Index: head/sys/dev/nvme/nvme.c =================================================================== --- head/sys/dev/nvme/nvme.c (revision 351319) +++ head/sys/dev/nvme/nvme.c (revision 351320) @@ -1,493 +1,507 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2014 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "nvme_private.h" struct nvme_consumer { uint32_t id; nvme_cons_ns_fn_t ns_fn; nvme_cons_ctrlr_fn_t ctrlr_fn; nvme_cons_async_fn_t async_fn; nvme_cons_fail_fn_t fail_fn; }; struct nvme_consumer nvme_consumer[NVME_MAX_CONSUMERS]; #define INVALID_CONSUMER_ID 0xFFFF uma_zone_t nvme_request_zone; int32_t nvme_retry_count; MALLOC_DEFINE(M_NVME, "nvme", "nvme(4) memory allocations"); static int nvme_probe(device_t); static int nvme_attach(device_t); static int nvme_detach(device_t); static int nvme_shutdown(device_t); static devclass_t nvme_devclass; static device_method_t nvme_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nvme_probe), DEVMETHOD(device_attach, nvme_attach), DEVMETHOD(device_detach, nvme_detach), DEVMETHOD(device_shutdown, nvme_shutdown), { 0, 0 } }; static driver_t nvme_pci_driver = { "nvme", nvme_pci_methods, sizeof(struct nvme_controller), }; DRIVER_MODULE(nvme, pci, nvme_pci_driver, nvme_devclass, NULL, NULL); MODULE_VERSION(nvme, 1); MODULE_DEPEND(nvme, cam, 1, 1, 1); static struct _pcsid { uint32_t devid; int match_subdevice; uint16_t subdevice; const char *desc; uint32_t quirks; } pci_ids[] = { { 0x01118086, 0, 0, "NVMe Controller" }, { IDT32_PCI_ID, 0, 0, "IDT NVMe Controller (32 channel)" }, { IDT8_PCI_ID, 0, 0, "IDT NVMe Controller (8 channel)" }, { 0x09538086, 1, 0x3702, "DC P3700 SSD" }, { 0x09538086, 1, 0x3703, "DC P3700 SSD [2.5\" SFF]" }, { 0x09538086, 1, 0x3704, "DC P3500 SSD [Add-in Card]" }, { 0x09538086, 1, 0x3705, "DC P3500 SSD [2.5\" SFF]" }, { 0x09538086, 1, 0x3709, "DC P3600 SSD [Add-in Card]" }, { 0x09538086, 1, 0x370a, "DC P3600 SSD [2.5\" SFF]" }, { 0x00031c58, 0, 0, "HGST SN100", QUIRK_DELAY_B4_CHK_RDY }, { 0x00231c58, 0, 0, "WDC SN200", QUIRK_DELAY_B4_CHK_RDY }, { 0x05401c5f, 0, 0, "Memblaze Pblaze4", QUIRK_DELAY_B4_CHK_RDY }, { 0xa821144d, 0, 0, "Samsung PM1725", QUIRK_DELAY_B4_CHK_RDY }, { 0xa822144d, 0, 0, "Samsung PM1725a", QUIRK_DELAY_B4_CHK_RDY }, { 0x01161179, 0, 0, "Toshiba XG5", QUIRK_DISABLE_TIMEOUT }, { 0x00000000, 0, 0, NULL } }; static int nvme_match(uint32_t devid, uint16_t subdevice, struct _pcsid *ep) { if (devid != ep->devid) return 0; if (!ep->match_subdevice) return 1; if (subdevice == ep->subdevice) return 1; else return 0; } static int nvme_probe (device_t device) { struct _pcsid *ep; uint32_t devid; uint16_t subdevice; devid = pci_get_devid(device); subdevice = pci_get_subdevice(device); ep = pci_ids; while (ep->devid) { if (nvme_match(devid, subdevice, ep)) break; ++ep; } if (ep->desc) { device_set_desc(device, ep->desc); return (BUS_PROBE_DEFAULT); } #if defined(PCIS_STORAGE_NVM) if (pci_get_class(device) == PCIC_STORAGE && pci_get_subclass(device) == PCIS_STORAGE_NVM && pci_get_progif(device) == PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0) { device_set_desc(device, "Generic NVMe Device"); return (BUS_PROBE_GENERIC); } #endif return (ENXIO); } static void nvme_init(void) { uint32_t i; nvme_request_zone = uma_zcreate("nvme_request", sizeof(struct nvme_request), NULL, NULL, NULL, NULL, 0, 0); for (i = 0; i < NVME_MAX_CONSUMERS; i++) nvme_consumer[i].id = INVALID_CONSUMER_ID; } SYSINIT(nvme_register, SI_SUB_DRIVERS, SI_ORDER_SECOND, nvme_init, NULL); static void nvme_uninit(void) { uma_zdestroy(nvme_request_zone); } SYSUNINIT(nvme_unregister, SI_SUB_DRIVERS, SI_ORDER_SECOND, nvme_uninit, NULL); static int nvme_shutdown(device_t dev) { struct nvme_controller *ctrlr; ctrlr = DEVICE2SOFTC(dev); nvme_ctrlr_shutdown(ctrlr); return (0); } void nvme_dump_command(struct nvme_command *cmd) { printf( "opc:%x f:%x cid:%x nsid:%x r2:%x r3:%x mptr:%jx prp1:%jx prp2:%jx cdw:%x %x %x %x %x %x\n", cmd->opc, cmd->fuse, cmd->cid, le32toh(cmd->nsid), cmd->rsvd2, cmd->rsvd3, (uintmax_t)le64toh(cmd->mptr), (uintmax_t)le64toh(cmd->prp1), (uintmax_t)le64toh(cmd->prp2), le32toh(cmd->cdw10), le32toh(cmd->cdw11), le32toh(cmd->cdw12), le32toh(cmd->cdw13), le32toh(cmd->cdw14), le32toh(cmd->cdw15)); } void nvme_dump_completion(struct nvme_completion *cpl) { uint8_t p, sc, sct, m, dnr; uint16_t status; status = le16toh(cpl->status); p = NVME_STATUS_GET_P(status); sc = NVME_STATUS_GET_SC(status); sct = NVME_STATUS_GET_SCT(status); m = NVME_STATUS_GET_M(status); dnr = NVME_STATUS_GET_DNR(status); printf("cdw0:%08x sqhd:%04x sqid:%04x " "cid:%04x p:%x sc:%02x sct:%x m:%x dnr:%x\n", le32toh(cpl->cdw0), le16toh(cpl->sqhd), le16toh(cpl->sqid), cpl->cid, p, sc, sct, m, dnr); } static int nvme_attach(device_t dev) { struct nvme_controller *ctrlr = DEVICE2SOFTC(dev); int status; struct _pcsid *ep; uint32_t devid; uint16_t subdevice; devid = pci_get_devid(dev); subdevice = pci_get_subdevice(dev); ep = pci_ids; while (ep->devid) { if (nvme_match(devid, subdevice, ep)) break; ++ep; } ctrlr->quirks = ep->quirks; status = nvme_ctrlr_construct(ctrlr, dev); if (status != 0) { nvme_ctrlr_destruct(ctrlr, dev); return (status); } /* * Some drives do not implement the completion timeout feature * correctly. There's a WAR from the manufacturer to just disable it. * The driver wouldn't respond correctly to a timeout anyway. */ if (ep->quirks & QUIRK_DISABLE_TIMEOUT) { int ptr; uint16_t devctl2; status = pci_find_cap(dev, PCIY_EXPRESS, &ptr); if (status) { device_printf(dev, "Can't locate PCIe capability?"); return (status); } devctl2 = pci_read_config(dev, ptr + PCIER_DEVICE_CTL2, sizeof(devctl2)); devctl2 |= PCIEM_CTL2_COMP_TIMO_DISABLE; pci_write_config(dev, ptr + PCIER_DEVICE_CTL2, devctl2, sizeof(devctl2)); } /* * Enable busmastering so the completion status messages can * be busmastered back to the host. */ pci_enable_busmaster(dev); /* * Reset controller twice to ensure we do a transition from cc.en==1 * to cc.en==0. This is because we don't really know what status * the controller was left in when boot handed off to OS. */ status = nvme_ctrlr_hw_reset(ctrlr); if (status != 0) { nvme_ctrlr_destruct(ctrlr, dev); return (status); } status = nvme_ctrlr_hw_reset(ctrlr); if (status != 0) { nvme_ctrlr_destruct(ctrlr, dev); return (status); } ctrlr->config_hook.ich_func = nvme_ctrlr_start_config_hook; ctrlr->config_hook.ich_arg = ctrlr; config_intrhook_establish(&ctrlr->config_hook); return (0); } static int nvme_detach (device_t dev) { struct nvme_controller *ctrlr = DEVICE2SOFTC(dev); nvme_ctrlr_destruct(ctrlr, dev); pci_disable_busmaster(dev); return (0); } static void nvme_notify(struct nvme_consumer *cons, struct nvme_controller *ctrlr) { struct nvme_namespace *ns; void *ctrlr_cookie; int cmpset, ns_idx; /* * The consumer may register itself after the nvme devices * have registered with the kernel, but before the * driver has completed initialization. In that case, * return here, and when initialization completes, the * controller will make sure the consumer gets notified. */ if (!ctrlr->is_initialized) return; cmpset = atomic_cmpset_32(&ctrlr->notification_sent, 0, 1); - if (cmpset == 0) return; if (cons->ctrlr_fn != NULL) ctrlr_cookie = (*cons->ctrlr_fn)(ctrlr); else - ctrlr_cookie = NULL; + ctrlr_cookie = (void *)(uintptr_t)0xdeadc0dedeadc0de; ctrlr->cons_cookie[cons->id] = ctrlr_cookie; + + /* ctrlr_fn has failed. Nothing to notify here any more. */ + if (ctrlr_cookie == NULL) + return; + if (ctrlr->is_failed) { + ctrlr->cons_cookie[cons->id] = NULL; if (cons->fail_fn != NULL) (*cons->fail_fn)(ctrlr_cookie); /* * Do not notify consumers about the namespaces of a * failed controller. */ return; } for (ns_idx = 0; ns_idx < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); ns_idx++) { ns = &ctrlr->ns[ns_idx]; if (ns->data.nsze == 0) continue; if (cons->ns_fn != NULL) ns->cons_cookie[cons->id] = (*cons->ns_fn)(ns, ctrlr_cookie); } } void nvme_notify_new_controller(struct nvme_controller *ctrlr) { int i; for (i = 0; i < NVME_MAX_CONSUMERS; i++) { if (nvme_consumer[i].id != INVALID_CONSUMER_ID) { nvme_notify(&nvme_consumer[i], ctrlr); } } } static void nvme_notify_new_consumer(struct nvme_consumer *cons) { device_t *devlist; struct nvme_controller *ctrlr; int dev_idx, devcount; if (devclass_get_devices(nvme_devclass, &devlist, &devcount)) return; for (dev_idx = 0; dev_idx < devcount; dev_idx++) { ctrlr = DEVICE2SOFTC(devlist[dev_idx]); nvme_notify(cons, ctrlr); } free(devlist, M_TEMP); } void nvme_notify_async_consumers(struct nvme_controller *ctrlr, const struct nvme_completion *async_cpl, uint32_t log_page_id, void *log_page_buffer, uint32_t log_page_size) { struct nvme_consumer *cons; + void *ctrlr_cookie; uint32_t i; for (i = 0; i < NVME_MAX_CONSUMERS; i++) { cons = &nvme_consumer[i]; - if (cons->id != INVALID_CONSUMER_ID && cons->async_fn != NULL) - (*cons->async_fn)(ctrlr->cons_cookie[i], async_cpl, + if (cons->id != INVALID_CONSUMER_ID && cons->async_fn != NULL && + (ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL) { + (*cons->async_fn)(ctrlr_cookie, async_cpl, log_page_id, log_page_buffer, log_page_size); + } } } void nvme_notify_fail_consumers(struct nvme_controller *ctrlr) { struct nvme_consumer *cons; + void *ctrlr_cookie; uint32_t i; /* * This controller failed during initialization (i.e. IDENTIFY * command failed or timed out). Do not notify any nvme * consumers of the failure here, since the consumer does not * even know about the controller yet. */ if (!ctrlr->is_initialized) return; for (i = 0; i < NVME_MAX_CONSUMERS; i++) { cons = &nvme_consumer[i]; - if (cons->id != INVALID_CONSUMER_ID && cons->fail_fn != NULL) - cons->fail_fn(ctrlr->cons_cookie[i]); + if (cons->id != INVALID_CONSUMER_ID && + (ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL) { + ctrlr->cons_cookie[i] = NULL; + if (cons->fail_fn != NULL) + cons->fail_fn(ctrlr_cookie); + } } } void nvme_notify_ns(struct nvme_controller *ctrlr, int nsid) { struct nvme_consumer *cons; struct nvme_namespace *ns = &ctrlr->ns[nsid - 1]; + void *ctrlr_cookie; uint32_t i; if (!ctrlr->is_initialized) return; for (i = 0; i < NVME_MAX_CONSUMERS; i++) { cons = &nvme_consumer[i]; - if (cons->id != INVALID_CONSUMER_ID && cons->ns_fn != NULL) - ns->cons_cookie[cons->id] = - (*cons->ns_fn)(ns, ctrlr->cons_cookie[cons->id]); + if (cons->id != INVALID_CONSUMER_ID && cons->ns_fn != NULL && + (ctrlr_cookie = ctrlr->cons_cookie[i]) != NULL) + ns->cons_cookie[i] = (*cons->ns_fn)(ns, ctrlr_cookie); } } struct nvme_consumer * nvme_register_consumer(nvme_cons_ns_fn_t ns_fn, nvme_cons_ctrlr_fn_t ctrlr_fn, nvme_cons_async_fn_t async_fn, nvme_cons_fail_fn_t fail_fn) { int i; /* * TODO: add locking around consumer registration. */ for (i = 0; i < NVME_MAX_CONSUMERS; i++) if (nvme_consumer[i].id == INVALID_CONSUMER_ID) { nvme_consumer[i].id = i; nvme_consumer[i].ns_fn = ns_fn; nvme_consumer[i].ctrlr_fn = ctrlr_fn; nvme_consumer[i].async_fn = async_fn; nvme_consumer[i].fail_fn = fail_fn; nvme_notify_new_consumer(&nvme_consumer[i]); return (&nvme_consumer[i]); } printf("nvme(4): consumer not registered - no slots available\n"); return (NULL); } void nvme_unregister_consumer(struct nvme_consumer *consumer) { consumer->id = INVALID_CONSUMER_ID; } void nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_completion_poll_status *status = arg; /* * Copy status into the argument passed by the caller, so that * the caller can check the status to determine if the * the request passed or failed. */ memcpy(&status->cpl, cpl, sizeof(*cpl)); atomic_store_rel_int(&status->done, 1); }