Index: stable/12/sys/dev/nvme/nvme_ctrlr.c =================================================================== --- stable/12/sys/dev/nvme/nvme_ctrlr.c (revision 351534) +++ stable/12/sys/dev/nvme/nvme_ctrlr.c (revision 351535) @@ -1,1450 +1,1470 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2016 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_cam.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer); static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); static int nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) { ctrlr->resource_id = PCIR_BAR(0); ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->resource_id, RF_ACTIVE); if(ctrlr->resource == NULL) { nvme_printf(ctrlr, "unable to allocate pci resource\n"); return (ENOMEM); } ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; /* * The NVMe spec allows for the MSI-X table to be placed behind * BAR 4/5, separate from the control/doorbell registers. Always * try to map this bar, because it must be mapped prior to calling * pci_alloc_msix(). If the table isn't behind BAR 4/5, * bus_alloc_resource() will just return NULL which is OK. */ ctrlr->bar4_resource_id = PCIR_BAR(4); ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->bar4_resource_id, RF_ACTIVE); return (0); } static int nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t num_entries; int error; qpair = &ctrlr->adminq; num_entries = NVME_ADMIN_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); /* * If admin_entries was overridden to an invalid value, revert it * back to our default value. */ if (num_entries < NVME_MIN_ADMIN_ENTRIES || num_entries > NVME_MAX_ADMIN_ENTRIES) { nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " "specified\n", num_entries); num_entries = NVME_ADMIN_ENTRIES; } /* * The admin queue's max xfer size is treated differently than the * max I/O xfer size. 16KB is sufficient here - maybe even less? */ error = nvme_qpair_construct(qpair, 0, /* qpair ID */ 0, /* vector */ num_entries, NVME_ADMIN_TRACKERS, ctrlr); return (error); } static int nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t cap_lo; uint16_t mqes; int i, error, num_entries, num_trackers; num_entries = NVME_IO_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); /* * NVMe spec sets a hard limit of 64K max entries, but * devices may specify a smaller limit, so we need to check * the MQES field in the capabilities register. */ cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); mqes = NVME_CAP_LO_MQES(cap_lo); num_entries = min(num_entries, mqes + 1); num_trackers = NVME_IO_TRACKERS; TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); /* * No need to have more trackers than entries in the submit queue. * Note also that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ num_trackers = min(num_trackers, (num_entries-1)); /* * Our best estimate for the maximum number of I/Os that we should * noramlly have in flight at one time. This should be viewed as a hint, * not a hard limit and will need to be revisitted when the upper layers * of the storage system grows multi-queue support. */ ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; /* * This was calculated previously when setting up interrupts, but * a controller could theoretically support fewer I/O queues than * MSI-X vectors. So calculate again here just to be safe. */ ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), M_NVME, M_ZERO | M_WAITOK); for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; /* * Admin queue has ID=0. IO queues start at ID=1 - * hence the 'i+1' here. * * For I/O queues, use the controller-wide max_xfer_size * calculated in nvme_attach(). */ error = nvme_qpair_construct(qpair, i+1, /* qpair ID */ ctrlr->msix_enabled ? i+1 : 0, /* vector */ num_entries, num_trackers, ctrlr); if (error) return (error); /* * Do not bother binding interrupts if we only have one I/O * interrupt thread for this controller. */ if (ctrlr->num_io_queues > 1) bus_bind_intr(ctrlr->dev, qpair->res, i * ctrlr->num_cpus_per_ioq); } return (0); } static void nvme_ctrlr_fail(struct nvme_controller *ctrlr) { int i; ctrlr->is_failed = TRUE; + nvme_admin_qpair_disable(&ctrlr->adminq); nvme_qpair_fail(&ctrlr->adminq); if (ctrlr->ioq != NULL) { - for (i = 0; i < ctrlr->num_io_queues; i++) + for (i = 0; i < ctrlr->num_io_queues; i++) { + nvme_io_qpair_disable(&ctrlr->ioq[i]); nvme_qpair_fail(&ctrlr->ioq[i]); + } } nvme_notify_fail_consumers(ctrlr); } void nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, struct nvme_request *req) { mtx_lock(&ctrlr->lock); STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); mtx_unlock(&ctrlr->lock); taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); } static void nvme_ctrlr_fail_req_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; struct nvme_request *req; mtx_lock(&ctrlr->lock); while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); mtx_unlock(&ctrlr->lock); nvme_qpair_manual_complete_request(req->qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); mtx_lock(&ctrlr->lock); } mtx_unlock(&ctrlr->lock); } static int nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) { int ms_waited; uint32_t csts; - csts = nvme_mmio_read_4(ctrlr, csts); - ms_waited = 0; - while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) { + while (1) { + csts = nvme_mmio_read_4(ctrlr, csts); + if (csts == 0xffffffff) /* Hot unplug. */ + return (ENXIO); + if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) + == desired_val) + break; if (ms_waited++ > ctrlr->ready_timeout_in_ms) { nvme_printf(ctrlr, "controller ready did not become %d " "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); return (ENXIO); } DELAY(1000); - csts = nvme_mmio_read_4(ctrlr, csts); } return (0); } static int nvme_ctrlr_disable(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; uint8_t en, rdy; int err; cc = nvme_mmio_read_4(ctrlr, cc); csts = nvme_mmio_read_4(ctrlr, csts); en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; /* * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY * isn't the desired value. Short circuit if we're already disabled. */ if (en == 1) { if (rdy == 0) { /* EN == 1, wait for RDY == 1 or fail */ err = nvme_ctrlr_wait_for_ready(ctrlr, 1); if (err != 0) return (err); } } else { /* EN == 0 already wait for RDY == 0 */ if (rdy == 0) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); } cc &= ~NVME_CC_REG_EN_MASK; nvme_mmio_write_4(ctrlr, cc, cc); /* * Some drives have issues with accessing the mmio after we * disable, so delay for a bit after we write the bit to * cope with these issues. */ if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); } static int nvme_ctrlr_enable(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; uint32_t aqa; uint32_t qsize; uint8_t en, rdy; int err; cc = nvme_mmio_read_4(ctrlr, cc); csts = nvme_mmio_read_4(ctrlr, csts); en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; /* * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. */ if (en == 1) { if (rdy == 1) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } else { /* EN == 0 already wait for RDY == 0 or fail */ err = nvme_ctrlr_wait_for_ready(ctrlr, 0); if (err != 0) return (err); } nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); DELAY(5000); nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); DELAY(5000); /* acqs and asqs are 0-based. */ qsize = ctrlr->adminq.num_entries - 1; aqa = 0; aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; nvme_mmio_write_4(ctrlr, aqa, aqa); DELAY(5000); /* Initialization