Index: head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c =================================================================== --- head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c (revision 351539) +++ head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c (revision 351540) @@ -1,1097 +1,1097 @@ /*- * Copyright (c) 2012 The FreeBSD Foundation * Copyright (c) 2015 Chelsio Communications, Inc. * All rights reserved. * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * cxgbei implementation of iSCSI Common Layer kobj(9) interface. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_tcb.h" #include "tom/t4_tom.h" #include "cxgbei.h" SYSCTL_NODE(_kern_icl, OID_AUTO, cxgbei, CTLFLAG_RD, 0, "Chelsio iSCSI offload"); static int coalesce = 1; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, coalesce, CTLFLAG_RWTUN, &coalesce, 0, "Try to coalesce PDUs before sending"); static int partial_receive_len = 128 * 1024; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, partial_receive_len, CTLFLAG_RWTUN, &partial_receive_len, 0, "Minimum read size for partially received " "data segment"); static int sendspace = 1048576; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, sendspace, CTLFLAG_RWTUN, &sendspace, 0, "Default send socket buffer size"); static int recvspace = 1048576; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, recvspace, CTLFLAG_RWTUN, &recvspace, 0, "Default receive socket buffer size"); static uma_zone_t prsv_zone; static volatile u_int icl_cxgbei_ncons; #define ICL_CONN_LOCK(X) mtx_lock(X->ic_lock) #define ICL_CONN_UNLOCK(X) mtx_unlock(X->ic_lock) #define ICL_CONN_LOCK_ASSERT(X) mtx_assert(X->ic_lock, MA_OWNED) #define ICL_CONN_LOCK_ASSERT_NOT(X) mtx_assert(X->ic_lock, MA_NOTOWNED) struct icl_pdu *icl_cxgbei_new_pdu(int); void icl_cxgbei_new_pdu_set_conn(struct icl_pdu *, struct icl_conn *); static icl_conn_new_pdu_t icl_cxgbei_conn_new_pdu; icl_conn_pdu_free_t icl_cxgbei_conn_pdu_free; static icl_conn_pdu_data_segment_length_t icl_cxgbei_conn_pdu_data_segment_length; static icl_conn_pdu_append_data_t icl_cxgbei_conn_pdu_append_data; static icl_conn_pdu_get_data_t icl_cxgbei_conn_pdu_get_data; static icl_conn_pdu_queue_t icl_cxgbei_conn_pdu_queue; static icl_conn_handoff_t icl_cxgbei_conn_handoff; static icl_conn_free_t icl_cxgbei_conn_free; static icl_conn_close_t icl_cxgbei_conn_close; static icl_conn_task_setup_t icl_cxgbei_conn_task_setup; static icl_conn_task_done_t icl_cxgbei_conn_task_done; static icl_conn_transfer_setup_t icl_cxgbei_conn_transfer_setup; static icl_conn_transfer_done_t icl_cxgbei_conn_transfer_done; static kobj_method_t icl_cxgbei_methods[] = { KOBJMETHOD(icl_conn_new_pdu, icl_cxgbei_conn_new_pdu), KOBJMETHOD(icl_conn_pdu_free, icl_cxgbei_conn_pdu_free), KOBJMETHOD(icl_conn_pdu_data_segment_length, icl_cxgbei_conn_pdu_data_segment_length), KOBJMETHOD(icl_conn_pdu_append_data, icl_cxgbei_conn_pdu_append_data), KOBJMETHOD(icl_conn_pdu_get_data, icl_cxgbei_conn_pdu_get_data), KOBJMETHOD(icl_conn_pdu_queue, icl_cxgbei_conn_pdu_queue), KOBJMETHOD(icl_conn_handoff, icl_cxgbei_conn_handoff), KOBJMETHOD(icl_conn_free, icl_cxgbei_conn_free), KOBJMETHOD(icl_conn_close, icl_cxgbei_conn_close), KOBJMETHOD(icl_conn_task_setup, icl_cxgbei_conn_task_setup), KOBJMETHOD(icl_conn_task_done, icl_cxgbei_conn_task_done), KOBJMETHOD(icl_conn_transfer_setup, icl_cxgbei_conn_transfer_setup), KOBJMETHOD(icl_conn_transfer_done, icl_cxgbei_conn_transfer_done), { 0, 0 } }; DEFINE_CLASS(icl_cxgbei, icl_cxgbei_methods, sizeof(struct icl_cxgbei_conn)); void icl_cxgbei_conn_pdu_free(struct icl_conn *ic, struct icl_pdu *ip) { #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); #endif MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); m_freem(ip->ip_ahs_mbuf); m_freem(ip->ip_data_mbuf); m_freem(ip->ip_bhs_mbuf); /* storage for icl_cxgbei_pdu itself */ #ifdef DIAGNOSTIC if (__predict_true(ic != NULL)) refcount_release(&ic->ic_outstanding_pdus); #endif } struct icl_pdu * icl_cxgbei_new_pdu(int flags) { struct icl_cxgbei_pdu *icp; struct icl_pdu *ip; struct mbuf *m; uintptr_t a; m = m_gethdr(flags, MT_DATA); if (__predict_false(m == NULL)) return (NULL); a = roundup2(mtod(m, uintptr_t), _Alignof(struct icl_cxgbei_pdu)); icp = (struct icl_cxgbei_pdu *)a; bzero(icp, sizeof(*icp)); icp->icp_signature = CXGBEI_PDU_SIGNATURE; ip = &icp->ip; ip->ip_bhs_mbuf = m; a = roundup2((uintptr_t)(icp + 1), _Alignof(struct iscsi_bhs *)); ip->ip_bhs = (struct iscsi_bhs *)a; #ifdef INVARIANTS /* Everything must fit entirely in the mbuf. */ a = (uintptr_t)(ip->ip_bhs + 1); MPASS(a <= (uintptr_t)m + MSIZE); #endif bzero(ip->ip_bhs, sizeof(*ip->ip_bhs)); m->m_data = (void *)ip->ip_bhs; m->m_len = sizeof(struct iscsi_bhs); m->m_pkthdr.len = m->m_len; return (ip); } void icl_cxgbei_new_pdu_set_conn(struct icl_pdu *ip, struct icl_conn *ic) { ip->ip_conn = ic; #ifdef DIAGNOSTIC refcount_acquire(&ic->ic_outstanding_pdus); #endif } /* * Allocate icl_pdu with empty BHS to fill up by the caller. */ static struct icl_pdu * icl_cxgbei_conn_new_pdu(struct icl_conn *ic, int flags) { struct icl_pdu *ip; ip = icl_cxgbei_new_pdu(flags); if (__predict_false(ip == NULL)) return (NULL); icl_cxgbei_new_pdu_set_conn(ip, ic); return (ip); } static size_t icl_pdu_data_segment_length(const struct icl_pdu *request) { uint32_t len = 0; len += request->ip_bhs->bhs_data_segment_len[0]; len <<= 8; len += request->ip_bhs->bhs_data_segment_len[1]; len <<= 8; len += request->ip_bhs->bhs_data_segment_len[2]; return (len); } size_t icl_cxgbei_conn_pdu_data_segment_length(struct icl_conn *ic, const struct icl_pdu *request) { return (icl_pdu_data_segment_length(request)); } static struct mbuf * finalize_pdu(struct icl_cxgbei_conn *icc, struct icl_cxgbei_pdu *icp) { struct icl_pdu *ip = &icp->ip; uint8_t ulp_submode, padding; struct mbuf *m, *last; struct iscsi_bhs *bhs; /* * Fix up the data segment mbuf first. */ m = ip->ip_data_mbuf; ulp_submode = icc->ulp_submode; if (m) { last = m_last(m); /* * Round up the data segment to a 4B boundary. Pad with 0 if * necessary. There will definitely be room in the mbuf. */ padding = roundup2(ip->ip_data_len, 4) - ip->ip_data_len; if (padding) { bzero(mtod(last, uint8_t *) + last->m_len, padding); last->m_len += padding; } } else { MPASS(ip->ip_data_len == 0); ulp_submode &= ~ULP_CRC_DATA; padding = 0; } /* * Now the header mbuf that has the BHS. */ m = ip->ip_bhs_mbuf; MPASS(m->m_pkthdr.len == sizeof(struct iscsi_bhs)); MPASS(m->m_len == sizeof(struct iscsi_bhs)); bhs = ip->ip_bhs; bhs->bhs_data_segment_len[2] = ip->ip_data_len; bhs->bhs_data_segment_len[1] = ip->ip_data_len >> 8; bhs->bhs_data_segment_len[0] = ip->ip_data_len >> 16; /* "Convert" PDU to mbuf chain. Do not use icp/ip after this. */ m->m_pkthdr.len = sizeof(struct iscsi_bhs) + ip->ip_data_len + padding; m->m_next = ip->ip_data_mbuf; set_mbuf_ulp_submode(m, ulp_submode); #ifdef INVARIANTS bzero(icp, sizeof(*icp)); #endif #ifdef DIAGNOSTIC refcount_release(&icc->ic.ic_outstanding_pdus); #endif return (m); } int icl_cxgbei_conn_pdu_append_data(struct icl_conn *ic, struct icl_pdu *ip, const void *addr, size_t len, int flags) { struct mbuf *m; #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); #endif MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); KASSERT(len > 0, ("%s: len is %jd", __func__, (intmax_t)len)); m = ip->ip_data_mbuf; if (m == NULL) { m = m_getjcl(M_NOWAIT, MT_DATA, 0, MJUM16BYTES); if (__predict_false(m == NULL)) return (ENOMEM); ip->ip_data_mbuf = m; } if (__predict_true(m_append(m, len, addr) != 0)) { ip->ip_data_len += len; MPASS(ip->ip_data_len <= ic->ic_max_data_segment_length); return (0); } else { if (flags & M_WAITOK) { CXGBE_UNIMPLEMENTED("fail safe append"); } ip->ip_data_len = m_length(m, NULL); return (1); } } void icl_cxgbei_conn_pdu_get_data(struct icl_conn *ic, struct icl_pdu *ip, size_t off, void *addr, size_t len) { struct icl_cxgbei_pdu *icp = ip_to_icp(ip); if (icp->icp_flags & ICPF_RX_DDP) return; /* data is DDP'ed, no need to copy */ m_copydata(ip->ip_data_mbuf, off, len, addr); } void icl_cxgbei_conn_pdu_queue(struct icl_conn *ic, struct icl_pdu *ip) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct icl_cxgbei_pdu *icp = ip_to_icp(ip); struct socket *so = ic->ic_socket; struct toepcb *toep = icc->toep; struct inpcb *inp; struct mbuf *m; MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); /* The kernel doesn't generate PDUs with AHS. */ MPASS(ip->ip_ahs_mbuf == NULL && ip->ip_ahs_len == 0); ICL_CONN_LOCK_ASSERT(ic); /* NOTE: sowriteable without so_snd lock is a mostly harmless race. */ if (ic->ic_disconnecting || so == NULL || !sowriteable(so)) { icl_cxgbei_conn_pdu_free(ic, ip); return; } m = finalize_pdu(icc, icp); M_ASSERTPKTHDR(m); MPASS((m->m_pkthdr.len & 3) == 0); /* * Do not get inp from toep->inp as the toepcb might have detached * already. */ inp = sotoinpcb(so); INP_WLOCK(inp); if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) || __predict_false((toep->flags & TPF_ATTACHED) == 0)) m_freem(m); else { mbufq_enqueue(&toep->ulp_pduq, m); t4_push_pdus(icc->sc, toep, 0); } INP_WUNLOCK(inp); } static struct icl_conn * icl_cxgbei_new_conn(const char *name, struct mtx *lock) { struct icl_cxgbei_conn *icc; struct icl_conn *ic; refcount_acquire(&icl_cxgbei_ncons); icc = (struct icl_cxgbei_conn *)kobj_create(&icl_cxgbei_class, M_CXGBE, M_WAITOK | M_ZERO); icc->icc_signature = CXGBEI_CONN_SIGNATURE; STAILQ_INIT(&icc->rcvd_pdus); ic = &icc->ic; ic->ic_lock = lock; /* XXXNP: review. Most of these icl_conn fields aren't really used */ STAILQ_INIT(&ic->ic_to_send); cv_init(&ic->ic_send_cv, "icl_cxgbei_tx"); cv_init(&ic->ic_receive_cv, "icl_cxgbei_rx"); #ifdef DIAGNOSTIC refcount_init(&ic->ic_outstanding_pdus, 0); #endif /* This is a stop-gap value that will be corrected during handoff. */ ic->ic_max_data_segment_length = 16384; ic->ic_name = name; ic->ic_offload = "cxgbei"; ic->ic_unmapped = false; CTR2(KTR_CXGBE, "%s: icc %p", __func__, icc); return (ic); } void icl_cxgbei_conn_free(struct icl_conn *ic) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); CTR2(KTR_CXGBE, "%s: icc %p", __func__, icc); cv_destroy(&ic->ic_send_cv); cv_destroy(&ic->ic_receive_cv); kobj_delete((struct kobj *)icc, M_CXGBE); refcount_release(&icl_cxgbei_ncons); } static int icl_cxgbei_setsockopt(struct icl_conn *ic, struct socket *so, int sspace, int rspace) { struct sockopt opt; int error, one = 1, ss, rs; ss = max(sendspace, sspace); rs = max(recvspace, rspace); error = soreserve(so, ss, rs); if (error != 0) { icl_cxgbei_conn_close(ic); return (error); } SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_AUTOSIZE; SOCKBUF_UNLOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags |= SB_AUTOSIZE; SOCKBUF_UNLOCK(&so->so_rcv); /* * Disable Nagle. */ bzero(&opt, sizeof(opt)); opt.sopt_dir = SOPT_SET; opt.sopt_level = IPPROTO_TCP; opt.sopt_name = TCP_NODELAY; opt.sopt_val = &one; opt.sopt_valsize = sizeof(one); error = sosetopt(so, &opt); if (error != 0) { icl_cxgbei_conn_close(ic); return (error); } return (0); } /* * Request/response structure used to find out the adapter offloading a socket. */ struct find_ofld_adapter_rr { struct socket *so; struct adapter *sc; /* result */ }; static void find_offload_adapter(struct adapter *sc, void *arg) { struct find_ofld_adapter_rr *fa = arg; struct socket *so = fa->so; struct tom_data *td = sc->tom_softc; struct tcpcb *tp; struct inpcb *inp; /* Non-TCP were filtered out earlier. */ MPASS(so->so_proto->pr_protocol == IPPROTO_TCP); if (fa->sc != NULL) return; /* Found already. */ if (td == NULL) return; /* TOE not enabled on this adapter. */ inp = sotoinpcb(so); INP_WLOCK(inp); if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { tp = intotcpcb(inp); if (tp->t_flags & TF_TOE && tp->tod == &td->tod) fa->sc = sc; /* Found. */ } INP_WUNLOCK(inp); } /* XXXNP: move this to t4_tom. */ static void send_iscsi_flowc_wr(struct adapter *sc, struct toepcb *toep, int maxlen) { struct wrqe *wr; struct fw_flowc_wr *flowc; const u_int nparams = 1; u_int flowclen; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX; flowc->mnemval[0].val = htobe32(maxlen); txsd->tx_credits = howmany(flowclen, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); } static void set_ulp_mode_iscsi(struct adapter *sc, struct toepcb *toep, int hcrc, int dcrc) { uint64_t val = ULP_MODE_ISCSI; if (hcrc) val |= ULP_CRC_HEADER << 4; if (dcrc) val |= ULP_CRC_DATA << 4; CTR4(KTR_CXGBE, "%s: tid %u, ULP_MODE_ISCSI, CRC hdr=%d data=%d", __func__, toep->tid, hcrc, dcrc); t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_ULP_TYPE, V_TCB_ULP_TYPE(M_TCB_ULP_TYPE) | V_TCB_ULP_RAW(M_TCB_ULP_RAW), val, 0, 0); } /* * XXXNP: Who is responsible for cleaning up the socket if this returns with an * error? Review all error paths. * * XXXNP: What happens to the socket's fd reference if the operation is * successful, and how does that affect the socket's life cycle? */ int icl_cxgbei_conn_handoff(struct icl_conn *ic, int fd) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct cxgbei_data *ci; struct find_ofld_adapter_rr fa; struct file *fp; struct socket *so; struct inpcb *inp; struct tcpcb *tp; struct toepcb *toep; cap_rights_t rights; int error; MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ICL_CONN_LOCK_ASSERT_NOT(ic); /* * Steal the socket from userland. */ error = fget(curthread, fd, cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); if (error != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, curthread); return (EINVAL); } so = fp->f_data; if (so->so_type != SOCK_STREAM || so->so_proto->pr_protocol != IPPROTO_TCP) { fdrop(fp, curthread); return (EINVAL); } ICL_CONN_LOCK(ic); if (ic->ic_socket != NULL) { ICL_CONN_UNLOCK(ic); fdrop(fp, curthread); return (EBUSY); } ic->ic_disconnecting = false; ic->ic_socket = so; fp->f_ops = &badfileops; fp->f_data = NULL; fdrop(fp, curthread); ICL_CONN_UNLOCK(ic); /* Find the adapter offloading this socket. */ fa.sc = NULL; fa.so = so; t4_iterate(find_offload_adapter, &fa); if (fa.sc == NULL) return (EINVAL); icc->sc = fa.sc; ci = icc->sc->iscsi_ulp_softc; inp = sotoinpcb(so); INP_WLOCK(inp); tp = intotcpcb(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) error = EBUSY; else { /* * socket could not have been "unoffloaded" if here. */ MPASS(tp->t_flags & TF_TOE); MPASS(tp->tod != NULL); MPASS(tp->t_toe != NULL); toep = tp->t_toe; MPASS(toep->vi->pi->adapter == icc->sc); icc->toep = toep; icc->cwt = cxgbei_select_worker_thread(icc); /* * We maintain the _send_ DSL in this field just to have a * convenient way to assert that the kernel never sends * oversized PDUs. This field is otherwise unused in the driver * or the kernel. */ ic->ic_max_data_segment_length = ci->max_tx_pdu_len - ISCSI_BHS_SIZE; icc->ulp_submode = 0; if (ic->ic_header_crc32c) { icc->ulp_submode |= ULP_CRC_HEADER; ic->ic_max_data_segment_length -= ISCSI_HEADER_DIGEST_SIZE; } if (ic->ic_data_crc32c) { icc->ulp_submode |= ULP_CRC_DATA; ic->ic_max_data_segment_length -= ISCSI_DATA_DIGEST_SIZE; } so->so_options |= SO_NO_DDP; - toep->ulp_mode = ULP_MODE_ISCSI; + toep->params.ulp_mode = ULP_MODE_ISCSI; toep->ulpcb = icc; send_iscsi_flowc_wr(icc->sc, toep, ci->max_tx_pdu_len); set_ulp_mode_iscsi(icc->sc, toep, ic->ic_header_crc32c, ic->ic_data_crc32c); error = 0; } INP_WUNLOCK(inp); if (error == 0) { error = icl_cxgbei_setsockopt(ic, so, ci->max_tx_pdu_len, ci->max_rx_pdu_len); } return (error); } void icl_cxgbei_conn_close(struct icl_conn *ic) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct icl_pdu *ip; struct socket *so; struct sockbuf *sb; struct inpcb *inp; struct toepcb *toep = icc->toep; MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ICL_CONN_LOCK_ASSERT_NOT(ic); ICL_CONN_LOCK(ic); so = ic->ic_socket; if (ic->ic_disconnecting || so == NULL) { CTR4(KTR_CXGBE, "%s: icc %p (disconnecting = %d), so %p", __func__, icc, ic->ic_disconnecting, so); ICL_CONN_UNLOCK(ic); return; } ic->ic_disconnecting = true; /* These are unused in this driver right now. */ MPASS(STAILQ_EMPTY(&ic->ic_to_send)); MPASS(ic->ic_receive_pdu == NULL); #ifdef DIAGNOSTIC KASSERT(ic->ic_outstanding_pdus == 0, ("destroying session with %d outstanding PDUs", ic->ic_outstanding_pdus)); #endif ICL_CONN_UNLOCK(ic); CTR3(KTR_CXGBE, "%s: tid %d, icc %p", __func__, toep ? toep->tid : -1, icc); inp = sotoinpcb(so); sb = &so->so_rcv; INP_WLOCK(inp); if (toep != NULL) { /* NULL if connection was never offloaded. */ toep->ulpcb = NULL; mbufq_drain(&toep->ulp_pduq); SOCKBUF_LOCK(sb); if (icc->rx_flags & RXF_ACTIVE) { volatile u_int *p = &icc->rx_flags; SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); while (*p & RXF_ACTIVE) pause("conclo", 1); INP_WLOCK(inp); SOCKBUF_LOCK(sb); } while (!STAILQ_EMPTY(&icc->rcvd_pdus)) { ip = STAILQ_FIRST(&icc->rcvd_pdus); STAILQ_REMOVE_HEAD(&icc->rcvd_pdus, ip_next); icl_cxgbei_conn_pdu_free(ic, ip); } SOCKBUF_UNLOCK(sb); } INP_WUNLOCK(inp); ICL_CONN_LOCK(ic); ic->ic_socket = NULL; ICL_CONN_UNLOCK(ic); /* * XXXNP: we should send RST instead of FIN when PDUs held in various * queues were purged instead of delivered reliably but soabort isn't * really general purpose and wouldn't do the right thing here. */ soclose(so); } int icl_cxgbei_conn_task_setup(struct icl_conn *ic, struct icl_pdu *ip, struct ccb_scsiio *csio, uint32_t *ittp, void **arg) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct toepcb *toep = icc->toep; struct adapter *sc = icc->sc; struct cxgbei_data *ci = sc->iscsi_ulp_softc; struct ppod_region *pr = &ci->pr; struct ppod_reservation *prsv; uint32_t itt; int rc = 0; /* This is for the offload driver's state. Must not be set already. */ MPASS(arg != NULL); MPASS(*arg == NULL); if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_IN || csio->dxfer_len < ci->ddp_threshold) { no_ddp: /* * No DDP for this I/O. Allocate an ITT (based on the one * passed in) that cannot be a valid hardware DDP tag in the * iSCSI region. */ itt = *ittp & M_PPOD_TAG; itt = V_PPOD_TAG(itt) | pr->pr_invalid_bit; *ittp = htobe32(itt); MPASS(*arg == NULL); /* State is maintained for DDP only. */ if (rc != 0) counter_u64_add(ci->ddp_setup_error, 1); return (0); } /* * Reserve resources for DDP, update the itt that should be used in the * PDU, and save DDP specific state for this I/O in *arg. */ prsv = uma_zalloc(prsv_zone, M_NOWAIT); if (prsv == NULL) { rc = ENOMEM; goto no_ddp; } /* XXX add support for all CAM_DATA_ types */ MPASS((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR); rc = t4_alloc_page_pods_for_buf(pr, (vm_offset_t)csio->data_ptr, csio->dxfer_len, prsv); if (rc != 0) { uma_zfree(prsv_zone, prsv); goto no_ddp; } rc = t4_write_page_pods_for_buf(sc, toep->ofld_txq, toep->tid, prsv, (vm_offset_t)csio->data_ptr, csio->dxfer_len); if (rc != 0) { t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); goto no_ddp; } *ittp = htobe32(prsv->prsv_tag); *arg = prsv; counter_u64_add(ci->ddp_setup_ok, 1); return (0); } void icl_cxgbei_conn_task_done(struct icl_conn *ic, void *arg) { if (arg != NULL) { struct ppod_reservation *prsv = arg; t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); } } /* XXXNP: PDU should be passed in as parameter, like on the initiator. */ #define io_to_request_pdu(io) ((io)->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr) #define io_to_ppod_reservation(io) ((io)->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr) int icl_cxgbei_conn_transfer_setup(struct icl_conn *ic, union ctl_io *io, uint32_t *tttp, void **arg) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct toepcb *toep = icc->toep; struct ctl_scsiio *ctsio = &io->scsiio; struct adapter *sc = icc->sc; struct cxgbei_data *ci = sc->iscsi_ulp_softc; struct ppod_region *pr = &ci->pr; struct ppod_reservation *prsv; uint32_t ttt; int xferlen, rc = 0, alias; /* This is for the offload driver's state. Must not be set already. */ MPASS(arg != NULL); MPASS(*arg == NULL); if (ctsio->ext_data_filled == 0) { int first_burst; struct icl_pdu *ip = io_to_request_pdu(io); vm_offset_t buf; #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); #endif first_burst = icl_pdu_data_segment_length(ip); /* * Note that ICL calls conn_transfer_setup even if the first * burst had everything and there's nothing left to transfer. */ MPASS(ctsio->kern_data_len >= first_burst); xferlen = ctsio->kern_data_len; if (xferlen - first_burst < ci->ddp_threshold) { no_ddp: /* * No DDP for this transfer. Allocate a TTT (based on * the one passed in) that cannot be a valid hardware * DDP tag in the iSCSI region. */ ttt = *tttp & M_PPOD_TAG; ttt = V_PPOD_TAG(ttt) | pr->pr_invalid_bit; *tttp = htobe32(ttt); MPASS(io_to_ppod_reservation(io) == NULL); if (rc != 0) counter_u64_add(ci->ddp_setup_error, 1); return (0); } if (ctsio->kern_sg_entries == 0) buf = (vm_offset_t)ctsio->kern_data_ptr; else if (ctsio->kern_sg_entries == 1) { struct ctl_sg_entry *sgl = (void *)ctsio->kern_data_ptr; MPASS(sgl->len == xferlen); buf = (vm_offset_t)sgl->addr; } else { rc = EAGAIN; /* XXX implement */ goto no_ddp; } /* * Reserve resources for DDP, update the ttt that should be used * in the PDU, and save DDP specific state for this I/O. */ MPASS(io_to_ppod_reservation(io) == NULL); prsv = uma_zalloc(prsv_zone, M_NOWAIT); if (prsv == NULL) { rc = ENOMEM; goto no_ddp; } rc = t4_alloc_page_pods_for_buf(pr, buf, xferlen, prsv); if (rc != 0) { uma_zfree(prsv_zone, prsv); goto no_ddp; } rc = t4_write_page_pods_for_buf(sc, toep->ofld_txq, toep->tid, prsv, buf, xferlen); if (rc != 0) { t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); goto no_ddp; } *tttp = htobe32(prsv->prsv_tag); io_to_ppod_reservation(io) = prsv; *arg = ctsio; counter_u64_add(ci->ddp_setup_ok, 1); return (0); } /* * In the middle of an I/O. A non-NULL page pod reservation indicates * that a DDP buffer is being used for the I/O. */ prsv = io_to_ppod_reservation(ctsio); if (prsv == NULL) goto no_ddp; alias = (prsv->prsv_tag & pr->pr_alias_mask) >> pr->pr_alias_shift; alias++; prsv->prsv_tag &= ~pr->pr_alias_mask; prsv->prsv_tag |= alias << pr->pr_alias_shift & pr->pr_alias_mask; *tttp = htobe32(prsv->prsv_tag); *arg = ctsio; return (0); } void icl_cxgbei_conn_transfer_done(struct icl_conn *ic, void *arg) { struct ctl_scsiio *ctsio = arg; if (ctsio != NULL && ctsio->kern_data_len == ctsio->ext_data_filled) { struct ppod_reservation *prsv; prsv = io_to_ppod_reservation(ctsio); MPASS(prsv != NULL); t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); } } static void cxgbei_limits(struct adapter *sc, void *arg) { struct icl_drv_limits *idl = arg; struct cxgbei_data *ci; int max_dsl; if (begin_synchronized_op(sc, NULL, HOLD_LOCK, "t4lims") != 0) return; if (uld_active(sc, ULD_ISCSI)) { ci = sc->iscsi_ulp_softc; MPASS(ci != NULL); /* * AHS is not supported by the kernel so we'll not account for * it either in our PDU len -> data segment len conversions. */ max_dsl = ci->max_rx_pdu_len - ISCSI_BHS_SIZE - ISCSI_HEADER_DIGEST_SIZE - ISCSI_DATA_DIGEST_SIZE; if (idl->idl_max_recv_data_segment_length > max_dsl) idl->idl_max_recv_data_segment_length = max_dsl; max_dsl = ci->max_tx_pdu_len - ISCSI_BHS_SIZE - ISCSI_HEADER_DIGEST_SIZE - ISCSI_DATA_DIGEST_SIZE; if (idl->idl_max_send_data_segment_length > max_dsl) idl->idl_max_send_data_segment_length = max_dsl; } end_synchronized_op(sc, LOCK_HELD); } static int icl_cxgbei_limits(struct icl_drv_limits *idl) { /* Maximum allowed by the RFC. cxgbei_limits will clip them. */ idl->idl_max_recv_data_segment_length = (1 << 24) - 1; idl->idl_max_send_data_segment_length = (1 << 24) - 1; /* These are somewhat arbitrary. */ idl->idl_max_burst_length = 2 * 1024 * 1024; idl->idl_first_burst_length = 8192; t4_iterate(cxgbei_limits, idl); return (0); } int icl_cxgbei_mod_load(void) { int rc; /* * Space to track pagepod reservations. */ prsv_zone = uma_zcreate("Pagepod reservations", sizeof(struct ppod_reservation), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); refcount_init(&icl_cxgbei_ncons, 0); rc = icl_register("cxgbei", false, -100, icl_cxgbei_limits, icl_cxgbei_new_conn); return (rc); } int icl_cxgbei_mod_unload(void) { if (icl_cxgbei_ncons != 0) return (EBUSY); icl_unregister("cxgbei", false); uma_zdestroy(prsv_zone); return (0); } #endif Index: head/sys/dev/cxgbe/iw_cxgbe/qp.c =================================================================== --- head/sys/dev/cxgbe/iw_cxgbe/qp.c (revision 351539) +++ head/sys/dev/cxgbe/iw_cxgbe/qp.c (revision 351540) @@ -1,1967 +1,1967 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sge_iq; struct rss_header; struct cpl_set_tcb_rpl; #include #include "offload.h" #include "tom/t4_tom.h" #include "iw_cxgbe.h" #include "user.h" static int creds(struct toepcb *toep, struct inpcb *inp, size_t wrsize); static int max_fr_immd = T4_MAX_FR_IMMD;//SYSCTL parameter later... static int alloc_ird(struct c4iw_dev *dev, u32 ird) { int ret = 0; spin_lock_irq(&dev->lock); if (ird <= dev->avail_ird) dev->avail_ird -= ird; else ret = -ENOMEM; spin_unlock_irq(&dev->lock); if (ret) log(LOG_WARNING, "%s: device IRD resources exhausted\n", device_get_nameunit(dev->rdev.adap->dev)); return ret; } static void free_ird(struct c4iw_dev *dev, int ird) { spin_lock_irq(&dev->lock); dev->avail_ird += ird; spin_unlock_irq(&dev->lock); } static void set_state(struct c4iw_qp *qhp, enum c4iw_qp_state state) { unsigned long flag; spin_lock_irqsave(&qhp->lock, flag); qhp->attr.state = state; spin_unlock_irqrestore(&qhp->lock, flag); } static int destroy_qp(struct c4iw_rdev *rdev, struct t4_wq *wq, struct c4iw_dev_ucontext *uctx) { struct c4iw_dev *rhp = rdev_to_c4iw_dev(rdev); /* * uP clears EQ contexts when the connection exits rdma mode, * so no need to post a RESET WR for these EQs. */ dma_free_coherent(rhp->ibdev.dma_device, wq->rq.memsize, wq->rq.queue, dma_unmap_addr(&wq->rq, mapping)); dma_free_coherent(rhp->ibdev.dma_device, wq->sq.memsize, wq->sq.queue, dma_unmap_addr(&wq->sq, mapping)); c4iw_rqtpool_free(rdev, wq->rq.rqt_hwaddr, wq->rq.rqt_size); kfree(wq->rq.sw_rq); kfree(wq->sq.sw_sq); c4iw_put_qpid(rdev, wq->rq.qid, uctx); c4iw_put_qpid(rdev, wq->sq.qid, uctx); return 0; } static int create_qp(struct c4iw_rdev *rdev, struct t4_wq *wq, struct t4_cq *rcq, struct t4_cq *scq, struct c4iw_dev_ucontext *uctx) { struct adapter *sc = rdev->adap; struct c4iw_dev *rhp = rdev_to_c4iw_dev(rdev); int user = (uctx != &rdev->uctx); struct fw_ri_res_wr *res_wr; struct fw_ri_res *res; int wr_len; struct c4iw_wr_wait wr_wait; int ret = 0; int eqsize; struct wrqe *wr; u64 sq_bar2_qoffset = 0, rq_bar2_qoffset = 0; wq->sq.qid = c4iw_get_qpid(rdev, uctx); if (!wq->sq.qid) return -ENOMEM; wq->rq.qid = c4iw_get_qpid(rdev, uctx); if (!wq->rq.qid) { ret = -ENOMEM; goto free_sq_qid; } if (!user) { wq->sq.sw_sq = kzalloc(wq->sq.size * sizeof *wq->sq.sw_sq, GFP_KERNEL); if (!wq->sq.sw_sq) { ret = -ENOMEM; goto free_rq_qid; } wq->rq.sw_rq = kzalloc(wq->rq.size * sizeof *wq->rq.sw_rq, GFP_KERNEL); if (!wq->rq.sw_rq) { ret = -ENOMEM; goto free_sw_sq; } } /* * RQT must be a power of 2 and at least 16 deep. */ wq->rq.rqt_size = roundup_pow_of_two(max_t(u16, wq->rq.size, 16)); wq->rq.rqt_hwaddr = c4iw_rqtpool_alloc(rdev, wq->rq.rqt_size); if (!wq->rq.rqt_hwaddr) { ret = -ENOMEM; goto free_sw_rq; } /*QP memory, allocate DMAable memory for Send & Receive Queues */ wq->sq.queue = dma_alloc_coherent(rhp->ibdev.dma_device, wq->sq.memsize, &(wq->sq.dma_addr), GFP_KERNEL); if (!wq->sq.queue) { ret = -ENOMEM; goto free_hwaddr; } wq->sq.phys_addr = vtophys(wq->sq.queue); dma_unmap_addr_set(&wq->sq, mapping, wq->sq.dma_addr); memset(wq->sq.queue, 0, wq->sq.memsize); wq->rq.queue = dma_alloc_coherent(rhp->ibdev.dma_device, wq->rq.memsize, &(wq->rq.dma_addr), GFP_KERNEL); if (!wq->rq.queue) { ret = -ENOMEM; goto free_sq_dma; } wq->rq.phys_addr = vtophys(wq->rq.queue); dma_unmap_addr_set(&wq->rq, mapping, wq->rq.dma_addr); memset(wq->rq.queue, 0, wq->rq.memsize); CTR5(KTR_IW_CXGBE, "%s QP sq base va 0x%p pa 0x%llx rq base va 0x%p pa 0x%llx", __func__, wq->sq.queue, (unsigned long long)wq->sq.phys_addr, wq->rq.queue, (unsigned long long)wq->rq.phys_addr); /* Doorbell/WC regions, determine the BAR2 queue offset and qid. */ t4_bar2_sge_qregs(rdev->adap, wq->sq.qid, T4_BAR2_QTYPE_EGRESS, user, &sq_bar2_qoffset, &wq->sq.bar2_qid); t4_bar2_sge_qregs(rdev->adap, wq->rq.qid, T4_BAR2_QTYPE_EGRESS, user, &rq_bar2_qoffset, &wq->rq.bar2_qid); if (user) { /* Compute BAR2 DB/WC physical address(page-aligned) for * Userspace mapping. */ wq->sq.bar2_pa = (rdev->bar2_pa + sq_bar2_qoffset) & PAGE_MASK; wq->rq.bar2_pa = (rdev->bar2_pa + rq_bar2_qoffset) & PAGE_MASK; CTR3(KTR_IW_CXGBE, "%s BAR2 DB/WC sq base pa 0x%llx rq base pa 0x%llx", __func__, (unsigned long long)wq->sq.bar2_pa, (unsigned long long)wq->rq.bar2_pa); } else { /* Compute BAR2 DB/WC virtual address to access in kernel. */ wq->sq.bar2_va = (void __iomem *)((u64)rdev->bar2_kva + sq_bar2_qoffset); wq->rq.bar2_va = (void __iomem *)((u64)rdev->bar2_kva + rq_bar2_qoffset); CTR3(KTR_IW_CXGBE, "%s BAR2 DB/WC sq base va %p rq base va %p", __func__, (unsigned long long)wq->sq.bar2_va, (unsigned long long)wq->rq.bar2_va); } wq->rdev = rdev; wq->rq.msn = 1; /* build fw_ri_res_wr */ wr_len = sizeof *res_wr + 2 * sizeof *res; wr = alloc_wrqe(wr_len, &sc->sge.ctrlq[0]); if (wr == NULL) { ret = -ENOMEM; goto free_rq_dma; } res_wr = wrtod(wr); memset(res_wr, 0, wr_len); res_wr->op_nres = cpu_to_be32( V_FW_WR_OP(FW_RI_RES_WR) | V_FW_RI_RES_WR_NRES(2) | F_FW_WR_COMPL); res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); res_wr->cookie = (unsigned long) &wr_wait; res = res_wr->res; res->u.sqrq.restype = FW_RI_RES_TYPE_SQ; res->u.sqrq.op = FW_RI_RES_OP_WRITE; /* eqsize is the number of 64B entries plus the status page size. */ eqsize = wq->sq.size * T4_SQ_NUM_SLOTS + rdev->hw_queue.t4_eq_status_entries; res->u.sqrq.fetchszm_to_iqid = cpu_to_be32( V_FW_RI_RES_WR_HOSTFCMODE(0) | /* no host cidx updates */ V_FW_RI_RES_WR_CPRIO(0) | /* don't keep in chip cache */ V_FW_RI_RES_WR_PCIECHN(0) | /* set by uP at ri_init time */ V_FW_RI_RES_WR_IQID(scq->cqid)); res->u.sqrq.dcaen_to_eqsize = cpu_to_be32( V_FW_RI_RES_WR_DCAEN(0) | V_FW_RI_RES_WR_DCACPU(0) | V_FW_RI_RES_WR_FBMIN(2) | V_FW_RI_RES_WR_FBMAX(3) | V_FW_RI_RES_WR_CIDXFTHRESHO(0) | V_FW_RI_RES_WR_CIDXFTHRESH(0) | V_FW_RI_RES_WR_EQSIZE(eqsize)); res->u.sqrq.eqid = cpu_to_be32(wq->sq.qid); res->u.sqrq.eqaddr = cpu_to_be64(wq->sq.dma_addr); res++; res->u.sqrq.restype = FW_RI_RES_TYPE_RQ; res->u.sqrq.op = FW_RI_RES_OP_WRITE; /* eqsize is the number of 64B entries plus the status page size. */ eqsize = wq->rq.size * T4_RQ_NUM_SLOTS + rdev->hw_queue.t4_eq_status_entries; res->u.sqrq.fetchszm_to_iqid = cpu_to_be32( V_FW_RI_RES_WR_HOSTFCMODE(0) | /* no host cidx updates */ V_FW_RI_RES_WR_CPRIO(0) | /* don't keep in chip cache */ V_FW_RI_RES_WR_PCIECHN(0) | /* set by uP at ri_init time */ V_FW_RI_RES_WR_IQID(rcq->cqid)); res->u.sqrq.dcaen_to_eqsize = cpu_to_be32( V_FW_RI_RES_WR_DCAEN(0) | V_FW_RI_RES_WR_DCACPU(0) | V_FW_RI_RES_WR_FBMIN(2) | V_FW_RI_RES_WR_FBMAX(3) | V_FW_RI_RES_WR_CIDXFTHRESHO(0) | V_FW_RI_RES_WR_CIDXFTHRESH(0) | V_FW_RI_RES_WR_EQSIZE(eqsize)); res->u.sqrq.eqid = cpu_to_be32(wq->rq.qid); res->u.sqrq.eqaddr = cpu_to_be64(wq->rq.dma_addr); c4iw_init_wr_wait(&wr_wait); t4_wrq_tx(sc, wr); ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, wq->sq.qid, NULL, __func__); if (ret) goto free_rq_dma; CTR5(KTR_IW_CXGBE, "%s sqid 0x%x rqid 0x%x kdb 0x%p squdb 0x%llx rqudb 0x%llx", __func__, wq->sq.qid, wq->rq.qid, (unsigned long long)wq->sq.bar2_va, (unsigned long long)wq->rq.bar2_va); return 0; free_rq_dma: dma_free_coherent(rhp->ibdev.dma_device, wq->rq.memsize, wq->rq.queue, dma_unmap_addr(&wq->rq, mapping)); free_sq_dma: dma_free_coherent(rhp->ibdev.dma_device, wq->sq.memsize, wq->sq.queue, dma_unmap_addr(&wq->sq, mapping)); free_hwaddr: c4iw_rqtpool_free(rdev, wq->rq.rqt_hwaddr, wq->rq.rqt_size); free_sw_rq: kfree(wq->rq.sw_rq); free_sw_sq: kfree(wq->sq.sw_sq); free_rq_qid: c4iw_put_qpid(rdev, wq->rq.qid, uctx); free_sq_qid: c4iw_put_qpid(rdev, wq->sq.qid, uctx); return ret; } static int build_immd(struct t4_sq *sq, struct fw_ri_immd *immdp, struct ib_send_wr *wr, int max, u32 *plenp) { u8 *dstp, *srcp; u32 plen = 0; int i; int rem, len; dstp = (u8 *)immdp->data; for (i = 0; i < wr->num_sge; i++) { if ((plen + wr->sg_list[i].length) > max) return -EMSGSIZE; srcp = (u8 *)(unsigned long)wr->sg_list[i].addr; plen += wr->sg_list[i].length; rem = wr->sg_list[i].length; while (rem) { if (dstp == (u8 *)&sq->queue[sq->size]) dstp = (u8 *)sq->queue; if (rem <= (u8 *)&sq->queue[sq->size] - dstp) len = rem; else len = (u8 *)&sq->queue[sq->size] - dstp; memcpy(dstp, srcp, len); dstp += len; srcp += len; rem -= len; } } len = roundup(plen + sizeof *immdp, 16) - (plen + sizeof *immdp); if (len) memset(dstp, 0, len); immdp->op = FW_RI_DATA_IMMD; immdp->r1 = 0; immdp->r2 = 0; immdp->immdlen = cpu_to_be32(plen); *plenp = plen; return 0; } static int build_isgl(__be64 *queue_start, __be64 *queue_end, struct fw_ri_isgl *isglp, struct ib_sge *sg_list, int num_sge, u32 *plenp) { int i; u32 plen = 0; __be64 *flitp = (__be64 *)isglp->sge; for (i = 0; i < num_sge; i++) { if ((plen + sg_list[i].length) < plen) return -EMSGSIZE; plen += sg_list[i].length; *flitp = cpu_to_be64(((u64)sg_list[i].lkey << 32) | sg_list[i].length); if (++flitp == queue_end) flitp = queue_start; *flitp = cpu_to_be64(sg_list[i].addr); if (++flitp == queue_end) flitp = queue_start; } *flitp = (__force __be64)0; isglp->op = FW_RI_DATA_ISGL; isglp->r1 = 0; isglp->nsge = cpu_to_be16(num_sge); isglp->r2 = 0; if (plenp) *plenp = plen; return 0; } static int build_rdma_send(struct t4_sq *sq, union t4_wr *wqe, struct ib_send_wr *wr, u8 *len16) { u32 plen; int size; int ret; if (wr->num_sge > T4_MAX_SEND_SGE) return -EINVAL; switch (wr->opcode) { case IB_WR_SEND: if (wr->send_flags & IB_SEND_SOLICITED) wqe->send.sendop_pkd = cpu_to_be32( V_FW_RI_SEND_WR_SENDOP(FW_RI_SEND_WITH_SE)); else wqe->send.sendop_pkd = cpu_to_be32( V_FW_RI_SEND_WR_SENDOP(FW_RI_SEND)); wqe->send.stag_inv = 0; break; case IB_WR_SEND_WITH_INV: if (wr->send_flags & IB_SEND_SOLICITED) wqe->send.sendop_pkd = cpu_to_be32( V_FW_RI_SEND_WR_SENDOP(FW_RI_SEND_WITH_SE_INV)); else wqe->send.sendop_pkd = cpu_to_be32( V_FW_RI_SEND_WR_SENDOP(FW_RI_SEND_WITH_INV)); wqe->send.stag_inv = cpu_to_be32(wr->ex.invalidate_rkey); break; default: return -EINVAL; } wqe->send.r3 = 0; wqe->send.r4 = 0; plen = 0; if (wr->num_sge) { if (wr->send_flags & IB_SEND_INLINE) { ret = build_immd(sq, wqe->send.u.immd_src, wr, T4_MAX_SEND_INLINE, &plen); if (ret) return ret; size = sizeof wqe->send + sizeof(struct fw_ri_immd) + plen; } else { ret = build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size], wqe->send.u.isgl_src, wr->sg_list, wr->num_sge, &plen); if (ret) return ret; size = sizeof wqe->send + sizeof(struct fw_ri_isgl) + wr->num_sge * sizeof(struct fw_ri_sge); } } else { wqe->send.u.immd_src[0].op = FW_RI_DATA_IMMD; wqe->send.u.immd_src[0].r1 = 0; wqe->send.u.immd_src[0].r2 = 0; wqe->send.u.immd_src[0].immdlen = 0; size = sizeof wqe->send + sizeof(struct fw_ri_immd); plen = 0; } *len16 = DIV_ROUND_UP(size, 16); wqe->send.plen = cpu_to_be32(plen); return 0; } static int build_rdma_write(struct t4_sq *sq, union t4_wr *wqe, struct ib_send_wr *wr, u8 *len16) { u32 plen; int size; int ret; if (wr->num_sge > T4_MAX_SEND_SGE) return -EINVAL; wqe->write.immd_data = 0; wqe->write.stag_sink = cpu_to_be32(rdma_wr(wr)->rkey); wqe->write.to_sink = cpu_to_be64(rdma_wr(wr)->remote_addr); if (wr->num_sge) { if (wr->send_flags & IB_SEND_INLINE) { ret = build_immd(sq, wqe->write.u.immd_src, wr, T4_MAX_WRITE_INLINE, &plen); if (ret) return ret; size = sizeof wqe->write + sizeof(struct fw_ri_immd) + plen; } else { ret = build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size], wqe->write.u.isgl_src, wr->sg_list, wr->num_sge, &plen); if (ret) return ret; size = sizeof wqe->write + sizeof(struct fw_ri_isgl) + wr->num_sge * sizeof(struct fw_ri_sge); } } else { wqe->write.u.immd_src[0].op = FW_RI_DATA_IMMD; wqe->write.u.immd_src[0].r1 = 0; wqe->write.u.immd_src[0].r2 = 0; wqe->write.u.immd_src[0].immdlen = 0; size = sizeof wqe->write + sizeof(struct fw_ri_immd); plen = 0; } *len16 = DIV_ROUND_UP(size, 16); wqe->write.plen = cpu_to_be32(plen); return 0; } static int build_rdma_read(union t4_wr *wqe, struct ib_send_wr *wr, u8 *len16) { if (wr->num_sge > 1) return -EINVAL; if (wr->num_sge && wr->sg_list[0].length) { wqe->read.stag_src = cpu_to_be32(rdma_wr(wr)->rkey); wqe->read.to_src_hi = cpu_to_be32((u32)(rdma_wr(wr)->remote_addr >> 32)); wqe->read.to_src_lo = cpu_to_be32((u32)rdma_wr(wr)->remote_addr); wqe->read.stag_sink = cpu_to_be32(wr->sg_list[0].lkey); wqe->read.plen = cpu_to_be32(wr->sg_list[0].length); wqe->read.to_sink_hi = cpu_to_be32((u32)(wr->sg_list[0].addr >> 32)); wqe->read.to_sink_lo = cpu_to_be32((u32)(wr->sg_list[0].addr)); } else { wqe->read.stag_src = cpu_to_be32(2); wqe->read.to_src_hi = 0; wqe->read.to_src_lo = 0; wqe->read.stag_sink = cpu_to_be32(2); wqe->read.plen = 0; wqe->read.to_sink_hi = 0; wqe->read.to_sink_lo = 0; } wqe->read.r2 = 0; wqe->read.r5 = 0; *len16 = DIV_ROUND_UP(sizeof wqe->read, 16); return 0; } static int build_rdma_recv(struct c4iw_qp *qhp, union t4_recv_wr *wqe, struct ib_recv_wr *wr, u8 *len16) { int ret; ret = build_isgl((__be64 *)qhp->wq.rq.queue, (__be64 *)&qhp->wq.rq.queue[qhp->wq.rq.size], &wqe->recv.isgl, wr->sg_list, wr->num_sge, NULL); if (ret) return ret; *len16 = DIV_ROUND_UP(sizeof wqe->recv + wr->num_sge * sizeof(struct fw_ri_sge), 16); return 0; } static int build_inv_stag(union t4_wr *wqe, struct ib_send_wr *wr, u8 *len16) { wqe->inv.stag_inv = cpu_to_be32(wr->ex.invalidate_rkey); wqe->inv.r2 = 0; *len16 = DIV_ROUND_UP(sizeof wqe->inv, 16); return 0; } static void free_qp_work(struct work_struct *work) { struct c4iw_ucontext *ucontext; struct c4iw_qp *qhp; struct c4iw_dev *rhp; qhp = container_of(work, struct c4iw_qp, free_work); ucontext = qhp->ucontext; rhp = qhp->rhp; CTR3(KTR_IW_CXGBE, "%s qhp %p ucontext %p", __func__, qhp, ucontext); destroy_qp(&rhp->rdev, &qhp->wq, ucontext ? &ucontext->uctx : &rhp->rdev.uctx); if (ucontext) c4iw_put_ucontext(ucontext); kfree(qhp); } static void queue_qp_free(struct kref *kref) { struct c4iw_qp *qhp; qhp = container_of(kref, struct c4iw_qp, kref); CTR2(KTR_IW_CXGBE, "%s qhp %p", __func__, qhp); queue_work(qhp->rhp->rdev.free_workq, &qhp->free_work); } void c4iw_qp_add_ref(struct ib_qp *qp) { CTR2(KTR_IW_CXGBE, "%s ib_qp %p", __func__, qp); kref_get(&to_c4iw_qp(qp)->kref); } void c4iw_qp_rem_ref(struct ib_qp *qp) { CTR2(KTR_IW_CXGBE, "%s ib_qp %p", __func__, qp); kref_put(&to_c4iw_qp(qp)->kref, queue_qp_free); } static void complete_sq_drain_wr(struct c4iw_qp *qhp, struct ib_send_wr *wr) { struct t4_cqe cqe = {}; struct c4iw_cq *schp; unsigned long flag; struct t4_cq *cq; schp = to_c4iw_cq(qhp->ibqp.send_cq); cq = &schp->cq; PDBG("%s drain sq id %u\n", __func__, qhp->wq.sq.qid); cqe.u.drain_cookie = wr->wr_id; cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) | V_CQE_OPCODE(C4IW_DRAIN_OPCODE) | V_CQE_TYPE(1) | V_CQE_SWCQE(1) | V_CQE_QPID(qhp->wq.sq.qid)); spin_lock_irqsave(&schp->lock, flag); cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen)); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); spin_unlock_irqrestore(&schp->lock, flag); spin_lock_irqsave(&schp->comp_handler_lock, flag); (*schp->ibcq.comp_handler)(&schp->ibcq, schp->ibcq.cq_context); spin_unlock_irqrestore(&schp->comp_handler_lock, flag); } static void complete_rq_drain_wr(struct c4iw_qp *qhp, struct ib_recv_wr *wr) { struct t4_cqe cqe = {}; struct c4iw_cq *rchp; unsigned long flag; struct t4_cq *cq; rchp = to_c4iw_cq(qhp->ibqp.recv_cq); cq = &rchp->cq; PDBG("%s drain rq id %u\n", __func__, qhp->wq.sq.qid); cqe.u.drain_cookie = wr->wr_id; cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) | V_CQE_OPCODE(C4IW_DRAIN_OPCODE) | V_CQE_TYPE(0) | V_CQE_SWCQE(1) | V_CQE_QPID(qhp->wq.sq.qid)); spin_lock_irqsave(&rchp->lock, flag); cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen)); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); spin_unlock_irqrestore(&rchp->lock, flag); spin_lock_irqsave(&rchp->comp_handler_lock, flag); (*rchp->ibcq.comp_handler)(&rchp->ibcq, rchp->ibcq.cq_context); spin_unlock_irqrestore(&rchp->comp_handler_lock, flag); } static void build_tpte_memreg(struct fw_ri_fr_nsmr_tpte_wr *fr, struct ib_reg_wr *wr, struct c4iw_mr *mhp, u8 *len16) { __be64 *p = (__be64 *)fr->pbl; fr->r2 = cpu_to_be32(0); fr->stag = cpu_to_be32(mhp->ibmr.rkey); fr->tpte.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID | V_FW_RI_TPTE_STAGKEY((mhp->ibmr.rkey & M_FW_RI_TPTE_STAGKEY)) | V_FW_RI_TPTE_STAGSTATE(1) | V_FW_RI_TPTE_STAGTYPE(FW_RI_STAG_NSMR) | V_FW_RI_TPTE_PDID(mhp->attr.pdid)); fr->tpte.locread_to_qpid = cpu_to_be32( V_FW_RI_TPTE_PERM(c4iw_ib_to_tpt_access(wr->access)) | V_FW_RI_TPTE_ADDRTYPE(FW_RI_VA_BASED_TO) | V_FW_RI_TPTE_PS(ilog2(wr->mr->page_size) - 12)); fr->tpte.nosnoop_pbladdr = cpu_to_be32(V_FW_RI_TPTE_PBLADDR( PBL_OFF(&mhp->rhp->rdev, mhp->attr.pbl_addr)>>3)); fr->tpte.dca_mwbcnt_pstag = cpu_to_be32(0); fr->tpte.len_hi = cpu_to_be32(0); fr->tpte.len_lo = cpu_to_be32(mhp->ibmr.length); fr->tpte.va_hi = cpu_to_be32(mhp->ibmr.iova >> 32); fr->tpte.va_lo_fbo = cpu_to_be32(mhp->ibmr.iova & 0xffffffff); p[0] = cpu_to_be64((u64)mhp->mpl[0]); p[1] = cpu_to_be64((u64)mhp->mpl[1]); *len16 = DIV_ROUND_UP(sizeof(*fr), 16); } static int build_memreg(struct t4_sq *sq, union t4_wr *wqe, struct ib_reg_wr *wr, struct c4iw_mr *mhp, u8 *len16, bool dsgl_supported) { struct fw_ri_immd *imdp; __be64 *p; int i; int pbllen = roundup(mhp->mpl_len * sizeof(u64), 32); int rem; if (mhp->mpl_len > t4_max_fr_depth(use_dsgl && dsgl_supported)) return -EINVAL; wqe->fr.qpbinde_to_dcacpu = 0; wqe->fr.pgsz_shift = ilog2(wr->mr->page_size) - 12; wqe->fr.addr_type = FW_RI_VA_BASED_TO; wqe->fr.mem_perms = c4iw_ib_to_tpt_access(wr->access); wqe->fr.len_hi = 0; wqe->fr.len_lo = cpu_to_be32(mhp->ibmr.length); wqe->fr.stag = cpu_to_be32(wr->key); wqe->fr.va_hi = cpu_to_be32(mhp->ibmr.iova >> 32); wqe->fr.va_lo_fbo = cpu_to_be32(mhp->ibmr.iova & 0xffffffff); if (dsgl_supported && use_dsgl && (pbllen > max_fr_immd)) { struct fw_ri_dsgl *sglp; for (i = 0; i < mhp->mpl_len; i++) mhp->mpl[i] = (__force u64)cpu_to_be64((u64)mhp->mpl[i]); sglp = (struct fw_ri_dsgl *)(&wqe->fr + 1); sglp->op = FW_RI_DATA_DSGL; sglp->r1 = 0; sglp->nsge = cpu_to_be16(1); sglp->addr0 = cpu_to_be64(mhp->mpl_addr); sglp->len0 = cpu_to_be32(pbllen); *len16 = DIV_ROUND_UP(sizeof(wqe->fr) + sizeof(*sglp), 16); } else { imdp = (struct fw_ri_immd *)(&wqe->fr + 1); imdp->op = FW_RI_DATA_IMMD; imdp->r1 = 0; imdp->r2 = 0; imdp->immdlen = cpu_to_be32(pbllen); p = (__be64 *)(imdp + 1); rem = pbllen; for (i = 0; i < mhp->mpl_len; i++) { *p = cpu_to_be64((u64)mhp->mpl[i]); rem -= sizeof(*p); if (++p == (__be64 *)&sq->queue[sq->size]) p = (__be64 *)sq->queue; } BUG_ON(rem < 0); while (rem) { *p = 0; rem -= sizeof(*p); if (++p == (__be64 *)&sq->queue[sq->size]) p = (__be64 *)sq->queue; } *len16 = DIV_ROUND_UP(sizeof(wqe->fr) + sizeof(*imdp) + pbllen, 16); } return 0; } int c4iw_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, struct ib_send_wr **bad_wr) { int err = 0; u8 len16 = 0; enum fw_wr_opcodes fw_opcode = 0; enum fw_ri_wr_flags fw_flags; struct c4iw_qp *qhp; union t4_wr *wqe = NULL; u32 num_wrs; struct t4_swsqe *swsqe; unsigned long flag; u16 idx = 0; struct c4iw_rdev *rdev; qhp = to_c4iw_qp(ibqp); rdev = &qhp->rhp->rdev; spin_lock_irqsave(&qhp->lock, flag); if (t4_wq_in_error(&qhp->wq)) { spin_unlock_irqrestore(&qhp->lock, flag); complete_sq_drain_wr(qhp, wr); return err; } num_wrs = t4_sq_avail(&qhp->wq); if (num_wrs == 0) { spin_unlock_irqrestore(&qhp->lock, flag); *bad_wr = wr; return -ENOMEM; } while (wr) { if (num_wrs == 0) { err = -ENOMEM; *bad_wr = wr; break; } wqe = (union t4_wr *)((u8 *)qhp->wq.sq.queue + qhp->wq.sq.wq_pidx * T4_EQ_ENTRY_SIZE); fw_flags = 0; if (wr->send_flags & IB_SEND_SOLICITED) fw_flags |= FW_RI_SOLICITED_EVENT_FLAG; if (wr->send_flags & IB_SEND_SIGNALED || qhp->sq_sig_all) fw_flags |= FW_RI_COMPLETION_FLAG; swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx]; switch (wr->opcode) { case IB_WR_SEND_WITH_INV: case IB_WR_SEND: if (wr->send_flags & IB_SEND_FENCE) fw_flags |= FW_RI_READ_FENCE_FLAG; fw_opcode = FW_RI_SEND_WR; if (wr->opcode == IB_WR_SEND) swsqe->opcode = FW_RI_SEND; else swsqe->opcode = FW_RI_SEND_WITH_INV; err = build_rdma_send(&qhp->wq.sq, wqe, wr, &len16); break; case IB_WR_RDMA_WRITE: fw_opcode = FW_RI_RDMA_WRITE_WR; swsqe->opcode = FW_RI_RDMA_WRITE; err = build_rdma_write(&qhp->wq.sq, wqe, wr, &len16); break; case IB_WR_RDMA_READ: case IB_WR_RDMA_READ_WITH_INV: fw_opcode = FW_RI_RDMA_READ_WR; swsqe->opcode = FW_RI_READ_REQ; if (wr->opcode == IB_WR_RDMA_READ_WITH_INV) { c4iw_invalidate_mr(qhp->rhp, wr->sg_list[0].lkey); fw_flags = FW_RI_RDMA_READ_INVALIDATE; } else { fw_flags = 0; } err = build_rdma_read(wqe, wr, &len16); if (err) break; swsqe->read_len = wr->sg_list[0].length; if (!qhp->wq.sq.oldest_read) qhp->wq.sq.oldest_read = swsqe; break; case IB_WR_REG_MR: { struct c4iw_mr *mhp = to_c4iw_mr(reg_wr(wr)->mr); swsqe->opcode = FW_RI_FAST_REGISTER; if (rdev->adap->params.fr_nsmr_tpte_wr_support && !mhp->attr.state && mhp->mpl_len <= 2) { fw_opcode = FW_RI_FR_NSMR_TPTE_WR; build_tpte_memreg(&wqe->fr_tpte, reg_wr(wr), mhp, &len16); } else { fw_opcode = FW_RI_FR_NSMR_WR; err = build_memreg(&qhp->wq.sq, wqe, reg_wr(wr), mhp, &len16, rdev->adap->params.ulptx_memwrite_dsgl); if (err) break; } mhp->attr.state = 1; break; } case IB_WR_LOCAL_INV: if (wr->send_flags & IB_SEND_FENCE) fw_flags |= FW_RI_LOCAL_FENCE_FLAG; fw_opcode = FW_RI_INV_LSTAG_WR; swsqe->opcode = FW_RI_LOCAL_INV; err = build_inv_stag(wqe, wr, &len16); c4iw_invalidate_mr(qhp->rhp, wr->ex.invalidate_rkey); break; default: CTR2(KTR_IW_CXGBE, "%s post of type =%d TBD!", __func__, wr->opcode); err = -EINVAL; } if (err) { *bad_wr = wr; break; } swsqe->idx = qhp->wq.sq.pidx; swsqe->complete = 0; swsqe->signaled = (wr->send_flags & IB_SEND_SIGNALED) || qhp->sq_sig_all; swsqe->flushed = 0; swsqe->wr_id = wr->wr_id; init_wr_hdr(wqe, qhp->wq.sq.pidx, fw_opcode, fw_flags, len16); CTR5(KTR_IW_CXGBE, "%s cookie 0x%llx pidx 0x%x opcode 0x%x read_len %u", __func__, (unsigned long long)wr->wr_id, qhp->wq.sq.pidx, swsqe->opcode, swsqe->read_len); wr = wr->next; num_wrs--; t4_sq_produce(&qhp->wq, len16); idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); } t4_ring_sq_db(&qhp->wq, idx, wqe, rdev->adap->iwt.wc_en); spin_unlock_irqrestore(&qhp->lock, flag); return err; } int c4iw_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr, struct ib_recv_wr **bad_wr) { int err = 0; struct c4iw_qp *qhp; union t4_recv_wr *wqe = NULL; u32 num_wrs; u8 len16 = 0; unsigned long flag; u16 idx = 0; qhp = to_c4iw_qp(ibqp); spin_lock_irqsave(&qhp->lock, flag); if (t4_wq_in_error(&qhp->wq)) { spin_unlock_irqrestore(&qhp->lock, flag); complete_rq_drain_wr(qhp, wr); return err; } num_wrs = t4_rq_avail(&qhp->wq); if (num_wrs == 0) { spin_unlock_irqrestore(&qhp->lock, flag); *bad_wr = wr; return -ENOMEM; } while (wr) { if (wr->num_sge > T4_MAX_RECV_SGE) { err = -EINVAL; *bad_wr = wr; break; } wqe = (union t4_recv_wr *)((u8 *)qhp->wq.rq.queue + qhp->wq.rq.wq_pidx * T4_EQ_ENTRY_SIZE); if (num_wrs) err = build_rdma_recv(qhp, wqe, wr, &len16); else err = -ENOMEM; if (err) { *bad_wr = wr; break; } qhp->wq.rq.sw_rq[qhp->wq.rq.pidx].wr_id = wr->wr_id; wqe->recv.opcode = FW_RI_RECV_WR; wqe->recv.r1 = 0; wqe->recv.wrid = qhp->wq.rq.pidx; wqe->recv.r2[0] = 0; wqe->recv.r2[1] = 0; wqe->recv.r2[2] = 0; wqe->recv.len16 = len16; CTR3(KTR_IW_CXGBE, "%s cookie 0x%llx pidx %u", __func__, (unsigned long long) wr->wr_id, qhp->wq.rq.pidx); t4_rq_produce(&qhp->wq, len16); idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); wr = wr->next; num_wrs--; } t4_ring_rq_db(&qhp->wq, idx, wqe, qhp->rhp->rdev.adap->iwt.wc_en); spin_unlock_irqrestore(&qhp->lock, flag); return err; } static inline void build_term_codes(struct t4_cqe *err_cqe, u8 *layer_type, u8 *ecode) { int status; int tagged; int opcode; int rqtype; int send_inv; if (!err_cqe) { *layer_type = LAYER_RDMAP|DDP_LOCAL_CATA; *ecode = 0; return; } status = CQE_STATUS(err_cqe); opcode = CQE_OPCODE(err_cqe); rqtype = RQ_TYPE(err_cqe); send_inv = (opcode == FW_RI_SEND_WITH_INV) || (opcode == FW_RI_SEND_WITH_SE_INV); tagged = (opcode == FW_RI_RDMA_WRITE) || (rqtype && (opcode == FW_RI_READ_RESP)); switch (status) { case T4_ERR_STAG: if (send_inv) { *layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP; *ecode = RDMAP_CANT_INV_STAG; } else { *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; *ecode = RDMAP_INV_STAG; } break; case T4_ERR_PDID: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; if ((opcode == FW_RI_SEND_WITH_INV) || (opcode == FW_RI_SEND_WITH_SE_INV)) *ecode = RDMAP_CANT_INV_STAG; else *ecode = RDMAP_STAG_NOT_ASSOC; break; case T4_ERR_QPID: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; *ecode = RDMAP_STAG_NOT_ASSOC; break; case T4_ERR_ACCESS: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; *ecode = RDMAP_ACC_VIOL; break; case T4_ERR_WRAP: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; *ecode = RDMAP_TO_WRAP; break; case T4_ERR_BOUND: if (tagged) { *layer_type = LAYER_DDP|DDP_TAGGED_ERR; *ecode = DDPT_BASE_BOUNDS; } else { *layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT; *ecode = RDMAP_BASE_BOUNDS; } break; case T4_ERR_INVALIDATE_SHARED_MR: case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP; *ecode = RDMAP_CANT_INV_STAG; break; case T4_ERR_ECC: case T4_ERR_ECC_PSTAG: case T4_ERR_INTERNAL_ERR: *layer_type = LAYER_RDMAP|RDMAP_LOCAL_CATA; *ecode = 0; break; case T4_ERR_OUT_OF_RQE: *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_INV_MSN_NOBUF; break; case T4_ERR_PBL_ADDR_BOUND: *layer_type = LAYER_DDP|DDP_TAGGED_ERR; *ecode = DDPT_BASE_BOUNDS; break; case T4_ERR_CRC: *layer_type = LAYER_MPA|DDP_LLP; *ecode = MPA_CRC_ERR; break; case T4_ERR_MARKER: *layer_type = LAYER_MPA|DDP_LLP; *ecode = MPA_MARKER_ERR; break; case T4_ERR_PDU_LEN_ERR: *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_MSG_TOOBIG; break; case T4_ERR_DDP_VERSION: if (tagged) { *layer_type = LAYER_DDP|DDP_TAGGED_ERR; *ecode = DDPT_INV_VERS; } else { *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_INV_VERS; } break; case T4_ERR_RDMA_VERSION: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP; *ecode = RDMAP_INV_VERS; break; case T4_ERR_OPCODE: *layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP; *ecode = RDMAP_INV_OPCODE; break; case T4_ERR_DDP_QUEUE_NUM: *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_INV_QN; break; case T4_ERR_MSN: case T4_ERR_MSN_GAP: case T4_ERR_MSN_RANGE: case T4_ERR_IRD_OVERFLOW: *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_INV_MSN_RANGE; break; case T4_ERR_TBIT: *layer_type = LAYER_DDP|DDP_LOCAL_CATA; *ecode = 0; break; case T4_ERR_MO: *layer_type = LAYER_DDP|DDP_UNTAGGED_ERR; *ecode = DDPU_INV_MO; break; default: *layer_type = LAYER_RDMAP|DDP_LOCAL_CATA; *ecode = 0; break; } } static void post_terminate(struct c4iw_qp *qhp, struct t4_cqe *err_cqe, gfp_t gfp) { int ret; struct fw_ri_wr *wqe; struct terminate_message *term; struct wrqe *wr; struct socket *so = qhp->ep->com.so; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; CTR4(KTR_IW_CXGBE, "%s qhp %p qid 0x%x tid %u", __func__, qhp, qhp->wq.sq.qid, qhp->ep->hwtid); wr = alloc_wrqe(sizeof(*wqe), toep->ofld_txq); if (wr == NULL) return; wqe = wrtod(wr); memset(wqe, 0, sizeof *wqe); wqe->op_compl = cpu_to_be32(V_FW_WR_OP(FW_RI_WR)); wqe->flowid_len16 = cpu_to_be32( V_FW_WR_FLOWID(qhp->ep->hwtid) | V_FW_WR_LEN16(DIV_ROUND_UP(sizeof *wqe, 16))); wqe->u.terminate.type = FW_RI_TYPE_TERMINATE; wqe->u.terminate.immdlen = cpu_to_be32(sizeof *term); term = (struct terminate_message *)wqe->u.terminate.termmsg; if (qhp->attr.layer_etype == (LAYER_MPA|DDP_LLP)) { term->layer_etype = qhp->attr.layer_etype; term->ecode = qhp->attr.ecode; } else build_term_codes(err_cqe, &term->layer_etype, &term->ecode); ret = creds(toep, inp, sizeof(*wqe)); if (ret) { free_wrqe(wr); return; } t4_wrq_tx(qhp->rhp->rdev.adap, wr); } /* Assumes qhp lock is held. */ static void __flush_qp(struct c4iw_qp *qhp, struct c4iw_cq *rchp, struct c4iw_cq *schp) { int count; int rq_flushed, sq_flushed; unsigned long flag; CTR4(KTR_IW_CXGBE, "%s qhp %p rchp %p schp %p", __func__, qhp, rchp, schp); /* locking hierarchy: cq lock first, then qp lock. */ spin_lock_irqsave(&rchp->lock, flag); spin_lock(&qhp->lock); if (qhp->wq.flushed) { spin_unlock(&qhp->lock); spin_unlock_irqrestore(&rchp->lock, flag); return; } qhp->wq.flushed = 1; c4iw_flush_hw_cq(rchp); c4iw_count_rcqes(&rchp->cq, &qhp->wq, &count); rq_flushed = c4iw_flush_rq(&qhp->wq, &rchp->cq, count); spin_unlock(&qhp->lock); spin_unlock_irqrestore(&rchp->lock, flag); /* locking hierarchy: cq lock first, then qp lock. */ spin_lock_irqsave(&schp->lock, flag); spin_lock(&qhp->lock); if (schp != rchp) c4iw_flush_hw_cq(schp); sq_flushed = c4iw_flush_sq(qhp); spin_unlock(&qhp->lock); spin_unlock_irqrestore(&schp->lock, flag); if (schp == rchp) { if (t4_clear_cq_armed(&rchp->cq) && (rq_flushed || sq_flushed)) { spin_lock_irqsave(&rchp->comp_handler_lock, flag); (*rchp->ibcq.comp_handler)(&rchp->ibcq, rchp->ibcq.cq_context); spin_unlock_irqrestore(&rchp->comp_handler_lock, flag); } } else { if (t4_clear_cq_armed(&rchp->cq) && rq_flushed) { spin_lock_irqsave(&rchp->comp_handler_lock, flag); (*rchp->ibcq.comp_handler)(&rchp->ibcq, rchp->ibcq.cq_context); spin_unlock_irqrestore(&rchp->comp_handler_lock, flag); } if (t4_clear_cq_armed(&schp->cq) && sq_flushed) { spin_lock_irqsave(&schp->comp_handler_lock, flag); (*schp->ibcq.comp_handler)(&schp->ibcq, schp->ibcq.cq_context); spin_unlock_irqrestore(&schp->comp_handler_lock, flag); } } } static void flush_qp(struct c4iw_qp *qhp) { struct c4iw_cq *rchp, *schp; unsigned long flag; rchp = to_c4iw_cq(qhp->ibqp.recv_cq); schp = to_c4iw_cq(qhp->ibqp.send_cq); t4_set_wq_in_error(&qhp->wq); if (qhp->ibqp.uobject) { t4_set_cq_in_error(&rchp->cq); spin_lock_irqsave(&rchp->comp_handler_lock, flag); (*rchp->ibcq.comp_handler)(&rchp->ibcq, rchp->ibcq.cq_context); spin_unlock_irqrestore(&rchp->comp_handler_lock, flag); if (schp != rchp) { t4_set_cq_in_error(&schp->cq); spin_lock_irqsave(&schp->comp_handler_lock, flag); (*schp->ibcq.comp_handler)(&schp->ibcq, schp->ibcq.cq_context); spin_unlock_irqrestore(&schp->comp_handler_lock, flag); } return; } __flush_qp(qhp, rchp, schp); } static int rdma_fini(struct c4iw_dev *rhp, struct c4iw_qp *qhp, struct c4iw_ep *ep) { struct c4iw_rdev *rdev = &rhp->rdev; struct adapter *sc = rdev->adap; struct fw_ri_wr *wqe; int ret; struct wrqe *wr; struct socket *so = ep->com.so; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; KASSERT(rhp == qhp->rhp && ep == qhp->ep, ("%s: EDOOFUS", __func__)); CTR5(KTR_IW_CXGBE, "%s qhp %p qid 0x%x ep %p tid %u", __func__, qhp, qhp->wq.sq.qid, ep, ep->hwtid); wr = alloc_wrqe(sizeof(*wqe), toep->ofld_txq); if (wr == NULL) return (0); wqe = wrtod(wr); memset(wqe, 0, sizeof *wqe); wqe->op_compl = cpu_to_be32(V_FW_WR_OP(FW_RI_WR) | F_FW_WR_COMPL); wqe->flowid_len16 = cpu_to_be32(V_FW_WR_FLOWID(ep->hwtid) | V_FW_WR_LEN16(DIV_ROUND_UP(sizeof *wqe, 16))); wqe->cookie = (unsigned long) &ep->com.wr_wait; wqe->u.fini.type = FW_RI_TYPE_FINI; c4iw_init_wr_wait(&ep->com.wr_wait); ret = creds(toep, inp, sizeof(*wqe)); if (ret) { free_wrqe(wr); return ret; } t4_wrq_tx(sc, wr); ret = c4iw_wait_for_reply(rdev, &ep->com.wr_wait, ep->hwtid, qhp->wq.sq.qid, ep->com.so, __func__); return ret; } static void build_rtr_msg(u8 p2p_type, struct fw_ri_init *init) { CTR2(KTR_IW_CXGBE, "%s p2p_type = %d", __func__, p2p_type); memset(&init->u, 0, sizeof init->u); switch (p2p_type) { case FW_RI_INIT_P2PTYPE_RDMA_WRITE: init->u.write.opcode = FW_RI_RDMA_WRITE_WR; init->u.write.stag_sink = cpu_to_be32(1); init->u.write.to_sink = cpu_to_be64(1); init->u.write.u.immd_src[0].op = FW_RI_DATA_IMMD; init->u.write.len16 = DIV_ROUND_UP(sizeof init->u.write + sizeof(struct fw_ri_immd), 16); break; case FW_RI_INIT_P2PTYPE_READ_REQ: init->u.write.opcode = FW_RI_RDMA_READ_WR; init->u.read.stag_src = cpu_to_be32(1); init->u.read.to_src_lo = cpu_to_be32(1); init->u.read.stag_sink = cpu_to_be32(1); init->u.read.to_sink_lo = cpu_to_be32(1); init->u.read.len16 = DIV_ROUND_UP(sizeof init->u.read, 16); break; } } static int creds(struct toepcb *toep, struct inpcb *inp, size_t wrsize) { struct ofld_tx_sdesc *txsd; CTR3(KTR_IW_CXGBE, "%s:creB %p %u", __func__, toep , wrsize); INP_WLOCK(inp); if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) != 0) { INP_WUNLOCK(inp); return (EINVAL); } txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = howmany(wrsize, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; INP_WUNLOCK(inp); CTR5(KTR_IW_CXGBE, "%s:creE %p %u %u %u", __func__, toep , txsd->tx_credits, toep->tx_credits, toep->txsd_pidx); return (0); } static int rdma_init(struct c4iw_dev *rhp, struct c4iw_qp *qhp) { struct fw_ri_wr *wqe; int ret; struct wrqe *wr; struct c4iw_ep *ep = qhp->ep; struct c4iw_rdev *rdev = &qhp->rhp->rdev; struct adapter *sc = rdev->adap; struct socket *so = ep->com.so; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; CTR5(KTR_IW_CXGBE, "%s qhp %p qid 0x%x ep %p tid %u", __func__, qhp, qhp->wq.sq.qid, ep, ep->hwtid); wr = alloc_wrqe(sizeof(*wqe), toep->ofld_txq); if (wr == NULL) return (0); wqe = wrtod(wr); ret = alloc_ird(rhp, qhp->attr.max_ird); if (ret) { qhp->attr.max_ird = 0; free_wrqe(wr); return ret; } memset(wqe, 0, sizeof *wqe); wqe->op_compl = cpu_to_be32( V_FW_WR_OP(FW_RI_WR) | F_FW_WR_COMPL); wqe->flowid_len16 = cpu_to_be32(V_FW_WR_FLOWID(ep->hwtid) | V_FW_WR_LEN16(DIV_ROUND_UP(sizeof *wqe, 16))); wqe->cookie = (unsigned long) &ep->com.wr_wait; wqe->u.init.type = FW_RI_TYPE_INIT; wqe->u.init.mpareqbit_p2ptype = V_FW_RI_WR_MPAREQBIT(qhp->attr.mpa_attr.initiator) | V_FW_RI_WR_P2PTYPE(qhp->attr.mpa_attr.p2p_type); wqe->u.init.mpa_attrs = FW_RI_MPA_IETF_ENABLE; if (qhp->attr.mpa_attr.recv_marker_enabled) wqe->u.init.mpa_attrs |= FW_RI_MPA_RX_MARKER_ENABLE; if (qhp->attr.mpa_attr.xmit_marker_enabled) wqe->u.init.mpa_attrs |= FW_RI_MPA_TX_MARKER_ENABLE; if (qhp->attr.mpa_attr.crc_enabled) wqe->u.init.mpa_attrs |= FW_RI_MPA_CRC_ENABLE; wqe->u.init.qp_caps = FW_RI_QP_RDMA_READ_ENABLE | FW_RI_QP_RDMA_WRITE_ENABLE | FW_RI_QP_BIND_ENABLE; if (!qhp->ibqp.uobject) wqe->u.init.qp_caps |= FW_RI_QP_FAST_REGISTER_ENABLE | FW_RI_QP_STAG0_ENABLE; wqe->u.init.nrqe = cpu_to_be16(t4_rqes_posted(&qhp->wq)); wqe->u.init.pdid = cpu_to_be32(qhp->attr.pd); wqe->u.init.qpid = cpu_to_be32(qhp->wq.sq.qid); wqe->u.init.sq_eqid = cpu_to_be32(qhp->wq.sq.qid); wqe->u.init.rq_eqid = cpu_to_be32(qhp->wq.rq.qid); wqe->u.init.scqid = cpu_to_be32(qhp->attr.scq); wqe->u.init.rcqid = cpu_to_be32(qhp->attr.rcq); wqe->u.init.ord_max = cpu_to_be32(qhp->attr.max_ord); wqe->u.init.ird_max = cpu_to_be32(qhp->attr.max_ird); wqe->u.init.iss = cpu_to_be32(ep->snd_seq); wqe->u.init.irs = cpu_to_be32(ep->rcv_seq); wqe->u.init.hwrqsize = cpu_to_be32(qhp->wq.rq.rqt_size); wqe->u.init.hwrqaddr = cpu_to_be32(qhp->wq.rq.rqt_hwaddr - sc->vres.rq.start); if (qhp->attr.mpa_attr.initiator) build_rtr_msg(qhp->attr.mpa_attr.p2p_type, &wqe->u.init); c4iw_init_wr_wait(&ep->com.wr_wait); ret = creds(toep, inp, sizeof(*wqe)); if (ret) { free_wrqe(wr); free_ird(rhp, qhp->attr.max_ird); return ret; } t4_wrq_tx(sc, wr); ret = c4iw_wait_for_reply(rdev, &ep->com.wr_wait, ep->hwtid, qhp->wq.sq.qid, ep->com.so, __func__); - toep->ulp_mode = ULP_MODE_RDMA; + toep->params.ulp_mode = ULP_MODE_RDMA; free_ird(rhp, qhp->attr.max_ird); return ret; } int c4iw_modify_qp(struct c4iw_dev *rhp, struct c4iw_qp *qhp, enum c4iw_qp_attr_mask mask, struct c4iw_qp_attributes *attrs, int internal) { int ret = 0; struct c4iw_qp_attributes newattr = qhp->attr; int disconnect = 0; int terminate = 0; int abort = 0; int free = 0; struct c4iw_ep *ep = NULL; CTR5(KTR_IW_CXGBE, "%s qhp %p sqid 0x%x rqid 0x%x ep %p", __func__, qhp, qhp->wq.sq.qid, qhp->wq.rq.qid, qhp->ep); CTR3(KTR_IW_CXGBE, "%s state %d -> %d", __func__, qhp->attr.state, (mask & C4IW_QP_ATTR_NEXT_STATE) ? attrs->next_state : -1); mutex_lock(&qhp->mutex); /* Process attr changes if in IDLE */ if (mask & C4IW_QP_ATTR_VALID_MODIFY) { if (qhp->attr.state != C4IW_QP_STATE_IDLE) { ret = -EIO; goto out; } if (mask & C4IW_QP_ATTR_ENABLE_RDMA_READ) newattr.enable_rdma_read = attrs->enable_rdma_read; if (mask & C4IW_QP_ATTR_ENABLE_RDMA_WRITE) newattr.enable_rdma_write = attrs->enable_rdma_write; if (mask & C4IW_QP_ATTR_ENABLE_RDMA_BIND) newattr.enable_bind = attrs->enable_bind; if (mask & C4IW_QP_ATTR_MAX_ORD) { if (attrs->max_ord > c4iw_max_read_depth) { ret = -EINVAL; goto out; } newattr.max_ord = attrs->max_ord; } if (mask & C4IW_QP_ATTR_MAX_IRD) { if (attrs->max_ird > cur_max_read_depth(rhp)) { ret = -EINVAL; goto out; } newattr.max_ird = attrs->max_ird; } qhp->attr = newattr; } if (!(mask & C4IW_QP_ATTR_NEXT_STATE)) goto out; if (qhp->attr.state == attrs->next_state) goto out; /* Return EINPROGRESS if QP is already in transition state. * Eg: CLOSING->IDLE transition or *->ERROR transition. * This can happen while connection is switching(due to rdma_fini) * from iWARP/RDDP to TOE mode and any inflight RDMA RX data will * reach TOE driver -> TCP stack -> iWARP driver. In this way * iWARP driver keep receiving inflight RDMA RX data until socket * is closed or aborted. And if iWARP CM is in FPDU sate, then * it tries to put QP in TERM state and disconnects endpoint. * But as QP is already in transition state, this event is ignored. */ if ((qhp->attr.state >= C4IW_QP_STATE_ERROR) && (attrs->next_state == C4IW_QP_STATE_TERMINATE)) { ret = -EINPROGRESS; goto out; } switch (qhp->attr.state) { case C4IW_QP_STATE_IDLE: switch (attrs->next_state) { case C4IW_QP_STATE_RTS: if (!(mask & C4IW_QP_ATTR_LLP_STREAM_HANDLE)) { ret = -EINVAL; goto out; } if (!