT_PROBE_DEFINE1(racct, , racct, destroy, "struct racct *"); SDT_PROBE_DEFINE2(racct, , racct, join, "struct racct *", "struct racct *"); SDT_PROBE_DEFINE2(racct, , racct, join__failure, "struct racct *", "struct racct *"); SDT_PROBE_DEFINE2(racct, , racct, leave, "struct racct *", "struct racct *"); int racct_types[] = { [RACCT_CPU] = RACCT_IN_MILLIONS, [RACCT_DATA] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_STACK] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_CORE] = RACCT_DENIABLE, [RACCT_RSS] = RACCT_RECLAIMABLE, [RACCT_MEMLOCK] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_NPROC] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_NOFILE] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_VMEM] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_NPTS] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_SWAP] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NTHR] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_MSGQQUEUED] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_MSGQSIZE] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NMSGQ] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NSEM] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NSEMOP] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_NSHM] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_SHMSIZE] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_WALLCLOCK] = RACCT_IN_MILLIONS, [RACCT_PCTCPU] = RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS, [RACCT_READBPS] = RACCT_DECAYING, [RACCT_WRITEBPS] = RACCT_DECAYING, [RACCT_READIOPS] = RACCT_DECAYING, [RACCT_WRITEIOPS] = RACCT_DECAYING }; static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE; #ifdef SCHED_4BSD /* * Contains intermediate values for %cpu calculations to avoid using floating * point in the kernel. * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20) * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to * zero so the calculations are more straightforward. */ fixpt_t ccpu_exp[] = { [0] = FSCALE * 1, [1] = FSCALE * 0.95122942450071400909, [2] = FSCALE * 0.90483741803595957316, [3] = FSCALE * 0.86070797642505780722, [4] = FSCALE * 0.81873075307798185866, [5] = FSCALE * 0.77880078307140486824, [6] = FSCALE * 0.74081822068171786606, [7] = FSCALE * 0.70468808971871343435, [8] = FSCALE * 0.67032004603563930074, [9] = FSCALE * 0.63762815162177329314, [10] = FSCALE * 0.60653065971263342360, [11] = FSCALE * 0.57694981038048669531, [12] = FSCALE * 0.54881163609402643262, [13] = FSCALE * 0.52204577676101604789, [14] = FSCALE * 0.49658530379140951470, [15] = FSCALE * 0.47236655274101470713, [16] = FSCALE * 0.44932896411722159143, [17] = FSCALE * 0.42741493194872666992, [18] = FSCALE * 0.40656965974059911188, [19] = FSCALE * 0.38674102345450120691, [20] = FSCALE * 0.36787944117144232159, [21] = FSCALE * 0.34993774911115535467, [22] = FSCALE * 0.33287108369807955328, [23] = FSCALE * 0.31663676937905321821, [24] = FSCALE * 0.30119421191220209664, [25] = FSCALE * 0.28650479686019010032, [26] = FSCALE * 0.27253179303401260312, [27] = FSCALE * 0.25924026064589150757, [28] = FSCALE * 0.24659696394160647693, [29] = FSCALE * 0.23457028809379765313, [30] = FSCALE * 0.22313016014842982893, [31] = FSCALE * 0.21224797382674305771, [32] = FSCALE * 0.20189651799465540848, [33] = FSCALE * 0.19204990862075411423, [34] = FSCALE * 0.18268352405273465022, [35] = FSCALE * 0.17377394345044512668, [36] = FSCALE * 0.16529888822158653829, [37] = FSCALE * 0.15723716631362761621, [38] = FSCALE * 0.14956861922263505264, [39] = FSCALE * 0.14227407158651357185, [40] = FSCALE * 0.13533528323661269189, [41] = FSCALE * 0.12873490358780421886, [42] = FSCALE * 0.12245642825298191021, [43] = FSCALE * 0.11648415777349695786, [44] = FSCALE * 0.11080315836233388333, [45] = FSCALE * 0.10539922456186433678, [46] = FSCALE * 0.10025884372280373372, [47] = FSCALE * 0.09536916221554961888, [48] = FSCALE * 0.09071795328941250337, [49] = FSCALE * 0.08629358649937051097, [50] = FSCALE * 0.08208499862389879516, [51] = FSCALE * 0.07808166600115315231, [52] = FSCALE * 0.07427357821433388042, [53] = FSCALE * 0.07065121306042958674, [54] = FSCALE * 0.06720551273974976512, [55] = FSCALE * 0.06392786120670757270, [56] = FSCALE * 0.06081006262521796499, [57] = FSCALE * 0.05784432087483846296, [58] = FSCALE * 0.05502322005640722902, [59] = FSCALE * 0.05233970594843239308, [60] = FSCALE * 0.04978706836786394297, [61] = FSCALE * 0.04735892439114092119, [62] = FSCALE * 0.04504920239355780606, [63] = FSCALE * 0.04285212686704017991, [64] = FSCALE * 0.04076220397836621516, [65] = FSCALE * 0.03877420783172200988, [66] = FSCALE * 0.03688316740124000544, [67] = FSCALE * 0.03508435410084502588, [68] = FSCALE * 0.03337326996032607948, [69] = FSCALE * 0.03174563637806794323, [70] = FSCALE * 0.03019738342231850073, [71] = FSCALE * 0.02872463965423942912, [72] = FSCALE * 0.02732372244729256080, [73] = FSCALE * 0.02599112877875534358, [74] = FSCALE * 0.02472352647033939120, [75] = FSCALE * 0.02351774585600910823, [76] = FSCALE * 0.02237077185616559577, [77] = FSCALE * 0.02127973643837716938, [78] = FSCALE * 0.02024191144580438847, [79] = FSCALE * 0.01925470177538692429, [80] = FSCALE * 0.01831563888873418029, [81] = FSCALE * 0.01742237463949351138, [82] = FSCALE * 0.01657267540176124754, [83] = FSCALE * 0.01576441648485449082, [84] = FSCALE * 0.01499557682047770621, [85] = FSCALE * 0.01426423390899925527, [86] = FSCALE * 0.01356855901220093175, [87] = FSCALE * 0.01290681258047986886, [88] = FSCALE * 0.01227733990306844117, [89] = FSCALE * 0.01167856697039544521, [90] = FSCALE * 0.01110899653824230649, [91] = FSCALE * 0.01056720438385265337, [92] = FSCALE * 0.01005183574463358164, [93] = FSCALE * 0.00956160193054350793, [94] = FSCALE * 0.00909527710169581709, [95] = FSCALE * 0.00865169520312063417, [96] = FSCALE * 0.00822974704902002884, [97] = FSCALE * 0.00782837754922577143, [98] = FSCALE * 0.00744658307092434051, [99] = FSCALE * 0.00708340892905212004, [100] = FSCALE * 0.00673794699908546709, [101] = FSCALE * 0.00640933344625638184, [102] = FSCALE * 0.00609674656551563610, [103] = FSCALE * 0.00579940472684214321, [104] = FSCALE * 0.00551656442076077241, [105] = FSCALE * 0.00524751839918138427, [106] = FSCALE * 0.00499159390691021621, [107] = FSCALE * 0.00474815099941147558, [108] = FSCALE * 0.00451658094261266798, [109] = FSCALE * 0.00429630469075234057, [110] = FSCALE * 0.00408677143846406699, }; #endif #define CCPU_EXP_MAX 110 /* * This function is analogical to the getpcpu() function in the ps(1) command. * They should both calculate in the same way so that the racct %cpu * calculations are consistent with the values showed by the ps(1) tool. * The calculations are more complex in the 4BSD scheduler because of the value * of the ccpu variable. In ULE it is defined to be zero which saves us some * work. */ static uint64_t racct_getpcpu(struct proc *p, u_int pcpu) { u_int swtime; #ifdef SCHED_4BSD fixpt_t pctcpu, pctcpu_next; #endif #ifdef SMP struct pcpu *pc; int found; #endif fixpt_t p_pctcpu; struct thread *td; ASSERT_RACCT_ENABLED(); /* * If the process is swapped out, we count its %cpu usage as zero. * This behaviour is consistent with the userland ps(1) tool. */ if ((p->p_flag & P_INMEM) == 0) return (0); swtime = (ticks - p->p_swtick) / hz; /* * For short-lived processes, the sched_pctcpu() returns small * values even for cpu intensive processes. Therefore we use * our own estimate in this case. */ if (swtime < RACCT_PCPU_SECS) return (pcpu); p_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { if (td == PCPU_GET(idlethread)) continue; #ifdef SMP found = 0; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (td == pc->pc_idlethread) { found = 1; break; } } if (found) continue; #endif thread_lock(td); #ifdef SCHED_4BSD pctcpu = sched_pctcpu(td); /* Count also the yet unfinished second. */ pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT; pctcpu_next += sched_pctcpu_delta(td); p_pctcpu += max(pctcpu, pctcpu_next); #else /* * In ULE the %cpu statistics are updated on every * sched_pctcpu() call. So special calculations to * account for the latest (unfinished) second are * not needed. */ p_pctcpu += sched_pctcpu(td); #endif thread_unlock(td); } #ifdef SCHED_4BSD if (swtime <= CCPU_EXP_MAX) return ((100 * (uint64_t)p_pctcpu * 1000000) / (FSCALE - ccpu_exp[swtime])); #endif return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE); } static void racct_add_racct(struct racct *dest, const struct racct *src) { int i; ASSERT_RACCT_ENABLED(); RACCT_LOCK_ASSERT(); /* * Update resource usage in dest. */ for (i = 0; i <= RACCT_MAX; i++) { KASSERT(dest->r_resources[i] >= 0, ("%s: resource %d propagation meltdown: dest < 0", __func__, i)); KASSERT(src->r_resources[i] >= 0, ("%s: resource %d propagation meltdown: src < 0", __func__, i)); dest->r_resources[i] += src->r_resources[i]; } } static void racct_sub_racct(struct racct *dest, const struct racct *src) { int i; ASSERT_RACCT_ENABLED(); RACCT_LOCK_ASSERT(); /* * Update resource usage in dest. */ for (i = 0; i <= RACCT_MAX; i++) { if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) { KASSERT(dest->r_resources[i] >= 0, ("%s: resource %d propagation meltdown: dest < 0", __func__, i)); KASSERT(src->r_resources[i] >= 0, ("%s: resource %d propagation meltdown: src < 0", __func__, i)); KASSERT(src->r_resources[i] <= dest->r_resources[i], ("%s: resource %d propagation meltdown: src > dest", __func__, i)); } if (RACCT_CAN_DROP(i)) { dest->r_resources[i] -= src->r_resources[i]; if (dest->r_resources[i] < 0) dest->r_resources[i] = 0; } } } void racct_create(struct racct **racctp) { if (!racct_enable) return; SDT_PROBE1(racct, , racct, create, racctp); KASSERT(*racctp == NULL, ("racct already allocated")); *racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO); } static void racct_destroy_locked(struct racct **racctp) { struct racct *racct; int i; ASSERT_RACCT_ENABLED(); SDT_PROBE1(racct, , racct, destroy, racctp); RACCT_LOCK_ASSERT(); KASSERT(racctp != NULL, ("NULL racctp")); KASSERT(*racctp != NULL, ("NULL racct")); racct = *racctp; for (i = 0; i <= RACCT_MAX; i++) { if (RACCT_IS_SLOPPY(i)) continue; if (!RACCT_IS_RECLAIMABLE(i)) continue; KASSERT(racct->r_resources[i] == 0, ("destroying non-empty racct: " "%ju allocated for resource %d\n", racct->r_resources[i], i)); } uma_zfree(racct_zone, racct); *racctp = NULL; } void racct_destroy(struct racct **racct) { if (!racct_enable) return; RACCT_LOCK(); racct_destroy_locked(racct); RACCT_UNLOCK(); } /* * Increase consumption of 'resource' by 'amount' for 'racct', * but not its parents. Differently from other cases, 'amount' here * may be less than zero. */ static void racct_adjust_resource(struct racct *racct, int resource, int64_t amount) { ASSERT_RACCT_ENABLED(); RACCT_LOCK_ASSERT(); KASSERT(racct != NULL, ("NULL racct")); racct->r_resources[resource] += amount; if (racct->r_resources[resource] < 0) { KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource), ("%s: resource %d usage < 0", __func__, resource)); racct->r_resources[resource] = 0; } /* * There are some cases where the racct %cpu resource would grow * beyond 100% per core. For example in racct_proc_exit() we add * the process %cpu usage to the ucred racct containers. If too * many processes terminated in a short time span, the ucred %cpu * resource could grow too much. Also, the 4BSD scheduler sometimes * returns for a thread more than 100% cpu usage. So we set a sane * boundary here to 100% * the maxumum number of CPUs. */ if ((resource == RACCT_PCTCPU) && (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000 * (int64_t)MAXCPU)) racct->r_resources[RACCT_PCTCPU] = 100 * 1000000 * (int64_t)MAXCPU; } static int racct_add_locked(struct proc *p, int resource, uint64_t amount, int force) { #ifdef RCTL int error; #endif ASSERT_RACCT_ENABLED(); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); #ifdef RCTL error = rctl_enforce(p, resource, amount); if (error && !force && RACCT_IS_DENIABLE(resource)) { SDT_PROBE3(racct, , rusage, add__failure, p, resource, amount); return (error); } #endif racct_adjust_resource(p->p_racct, resource, amount); racct_add_cred_locked(p->p_ucred, resource, amount); return (0); } /* * Increase allocation of 'resource' by 'amount' for process 'p'. * Return 0 if it's below limits, or errno, if it's not. */ int racct_add(struct proc *p, int resource, uint64_t amount) { int error; if (!racct_enable) return (0); SDT_PROBE3(racct, , rusage, add, p, resource, amount); RACCT_LOCK(); error = racct_add_locked(p, resource, amount, 0); RACCT_UNLOCK(); return (error); } /* * Increase allocation of 'resource' by 'amount' for process 'p'. * Doesn't check for limits and never fails. */ void racct_add_force(struct proc *p, int resource, uint64_t amount) { if (!racct_enable) return; SDT_PROBE3(racct, , rusage, add__force, p, resource, amount); RACCT_LOCK(); racct_add_locked(p, resource, amount, 1); RACCT_UNLOCK(); } static void racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount) { struct prison *pr; ASSERT_RACCT_ENABLED(); racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, amount); for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, amount); racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, amount); } /* * Increase allocation of 'resource' by 'amount' for credential 'cred'. * Doesn't check for limits and never fails. */ void racct_add_cred(struct ucred *cred, int resource, uint64_t amount) { if (!racct_enable) return; SDT_PROBE3(racct, , rusage, add__cred, cred, resource, amount); RACCT_LOCK(); racct_add_cred_locked(cred, resource, amount); RACCT_UNLOCK(); } /* * Account for disk IO resource consumption. Checks for limits, * but never fails, due to disk limits being undeniable. */ void racct_add_buf(struct proc *p, const struct buf *bp, int is_write) { ASSERT_RACCT_ENABLED(); PROC_LOCK_ASSERT(p, MA_OWNED); SDT_PROBE3(racct, , rusage, add__buf, p, bp, is_write); RACCT_LOCK(); if (is_write) { racct_add_locked(curproc, RACCT_WRITEBPS, bp->b_bcount, 1); racct_add_locked(curproc, RACCT_WRITEIOPS, 1, 1); } else { racct_add_locked(curproc, RACCT_READBPS, bp->b_bcount, 1); racct_add_locked(curproc, RACCT_READIOPS, 1, 1); } RACCT_UNLOCK(); } static int racct_set_locked(struct proc *p, int resource, uint64_t amount, int force) { int64_t old_amount, decayed_amount, diff_proc, diff_cred; #ifdef RCTL int error; #endif ASSERT_RACCT_ENABLED(); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); old_amount = p->p_racct->r_resources[resource]; /* * The diffs may be negative. */ diff_proc = amount - old_amount; if (resource == RACCT_PCTCPU) { /* * Resources in per-credential racct containers may decay. * If this is the case, we need to calculate the difference * between the new amount and the proportional value of the * old amount that has decayed in the ucred racct containers. */ decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE; diff_cred = amount - decayed_amount; } else diff_cred = diff_proc; #ifdef notyet KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource), ("%s: usage of non-droppable resource %d dropping", __func__, resource)); #endif #ifdef RCTL if (diff_proc > 0) { error = rctl_enforce(p, resource, diff_proc); if (error && !force && RACCT_IS_DENIABLE(resource)) { SDT_PROBE3(racct, , rusage, set__failure, p, resource, amount); return (error); } } #endif racct_adjust_resource(p->p_racct, resource, diff_proc); if (diff_cred > 0) racct_add_cred_locked(p->p_ucred, resource, diff_cred); else if (diff_cred < 0) racct_sub_cred_locked(p->p_ucred, resource, -diff_cred); return (0); } /* * Set allocation of 'resource' to 'amount' for process 'p'. * Return 0 if it's below limits, or errno, if it's not. * * Note that decreasing the allocation always returns 0, * even if it's above the limit. */ int racct_set_unlocked(struct proc *p, int resource, uint64_t amount) { int error; ASSERT_RACCT_ENABLED(); PROC_LOCK(p); error = racct_set(p, resource, amount); PROC_UNLOCK(p); return (error); } int racct_set(struct proc *p, int resource, uint64_t amount) { int error; if (!racct_enable) return (0); SDT_PROBE3(racct, , rusage, set__force, p, resource, amount); RACCT_LOCK(); error = racct_set_locked(p, resource, amount, 0); RACCT_UNLOCK(); return (error); } void racct_set_force(struct proc *p, int resource, uint64_t amount) { if (!racct_enable) return; SDT_PROBE3(racct, , rusage, set, p, resource, amount); RACCT_LOCK(); racct_set_locked(p, resource, amount, 1); RACCT_UNLOCK(); } /* * Returns amount of 'resource' the process 'p' can keep allocated. * Allocating more than that would be denied, unless the resource * is marked undeniable. Amount of already allocated resource does * not matter. */ uint64_t racct_get_limit(struct proc *p, int resource) { #ifdef RCTL uint64_t available; if (!racct_enable) return (UINT64_MAX); RACCT_LOCK(); available = rctl_get_limit(p, resource); RACCT_UNLOCK(); return (available); #else return (UINT64_MAX); #endif } /* * Returns amount of 'resource' the process 'p' can keep allocated. * Allocating more than that would be denied, unless the resource * is marked undeniable. Amount of already allocated resource does * matter. */ uint64_t racct_get_available(struct proc *p, int resource) { #ifdef RCTL uint64_t available; if (!racct_enable) return (UINT64_MAX); RACCT_LOCK(); available = rctl_get_available(p, resource); RACCT_UNLOCK(); return (available); #else return (UINT64_MAX); #endif } /* * Returns amount of the %cpu resource that process 'p' can add to its %cpu * utilization. Adding more than that would lead to the process being * throttled. */ static int64_t racct_pcpu_available(struct proc *p) { #ifdef RCTL uint64_t available; ASSERT_RACCT_ENABLED(); RACCT_LOCK(); available = rctl_pcpu_available(p); RACCT_UNLOCK(); return (available); #else return (INT64_MAX); #endif } /* * Decrease allocation of 'resource' by 'amount' for process 'p'. */ void racct_sub(struct proc *p, int resource, uint64_t amount) { if (!racct_enable) return; SDT_PROBE3(racct, , rusage, sub, p, resource, amount); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(RACCT_CAN_DROP(resource), ("%s: called for non-droppable resource %d", __func__, resource)); RACCT_LOCK(); KASSERT(amount <= p->p_racct->r_resources[resource], ("%s: freeing %ju of resource %d, which is more " "than allocated %jd for %s (pid %d)", __func__, amount, resource, (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid)); racct_adjust_resource(p->p_racct, resource, -amount); racct_sub_cred_locked(p->p_ucred, resource, amount); RACCT_UNLOCK(); } static void racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount) { struct prison *pr; ASSERT_RACCT_ENABLED(); racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, -amount); for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, -amount); racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, -amount); } /* * Decrease allocation of 'resource' by 'amount' for credential 'cred'. */ void racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) { if (!racct_enable) return; SDT_PROBE3(racct, , rusage, sub__cred, cred, resource, amount); #ifdef notyet KASSERT(RACCT_CAN_DROP(resource), ("%s: called for resource %d which can not drop", __func__, resource)); #endif RACCT_LOCK(); racct_sub_cred_locked(cred, resource, amount); RACCT_UNLOCK(); } /* * Inherit resource usage information from the parent process. */ int racct_proc_fork(struct proc *parent, struct proc *child) { int i, error = 0; if (!racct_enable) return (0); /* * Create racct for the child process. */ racct_create(&child->p_racct); PROC_LOCK(parent); PROC_LOCK(child); RACCT_LOCK(); #ifdef RCTL error = rctl_proc_fork(parent, child); if (error != 0) goto out; #endif /* Init process cpu time. */ child->p_prev_runtime = 0; child->p_throttled = 0; /* * Inherit resource usage. */ for (i = 0; i <= RACCT_MAX; i++) { if (parent->p_racct->r_resources[i] == 0 || !RACCT_IS_INHERITABLE(i)) continue; error = racct_set_locked(child, i, parent->p_racct->r_resources[i], 0); if (error != 0) goto out; } error = racct_add_locked(child, RACCT_NPROC, 1, 0); error += racct_add_locked(child, RACCT_NTHR, 1, 0); out: RACCT_UNLOCK(); PROC_UNLOCK(child); PROC_UNLOCK(parent); if (error != 0) racct_proc_exit(child); return (error); } /* * Called at the end of fork1(), to handle rules that require the process * to be fully initialized. */ void racct_proc_fork_done(struct proc *child) { if (!racct_enable) return; #ifdef RCTL PROC_LOCK(child); RACCT_LOCK(); rctl_enforce(child, RACCT_NPROC, 0); rctl_enforce(child, RACCT_NTHR, 0); RACCT_UNLOCK(); PROC_UNLOCK(child); #endif } void racct_proc_exit(struct proc *p) { struct timeval wallclock; uint64_t pct_estimate, pct, runtime; int i; if (!racct_enable) return; PROC_LOCK(p); /* * We don't need to calculate rux, proc_reap() has already done this. */ runtime = cputick2usec(p->p_rux.rux_runtime); #ifdef notyet KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); #else if (runtime < p->p_prev_runtime) runtime = p->p_prev_runtime; #endif microuptime(&wallclock); timevalsub(&wallclock, &p->p_stats->p_start); if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { pct_estimate = (1000000 * runtime * 100) / ((uint64_t)wallclock.tv_sec * 1000000 + wallclock.tv_usec); } else pct_estimate = 0; pct = racct_getpcpu(p, pct_estimate); RACCT_LOCK(); racct_set_locked(p, RACCT_CPU, runtime, 0); racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct); KASSERT(p->p_racct->r_resources[RACCT_RSS] == 0, ("process reaped with %ju allocated for RSS\n", p->p_racct->r_resources[RACCT_RSS])); for (i = 0; i <= RACCT_MAX; i++) { if (p->p_racct->r_resources[i] == 0) continue; if (!RACCT_IS_RECLAIMABLE(i)) continue; racct_set_locked(p, i, 0, 0); } #ifdef RCTL rctl_racct_release(p->p_racct); #endif racct_destroy_locked(&p->p_racct); RACCT_UNLOCK(); PROC_UNLOCK(p); } /* * Called after credentials change, to move resource utilisation * between raccts. */ void racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred, struct ucred *newcred) { struct uidinfo *olduip, *newuip; struct loginclass *oldlc, *newlc; struct prison *oldpr, *newpr, *pr; if (!racct_enable) return; PROC_LOCK_ASSERT(p, MA_OWNED); newuip = newcred->cr_ruidinfo; olduip = oldcred->cr_ruidinfo; newlc = newcred->cr_loginclass; oldlc = oldcred->cr_loginclass; newpr = newcred->cr_prison; oldpr = oldcred->cr_prison; RACCT_LOCK(); if (newuip != olduip) { racct_sub_racct(olduip->ui_racct, p->p_racct); racct_add_racct(newuip->ui_racct, p->p_racct); } if (newlc != oldlc) { racct_sub_racct(oldlc->lc_racct, p->p_racct); racct_add_racct(newlc->lc_racct, p->p_racct); } if (newpr != oldpr) { for (pr = oldpr; pr != NULL; pr = pr->pr_parent) racct_sub_racct(pr->pr_prison_racct->prr_racct, p->p_racct); for (pr = newpr; pr != NULL; pr = pr->pr_parent) racct_add_racct(pr->pr_prison_racct->prr_racct, p->p_racct); } RACCT_UNLOCK(); } void racct_move(struct racct *dest, struct racct *src) { ASSERT_RACCT_ENABLED(); RACCT_LOCK(); racct_add_racct(dest, src); racct_sub_racct(src, src); RACCT_UNLOCK(); } void racct_proc_throttled(struct proc *p) { ASSERT_RACCT_ENABLED(); PROC_LOCK(p); while (p->p_throttled != 0) { msleep(p->p_racct, &p->p_mtx, 0, "racct", p->p_throttled < 0 ? 0 : p->p_throttled); if (p->p_throttled > 0) p->p_throttled = 0; } PROC_UNLOCK(p); } /* * Make the process sleep in userret() for 'timeout' ticks. Setting * timeout to -1 makes it sleep until woken up by racct_proc_wakeup(). */ void racct_proc_throttle(struct proc *p, int timeout) { struct thread *td; #ifdef SMP int cpuid; #endif KASSERT(timeout != 0, ("timeout %d", timeout)); ASSERT_RACCT_ENABLED(); PROC_LOCK_ASSERT(p, MA_OWNED); /* * Do not block kernel processes. Also do not block processes with * low %cpu utilization to improve interactivity. */ if ((p->p_flag & (P_SYSTEM | P_KPROC)) != 0) return; if (p->p_throttled < 0 || (timeout > 0 && p->p_throttled > timeout)) return; p->p_throttled = timeout; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); switch (td->td_state) { case TDS_RUNQ: /* * If the thread is on the scheduler run-queue, we can * not just remove it from there. So we set the flag * TDF_NEEDRESCHED for the thread, so that once it is * running, it is taken off the cpu as soon as possible. */ td->td_flags |= TDF_NEEDRESCHED; break; case TDS_RUNNING: /* * If the thread is running, we request a context * switch for it by setting the TDF_NEEDRESCHED flag. */ td->td_flags |= TDF_NEEDRESCHED; #ifdef SMP cpuid = td->td_oncpu; if ((cpuid != NOCPU) && (td != curthread)) ipi_cpu(cpuid, IPI_AST); #endif break; default: break; } thread_unlock(td); } } static void racct_proc_wakeup(struct proc *p) { ASSERT_RACCT_ENABLED(); PROC_LOCK_ASSERT(p, MA_OWNED); if (p->p_throttled != 0) { p->p_throttled = 0; wakeup(p->p_racct); } } static void racct_decay_callback(struct racct *racct, void *dummy1, void *dummy2) { int64_t r_old, r_new; ASSERT_RACCT_ENABLED(); RACCT_LOCK_ASSERT(); #ifdef RCTL rctl_throttle_decay(racct, RACCT_READBPS); rctl_throttle_decay(racct, RACCT_WRITEBPS); rctl_throttle_decay(racct, RACCT_READIOPS); rctl_throttle_decay(racct, RACCT_WRITEIOPS); #endif r_old = racct->r_resources[RACCT_PCTCPU]; /* If there is nothing to decay, just exit. */ if (r_old <= 0) return; r_new = r_old * RACCT_DECAY_FACTOR / FSCALE; racct->r_resources[RACCT_PCTCPU] = r_new; } static void racct_decay_pre(void) { RACCT_LOCK(); } static void racct_decay_post(void) { RACCT_UNLOCK(); } static void racct_decay(void) { ASSERT_RACCT_ENABLED(); ui_racct_foreach(racct_decay_callback, racct_decay_pre, racct_decay_post, NULL, NULL); loginclass_racct_foreach(racct_decay_callback, racct_decay_pre, racct_decay_post, NULL, NULL); prison_racct_foreach(racct_decay_callback, racct_decay_pre, racct_decay_post, NULL, NULL); } static