values for CC */ cc = 0; cc |= 1 << NVME_CC_REG_EN_SHIFT; cc |= 0 << NVME_CC_REG_CSS_SHIFT; cc |= 0 << NVME_CC_REG_AMS_SHIFT; cc |= 0 << NVME_CC_REG_SHN_SHIFT; cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ /* This evaluates to 0, which is according to spec. */ cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; nvme_mmio_write_4(ctrlr, cc, cc); return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } int nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) { int i, err; nvme_admin_qpair_disable(&ctrlr->adminq); /* * I/O queues are not allocated before the initial HW * reset, so do not try to disable them. Use is_initialized * to determine if this is the initial HW reset. */ if (ctrlr->is_initialized) { for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_disable(&ctrlr->ioq[i]); } DELAY(100*1000); err = nvme_ctrlr_disable(ctrlr); if (err != 0) return err; return (nvme_ctrlr_enable(ctrlr)); } void nvme_ctrlr_reset(struct nvme_controller *ctrlr) { int cmpset; cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); if (cmpset == 0 || ctrlr->is_failed) /* * Controller is already resetting or has failed. Return * immediately since there is no need to kick off another * reset in these cases. */ return; taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); } static int nvme_ctrlr_identify(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; status.done = 0; nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); return (ENXIO); } /* Convert data to host endian */ nvme_controller_data_swapbytes(&ctrlr->cdata); /* * Use MDTS to ensure our default max_xfer_size doesn't exceed what the * controller supports. */ if (ctrlr->cdata.mdts > 0) ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); return (0); } static int nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; int cq_allocated, sq_allocated; status.done = 0; nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); return (ENXIO); } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; cq_allocated = (status.cpl.cdw0 >> 16) + 1; /* * Controller may allocate more queues than we requested, * so use the minimum of the number requested and what was * actually allocated. */ ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); return (0); } static int nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_qpair *qpair; int i; for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; status.done = 0; nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); return (ENXIO); } status.done = 0; nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_destroy_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_qpair *qpair; for (int i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; status.done = 0; nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); return (ENXIO); } status.done = 0; nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) { struct nvme_namespace *ns; uint32_t i; for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { ns = &ctrlr->ns[i]; nvme_ns_construct(ns, i+1, ctrlr); } return (0); } static boolean_t is_log_page_id_valid(uint8_t page_id) { switch (page_id) { case NVME_LOG_ERROR: case NVME_LOG_HEALTH_INFORMATION: case NVME_LOG_FIRMWARE_SLOT: case NVME_LOG_CHANGED_NAMESPACE: case NVME_LOG_COMMAND_EFFECT: case NVME_LOG_RES_NOTIFICATION: case NVME_LOG_SANITIZE_STATUS: return (TRUE); } return (FALSE); } static uint32_t nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) { uint32_t log_page_size; switch (page_id) { case NVME_LOG_ERROR: log_page_size = min( sizeof(struct nvme_error_information_entry) * (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); break; case NVME_LOG_HEALTH_INFORMATION: log_page_size = sizeof(struct nvme_health_information_page); break; case NVME_LOG_FIRMWARE_SLOT: log_page_size = sizeof(struct nvme_firmware_page); break; case NVME_LOG_CHANGED_NAMESPACE: log_page_size = sizeof(struct nvme_ns_list); break; case NVME_LOG_COMMAND_EFFECT: log_page_size = sizeof(struct nvme_command_effects_page); break; case NVME_LOG_RES_NOTIFICATION: log_page_size = sizeof(struct nvme_res_notification_page); break; case NVME_LOG_SANITIZE_STATUS: log_page_size = sizeof(struct nvme_sanitize_status_page); break; default: log_page_size = 0; break; } return (log_page_size); } static void nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, uint8_t state) { if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) nvme_printf(ctrlr, "available spare space below threshold\n"); if (state & NVME_CRIT_WARN_ST_TEMPERATURE) nvme_printf(ctrlr, "temperature above threshold\n"); if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) nvme_printf(ctrlr, "device reliability degraded\n"); if (state & NVME_CRIT_WARN_ST_READ_ONLY) nvme_printf(ctrlr, "media placed in read only mode\n"); if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) nvme_printf(ctrlr, "volatile memory backup device failed\n"); if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) nvme_printf(ctrlr, "unknown critical warning(s): state = 0x%02x\n", state); } static void nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; struct nvme_health_information_page *health_info; struct nvme_ns_list *nsl; struct nvme_error_information_entry *err; int i; /* * If the log page fetch for some reason completed with an error, * don't pass log page data to the consumers. In practice, this case * should never happen. */ if (nvme_completion_is_error(cpl)) nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, NULL, 0); else { /* Convert data to host endian */ switch (aer->log_page_id) { case NVME_LOG_ERROR: err = (struct nvme_error_information_entry *)aer->log_page_buffer; for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) nvme_error_information_entry_swapbytes(err++); break; case NVME_LOG_HEALTH_INFORMATION: nvme_health_information_page_swapbytes( (struct nvme_health_information_page *)aer->log_page_buffer); break; case NVME_LOG_FIRMWARE_SLOT: nvme_firmware_page_swapbytes( (struct nvme_firmware_page *)aer->log_page_buffer); break; case NVME_LOG_CHANGED_NAMESPACE: nvme_ns_list_swapbytes( (struct nvme_ns_list *)aer->log_page_buffer); break; case NVME_LOG_COMMAND_EFFECT: nvme_command_effects_page_swapbytes( (struct nvme_command_effects_page *)aer->log_page_buffer); break; case NVME_LOG_RES_NOTIFICATION: nvme_res_notification_page_swapbytes( (struct nvme_res_notification_page *)aer->log_page_buffer); break; case NVME_LOG_SANITIZE_STATUS: nvme_sanitize_status_page_swapbytes( (struct nvme_sanitize_status_page *)aer->log_page_buffer); break; case INTEL_LOG_TEMP_STATS: intel_log_temp_stats_swapbytes( (struct intel_log_temp_stats *)aer->log_page_buffer); break; default: break; } if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { health_info = (struct nvme_health_information_page *) aer->log_page_buffer; nvme_ctrlr_log_critical_warnings(aer->ctrlr, health_info->critical_warning); /* * Critical warnings reported through the * SMART/health log page are persistent, so * clear the associated bits in the async event * config so that we do not receive repeated * notifications for the same event. */ aer->ctrlr->async_event_config &= ~health_info->critical_warning; nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, aer->ctrlr->async_event_config, NULL, NULL); } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && !nvme_use_nvd) { nsl = (struct nvme_ns_list *)aer->log_page_buffer; for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { if (nsl->ns[i] > NVME_MAX_NAMESPACES) break; nvme_notify_ns(aer->ctrlr, nsl->ns[i]); } } /* * Pass the cpl data from the original async event completion, * not the log page fetch. */ nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, aer->log_page_buffer, aer->log_page_size); } /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } static void nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; if (nvme_completion_is_error(cpl)) { /* * Do not retry failed async event requests. This avoids * infinite loops where a new async event request is submitted * to replace the one just failed, only to fail again and * perpetuate the loop. */ return; } /* Associated log page is in bits 23:16 of completion entry dw0. */ aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, aer->log_page_id); if (is_log_page_id_valid(aer->log_page_id)) { aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); memcpy(&aer->cpl, cpl, sizeof(*cpl)); nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, aer); /* Wait to notify consumers until after log page is fetched. */ } else { nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, NULL, 0); /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } } static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; aer->ctrlr = ctrlr; req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); aer->req = req; /* * Disable timeout here, since asynchronous event requests should by * nature never be timed out. */ req->timeout = FALSE; req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; nvme_ctrlr_submit_admin_request(ctrlr, req); } static void nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_async_event_request *aer; uint32_t i; ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | NVME_CRIT_WARN_ST_READ_ONLY | NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; if (ctrlr->cdata.ver >= NVME_REV(1, 2)) ctrlr->async_event_config |= 0x300; status.done = 0; nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 0, NULL, 0, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl) || (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || (status.cpl.cdw0 & 0xFFFF) == 0x0000) { nvme_printf(ctrlr, "temperature threshold not supported\n"); } else ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; nvme_ctrlr_cmd_set_async_event_config(ctrlr, ctrlr->async_event_config, NULL, NULL); /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); } } static void nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) { ctrlr->int_coal_time = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_time", &ctrlr->int_coal_time); ctrlr->int_coal_threshold = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", &ctrlr->int_coal_threshold); nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL, NULL); } static void nvme_ctrlr_start(void *ctrlr_arg) { struct nvme_controller *ctrlr = ctrlr_arg; uint32_t old_num_io_queues; int i; /* * Only reset adminq here when we are restarting the * controller after a reset. During initialization, * we have already submitted admin commands to get * the number of I/O queues supported, so cannot reset * the adminq again here. */ if (ctrlr->is_resetting) { nvme_qpair_reset(&ctrlr->adminq); } for (i = 0; i < ctrlr->num_io_queues; i++) nvme_qpair_reset(&ctrlr->ioq[i]); nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_identify(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } /* * The number of qpairs are determined during controller initialization, * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the * HW limit. We call SET_FEATURES again here so that it gets called * after any reset for controllers that depend on the driver to * explicit specify how many queues it will use. This value should * never change between resets, so panic if somehow that does happen. */ if (ctrlr->is_resetting) { old_num_io_queues = ctrlr->num_io_queues; if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (old_num_io_queues != ctrlr->num_io_queues) { panic("num_io_queues changed from %u to %u", old_num_io_queues, ctrlr->num_io_queues); } } if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } nvme_ctrlr_configure_aer(ctrlr); nvme_ctrlr_configure_int_coalescing(ctrlr); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_enable(&ctrlr->ioq[i]); } void nvme_ctrlr_start_config_hook(void *arg) { struct nvme_controller *ctrlr = arg; nvme_qpair_reset(&ctrlr->adminq); nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) nvme_ctrlr_start(ctrlr); else nvme_ctrlr_fail(ctrlr); nvme_sysctl_initialize_ctrlr(ctrlr); config_intrhook_disestablish(&ctrlr->config_hook); ctrlr->is_initialized = 1; nvme_notify_new_controller(ctrlr); } static void nvme_ctrlr_reset_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; int status; nvme_printf(ctrlr, "resetting controller\n"); status = nvme_ctrlr_hw_reset(ctrlr); /* * Use pause instead of DELAY, so that we yield to any nvme interrupt * handlers on this CPU that were blocked on a qpair lock. We want * all nvme interrupts completed before proceeding with restarting the * controller. * * XXX - any way to guarantee the interrupt handlers have quiesced? */ pause("nvmereset", hz / 10); if (status == 0) nvme_ctrlr_start(ctrlr); else nvme_ctrlr_fail(ctrlr); atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); } /* * Poll all the queues enabled on the device for completion. */ void nvme_ctrlr_poll(struct nvme_controller *ctrlr) { int i; nvme_qpair_process_completions(&ctrlr->adminq); for (i = 0; i < ctrlr->num_io_queues; i++) if (ctrlr->ioq && ctrlr->ioq[i].cpl) nvme_qpair_process_completions(&ctrlr->ioq[i]); } /* * Poll the single-vector intertrupt case: num_io_queues will be 1 and * there's only a single vector. While we're polling, we mask further * interrupts in the controller. */ void nvme_ctrlr_intx_handler(void *arg) { struct nvme_controller *ctrlr = arg; nvme_mmio_write_4(ctrlr, intms, 1); nvme_ctrlr_poll(ctrlr); nvme_mmio_write_4(ctrlr, intmc, 1); } static int nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) { ctrlr->msix_enabled = 0; ctrlr->num_io_queues = 1; ctrlr->num_cpus_per_ioq = mp_ncpus; ctrlr->rid = 0; ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); if (ctrlr->res == NULL) { nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); return (ENOMEM); } bus_setup_intr(ctrlr->dev, ctrlr->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, ctrlr, &ctrlr->tag); if (ctrlr->tag == NULL) { nvme_printf(ctrlr, "unable to setup intx handler\n"); return (ENOMEM); } return (0); } static void nvme_pt_done(void *arg, const struct nvme_completion *cpl) { struct nvme_pt_command *pt = arg; struct mtx *mtx = pt->driver_lock; uint16_t status; bzero(&pt->cpl, sizeof(pt->cpl)); pt->cpl.cdw0 = cpl->cdw0; status = cpl->status; status &= ~NVME_STATUS_P_MASK; pt->cpl.status = status; mtx_lock(mtx); pt->driver_lock = NULL; wakeup(pt); mtx_unlock(mtx); } int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, int is_admin_cmd) { struct nvme_request *req; struct mtx *mtx; struct buf *buf = NULL; int ret = 0; vm_offset_t addr, end; if (pt->len > 0) { /* * vmapbuf calls vm_fault_quick_hold_pages which only maps full * pages. Ensure this request has fewer than MAXPHYS bytes when * extended to full pages. */ addr = (vm_offset_t)pt->buf; end = round_page(addr + pt->len); addr = trunc_page(addr); if (end - addr > MAXPHYS) return EIO; if (pt->len > ctrlr->max_xfer_size) { nvme_printf(ctrlr, "pt->len (%d) " "exceeds max_xfer_size (%d)\n", pt->len, ctrlr->max_xfer_size); return EIO; } if (is_user_buffer) { /* * Ensure the user