(mask & C4IW_QP_ATTR_MPA_ATTR)) { ret = -EINVAL; goto out; } qhp->attr.mpa_attr = attrs->mpa_attr; qhp->attr.llp_stream_handle = attrs->llp_stream_handle; qhp->ep = qhp->attr.llp_stream_handle; set_state(qhp, C4IW_QP_STATE_RTS); /* * Ref the endpoint here and deref when we * disassociate the endpoint from the QP. This * happens in CLOSING->IDLE transition or *->ERROR * transition. */ c4iw_get_ep(&qhp->ep->com); ret = rdma_init(rhp, qhp); if (ret) goto err; break; case C4IW_QP_STATE_ERROR: set_state(qhp, C4IW_QP_STATE_ERROR); flush_qp(qhp); break; default: ret = -EINVAL; goto out; } break; case C4IW_QP_STATE_RTS: switch (attrs->next_state) { case C4IW_QP_STATE_CLOSING: BUG_ON(atomic_read(&qhp->ep->com.kref.refcount) < 2); t4_set_wq_in_error(&qhp->wq); set_state(qhp, C4IW_QP_STATE_CLOSING); ep = qhp->ep; if (!internal) { abort = 0; disconnect = 1; c4iw_get_ep(&qhp->ep->com); } ret = rdma_fini(rhp, qhp, ep); if (ret) goto err; break; case C4IW_QP_STATE_TERMINATE: t4_set_wq_in_error(&qhp->wq); set_state(qhp, C4IW_QP_STATE_TERMINATE); qhp->attr.layer_etype = attrs->layer_etype; qhp->attr.ecode = attrs->ecode; ep = qhp->ep; if (!internal) { c4iw_get_ep(&qhp->ep->com); terminate = 1; disconnect = 1; } else { terminate = qhp->attr.send_term; ret = rdma_fini(rhp, qhp, ep); if (ret) goto err; } break; case C4IW_QP_STATE_ERROR: t4_set_wq_in_error(&qhp->wq); set_state(qhp, C4IW_QP_STATE_ERROR); if (!internal) { abort = 1; disconnect = 1; ep = qhp->ep; c4iw_get_ep(&qhp->ep->com); } goto err; break; default: ret = -EINVAL; goto out; } break; case C4IW_QP_STATE_CLOSING: /* * Allow kernel users to move to ERROR for qp draining. */ if (!internal && (qhp->ibqp.uobject || attrs->next_state != C4IW_QP_STATE_ERROR)) { ret = -EINVAL; goto out; } switch (attrs->next_state) { case C4IW_QP_STATE_IDLE: flush_qp(qhp); set_state(qhp, C4IW_QP_STATE_IDLE); qhp->attr.llp_stream_handle = NULL; c4iw_put_ep(&qhp->ep->com); qhp->ep = NULL; wake_up(&qhp->wait); break; case C4IW_QP_STATE_ERROR: goto err; default: ret = -EINVAL; goto err; } break; case C4IW_QP_STATE_ERROR: if (attrs->next_state != C4IW_QP_STATE_IDLE) { ret = -EINVAL; goto out; } if (!t4_sq_empty(&qhp->wq) || !t4_rq_empty(&qhp->wq)) { ret = -EINVAL; goto out; } set_state(qhp, C4IW_QP_STATE_IDLE); break; case C4IW_QP_STATE_TERMINATE: if (!internal) { ret = -EINVAL; goto out; } goto err; break; default: printf("%s in a bad state %d\n", __func__, qhp->attr.state); ret = -EINVAL; goto err; break; } goto out; err: CTR3(KTR_IW_CXGBE, "%s disassociating ep %p qpid 0x%x", __func__, qhp->ep, qhp->wq.sq.qid); /* disassociate the LLP connection */ qhp->attr.llp_stream_handle = NULL; if (!ep) ep = qhp->ep; qhp->ep = NULL; set_state(qhp, C4IW_QP_STATE_ERROR); free = 1; abort = 1; BUG_ON(!ep); flush_qp(qhp); wake_up(&qhp->wait); out: mutex_unlock(&qhp->mutex); if (terminate) post_terminate(qhp, NULL, internal ? GFP_ATOMIC : GFP_KERNEL); /* * If disconnect is 1, then we need to initiate a disconnect * on the EP. This can be a normal close (RTS->CLOSING) or * an abnormal close (RTS/CLOSING->ERROR). */ if (disconnect) { __c4iw_ep_disconnect(ep, abort, internal ? GFP_ATOMIC : GFP_KERNEL); c4iw_put_ep(&ep->com); } /* * If free is 1, then we've disassociated the EP from the QP * and we need to dereference the EP. */ if (free) c4iw_put_ep(&ep->com); CTR2(KTR_IW_CXGBE, "%s exit state %d", __func__, qhp->attr.state); return ret; } int c4iw_destroy_qp(struct ib_qp *ib_qp) { struct c4iw_dev *rhp; struct c4iw_qp *qhp; struct c4iw_qp_attributes attrs; CTR2(KTR_IW_CXGBE, "%s ib_qp %p", __func__, ib_qp); qhp = to_c4iw_qp(ib_qp); rhp = qhp->rhp; attrs.next_state = C4IW_QP_STATE_ERROR; if (qhp->attr.state == C4IW_QP_STATE_TERMINATE) c4iw_modify_qp(rhp, qhp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); else c4iw_modify_qp(rhp, qhp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 0); wait_event(qhp->wait, !qhp->ep); remove_handle(rhp, &rhp->qpidr, qhp->wq.sq.qid); free_ird(rhp, qhp->attr.max_ird); c4iw_qp_rem_ref(ib_qp); CTR3(KTR_IW_CXGBE, "%s ib_qp %p qpid 0x%0x", __func__, ib_qp, qhp->wq.sq.qid); return 0; } struct ib_qp * c4iw_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *attrs, struct ib_udata *udata) { struct c4iw_dev *rhp; struct c4iw_qp *qhp; struct c4iw_pd *php; struct c4iw_cq *schp; struct c4iw_cq *rchp; struct c4iw_create_qp_resp uresp; unsigned int sqsize, rqsize; struct c4iw_ucontext *ucontext; int ret; struct c4iw_mm_entry *sq_key_mm = NULL, *rq_key_mm = NULL; struct c4iw_mm_entry *sq_db_key_mm = NULL, *rq_db_key_mm = NULL; CTR2(KTR_IW_CXGBE, "%s ib_pd %p", __func__, pd); if (attrs->qp_type != IB_QPT_RC) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; schp = get_chp(rhp, ((struct c4iw_cq *)attrs->send_cq)->cq.cqid); rchp = get_chp(rhp, ((struct c4iw_cq *)attrs->recv_cq)->cq.cqid); if (!schp || !rchp) return ERR_PTR(-EINVAL); if (attrs->cap.max_inline_data > T4_MAX_SEND_INLINE) return ERR_PTR(-EINVAL); if (attrs->cap.max_recv_wr > rhp->rdev.hw_queue.t4_max_rq_size) return ERR_PTR(-E2BIG); rqsize = attrs->cap.max_recv_wr + 1; if (rqsize < 8) rqsize = 8; if (attrs->cap.max_send_wr > rhp->rdev.hw_queue.t4_max_sq_size) return ERR_PTR(-E2BIG); sqsize = attrs->cap.max_send_wr + 1; if (sqsize < 8) sqsize = 8; ucontext = pd->uobject ? to_c4iw_ucontext(pd->uobject->context) : NULL; qhp = kzalloc(sizeof(*qhp), GFP_KERNEL); if (!qhp) return ERR_PTR(-ENOMEM); qhp->wq.sq.size = sqsize; qhp->wq.sq.memsize = (sqsize + rhp->rdev.hw_queue.t4_eq_status_entries) * sizeof(*qhp->wq.sq.queue) + 16 * sizeof(__be64); qhp->wq.sq.flush_cidx = -1; qhp->wq.rq.size = rqsize; qhp->wq.rq.memsize = (rqsize + rhp->rdev.hw_queue.t4_eq_status_entries) * sizeof(*qhp->wq.rq.queue); if (ucontext) { qhp->wq.sq.memsize = roundup(qhp->wq.sq.memsize, PAGE_SIZE); qhp->wq.rq.memsize = roundup(qhp->wq.rq.memsize, PAGE_SIZE); } CTR5(KTR_IW_CXGBE, "%s sqsize %u sqmemsize %zu rqsize %u rqmemsize %zu", __func__, sqsize, qhp->wq.sq.memsize, rqsize, qhp->wq.rq.memsize); ret = create_qp(&rhp->rdev, &qhp->wq, &schp->cq, &rchp->cq, ucontext ? &ucontext->uctx : &rhp->rdev.uctx); if (ret) goto err1; attrs->cap.max_recv_wr = rqsize - 1; attrs->cap.max_send_wr = sqsize - 1; attrs->cap.max_inline_data = T4_MAX_SEND_INLINE; qhp->rhp = rhp; qhp->attr.pd = php->pdid; qhp->attr.scq = ((struct c4iw_cq *) attrs->send_cq)->cq.cqid; qhp->attr.rcq = ((struct c4iw_cq *) attrs->recv_cq)->cq.cqid; qhp->attr.sq_num_entries = attrs->cap.max_send_wr; qhp->attr.rq_num_entries = attrs->cap.max_recv_wr; qhp->attr.sq_max_sges = attrs->cap.max_send_sge; qhp->attr.sq_max_sges_rdma_write = attrs->cap.max_send_sge; qhp->attr.rq_max_sges = attrs->cap.max_recv_sge; qhp->attr.state = C4IW_QP_STATE_IDLE; qhp->attr.next_state = C4IW_QP_STATE_IDLE; qhp->attr.enable_rdma_read = 1; qhp->attr.enable_rdma_write = 1; qhp->attr.enable_bind = 1; qhp->attr.max_ord = 0; qhp->attr.max_ird = 0; qhp->sq_sig_all = attrs->sq_sig_type == IB_SIGNAL_ALL_WR; spin_lock_init(&qhp->lock); mutex_init(&qhp->mutex); init_waitqueue_head(&qhp->wait); kref_init(&qhp->kref); INIT_WORK(&qhp->free_work, free_qp_work); ret = insert_handle(rhp, &rhp->qpidr, qhp, qhp->wq.sq.qid); if (ret) goto err2; if (udata) { sq_key_mm = kmalloc(sizeof(*sq_key_mm), GFP_KERNEL); if (!sq_key_mm) { ret = -ENOMEM; goto err3; } rq_key_mm = kmalloc(sizeof(*rq_key_mm), GFP_KERNEL); if (!rq_key_mm) { ret = -ENOMEM; goto err4; } sq_db_key_mm = kmalloc(sizeof(*sq_db_key_mm), GFP_KERNEL); if (!sq_db_key_mm) { ret = -ENOMEM; goto err5; } rq_db_key_mm = kmalloc(sizeof(*rq_db_key_mm), GFP_KERNEL); if (!rq_db_key_mm) { ret = -ENOMEM; goto err6; } uresp.flags = 0; uresp.qid_mask = rhp->rdev.qpmask; uresp.sqid = qhp->wq.sq.qid; uresp.sq_size = qhp->wq.sq.size; uresp.sq_memsize = qhp->wq.sq.memsize; uresp.rqid = qhp->wq.rq.qid; uresp.rq_size = qhp->wq.rq.size; uresp.rq_memsize = qhp->wq.rq.memsize; spin_lock(&ucontext->mmap_lock); uresp.ma_sync_key = 0; uresp.sq_key = ucontext->key; ucontext->key += PAGE_SIZE; uresp.rq_key = ucontext->key; ucontext->key += PAGE_SIZE; uresp.sq_db_gts_key = ucontext->key; ucontext->key += PAGE_SIZE; uresp.rq_db_gts_key = ucontext->key; ucontext->key += PAGE_SIZE; spin_unlock(&ucontext->mmap_lock); ret = ib_copy_to_udata(udata, &uresp, sizeof uresp); if (ret) goto err7; sq_key_mm->key = uresp.sq_key; sq_key_mm->addr = qhp->wq.sq.phys_addr; sq_key_mm->len = PAGE_ALIGN(qhp->wq.sq.memsize); CTR4(KTR_IW_CXGBE, "%s sq_key_mm %x, %x, %d", __func__, sq_key_mm->key, sq_key_mm->addr, sq_key_mm->len); insert_mmap(ucontext, sq_key_mm); rq_key_mm->key = uresp.rq_key; rq_key_mm->addr = qhp->wq.rq.phys_addr; rq_key_mm->len = PAGE_ALIGN(qhp->wq.rq.memsize); CTR4(KTR_IW_CXGBE, "%s rq_key_mm %x, %x, %d", __func__, rq_key_mm->key, rq_key_mm->addr, rq_key_mm->len); insert_mmap(ucontext, rq_key_mm); sq_db_key_mm->key = uresp.sq_db_gts_key; sq_db_key_mm->addr = (u64)qhp->wq.sq.bar2_pa; sq_db_key_mm->len = PAGE_SIZE; CTR4(KTR_IW_CXGBE, "%s sq_db_key_mm %x, %x, %d", __func__, sq_db_key_mm->key, sq_db_key_mm->addr, sq_db_key_mm->len); insert_mmap(ucontext, sq_db_key_mm); rq_db_key_mm->key = uresp.rq_db_gts_key; rq_db_key_mm->addr = (u64)qhp->wq.rq.bar2_pa; rq_db_key_mm->len = PAGE_SIZE; CTR4(KTR_IW_CXGBE, "%s rq_db_key_mm %x, %x, %d", __func__, rq_db_key_mm->key, rq_db_key_mm->addr, rq_db_key_mm->len); insert_mmap(ucontext, rq_db_key_mm); c4iw_get_ucontext(ucontext); qhp->ucontext = ucontext; } qhp->ibqp.qp_num = qhp->wq.sq.qid; init_timer(&(qhp->timer)); CTR5(KTR_IW_CXGBE, "%s sq id %u size %u memsize %zu num_entries %u", __func__, qhp->wq.sq.qid, qhp->wq.sq.size, qhp->wq.sq.memsize, attrs->cap.max_send_wr); CTR5(KTR_IW_CXGBE, "%s rq id %u size %u memsize %zu num_entries %u", __func__, qhp->wq.rq.qid, qhp->wq.rq.size, qhp->wq.rq.memsize, attrs->cap.max_recv_wr); return &qhp->ibqp; err7: kfree(rq_db_key_mm); err6: kfree(sq_db_key_mm); err5: kfree(rq_key_mm); err4: kfree(sq_key_mm); err3: remove_handle(rhp, &rhp->qpidr, qhp->wq.sq.qid); err2: destroy_qp(&rhp->rdev, &qhp->wq, ucontext ? &ucontext->uctx : &rhp->rdev.uctx); err1: kfree(qhp); return ERR_PTR(ret); } int c4iw_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { struct c4iw_dev *rhp; struct c4iw_qp *qhp; enum c4iw_qp_attr_mask mask = 0; struct c4iw_qp_attributes attrs; CTR2(KTR_IW_CXGBE, "%s ib_qp %p", __func__, ibqp); /* iwarp does not support the RTR state */ if ((attr_mask & IB_QP_STATE) && (attr->qp_state == IB_QPS_RTR)) attr_mask &= ~IB_QP_STATE; /* Make sure we still have something left to do */ if (!attr_mask) return 0; memset(&attrs, 0, sizeof attrs); qhp = to_c4iw_qp(ibqp); rhp = qhp->rhp; attrs.next_state = c4iw_convert_state(attr->qp_state); attrs.enable_rdma_read = (attr->qp_access_flags & IB_ACCESS_REMOTE_READ) ? 1 : 0; attrs.enable_rdma_write = (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE) ? 1 : 0; attrs.enable_bind = (attr->qp_access_flags & IB_ACCESS_MW_BIND) ? 1 : 0; mask |= (attr_mask & IB_QP_STATE) ? C4IW_QP_ATTR_NEXT_STATE : 0; mask |= (attr_mask & IB_QP_ACCESS_FLAGS) ? (C4IW_QP_ATTR_ENABLE_RDMA_READ | C4IW_QP_ATTR_ENABLE_RDMA_WRITE | C4IW_QP_ATTR_ENABLE_RDMA_BIND) : 0; return c4iw_modify_qp(rhp, qhp, mask, &attrs, 0); } struct ib_qp *c4iw_get_qp(struct ib_device *dev, int qpn) { CTR3(KTR_IW_CXGBE, "%s ib_dev %p qpn 0x%x", __func__, dev, qpn); return (struct ib_qp *)get_qhp(to_c4iw_dev(dev), qpn); } int c4iw_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int attr_mask, struct ib_qp_init_attr *init_attr) { struct c4iw_qp *qhp = to_c4iw_qp(ibqp); memset(attr, 0, sizeof *attr); memset(init_attr, 0, sizeof *init_attr); attr->qp_state = to_ib_qp_state(qhp->attr.state); init_attr->cap.max_send_wr = qhp->attr.sq_num_entries; init_attr->cap.max_recv_wr = qhp->attr.rq_num_entries; init_attr->cap.max_send_sge = qhp->attr.sq_max_sges; init_attr->cap.max_recv_sge = qhp->attr.sq_max_sges; init_attr->cap.max_inline_data = T4_MAX_SEND_INLINE; init_attr->sq_sig_type = qhp->sq_sig_all ? IB_SIGNAL_ALL_WR : 0; return 0; } #endif Index: head/sys/dev/cxgbe/t4_main.c =================================================================== --- head/sys/dev/cxgbe/t4_main.c (revision 351539) +++ head/sys/dev/cxgbe/t4_main.c (revision 351540) @@ -1,10871 +1,10871 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #endif #include #include #if defined(__i386__) || defined(__amd64__) #include #include #include #include #endif #include #ifdef DDB #include #include #endif #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "cudbg/cudbg.h" #include "t4_clip.h" #include "t4_ioctl.h" #include "t4_l2t.h" #include "t4_mp_ring.h" #include "t4_if.h" #include "t4_smt.h" /* T4 bus driver interface */ static int t4_probe(device_t); static int t4_attach(device_t); static int t4_detach(device_t); static int t4_child_location_str(device_t, device_t, char *, size_t); static int t4_ready(device_t); static int t4_read_port_device(device_t, int, device_t *); static device_method_t t4_methods[] = { DEVMETHOD(device_probe, t4_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t4_driver = { "t4nex", t4_methods, sizeof(struct adapter) }; /* T4 port (cxgbe) interface */ static int cxgbe_probe(device_t); static int cxgbe_attach(device_t); static int cxgbe_detach(device_t); device_method_t cxgbe_methods[] = { DEVMETHOD(device_probe, cxgbe_probe), DEVMETHOD(device_attach, cxgbe_attach), DEVMETHOD(device_detach, cxgbe_detach), { 0, 0 } }; static driver_t cxgbe_driver = { "cxgbe", cxgbe_methods, sizeof(struct port_info) }; /* T4 VI (vcxgbe) interface */ static int vcxgbe_probe(device_t); static int vcxgbe_attach(device_t); static int vcxgbe_detach(device_t); static device_method_t vcxgbe_methods[] = { DEVMETHOD(device_probe, vcxgbe_probe), DEVMETHOD(device_attach, vcxgbe_attach), DEVMETHOD(device_detach, vcxgbe_detach), { 0, 0 } }; static driver_t vcxgbe_driver = { "vcxgbe", vcxgbe_methods, sizeof(struct vi_info) }; static d_ioctl_t t4_ioctl; static struct cdevsw t4_cdevsw = { .d_version = D_VERSION, .d_ioctl = t4_ioctl, .d_name = "t4nex", }; /* T5 bus driver interface */ static int t5_probe(device_t); static device_method_t t5_methods[] = { DEVMETHOD(device_probe, t5_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t5_driver = { "t5nex", t5_methods, sizeof(struct adapter) }; /* T5 port (cxl) interface */ static driver_t cxl_driver = { "cxl", cxgbe_methods, sizeof(struct port_info) }; /* T5 VI (vcxl) interface */ static driver_t vcxl_driver = { "vcxl", vcxgbe_methods, sizeof(struct vi_info) }; /* T6 bus driver interface */ static int t6_probe(device_t); static device_method_t t6_methods[] = { DEVMETHOD(device_probe, t6_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t6_driver = { "t6nex", t6_methods, sizeof(struct adapter) }; /* T6 port (cc) interface */ static driver_t cc_driver = { "cc", cxgbe_methods, sizeof(struct port_info) }; /* T6 VI (vcc) interface */ static driver_t vcc_driver = { "vcc", vcxgbe_methods, sizeof(struct vi_info) }; /* ifnet interface */ static void cxgbe_init(void *); static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); static int cxgbe_transmit(struct ifnet *, struct mbuf *); static void cxgbe_qflush(struct ifnet *); MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); /* * Correct lock order when you need to acquire multiple locks is t4_list_lock, * then ADAPTER_LOCK, then t4_uld_list_lock. */ static struct sx t4_list_lock; SLIST_HEAD(, adapter) t4_list; #ifdef TCP_OFFLOAD static struct sx t4_uld_list_lock; SLIST_HEAD(, uld_info) t4_uld_list; #endif /* * Tunables. See tweak_tunables() too. * * Each tunable is set to a default value here if it's known at compile-time. * Otherwise it is set to -n as an indication to tweak_tunables() that it should * provide a reasonable default (upto n) when the driver is loaded. * * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to * T5 are under hw.cxl. */ SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters"); SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters"); SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters"); /* * Number of queues for tx and rx, NIC and offload. */ #define NTXQ 16 int t4_ntxq = -NTXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, "Number of TX queues per port"); TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ #define NRXQ 8 int t4_nrxq = -NRXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, "Number of RX queues per port"); TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ #define NTXQ_VI 1 static int t4_ntxq_vi = -NTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, "Number of TX queues per VI"); #define NRXQ_VI 1 static int t4_nrxq_vi = -NRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, "Number of RX queues per VI"); static int t4_rsrv_noflowq = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 0, "Reserve TX queue 0 of each VI for non-flowid packets"); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) #define NOFLDTXQ 8 static int t4_nofldtxq = -NOFLDTXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, "Number of offload TX queues per port"); #define NOFLDRXQ 2 static int t4_nofldrxq = -NOFLDRXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, "Number of offload RX queues per port"); #define NOFLDTXQ_VI 1 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, "Number of offload TX queues per VI"); #define NOFLDRXQ_VI 1 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, "Number of offload RX queues per VI"); #define TMR_IDX_OFLD 1 int t4_tmr_idx_ofld = TMR_IDX_OFLD; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); #define PKTC_IDX_OFLD (-1) int t4_pktc_idx_ofld = PKTC_IDX_OFLD; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_keepalive_idle = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_keepalive_interval = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ static int t4_toe_keepalive_count = 0; SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_rexmt_min = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_rexmt_max = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ static int t4_toe_rexmt_count = 0; SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); /* -1 means chip/fw default, other values are raw backoff values to use */ static int t4_toe_rexmt_backoff[16] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0, "cxgbe(4) TOE retransmit backoff values"); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[0], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[1], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[2], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[3], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[4], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[5], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[6], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[7], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[8], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[9], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[10], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[11], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[12], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[13], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[14], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[15], 0, ""); #endif #ifdef DEV_NETMAP #define NNMTXQ_VI 2 static int t4_nnmtxq_vi = -NNMTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, "Number of netmap TX queues per VI"); #define NNMRXQ_VI 2 static int t4_nnmrxq_vi = -NNMRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, "Number of netmap RX queues per VI"); #endif /* * Holdoff parameters for ports. */ #define TMR_IDX 1 int t4_tmr_idx = TMR_IDX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 0, "Holdoff timer index"); TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ #define PKTC_IDX (-1) int t4_pktc_idx = PKTC_IDX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 0, "Holdoff packet counter index"); TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ /* * Size (# of entries) of each tx and rx queue. */ unsigned int t4_qsize_txq = TX_EQ_QSIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, "Number of descriptors in each TX queue"); unsigned int t4_qsize_rxq = RX_IQ_QSIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, "Number of descriptors in each RX queue"); /* * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). */ int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); /* * Configuration file. All the _CF names here are special. */ #define DEFAULT_CF "default" #define BUILTIN_CF "built-in" #define FLASH_CF "flash" #define UWIRE_CF "uwire" #define FPGA_CF "fpga" static char t4_cfg_file[32] = DEFAULT_CF; SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, sizeof(t4_cfg_file), "Firmware configuration file"); /* * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water * mark or when signalled to do so, 0 to never emit PAUSE. * pause_autoneg = 1 means PAUSE will be negotiated if possible and the * negotiated settings will override rx_pause/tx_pause. * Otherwise rx_pause/tx_pause are applied forcibly. */ static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, &t4_pause_settings, 0, "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); /* * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) * 0 to disable FEC. */ static int t4_fec = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); /* * Link autonegotiation. * -1 to run with the firmware default. * 0 to disable. * 1 to enable. */ static int t4_autoneg = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, "Link autonegotiation"); /* * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, * encouraged respectively). '-n' is the same as 'n' except the firmware * version used in the checks is read from the firmware bundled with the driver. */ static int t4_fw_install = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); /* * ASIC features that will be used. Disable the ones you don't want so that the * chip resources aren't wasted on features that will not be used. */ static int t4_nbmcaps_allowed = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, &t4_linkcaps_allowed, 0, "Default link capabilities"); static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | FW_CAPS_CONFIG_SWITCH_EGRESS; SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, &t4_switchcaps_allowed, 0, "Default switch capabilities"); #ifdef RATELIMIT static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; #else static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | FW_CAPS_CONFIG_NIC_HASHFILTER; #endif SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, &t4_niccaps_allowed, 0, "Default NIC capabilities"); static int t4_toecaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); static int t4_rdmacaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); static int t4_cryptocaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); static int t4_iscsicaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); static int t4_fcoecaps_allowed = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); static int t5_write_combine = 0; SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 0, "Use WC instead of UC for BAR2"); static int t4_num_vis = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, "Number of VIs per port"); /* * PCIe Relaxed Ordering. * -1: driver should figure out a good value. * 0: disable RO. * 1: enable RO. * 2: leave RO alone. */ static int pcie_relaxed_ordering = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, &pcie_relaxed_ordering, 0, "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); static int t4_panic_on_fatal_err = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN, &t4_panic_on_fatal_err, 0, "panic on fatal errors"); #ifdef TCP_OFFLOAD /* * TOE tunables. */ static int t4_cop_managed_offloading = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, &t4_cop_managed_offloading, 0, "COP (Connection Offload Policy) controls all TOE offload"); #endif /* Functions used by VIs to obtain unique MAC addresses for each VI. */ static int vi_mac_funcs[] = { FW_VI_FUNC_ETH, FW_VI_FUNC_OFLD, FW_VI_FUNC_IWARP, FW_VI_FUNC_OPENISCSI, FW_VI_FUNC_OPENFCOE, FW_VI_FUNC_FOISCSI, FW_VI_FUNC_FOFCOE, }; struct intrs_and_queues { uint16_t intr_type; /* INTx, MSI, or MSI-X */ uint16_t num_vis; /* number of VIs for each port */ uint16_t nirq; /* Total # of vectors */ uint16_t ntxq; /* # of NIC txq's for each port */ uint16_t nrxq; /* # of NIC rxq's for each port */ uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ uint16_t nofldrxq; /* # of TOE rxq's for each port */ /* The vcxgbe/vcxl interfaces use these and not the ones above. */ uint16_t ntxq_vi; /* # of NIC txq's */ uint16_t nrxq_vi; /* # of NIC rxq's */ uint16_t nofldtxq_vi; /* # of TOE txq's */ uint16_t nofldrxq_vi; /* # of TOE rxq's */ uint16_t nnmtxq_vi; /* # of netmap txq's */ uint16_t nnmrxq_vi; /* # of netmap rxq's */ }; static void setup_memwin(struct adapter *); static void position_memwin(struct adapter *, int, uint32_t); static int validate_mem_range(struct adapter *, uint32_t, uint32_t); static int fwmtype_to_hwmtype(int); static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, uint32_t *); static int fixup_devlog_params(struct adapter *); static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); static int contact_firmware(struct adapter *); static int partition_resources(struct adapter *); static int get_params__pre_init(struct adapter *); static int set_params__pre_init(struct adapter *); static int get_params__post_init(struct adapter *); static int set_params__post_init(struct adapter *); static void t4_set_desc(struct adapter *); static bool fixed_ifmedia(struct port_info *); static void build_medialist(struct port_info *); static void init_link_config(struct port_info *); static int fixup_link_config(struct port_info *); static int apply_link_config(struct port_info *); static int cxgbe_init_synchronized(struct vi_info *); static int cxgbe_uninit_synchronized(struct vi_info *); static void quiesce_txq(struct adapter *, struct sge_txq *); static void quiesce_wrq(struct adapter *, struct sge_wrq *); static void quiesce_iq(struct adapter *, struct sge_iq *); static void quiesce_fl(struct adapter *, struct sge_fl *); static int t4_alloc_irq(struct adapter *, struct irq *, int rid, driver_intr_t *, void *, char *); static int t4_free_irq(struct adapter *, struct irq *); static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); static void vi_refresh_stats(struct adapter *, struct vi_info *); static void cxgbe_refresh_stats(struct adapter *, struct port_info *); static void cxgbe_tick(void *); static void cxgbe_sysctls(struct port_info *); static int sysctl_int_array(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); static int sysctl_btphy(SYSCTL_HANDLER_ARGS); static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); static int sysctl_fec(SYSCTL_HANDLER_ARGS); static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); static int sysctl_temperature(SYSCTL_HANDLER_ARGS); static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_devlog(SYSCTL_HANDLER_ARGS); static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tids(SYSCTL_HANDLER_ARGS); static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); static int sysctl_cpus(SYSCTL_HANDLER_ARGS); #ifdef TCP_OFFLOAD static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); #endif static int get_sge_context(struct adapter *, struct t4_sge_context *); static int load_fw(struct adapter *, struct t4_data *); static int load_cfg(struct adapter *, struct t4_data *); static int load_boot(struct adapter *, struct t4_bootrom *); static int load_bootcfg(struct adapter *, struct t4_data *); static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); static void free_offload_policy(struct t4_offload_policy *); static int set_offload_policy(struct adapter *, struct t4_offload_policy *); static int read_card_mem(struct adapter *, int, struct t4_mem_range *); static int read_i2c(struct adapter *, struct t4_i2c_data *); static int clear_stats(struct adapter *, u_int); #ifdef TCP_OFFLOAD static int toe_capability(struct vi_info *, int); #endif static int mod_event(module_t, int, void *); static int notify_siblings(device_t, int); struct { uint16_t device; char *desc; } t4_pciids[] = { {0xa000, "Chelsio Terminator 4 FPGA"}, {0x4400, "Chelsio T440-dbg"}, {0x4401, "Chelsio T420-CR"}, {0x4402, "Chelsio T422-CR"}, {0x4403, "Chelsio T440-CR"}, {0x4404, "Chelsio T420-BCH"}, {0x4405, "Chelsio T440-BCH"}, {0x4406, "Chelsio T440-CH"}, {0x4407, "Chelsio T420-SO"}, {0x4408, "Chelsio T420-CX"}, {0x4409, "Chelsio T420-BT"}, {0x440a, "Chelsio T404-BT"}, {0x440e, "Chelsio T440-LP-CR"}, }, t5_pciids[] = { {0xb000, "Chelsio Terminator 5 FPGA"}, {0x5400, "Chelsio T580-dbg"}, {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ /* Custom */ {0x5483, "Custom T540-CR"}, {0x5484, "Custom T540-BT"}, }, t6_pciids[] = { {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ /* Custom */ {0x6480, "Custom T6225-CR"}, {0x6481, "Custom T62100-CR"}, {0x6482, "Custom T6225-CR"}, {0x6483, "Custom T62100-CR"}, {0x6484, "Custom T64100-CR"}, {0x6485, "Custom T6240-SO"}, {0x6486, "Custom T6225-SO-CR"}, {0x6487, "Custom T6225-CR"}, }; #ifdef TCP_OFFLOAD /* * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should * be exactly the same for both rxq and ofld_rxq. */ CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); #endif CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); static int t4_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xa000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t4_pciids); i++) { if (d == t4_pciids[i].device) { device_set_desc(dev, t4_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t5_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xb000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t5_pciids); i++) { if (d == t5_pciids[i].device) { device_set_desc(dev, t5_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t6_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); for (i = 0; i < nitems(t6_pciids); i++) { if (d == t6_pciids[i].device) { device_set_desc(dev, t6_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static void t5_attribute_workaround(device_t dev) { device_t root_port; uint32_t v; /* * The T5 chips do not properly echo the No Snoop and Relaxed * Ordering attributes when replying to a TLP from a Root * Port. As a workaround, find the parent Root Port and * disable No Snoop and Relaxed Ordering. Note that this * affects all devices under this root port. */ root_port = pci_find_pcie_root_port(dev); if (root_port == NULL) { device_printf(dev, "Unable to find parent root port\n"); return; } v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 0) device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", device_get_nameunit(root_port)); } static const struct devnames devnames[] = { { .nexus_name = "t4nex", .ifnet_name = "cxgbe", .vi_ifnet_name = "vcxgbe", .pf03_drv_name = "t4iov", .vf_nexus_name = "t4vf", .vf_ifnet_name = "cxgbev" }, { .nexus_name = "t5nex", .ifnet_name = "cxl", .vi_ifnet_name = "vcxl", .pf03_drv_name = "t5iov", .vf_nexus_name = "t5vf", .vf_ifnet_name = "cxlv" }, { .nexus_name = "t6nex", .ifnet_name = "cc", .vi_ifnet_name = "vcc", .pf03_drv_name = "t6iov", .vf_nexus_name = "t6vf", .vf_ifnet_name = "ccv" } }; void t4_init_devnames(struct adapter *sc) { int id; id = chip_id(sc); if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) sc->names = &devnames[id - CHELSIO_T4]; else { device_printf(sc->dev, "chip id %d is not supported.\n", id); sc->names = NULL; } } static int t4_ifnet_unit(struct adapter *sc, struct port_info *pi) { const char *parent, *name; long value; int line, unit; line = 0; parent = device_get_nameunit(sc->dev); name = sc->names->ifnet_name; while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { if (resource_long_value(name, unit, "port", &value) == 0 && value == pi->port_id) return (unit); } return (-1); } static int t4_attach(device_t dev) { struct adapter *sc; int rc = 0, i, j, rqidx, tqidx, nports; struct make_dev_args mda; struct intrs_and_queues iaq; struct sge *s; uint32_t *buf; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) int ofld_tqidx; #endif #ifdef TCP_OFFLOAD int ofld_rqidx; #endif #ifdef DEV_NETMAP int nm_rqidx, nm_tqidx; #endif int num_vis; sc = device_get_softc(dev); sc->dev = dev; TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); if ((pci_get_device(dev) & 0xff00) == 0x5400) t5_attribute_workaround(dev); pci_enable_busmaster(dev); if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { uint32_t v; pci_set_max_read_req(dev, 4096); v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); if (pcie_relaxed_ordering == 0 && (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); } else if (pcie_relaxed_ordering == 1 && (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { v |= PCIEM_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); } } sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); sc->traceq = -1; mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", device_get_nameunit(dev)); snprintf(sc->lockname, sizeof(sc->lockname), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); t4_add_adapter(sc); mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); TAILQ_INIT(&sc->sfl); callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); sc->policy = NULL; rw_init(&sc->policy_lock, "connection offload policy"); rc = t4_map_bars_0_and_4(sc); if (rc != 0) goto done; /* error message displayed already */ memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); /* Prepare the adapter for operation. */ buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); rc = -t4_prep_adapter(sc, buf); free(buf, M_CXGBE); if (rc != 0) { device_printf(dev, "failed to prepare adapter: %d.\n", rc); goto done; } /* * This is the real PF# to which we're attaching. Works from within PCI * passthrough environments too, where pci_get_function() could return a * different PF# depending on the passthrough configuration. We need to * use the real PF# in all our communication with the firmware. */ j = t4_read_reg(sc, A_PL_WHOAMI); sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); sc->mbox = sc->pf; t4_init_devnames(sc); if (sc->names == NULL) { rc = ENOTSUP; goto done; /* error message displayed already */ } /* * Do this really early, with the memory windows set up even before the * character device. The userland tool's register i/o and mem read * will work even in "recovery mode". */ setup_memwin(sc); if (t4_init_devlog_params(sc, 0) == 0) fixup_devlog_params(sc); make_dev_args_init(&mda); mda.mda_devsw = &t4_cdevsw; mda.mda_uid = UID_ROOT; mda.mda_gid = GID_WHEEL; mda.mda_mode = 0600; mda.mda_si_drv1 = sc; rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); if (rc != 0) device_printf(dev, "failed to create nexus char device: %d.\n", rc); /* Go no further if recovery mode has been requested. */ if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { device_printf(dev, "recovery mode.\n"); goto done; } #if defined(__i386__) if ((cpu_feature & CPUID_CX8) == 0) { device_printf(dev, "64 bit atomics not available.\n"); rc = ENOTSUP; goto done; } #endif /* Contact the firmware and try to become the master driver. */ rc = contact_firmware(sc); if (rc != 0) goto done; /* error message displayed already */ MPASS(sc->flags & FW_OK); rc = get_params__pre_init(sc); if (rc != 0) goto done; /* error message displayed already */ if (sc->flags & MASTER_PF) { rc = partition_resources(sc); if (rc != 0) goto done; /* error message displayed already */ t4_intr_clear(sc); } rc = get_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = set_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_map_bar_2(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_create_dma_tag(sc); if (rc != 0) goto done; /* error message displayed already */ /* * First pass over all the ports - allocate VIs and initialize some * basic parameters like mac address, port type, etc. */ for_each_port(sc, i) { struct port_info *pi; pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); sc->port[i] = pi; /* These must be set before t4_port_init */ pi->adapter = sc; pi->port_id = i; /* * XXX: vi[0] is special so we can't delay this allocation until * pi->nvi's final value is known. */ pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, M_ZERO | M_WAITOK); /* * Allocate the "main" VI and initialize parameters * like mac addr. */ rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); if (rc != 0) { device_printf(dev, "unable to initialize port %d: %d\n", i, rc); free(pi->vi, M_CXGBE); free(pi, M_CXGBE); sc->port[i] = NULL; goto done; } snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", device_get_nameunit(dev), i); mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); sc->chan_map[pi->tx_chan] = i; /* All VIs on this port share this media. */ ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, cxgbe_media_status); PORT_LOCK(pi); init_link_config(pi); fixup_link_config(pi); build_medialist(pi); if (fixed_ifmedia(pi)) pi->flags |= FIXED_IFMEDIA; PORT_UNLOCK(pi); pi->dev = device_add_child(dev, sc->names->ifnet_name, t4_ifnet_unit(sc, pi)); if (pi->dev == NULL) { device_printf(dev, "failed to add device for port %d.\n", i); rc = ENXIO; goto done; } pi->vi[0].dev = pi->dev; device_set_softc(pi->dev, pi); } /* * Interrupt type, # of interrupts, # of rx/tx queues, etc. */ nports = sc->params.nports; rc = cfg_itype_and_nqueues(sc, &iaq); if (rc != 0) goto done; /* error message displayed already */ num_vis = iaq.num_vis; sc->intr_type = iaq.intr_type; sc->intr_count = iaq.nirq; s = &sc->sge; s->nrxq = nports * iaq.nrxq; s->ntxq = nports * iaq.ntxq; if (num_vis > 1) { s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; } s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ s->neq += nports; /* ctrl queues: 1 per port */ s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (is_offload(sc) || is_ethoffload(sc)) { s->nofldtxq = nports * iaq.nofldtxq; if (num_vis > 1) s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; s->neq += s->nofldtxq; s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); } #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { s->nofldrxq = nports * iaq.nofldrxq; if (num_vis > 1) s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; s->neq += s->nofldrxq; /* free list */ s->niq += s->nofldrxq; s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), M_CXGBE, M_ZERO | M_WAITOK); } #endif #ifdef DEV_NETMAP if (num_vis > 1) { s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi; s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi; } s->neq += s->nnmtxq + s->nnmrxq; s->niq += s->nnmrxq; s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), M_CXGBE, M_ZERO | M_WAITOK); #endif s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, M_ZERO | M_WAITOK); s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, M_ZERO | M_WAITOK); s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, M_ZERO | M_WAITOK); sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, M_ZERO | M_WAITOK); t4_init_l2t(sc, M_WAITOK); t4_init_smt(sc, M_WAITOK); t4_init_tx_sched(sc); #ifdef RATELIMIT t4_init_etid_table(sc); #endif #ifdef INET6 t4_init_clip_table(sc); #endif if (sc->vres.key.size != 0) sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); /* * Second pass over the ports. This time we know the number of rx and * tx queues that each port should get. */ rqidx = tqidx = 0; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) ofld_tqidx = 0; #endif #ifdef TCP_OFFLOAD ofld_rqidx = 0; #endif #ifdef DEV_NETMAP nm_rqidx = nm_tqidx = 0; #endif for_each_port(sc, i) { struct port_info *pi = sc->port[i]; struct vi_info *vi; if (pi == NULL) continue; pi->nvi = num_vis; for_each_vi(pi, j, vi) { vi->pi = pi; vi->qsize_rxq = t4_qsize_rxq; vi->qsize_txq = t4_qsize_txq; vi->first_rxq = rqidx; vi->first_txq = tqidx; vi->tmr_idx = t4_tmr_idx; vi->pktc_idx = t4_pktc_idx; vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; rqidx += vi->nrxq; tqidx += vi->ntxq; if (j == 0 && vi->ntxq > 1) vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; else vi->rsrv_noflowq = 0; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) vi->first_ofld_txq = ofld_tqidx; vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; ofld_tqidx += vi->nofldtxq; #endif #ifdef TCP_OFFLOAD vi->ofld_tmr_idx = t4_tmr_idx_ofld; vi->ofld_pktc_idx = t4_pktc_idx_ofld; vi->first_ofld_rxq = ofld_rqidx; vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; ofld_rqidx += vi->nofldrxq; #endif #ifdef DEV_NETMAP if (j > 0) { vi->first_nm_rxq = nm_rqidx; vi->first_nm_txq = nm_tqidx; vi->nnmrxq = iaq.nnmrxq_vi; vi->nnmtxq = iaq.nnmtxq_vi; nm_rqidx += vi->nnmrxq; nm_tqidx += vi->nnmtxq; } #endif } } rc = t4_setup_intr_handlers(sc); if (rc != 0) { device_printf(dev, "failed to setup interrupt handlers: %d\n", rc); goto done; } rc = bus_generic_probe(dev); if (rc != 0) { device_printf(dev, "failed to probe child drivers: %d\n", rc); goto done; } /* * Ensure thread-safe mailbox access (in debug builds). * * So far this was the only thread accessing the mailbox but various * ifnets and sysctls are about to be created and their handlers/ioctls * will access the mailbox from different threads. */ sc->flags |= CHK_MBOX_ACCESS; rc = bus_generic_attach(dev); if (rc != 0) { device_printf(dev, "failed to attach all child ports: %d\n", rc); goto done; } device_printf(dev, "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", sc->params.pci.speed, sc->params.pci.width, sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); t4_set_desc(sc); notify_siblings(dev, 0); done: if (rc != 0 && sc->cdev) { /* cdev was created and so cxgbetool works; recover that way. */ device_printf(dev, "error during attach, adapter is now in recovery mode.\n"); rc = 0; } if (rc != 0) t4_detach_common(dev); else t4_sysctls(sc); return (rc); } static int t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) { struct adapter *sc; struct port_info *pi; int i; sc = device_get_softc(bus); buf[0] = '\0'; for_each_port(sc, i) { pi = sc->port[i]; if (pi != NULL && pi->dev == dev) { snprintf(buf, buflen, "port=%d", pi->port_id); break; } } return (0); } static int t4_ready(device_t dev) { struct adapter *sc; sc = device_get_softc(dev); if (sc->flags & FW_OK) return (0); return (ENXIO); } static int t4_read_port_device(device_t dev, int port, device_t *child) { struct adapter *sc; struct port_info *pi; sc = device_get_softc(dev); if (port < 0 || port >= MAX_NPORTS) return (EINVAL); pi = sc->port[port]; if (pi == NULL || pi->dev == NULL) return (ENXIO); *child = pi->dev; return (0); } static int notify_siblings(device_t dev, int detaching) { device_t sibling; int error, i; error = 0; for (i = 0; i < PCI_FUNCMAX; i++) { if (i == pci_get_function(dev)) continue; sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), i); if (sibling == NULL || !device_is_attached(sibling)) continue; if (detaching) error = T4_DETACH_CHILD(sibling); else (void)T4_ATTACH_CHILD(sibling); if (error) break; } return (error); } /* * Idempotent */ static int t4_detach(device_t dev) { struct adapter *sc; int rc; sc = device_get_softc(dev); rc = notify_siblings(dev, 1); if (rc) { device_printf(dev, "failed to detach sibling devices: %d\n", rc); return (rc); } return (t4_detach_common(dev)); } int t4_detach_common(device_t dev) { struct adapter *sc; struct port_info *pi; int i, rc; sc = device_get_softc(dev); if (sc->cdev) { destroy_dev(sc->cdev); sc->cdev = NULL; } sc->flags &= ~CHK_MBOX_ACCESS; if (sc->flags & FULL_INIT_DONE) { if (!(sc->flags & IS_VF)) t4_intr_disable(sc); } if (device_is_attached(dev)) { rc = bus_generic_detach(dev); if (rc) { device_printf(dev, "failed to detach child devices: %d\n", rc); return (rc); } } for (i = 0; i < sc->intr_count; i++) t4_free_irq(sc, &sc->irq[i]); if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) t4_free_tx_sched(sc); for (i = 0; i < MAX_NPORTS; i++) { pi = sc->port[i]; if (pi) { t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); if (pi->dev) device_delete_child(dev, pi->dev); mtx_destroy(&pi->pi_lock); free(pi->vi, M_CXGBE); free(pi, M_CXGBE); } } device_delete_children(dev); if (sc->flags & FULL_INIT_DONE) adapter_full_uninit(sc); if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) t4_fw_bye(sc, sc->mbox); if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) pci_release_msi(dev); if (sc->regs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, sc->regs_res); if (sc->udbs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, sc->udbs_res); if (sc->msix_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, sc->msix_res); if (sc->l2t) t4_free_l2t(sc->l2t); if (sc->smt) t4_free_smt(sc->smt); #ifdef RATELIMIT t4_free_etid_table(sc); #endif if (sc->key_map) vmem_destroy(sc->key_map); #ifdef INET6 t4_destroy_clip_table(sc); #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) free(sc->sge.ofld_txq, M_CXGBE); #endif #ifdef TCP_OFFLOAD free(sc->sge.ofld_rxq, M_CXGBE); #endif #ifdef DEV_NETMAP free(sc->sge.nm_rxq, M_CXGBE); free(sc->sge.nm_txq, M_CXGBE); #endif free(sc->irq, M_CXGBE); free(sc->sge.rxq, M_CXGBE); free(sc->sge.txq, M_CXGBE); free(sc->sge.ctrlq, M_CXGBE); free(sc->sge.iqmap, M_CXGBE); free(sc->sge.eqmap, M_CXGBE); free(sc->tids.ftid_tab, M_CXGBE); free(sc->tids.hpftid_tab, M_CXGBE); free_hftid_hash(&sc->tids); free(sc->tids.atid_tab, M_CXGBE); free(sc->tids.tid_tab, M_CXGBE); free(sc->tt.tls_rx_ports, M_CXGBE); t4_destroy_dma_tag(sc); if (mtx_initialized(&sc->sc_lock)) { sx_xlock(&t4_list_lock); SLIST_REMOVE(&t4_list, sc, adapter, link); sx_xunlock(&t4_list_lock); mtx_destroy(&sc->sc_lock); } callout_drain(&sc->sfl_callout); if (mtx_initialized(&sc->tids.ftid_lock)) { mtx_destroy(&sc->tids.ftid_lock); cv_destroy(&sc->tids.ftid_cv); } if (mtx_initialized(&sc->tids.atid_lock)) mtx_destroy(&sc->tids.atid_lock); if (mtx_initialized(&sc->sfl_lock)) mtx_destroy(&sc->sfl_lock); if (mtx_initialized(&sc->ifp_lock)) mtx_destroy(&sc->ifp_lock); if (mtx_initialized(&sc->reg_lock)) mtx_destroy(&sc->reg_lock); if (rw_initialized(&sc->policy_lock)) { rw_destroy(&sc->policy_lock); #ifdef TCP_OFFLOAD if (sc->policy != NULL) free_offload_policy(sc->policy); #endif } for (i = 0; i < NUM_MEMWIN; i++) { struct memwin *mw = &sc->memwin[i]; if (rw_initialized(&mw->mw_lock)) rw_destroy(&mw->mw_lock); } bzero(sc, sizeof(*sc)); return (0); } static int cxgbe_probe(device_t dev) { char buf[128]; struct port_info *pi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d", pi->port_id); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ IFCAP_HWRXTSTMP | IFCAP_NOMAP) #define T4_CAP_ENABLE (T4_CAP) static int cxgbe_vi_attach(device_t dev, struct vi_info *vi) { struct ifnet *ifp; struct sbuf *sb; vi->xact_addr_filt = -1; callout_init(&vi->tick, 1); /* Allocate an ifnet and set it up */ ifp = if_alloc_dev(IFT_ETHER, dev); if (ifp == NULL) { device_printf(dev, "Cannot allocate ifnet\n"); return (ENOMEM); } vi->ifp = ifp; ifp->if_softc = vi; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = cxgbe_init; ifp->if_ioctl = cxgbe_ioctl; ifp->if_transmit = cxgbe_transmit; ifp->if_qflush = cxgbe_qflush; ifp->if_get_counter = cxgbe_get_counter; #ifdef RATELIMIT ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; ifp->if_snd_tag_query = cxgbe_snd_tag_query; ifp->if_snd_tag_free = cxgbe_snd_tag_free; ifp->if_ratelimit_query = cxgbe_ratelimit_query; #endif ifp->if_capabilities = T4_CAP; ifp->if_capenable = T4_CAP_ENABLE; #ifdef TCP_OFFLOAD if (vi->nofldrxq != 0) ifp->if_capabilities |= IFCAP_TOE; #endif #ifdef RATELIMIT if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) { ifp->if_capabilities |= IFCAP_TXRTLMT; ifp->if_capenable |= IFCAP_TXRTLMT; } #endif ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6; ifp->if_hw_tsomax = IP_MAXPACKET; ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; #ifdef RATELIMIT if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; #endif ifp->if_hw_tsomaxsegsize = 65536; ether_ifattach(ifp, vi->hw_addr); #ifdef DEV_NETMAP if (vi->nnmrxq != 0) cxgbe_nm_attach(vi); #endif sb = sbuf_new_auto(); sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { case IFCAP_TOE: sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); break; case IFCAP_TOE | IFCAP_TXRTLMT: sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); break; case IFCAP_TXRTLMT: sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); break; } #endif #ifdef TCP_OFFLOAD if (ifp->if_capabilities & IFCAP_TOE) sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); #endif #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) sbuf_printf(sb, "; %d txq, %d rxq (netmap)", vi->nnmtxq, vi->nnmrxq); #endif sbuf_finish(sb); device_printf(dev, "%s\n", sbuf_data(sb)); sbuf_delete(sb); vi_sysctls(vi); return (0); } static int cxgbe_attach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; struct vi_info *vi; int i, rc; callout_init_mtx(&pi->tick, &pi->pi_lock, 0); rc = cxgbe_vi_attach(dev, &pi->vi[0]); if (rc) return (rc); for_each_vi(pi, i, vi) { if (i == 0) continue; vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); if (vi->dev == NULL) { device_printf(dev, "failed to add VI %d\n", i); continue; } device_set_softc(vi->dev, vi); } cxgbe_sysctls(pi); bus_generic_attach(dev); return (0); } static void cxgbe_vi_detach(struct vi_info *vi) { struct ifnet *ifp = vi->ifp; ether_ifdetach(ifp); /* Let detach proceed even if these fail. */ #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) cxgbe_nm_detach(vi); #endif cxgbe_uninit_synchronized(vi); callout_drain(&vi->tick); vi_full_uninit(vi); if_free(vi->ifp); vi->ifp = NULL; } static int cxgbe_detach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; int rc; /* Detach the extra VIs first. */ rc = bus_generic_detach(dev); if (rc) return (rc); device_delete_children(dev); doom_vi(sc, &pi->vi[0]); if (pi->flags & HAS_TRACEQ) { sc->traceq = -1; /* cloner should not create ifnet */ t4_tracer_port_detach(sc); } cxgbe_vi_detach(&pi->vi[0]); callout_drain(&pi->tick); ifmedia_removeall(&pi->media); end_synchronized_op(sc, 0); return (0); } static void cxgbe_init(void *arg) { struct vi_info *vi = arg; struct adapter *sc = vi->pi->adapter; if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) return; cxgbe_init_synchronized(vi); end_synchronized_op(sc, 0); } static int cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) { int rc = 0, mtu, flags; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifreq *ifr = (struct ifreq *)data; uint32_t mask; switch (cmd) { case SIOCSIFMTU: mtu = ifr->ifr_mtu; if (mtu < ETHERMIN || mtu > MAX_MTU) return (EINVAL); rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); if (rc) return (rc); ifp->if_mtu = mtu; if (vi->flags & VI_INIT_DONE) { t4_update_fl_bufsize(ifp); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_MTU); } end_synchronized_op(sc, 0); break; case SIOCSIFFLAGS: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); if (rc) return (rc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = vi->if_flags; if ((ifp->if_flags ^ flags) & (IFF_PROMISC | IFF_ALLMULTI)) { rc = update_mac_settings(ifp, XGMAC_PROMISC | XGMAC_ALLMULTI); } } else { rc = cxgbe_init_synchronized(vi); } vi->if_flags = ifp->if_flags; } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { rc = cxgbe_uninit_synchronized(vi); } end_synchronized_op(sc, 0); break; case SIOCADDMULTI: case SIOCDELMULTI: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); if (rc) return (rc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_MCADDRS); end_synchronized_op(sc, 0); break; case SIOCSIFCAP: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); if (rc) return (rc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO4 & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO4; if_printf(ifp, "tso4 disabled due to -txcsum.\n"); } } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); if (IFCAP_TSO6 & ifp->if_capenable && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO6; if_printf(ifp, "tso6 disabled due to -txcsum6.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; /* * Note that we leave CSUM_TSO alone (it is always set). The * kernel takes both IFCAP_TSOx and CSUM_TSO into account before * sending a TSO request our way, so it's sufficient to toggle * IFCAP_TSOx only. */ if (mask & IFCAP_TSO4) { if (!(IFCAP_TSO4 & ifp->if_capenable) && !(IFCAP_TXCSUM & ifp->if_capenable)) { if_printf(ifp, "enable txcsum first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO4; } if (mask & IFCAP_TSO6) { if (!(IFCAP_TSO6 & ifp->if_capenable) && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { if_printf(ifp, "enable txcsum6 first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO6; } if (mask & IFCAP_LRO) { #if defined(INET) || defined(INET6) int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_LRO; for_each_rxq(vi, i, rxq) { if (ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; else rxq->iq.flags &= ~IQ_LRO_ENABLED; } #endif } #ifdef TCP_OFFLOAD if (mask & IFCAP_TOE) { int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; rc = toe_capability(vi, enable); if (rc != 0) goto fail; ifp->if_capenable ^= mask; } #endif if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_VLANEX); } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; /* Need to find out how to disable auto-mtu-inflation */ } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; #ifdef RATELIMIT if (mask & IFCAP_TXRTLMT) ifp->if_capenable ^= IFCAP_TXRTLMT; #endif if (mask & IFCAP_HWRXTSTMP) { int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_HWRXTSTMP; for_each_rxq(vi, i, rxq) { if (ifp->if_capenable & IFCAP_HWRXTSTMP) rxq->iq.flags |= IQ_RX_TIMESTAMP; else rxq->iq.flags &= ~IQ_RX_TIMESTAMP; } } if (mask & IFCAP_NOMAP) ifp->if_capenable ^= IFCAP_NOMAP; #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif fail: end_synchronized_op(sc, 0); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: ifmedia_ioctl(ifp, ifr, &pi->media, cmd); break; case SIOCGI2C: { struct ifi2creq i2c; rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); if (rc != 0) break; if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { rc = EPERM; break; } if (i2c.len > sizeof(i2c.data)) { rc = EINVAL; break; } rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); if (rc) return (rc); rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, i2c.offset, i2c.len, &i2c.data[0]); end_synchronized_op(sc, 0); if (rc == 0) rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); break; } default: rc = ether_ioctl(ifp, cmd, data); } return (rc); } static int cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_txq *txq; void *items[1]; int rc; M_ASSERTPKTHDR(m); MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ if (__predict_false(pi->link_cfg.link_ok == false)) { m_freem(m); return (ENETDOWN); } rc = parse_pkt(sc, &m); if (__predict_false(rc != 0)) { MPASS(m == NULL); /* was freed already */ atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ return (rc); } #ifdef RATELIMIT if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { MPASS(m->m_pkthdr.snd_tag->ifp == ifp); return (ethofld_transmit(ifp, m)); } #endif /* Select a txq. */ txq = &sc->sge.txq[vi->first_txq]; if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + vi->rsrv_noflowq); items[0] = m; rc = mp_ring_enqueue(txq->r, items, 1, 4096); if (__predict_false(rc != 0)) m_freem(m); return (rc); } static void cxgbe_qflush(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct sge_txq *txq; int i; /* queues do not exist if !VI_INIT_DONE. */ if (vi->flags & VI_INIT_DONE) { for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags |= EQ_QFLUSH; TXQ_UNLOCK(txq); while (!mp_ring_is_idle(txq->r)) { mp_ring_check_drainage(txq->r, 0); pause("qflush", 1); } TXQ_LOCK(txq); txq->eq.flags &= ~EQ_QFLUSH; TXQ_UNLOCK(txq); } } if_qflush(ifp); } static uint64_t vi_get_counter(struct ifnet *ifp, ift_counter c) { struct vi_info *vi = ifp->if_softc; struct fw_vi_stats_vf *s = &vi->stats; vi_refresh_stats(vi->pi->adapter, vi); switch (c) { case IFCOUNTER_IPACKETS: return (s->rx_bcast_frames + s->rx_mcast_frames + s->rx_ucast_frames); case IFCOUNTER_IERRORS: return (s->rx_err_frames); case IFCOUNTER_OPACKETS: return (s->tx_bcast_frames + s->tx_mcast_frames + s->tx_ucast_frames + s->tx_offload_frames); case IFCOUNTER_OERRORS: return (s->tx_drop_frames); case IFCOUNTER_IBYTES: return (s->rx_bcast_bytes + s->rx_mcast_bytes + s->rx_ucast_bytes); case IFCOUNTER_OBYTES: return (s->tx_bcast_bytes + s->tx_mcast_bytes + s->tx_ucast_bytes + s->tx_offload_bytes); case IFCOUNTER_IMCASTS: return (s->rx_mcast_frames); case IFCOUNTER_OMCASTS: return (s->tx_mcast_frames); case IFCOUNTER_OQDROPS: { uint64_t drops; drops = 0; if (vi->flags & VI_INIT_DONE) { int i; struct sge_txq *txq; for_each_txq(vi, i, txq) drops += counter_u64_fetch(txq->r->drops); } return (drops); } default: return (if_get_counter_default(ifp, c)); } } uint64_t cxgbe_get_counter(struct ifnet *ifp, ift_counter c) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct port_stats *s = &pi->stats; if (pi->nvi > 1 || sc->flags & IS_VF) return (vi_get_counter(ifp, c)); cxgbe_refresh_stats(sc, pi); switch (c) { case IFCOUNTER_IPACKETS: return (s->rx_frames); case IFCOUNTER_IERRORS: return (s->rx_jabber + s->rx_runt + s->rx_too_long + s->rx_fcs_err + s->rx_len_err); case IFCOUNTER_OPACKETS: return (s->tx_frames); case IFCOUNTER_OERRORS: return (s->tx_error_frames); case IFCOUNTER_IBYTES: return (s->rx_octets); case IFCOUNTER_OBYTES: return (s->tx_octets); case IFCOUNTER_IMCASTS: return (s->rx_mcast_frames); case IFCOUNTER_OMCASTS: return (s->tx_mcast_frames); case IFCOUNTER_IQDROPS: return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + s->rx_trunc3 + pi->tnl_cong_drops); case IFCOUNTER_OQDROPS: { uint64_t drops; drops = s->tx_drop; if (vi->flags & VI_INIT_DONE) { int i; struct sge_txq *txq; for_each_txq(vi, i, txq) drops += counter_u64_fetch(txq->r->drops); } return (drops); } default: return (if_get_counter_default(ifp, c)); } } /* * The kernel picks a media from the list we had provided but we still validate * the requeste. */ int cxgbe_media_change(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct ifmedia *ifm = &pi->media; struct link_config *lc = &pi->link_cfg; struct adapter *sc = pi->adapter; int rc; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); if (rc != 0) return (rc); PORT_LOCK(pi); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { /* ifconfig .. media autoselect */ if (!(lc->supported & FW_PORT_CAP32_ANEG)) { rc = ENOTSUP; /* AN not supported by transceiver */ goto done; } lc->requested_aneg = AUTONEG_ENABLE; lc->requested_speed = 0; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->requested_aneg = AUTONEG_DISABLE; lc->requested_speed = ifmedia_baudrate(ifm->ifm_media) / 1000000; lc->requested_fc = 0; if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) lc->requested_fc |= PAUSE_RX; if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) lc->requested_fc |= PAUSE_TX; } if (pi->up_vis > 0) { fixup_link_config(pi); rc = apply_link_config(pi); } done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); return (rc); } /* * Base media word (without ETHER, pause, link active, etc.) for the port at the * given speed. */ static int port_mword(struct port_info *pi, uint32_t speed) { MPASS(speed & M_FW_PORT_CAP32_SPEED); MPASS(powerof2(speed)); switch(pi->port_type) { case FW_PORT_TYPE_BT_SGMII: case FW_PORT_TYPE_BT_XFI: case FW_PORT_TYPE_BT_XAUI: /* BaseT */ switch (speed) { case FW_PORT_CAP32_SPEED_100M: return (IFM_100_T); case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_T); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_T); } break; case FW_PORT_TYPE_KX4: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_KX4); break; case FW_PORT_TYPE_CX4: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_CX4); break; case FW_PORT_TYPE_KX: if (speed == FW_PORT_CAP32_SPEED_1G) return (IFM_1000_KX); break; case FW_PORT_TYPE_KR: case FW_PORT_TYPE_BP_AP: case FW_PORT_TYPE_BP4_AP: case FW_PORT_TYPE_BP40_BA: case FW_PORT_TYPE_KR4_100G: case FW_PORT_TYPE_KR_SFP28: case FW_PORT_TYPE_KR_XLAUI: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_KX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_KR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_KR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_KR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_KR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_KR4); } break; case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_QSFP_10G: case FW_PORT_TYPE_QSA: case FW_PORT_TYPE_QSFP: case FW_PORT_TYPE_CR4_QSFP: case FW_PORT_TYPE_CR_QSFP: case FW_PORT_TYPE_CR2_QSFP: case FW_PORT_TYPE_SFP28: /* Pluggable transceiver */ switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_LX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_LR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_LR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_LR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_LR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_LR4); } break; case FW_PORT_MOD_TYPE_SR: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_SX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_SR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_SR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_SR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_SR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_SR4); } break; case FW_PORT_MOD_TYPE_ER: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_ER); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_CX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_TWINAX); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_CR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_CR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_CR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_CR4); } break; case FW_PORT_MOD_TYPE_LRM: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_LRM); break; case FW_PORT_MOD_TYPE_NA: MPASS(0); /* Not pluggable? */ /* fall throough */ case FW_PORT_MOD_TYPE_ERROR: case FW_PORT_MOD_TYPE_UNKNOWN: case FW_PORT_MOD_TYPE_NOTSUPPORTED: break; case FW_PORT_MOD_TYPE_NONE: return (IFM_NONE); } break; case FW_PORT_TYPE_NONE: return (IFM_NONE); } return (IFM_UNKNOWN); } void cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) return; PORT_LOCK(pi); if (pi->up_vis == 0) { /* * If all the interfaces are administratively down the firmware * does not report transceiver changes. Refresh port info here * so that ifconfig displays accurate ifmedia at all times. * This is the only reason we have a synchronized op in this * function. Just PORT_LOCK would have been enough otherwise. */ t4_update_port_info(pi); build_medialist(pi); } /* ifm_status */ ifmr->ifm_status = IFM_AVALID; if (lc->link_ok == false) goto done; ifmr->ifm_status |= IFM_ACTIVE; /* ifm_active */ ifmr->ifm_active = IFM_ETHER | IFM_FDX; ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); if (lc->fc & PAUSE_RX) ifmr->ifm_active |= IFM_ETH_RXPAUSE; if (lc->fc & PAUSE_TX) ifmr->ifm_active |= IFM_ETH_TXPAUSE; ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } static int vcxgbe_probe(device_t dev) { char buf[128]; struct vi_info *vi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, vi - vi->pi->vi); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } static int alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) { int func, index, rc; uint32_t param, val; ASSERT_SYNCHRONIZED_OP(sc); index = vi - pi->vi; MPASS(index > 0); /* This function deals with _extra_ VIs only */ KASSERT(index < nitems(vi_mac_funcs), ("%s: VI %s doesn't have a MAC func", __func__, device_get_nameunit(vi->dev))); func = vi_mac_funcs[index]; rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); if (rc < 0) { device_printf(vi->dev, "failed to allocate virtual interface %d" "for port %d: %d\n", index, pi->port_id, -rc); return (-rc); } vi->viid = rc; if (vi->rss_size == 1) { /* * This VI didn't get a slice of the RSS table. Reduce the * number of VIs being created (hw.cxgbe.num_vis) or modify the * configuration file (nvi, rssnvi for this PF) if this is a * problem. */ device_printf(vi->dev, "RSS table not available.\n"); vi->rss_base = 0xffff; return (0); } param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | V_FW_PARAMS_PARAM_YZ(vi->viid); rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc) vi->rss_base = 0xffff; else { MPASS((val >> 16) == vi->rss_size); vi->rss_base = val & 0xffff; } return (0); } static int vcxgbe_attach(device_t dev) { struct vi_info *vi; struct port_info *pi; struct adapter *sc; int rc; vi = device_get_softc(dev); pi = vi->pi; sc = pi->adapter; rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); if (rc) return (rc); rc = alloc_extra_vi(sc, pi, vi); end_synchronized_op(sc, 0); if (rc) return (rc); rc = cxgbe_vi_attach(dev, vi); if (rc) { t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); return (rc); } return (0); } static int vcxgbe_detach(device_t dev) { struct vi_info *vi; struct adapter *sc; vi = device_get_softc(dev); sc = vi->pi->adapter; doom_vi(sc, vi); cxgbe_vi_detach(vi); t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); end_synchronized_op(sc, 0); return (0); } static struct callout fatal_callout; static void delayed_panic(void *arg) { struct adapter *sc = arg; panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); } void t4_fatal_err(struct adapter *sc, bool fw_error) { t4_shutdown_adapter(sc); log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", device_get_nameunit(sc->dev)); if (fw_error) { ASSERT_SYNCHRONIZED_OP(sc); sc->flags |= ADAP_ERR; } else { ADAPTER_LOCK(sc); sc->flags |= ADAP_ERR; ADAPTER_UNLOCK(sc); } if (t4_panic_on_fatal_err) { log(LOG_ALERT, "%s: panic on fatal error after 30s", device_get_nameunit(sc->dev)); callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); } } void t4_add_adapter(struct adapter *sc) { sx_xlock(&t4_list_lock); SLIST_INSERT_HEAD(&t4_list, sc, link); sx_xunlock(&t4_list_lock); } int t4_map_bars_0_and_4(struct adapter *sc) { sc->regs_rid = PCIR_BAR(0); sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->regs_rid, RF_ACTIVE); if (sc->regs_res == NULL) { device_printf(sc->dev, "cannot map registers.\n"); return (ENXIO); } sc->bt = rman_get_bustag(sc->regs_res); sc->bh = rman_get_bushandle(sc->regs_res); sc->mmio_len = rman_get_size(sc->regs_res); setbit(&sc->doorbells, DOORBELL_KDB); sc->msix_rid = PCIR_BAR(4); sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->msix_rid, RF_ACTIVE); if (sc->msix_res == NULL) { device_printf(sc->dev, "cannot map MSI-X BAR.\n"); return (ENXIO); } return (0); } int t4_map_bar_2(struct adapter *sc) { /* * T4: only iWARP driver uses the userspace doorbells. There is no need * to map it if RDMA is disabled. */ if (is_t4(sc) && sc->rdmacaps == 0) return (0); sc->udbs_rid = PCIR_BAR(2); sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->udbs_rid, RF_ACTIVE); if (sc->udbs_res == NULL) { device_printf(sc->dev, "cannot map doorbell BAR.\n"); return (ENXIO); } sc->udbs_base = rman_get_virtual(sc->udbs_res); if (chip_id(sc) >= CHELSIO_T5) { setbit(&sc->doorbells, DOORBELL_UDB); #if defined(__i386__) || defined(__amd64__) if (t5_write_combine) { int rc, mode; /* * Enable write combining on BAR2. This is the * userspace doorbell BAR and is split into 128B * (UDBS_SEG_SIZE) doorbell regions, each associated * with an egress queue. The first 64B has the doorbell * and the second 64B can be used to submit a tx work * request with an implicit doorbell. */ rc = pmap_change_attr((vm_offset_t)sc->udbs_base, rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); if (rc == 0) { clrbit(&sc->doorbells, DOORBELL_UDB); setbit(&sc->doorbells, DOORBELL_WCWR); setbit(&sc->doorbells, DOORBELL_UDBWC); } else { device_printf(sc->dev, "couldn't enable write combining: %d\n", rc); } mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); t4_write_reg(sc, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) | mode); } #endif } sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; return (0); } struct memwin_init { uint32_t base; uint32_t aperture; }; static const struct memwin_init t4_memwin[NUM_MEMWIN] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } }; static const struct memwin_init t5_memwin[NUM_MEMWIN] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, }; static void setup_memwin(struct adapter *sc) { const struct memwin_init *mw_init; struct memwin *mw; int i; uint32_t bar0; if (is_t4(sc)) { /* * Read low 32b of bar0 indirectly via the hardware backdoor * mechanism. Works from within PCI passthrough environments * too, where rman_get_start() can return a different value. We * need to program the T4 memory window decoders with the actual * addresses that will be coming across the PCIe link. */ bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; mw_init = &t4_memwin[0]; } else { /* T5+ use the relative offset inside the PCIe BAR */ bar0 = 0; mw_init = &t5_memwin[0]; } for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { rw_init(&mw->mw_lock, "memory window access"); mw->mw_base = mw_init->base; mw->mw_aperture = mw_init->aperture; mw->mw_curpos = 0; t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), (mw->mw_base + bar0) | V_BIR(0) | V_WINDOW(ilog2(mw->mw_aperture) - 10)); rw_wlock(&mw->mw_lock); position_memwin(sc, i, 0); rw_wunlock(&mw->mw_lock); } /* flush */ t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); } /* * Positions the memory window at the given address in the card's address space. * There are some alignment requirements and the actual position may be at an * address prior to the requested address. mw->mw_curpos always has the actual * position of the window. */ static void position_memwin(struct adapter *sc, int idx, uint32_t addr) { struct memwin *mw; uint32_t pf; uint32_t reg; MPASS(idx >= 0 && idx < NUM_MEMWIN); mw = &sc->memwin[idx]; rw_assert(&mw->mw_lock, RA_WLOCKED); if (is_t4(sc)) { pf = 0; mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ } else { pf = V_PFNUM(sc->pf); mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ } reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); t4_write_reg(sc, reg, mw->mw_curpos | pf); t4_read_reg(sc, reg); /* flush */ } int rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, int len, int rw) { struct memwin *mw; uint32_t mw_end, v; MPASS(idx >= 0 && idx < NUM_MEMWIN); /* Memory can only be accessed in naturally aligned 4 byte units */ if (addr & 3 || len & 3 || len <= 0) return (EINVAL); mw = &sc->memwin[idx]; while (len > 0) { rw_rlock(&mw->mw_lock); mw_end = mw->mw_curpos + mw->mw_aperture; if (addr >= mw_end || addr < mw->mw_curpos) { /* Will need to reposition the window */ if (!rw_try_upgrade(&mw->mw_lock)) { rw_runlock(&mw->mw_lock); rw_wlock(&mw->mw_lock); } rw_assert(&mw->mw_lock, RA_WLOCKED); position_memwin(sc, idx, addr); rw_downgrade(&mw->mw_lock); mw_end = mw->mw_curpos + mw->mw_aperture; } rw_assert(&mw->mw_lock, RA_RLOCKED); while (addr < mw_end && len > 0) { if (rw == 0) { v = t4_read_reg(sc, mw->mw_base + addr - mw->mw_curpos); *val++ = le32toh(v); } else { v = *val++; t4_write_reg(sc, mw->mw_base + addr - mw->mw_curpos, htole32(v)); } addr += 4; len -= 4; } rw_runlock(&mw->mw_lock); } return (0); } int alloc_atid_tab(struct tid_info *t, int flags) { int i; MPASS(t->natids > 0); MPASS(t->atid_tab == NULL); t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, M_ZERO | flags); if (t->atid_tab == NULL) return (ENOMEM); mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); t->afree = t->atid_tab; t->atids_in_use = 0; for (i = 1; i < t->natids; i++) t->atid_tab[i - 1].next = &t->atid_tab[i]; t->atid_tab[t->natids - 1].next = NULL; return (0); } void free_atid_tab(struct tid_info *t) { KASSERT(t->atids_in_use == 0, ("%s: %d atids still in use.", __func__, t->atids_in_use)); if (mtx_initialized(&t->atid_lock)) mtx_destroy(&t->atid_lock); free(t->atid_tab, M_CXGBE); t->atid_tab = NULL; } int alloc_atid(struct adapter *sc, void *ctx) { struct tid_info *t = &sc->tids; int atid = -1; mtx_lock(&t->atid_lock); if (t->afree) { union aopen_entry *p = t->afree; atid = p - t->atid_tab; MPASS(atid <= M_TID_TID); t->afree = p->next; p->data = ctx; t->atids_in_use++; } mtx_unlock(&t->atid_lock); return (atid); } void * lookup_atid(struct adapter *sc, int atid) { struct tid_info *t = &sc->tids; return (t->atid_tab[atid].data); } void free_atid(struct adapter *sc, int atid) { struct tid_info *t = &sc->tids; union aopen_entry *p = &t->atid_tab[atid]; mtx_lock(&t->atid_lock); p->next = t->afree; t->afree = p; t->atids_in_use--; mtx_unlock(&t->atid_lock); } static void queue_tid_release(struct adapter *sc, int tid) { CXGBE_UNIMPLEMENTED("deferred tid release"); } void release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) { struct wrqe *wr; struct cpl_tid_release *req; wr = alloc_wrqe(sizeof(*req), ctrlq); if (wr == NULL) { queue_tid_release(sc, tid); /* defer */ return; } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); t4_wrq_tx(sc, wr); } static int t4_range_cmp(const void *a, const void *b) { return ((const struct t4_range *)a)->start - ((const struct t4_range *)b)->start; } /* * Verify that the memory range specified by the addr/len pair is valid within * the card's address space. */ static int validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) { struct t4_range mem_ranges[4], *r, *next; uint32_t em, addr_len; int i, n, remaining; /* Memory can only be accessed in naturally aligned 4 byte units */ if (addr & 3 || len & 3 || len == 0) return (EINVAL); /* Enabled memories */ em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); r = &mem_ranges[0]; n = 0; bzero(r, sizeof(mem_ranges)); if (em & F_EDRAM0_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); r->size = G_EDRAM0_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EDRAM0_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (em & F_EDRAM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); r->size = G_EDRAM1_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EDRAM1_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (em & F_EXT_MEM_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); r->size = G_EXT_MEM_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EXT_MEM_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); r->size = G_EXT_MEM1_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EXT_MEM1_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } MPASS(n <= nitems(mem_ranges)); if (n > 1) { /* Sort and merge the ranges. */ qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); /* Start from index 0 and examine the next n - 1 entries. */ r = &mem_ranges[0]; for (remaining = n - 1; remaining > 0; remaining--, r++) { MPASS(r->size > 0); /* r is a valid entry. */ next = r + 1; MPASS(next->size > 0); /* and so is the next one. */ while (r->start + r->size >= next->start) { /* Merge the next one into the current entry. */ r->size = max(r->start + r->size, next->start + next->size) - r->start; n--; /* One fewer entry in total. */ if (--remaining == 0) goto done; /* short circuit */ next++; } if (next != r + 1) { /* * Some entries were merged into r and next * points to the first valid entry that couldn't * be merged. */ MPASS(next->size > 0); /* must be valid */ memcpy(r + 1, next, remaining * sizeof(*r)); #ifdef INVARIANTS /* * This so that the foo->size assertion in the * next iteration of the loop do the right * thing for entries that were pulled up and are * no longer valid. */ MPASS(n < nitems(mem_ranges)); bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * sizeof(struct t4_range)); #endif } } done: /* Done merging the ranges. */ MPASS(n > 0); r = &mem_ranges[0]; for (i = 0; i < n; i++, r++) { if (addr >= r->start && addr + len <= r->start + r->size) return (0); } } return (EFAULT); } static int fwmtype_to_hwmtype(int mtype) { switch (mtype) { case FW_MEMTYPE_EDC0: return (MEM_EDC0); case FW_MEMTYPE_EDC1: return (MEM_EDC1); case FW_MEMTYPE_EXTMEM: return (MEM_MC0); case FW_MEMTYPE_EXTMEM1: return (MEM_MC1); default: panic("%s: cannot translate fw mtype %d.", __func__, mtype); } } /* * Verify that the memory range specified by the memtype/offset/len pair is * valid and lies entirely within the memtype specified. The global address of * the start of the range is returned in addr. */ static int validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, uint32_t *addr) { uint32_t em, addr_len, maddr; /* Memory can only be accessed in naturally aligned 4 byte units */ if (off & 3 || len & 3 || len == 0) return (EINVAL); em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); switch (fwmtype_to_hwmtype(mtype)) { case MEM_EDC0: if (!(em & F_EDRAM0_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); maddr = G_EDRAM0_BASE(addr_len) << 20; break; case MEM_EDC1: if (!(em & F_EDRAM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); maddr = G_EDRAM1_BASE(addr_len) << 20; break; case MEM_MC: if (!(em & F_EXT_MEM_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); maddr = G_EXT_MEM_BASE(addr_len) << 20; break; case MEM_MC1: if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); maddr = G_EXT_MEM1_BASE(addr_len) << 20; break; default: return (EINVAL); } *addr = maddr + off; /* global address */ return (validate_mem_range(sc, *addr, len)); } static int fixup_devlog_params(struct adapter *sc) { struct devlog_params *dparams = &sc->params.devlog; int rc; rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, dparams->size, &dparams->addr); return (rc); } static void update_nirq(struct intrs_and_queues *iaq, int nports) { int extra = T4_EXTRA_INTR; iaq->nirq = extra; iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq); iaq->nirq += nports * (iaq->num_vis - 1) * max(iaq->nrxq_vi, iaq->nnmrxq_vi); iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; } /* * Adjust requirements to fit the number of interrupts available. */ static void calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, int navail) { int old_nirq; const int nports = sc->params.nports; MPASS(nports > 0); MPASS(navail > 0); bzero(iaq, sizeof(*iaq)); iaq->intr_type = itype; iaq->num_vis = t4_num_vis; iaq->ntxq = t4_ntxq; iaq->ntxq_vi = t4_ntxq_vi; iaq->nrxq = t4_nrxq; iaq->nrxq_vi = t4_nrxq_vi; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (is_offload(sc) || is_ethoffload(sc)) { iaq->nofldtxq = t4_nofldtxq; iaq->nofldtxq_vi = t4_nofldtxq_vi; } #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { iaq->nofldrxq = t4_nofldrxq; iaq->nofldrxq_vi = t4_nofldrxq_vi; } #endif #ifdef DEV_NETMAP iaq->nnmtxq_vi = t4_nnmtxq_vi; iaq->nnmrxq_vi = t4_nnmrxq_vi; #endif update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { /* * This is the normal case -- there are enough interrupts for * everything. */ goto done; } /* * If extra VIs have been configured try reducing their count and see if * that works. */ while (iaq->num_vis > 1) { iaq->num_vis--; update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { device_printf(sc->dev, "virtual interfaces per port " "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " "itype %d, navail %u, nirq %d.\n", iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, itype, navail, iaq->nirq); goto done; } } /* * Extra VIs will not be created. Log a message if they were requested. */ MPASS(iaq->num_vis == 1); iaq->ntxq_vi = iaq->nrxq_vi = 0; iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; if (iaq->num_vis != t4_num_vis) { device_printf(sc->dev, "extra virtual interfaces disabled. " "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, itype, navail, iaq->nirq); } /* * Keep reducing the number of NIC rx queues to the next lower power of * 2 (for even RSS distribution) and halving the TOE rx queues and see * if that works. */ do { if (iaq->nrxq > 1) { do { iaq->nrxq--; } while (!powerof2(iaq->nrxq)); } if (iaq->nofldrxq > 1) iaq->nofldrxq >>= 1; old_nirq = iaq->nirq; update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { device_printf(sc->dev, "running with reduced number of " "rx queues because of shortage of interrupts. " "nrxq=%u, nofldrxq=%u. " "itype %d, navail %u, nirq %d.\n", iaq->nrxq, iaq->nofldrxq, itype, navail, iaq->nirq); goto done; } } while (old_nirq != iaq->nirq); /* One interrupt for everything. Ugh. */ device_printf(sc->dev, "running with minimal number of queues. " "itype %d, navail %u.\n", itype, navail); iaq->nirq = 1; MPASS(iaq->nrxq == 1); iaq->ntxq = 1; if (iaq->nofldrxq > 1) iaq->nofldtxq = 1; done: MPASS(iaq->num_vis > 0); if (iaq->num_vis > 1) { MPASS(iaq->nrxq_vi > 0); MPASS(iaq->ntxq_vi > 0); } MPASS(iaq->nirq > 0); MPASS(iaq->nrxq > 0); MPASS(iaq->ntxq > 0); if (itype == INTR_MSI) { MPASS(powerof2(iaq->nirq)); } } static int cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) { int rc, itype, navail, nalloc; for (itype = INTR_MSIX; itype; itype >>= 1) { if ((itype & t4_intr_types) == 0) continue; /* not allowed */ if (itype == INTR_MSIX) navail = pci_msix_count(sc->dev); else if (itype == INTR_MSI) navail = pci_msi_count(sc->dev); else navail = 1; restart: if (navail == 0) continue; calculate_iaq(sc, iaq, itype, navail); nalloc = iaq->nirq; rc = 0; if (itype == INTR_MSIX) rc = pci_alloc_msix(sc->dev, &nalloc); else if (itype == INTR_MSI) rc = pci_alloc_msi(sc->dev, &nalloc); if (rc == 0 && nalloc > 0) { if (nalloc == iaq->nirq) return (0); /* * Didn't get the number requested. Use whatever number * the kernel is willing to allocate. */ device_printf(sc->dev, "fewer vectors than requested, " "type=%d, req=%d, rcvd=%d; will downshift req.\n", itype, iaq->nirq, nalloc); pci_release_msi(sc->dev); navail = nalloc; goto restart; } device_printf(sc->dev, "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", itype, rc, iaq->nirq, nalloc); } device_printf(sc->dev, "failed to find a usable interrupt type. " "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, pci_msix_count(sc->dev), pci_msi_count(sc->dev)); return (ENXIO); } #define FW_VERSION(chip) ( \ V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) /* Just enough of fw_hdr to cover all version info. */ struct fw_h { __u8 ver; __u8 chip; __be16 len512; __be32 fw_ver; __be32 tp_microcode_ver; __u8 intfver_nic; __u8 intfver_vnic; __u8 intfver_ofld; __u8 intfver_ri; __u8 intfver_iscsipdu; __u8 intfver_iscsi; __u8 intfver_fcoepdu; __u8 intfver_fcoe; }; /* Spot check a couple of fields. */ CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); struct fw_info { uint8_t chip; char *kld_name; char *fw_mod_name; struct fw_h fw_h; } fw_info[] = { { .chip = CHELSIO_T4, .kld_name = "t4fw_cfg", .fw_mod_name = "t4fw", .fw_h = { .chip = FW_HDR_CHIP_T4, .fw_ver = htobe32(FW_VERSION(T4)), .intfver_nic = FW_INTFVER(T4, NIC), .intfver_vnic = FW_INTFVER(T4, VNIC), .intfver_ofld = FW_INTFVER(T4, OFLD), .intfver_ri = FW_INTFVER(T4, RI), .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T4, ISCSI), .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), .intfver_fcoe = FW_INTFVER(T4, FCOE), }, }, { .chip = CHELSIO_T5, .kld_name = "t5fw_cfg", .fw_mod_name = "t5fw", .fw_h = { .chip = FW_HDR_CHIP_T5, .fw_ver = htobe32(FW_VERSION(T5)), .intfver_nic = FW_INTFVER(T5, NIC), .intfver_vnic = FW_INTFVER(T5, VNIC), .intfver_ofld = FW_INTFVER(T5, OFLD), .intfver_ri = FW_INTFVER(T5, RI), .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T5, ISCSI), .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), .intfver_fcoe = FW_INTFVER(T5, FCOE), }, }, { .chip = CHELSIO_T6, .kld_name = "t6fw_cfg", .fw_mod_name = "t6fw", .fw_h = { .chip = FW_HDR_CHIP_T6, .fw_ver = htobe32(FW_VERSION(T6)), .intfver_nic = FW_INTFVER(T6, NIC), .intfver_vnic = FW_INTFVER(T6, VNIC), .intfver_ofld = FW_INTFVER(T6, OFLD), .intfver_ri = FW_INTFVER(T6, RI), .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T6, ISCSI), .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), .intfver_fcoe = FW_INTFVER(T6, FCOE), }, } }; static struct fw_info * find_fw_info(int chip) { int i; for (i = 0; i < nitems(fw_info); i++) { if (fw_info[i].chip == chip) return (&fw_info[i]); } return (NULL); } /* * Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return (1); /* * XXX: Is this too conservative? Perhaps I should limit this to the * features that are supported in the driver. */ #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) return (1); #undef SAME_INTF return (0); } static int load_fw_module(struct adapter *sc, const struct firmware **dcfg, const struct firmware **fw) { struct fw_info *fw_info; *dcfg = NULL; if (fw != NULL) *fw = NULL; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); return (EINVAL); } *dcfg = firmware_get(fw_info->kld_name); if (*dcfg != NULL) { if (fw != NULL) *fw = firmware_get(fw_info->fw_mod_name); return (0); } return (ENOENT); } static void unload_fw_module(struct adapter *sc, const struct firmware *dcfg, const struct firmware *fw) { if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); if (dcfg != NULL) firmware_put(dcfg, FIRMWARE_UNLOAD); } /* * Return values: * 0 means no firmware install attempted. * ERESTART means a firmware install was attempted and was successful. * +ve errno means a firmware install was attempted but failed. */ static int install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, const struct fw_h *drv_fw, const char *reason, int *already) { const struct firmware *cfg, *fw; const uint32_t c = be32toh(card_fw->fw_ver); uint32_t d, k; int rc, fw_install; struct fw_h bundled_fw; bool load_attempted; cfg = fw = NULL; load_attempted = false; fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); if (t4_fw_install < 0) { rc = load_fw_module(sc, &cfg, &fw); if (rc != 0 || fw == NULL) { device_printf(sc->dev, "failed to load firmware module: %d. cfg %p, fw %p;" " will use compiled-in firmware version for" "hw.cxgbe.fw_install checks.\n", rc, cfg, fw); } else { memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); } load_attempted = true; } d = be32toh(bundled_fw.fw_ver); if (reason != NULL) goto install; if ((sc->flags & FW_OK) == 0) { if (c == 0xffffffff) { reason = "missing"; goto install; } rc = 0; goto done; } if (!fw_compatible(card_fw, &bundled_fw)) { reason = "incompatible or unusable"; goto install; } if (d > c) { reason = "older than the version bundled with this driver"; goto install; } if (fw_install == 2 && d != c) { reason = "different than the version bundled with this driver"; goto install; } /* No reason to do anything to the firmware already on the card. */ rc = 0; goto done; install: rc = 0; if ((*already)++) goto done; if (fw_install == 0) { device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "but the driver is prohibited from installing a firmware " "on the card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); goto done; } /* * We'll attempt to install a firmware. Load the module first (if it * hasn't been loaded already). */ if (!load_attempted) { rc = load_fw_module(sc, &cfg, &fw); if (rc != 0 || fw == NULL) { device_printf(sc->dev, "failed to load firmware module: %d. cfg %p, fw %p\n", rc, cfg, fw); /* carry on */ } } if (fw == NULL) { device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "but the driver cannot take corrective action because it " "is unable to load the firmware module.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); rc = sc->flags & FW_OK ? 0 : ENOENT; goto done; } k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); if (k != d) { MPASS(t4_fw_install > 0); device_printf(sc->dev, "firmware in KLD (%u.%u.%u.%u) is not what the driver was " "expecting (%u.%u.%u.%u) and will not be used.\n", G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); rc = sc->flags & FW_OK ? 0 : EINVAL; goto done; } device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); if (rc != 0) { device_printf(sc->dev, "failed to install firmware: %d\n", rc); } else { /* Installed successfully, update the cached header too. */ rc = ERESTART; memcpy(card_fw, fw->data, sizeof(*card_fw)); } done: unload_fw_module(sc, cfg, fw); return (rc); } /* * Establish contact with the firmware and attempt to become the master driver. * * A firmware will be installed to the card if needed (if the driver is allowed * to do so). */ static int contact_firmware(struct adapter *sc) { int rc, already = 0; enum dev_state state; struct fw_info *fw_info; struct fw_hdr *card_fw; /* fw on the card */ const struct fw_h *drv_fw; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); return (EINVAL); } drv_fw = &fw_info->fw_h; /* Read the header of the firmware on the card */ card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); restart: rc = -t4_get_fw_hdr(sc, card_fw); if (rc != 0) { device_printf(sc->dev, "unable to read firmware header from card's flash: %d\n", rc); goto done; } rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, &already); if (rc == ERESTART) goto restart; if (rc != 0) goto done; rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); if (rc < 0 || state == DEV_STATE_ERR) { rc = -rc; device_printf(sc->dev, "failed to connect to the firmware: %d, %d. " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); #if 0 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, "not responding properly to HELLO", &already) == ERESTART) goto restart; #endif goto done; } MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ if (rc == sc->pf) { sc->flags |= MASTER_PF; rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, &already); if (rc == ERESTART) rc = 0; else if (rc != 0) goto done; } else if (state == DEV_STATE_UNINIT) { /* * We didn't get to be the master so we definitely won't be * configuring the chip. It's a bug if someone else hasn't * configured it already. */ device_printf(sc->dev, "couldn't be master(%d), " "device not already initialized either(%d). " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); rc = EPROTO; goto done; } else { /* * Some other PF is the master and has configured the chip. * This is allowed but untested. */ device_printf(sc->dev, "PF%d is master, device state %d. " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); sc->cfcsum = 0; rc = 0; } done: if (rc != 0 && sc->flags & FW_OK) { t4_fw_bye(sc, sc->mbox); sc->flags &= ~FW_OK; } free(card_fw, M_CXGBE); return (rc); } static int copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, uint32_t mtype, uint32_t moff) { struct fw_info *fw_info; const struct firmware *dcfg, *rcfg = NULL; const uint32_t *cfdata; uint32_t cflen, addr; int rc; load_fw_module(sc, &dcfg, NULL); /* Card specific interpretation of "default". */ if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { if (pci_get_device(sc->dev) == 0x440a) snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); if (is_fpga(sc)) snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); } if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { if (dcfg == NULL) { device_printf(sc->dev, "KLD with default config is not available.\n"); rc = ENOENT; goto done; } cfdata = dcfg->data; cflen = dcfg->datasize & ~3; } else { char s[32]; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); rc = EINVAL; goto done; } snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); rcfg = firmware_get(s); if (rcfg == NULL) { device_printf(sc->dev, "unable to load module \"%s\" for configuration " "profile \"%s\".\n", s, cfg_file); rc = ENOENT; goto done; } cfdata = rcfg->data; cflen = rcfg->datasize & ~3; } if (cflen > FLASH_CFG_MAX_SIZE) { device_printf(sc->dev, "config file too long (%d, max allowed is %d).\n", cflen, FLASH_CFG_MAX_SIZE); rc = EINVAL; goto done; } rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); if (rc != 0) { device_printf(sc->dev, "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", __func__, mtype, moff, cflen, rc); rc = EINVAL; goto done; } write_via_memwin(sc, 2, addr, cfdata, cflen); done: if (rcfg != NULL) firmware_put(rcfg, FIRMWARE_UNLOAD); unload_fw_module(sc, dcfg, NULL); return (rc); } struct caps_allowed { uint16_t nbmcaps; uint16_t linkcaps; uint16_t switchcaps; uint16_t niccaps; uint16_t toecaps; uint16_t rdmacaps; uint16_t cryptocaps; uint16_t iscsicaps; uint16_t fcoecaps; }; #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) /* * Provide a configuration profile to the firmware and have it initialize the * chip accordingly. This may involve uploading a configuration file to the * card. */ static int apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, const struct caps_allowed *caps_allowed) { int rc; struct fw_caps_config_cmd caps; uint32_t mtype, moff, finicsum, cfcsum, param, val; rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); if (rc != 0) { device_printf(sc->dev, "firmware reset failed: %d.\n", rc); return (rc); } bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { mtype = 0; moff = 0; caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { mtype = FW_MEMTYPE_FLASH; moff = t4_flash_cfg_addr(sc); caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); } else { /* * Ask the firmware where it wants us to upload the config file. */ param = FW_PARAM_DEV(CF); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* No support for config file? Shouldn't happen. */ device_printf(sc->dev, "failed to query config file location: %d.\n", rc); goto done; } mtype = G_FW_PARAMS_PARAM_Y(val); moff = G_FW_PARAMS_PARAM_Z(val) << 16; caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); if (rc != 0) { device_printf(sc->dev, "failed to upload config file to card: %d.\n", rc); goto done; } } rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to pre-process config file: %d " "(mtype %d, moff 0x%x).\n", rc, mtype, moff); goto done; } finicsum = be32toh(caps.finicsum); cfcsum = be32toh(caps.cfcsum); /* actual */ if (finicsum != cfcsum) { device_printf(sc->dev, "WARNING: config file checksum mismatch: %08x %08x\n", finicsum, cfcsum); } sc->cfcsum = cfcsum; snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); /* * Let the firmware know what features will (not) be used so it can tune * things accordingly. */ #define LIMIT_CAPS(x) do { \ caps.x##caps &= htobe16(caps_allowed->x##caps); \ } while (0) LIMIT_CAPS(nbm); LIMIT_CAPS(link); LIMIT_CAPS(switch); LIMIT_CAPS(nic); LIMIT_CAPS(toe); LIMIT_CAPS(rdma); LIMIT_CAPS(crypto); LIMIT_CAPS(iscsi); LIMIT_CAPS(fcoe); #undef LIMIT_CAPS if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { /* * TOE and hashfilters are mutually exclusive. It is a config * file or firmware bug if both are reported as available. Try * to cope with the situation in non-debug builds by disabling * TOE. */ MPASS(caps.toecaps == 0); caps.toecaps = 0; caps.rdmacaps = 0; caps.iscsicaps = 0; } caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); if (rc != 0) { device_printf(sc->dev, "failed to process config file: %d.\n", rc); goto done; } t4_tweak_chip_settings(sc); set_params__pre_init(sc); /* get basic stuff going */ rc = -t4_fw_initialize(sc, sc->mbox); if (rc != 0) { device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); goto done; } done: return (rc); } /* * Partition chip resources for use between various PFs, VFs, etc. */ static int partition_resources(struct adapter *sc) { char cfg_file[sizeof(t4_cfg_file)]; struct caps_allowed caps_allowed; int rc; bool fallback; /* Only the master driver gets to configure the chip resources. */ MPASS(sc->flags & MASTER_PF); #define COPY_CAPS(x) do { \ caps_allowed.x##caps = t4_##x##caps_allowed; \ } while (0) bzero(&caps_allowed, sizeof(caps_allowed)); COPY_CAPS(nbm); COPY_CAPS(link); COPY_CAPS(switch); COPY_CAPS(nic); COPY_CAPS(toe); COPY_CAPS(rdma); COPY_CAPS(crypto); COPY_CAPS(iscsi); COPY_CAPS(fcoe); fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); retry: rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); if (rc != 0 && fallback) { device_printf(sc->dev, "failed (%d) to configure card with \"%s\" profile, " "will fall back to a basic configuration and retry.\n", rc, cfg_file); snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); bzero(&caps_allowed, sizeof(caps_allowed)); COPY_CAPS(switch); caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; fallback = false; goto retry; } #undef COPY_CAPS return (rc); } /* * Retrieve parameters that are needed (or nice to have) very early. */ static int get_params__pre_init(struct adapter *sc) { int rc; uint32_t param[2], val[2]; t4_get_version_info(sc); snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); param[0] = FW_PARAM_DEV(PORTVEC); param[1] = FW_PARAM_DEV(CCLK); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (pre_init): %d.\n", rc); return (rc); } sc->params.portvec = val[0]; sc->params.nports = bitcount32(val[0]); sc->params.vpd.cclk = val[1]; /* Read device log parameters. */ rc = -t4_init_devlog_params(sc, 1); if (rc == 0) fixup_devlog_params(sc); else { device_printf(sc->dev, "failed to get devlog parameters: %d.\n", rc); rc = 0; /* devlog isn't critical for device operation */ } return (rc); } /* * Any params that need to be set before FW_INITIALIZE. */ static int set_params__pre_init(struct adapter *sc) { int rc = 0; uint32_t param, val; if (chip_id(sc) >= CHELSIO_T6) { param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); val = 1; rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); /* firmwares < 1.20.1.0 do not have this param. */ if (rc == FW_EINVAL && sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) { rc = 0; } if (rc != 0) { device_printf(sc->dev, "failed to enable high priority filters :%d.\n", rc); } } /* Enable opaque VIIDs with firmwares that support it. */ param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); val = 1; rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc == 0 && val == 1) sc->params.viid_smt_extn_support = true; else sc->params.viid_smt_extn_support = false; return (rc); } /* * Retrieve various parameters that are of interest to the driver. The device * has been initialized by the firmware at this point. */ static int get_params__post_init(struct adapter *sc) { int rc; uint32_t param[7], val[7]; struct fw_caps_config_cmd caps; param[0] = FW_PARAM_PFVF(IQFLINT_START); param[1] = FW_PARAM_PFVF(EQ_START); param[2] = FW_PARAM_PFVF(FILTER_START); param[3] = FW_PARAM_PFVF(FILTER_END); param[4] = FW_PARAM_PFVF(L2T_START); param[5] = FW_PARAM_PFVF(L2T_END); param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (post_init): %d.\n", rc); return (rc); } sc->sge.iq_start = val[0]; sc->sge.eq_start = val[1]; if ((int)val[3] > (int)val[2]) { sc->tids.ftid_base = val[2]; sc->tids.ftid_end = val[3]; sc->tids.nftids = val[3] - val[2] + 1; } sc->vres.l2t.start = val[4]; sc->vres.l2t.size = val[5] - val[4] + 1; KASSERT(sc->vres.l2t.size <= L2T_SIZE, ("%s: L2 table size (%u) larger than expected (%u)", __func__, sc->vres.l2t.size, L2T_SIZE)); sc->params.core_vdd = val[6]; if (chip_id(sc) >= CHELSIO_T6) { sc->tids.tid_base = t4_read_reg(sc, A_LE_DB_ACTIVE_TABLE_START_INDEX); param[0] = FW_PARAM_PFVF(HPFILTER_START); param[1] = FW_PARAM_PFVF(HPFILTER_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query hpfilter parameters: %d.\n", rc); return (rc); } if ((int)val[1] > (int)val[0]) { sc->tids.hpftid_base = val[0]; sc->tids.hpftid_end = val[1]; sc->tids.nhpftids = val[1] - val[0] + 1; /* * These should go off if the layout changes and the * driver needs to catch up. */ MPASS(sc->tids.hpftid_base == 0); MPASS(sc->tids.tid_base == sc->tids.nhpftids); } } /* * MPSBGMAP is queried separately because only recent firmwares support * it as a parameter and we don't want the compound query above to fail * on older firmwares. */ param[0] = FW_PARAM_DEV(MPSBGMAP); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.mps_bg_map = val[0]; else sc->params.mps_bg_map = 0; /* * Determine whether the firmware supports the filter2 work request. * This is queried separately for the same reason as MPSBGMAP above. */ param[0] = FW_PARAM_DEV(FILTER2_WR); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.filter2_wr_support = val[0] != 0; else sc->params.filter2_wr_support = 0; /* * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. * This is queried separately for the same reason as other params above. */ param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.ulptx_memwrite_dsgl = val[0] != 0; else sc->params.ulptx_memwrite_dsgl = false; /* get capabilites */ bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to get card capabilities: %d.\n", rc); return (rc); } #define READ_CAPS(x) do { \ sc->x = htobe16(caps.x); \ } while (0) READ_CAPS(nbmcaps); READ_CAPS(linkcaps); READ_CAPS(switchcaps); READ_CAPS(niccaps); READ_CAPS(toecaps); READ_CAPS(rdmacaps); READ_CAPS(cryptocaps); READ_CAPS(iscsicaps); READ_CAPS(fcoecaps); if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { MPASS(chip_id(sc) > CHELSIO_T4); MPASS(sc->toecaps == 0); sc->toecaps = 0; param[0] = FW_PARAM_DEV(NTID); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query HASHFILTER parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; if (sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { MPASS(sc->tids.ntids >= sc->tids.nhpftids); sc->tids.ntids -= sc->tids.nhpftids; } sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); sc->params.hash_filter = 1; } if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { param[0] = FW_PARAM_PFVF(ETHOFLD_START); param[1] = FW_PARAM_PFVF(ETHOFLD_END); param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query NIC parameters: %d.\n", rc); return (rc); } if ((int)val[1] > (int)val[0]) { sc->tids.etid_base = val[0]; sc->tids.etid_end = val[1]; sc->tids.netids = val[1] - val[0] + 1; sc->params.eo_wr_cred = val[2]; sc->params.ethoffload = 1; } } if (sc->toecaps) { /* query offload-related parameters */ param[0] = FW_PARAM_DEV(NTID); param[1] = FW_PARAM_PFVF(SERVER_START); param[2] = FW_PARAM_PFVF(SERVER_END); param[3] = FW_PARAM_PFVF(TDDP_START); param[4] = FW_PARAM_PFVF(TDDP_END); param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TOE parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; if (sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { MPASS(sc->tids.ntids >= sc->tids.nhpftids); sc->tids.ntids -= sc->tids.nhpftids; } sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); if ((int)val[2] > (int)val[1]) { sc->tids.stid_base = val[1]; sc->tids.nstids = val[2] - val[1] + 1; } sc->vres.ddp.start = val[3]; sc->vres.ddp.size = val[4] - val[3] + 1; sc->params.ofldq_wr_cred = val[5]; sc->params.offload = 1; } else { /* * The firmware attempts memfree TOE configuration for -SO cards * and will report toecaps=0 if it runs out of resources (this * depends on the config file). It may not report 0 for other * capabilities dependent on the TOE in this case. Set them to * 0 here so that the driver doesn't bother tracking resources * that will never be used. */ sc->iscsicaps = 0; sc->rdmacaps = 0; } if (sc->rdmacaps) { param[0] = FW_PARAM_PFVF(STAG_START); param[1] = FW_PARAM_PFVF(STAG_END); param[2] = FW_PARAM_PFVF(RQ_START); param[3] = FW_PARAM_PFVF(RQ_END); param[4] = FW_PARAM_PFVF(PBL_START); param[5] = FW_PARAM_PFVF(PBL_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(1): %d.\n", rc); return (rc); } sc->vres.stag.start = val[0]; sc->vres.stag.size = val[1] - val[0] + 1; sc->vres.rq.start = val[2]; sc->vres.rq.size = val[3] - val[2] + 1; sc->vres.pbl.start = val[4]; sc->vres.pbl.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SQRQ_START); param[1] = FW_PARAM_PFVF(SQRQ_END); param[2] = FW_PARAM_PFVF(CQ_START); param[3] = FW_PARAM_PFVF(CQ_END); param[4] = FW_PARAM_PFVF(OCQ_START); param[5] = FW_PARAM_PFVF(OCQ_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(2): %d.\n", rc); return (rc); } sc->vres.qp.start = val[0]; sc->vres.qp.size = val[1] - val[0] + 1; sc->vres.cq.start = val[2]; sc->vres.cq.size = val[3] - val[2] + 1; sc->vres.ocq.start = val[4]; sc->vres.ocq.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SRQ_START); param[1] = FW_PARAM_PFVF(SRQ_END); param[2] = FW_PARAM_DEV(MAXORDIRD_QP); param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(3): %d.\n", rc); return (rc); } sc->vres.srq.start = val[0]; sc->vres.srq.size = val[1] - val[0] + 1; sc->params.max_ordird_qp = val[2]; sc->params.max_ird_adapter = val[3]; } if (sc->iscsicaps) { param[0] = FW_PARAM_PFVF(ISCSI_START); param[1] = FW_PARAM_PFVF(ISCSI_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query iSCSI parameters: %d.\n", rc); return (rc); } sc->vres.iscsi.start = val[0]; sc->vres.iscsi.size = val[1] - val[0] + 1; } if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { param[0] = FW_PARAM_PFVF(TLS_START); param[1] = FW_PARAM_PFVF(TLS_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TLS parameters: %d.\n", rc); return (rc); } sc->vres.key.start = val[0]; sc->vres.key.size = val[1] - val[0] + 1; } t4_init_sge_params(sc); /* * We've got the params we wanted to query via the firmware. Now grab * some others directly from the chip. */ rc = t4_read_chip_settings(sc); return (rc); } static int set_params__post_init(struct adapter *sc) { uint32_t param, val; #ifdef TCP_OFFLOAD int i, v, shift; #endif /* ask for encapsulated CPLs */ param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); val = 1; (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); /* Enable 32b port caps if the firmware supports it. */ param = FW_PARAM_PFVF(PORT_CAPS32); val = 1; if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) sc->params.port_caps32 = 1; /* Let filter + maskhash steer to a part of the VI's RSS region. */ val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), V_MASKFILTER(val - 1)); #ifdef TCP_OFFLOAD /* * Override the TOE timers with user provided tunables. This is not the * recommended way to change the timers (the firmware config file is) so * these tunables are not documented. * * All the timer tunables are in microseconds. */ if (t4_toe_keepalive_idle != 0) { v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); v &= M_KEEPALIVEIDLE; t4_set_reg_field(sc, A_TP_KEEP_IDLE, V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); } if (t4_toe_keepalive_interval != 0) { v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); v &= M_KEEPALIVEINTVL; t4_set_reg_field(sc, A_TP_KEEP_INTVL, V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); } if (t4_toe_keepalive_count != 0) { v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; t4_set_reg_field(sc, A_TP_SHIFT_CNT, V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); } if (t4_toe_rexmt_min != 0) { v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); v &= M_RXTMIN; t4_set_reg_field(sc, A_TP_RXT_MIN, V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); } if (t4_toe_rexmt_max != 0) { v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); v &= M_RXTMAX; t4_set_reg_field(sc, A_TP_RXT_MAX, V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); } if (t4_toe_rexmt_count != 0) { v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; t4_set_reg_field(sc, A_TP_SHIFT_CNT, V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); } for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { if (t4_toe_rexmt_backoff[i] != -1) { v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; shift = (i & 3) << 3; t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), M_TIMERBACKOFFINDEX0 << shift, v << shift); } } #endif return (0); } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV static void t4_set_desc(struct adapter *sc) { char buf[128]; struct adapter_params *p = &sc->params; snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); device_set_desc_copy(sc->dev, buf); } static inline void ifmedia_add4(struct ifmedia *ifm, int m) { ifmedia_add(ifm, m, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); } /* * This is the selected media, which is not quite the same as the active media. * The media line in ifconfig is "media: Ethernet selected (active)" if selected * and active are not the same, and "media: Ethernet selected" otherwise. */ static void set_current_media(struct port_info *pi) { struct link_config *lc; struct ifmedia *ifm; int mword; u_int speed; PORT_LOCK_ASSERT_OWNED(pi); /* Leave current media alone if it's already set to IFM_NONE. */ ifm = &pi->media; if (ifm->ifm_cur != NULL && IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) return; lc = &pi->link_cfg; if (lc->requested_aneg != AUTONEG_DISABLE && lc->supported & FW_PORT_CAP32_ANEG) { ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); return; } mword = IFM_ETHER | IFM_FDX; if (lc->requested_fc & PAUSE_TX) mword |= IFM_ETH_TXPAUSE; if (lc->requested_fc & PAUSE_RX) mword |= IFM_ETH_RXPAUSE; if (lc->requested_speed == 0) speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ else speed = lc->requested_speed; mword |= port_mword(pi, speed_to_fwcap(speed)); ifmedia_set(ifm, mword); } /* * Returns true if the ifmedia list for the port cannot change. */ static bool fixed_ifmedia(struct port_info *pi) { return (pi->port_type == FW_PORT_TYPE_BT_SGMII || pi->port_type == FW_PORT_TYPE_BT_XFI || pi->port_type == FW_PORT_TYPE_BT_XAUI || pi->port_type == FW_PORT_TYPE_KX4 || pi->port_type == FW_PORT_TYPE_KX || pi->port_type == FW_PORT_TYPE_KR || pi->port_type == FW_PORT_TYPE_BP_AP || pi->port_type == FW_PORT_TYPE_BP4_AP || pi->port_type == FW_PORT_TYPE_BP40_BA || pi->port_type == FW_PORT_TYPE_KR4_100G || pi->port_type == FW_PORT_TYPE_KR_SFP28 || pi->port_type == FW_PORT_TYPE_KR_XLAUI); } static void build_medialist(struct port_info *pi) { uint32_t ss, speed; int unknown, mword, bit; struct link_config *lc; struct ifmedia *ifm; PORT_LOCK_ASSERT_OWNED(pi); if (pi->flags & FIXED_IFMEDIA) return; /* * Rebuild the ifmedia list. */ ifm = &pi->media; ifmedia_removeall(ifm); lc = &pi->link_cfg; ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */ if (__predict_false(ss == 0)) { /* not supposed to happen. */ MPASS(ss != 0); no_media: MPASS(LIST_EMPTY(&ifm->ifm_list)); ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_NONE); return; } unknown = 0; for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { speed = 1 << bit; MPASS(speed & M_FW_PORT_CAP32_SPEED); if (ss & speed) { mword = port_mword(pi, speed); if (mword == IFM_NONE) { goto no_media; } else if (mword == IFM_UNKNOWN) unknown++; else ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); } } if (unknown > 0) /* Add one unknown for all unknown media types. */ ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); if (lc->supported & FW_PORT_CAP32_ANEG) ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); set_current_media(pi); } /* * Initialize the requested fields in the link config based on driver tunables. */ static void init_link_config(struct port_info *pi) { struct link_config *lc = &pi->link_cfg; PORT_LOCK_ASSERT_OWNED(pi); lc->requested_speed = 0; if (t4_autoneg == 0) lc->requested_aneg = AUTONEG_DISABLE; else if (t4_autoneg == 1) lc->requested_aneg = AUTONEG_ENABLE; else lc->requested_aneg = AUTONEG_AUTO; lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG); if (t4_fec == -1 || t4_fec & FEC_AUTO) lc->requested_fec = FEC_AUTO; else { lc->requested_fec = FEC_NONE; if (t4_fec & FEC_RS) lc->requested_fec |= FEC_RS; if (t4_fec & FEC_BASER_RS) lc->requested_fec |= FEC_BASER_RS; } } /* * Makes sure that all requested settings comply with what's supported by the * port. Returns the number of settings that were invalid and had to be fixed. */ static int fixup_link_config(struct port_info *pi) { int n = 0; struct link_config *lc = &pi->link_cfg; uint32_t fwspeed; PORT_LOCK_ASSERT_OWNED(pi); /* Speed (when not autonegotiating) */ if (lc->requested_speed != 0) { fwspeed = speed_to_fwcap(lc->requested_speed); if ((fwspeed & lc->supported) == 0) { n++; lc->requested_speed = 0; } } /* Link autonegotiation */ MPASS(lc->requested_aneg == AUTONEG_ENABLE || lc->requested_aneg == AUTONEG_DISABLE || lc->requested_aneg == AUTONEG_AUTO); if (lc->requested_aneg == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) { n++; lc->requested_aneg = AUTONEG_AUTO; } /* Flow control */ MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); if (lc->requested_fc & PAUSE_TX && !(lc->supported & FW_PORT_CAP32_FC_TX)) { n++; lc->requested_fc &= ~PAUSE_TX; } if (lc->requested_fc & PAUSE_RX && !(lc->supported & FW_PORT_CAP32_FC_RX)) { n++; lc->requested_fc &= ~PAUSE_RX; } if (!(lc->requested_fc & PAUSE_AUTONEG) && !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) { n++; lc->requested_fc |= PAUSE_AUTONEG; } /* FEC */ if ((lc->requested_fec & FEC_RS && !(lc->supported & FW_PORT_CAP32_FEC_RS)) || (lc->requested_fec & FEC_BASER_RS && !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) { n++; lc->requested_fec = FEC_AUTO; } return (n); } /* * Apply the requested L1 settings, which are expected to be valid, to the * hardware. */ static int apply_link_config(struct port_info *pi) { struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; #ifdef INVARIANTS ASSERT_SYNCHRONIZED_OP(sc); PORT_LOCK_ASSERT_OWNED(pi); if (lc->requested_aneg == AUTONEG_ENABLE) MPASS(lc->supported & FW_PORT_CAP32_ANEG); if (!(lc->requested_fc & PAUSE_AUTONEG)) MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE); if (lc->requested_fc & PAUSE_TX) MPASS(lc->supported & FW_PORT_CAP32_FC_TX); if (lc->requested_fc & PAUSE_RX) MPASS(lc->supported & FW_PORT_CAP32_FC_RX); if (lc->requested_fec & FEC_RS) MPASS(lc->supported & FW_PORT_CAP32_FEC_RS); if (lc->requested_fec & FEC_BASER_RS) MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS); #endif rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); if (rc != 0) { /* Don't complain if the VF driver gets back an EPERM. */ if (!(sc->flags & IS_VF) || rc != FW_EPERM) device_printf(pi->dev, "l1cfg failed: %d\n", rc); } else { /* * An L1_CFG will almost always result in a link-change event if * the link is up, and the driver will refresh the actual * fec/fc/etc. when the notification is processed. If the link * is down then the actual settings are meaningless. * * This takes care of the case where a change in the L1 settings * may not result in a notification. */ if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); } return (rc); } #define FW_MAC_EXACT_CHUNK 7 /* * Program the port's XGMAC based on parameters in ifnet. The caller also * indicates which parameters should be programmed (the rest are left alone). */ int update_mac_settings(struct ifnet *ifp, int flags) { int rc = 0; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; ASSERT_SYNCHRONIZED_OP(sc); KASSERT(flags, ("%s: not told what to update.", __func__)); if (flags & XGMAC_MTU) mtu = ifp->if_mtu; if (flags & XGMAC_PROMISC) promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; if (flags & XGMAC_ALLMULTI) allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; if (flags & XGMAC_VLANEX) vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, allmulti, 1, vlanex, false); if (rc) { if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); return (rc); } } if (flags & XGMAC_UCADDR) { uint8_t ucaddr[ETHER_ADDR_LEN]; bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, ucaddr, true, &vi->smt_idx); if (rc < 0) { rc = -rc; if_printf(ifp, "change_mac failed: %d\n", rc); return (rc); } else { vi->xact_addr_filt = rc; rc = 0; } } if (flags & XGMAC_MCADDRS) { const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; int del = 1; uint64_t hash = 0; struct ifmultiaddr *ifma; int i = 0, j; if_maddr_rlock(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mcaddr[i] = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); MPASS(ETHER_IS_MULTICAST(mcaddr[i])); i++; if (i == FW_MAC_EXACT_CHUNK) { rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } del = 0; i = 0; } } if (i > 0) { rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } } rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0); if (rc != 0) if_printf(ifp, "failed to set mc address hash: %d", rc); mcfail: if_maddr_runlock(ifp); } return (rc); } /* * {begin|end}_synchronized_op must be called from the same thread. */ int begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, char *wmesg) { int rc, pri; #ifdef WITNESS /* the caller thinks it's ok to sleep, but is it really? */ if (flags & SLEEP_OK) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "begin_synchronized_op"); #endif if (INTR_OK) pri = PCATCH; else pri = 0; ADAPTER_LOCK(sc); for (;;) { if (vi && IS_DOOMED(vi)) { rc = ENXIO; goto done; } if (!IS_BUSY(sc)) { rc = 0; break; } if (!(flags & SLEEP_OK)) { rc = EBUSY; goto done; } if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { rc = EINTR; goto done; } } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = wmesg; sc->last_op_thr = curthread; sc->last_op_flags = flags; #endif done: if (!(flags & HOLD_LOCK) || rc) ADAPTER_UNLOCK(sc); return (rc); } /* * Tell if_ioctl and if_init that the VI is going away. This is * special variant of begin_synchronized_op and must be paired with a * call to end_synchronized_op. */ void doom_vi(struct adapter *sc, struct vi_info *vi) { ADAPTER_LOCK(sc); SET_DOOMED(vi); wakeup(&sc->flags); while (IS_BUSY(sc)) mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = "t4detach"; sc->last_op_thr = curthread; sc->last_op_flags = 0; #endif ADAPTER_UNLOCK(sc); } /* * {begin|end}_synchronized_op must be called from the same thread. */ void end_synchronized_op(struct adapter *sc, int flags) { if (flags & LOCK_HELD) ADAPTER_LOCK_ASSERT_OWNED(sc); else ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup(&sc->flags); ADAPTER_UNLOCK(sc); } static int cxgbe_init_synchronized(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; int rc = 0, i; struct sge_txq *txq; ASSERT_SYNCHRONIZED_OP(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return (0); /* already running */ if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_full_init(sc)) != 0)) return (rc); /* error message displayed already */ if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_full_init(vi)) != 0)) return (rc); /* error message displayed already */ rc = update_mac_settings(ifp, XGMAC_ALL); if (rc) goto done; /* error message displayed already */ PORT_LOCK(pi); if (pi->up_vis == 0) { t4_update_port_info(pi); fixup_link_config(pi); build_medialist(pi); apply_link_config(pi); } rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); if (rc != 0) { if_printf(ifp, "enable_vi failed: %d\n", rc); PORT_UNLOCK(pi); goto done; } /* * Can't fail from this point onwards. Review cxgbe_uninit_synchronized * if this changes. */ for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags |= EQ_ENABLED; TXQ_UNLOCK(txq); } /* * The first iq of the first port to come up is used for tracing. */ if (sc->traceq < 0 && IS_MAIN_VI(vi)) { sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | V_QUEUENUMBER(sc->traceq)); pi->flags |= HAS_TRACEQ; } /* all ok */ pi->up_vis++; ifp->if_drv_flags |= IFF_DRV_RUNNING; if (pi->nvi > 1 || sc->flags & IS_VF) callout_reset(&vi->tick, hz, vi_tick, vi); else callout_reset(&pi->tick, hz, cxgbe_tick, pi); if (pi->link_cfg.link_ok) t4_os_link_changed(pi); PORT_UNLOCK(pi); done: if (rc != 0) cxgbe_uninit_synchronized(vi); return (rc); } /* * Idempotent. */ static int cxgbe_uninit_synchronized(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; int rc, i; struct sge_txq *txq; ASSERT_SYNCHRONIZED_OP(sc); if (!(vi->flags & VI_INIT_DONE)) { if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { KASSERT(0, ("uninited VI is running")); if_printf(ifp, "uninited VI with running ifnet. " "vi->flags 0x%016lx, if_flags 0x%08x, " "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, ifp->if_drv_flags); } return (0); } /* * Disable the VI so that all its data in either direction is discarded * by the MPS. Leave everything else (the queues, interrupts, and 1Hz * tick) intact as the TP can deliver negative advice or data that it's * holding in its RAM (for an offloaded connection) even after the VI is * disabled. */ rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); if (rc) { if_printf(ifp, "disable_vi failed: %d\n", rc); return (rc); } for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags &= ~EQ_ENABLED; TXQ_UNLOCK(txq); } PORT_LOCK(pi); if (pi->nvi > 1 || sc->flags & IS_VF) callout_stop(&vi->tick); else callout_stop(&pi->tick); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { PORT_UNLOCK(pi); return (0); } ifp->if_drv_flags &= ~IFF_DRV_RUNNING; pi->up_vis--; if (pi->up_vis > 0) { PORT_UNLOCK(pi); return (0); } pi->link_cfg.link_ok = false; pi->link_cfg.speed = 0; pi->link_cfg.link_down_rc = 255; t4_os_link_changed(pi); PORT_UNLOCK(pi); return (0); } /* * It is ok for this function to fail midway and return right away. t4_detach * will walk the entire sc->irq list and clean up whatever is valid. */ int t4_setup_intr_handlers(struct adapter *sc) { int rc, rid, p, q, v; char s[8]; struct irq *irq; struct port_info *pi; struct vi_info *vi; struct sge *sge = &sc->sge; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #ifdef DEV_NETMAP struct sge_nm_rxq *nm_rxq; #endif #ifdef RSS int nbuckets = rss_getnumbuckets(); #endif /* * Setup interrupts. */ irq = &sc->irq[0]; rid = sc->intr_type == INTR_INTX ? 0 : 1; if (forwarding_intr_to_fwq(sc)) return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); /* Multiple interrupts. */ if (sc->flags & IS_VF) KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); else KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); /* The first one is always error intr on PFs */ if (!(sc->flags & IS_VF)) { rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); if (rc != 0) return (rc); irq++; rid++; } /* The second one is always the firmware event queue (first on VFs) */ rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); if (rc != 0) return (rc); irq++; rid++; for_each_port(sc, p) { pi = sc->port[p]; for_each_vi(pi, v, vi) { vi->first_intr = rid - 1; if (vi->nnmrxq > 0) { int n = max(vi->nrxq, vi->nnmrxq); rxq = &sge->rxq[vi->first_rxq]; #ifdef DEV_NETMAP nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; #endif for (q = 0; q < n; q++) { snprintf(s, sizeof(s), "%x%c%x", p, 'a' + v, q); if (q < vi->nrxq) irq->rxq = rxq++; #ifdef DEV_NETMAP if (q < vi->nnmrxq) irq->nm_rxq = nm_rxq++; if (irq->nm_rxq != NULL && irq->rxq == NULL) { /* Netmap rx only */ rc = t4_alloc_irq(sc, irq, rid, t4_nm_intr, irq->nm_rxq, s); } if (irq->nm_rxq != NULL && irq->rxq != NULL) { /* NIC and Netmap rx */ rc = t4_alloc_irq(sc, irq, rid, t4_vi_intr, irq, s); } #endif if (irq->rxq != NULL && irq->nm_rxq == NULL) { /* NIC rx only */ rc = t4_alloc_irq(sc, irq, rid, t4_intr, irq->rxq, s); } if (rc != 0) return (rc); #ifdef RSS if (q < vi->nrxq) { bus_bind_intr(sc->dev, irq->res, rss_getcpu(q % nbuckets)); } #endif irq++; rid++; vi->nintr++; } } else { for_each_rxq(vi, q, rxq) { snprintf(s, sizeof(s), "%x%c%x", p, 'a' + v, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, rxq, s); if (rc != 0) return (rc); #ifdef RSS bus_bind_intr(sc->dev, irq->res, rss_getcpu(q % nbuckets)); #endif irq++; rid++; vi->nintr++; } } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, q, ofld_rxq) { snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, ofld_rxq, s); if (rc != 0) return (rc); irq++; rid++; vi->nintr++; } #endif } } MPASS(irq == &sc->irq[sc->intr_count]); return (0); } int adapter_full_init(struct adapter *sc) { int rc, i; #ifdef RSS uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; #endif ASSERT_SYNCHRONIZED_OP(sc); ADAPTER_LOCK_ASSERT_NOTOWNED(sc); KASSERT((sc->flags & FULL_INIT_DONE) == 0, ("%s: FULL_INIT_DONE already", __func__)); /* * queues that belong to the adapter (not any particular port). */ rc = t4_setup_adapter_queues(sc); if (rc != 0) goto done; for (i = 0; i < nitems(sc->tq); i++) { sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->tq[i]); if (sc->tq[i] == NULL) { device_printf(sc->dev, "failed to allocate task queue %d\n", i); rc = ENOMEM; goto done; } taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", device_get_nameunit(sc->dev), i); } #ifdef RSS MPASS(RSS_KEYSIZE == 40); rss_getkey((void *)&raw_rss_key[0]); for (i = 0; i < nitems(rss_key); i++) { rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); } t4_write_rss_key(sc, &rss_key[0], -1, 1); #endif if (!(sc->flags & IS_VF)) t4_intr_enable(sc); sc->flags |= FULL_INIT_DONE; done: if (rc != 0) adapter_full_uninit(sc); return (rc); } int adapter_full_uninit(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); t4_teardown_adapter_queues(sc); for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { taskqueue_free(sc->tq[i]); sc->tq[i] = NULL; } sc->flags &= ~FULL_INIT_DONE; return (0); } #ifdef RSS #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ RSS_HASHTYPE_RSS_UDP_IPV6) /* Translates kernel hash types to hardware. */ static int hashconfig_to_hashen(int hashconfig) { int hashen = 0; if (hashconfig & RSS_HASHTYPE_RSS_IPV4) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_IPV6) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; } if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; } if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; return (hashen); } /* Translates hardware hash types to kernel. */ static int hashen_to_hashconfig(int hashen) { int hashconfig = 0; if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { /* * If UDP hashing was enabled it must have been enabled for * either IPv4 or IPv6 (inclusive or). Enabling UDP without * enabling any 4-tuple hash is nonsense configuration. */ MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; } if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) hashconfig |= RSS_HASHTYPE_RSS_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) hashconfig |= RSS_HASHTYPE_RSS_IPV6; return (hashconfig); } #endif int vi_full_init(struct vi_info *vi) { struct adapter *sc = vi->pi->adapter; struct ifnet *ifp = vi->ifp; uint16_t *rss; struct sge_rxq *rxq; int rc, i, j; #ifdef RSS int nbuckets = rss_getnumbuckets(); int hashconfig = rss_gethashconfig(); int extra; #endif ASSERT_SYNCHRONIZED_OP(sc); KASSERT((vi->flags & VI_INIT_DONE) == 0, ("%s: VI_INIT_DONE already", __func__)); sysctl_ctx_init(&vi->ctx); vi->flags |= VI_SYSCTL_CTX; /* * Allocate tx/rx/fl queues for this VI. */ rc = t4_setup_vi_queues(vi); if (rc != 0) goto done; /* error message displayed already */ /* * Setup RSS for this VI. Save a copy of the RSS table for later use. */ if (vi->nrxq > vi->rss_size) { if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " "some queues will never receive traffic.\n", vi->nrxq, vi->rss_size); } else if (vi->rss_size % vi->nrxq) { if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " "expect uneven traffic distribution.\n", vi->nrxq, vi->rss_size); } #ifdef RSS if (vi->nrxq != nbuckets) { if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" "performance will be impacted.\n", vi->nrxq, nbuckets); } #endif rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); for (i = 0; i < vi->rss_size;) { #ifdef RSS j = rss_get_indirection_to_bucket(i); j %= vi->nrxq; rxq = &sc->sge.rxq[vi->first_rxq + j]; rss[i++] = rxq->iq.abs_id; #else for_each_rxq(vi, j, rxq) { rss[i++] = rxq->iq.abs_id; if (i == vi->rss_size) break; } #endif } rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, vi->rss_size); if (rc != 0) { free(rss, M_CXGBE); if_printf(ifp, "rss_config failed: %d\n", rc); goto done; } #ifdef RSS vi->hashen = hashconfig_to_hashen(hashconfig); /* * We may have had to enable some hashes even though the global config * wants them disabled. This is a potential problem that must be * reported to the user. */ extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; /* * If we consider only the supported hash types, then the enabled hashes * are a superset of the requested hashes. In other words, there cannot * be any supported hash that was requested but not enabled, but there * can be hashes that were not requested but had to be enabled. */ extra &= SUPPORTED_RSS_HASHTYPES; MPASS((extra & hashconfig) == 0); if (extra) { if_printf(ifp, "global RSS config (0x%x) cannot be accommodated.\n", hashconfig); } if (extra & RSS_HASHTYPE_RSS_IPV4) if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_IPV6) if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); #else vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; #endif rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0); if (rc != 0) { free(rss, M_CXGBE); if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); goto done; } vi->rss = rss; vi->flags |= VI_INIT_DONE; done: if (rc != 0) vi_full_uninit(vi); return (rc); } /* * Idempotent. */ int vi_full_uninit(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; int i; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct sge_wrq *ofld_txq; #endif if (vi->flags & VI_INIT_DONE) { /* Need to quiesce queues. */ /* XXX: Only for the first VI? */ if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); for_each_txq(vi, i, txq) { quiesce_txq(sc, txq); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, ofld_txq) { quiesce_wrq(sc, ofld_txq); } #endif for_each_rxq(vi, i, rxq) { quiesce_iq(sc, &rxq->iq); quiesce_fl(sc, &rxq->fl); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { quiesce_iq(sc, &ofld_rxq->iq); quiesce_fl(sc, &ofld_rxq->fl); } #endif free(vi->rss, M_CXGBE); free(vi->nm_rss, M_CXGBE); } t4_teardown_vi_queues(vi); vi->flags &= ~VI_INIT_DONE; return (0); } static void quiesce_txq(struct adapter *sc, struct sge_txq *txq) { struct sge_eq *eq = &txq->eq; struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; (void) sc; /* unused */ #ifdef INVARIANTS TXQ_LOCK(txq); MPASS((eq->flags & EQ_ENABLED) == 0); TXQ_UNLOCK(txq); #endif /* Wait for the mp_ring to empty. */ while (!mp_ring_is_idle(txq->r)) { mp_ring_check_drainage(txq->r, 0); pause("rquiesce", 1); } /* Then wait for the hardware to finish. */ while (spg->cidx != htobe16(eq->pidx)) pause("equiesce", 1); /* Finally, wait for the driver to reclaim all descriptors. */ while (eq->cidx != eq->pidx) pause("dquiesce", 1); } static void quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) { /* XXXTX */ } static void quiesce_iq(struct adapter *sc, struct sge_iq *iq) { (void) sc; /* unused */ /* Synchronize with the interrupt handler */ while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) pause("iqfree", 1); } static void quiesce_fl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); fl->flags |= FL_DOOMED; FL_UNLOCK(fl); callout_stop(&sc->sfl_callout); mtx_unlock(&sc->sfl_lock); KASSERT((fl->flags & FL_STARVING) == 0, ("%s: still starving", __func__)); } static int t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, driver_intr_t *handler, void *arg, char *name) { int rc; irq->rid = rid; irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, RF_SHAREABLE | RF_ACTIVE); if (irq->res == NULL) { device_printf(sc->dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, arg, &irq->tag); if (rc != 0) { device_printf(sc->dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name, rc); } else if (name) bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); return (rc); } static int t4_free_irq(struct adapter *sc, struct irq *irq) { if (irq->tag) bus_teardown_intr(sc->dev, irq->res, irq->tag); if (irq->res) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); bzero(irq, sizeof(*irq)); return (0); } static void get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) { regs->version = chip_id(sc) | chip_rev(sc) << 10; t4_get_regs(sc, buf, regs->len); } #define A_PL_INDIR_CMD 0x1f8 #define S_PL_AUTOINC 31 #define M_PL_AUTOINC 0x1U #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) #define S_PL_VFID 20 #define M_PL_VFID 0xffU #define V_PL_VFID(x) ((x) << S_PL_VFID) #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) #define S_PL_ADDR 0 #define M_PL_ADDR 0xfffffU #define V_PL_ADDR(x) ((x) << S_PL_ADDR) #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) #define A_PL_INDIR_DATA 0x1fc static uint64_t read_vf_stat(struct adapter *sc, u_int vin, int reg) { u32 stats[2]; mtx_assert(&sc->reg_lock, MA_OWNED); if (sc->flags & IS_VF) { stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); } else { t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); } return (((uint64_t)stats[1]) << 32 | stats[0]); } static void t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) { #define GET_STAT(name) \ read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); #undef GET_STAT } static void t4_clr_vi_stats(struct adapter *sc, u_int vin) { int reg; t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) t4_write_reg(sc, A_PL_INDIR_DATA, 0); } static void vi_refresh_stats(struct adapter *sc, struct vi_info *vi) { struct timeval tv; const struct timeval interval = {0, 250000}; /* 250ms */ if (!(vi->flags & VI_INIT_DONE)) return; getmicrotime(&tv); timevalsub(&tv, &interval); if (timevalcmp(&tv, &vi->last_refreshed, <)) return; mtx_lock(&sc->reg_lock); t4_get_vi_stats(sc, vi->vin, &vi->stats); getmicrotime(&vi->last_refreshed); mtx_unlock(&sc->reg_lock); } static void cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) { u_int i, v, tnl_cong_drops, bg_map; struct timeval tv; const struct timeval interval = {0, 250000}; /* 250ms */ getmicrotime(&tv); timevalsub(&tv, &interval); if (timevalcmp(&tv, &pi->last_refreshed, <)) return; tnl_cong_drops = 0; t4_get_port_stats(sc, pi->tx_chan, &pi->stats); bg_map = pi->mps_bg_map; while (bg_map) { i = ffs(bg_map) - 1; mtx_lock(&sc->reg_lock); t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, A_TP_MIB_TNL_CNG_DROP_0 + i); mtx_unlock(&sc->reg_lock); tnl_cong_drops += v; bg_map &= ~(1 << i); } pi->tnl_cong_drops = tnl_cong_drops; getmicrotime(&pi->last_refreshed); } static void cxgbe_tick(void *arg) { struct port_info *pi = arg; struct adapter *sc = pi->adapter; PORT_LOCK_ASSERT_OWNED(pi); cxgbe_refresh_stats(sc, pi); callout_schedule(&pi->tick, hz); } void vi_tick(void *arg) { struct vi_info *vi = arg; struct adapter *sc = vi->pi->adapter; vi_refresh_stats(sc, vi); callout_schedule(&vi->tick, hz); } /* * Should match fw_caps_config_ enums in t4fw_interface.h */ static char *caps_decoder[] = { "\20\001IPMI\002NCSI", /* 0: NBM */ "\20\001PPP\002QFC\003DCBX", /* 1: link */ "\20\001INGRESS\002EGRESS", /* 2: switch */ "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ "\006HASHFILTER\007ETHOFLD", "\20\001TOE", /* 4: TOE */ "\20\001RDDP\002RDMAC", /* 5: RDMA */ "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" "\007T10DIF" "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ "\004PO_INITIATOR\005PO_TARGET", }; void t4_sysctls(struct adapter *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *c0; static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; ctx = device_get_sysctl_ctx(sc->dev); /* * dev.t4nex.X. */ oid = device_get_sysctl_tree(sc->dev); c0 = children = SYSCTL_CHILDREN(oid); sc->sc_do_rxcopy = 1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, sc->params.nports, "# of ports"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", "available doorbells"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, sc->params.vpd.cclk, "core clock frequency (in KHz)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", "interrupt holdoff timer values (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", "interrupt holdoff packet counter values"); t4_sge_sysctls(sc, ctx, children); sc->lro_timeout = 100; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, &sc->debug_flags, 0, "flags to enable runtime debugging"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 0, "firmware version"); if (sc->flags & IS_VF) return; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, NULL, chip_rev(sc), "chip hardware revision"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, sc->er_version, 0, "expansion ROM version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, sc->bs_version, 0, "bootstrap firmware version"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, NULL, sc->params.scfg_vers, "serial config version"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, NULL, sc->params.vpd_vers, "VPD version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, sc->cfcsum, "config file checksum"); #define SYSCTL_CAP(name, n, text) \ SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \ sysctl_bitfield_16b, "A", "available " text " capabilities") SYSCTL_CAP(nbmcaps, 0, "NBM"); SYSCTL_CAP(linkcaps, 1, "link"); SYSCTL_CAP(switchcaps, 2, "switch"); SYSCTL_CAP(niccaps, 3, "NIC"); SYSCTL_CAP(toecaps, 4, "TCP offload"); SYSCTL_CAP(rdmacaps, 5, "RDMA"); SYSCTL_CAP(iscsicaps, 6, "iSCSI"); SYSCTL_CAP(cryptocaps, 7, "crypto"); SYSCTL_CAP(fcoecaps, 8, "FCoE"); #undef SYSCTL_CAP SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, NULL, sc->tids.nftids, "number of filters"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0, sysctl_temperature, "I", "chip temperature (in Celsius)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_loadavg, "A", "microprocessor load averages (debug firmwares only)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD, &sc->params.core_vdd, 0, "core Vdd (in mV)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS, sysctl_cpus, "A", "local CPUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS, sysctl_cpus, "A", "preferred CPUs for interrupts"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, &sc->swintr, 0, "software triggered interrupts"); /* * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", CTLFLAG_RD | CTLFLAG_SKIP, NULL, "logs and miscellaneous information"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cctrl, "A", "congestion control"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", CTLTYPE_STRING | CTLFLAG_RD, sc, 3, sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", CTLTYPE_STRING | CTLFLAG_RD, sc, 4, sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5, sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la, "A", "CIM logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); if (chip_id(sc) > CHELSIO_T4) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_qcfg, "A", "CIM queue configuration"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cpl_stats, "A", "CPL statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ddp_stats, "A", "non-TCP DDP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_devlog, "A", "firmware's device log"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_fcoe_stats, "A", "FCoE statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_hw_sched, "A", "hardware scheduler "); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_l2t, "A", "hardware L2 table"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_smt, "A", "hardware source MAC table"); #ifdef INET6 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_clip, "A", "active CLIP table entries"); #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_lb_stats, "A", "loopback statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_meminfo, "A", "memory regions"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, "A", "MPS TCAM entries"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_path_mtus, "A", "path MTUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_pm_stats, "A", "PM statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_rdma_stats, "A", "RDMA statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tcp_stats, "A", "TCP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tids, "A", "TID information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_err_stats, "A", "TP error statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_la, "A", "TP logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tx_rate, "A", "Tx rate"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ulprx_la, "A", "ULPRX logic analyzer"); if (chip_id(sc) >= CHELSIO_T5) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_wcwr_stats, "A", "write combined work requests"); } #ifdef TCP_OFFLOAD if (is_offload(sc)) { int i; char s[4]; /* * dev.t4nex.X.toe. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, NULL, "TOE parameters"); children = SYSCTL_CHILDREN(oid); sc->tt.cong_algorithm = -1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " "3 = highspeed)"); - sc->tt.sndbuf = 256 * 1024; + sc->tt.sndbuf = -1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, - &sc->tt.sndbuf, 0, "max hardware send buffer size"); + &sc->tt.sndbuf, 0, "hardware send buffer"); sc->tt.ddp = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); - sc->tt.rx_coalesce = 1; + sc->tt.rx_coalesce = -1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); sc->tt.tls = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW, &sc->tt.tls, 0, "Inline TLS allowed"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports, "I", "TCP ports that use inline TLS+TOE RX"); - sc->tt.tx_align = 1; + sc->tt.tx_align = -1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); sc->tt.tx_zcopy = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", CTLFLAG_RW, &sc->tt.tx_zcopy, 0, "Enable zero-copy aio_write(2)"); sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cop_managed_offloading", CTLFLAG_RW, &sc->tt.cop_managed_offloading, 0, "COP (Connection Offload Policy) controls all TOE offload"); sc->tt.autorcvbuf_inc = 16 * 1024; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, "autorcvbuf increment"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", "TP timer tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", "TCP timestamp tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", "DACK tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, "IU", "DACK timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, sysctl_tp_timer, "LU", "Persist timer min (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, sysctl_tp_timer, "LU", "Persist timer max (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", "Number of SYN retransmissions before abort"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", "Number of retransmissions before abort"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", "Number of keepalive probes before abort"); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", CTLFLAG_RD, NULL, "TOE retransmit backoffs"); children = SYSCTL_CHILDREN(oid); for (i = 0; i < 16; i++) { snprintf(s, sizeof(s), "%u", i); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, "IU", "TOE retransmit backoff"); } } #endif } void vi_sysctls(struct vi_info *vi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(vi->dev); /* * dev.v?(cxgbe|cxl).X. */ oid = device_get_sysctl_tree(vi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, vi->viid, "VI identifer"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, &vi->nrxq, 0, "# of rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, &vi->ntxq, 0, "# of tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, &vi->first_rxq, 0, "index of first rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, &vi->first_txq, 0, "index of first tx queue"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, vi->rss_base, "start of RSS indirection table"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, vi->rss_size, "size of RSS indirection table"); if (IS_MAIN_VI(vi)) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", "Reserve queue 0 for non-flowid packets"); } #ifdef TCP_OFFLOAD if (vi->nofldrxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, &vi->nofldrxq, 0, "# of rx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", CTLFLAG_RD, &vi->first_ofld_rxq, 0, "index of first TOE rx queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx_ofld, "I", "holdoff timer index for TOE queues"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx_ofld, "I", "holdoff packet counter index for TOE queues"); } #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (vi->nofldtxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, &vi->nofldtxq, 0, "# of tx queues for TOE/ETHOFLD"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", CTLFLAG_RD, &vi->first_ofld_txq, 0, "index of first TOE/ETHOFLD tx queue"); } #endif #ifdef DEV_NETMAP if (vi->nnmrxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, &vi->nnmrxq, 0, "# of netmap rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, &vi->nnmtxq, 0, "# of netmap tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", CTLFLAG_RD, &vi->first_nm_rxq, 0, "index of first netmap rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", CTLFLAG_RD, &vi->first_nm_txq, 0, "index of first netmap tx queue"); } #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", "rx queue size"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", "tx queue size"); } static void cxgbe_sysctls(struct port_info *pi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *children2; struct adapter *sc = pi->adapter; int i; char name[16]; static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; ctx = device_get_sysctl_ctx(pi->dev); /* * dev.cxgbe.X. */ oid = device_get_sysctl_tree(pi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", "PHY temperature (in Celsius)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", "PHY firmware version"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", "autonegotiation (-1 = not supported)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, port_top_speed(pi), "max speed (in Gbps)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, pi->mps_bg_map, "MPS buffer group map"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, NULL, pi->rx_e_chan_map, "TP rx e-channel map"); if (sc->flags & IS_VF) return; /* * dev.(cxgbe|cxl).X.tc. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, "Tx scheduler traffic classes (cl_rl)"); children2 = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", CTLFLAG_RW, &pi->sched_params->pktsize, 0, "pktsize for per-flow cl-rl (0 means up to the driver )"); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", CTLFLAG_RW, &pi->sched_params->burstsize, 0, "burstsize for per-flow cl-rl (0 means up to the driver)"); for (i = 0; i < sc->chip_params->nsched_cls; i++) { struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; snprintf(name, sizeof(name), "%d", i); children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, "traffic class")); SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", CTLFLAG_RD, &tc->refcount, 0, "references to this class"); SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, sysctl_tc_params, "A", "traffic class parameters"); } /* * dev.cxgbe.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "port statistics"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, &pi->tx_parse_error, 0, "# of tx packets with invalid length or # of segments"); #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ sysctl_handle_t4_reg64, "QU", desc) SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", "# of frames received with bad FCS", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_len_err", "# of frames received with length error", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); #undef SYSCTL_ADD_T4_REG64 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ &pi->stats.name, desc) /* We get these from port_stats and they may be stale by up to 1s */ SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); #undef SYSCTL_ADD_T4_PORTSTAT SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records", CTLFLAG_RD, &pi->tx_tls_records, "# of TLS records transmitted"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets", CTLFLAG_RD, &pi->tx_tls_octets, "# of payload octets in transmitted TLS records"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records", CTLFLAG_RD, &pi->rx_tls_records, "# of TLS records received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets", CTLFLAG_RD, &pi->rx_tls_octets, "# of payload octets in received TLS records"); } static int sysctl_int_array(SYSCTL_HANDLER_ARGS) { int rc, *i, space = 0; struct sbuf sb; sbuf_new_for_sysctl(&sb, NULL, 64, req); for (i = arg1; arg2; arg2 -= sizeof(int), i++) { if (space) sbuf_printf(&sb, " "); sbuf_printf(&sb, "%d", *i); space = 1; } rc = sbuf_finish(&sb); sbuf_delete(&sb); return (rc); } static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_btphy(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; int op = arg2; struct adapter *sc = pi->adapter; u_int v; int rc; rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); if (rc) return (rc); /* XXX: magic numbers */ rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, &v); end_synchronized_op(sc, 0); if (rc) return (rc); if (op == 0) v /= 256; rc = sysctl_handle_int(oidp, &v, 0, req); return (rc); } static int sysctl_noflowq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; int rc, val; val = vi->rsrv_noflowq; rc = sysctl_handle_int(oidp, &val, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if ((val >= 1) && (vi->ntxq > 1)) vi->rsrv_noflowq = 1; else vi->rsrv_noflowq = 0; return (rc); } static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc, i; struct sge_rxq *rxq; uint8_t v; idx = vi->tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4tmr"); if (rc) return (rc); v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); for_each_rxq(vi, i, rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&rxq->iq.intr_params, v); #else rxq->iq.intr_params = v; #endif } vi->tmr_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (0); } static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc; idx = vi->pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4pktc"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->pktc_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int qsize, rc; qsize = vi->qsize_rxq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || (qsize & 7)) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4rxqs"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->qsize_rxq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int qsize, rc; qsize = vi->qsize_txq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || qsize > 65536) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4txqs"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->qsize_txq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; if (req->newptr == NULL) { struct sbuf *sb; static char *bits = "\20\1RX\2TX\3AUTO"; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); if (lc->link_ok) { sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | (lc->requested_fc & PAUSE_AUTONEG), bits); } else { sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG), bits); } rc = sbuf_finish(sb); sbuf_delete(sb); } else { char s[2]; int n; s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)); s[1] = 0; rc = sysctl_handle_string(oidp, s, sizeof(s), req); if (rc != 0) return(rc); if (s[1] != 0) return (EINVAL); if (s[0] < '0' || s[0] > '9') return (EINVAL); /* not a number */ n = s[0] - '0'; if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) return (EINVAL); /* some other bit is set too */ rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4PAUSE"); if (rc) return (rc); PORT_LOCK(pi); lc->requested_fc = n; fixup_link_config(pi); if (pi->up_vis > 0) rc = apply_link_config(pi); set_current_media(pi); PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } return (rc); } static int sysctl_fec(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; int8_t old; if (req->newptr == NULL) { struct sbuf *sb; static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO"; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); /* * Display the requested_fec when the link is down -- the actual * FEC makes sense only when the link is up. */ if (lc->link_ok) { sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | (lc->requested_fec & FEC_AUTO), bits); } else { sbuf_printf(sb, "%b", lc->requested_fec, bits); } rc = sbuf_finish(sb); sbuf_delete(sb); } else { char s[3]; int n; snprintf(s, sizeof(s), "%d", lc->requested_fec == FEC_AUTO ? -1 : lc->requested_fec & M_FW_PORT_CAP32_FEC); rc = sysctl_handle_string(oidp, s, sizeof(s), req); if (rc != 0) return(rc); n = strtol(&s[0], NULL, 0); if (n < 0 || n & FEC_AUTO) n = FEC_AUTO; else { if (n & ~M_FW_PORT_CAP32_FEC) return (EINVAL);/* some other bit is set too */ if (!powerof2(n)) return (EINVAL);/* one bit can be set at most */ } rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4fec"); if (rc) return (rc); PORT_LOCK(pi); old = lc->requested_fec; if (n == FEC_AUTO) lc->requested_fec = FEC_AUTO; else if (n == 0) lc->requested_fec = FEC_NONE; else { if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) != lc->supported) { rc = ENOTSUP; goto done; } lc->requested_fec = n; } fixup_link_config(pi); if (pi->up_vis > 0) { rc = apply_link_config(pi); if (rc != 0) { lc->requested_fec = old; if (rc == FW_EPROTO) rc = ENOTSUP; } } done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } return (rc); } static int sysctl_autoneg(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc, val; if (lc->supported & FW_PORT_CAP32_ANEG) val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; else val = -1; rc = sysctl_handle_int(oidp, &val, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (val == 0) val = AUTONEG_DISABLE; else if (val == 1) val = AUTONEG_ENABLE; else val = AUTONEG_AUTO; rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4aneg"); if (rc) return (rc); PORT_LOCK(pi); if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) { rc = ENOTSUP; goto done; } lc->requested_aneg = val; fixup_link_config(pi); if (pi->up_vis > 0) rc = apply_link_config(pi); set_current_media(pi); done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); return (rc); } static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; uint64_t val; val = t4_read_reg64(sc, reg); return (sysctl_handle_64(oidp, &val, 0, req)); } static int sysctl_temperature(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int rc, t; uint32_t param, val; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); if (rc) return (rc); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); end_synchronized_op(sc, 0); if (rc) return (rc); /* unknown is returned as 0 but we display -1 in that case */ t = val == 0 ? -1 : val; rc = sysctl_handle_int(oidp, &t, 0, req); return (rc); } static int sysctl_loadavg(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint32_t param, val; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); if (rc) return (rc); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); end_synchronized_op(sc, 0); if (rc) return (rc); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); if (val == 0xffffffff) { /* Only debug and custom firmwares report load averages. */ sbuf_printf(sb, "not available"); } else { sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cctrl(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t incr[NMTUS][NCCTRL_WIN]; static const char *dec_fac[] = { "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", "0.9375" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); t4_read_cong_tbl(sc, incr); for (i = 0; i < NCCTRL_WIN; ++i) { sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], incr[5][i], incr[6][i], incr[7][i]); sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", incr[8][i], incr[9][i], incr[10][i], incr[11][i], incr[12][i], incr[13][i], incr[14][i], incr[15][i], sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ }; static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n, qid = arg2; uint32_t *buf, *p; char *qtype; u_int cim_num_obq = sc->chip_params->cim_num_obq; KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, ("%s: bad qid %d\n", __func__, qid)); if (qid < CIM_NUM_IBQ) { /* inbound queue */ qtype = "IBQ"; n = 4 * CIM_IBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_ibq(sc, qid, buf, n); } else { /* outbound queue */ qtype = "OBQ"; qid -= CIM_NUM_IBQ; n = 4 * cim_num_obq * CIM_OBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_obq(sc, qid, buf, n); } if (rc < 0) { rc = -rc; goto done; } n = rc * sizeof(uint32_t); /* rc has # of words actually read */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) { rc = ENOMEM; goto done; } sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); for (i = 0, p = buf; i < n; i += 16, p += 4) sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], p[2], p[3]); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static void sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) { uint32_t *p; sbuf_printf(sb, "Status Data PC%s", cfg & F_UPDBGLACAPTPCONLY ? "" : " LS0Stat LS0Addr LS0Data"); for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { if (cfg & F_UPDBGLACAPTPCONLY) { sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, p[6], p[7]); sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, p[4] & 0xff, p[5] >> 8); sbuf_printf(sb, "\n %02x %x%07x %x%07x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); } else { sbuf_printf(sb, "\n %02x %x%07x %x%07x %08x %08x " "%08x%08x%08x%08x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], p[6], p[7]); } } } static void sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) { uint32_t *p; sbuf_printf(sb, "Status Inst Data PC%s", cfg & F_UPDBGLACAPTPCONLY ? "" : " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { if (cfg & F_UPDBGLACAPTPCONLY) { sbuf_printf(sb, "\n %02x %08x %08x %08x", p[3] & 0xff, p[2], p[1], p[0]); sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, p[6] >> 16); } else { sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " "%08x %08x %08x %08x %08x %08x", (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, p[6] >> 16, p[2], p[1], p[0], p[5], p[4], p[3]); } } } static int sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) { uint32_t cfg, *buf; int rc; rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (rc != 0) return (rc); MPASS(flags == M_WAITOK || flags == M_NOWAIT); buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, M_ZERO | flags); if (buf == NULL) return (ENOMEM); rc = -t4_cim_read_la(sc, buf, NULL); if (rc != 0) goto done; if (chip_id(sc) < CHELSIO_T6) sbuf_cim_la4(sc, sb, buf, cfg); else sbuf_cim_la6(sc, sb, buf, cfg); done: free(buf, M_CXGBE); return (rc); } static int sysctl_cim_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); rc = sbuf_cim_la(sc, sb, M_WAITOK); if (rc == 0) rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } bool t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) { struct sbuf sb; int rc; if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) return (false); rc = sbuf_cim_la(sc, &sb, M_NOWAIT); if (rc == 0) { rc = sbuf_finish(&sb); if (rc == 0) { log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", device_get_nameunit(sc->dev), sbuf_data(&sb)); } } sbuf_delete(&sb); return (false); } static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); p = buf; for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, (p[1] >> 2) | ((p[2] & 3) << 30), (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, p[0] & 1); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); p = buf; sbuf_printf(sb, "Cntl ID DataBE Addr Data"); for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCntl ID Data"); for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t thres[CIM_NUM_IBQ]; uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; cim_num_obq = sc->chip_params->cim_num_obq; if (is_t4(sc)) { ibq_rdaddr = A_UP_IBQ_0_RDADDR; obq_rdaddr = A_UP_OBQ_0_REALADDR; } else { ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; } nq = CIM_NUM_IBQ + cim_num_obq; rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); if (rc == 0) rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); if (rc != 0) return (rc); t4_read_cimq_cfg(sc, base, size, thres); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); for ( ; i < nq; i++, p += 4, wr += 2) sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_cpl_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_cpl_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3"); sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", stats.req[0], stats.req[1], stats.req[2], stats.req[3]); sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); } else { sbuf_printf(sb, " channel 0 channel 1"); sbuf_printf(sb, "\nCPL requests: %10u %10u", stats.req[0], stats.req[1]); sbuf_printf(sb, "\nCPL responses: %10u %10u", stats.rsp[0], stats.rsp[1]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_usm_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_usm_stats(sc, &stats, 1); sbuf_printf(sb, "Frames: %u\n", stats.frames); sbuf_printf(sb, "Octets: %ju\n", stats.octets); sbuf_printf(sb, "Drops: %u", stats.drops); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static const char * const devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; static const char * const devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_CF] = "CF", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", [FW_DEVLOG_FACILITY_CHNET] = "CHNET", }; static int sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) { int i, j, rc, nentries, first = 0; struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e *buf, *e; uint64_t ftstamp = UINT64_MAX; if (dparams->addr == 0) return (ENXIO); MPASS(flags == M_WAITOK || flags == M_NOWAIT); buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); if (buf == NULL) return (ENOMEM); rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); if (rc != 0) goto done; nentries = dparams->size / sizeof(struct fw_devlog_e); for (i = 0; i < nentries; i++) { e = &buf[i]; if (e->timestamp == 0) break; /* end */ e->timestamp = be64toh(e->timestamp); e->seqno = be32toh(e->seqno); for (j = 0; j < 8; j++) e->params[j] = be32toh(e->params[j]); if (e->timestamp < ftstamp) { ftstamp = e->timestamp; first = i; } } if (buf[first].timestamp == 0) goto done; /* nothing in the log */ sbuf_printf(sb, "%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); i = first; do { e = &buf[i]; if (e->timestamp == 0) break; /* end */ sbuf_printf(sb, "%10d %15ju %8s %8s ", e->seqno, e->timestamp, (e->level < nitems(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < nitems(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); sbuf_printf(sb, e->fmt, e->params[0], e->params[1], e->params[2], e->params[3], e->params[4], e->params[5], e->params[6], e->params[7]); if (++i == nentries) i = 0; } while (i != first); done: free(buf, M_CXGBE); return (rc); } static int sysctl_devlog(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); rc = sbuf_devlog(sc, sb, M_WAITOK); if (rc == 0) rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } void t4_os_dump_devlog(struct adapter *sc) { int rc; struct sbuf sb; if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) return; rc = sbuf_devlog(sc, &sb, M_NOWAIT); if (rc == 0) { rc = sbuf_finish(&sb); if (rc == 0) { log(LOG_DEBUG, "%s: device log follows.\n%s", device_get_nameunit(sc->dev), sbuf_data(&sb)); } } sbuf_delete(&sb); } static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_fcoe_stats stats[MAX_NCHAN]; int i, nchan = sc->chip_params->nchan; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < nchan; i++) t4_get_fcoe_stats(sc, i, &stats[i], 1); if (nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3"); sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", stats[0].octets_ddp, stats[1].octets_ddp, stats[2].octets_ddp, stats[3].octets_ddp); sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", stats[0].frames_ddp, stats[1].frames_ddp, stats[2].frames_ddp, stats[3].frames_ddp); sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", stats[0].frames_drop, stats[1].frames_drop, stats[2].frames_drop, stats[3].frames_drop); } else { sbuf_printf(sb, " channel 0 channel 1"); sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", stats[0].octets_ddp, stats[1].octets_ddp); sbuf_printf(sb, "\nframesDDP: %16u %16u", stats[0].frames_ddp, stats[1].frames_ddp); sbuf_printf(sb, "\nframesDrop: %16u %16u", stats[0].frames_drop, stats[1].frames_drop); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; unsigned int map, kbps, ipg, mode; unsigned int pace_tab[NTX_SCHED]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); t4_read_pace_tbl(sc, pace_tab); sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " "Class IPG (0.1 ns) Flow IPG (us)"); for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { t4_get_tx_sched(sc, i, &kbps, &ipg, 1); sbuf_printf(sb, "\n %u %-5s %u ", i, (mode & (1 << i)) ? "flow" : "class", map & 3); if (kbps) sbuf_printf(sb, "%9u ", kbps); else sbuf_printf(sb, " disabled "); if (ipg) sbuf_printf(sb, "%13u ", ipg); else sbuf_printf(sb, " disabled "); if (pace_tab[i]) sbuf_printf(sb, "%10u", pace_tab[i]); else sbuf_printf(sb, " disabled"); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, j; uint64_t *p0, *p1; struct lb_port_stats s[2]; static const char *stat_name[] = { "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", "Frames128To255:", "Frames256To511:", "Frames512To1023:", "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", "BG2FramesTrunc:", "BG3FramesTrunc:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); memset(s, 0, sizeof(s)); for (i = 0; i < sc->chip_params->nchan; i += 2) { t4_get_lb_stats(sc, i, &s[0]); t4_get_lb_stats(sc, i + 1, &s[1]); p0 = &s[0].octets; p1 = &s[1].octets; sbuf_printf(sb, "%s Loopback %u" " Loopback %u", i == 0 ? "" : "\n", i, i + 1); for (j = 0; j < nitems(stat_name); j++) sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], *p0++, *p1++); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) { int rc = 0; struct port_info *pi = arg1; struct link_config *lc = &pi->link_cfg; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); if (sb == NULL) return (ENOMEM); if (lc->link_ok || lc->link_down_rc == 255) sbuf_printf(sb, "n/a"); else sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } struct mem_desc { unsigned int base; unsigned int limit; unsigned int idx; }; static int mem_desc_cmp(const void *a, const void *b) { return ((const struct mem_desc *)a)->base - ((const struct mem_desc *)b)->base; } static void mem_region_show(struct sbuf *sb, const char *name, unsigned int from, unsigned int to) { unsigned int size; if (from == to) return; size = to - from + 1; if (size == 0) return; /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); } static int sysctl_meminfo(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n; uint32_t lo, hi, used, alloc; static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; static const char *region[] = { "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", "TDDP region:", "TPT region:", "STAG region:", "RQ region:", "RQUDP region:", "PBL region:", "TXPBL region:", "DBVFIFO region:", "ULPRX state:", "ULPTX state:", "On-chip queues:", "TLS keys:", }; struct mem_desc avail[4]; struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ struct mem_desc *md = mem; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < nitems(mem); i++) { mem[i].limit = 0; mem[i].idx = i; } /* Find and sort the populated memory ranges */ i = 0; lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (lo & F_EDRAM0_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); avail[i].base = G_EDRAM0_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); avail[i].idx = 0; i++; } if (lo & F_EDRAM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); avail[i].base = G_EDRAM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); avail[i].idx = 1; i++; } if (lo & F_EXT_MEM_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); avail[i].base = G_EXT_MEM_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ i++; } if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); avail[i].base = G_EXT_MEM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); avail[i].idx = 4; i++; } if (!i) /* no memory available */ return 0; qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); /* the next few have explicit upper bounds */ md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); md++; md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); md++; if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { if (chip_id(sc) <= CHELSIO_T5) md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); else md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); md->limit = 0; } else { md->base = 0; md->idx = nitems(region); /* hide it */ } md++; #define ulp_region(reg) \ md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) ulp_region(RX_ISCSI); ulp_region(RX_TDDP); ulp_region(TX_TPT); ulp_region(RX_STAG); ulp_region(RX_RQ); ulp_region(RX_RQUDP); ulp_region(RX_PBL); ulp_region(TX_PBL); #undef ulp_region md->base = 0; md->idx = nitems(region); if (!is_t4(sc)) { uint32_t size = 0; uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); if (is_t5(sc)) { if (sge_ctrl & F_VFIFO_ENABLE) size = G_DBVFIFO_SIZE(fifo_size); } else size = G_T6_DBVFIFO_SIZE(fifo_size); if (size) { md->base = G_BASEADDR(t4_read_reg(sc, A_SGE_DBVFIFO_BADDR)); md->limit = md->base + (size << 2) - 1; } } md++; md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); md->limit = 0; md++; md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); md->limit = 0; md++; md->base = sc->vres.ocq.start; if (sc->vres.ocq.size) md->limit = md->base + sc->vres.ocq.size - 1; else md->idx = nitems(region); /* hide it */ md++; md->base = sc->vres.key.start; if (sc->vres.key.size) md->limit = md->base + sc->vres.key.size - 1; else md->idx = nitems(region); /* hide it */ md++; /* add any address-space holes, there can be up to 3 */ for (n = 0; n < i - 1; n++) if (avail[n].limit < avail[n + 1].base) (md++)->base = avail[n].limit; if (avail[n].limit) (md++)->base = avail[n].limit; n = md - mem; qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); for (lo = 0; lo < i; lo++) mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, avail[lo].limit - 1); sbuf_printf(sb, "\n"); for (i = 0; i < n; i++) { if (mem[i].idx >= nitems(region)) continue; /* skip holes */ if (!mem[i].limit) mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; mem_region_show(sb, region[mem[i].idx], mem[i].base, mem[i].limit); } sbuf_printf(sb, "\n"); lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP RAM:", lo, hi); lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP Extmem2:", lo, hi); lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", G_PMRXMAXPAGE(lo), t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, (lo & F_PMRXNUMCHN) ? 2 : 1); lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", G_PMTXMAXPAGE(lo), hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); sbuf_printf(sb, "%u p-structs\n", t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); for (i = 0; i < 4; i++) { if (chip_id(sc) > CHELSIO_T5) lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); else lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); if (is_t5(sc)) { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } else { used = G_USED(lo); alloc = G_ALLOC(lo); } /* For T6 these are MAC buffer groups */ sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", i, used, alloc); } for (i = 0; i < sc->chip_params->nchan; i++) { if (chip_id(sc) > CHELSIO_T5) lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); else lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); if (is_t5(sc)) { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } else { used = G_USED(lo); alloc = G_ALLOC(lo); } /* For T6 these are MAC buffer groups */ sbuf_printf(sb, "\nLoopback %d using %u pages out of %u allocated", i, used, alloc); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static inline void tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) { *mask = x | y; y = htobe64(y); memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); } static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; MPASS(chip_id(sc) <= CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Idx Ethernet address Mask Vld Ports PF" " VF Replication P0 P1 P2 P3 ML"); for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { uint64_t tcamx, tcamy, mask; uint32_t cls_lo, cls_hi; uint8_t addr[ETHER_ADDR_LEN]; tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); if (tcamx & tcamy) continue; tcamxy2valmask(tcamx, tcamy, addr, &mask); cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask, (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', G_PORTMAP(cls_hi), G_PF(cls_lo), (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); if (cls_lo & F_REPLICATE) { struct fw_ldst_cmd ldst_cmd; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htobe32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | V_FW_LDST_CMD_IDX(i)); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mps"); if (rc) break; rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); end_synchronized_op(sc, 0); if (rc != 0) { sbuf_printf(sb, "%36d", rc); rc = 0; } else { sbuf_printf(sb, " %08x %08x %08x %08x", be32toh(ldst_cmd.u.mps.rplc.rplc127_96), be32toh(ldst_cmd.u.mps.rplc.rplc95_64), be32toh(ldst_cmd.u.mps.rplc.rplc63_32), be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); } } else sbuf_printf(sb, "%36s", ""); sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); } if (rc) (void) sbuf_finish(sb); else rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; MPASS(chip_id(sc) > CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" " Replication" " P0 P1 P2 P3 ML\n"); for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { uint8_t dip_hit, vlan_vld, lookup_type, port_num; uint16_t ivlan; uint64_t tcamx, tcamy, val, mask; uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; uint8_t addr[ETHER_ADDR_LEN]; ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); if (i < 256) ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); else ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); tcamy = G_DMACH(val) << 32; tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); lookup_type = G_DATALKPTYPE(data2); port_num = G_DATAPORTNUM(data2); if (lookup_type && lookup_type != M_DATALKPTYPE) { /* Inner header VNI */ vniy = ((data2 & F_DATAVIDH2) << 23) | (G_DATAVIDH1(data2) << 16) | G_VIDL(val); dip_hit = data2 & F_DATADIPHIT; vlan_vld = 0; } else { vniy = 0; dip_hit = 0; vlan_vld = data2 & F_DATAVIDH2; ivlan = G_VIDL(val); } ctl |= V_CTLXYBITSEL(1); t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); tcamx = G_DMACH(val) << 32; tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); if (lookup_type && lookup_type != M_DATALKPTYPE) { /* Inner header VNI mask */ vnix = ((data2 & F_DATAVIDH2) << 23) | (G_DATAVIDH1(data2) << 16) | G_VIDL(val); } else vnix = 0; if (tcamx & tcamy) continue; tcamxy2valmask(tcamx, tcamy, addr, &mask); cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); if (lookup_type && lookup_type != M_DATALKPTYPE) { sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " "%012jx %06x %06x - - %3c" " 'I' %4x %3c %#x%4u%4d", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', G_PORTMAP(cls_hi), G_T6_PF(cls_lo), cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); } else { sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " "%012jx - - ", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask); if (vlan_vld) sbuf_printf(sb, "%4u Y ", ivlan); else sbuf_printf(sb, " - N "); sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", lookup_type ? 'I' : 'O', port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', G_PORTMAP(cls_hi), G_T6_PF(cls_lo), cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); } if (cls_lo & F_T6_REPLICATE) { struct fw_ldst_cmd ldst_cmd; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htobe32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | V_FW_LDST_CMD_IDX(i)); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t6mps"); if (rc) break; rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); end_synchronized_op(sc, 0); if (rc != 0) { sbuf_printf(sb, "%72d", rc); rc = 0; } else { sbuf_printf(sb, " %08x %08x %08x %08x" " %08x %08x %08x %08x", be32toh(ldst_cmd.u.mps.rplc.rplc255_224), be32toh(ldst_cmd.u.mps.rplc.rplc223_192), be32toh(ldst_cmd.u.mps.rplc.rplc191_160), be32toh(ldst_cmd.u.mps.rplc.rplc159_128), be32toh(ldst_cmd.u.mps.rplc.rplc127_96), be32toh(ldst_cmd.u.mps.rplc.rplc95_64), be32toh(ldst_cmd.u.mps.rplc.rplc63_32), be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); } } else sbuf_printf(sb, "%72s", ""); sbuf_printf(sb, "%4u%3u%3u%3u %#x", G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), (cls_lo >> S_T6_MULTILISTEN0) & 0xf); } if (rc) (void) sbuf_finish(sb); else rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint16_t mtus[NMTUS]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_read_mtu_tbl(sc, mtus, NULL); sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], mtus[14], mtus[15]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; static const char *tx_stats[MAX_PM_NSTATS] = { "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", "Tx FIFO wait", NULL, "Tx latency" }; static const char *rx_stats[MAX_PM_NSTATS] = { "Read:", "Write bypass:", "Write mem:", "Flush:", "Rx FIFO wait", NULL, "Rx latency" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); sbuf_printf(sb, " Tx pcmds Tx bytes"); for (i = 0; i < 4; i++) { sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); } sbuf_printf(sb, "\n Rx pcmds Rx bytes"); for (i = 0; i < 4; i++) { sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); } if (chip_id(sc) > CHELSIO_T5) { sbuf_printf(sb, "\n Total wait Total occupancy"); sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); i += 2; MPASS(i < nitems(tx_stats)); sbuf_printf(sb, "\n Reads Total wait"); sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_rdma_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_rdma_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_tcp_stats v4, v6; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_tcp_stats(sc, &v4, &v6, 0); mtx_unlock(&sc->reg_lock); sbuf_printf(sb, " IP IPv6\n"); sbuf_printf(sb, "OutRsts: %20u %20u\n", v4.tcp_out_rsts, v6.tcp_out_rsts); sbuf_printf(sb, "InSegs: %20ju %20ju\n", v4.tcp_in_segs, v6.tcp_in_segs); sbuf_printf(sb, "OutSegs: %20ju %20ju\n", v4.tcp_out_segs, v6.tcp_out_segs); sbuf_printf(sb, "RetransSegs: %20ju %20ju", v4.tcp_retrans_segs, v6.tcp_retrans_segs); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tids(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tid_info *t = &sc->tids; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); if (t->natids) { sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, t->atids_in_use); } if (t->nhpftids) { sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", t->hpftid_base, t->hpftid_end, t->hpftids_in_use); } if (t->ntids) { sbuf_printf(sb, "TID range: "); if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { uint32_t b, hb; if (chip_id(sc) <= CHELSIO_T5) { b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; } else { b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); } if (b) sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1); sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); } else sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1); sbuf_printf(sb, ", in use: %u\n", atomic_load_acq_int(&t->tids_in_use)); } if (t->nstids) { sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, t->stid_base + t->nstids - 1, t->stids_in_use); } if (t->nftids) { sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, t->ftid_end, t->ftids_in_use); } if (t->netids) { sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, t->etid_base + t->netids - 1, t->etids_in_use); } sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_err_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_err_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3\n"); sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", stats.mac_in_errs[0], stats.mac_in_errs[1], stats.mac_in_errs[2], stats.mac_in_errs[3]); sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", stats.hdr_in_errs[0], stats.hdr_in_errs[1], stats.hdr_in_errs[2], stats.hdr_in_errs[3]); sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", stats.tcp_in_errs[0], stats.tcp_in_errs[1], stats.tcp_in_errs[2], stats.tcp_in_errs[3]); sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); } else { sbuf_printf(sb, " channel 0 channel 1\n"); sbuf_printf(sb, "macInErrs: %10u %10u\n", stats.mac_in_errs[0], stats.mac_in_errs[1]); sbuf_printf(sb, "hdrInErrs: %10u %10u\n", stats.hdr_in_errs[0], stats.hdr_in_errs[1]); sbuf_printf(sb, "tcpInErrs: %10u %10u\n", stats.tcp_in_errs[0], stats.tcp_in_errs[1]); sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); } sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", stats.ofld_no_neigh, stats.ofld_cong_defer); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct tp_params *tpp = &sc->params.tp; u_int mask; int rc; mask = tpp->la_mask >> 16; rc = sysctl_handle_int(oidp, &mask, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (mask > 0xffff) return (EINVAL); tpp->la_mask = mask << 16; t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); return (0); } struct field_desc { const char *name; u_int start; u_int width; }; static void field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) { char buf[32]; int line_size = 0; while (f->name) { uint64_t mask = (1ULL << f->width) - 1; int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, ((uintmax_t)v >> f->start) & mask); if (line_size + len >= 79) { line_size = 8; sbuf_printf(sb, "\n "); } sbuf_printf(sb, "%s ", buf); line_size += len + 1; f++; } sbuf_printf(sb, "\n"); } static const struct field_desc tp_la0[] = { { "RcfOpCodeOut", 60, 4 }, { "State", 56, 4 }, { "WcfState", 52, 4 }, { "RcfOpcSrcOut", 50, 2 }, { "CRxError", 49, 1 }, { "ERxError", 48, 1 }, { "SanityFailed", 47, 1 }, { "SpuriousMsg", 46, 1 }, { "FlushInputMsg", 45, 1 }, { "FlushInputCpl", 44, 1 }, { "RssUpBit", 43, 1 }, { "RssFilterHit", 42, 1 }, { "Tid", 32, 10 }, { "InitTcb", 31, 1 }, { "LineNumber", 24, 7 }, { "Emsg", 23, 1 }, { "EdataOut", 22, 1 }, { "Cmsg", 21, 1 }, { "CdataOut", 20, 1 }, { "EreadPdu", 19, 1 }, { "CreadPdu", 18, 1 }, { "TunnelPkt", 17, 1 }, { "RcfPeerFin", 16, 1 }, { "RcfReasonOut", 12, 4 }, { "TxCchannel", 10, 2 }, { "RcfTxChannel", 8, 2 }, { "RxEchannel", 6, 2 }, { "RcfRxChannel", 5, 1 }, { "RcfDataOutSrdy", 4, 1 }, { "RxDvld", 3, 1 }, { "RxOoDvld", 2, 1 }, { "RxCongestion", 1, 1 }, { "TxCongestion", 0, 1 }, { NULL } }; static const struct field_desc tp_la1[] = { { "CplCmdIn", 56, 8 }, { "CplCmdOut", 48, 8 }, { "ESynOut", 47, 1 }, { "EAckOut", 46, 1 }, { "EFinOut", 45, 1 }, { "ERstOut", 44, 1 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static const struct field_desc tp_la2[] = { { "CplCmdIn", 56, 8 }, { "MpsVfVld", 55, 1 }, { "MpsPf", 52, 3 }, { "MpsVf", 44, 8 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static void tp_la_show(struct sbuf *sb, uint64_t *p, int idx) { field_desc_show(sb, *p, tp_la0); } static void tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], tp_la0); } static void tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); } static int sysctl_tp_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint64_t *buf, *p; int rc; u_int i, inc; void (*show_func)(struct sbuf *, uint64_t *, int); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); t4_tp_read_la(sc, buf, NULL); p = buf; switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { case 2: inc = 2; show_func = tp_la_show2; break; case 3: inc = 2; show_func = tp_la_show3; break; default: inc = 1; show_func = tp_la_show; } for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) (*show_func)(sb, p, i); rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_chan_txrate(sc, nrate, orate); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", nrate[0], nrate[1], nrate[2], nrate[3]); sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", orate[0], orate[1], orate[2], orate[3]); } else { sbuf_printf(sb, " channel 0 channel 1\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", nrate[0], nrate[1]); sbuf_printf(sb, "Offload B/s: %10ju %10ju", orate[0], orate[1]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint32_t *buf, *p; int rc, i; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_ulprx_read_la(sc, buf); p = buf; sbuf_printf(sb, " Pcmd Type Message" " Data"); for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, v; MPASS(chip_id(sc) >= CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); v = t4_read_reg(sc, A_SGE_STAT_CFG); if (G_STATSOURCE_T5(v) == 7) { int mode; mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); if (mode == 0) { sbuf_printf(sb, "total %d, incomplete %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } else if (mode == 1) { sbuf_printf(sb, "total %d, data overflow %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } else { sbuf_printf(sb, "unknown mode %d", mode); } } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; enum cpu_sets op = arg2; cpuset_t cpuset; struct sbuf *sb; int i, rc; MPASS(op == LOCAL_CPUS || op == INTR_CPUS); CPU_ZERO(&cpuset); rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); if (rc != 0) return (rc); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); CPU_FOREACH(i) sbuf_printf(sb, "%d ", i); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } #ifdef TCP_OFFLOAD static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int *old_ports, *new_ports; int i, new_count, rc; if (req->newptr == NULL && req->oldptr == NULL) return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * sizeof(sc->tt.tls_rx_ports[0]))); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); if (rc) return (rc); if (sc->tt.num_tls_rx_ports == 0) { i = -1; rc = SYSCTL_OUT(req, &i, sizeof(i)); } else rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); if (rc == 0 && req->newptr != NULL) { new_count = req->newlen / sizeof(new_ports[0]); new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, M_WAITOK); rc = SYSCTL_IN(req, new_ports, new_count * sizeof(new_ports[0])); if (rc) goto err; /* Allow setting to a single '-1' to clear the list. */ if (new_count == 1 && new_ports[0] == -1) { ADAPTER_LOCK(sc); old_ports = sc->tt.tls_rx_ports; sc->tt.tls_rx_ports = NULL; sc->tt.num_tls_rx_ports = 0; ADAPTER_UNLOCK(sc); free(old_ports, M_CXGBE); } else { for (i = 0; i < new_count; i++) { if (new_ports[i] < 1 || new_ports[i] > IPPORT_MAX) { rc = EINVAL; goto err; } } ADAPTER_LOCK(sc); old_ports = sc->tt.tls_rx_ports; sc->tt.tls_rx_ports = new_ports; sc->tt.num_tls_rx_ports = new_count; ADAPTER_UNLOCK(sc); free(old_ports, M_CXGBE); new_ports = NULL; } err: free(new_ports, M_CXGBE); } end_synchronized_op(sc, 0); return (rc); } static void unit_conv(char *buf, size_t len, u_int val, u_int factor) { u_int rem = val % factor; if (rem == 0) snprintf(buf, len, "%u", val / factor); else { while (rem % 10 == 0) rem /= 10; snprintf(buf, len, "%u.%u", val / factor, rem); } } static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; char buf[16]; u_int res, re; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); switch (arg2) { case 0: /* timer_tick */ re = G_TIMERRESOLUTION(res); break; case 1: /* TCP timestamp tick */ re = G_TIMESTAMPRESOLUTION(res); break; case 2: /* DACK tick */ re = G_DELAYEDACKRESOLUTION(res); break; default: return (EDOOFUS); } unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); } static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int res, dack_re, v; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); dack_re = G_DELAYEDACKRESOLUTION(res); v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; u_int tre; u_long tp_tick_us, v; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); tp_tick_us = (cclk_ps << tre) / 1000000; if (reg == A_TP_INIT_SRTT) v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); else v = tp_tick_us * t4_read_reg(sc, reg); return (sysctl_handle_long(oidp, &v, 0, req)); } /* * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is * passed to this function. */ static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int idx = arg2; u_int v; MPASS(idx >= 0 && idx <= 24); v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int idx = arg2; u_int shift, v, r; MPASS(idx >= 0 && idx < 16); r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); shift = (idx & 3) << 3; v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc, i; struct sge_ofld_rxq *ofld_rxq; uint8_t v; idx = vi->ofld_tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4otmr"); if (rc) return (rc); v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); for_each_ofld_rxq(vi, i, ofld_rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); #else ofld_rxq->iq.intr_params = v; #endif } vi->ofld_tmr_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (0); } static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc; idx = vi->ofld_pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4opktc"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->ofld_pktc_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (rc); } #endif static int get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) { int rc; if (cntxt->cid > M_CTXTQID) return (EINVAL); if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) return (EINVAL); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); if (rc) return (rc); if (sc->flags & FW_OK) { rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); if (rc == 0) goto done; } /* * Read via firmware failed or wasn't even attempted. Read directly via * the backdoor. */ rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); done: end_synchronized_op(sc, 0); return (rc); } static int load_fw(struct adapter *sc, struct t4_data *fw) { int rc; uint8_t *fw_data; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); if (rc) return (rc); /* * The firmware, with the sole exception of the memory parity error * handler, runs from memory and not flash. It is almost always safe to * install a new firmware on a running system. Just set bit 1 in * hw.cxgbe.dflags or dev...dflags first. */ if (sc->flags & FULL_INIT_DONE && (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { rc = EBUSY; goto done; } fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); if (fw_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(fw->data, fw_data, fw->len); if (rc == 0) rc = -t4_load_fw(sc, fw_data, fw->len); free(fw_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_cfg(struct adapter *sc, struct t4_data *cfg) { int rc; uint8_t *cfg_data = NULL; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); if (rc) return (rc); if (cfg->len == 0) { /* clear */ rc = -t4_load_cfg(sc, NULL, 0); goto done; } cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); if (cfg_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(cfg->data, cfg_data, cfg->len); if (rc == 0) rc = -t4_load_cfg(sc, cfg_data, cfg->len); free(cfg_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_boot(struct adapter *sc, struct t4_bootrom *br) { int rc; uint8_t *br_data = NULL; u_int offset; if (br->len > 1024 * 1024) return (EFBIG); if (br->pf_offset == 0) { /* pfidx */ if (br->pfidx_addr > 7) return (EINVAL); offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, A_PCIE_PF_EXPROM_OFST))); } else if (br->pf_offset == 1) { /* offset */ offset = G_OFFSET(br->pfidx_addr); } else { return (EINVAL); } rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); if (rc) return (rc); if (br->len == 0) { /* clear */ rc = -t4_load_boot(sc, NULL, offset, 0); goto done; } br_data = malloc(br->len, M_CXGBE, M_WAITOK); if (br_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(br->data, br_data, br->len); if (rc == 0) rc = -t4_load_boot(sc, br_data, offset, br->len); free(br_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_bootcfg(struct adapter *sc, struct t4_data *bc) { int rc; uint8_t *bc_data = NULL; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); if (rc) return (rc); if (bc->len == 0) { /* clear */ rc = -t4_load_bootcfg(sc, NULL, 0); goto done; } bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); if (bc_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(bc->data, bc_data, bc->len); if (rc == 0) rc = -t4_load_bootcfg(sc, bc_data, bc->len); free(bc_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) { int rc; struct cudbg_init *cudbg; void *handle, *buf; /* buf is large, don't block if no memory is available */ buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); if (buf == NULL) return (ENOMEM); handle = cudbg_alloc_handle(); if (handle == NULL) { rc = ENOMEM; goto done; } cudbg = cudbg_get_init(handle); cudbg->adap = sc; cudbg->print = (cudbg_print_cb)printf; #ifndef notyet device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", __func__, dump->wr_flash, dump->len, dump->data); #endif if (dump->wr_flash) cudbg->use_flash = 1; MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); rc = cudbg_collect(handle, buf, &dump->len); if (rc != 0) goto done; rc = copyout(buf, dump->data, dump->len); done: cudbg_free_handle(handle); free(buf, M_CXGBE); return (rc); } static void free_offload_policy(struct t4_offload_policy *op) { struct offload_rule *r; int i; if (op == NULL) return; r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { free(r->bpf_prog.bf_insns, M_CXGBE); } free(op->rule, M_CXGBE); free(op, M_CXGBE); } static int set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) { int i, rc, len; struct t4_offload_policy *op, *old; struct bpf_program *bf; const struct offload_settings *s; struct offload_rule *r; void *u; if (!is_offload(sc)) return (ENODEV); if (uop->nrules == 0) { /* Delete installed policies. */ op = NULL; goto set_policy; } else if (uop->nrules > 256) { /* arbitrary */ return (E2BIG); } /* Copy userspace offload policy to kernel */ op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); op->nrules = uop->nrules; len = op->nrules * sizeof(struct offload_rule); op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); rc = copyin(uop->rule, op->rule, len); if (rc) { free(op->rule, M_CXGBE); free(op, M_CXGBE); return (rc); } r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { /* Validate open_type */ if (r->open_type != OPEN_TYPE_LISTEN && r->open_type != OPEN_TYPE_ACTIVE && r->open_type != OPEN_TYPE_PASSIVE && r->open_type != OPEN_TYPE_DONTCARE) { error: /* * Rules 0 to i have malloc'd filters that need to be * freed. Rules i+1 to nrules have userspace pointers * and should be left alone. */ op->nrules = i; free_offload_policy(op); return (rc); } /* Validate settings */ s = &r->settings; if ((s->offload != 0 && s->offload != 1) || s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || s->sched_class < -1 || s->sched_class >= sc->chip_params->nsched_cls) { rc = EINVAL; goto error; } bf = &r->bpf_prog; u = bf->bf_insns; /* userspace ptr */ bf->bf_insns = NULL; if (bf->bf_len == 0) { /* legal, matches everything */ continue; } len = bf->bf_len * sizeof(*bf->bf_insns); bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); rc = copyin(u, bf->bf_insns, len); if (rc != 0) goto error; if (!bpf_validate(bf->bf_insns, bf->bf_len)) { rc = EINVAL; goto error; } } set_policy: rw_wlock(&sc->policy_lock); old = sc->policy; sc->policy = op; rw_wunlock(&sc->policy_lock); free_offload_policy(old); return (0); } #define MAX_READ_BUF_SIZE (128 * 1024) static int read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) { uint32_t addr, remaining, n; uint32_t *buf; int rc; uint8_t *dst; rc = validate_mem_range(sc, mr->addr, mr->len); if (rc != 0) return (rc); buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); addr = mr->addr; remaining = mr->len; dst = (void *)mr->data; while (remaining) { n = min(remaining, MAX_READ_BUF_SIZE); read_via_memwin(sc, 2, addr, buf, n); rc = copyout(buf, dst, n); if (rc != 0) break; dst += n; remaining -= n; addr += n; } free(buf, M_CXGBE); return (rc); } #undef MAX_READ_BUF_SIZE static int read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) { int rc; if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) return (EINVAL); if (i2cd->len > sizeof(i2cd->data)) return (EFBIG); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); if (rc) return (rc); rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, i2cd->offset, i2cd->len, &i2cd->data[0]); end_synchronized_op(sc, 0); return (rc); } static int clear_stats(struct adapter *sc, u_int port_id) { int i, v, bg_map; struct port_info *pi; struct vi_info *vi; struct sge_rxq *rxq; struct sge_txq *txq; struct sge_wrq *wrq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif if (port_id >= sc->params.nports) return (EINVAL); pi = sc->port[port_id]; if (pi == NULL) return (EIO); /* MAC stats */ t4_clr_port_stats(sc, pi->tx_chan); pi->tx_parse_error = 0; pi->tnl_cong_drops = 0; mtx_lock(&sc->reg_lock); for_each_vi(pi, v, vi) { if (vi->flags & VI_INIT_DONE) t4_clr_vi_stats(sc, vi->vin); } bg_map = pi->mps_bg_map; v = 0; /* reuse */ while (bg_map) { i = ffs(bg_map) - 1; t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, A_TP_MIB_TNL_CNG_DROP_0 + i); bg_map &= ~(1 << i); } mtx_unlock(&sc->reg_lock); /* * Since this command accepts a port, clear stats for * all VIs on this port. */ for_each_vi(pi, v, vi) { if (vi->flags & VI_INIT_DONE) { for_each_rxq(vi, i, rxq) { #if defined(INET) || defined(INET6) rxq->lro.lro_queued = 0; rxq->lro.lro_flushed = 0; #endif rxq->rxcsum = 0; rxq->vlan_extraction = 0; rxq->fl.mbuf_allocated = 0; rxq->fl.mbuf_inlined = 0; rxq->fl.cl_allocated = 0; rxq->fl.cl_recycled = 0; rxq->fl.cl_fast_recycled = 0; } for_each_txq(vi, i, txq) { txq->txcsum = 0; txq->tso_wrs = 0; txq->vlan_insertion = 0; txq->imm_wrs = 0; txq->sgl_wrs = 0; txq->txpkt_wrs = 0; txq->txpkts0_wrs = 0; txq->txpkts1_wrs = 0; txq->txpkts0_pkts = 0; txq->txpkts1_pkts = 0; txq->raw_wrs = 0; mp_ring_reset_stats(txq->r); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, wrq) { wrq->tx_wrs_direct = 0; wrq->tx_wrs_copied = 0; } #endif #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { ofld_rxq->fl.mbuf_allocated = 0; ofld_rxq->fl.mbuf_inlined = 0; ofld_rxq->fl.cl_allocated = 0; ofld_rxq->fl.cl_recycled = 0; ofld_rxq->fl.cl_fast_recycled = 0; } #endif if (IS_MAIN_VI(vi)) { wrq = &sc->sge.ctrlq[pi->port_id]; wrq->tx_wrs_direct = 0; wrq->tx_wrs_copied = 0; } } } return (0); } int t4_os_find_pci_capability(struct adapter *sc, int cap) { int i; return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); } int t4_os_pci_save_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); return (0); } int t4_os_pci_restore_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); return (0); } void t4_os_portmod_changed(struct port_info *pi) { struct adapter *sc = pi->adapter; struct vi_info *vi; struct ifnet *ifp; static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" }; KASSERT((pi->flags & FIXED_IFMEDIA) == 0, ("%s: port_type %u", __func__, pi->port_type)); vi = &pi->vi[0]; if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { PORT_LOCK(pi); build_medialist(pi); if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { fixup_link_config(pi); apply_link_config(pi); } PORT_UNLOCK(pi); end_synchronized_op(sc, LOCK_HELD); } ifp = vi->ifp; if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) if_printf(ifp, "transceiver unplugged.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) if_printf(ifp, "unknown transceiver inserted.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) if_printf(ifp, "unsupported transceiver inserted.\n"); else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { if_printf(ifp, "%dGbps %s transceiver inserted.\n", port_top_speed(pi), mod_str[pi->mod_type]); } else { if_printf(ifp, "transceiver (type %d) inserted.\n", pi->mod_type); } } void t4_os_link_changed(struct port_info *pi) { struct vi_info *vi; struct ifnet *ifp; struct link_config *lc; int v; PORT_LOCK_ASSERT_OWNED(pi); for_each_vi(pi, v, vi) { ifp = vi->ifp; if (ifp == NULL) continue; lc = &pi->link_cfg; if (lc->link_ok) { ifp->if_baudrate = IF_Mbps(lc->speed); if_link_state_change(ifp, LINK_STATE_UP); } else { if_link_state_change(ifp, LINK_STATE_DOWN); } } } void t4_iterate(void (*func)(struct adapter *, void *), void *arg) { struct adapter *sc; sx_slock(&t4_list_lock); SLIST_FOREACH(sc, &t4_list, link) { /* * func should not make any assumptions about what state sc is * in - the only guarantee is that sc->sc_lock is a valid lock. */ func(sc, arg); } sx_sunlock(&t4_list_lock); } static int t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct adapter *sc = dev->si_drv1; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (rc); switch (cmd) { case CHELSIO_T4_GETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) edata->val = t4_read_reg(sc, edata->addr); else if (edata->size == 8) edata->val = t4_read_reg64(sc, edata->addr); else return (EINVAL); break; } case CHELSIO_T4_SETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) { if (edata->val & 0xffffffff00000000) return (EINVAL); t4_write_reg(sc, edata->addr, (uint32_t) edata->val); } else if (edata->size == 8) t4_write_reg64(sc, edata->addr, edata->val); else return (EINVAL); break; } case CHELSIO_T4_REGDUMP: { struct t4_regdump *regs = (struct t4_regdump *)data; int reglen = t4_get_regs_len(sc); uint8_t *buf; if (regs->len < reglen) { regs->len = reglen; /* hint to the caller */ return (ENOBUFS); } regs->len = reglen; buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); get_regs(sc, regs, buf); rc = copyout(buf, regs->data, reglen); free(buf, M_CXGBE); break; } case CHELSIO_T4_GET_FILTER_MODE: rc = get_filter_mode(sc, (uint32_t *)data); break; case CHELSIO_T4_SET_FILTER_MODE: rc = set_filter_mode(sc, *(uint32_t *)data); break; case CHELSIO_T4_GET_FILTER: rc = get_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_SET_FILTER: rc = set_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_DEL_FILTER: rc = del_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_GET_SGE_CONTEXT: rc = get_sge_context(sc, (struct t4_sge_context *)data); break; case CHELSIO_T4_LOAD_FW: rc = load_fw(sc, (struct t4_data *)data); break; case CHELSIO_T4_GET_MEM: rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); break; case CHELSIO_T4_GET_I2C: rc = read_i2c(sc, (struct t4_i2c_data *)data); break; case CHELSIO_T4_CLEAR_STATS: rc = clear_stats(sc, *(uint32_t *)data); break; case CHELSIO_T4_SCHED_CLASS: rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); break; case CHELSIO_T4_SCHED_QUEUE: rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); break; case CHELSIO_T4_GET_TRACER: rc = t4_get_tracer(sc, (struct t4_tracer *)data); break; case CHELSIO_T4_SET_TRACER: rc = t4_set_tracer(sc, (struct t4_tracer *)data); break; case CHELSIO_T4_LOAD_CFG: rc = load_cfg(sc, (struct t4_data *)data); break; case CHELSIO_T4_LOAD_BOOT: rc = load_boot(sc, (struct t4_bootrom *)data); break; case CHELSIO_T4_LOAD_BOOTCFG: rc = load_bootcfg(sc, (struct t4_data *)data); break; case CHELSIO_T4_CUDBG_DUMP: rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); break; case CHELSIO_T4_SET_OFLD_POLICY: rc = set_offload_policy(sc, (struct t4_offload_policy *)data); break; default: rc = ENOTTY; } return (rc); } #ifdef TCP_OFFLOAD static int toe_capability(struct vi_info *vi, int enable) { int rc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; ASSERT_SYNCHRONIZED_OP(sc); if (!is_offload(sc)) return (ENODEV); if (enable) { if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { /* TOE is already enabled. */ return (0); } /* * We need the port's queues around so that we're able to send * and receive CPLs to/from the TOE even if the ifnet for this * port has never been UP'd administratively. */ if (!(vi->flags & VI_INIT_DONE)) { rc = vi_full_init(vi); if (rc) return (rc); } if (!(pi->vi[0].flags & VI_INIT_DONE)) { rc = vi_full_init(&pi->vi[0]); if (rc) return (rc); } if (isset(&sc->offload_map, pi->port_id)) { /* TOE is enabled on another VI of this port. */ pi->uld_vis++; return (0); } if (!uld_active(sc, ULD_TOM)) { rc = t4_activate_uld(sc, ULD_TOM); if (rc == EAGAIN) { log(LOG_WARNING, "You must kldload t4_tom.ko before trying " "to enable TOE on a cxgbe interface.\n"); } if (rc != 0) return (rc); KASSERT(sc->tom_softc != NULL, ("%s: TOM activated but softc NULL", __func__)); KASSERT(uld_active(sc, ULD_TOM), ("%s: TOM activated but flag not set", __func__)); } /* Activate iWARP and iSCSI too, if the modules are loaded. */ if (!uld_active(sc, ULD_IWARP)) (void) t4_activate_uld(sc, ULD_IWARP); if (!uld_active(sc, ULD_ISCSI)) (void) t4_activate_uld(sc, ULD_ISCSI); pi->uld_vis++; setbit(&sc->offload_map, pi->port_id); } else { pi->uld_vis--; if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) return (0); KASSERT(uld_active(sc, ULD_TOM), ("%s: TOM never initialized?", __func__)); clrbit(&sc->offload_map, pi->port_id); } return (0); } /* * Add an upper layer driver to the global list. */ int t4_register_uld(struct uld_info *ui) { int rc = 0; struct uld_info *u; sx_xlock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u->uld_id == ui->uld_id) { rc = EEXIST; goto done; } } SLIST_INSERT_HEAD(&t4_uld_list, ui, link); ui->refcount = 0; done: sx_xunlock(&t4_uld_list_lock); return (rc); } int t4_unregister_uld(struct uld_info *ui) { int rc = EINVAL; struct uld_info *u; sx_xlock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u == ui) { if (ui->refcount > 0) { rc = EBUSY; goto done; } SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); rc = 0; goto done; } } done: sx_xunlock(&t4_uld_list_lock); return (rc); } int t4_activate_uld(struct adapter *sc, int id) { int rc; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); if (id < 0 || id > ULD_MAX) return (EINVAL); rc = EAGAIN; /* kldoad the module with this ULD and try again. */ sx_slock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { if (!(sc->flags & FULL_INIT_DONE)) { rc = adapter_full_init(sc); if (rc != 0) break; } rc = ui->activate(sc); if (rc == 0) { setbit(&sc->active_ulds, id); ui->refcount++; } break; } } sx_sunlock(&t4_uld_list_lock); return (rc); } int t4_deactivate_uld(struct adapter *sc, int id) { int rc; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); if (id < 0 || id > ULD_MAX) return (EINVAL); rc = ENXIO; sx_slock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->deactivate(sc); if (rc == 0) { clrbit(&sc->active_ulds, id); ui->refcount--; } break; } } sx_sunlock(&t4_uld_list_lock); return (rc); } int uld_active(struct adapter *sc, int uld_id) { MPASS(uld_id >= 0 && uld_id <= ULD_MAX); return (isset(&sc->active_ulds, uld_id)); } #endif /* * t = ptr to tunable. * nc = number of CPUs. * c = compiled in default for that tunable. */ static void calculate_nqueues(int *t, int nc, const int c) { int nq; if (*t > 0) return; nq = *t < 0 ? -*t : c; *t = min(nc, nq); } /* * Come up with reasonable defaults for some of the tunables, provided they're * not set by the user (in which case we'll use the values as is). */ static void tweak_tunables(void) { int nc = mp_ncpus; /* our snapshot of the number of CPUs */ if (t4_ntxq < 1) { #ifdef RSS t4_ntxq = rss_getnumbuckets(); #else calculate_nqueues(&t4_ntxq, nc, NTXQ); #endif } calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); if (t4_nrxq < 1) { #ifdef RSS t4_nrxq = rss_getnumbuckets(); #else calculate_nqueues(&t4_nrxq, nc, NRXQ); #endif } calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); #endif #ifdef TCP_OFFLOAD calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); if (t4_toecaps_allowed == -1) t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; if (t4_rdmacaps_allowed == -1) { t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | FW_CAPS_CONFIG_RDMA_RDMAC; } if (t4_iscsicaps_allowed == -1) { t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | FW_CAPS_CONFIG_ISCSI_TARGET_PDU | FW_CAPS_CONFIG_ISCSI_T10DIF; } if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) t4_tmr_idx_ofld = TMR_IDX_OFLD; if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) t4_pktc_idx_ofld = PKTC_IDX_OFLD; #else if (t4_toecaps_allowed == -1) t4_toecaps_allowed = 0; if (t4_rdmacaps_allowed == -1) t4_rdmacaps_allowed = 0; if (t4_iscsicaps_allowed == -1) t4_iscsicaps_allowed = 0; #endif #ifdef DEV_NETMAP calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); #endif if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) t4_tmr_idx = TMR_IDX; if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) t4_pktc_idx = PKTC_IDX; if (t4_qsize_txq < 128) t4_qsize_txq = 128; if (t4_qsize_rxq < 128) t4_qsize_rxq = 128; while (t4_qsize_rxq & 7) t4_qsize_rxq++; t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; /* * Number of VIs to create per-port. The first VI is the "main" regular * VI for the port. The rest are additional virtual interfaces on the * same physical port. Note that the main VI does not have native * netmap support but the extra VIs do. * * Limit the number of VIs per port to the number of available * MAC addresses per port. */ if (t4_num_vis < 1) t4_num_vis = 1; if (t4_num_vis > nitems(vi_mac_funcs)) { t4_num_vis = nitems(vi_mac_funcs); printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); } if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { pcie_relaxed_ordering = 1; #if defined(__i386__) || defined(__amd64__) if (cpu_vendor_id == CPU_VENDOR_INTEL) pcie_relaxed_ordering = 0; #endif } } #ifdef DDB static void t4_dump_tcb(struct adapter *sc, int tid) { uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); save = t4_read_reg(sc, reg); base = sc->memwin[2].mw_base; /* Dump TCB for the tid */ tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); tcb_addr += tid * TCB_SIZE; if (is_t4(sc)) { pf = 0; win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ } else { pf = V_PFNUM(sc->pf); win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ } t4_write_reg(sc, reg, win_pos | pf); t4_read_reg(sc, reg); off = tcb_addr - win_pos; for (i = 0; i < 4; i++) { uint32_t buf[8]; for (j = 0; j < 8; j++, off += 4) buf[j] = htonl(t4_read_reg(sc, base + off)); db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); } t4_write_reg(sc, reg, save); t4_read_reg(sc, reg); } static void t4_dump_devlog(struct adapter *sc) { struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e e; int i, first, j, m, nentries, rc; uint64_t ftstamp = UINT64_MAX; if (dparams->start == 0) { db_printf("devlog params not valid\n"); return; } nentries = dparams->size / sizeof(struct fw_devlog_e); m = fwmtype_to_hwmtype(dparams->memtype); /* Find the first entry. */ first = -1; for (i = 0; i < nentries && !db_pager_quit; i++) { rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), sizeof(e), (void *)&e); if (rc != 0) break; if (e.timestamp == 0) break; e.timestamp = be64toh(e.timestamp); if (e.timestamp < ftstamp) { ftstamp = e.timestamp; first = i; } } if (first == -1) return; i = first; do { rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), sizeof(e), (void *)&e); if (rc != 0) return; if (e.timestamp == 0) return; e.timestamp = be64toh(e.timestamp); e.seqno = be32toh(e.seqno); for (j = 0; j < 8; j++) e.params[j] = be32toh(e.params[j]); db_printf("%10d %15ju %8s %8s ", e.seqno, e.timestamp, (e.level < nitems(devlog_level_strings) ? devlog_level_strings[e.level] : "UNKNOWN"), (e.facility < nitems(devlog_facility_strings) ? devlog_facility_strings[e.facility] : "UNKNOWN")); db_printf(e.fmt, e.params[0], e.params[1], e.params[2], e.params[3], e.params[4], e.params[5], e.params[6], e.params[7]); if (++i == nentries) i = 0; } while (i != first && !db_pager_quit); } static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) { device_t dev; int t; bool valid; valid = false; t = db_read_token(); if (t == tIDENT) { dev = device_lookup_by_name(db_tok_string); valid = true; } db_skip_to_eol(); if (!valid) { db_printf("usage: show t4 devlog \n"); return; } if (dev == NULL) { db_printf("device not found\n"); return; } t4_dump_devlog(device_get_softc(dev)); } DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) { device_t dev; int radix, tid, t; bool valid; valid = false; radix = db_radix; db_radix = 10; t = db_read_token(); if (t == tIDENT) { dev = device_lookup_by_name(db_tok_string); t = db_read_token(); if (t == tNUMBER) { tid = db_tok_number; valid = true; } } db_radix = radix; db_skip_to_eol(); if (!valid) { db_printf("usage: show t4 tcb \n"); return; } if (dev == NULL) { db_printf("device not found\n"); return; } if (tid < 0) { db_printf("invalid tid\n"); return; } t4_dump_tcb(device_get_softc(dev), tid); } #endif /* * Borrowed from cesa_prep_aes_key(). * * NB: The crypto engine wants the words in the decryption key in reverse * order. */ void t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits) { uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)]; uint32_t *dkey; int i; rijndaelKeySetupEnc(ek, enc_key, kbits); dkey = dec_key; dkey += (kbits / 8) / 4; switch (kbits) { case 128: for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 10 + i]); break; case 192: for (i = 0; i < 2; i++) *--dkey = htobe32(ek[4 * 11 + 2 + i]); for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 12 + i]); break; case 256: for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 13 + i]); for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 14 + i]); break; } MPASS(dkey == dec_key); } static struct sx mlu; /* mod load unload */ SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); static int mod_event(module_t mod, int cmd, void *arg) { int rc = 0; static int loaded = 0; switch (cmd) { case MOD_LOAD: sx_xlock(&mlu); if (loaded++ == 0) { t4_sge_modload(); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, t4_filter_rpl, CPL_COOKIE_FILTER); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl, CPL_COOKIE_FILTER); t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); t4_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); sx_init(&t4_list_lock, "T4/T5 adapters"); SLIST_INIT(&t4_list); callout_init(&fatal_callout, 1); #ifdef TCP_OFFLOAD sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); SLIST_INIT(&t4_uld_list); #endif #ifdef INET6 t4_clip_modload(); #endif t4_tracer_modload(); tweak_tunables(); } sx_xunlock(&mlu); break; case MOD_UNLOAD: sx_xlock(&mlu); if (--loaded == 0) { int tries; sx_slock(&t4_list_lock); if (!SLIST_EMPTY(&t4_list)) { rc = EBUSY; sx_sunlock(&t4_list_lock); goto done_unload; } #ifdef TCP_OFFLOAD sx_slock(&t4_uld_list_lock); if (!SLIST_EMPTY(&t4_uld_list)) { rc = EBUSY; sx_sunlock(&t4_uld_list_lock); sx_sunlock(&t4_list_lock); goto done_unload; } #endif tries = 0; while (tries++ < 5 && t4_sge_extfree_refs() != 0) { uprintf("%ju clusters with custom free routine " "still is use.\n", t4_sge_extfree_refs()); pause("t4unload", 2 * hz); } #ifdef TCP_OFFLOAD sx_sunlock(&t4_uld_list_lock); #endif sx_sunlock(&t4_list_lock); if (t4_sge_extfree_refs() == 0) { t4_tracer_modunload(); #ifdef INET6 t4_clip_modunload(); #endif #ifdef TCP_OFFLOAD sx_destroy(&t4_uld_list_lock); #endif sx_destroy(&t4_list_lock); t4_sge_modunload(); loaded = 0; } else { rc = EBUSY; loaded++; /* undo earlier decrement */ } } done_unload: sx_xunlock(&mlu); break; } return (rc); } static devclass_t t4_devclass, t5_devclass, t6_devclass; static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); MODULE_VERSION(t4nex, 1); MODULE_DEPEND(t4nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t4nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); MODULE_VERSION(t5nex, 1); MODULE_DEPEND(t5nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t5nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); MODULE_VERSION(t6nex, 1); MODULE_DEPEND(t6nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t6nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); MODULE_VERSION(cxgbe, 1); DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); MODULE_VERSION(cxl, 1); DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); MODULE_VERSION(cc, 1); DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); MODULE_VERSION(vcxgbe, 1); DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); MODULE_VERSION(vcxl, 1); DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); MODULE_VERSION(vcc, 1); Index: head/sys/dev/cxgbe/tom/t4_connect.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_connect.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_connect.c (revision 351540) @@ -1,505 +1,398 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "t4_clip.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" /* * Active open succeeded. */ static int do_act_establish(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_act_establish *cpl = (const void *)(rss + 1); u_int tid = GET_TID(cpl); u_int atid = G_TID_TID(ntohl(cpl->tos_atid)); struct toepcb *toep = lookup_atid(sc, atid); struct inpcb *inp = toep->inp; KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == atid, ("%s: toep tid/atid mismatch", __func__)); CTR3(KTR_CXGBE, "%s: atid %u, tid %u", __func__, atid, tid); free_atid(sc, atid); CURVNET_SET(toep->vnet); INP_WLOCK(inp); toep->tid = tid; insert_tid(sc, tid, toep, inp->inp_vflag & INP_IPV6 ? 2 : 1); if (inp->inp_flags & INP_DROPPED) { /* socket closed by the kernel before hw told us it connected */ send_flowc_wr(toep, NULL); send_reset(sc, toep, be32toh(cpl->snd_isn)); goto done; } make_established(toep, be32toh(cpl->snd_isn) - 1, be32toh(cpl->rcv_isn) - 1, cpl->tcp_opt); - if (toep->ulp_mode == ULP_MODE_TLS) + if (ulp_mode(toep) == ULP_MODE_TLS) tls_establish(toep); done: INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } void act_open_failure_cleanup(struct adapter *sc, u_int atid, u_int status) { struct toepcb *toep = lookup_atid(sc, atid); struct inpcb *inp = toep->inp; struct toedev *tod = &toep->td->tod; struct epoch_tracker et; free_atid(sc, atid); toep->tid = -1; CURVNET_SET(toep->vnet); if (status != EAGAIN) INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); toe_connect_failed(tod, inp, status); final_cpl_received(toep); /* unlocks inp */ if (status != EAGAIN) INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); } /* * Active open failed. */ static int do_act_open_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); u_int atid = G_TID_TID(G_AOPEN_ATID(be32toh(cpl->atid_status))); u_int status = G_AOPEN_STATUS(be32toh(cpl->atid_status)); struct toepcb *toep = lookup_atid(sc, atid); int rc; KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == atid, ("%s: toep tid/atid mismatch", __func__)); CTR3(KTR_CXGBE, "%s: atid %u, status %u ", __func__, atid, status); /* Ignore negative advice */ if (negative_advice(status)) return (0); if (status && act_open_has_tid(status)) release_tid(sc, GET_TID(cpl), toep->ctrlq); rc = act_open_rpl_status_to_errno(status); act_open_failure_cleanup(sc, atid, rc); return (0); } -/* - * Options2 for active open. - */ -static uint32_t -calc_opt2a(struct socket *so, struct toepcb *toep, - const struct offload_settings *s) -{ - struct tcpcb *tp = so_sototcpcb(so); - struct port_info *pi = toep->vi->pi; - struct adapter *sc = pi->adapter; - uint32_t opt2 = 0; - - /* - * rx flow control, rx coalesce, congestion control, and tx pace are all - * explicitly set by the driver. On T5+ the ISS is also set by the - * driver to the value picked by the kernel. - */ - if (is_t4(sc)) { - opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; - opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; - } else { - opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ - opt2 |= F_T5_ISS; /* ISS provided in CPL */ - } - - if (s->sack > 0 || (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) - opt2 |= F_SACK_EN; - - if (s->tstamp > 0 || (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) - opt2 |= F_TSTAMPS_EN; - - if (tp->t_flags & TF_REQ_SCALE) - opt2 |= F_WND_SCALE_EN; - - if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) - opt2 |= F_CCTRL_ECN; - - /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ - - opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); - - /* These defaults are subject to ULP specific fixups later. */ - opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); - - opt2 |= V_PACE(0); - - if (s->cong_algo >= 0) - opt2 |= V_CONG_CNTRL(s->cong_algo); - else if (sc->tt.cong_algorithm >= 0) - opt2 |= V_CONG_CNTRL(sc->tt.cong_algorithm & M_CONG_CNTRL); - else { - struct cc_algo *cc = CC_ALGO(tp); - - if (strcasecmp(cc->name, "reno") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_RENO); - else if (strcasecmp(cc->name, "tahoe") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_TAHOE); - if (strcasecmp(cc->name, "newreno") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_NEWRENO); - if (strcasecmp(cc->name, "highspeed") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_HIGHSPEED); - else { - /* - * Use newreno in case the algorithm selected by the - * host stack is not supported by the hardware. - */ - opt2 |= V_CONG_CNTRL(CONG_ALG_NEWRENO); - } - } - - if (s->rx_coalesce > 0 || (s->rx_coalesce < 0 && sc->tt.rx_coalesce)) - opt2 |= V_RX_COALESCE(M_RX_COALESCE); - - /* Note that ofld_rxq is already set according to s->rxq. */ - opt2 |= F_RSS_QUEUE_VALID; - opt2 |= V_RSS_QUEUE(toep->ofld_rxq->iq.abs_id); - -#ifdef USE_DDP_RX_FLOW_CONTROL - if (toep->ulp_mode == ULP_MODE_TCPDDP) - opt2 |= F_RX_FC_DDP; -#endif - - if (toep->ulp_mode == ULP_MODE_TLS) { - opt2 &= ~V_RX_COALESCE(M_RX_COALESCE); - opt2 |= F_RX_FC_DISABLE; - } - - return (htobe32(opt2)); -} - void t4_init_connect_cpl_handlers(void) { t4_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish); t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl, CPL_COOKIE_TOM); } void t4_uninit_connect_cpl_handlers(void) { t4_register_cpl_handler(CPL_ACT_ESTABLISH, NULL); t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, NULL, CPL_COOKIE_TOM); } #define DONT_OFFLOAD_ACTIVE_OPEN(x) do { \ reason = __LINE__; \ rc = (x); \ goto failed; \ } while (0) static inline int act_open_cpl_size(struct adapter *sc, int isipv6) { int idx; static const int sz_table[3][2] = { { sizeof (struct cpl_act_open_req), sizeof (struct cpl_act_open_req6) }, { sizeof (struct cpl_t5_act_open_req), sizeof (struct cpl_t5_act_open_req6) }, { sizeof (struct cpl_t6_act_open_req), sizeof (struct cpl_t6_act_open_req6) }, }; MPASS(chip_id(sc) >= CHELSIO_T4); idx = min(chip_id(sc) - CHELSIO_T4, 2); return (sz_table[idx][!!isipv6]); } /* * active open (soconnect). * * State of affairs on entry: * soisconnecting (so_state |= SS_ISCONNECTING) * tcbinfo not locked (This has changed - used to be WLOCKed) * inp WLOCKed * tp->t_state = TCPS_SYN_SENT * rtalloc1, RT_UNLOCK on rt. */ int t4_connect(struct toedev *tod, struct socket *so, struct rtentry *rt, struct sockaddr *nam) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = NULL; struct wrqe *wr = NULL; struct ifnet *rt_ifp = rt->rt_ifp; struct vi_info *vi; - int mtu_idx, rscale, qid_atid, rc, isipv6, txqid, rxqid; + int qid_atid, rc, isipv6; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); int reason; struct offload_settings settings; uint16_t vid = 0xfff, pcp = 0; INP_WLOCK_ASSERT(inp); KASSERT(nam->sa_family == AF_INET || nam->sa_family == AF_INET6, ("%s: dest addr %p has family %u", __func__, nam, nam->sa_family)); if (rt_ifp->if_type == IFT_ETHER) vi = rt_ifp->if_softc; else if (rt_ifp->if_type == IFT_L2VLAN) { struct ifnet *ifp = VLAN_TRUNKDEV(rt_ifp); vi = ifp->if_softc; VLAN_TAG(rt_ifp, &vid); VLAN_PCP(rt_ifp, &pcp); } else if (rt_ifp->if_type == IFT_IEEE8023ADLAG) DONT_OFFLOAD_ACTIVE_OPEN(ENOSYS); /* XXX: implement lagg+TOE */ else DONT_OFFLOAD_ACTIVE_OPEN(ENOTSUP); rw_rlock(&sc->policy_lock); settings = *lookup_offload_policy(sc, OPEN_TYPE_ACTIVE, NULL, EVL_MAKETAG(vid, pcp, 0), inp); rw_runlock(&sc->policy_lock); if (!settings.offload) DONT_OFFLOAD_ACTIVE_OPEN(EPERM); - if (settings.txq >= 0 && settings.txq < vi->nofldtxq) - txqid = settings.txq; - else - txqid = arc4random() % vi->nofldtxq; - txqid += vi->first_ofld_txq; - if (settings.rxq >= 0 && settings.rxq < vi->nofldrxq) - rxqid = settings.rxq; - else - rxqid = arc4random() % vi->nofldrxq; - rxqid += vi->first_ofld_rxq; - - toep = alloc_toepcb(vi, txqid, rxqid, M_NOWAIT | M_ZERO); + toep = alloc_toepcb(vi, M_NOWAIT); if (toep == NULL) DONT_OFFLOAD_ACTIVE_OPEN(ENOMEM); toep->tid = alloc_atid(sc, toep); if (toep->tid < 0) DONT_OFFLOAD_ACTIVE_OPEN(ENOMEM); toep->l2te = t4_l2t_get(vi->pi, rt_ifp, rt->rt_flags & RTF_GATEWAY ? rt->rt_gateway : nam); if (toep->l2te == NULL) DONT_OFFLOAD_ACTIVE_OPEN(ENOMEM); + toep->vnet = so->so_vnet; + init_conn_params(vi, &settings, &inp->inp_inc, so, NULL, + toep->l2te->idx, &toep->params); + init_toepcb(vi, toep); + isipv6 = nam->sa_family == AF_INET6; wr = alloc_wrqe(act_open_cpl_size(sc, isipv6), toep->ctrlq); if (wr == NULL) DONT_OFFLOAD_ACTIVE_OPEN(ENOMEM); - toep->vnet = so->so_vnet; - set_ulp_mode(toep, select_ulp_mode(so, sc, &settings)); - SOCKBUF_LOCK(&so->so_rcv); - toep->opt0_rcv_bufsize = min(select_rcv_wnd(so) >> 10, M_RCV_BUFSIZ); - SOCKBUF_UNLOCK(&so->so_rcv); - - /* - * The kernel sets request_r_scale based on sb_max whereas we need to - * take hardware's MAX_RCV_WND into account too. This is normally a - * no-op as MAX_RCV_WND is much larger than the default sb_max. - */ - if (tp->t_flags & TF_REQ_SCALE) - rscale = tp->request_r_scale = select_rcv_wscale(); - else - rscale = 0; - mtu_idx = find_best_mtu_idx(sc, &inp->inp_inc, &settings); qid_atid = V_TID_QID(toep->ofld_rxq->iq.abs_id) | V_TID_TID(toep->tid) | V_TID_COOKIE(CPL_COOKIE_TOM); if (isipv6) { struct cpl_act_open_req6 *cpl = wrtod(wr); struct cpl_t5_act_open_req6 *cpl5 = (void *)cpl; struct cpl_t6_act_open_req6 *cpl6 = (void *)cpl; if ((inp->inp_vflag & INP_IPV6) == 0) DONT_OFFLOAD_ACTIVE_OPEN(ENOTSUP); toep->ce = t4_hold_lip(sc, &inp->in6p_laddr, NULL); if (toep->ce == NULL) DONT_OFFLOAD_ACTIVE_OPEN(ENOENT); switch (chip_id(sc)) { case CHELSIO_T4: INIT_TP_WR(cpl, 0); cpl->params = select_ntuple(vi, toep->l2te); break; case CHELSIO_T5: INIT_TP_WR(cpl5, 0); cpl5->iss = htobe32(tp->iss); cpl5->params = select_ntuple(vi, toep->l2te); break; case CHELSIO_T6: default: INIT_TP_WR(cpl6, 0); cpl6->iss = htobe32(tp->iss); cpl6->params = select_ntuple(vi, toep->l2te); break; } OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, qid_atid)); cpl->local_port = inp->inp_lport; cpl->local_ip_hi = *(uint64_t *)&inp->in6p_laddr.s6_addr[0]; cpl->local_ip_lo = *(uint64_t *)&inp->in6p_laddr.s6_addr[8]; cpl->peer_port = inp->inp_fport; cpl->peer_ip_hi = *(uint64_t *)&inp->in6p_faddr.s6_addr[0]; cpl->peer_ip_lo = *(uint64_t *)&inp->in6p_faddr.s6_addr[8]; - cpl->opt0 = calc_opt0(so, vi, toep->l2te, mtu_idx, rscale, - toep->opt0_rcv_bufsize, toep->ulp_mode, &settings); - cpl->opt2 = calc_opt2a(so, toep, &settings); + cpl->opt0 = calc_options0(vi, &toep->params); + cpl->opt2 = calc_options2(vi, &toep->params); + + CTR6(KTR_CXGBE, + "%s: atid %u, toep %p, inp %p, opt0 %#016lx, opt2 %#08x", + __func__, toep->tid, toep, inp, be64toh(cpl->opt0), + be32toh(cpl->opt2)); } else { struct cpl_act_open_req *cpl = wrtod(wr); struct cpl_t5_act_open_req *cpl5 = (void *)cpl; struct cpl_t6_act_open_req *cpl6 = (void *)cpl; switch (chip_id(sc)) { case CHELSIO_T4: INIT_TP_WR(cpl, 0); cpl->params = select_ntuple(vi, toep->l2te); break; case CHELSIO_T5: INIT_TP_WR(cpl5, 0); cpl5->iss = htobe32(tp->iss); cpl5->params = select_ntuple(vi, toep->l2te); break; case CHELSIO_T6: default: INIT_TP_WR(cpl6, 0); cpl6->iss = htobe32(tp->iss); cpl6->params = select_ntuple(vi, toep->l2te); break; } OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, qid_atid)); inp_4tuple_get(inp, &cpl->local_ip, &cpl->local_port, &cpl->peer_ip, &cpl->peer_port); - cpl->opt0 = calc_opt0(so, vi, toep->l2te, mtu_idx, rscale, - toep->opt0_rcv_bufsize, toep->ulp_mode, &settings); - cpl->opt2 = calc_opt2a(so, toep, &settings); - } + cpl->opt0 = calc_options0(vi, &toep->params); + cpl->opt2 = calc_options2(vi, &toep->params); - CTR5(KTR_CXGBE, "%s: atid %u (%s), toep %p, inp %p", __func__, - toep->tid, tcpstates[tp->t_state], toep, inp); + CTR6(KTR_CXGBE, + "%s: atid %u, toep %p, inp %p, opt0 %#016lx, opt2 %#08x", + __func__, toep->tid, toep, inp, be64toh(cpl->opt0), + be32toh(cpl->opt2)); + } offload_socket(so, toep); rc = t4_l2t_send(sc, wr, toep->l2te); if (rc == 0) { toep->flags |= TPF_CPL_PENDING; return (0); } undo_offload_socket(so); reason = __LINE__; failed: CTR3(KTR_CXGBE, "%s: not offloading (%d), rc %d", __func__, reason, rc); if (wr) free_wrqe(wr); if (toep) { if (toep->tid >= 0) free_atid(sc, toep->tid); if (toep->l2te) t4_l2t_release(toep->l2te); if (toep->ce) t4_release_lip(sc, toep->ce); free_toepcb(toep); } return (rc); } #endif Index: head/sys/dev/cxgbe/tom/t4_cpl_io.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_cpl_io.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_cpl_io.c (revision 351540) @@ -1,2318 +1,2299 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2015 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" static void t4_aiotx_cancel(struct kaiocb *job); static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep); void -send_flowc_wr(struct toepcb *toep, struct flowc_tx_params *ftxp) +send_flowc_wr(struct toepcb *toep, struct tcpcb *tp) { struct wrqe *wr; struct fw_flowc_wr *flowc; unsigned int nparams, flowclen, paramidx; struct vi_info *vi = toep->vi; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; unsigned int pfvf = sc->pf << S_FW_VIID_PFN; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT), ("%s: flowc for tid %u sent already", __func__, toep->tid)); - if (ftxp != NULL) + if (tp != NULL) nparams = 8; else nparams = 6; - if (toep->ulp_mode == ULP_MODE_TLS) + if (ulp_mode(toep) == ULP_MODE_TLS) nparams++; if (toep->tls.fcplenmax != 0) nparams++; - if (toep->tc_idx != -1) { - MPASS(toep->tc_idx >= 0 && - toep->tc_idx < sc->chip_params->nsched_cls); + if (toep->params.tc_idx != -1) { + MPASS(toep->params.tc_idx >= 0 && + toep->params.tc_idx < sc->chip_params->nsched_cls); nparams++; } flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(toep->tid)); #define FLOWC_PARAM(__m, __v) \ do { \ flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \ flowc->mnemval[paramidx].val = htobe32(__v); \ paramidx++; \ } while (0) paramidx = 0; FLOWC_PARAM(PFNVFN, pfvf); FLOWC_PARAM(CH, pi->tx_chan); FLOWC_PARAM(PORT, pi->tx_chan); FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id); - if (ftxp) { - uint32_t sndbuf = min(ftxp->snd_space, sc->tt.sndbuf); - - FLOWC_PARAM(SNDNXT, ftxp->snd_nxt); - FLOWC_PARAM(RCVNXT, ftxp->rcv_nxt); - FLOWC_PARAM(SNDBUF, sndbuf); - FLOWC_PARAM(MSS, ftxp->mss); - - CTR6(KTR_CXGBE, - "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x", - __func__, toep->tid, ftxp->mss, sndbuf, ftxp->snd_nxt, - ftxp->rcv_nxt); - } else { - FLOWC_PARAM(SNDBUF, 512); - FLOWC_PARAM(MSS, 512); - - CTR2(KTR_CXGBE, "%s: tid %u", __func__, toep->tid); + FLOWC_PARAM(SNDBUF, toep->params.sndbuf); + FLOWC_PARAM(MSS, toep->params.emss); + if (tp) { + FLOWC_PARAM(SNDNXT, tp->snd_nxt); + FLOWC_PARAM(RCVNXT, tp->rcv_nxt); } - if (toep->ulp_mode == ULP_MODE_TLS) - FLOWC_PARAM(ULP_MODE, toep->ulp_mode); + CTR6(KTR_CXGBE, + "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x", + __func__, toep->tid, toep->params.emss, toep->params.sndbuf, + tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0); + + if (ulp_mode(toep) == ULP_MODE_TLS) + FLOWC_PARAM(ULP_MODE, ulp_mode(toep)); if (toep->tls.fcplenmax != 0) FLOWC_PARAM(TXDATAPLEN_MAX, toep->tls.fcplenmax); - if (toep->tc_idx != -1) - FLOWC_PARAM(SCHEDCLASS, toep->tc_idx); + if (toep->params.tc_idx != -1) + FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx); #undef FLOWC_PARAM KASSERT(paramidx == nparams, ("nparams mismatch")); txsd->tx_credits = howmany(flowclen, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; toep->flags |= TPF_FLOWC_WR_SENT; t4_wrq_tx(sc, wr); } #ifdef RATELIMIT /* * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second. */ static int update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps) { int tc_idx, rc; const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000; const int port_id = toep->vi->pi->port_id; CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps); if (kbps == 0) { /* unbind */ tc_idx = -1; } else { rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx); if (rc != 0) return (rc); MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls); } - if (toep->tc_idx != tc_idx) { + if (toep->params.tc_idx != tc_idx) { struct wrqe *wr; struct fw_flowc_wr *flowc; int nparams = 1, flowclen, flowclen16; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); flowclen16 = howmany(flowclen, 16); if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 || (wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq)) == NULL) { if (tc_idx >= 0) t4_release_cl_rl(sc, port_id, tc_idx); return (ENOMEM); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; if (tc_idx == -1) flowc->mnemval[0].val = htobe32(0xff); else flowc->mnemval[0].val = htobe32(tc_idx); txsd->tx_credits = flowclen16; txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); } - if (toep->tc_idx >= 0) - t4_release_cl_rl(sc, port_id, toep->tc_idx); - toep->tc_idx = tc_idx; + if (toep->params.tc_idx >= 0) + t4_release_cl_rl(sc, port_id, toep->params.tc_idx); + toep->params.tc_idx = tc_idx; return (0); } #endif void send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt) { struct wrqe *wr; struct cpl_abort_req *req; int tid = toep->tid; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */ INP_WLOCK_ASSERT(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s", __func__, toep->tid, inp->inp_flags & INP_DROPPED ? "inp dropped" : tcpstates[tp->t_state], toep->flags, inp->inp_flags, toep->flags & TPF_ABORT_SHUTDOWN ? " (abort already in progress)" : ""); if (toep->flags & TPF_ABORT_SHUTDOWN) return; /* abort already in progress */ toep->flags |= TPF_ABORT_SHUTDOWN; KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %d.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid); if (inp->inp_flags & INP_DROPPED) req->rsvd0 = htobe32(snd_nxt); else req->rsvd0 = htobe32(tp->snd_nxt); req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT); req->cmd = CPL_ABORT_SEND_RST; /* * XXX: What's the correct way to tell that the inp hasn't been detached * from its socket? Should I even be flushing the snd buffer here? */ if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) /* because I'm not sure. See comment above */ sbflush(&so->so_snd); } t4_l2t_send(sc, wr, toep->l2te); } /* * Called when a connection is established to translate the TCP options * reported by HW to FreeBSD's native format. */ static void assign_rxopt(struct tcpcb *tp, uint16_t opt) { struct toepcb *toep = tp->t_toe; struct inpcb *inp = tp->t_inpcb; struct adapter *sc = td_adapter(toep->td); INP_LOCK_ASSERT(inp); - toep->tcp_opt = opt; - toep->mtu_idx = G_TCPOPT_MSS(opt); - tp->t_maxseg = sc->params.mtus[toep->mtu_idx]; + toep->params.mtu_idx = G_TCPOPT_MSS(opt); + tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx]; if (inp->inp_inc.inc_flags & INC_ISIPV6) tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); - toep->emss = tp->t_maxseg; + toep->params.emss = tp->t_maxseg; if (G_TCPOPT_TSTAMP(opt)) { + toep->params.tstamp = 1; + toep->params.emss -= TCPOLEN_TSTAMP_APPA; tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */ tp->ts_recent = 0; /* hmmm */ tp->ts_recent_age = tcp_ts_getticks(); - toep->emss -= TCPOLEN_TSTAMP_APPA; - } + } else + toep->params.tstamp = 0; - CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", - __func__, toep->tid, toep->mtu_idx, - sc->params.mtus[G_TCPOPT_MSS(opt)], tp->t_maxseg, toep->emss); - - if (G_TCPOPT_SACK(opt)) + if (G_TCPOPT_SACK(opt)) { + toep->params.sack = 1; tp->t_flags |= TF_SACK_PERMIT; /* should already be set */ - else + } else { + toep->params.sack = 0; tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */ + } if (G_TCPOPT_WSCALE_OK(opt)) tp->t_flags |= TF_RCVD_SCALE; /* Doing window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; tp->snd_scale = G_TCPOPT_SND_WSCALE(opt); - } + } else + toep->params.wscale = 0; + + CTR6(KTR_CXGBE, + "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u", + toep->tid, toep->params.mtu_idx, toep->params.emss, + toep->params.tstamp, toep->params.sack, toep->params.wscale); } /* * Completes some final bits of initialization for just established connections * and changes their state to TCPS_ESTABLISHED. * * The ISNs are from the exchange of SYNs. */ void make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt) { struct inpcb *inp = toep->inp; struct socket *so = inp->inp_socket; struct tcpcb *tp = intotcpcb(inp); - long bufsize; uint16_t tcpopt = be16toh(opt); - struct flowc_tx_params ftxp; INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_SYN_SENT || tp->t_state == TCPS_SYN_RECEIVED, ("%s: TCP state %s", __func__, tcpstates[tp->t_state])); CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p", __func__, toep->tid, so, inp, tp, toep); tcp_state_change(tp, TCPS_ESTABLISHED); tp->t_starttime = ticks; TCPSTAT_INC(tcps_connects); tp->irs = irs; tcp_rcvseqinit(tp); - tp->rcv_wnd = (u_int)toep->opt0_rcv_bufsize << 10; + tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10; tp->rcv_adv += tp->rcv_wnd; tp->last_ack_sent = tp->rcv_nxt; tp->iss = iss; tcp_sendseqinit(tp); tp->snd_una = iss + 1; tp->snd_nxt = iss + 1; tp->snd_max = iss + 1; assign_rxopt(tp, tcpopt); + send_flowc_wr(toep, tp); - SOCKBUF_LOCK(&so->so_snd); - if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) - bufsize = V_tcp_autosndbuf_max; - else - bufsize = sbspace(&so->so_snd); - SOCKBUF_UNLOCK(&so->so_snd); - - ftxp.snd_nxt = tp->snd_nxt; - ftxp.rcv_nxt = tp->rcv_nxt; - ftxp.snd_space = bufsize; - ftxp.mss = toep->emss; - send_flowc_wr(toep, &ftxp); - soisconnected(so); } int send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits) { struct wrqe *wr; struct cpl_rx_data_ack *req; uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1); KASSERT(credits >= 0, ("%s: %d credits", __func__, credits)); wr = alloc_wrqe(sizeof(*req), toep->ctrlq); if (wr == NULL) return (0); req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); req->credit_dack = htobe32(dack | V_RX_CREDITS(credits)); t4_wrq_tx(sc, wr); return (credits); } void send_rx_modulate(struct adapter *sc, struct toepcb *toep) { struct wrqe *wr; struct cpl_rx_data_ack *req; wr = alloc_wrqe(sizeof(*req), toep->ctrlq); if (wr == NULL) return; req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); req->credit_dack = htobe32(F_RX_MODULATE_RX); t4_wrq_tx(sc, wr); } void t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; struct toepcb *toep = tp->t_toe; int rx_credits; INP_WLOCK_ASSERT(inp); SOCKBUF_LOCK_ASSERT(sb); rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; - if (toep->ulp_mode == ULP_MODE_TLS) { + if (ulp_mode(toep) == ULP_MODE_TLS) { if (toep->tls.rcv_over >= rx_credits) { toep->tls.rcv_over -= rx_credits; rx_credits = 0; } else { rx_credits -= toep->tls.rcv_over; toep->tls.rcv_over = 0; } } if (rx_credits > 0 && (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 || (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) || sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) { rx_credits = send_rx_credits(sc, toep, rx_credits); tp->rcv_wnd += rx_credits; tp->rcv_adv += rx_credits; } else if (toep->flags & TPF_FORCE_CREDITS) send_rx_modulate(sc, toep); } void t4_rcvd(struct toedev *tod, struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; SOCKBUF_LOCK(sb); t4_rcvd_locked(tod, tp); SOCKBUF_UNLOCK(sb); } /* * Close a connection by sending a CPL_CLOSE_CON_REQ message. */ int t4_close_conn(struct adapter *sc, struct toepcb *toep) { struct wrqe *wr; struct cpl_close_con_req *req; unsigned int tid = toep->tid; CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid, toep->flags & TPF_FIN_SENT ? ", IGNORED" : ""); if (toep->flags & TPF_FIN_SENT) return (0); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) | V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr))); req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) | V_FW_WR_FLOWID(tid)); req->wr.wr_lo = cpu_to_be64(0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid)); req->rsvd = 0; toep->flags |= TPF_FIN_SENT; toep->flags &= ~TPF_SEND_FIN; t4_l2t_send(sc, wr, toep->l2te); return (0); } #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16)) /* Maximum amount of immediate data we could stuff in a WR */ static inline int max_imm_payload(int tx_credits) { const int n = 1; /* Use no more than one desc for imm. data WR */ KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_OFLD_TX_CREDITS) return (0); if (tx_credits >= (n * EQ_ESIZE) / 16) return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr)); else return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr)); } /* Maximum number of SGL entries we could stuff in a WR */ static inline int max_dsgl_nsegs(int tx_credits) { int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */ int sge_pair_credits = tx_credits - MIN_OFLD_TX_CREDITS; KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_OFLD_TX_CREDITS) return (0); nseg += 2 * (sge_pair_credits * 16 / 24); if ((sge_pair_credits * 16) % 24 == 16) nseg++; return (nseg); } static inline void write_tx_wr(void *dst, struct toepcb *toep, unsigned int immdlen, - unsigned int plen, uint8_t credits, int shove, int ulp_submode, int txalign) + unsigned int plen, uint8_t credits, int shove, int ulp_submode) { struct fw_ofld_tx_data_wr *txwr = dst; txwr->op_to_immdlen = htobe32(V_WR_OP(FW_OFLD_TX_DATA_WR) | V_FW_WR_IMMDLEN(immdlen)); txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) | V_FW_WR_LEN16(credits)); - txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(toep->ulp_mode) | + txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) | V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove)); txwr->plen = htobe32(plen); - if (txalign > 0) { - struct tcpcb *tp = intotcpcb(toep->inp); - - if (plen < 2 * toep->emss) + if (toep->params.tx_align > 0) { + if (plen < 2 * toep->params.emss) txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE); else txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD | - (tp->t_flags & TF_NODELAY ? 0 : + (toep->params.nagle == 0 ? 0 : F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE)); } } /* * Generate a DSGL from a starting mbuf. The total number of segments and the * maximum segments in any one mbuf are provided. */ static void write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n) { struct mbuf *m; struct ulptx_sgl *usgl = dst; int i, j, rc; struct sglist sg; struct sglist_seg segs[n]; KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); sglist_init(&sg, n, segs); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); i = -1; for (m = start; m != stop; m = m->m_next) { if (m->m_flags & M_NOMAP) rc = sglist_append_mb_ext_pgs(&sg, m); else rc = sglist_append(&sg, mtod(m, void *), m->m_len); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } sglist_reset(&sg); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p", __func__, nsegs, start, stop)); } /* * Max number of SGL entries an offload tx work request can have. This is 41 * (1 + 40) for a full 512B work request. * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40) */ #define OFLD_SGL_LEN (41) /* * Send data and/or a FIN to the peer. * * The socket's so_snd buffer consists of a stream of data starting with sb_mb * and linked together with m_next. sb_sndptr, if set, is the last mbuf that * was transmitted. * * drop indicates the number of bytes that should be dropped from the head of * the send buffer. It is an optimization that lets do_fw4_ack avoid creating * contention on the send buffer lock (before this change it used to do * sowwakeup and then t4_push_frames right after that when recovering from tx * stalls). When drop is set this function MUST drop the bytes and wake up any * writers. */ void t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m, *sb_sndptr; struct fw_ofld_tx_data_wr *txwr; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int tx_credits, shove, compl, sowwakeup; struct ofld_tx_sdesc *txsd; bool nomap_mbuf_seen; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); - KASSERT(toep->ulp_mode == ULP_MODE_NONE || - toep->ulp_mode == ULP_MODE_TCPDDP || - toep->ulp_mode == ULP_MODE_TLS || - toep->ulp_mode == ULP_MODE_RDMA, - ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); + KASSERT(ulp_mode(toep) == ULP_MODE_NONE || + ulp_mode(toep) == ULP_MODE_TCPDDP || + ulp_mode(toep) == ULP_MODE_TLS || + ulp_mode(toep) == ULP_MODE_RDMA, + ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", __func__, toep->tid, toep->flags, tp->t_flags, drop); #endif if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; #ifdef RATELIMIT if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; } #endif /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } txsd = &toep->txsd[toep->txsd_pidx]; do { tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); max_imm = max_imm_payload(tx_credits); max_nsegs = max_dsgl_nsegs(tx_credits); SOCKBUF_LOCK(sb); sowwakeup = drop; if (drop) { sbdrop_locked(sb, drop); drop = 0; } sb_sndptr = sb->sb_sndptr; sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb; plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ nomap_mbuf_seen = false; for (m = sndptr; m != NULL; m = m->m_next) { int n; if (m->m_flags & M_NOMAP) n = sglist_count_mb_ext_pgs(m); else n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* This mbuf sent us _over_ the nsegs limit, back out */ if (plen > max_imm && nsegs > max_nsegs) { nsegs -= n; plen -= m->m_len; if (plen == 0) { /* Too few credits */ toep->flags |= TPF_TX_SUSPENDED; if (sowwakeup) { if (!TAILQ_EMPTY( &toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); return; } break; } if (m->m_flags & M_NOMAP) nomap_mbuf_seen = true; if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; sb_sndptr = m; /* new sb->sb_sndptr if all goes well */ /* This mbuf put us right at the max_nsegs limit */ if (plen > max_imm && nsegs == max_nsegs) { m = m->m_next; break; } } if (sbused(sb) > sb->sb_hiwat * 5 / 8 && toep->plen_nocompl + plen >= sb->sb_hiwat / 4) compl = 1; else compl = 0; if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf && sb->sb_hiwat < V_tcp_autosndbuf_max && sbused(sb) >= sb->sb_hiwat * 7 / 8) { int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, V_tcp_autosndbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else sowwakeup = 1; /* room available */ } if (sowwakeup) { if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); /* nothing to send */ if (plen == 0) { KASSERT(m == NULL, ("%s: nothing to send, but m != NULL", __func__)); break; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); shove = m == NULL && !(tp->t_flags & TF_MORETOCOME); if (plen <= max_imm && !nomap_mbuf_seen) { /* Immediate data tx */ wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); - write_tx_wr(txwr, toep, plen, plen, credits, shove, 0, - sc->tt.tx_align); + write_tx_wr(txwr, toep, plen, plen, credits, shove, 0); m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); nsegs = 0; } else { int wr_len; /* DSGL tx */ wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr_len, 16); - write_tx_wr(txwr, toep, 0, plen, credits, shove, 0, - sc->tt.tx_align); + write_tx_wr(txwr, toep, 0, plen, credits, shove, 0); write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *) ((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; if (toep->tx_credits <= toep->tx_total * 3 / 8 && toep->tx_nocompl >= toep->tx_total / 4) compl = 1; - if (compl || toep->ulp_mode == ULP_MODE_RDMA) { + if (compl || ulp_mode(toep) == ULP_MODE_RDMA) { txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } tp->snd_nxt += plen; tp->snd_max += plen; SOCKBUF_LOCK(sb); KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__)); sb->sb_sndptr = sb_sndptr; SOCKBUF_UNLOCK(sb); toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } while (m != NULL); /* Send a FIN if requested, but only if there's no more data to send */ if (m == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } static inline void rqdrop_locked(struct mbufq *q, int plen) { struct mbuf *m; while (plen > 0) { m = mbufq_dequeue(q); /* Too many credits. */ MPASS(m != NULL); M_ASSERTPKTHDR(m); /* Partial credits. */ MPASS(plen >= m->m_pkthdr.len); plen -= m->m_pkthdr.len; m_freem(m); } } void t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m; struct fw_ofld_tx_data_wr *txwr; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; u_int adjusted_plen, ulp_submode; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); int tx_credits, shove; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; struct mbufq *pduq = &toep->ulp_pduq; static const u_int ulp_extra_len[] = {0, 4, 4, 8}; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); - KASSERT(toep->ulp_mode == ULP_MODE_ISCSI, - ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); + KASSERT(ulp_mode(toep) == ULP_MODE_ISCSI, + ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } if (drop) rqdrop_locked(&toep->ulp_pdu_reclaimq, drop); while ((sndptr = mbufq_first(pduq)) != NULL) { M_ASSERTPKTHDR(sndptr); tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); max_imm = max_imm_payload(tx_credits); max_nsegs = max_dsgl_nsegs(tx_credits); plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ for (m = sndptr; m != NULL; m = m->m_next) { int n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* * This mbuf would send us _over_ the nsegs limit. * Suspend tx because the PDU can't be sent out. */ if (plen > max_imm && nsegs > max_nsegs) { toep->flags |= TPF_TX_SUSPENDED; return; } if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); /* * We have a PDU to send. All of it goes out in one WR so 'm' * is NULL. A PDU's length is always a multiple of 4. */ MPASS(m == NULL); MPASS((plen & 3) == 0); MPASS(sndptr->m_pkthdr.len == plen); shove = !(tp->t_flags & TF_MORETOCOME); ulp_submode = mbuf_ulp_submode(sndptr); MPASS(ulp_submode < nitems(ulp_extra_len)); /* * plen doesn't include header and data digests, which are * generated and inserted in the right places by the TOE, but * they do occupy TCP sequence space and need to be accounted * for. */ adjusted_plen = plen + ulp_extra_len[ulp_submode]; if (plen <= max_imm) { /* Immediate data tx */ wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); write_tx_wr(txwr, toep, plen, adjusted_plen, credits, - shove, ulp_submode, sc->tt.tx_align); + shove, ulp_submode); m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); nsegs = 0; } else { int wr_len; /* DSGL tx */ wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr_len, 16); write_tx_wr(txwr, toep, 0, adjusted_plen, credits, - shove, ulp_submode, sc->tt.tx_align); + shove, ulp_submode); write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *) ((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); m = mbufq_dequeue(pduq); MPASS(m == sndptr); mbufq_enqueue(&toep->ulp_pdu_reclaimq, m); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; if (toep->tx_credits <= toep->tx_total * 3 / 8 && toep->tx_nocompl >= toep->tx_total / 4) { txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } tp->snd_nxt += adjusted_plen; tp->snd_max += adjusted_plen; toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } /* Send a FIN if requested, but only if there are no more PDUs to send */ if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } int t4_tod_output(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); - if (toep->ulp_mode == ULP_MODE_ISCSI) + if (ulp_mode(toep) == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, 0); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, 0); else t4_push_frames(sc, toep, 0); return (0); } int t4_send_fin(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); toep->flags |= TPF_SEND_FIN; if (tp->t_state >= TCPS_ESTABLISHED) { - if (toep->ulp_mode == ULP_MODE_ISCSI) + if (ulp_mode(toep) == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, 0); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, 0); else t4_push_frames(sc, toep, 0); } return (0); } int t4_send_rst(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #if defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); /* hmmmm */ KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc for tid %u [%s] not sent already", __func__, toep->tid, tcpstates[tp->t_state])); send_reset(sc, toep, 0); return (0); } /* * Peer has sent us a FIN. */ static int do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_peer_close *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_PEER_CLOSE, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (__predict_false(toep->flags & TPF_SYNQE)) { /* * do_pass_establish must have run before do_peer_close and if * this is still a synqe instead of a toepcb then the connection * must be getting aborted. */ MPASS(toep->flags & TPF_ABORT_SHUTDOWN); CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); tp = intotcpcb(inp); CTR6(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, toep->ddp.flags, inp); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; tp->rcv_nxt++; /* FIN */ so = inp->inp_socket; socantrcvmore(so); - if (toep->ulp_mode == ULP_MODE_TCPDDP) { + if (ulp_mode(toep) == ULP_MODE_TCPDDP) { DDP_LOCK(toep); if (__predict_false(toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE))) handle_ddp_close(toep, tp, cpl->rcv_nxt); DDP_UNLOCK(toep); } - if (toep->ulp_mode != ULP_MODE_RDMA) { + if (ulp_mode(toep) != ULP_MODE_RDMA) { KASSERT(tp->rcv_nxt == be32toh(cpl->rcv_nxt), ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt, be32toh(cpl->rcv_nxt))); } switch (tp->t_state) { case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_CLOSE_WAIT); break; case TCPS_FIN_WAIT_1: tcp_state_change(tp, TCPS_CLOSING); break; case TCPS_FIN_WAIT_2: tcp_twstart(tp); INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); return (0); default: log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n", __func__, tid, tp->t_state); } done: INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } /* * Peer has ACK'd our FIN. */ static int do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so = NULL; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_CLOSE_CON_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); tp = intotcpcb(inp); CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; so = inp->inp_socket; tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */ switch (tp->t_state) { case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */ tcp_twstart(tp); release: INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); /* no more CPLs expected */ return (0); case TCPS_LAST_ACK: if (tcp_close(tp)) INP_WUNLOCK(inp); goto release; case TCPS_FIN_WAIT_1: if (so->so_rcv.sb_state & SBS_CANTRCVMORE) soisdisconnected(so); tcp_state_change(tp, TCPS_FIN_WAIT_2); break; default: log(LOG_ERR, "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n", __func__, tid, tcpstates[tp->t_state]); } done: INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } void send_abort_rpl(struct adapter *sc, struct sge_wrq *ofld_txq, int tid, int rst_status) { struct wrqe *wr; struct cpl_abort_rpl *cpl; wr = alloc_wrqe(sizeof(*cpl), ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } cpl = wrtod(wr); INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid); cpl->cmd = rst_status; t4_wrq_tx(sc, wr); } static int abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason) { switch (abort_reason) { case CPL_ERR_BAD_SYN: case CPL_ERR_CONN_RESET: return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET); case CPL_ERR_XMIT_TIMEDOUT: case CPL_ERR_PERSIST_TIMEDOUT: case CPL_ERR_FINWAIT2_TIMEDOUT: case CPL_ERR_KEEPALIVE_TIMEDOUT: return (ETIMEDOUT); default: return (EIO); } } /* * TCP RST from the peer, timeout, or some other such critical error. */ static int do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct sge_wrq *ofld_txq = toep->ofld_txq; struct inpcb *inp; struct tcpcb *tp; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_REQ_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_req_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); if (negative_advice(cpl->status)) { CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)", __func__, cpl->status, tid, toep->flags); return (0); /* Ignore negative advice */ } inp = toep->inp; CURVNET_SET(toep->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); /* for tcp_close */ INP_WLOCK(inp); tp = intotcpcb(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, inp->inp_flags, cpl->status); /* * If we'd initiated an abort earlier the reply to it is responsible for * cleaning up resources. Otherwise we tear everything down right here * right now. We owe the T4 a CPL_ABORT_RPL no matter what. */ if (toep->flags & TPF_ABORT_SHUTDOWN) { INP_WUNLOCK(inp); goto done; } toep->flags |= TPF_ABORT_SHUTDOWN; if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) so_error_set(so, abort_status_to_errno(tp, cpl->status)); tp = tcp_close(tp); if (tp == NULL) INP_WLOCK(inp); /* re-acquire */ } final_cpl_received(toep); done: INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST); return (0); } /* * Reply to the CPL_ABORT_REQ (send_reset) */ static int do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_RPL_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_rpl_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d", __func__, tid, toep, inp, cpl->status); KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: wasn't expecting abort reply", __func__)); INP_WLOCK(inp); final_cpl_received(toep); return (0); } static int do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data *cpl = mtod(m, const void *); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct epoch_tracker et; int len, rx_credits; uint32_t ddp_placed = 0; if (__predict_false(toep->flags & TPF_SYNQE)) { /* * do_pass_establish must have run before do_rx_data and if this * is still a synqe instead of a toepcb then the connection must * be getting aborted. */ MPASS(toep->flags & TPF_ABORT_SHUTDOWN); CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); m_freem(m); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } tp = intotcpcb(inp); if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq))) ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt; tp->rcv_nxt += len; if (tp->rcv_wnd < len) { - KASSERT(toep->ulp_mode == ULP_MODE_RDMA, + KASSERT(ulp_mode(toep) == ULP_MODE_RDMA, ("%s: negative window size", __func__)); } tp->rcv_wnd -= len; tp->t_rcvtime = ticks; - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_LOCK(toep); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", __func__, tid, len); m_freem(m); SOCKBUF_UNLOCK(sb); - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_SET(toep->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; } - if (toep->ulp_mode == ULP_MODE_TCPDDP) { + if (ulp_mode(toep) == ULP_MODE_TCPDDP) { int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off; if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0) CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)", __func__, tid, len); if (changed) { if (toep->ddp.flags & DDP_SC_REQ) toep->ddp.flags ^= DDP_ON | DDP_SC_REQ; else { KASSERT(cpl->ddp_off == 1, ("%s: DDP switched on by itself.", __func__)); /* Fell out of DDP mode */ toep->ddp.flags &= ~DDP_ON; CTR1(KTR_CXGBE, "%s: fell out of DDP mode", __func__); insert_ddp_data(toep, ddp_placed); } } if (toep->ddp.flags & DDP_ON) { /* * CPL_RX_DATA with DDP on can only be an indicate. * Start posting queued AIO requests via DDP. The * payload that arrived in this indicate is appended * to the socket buffer as usual. */ handle_ddp_indicate(toep); } } sbappendstream_locked(sb, m, 0); rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) { rx_credits = send_rx_credits(sc, toep, rx_credits); tp->rcv_wnd += rx_credits; tp->rcv_adv += rx_credits; } - if (toep->ulp_mode == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 && + if (ulp_mode(toep) == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 && sbavail(sb) != 0) { CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__, tid); ddp_queue_toep(toep); } sorwakeup_locked(so); SOCKBUF_UNLOCK_ASSERT(sb); - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } static int do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp; struct tcpcb *tp; struct socket *so; uint8_t credits = cpl->credits; struct ofld_tx_sdesc *txsd; int plen; #ifdef INVARIANTS unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl))); #endif /* * Very unusual case: we'd sent a flowc + abort_req for a synq entry and * now this comes back carrying the credits for the flowc. */ if (__predict_false(toep->flags & TPF_SYNQE)) { KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: credits for a synq entry %p", __func__, toep)); return (0); } inp = toep->inp; KASSERT(opcode == CPL_FW4_ACK, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); INP_WLOCK(inp); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) { INP_WUNLOCK(inp); return (0); } KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0, ("%s: inp_flags 0x%x", __func__, inp->inp_flags)); tp = intotcpcb(inp); if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) { tcp_seq snd_una = be32toh(cpl->snd_una); #ifdef INVARIANTS if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) { log(LOG_ERR, "%s: unexpected seq# %x for TID %u, snd_una %x\n", __func__, snd_una, toep->tid, tp->snd_una); } #endif if (tp->snd_una != snd_una) { tp->snd_una = snd_una; tp->ts_recent_age = tcp_ts_getticks(); } } #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits); #endif so = inp->inp_socket; txsd = &toep->txsd[toep->txsd_cidx]; plen = 0; while (credits) { KASSERT(credits >= txsd->tx_credits, ("%s: too many (or partial) credits", __func__)); credits -= txsd->tx_credits; toep->tx_credits += txsd->tx_credits; plen += txsd->plen; if (txsd->iv_buffer) { free(txsd->iv_buffer, M_CXGBE); txsd->iv_buffer = NULL; } txsd++; toep->txsd_avail++; KASSERT(toep->txsd_avail <= toep->txsd_total, ("%s: txsd avail > total", __func__)); if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) { txsd = &toep->txsd[0]; toep->txsd_cidx = 0; } } if (toep->tx_credits == toep->tx_total) { toep->tx_nocompl = 0; toep->plen_nocompl = 0; } if (toep->flags & TPF_TX_SUSPENDED && toep->tx_credits >= toep->tx_total / 4) { #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__, tid); #endif toep->flags &= ~TPF_TX_SUSPENDED; CURVNET_SET(toep->vnet); - if (toep->ulp_mode == ULP_MODE_ISCSI) + if (ulp_mode(toep) == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, plen); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, plen); else t4_push_frames(sc, toep, plen); CURVNET_RESTORE(); } else if (plen > 0) { struct sockbuf *sb = &so->so_snd; int sbu; SOCKBUF_LOCK(sb); sbu = sbused(sb); - if (toep->ulp_mode == ULP_MODE_ISCSI) { + if (ulp_mode(toep) == ULP_MODE_ISCSI) { if (__predict_false(sbu > 0)) { /* * The data trasmitted before the tid's ULP mode * changed to ISCSI is still in so_snd. * Incoming credits should account for so_snd * first. */ sbdrop_locked(sb, min(sbu, plen)); plen -= min(sbu, plen); } sowwakeup_locked(so); /* unlocks so_snd */ rqdrop_locked(&toep->ulp_pdu_reclaimq, plen); } else { #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__, tid, plen); #endif sbdrop_locked(sb, plen); if (tls_tx_key(toep)) { struct tls_ofld_info *tls_ofld = &toep->tls; MPASS(tls_ofld->sb_off >= plen); tls_ofld->sb_off -= plen; } if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); /* unlocks so_snd */ } SOCKBUF_UNLOCK_ASSERT(sb); } INP_WUNLOCK(inp); return (0); } void t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep, uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie) { struct wrqe *wr; struct cpl_set_tcb_field *req; struct ofld_tx_sdesc *txsd; MPASS((cookie & ~M_COOKIE) == 0); if (reply) { MPASS(cookie != CPL_COOKIE_RESERVED); } wr = alloc_wrqe(sizeof(*req), wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid); req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id)); if (reply == 0) req->reply_ctrl |= htobe16(F_NO_REPLY); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie)); req->mask = htobe64(mask); req->val = htobe64(val); if ((wrq->eq.flags & EQ_TYPEMASK) == EQ_OFLD) { txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = howmany(sizeof(*req), 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; } t4_wrq_tx(sc, wr); } void t4_init_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_RX_DATA, do_rx_data); t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM); } void t4_uninit_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, NULL); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_RX_DATA, NULL); t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM); } /* * Use the 'backend1' field in AIO jobs to hold an error that should * be reported when the job is completed, the 'backend3' field to * store the amount of data sent by the AIO job so far, and the * 'backend4' field to hold a reference count on the job. * * Each unmapped mbuf holds a reference on the job as does the queue * so long as the job is queued. */ #define aio_error backend1 #define aio_sent backend3 #define aio_refs backend4 #define jobtotid(job) \ (((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid) static void aiotx_free_job(struct kaiocb *job) { long status; int error; if (refcount_release(&job->aio_refs) == 0) return; error = (intptr_t)job->aio_error; status = job->aio_sent; #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__, jobtotid(job), job, status, error); #endif if (error != 0 && status != 0) error = 0; if (error == ECANCELED) aio_cancel(job); else if (error) aio_complete(job, -1, error); else { job->msgsnd = 1; aio_complete(job, status, 0); } } static void aiotx_free_pgs(struct mbuf *m) { struct mbuf_ext_pgs *ext_pgs; struct kaiocb *job; struct mtx *mtx; vm_page_t pg; MBUF_EXT_PGS_ASSERT(m); ext_pgs = m->m_ext.ext_pgs; job = m->m_ext.ext_arg1; #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__, m->m_len, jobtotid(job)); #endif mtx = NULL; for (int i = 0; i < ext_pgs->npgs; i++) { pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]); vm_page_change_lock(pg, &mtx); vm_page_unwire(pg, PQ_ACTIVE); } if (mtx != NULL) mtx_unlock(mtx); aiotx_free_job(job); } /* * Allocate a chain of unmapped mbufs describing the next 'len' bytes * of an AIO job. */ static struct mbuf * alloc_aiotx_mbuf(struct kaiocb *job, int len) { struct vmspace *vm; vm_page_t pgs[MBUF_PEXT_MAX_PGS]; struct mbuf *m, *top, *last; struct mbuf_ext_pgs *ext_pgs; vm_map_t map; vm_offset_t start; int i, mlen, npages, pgoff; KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes, ("%s(%p, %d): request to send beyond end of buffer", __func__, job, len)); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent; pgoff = start & PAGE_MASK; top = NULL; last = NULL; while (len > 0) { mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff); KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0, ("%s: next start (%#jx + %#x) is not page aligned", __func__, (uintmax_t)start, mlen)); npages = vm_fault_quick_hold_pages(map, start, mlen, VM_PROT_WRITE, pgs, nitems(pgs)); if (npages < 0) break; m = mb_alloc_ext_pgs(M_WAITOK, false, aiotx_free_pgs); if (m == NULL) { vm_page_unhold_pages(pgs, npages); break; } ext_pgs = m->m_ext.ext_pgs; ext_pgs->first_pg_off = pgoff; ext_pgs->npgs = npages; if (npages == 1) { KASSERT(mlen + pgoff <= PAGE_SIZE, ("%s: single page is too large (off %d len %d)", __func__, pgoff, mlen)); ext_pgs->last_pg_len = mlen; } else { ext_pgs->last_pg_len = mlen - (PAGE_SIZE - pgoff) - (npages - 2) * PAGE_SIZE; } for (i = 0; i < npages; i++) ext_pgs->pa[i] = VM_PAGE_TO_PHYS(pgs[i]); m->m_len = mlen; m->m_ext.ext_size = npages * PAGE_SIZE; m->m_ext.ext_arg1 = job; refcount_acquire(&job->aio_refs); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d", __func__, jobtotid(job), m, job, npages); #endif if (top == NULL) top = m; else last->m_next = m; last = m; len -= mlen; start += mlen; pgoff = 0; } return (top); } static void t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job) { struct adapter *sc; struct sockbuf *sb; struct file *fp; struct inpcb *inp; struct tcpcb *tp; struct mbuf *m; int error, len; bool moretocome, sendmore; sc = td_adapter(toep->td); sb = &so->so_snd; SOCKBUF_UNLOCK(sb); fp = job->fd_file; m = NULL; #ifdef MAC error = mac_socket_check_send(fp->f_cred, so); if (error != 0) goto out; #endif /* Inline sosend_generic(). */ error = sblock(sb, SBL_WAIT); MPASS(error == 0); sendanother: SOCKBUF_LOCK(sb); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(sb); sbunlock(sb); if ((so->so_options & SO_NOSIGPIPE) == 0) { PROC_LOCK(job->userproc); kern_psignal(job->userproc, SIGPIPE); PROC_UNLOCK(job->userproc); } error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); sbunlock(sb); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { SOCKBUF_UNLOCK(sb); sbunlock(sb); error = ENOTCONN; goto out; } if (sbspace(sb) < sb->sb_lowat) { MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO)); /* * Don't block if there is too little room in the socket * buffer. Instead, requeue the request. */ if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); sbunlock(sb); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); sbunlock(sb); goto out; } /* * Write as much data as the socket permits, but no more than a * a single sndbuf at a time. */ len = sbspace(sb); if (len > job->uaiocb.aio_nbytes - job->aio_sent) { len = job->uaiocb.aio_nbytes - job->aio_sent; moretocome = false; } else moretocome = true; if (len > sc->tt.sndbuf) { len = sc->tt.sndbuf; sendmore = true; } else sendmore = false; if (!TAILQ_EMPTY(&toep->aiotx_jobq)) moretocome = true; SOCKBUF_UNLOCK(sb); MPASS(len != 0); m = alloc_aiotx_mbuf(job, len); if (m == NULL) { sbunlock(sb); error = EFAULT; goto out; } /* Inlined tcp_usr_send(). */ inp = toep->inp; INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); sbunlock(sb); error = ECONNRESET; goto out; } job->aio_sent += m_length(m, NULL); sbappendstream(sb, m, 0); m = NULL; if (!(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); if (moretocome) tp->t_flags |= TF_MORETOCOME; error = tp->t_fb->tfb_tcp_output(tp); if (moretocome) tp->t_flags &= ~TF_MORETOCOME; } INP_WUNLOCK(inp); if (sendmore) goto sendanother; sbunlock(sb); if (error) goto out; /* * If this is a blocking socket and the request has not been * fully completed, requeue it until the socket is ready * again. */ if (job->aio_sent < job->uaiocb.aio_nbytes && !(so->so_state & SS_NBIO)) { SOCKBUF_LOCK(sb); if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); return; } /* * If the request will not be requeued, drop the queue's * reference to the job. Any mbufs in flight should still * hold a reference, but this drops the reference that the * queue owns while it is waiting to queue mbufs to the * socket. */ aiotx_free_job(job); out: if (error) { job->aio_error = (void *)(intptr_t)error; aiotx_free_job(job); } if (m != NULL) m_free(m); SOCKBUF_LOCK(sb); } static void t4_aiotx_task(void *context, int pending) { struct toepcb *toep = context; struct socket *so; struct kaiocb *job; so = toep->aiotx_so; CURVNET_SET(toep->vnet); SOCKBUF_LOCK(&so->so_snd); while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) { job = TAILQ_FIRST(&toep->aiotx_jobq); TAILQ_REMOVE(&toep->aiotx_jobq, job, list); if (!aio_clear_cancel_function(job)) continue; t4_aiotx_process_job(toep, so, job); } toep->aiotx_so = NULL; SOCKBUF_UNLOCK(&so->so_snd); CURVNET_RESTORE(); free_toepcb(toep); SOCK_LOCK(so); sorele(so); } static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep) { SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd); #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s", __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false"); #endif if (toep->aiotx_so != NULL) return; soref(so); toep->aiotx_so = so; hold_toepcb(toep); soaio_enqueue(&toep->aiotx_task); } static void t4_aiotx_cancel(struct kaiocb *job) { struct socket *so; struct sockbuf *sb; struct tcpcb *tp; struct toepcb *toep; so = job->fd_file->f_data; tp = so_sototcpcb(so); toep = tp->t_toe; MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE); sb = &so->so_snd; SOCKBUF_LOCK(sb); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); job->aio_error = (void *)(intptr_t)ECANCELED; aiotx_free_job(job); } int t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); /* This only handles writes. */ if (job->uaiocb.aio_lio_opcode != LIO_WRITE) return (EOPNOTSUPP); if (!sc->tt.tx_zcopy) return (EOPNOTSUPP); if (tls_tx_key(toep)) return (EOPNOTSUPP); SOCKBUF_LOCK(&so->so_snd); #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); #endif if (!aio_set_cancel_function(job, t4_aiotx_cancel)) panic("new job was cancelled"); refcount_init(&job->aio_refs, 1); TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list); if (sowriteable(so)) t4_aiotx_queue_toep(so, toep); SOCKBUF_UNLOCK(&so->so_snd); return (0); } void aiotx_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->aiotx_jobq); TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep); } #endif Index: head/sys/dev/cxgbe/tom/t4_ddp.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_ddp.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_ddp.c (revision 351540) @@ -1,1945 +1,1945 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom.h" /* * Use the 'backend3' field in AIO jobs to store the amount of data * received by the AIO job so far. */ #define aio_received backend3 static void aio_ddp_requeue_task(void *context, int pending); static void ddp_complete_all(struct toepcb *toep, int error); static void t4_aio_cancel_active(struct kaiocb *job); static void t4_aio_cancel_queued(struct kaiocb *job); static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; static struct mtx ddp_orphan_pagesets_lock; static struct task ddp_orphan_task; #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) /* * A page set holds information about a buffer used for DDP. The page * set holds resources such as the VM pages backing the buffer (either * held or wired) and the page pods associated with the buffer. * Recently used page sets are cached to allow for efficient reuse of * buffers (avoiding the need to re-fault in pages, hold them, etc.). * Note that cached page sets keep the backing pages wired. The * number of wired pages is capped by only allowing for two wired * pagesets per connection. This is not a perfect cap, but is a * trade-off for performance. * * If an application ping-pongs two buffers for a connection via * aio_read(2) then those buffers should remain wired and expensive VM * fault lookups should be avoided after each buffer has been used * once. If an application uses more than two buffers then this will * fall back to doing expensive VM fault lookups for each operation. */ static void free_pageset(struct tom_data *td, struct pageset *ps) { vm_page_t p; int i; if (ps->prsv.prsv_nppods > 0) t4_free_page_pods(&ps->prsv); for (i = 0; i < ps->npages; i++) { p = ps->pages[i]; vm_page_lock(p); vm_page_unwire(p, PQ_INACTIVE); vm_page_unlock(p); } mtx_lock(&ddp_orphan_pagesets_lock); TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); mtx_unlock(&ddp_orphan_pagesets_lock); } static void ddp_free_orphan_pagesets(void *context, int pending) { struct pageset *ps; mtx_lock(&ddp_orphan_pagesets_lock); while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { ps = TAILQ_FIRST(&ddp_orphan_pagesets); TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); mtx_unlock(&ddp_orphan_pagesets_lock); if (ps->vm) vmspace_free(ps->vm); free(ps, M_CXGBE); mtx_lock(&ddp_orphan_pagesets_lock); } mtx_unlock(&ddp_orphan_pagesets_lock); } static void recycle_pageset(struct toepcb *toep, struct pageset *ps) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD)) { KASSERT(toep->ddp.cached_count + toep->ddp.active_count < nitems(toep->ddp.db), ("too many wired pagesets")); TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count++; } else free_pageset(toep->td, ps); } static void ddp_complete_one(struct kaiocb *job, int error) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0 || error == 0) aio_complete(job, copied, 0); else aio_complete(job, -1, error); } static void free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) { if (db->job) { /* * XXX: If we are un-offloading the socket then we * should requeue these on the socket somehow. If we * got a FIN from the remote end, then this completes * any remaining requests with an EOF read. */ if (!aio_clear_cancel_function(db->job)) ddp_complete_one(db->job, 0); } if (db->ps) free_pageset(td, db->ps); } void ddp_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->ddp.aiojobq); TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); toep->ddp.flags = DDP_OK; toep->ddp.active_id = -1; mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); } void ddp_uninit_toep(struct toepcb *toep) { mtx_destroy(&toep->ddp.lock); } void release_ddp_resources(struct toepcb *toep) { struct pageset *ps; int i; DDP_LOCK(toep); toep->ddp.flags |= DDP_DEAD; for (i = 0; i < nitems(toep->ddp.db); i++) { free_ddp_buffer(toep->td, &toep->ddp.db[i]); } while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); free_pageset(toep->td, ps); } ddp_complete_all(toep, 0); DDP_UNLOCK(toep); } #ifdef INVARIANTS void ddp_assert_empty(struct toepcb *toep) { int i; MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); for (i = 0; i < nitems(toep->ddp.db); i++) { MPASS(toep->ddp.db[i].job == NULL); MPASS(toep->ddp.db[i].ps == NULL); } MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); } #endif static void complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, unsigned int db_idx) { unsigned int db_flag; toep->ddp.active_count--; if (toep->ddp.active_id == db_idx) { if (toep->ddp.active_count == 0) { KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, ("%s: active_count mismatch", __func__)); toep->ddp.active_id = -1; } else toep->ddp.active_id ^= 1; #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, toep->tid, toep->ddp.active_id); #endif } else { KASSERT(toep->ddp.active_count != 0 && toep->ddp.active_id != -1, ("%s: active count mismatch", __func__)); } db->cancel_pending = 0; db->job = NULL; recycle_pageset(toep, db->ps); db->ps = NULL; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; KASSERT(toep->ddp.flags & db_flag, ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); toep->ddp.flags &= ~db_flag; } /* XXX: handle_ddp_data code duplication */ void insert_ddp_data(struct toepcb *toep, uint32_t n) { struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct ddp_buffer *db; struct kaiocb *job; size_t placed; long copied; unsigned int db_flag, db_idx; INP_WLOCK_ASSERT(inp); DDP_ASSERT_LOCKED(toep); tp->rcv_nxt += n; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); tp->rcv_wnd -= n; #endif CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", __func__, n); while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = n; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else if (copied + placed != 0) { CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %lu)", __func__, job, copied, placed); /* XXX: This always completes if there is some data. */ aio_complete(job, copied + placed, 0); } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_cancel(job); n -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(n == 0); } /* SET_TCB_FIELD sent as a ULP command looks like this */ #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) /* RX_DATA_ACK sent as a ULP command looks like this */ #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) static inline void * mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, uint64_t word, uint64_t mask, uint64_t val) { struct ulptx_idata *ulpsc; struct cpl_set_tcb_field_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); req->reply_ctrl = htobe16(V_NO_REPLY(1) | V_QUEUENO(toep->ofld_rxq->iq.abs_id)); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); req->mask = htobe64(mask); req->val = htobe64(val); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__SET_TCB_FIELD_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static inline void * mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) { struct ulptx_idata *ulpsc; struct cpl_rx_data_ack_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); req->credit_dack = htobe32(F_RX_MODULATE_RX); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__RX_DATA_ACK_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static struct wrqe * mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) { struct wrqe *wr; struct work_request_hdr *wrh; struct ulp_txpkt *ulpmc; int len; KASSERT(db_idx == 0 || db_idx == 1, ("%s: bad DDP buffer index %d", __func__, db_idx)); /* * We'll send a compound work request that has 3 SET_TCB_FIELDs and an * RX_DATA_ACK (with RX_MODULATE to speed up delivery). * * The work request header is 16B and always ends at a 16B boundary. * The ULPTX master commands that follow must all end at 16B boundaries * too so we round up the size to 16. */ len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + roundup2(LEN__RX_DATA_ACK_ULP, 16); wr = alloc_wrqe(len, toep->ctrlq); if (wr == NULL) return (NULL); wrh = wrtod(wr); INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ ulpmc = (struct ulp_txpkt *)(wrh + 1); /* Write the buffer's tag */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_TAG + db_idx, V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); /* Update the current offset in the DDP buffer and its total length */ if (db_idx == 0) ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_OFFSET, V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), V_TCB_RX_DDP_BUF0_OFFSET(offset) | V_TCB_RX_DDP_BUF0_LEN(ps->len)); else ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF1_OFFSET, V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), V_TCB_RX_DDP_BUF1_OFFSET(offset) | V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); /* Update DDP flags */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, ddp_flags_mask, ddp_flags); /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); return (wr); } static int handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) { uint32_t report = be32toh(ddp_report); unsigned int db_idx; struct inpcb *inp = toep->inp; struct ddp_buffer *db; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct kaiocb *job; long copied; db_idx = report & F_DDP_BUF_IDX ? 1 : 0; if (__predict_false(!(report & F_DDP_INV))) CXGBE_UNIMPLEMENTED("DDP buffer still valid"); INP_WLOCK(inp); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; DDP_LOCK(toep); KASSERT(toep->ddp.active_id == db_idx, ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, toep->ddp.active_id, toep->tid)); db = &toep->ddp.db[db_idx]; job = db->job; if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { /* * This can happen due to an administrative tcpdrop(8). * Just fail the request with ECONNRESET. */ CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); if (aio_clear_cancel_function(job)) ddp_complete_one(job, ECONNRESET); goto completed; } tp = intotcpcb(inp); /* * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the * sequence number of the next byte to receive. The length of * the data received for this message must be computed by * comparing the new and old values of rcv_nxt. * * For RX_DATA_DDP, len might be non-zero, but it is only the * length of the most recent DMA. It does not include the * total length of the data received since the previous update * for this DDP buffer. rcv_nxt is the sequence number of the * first received byte from the most recent DMA. */ len += be32toh(rcv_nxt) - tp->rcv_nxt; tp->rcv_nxt += len; tp->t_rcvtime = ticks; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); tp->rcv_wnd -= len; #endif #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, toep->tid, db_idx, len, report); #endif /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); SOCKBUF_LOCK(sb); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { struct adapter *sc = td_adapter(toep->td); unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; } SOCKBUF_UNLOCK(sb); CURVNET_RESTORE(); job->msgrcv = 1; if (db->cancel_pending) { /* * Update the job's length but defer completion to the * TCB_RPL callback. */ job->aio_received += len; goto out; } else if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this request. */ job->aio_received += len; } else { copied = job->aio_received; #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %u, completing %p (copied %ld, placed %d)", __func__, toep->tid, job, copied, len); #endif aio_complete(job, copied + len, 0); t4_rcvd(&toep->td->tod, tp); } completed: complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); out: DDP_UNLOCK(toep); INP_WUNLOCK(inp); return (0); } void handle_ddp_indicate(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); MPASS(toep->ddp.active_count == 0); MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); if (toep->ddp.waiting_count == 0) { /* * The pending requests that triggered the request for an * an indicate were cancelled. Those cancels should have * already disabled DDP. Just ignore this as the data is * going into the socket buffer anyway. */ return; } CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, toep->tid, toep->ddp.waiting_count); ddp_queue_toep(toep); } enum { DDP_BUF0_INVALIDATED = 0x2, DDP_BUF1_INVALIDATED }; CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0); static int do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); unsigned int db_idx; struct toepcb *toep; struct inpcb *inp; struct ddp_buffer *db; struct kaiocb *job; long copied; if (cpl->status != CPL_ERR_NONE) panic("XXX: tcp_rpl failed: %d", cpl->status); toep = lookup_tid(sc, tid); inp = toep->inp; switch (cpl->cookie) { case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): /* * XXX: This duplicates a lot of code with handle_ddp_data(). */ db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; MPASS(db_idx < nitems(toep->ddp.db)); INP_WLOCK(inp); DDP_LOCK(toep); db = &toep->ddp.db[db_idx]; /* * handle_ddp_data() should leave the job around until * this callback runs once a cancel is pending. */ MPASS(db != NULL); MPASS(db->job != NULL); MPASS(db->cancel_pending); /* * XXX: It's not clear what happens if there is data * placed when the buffer is invalidated. I suspect we * need to read the TCB to see how much data was placed. * * For now this just pretends like nothing was placed. * * XXX: Note that if we did check the PCB we would need to * also take care of updating the tp, etc. */ job = db->job; copied = job->aio_received; if (copied == 0) { CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); aio_cancel(job); } else { CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", __func__, job, copied); aio_complete(job, copied, 0); t4_rcvd(&toep->td->tod, intotcpcb(inp)); } complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); DDP_UNLOCK(toep); INP_WUNLOCK(inp); break; default: panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); } return (0); } void handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) { struct ddp_buffer *db; struct kaiocb *job; long copied; unsigned int db_flag, db_idx; int len, placed; INP_WLOCK_ASSERT(toep->inp); DDP_ASSERT_LOCKED(toep); len = be32toh(rcv_nxt) - tp->rcv_nxt; tp->rcv_nxt += len; while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = len; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else { CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", __func__, toep->tid, db_idx, placed); aio_complete(job, copied + placed, 0); } len -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(len == 0); ddp_complete_all(toep, 0); } #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) extern cpl_handler_t t4_cpl_handler[]; static int do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); uint32_t vld; struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); vld = be32toh(cpl->ddpvld); if (__predict_false(vld & DDP_ERR)) { panic("%s: DDP error 0x%x (tid %d, toep %p)", __func__, vld, tid, toep); } - if (toep->ulp_mode == ULP_MODE_ISCSI) { + if (ulp_mode(toep) == ULP_MODE_ISCSI) { t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); return (0); } handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); return (0); } static int do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); return (0); } static void enable_ddp(struct adapter *sc, struct toepcb *toep) { KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, ("%s: toep %p has bad ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); CTR3(KTR_CXGBE, "%s: tid %u (time %u)", __func__, toep->tid, time_uptime); DDP_ASSERT_LOCKED(toep); toep->ddp.flags |= DDP_SC_REQ; t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); } static int calculate_hcf(int n1, int n2) { int a, b, t; if (n1 <= n2) { a = n1; b = n2; } else { a = n2; b = n1; } while (a != 0) { t = a; a = b % a; b = t; } return (b); } static inline int pages_to_nppods(int npages, int ddp_page_shift) { MPASS(ddp_page_shift >= PAGE_SHIFT); return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); } static int alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, struct ppod_reservation *prsv) { vmem_addr_t addr; /* relative to start of region */ if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, &addr) != 0) return (ENOMEM); CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, nppods, 1 << pr->pr_page_shift[pgsz_idx]); /* * The hardware tagmask includes an extra invalid bit but the arena was * seeded with valid values only. An allocation out of this arena will * fit inside the tagmask but won't have the invalid bit set. */ MPASS((addr & pr->pr_tag_mask) == addr); MPASS((addr & pr->pr_invalid_bit) == 0); prsv->prsv_pr = pr; prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; prsv->prsv_nppods = nppods; return (0); } int t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) { int i, hcf, seglen, idx, nppods; struct ppod_reservation *prsv = &ps->prsv; KASSERT(prsv->prsv_nppods == 0, ("%s: page pods already allocated", __func__)); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in * the page list. */ hcf = 0; for (i = 0; i < ps->npages; i++) { seglen = PAGE_SIZE; while (i < ps->npages - 1 && ps->pages[i]->phys_addr + PAGE_SIZE == ps->pages[i + 1]->phys_addr) { seglen += PAGE_SIZE; i++; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (0); MPASS(prsv->prsv_nppods > 0); return (1); } int t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, struct ppod_reservation *prsv) { int hcf, seglen, idx, npages, nppods; uintptr_t start_pva, end_pva, pva, p1; MPASS(buf > 0); MPASS(len > 0); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes * in the page list. */ hcf = 0; start_pva = trunc_page(buf); end_pva = trunc_page(buf + len - 1); pva = start_pva; while (pva <= end_pva) { seglen = PAGE_SIZE; p1 = pmap_kextract(pva); pva += PAGE_SIZE; while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { seglen += PAGE_SIZE; pva += PAGE_SIZE; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); npages = 1; npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; nppods = howmany(npages, PPOD_PAGES); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (ENOMEM); MPASS(prsv->prsv_nppods > 0); return (0); } void t4_free_page_pods(struct ppod_reservation *prsv) { struct ppod_region *pr = prsv->prsv_pr; vmem_addr_t addr; MPASS(prsv != NULL); MPASS(prsv->prsv_nppods != 0); addr = prsv->prsv_tag & pr->pr_tag_mask; MPASS((addr & pr->pr_invalid_bit) == 0); CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, pr->pr_arena, addr, prsv->prsv_nppods); vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); prsv->prsv_nppods = 0; } #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) int t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, struct pageset *ps) { struct wrqe *wr; struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz, idx; u_int ppod_addr; uint32_t cmd; struct ppod_reservation *prsv = &ps->prsv; struct ppod_region *pr = prsv->prsv_pr; KASSERT(!(ps->flags & PS_PPODS_WRITTEN), ("%s: page pods already written", __func__)); MPASS(prsv->prsv_nppods > 0); cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); wr = alloc_wrqe(len, wrq); if (wr == NULL) return (ENOMEM); /* ok to just bail out */ ulpmc = wrtod(wr); INIT_ULPTX_WR(ulpmc, len, 0, 0); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(tid) | prsv->prsv_tag); ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | V_PPOD_OFST(ps->offset)); ppod->rsvd = 0; idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); for (k = 0; k < nitems(ppod->addr); k++) { if (idx < ps->npages) { ppod->addr[k] = htobe64(ps->pages[idx]->phys_addr); idx += ddp_pgsz / PAGE_SIZE; } else ppod->addr[k] = 0; #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, toep->tid, i, k, htobe64(ppod->addr[k])); #endif } } t4_wrq_tx(sc, wr); } ps->flags |= PS_PPODS_WRITTEN; return (0); } int t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, struct ppod_reservation *prsv, vm_offset_t buf, int buflen) { struct wrqe *wr; struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz; u_int ppod_addr, offset; uint32_t cmd; struct ppod_region *pr = prsv->prsv_pr; uintptr_t end_pva, pva, pa; cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; offset = buf & PAGE_MASK; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); pva = trunc_page(buf); end_pva = trunc_page(buf + buflen - 1); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); MPASS(n > 0); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); wr = alloc_wrqe(len, wrq); if (wr == NULL) return (ENOMEM); /* ok to just bail out */ ulpmc = wrtod(wr); INIT_ULPTX_WR(ulpmc, len, 0, 0); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(tid) | (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | V_PPOD_OFST(offset)); ppod->rsvd = 0; for (k = 0; k < nitems(ppod->addr); k++) { if (pva > end_pva) ppod->addr[k] = 0; else { pa = pmap_kextract(pva); ppod->addr[k] = htobe64(pa); pva += ddp_pgsz; } #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, tid, i, k, htobe64(ppod->addr[k])); #endif } /* * Walk back 1 segment so that the first address in the * next pod is the same as the last one in the current * pod. */ pva -= ddp_pgsz; } t4_wrq_tx(sc, wr); } MPASS(pva <= end_pva); return (0); } /* * Prepare a pageset for DDP. This sets up page pods. */ static int prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) { struct tom_data *td = sc->tom_softc; if (ps->prsv.prsv_nppods == 0 && !t4_alloc_page_pods_for_ps(&td->pr, ps)) { return (0); } if (!(ps->flags & PS_PPODS_WRITTEN) && t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { return (0); } return (1); } int t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, const char *name) { int i; MPASS(pr != NULL); MPASS(r->size > 0); pr->pr_start = r->start; pr->pr_len = r->size; pr->pr_page_shift[0] = 12 + G_HPZ0(psz); pr->pr_page_shift[1] = 12 + G_HPZ1(psz); pr->pr_page_shift[2] = 12 + G_HPZ2(psz); pr->pr_page_shift[3] = 12 + G_HPZ3(psz); /* The SGL -> page pod algorithm requires the sizes to be in order. */ for (i = 1; i < nitems(pr->pr_page_shift); i++) { if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) return (ENXIO); } pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) return (ENXIO); pr->pr_alias_shift = fls(pr->pr_tag_mask); pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, M_FIRSTFIT | M_NOWAIT); if (pr->pr_arena == NULL) return (ENOMEM); return (0); } void t4_free_ppod_region(struct ppod_region *pr) { MPASS(pr != NULL); if (pr->pr_arena) vmem_destroy(pr->pr_arena); bzero(pr, sizeof(*pr)); } static int pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, int pgoff, int len) { if (ps->start != start || ps->npages != npages || ps->offset != pgoff || ps->len != len) return (1); return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); } static int hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) { struct vmspace *vm; vm_map_t map; vm_offset_t start, end, pgoff; struct pageset *ps; int n; DDP_ASSERT_LOCKED(toep); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf; pgoff = start & PAGE_MASK; end = round_page(start + job->uaiocb.aio_nbytes); start = trunc_page(start); if (end - start > MAX_DDP_BUFFER_SIZE) { /* * Truncate the request to a short read. * Alternatively, we could DDP in chunks to the larger * buffer, but that would be quite a bit more work. * * When truncating, round the request down to avoid * crossing a cache line on the final transaction. */ end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, (unsigned long)(end - (start + pgoff))); job->uaiocb.aio_nbytes = end - (start + pgoff); #endif end = round_page(end); } n = atop(end - start); /* * Try to reuse a cached pageset. */ TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { if (pscmp(ps, vm, start, n, pgoff, job->uaiocb.aio_nbytes) == 0) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; *pps = ps; return (0); } } /* * If there are too many cached pagesets to create a new one, * free a pageset before creating a new one. */ KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); if (toep->ddp.active_count + toep->ddp.cached_count == nitems(toep->ddp.db)) { KASSERT(toep->ddp.cached_count > 0, ("no cached pageset to free")); ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; free_pageset(toep->td, ps); } DDP_UNLOCK(toep); /* Create a new pageset. */ ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | M_ZERO); ps->pages = (vm_page_t *)(ps + 1); ps->vm_timestamp = map->timestamp; ps->npages = vm_fault_quick_hold_pages(map, start, end - start, VM_PROT_WRITE, ps->pages, n); DDP_LOCK(toep); if (ps->npages < 0) { free(ps, M_CXGBE); return (EFAULT); } KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", ps->npages, n)); ps->offset = pgoff; ps->len = job->uaiocb.aio_nbytes; atomic_add_int(&vm->vm_refcnt, 1); ps->vm = vm; ps->start = start; CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", __func__, toep->tid, ps, job, ps->npages); *pps = ps; return (0); } static void ddp_complete_all(struct toepcb *toep, int error) { struct kaiocb *job; DDP_ASSERT_LOCKED(toep); while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { job = TAILQ_FIRST(&toep->ddp.aiojobq); TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (aio_clear_cancel_function(job)) ddp_complete_one(job, error); } } static void aio_ddp_cancel_one(struct kaiocb *job) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0) aio_complete(job, copied, 0); else aio_cancel(job); } /* * Called when the main loop wants to requeue a job to retry it later. * Deals with the race of the job being cancelled while it was being * examined. */ static void aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD) && aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_ddp_cancel_one(job); } static void aio_ddp_requeue(struct toepcb *toep) { struct adapter *sc = td_adapter(toep->td); struct socket *so; struct sockbuf *sb; struct inpcb *inp; struct kaiocb *job; struct ddp_buffer *db; size_t copied, offset, resid; struct pageset *ps; struct mbuf *m; uint64_t ddp_flags, ddp_flags_mask; struct wrqe *wr; int buf_flag, db_idx, error; DDP_ASSERT_LOCKED(toep); restart: if (toep->ddp.flags & DDP_DEAD) { MPASS(toep->ddp.waiting_count == 0); MPASS(toep->ddp.active_count == 0); return; } if (toep->ddp.waiting_count == 0 || toep->ddp.active_count == nitems(toep->ddp.db)) { return; } job = TAILQ_FIRST(&toep->ddp.aiojobq); so = job->fd_file->f_data; sb = &so->so_rcv; SOCKBUF_LOCK(sb); /* We will never get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { SOCKBUF_UNLOCK(sb); ddp_complete_all(toep, ENOTCONN); return; } KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, ("%s: pending sockbuf data and DDP is active", __func__)); /* Abort if socket has reported problems. */ /* XXX: Wait for any queued DDP's to finish and/or flush them? */ if (so->so_error && sbavail(sb) == 0) { toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) { SOCKBUF_UNLOCK(sb); goto restart; } /* * If this job has previously copied some data, report * a short read and leave the error to be reported by * a future request. */ copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); aio_complete(job, copied, 0); goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); aio_complete(job, -1, error); goto restart; } /* * Door is closed. If there is pending data in the socket buffer, * deliver it. If there are pending DDP requests, wait for those * to complete. Once they have completed, return EOF reads. */ if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); if (toep->ddp.active_count != 0) return; ddp_complete_all(toep, 0); return; } /* * If DDP is not enabled and there is no pending socket buffer * data, try to enable DDP. */ if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { SOCKBUF_UNLOCK(sb); /* * Wait for the card to ACK that DDP is enabled before * queueing any buffers. Currently this waits for an * indicate to arrive. This could use a TCB_SET_FIELD_RPL * message to know that DDP was enabled instead of waiting * for the indicate which would avoid copying the indicate * if no data is pending. * * XXX: Might want to limit the indicate size to the size * of the first queued request. */ if ((toep->ddp.flags & DDP_SC_REQ) == 0) enable_ddp(sc, toep); return; } SOCKBUF_UNLOCK(sb); /* * If another thread is queueing a buffer for DDP, let it * drain any work and return. */ if (toep->ddp.queueing != NULL) return; /* Take the next job to prep it for DDP. */ toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) goto restart; toep->ddp.queueing = job; /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ error = hold_aio(toep, job, &ps); if (error != 0) { ddp_complete_one(job, error); toep->ddp.queueing = NULL; goto restart; } SOCKBUF_LOCK(sb); if (so->so_error && sbavail(sb) == 0) { copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, -1, error); toep->ddp.queueing = NULL; goto restart; } if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); if (toep->ddp.active_count != 0) { /* * The door is closed, but there are still pending * DDP buffers. Requeue. These jobs will all be * completed once those buffers drain. */ aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; return; } ddp_complete_one(job, 0); ddp_complete_all(toep, 0); toep->ddp.queueing = NULL; return; } sbcopy: /* * If the toep is dead, there shouldn't be any data in the socket * buffer, so the above case should have handled this. */ MPASS(!(toep->ddp.flags & DDP_DEAD)); /* * If there is pending data in the socket buffer (either * from before the requests were queued or a DDP indicate), * copy those mbufs out directly. */ copied = 0; offset = ps->offset + job->aio_received; MPASS(job->aio_received <= job->uaiocb.aio_nbytes); resid = job->uaiocb.aio_nbytes - job->aio_received; m = sb->sb_mb; KASSERT(m == NULL || toep->ddp.active_count == 0, ("%s: sockbuf data with active DDP", __func__)); while (m != NULL && resid > 0) { struct iovec iov[1]; struct uio uio; int error; iov[0].iov_base = mtod(m, void *); iov[0].iov_len = m->m_len; if (iov[0].iov_len > resid) iov[0].iov_len = resid; uio.uio_iov = iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = iov[0].iov_len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; error = uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); MPASS(error == 0 && uio.uio_resid == 0); copied += uio.uio_offset; resid -= uio.uio_offset; m = m->m_next; } if (copied != 0) { sbdrop_locked(sb, copied); job->aio_received += copied; job->msgrcv = 1; copied = job->aio_received; inp = sotoinpcb(so); if (!INP_TRY_WLOCK(inp)) { /* * The reference on the socket file descriptor in * the AIO job should keep 'sb' and 'inp' stable. * Our caller has a reference on the 'toep' that * keeps it stable. */ SOCKBUF_UNLOCK(sb); DDP_UNLOCK(toep); INP_WLOCK(inp); DDP_LOCK(toep); SOCKBUF_LOCK(sb); /* * If the socket has been closed, we should detect * that and complete this request if needed on * the next trip around the loop. */ } t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); INP_WUNLOCK(inp); if (resid == 0 || toep->ddp.flags & DDP_DEAD) { /* * We filled the entire buffer with socket * data, DDP is not being used, or the socket * is being shut down, so complete the * request. */ SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } /* * If DDP is not enabled, requeue this request and restart. * This will either enable DDP or wait for more data to * arrive on the socket buffer. */ if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; goto restart; } /* * An indicate might have arrived and been added to * the socket buffer while it was unlocked after the * copy to lock the INP. If so, restart the copy. */ if (sbavail(sb) != 0) goto sbcopy; } SOCKBUF_UNLOCK(sb); if (prep_pageset(sc, toep, ps) == 0) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need to retry this later. Mostly need a trigger * when page pods are freed up. */ printf("%s: prep_pageset failed\n", __func__); return; } /* Determine which DDP buffer to use. */ if (toep->ddp.db[0].job == NULL) { db_idx = 0; } else { MPASS(toep->ddp.db[1].job == NULL); db_idx = 1; } ddp_flags = 0; ddp_flags_mask = 0; if (db_idx == 0) { ddp_flags |= V_TF_DDP_BUF0_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); buf_flag = DDP_BUF0_ACTIVE; } else { ddp_flags |= V_TF_DDP_BUF1_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); buf_flag = DDP_BUF1_ACTIVE; } MPASS((toep->ddp.flags & buf_flag) == 0); if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { MPASS(db_idx == 0); MPASS(toep->ddp.active_id == -1); MPASS(toep->ddp.active_count == 0); ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); } /* * The TID for this connection should still be valid. If DDP_DEAD * is set, SBS_CANTRCVMORE should be set, so we shouldn't be * this far anyway. Even if the socket is closing on the other * end, the AIO job holds a reference on this end of the socket * which will keep it open and keep the TCP PCB attached until * after the job is completed. */ wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, ddp_flags, ddp_flags_mask); if (wr == NULL) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need a way to kick a retry here. * * XXX: We know the fixed size needed and could * preallocate this using a blocking request at the * start of the task to avoid having to handle this * edge case. */ printf("%s: mk_update_tcb_for_ddp failed\n", __func__); return; } if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { free_wrqe(wr); recycle_pageset(toep, ps); aio_ddp_cancel_one(job); toep->ddp.queueing = NULL; goto restart; } #ifdef VERBOSE_TRACES CTR6(KTR_CXGBE, "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); #endif /* Give the chip the go-ahead. */ t4_wrq_tx(sc, wr); db = &toep->ddp.db[db_idx]; db->cancel_pending = 0; db->job = job; db->ps = ps; toep->ddp.queueing = NULL; toep->ddp.flags |= buf_flag; toep->ddp.active_count++; if (toep->ddp.active_count == 1) { MPASS(toep->ddp.active_id == -1); toep->ddp.active_id = db_idx; CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, toep->ddp.active_id); } goto restart; } void ddp_queue_toep(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); if (toep->ddp.flags & DDP_TASK_ACTIVE) return; toep->ddp.flags |= DDP_TASK_ACTIVE; hold_toepcb(toep); soaio_enqueue(&toep->ddp.requeue_task); } static void aio_ddp_requeue_task(void *context, int pending) { struct toepcb *toep = context; DDP_LOCK(toep); aio_ddp_requeue(toep); toep->ddp.flags &= ~DDP_TASK_ACTIVE; DDP_UNLOCK(toep); free_toepcb(toep); } static void t4_aio_cancel_active(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); uint64_t valid_flag; int i; DDP_LOCK(toep); if (aio_cancel_cleared(job)) { DDP_UNLOCK(toep); aio_ddp_cancel_one(job); return; } for (i = 0; i < nitems(toep->ddp.db); i++) { if (toep->ddp.db[i].job == job) { /* Should only ever get one cancel request for a job. */ MPASS(toep->ddp.db[i].cancel_pending == 0); /* * Invalidate this buffer. It will be * cancelled or partially completed once the * card ACKs the invalidate. */ valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : V_TF_DDP_BUF1_VALID(1); t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, i + DDP_BUF0_INVALIDATED); toep->ddp.db[i].cancel_pending = 1; CTR2(KTR_CXGBE, "%s: request %p marked pending", __func__, job); break; } } DDP_UNLOCK(toep); } static void t4_aio_cancel_queued(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; DDP_LOCK(toep); if (!aio_cancel_cleared(job)) { TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (toep->ddp.waiting_count == 0) ddp_queue_toep(toep); } CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); DDP_UNLOCK(toep); aio_ddp_cancel_one(job); } int t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; /* Ignore writes. */ if (job->uaiocb.aio_lio_opcode != LIO_READ) return (EOPNOTSUPP); DDP_LOCK(toep); /* * XXX: Think about possibly returning errors for ENOTCONN, * etc. Perhaps the caller would only queue the request * if it failed with EOPNOTSUPP? */ #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); #endif if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; toep->ddp.flags |= DDP_OK; /* * Try to handle this request synchronously. If this has * to block because the task is running, it will just bail * and let the task handle it instead. */ aio_ddp_requeue(toep); DDP_UNLOCK(toep); return (0); } void t4_ddp_mod_load(void) { t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, CPL_COOKIE_DDP0); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, CPL_COOKIE_DDP1); t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); TAILQ_INIT(&ddp_orphan_pagesets); mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); } void t4_ddp_mod_unload(void) { taskqueue_drain(taskqueue_thread, &ddp_orphan_task); MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); mtx_destroy(&ddp_orphan_pagesets_lock); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); } #endif Index: head/sys/dev/cxgbe/tom/t4_listen.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_listen.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_listen.c (revision 351540) @@ -1,1621 +1,1499 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "t4_clip.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" /* stid services */ static int alloc_stid(struct adapter *, struct listen_ctx *, int); static struct listen_ctx *lookup_stid(struct adapter *, int); static void free_stid(struct adapter *, struct listen_ctx *); /* lctx services */ static struct listen_ctx *alloc_lctx(struct adapter *, struct inpcb *, struct vi_info *); static int free_lctx(struct adapter *, struct listen_ctx *); static void hold_lctx(struct listen_ctx *); static void listen_hash_add(struct adapter *, struct listen_ctx *); static struct listen_ctx *listen_hash_find(struct adapter *, struct inpcb *); static struct listen_ctx *listen_hash_del(struct adapter *, struct inpcb *); static struct inpcb *release_lctx(struct adapter *, struct listen_ctx *); static void send_reset_synqe(struct toedev *, struct synq_entry *); static int alloc_stid(struct adapter *sc, struct listen_ctx *lctx, int isipv6) { struct tid_info *t = &sc->tids; u_int stid, n, f, mask; struct stid_region *sr = &lctx->stid_region; /* * An IPv6 server needs 2 naturally aligned stids (1 stid = 4 cells) in * the TCAM. The start of the stid region is properly aligned (the chip * requires each region to be 128-cell aligned). */ n = isipv6 ? 2 : 1; mask = n - 1; KASSERT((t->stid_base & mask) == 0 && (t->nstids & mask) == 0, ("%s: stid region (%u, %u) not properly aligned. n = %u", __func__, t->stid_base, t->nstids, n)); mtx_lock(&t->stid_lock); if (n > t->nstids - t->stids_in_use) { mtx_unlock(&t->stid_lock); return (-1); } if (t->nstids_free_head >= n) { /* * This allocation will definitely succeed because the region * starts at a good alignment and we just checked we have enough * stids free. */ f = t->nstids_free_head & mask; t->nstids_free_head -= n + f; stid = t->nstids_free_head; TAILQ_INSERT_HEAD(&t->stids, sr, link); } else { struct stid_region *s; stid = t->nstids_free_head; TAILQ_FOREACH(s, &t->stids, link) { stid += s->used + s->free; f = stid & mask; if (s->free >= n + f) { stid -= n + f; s->free -= n + f; TAILQ_INSERT_AFTER(&t->stids, s, sr, link); goto allocated; } } if (__predict_false(stid != t->nstids)) { panic("%s: stids TAILQ (%p) corrupt." " At %d instead of %d at the end of the queue.", __func__, &t->stids, stid, t->nstids); } mtx_unlock(&t->stid_lock); return (-1); } allocated: sr->used = n; sr->free = f; t->stids_in_use += n; t->stid_tab[stid] = lctx; mtx_unlock(&t->stid_lock); KASSERT(((stid + t->stid_base) & mask) == 0, ("%s: EDOOFUS.", __func__)); return (stid + t->stid_base); } static struct listen_ctx * lookup_stid(struct adapter *sc, int stid) { struct tid_info *t = &sc->tids; return (t->stid_tab[stid - t->stid_base]); } static void free_stid(struct adapter *sc, struct listen_ctx *lctx) { struct tid_info *t = &sc->tids; struct stid_region *sr = &lctx->stid_region; struct stid_region *s; KASSERT(sr->used > 0, ("%s: nonsense free (%d)", __func__, sr->used)); mtx_lock(&t->stid_lock); s = TAILQ_PREV(sr, stid_head, link); if (s != NULL) s->free += sr->used + sr->free; else t->nstids_free_head += sr->used + sr->free; KASSERT(t->stids_in_use >= sr->used, ("%s: stids_in_use (%u) < stids being freed (%u)", __func__, t->stids_in_use, sr->used)); t->stids_in_use -= sr->used; TAILQ_REMOVE(&t->stids, sr, link); mtx_unlock(&t->stid_lock); } static struct listen_ctx * alloc_lctx(struct adapter *sc, struct inpcb *inp, struct vi_info *vi) { struct listen_ctx *lctx; INP_WLOCK_ASSERT(inp); lctx = malloc(sizeof(struct listen_ctx), M_CXGBE, M_NOWAIT | M_ZERO); if (lctx == NULL) return (NULL); lctx->stid = alloc_stid(sc, lctx, inp->inp_vflag & INP_IPV6); if (lctx->stid < 0) { free(lctx, M_CXGBE); return (NULL); } if (inp->inp_vflag & INP_IPV6 && !IN6_ARE_ADDR_EQUAL(&in6addr_any, &inp->in6p_laddr)) { lctx->ce = t4_hold_lip(sc, &inp->in6p_laddr, NULL); if (lctx->ce == NULL) { free(lctx, M_CXGBE); return (NULL); } } lctx->ctrlq = &sc->sge.ctrlq[vi->pi->port_id]; lctx->ofld_rxq = &sc->sge.ofld_rxq[vi->first_ofld_rxq]; refcount_init(&lctx->refcount, 1); lctx->inp = inp; lctx->vnet = inp->inp_socket->so_vnet; in_pcbref(inp); return (lctx); } /* Don't call this directly, use release_lctx instead */ static int free_lctx(struct adapter *sc, struct listen_ctx *lctx) { struct inpcb *inp = lctx->inp; INP_WLOCK_ASSERT(inp); KASSERT(lctx->refcount == 0, ("%s: refcount %d", __func__, lctx->refcount)); KASSERT(lctx->stid >= 0, ("%s: bad stid %d.", __func__, lctx->stid)); CTR4(KTR_CXGBE, "%s: stid %u, lctx %p, inp %p", __func__, lctx->stid, lctx, lctx->inp); if (lctx->ce) t4_release_lip(sc, lctx->ce); free_stid(sc, lctx); free(lctx, M_CXGBE); return (in_pcbrele_wlocked(inp)); } static void hold_lctx(struct listen_ctx *lctx) { refcount_acquire(&lctx->refcount); } static inline uint32_t listen_hashfn(void *key, u_long mask) { return (fnv_32_buf(&key, sizeof(key), FNV1_32_INIT) & mask); } /* * Add a listen_ctx entry to the listen hash table. */ static void listen_hash_add(struct adapter *sc, struct listen_ctx *lctx) { struct tom_data *td = sc->tom_softc; int bucket = listen_hashfn(lctx->inp, td->listen_mask); mtx_lock(&td->lctx_hash_lock); LIST_INSERT_HEAD(&td->listen_hash[bucket], lctx, link); td->lctx_count++; mtx_unlock(&td->lctx_hash_lock); } /* * Look for the listening socket's context entry in the hash and return it. */ static struct listen_ctx * listen_hash_find(struct adapter *sc, struct inpcb *inp) { struct tom_data *td = sc->tom_softc; int bucket = listen_hashfn(inp, td->listen_mask); struct listen_ctx *lctx; mtx_lock(&td->lctx_hash_lock); LIST_FOREACH(lctx, &td->listen_hash[bucket], link) { if (lctx->inp == inp) break; } mtx_unlock(&td->lctx_hash_lock); return (lctx); } /* * Removes the listen_ctx structure for inp from the hash and returns it. */ static struct listen_ctx * listen_hash_del(struct adapter *sc, struct inpcb *inp) { struct tom_data *td = sc->tom_softc; int bucket = listen_hashfn(inp, td->listen_mask); struct listen_ctx *lctx, *l; mtx_lock(&td->lctx_hash_lock); LIST_FOREACH_SAFE(lctx, &td->listen_hash[bucket], link, l) { if (lctx->inp == inp) { LIST_REMOVE(lctx, link); td->lctx_count--; break; } } mtx_unlock(&td->lctx_hash_lock); return (lctx); } /* * Releases a hold on the lctx. Must be called with the listening socket's inp * locked. The inp may be freed by this function and it returns NULL to * indicate this. */ static struct inpcb * release_lctx(struct adapter *sc, struct listen_ctx *lctx) { struct inpcb *inp = lctx->inp; int inp_freed = 0; INP_WLOCK_ASSERT(inp); if (refcount_release(&lctx->refcount)) inp_freed = free_lctx(sc, lctx); return (inp_freed ? NULL : inp); } static void send_reset_synqe(struct toedev *tod, struct synq_entry *synqe) { struct adapter *sc = tod->tod_softc; struct mbuf *m = synqe->syn; struct ifnet *ifp = m->m_pkthdr.rcvif; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; - struct l2t_entry *e = &sc->l2t->l2tab[synqe->l2e_idx]; + struct l2t_entry *e = &sc->l2t->l2tab[synqe->params.l2t_idx]; struct wrqe *wr; struct fw_flowc_wr *flowc; struct cpl_abort_req *req; int flowclen; struct sge_wrq *ofld_txq; struct sge_ofld_rxq *ofld_rxq; const int nparams = 6; const u_int pfvf = sc->pf << S_FW_VIID_PFN; INP_WLOCK_ASSERT(synqe->lctx->inp); CTR5(KTR_CXGBE, "%s: synqe %p (0x%x), tid %d%s", __func__, synqe, synqe->flags, synqe->tid, synqe->flags & TPF_ABORT_SHUTDOWN ? " (abort already in progress)" : ""); if (synqe->flags & TPF_ABORT_SHUTDOWN) return; /* abort already in progress */ synqe->flags |= TPF_ABORT_SHUTDOWN; - ofld_txq = &sc->sge.ofld_txq[synqe->txqid]; - ofld_rxq = &sc->sge.ofld_rxq[synqe->rxqid]; + ofld_txq = &sc->sge.ofld_txq[synqe->params.txq_idx]; + ofld_rxq = &sc->sge.ofld_rxq[synqe->params.rxq_idx]; /* The wrqe will have two WRs - a flowc followed by an abort_req */ flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, EQ_ESIZE) + sizeof(*req), ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); req = (void *)((caddr_t)flowc + roundup2(flowclen, EQ_ESIZE)); /* First the flowc ... */ memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(synqe->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = htobe32(pfvf); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = htobe32(pi->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = htobe32(pi->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = htobe32(ofld_rxq->iq.abs_id); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDBUF; flowc->mnemval[4].val = htobe32(512); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_MSS; flowc->mnemval[5].val = htobe32(512); synqe->flags |= TPF_FLOWC_WR_SENT; /* ... then ABORT request */ INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, synqe->tid); req->rsvd0 = 0; /* don't have a snd_nxt */ req->rsvd1 = 1; /* no data sent yet */ req->cmd = CPL_ABORT_SEND_RST; t4_l2t_send(sc, wr, e); } static int create_server(struct adapter *sc, struct listen_ctx *lctx) { struct wrqe *wr; struct cpl_pass_open_req *req; struct inpcb *inp = lctx->inp; wr = alloc_wrqe(sizeof(*req), lctx->ctrlq); if (wr == NULL) { log(LOG_ERR, "%s: allocation failure", __func__); return (ENOMEM); } req = wrtod(wr); INIT_TP_WR(req, 0); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, lctx->stid)); req->local_port = inp->inp_lport; req->peer_port = 0; req->local_ip = inp->inp_laddr.s_addr; req->peer_ip = 0; req->opt0 = htobe64(V_TX_CHAN(lctx->ctrlq->eq.tx_chan)); req->opt1 = htobe64(V_CONN_POLICY(CPL_CONN_POLICY_ASK) | F_SYN_RSS_ENABLE | V_SYN_RSS_QUEUE(lctx->ofld_rxq->iq.abs_id)); t4_wrq_tx(sc, wr); return (0); } static int create_server6(struct adapter *sc, struct listen_ctx *lctx) { struct wrqe *wr; struct cpl_pass_open_req6 *req; struct inpcb *inp = lctx->inp; wr = alloc_wrqe(sizeof(*req), lctx->ctrlq); if (wr == NULL) { log(LOG_ERR, "%s: allocation failure", __func__); return (ENOMEM); } req = wrtod(wr); INIT_TP_WR(req, 0); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, lctx->stid)); req->local_port = inp->inp_lport; req->peer_port = 0; req->local_ip_hi = *(uint64_t *)&inp->in6p_laddr.s6_addr[0]; req->local_ip_lo = *(uint64_t *)&inp->in6p_laddr.s6_addr[8]; req->peer_ip_hi = 0; req->peer_ip_lo = 0; req->opt0 = htobe64(V_TX_CHAN(lctx->ctrlq->eq.tx_chan)); req->opt1 = htobe64(V_CONN_POLICY(CPL_CONN_POLICY_ASK) | F_SYN_RSS_ENABLE | V_SYN_RSS_QUEUE(lctx->ofld_rxq->iq.abs_id)); t4_wrq_tx(sc, wr); return (0); } static int destroy_server(struct adapter *sc, struct listen_ctx *lctx) { struct wrqe *wr; struct cpl_close_listsvr_req *req; wr = alloc_wrqe(sizeof(*req), lctx->ctrlq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, lctx->stid)); req->reply_ctrl = htobe16(lctx->ofld_rxq->iq.abs_id); req->rsvd = htobe16(0); t4_wrq_tx(sc, wr); return (0); } /* * Start a listening server by sending a passive open request to HW. * * Can't take adapter lock here and access to sc->flags, * sc->offload_map, if_capenable are all race prone. */ int t4_listen_start(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; struct vi_info *vi; struct port_info *pi; struct inpcb *inp = tp->t_inpcb; struct listen_ctx *lctx; int i, rc, v; struct offload_settings settings; INP_WLOCK_ASSERT(inp); rw_rlock(&sc->policy_lock); settings = *lookup_offload_policy(sc, OPEN_TYPE_LISTEN, NULL, EVL_MAKETAG(0xfff, 0, 0), inp); rw_runlock(&sc->policy_lock); if (!settings.offload) return (0); /* Don't start a hardware listener for any loopback address. */ if (inp->inp_vflag & INP_IPV6 && IN6_IS_ADDR_LOOPBACK(&inp->in6p_laddr)) return (0); if (!(inp->inp_vflag & INP_IPV6) && IN_LOOPBACK(ntohl(inp->inp_laddr.s_addr))) return (0); #if 0 ADAPTER_LOCK(sc); if (IS_BUSY(sc)) { log(LOG_ERR, "%s: listen request ignored, %s is busy", __func__, device_get_nameunit(sc->dev)); goto done; } KASSERT(uld_active(sc, ULD_TOM), ("%s: TOM not initialized", __func__)); #endif /* * Find an initialized VI with IFCAP_TOE (4 or 6). We'll use the first * such VI's queues to send the passive open and receive the reply to * it. * * XXX: need a way to mark a port in use by offload. if_cxgbe should * then reject any attempt to bring down such a port (and maybe reject * attempts to disable IFCAP_TOE on that port too?). */ for_each_port(sc, i) { pi = sc->port[i]; for_each_vi(pi, v, vi) { if (vi->flags & VI_INIT_DONE && vi->ifp->if_capenable & IFCAP_TOE) goto found; } } goto done; /* no port that's UP with IFCAP_TOE enabled */ found: if (listen_hash_find(sc, inp) != NULL) goto done; /* already setup */ lctx = alloc_lctx(sc, inp, vi); if (lctx == NULL) { log(LOG_ERR, "%s: listen request ignored, %s couldn't allocate lctx\n", __func__, device_get_nameunit(sc->dev)); goto done; } listen_hash_add(sc, lctx); CTR6(KTR_CXGBE, "%s: stid %u (%s), lctx %p, inp %p vflag 0x%x", __func__, lctx->stid, tcpstates[tp->t_state], lctx, inp, inp->inp_vflag); if (inp->inp_vflag & INP_IPV6) rc = create_server6(sc, lctx); else rc = create_server(sc, lctx); if (rc != 0) { log(LOG_ERR, "%s: %s failed to create hw listener: %d.\n", __func__, device_get_nameunit(sc->dev), rc); (void) listen_hash_del(sc, inp); inp = release_lctx(sc, lctx); /* can't be freed, host stack has a reference */ KASSERT(inp != NULL, ("%s: inp freed", __func__)); goto done; } lctx->flags |= LCTX_RPL_PENDING; done: #if 0 ADAPTER_UNLOCK(sc); #endif return (0); } int t4_listen_stop(struct toedev *tod, struct tcpcb *tp) { struct listen_ctx *lctx; struct adapter *sc = tod->tod_softc; struct inpcb *inp = tp->t_inpcb; INP_WLOCK_ASSERT(inp); lctx = listen_hash_del(sc, inp); if (lctx == NULL) return (ENOENT); /* no hardware listener for this inp */ CTR4(KTR_CXGBE, "%s: stid %u, lctx %p, flags %x", __func__, lctx->stid, lctx, lctx->flags); /* * If the reply to the PASS_OPEN is still pending we'll wait for it to * arrive and clean up when it does. */ if (lctx->flags & LCTX_RPL_PENDING) { return (EINPROGRESS); } destroy_server(sc, lctx); return (0); } static inline struct synq_entry * alloc_synqe(struct adapter *sc __unused, struct listen_ctx *lctx, int flags) { struct synq_entry *synqe; INP_WLOCK_ASSERT(lctx->inp); MPASS(flags == M_WAITOK || flags == M_NOWAIT); synqe = malloc(sizeof(*synqe), M_CXGBE, flags); if (__predict_true(synqe != NULL)) { synqe->flags = TPF_SYNQE; refcount_init(&synqe->refcnt, 1); synqe->lctx = lctx; hold_lctx(lctx); /* Every synqe has a ref on its lctx. */ synqe->syn = NULL; } return (synqe); } static inline void hold_synqe(struct synq_entry *synqe) { refcount_acquire(&synqe->refcnt); } static inline struct inpcb * release_synqe(struct adapter *sc, struct synq_entry *synqe) { struct inpcb *inp; MPASS(synqe->flags & TPF_SYNQE); MPASS(synqe->lctx != NULL); inp = synqe->lctx->inp; MPASS(inp != NULL); INP_WLOCK_ASSERT(inp); if (refcount_release(&synqe->refcnt)) { inp = release_lctx(sc, synqe->lctx); m_freem(synqe->syn); free(synqe, M_CXGBE); } return (inp); } void t4_syncache_added(struct toedev *tod __unused, void *arg) { struct synq_entry *synqe = arg; hold_synqe(synqe); } void t4_syncache_removed(struct toedev *tod, void *arg) { struct adapter *sc = tod->tod_softc; struct synq_entry *synqe = arg; struct inpcb *inp = synqe->lctx->inp; /* * XXX: this is a LOR but harmless when running from the softclock. */ INP_WLOCK(inp); inp = release_synqe(sc, synqe); if (inp != NULL) INP_WUNLOCK(inp); } int t4_syncache_respond(struct toedev *tod, void *arg, struct mbuf *m) { struct synq_entry *synqe = arg; if (atomic_fetchadd_int(&synqe->ok_to_respond, 1) == 0) { struct tcpopt to; struct ip *ip = mtod(m, struct ip *); struct tcphdr *th; if (ip->ip_v == IPVERSION) th = (void *)(ip + 1); else th = (void *)((struct ip6_hdr *)ip + 1); bzero(&to, sizeof(to)); tcp_dooptions(&to, (void *)(th + 1), (th->th_off << 2) - sizeof(*th), TO_SYN); /* save these for later */ synqe->iss = be32toh(th->th_seq); synqe->irs = be32toh(th->th_ack) - 1; synqe->ts = to.to_tsval; } m_freem(m); /* don't need this any more */ return (0); } static int do_pass_open_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_pass_open_rpl *cpl = (const void *)(rss + 1); int stid = GET_TID(cpl); unsigned int status = cpl->status; struct listen_ctx *lctx = lookup_stid(sc, stid); struct inpcb *inp = lctx->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_PASS_OPEN_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(lctx->stid == stid, ("%s: lctx stid mismatch", __func__)); INP_WLOCK(inp); CTR4(KTR_CXGBE, "%s: stid %d, status %u, flags 0x%x", __func__, stid, status, lctx->flags); lctx->flags &= ~LCTX_RPL_PENDING; if (status != CPL_ERR_NONE) log(LOG_ERR, "listener (stid %u) failed: %d\n", stid, status); #ifdef INVARIANTS /* * If the inp has been dropped (listening socket closed) then * listen_stop must have run and taken the inp out of the hash. */ if (inp->inp_flags & INP_DROPPED) { KASSERT(listen_hash_del(sc, inp) == NULL, ("%s: inp %p still in listen hash", __func__, inp)); } #endif if (inp->inp_flags & INP_DROPPED && status != CPL_ERR_NONE) { if (release_lctx(sc, lctx) != NULL) INP_WUNLOCK(inp); return (status); } /* * Listening socket stopped listening earlier and now the chip tells us * it has started the hardware listener. Stop it; the lctx will be * released in do_close_server_rpl. */ if (inp->inp_flags & INP_DROPPED) { destroy_server(sc, lctx); INP_WUNLOCK(inp); return (status); } /* * Failed to start hardware listener. Take inp out of the hash and * release our reference on it. An error message has been logged * already. */ if (status != CPL_ERR_NONE) { listen_hash_del(sc, inp); if (release_lctx(sc, lctx) != NULL) INP_WUNLOCK(inp); return (status); } /* hardware listener open for business */ INP_WUNLOCK(inp); return (status); } static int do_close_server_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_close_listsvr_rpl *cpl = (const void *)(rss + 1); int stid = GET_TID(cpl); unsigned int status = cpl->status; struct listen_ctx *lctx = lookup_stid(sc, stid); struct inpcb *inp = lctx->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_CLOSE_LISTSRV_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(lctx->stid == stid, ("%s: lctx stid mismatch", __func__)); CTR3(KTR_CXGBE, "%s: stid %u, status %u", __func__, stid, status); if (status != CPL_ERR_NONE) { log(LOG_ERR, "%s: failed (%u) to close listener for stid %u\n", __func__, status, stid); return (status); } INP_WLOCK(inp); inp = release_lctx(sc, lctx); if (inp != NULL) INP_WUNLOCK(inp); return (status); } static void done_with_synqe(struct adapter *sc, struct synq_entry *synqe) { struct listen_ctx *lctx = synqe->lctx; struct inpcb *inp = lctx->inp; - struct l2t_entry *e = &sc->l2t->l2tab[synqe->l2e_idx]; + struct l2t_entry *e = &sc->l2t->l2tab[synqe->params.l2t_idx]; int ntids; INP_WLOCK_ASSERT(inp); ntids = inp->inp_vflag & INP_IPV6 ? 2 : 1; remove_tid(sc, synqe->tid, ntids); release_tid(sc, synqe->tid, lctx->ctrlq); t4_l2t_release(e); inp = release_synqe(sc, synqe); if (inp) INP_WUNLOCK(inp); } void synack_failure_cleanup(struct adapter *sc, int tid) { struct synq_entry *synqe = lookup_tid(sc, tid); INP_WLOCK(synqe->lctx->inp); done_with_synqe(sc, synqe); } int do_abort_req_synqe(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct synq_entry *synqe = lookup_tid(sc, tid); struct listen_ctx *lctx = synqe->lctx; struct inpcb *inp = lctx->inp; struct sge_wrq *ofld_txq; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_REQ_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(synqe->tid == tid, ("%s: toep tid mismatch", __func__)); CTR6(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x), lctx %p, status %d", __func__, tid, synqe, synqe->flags, synqe->lctx, cpl->status); if (negative_advice(cpl->status)) return (0); /* Ignore negative advice */ INP_WLOCK(inp); - ofld_txq = &sc->sge.ofld_txq[synqe->txqid]; + ofld_txq = &sc->sge.ofld_txq[synqe->params.txq_idx]; /* * If we'd initiated an abort earlier the reply to it is responsible for * cleaning up resources. Otherwise we tear everything down right here * right now. We owe the T4 a CPL_ABORT_RPL no matter what. */ if (synqe->flags & TPF_ABORT_SHUTDOWN) { INP_WUNLOCK(inp); goto done; } done_with_synqe(sc, synqe); /* inp lock released by done_with_synqe */ done: send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST); return (0); } int do_abort_rpl_synqe(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct synq_entry *synqe = lookup_tid(sc, tid); struct listen_ctx *lctx = synqe->lctx; struct inpcb *inp = lctx->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_RPL_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(synqe->tid == tid, ("%s: toep tid mismatch", __func__)); CTR6(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x), lctx %p, status %d", __func__, tid, synqe, synqe->flags, synqe->lctx, cpl->status); INP_WLOCK(inp); KASSERT(synqe->flags & TPF_ABORT_SHUTDOWN, ("%s: wasn't expecting abort reply for synqe %p (0x%x)", __func__, synqe, synqe->flags)); done_with_synqe(sc, synqe); /* inp lock released by done_with_synqe */ return (0); } void t4_offload_socket(struct toedev *tod, void *arg, struct socket *so) { struct adapter *sc = tod->tod_softc; struct synq_entry *synqe = arg; #ifdef INVARIANTS struct inpcb *inp = sotoinpcb(so); #endif struct toepcb *toep = synqe->toep; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); /* prevents bad race with accept() */ INP_WLOCK_ASSERT(inp); KASSERT(synqe->flags & TPF_SYNQE, ("%s: %p not a synq_entry?", __func__, arg)); MPASS(toep->tid == synqe->tid); offload_socket(so, toep); make_established(toep, synqe->iss, synqe->irs, synqe->tcp_opt); toep->flags |= TPF_CPL_PENDING; update_tid(sc, synqe->tid, toep); synqe->flags |= TPF_SYNQE_EXPANDED; } -static inline void -save_qids_in_synqe(struct synq_entry *synqe, struct vi_info *vi, - struct offload_settings *s) -{ - uint32_t txqid, rxqid; - - if (s->txq >= 0 && s->txq < vi->nofldtxq) - txqid = s->txq; - else - txqid = arc4random() % vi->nofldtxq; - txqid += vi->first_ofld_txq; - - if (s->rxq >= 0 && s->rxq < vi->nofldrxq) - rxqid = s->rxq; - else - rxqid = arc4random() % vi->nofldrxq; - rxqid += vi->first_ofld_rxq; - - synqe->txqid = txqid; - synqe->rxqid = rxqid; -} - static void t4opt_to_tcpopt(const struct tcp_options *t4opt, struct tcpopt *to) { bzero(to, sizeof(*to)); if (t4opt->mss) { to->to_flags |= TOF_MSS; to->to_mss = be16toh(t4opt->mss); } if (t4opt->wsf > 0 && t4opt->wsf < 15) { to->to_flags |= TOF_SCALE; to->to_wscale = t4opt->wsf; } if (t4opt->tstamp) to->to_flags |= TOF_TS; if (t4opt->sack) to->to_flags |= TOF_SACKPERM; } -/* - * Options2 for passive open. - */ -static uint32_t -calc_opt2p(struct adapter *sc, struct port_info *pi, int rxqid, - const struct tcp_options *tcpopt, struct tcphdr *th, int ulp_mode, - struct cc_algo *cc, const struct offload_settings *s) -{ - struct sge_ofld_rxq *ofld_rxq = &sc->sge.ofld_rxq[rxqid]; - uint32_t opt2 = 0; - - /* - * rx flow control, rx coalesce, congestion control, and tx pace are all - * explicitly set by the driver. On T5+ the ISS is also set by the - * driver to the value picked by the kernel. - */ - if (is_t4(sc)) { - opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; - opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; - } else { - opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ - opt2 |= F_T5_ISS; /* ISS provided in CPL */ - } - - if (tcpopt->sack && (s->sack > 0 || (s->sack < 0 && V_tcp_do_rfc1323))) - opt2 |= F_SACK_EN; - - if (tcpopt->tstamp && - (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) - opt2 |= F_TSTAMPS_EN; - - if (tcpopt->wsf < 15 && V_tcp_do_rfc1323) - opt2 |= F_WND_SCALE_EN; - - if (th->th_flags & (TH_ECE | TH_CWR) && - (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) - opt2 |= F_CCTRL_ECN; - - /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ - - opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); - - /* These defaults are subject to ULP specific fixups later. */ - opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); - - opt2 |= V_PACE(0); - - if (s->cong_algo >= 0) - opt2 |= V_CONG_CNTRL(s->cong_algo); - else if (sc->tt.cong_algorithm >= 0) - opt2 |= V_CONG_CNTRL(sc->tt.cong_algorithm & M_CONG_CNTRL); - else { - if (strcasecmp(cc->name, "reno") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_RENO); - else if (strcasecmp(cc->name, "tahoe") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_TAHOE); - if (strcasecmp(cc->name, "newreno") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_NEWRENO); - if (strcasecmp(cc->name, "highspeed") == 0) - opt2 |= V_CONG_CNTRL(CONG_ALG_HIGHSPEED); - else { - /* - * Use newreno in case the algorithm selected by the - * host stack is not supported by the hardware. - */ - opt2 |= V_CONG_CNTRL(CONG_ALG_NEWRENO); - } - } - - if (s->rx_coalesce > 0 || (s->rx_coalesce < 0 && sc->tt.rx_coalesce)) - opt2 |= V_RX_COALESCE(M_RX_COALESCE); - - /* Note that ofld_rxq is already set according to s->rxq. */ - opt2 |= F_RSS_QUEUE_VALID; - opt2 |= V_RSS_QUEUE(ofld_rxq->iq.abs_id); - -#ifdef USE_DDP_RX_FLOW_CONTROL - if (ulp_mode == ULP_MODE_TCPDDP) - opt2 |= F_RX_FC_DDP; -#endif - - if (ulp_mode == ULP_MODE_TLS) { - opt2 &= ~V_RX_COALESCE(M_RX_COALESCE); - opt2 |= F_RX_FC_DISABLE; - } - - return (htobe32(opt2)); -} - static void pass_accept_req_to_protohdrs(struct adapter *sc, const struct mbuf *m, struct in_conninfo *inc, struct tcphdr *th) { const struct cpl_pass_accept_req *cpl = mtod(m, const void *); const struct ether_header *eh; unsigned int hlen = be32toh(cpl->hdr_len); uintptr_t l3hdr; const struct tcphdr *tcp; eh = (const void *)(cpl + 1); if (chip_id(sc) >= CHELSIO_T6) { l3hdr = ((uintptr_t)eh + G_T6_ETH_HDR_LEN(hlen)); tcp = (const void *)(l3hdr + G_T6_IP_HDR_LEN(hlen)); } else { l3hdr = ((uintptr_t)eh + G_ETH_HDR_LEN(hlen)); tcp = (const void *)(l3hdr + G_IP_HDR_LEN(hlen)); } if (inc) { bzero(inc, sizeof(*inc)); inc->inc_fport = tcp->th_sport; inc->inc_lport = tcp->th_dport; if (((struct ip *)l3hdr)->ip_v == IPVERSION) { const struct ip *ip = (const void *)l3hdr; inc->inc_faddr = ip->ip_src; inc->inc_laddr = ip->ip_dst; } else { const struct ip6_hdr *ip6 = (const void *)l3hdr; inc->inc_flags |= INC_ISIPV6; inc->inc6_faddr = ip6->ip6_src; inc->inc6_laddr = ip6->ip6_dst; } } if (th) { bcopy(tcp, th, sizeof(*th)); tcp_fields_to_host(th); /* just like tcp_input */ } } static struct l2t_entry * get_l2te_for_nexthop(struct port_info *pi, struct ifnet *ifp, struct in_conninfo *inc) { struct l2t_entry *e; struct sockaddr_in6 sin6; struct sockaddr *dst = (void *)&sin6; if (inc->inc_flags & INC_ISIPV6) { struct nhop6_basic nh6; bzero(dst, sizeof(struct sockaddr_in6)); dst->sa_len = sizeof(struct sockaddr_in6); dst->sa_family = AF_INET6; if (IN6_IS_ADDR_LINKLOCAL(&inc->inc6_laddr)) { /* no need for route lookup */ e = t4_l2t_get(pi, ifp, dst); return (e); } if (fib6_lookup_nh_basic(RT_DEFAULT_FIB, &inc->inc6_faddr, 0, 0, 0, &nh6) != 0) return (NULL); if (nh6.nh_ifp != ifp) return (NULL); ((struct sockaddr_in6 *)dst)->sin6_addr = nh6.nh_addr; } else { struct nhop4_basic nh4; dst->sa_len = sizeof(struct sockaddr_in); dst->sa_family = AF_INET; if (fib4_lookup_nh_basic(RT_DEFAULT_FIB, inc->inc_faddr, 0, 0, &nh4) != 0) return (NULL); if (nh4.nh_ifp != ifp) return (NULL); ((struct sockaddr_in *)dst)->sin_addr = nh4.nh_addr; } e = t4_l2t_get(pi, ifp, dst); return (e); } static int send_synack(struct adapter *sc, struct synq_entry *synqe, uint64_t opt0, uint32_t opt2, int tid) { struct wrqe *wr; struct cpl_pass_accept_rpl *rpl; - struct l2t_entry *e = &sc->l2t->l2tab[synqe->l2e_idx]; + struct l2t_entry *e = &sc->l2t->l2tab[synqe->params.l2t_idx]; wr = alloc_wrqe(is_t4(sc) ? sizeof(struct cpl_pass_accept_rpl) : sizeof(struct cpl_t5_pass_accept_rpl), &sc->sge.ctrlq[0]); if (wr == NULL) return (ENOMEM); rpl = wrtod(wr); if (is_t4(sc)) INIT_TP_WR_MIT_CPL(rpl, CPL_PASS_ACCEPT_RPL, tid); else { struct cpl_t5_pass_accept_rpl *rpl5 = (void *)rpl; INIT_TP_WR_MIT_CPL(rpl5, CPL_PASS_ACCEPT_RPL, tid); rpl5->iss = htobe32(synqe->iss); } rpl->opt0 = opt0; rpl->opt2 = opt2; return (t4_l2t_send(sc, wr, e)); } #define REJECT_PASS_ACCEPT_REQ(tunnel) do { \ if (!tunnel) { \ m_freem(m); \ m = NULL; \ } \ reject_reason = __LINE__; \ goto reject; \ } while (0) /* * The context associated with a tid entry via insert_tid could be a synq_entry * or a toepcb. The only way CPL handlers can tell is via a bit in these flags. */ CTASSERT(offsetof(struct toepcb, flags) == offsetof(struct synq_entry, flags)); /* * Incoming SYN on a listening socket. * * XXX: Every use of ifp in this routine has a bad race with up/down, toe/-toe, * etc. */ static int do_pass_accept_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; struct toedev *tod; const struct cpl_pass_accept_req *cpl = mtod(m, const void *); unsigned int stid = G_PASS_OPEN_TID(be32toh(cpl->tos_stid)); unsigned int tid = GET_TID(cpl); struct listen_ctx *lctx = lookup_stid(sc, stid); struct inpcb *inp; struct socket *so; struct in_conninfo inc; struct tcphdr th; struct tcpopt to; struct port_info *pi; struct vi_info *vi; struct ifnet *hw_ifp, *ifp; struct l2t_entry *e = NULL; struct synq_entry *synqe = NULL; int reject_reason, v, ntids; uint16_t vid, l2info; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif struct offload_settings settings; KASSERT(opcode == CPL_PASS_ACCEPT_REQ, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(lctx->stid == stid, ("%s: lctx stid mismatch", __func__)); CTR4(KTR_CXGBE, "%s: stid %u, tid %u, lctx %p", __func__, stid, tid, lctx); CURVNET_SET(lctx->vnet); /* before any potential REJECT */ /* * Use the MAC index to lookup the associated VI. If this SYN didn't * match a perfect MAC filter, punt. */ l2info = be16toh(cpl->l2info); pi = sc->port[G_SYN_INTF(l2info)]; if (!(l2info & F_SYN_XACT_MATCH)) { REJECT_PASS_ACCEPT_REQ(false); } for_each_vi(pi, v, vi) { if (vi->xact_addr_filt == G_SYN_MAC_IDX(l2info)) goto found; } REJECT_PASS_ACCEPT_REQ(false); found: hw_ifp = vi->ifp; /* the cxgbe ifnet */ m->m_pkthdr.rcvif = hw_ifp; tod = TOEDEV(hw_ifp); /* * Don't offload if the peer requested a TCP option that's not known to * the silicon. Send the SYN to the kernel instead. */ if (__predict_false(cpl->tcpopt.unknown)) REJECT_PASS_ACCEPT_REQ(true); /* * Figure out if there is a pseudo interface (vlan, lagg, etc.) * involved. Don't offload if the SYN had a VLAN tag and the vid * doesn't match anything on this interface. * * XXX: lagg support, lagg + vlan support. */ vid = EVL_VLANOFTAG(be16toh(cpl->vlan)); if (vid != 0xfff && vid != 0) { ifp = VLAN_DEVAT(hw_ifp, vid); if (ifp == NULL) REJECT_PASS_ACCEPT_REQ(true); } else ifp = hw_ifp; /* * Don't offload if the ifnet that the SYN came in on is not in the same * vnet as the listening socket. */ if (lctx->vnet != ifp->if_vnet) REJECT_PASS_ACCEPT_REQ(true); pass_accept_req_to_protohdrs(sc, m, &inc, &th); if (inc.inc_flags & INC_ISIPV6) { /* Don't offload if the ifcap isn't enabled */ if ((ifp->if_capenable & IFCAP_TOE6) == 0) REJECT_PASS_ACCEPT_REQ(true); /* * SYN must be directed to an IP6 address on this ifnet. This * is more restrictive than in6_localip. */ if (!in6_ifhasaddr(ifp, &inc.inc6_laddr)) REJECT_PASS_ACCEPT_REQ(true); ntids = 2; } else { /* Don't offload if the ifcap isn't enabled */ if ((ifp->if_capenable & IFCAP_TOE4) == 0) REJECT_PASS_ACCEPT_REQ(true); /* * SYN must be directed to an IP address on this ifnet. This * is more restrictive than in_localip. */ if (!in_ifhasaddr(ifp, inc.inc_laddr)) REJECT_PASS_ACCEPT_REQ(true); ntids = 1; } e = get_l2te_for_nexthop(pi, ifp, &inc); if (e == NULL) REJECT_PASS_ACCEPT_REQ(true); /* Don't offload if the 4-tuple is already in use */ INP_INFO_RLOCK_ET(&V_tcbinfo, et); /* for 4-tuple check */ if (toe_4tuple_check(&inc, &th, ifp) != 0) { INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); REJECT_PASS_ACCEPT_REQ(false); } INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); inp = lctx->inp; /* listening socket, not owned by TOE */ INP_WLOCK(inp); /* Don't offload if the listening socket has closed */ if (__predict_false(inp->inp_flags & INP_DROPPED)) { INP_WUNLOCK(inp); REJECT_PASS_ACCEPT_REQ(false); } so = inp->inp_socket; rw_rlock(&sc->policy_lock); settings = *lookup_offload_policy(sc, OPEN_TYPE_PASSIVE, m, EVL_MAKETAG(0xfff, 0, 0), inp); rw_runlock(&sc->policy_lock); if (!settings.offload) { INP_WUNLOCK(inp); REJECT_PASS_ACCEPT_REQ(true); /* Rejected by COP. */ } synqe = alloc_synqe(sc, lctx, M_NOWAIT); if (synqe == NULL) { INP_WUNLOCK(inp); REJECT_PASS_ACCEPT_REQ(true); } atomic_store_int(&synqe->ok_to_respond, 0); + init_conn_params(vi, &settings, &inc, so, &cpl->tcpopt, e->idx, + &synqe->params); + /* * If all goes well t4_syncache_respond will get called during * syncache_add. Note that syncache_add releases the pcb lock. */ t4opt_to_tcpopt(&cpl->tcpopt, &to); toe_syncache_add(&inc, &to, &th, inp, tod, synqe); if (atomic_load_int(&synqe->ok_to_respond) > 0) { uint64_t opt0; uint32_t opt2; - u_int wnd; - int rscale, mtu_idx, rx_credits; - mtu_idx = find_best_mtu_idx(sc, &inc, &settings); - rscale = cpl->tcpopt.wsf && V_tcp_do_rfc1323 ? select_rcv_wscale() : 0; - wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); - wnd = min(wnd, MAX_RCV_WND); - rx_credits = min(wnd >> 10, M_RCV_BUFSIZ); + opt0 = calc_options0(vi, &synqe->params); + opt2 = calc_options2(vi, &synqe->params); - save_qids_in_synqe(synqe, vi, &settings); - synqe->ulp_mode = select_ulp_mode(so, sc, &settings); - - opt0 = calc_opt0(so, vi, e, mtu_idx, rscale, rx_credits, - synqe->ulp_mode, &settings); - opt2 = calc_opt2p(sc, pi, synqe->rxqid, &cpl->tcpopt, &th, - synqe->ulp_mode, CC_ALGO(intotcpcb(inp)), &settings); - insert_tid(sc, tid, synqe, ntids); synqe->tid = tid; - synqe->l2e_idx = e->idx; - synqe->rcv_bufsize = rx_credits; synqe->syn = m; m = NULL; if (send_synack(sc, synqe, opt0, opt2, tid) != 0) { remove_tid(sc, tid, ntids); m = synqe->syn; synqe->syn = NULL; REJECT_PASS_ACCEPT_REQ(true); } CTR6(KTR_CXGBE, - "%s: stid %u, tid %u, lctx %p, synqe %p, mode %d, SYNACK", - __func__, stid, tid, lctx, synqe, synqe->ulp_mode); + "%s: stid %u, tid %u, synqe %p, opt0 %#016lx, opt2 %#08x", + __func__, stid, tid, synqe, be64toh(opt0), be32toh(opt2)); } else REJECT_PASS_ACCEPT_REQ(false); CURVNET_RESTORE(); return (0); reject: CURVNET_RESTORE(); CTR4(KTR_CXGBE, "%s: stid %u, tid %u, REJECT (%d)", __func__, stid, tid, reject_reason); if (e) t4_l2t_release(e); release_tid(sc, tid, lctx->ctrlq); if (synqe) { inp = synqe->lctx->inp; INP_WLOCK(inp); inp = release_synqe(sc, synqe); if (inp) INP_WUNLOCK(inp); } if (m) { /* * The connection request hit a TOE listener but is being passed * on to the kernel sw stack instead of getting offloaded. */ m_adj(m, sizeof(*cpl)); m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m->m_pkthdr.csum_data = 0xffff; hw_ifp->if_input(hw_ifp, m); } return (reject_reason); } static void synqe_to_protohdrs(struct adapter *sc, struct synq_entry *synqe, const struct cpl_pass_establish *cpl, struct in_conninfo *inc, struct tcphdr *th, struct tcpopt *to) { uint16_t tcp_opt = be16toh(cpl->tcp_opt); /* start off with the original SYN */ pass_accept_req_to_protohdrs(sc, synqe->syn, inc, th); /* modify parts to make it look like the ACK to our SYN|ACK */ th->th_flags = TH_ACK; th->th_ack = synqe->iss + 1; th->th_seq = be32toh(cpl->rcv_isn); bzero(to, sizeof(*to)); if (G_TCPOPT_TSTAMP(tcp_opt)) { to->to_flags |= TOF_TS; to->to_tsecr = synqe->ts; } } static int do_pass_establish(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; struct vi_info *vi; struct ifnet *ifp; const struct cpl_pass_establish *cpl = (const void *)(rss + 1); #if defined(KTR) || defined(INVARIANTS) unsigned int stid = G_PASS_OPEN_TID(be32toh(cpl->tos_stid)); #endif unsigned int tid = GET_TID(cpl); struct synq_entry *synqe = lookup_tid(sc, tid); struct listen_ctx *lctx = synqe->lctx; struct inpcb *inp = lctx->inp, *new_inp; struct socket *so; struct tcphdr th; struct tcpopt to; struct in_conninfo inc; struct toepcb *toep; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_PASS_ESTABLISH, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(lctx->stid == stid, ("%s: lctx stid mismatch", __func__)); KASSERT(synqe->flags & TPF_SYNQE, ("%s: tid %u (ctx %p) not a synqe", __func__, tid, synqe)); CURVNET_SET(lctx->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); /* for syncache_expand */ INP_WLOCK(inp); CTR6(KTR_CXGBE, "%s: stid %u, tid %u, synqe %p (0x%x), inp_flags 0x%x", __func__, stid, tid, synqe, synqe->flags, inp->inp_flags); ifp = synqe->syn->m_pkthdr.rcvif; vi = ifp->if_softc; KASSERT(vi->pi->adapter == sc, ("%s: vi %p, sc %p mismatch", __func__, vi, sc)); if (__predict_false(inp->inp_flags & INP_DROPPED)) { reset: send_reset_synqe(TOEDEV(ifp), synqe); INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } - KASSERT(synqe->rxqid == iq_to_ofld_rxq(iq) - &sc->sge.ofld_rxq[0], + KASSERT(synqe->params.rxq_idx == iq_to_ofld_rxq(iq) - &sc->sge.ofld_rxq[0], ("%s: CPL arrived on unexpected rxq. %d %d", __func__, - synqe->rxqid, (int)(iq_to_ofld_rxq(iq) - &sc->sge.ofld_rxq[0]))); + synqe->params.rxq_idx, + (int)(iq_to_ofld_rxq(iq) - &sc->sge.ofld_rxq[0]))); - toep = alloc_toepcb(vi, synqe->txqid, synqe->rxqid, M_NOWAIT); + toep = alloc_toepcb(vi, M_NOWAIT); if (toep == NULL) goto reset; toep->tid = tid; - toep->l2te = &sc->l2t->l2tab[synqe->l2e_idx]; + toep->l2te = &sc->l2t->l2tab[synqe->params.l2t_idx]; toep->vnet = lctx->vnet; - set_ulp_mode(toep, synqe->ulp_mode); - toep->opt0_rcv_bufsize = synqe->rcv_bufsize; + bcopy(&synqe->params, &toep->params, sizeof(toep->params)); + init_toepcb(vi, toep); MPASS(be32toh(cpl->snd_isn) - 1 == synqe->iss); MPASS(be32toh(cpl->rcv_isn) - 1 == synqe->irs); synqe->tcp_opt = cpl->tcp_opt; synqe->toep = toep; /* Come up with something that syncache_expand should be ok with. */ synqe_to_protohdrs(sc, synqe, cpl, &inc, &th, &to); if (inc.inc_flags & INC_ISIPV6) toep->ce = t4_hold_lip(sc, &inc.inc6_laddr, lctx->ce); so = inp->inp_socket; KASSERT(so != NULL, ("%s: socket is NULL", __func__)); if (!toe_syncache_expand(&inc, &to, &th, &so) || so == NULL) { free_toepcb(toep); goto reset; } /* New connection inpcb is already locked by syncache_expand(). */ new_inp = sotoinpcb(so); INP_WLOCK_ASSERT(new_inp); MPASS(so->so_vnet == lctx->vnet); /* * This is for expansion from syncookies. * * XXX: we've held the tcbinfo lock throughout so there's no risk of * anyone accept'ing a connection before we've installed our hooks, but * this somewhat defeats the purpose of having a tod_offload_socket :-( */ if (__predict_false(!(synqe->flags & TPF_SYNQE_EXPANDED))) { tcp_timer_activate(intotcpcb(new_inp), TT_KEEP, 0); t4_offload_socket(TOEDEV(ifp), synqe, so); } INP_WUNLOCK(new_inp); /* Done with the synqe */ inp = release_synqe(sc, synqe); if (inp != NULL) INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } void t4_init_listen_cpl_handlers(void) { t4_register_cpl_handler(CPL_PASS_OPEN_RPL, do_pass_open_rpl); t4_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_close_server_rpl); t4_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_pass_accept_req); t4_register_cpl_handler(CPL_PASS_ESTABLISH, do_pass_establish); } void t4_uninit_listen_cpl_handlers(void) { t4_register_cpl_handler(CPL_PASS_OPEN_RPL, NULL); t4_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, NULL); t4_register_cpl_handler(CPL_PASS_ACCEPT_REQ, NULL); t4_register_cpl_handler(CPL_PASS_ESTABLISH, NULL); } #endif Index: head/sys/dev/cxgbe/tom/t4_tls.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_tls.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_tls.c (revision 351540) @@ -1,1621 +1,1621 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017-2018 Chelsio Communications, Inc. * All rights reserved. * Written by: John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_inet.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_tcb.h" #include "crypto/t4_crypto.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" /* * The TCP sequence number of a CPL_TLS_DATA mbuf is saved here while * the mbuf is in the ulp_pdu_reclaimq. */ #define tls_tcp_seq PH_loc.thirtytwo[0] /* * Handshake lock used for the handshake timer. Having a global lock * is perhaps not ideal, but it avoids having to use callout_drain() * in tls_uninit_toep() which can't block. Also, the timer shouldn't * actually fire for most connections. */ static struct mtx tls_handshake_lock; static void t4_set_tls_tcb_field(struct toepcb *toep, uint16_t word, uint64_t mask, uint64_t val) { struct adapter *sc = td_adapter(toep->td); t4_set_tcb_field(sc, toep->ofld_txq, toep, word, mask, val, 0, 0); } /* TLS and DTLS common routines */ bool can_tls_offload(struct adapter *sc) { return (sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS); } int tls_tx_key(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return (tls_ofld->tx_key_addr >= 0); } int tls_rx_key(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return (tls_ofld->rx_key_addr >= 0); } static int key_size(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return ((tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) ? tls_ofld->k_ctx.tx_key_info_size : KEY_IN_DDR_SIZE); } /* Set TLS Key-Id in TCB */ static void t4_set_tls_keyid(struct toepcb *toep, unsigned int key_id) { t4_set_tls_tcb_field(toep, W_TCB_RX_TLS_KEY_TAG, V_TCB_RX_TLS_KEY_TAG(M_TCB_RX_TLS_BUF_TAG), V_TCB_RX_TLS_KEY_TAG(key_id)); } /* Clear TF_RX_QUIESCE to re-enable receive. */ static void t4_clear_rx_quiesce(struct toepcb *toep) { t4_set_tls_tcb_field(toep, W_TCB_T_FLAGS, V_TF_RX_QUIESCE(1), 0); } static void tls_clr_ofld_mode(struct toepcb *toep) { tls_stop_handshake_timer(toep); /* Operate in PDU extraction mode only. */ t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); t4_clear_rx_quiesce(toep); } static void tls_clr_quiesce(struct toepcb *toep) { tls_stop_handshake_timer(toep); t4_clear_rx_quiesce(toep); } /* * Calculate the TLS data expansion size */ static int tls_expansion_size(struct toepcb *toep, int data_len, int full_pdus_only, unsigned short *pdus_per_ulp) { struct tls_ofld_info *tls_ofld = &toep->tls; struct tls_scmd *scmd = &tls_ofld->scmd0; int expn_size = 0, frag_count = 0, pad_per_pdu = 0, pad_last_pdu = 0, last_frag_size = 0, max_frag_size = 0; int exp_per_pdu = 0; int hdr_len = TLS_HEADER_LENGTH; do { max_frag_size = tls_ofld->k_ctx.frag_size; if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) == SCMD_CIPH_MODE_AES_GCM) { frag_count = (data_len / max_frag_size); exp_per_pdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE + hdr_len; expn_size = frag_count * exp_per_pdu; if (full_pdus_only) { *pdus_per_ulp = data_len / (exp_per_pdu + max_frag_size); if (*pdus_per_ulp > 32) *pdus_per_ulp = 32; else if(!*pdus_per_ulp) *pdus_per_ulp = 1; expn_size = (*pdus_per_ulp) * exp_per_pdu; break; } if ((last_frag_size = data_len % max_frag_size) > 0) { frag_count += 1; expn_size += exp_per_pdu; } break; } else if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) != SCMD_CIPH_MODE_NOP) { /* Calculate the number of fragments we can make */ frag_count = (data_len / max_frag_size); if (frag_count > 0) { pad_per_pdu = (((howmany((max_frag_size + tls_ofld->mac_length), CIPHER_BLOCK_SIZE)) * CIPHER_BLOCK_SIZE) - (max_frag_size + tls_ofld->mac_length)); if (!pad_per_pdu) pad_per_pdu = CIPHER_BLOCK_SIZE; exp_per_pdu = pad_per_pdu + tls_ofld->mac_length + hdr_len + CIPHER_BLOCK_SIZE; expn_size = frag_count * exp_per_pdu; } if (full_pdus_only) { *pdus_per_ulp = data_len / (exp_per_pdu + max_frag_size); if (*pdus_per_ulp > 32) *pdus_per_ulp = 32; else if (!*pdus_per_ulp) *pdus_per_ulp = 1; expn_size = (*pdus_per_ulp) * exp_per_pdu; break; } /* Consider the last fragment */ if ((last_frag_size = data_len % max_frag_size) > 0) { pad_last_pdu = (((howmany((last_frag_size + tls_ofld->mac_length), CIPHER_BLOCK_SIZE)) * CIPHER_BLOCK_SIZE) - (last_frag_size + tls_ofld->mac_length)); if (!pad_last_pdu) pad_last_pdu = CIPHER_BLOCK_SIZE; expn_size += (pad_last_pdu + tls_ofld->mac_length + hdr_len + CIPHER_BLOCK_SIZE); } } } while (0); return (expn_size); } /* Copy Key to WR */ static void tls_copy_tx_key(struct toepcb *toep, void *dst) { struct tls_ofld_info *tls_ofld = &toep->tls; struct ulptx_sc_memrd *sc_memrd; struct ulptx_idata *sc; if (tls_ofld->k_ctx.tx_key_info_size <= 0) return; if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR) { sc = dst; sc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); sc->len = htobe32(0); sc_memrd = (struct ulptx_sc_memrd *)(sc + 1); sc_memrd->cmd_to_len = htobe32(V_ULPTX_CMD(ULP_TX_SC_MEMRD) | V_ULP_TX_SC_MORE(1) | V_ULPTX_LEN16(tls_ofld->k_ctx.tx_key_info_size >> 4)); sc_memrd->addr = htobe32(tls_ofld->tx_key_addr >> 5); } else if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) { memcpy(dst, &tls_ofld->k_ctx.tx, tls_ofld->k_ctx.tx_key_info_size); } } /* TLS/DTLS content type for CPL SFO */ static inline unsigned char tls_content_type(unsigned char content_type) { /* * XXX: Shouldn't this map CONTENT_TYPE_APP_DATA to DATA and * default to "CUSTOM" for all other types including * heartbeat? */ switch (content_type) { case CONTENT_TYPE_CCS: return CPL_TX_TLS_SFO_TYPE_CCS; case CONTENT_TYPE_ALERT: return CPL_TX_TLS_SFO_TYPE_ALERT; case CONTENT_TYPE_HANDSHAKE: return CPL_TX_TLS_SFO_TYPE_HANDSHAKE; case CONTENT_TYPE_HEARTBEAT: return CPL_TX_TLS_SFO_TYPE_HEARTBEAT; } return CPL_TX_TLS_SFO_TYPE_DATA; } static unsigned char get_cipher_key_size(unsigned int ck_size) { switch (ck_size) { case AES_NOP: /* NOP */ return 15; case AES_128: /* AES128 */ return CH_CK_SIZE_128; case AES_192: /* AES192 */ return CH_CK_SIZE_192; case AES_256: /* AES256 */ return CH_CK_SIZE_256; default: return CH_CK_SIZE_256; } } static unsigned char get_mac_key_size(unsigned int mk_size) { switch (mk_size) { case SHA_NOP: /* NOP */ return CH_MK_SIZE_128; case SHA_GHASH: /* GHASH */ case SHA_512: /* SHA512 */ return CH_MK_SIZE_512; case SHA_224: /* SHA2-224 */ return CH_MK_SIZE_192; case SHA_256: /* SHA2-256*/ return CH_MK_SIZE_256; case SHA_384: /* SHA384 */ return CH_MK_SIZE_512; case SHA1: /* SHA1 */ default: return CH_MK_SIZE_160; } } static unsigned int get_proto_ver(int proto_ver) { switch (proto_ver) { case TLS1_2_VERSION: return TLS_1_2_VERSION; case TLS1_1_VERSION: return TLS_1_1_VERSION; case DTLS1_2_VERSION: return DTLS_1_2_VERSION; default: return TLS_VERSION_MAX; } } static void tls_rxkey_flit1(struct tls_keyctx *kwr, struct tls_key_context *kctx) { if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { kwr->u.rxhdr.ivinsert_to_authinsrt = htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) | V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL)); kwr->u.rxhdr.ivpresent_to_rxmk_size &= ~(V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1)); kwr->u.rxhdr.authmode_to_rxvalid &= ~(V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1)); } else { kwr->u.rxhdr.ivinsert_to_authinsrt = htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) | V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL)); } } /* Rx key */ static void prepare_rxkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) { unsigned int ck_size = kctx->cipher_secret_size; unsigned int mk_size = kctx->mac_secret_size; int proto_ver = kctx->proto_ver; kwr->u.rxhdr.flitcnt_hmacctrl = ((kctx->tx_key_info_size >> 4) << 3) | kctx->hmac_ctrl; kwr->u.rxhdr.protover_ciphmode = V_TLS_KEYCTX_TX_WR_PROTOVER(get_proto_ver(proto_ver)) | V_TLS_KEYCTX_TX_WR_CIPHMODE(kctx->state.enc_mode); kwr->u.rxhdr.authmode_to_rxvalid = V_TLS_KEYCTX_TX_WR_AUTHMODE(kctx->state.auth_mode) | V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1) | V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) | V_TLS_KEYCTX_TX_WR_RXVALID(1); kwr->u.rxhdr.ivpresent_to_rxmk_size = V_TLS_KEYCTX_TX_WR_IVPRESENT(0) | V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1) | V_TLS_KEYCTX_TX_WR_RXCK_SIZE(get_cipher_key_size(ck_size)) | V_TLS_KEYCTX_TX_WR_RXMK_SIZE(get_mac_key_size(mk_size)); tls_rxkey_flit1(kwr, kctx); /* No key reversal for GCM */ if (kctx->state.enc_mode != CH_EVP_CIPH_GCM_MODE) { t4_aes_getdeckey(kwr->keys.edkey, kctx->rx.key, (kctx->cipher_secret_size << 3)); memcpy(kwr->keys.edkey + kctx->cipher_secret_size, kctx->rx.key + kctx->cipher_secret_size, (IPAD_SIZE + OPAD_SIZE)); } else { memcpy(kwr->keys.edkey, kctx->rx.key, (kctx->tx_key_info_size - SALT_SIZE)); memcpy(kwr->u.rxhdr.rxsalt, kctx->rx.salt, SALT_SIZE); } } /* Tx key */ static void prepare_txkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) { unsigned int ck_size = kctx->cipher_secret_size; unsigned int mk_size = kctx->mac_secret_size; kwr->u.txhdr.ctxlen = (kctx->tx_key_info_size >> 4); kwr->u.txhdr.dualck_to_txvalid = V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1) | V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) | V_TLS_KEYCTX_TX_WR_TXCK_SIZE(get_cipher_key_size(ck_size)) | V_TLS_KEYCTX_TX_WR_TXMK_SIZE(get_mac_key_size(mk_size)) | V_TLS_KEYCTX_TX_WR_TXVALID(1); memcpy(kwr->keys.edkey, kctx->tx.key, HDR_KCTX_SIZE); if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { memcpy(kwr->u.txhdr.txsalt, kctx->tx.salt, SALT_SIZE); kwr->u.txhdr.dualck_to_txvalid &= ~(V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1)); } kwr->u.txhdr.dualck_to_txvalid = htons(kwr->u.txhdr.dualck_to_txvalid); } /* TLS Key memory management */ static int get_new_keyid(struct toepcb *toep, struct tls_key_context *k_ctx) { struct adapter *sc = td_adapter(toep->td); vmem_addr_t addr; if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT, &addr) != 0) return (-1); return (addr); } static void free_keyid(struct toepcb *toep, int keyid) { struct adapter *sc = td_adapter(toep->td); vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ); } static void clear_tls_keyid(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; if (tls_ofld->rx_key_addr >= 0) { free_keyid(toep, tls_ofld->rx_key_addr); tls_ofld->rx_key_addr = -1; } if (tls_ofld->tx_key_addr >= 0) { free_keyid(toep, tls_ofld->tx_key_addr); tls_ofld->tx_key_addr = -1; } } static int get_keyid(struct tls_ofld_info *tls_ofld, unsigned int ops) { return (ops & KEY_WRITE_RX ? tls_ofld->rx_key_addr : ((ops & KEY_WRITE_TX) ? tls_ofld->tx_key_addr : -1)); } static int get_tp_plen_max(struct tls_ofld_info *tls_ofld) { int plen = ((min(3*4096, TP_TX_PG_SZ))/1448) * 1448; return (tls_ofld->k_ctx.frag_size <= 8192 ? plen : FC_TP_PLEN_MAX); } /* Send request to get the key-id */ static int tls_program_key_id(struct toepcb *toep, struct tls_key_context *k_ctx) { struct tls_ofld_info *tls_ofld = &toep->tls; struct adapter *sc = td_adapter(toep->td); struct ofld_tx_sdesc *txsd; int kwrlen, kctxlen, keyid, len; struct wrqe *wr; struct tls_key_req *kwr; struct tls_keyctx *kctx; kwrlen = sizeof(*kwr); kctxlen = roundup2(sizeof(*kctx), 32); len = roundup2(kwrlen + kctxlen, 16); if (toep->txsd_avail == 0) return (EAGAIN); /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) { if ((keyid = get_new_keyid(toep, k_ctx)) < 0) { return (ENOSPC); } } else { keyid = get_keyid(tls_ofld, k_ctx->l_p_key); } wr = alloc_wrqe(len, toep->ofld_txq); if (wr == NULL) { free_keyid(toep, keyid); return (ENOMEM); } kwr = wrtod(wr); memset(kwr, 0, kwrlen); kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_COMPL | F_FW_WR_ATOMIC); kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(len, 16)) | V_FW_WR_FLOWID(toep->tid)); kwr->protocol = get_proto_ver(k_ctx->proto_ver); kwr->mfs = htons(k_ctx->frag_size); kwr->reneg_to_write_rx = k_ctx->l_p_key; /* master command */ kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) | V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1)); kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(kctxlen >> 5)); kwr->len16 = htobe32((toep->tid << 8) | DIV_ROUND_UP(len - sizeof(struct work_request_hdr), 16)); kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5)); /* sub command */ kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); kwr->sc_len = htobe32(kctxlen); kctx = (struct tls_keyctx *)(kwr + 1); memset(kctx, 0, kctxlen); if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { tls_ofld->tx_key_addr = keyid; prepare_txkey_wr(kctx, k_ctx); } else if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { tls_ofld->rx_key_addr = keyid; prepare_rxkey_wr(kctx, k_ctx); } txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = DIV_ROUND_UP(len, 16); txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); return (0); } /* Store a key received from SSL in DDR. */ static int program_key_context(struct tcpcb *tp, struct toepcb *toep, struct tls_key_context *uk_ctx) { struct adapter *sc = td_adapter(toep->td); struct tls_ofld_info *tls_ofld = &toep->tls; struct tls_key_context *k_ctx; int error, key_offset; if (tp->t_state != TCPS_ESTABLISHED) { /* * XXX: Matches Linux driver, but not sure this is a * very appropriate error. */ return (ENOENT); } /* Stop timer on handshake completion */ tls_stop_handshake_timer(toep); toep->flags &= ~TPF_FORCE_CREDITS; CTR4(KTR_CXGBE, "%s: tid %d %s proto_ver %#x", __func__, toep->tid, G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX ? "KEY_WRITE_RX" : "KEY_WRITE_TX", uk_ctx->proto_ver); if (G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX && - toep->ulp_mode != ULP_MODE_TLS) + ulp_mode(toep) != ULP_MODE_TLS) return (EOPNOTSUPP); /* Don't copy the 'tx' and 'rx' fields. */ k_ctx = &tls_ofld->k_ctx; memcpy(&k_ctx->l_p_key, &uk_ctx->l_p_key, sizeof(*k_ctx) - offsetof(struct tls_key_context, l_p_key)); /* TLS version != 1.1 and !1.2 OR DTLS != 1.2 */ if (get_proto_ver(k_ctx->proto_ver) > DTLS_1_2_VERSION) { if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { tls_ofld->rx_key_addr = -1; t4_clear_rx_quiesce(toep); } else { tls_ofld->tx_key_addr = -1; } return (0); } if (k_ctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { k_ctx->iv_size = 4; k_ctx->mac_first = 0; k_ctx->hmac_ctrl = 0; } else { k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ k_ctx->mac_first = 1; } tls_ofld->scmd0.seqno_numivs = (V_SCMD_SEQ_NO_CTRL(3) | V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) | V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | V_SCMD_IV_SIZE(k_ctx->iv_size)); tls_ofld->scmd0.ivgen_hdrlen = (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | V_SCMD_KEY_CTX_INLINE(0) | V_SCMD_TLS_FRAG_ENABLE(1)); tls_ofld->mac_length = k_ctx->mac_secret_size; if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { k_ctx->rx = uk_ctx->rx; /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) tls_ofld->rx_key_addr = -1; } else { k_ctx->tx = uk_ctx->tx; /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) tls_ofld->tx_key_addr = -1; } /* Flush pending data before new Tx key becomes active */ if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { struct sockbuf *sb; /* XXX: This might not drain everything. */ t4_push_frames(sc, toep, 0); sb = &toep->inp->inp_socket->so_snd; SOCKBUF_LOCK(sb); /* XXX: This asserts that everything has been pushed. */ MPASS(sb->sb_sndptr == NULL || sb->sb_sndptr->m_next == NULL); sb->sb_sndptr = NULL; tls_ofld->sb_off = sbavail(sb); SOCKBUF_UNLOCK(sb); tls_ofld->tx_seq_no = 0; } if ((G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) || (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR)) { error = tls_program_key_id(toep, k_ctx); if (error) { /* XXX: Only clear quiesce for KEY_WRITE_RX? */ t4_clear_rx_quiesce(toep); return (error); } } if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { /* * RX key tags are an index into the key portion of MA * memory stored as an offset from the base address in * units of 64 bytes. */ key_offset = tls_ofld->rx_key_addr - sc->vres.key.start; t4_set_tls_keyid(toep, key_offset / 64); t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) | V_TF_TLS_CONTROL(1) | V_TF_TLS_ACTIVE(1) | V_TF_TLS_ENABLE(1)))); t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ, V_TCB_TLS_SEQ(M_TCB_TLS_SEQ), V_TCB_TLS_SEQ(0)); t4_clear_rx_quiesce(toep); } else { unsigned short pdus_per_ulp; if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) tls_ofld->tx_key_addr = 1; tls_ofld->fcplenmax = get_tp_plen_max(tls_ofld); tls_ofld->expn_per_ulp = tls_expansion_size(toep, tls_ofld->fcplenmax, 1, &pdus_per_ulp); tls_ofld->pdus_per_ulp = pdus_per_ulp; tls_ofld->adjusted_plen = tls_ofld->pdus_per_ulp * ((tls_ofld->expn_per_ulp/tls_ofld->pdus_per_ulp) + tls_ofld->k_ctx.frag_size); } return (0); } /* * In some cases a client connection can hang without sending the * ServerHelloDone message from the NIC to the host. Send a dummy * RX_DATA_ACK with RX_MODULATE to unstick the connection. */ static void tls_send_handshake_ack(void *arg) { struct toepcb *toep = arg; struct tls_ofld_info *tls_ofld = &toep->tls; struct adapter *sc = td_adapter(toep->td); /* * XXX: Does not have the t4_get_tcb() checks to refine the * workaround. */ callout_schedule(&tls_ofld->handshake_timer, TLS_SRV_HELLO_RD_TM * hz); CTR2(KTR_CXGBE, "%s: tid %d sending RX_DATA_ACK", __func__, toep->tid); send_rx_modulate(sc, toep); } static void tls_start_handshake_timer(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; mtx_lock(&tls_handshake_lock); callout_reset(&tls_ofld->handshake_timer, TLS_SRV_HELLO_BKOFF_TM * hz, tls_send_handshake_ack, toep); mtx_unlock(&tls_handshake_lock); } void tls_stop_handshake_timer(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; mtx_lock(&tls_handshake_lock); callout_stop(&tls_ofld->handshake_timer); mtx_unlock(&tls_handshake_lock); } int t4_ctloutput_tls(struct socket *so, struct sockopt *sopt) { struct tls_key_context uk_ctx; struct inpcb *inp; struct tcpcb *tp; struct toepcb *toep; int error, optval; error = 0; if (sopt->sopt_dir == SOPT_SET && sopt->sopt_name == TCP_TLSOM_SET_TLS_CONTEXT) { error = sooptcopyin(sopt, &uk_ctx, sizeof(uk_ctx), sizeof(uk_ctx)); if (error) return (error); } inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); toep = tp->t_toe; switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_TLSOM_SET_TLS_CONTEXT: error = program_key_context(tp, toep, &uk_ctx); INP_WUNLOCK(inp); break; case TCP_TLSOM_CLR_TLS_TOM: - if (toep->ulp_mode == ULP_MODE_TLS) { + if (ulp_mode(toep) == ULP_MODE_TLS) { CTR2(KTR_CXGBE, "%s: tid %d CLR_TLS_TOM", __func__, toep->tid); tls_clr_ofld_mode(toep); } else error = EOPNOTSUPP; INP_WUNLOCK(inp); break; case TCP_TLSOM_CLR_QUIES: - if (toep->ulp_mode == ULP_MODE_TLS) { + if (ulp_mode(toep) == ULP_MODE_TLS) { CTR2(KTR_CXGBE, "%s: tid %d CLR_QUIES", __func__, toep->tid); tls_clr_quiesce(toep); } else error = EOPNOTSUPP; INP_WUNLOCK(inp); break; default: INP_WUNLOCK(inp); error = EOPNOTSUPP; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_TLSOM_GET_TLS_TOM: /* * TLS TX is permitted on any TOE socket, but * TLS RX requires a TLS ULP mode. */ optval = TLS_TOM_NONE; if (can_tls_offload(td_adapter(toep->td))) { - switch (toep->ulp_mode) { + switch (ulp_mode(toep)) { case ULP_MODE_NONE: case ULP_MODE_TCPDDP: optval = TLS_TOM_TXONLY; break; case ULP_MODE_TLS: optval = TLS_TOM_BOTH; break; } } CTR3(KTR_CXGBE, "%s: tid %d GET_TLS_TOM = %d", __func__, toep->tid, optval); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: INP_WUNLOCK(inp); error = EOPNOTSUPP; break; } break; } return (error); } void tls_init_toep(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; tls_ofld->key_location = TLS_SFO_WR_CONTEXTLOC_DDR; tls_ofld->rx_key_addr = -1; tls_ofld->tx_key_addr = -1; - if (toep->ulp_mode == ULP_MODE_TLS) + if (ulp_mode(toep) == ULP_MODE_TLS) callout_init_mtx(&tls_ofld->handshake_timer, &tls_handshake_lock, 0); } void tls_establish(struct toepcb *toep) { /* * Enable PDU extraction. * * XXX: Supposedly this should be done by the firmware when * the ULP_MODE FLOWC parameter is set in send_flowc_wr(), but * in practice this seems to be required. */ CTR2(KTR_CXGBE, "%s: tid %d setting TLS_ENABLE", __func__, toep->tid); t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); toep->flags |= TPF_FORCE_CREDITS; tls_start_handshake_timer(toep); } void tls_uninit_toep(struct toepcb *toep) { - if (toep->ulp_mode == ULP_MODE_TLS) + if (ulp_mode(toep) == ULP_MODE_TLS) tls_stop_handshake_timer(toep); clear_tls_keyid(toep); } #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) #define MIN_OFLD_TLSTX_CREDITS(toep) \ (howmany(sizeof(struct fw_tlstx_data_wr) + \ sizeof(struct cpl_tx_tls_sfo) + key_size((toep)) + \ CIPHER_BLOCK_SIZE + 1, 16)) static inline u_int max_imm_tls_space(int tx_credits) { const int n = 2; /* Use only up to 2 desc for imm. data WR */ int space; KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits >= (n * EQ_ESIZE) / 16) space = (n * EQ_ESIZE); else space = tx_credits * 16; return (space); } static int count_mbuf_segs(struct mbuf *m, int skip, int len, int *max_nsegs_1mbufp) { int max_nsegs_1mbuf, n, nsegs; while (skip >= m->m_len) { skip -= m->m_len; m = m->m_next; } nsegs = 0; max_nsegs_1mbuf = 0; while (len > 0) { n = sglist_count(mtod(m, char *) + skip, m->m_len - skip); if (n > max_nsegs_1mbuf) max_nsegs_1mbuf = n; nsegs += n; len -= m->m_len - skip; skip = 0; m = m->m_next; } *max_nsegs_1mbufp = max_nsegs_1mbuf; return (nsegs); } static void write_tlstx_wr(struct fw_tlstx_data_wr *txwr, struct toepcb *toep, unsigned int immdlen, unsigned int plen, unsigned int expn, unsigned int pdus, uint8_t credits, int shove, int imm_ivs) { struct tls_ofld_info *tls_ofld = &toep->tls; unsigned int len = plen + expn; txwr->op_to_immdlen = htobe32(V_WR_OP(FW_TLSTX_DATA_WR) | V_FW_TLSTX_DATA_WR_COMPL(1) | V_FW_TLSTX_DATA_WR_IMMDLEN(immdlen)); txwr->flowid_len16 = htobe32(V_FW_TLSTX_DATA_WR_FLOWID(toep->tid) | V_FW_TLSTX_DATA_WR_LEN16(credits)); txwr->plen = htobe32(len); txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ULP_MODE_TLS) | V_TX_URG(0) | /* F_T6_TX_FORCE | */ V_TX_SHOVE(shove)); txwr->ctxloc_to_exp = htobe32(V_FW_TLSTX_DATA_WR_NUMIVS(pdus) | V_FW_TLSTX_DATA_WR_EXP(expn) | V_FW_TLSTX_DATA_WR_CTXLOC(tls_ofld->key_location) | V_FW_TLSTX_DATA_WR_IVDSGL(!imm_ivs) | V_FW_TLSTX_DATA_WR_KEYSIZE(tls_ofld->k_ctx.tx_key_info_size >> 4)); txwr->mfs = htobe16(tls_ofld->k_ctx.frag_size); txwr->adjustedplen_pkd = htobe16( V_FW_TLSTX_DATA_WR_ADJUSTEDPLEN(tls_ofld->adjusted_plen)); txwr->expinplenmax_pkd = htobe16( V_FW_TLSTX_DATA_WR_EXPINPLENMAX(tls_ofld->expn_per_ulp)); txwr->pdusinplenmax_pkd = htobe16( V_FW_TLSTX_DATA_WR_PDUSINPLENMAX(tls_ofld->pdus_per_ulp)); } static void write_tlstx_cpl(struct cpl_tx_tls_sfo *cpl, struct toepcb *toep, struct tls_hdr *tls_hdr, unsigned int plen, unsigned int pdus) { struct tls_ofld_info *tls_ofld = &toep->tls; int data_type, seglen; if (plen < tls_ofld->k_ctx.frag_size) seglen = plen; else seglen = tls_ofld->k_ctx.frag_size; data_type = tls_content_type(tls_hdr->type); cpl->op_to_seg_len = htobe32(V_CPL_TX_TLS_SFO_OPCODE(CPL_TX_TLS_SFO) | V_CPL_TX_TLS_SFO_DATA_TYPE(data_type) | V_CPL_TX_TLS_SFO_CPL_LEN(2) | V_CPL_TX_TLS_SFO_SEG_LEN(seglen)); cpl->pld_len = htobe32(plen); if (data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT) cpl->type_protover = htobe32( V_CPL_TX_TLS_SFO_TYPE(tls_hdr->type)); cpl->seqno_numivs = htobe32(tls_ofld->scmd0.seqno_numivs | V_SCMD_NUM_IVS(pdus)); cpl->ivgen_hdrlen = htobe32(tls_ofld->scmd0.ivgen_hdrlen); cpl->scmd1 = htobe64(tls_ofld->tx_seq_no); tls_ofld->tx_seq_no += pdus; } /* * Similar to write_tx_sgl() except that it accepts an optional * trailer buffer for IVs. */ static void write_tlstx_sgl(void *dst, struct mbuf *start, int skip, int plen, void *iv_buffer, int iv_len, int nsegs, int n) { struct mbuf *m; struct ulptx_sgl *usgl = dst; int i, j, rc; struct sglist sg; struct sglist_seg segs[n]; KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); sglist_init(&sg, n, segs); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); for (m = start; skip >= m->m_len; m = m->m_next) skip -= m->m_len; i = -1; for (m = start; plen > 0; m = m->m_next) { rc = sglist_append(&sg, mtod(m, char *) + skip, m->m_len - skip); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); plen -= m->m_len - skip; skip = 0; for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } sglist_reset(&sg); } if (iv_buffer != NULL) { rc = sglist_append(&sg, iv_buffer, iv_len); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, iv_buffer %p", __func__, nsegs, start, iv_buffer)); } /* * Similar to t4_push_frames() but handles TLS sockets when TLS offload * is enabled. Rather than transmitting bulk data, the socket buffer * contains TLS records. The work request requires a full TLS record, * so batch mbufs up until a full TLS record is seen. This requires * reading the TLS header out of the start of each record to determine * its length. */ void t4_push_tls_records(struct adapter *sc, struct toepcb *toep, int drop) { struct tls_hdr thdr; struct mbuf *sndptr; struct fw_tlstx_data_wr *txwr; struct cpl_tx_tls_sfo *cpl; struct wrqe *wr; u_int plen, nsegs, credits, space, max_nsegs_1mbuf, wr_len; u_int expn_size, iv_len, pdus, sndptroff; struct tls_ofld_info *tls_ofld = &toep->tls; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int tls_size, tx_credits, shove, /* compl,*/ sowwakeup; struct ofld_tx_sdesc *txsd; bool imm_ivs, imm_payload; void *iv_buffer, *iv_dst, *buf; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); - KASSERT(toep->ulp_mode == ULP_MODE_NONE || - toep->ulp_mode == ULP_MODE_TCPDDP || toep->ulp_mode == ULP_MODE_TLS, - ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); + KASSERT(ulp_mode(toep) == ULP_MODE_NONE || + ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS, + ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); KASSERT(tls_tx_key(toep), ("%s: TX key not set for toep %p", __func__, toep)); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", __func__, toep->tid, toep->flags, tp->t_flags); #endif if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; #ifdef RATELIMIT if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; } #endif /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } txsd = &toep->txsd[toep->txsd_pidx]; for (;;) { tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); space = max_imm_tls_space(tx_credits); wr_len = sizeof(struct fw_tlstx_data_wr) + sizeof(struct cpl_tx_tls_sfo) + key_size(toep); if (wr_len + CIPHER_BLOCK_SIZE + 1 > space) { #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d tx_credits %d min_wr %d space %d", __func__, toep->tid, tx_credits, wr_len + CIPHER_BLOCK_SIZE + 1, space); #endif return; } SOCKBUF_LOCK(sb); sowwakeup = drop; if (drop) { sbdrop_locked(sb, drop); MPASS(tls_ofld->sb_off >= drop); tls_ofld->sb_off -= drop; drop = 0; } /* * Send a FIN if requested, but only if there's no * more data to send. */ if (sbavail(sb) == tls_ofld->sb_off && toep->flags & TPF_SEND_FIN) { if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); t4_close_conn(sc, toep); return; } if (sbavail(sb) < tls_ofld->sb_off + TLS_HEADER_LENGTH) { /* * A full TLS header is not yet queued, stop * for now until more data is added to the * socket buffer. However, if the connection * has been closed, we will never get the rest * of the header so just discard the partial * header and close the connection. */ #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d%s", __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, toep->flags & TPF_SEND_FIN ? "" : " SEND_FIN"); #endif if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); if (toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); return; } /* Read the header of the next TLS record. */ sndptr = sbsndmbuf(sb, tls_ofld->sb_off, &sndptroff); m_copydata(sndptr, sndptroff, sizeof(thdr), (caddr_t)&thdr); tls_size = htons(thdr.length); plen = TLS_HEADER_LENGTH + tls_size; pdus = howmany(tls_size, tls_ofld->k_ctx.frag_size); iv_len = pdus * CIPHER_BLOCK_SIZE; if (sbavail(sb) < tls_ofld->sb_off + plen) { /* * The full TLS record is not yet queued, stop * for now until more data is added to the * socket buffer. However, if the connection * has been closed, we will never get the rest * of the record so just discard the partial * record and close the connection. */ #ifdef VERBOSE_TRACES CTR6(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d plen %d%s", __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, plen, toep->flags & TPF_SEND_FIN ? "" : " SEND_FIN"); #endif if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); if (toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); return; } /* Shove if there is no additional data pending. */ shove = (sbavail(sb) == tls_ofld->sb_off + plen) && !(tp->t_flags & TF_MORETOCOME); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf && sb->sb_hiwat < V_tcp_autosndbuf_max && sbused(sb) >= sb->sb_hiwat * 7 / 8) { int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, V_tcp_autosndbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else sowwakeup = 1; /* room available */ } if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); /* Determine whether to use immediate vs SGL. */ imm_payload = false; imm_ivs = false; if (wr_len + iv_len <= space) { imm_ivs = true; wr_len += iv_len; if (wr_len + tls_size <= space) { wr_len += tls_size; imm_payload = true; } } /* Allocate space for IVs if needed. */ if (!imm_ivs) { iv_buffer = malloc(iv_len, M_CXGBE, M_NOWAIT); if (iv_buffer == NULL) { /* * XXX: How to restart this? */ if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); CTR3(KTR_CXGBE, "%s: tid %d failed to alloc IV space len %d", __func__, toep->tid, iv_len); return; } } else iv_buffer = NULL; /* Determine size of SGL. */ nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ if (!imm_payload) { nsegs = count_mbuf_segs(sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, &max_nsegs_1mbuf); if (!imm_ivs) { int n = sglist_count(iv_buffer, iv_len); nsegs += n; if (n > max_nsegs_1mbuf) max_nsegs_1mbuf = n; } /* Account for SGL in work request length. */ wr_len += sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; } wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d TLS record %d len %#x pdus %d", __func__, toep->tid, thdr.type, tls_size, pdus); #endif txwr = wrtod(wr); cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); memset(txwr, 0, roundup2(wr_len, 16)); credits = howmany(wr_len, 16); expn_size = tls_expansion_size(toep, tls_size, 0, NULL); write_tlstx_wr(txwr, toep, imm_payload ? tls_size : 0, tls_size, expn_size, pdus, credits, shove, imm_ivs ? 1 : 0); write_tlstx_cpl(cpl, toep, &thdr, tls_size, pdus); tls_copy_tx_key(toep, cpl + 1); /* Generate random IVs */ buf = (char *)(cpl + 1) + key_size(toep); if (imm_ivs) { MPASS(iv_buffer == NULL); iv_dst = buf; buf = (char *)iv_dst + iv_len; } else iv_dst = iv_buffer; arc4rand(iv_dst, iv_len, 0); if (imm_payload) { m_copydata(sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, buf); } else { write_tlstx_sgl(buf, sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, iv_buffer, iv_len, nsegs, max_nsegs_1mbuf); } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); toep->tx_credits -= credits; tp->snd_nxt += plen; tp->snd_max += plen; SOCKBUF_LOCK(sb); sbsndptr_adv(sb, sb->sb_sndptr, plen); tls_ofld->sb_off += plen; SOCKBUF_UNLOCK(sb); toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd->iv_buffer = iv_buffer; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; atomic_add_long(&toep->vi->pi->tx_tls_records, 1); atomic_add_long(&toep->vi->pi->tx_tls_octets, plen); t4_l2t_send(sc, wr, toep->l2te); } } /* * For TLS data we place received mbufs received via CPL_TLS_DATA into * an mbufq in the TLS offload state. When CPL_RX_TLS_CMP is * received, the completed PDUs are placed into the socket receive * buffer. * * The TLS code reuses the ulp_pdu_reclaimq to hold the pending mbufs. */ static int do_tls_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_tls_data *cpl = mtod(m, const void *); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; int len; /* XXX: Should this match do_rx_data instead? */ KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; atomic_add_long(&toep->vi->pi->rx_tls_octets, len); KASSERT(len == G_CPL_TLS_DATA_LENGTH(be32toh(cpl->length_pkd)), ("%s: payload length mismatch", __func__)); INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } /* Save TCP sequence number. */ m->m_pkthdr.tls_tcp_seq = be32toh(cpl->seq); if (mbufq_enqueue(&toep->ulp_pdu_reclaimq, m)) { #ifdef INVARIANTS panic("Failed to queue TLS data packet"); #else printf("%s: Failed to queue TLS data packet\n", __func__); INP_WUNLOCK(inp); m_freem(m); return (0); #endif } tp = intotcpcb(inp); tp->t_rcvtime = ticks; #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %u len %d seq %u", __func__, tid, len, be32toh(cpl->seq)); #endif INP_WUNLOCK(inp); return (0); } static int do_rx_tls_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_tls_cmp *cpl = mtod(m, const void *); struct tlsrx_hdr_pkt *tls_hdr_pkt; unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct mbuf *tls_data; int len, pdu_length, rx_credits; KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; atomic_add_long(&toep->vi->pi->rx_tls_records, 1); KASSERT(len == G_CPL_RX_TLS_CMP_LENGTH(be32toh(cpl->pdulength_length)), ("%s: payload length mismatch", __func__)); INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } pdu_length = G_CPL_RX_TLS_CMP_PDULENGTH(be32toh(cpl->pdulength_length)); tp = intotcpcb(inp); #ifdef VERBOSE_TRACES CTR6(KTR_CXGBE, "%s: tid %u PDU len %d len %d seq %u, rcv_nxt %u", __func__, tid, pdu_length, len, be32toh(cpl->seq), tp->rcv_nxt); #endif tp->rcv_nxt += pdu_length; if (tp->rcv_wnd < pdu_length) { toep->tls.rcv_over += pdu_length - tp->rcv_wnd; tp->rcv_wnd = 0; } else tp->rcv_wnd -= pdu_length; /* XXX: Not sure what to do about urgent data. */ /* * The payload of this CPL is the TLS header followed by * additional fields. */ KASSERT(m->m_len >= sizeof(*tls_hdr_pkt), ("%s: payload too small", __func__)); tls_hdr_pkt = mtod(m, void *); /* * Only the TLS header is sent to OpenSSL, so report errors by * altering the record type. */ if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 0) tls_hdr_pkt->type = CONTENT_TYPE_ERROR; /* Trim this CPL's mbuf to only include the TLS header. */ KASSERT(m->m_len == len && m->m_next == NULL, ("%s: CPL spans multiple mbufs", __func__)); m->m_len = TLS_HEADER_LENGTH; m->m_pkthdr.len = TLS_HEADER_LENGTH; tls_data = mbufq_dequeue(&toep->ulp_pdu_reclaimq); if (tls_data != NULL) { KASSERT(be32toh(cpl->seq) == tls_data->m_pkthdr.tls_tcp_seq, ("%s: sequence mismatch", __func__)); /* * Update the TLS header length to be the length of * the payload data. */ tls_hdr_pkt->length = htobe16(tls_data->m_pkthdr.len); m->m_next = tls_data; m->m_pkthdr.len += tls_data->m_len; } so = inp_inpcbtosocket(inp); sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { struct epoch_tracker et; CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", __func__, tid, pdu_length); m_freem(m); SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); CURVNET_SET(toep->vnet); INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); CURVNET_RESTORE(); return (0); } /* * Not all of the bytes on the wire are included in the socket buffer * (e.g. the MAC of the TLS record). However, those bytes are included * in the TCP sequence space. */ /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && m->m_pkthdr.len > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; } sbappendstream_locked(sb, m, 0); rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %u rx_credits %u rcv_wnd %u", __func__, tid, rx_credits, tp->rcv_wnd); #endif if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) { rx_credits = send_rx_credits(sc, toep, rx_credits); tp->rcv_wnd += rx_credits; tp->rcv_adv += rx_credits; } sorwakeup_locked(so); SOCKBUF_UNLOCK_ASSERT(sb); INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } void t4_tls_mod_load(void) { mtx_init(&tls_handshake_lock, "t4tls handshake", NULL, MTX_DEF); t4_register_cpl_handler(CPL_TLS_DATA, do_tls_data); t4_register_cpl_handler(CPL_RX_TLS_CMP, do_rx_tls_cmp); } void t4_tls_mod_unload(void) { t4_register_cpl_handler(CPL_TLS_DATA, NULL); t4_register_cpl_handler(CPL_RX_TLS_CMP, NULL); mtx_destroy(&tls_handshake_lock); } #endif /* TCP_OFFLOAD */ Index: head/sys/dev/cxgbe/tom/t4_tom.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_tom.c (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_tom.c (revision 351540) @@ -1,1661 +1,1920 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include +#include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_tcb.h" #include "t4_clip.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" #include "tom/t4_tls.h" static struct protosw toe_protosw; static struct pr_usrreqs toe_usrreqs; static struct protosw toe6_protosw; static struct pr_usrreqs toe6_usrreqs; /* Module ops */ static int t4_tom_mod_load(void); static int t4_tom_mod_unload(void); static int t4_tom_modevent(module_t, int, void *); /* ULD ops and helpers */ static int t4_tom_activate(struct adapter *); static int t4_tom_deactivate(struct adapter *); static struct uld_info tom_uld_info = { .uld_id = ULD_TOM, .activate = t4_tom_activate, .deactivate = t4_tom_deactivate, }; static void release_offload_resources(struct toepcb *); static int alloc_tid_tabs(struct tid_info *); static void free_tid_tabs(struct tid_info *); static void free_tom_data(struct adapter *, struct tom_data *); static void reclaim_wr_resources(void *, int); struct toepcb * -alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags) +alloc_toepcb(struct vi_info *vi, int flags) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct toepcb *toep; int tx_credits, txsd_total, len; /* * The firmware counts tx work request credits in units of 16 bytes * each. Reserve room for an ABORT_REQ so the driver never has to worry * about tx credits if it wants to abort a connection. */ tx_credits = sc->params.ofldq_wr_cred; tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); /* * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte * immediate payload, and firmware counts tx work request credits in * units of 16 byte. Calculate the maximum work requests possible. */ txsd_total = tx_credits / howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); - KASSERT(txqid >= vi->first_ofld_txq && - txqid < vi->first_ofld_txq + vi->nofldtxq, - ("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi, - vi->first_ofld_txq, vi->nofldtxq)); - - KASSERT(rxqid >= vi->first_ofld_rxq && - rxqid < vi->first_ofld_rxq + vi->nofldrxq, - ("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi, - vi->first_ofld_rxq, vi->nofldrxq)); - len = offsetof(struct toepcb, txsd) + txsd_total * sizeof(struct ofld_tx_sdesc); toep = malloc(len, M_CXGBE, M_ZERO | flags); if (toep == NULL) return (NULL); refcount_init(&toep->refcount, 1); toep->td = sc->tom_softc; toep->vi = vi; - toep->tc_idx = -1; + toep->tid = -1; toep->tx_total = tx_credits; toep->tx_credits = tx_credits; - toep->ofld_txq = &sc->sge.ofld_txq[txqid]; - toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid]; - toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; mbufq_init(&toep->ulp_pduq, INT_MAX); mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); toep->txsd_total = txsd_total; toep->txsd_avail = txsd_total; toep->txsd_pidx = 0; toep->txsd_cidx = 0; aiotx_init_toep(toep); return (toep); } +/* + * Initialize a toepcb after its params have been filled out. + */ +int +init_toepcb(struct vi_info *vi, struct toepcb *toep) +{ + struct conn_params *cp = &toep->params; + struct port_info *pi = vi->pi; + struct adapter *sc = pi->adapter; + struct tx_cl_rl_params *tc; + + if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) { + tc = &pi->sched_params->cl_rl[cp->tc_idx]; + mtx_lock(&sc->tc_lock); + if (tc->flags & CLRL_ERR) { + log(LOG_ERR, + "%s: failed to associate traffic class %u with tid %u\n", + device_get_nameunit(vi->dev), cp->tc_idx, + toep->tid); + cp->tc_idx = -1; + } else { + tc->refcount++; + } + mtx_unlock(&sc->tc_lock); + } + toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; + toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; + toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; + + tls_init_toep(toep); + if (ulp_mode(toep) == ULP_MODE_TCPDDP) + ddp_init_toep(toep); + + return (0); +} + struct toepcb * hold_toepcb(struct toepcb *toep) { refcount_acquire(&toep->refcount); return (toep); } void free_toepcb(struct toepcb *toep) { if (refcount_release(&toep->refcount) == 0) return; KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: attached to an inpcb", __func__)); KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: CPL pending", __func__)); - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_uninit_toep(toep); tls_uninit_toep(toep); free(toep, M_CXGBE); } /* * Set up the socket for TCP offload. */ void offload_socket(struct socket *so, struct toepcb *toep) { struct tom_data *td = toep->td; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct sockbuf *sb; INP_WLOCK_ASSERT(inp); /* Update socket */ sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; if (inp->inp_vflag & INP_IPV6) so->so_proto = &toe6_protosw; else so->so_proto = &toe_protosw; SOCKBUF_UNLOCK(sb); /* Update TCP PCB */ tp->tod = &td->tod; tp->t_toe = toep; tp->t_flags |= TF_TOE; /* Install an extra hold on inp */ toep->inp = inp; toep->flags |= TPF_ATTACHED; in_pcbref(inp); /* Add the TOE PCB to the active list */ mtx_lock(&td->toep_list_lock); TAILQ_INSERT_HEAD(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } /* This is _not_ the normal way to "unoffload" a socket. */ void undo_offload_socket(struct socket *so) { struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; struct tom_data *td = toep->td; struct sockbuf *sb; INP_WLOCK_ASSERT(inp); sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->inp = NULL; toep->flags &= ~TPF_ATTACHED; if (in_pcbrele_wlocked(inp)) panic("%s: inp freed.", __func__); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } static void release_offload_resources(struct toepcb *toep) { struct tom_data *td = toep->td; struct adapter *sc = td_adapter(td); int tid = toep->tid; KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: %p has CPL pending.", __func__, toep)); KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: %p is still attached.", __func__, toep)); CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", __func__, toep, tid, toep->l2te, toep->ce); /* * These queues should have been emptied at approximately the same time * that a normal connection's socket's so_snd would have been purged or * drained. Do _not_ clean up here. */ MPASS(mbufq_len(&toep->ulp_pduq) == 0); MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); #ifdef INVARIANTS - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_assert_empty(toep); #endif MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); if (toep->l2te) t4_l2t_release(toep->l2te); if (tid >= 0) { remove_tid(sc, tid, toep->ce ? 2 : 1); release_tid(sc, tid, toep->ctrlq); } if (toep->ce) t4_release_lip(sc, toep->ce); - if (toep->tc_idx != -1) - t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->tc_idx); + if (toep->params.tc_idx != -1) + t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); free_toepcb(toep); } /* * The kernel is done with the TCP PCB and this is our opportunity to unhook the * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no * pending CPL) then it is time to release all resources tied to the toepcb. * * Also gets called when an offloaded active open fails and the TOM wants the * kernel to take the TCP PCB back. */ static void t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) { #if defined(KTR) || defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); KASSERT(toep->flags & TPF_ATTACHED, ("%s: not attached", __func__)); #ifdef KTR if (tp->t_state == TCPS_SYN_SENT) { CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); } else { CTR6(KTR_CXGBE, "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, inp->inp_flags); } #endif tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->flags &= ~TPF_ATTACHED; if (!(toep->flags & TPF_CPL_PENDING)) release_offload_resources(toep); } /* * setsockopt handler. */ static void t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; if (dir == SOPT_GET) return; CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); switch (name) { case TCP_NODELAY: if (tp->t_state != TCPS_ESTABLISHED) break; + toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, - V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1), - 0, 0); + V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); break; default: break; } } static inline uint64_t get_tcb_tflags(const uint64_t *tcb) { return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); } static inline uint32_t get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) { #define LAST_WORD ((TCB_SIZE / 4) - 1) uint64_t t1, t2; int flit_idx; MPASS(mask != 0); MPASS(word <= LAST_WORD); MPASS(shift < 32); flit_idx = (LAST_WORD - word) / 2; if (word & 0x1) shift += 32; t1 = be64toh(tcb[flit_idx]) >> shift; t2 = 0; if (fls(mask) > 64 - shift) { /* * Will spill over into the next logical flit, which is the flit * before this one. The flit_idx before this one must be valid. */ MPASS(flit_idx > 0); t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); } return ((t2 | t1) & mask); #undef LAST_WORD } #define GET_TCB_FIELD(tcb, F) \ get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) /* * Issues a CPL_GET_TCB to read the entire TCB for the tid. */ static int send_get_tcb(struct adapter *sc, u_int tid) { struct cpl_get_tcb *cpl; struct wrq_cookie cookie; MPASS(tid < sc->tids.ntids); cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), &cookie); if (__predict_false(cpl == NULL)) return (ENOMEM); bzero(cpl, sizeof(*cpl)); INIT_TP_WR(cpl, tid); OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); cpl->cookie = 0xff; commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); return (0); } static struct tcb_histent * alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) { struct tcb_histent *te; MPASS(flags == M_NOWAIT || flags == M_WAITOK); te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); if (te == NULL) return (NULL); mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); callout_init_mtx(&te->te_callout, &te->te_lock, 0); te->te_adapter = sc; te->te_tid = tid; return (te); } static void free_tcb_histent(struct tcb_histent *te) { mtx_destroy(&te->te_lock); free(te, M_CXGBE); } /* * Start tracking the tid in the TCB history. */ int add_tid_to_history(struct adapter *sc, u_int tid) { struct tcb_histent *te = NULL; struct tom_data *td = sc->tom_softc; int rc; MPASS(tid < sc->tids.ntids); if (td->tcb_history == NULL) return (ENXIO); rw_wlock(&td->tcb_history_lock); if (td->tcb_history[tid] != NULL) { rc = EEXIST; goto done; } te = alloc_tcb_histent(sc, tid, M_NOWAIT); if (te == NULL) { rc = ENOMEM; goto done; } mtx_lock(&te->te_lock); rc = send_get_tcb(sc, tid); if (rc == 0) { te->te_flags |= TE_RPL_PENDING; td->tcb_history[tid] = te; } else { free(te, M_CXGBE); } mtx_unlock(&te->te_lock); done: rw_wunlock(&td->tcb_history_lock); return (rc); } static void remove_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; rw_assert(&td->tcb_history_lock, RA_WLOCKED); mtx_assert(&te->te_lock, MA_OWNED); MPASS(td->tcb_history[te->te_tid] == te); td->tcb_history[te->te_tid] = NULL; free_tcb_histent(te); rw_wunlock(&td->tcb_history_lock); } static inline struct tcb_histent * lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) { struct tcb_histent *te; struct tom_data *td = sc->tom_softc; MPASS(tid < sc->tids.ntids); if (td->tcb_history == NULL) return (NULL); if (addrem) rw_wlock(&td->tcb_history_lock); else rw_rlock(&td->tcb_history_lock); te = td->tcb_history[tid]; if (te != NULL) { mtx_lock(&te->te_lock); return (te); /* with both locks held */ } if (addrem) rw_wunlock(&td->tcb_history_lock); else rw_runlock(&td->tcb_history_lock); return (te); } static inline void release_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; mtx_assert(&te->te_lock, MA_OWNED); mtx_unlock(&te->te_lock); rw_assert(&td->tcb_history_lock, RA_RLOCKED); rw_runlock(&td->tcb_history_lock); } static void request_tcb(void *arg) { struct tcb_histent *te = arg; mtx_assert(&te->te_lock, MA_OWNED); /* Noone else is supposed to update the histent. */ MPASS(!(te->te_flags & TE_RPL_PENDING)); if (send_get_tcb(te->te_adapter, te->te_tid) == 0) te->te_flags |= TE_RPL_PENDING; else callout_schedule(&te->te_callout, hz / 100); } static void update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) { struct tom_data *td = te->te_adapter->tom_softc; uint64_t tflags = get_tcb_tflags(tcb); uint8_t sample = 0; if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) sample |= TS_RTO; if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) sample |= TS_DUPACKS; if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) sample |= TS_FASTREXMT; } if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { uint32_t snd_wnd; sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (tflags & V_TF_RECV_SCALE(1)) snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) sample |= TS_CWND_LIMITED; /* maybe due to CWND */ } if (tflags & V_TF_CCTRL_ECN(1)) { /* * CE marker on incoming IP hdr, echoing ECE back in the TCP * hdr. Indicates congestion somewhere on the way from the peer * to this node. */ if (tflags & V_TF_CCTRL_ECE(1)) sample |= TS_ECN_ECE; /* * ECE seen and CWR sent (or about to be sent). Might indicate * congestion on the way to the peer. This node is reducing its * congestion window in response. */ if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) sample |= TS_ECN_CWR; } te->te_sample[te->te_pidx] = sample; if (++te->te_pidx == nitems(te->te_sample)) te->te_pidx = 0; memcpy(te->te_tcb, tcb, TCB_SIZE); te->te_flags |= TE_ACTIVE; } static int do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); struct tcb_histent *te; const u_int tid = GET_TID(cpl); bool remove; remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; te = lookup_tcb_histent(sc, tid, remove); if (te == NULL) { /* Not in the history. Who issued the GET_TCB for this? */ device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); goto done; } MPASS(te->te_flags & TE_RPL_PENDING); te->te_flags &= ~TE_RPL_PENDING; if (remove) { remove_tcb_histent(te); } else { update_tcb_histent(te, tcb); callout_reset(&te->te_callout, hz / 10, request_tcb, te); release_tcb_histent(te); } done: m_freem(m); return (0); } static void fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) { uint32_t v; ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); v = GET_TCB_FIELD(tcb, T_SRTT); ti->tcpi_rtt = tcp_ticks_to_us(sc, v); v = GET_TCB_FIELD(tcb, T_RTTVAR); ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); v = GET_TCB_FIELD(tcb, TX_MAX); ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); /* Receive window being advertised by us. */ ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); /* Send window */ ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; else ti->tcpi_snd_wscale = 0; } static void fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, struct tcp_info *ti) { fill_tcp_info_from_tcb(sc, te->te_tcb, ti); } /* * Reads the TCB for the given tid using a memory window and copies it to 'buf' * in the same format as CPL_GET_TCB_RPL. */ static void read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) { int i, j, k, rc; uint32_t addr; u_char *tcb, tmp; MPASS(tid < sc->tids.ntids); addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); if (rc != 0) return; tcb = (u_char *)buf; for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { for (k = 0; k < 16; k++) { tmp = tcb[i + k]; tcb[i + k] = tcb[j + k]; tcb[j + k] = tmp; } } } static void fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) { uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; struct tcb_histent *te; ti->tcpi_toe_tid = tid; te = lookup_tcb_histent(sc, tid, false); if (te != NULL) { fill_tcp_info_from_history(sc, te, ti); release_tcb_histent(te); } else { if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { /* XXX: tell firmware to flush TCB cache. */ } read_tcb_using_memwin(sc, tid, tcb); fill_tcp_info_from_tcb(sc, tcb, ti); } } /* * Called by the kernel to allow the TOE driver to "refine" values filled up in * the tcp_info for an offloaded connection. */ static void t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(tp->t_inpcb); MPASS(ti != NULL); fill_tcp_info(sc, toep->tid, ti); } /* * The TOE driver will not receive any more CPLs for the tid associated with the * toepcb; release the hold on the inpcb. */ void final_cpl_received(struct toepcb *toep) { struct inpcb *inp = toep->inp; KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_CPL_PENDING, ("%s: CPL not pending already?", __func__)); CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); - if (toep->ulp_mode == ULP_MODE_TCPDDP) + if (ulp_mode(toep) == ULP_MODE_TCPDDP) release_ddp_resources(toep); toep->inp = NULL; toep->flags &= ~TPF_CPL_PENDING; mbufq_drain(&toep->ulp_pdu_reclaimq); if (!(toep->flags & TPF_ATTACHED)) release_offload_resources(toep); if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); } void insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) { struct tid_info *t = &sc->tids; MPASS(tid >= t->tid_base); MPASS(tid - t->tid_base < t->ntids); t->tid_tab[tid - t->tid_base] = ctx; atomic_add_int(&t->tids_in_use, ntids); } void * lookup_tid(struct adapter *sc, int tid) { struct tid_info *t = &sc->tids; return (t->tid_tab[tid - t->tid_base]); } void update_tid(struct adapter *sc, int tid, void *ctx) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = ctx; } void remove_tid(struct adapter *sc, int tid, int ntids) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = NULL; atomic_subtract_int(&t->tids_in_use, ntids); } /* * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt * have the MSS that we should advertise in our SYN. Advertised MSS doesn't * account for any TCP options so the effective MSS (only payload, no headers or * options) could be different. */ -int +static int find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, struct offload_settings *s) { unsigned short *mtus = &sc->params.mtus[0]; int i, mss, mtu; MPASS(inc != NULL); mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); if (inc->inc_flags & INC_ISIPV6) mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) continue; return (i); } /* * Determine the receive window size for a socket. */ u_long select_rcv_wnd(struct socket *so) { unsigned long wnd; SOCKBUF_LOCK_ASSERT(&so->so_rcv); wnd = sbspace(&so->so_rcv); if (wnd < MIN_RCV_WND) wnd = MIN_RCV_WND; return min(wnd, MAX_RCV_WND); } int select_rcv_wscale(void) { int wscale = 0; unsigned long space = sb_max; if (space > MAX_RCV_WND) space = MAX_RCV_WND; while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) wscale++; return (wscale); } -/* - * socket so could be a listening socket too. - */ -uint64_t -calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e, - int mtu_idx, int rscale, int rx_credits, int ulp_mode, - struct offload_settings *s) +__be64 +calc_options0(struct vi_info *vi, struct conn_params *cp) { - int keepalive; - uint64_t opt0; + uint64_t opt0 = 0; - MPASS(so != NULL); - MPASS(vi != NULL); - KASSERT(rx_credits <= M_RCV_BUFSIZ, - ("%s: rcv_bufsiz too high", __func__)); + opt0 |= F_TCAM_BYPASS; - opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) | - V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits) | - V_L2T_IDX(e->idx) | V_SMAC_SEL(vi->smt_idx) | - V_TX_CHAN(vi->pi->tx_chan); + MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); + opt0 |= V_WND_SCALE(cp->wscale); - keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE; - opt0 |= V_KEEP_ALIVE(keepalive != 0); + MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); + opt0 |= V_MSS_IDX(cp->mtu_idx); - if (s->nagle < 0) { - struct inpcb *inp = sotoinpcb(so); - struct tcpcb *tp = intotcpcb(inp); + MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); + opt0 |= V_ULP_MODE(cp->ulp_mode); - opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0); - } else - opt0 |= V_NAGLE(s->nagle != 0); + MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); + opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); - return htobe64(opt0); + MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->pi->adapter->vres.l2t.size); + opt0 |= V_L2T_IDX(cp->l2t_idx); + + opt0 |= V_SMAC_SEL(vi->smt_idx); + opt0 |= V_TX_CHAN(vi->pi->tx_chan); + + MPASS(cp->keepalive == 0 || cp->keepalive == 1); + opt0 |= V_KEEP_ALIVE(cp->keepalive); + + MPASS(cp->nagle == 0 || cp->nagle == 1); + opt0 |= V_NAGLE(cp->nagle); + + return (htobe64(opt0)); } +__be32 +calc_options2(struct vi_info *vi, struct conn_params *cp) +{ + uint32_t opt2 = 0; + struct port_info *pi = vi->pi; + struct adapter *sc = pi->adapter; + + /* + * rx flow control, rx coalesce, congestion control, and tx pace are all + * explicitly set by the driver. On T5+ the ISS is also set by the + * driver to the value picked by the kernel. + */ + if (is_t4(sc)) { + opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; + opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; + } else { + opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ + opt2 |= F_T5_ISS; /* ISS provided in CPL */ + } + + MPASS(cp->sack == 0 || cp->sack == 1); + opt2 |= V_SACK_EN(cp->sack); + + MPASS(cp->tstamp == 0 || cp->tstamp == 1); + opt2 |= V_TSTAMPS_EN(cp->tstamp); + + if (cp->wscale > 0) + opt2 |= F_WND_SCALE_EN; + + MPASS(cp->ecn == 0 || cp->ecn == 1); + opt2 |= V_CCTRL_ECN(cp->ecn); + + /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ + + opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); + opt2 |= V_PACE(0); + opt2 |= F_RSS_QUEUE_VALID; + opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); + + MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); + opt2 |= V_CONG_CNTRL(cp->cong_algo); + + MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); + if (cp->rx_coalesce == 1) + opt2 |= V_RX_COALESCE(M_RX_COALESCE); + + opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); +#ifdef USE_DDP_RX_FLOW_CONTROL + if (cp->ulp_mode == ULP_MODE_TCPDDP) + opt2 |= F_RX_FC_DDP; +#endif + if (cp->ulp_mode == ULP_MODE_TLS) + opt2 |= F_RX_FC_DISABLE; + + return (htobe32(opt2)); +} + uint64_t select_ntuple(struct vi_info *vi, struct l2t_entry *e) { struct adapter *sc = vi->pi->adapter; struct tp_params *tp = &sc->params.tp; uint64_t ntuple = 0; /* * Initialize each of the fields which we care about which are present * in the Compressed Filter Tuple. */ if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; if (tp->port_shift >= 0) ntuple |= (uint64_t)e->lport << tp->port_shift; if (tp->protocol_shift >= 0) ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << tp->vnic_shift; } if (is_t4(sc)) return (htobe32((uint32_t)ntuple)); else return (htobe64(V_FILTER_TUPLE(ntuple))); } static int is_tls_sock(struct socket *so, struct adapter *sc) { struct inpcb *inp = sotoinpcb(so); int i, rc; /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ rc = 0; ADAPTER_LOCK(sc); for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { rc = 1; break; } } ADAPTER_UNLOCK(sc); return (rc); } -int -select_ulp_mode(struct socket *so, struct adapter *sc, - struct offload_settings *s) +/* + * Initialize various connection parameters. + */ +void +init_conn_params(struct vi_info *vi , struct offload_settings *s, + struct in_conninfo *inc, struct socket *so, + const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) { + struct port_info *pi = vi->pi; + struct adapter *sc = pi->adapter; + struct tom_tunables *tt = &sc->tt; + struct inpcb *inp = sotoinpcb(so); + struct tcpcb *tp = intotcpcb(inp); + u_long wnd; + MPASS(s->offload != 0); + + /* Congestion control algorithm */ + if (s->cong_algo >= 0) + cp->cong_algo = s->cong_algo & M_CONG_CNTRL; + else if (sc->tt.cong_algorithm >= 0) + cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; + else { + struct cc_algo *cc = CC_ALGO(tp); + + if (strcasecmp(cc->name, "reno") == 0) + cp->cong_algo = CONG_ALG_RENO; + else if (strcasecmp(cc->name, "tahoe") == 0) + cp->cong_algo = CONG_ALG_TAHOE; + if (strcasecmp(cc->name, "newreno") == 0) + cp->cong_algo = CONG_ALG_NEWRENO; + if (strcasecmp(cc->name, "highspeed") == 0) + cp->cong_algo = CONG_ALG_HIGHSPEED; + else { + /* + * Use newreno in case the algorithm selected by the + * host stack is not supported by the hardware. + */ + cp->cong_algo = CONG_ALG_NEWRENO; + } + } + + /* Tx traffic scheduling class. */ + if (s->sched_class >= 0 && + s->sched_class < sc->chip_params->nsched_cls) { + cp->tc_idx = s->sched_class; + } else + cp->tc_idx = -1; + + /* Nagle's algorithm. */ + if (s->nagle >= 0) + cp->nagle = s->nagle > 0 ? 1 : 0; + else + cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; + + /* TCP Keepalive. */ + if (tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) + cp->keepalive = 1; + else + cp->keepalive = 0; + + /* Optimization that's specific to T5 @ 40G. */ + if (tt->tx_align >= 0) + cp->tx_align = tt->tx_align > 0 ? 1 : 0; + else if (chip_id(sc) == CHELSIO_T5 && + (port_top_speed(pi) > 10 || sc->params.nports > 2)) + cp->tx_align = 1; + else + cp->tx_align = 0; + + /* ULP mode. */ if (can_tls_offload(sc) && (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) - return (ULP_MODE_TLS); + cp->ulp_mode = ULP_MODE_TLS; else if (s->ddp > 0 || - (s->ddp < 0 && sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0)) - return (ULP_MODE_TCPDDP); + (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) + cp->ulp_mode = ULP_MODE_TCPDDP; else - return (ULP_MODE_NONE); -} + cp->ulp_mode = ULP_MODE_NONE; -void -set_ulp_mode(struct toepcb *toep, int ulp_mode) -{ + /* Rx coalescing. */ + if (s->rx_coalesce >= 0) + cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; + else if (cp->ulp_mode == ULP_MODE_TLS) + cp->rx_coalesce = 0; + else if (tt->rx_coalesce >= 0) + cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; + else + cp->rx_coalesce = 1; /* default */ - CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d", - __func__, toep, toep->tid, ulp_mode); - toep->ulp_mode = ulp_mode; - tls_init_toep(toep); - if (toep->ulp_mode == ULP_MODE_TCPDDP) - ddp_init_toep(toep); + /* + * Index in the PMTU table. This controls the MSS that we announce in + * our SYN initially, but after ESTABLISHED it controls the MSS that we + * use to send data. + */ + cp->mtu_idx = find_best_mtu_idx(sc, inc, s); + + /* Tx queue for this connection. */ + if (s->txq >= 0 && s->txq < vi->nofldtxq) + cp->txq_idx = s->txq; + else + cp->txq_idx = arc4random() % vi->nofldtxq; + cp->txq_idx += vi->first_ofld_txq; + + /* Rx queue for this connection. */ + if (s->rxq >= 0 && s->rxq < vi->nofldrxq) + cp->rxq_idx = s->rxq; + else + cp->rxq_idx = arc4random() % vi->nofldrxq; + cp->rxq_idx += vi->first_ofld_rxq; + + if (SOLISTENING(so)) { + /* Passive open */ + MPASS(tcpopt != NULL); + + /* TCP timestamp option */ + if (tcpopt->tstamp && + (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) + cp->tstamp = 1; + else + cp->tstamp = 0; + + /* SACK */ + if (tcpopt->sack && + (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) + cp->sack = 1; + else + cp->sack = 0; + + /* Receive window scaling. */ + if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) + cp->wscale = select_rcv_wscale(); + else + cp->wscale = 0; + + /* ECN */ + if (tcpopt->ecn && /* XXX: review. */ + (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) + cp->ecn = 1; + else + cp->ecn = 0; + + wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); + cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); + + if (tt->sndbuf > 0) + cp->sndbuf = tt->sndbuf; + else if (so->sol_sbsnd_flags & SB_AUTOSIZE && + V_tcp_do_autosndbuf) + cp->sndbuf = 256 * 1024; + else + cp->sndbuf = so->sol_sbsnd_hiwat; + } else { + /* Active open */ + + /* TCP timestamp option */ + if (s->tstamp > 0 || + (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) + cp->tstamp = 1; + else + cp->tstamp = 0; + + /* SACK */ + if (s->sack > 0 || + (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) + cp->sack = 1; + else + cp->sack = 0; + + /* Receive window scaling */ + if (tp->t_flags & TF_REQ_SCALE) + cp->wscale = select_rcv_wscale(); + else + cp->wscale = 0; + + /* ECN */ + if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) + cp->ecn = 1; + else + cp->ecn = 0; + + SOCKBUF_LOCK(&so->so_rcv); + wnd = max(select_rcv_wnd(so), MIN_RCV_WND); + SOCKBUF_UNLOCK(&so->so_rcv); + cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); + + if (tt->sndbuf > 0) + cp->sndbuf = tt->sndbuf; + else { + SOCKBUF_LOCK(&so->so_snd); + if (so->so_snd.sb_flags & SB_AUTOSIZE && + V_tcp_do_autosndbuf) + cp->sndbuf = 256 * 1024; + else + cp->sndbuf = so->so_snd.sb_hiwat; + SOCKBUF_UNLOCK(&so->so_snd); + } + } + + cp->l2t_idx = l2t_idx; + + /* This will be initialized on ESTABLISHED. */ + cp->emss = 0; } int negative_advice(int status) { return (status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE || status == CPL_ERR_KEEPALV_NEG_ADVICE); } static int alloc_tid_tab(struct tid_info *t, int flags) { MPASS(t->ntids > 0); MPASS(t->tid_tab == NULL); t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, M_ZERO | flags); if (t->tid_tab == NULL) return (ENOMEM); atomic_store_rel_int(&t->tids_in_use, 0); return (0); } static void free_tid_tab(struct tid_info *t) { KASSERT(t->tids_in_use == 0, ("%s: %d tids still in use.", __func__, t->tids_in_use)); free(t->tid_tab, M_CXGBE); t->tid_tab = NULL; } static int alloc_stid_tab(struct tid_info *t, int flags) { MPASS(t->nstids > 0); MPASS(t->stid_tab == NULL); t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, M_ZERO | flags); if (t->stid_tab == NULL) return (ENOMEM); mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); t->stids_in_use = 0; TAILQ_INIT(&t->stids); t->nstids_free_head = t->nstids; return (0); } static void free_stid_tab(struct tid_info *t) { KASSERT(t->stids_in_use == 0, ("%s: %d tids still in use.", __func__, t->stids_in_use)); if (mtx_initialized(&t->stid_lock)) mtx_destroy(&t->stid_lock); free(t->stid_tab, M_CXGBE); t->stid_tab = NULL; } static void free_tid_tabs(struct tid_info *t) { free_tid_tab(t); free_atid_tab(t); free_stid_tab(t); } static int alloc_tid_tabs(struct tid_info *t) { int rc; rc = alloc_tid_tab(t, M_NOWAIT); if (rc != 0) goto failed; rc = alloc_atid_tab(t, M_NOWAIT); if (rc != 0) goto failed; rc = alloc_stid_tab(t, M_NOWAIT); if (rc != 0) goto failed; return (0); failed: free_tid_tabs(t); return (rc); } static inline void alloc_tcb_history(struct adapter *sc, struct tom_data *td) { if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) return; rw_init(&td->tcb_history_lock, "TCB history"); td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), M_CXGBE, M_ZERO | M_NOWAIT); td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); } static inline void free_tcb_history(struct adapter *sc, struct tom_data *td) { #ifdef INVARIANTS int i; if (td->tcb_history != NULL) { for (i = 0; i < sc->tids.ntids; i++) { MPASS(td->tcb_history[i] == NULL); } } #endif free(td->tcb_history, M_CXGBE); if (rw_initialized(&td->tcb_history_lock)) rw_destroy(&td->tcb_history_lock); } static void free_tom_data(struct adapter *sc, struct tom_data *td) { ASSERT_SYNCHRONIZED_OP(sc); KASSERT(TAILQ_EMPTY(&td->toep_list), ("%s: TOE PCB list is not empty.", __func__)); KASSERT(td->lctx_count == 0, ("%s: lctx hash table is not empty.", __func__)); t4_free_ppod_region(&td->pr); if (td->listen_mask != 0) hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); if (mtx_initialized(&td->unsent_wr_lock)) mtx_destroy(&td->unsent_wr_lock); if (mtx_initialized(&td->lctx_hash_lock)) mtx_destroy(&td->lctx_hash_lock); if (mtx_initialized(&td->toep_list_lock)) mtx_destroy(&td->toep_list_lock); free_tcb_history(sc, td); free_tid_tabs(&sc->tids); free(td, M_CXGBE); } static char * prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, int *buflen) { char *pkt; struct tcphdr *th; int ipv6, len; const int maxlen = max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + max(sizeof(struct ip), sizeof(struct ip6_hdr)) + sizeof(struct tcphdr); MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); if (pkt == NULL) return (NULL); ipv6 = inp->inp_vflag & INP_IPV6; len = 0; if (EVL_VLANOFTAG(vtag) == 0xfff) { struct ether_header *eh = (void *)pkt; if (ipv6) eh->ether_type = htons(ETHERTYPE_IPV6); else eh->ether_type = htons(ETHERTYPE_IP); len += sizeof(*eh); } else { struct ether_vlan_header *evh = (void *)pkt; evh->evl_encap_proto = htons(ETHERTYPE_VLAN); evh->evl_tag = htons(vtag); if (ipv6) evh->evl_proto = htons(ETHERTYPE_IPV6); else evh->evl_proto = htons(ETHERTYPE_IP); len += sizeof(*evh); } if (ipv6) { struct ip6_hdr *ip6 = (void *)&pkt[len]; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_nxt = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = ip6->ip6_src; } len += sizeof(*ip6); } else { struct ip *ip = (void *)&pkt[len]; ip->ip_v = IPVERSION; ip->ip_hl = sizeof(*ip) >> 2; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); ip->ip_ttl = inp->inp_ip_ttl; ip->ip_p = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip->ip_src = inp->inp_laddr; ip->ip_dst = ip->ip_src; } len += sizeof(*ip); } th = (void *)&pkt[len]; if (open_type == OPEN_TYPE_ACTIVE) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = inp->inp_fport; /* ditto */ } else if (open_type == OPEN_TYPE_LISTEN) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = th->th_sport; } len += sizeof(th); *pktlen = *buflen = len; return (pkt); } const struct offload_settings * lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, uint16_t vtag, struct inpcb *inp) { const struct t4_offload_policy *op; char *pkt; struct offload_rule *r; int i, matched, pktlen, buflen; static const struct offload_settings allow_offloading_settings = { .offload = 1, .rx_coalesce = -1, .cong_algo = -1, .sched_class = -1, .tstamp = -1, .sack = -1, .nagle = -1, .ecn = -1, .ddp = -1, .tls = -1, .txq = -1, .rxq = -1, .mss = -1, }; static const struct offload_settings disallow_offloading_settings = { .offload = 0, /* rest is irrelevant when offload is off. */ }; rw_assert(&sc->policy_lock, RA_LOCKED); /* * If there's no Connection Offloading Policy attached to the device * then we need to return a default static policy. If * "cop_managed_offloading" is true, then we need to disallow * offloading until a COP is attached to the device. Otherwise we * allow offloading ... */ op = sc->policy; if (op == NULL) { if (sc->tt.cop_managed_offloading) return (&disallow_offloading_settings); else return (&allow_offloading_settings); } switch (open_type) { case OPEN_TYPE_ACTIVE: case OPEN_TYPE_LISTEN: pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); break; case OPEN_TYPE_PASSIVE: MPASS(m != NULL); pkt = mtod(m, char *); MPASS(*pkt == CPL_PASS_ACCEPT_REQ); pkt += sizeof(struct cpl_pass_accept_req); pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); buflen = m->m_len - sizeof(struct cpl_pass_accept_req); break; default: MPASS(0); return (&disallow_offloading_settings); } if (pkt == NULL || pktlen == 0 || buflen == 0) return (&disallow_offloading_settings); matched = 0; r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { if (r->open_type != open_type && r->open_type != OPEN_TYPE_DONTCARE) { continue; } matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); if (matched) break; } if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) free(pkt, M_CXGBE); return (matched ? &r->settings : &disallow_offloading_settings); } static void reclaim_wr_resources(void *arg, int count) { struct tom_data *td = arg; STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); struct cpl_act_open_req *cpl; u_int opcode, atid, tid; struct wrqe *wr; struct adapter *sc = td_adapter(td); mtx_lock(&td->unsent_wr_lock); STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); mtx_unlock(&td->unsent_wr_lock); while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { STAILQ_REMOVE_HEAD(&twr_list, link); cpl = wrtod(wr); opcode = GET_OPCODE(cpl); switch (opcode) { case CPL_ACT_OPEN_REQ: case CPL_ACT_OPEN_REQ6: atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); act_open_failure_cleanup(sc, atid, EHOSTUNREACH); free(wr, M_CXGBE); break; case CPL_PASS_ACCEPT_RPL: tid = GET_TID(cpl); CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); synack_failure_cleanup(sc, tid); free(wr, M_CXGBE); break; default: log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " "opcode %x\n", __func__, wr, wr->wr_len, opcode); /* WR not freed here; go look at it with a debugger. */ } } } /* * Ground control to Major TOM * Commencing countdown, engines on */ static int t4_tom_activate(struct adapter *sc) { struct tom_data *td; struct toedev *tod; struct vi_info *vi; int i, rc, v; ASSERT_SYNCHRONIZED_OP(sc); /* per-adapter softc for TOM */ td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); if (td == NULL) return (ENOMEM); /* List of TOE PCBs and associated lock */ mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); TAILQ_INIT(&td->toep_list); /* Listen context */ mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, &td->listen_mask, HASH_NOWAIT); /* List of WRs for which L2 resolution failed */ mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); STAILQ_INIT(&td->unsent_wr_list); TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); /* TID tables */ rc = alloc_tid_tabs(&sc->tids); if (rc != 0) goto done; rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); if (rc != 0) goto done; t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); alloc_tcb_history(sc, td); /* toedev ops */ tod = &td->tod; init_toedev(tod); tod->tod_softc = sc; tod->tod_connect = t4_connect; tod->tod_listen_start = t4_listen_start; tod->tod_listen_stop = t4_listen_stop; tod->tod_rcvd = t4_rcvd; tod->tod_output = t4_tod_output; tod->tod_send_rst = t4_send_rst; tod->tod_send_fin = t4_send_fin; tod->tod_pcb_detach = t4_pcb_detach; tod->tod_l2_update = t4_l2_update; tod->tod_syncache_added = t4_syncache_added; tod->tod_syncache_removed = t4_syncache_removed; tod->tod_syncache_respond = t4_syncache_respond; tod->tod_offload_socket = t4_offload_socket; tod->tod_ctloutput = t4_ctloutput; tod->tod_tcp_info = t4_tcp_info; for_each_port(sc, i) { for_each_vi(sc->port[i], v, vi) { TOEDEV(vi->ifp) = &td->tod; } } sc->tom_softc = td; register_toedev(sc->tom_softc); done: if (rc != 0) free_tom_data(sc, td); return (rc); } static int t4_tom_deactivate(struct adapter *sc) { int rc = 0; struct tom_data *td = sc->tom_softc; ASSERT_SYNCHRONIZED_OP(sc); if (td == NULL) return (0); /* XXX. KASSERT? */ if (sc->offload_map != 0) return (EBUSY); /* at least one port has IFCAP_TOE enabled */ if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ mtx_lock(&td->toep_list_lock); if (!TAILQ_EMPTY(&td->toep_list)) rc = EBUSY; mtx_unlock(&td->toep_list_lock); mtx_lock(&td->lctx_hash_lock); if (td->lctx_count > 0) rc = EBUSY; mtx_unlock(&td->lctx_hash_lock); taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); mtx_lock(&td->unsent_wr_lock); if (!STAILQ_EMPTY(&td->unsent_wr_list)) rc = EBUSY; mtx_unlock(&td->unsent_wr_lock); if (rc == 0) { unregister_toedev(sc->tom_softc); free_tom_data(sc, td); sc->tom_softc = NULL; } return (rc); } static int t4_aio_queue_tom(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; int error; - if (toep->ulp_mode == ULP_MODE_TCPDDP) { + if (ulp_mode(toep) == ULP_MODE_TCPDDP) { error = t4_aio_queue_ddp(so, job); if (error != EOPNOTSUPP) return (error); } return (t4_aio_queue_aiotx(so, job)); } static int t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) { if (sopt->sopt_level != IPPROTO_TCP) return (tcp_ctloutput(so, sopt)); switch (sopt->sopt_name) { case TCP_TLSOM_SET_TLS_CONTEXT: case TCP_TLSOM_GET_TLS_TOM: case TCP_TLSOM_CLR_TLS_TOM: case TCP_TLSOM_CLR_QUIES: return (t4_ctloutput_tls(so, sopt)); default: return (tcp_ctloutput(so, sopt)); } } static int t4_tom_mod_load(void) { struct protosw *tcp_protosw, *tcp6_protosw; /* CPL handlers */ t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, CPL_COOKIE_TOM); t4_init_connect_cpl_handlers(); t4_init_listen_cpl_handlers(); t4_init_cpl_io_handlers(); t4_ddp_mod_load(); t4_tls_mod_load(); tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); if (tcp_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe_protosw.pr_ctloutput = t4_ctloutput_tom; toe_protosw.pr_usrreqs = &toe_usrreqs; tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); if (tcp6_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe6_protosw.pr_ctloutput = t4_ctloutput_tom; toe6_protosw.pr_usrreqs = &toe6_usrreqs; return (t4_register_uld(&tom_uld_info)); } static void tom_uninit(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) return; /* Try to free resources (works only if no port has IFCAP_TOE) */ if (uld_active(sc, ULD_TOM)) t4_deactivate_uld(sc, ULD_TOM); end_synchronized_op(sc, 0); } static int t4_tom_mod_unload(void) { t4_iterate(tom_uninit, NULL); if (t4_unregister_uld(&tom_uld_info) == EBUSY) return (EBUSY); t4_tls_mod_unload(); t4_ddp_mod_unload(); t4_uninit_connect_cpl_handlers(); t4_uninit_listen_cpl_handlers(); t4_uninit_cpl_io_handlers(); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); return (0); } #endif /* TCP_OFFLOAD */ static int t4_tom_modevent(module_t mod, int cmd, void *arg) { int rc = 0; #ifdef TCP_OFFLOAD switch (cmd) { case MOD_LOAD: rc = t4_tom_mod_load(); break; case MOD_UNLOAD: rc = t4_tom_mod_unload(); break; default: rc = EINVAL; } #else printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); rc = EOPNOTSUPP; #endif return (rc); } static moduledata_t t4_tom_moddata= { "t4_tom", t4_tom_modevent, 0 }; MODULE_VERSION(t4_tom, 1); MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); Index: head/sys/dev/cxgbe/tom/t4_tom.h =================================================================== --- head/sys/dev/cxgbe/tom/t4_tom.h (revision 351539) +++ head/sys/dev/cxgbe/tom/t4_tom.h (revision 351540) @@ -1,435 +1,452 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2015 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #ifndef __T4_TOM_H__ #define __T4_TOM_H__ #include #include "common/t4_hw.h" +#include "common/t4_msg.h" #include "tom/t4_tls.h" #define LISTEN_HASH_SIZE 32 /* * Min receive window. We want it to be large enough to accommodate receive * coalescing, handle jumbo frames, and not trigger sender SWS avoidance. */ #define MIN_RCV_WND (24 * 1024U) /* * Max receive window supported by HW in bytes. Only a small part of it can * be set through option0, the rest needs to be set through RX_DATA_ACK. */ #define MAX_RCV_WND ((1U << 27) - 1) #define DDP_RSVD_WIN (16 * 1024U) #define SB_DDP_INDICATE SB_IN_TOE /* soreceive must respond to indicate */ #define USE_DDP_RX_FLOW_CONTROL #define PPOD_SZ(n) ((n) * sizeof(struct pagepod)) #define PPOD_SIZE (PPOD_SZ(1)) /* TOE PCB flags */ enum { TPF_ATTACHED = (1 << 0), /* a tcpcb refers to this toepcb */ TPF_FLOWC_WR_SENT = (1 << 1), /* firmware flow context WR sent */ TPF_TX_DATA_SENT = (1 << 2), /* some data sent */ TPF_TX_SUSPENDED = (1 << 3), /* tx suspended for lack of resources */ TPF_SEND_FIN = (1 << 4), /* send FIN after all pending data */ TPF_FIN_SENT = (1 << 5), /* FIN has been sent */ TPF_ABORT_SHUTDOWN = (1 << 6), /* connection abort is in progress */ TPF_CPL_PENDING = (1 << 7), /* haven't received the last CPL */ TPF_SYNQE = (1 << 8), /* synq_entry, not really a toepcb */ TPF_SYNQE_EXPANDED = (1 << 9), /* toepcb ready, tid context updated */ TPF_FORCE_CREDITS = (1 << 10), /* always send credits */ }; enum { DDP_OK = (1 << 0), /* OK to turn on DDP */ DDP_SC_REQ = (1 << 1), /* state change (on/off) requested */ DDP_ON = (1 << 2), /* DDP is turned on */ DDP_BUF0_ACTIVE = (1 << 3), /* buffer 0 in use (not invalidated) */ DDP_BUF1_ACTIVE = (1 << 4), /* buffer 1 in use (not invalidated) */ DDP_TASK_ACTIVE = (1 << 5), /* requeue task is queued / running */ DDP_DEAD = (1 << 6), /* toepcb is shutting down */ }; struct sockopt; struct offload_settings; +/* + * Connection parameters for an offloaded connection. These are mostly (but not + * all) hardware TOE parameters. + */ +struct conn_params { + int8_t rx_coalesce; + int8_t cong_algo; + int8_t tc_idx; + int8_t tstamp; + int8_t sack; + int8_t nagle; + int8_t keepalive; + int8_t wscale; + int8_t ecn; + int8_t mtu_idx; + int8_t ulp_mode; + int8_t tx_align; + int16_t txq_idx; /* ofld_txq = &sc->sge.ofld_txq[txq_idx] */ + int16_t rxq_idx; /* ofld_rxq = &sc->sge.ofld_rxq[rxq_idx] */ + int16_t l2t_idx; + uint16_t emss; + uint16_t opt0_bufsize; + u_int sndbuf; /* controls TP tx pages */ +}; + struct ofld_tx_sdesc { uint32_t plen; /* payload length */ uint8_t tx_credits; /* firmware tx credits (unit is 16B) */ void *iv_buffer; /* optional buffer holding IVs for TLS */ }; struct ppod_region { u_int pr_start; u_int pr_len; u_int pr_page_shift[4]; uint32_t pr_tag_mask; /* hardware tagmask for this region. */ uint32_t pr_invalid_bit; /* OR with this to invalidate tag. */ uint32_t pr_alias_mask; /* AND with tag to get alias bits. */ u_int pr_alias_shift; /* shift this much for first alias bit. */ vmem_t *pr_arena; }; struct ppod_reservation { struct ppod_region *prsv_pr; uint32_t prsv_tag; /* Full tag: pgsz, alias, tag, color */ u_int prsv_nppods; }; struct pageset { TAILQ_ENTRY(pageset) link; vm_page_t *pages; int npages; int flags; int offset; /* offset in first page */ int len; struct ppod_reservation prsv; struct vmspace *vm; vm_offset_t start; u_int vm_timestamp; }; TAILQ_HEAD(pagesetq, pageset); #define PS_PPODS_WRITTEN 0x0001 /* Page pods written to the card. */ struct ddp_buffer { struct pageset *ps; struct kaiocb *job; int cancel_pending; }; struct ddp_pcb { u_int flags; struct ddp_buffer db[2]; TAILQ_HEAD(, pageset) cached_pagesets; TAILQ_HEAD(, kaiocb) aiojobq; u_int waiting_count; u_int active_count; u_int cached_count; int active_id; /* the currently active DDP buffer */ struct task requeue_task; struct kaiocb *queueing; struct mtx lock; }; struct toepcb { TAILQ_ENTRY(toepcb) link; /* toep_list */ u_int flags; /* miscellaneous flags */ int refcount; struct tom_data *td; struct inpcb *inp; /* backpointer to host stack's PCB */ struct vnet *vnet; struct vi_info *vi; /* virtual interface */ struct sge_wrq *ofld_txq; struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ctrlq; struct l2t_entry *l2te; /* L2 table entry used by this connection */ struct clip_entry *ce; /* CLIP table entry used by this tid */ int tid; /* Connection identifier */ - int tc_idx; /* traffic class that this tid is bound to */ /* tx credit handling */ u_int tx_total; /* total tx WR credits (in 16B units) */ u_int tx_credits; /* tx WR credits (in 16B units) available */ u_int tx_nocompl; /* tx WR credits since last compl request */ u_int plen_nocompl; /* payload since last compl request */ - uint16_t opt0_rcv_bufsize; /* XXX: save full opt0/opt2 for later? */ - uint16_t mtu_idx; - uint16_t emss; - uint16_t tcp_opt; + struct conn_params params; - u_int ulp_mode; /* ULP mode */ void *ulpcb; void *ulpcb2; struct mbufq ulp_pduq; /* PDUs waiting to be sent out. */ struct mbufq ulp_pdu_reclaimq; struct ddp_pcb ddp; struct tls_ofld_info tls; TAILQ_HEAD(, kaiocb) aiotx_jobq; struct task aiotx_task; struct socket *aiotx_so; /* Tx software descriptor */ uint8_t txsd_total; uint8_t txsd_pidx; uint8_t txsd_cidx; uint8_t txsd_avail; struct ofld_tx_sdesc txsd[]; }; +static inline int +ulp_mode(struct toepcb *toep) +{ + + return (toep->params.ulp_mode); +} + #define DDP_LOCK(toep) mtx_lock(&(toep)->ddp.lock) #define DDP_UNLOCK(toep) mtx_unlock(&(toep)->ddp.lock) #define DDP_ASSERT_LOCKED(toep) mtx_assert(&(toep)->ddp.lock, MA_OWNED) -struct flowc_tx_params { - uint32_t snd_nxt; - uint32_t rcv_nxt; - unsigned int snd_space; - unsigned int mss; -}; - /* * Compressed state for embryonic connections for a listener. */ struct synq_entry { struct listen_ctx *lctx; /* backpointer to listen ctx */ struct mbuf *syn; int flags; /* same as toepcb's tp_flags */ volatile int ok_to_respond; volatile u_int refcnt; int tid; uint32_t iss; uint32_t irs; uint32_t ts; - uint16_t txqid; - uint16_t rxqid; - uint16_t l2e_idx; - uint16_t ulp_mode; - uint16_t rcv_bufsize; __be16 tcp_opt; /* from cpl_pass_establish */ struct toepcb *toep; + + struct conn_params params; }; /* listen_ctx flags */ #define LCTX_RPL_PENDING 1 /* waiting for a CPL_PASS_OPEN_RPL */ struct listen_ctx { LIST_ENTRY(listen_ctx) link; /* listen hash linkage */ volatile int refcount; int stid; struct stid_region stid_region; int flags; struct inpcb *inp; /* listening socket's inp */ struct vnet *vnet; struct sge_wrq *ctrlq; struct sge_ofld_rxq *ofld_rxq; struct clip_entry *ce; }; /* tcb_histent flags */ #define TE_RPL_PENDING 1 #define TE_ACTIVE 2 /* bits in one 8b tcb_histent sample. */ #define TS_RTO (1 << 0) #define TS_DUPACKS (1 << 1) #define TS_FASTREXMT (1 << 2) #define TS_SND_BACKLOGGED (1 << 3) #define TS_CWND_LIMITED (1 << 4) #define TS_ECN_ECE (1 << 5) #define TS_ECN_CWR (1 << 6) #define TS_RESERVED (1 << 7) /* Unused. */ struct tcb_histent { struct mtx te_lock; struct callout te_callout; uint64_t te_tcb[TCB_SIZE / sizeof(uint64_t)]; struct adapter *te_adapter; u_int te_flags; u_int te_tid; uint8_t te_pidx; uint8_t te_sample[100]; }; struct tom_data { struct toedev tod; /* toepcb's associated with this TOE device */ struct mtx toep_list_lock; TAILQ_HEAD(, toepcb) toep_list; struct mtx lctx_hash_lock; LIST_HEAD(, listen_ctx) *listen_hash; u_long listen_mask; int lctx_count; /* # of lctx in the hash table */ struct ppod_region pr; struct rwlock tcb_history_lock __aligned(CACHE_LINE_SIZE); struct tcb_histent **tcb_history; int dupack_threshold; /* WRs that will not be sent to the chip because L2 resolution failed */ struct mtx unsent_wr_lock; STAILQ_HEAD(, wrqe) unsent_wr_list; struct task reclaim_wr_resources; }; static inline struct tom_data * tod_td(struct toedev *tod) { return (__containerof(tod, struct tom_data, tod)); } static inline struct adapter * td_adapter(struct tom_data *td) { return (td->tod.tod_softc); } static inline void set_mbuf_ulp_submode(struct mbuf *m, uint8_t ulp_submode) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_per.eight[0] = ulp_submode; } static inline uint8_t mbuf_ulp_submode(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_per.eight[0]); } /* t4_tom.c */ -struct toepcb *alloc_toepcb(struct vi_info *, int, int, int); +struct toepcb *alloc_toepcb(struct vi_info *, int); +int init_toepcb(struct vi_info *, struct toepcb *); struct toepcb *hold_toepcb(struct toepcb *); void free_toepcb(struct toepcb *); void offload_socket(struct socket *, struct toepcb *); void undo_offload_socket(struct socket *); void final_cpl_received(struct toepcb *); void insert_tid(struct adapter *, int, void *, int); void *lookup_tid(struct adapter *, int); void update_tid(struct adapter *, int, void *); void remove_tid(struct adapter *, int, int); -int find_best_mtu_idx(struct adapter *, struct in_conninfo *, - struct offload_settings *); u_long select_rcv_wnd(struct socket *); int select_rcv_wscale(void); -uint64_t calc_opt0(struct socket *, struct vi_info *, struct l2t_entry *, - int, int, int, int, struct offload_settings *); +void init_conn_params(struct vi_info *, struct offload_settings *, + struct in_conninfo *, struct socket *, const struct tcp_options *, int16_t, + struct conn_params *cp); +__be64 calc_options0(struct vi_info *, struct conn_params *); +__be32 calc_options2(struct vi_info *, struct conn_params *); uint64_t select_ntuple(struct vi_info *, struct l2t_entry *); -int select_ulp_mode(struct socket *, struct adapter *, - struct offload_settings *); -void set_ulp_mode(struct toepcb *, int); int negative_advice(int); int add_tid_to_history(struct adapter *, u_int); /* t4_connect.c */ void t4_init_connect_cpl_handlers(void); void t4_uninit_connect_cpl_handlers(void); int t4_connect(struct toedev *, struct socket *, struct rtentry *, struct sockaddr *); void act_open_failure_cleanup(struct adapter *, u_int, u_int); /* t4_listen.c */ void t4_init_listen_cpl_handlers(void); void t4_uninit_listen_cpl_handlers(void); int t4_listen_start(struct toedev *, struct tcpcb *); int t4_listen_stop(struct toedev *, struct tcpcb *); void t4_syncache_added(struct toedev *, void *); void t4_syncache_removed(struct toedev *, void *); int t4_syncache_respond(struct toedev *, void *, struct mbuf *); int do_abort_req_synqe(struct sge_iq *, const struct rss_header *, struct mbuf *); int do_abort_rpl_synqe(struct sge_iq *, const struct rss_header *, struct mbuf *); void t4_offload_socket(struct toedev *, void *, struct socket *); void synack_failure_cleanup(struct adapter *, int); /* t4_cpl_io.c */ void aiotx_init_toep(struct toepcb *); int t4_aio_queue_aiotx(struct socket *, struct kaiocb *); void t4_init_cpl_io_handlers(void); void t4_uninit_cpl_io_handlers(void); void send_abort_rpl(struct adapter *, struct sge_wrq *, int , int); -void send_flowc_wr(struct toepcb *, struct flowc_tx_params *); +void send_flowc_wr(struct toepcb *, struct tcpcb *); void send_reset(struct adapter *, struct toepcb *, uint32_t); int send_rx_credits(struct adapter *, struct toepcb *, int); void send_rx_modulate(struct adapter *, struct toepcb *); void make_established(struct toepcb *, uint32_t, uint32_t, uint16_t); int t4_close_conn(struct adapter *, struct toepcb *); void t4_rcvd(struct toedev *, struct tcpcb *); void t4_rcvd_locked(struct toedev *, struct tcpcb *); int t4_tod_output(struct toedev *, struct tcpcb *); int t4_send_fin(struct toedev *, struct tcpcb *); int t4_send_rst(struct toedev *, struct tcpcb *); void t4_set_tcb_field(struct adapter *, struct sge_wrq *, struct toepcb *, uint16_t, uint64_t, uint64_t, int, int); -void t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop); -void t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop); +void t4_push_frames(struct adapter *, struct toepcb *, int); +void t4_push_pdus(struct adapter *, struct toepcb *, int); /* t4_ddp.c */ int t4_init_ppod_region(struct ppod_region *, struct t4_range *, u_int, const char *); void t4_free_ppod_region(struct ppod_region *); int t4_alloc_page_pods_for_ps(struct ppod_region *, struct pageset *); int t4_alloc_page_pods_for_buf(struct ppod_region *, vm_offset_t, int, struct ppod_reservation *); int t4_write_page_pods_for_ps(struct adapter *, struct sge_wrq *, int, struct pageset *); int t4_write_page_pods_for_buf(struct adapter *, struct sge_wrq *, int tid, struct ppod_reservation *, vm_offset_t, int); void t4_free_page_pods(struct ppod_reservation *); int t4_soreceive_ddp(struct socket *, struct sockaddr **, struct uio *, struct mbuf **, struct mbuf **, int *); int t4_aio_queue_ddp(struct socket *, struct kaiocb *); void t4_ddp_mod_load(void); void t4_ddp_mod_unload(void); void ddp_assert_empty(struct toepcb *); void ddp_init_toep(struct toepcb *); void ddp_uninit_toep(struct toepcb *); void ddp_queue_toep(struct toepcb *); void release_ddp_resources(struct toepcb *toep); void handle_ddp_close(struct toepcb *, struct tcpcb *, uint32_t); void handle_ddp_indicate(struct toepcb *); void insert_ddp_data(struct toepcb *, uint32_t); const struct offload_settings *lookup_offload_policy(struct adapter *, int, struct mbuf *, uint16_t, struct inpcb *); /* t4_tls.c */ bool can_tls_offload(struct adapter *); int t4_ctloutput_tls(struct socket *, struct sockopt *); void t4_push_tls_records(struct adapter *, struct toepcb *, int); void t4_tls_mod_load(void); void t4_tls_mod_unload(void); void tls_establish(struct toepcb *); void tls_init_toep(struct toepcb *); int tls_rx_key(struct toepcb *); void tls_stop_handshake_timer(struct toepcb *); int tls_tx_key(struct toepcb *); void tls_uninit_toep(struct toepcb *); #endif