void racctd(void) { struct thread *td; struct proc *p; struct timeval wallclock; uint64_t pct, pct_estimate, runtime; ASSERT_RACCT_ENABLED(); for (;;) { racct_decay(); sx_slock(&allproc_lock); - sx_slock(&zombproc_lock); - LIST_FOREACH(p, &zombproc, p_list) { - PROC_LOCK(p); - racct_set(p, RACCT_PCTCPU, 0); - PROC_UNLOCK(p); - } - sx_sunlock(&zombproc_lock); - FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state != PRS_NORMAL) { + if (p->p_state == PRS_ZOMBIE) + racct_set(p, RACCT_PCTCPU, 0); PROC_UNLOCK(p); continue; } microuptime(&wallclock); timevalsub(&wallclock, &p->p_stats->p_start); PROC_STATLOCK(p); FOREACH_THREAD_IN_PROC(p, td) ruxagg(p, td); runtime = cputick2usec(p->p_rux.rux_runtime); PROC_STATUNLOCK(p); #ifdef notyet KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); #else if (runtime < p->p_prev_runtime) runtime = p->p_prev_runtime; #endif p->p_prev_runtime = runtime; if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { pct_estimate = (1000000 * runtime * 100) / ((uint64_t)wallclock.tv_sec * 1000000 + wallclock.tv_usec); } else pct_estimate = 0; pct = racct_getpcpu(p, pct_estimate); RACCT_LOCK(); #ifdef RCTL rctl_throttle_decay(p->p_racct, RACCT_READBPS); rctl_throttle_decay(p->p_racct, RACCT_WRITEBPS); rctl_throttle_decay(p->p_racct, RACCT_READIOPS); rctl_throttle_decay(p->p_racct, RACCT_WRITEIOPS); #endif racct_set_locked(p, RACCT_PCTCPU, pct, 1); racct_set_locked(p, RACCT_CPU, runtime, 0); racct_set_locked(p, RACCT_WALLCLOCK, (uint64_t)wallclock.tv_sec * 1000000 + wallclock.tv_usec, 0); RACCT_UNLOCK(); PROC_UNLOCK(p); } /* * To ensure that processes are throttled in a fair way, we need * to iterate over all processes again and check the limits * for %cpu resource only after ucred racct containers have been * properly filled. */ FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state != PRS_NORMAL) { PROC_UNLOCK(p); continue; } if (racct_pcpu_available(p) <= 0) { if (p->p_racct->r_resources[RACCT_PCTCPU] > pcpu_threshold) racct_proc_throttle(p, -1); } else if (p->p_throttled == -1) { racct_proc_wakeup(p); } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); pause("-", hz); } } static struct kproc_desc racctd_kp = { "racctd", racctd, NULL }; static void racctd_init(void) { if (!racct_enable) return; kproc_start(&racctd_kp); } SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL); static void racct_init(void) { if (!racct_enable) return; racct_zone = uma_zcreate("racct", sizeof(struct racct), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); /* * XXX: Move this somewhere. */ prison0.pr_prison_racct = prison_racct_find("0"); } SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL); #endif /* !RACCT */ Index: head/sys/sys/proc.h =================================================================== --- head/sys/sys/proc.h (revision 351571) +++ head/sys/sys/proc.h (revision 351572) @@ -1,1208 +1,1206 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 * $FreeBSD$ */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #ifdef _KERNEL #include #endif #include #ifndef _KERNEL #include #endif #include #include #include #include #include #include #include /* XXX. */ #include #include #include #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #include #endif #include #include #include #include #include /* Machine-dependent proc substruct. */ #ifdef _KERNEL #include #endif /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { u_int s_count; /* Ref cnt; pgrps in session - atomic. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */ struct cdev_priv *s_ttydp; /* (m) Device of controlling tty. */ struct tty *s_ttyp; /* (e) Controlling tty. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members. */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Process group id. */ int pg_jobc; /* (m) Job control process count. */ struct mtx pg_mtx; /* Mutex to protect members */ }; /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[1]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by proc slock * k - only accessed by curthread * k*- only accessed by curthread and from an interrupt * kx- only accessed by curthread and by debugger * l - the attaching proc or attaching proc parent * m - Giant * n - not locked, lazy * o - ktrace lock * q - td_contested lock * r - p_peers lock * s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9) * t - thread lock * u - process stat lock * w - process timer lock * x - created at fork, only changes during single threading in exec * y - created at first aio, doesn't change until exit or exec at which * point we are single-threaded and only curthread changes it * z - zombie threads lock * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct cpuset; struct filecaps; struct filemon; struct kaioinfo; struct kaudit_record; struct kcov_info; struct kdtrace_proc; struct kdtrace_thread; struct mqueue_notifier; struct nlminfo; struct p_sched; struct proc; struct procdesc; struct racct; struct sbuf; struct sleepqueue; struct socket; struct syscall_args; struct td_sched; struct thread; struct trapframe; struct turnstile; struct vm_map; struct vm_map_entry; struct epoch_tracker; /* * XXX: Does this belong in resource.h or resourcevar.h instead? * Resource usage extension. The times in rusage structs in the kernel are * never up to date. The actual times are kept as runtimes and tick counts * (with control info in the "previous" times), and are converted when * userland asks for rusage info. Backwards compatibility prevents putting * this directly in the user-visible rusage struct. * * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux. * Locking for td_rux: (t) for all fields. */ struct rusage_ext { uint64_t rux_runtime; /* (cu) Real time. */ uint64_t rux_uticks; /* (cu) Statclock hits in user mode. */ uint64_t rux_sticks; /* (cu) Statclock hits in sys mode. */ uint64_t rux_iticks; /* (cu) Statclock hits in intr mode. */ uint64_t rux_uu; /* (c) Previous user time in usec. */ uint64_t rux_su; /* (c) Previous sys time in usec. */ uint64_t rux_tu; /* (c) Previous total time in usec. */ }; /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * Thread context. Processes may have multiple threads. */ struct thread { struct mtx *volatile td_lock; /* replaces sched lock */ struct proc *td_proc; /* (*) Associated process. */ TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */ TAILQ_ENTRY(thread) td_runq; /* (t) Run queue. */ TAILQ_ENTRY(thread) td_slpq; /* (t) Sleep queue. */ TAILQ_ENTRY(thread) td_lockq; /* (t) Lock queue. */ LIST_ENTRY(thread) td_hash; /* (d) Hash chain. */ struct cpuset *td_cpuset; /* (t) CPU affinity mask. */ struct domainset_ref td_domain; /* (a) NUMA policy */ struct seltd *td_sel; /* Select queue/channel. */ struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */ struct turnstile *td_turnstile; /* (k) Associated turnstile. */ struct rl_q_entry *td_rlqe; /* (k) Associated range lock entry. */ struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */ lwpid_t td_tid; /* (b) Thread ID. */ sigqueue_t td_sigqueue; /* (c) Sigs arrived, not delivered. */ #define td_siglist td_sigqueue.sq_signals u_char td_lend_user_pri; /* (t) Lend user pri. */ /* Cleared during fork1() */ #define td_startzero td_epochnest u_char td_epochnest; /* (k) Epoch nest counter. */ int td_flags; /* (t) TDF_* flags. */ int td_inhibitors; /* (t) Why can not run. */ int td_pflags; /* (k) Private thread (TDP_*) flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ int td_sqqueue; /* (t) Sleepqueue queue blocked on. */ void *td_wchan; /* (t) Sleep address. */ const char *td_wmesg; /* (t) Reason for sleep. */ volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */ u_char td_tsqueue; /* (t) Turnstile queue blocked on. */ short td_locks; /* (k) Debug: count of non-spin locks */ short td_rw_rlocks; /* (k) Count of rwlock read locks. */ short td_sx_slocks; /* (k) Count of sx shared locks. */ short td_lk_slocks; /* (k) Count of lockmgr shared locks. */ short td_stopsched; /* (k) Scheduler stopped. */ struct turnstile *td_blocked; /* (t) Lock thread is blocked on. */ const char *td_lockname; /* (t) Name of lock blocked on. */ LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ int td_pinned; /* (k) Temporary cpu pin count. */ struct ucred *td_ucred; /* (k) Reference to credentials. */ struct plimit *td_limit; /* (k) Resource limits. */ int td_slptick; /* (t) Time at sleep. */ int td_blktick; /* (t) Time spent blocked. */ int td_swvoltick; /* (t) Time at last SW_VOL switch. */ int td_swinvoltick; /* (t) Time at last SW_INVOL switch. */ u_int td_cow; /* (*) Number of