buffer is wired for the duration of * this passthrough command. */ PHOLD(curproc); buf = getpbuf(NULL); buf->b_data = pt->buf; buf->b_bufsize = pt->len; buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; if (vmapbuf(buf, 1) < 0) { ret = EFAULT; goto err; } req = nvme_allocate_request_vaddr(buf->b_data, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_vaddr(pt->buf, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_null(nvme_pt_done, pt); /* Assume userspace already converted to little-endian */ req->cmd.opc = pt->cmd.opc; req->cmd.fuse = pt->cmd.fuse; req->cmd.rsvd2 = pt->cmd.rsvd2; req->cmd.rsvd3 = pt->cmd.rsvd3; req->cmd.cdw10 = pt->cmd.cdw10; req->cmd.cdw11 = pt->cmd.cdw11; req->cmd.cdw12 = pt->cmd.cdw12; req->cmd.cdw13 = pt->cmd.cdw13; req->cmd.cdw14 = pt->cmd.cdw14; req->cmd.cdw15 = pt->cmd.cdw15; req->cmd.nsid = htole32(nsid); mtx = mtx_pool_find(mtxpool_sleep, pt); pt->driver_lock = mtx; if (is_admin_cmd) nvme_ctrlr_submit_admin_request(ctrlr, req); else nvme_ctrlr_submit_io_request(ctrlr, req); mtx_lock(mtx); while (pt->driver_lock != NULL) mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); mtx_unlock(mtx); err: if (buf != NULL) { relpbuf(buf, NULL); PRELE(curproc); } return (ret); } static int nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ctrlr = cdev->si_drv1; switch (cmd) { case NVME_RESET_CONTROLLER: nvme_ctrlr_reset(ctrlr); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); case NVME_GET_NSID: { struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), sizeof(gnsid->cdev)); gnsid->nsid = 0; break; } default: return (ENOTTY); } return (0); } static struct cdevsw nvme_ctrlr_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_ioctl = nvme_ctrlr_ioctl }; static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) { device_t dev; int per_cpu_io_queues; int min_cpus_per_ioq; int num_vectors_requested, num_vectors_allocated; int num_vectors_available; dev = ctrlr->dev; min_cpus_per_ioq = 1; TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); if (min_cpus_per_ioq < 1) { min_cpus_per_ioq = 1; } else if (min_cpus_per_ioq > mp_ncpus) { min_cpus_per_ioq = mp_ncpus; } per_cpu_io_queues = 1; TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); if (per_cpu_io_queues == 0) { min_cpus_per_ioq = mp_ncpus; } ctrlr->force_intx = 0; TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); /* * FreeBSD currently cannot allocate more than about 190 vectors at * boot, meaning that systems with high core count and many devices * requesting per-CPU interrupt vectors will not get their full * allotment. So first, try to allocate as many as we may need to * understand what is available, then immediately release them. * Then figure out how many of those we will actually use, based on * assigning an equal number of cores to each I/O queue. */ /* One vector for per core I/O queue, plus one vector for admin queue. */ num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); if (pci_alloc_msix(dev, &num_vectors_available) != 0) { num_vectors_available = 0; } pci_release_msi(dev); if (ctrlr->force_intx || num_vectors_available < 2) { nvme_ctrlr_configure_intx(ctrlr); return; } /* * Do not use all vectors for I/O queues - one must be saved for the * admin queue. */ ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, howmany(mp_ncpus, num_vectors_available - 1)); ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); num_vectors_requested = ctrlr->num_io_queues + 1; num_vectors_allocated = num_vectors_requested; /* * Now just allocate the number of vectors we need. This should * succeed, since we previously called pci_alloc_msix() * successfully returning at least this many vectors, but just to * be safe, if something goes wrong just revert to INTx. */ if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { nvme_ctrlr_configure_intx(ctrlr); return; } if (num_vectors_allocated < num_vectors_requested) { pci_release_msi(dev); nvme_ctrlr_configure_intx(ctrlr); return; } ctrlr->msix_enabled = 1; } int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) { struct make_dev_args md_args; uint32_t cap_lo; uint32_t cap_hi; uint32_t to; uint8_t dstrd; uint8_t mpsmin; int status, timeout_period; ctrlr->dev = dev; mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); status = nvme_ctrlr_allocate_bar(ctrlr); if (status != 0) return (status); /* * Software emulators may set the doorbell stride to something * other than zero, but this driver is not set up to handle that. */ cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); dstrd = NVME_CAP_HI_DSTRD(cap_hi); if (dstrd != 0) return (ENXIO); mpsmin = NVME_CAP_HI_MPSMIN(cap_hi); ctrlr->min_page_size = 1 << (12 + mpsmin); /* Get ready timeout value from controller, in units of 500ms. */ cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); to = NVME_CAP_LO_TO(cap_lo) + 1; ctrlr->ready_timeout_in_ms = to * 500; timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); ctrlr->timeout_period = timeout_period; nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); ctrlr->enable_aborts = 0; TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); nvme_ctrlr_setup_interrupts(ctrlr); ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) return (ENXIO); ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, taskqueue_thread_enqueue, &ctrlr->taskqueue); taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); ctrlr->is_resetting = 0; ctrlr->is_initialized = 0; ctrlr->notification_sent = 0; TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); STAILQ_INIT(&ctrlr->fail_req); ctrlr->is_failed = FALSE; make_dev_args_init(&md_args); md_args.mda_devsw = &nvme_ctrlr_cdevsw; md_args.mda_uid = UID_ROOT; md_args.mda_gid = GID_WHEEL; md_args.mda_mode = 0600; md_args.mda_unit = device_get_unit(dev); md_args.mda_si_drv1 = (void *)ctrlr; status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", device_get_unit(dev)); if (status != 0) return (ENXIO); return (0); } void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) { - int i; + int gone, i; if (ctrlr->resource == NULL) goto nores; - nvme_notify_fail_consumers(ctrlr); + /* + * Check whether it is a hot unplug or a clean driver detach. + * If device is not there any more, skip any shutdown commands. + */ + gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff); + if (gone) + nvme_ctrlr_fail(ctrlr); + else + nvme_notify_fail_consumers(ctrlr); for (i = 0; i < NVME_MAX_NAMESPACES; i++) nvme_ns_destruct(&ctrlr->ns[i]); if (ctrlr->cdev) destroy_dev(ctrlr->cdev); - nvme_ctrlr_destroy_qpairs(ctrlr); - for (i = 0; i < ctrlr->num_io_queues; i++) { + if (!gone) + nvme_ctrlr_destroy_qpairs(ctrlr); + for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_destroy(&ctrlr->ioq[i]); - } free(ctrlr->ioq, M_NVME); - nvme_admin_qpair_destroy(&ctrlr->adminq); /* * Notify the controller of a shutdown, even though this is due to * a driver unload, not a system shutdown (this path is not invoked * during shutdown). This ensures the controller receives a * shutdown notification in case the system is shutdown before * reloading the driver. */ - nvme_ctrlr_shutdown(ctrlr); + if (!gone) + nvme_ctrlr_shutdown(ctrlr); - nvme_ctrlr_disable(ctrlr); + if (!gone) + nvme_ctrlr_disable(ctrlr); if (ctrlr->taskqueue) taskqueue_free(ctrlr->taskqueue); if (ctrlr->tag) bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); if (ctrlr->res) bus_release_resource(ctrlr->dev, SYS_RES_IRQ, rman_get_rid(ctrlr->res), ctrlr->res); if (ctrlr->msix_enabled) pci_release_msi(dev); if (ctrlr->bar4_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->bar4_resource_id, ctrlr->bar4_resource); } bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->resource_id, ctrlr->resource); nores: mtx_destroy(&ctrlr->lock); } void nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; int ticks = 0; cc = nvme_mmio_read_4(ctrlr, cc); cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; nvme_mmio_write_4(ctrlr, cc, cc); - csts = nvme_mmio_read_4(ctrlr, csts); - while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { - pause("nvme shn", 1); + while (1) { csts = nvme_mmio_read_4(ctrlr, csts); + if (csts == 0xffffffff) /* Hot unplug. */ + break; + if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) + break; + if (ticks++ > 5*hz) { + nvme_printf(ctrlr, "did not complete shutdown within" + " 5 seconds of notification\n"); + break; + } + pause("nvme shn", 1); } - if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) - nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " - "of notification\n"); } void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, struct nvme_request *req) { nvme_qpair_submit_request(&ctrlr->adminq, req); } void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, struct nvme_request *req) { struct nvme_qpair *qpair; qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; nvme_qpair_submit_request(qpair, req); } device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr) { return (ctrlr->dev); } const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr) { return (&ctrlr->cdata); } Index: stable/12/sys/dev/nvme/nvme_qpair.c =================================================================== --- stable/12/sys/dev/nvme/nvme_qpair.c (revision 351534) +++ stable/12/sys/dev/nvme/nvme_qpair.c (revision 351535) @@ -1,1263 +1,1264 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2014 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include "nvme_private.h" typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t; #define DO_NOT_RETRY 1 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req); static void nvme_qpair_destroy(struct nvme_qpair *qpair); struct nvme_opcode_string { uint16_t opc; const char * str; }; static struct nvme_opcode_string admin_opcode[] = { { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" }, { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" }, { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" }, { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" }, { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" }, { NVME_OPC_IDENTIFY, "IDENTIFY" }, { NVME_OPC_ABORT, "ABORT" }, { NVME_OPC_SET_FEATURES, "SET FEATURES" }, { NVME_OPC_GET_FEATURES, "GET FEATURES" }, { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" }, { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" }, { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" }, { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" }, { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" }, { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" }, { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" }, { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" }, { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" }, { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" }, { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" }, { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" }, { NVME_OPC_FORMAT_NVM, "FORMAT NVM" }, { NVME_OPC_SECURITY_SEND, "SECURITY SEND" }, { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" }, { NVME_OPC_SANITIZE, "SANITIZE" }, { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" }, { 0xFFFF, "ADMIN COMMAND" } }; static struct nvme_opcode_string io_opcode[] = { { NVME_OPC_FLUSH, "FLUSH" }, { NVME_OPC_WRITE, "WRITE" }, { NVME_OPC_READ, "READ" }, { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" }, { NVME_OPC_COMPARE, "COMPARE" }, { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" }, { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" }, { NVME_OPC_VERIFY, "VERIFY" }, { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" }, { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" }, { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" }, { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" }, { 0xFFFF, "IO COMMAND" } }; static const char * get_admin_opcode_string(uint16_t opc) { struct nvme_opcode_string *entry; entry = admin_opcode; while (entry->opc != 0xFFFF) { if (entry->opc == opc) return (entry->str); entry++; } return (entry->str); } static const char * get_io_opcode_string(uint16_t opc) { struct nvme_opcode_string *entry; entry = io_opcode; while (entry->opc != 0xFFFF) { if (entry->opc == opc) return (entry->str); entry++; } return (entry->str); } static void nvme_admin_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " "cdw10:%08x cdw11:%08x\n", get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); } static void nvme_io_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { switch (cmd->opc) { case NVME_OPC_WRITE: case NVME_OPC_READ: case NVME_OPC_WRITE_UNCORRECTABLE: case NVME_OPC_COMPARE: case NVME_OPC_WRITE_ZEROES: case NVME_OPC_VERIFY: nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " "lba:%llu len:%d\n", get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid), ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), (le32toh(cmd->cdw12) & 0xFFFF) + 1); break; case NVME_OPC_FLUSH: case NVME_OPC_DATASET_MANAGEMENT: case NVME_OPC_RESERVATION_REGISTER: case NVME_OPC_RESERVATION_REPORT: case NVME_OPC_RESERVATION_ACQUIRE: case NVME_OPC_RESERVATION_RELEASE: nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); break; default: nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", get_io_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, le32toh(cmd->nsid)); break; } } static void nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { if (qpair->id == 0) nvme_admin_qpair_print_command(qpair, cmd); else nvme_io_qpair_print_command(qpair, cmd); if (nvme_verbose_cmd_dump) { nvme_printf(qpair->ctrlr, "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n", cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr, (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2); nvme_printf(qpair->ctrlr, "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n", cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, cmd->cdw15); } } struct nvme_status_string { uint16_t sc; const char * str; }; static struct nvme_status_string generic_status[] = { { NVME_SC_SUCCESS, "SUCCESS" }, { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, { 0xFFFF, "GENERIC" } }; static struct nvme_status_string command_specific_status[] = { { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" }, { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, { 0xFFFF, "COMMAND SPECIFIC" } }; static struct nvme_status_string media_error_status[] = { { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, { 0xFFFF, "MEDIA ERROR" } }; static struct nvme_status_string path_related_status[] = { { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" }, { 0xFFFF, "PATH RELATED" }, }; static const char * get_status_string(uint16_t sct, uint16_t sc) { struct nvme_status_string *entry; switch (sct) { case NVME_SCT_GENERIC: entry = generic_status; break; case NVME_SCT_COMMAND_SPECIFIC: entry = command_specific_status; break; case NVME_SCT_MEDIA_ERROR: entry = media_error_status; break; case NVME_SCT_PATH_RELATED: entry = path_related_status; break; case NVME_SCT_VENDOR_SPECIFIC: return ("VENDOR SPECIFIC"); default: return ("RESERVED"); } while (entry->sc != 0xFFFF) { if (entry->sc == sc) return (entry->str); entry++; } return (entry->str); } static void nvme_qpair_print_completion(struct nvme_qpair *qpair, struct nvme_completion *cpl) { uint16_t sct, sc; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n", get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid, cpl->cdw0); } static boolean_t nvme_completion_is_retry(const struct nvme_completion *cpl) { uint8_t sct, sc, dnr; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */ /* * TODO: spec is not clear how commands that are aborted due * to TLER will be marked. So for now, it seems * NAMESPACE_NOT_READY is the only case where we should * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST * set the DNR bit correctly since the driver controls that. */ switch (sct) { case NVME_SCT_GENERIC: switch (sc) { case NVME_SC_ABORTED_BY_REQUEST: case NVME_SC_NAMESPACE_NOT_READY: if (dnr) return (0); else return (1); case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_COMMAND_ID_CONFLICT: case NVME_SC_DATA_TRANSFER_ERROR: case NVME_SC_ABORTED_POWER_LOSS: case NVME_SC_INTERNAL_DEVICE_ERROR: case NVME_SC_ABORTED_SQ_DELETION: case NVME_SC_ABORTED_FAILED_FUSED: case NVME_SC_ABORTED_MISSING_FUSED: case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: case NVME_SC_COMMAND_SEQUENCE_ERROR: case NVME_SC_LBA_OUT_OF_RANGE: case NVME_SC_CAPACITY_EXCEEDED: default: return (0); } case NVME_SCT_COMMAND_SPECIFIC: case NVME_SCT_MEDIA_ERROR: return (0); case NVME_SCT_PATH_RELATED: switch (sc) { case NVME_SC_INTERNAL_PATH_ERROR: if (dnr) return (0); else return (1); default: return (0); } case NVME_SCT_VENDOR_SPECIFIC: default: return (0); } } static void nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr, struct nvme_completion *cpl, error_print_t print_on_error) { struct nvme_request *req; boolean_t retry, error, retriable; req = tr->req; error = nvme_completion_is_error(cpl); retriable = nvme_completion_is_retry(cpl); retry = error && retriable && req->retries < nvme_retry_count; if (retry) qpair->num_retries++; if (error && req->retries >= nvme_retry_count && retriable) qpair->num_failures++; if (error && (print_on_error == ERROR_PRINT_ALL || (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, cpl); } qpair->act_tr[cpl->cid] = NULL; KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); if (req->cb_fn && !retry) req->cb_fn(req->cb_arg, cpl); mtx_lock(&qpair->lock); callout_stop(&tr->timer); if (retry) { req->retries++; nvme_qpair_submit_tracker(qpair, tr); } else { if (req->type != NVME_REQUEST_NULL) { bus_dmamap_sync(qpair->dma_tag_payload, tr->payload_dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(qpair->dma_tag_payload, tr->payload_dma_map); } nvme_free_request(req); tr->req = NULL; TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); /* * If the controller is in the middle of resetting, don't * try to submit queued requests here - let the reset logic * handle that instead. */ if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); _nvme_qpair_submit_request(qpair, req); } } mtx_unlock(&qpair->lock); } static void nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, error_print_t print_on_error) { struct nvme_completion cpl; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.cid = tr->cid; cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT; nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); } void nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, struct nvme_request *req, uint32_t sct, uint32_t sc) { struct nvme_completion cpl; boolean_t error; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; error = nvme_completion_is_error(&cpl); if (error) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, &cpl); } if (req->cb_fn) req->cb_fn(req->cb_arg, &cpl); nvme_free_request(req); } bool nvme_qpair_process_completions(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_completion cpl; int done = 0; bool in_panic = dumping || SCHEDULER_STOPPED(); qpair->num_intr_handler_calls++; /* * qpair is not enabled, likely because a controller reset is is in * progress. Ignore the interrupt - any I/O that was associated with * this interrupt will get retried when the reset is complete. */ if (!qpair->is_enabled) return (false); /* * A panic can stop the CPU this routine is running on at any point. If * we're called during a panic, complete the sq_head wrap protocol for * the case where we are interrupted just after the increment at 1 * below, but before we can reset cq_head to zero at 2. Also cope with * the case where we do the zero at 2, but may or may not have done the * phase adjustment at step 3. The panic machinery flushes all pending * memory writes, so we can make these strong ordering assumptions * that would otherwise be unwise if we were racing in real time. */ if (__predict_false(in_panic)) { if (qpair->cq_head == qpair->num_entries) { /* * Here we know that we need to zero cq_head and then negate * the phase, which hasn't been assigned if cq_head isn't * zero due to the atomic_store_rel. */ qpair->cq_head = 0; qpair->phase = !qpair->phase; } else if (qpair->cq_head == 0) { /* * In this case, we know that the assignment at 2 * happened below, but we don't know if it 3 happened or * not. To do this, we look at the last completion * entry and set the phase to the opposite phase * that it has. This gets us back in sync */ cpl = qpair->cpl[qpair->num_entries - 1]; nvme_completion_swapbytes(&cpl); qpair->phase = !NVME_STATUS_GET_P(cpl.status); } } bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); while (1) { cpl = qpair->cpl[qpair->cq_head]; /* Convert to host endian */ nvme_completion_swapbytes(&cpl); if (NVME_STATUS_GET_P(cpl.status) != qpair->phase) break; tr = qpair->act_tr[cpl.cid]; if (tr != NULL) { nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL); qpair->sq_head = cpl.sqhd; done++; } else if (!in_panic) { /* * A missing tracker is normally an error. However, a * panic can stop the CPU this routine is running on * after completing an I/O but before updating * qpair->cq_head at 1 below. Later, we re-enter this * routine to poll I/O associated with the kernel * dump. We find that the tr has been set to null before * calling the completion routine. If it hasn't * completed (or it triggers a panic), then '1' below * won't have updated cq_head. Rather than panic again, * ignore this condition because it's not unexpected. */ nvme_printf(qpair->ctrlr, "cpl does not map to outstanding cmd\n"); /* nvme_dump_completion expects device endianess */ nvme_dump_completion(&qpair->cpl[qpair->cq_head]); KASSERT(0, ("received completion for unknown cmd")); } /* * There's a number of races with the following (see above) when * the system panics. We compensate for each one of them by * using the atomic store to force strong ordering (at least when * viewed in the aftermath of a panic). */ if (++qpair->cq_head == qpair->num_entries) { /* 1 */ atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */ qpair->phase = !qpair->phase; /* 3 */ } nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl, qpair->cq_head); } return (done != 0); } static void nvme_qpair_msix_handler(void *arg) { struct nvme_qpair *qpair = arg; nvme_qpair_process_completions(qpair); } int nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id, uint16_t vector, uint32_t num_entries, uint32_t num_trackers, struct nvme_controller *ctrlr) { struct nvme_tracker *tr; size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; uint64_t queuemem_phys, prpmem_phys, list_phys; uint8_t *queuemem, *prpmem, *prp_list; int i, err; qpair->id = id; qpair->vector = vector; qpair->num_entries = num_entries; qpair->num_trackers = num_trackers; qpair->ctrlr = ctrlr; if (ctrlr->msix_enabled) { /* * MSI-X vector resource IDs start at 1, so we add one to * the queue's vector to get the corresponding rid to use. */ qpair->rid = vector + 1; qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &qpair->rid, RF_ACTIVE); bus_setup_intr(ctrlr->dev, qpair->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_qpair_msix_handler, qpair, &qpair->tag); if (id == 0) { bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, "admin"); } else { bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, "io%d", id - 1); } } mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); /* Note: NVMe PRP format is restricted to 4-byte alignment. */ err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 4, PAGE_SIZE, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE, (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0, NULL, NULL, &qpair->dma_tag_payload); if (err != 0) { nvme_printf(ctrlr, "payload tag create failed %d\n", err); goto out; } /* * Each component must be page aligned, and individual PRP lists * cannot cross a page boundary. */ cmdsz = qpair->num_entries * sizeof(struct nvme_command); cmdsz = roundup2(cmdsz, PAGE_SIZE); cplsz = qpair->num_entries * sizeof(struct nvme_completion); cplsz = roundup2(cplsz, PAGE_SIZE); prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;; prpmemsz = qpair->num_trackers * prpsz; allocsz = cmdsz + cplsz + prpmemsz; err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); if (err != 0) { nvme_printf(ctrlr, "tag create failed %d\n", err); goto out; } if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, BUS_DMA_NOWAIT, &qpair->queuemem_map)) { nvme_printf(ctrlr, "failed to alloc qpair memory\n"); goto out; } if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { nvme_printf(ctrlr, "failed to load qpair memory\n"); goto out; } qpair->num_cmds = 0; qpair->num_intr_handler_calls = 0; qpair->num_retries = 0; qpair->num_failures = 0; qpair->cmd = (struct nvme_command *)queuemem; qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); qpair->cmd_bus_addr = queuemem_phys; qpair->cpl_bus_addr = queuemem_phys + cmdsz; prpmem_phys = queuemem_phys + cmdsz + cplsz; qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl); qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl); TAILQ_INIT(&qpair->free_tr); TAILQ_INIT(&qpair->outstanding_tr); STAILQ_INIT(&qpair->queued_req); list_phys = prpmem_phys; prp_list = prpmem; for (i = 0; i < qpair->num_trackers; i++) { if (list_phys + prpsz > prpmem_phys + prpmemsz) { qpair->num_trackers = i; break; } /* * Make sure that the PRP list for this tracker doesn't * overflow to another page. */ if (trunc_page(list_phys) != trunc_page(list_phys + prpsz - 1)) { list_phys = roundup2(list_phys, PAGE_SIZE); prp_list = (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE); } tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK); bus_dmamap_create(qpair->dma_tag_payload, 0, &tr->payload_dma_map); callout_init(&tr->timer, 1); tr->cid = i; tr->qpair = qpair; tr->prp = (uint64_t *)prp_list; tr->prp_bus_addr = list_phys; TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); list_phys += prpsz; prp_list += prpsz; } if (qpair->num_trackers == 0) { nvme_printf(ctrlr, "failed to allocate enough trackers\n"); goto out; } qpair->act_tr = malloc(sizeof(struct nvme_tracker *) * qpair->num_entries, M_NVME, M_ZERO | M_WAITOK); return (0); out: nvme_qpair_destroy(qpair); return (ENOMEM); } static void nvme_qpair_destroy(struct nvme_qpair *qpair) { struct nvme_tracker *tr; if (qpair->tag) bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); if (mtx_initialized(&qpair->lock)) mtx_destroy(&qpair->lock); if (qpair->res) bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, rman_get_rid(qpair->res), qpair->res); if (qpair->cmd != NULL) { bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); bus_dmamem_free(qpair->dma_tag, qpair->cmd, qpair->queuemem_map); } if (qpair->act_tr) free(qpair->act_tr, M_NVME); while (!TAILQ_EMPTY(&qpair->free_tr)) { tr = TAILQ_FIRST(&qpair->free_tr); TAILQ_REMOVE(&qpair->free_tr, tr, tailq); bus_dmamap_destroy(qpair->dma_tag_payload, tr->payload_dma_map); free(tr, M_NVME); } if (qpair->dma_tag) bus_dma_tag_destroy(qpair->dma_tag); if (qpair->dma_tag_payload) bus_dma_tag_destroy(qpair->dma_tag_payload); } static void nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) { struct nvme_tracker *tr; tr = TAILQ_FIRST(&qpair->outstanding_tr); while (tr != NULL) { if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) { nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, ERROR_PRINT_NONE); tr = TAILQ_FIRST(&qpair->outstanding_tr); } else { tr = TAILQ_NEXT(tr, tailq); } } } void nvme_admin_qpair_destroy(struct nvme_qpair *qpair) { nvme_admin_qpair_abort_aers(qpair); nvme_qpair_destroy(qpair); } void nvme_io_qpair_destroy(struct nvme_qpair *qpair) { nvme_qpair_destroy(qpair); } static void nvme_abort_complete(void *arg, const struct nvme_completion *status) { struct nvme_tracker *tr = arg; /* * If cdw0 == 1, the controller was not able to abort the command * we requested. We still need to check the active tracker array, * to cover race where I/O timed out at same time controller was * completing the I/O. */ if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { /* * An I/O has timed out, and the controller was unable to * abort it for some reason. Construct a fake completion * status, and then complete the I/O's tracker manually. */ nvme_printf(tr->qpair->ctrlr, "abort command failed, aborting command manually\n"); nvme_qpair_manual_complete_tracker(tr->qpair, tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL); } } static void nvme_timeout(void *arg) { struct nvme_tracker *tr = arg; struct nvme_qpair *qpair = tr->qpair; struct nvme_controller *ctrlr = qpair->ctrlr; uint32_t csts; uint8_t cfs; /* * Read csts to get value of cfs - controller fatal status. * If no fatal status, try to call the completion routine, and * if completes transactions, report a missed interrupt and * return (this may need to be rate limited). Otherwise, if * aborts are enabled and the controller is not reporting * fatal status, abort the command. Otherwise, just reset the * controller and hope for the best. */ csts = nvme_mmio_read_4(ctrlr, csts); cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK; if (cfs == 0 && nvme_qpair_process_completions(qpair)) { nvme_printf(ctrlr, "Missing interrupt\n"); return; } if (ctrlr->enable_aborts && cfs == 0) { nvme_printf(ctrlr, "Aborting command due to a timeout.\n"); nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id, nvme_abort_complete, tr); } else { nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", - cfs ? " and fatal error status" : ""); + (csts == 0xffffffff) ? " and possible hot unplug" : + (cfs ? " and fatal error status" : "")); nvme_ctrlr_reset(ctrlr); } } void nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) { struct nvme_request *req; struct nvme_controller *ctrlr; mtx_assert(&qpair->lock, MA_OWNED); req = tr->req; req->cmd.cid = tr->cid; qpair->act_tr[tr->cid] = tr; ctrlr = qpair->ctrlr; if (req->timeout) callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz, nvme_timeout, tr); /* Copy the command from the tracker to the submission queue. */ memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); if (++qpair->sq_tail == qpair->num_entries) qpair->sq_tail = 0; bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #ifndef __powerpc__ /* * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but * no other archs do. */ wmb(); #endif nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl, qpair->sq_tail); qpair->num_cmds++; } static void nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) { struct nvme_tracker *tr = arg; uint32_t cur_nseg; /* * If the mapping operation failed, return immediately. The caller * is responsible for detecting the error status and failing the * tracker manually. */ if (error != 0) { nvme_printf(tr->qpair->ctrlr, "nvme_payload_map err %d\n", error); return; } /* * Note that we specified PAGE_SIZE for alignment and max * segment size when creating the bus dma tags. So here * we can safely just transfer each segment to its * associated PRP entry. */ tr->req->cmd.prp1 = htole64(seg[0].ds_addr); if (nseg == 2) { tr->req->cmd.prp2 = htole64(seg[1].ds_addr); } else if (nseg > 2) { cur_nseg = 1; tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); while (cur_nseg < nseg) { tr->prp[cur_nseg-1] = htole64((uint64_t)seg[cur_nseg].ds_addr); cur_nseg++; } } else { /* * prp2 should not be used by the controller * since there is only one segment, but set * to 0 just to be safe. */ tr->req->cmd.prp2 = 0; } bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); nvme_qpair_submit_tracker(tr->qpair, tr); } static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tracker *tr; int err = 0; mtx_assert(&qpair->lock, MA_OWNED); tr = TAILQ_FIRST(&qpair->free_tr); req->qpair = qpair; if (tr == NULL || !qpair->is_enabled) { /* * No tracker is available, or the qpair is disabled due to * an in-progress controller-level reset or controller * failure. */ if (qpair->ctrlr->is_failed) { /* * The controller has failed. Post the request to a * task where it will be aborted, so that we do not * invoke the request's callback in the context * of the submission. */ nvme_ctrlr_post_failed_request(qpair->ctrlr, req); } else { /* * Put the request on the qpair's request queue to be * processed when a tracker frees up via a command * completion or when the controller reset is * completed. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); } return; } TAILQ_REMOVE(&qpair->free_tr, tr, tailq); TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); tr->req = req; switch (req->type) { case NVME_REQUEST_VADDR: KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size, ("payload_size (%d) exceeds max_xfer_size (%d)\n", req->payload_size, qpair->ctrlr->max_xfer_size)); err = bus_dmamap_load(tr->qpair->dma_tag_payload, tr->payload_dma_map, req->u.payload, req->payload_size, nvme_payload_map, tr, 0); if (err != 0) nvme_printf(qpair->ctrlr, "bus_dmamap_load returned 0x%x!\n", err); break; case NVME_REQUEST_NULL: nvme_qpair_submit_tracker(tr->qpair, tr); break; case NVME_REQUEST_BIO: KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size, ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n", (intmax_t)req->u.bio->bio_bcount, qpair->ctrlr->max_xfer_size)); err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload, tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0); if (err != 0) nvme_printf(qpair->ctrlr, "bus_dmamap_load_bio returned 0x%x!\n", err); break; case NVME_REQUEST_CCB: err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload, tr->payload_dma_map, req->u.payload, nvme_payload_map, tr, 0); if (err != 0) nvme_printf(qpair->ctrlr, "bus_dmamap_load_ccb returned 0x%x!\n", err); break; default: panic("unknown nvme request type 0x%x\n", req->type); break; } if (err != 0) { /* * The dmamap operation failed, so we manually fail the * tracker here with DATA_TRANSFER_ERROR status. * * nvme_qpair_manual_complete_tracker must not be called * with the qpair lock held. */ mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL); mtx_lock(&qpair->lock); } } void nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) { mtx_lock(&qpair->lock); _nvme_qpair_submit_request(qpair, req); mtx_unlock(&qpair->lock); } static void nvme_qpair_enable(struct nvme_qpair *qpair) { qpair->is_enabled = TRUE; } void nvme_qpair_reset(struct nvme_qpair *qpair) { qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; /* * First time through the completion queue, HW will set phase * bit on completions to 1. So set this to 1 here, indicating * we're looking for a 1 to know which entries have completed. * we'll toggle the bit each time when the completion queue * rolls over. */ qpair->phase = 1; memset(qpair->cmd, 0, qpair->num_entries * sizeof(struct nvme_command)); memset(qpair->cpl, 0, qpair->num_entries * sizeof(struct nvme_completion)); } void nvme_admin_qpair_enable(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_tracker *tr_temp; /* * Manually abort each outstanding admin command. Do not retry * admin commands found here, since they will be left over from * a controller reset and its likely the context in which the * command was issued no longer applies. */ TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { nvme_printf(qpair->ctrlr, "aborting outstanding admin command\n"); nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); } nvme_qpair_enable(qpair); } void nvme_io_qpair_enable(struct nvme_qpair *qpair) { STAILQ_HEAD(, nvme_request) temp; struct nvme_tracker *tr; struct nvme_tracker *tr_temp; struct nvme_request *req; /* * Manually abort each outstanding I/O. This normally results in a * retry, unless the retry count on the associated request has * reached its limit. */ TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY); } mtx_lock(&qpair->lock); nvme_qpair_enable(qpair); STAILQ_INIT(&temp); STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); while (!STAILQ_EMPTY(&temp)) { req = STAILQ_FIRST(&temp); STAILQ_REMOVE_HEAD(&temp, stailq); nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); nvme_qpair_print_command(qpair, &req->cmd); _nvme_qpair_submit_request(qpair, req); } mtx_unlock(&qpair->lock); } static void nvme_qpair_disable(struct nvme_qpair *qpair) { struct nvme_tracker *tr; qpair->is_enabled = FALSE; mtx_lock(&qpair->lock); TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) callout_stop(&tr->timer); mtx_unlock(&qpair->lock); } void nvme_admin_qpair_disable(struct nvme_qpair *qpair) { nvme_qpair_disable(qpair); nvme_admin_qpair_abort_aers(qpair); } void nvme_io_qpair_disable(struct nvme_qpair *qpair) { nvme_qpair_disable(qpair); } void nvme_qpair_fail(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_request *req; if (!mtx_initialized(&qpair->lock)) return; mtx_lock(&qpair->lock); while (!STAILQ_EMPTY(&qpair->queued_req)) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); nvme_printf(qpair->ctrlr, "failing queued i/o\n"); mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); mtx_lock(&qpair->lock); } /* Manually abort each outstanding I/O. */ while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { tr = TAILQ_FIRST(&qpair->outstanding_tr); /* * Do not remove the tracker. The abort_tracker path will * do that for us. */ nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); mtx_lock(&qpair->lock); } mtx_unlock(&qpair->lock); } Index: stable/12 =================================================================== --- stable/12 (revision 351534) +++ stable/12 (revision 351535) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r351352