copy-on-write faults */ struct rusage td_ru; /* (t) rusage information. */ struct rusage_ext td_rux; /* (t) Internal rusage information. */ uint64_t td_incruntime; /* (t) Cpu ticks to transfer to proc. */ uint64_t td_runtime; /* (t) How many cpu ticks we've run. */ u_int td_pticks; /* (t) Statclock hits for profiling */ u_int td_sticks; /* (t) Statclock hits in system mode. */ u_int td_iticks; /* (t) Statclock hits in intr mode. */ u_int td_uticks; /* (t) Statclock hits in user mode. */ int td_intrval; /* (t) Return value for sleepq. */ sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */ volatile u_int td_generation; /* (k) For detection of preemption */ stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */ int td_xsig; /* (c) Signal for ptrace */ u_long td_profil_addr; /* (k) Temporary addr until AST. */ u_int td_profil_ticks; /* (k) Temporary ticks until AST. */ char td_name[MAXCOMLEN + 1]; /* (*) Thread name. */ struct file *td_fpop; /* (k) file referencing cdev under op */ int td_dbgflags; /* (c) Userland debugger flags */ siginfo_t td_si; /* (c) For debugger or core file */ int td_ng_outbound; /* (k) Thread entered ng from above. */ struct osd td_osd; /* (k) Object specific data. */ struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */ pid_t td_dbg_forked; /* (c) Child pid for debugger. */ u_int td_vp_reserv; /* (k) Count of reserved vnodes. */ int td_no_sleeping; /* (k) Sleeping disabled count. */ void *td_su; /* (k) FFS SU private */ sbintime_t td_sleeptimo; /* (t) Sleep timeout. */ int td_rtcgen; /* (s) rtc_generation of abs. sleep */ int td_errno; /* (k) Error from last syscall. */ size_t td_vslock_sz; /* (k) amount of vslock-ed space */ struct kcov_info *td_kcov_info; /* (*) Kernel code coverage data */ #define td_endzero td_sigmask /* Copied during fork1() or create_thread(). */ #define td_startcopy td_endzero sigset_t td_sigmask; /* (c) Current signal mask. */ u_char td_rqindex; /* (t) Run queue index. */ u_char td_base_pri; /* (t) Thread base kernel priority. */ u_char td_priority; /* (t) Thread active priority. */ u_char td_pri_class; /* (t) Scheduling class. */ u_char td_user_pri; /* (t) User pri from estcpu and nice. */ u_char td_base_user_pri; /* (t) Base user pri */ u_char td_pre_epoch_prio; /* (k) User pri on entry to epoch */ uintptr_t td_rb_list; /* (k) Robust list head. */ uintptr_t td_rbp_list; /* (k) Robust priv list head. */ uintptr_t td_rb_inact; /* (k) Current in-action mutex loc. */ struct syscall_args td_sa; /* (kx) Syscall parameters. Copied on fork for child tracing. */ #define td_endcopy td_pcb /* * Fields that must be manually set in fork1() or create_thread() * or already have been set in the allocator, constructor, etc. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ enum td_states { TDS_INACTIVE = 0x0, TDS_INHIBITED, TDS_CAN_RUN, TDS_RUNQ, TDS_RUNNING } td_state; /* (t) thread state */ union { register_t tdu_retval[2]; off_t tdu_off; } td_uretoff; /* (k) Syscall aux returns. */ #define td_retval td_uretoff.tdu_retval u_int td_cowgen; /* (k) Generation of COW pointers. */ /* LP64 hole */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ struct vm_object *td_kstack_obj;/* (a) Kstack object. */ vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */ int td_kstack_pages; /* (a) Size of the kstack. */ volatile u_int td_critnest; /* (k*) Critical section nest level. */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ struct kaudit_record *td_ar; /* (k) Active audit record, if any. */ struct lpohead td_lprof[2]; /* (a) lock profiling objects. */ struct kdtrace_thread *td_dtrace; /* (*) DTrace-specific data. */ struct vnet *td_vnet; /* (k) Effective vnet. */ const char *td_vnet_lpush; /* (k) Debugging vnet push / pop. */ struct trapframe *td_intr_frame;/* (k) Frame of the current irq */ struct proc *td_rfppwait_p; /* (k) The vforked child */ struct vm_page **td_ma; /* (k) uio pages held */ int td_ma_cnt; /* (k) size of *td_ma */ /* LP64 hole */ void *td_emuldata; /* Emulator state data */ int td_lastcpu; /* (t) Last cpu we were on. */ int td_oncpu; /* (t) Which cpu we are on. */ void *td_lkpi_task; /* LinuxKPI task struct pointer */ struct epoch_tracker *td_et; /* (k) compat KPI spare tracker */ int td_pmcpend; }; struct thread0_storage { struct thread t0st_thread; uint64_t t0st_sched[10]; }; struct mtx *thread_lock_block(struct thread *); void thread_lock_unblock(struct thread *, struct mtx *); void thread_lock_set(struct thread *, struct mtx *); #define THREAD_LOCK_ASSERT(td, type) \ do { \ struct mtx *__m = (td)->td_lock; \ if (__m != &blocked_lock) \ mtx_assert(__m, (type)); \ } while (0) #ifdef INVARIANTS #define THREAD_LOCKPTR_ASSERT(td, lock) \ do { \ struct mtx *__m = (td)->td_lock; \ KASSERT((__m == &blocked_lock || __m == (lock)), \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define TD_LOCKS_INC(td) ((td)->td_locks++) #define TD_LOCKS_DEC(td) do { \ KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0, \ ("thread %p owns no locks", (td))); \ (td)->td_locks--; \ } while (0) #else #define THREAD_LOCKPTR_ASSERT(td, lock) #define TD_LOCKS_INC(td) #define TD_LOCKS_DEC(td) #endif /* * Flags kept in td_flags: * To change these you MUST have the scheduler lock. */ #define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */ #define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */ #define TDF_INMEM 0x00000004 /* Thread's stack is in memory. */ #define TDF_SINTR 0x00000008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */ #define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */ #define TDF_CANSWAP 0x00000040 /* Thread can be swapped. */ #define TDF_SLEEPABORT 0x00000080 /* sleepq_abort was called. */ #define TDF_KTH_SUSP 0x00000100 /* kthread is suspended */ #define TDF_ALLPROCSUSP 0x00000200 /* suspended by SINGLE_ALLPROC */ #define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */ #define TDF_ASTPENDING 0x00000800 /* Thread has some asynchronous events. */ #define TDF_UNUSED12 0x00001000 /* --available-- */ #define TDF_SBDRY 0x00002000 /* Stop only on usermode boundary. */ #define TDF_UPIBLOCKED 0x00004000 /* Thread blocked on user PI mutex. */ #define TDF_NEEDSUSPCHK 0x00008000 /* Thread may need to suspend. */ #define TDF_NEEDRESCHED 0x00010000 /* Thread needs to yield. */ #define TDF_NEEDSIGCHK 0x00020000 /* Thread may need signal delivery. */ #define TDF_NOLOAD 0x00040000 /* Ignore during load avg calculations. */ #define TDF_SERESTART 0x00080000 /* ERESTART on stop attempts. */ #define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */ #define TDF_SEINTR 0x00200000 /* EINTR on stop attempts. */ #define TDF_SWAPINREQ 0x00400000 /* Swapin request due to wakeup. */ #define TDF_UNUSED23 0x00800000 /* --available-- */ #define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */ #define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */ #define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */ #define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */ #define TDF_ALRMPEND 0x10000000 /* Pending SIGVTALRM needs to be posted. */ #define TDF_PROFPEND 0x20000000 /* Pending SIGPROF needs to be posted. */ #define TDF_MACPEND 0x40000000 /* AST-based MAC event pending. */ /* Userland debug flags */ #define TDB_SUSPEND 0x00000001 /* Thread is suspended by debugger */ #define TDB_XSIG 0x00000002 /* Thread is exchanging signal under trace */ #define TDB_USERWR 0x00000004 /* Debugger modified memory or registers */ #define TDB_SCE 0x00000008 /* Thread performs syscall enter */ #define TDB_SCX 0x00000010 /* Thread performs syscall exit */ #define TDB_EXEC 0x00000020 /* TDB_SCX from exec(2) family */ #define TDB_FORK 0x00000040 /* TDB_SCX from fork(2) that created new process */ #define TDB_STOPATFORK 0x00000080 /* Stop at the return from fork (child only) */ #define TDB_CHILD 0x00000100 /* New child indicator for ptrace() */ #define TDB_BORN 0x00000200 /* New LWP indicator for ptrace() */ #define TDB_EXIT 0x00000400 /* Exiting LWP indicator for ptrace() */ #define TDB_VFORK 0x00000800 /* vfork indicator for ptrace() */ #define TDB_FSTP 0x00001000 /* The thread is PT_ATTACH leader */ #define TDB_STEP 0x00002000 /* (x86) PSL_T set for PT_STEP */ /* * "Private" flags kept in td_pflags: * These are only written by curthread and thus need no locking. */ #define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */ #define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */ #define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */ #define TDP_BUFNEED 0x00000008 /* Do not recurse into the buf flush */ #define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */ #define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */ #define TDP_DEADLKTREAT 0x00000040 /* Lock acquisition - deadlock treatment. */ #define TDP_NOFAULTING 0x00000080 /* Do not handle page faults. */ #define TDP_UNUSED9 0x00000100 /* --available-- */ #define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */ #define TDP_ITHREAD 0x00000400 /* Thread is an interrupt thread. */ #define TDP_SYNCIO 0x00000800 /* Local override, disable async i/o. */ #define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */ #define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */ #define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */ #define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */ #define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */ #define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */ #define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */ #define TDP_WAKEUP 0x00080000 /* Don't sleep in umtx cond_wait */ #define TDP_INBDFLUSH 0x00100000 /* Already in BO_BDFLUSH, do not recurse */ #define TDP_KTHREAD 0x00200000 /* This is an official kernel thread */ #define TDP_CALLCHAIN 0x00400000 /* Capture thread's callchain */ #define TDP_IGNSUSP 0x00800000 /* Permission to ignore the MNTK_SUSPEND* */ #define TDP_AUDITREC 0x01000000 /* Audit record pending on thread */ #define TDP_RFPPWAIT 0x02000000 /* Handle RFPPWAIT on syscall exit */ #define TDP_RESETSPUR 0x04000000 /* Reset spurious page fault history. */ #define TDP_NERRNO 0x08000000 /* Last errno is already in td_errno */ #define TDP_UIOHELD 0x10000000 /* Current uio has pages held in td_ma */ #define TDP_FORKING 0x20000000 /* Thread is being created through fork() */ #define TDP_EXECVMSPC 0x40000000 /* Execve destroyed old vmspace */ /* * Reasons that the current thread can not be run yet. * More than one may apply. */ #define TDI_SUSPENDED 0x0001 /* On suspension queue. */ #define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */ #define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */ #define TDI_LOCK 0x0008 /* Stopped on a lock. */ #define TDI_IWAIT 0x0010 /* Awaiting interrupt. */ #define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING) #define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL) #define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED) #define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED) #define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK) #define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT) #define TD_IS_RUNNING(td) ((td)->td_state == TDS_RUNNING) #define TD_ON_RUNQ(td) ((td)->td_state == TDS_RUNQ) #define TD_CAN_RUN(td) ((td)->td_state == TDS_CAN_RUN) #define TD_IS_INHIBITED(td) ((td)->td_state == TDS_INHIBITED) #define TD_ON_UPILOCK(td) ((td)->td_flags & TDF_UPIBLOCKED) #define TD_IS_IDLETHREAD(td) ((td)->td_flags & TDF_IDLETD) #define KTDSTATE(td) \ (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") #define TD_SET_INHIB(td, inhib) do { \ (td)->td_state = TDS_INHIBITED; \ (td)->td_inhibitors |= (inhib); \ } while (0) #define TD_CLR_INHIB(td, inhib) do { \ if (((td)->td_inhibitors & (inhib)) && \ (((td)->td_inhibitors &= ~(inhib)) == 0)) \ (td)->td_state = TDS_CAN_RUN; \ } while (0) #define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING) #define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED) #define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK) #define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED) #define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT) #define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING) #define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING) #define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED) #define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK) #define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED) #define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT) #define TD_SET_RUNNING(td) (td)->td_state = TDS_RUNNING #define TD_SET_RUNQ(td) (td)->td_state = TDS_RUNQ #define TD_SET_CAN_RUN(td) (td)->td_state = TDS_CAN_RUN #define TD_SBDRY_INTR(td) \ (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0) #define TD_SBDRY_ERRNO(td) \ (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART) /* * Process structure. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, thread) p_threads; /* (c) all threads. */ struct mtx p_slock; /* process spin lock */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Open files. */ struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (c) Resource limits. */ struct callout p_limco; /* (c) Limit callout handle */ struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */ int p_flag; /* (c) P_* flags. */ int p_flag2; /* (c) P2_* flags. */ enum p_states { PRS_NEW = 0, /* In creation */ PRS_NORMAL, /* threads can be run. */ PRS_ZOMBIE } p_state; /* (j/c) Process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct proc *p_reaper; /* (e) My reaper. */ LIST_HEAD(, proc) p_reaplist; /* (e) List of my descendants (if I am reaper). */ LIST_ENTRY(proc) p_reapsibling; /* (e) List of siblings - descendants of the same reaper. */ struct mtx p_mtx; /* (n) Lock for this struct. */ struct mtx p_statmtx; /* Lock for the stats */ struct mtx p_itimmtx; /* Lock for the virt/prof timers */ struct mtx p_profmtx; /* Lock for the profiling */ struct ksiginfo *p_ksi; /* Locked by parent proc lock */ sigqueue_t p_sigqueue; /* (c) Sigs not delivered to a td. */ #define p_siglist p_sigqueue.sq_signals pid_t p_oppid; /* (c + e) Real parent pid. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_vmspace struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtick; /* (c) Tick when swapped in or out. */ u_int p_cowgen; /* (c) Generation of COW pointers. */ struct itimerval p_realtimer; /* (c) Alarm timer. */ struct rusage p_ru; /* (a) Exit information. */ struct rusage_ext p_rux; /* (cu) Internal resource usage. */ struct rusage_ext p_crux; /* (c) Internal child resource usage. */ int p_profthreads; /* (c) Num threads in addupc_task. */ volatile int p_exitthreads; /* (j) Number of threads exiting */ int p_traceflag; /* (o) Kernel trace points. */ struct vnode *p_tracevp; /* (c + o) Trace to vnode. */ struct ucred *p_tracecred; /* (o) Credentials to trace with. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ u_int p_lock; /* (c) Proclock (prevent swap) count. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_int p_stops; /* (c) Stop event bitmask. */ u_int p_stype; /* (c) Stop event type. */ char p_step; /* (c) Process is stopped. */ u_char p_pfsflags; /* (c) Procfs flags. */ u_int p_ptevents; /* (c + e) ptrace() event mask. */ struct nlminfo *p_nlminfo; /* (?) Only used by/for lockd. */ struct kaioinfo *p_aioinfo; /* (y) ASYNC I/O info. */ struct thread *p_singlethread;/* (c + j) If single threading this is it */ int p_suspcount; /* (j) Num threads in suspended mode. */ struct thread *p_xthread; /* (c) Trap thread */ int p_boundary_count;/* (j) Num threads at user boundary */ int p_pendingcnt; /* how many signals are pending */ struct itimers *p_itimers; /* (c) POSIX interval timers. */ struct procdesc *p_procdesc; /* (e) Process descriptor, if any. */ u_int p_treeflag; /* (e) P_TREE flags */ int p_pendingexits; /* (c) Count of pending thread exits. */ struct filemon *p_filemon; /* (c) filemon-specific data. */ int p_pdeathsig; /* (c) Signal from parent on exit. */ /* End area that is zeroed on creation. */ #define p_endzero p_magic /* The following fields are all copied upon creation in fork. */ #define p_startcopy p_endzero u_int p_magic; /* (b) Magic number. */ int p_osrel; /* (x) osreldate for the binary (from ELF note, if any) */ uint32_t p_fctl0; /* (x) ABI feature control, ELF note */ char p_comm[MAXCOMLEN + 1]; /* (x) Process name. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ rlim_t p_cpulimit; /* (c) Current CPU limit in seconds. */ signed char p_nice; /* (c) Process "nice" value. */ int p_fibnum; /* in this routing domain XXX MRT */ pid_t p_reapsubtree; /* (e) Pid of the direct child of the reaper which spawned our subtree. */ uint16_t p_elf_machine; /* (x) ELF machine type */ uint64_t p_elf_flags; /* (x) ELF flags */ /* End area that is copied on creation. */ #define p_endcopy p_xexit u_int p_xexit; /* (c) Exit code. */ u_int p_xsig; /* (c) Stop/kill sig. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct knlist *p_klist; /* (c) Knotes attached to this proc. */ int p_numthreads; /* (c) Number of threads. */ struct mdproc p_md; /* Any machine-dependent fields. */ struct callout p_itcallout; /* (h + c) Interval timer callout. */ u_short p_acflag; /* (c) Accounting flags. */ struct proc *p_peers; /* (r) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ struct label *p_label; /* (*) Proc (not subject) MAC label. */ STAILQ_HEAD(, ktr_request) p_ktr; /* (o) KTR event queue. */ LIST_HEAD(, mqueue_notifier) p_mqnotifier; /* (c) mqueue notifiers.*/ struct kdtrace_proc *p_dtrace; /* (*) DTrace-specific data. */ struct cv p_pwait; /* (*) wait cv for exit/exec. */ uint64_t p_prev_runtime; /* (c) Resource usage accounting. */ struct racct *p_racct; /* (b) Resource accounting. */ int p_throttled; /* (c) Flag for racct pcpu throttling */ /* * An orphan is the child that has been re-parented to the * debugger as a result of attaching to it. Need to keep * track of them for parent to be able to collect the exit * status of what used to be children. */ LIST_ENTRY(proc) p_orphan; /* (e) List of orphan processes. */ LIST_HEAD(, proc) p_orphans; /* (e) Pointer to list of orphans. */ }; #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU (-1) /* For when we aren't on a CPU. */ #define NOCPU_OLD (255) #define MAXCPU_OLD (254) #define PROC_SLOCK(p) mtx_lock_spin(&(p)->p_slock) #define PROC_SUNLOCK(p) mtx_unlock_spin(&(p)->p_slock) #define PROC_SLOCK_ASSERT(p, type) mtx_assert(&(p)->p_slock, (type)) #define PROC_STATLOCK(p) mtx_lock_spin(&(p)->p_statmtx) #define PROC_STATUNLOCK(p) mtx_unlock_spin(&(p)->p_statmtx) #define PROC_STATLOCK_ASSERT(p, type) mtx_assert(&(p)->p_statmtx, (type)) #define PROC_ITIMLOCK(p) mtx_lock_spin(&(p)->p_itimmtx) #define PROC_ITIMUNLOCK(p) mtx_unlock_spin(&(p)->p_itimmtx) #define PROC_ITIMLOCK_ASSERT(p, type) mtx_assert(&(p)->p_itimmtx, (type)) #define PROC_PROFLOCK(p) mtx_lock_spin(&(p)->p_profmtx) #define PROC_PROFUNLOCK(p) mtx_unlock_spin(&(p)->p_profmtx) #define PROC_PROFLOCK_ASSERT(p, type) mtx_assert(&(p)->p_profmtx, (type)) /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00002 /* Has a controlling terminal. */ #define P_KPROC 0x00004 /* Kernel process. */ #define P_UNUSED3 0x00008 /* --available-- */ #define P_PPWAIT 0x00010 /* Parent is waiting for child to exec/exit. */ #define P_PROFIL 0x00020 /* Has started profiling. */ #define P_STOPPROF 0x00040 /* Has thread requesting to stop profiling. */ #define P_HADTHREADS 0x00080 /* Has had threads (no cleanup shortcuts) */ #define P_SUGID 0x00100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00200 /* System proc: no sigs, stats or swapping. */ #define P_SINGLE_EXIT 0x00400 /* Threads suspending should exit, not wait. */ #define P_TRACED 0x00800 /* Debugged process being traced. */ #define P_WAITED 0x01000 /* Someone is waiting for us. */ #define P_WEXIT 0x02000 /* Working on exiting. */ #define P_EXEC 0x04000 /* Process called exec. */ #define P_WKILLED 0x08000 /* Killed, go to kernel/user boundary ASAP. */ #define P_CONTINUED 0x10000 /* Proc has continued from a stopped state. */ #define P_STOPPED_SIG 0x20000 /* Stopped due to SIGSTOP/SIGTSTP. */ #define P_STOPPED_TRACE 0x40000 /* Stopped because of tracing. */ #define P_STOPPED_SINGLE 0x80000 /* Only 1 thread can continue (not to user). */ #define P_PROTECTED 0x100000 /* Do not kill on memory overcommit. */ #define P_SIGEVENT 0x200000 /* Process pending signals changed. */ #define P_SINGLE_BOUNDARY 0x400000 /* Threads should suspend at user boundary. */ #define P_HWPMC 0x800000 /* Process is using HWPMCs */ #define P_JAILED 0x1000000 /* Process is in jail. */ #define P_TOTAL_STOP 0x2000000 /* Stopped in stop_all_proc. */ #define P_INEXEC 0x4000000 /* Process is in execve(). */ #define P_STATCHILD 0x8000000 /* Child process stopped or exited. */ #define P_INMEM 0x10000000 /* Loaded into memory. */ #define P_SWAPPINGOUT 0x20000000 /* Process is being swapped out. */ #define P_SWAPPINGIN 0x40000000 /* Process is being swapped in. */ #define P_PPTRACE 0x80000000 /* PT_TRACEME by vforked child. */ #define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE) #define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED) #define P_KILLED(p) ((p)->p_flag & P_WKILLED) /* These flags are kept in p_flag2. */ #define P2_INHERIT_PROTECTED 0x00000001 /* New children get P_PROTECTED. */ #define P2_NOTRACE 0x00000002 /* No ptrace(2) attach or coredumps. */ #define P2_NOTRACE_EXEC 0x00000004 /* Keep P2_NOPTRACE on exec(2). */ #define P2_AST_SU 0x00000008 /* Handles SU ast for kthreads. */ #define P2_PTRACE_FSTP 0x00000010 /* SIGSTOP from PT_ATTACH not yet handled. */ #define P2_TRAPCAP 0x00000020 /* SIGTRAP on ENOTCAPABLE */ #define P2_ASLR_ENABLE 0x00000040 /* Force enable ASLR. */ #define P2_ASLR_DISABLE 0x00000080 /* Force disable ASLR. */ #define P2_ASLR_IGNSTART 0x00000100 /* Enable ASLR to consume sbrk area. */ #define P2_PROTMAX_ENABLE 0x00000200 /* Force enable implied PROT_MAX. */ #define P2_PROTMAX_DISABLE 0x00000400 /* Force disable implied PROT_MAX. */ /* Flags protected by proctree_lock, kept in p_treeflags. */ #define P_TREE_ORPHANED 0x00000001 /* Reparented, on orphan list */ #define P_TREE_FIRST_ORPHAN 0x00000002 /* First element of orphan list */ #define P_TREE_REAPER 0x00000004 /* Reaper of subtree */ /* * These were process status values (p_stat), now they are only used in * legacy conversion code. */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SLOCK 7 /* Blocked on a lock. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL /* Types and flags for mi_switch(). */ #define SW_TYPE_MASK 0xff /* First 8 bits are switch type */ #define SWT_NONE 0 /* Unspecified switch. */ #define SWT_PREEMPT 1 /* Switching due to preemption. */ #define SWT_OWEPREEMPT 2 /* Switching due to owepreempt. */ #define SWT_TURNSTILE 3 /* Turnstile contention. */ #define SWT_SLEEPQ 4 /* Sleepq wait. */ #define SWT_SLEEPQTIMO 5 /* Sleepq timeout wait. */ #define SWT_RELINQUISH 6 /* yield call. */ #define SWT_NEEDRESCHED 7 /* NEEDRESCHED was set. */ #define SWT_IDLE 8 /* Switching from the idle thread. */ #define SWT_IWAIT 9 /* Waiting for interrupts. */ #define SWT_SUSPEND 10 /* Thread suspended. */ #define SWT_REMOTEPREEMPT 11 /* Remote processor preempted. */ #define SWT_REMOTEWAKEIDLE 12 /* Remote processor preempted idle. */ #define SWT_COUNT 13 /* Number of switch types. */ /* Flags */ #define SW_VOL 0x0100 /* Voluntary switch. */ #define SW_INVOL 0x0200 /* Involuntary switch. */ #define SW_PREEMPT 0x0400 /* The invol switch is a preemption */ /* How values for thread_single(). */ #define SINGLE_NO_EXIT 0 #define SINGLE_EXIT 1 #define SINGLE_BOUNDARY 2 #define SINGLE_ALLPROC 3 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_PGRP); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads) /* * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit * in a pid_t, as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 extern pid_t pid_max; #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) #define STOPEVENT(p, e, v) do { \ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ "checking stopevent %d", (e)); \ if ((p)->p_stops & (e)) { \ PROC_LOCK(p); \ stopevent((p), (e), (v)); \ PROC_UNLOCK(p); \ } \ } while (0) #define _STOPEVENT(p, e, v) do { \ PROC_LOCK_ASSERT(p, MA_OWNED); \ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, \ "checking stopevent %d", (e)); \ if ((p)->p_stops & (e)) \ stopevent((p), (e), (v)); \ } while (0) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0) #define PGRP_UNLOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0) /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* * Non-zero p_lock ensures that: * - exit1() is not performed until p_lock reaches zero; * - the process' threads stack are not swapped out if they are currently * not (P_INMEM). * * PHOLD() asserts that the process (except the current process) is * not exiting, increments p_lock and swaps threads stacks into memory, * if needed. * _PHOLD() is same as PHOLD(), it takes the process locked. * _PHOLD_LITE() also takes the process locked, but comparing with * _PHOLD(), it only guarantees that exit1() is not executed, * faultin() is not called. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ if (((p)->p_flag & P_INMEM) == 0) \ faultin((p)); \ } while (0) #define _PHOLD_LITE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ } while (0) #define PROC_ASSERT_HELD(p) do { \ KASSERT((p)->p_lock > 0, ("process %p not held", p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ PROC_ASSERT_HELD(p); \ (--(p)->p_lock); \ if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0) \ wakeup(&(p)->p_lock); \ } while (0) #define PROC_ASSERT_NOT_HELD(p) do { \ KASSERT((p)->p_lock == 0, ("process %p held", p)); \ } while (0) #define PROC_UPDATE_COW(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ (p)->p_cowgen++; \ } while (0) /* Check whether a thread is safe to be swapped out. */ #define thread_safetoswapout(td) ((td)->td_flags & TDF_CANSWAP) /* Control whether or not it is safe for curthread to sleep. */ #define THREAD_NO_SLEEPING() ((curthread)->td_no_sleeping++) #define THREAD_SLEEPING_OK() ((curthread)->td_no_sleeping--) #define THREAD_CAN_SLEEP() ((curthread)->td_no_sleeping == 0) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) #define PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern struct sx *pidhashtbl_lock; extern u_long pidhash; extern u_long pidhashlock; #define TIDHASH(tid) (&tidhashtbl[(tid) & tidhash]) extern LIST_HEAD(tidhashhead, thread) *tidhashtbl; extern u_long tidhash; extern struct rwlock tidhash_lock; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern int allproc_gen; -extern struct sx zombproc_lock; extern struct sx proctree_lock; extern struct mtx ppeers_lock; extern struct mtx procid_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread0_storage thread0_st; /* Primary thread in proc0. */ #define thread0 (thread0_st.t0st_thread) extern struct vmspace vmspace0; /* VM space for proc0. */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int lastpid; extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ -extern struct proclist zombproc; /* List of zombie processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct uma_zone *proc_zone; struct proc *pfind(pid_t); /* Find process by id. */ struct proc *pfind_any(pid_t); /* Find (zombie) process by id. */ struct proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */ struct pgrp *pgfind(pid_t); /* Find process group by id. */ void pidhash_slockall(void); /* Shared lock all pid hash lists. */ void pidhash_sunlockall(void); /* Shared unlock all pid hash lists. */ struct fork_req { int fr_flags; int fr_pages; int *fr_pidp; struct proc **fr_procp; int *fr_pd_fd; int fr_pd_flags; struct filecaps *fr_pd_fcaps; }; /* * pget() flags. */ #define PGET_HOLD 0x00001 /* Hold the process. */ #define PGET_CANSEE 0x00002 /* Check against p_cansee(). */ #define PGET_CANDEBUG 0x00004 /* Check against p_candebug(). */ #define PGET_ISCURRENT 0x00008 /* Check that the found process is current. */ #define PGET_NOTWEXIT 0x00010 /* Check that the process is not in P_WEXIT. */ #define PGET_NOTINEXEC 0x00020 /* Check that the process is not in P_INEXEC. */ #define PGET_NOTID 0x00040 /* Do not assume tid if pid > PID_MAX. */ #define PGET_WANTREAD (PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT) int pget(pid_t pid, int flags, struct proc **pp); void ast(struct trapframe *framep); struct thread *choosethread(void); int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeothergids(struct ucred *u1, struct ucred *u2); int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); int cr_canseejailproc(struct ucred *u1, struct ucred *u2); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); void fixjobc(struct proc *p, struct pgrp *pgrp, int entering); int fork1(struct thread *, struct fork_req *); void fork_rfppwait(struct thread *); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); void kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry, int *resident_count, bool *super); void kern_yield(int); void kick_proc0(void); void killjobc(void); int leavepgrp(struct proc *p); int maybe_preempt(struct thread *td); void maybe_yield(void); void mi_switch(int flags, struct thread *newtd); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); int p_canwait(struct thread *td, struct proc *p); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_hold(struct pargs *pa); int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb); void procinit(void); int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg); void proc_linkup0(struct proc *p, struct thread *td); void proc_linkup(struct proc *p, struct thread *td); struct proc *proc_realparent(struct proc *child); void proc_reap(struct thread *td, struct proc *p, int *status, int options); void proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid); void proc_add_orphan(struct proc *child, struct proc *parent); void proc_set_traced(struct proc *p, bool stop); void proc_wkilled(struct proc *p); struct pstats *pstats_alloc(void); void pstats_fork(struct pstats *src, struct pstats *dst); void pstats_free(struct pstats *ps); void proc_clear_orphan(struct proc *p); void reaper_abandon_children(struct proc *p, bool exiting); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void sess_hold(struct session *); void sess_release(struct session *); int setrunnable(struct thread *); void setsugid(struct proc *p); int should_yield(void); int sigonstack(size_t sp); void stopevent(struct proc *, u_int, u_int); struct thread *tdfind(lwpid_t, pid_t); void threadinit(void); void tidhash_add(struct thread *); void tidhash_remove(struct thread *); void cpu_idle(int); int cpu_idle_wakeup(int); extern void (*cpu_idle_hook)(sbintime_t); /* Hook to machdep CPU idler. */ void cpu_switch(struct thread *, struct thread *, struct mtx *); void cpu_throw(struct thread *, struct thread *) __dead2; void unsleep(struct thread *); void userret(struct thread *, struct trapframe *); void cpu_exit(struct thread *); void exit1(struct thread *, int, int) __dead2; void cpu_copy_thread(struct thread *td, struct thread *td0); bool cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map); int cpu_fetch_syscall_args(struct thread *td); void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *); int cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data); void cpu_set_syscall_retval(struct thread *, int); void cpu_set_upcall(struct thread *, void (*)(void *), void *, stack_t *); int cpu_set_user_tls(struct thread *, void *tls_base); void cpu_thread_alloc(struct thread *); void cpu_thread_clean(struct thread *); void cpu_thread_exit(struct thread *); void cpu_thread_free(struct thread *); void cpu_thread_swapin(struct thread *); void cpu_thread_swapout(struct thread *); struct thread *thread_alloc(int pages); int thread_alloc_stack(struct thread *, int pages); void thread_cow_get_proc(struct thread *newtd, struct proc *p); void thread_cow_get(struct thread *newtd, struct thread *td); void thread_cow_free(struct thread *td); void thread_cow_update(struct thread *td); int thread_create(struct thread *td, struct rtprio *rtp, int (*initialize_thread)(struct thread *, void *), void *thunk); void thread_exit(void) __dead2; void thread_free(struct thread *td); void thread_link(struct thread *td, struct proc *p); void thread_reap(void); int thread_single(struct proc *p, int how); void thread_single_end(struct proc *p, int how); void thread_stash(struct thread *td); void thread_stopped(struct proc *p); void childproc_stopped(struct proc *child, int reason); void childproc_continued(struct proc *child); void childproc_exited(struct proc *child); int thread_suspend_check(int how); bool thread_suspend_check_needed(void); void thread_suspend_switch(struct thread *, struct proc *p); void thread_suspend_one(struct thread *td); void thread_unlink(struct thread *td); void thread_unsuspend(struct proc *p); void thread_wait(struct proc *p); struct thread *thread_find(struct proc *p, lwpid_t tid); void stop_all_proc(void); void resume_all_proc(void); static __inline int curthread_pflags_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags & flags); td->td_pflags |= flags; return (save); } static __inline void curthread_pflags_restore(int save) { curthread->td_pflags &= save; } static __inline __pure2 struct td_sched * td_get_sched(struct thread *td) { return ((struct td_sched *)&td[1]); } extern void (*softdep_ast_cleanup)(struct thread *); static __inline void td_softdep_cleanup(struct thread *td) { if (td->td_su != NULL && softdep_ast_cleanup != NULL) softdep_ast_cleanup(td); } #define PROC_ID_PID 0 #define PROC_ID_GROUP 1 #define PROC_ID_SESSION 2 #define PROC_ID_REAP 3 void proc_id_set(int type, pid_t id); void proc_id_set_cond(int type, pid_t id); void proc_id_clear(int type, pid_t id); EVENTHANDLER_LIST_DECLARE(process_ctor); EVENTHANDLER_LIST_DECLARE(process_dtor); EVENTHANDLER_LIST_DECLARE(process_init); EVENTHANDLER_LIST_DECLARE(process_fini); EVENTHANDLER_LIST_DECLARE(process_exit); EVENTHANDLER_LIST_DECLARE(process_fork); EVENTHANDLER_LIST_DECLARE(process_exec); EVENTHANDLER_LIST_DECLARE(thread_ctor); EVENTHANDLER_LIST_DECLARE(thread_dtor); EVENTHANDLER_LIST_DECLARE(thread_init); #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */