Index: vendor/illumos/dist/cmd/zdb/zdb.c =================================================================== --- vendor/illumos/dist/cmd/zdb/zdb.c (revision 350897) +++ vendor/illumos/dist/cmd/zdb/zdb.c (revision 350898) @@ -1,5614 +1,5638 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Nexenta Systems, Inc. * Copyright 2017 RackTop Systems. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef verify #include #include "zdb.h" #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \ dmu_ot[(idx)].ot_name : DMU_OT_IS_VALID(idx) ? \ dmu_ot_byteswap[DMU_OT_BYTESWAP(idx)].ob_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ DMU_OT_ZAP_OTHER : \ (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) #ifndef lint extern int reference_tracking_enable; extern boolean_t zfs_recover; extern uint64_t zfs_arc_max, zfs_arc_meta_limit; extern int zfs_vdev_async_read_max_active; extern int aok; extern boolean_t spa_load_verify_dryrun; #else int reference_tracking_enable; boolean_t zfs_recover; uint64_t zfs_arc_max, zfs_arc_meta_limit; int zfs_vdev_async_read_max_active; int aok; boolean_t spa_load_verify_dryrun; #endif static const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); uint64_t *zopt_object = NULL; static unsigned zopt_objects = 0; libzfs_handle_t *g_zfs; uint64_t max_inflight = 1000; static int leaked_objects = 0; static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *); static void mos_obj_refd(uint64_t); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage:\t%s [-AbcdDFGhikLMPsvX] [-e [-V] [-p ...]] " "[-I ]\n" "\t\t[-o =]... [-t ] [-U ] [-x ]\n" "\t\t[ [ ...]]\n" "\t%s [-AdiPv] [-e [-V] [-p ...]] [-U ] " "[ ...]\n" "\t%s -C [-A] [-U ]\n" "\t%s -l [-Aqu] \n" "\t%s -m [-AFLPX] [-e [-V] [-p ...]] [-t ] " "[-U ]\n\t\t [ [ ...]]\n" "\t%s -O \n" "\t%s -R [-A] [-e [-V] [-p ...]] [-U ]\n" "\t\t ::[:]\n" "\t%s -E [-A] word0:word1:...:word15\n" "\t%s -S [-AP] [-e [-V] [-p ...]] [-U ] " "\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers are specified, only " "those objects are dumped\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -b block statistics\n"); (void) fprintf(stderr, " -c checksum all metadata (twice for " "all data) blocks\n"); (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); (void) fprintf(stderr, " -d dataset(s)\n"); (void) fprintf(stderr, " -D dedup statistics\n"); (void) fprintf(stderr, " -E decode and display block from an " "embedded block pointer\n"); (void) fprintf(stderr, " -h pool history\n"); (void) fprintf(stderr, " -i intent logs\n"); (void) fprintf(stderr, " -l read label contents\n"); (void) fprintf(stderr, " -k examine the checkpointed state " "of the pool\n"); (void) fprintf(stderr, " -L disable leak tracking (do not " "load spacemaps)\n"); (void) fprintf(stderr, " -m metaslabs\n"); (void) fprintf(stderr, " -M metaslab groups\n"); (void) fprintf(stderr, " -O perform object lookups by path\n"); (void) fprintf(stderr, " -R read and display block from a " "device\n"); (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v verbose (applies to all " "others)\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options:\n"); (void) fprintf(stderr, " -A ignore assertions (-A), enable " "panic recovery (-AA) or both (-AAA)\n"); (void) fprintf(stderr, " -e pool is exported/destroyed/" "has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -F attempt automatic rewind within " "safe range of transaction groups\n"); (void) fprintf(stderr, " -G dump zfs_dbgmsg buffer before " "exiting\n"); (void) fprintf(stderr, " -I -- " "specify the maximum number of " "checksumming I/Os [default is 200]\n"); (void) fprintf(stderr, " -o = set global " "variable to an unsigned 32-bit integer value\n"); (void) fprintf(stderr, " -p -- use one or more with " "-e to specify path to vdev dir\n"); (void) fprintf(stderr, " -P print numbers in parseable form\n"); (void) fprintf(stderr, " -q don't print label contents\n"); (void) fprintf(stderr, " -t -- highest txg to use when " "searching for uberblocks\n"); (void) fprintf(stderr, " -u uberblock\n"); (void) fprintf(stderr, " -U -- use alternate " "cachefile\n"); (void) fprintf(stderr, " -V do verbatim import\n"); (void) fprintf(stderr, " -x -- " "dump all read blocks into specified directory\n"); (void) fprintf(stderr, " -X attempt extreme rewind (does not " "work with dataset)\n\n"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } static void dump_debug_buffer() { if (dump_opt['G']) { (void) printf("\n"); zfs_dbgmsg_print("zdb"); } } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); dump_debug_buffer(); exit(1); } /* ARGSUSED */ static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } /* ARGSUSED */ static void dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) { spa_history_phys_t *shp = data; if (shp == NULL) return; (void) printf("\t\tpool_create_len = %llu\n", (u_longlong_t)shp->sh_pool_create_len); (void) printf("\t\tphys_max_off = %llu\n", (u_longlong_t)shp->sh_phys_max_off); (void) printf("\t\tbof = %llu\n", (u_longlong_t)shp->sh_bof); (void) printf("\t\teof = %llu\n", (u_longlong_t)shp->sh_eof); (void) printf("\t\trecords_lost = %llu\n", (u_longlong_t)shp->sh_records_lost); } static void zdb_nicenum(uint64_t num, char *buf, size_t buflen) { if (dump_opt['P']) (void) snprintf(buf, buflen, "%llu", (longlong_t)num); else nicenum(num, buf, sizeof (buf)); } static const char histo_stars[] = "****************************************"; static const uint64_t histo_width = sizeof (histo_stars) - 1; static void dump_histogram(const uint64_t *histo, int size, int offset) { int i; int minidx = size - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < size; i++) { if (histo[i] > max) max = histo[i]; if (histo[i] > 0 && i > maxidx) maxidx = i; if (histo[i] > 0 && i < minidx) minidx = i; } if (max < histo_width) max = histo_width; for (i = minidx; i <= maxidx; i++) { (void) printf("\t\t\t%3u: %6llu %s\n", i + offset, (u_longlong_t)histo[i], &histo_stars[(max - histo[i]) * histo_width / max]); } } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks n/10 full:\n"); dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tEntries with n chunks:\n"); dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBuckets with n entries:\n"); dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); } /*ARGSUSED*/ static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) printf("\tUNKNOWN OBJECT TYPE\n"); } /*ARGSUSED*/ static void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; void *prop; unsigned i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { (void) printf("%s", (char *)prop); } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } static void dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) { bpobj_phys_t *bpop = data; char bytes[32], comp[32], uncomp[32]; /* make sure the output won't get truncated */ CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); if (bpop == NULL) return; zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); (void) printf("\t\tnum_blkptrs = %llu\n", (u_longlong_t)bpop->bpo_num_blkptrs); (void) printf("\t\tbytes = %s\n", bytes); if (size >= BPOBJ_SIZE_V1) { (void) printf("\t\tcomp = %s\n", comp); (void) printf("\t\tuncomp = %s\n", uncomp); } if (size >= sizeof (*bpop)) { (void) printf("\t\tsubobjs = %llu\n", (u_longlong_t)bpop->bpo_subobjs); (void) printf("\t\tnum_subobjs = %llu\n", (u_longlong_t)bpop->bpo_num_subobjs); } if (dump_opt['d'] < 5) return; for (uint64_t i = 0; i < bpop->bpo_num_blkptrs; i++) { char blkbuf[BP_SPRINTF_LEN]; blkptr_t bp; int err = dmu_read(os, object, i * sizeof (bp), sizeof (bp), &bp, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); break; } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp); (void) printf("\t%s\n", blkbuf); } } /* ARGSUSED */ static void dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) { dmu_object_info_t doi; VERIFY0(dmu_object_info(os, object, &doi)); uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); kmem_free(subobjs, doi.doi_max_offset); return; } int64_t last_nonzero = -1; for (uint64_t i = 0; i < doi.doi_max_offset / 8; i++) { if (subobjs[i] != 0) last_nonzero = i; } for (int64_t i = 0; i <= last_nonzero; i++) { (void) printf("\t%llu\n", (longlong_t)subobjs[i]); } kmem_free(subobjs, doi.doi_max_offset); } /*ARGSUSED*/ static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } /*ARGSUSED*/ static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; unsigned i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } static int get_dtl_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_ops->vdev_op_leaf) { space_map_t *sm = vd->vdev_dtl_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) return (1); return (0); } for (unsigned c = 0; c < vd->vdev_children; c++) refcount += get_dtl_refcount(vd->vdev_child[c]); return (refcount); } static int get_metaslab_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_top == vd) { for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { space_map_t *sm = vd->vdev_ms[m]->ms_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) refcount++; } } for (unsigned c = 0; c < vd->vdev_children; c++) refcount += get_metaslab_refcount(vd->vdev_child[c]); return (refcount); } static int get_obsolete_refcount(vdev_t *vd) { int refcount = 0; uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd); if (vd->vdev_top == vd && obsolete_sm_obj != 0) { dmu_object_info_t doi; VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, obsolete_sm_obj, &doi)); if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { refcount++; } } else { ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); ASSERT3U(obsolete_sm_obj, ==, 0); } for (unsigned c = 0; c < vd->vdev_children; c++) { refcount += get_obsolete_refcount(vd->vdev_child[c]); } return (refcount); } static int get_prev_obsolete_spacemap_refcount(spa_t *spa) { uint64_t prev_obj = spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; if (prev_obj != 0) { dmu_object_info_t doi; VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { return (1); } } return (0); } static int get_checkpoint_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && zap_contains(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) refcount++; for (uint64_t c = 0; c < vd->vdev_children; c++) refcount += get_checkpoint_refcount(vd->vdev_child[c]); return (refcount); } static int verify_spacemap_refcounts(spa_t *spa) { uint64_t expected_refcount = 0; uint64_t actual_refcount; (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], &expected_refcount); actual_refcount = get_dtl_refcount(spa->spa_root_vdev); actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); actual_refcount += get_prev_obsolete_spacemap_refcount(spa); actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); if (expected_refcount != actual_refcount) { (void) printf("space map refcount mismatch: expected %lld != " "actual %lld\n", (longlong_t)expected_refcount, (longlong_t)actual_refcount); return (2); } return (0); } static void dump_spacemap(objset_t *os, space_map_t *sm) { char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (sm == NULL) return; (void) printf("space map object %llu:\n", (longlong_t)sm->sm_phys->smp_object); (void) printf(" smp_objsize = 0x%llx\n", (longlong_t)sm->sm_phys->smp_objsize); (void) printf(" smp_alloc = 0x%llx\n", (longlong_t)sm->sm_phys->smp_alloc); /* * Print out the freelist entries in both encoded and decoded form. */ uint8_t mapshift = sm->sm_shift; int64_t alloc = 0; uint64_t word; for (uint64_t offset = 0; offset < space_map_length(sm); offset += sizeof (word)) { VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (word), &word, DMU_READ_PREFETCH)); if (sm_entry_is_debug(word)) { (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n", (u_longlong_t)(offset / sizeof (word)), ddata[SM_DEBUG_ACTION_DECODE(word)], (u_longlong_t)SM_DEBUG_TXG_DECODE(word), (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word)); continue; } uint8_t words; char entry_type; uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; if (sm_entry_is_single_word(word)) { entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 'A' : 'F'; entry_off = (SM_OFFSET_DECODE(word) << mapshift) + sm->sm_start; entry_run = SM_RUN_DECODE(word) << mapshift; words = 1; } else { /* it is a two-word entry so we read another word */ ASSERT(sm_entry_is_double_word(word)); uint64_t extra_word; offset += sizeof (extra_word); VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (extra_word), &extra_word, DMU_READ_PREFETCH)); ASSERT3U(offset, <=, space_map_length(sm)); entry_run = SM2_RUN_DECODE(word) << mapshift; entry_vdev = SM2_VDEV_DECODE(word); entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 'A' : 'F'; entry_off = (SM2_OFFSET_DECODE(extra_word) << mapshift) + sm->sm_start; words = 2; } (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", (u_longlong_t)(offset / sizeof (word)), entry_type, (u_longlong_t)entry_off, (u_longlong_t)(entry_off + entry_run), (u_longlong_t)entry_run, (u_longlong_t)entry_vdev, words); if (entry_type == 'A') alloc += entry_run; else alloc -= entry_run; } if ((uint64_t)alloc != space_map_allocated(sm)) { (void) printf("space_map_object alloc (%lld) INCONSISTENT " "with space map summary (%lld)\n", (longlong_t)space_map_allocated(sm), (longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; range_tree_t *rt = msp->ms_allocatable; avl_tree_t *t = &msp->ms_allocatable_by_size; int free_pct = range_tree_space(rt) * 100 / msp->ms_size; /* max sure nicenum has enough space */ CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ); zdb_nicenum(metaslab_block_maxsize(msp), maxbuf, sizeof (maxbuf)); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", avl_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); (void) printf("\tIn-memory histogram:\n"); dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; space_map_t *sm = msp->ms_sm; char freebuf[32]; zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, sizeof (freebuf)); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, (u_longlong_t)space_map_object(sm), freebuf); if (dump_opt['m'] > 2 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); metaslab_load_wait(msp); if (!msp->ms_loaded) { VERIFY0(metaslab_load(msp)); range_tree_stat_verify(msp->ms_allocatable); } dump_metaslab_stats(msp); metaslab_unload(msp); mutex_exit(&msp->ms_lock); } if (dump_opt['m'] > 1 && sm != NULL && spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { /* * The space map histogram represents free space in chunks * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). */ (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", (u_longlong_t)msp->ms_fragmentation); dump_histogram(sm->sm_phys->smp_histogram, SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); } if (dump_opt['d'] > 5 || dump_opt['m'] > 3) { ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift)); dump_spacemap(spa->spa_meta_objset, msp->ms_sm); } } static void print_vdev_metaslab_header(vdev_t *vd) { (void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n", (u_longlong_t)vd->vdev_id, "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %10s\n", "---------------", "-------------------", "---------------", "-------------"); } static void dump_metaslab_groups(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; metaslab_class_t *mc = spa_normal_class(spa); uint64_t fragmentation; metaslab_class_histogram_verify(mc); for (unsigned c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg->mg_class != mc) continue; metaslab_group_histogram_verify(mg); mg->mg_fragmentation = metaslab_group_fragmentation(mg); (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" "fragmentation", (u_longlong_t)tvd->vdev_id, (u_longlong_t)tvd->vdev_ms_count); if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { (void) printf("%3s\n", "-"); } else { (void) printf("%3llu%%\n", (u_longlong_t)mg->mg_fragmentation); } dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } (void) printf("\tpool %s\tfragmentation", spa_name(spa)); fragmentation = metaslab_class_fragmentation(mc); if (fragmentation == ZFS_FRAG_INVALID) (void) printf("\t%3s\n", "-"); else (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void print_vdev_indirect(vdev_t *vd) { vdev_indirect_config_t *vic = &vd->vdev_indirect_config; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib = vd->vdev_indirect_births; if (vim == NULL) { ASSERT3P(vib, ==, NULL); return; } ASSERT3U(vdev_indirect_mapping_object(vim), ==, vic->vic_mapping_object); ASSERT3U(vdev_indirect_births_object(vib), ==, vic->vic_births_object); (void) printf("indirect births obj %llu:\n", (longlong_t)vic->vic_births_object); (void) printf(" vib_count = %llu\n", (longlong_t)vdev_indirect_births_count(vib)); for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { vdev_indirect_birth_entry_phys_t *cur_vibe = &vib->vib_entries[i]; (void) printf("\toffset %llx -> txg %llu\n", (longlong_t)cur_vibe->vibe_offset, (longlong_t)cur_vibe->vibe_phys_birth_txg); } (void) printf("\n"); (void) printf("indirect mapping obj %llu:\n", (longlong_t)vic->vic_mapping_object); (void) printf(" vim_max_offset = 0x%llx\n", (longlong_t)vdev_indirect_mapping_max_offset(vim)); (void) printf(" vim_bytes_mapped = 0x%llx\n", (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); (void) printf(" vim_count = %llu\n", (longlong_t)vdev_indirect_mapping_num_entries(vim)); if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) return; uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[i]; (void) printf("\t<%llx:%llx:%llx> -> " "<%llx:%llx:%llx> (%x obsolete)\n", (longlong_t)vd->vdev_id, (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), counts[i]); } (void) printf("\n"); uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); if (obsolete_sm_object != 0) { objset_t *mos = vd->vdev_spa->spa_meta_objset; (void) printf("obsolete space map object %llu:\n", (u_longlong_t)obsolete_sm_object); ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, obsolete_sm_object); dump_spacemap(mos, vd->vdev_obsolete_sm); (void) printf("\n"); } } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_objects > 0) { c = zopt_object[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_objects > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_objects; m++) { if (zopt_object[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_object[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_object[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); print_vdev_indirect(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; const char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); if ((count = ddt_object_count(ddt, type, class)) == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT3U(error, ==, ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total; ddt_stat_t dds_total; bzero(&ddh_total, sizeof (ddh_total)); bzero(&dds_total, sizeof (dds_total)); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(void *arg, uint64_t start, uint64_t size) { char *prefix = arg; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; const char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (int t = 0; t < DTL_TYPES; t++) { range_tree_t *rt = vd->vdev_dtl[t]; if (range_tree_space(rt) == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); range_tree_walk(rt, dump_dtl_seg, prefix); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, vd->vdev_dtl_sm); } for (unsigned c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char buf[SPA_MAXBLOCKSIZE]; uint64_t resid, len, off = 0; uint_t num = 0; int error; time_t tsec; struct tm t; char tbuf[30]; char internalstr[MAXPATHLEN]; do { len = sizeof (buf); if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (unsigned i = 0; i < num; i++) { uint64_t time, txg, ievent; char *cmd, *intstr; boolean_t printed = B_FALSE; if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, &time) != 0) goto next; if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, &cmd) != 0) { if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) goto next; verify(nvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR, &intstr) == 0); if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) goto next; (void) snprintf(internalstr, sizeof (internalstr), "[internal %s txg:%ju] %s", zfs_history_event_names[ievent], (uintmax_t)txg, intstr); cmd = internalstr; } tsec = time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s\n", tbuf, cmd); printed = B_TRUE; next: if (dump_opt['h'] > 1) { if (!printed) (void) printf("unrecognized record:\n"); dump_nvlist(events[i], 2); } } } /*ARGSUSED*/ static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; if (dump_opt['b'] >= 6) { snprintf_blkptr(blkbuf, buflen, bp); return; } if (BP_IS_EMBEDDED(bp)) { (void) sprintf(blkbuf, "EMBEDDED et=%u %llxL/%llxP B=%llu", (int)BPE_GET_ETYPE(bp), (u_longlong_t)BPE_GET_LSIZE(bp), (u_longlong_t)BPE_GET_PSIZE(bp), (u_longlong_t)bp->blk_birth); return; } blkbuf[0] = '\0'; for (int i = 0; i < ndvas; i++) (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); if (BP_IS_HOLE(bp)) { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL B=%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)bp->blk_birth); } else { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)BP_GET_FILL(bp), (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); } } static void print_indirect(blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; if (!BP_IS_EMBEDDED(bp)) { ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); } (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_phys_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += BP_GET_FILL(cbp); } if (!err) ASSERT3U(fill, ==, BP_GET_FILL(bp)); arc_buf_destroy(buf, &buf); } return (err); } /*ARGSUSED*/ static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; int j; zbookmark_phys_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } /*ARGSUSED*/ static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; /* make sure nicenum has enough space */ CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ); if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ sizeof (nice)); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO (void) printf("\t\tclones = %llu\n", (u_longlong_t)dd->dd_clones); } /*ARGSUSED*/ static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; /* make sure nicenum has enough space */ CTASSERT(sizeof (used) >= NN_NUMBUF_SZ); CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ); CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ); CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ); if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, sizeof (uncompressed)); zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } /* ARGSUSED */ static int dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; if (bp->blk_birth != 0) { snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); } return (0); } static void dump_bptree(objset_t *os, uint64_t obj, const char *name) { char bytes[32]; bptree_phys_t *bt; dmu_buf_t *db; /* make sure nicenum has enough space */ CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); if (dump_opt['d'] < 3) return; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); (void) printf("\n %s: %llu datasets, %s\n", name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); dmu_buf_rele(db, FTAG); if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); } /* ARGSUSED */ static int dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) { char bytes[32]; char comp[32]; char uncomp[32]; /* make sure nicenum has enough space */ CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); (void) printf(" %*s: object %llu, %llu local blkptrs, " "%llu subobjs in object %llu, %s (%s/%s comp)\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, (u_longlong_t)bpo->bpo_phys->bpo_subobjs, bytes, comp, uncomp); for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } dump_full_bpobj(&subbpo, "subobj", indent + 1); bpobj_close(&subbpo); } } else { (void) printf(" %*s: object %llu, %llu blkptrs, %s\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } if (dump_opt['d'] < 5) return; if (indent == 0) { (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); (void) printf("\n"); } } static void bpobj_count_refd(bpobj_t *bpo) { mos_obj_refd(bpo->bpo_object); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { mos_obj_refd(bpo->bpo_phys->bpo_subobjs); for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } bpobj_count_refd(&subbpo); bpobj_close(&subbpo); } } } static void dump_deadlist(dsl_deadlist_t *dl) { dsl_deadlist_entry_t *dle; uint64_t unused; char bytes[32]; char comp[32]; char uncomp[32]; uint64_t empty_bpobj = dmu_objset_spa(dl->dl_os)->spa_dsl_pool->dp_empty_bpobj; /* force the tree to be loaded */ dsl_deadlist_space_range(dl, 0, UINT64_MAX, &unused, &unused, &unused); if (dl->dl_oldfmt) { if (dl->dl_bpobj.bpo_object != empty_bpobj) bpobj_count_refd(&dl->dl_bpobj); } else { mos_obj_refd(dl->dl_object); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { if (dle->dle_bpobj.bpo_object != empty_bpobj) bpobj_count_refd(&dle->dle_bpobj); } } /* make sure nicenum has enough space */ CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); if (dump_opt['d'] < 3) return; if (dl->dl_oldfmt) { dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); return; } zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); (void) printf("\n Deadlist: %s (%s/%s comp)\n", bytes, comp, uncomp); if (dump_opt['d'] < 4) return; (void) printf("\n"); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { if (dump_opt['d'] >= 5) { char buf[128]; (void) snprintf(buf, sizeof (buf), "mintxg %llu -> obj %llu", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); dump_full_bpobj(&dle->dle_bpobj, buf, 0); } else { (void) printf("mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); } } } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static objset_t *sa_os = NULL; static sa_attr_type_t *sa_attr_table = NULL; static int open_objset(const char *path, dmu_objset_type_t type, void *tag, objset_t **osp) { int err; uint64_t sa_attrs = 0; uint64_t version = 0; VERIFY3P(sa_os, ==, NULL); err = dmu_objset_own(path, type, B_TRUE, tag, osp); if (err != 0) { (void) fprintf(stderr, "failed to own dataset '%s': %s\n", path, strerror(err)); return (err); } if (dmu_objset_type(*osp) == DMU_OST_ZFS) { (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version); if (version >= ZPL_VERSION_SA) { (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs); } err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table); if (err != 0) { (void) fprintf(stderr, "sa_setup failed: %s\n", strerror(err)); dmu_objset_disown(*osp, tag); *osp = NULL; } } sa_os = *osp; return (0); } static void close_objset(objset_t *os, void *tag) { VERIFY3P(os, ==, sa_os); if (os->os_sa != NULL) sa_tear_down(os); dmu_objset_disown(os, tag); sa_attr_table = NULL; sa_os = NULL; } static void fuid_table_destroy() { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the domain-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { char *domain; domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } /*ARGSUSED*/ static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; VERIFY3P(os, ==, sa_os); if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; if (dump_opt['d'] > 4) { error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error == ESTALE) { (void) snprintf(path, sizeof (path), "on delete queue"); } else if (error != 0) { leaked_objects++; (void) snprintf(path, sizeof (path), "path not found, possibly leaked"); } (void) printf("\tpath %s\n", path); } dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); sa_handle_destroy(hdl); } /*ARGSUSED*/ static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bpobj */ dump_bpobj, /* bpobj header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_history_offsets, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group used */ dump_zap, /* ZFS user/group quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_bpobj_subobjs, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static void -dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header) +dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header, + uint64_t *dnode_slots_used) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; void *bonus = NULL; size_t bsize = 0; - char iblk[32], dblk[32], lsize[32], asize[32], fill[32]; + char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; char bonus_size[32]; char aux[50]; int error; /* make sure nicenum has enough space */ CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ); CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ); CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ); if (*print_header) { - (void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n", - "Object", "lvl", "iblk", "dblk", "dsize", "lsize", - "%full", "type"); + (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", + "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", + "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } dmu_object_info_from_dnode(dn, &doi); + if (dnode_slots_used != NULL) + *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; + zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); + zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } - (void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n", - (u_longlong_t)object, doi.doi_indirection, iblk, dblk, - asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); + (void) printf("%10" PRIu64 + " %3u %5s %5s %5s %5s %5s %6s %s%s\n", + object, doi.doi_indirection, iblk, dblk, + asize, dnsize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { - (void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n", - "", "", "", "", "", bonus_size, "bonus", + (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", + "", "", "", "", "", "", bonus_size, "bonus", ZDB_OT_NAME(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); *print_header = 1; } if (verbosity >= 5) dump_indirect(dn); if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; /* make sure nicenum has enough space */ CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ); error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize, sizeof (segsize)); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } if (db != NULL) dmu_buf_rele(db, FTAG); } static void count_dir_mos_objects(dsl_dir_t *dd) { mos_obj_refd(dd->dd_object); mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); mos_obj_refd(dsl_dir_phys(dd)->dd_clones); } static void count_ds_mos_objects(dsl_dataset_t *ds) { mos_obj_refd(ds->ds_object); mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); if (!dsl_dataset_is_snapshot(ds)) { count_dir_mos_objects(ds->ds_dir); } } static const char *objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; static void dump_dir(objset_t *os) { dmu_objset_stats_t dds; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[ZFS_MAX_DATASET_NAME_LEN]; const char *type = "UNKNOWN"; int verbosity = dump_opt['d']; int print_header = 1; unsigned i; int error; + uint64_t total_slots_used = 0; + uint64_t max_slot_used = 0; + uint64_t dnode_slots; /* make sure nicenum has enough space */ CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = BP_GET_FILL(os->os_rootbp); refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); if (verbosity >= 4) { (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); (void) snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf, (dds.dds_inconsistent) ? " (inconsistent)" : ""); if (zopt_objects != 0) { for (i = 0; i < zopt_objects; i++) dump_object(os, zopt_object[i], verbosity, - &print_header); + &print_header, NULL); (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) { dsl_dataset_t *ds = dmu_objset_ds(os); dump_deadlist(&ds->ds_deadlist); if (dsl_dataset_remap_deadlist_exists(ds)) { (void) printf("ds_remap_deadlist:\n"); dump_deadlist(&ds->ds_remap_deadlist); } count_ds_mos_objects(ds); } if (verbosity < 2) return; if (BP_IS_HOLE(os->os_rootbp)) return; - dump_object(os, 0, verbosity, &print_header); + dump_object(os, 0, verbosity, &print_header, NULL); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { - dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header); - dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header); + dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, + NULL); + dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, + NULL); } object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { - dump_object(os, object, verbosity, &print_header); + dump_object(os, object, verbosity, &print_header, &dnode_slots); object_count++; + total_slots_used += dnode_slots; + max_slot_used = object + dnode_slots - 1; } ASSERT3U(object_count, ==, usedobjs); (void) printf("\n"); + (void) printf(" Dnode slots:\n"); + (void) printf("\tTotal used: %10llu\n", + (u_longlong_t)total_slots_used); + (void) printf("\tMax used: %10llu\n", + (u_longlong_t)max_slot_used); + (void) printf("\tPercent empty: %10lf\n", + (double)(max_slot_used - total_slots_used)*100 / + (double)max_slot_used); + + (void) printf("\n"); + if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } if (leaked_objects != 0) { (void) printf("%d potentially leaked objects detected\n", leaked_objects); leaked_objects = 0; } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf("%s", header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); if (dump_opt['u'] >= 3) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf("\tcheckpoint_txg = %llu\n", (u_longlong_t)ub->ub_checkpoint_txg); (void) printf("%s", footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift) { vdev_t vd; vdev_t *vdp = &vd; char header[ZDB_MAX_UB_HEADER_SIZE]; vd.vdev_ashift = ashift; vdp->vdev_top = vdp; for (int i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i); uberblock_t *ub = (void *)((char *)lbl + uoff); if (uberblock_verify(ub)) continue; (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, "Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); } } static char curpath[PATH_MAX]; /* * Iterate through the path components, recursively passing * current one's obj and remaining path until we find the obj * for the last one. */ static int dump_path_impl(objset_t *os, uint64_t obj, char *name) { int err; int header = 1; uint64_t child_obj; char *s; dmu_buf_t *db; dmu_object_info_t doi; if ((s = strchr(name, '/')) != NULL) *s = '\0'; err = zap_lookup(os, obj, name, 8, 1, &child_obj); (void) strlcat(curpath, name, sizeof (curpath)); if (err != 0) { (void) fprintf(stderr, "failed to lookup %s: %s\n", curpath, strerror(err)); return (err); } child_obj = ZFS_DIRENT_OBJ(child_obj); err = sa_buf_hold(os, child_obj, FTAG, &db); if (err != 0) { (void) fprintf(stderr, "failed to get SA dbuf for obj %llu: %s\n", (u_longlong_t)child_obj, strerror(err)); return (EINVAL); } dmu_object_info_from_db(db, &doi); sa_buf_rele(db, FTAG); if (doi.doi_bonus_type != DMU_OT_SA && doi.doi_bonus_type != DMU_OT_ZNODE) { (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", doi.doi_bonus_type, (u_longlong_t)child_obj); return (EINVAL); } if (dump_opt['v'] > 6) { (void) printf("obj=%llu %s type=%d bonustype=%d\n", (u_longlong_t)child_obj, curpath, doi.doi_type, doi.doi_bonus_type); } (void) strlcat(curpath, "/", sizeof (curpath)); switch (doi.doi_type) { case DMU_OT_DIRECTORY_CONTENTS: if (s != NULL && *(s + 1) != '\0') return (dump_path_impl(os, child_obj, s + 1)); /*FALLTHROUGH*/ case DMU_OT_PLAIN_FILE_CONTENTS: - dump_object(os, child_obj, dump_opt['v'], &header); + dump_object(os, child_obj, dump_opt['v'], &header, NULL); return (0); default: (void) fprintf(stderr, "object %llu has non-file/directory " "type %d\n", (u_longlong_t)obj, doi.doi_type); break; } return (EINVAL); } /* * Dump the blocks for the object specified by path inside the dataset. */ static int dump_path(char *ds, char *path) { int err; objset_t *os; uint64_t root_obj; err = open_objset(ds, DMU_OST_ZFS, FTAG, &os); if (err != 0) return (err); err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); if (err != 0) { (void) fprintf(stderr, "can't lookup root znode: %s\n", strerror(err)); dmu_objset_disown(os, FTAG); return (EINVAL); } (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); err = dump_path_impl(os, root_obj, path); close_objset(os, FTAG); return (err); } static int dump_label(const char *dev) { int fd; vdev_label_t label; char path[MAXPATHLEN]; char *buf = label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist); struct stat64 statbuf; uint64_t psize, ashift; boolean_t label_found = B_FALSE; (void) strlcpy(path, dev, sizeof (path)); if (dev[0] == '/') { if (strncmp(dev, ZFS_DISK_ROOTD, strlen(ZFS_DISK_ROOTD)) == 0) { (void) snprintf(path, sizeof (path), "%s%s", ZFS_RDISK_ROOTD, dev + strlen(ZFS_DISK_ROOTD)); } } else if (stat64(path, &statbuf) != 0) { char *s; (void) snprintf(path, sizeof (path), "%s%s", ZFS_RDISK_ROOTD, dev); if (((s = strrchr(dev, 's')) == NULL && (s = strchr(dev, 'p')) == NULL) || !isdigit(*(s + 1))) (void) strlcat(path, "s0", sizeof (path)); } if ((fd = open64(path, O_RDONLY)) < 0) { (void) fprintf(stderr, "cannot open '%s': %s\n", path, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) fprintf(stderr, "failed to stat '%s': %s\n", path, strerror(errno)); (void) close(fd); exit(1); } if (S_ISBLK(statbuf.st_mode)) { (void) fprintf(stderr, "cannot use '%s': character device required\n", path); (void) close(fd); exit(1); } psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); for (int l = 0; l < VDEV_LABELS; l++) { nvlist_t *config = NULL; if (!dump_opt['q']) { (void) printf("------------------------------------\n"); (void) printf("LABEL %d\n", l); (void) printf("------------------------------------\n"); } if (pread64(fd, &label, sizeof (label), vdev_label_offset(psize, l, 0)) != sizeof (label)) { if (!dump_opt['q']) (void) printf("failed to read label %d\n", l); continue; } if (nvlist_unpack(buf, buflen, &config, 0) != 0) { if (!dump_opt['q']) (void) printf("failed to unpack label %d\n", l); ashift = SPA_MINBLOCKSHIFT; } else { nvlist_t *vdev_tree = NULL; if (!dump_opt['q']) dump_nvlist(config, 4); if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; nvlist_free(config); label_found = B_TRUE; } if (dump_opt['u']) dump_label_uberblocks(&label, ashift); } (void) close(fd); return (label_found ? 0 : 2); } static uint64_t dataset_feature_count[SPA_FEATURES]; static uint64_t remap_deadlist_count = 0; /*ARGSUSED*/ static int dump_one_dir(const char *dsname, void *arg) { int error; objset_t *os; error = open_objset(dsname, DMU_OST_ANY, FTAG, &os); if (error != 0) return (0); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { if (!dmu_objset_ds(os)->ds_feature_inuse[f]) continue; ASSERT(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET); dataset_feature_count[f]++; } if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { remap_deadlist_count++; } dump_dir(os); close_objset(os, FTAG); fuid_table_destroy(); return (0); } /* * Block statistics. */ #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; uint64_t zb_gangs; uint64_t zb_ditto_samevdev; uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) static const char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "other", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_removing_size; uint64_t zcb_checkpoint_size; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] [BPE_PAYLOAD_SIZE]; uint64_t zcb_start; hrtime_t zcb_lastprint; uint64_t zcb_totalasize; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; uint32_t **zcb_vd_obsolete_counts; } zdb_cb_t; static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; for (int i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; int equal; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; /* * The histogram is only big enough to record blocks up to * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, * "other", bucket. */ unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); zb->zb_psize_histogram[idx]++; zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal != 0) zb->zb_ditto_samevdev++; break; } } if (BP_IS_EMBEDDED(bp)) { zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] [BPE_GET_PSIZE(bp)]++; return; } if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } static void zdb_blkptr_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; int ioerr = zio->io_error; zdb_cb_t *zcb = zio->io_private; zbookmark_phys_t *zb = &zio->io_bookmark; abd_free(zio->io_abd); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { char blkbuf[BP_SPRINTF_LEN]; zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } mutex_exit(&spa->spa_scrub_lock); } static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; dmu_object_type_t type; boolean_t is_metadata; if (bp == NULL) return (0); if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } if (BP_IS_HOLE(bp)) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); if (!BP_IS_EMBEDDED(bp) && (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { size_t size = BP_GET_PSIZE(bp); abd_t *abd = abd_alloc(size, B_FALSE); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > max_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, abd, size, zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); } zcb->zcb_readfails = 0; /* only call gethrtime() every 100 blocks */ static int iters; if (++iters > 100) iters = 0; else return (0); if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { uint64_t now = gethrtime(); char buf[10]; uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; int kb_per_sec = 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); int sec_remaining = (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; /* make sure nicenum has enough space */ CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ); zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "\r%5s completed (%4dMB/s) " "estimated time remaining: %uhr %02umin %02usec ", buf, kb_per_sec / 1024, sec_remaining / 60 / 60, sec_remaining / 60 % 60, sec_remaining % 60); zcb->zcb_lastprint = now; } return (0); } static void zdb_leak(void *arg, uint64_t start, uint64_t size) { vdev_t *vd = arg; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } static metaslab_ops_t zdb_metaslab_ops = { NULL /* alloc */ }; static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb; ddt_entry_t dde; int error; bzero(&ddb, sizeof (ddb)); while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } if (!dump_opt['L']) { ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } } ASSERT(error == ENOENT); } /* ARGSUSED */ static void claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, uint64_t size, void *arg) { /* * This callback was called through a remap from * a device being removed. Therefore, the vdev that * this callback is applied to is a concrete * vdev. */ ASSERT(vdev_is_concrete(vd)); VERIFY0(metaslab_claim_impl(vd, offset, size, spa_min_claim_txg(vd->vdev_spa))); } static void claim_segment_cb(void *arg, uint64_t offset, uint64_t size) { vdev_t *vd = arg; vdev_indirect_ops.vdev_op_remap(vd, offset, size, claim_segment_impl_cb, NULL); } /* * After accounting for all allocated blocks that are directly referenced, * we might have missed a reference to a block from a partially complete * (and thus unused) indirect mapping object. We perform a secondary pass * through the metaslabs we have already mapped and claim the destination * blocks. */ static void zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) { if (spa->spa_vdev_removal == NULL) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_vdev_removal_t *svr = spa->spa_vdev_removal; vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { metaslab_t *msp = vd->vdev_ms[msi]; if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) break; ASSERT0(range_tree_space(svr->svr_allocd_segs)); if (msp->ms_sm != NULL) { VERIFY0(space_map_load(msp->ms_sm, svr->svr_allocd_segs, SM_ALLOC)); /* * Clear everything past what has been synced unless * it's past the spacemap, because we have not allocated * mappings for it yet. */ uint64_t vim_max_offset = vdev_indirect_mapping_max_offset(vim); uint64_t sm_end = msp->ms_sm->sm_start + msp->ms_sm->sm_size; if (sm_end > vim_max_offset) range_tree_clear(svr->svr_allocd_segs, vim_max_offset, sm_end - vim_max_offset); } zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); } spa_config_exit(spa, SCL_CONFIG, FTAG); } /* ARGSUSED */ static int increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; spa_t *spa = zcb->zcb_spa; vdev_t *vd; const dva_t *dva = &bp->blk_dva[0]; ASSERT(!dump_opt['L']); ASSERT3U(BP_GET_NDVAS(bp), ==, 1); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); ASSERT3P(vd, !=, NULL); spa_config_exit(spa, SCL_VDEV, FTAG); ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); vdev_indirect_mapping_increment_obsolete_count( vd->vdev_indirect_mapping, DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), zcb->zcb_vd_obsolete_counts[vd->vdev_id]); return (0); } static uint32_t * zdb_load_obsolete_counts(vdev_t *vd) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; spa_t *spa = vd->vdev_spa; spa_condensing_indirect_phys_t *scip = &spa->spa_condensing_indirect_phys; uint32_t *counts; EQUIV(vdev_obsolete_sm_object(vd) != 0, vd->vdev_obsolete_sm != NULL); counts = vdev_indirect_mapping_load_obsolete_counts(vim); if (vd->vdev_obsolete_sm != NULL) { vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, vd->vdev_obsolete_sm); } if (scip->scip_vdev == vd->vdev_id && scip->scip_prev_obsolete_sm_object != 0) { space_map_t *prev_obsolete_sm = NULL; VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); space_map_update(prev_obsolete_sm); vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, prev_obsolete_sm); space_map_close(prev_obsolete_sm); } return (counts); } typedef struct checkpoint_sm_exclude_entry_arg { vdev_t *cseea_vd; uint64_t cseea_checkpoint_size; } checkpoint_sm_exclude_entry_arg_t; static int checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) { checkpoint_sm_exclude_entry_arg_t *cseea = arg; vdev_t *vd = cseea->cseea_vd; metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; uint64_t end = sme->sme_offset + sme->sme_run; ASSERT(sme->sme_type == SM_FREE); /* * Since the vdev_checkpoint_sm exists in the vdev level * and the ms_sm space maps exist in the metaslab level, * an entry in the checkpoint space map could theoretically * cross the boundaries of the metaslab that it belongs. * * In reality, because of the way that we populate and * manipulate the checkpoint's space maps currently, * there shouldn't be any entries that cross metaslabs. * Hence the assertion below. * * That said, there is no fundamental requirement that * the checkpoint's space map entries should not cross * metaslab boundaries. So if needed we could add code * that handles metaslab-crossing segments in the future. */ VERIFY3U(sme->sme_offset, >=, ms->ms_start); VERIFY3U(end, <=, ms->ms_start + ms->ms_size); /* * By removing the entry from the allocated segments we * also verify that the entry is there to begin with. */ mutex_enter(&ms->ms_lock); range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); mutex_exit(&ms->ms_lock); cseea->cseea_checkpoint_size += sme->sme_run; return (0); } static void zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) { spa_t *spa = vd->vdev_spa; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; /* * If there is no vdev_top_zap, we are in a pool whose * version predates the pool checkpoint feature. */ if (vd->vdev_top_zap == 0) return; /* * If there is no reference of the vdev_checkpoint_sm in * the vdev_top_zap, then one of the following scenarios * is true: * * 1] There is no checkpoint * 2] There is a checkpoint, but no checkpointed blocks * have been freed yet * 3] The current vdev is indirect * * In these cases we return immediately. */ if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) return; VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); checkpoint_sm_exclude_entry_arg_t cseea; cseea.cseea_vd = vd; cseea.cseea_checkpoint_size = 0; VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); space_map_update(checkpoint_sm); VERIFY0(space_map_iterate(checkpoint_sm, checkpoint_sm_exclude_entry_cb, &cseea)); space_map_close(checkpoint_sm); zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; } static void zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); } } static void load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; ASSERT3U(i, ==, vd->vdev_id); if (vd->vdev_ops == &vdev_indirect_ops) continue; for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; (void) fprintf(stderr, "\rloading concrete vdev %llu, " "metaslab %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)msp->ms_id, (longlong_t)vd->vdev_ms_count); mutex_enter(&msp->ms_lock); metaslab_unload(msp); /* * We don't want to spend the CPU manipulating the * size-ordered tree, so clear the range_tree ops. */ msp->ms_allocatable->rt_ops = NULL; if (msp->ms_sm != NULL) { VERIFY0(space_map_load(msp->ms_sm, msp->ms_allocatable, maptype)); } if (!msp->ms_loaded) msp->ms_loaded = B_TRUE; mutex_exit(&msp->ms_lock); } } } /* * vm_idxp is an in-out parameter which (for indirect vdevs) is the * index in vim_entries that has the first entry in this metaslab. * On return, it will be set to the first entry after this metaslab. */ static void load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, uint64_t *vim_idxp) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; mutex_enter(&msp->ms_lock); metaslab_unload(msp); /* * We don't want to spend the CPU manipulating the * size-ordered tree, so clear the range_tree ops. */ msp->ms_allocatable->rt_ops = NULL; for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); (*vim_idxp)++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[*vim_idxp]; uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); ASSERT3U(ent_offset, >=, msp->ms_start); if (ent_offset >= msp->ms_start + msp->ms_size) break; /* * Mappings do not cross metaslab boundaries, * because we create them by walking the metaslabs. */ ASSERT3U(ent_offset + ent_len, <=, msp->ms_start + msp->ms_size); range_tree_add(msp->ms_allocatable, ent_offset, ent_len); } if (!msp->ms_loaded) msp->ms_loaded = B_TRUE; mutex_exit(&msp->ms_lock); } static void zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; ASSERT3U(c, ==, vd->vdev_id); if (vd->vdev_ops != &vdev_indirect_ops) continue; /* * Note: we don't check for mapping leaks on * removing vdevs because their ms_allocatable's * are used to look for leaks in allocated space. */ zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); /* * Normally, indirect vdevs don't have any * metaslabs. We want to set them up for * zio_claim(). */ VERIFY0(vdev_metaslab_init(vd, 0)); vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; uint64_t vim_idx = 0; for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { (void) fprintf(stderr, "\rloading indirect vdev %llu, " "metaslab %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)vd->vdev_ms[m]->ms_id, (longlong_t)vd->vdev_ms_count); load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], &vim_idx); } ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); } } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; if (!dump_opt['L']) { dsl_pool_t *dp = spa->spa_dsl_pool; vdev_t *rvd = spa->spa_root_vdev; /* * We are going to be changing the meaning of the metaslab's * ms_allocatable. Ensure that the allocator doesn't try to * use the tree. */ spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; spa->spa_log_class->mc_ops = &zdb_metaslab_ops; zcb->zcb_vd_obsolete_counts = umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), UMEM_NOFAIL); /* * For leak detection, we overload the ms_allocatable trees * to contain allocated segments instead of free segments. * As a result, we can't use the normal metaslab_load/unload * interfaces. */ zdb_leak_init_prepare_indirect_vdevs(spa, zcb); load_concrete_ms_allocatable_trees(spa, SM_ALLOC); /* * On load_concrete_ms_allocatable_trees() we loaded all the * allocated entries from the ms_sm to the ms_allocatable for * each metaslab. If the pool has a checkpoint or is in the * middle of discarding a checkpoint, some of these blocks * may have been freed but their ms_sm may not have been * updated because they are referenced by the checkpoint. In * order to avoid false-positives during leak-detection, we * go through the vdev's checkpoint space map and exclude all * its entries from their relevant ms_allocatable. * * We also aggregate the space held by the checkpoint and add * it to zcb_checkpoint_size. * * Note that at this point we are also verifying that all the * entries on the checkpoint_sm are marked as allocated in * the ms_sm of their relevant metaslab. * [see comment in checkpoint_sm_exclude_entry_cb()] */ zdb_leak_init_exclude_checkpoint(spa, zcb); /* for cleaner progress output */ (void) fprintf(stderr, "\n"); if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)); (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, increment_indirect_mapping_cb, zcb, NULL); } } else { /* * If leak tracing is disabled, we still need to consider * any checkpointed space in our space verification. */ zcb->zcb_checkpoint_size += spa_get_checkpoint_space(spa); } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static boolean_t zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) { boolean_t leaks = B_FALSE; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; uint64_t total_leaked = 0; ASSERT(vim != NULL); for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { vdev_indirect_mapping_entry_phys_t *vimep = &vim->vim_entries[i]; uint64_t obsolete_bytes = 0; uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; /* * This is not very efficient but it's easy to * verify correctness. */ for (uint64_t inner_offset = 0; inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); inner_offset += 1 << vd->vdev_ashift) { if (range_tree_contains(msp->ms_allocatable, offset + inner_offset, 1 << vd->vdev_ashift)) { obsolete_bytes += 1 << vd->vdev_ashift; } } int64_t bytes_leaked = obsolete_bytes - zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); if (bytes_leaked != 0 && (vdev_obsolete_counts_are_precise(vd) || dump_opt['d'] >= 5)) { (void) printf("obsolete indirect mapping count " "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), (u_longlong_t)bytes_leaked); } total_leaked += ABS(bytes_leaked); } if (!vdev_obsolete_counts_are_precise(vd) && total_leaked > 0) { int pct_leaked = total_leaked * 100 / vdev_indirect_mapping_bytes_mapped(vim); (void) printf("cannot verify obsolete indirect mapping " "counts of vdev %llu because precise feature was not " "enabled when it was removed: %d%% (%llx bytes) of mapping" "unreferenced\n", (u_longlong_t)vd->vdev_id, pct_leaked, (u_longlong_t)total_leaked); } else if (total_leaked > 0) { (void) printf("obsolete indirect mapping count mismatch " "for vdev %llu -- %llx total bytes mismatched\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)total_leaked); leaks |= B_TRUE; } vdev_indirect_mapping_free_obsolete_counts(vim, zcb->zcb_vd_obsolete_counts[vd->vdev_id]); zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; return (leaks); } static boolean_t zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) { boolean_t leaks = B_FALSE; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (unsigned c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; metaslab_group_t *mg = vd->vdev_mg; if (zcb->zcb_vd_obsolete_counts[c] != NULL) { leaks |= zdb_check_for_obsolete_leaks(vd, zcb); } for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; ASSERT3P(mg, ==, msp->ms_group); /* * ms_allocatable has been overloaded * to contain allocated segments. Now that * we finished traversing all blocks, any * block that remains in the ms_allocatable * represents an allocated block that we * did not claim during the traversal. * Claimed blocks would have been removed * from the ms_allocatable. For indirect * vdevs, space remaining in the tree * represents parts of the mapping that are * not referenced, which is not a bug. */ if (vd->vdev_ops == &vdev_indirect_ops) { range_tree_vacate(msp->ms_allocatable, NULL, NULL); } else { range_tree_vacate(msp->ms_allocatable, zdb_leak, vd); } if (msp->ms_loaded) { msp->ms_loaded = B_FALSE; } } } umem_free(zcb->zcb_vd_obsolete_counts, rvd->vdev_children * sizeof (uint32_t *)); zcb->zcb_vd_obsolete_counts = NULL; } return (leaks); } /* ARGSUSED */ static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 5) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } static int dump_block_stats(spa_t *spa) { zdb_cb_t zcb; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD; boolean_t leaks = B_FALSE; bzero(&zcb, sizeof (zcb)); (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * Load all space maps as SM_ALLOC maps, then traverse the pool * claiming each block we discover. If the pool is perfectly * consistent, the space maps will be empty when we're done. * Anything left over is a leak; any block we can't claim (because * it's not part of any space map) is a double allocation, * reference to a freed block, or an unclaimed log block. */ zdb_leak_init(spa, &zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, count_block_cb, &zcb, NULL); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, count_block_cb, &zcb, NULL); } zdb_claim_removing(spa, &zcb); if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, &zcb, NULL)); } if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); /* * If we've traversed the data blocks then we need to wait for those * I/Os to complete. We leverage "The Godfather" zio to wait on * all async I/Os to complete. */ if (dump_opt['c']) { for (int i = 0; i < max_ncpus; i++) { (void) zio_wait(spa->spa_async_zio_root[i]); spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } } if (zcb.zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (int e = 0; e < 256; e++) { if (zcb.zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb.zcb_errors[e]); } } } /* * Report any leaked segments. */ leaks |= zdb_leak_fini(spa, &zcb); tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)); total_found = tzb->zb_asize - zcb.zcb_dedup_asize + zcb.zcb_removing_size + zcb.zcb_checkpoint_size; if (total_found == total_alloc) { if (!dump_opt['L']) (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = B_TRUE; } if (tzb->zb_count == 0) return (2); (void) printf("\n"); (void) printf("\tbp count: %10llu\n", (u_longlong_t)tzb->zb_count); (void) printf("\tganged count: %10llu\n", (longlong_t)tzb->zb_gangs); (void) printf("\tbp logical: %10llu avg: %6llu\n", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\tbp physical: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\tbp allocated: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\tbp deduped: %10llu ref>1:" " %6llu deduplication: %6.2f\n", (u_longlong_t)zcb.zcb_dedup_asize, (u_longlong_t)zcb.zcb_dedup_blocks, (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); for (bp_embedded_type_t i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { if (zcb.zcb_embedded_blocks[i] == 0) continue; (void) printf("\n"); (void) printf("\tadditional, non-pointer bps of type %u: " "%10llu\n", i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); if (dump_opt['b'] >= 3) { (void) printf("\t number of (compressed) bytes: " "number of bps\n"); dump_histogram(zcb.zcb_embedded_histogram[i], sizeof (zcb.zcb_embedded_histogram[i]) / sizeof (zcb.zcb_embedded_histogram[i][0]), 0); } } if (tzb->zb_ditto_samevdev != 0) { (void) printf("\tDittoed blocks on same vdev: %llu\n", (longlong_t)tzb->zb_ditto_samevdev); } for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; if (vim == NULL) { continue; } char mem[32]; zdb_nicenum(vdev_indirect_mapping_num_entries(vim), mem, vdev_indirect_mapping_size(vim)); (void) printf("\tindirect vdev id %llu has %llu segments " "(%s in memory)\n", (longlong_t)vd->vdev_id, (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); } if (dump_opt['b'] >= 2) { int l, t, level; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= ZDB_OT_TOTAL; t++) { char csize[32], lsize[32], psize[32], asize[32]; char avg[32], gang[32]; const char *typename; /* make sure nicenum has enough space */ CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ); CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ); if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb.zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb.zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize, sizeof (csize)); zdb_nicenum(zb->zb_lsize, lsize, sizeof (lsize)); zdb_nicenum(zb->zb_psize, psize, sizeof (psize)); zdb_nicenum(zb->zb_asize, asize, sizeof (asize)); zdb_nicenum(zb->zb_asize / zb->zb_count, avg, sizeof (avg)); zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { (void) printf("\t number of ganged " "blocks: %s\n", gang); } if (dump_opt['b'] >= 4) { (void) printf("psize " "(in 512-byte sectors): " "number of blocks\n"); dump_histogram(zb->zb_psize_histogram, PSIZE_HISTO_SIZE, 0); } } } } (void) printf("\n"); if (leaks) return (2); if (zcb.zcb_haderrors) return (3); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; /* ARGSUSED */ static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)BP_GET_FILL(bp), avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total; ddt_stat_t dds_total; bzero(&ddh_total, sizeof (ddh_total)); bzero(&dds_total, sizeof (dds_total)); avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static int verify_device_removal_feature_counts(spa_t *spa) { uint64_t dr_feature_refcount = 0; uint64_t oc_feature_refcount = 0; uint64_t indirect_vdev_count = 0; uint64_t precise_vdev_count = 0; uint64_t obsolete_counts_object_count = 0; uint64_t obsolete_sm_count = 0; uint64_t obsolete_counts_count = 0; uint64_t scip_count = 0; uint64_t obsolete_bpobj_count = 0; int ret = 0; spa_condensing_indirect_phys_t *scip = &spa->spa_condensing_indirect_phys; if (scip->scip_next_mapping_object != 0) { vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; ASSERT(scip->scip_prev_obsolete_sm_object != 0); ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); (void) printf("Condensing indirect vdev %llu: new mapping " "object %llu, prev obsolete sm %llu\n", (u_longlong_t)scip->scip_vdev, (u_longlong_t)scip->scip_next_mapping_object, (u_longlong_t)scip->scip_prev_obsolete_sm_object); if (scip->scip_prev_obsolete_sm_object != 0) { space_map_t *prev_obsolete_sm = NULL; VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); space_map_update(prev_obsolete_sm); dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); (void) printf("\n"); space_map_close(prev_obsolete_sm); } scip_count += 2; } for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; vdev_indirect_config_t *vic = &vd->vdev_indirect_config; if (vic->vic_mapping_object != 0) { ASSERT(vd->vdev_ops == &vdev_indirect_ops || vd->vdev_removing); indirect_vdev_count++; if (vd->vdev_indirect_mapping->vim_havecounts) { obsolete_counts_count++; } } if (vdev_obsolete_counts_are_precise(vd)) { ASSERT(vic->vic_mapping_object != 0); precise_vdev_count++; } if (vdev_obsolete_sm_object(vd) != 0) { ASSERT(vic->vic_mapping_object != 0); obsolete_sm_count++; } } (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], &dr_feature_refcount); (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], &oc_feature_refcount); if (dr_feature_refcount != indirect_vdev_count) { ret = 1; (void) printf("Number of indirect vdevs (%llu) " \ "does not match feature count (%llu)\n", (u_longlong_t)indirect_vdev_count, (u_longlong_t)dr_feature_refcount); } else { (void) printf("Verified device_removal feature refcount " \ "of %llu is correct\n", (u_longlong_t)dr_feature_refcount); } if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_OBSOLETE_BPOBJ) == 0) { obsolete_bpobj_count++; } obsolete_counts_object_count = precise_vdev_count; obsolete_counts_object_count += obsolete_sm_count; obsolete_counts_object_count += obsolete_counts_count; obsolete_counts_object_count += scip_count; obsolete_counts_object_count += obsolete_bpobj_count; obsolete_counts_object_count += remap_deadlist_count; if (oc_feature_refcount != obsolete_counts_object_count) { ret = 1; (void) printf("Number of obsolete counts objects (%llu) " \ "does not match feature count (%llu)\n", (u_longlong_t)obsolete_counts_object_count, (u_longlong_t)oc_feature_refcount); (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " "ob:%llu rd:%llu\n", (u_longlong_t)precise_vdev_count, (u_longlong_t)obsolete_sm_count, (u_longlong_t)obsolete_counts_count, (u_longlong_t)scip_count, (u_longlong_t)obsolete_bpobj_count, (u_longlong_t)remap_deadlist_count); } else { (void) printf("Verified indirect_refcount feature refcount " \ "of %llu is correct\n", (u_longlong_t)oc_feature_refcount); } return (ret); } #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" /* * Import the checkpointed state of the pool specified by the target * parameter as readonly. The function also accepts a pool config * as an optional parameter, else it attempts to infer the config by * the name of the target pool. * * Note that the checkpointed state's pool name will be the name of * the original pool with the above suffix appened to it. In addition, * if the target is not a pool name (e.g. a path to a dataset) then * the new_path parameter is populated with the updated path to * reflect the fact that we are looking into the checkpointed state. * * The function returns a newly-allocated copy of the name of the * pool containing the checkpointed state. When this copy is no * longer needed it should be freed with free(3C). Same thing * applies to the new_path parameter if allocated. */ static char * import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) { int error = 0; char *poolname, *bogus_name; /* If the target is not a pool, the extract the pool name */ char *path_start = strchr(target, '/'); if (path_start != NULL) { size_t poolname_len = path_start - target; poolname = strndup(target, poolname_len); } else { poolname = target; } if (cfg == NULL) { error = spa_get_stats(poolname, &cfg, NULL, 0); if (error != 0) { fatal("Tried to read config of pool \"%s\" but " "spa_get_stats() failed with error %d\n", poolname, error); } } (void) asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX); fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); error = spa_import(bogus_name, cfg, NULL, ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT); if (error != 0) { fatal("Tried to import pool \"%s\" but spa_import() failed " "with error %d\n", bogus_name, error); } if (new_path != NULL && path_start != NULL) (void) asprintf(new_path, "%s%s", bogus_name, path_start); if (target != poolname) free(poolname); return (bogus_name); } typedef struct verify_checkpoint_sm_entry_cb_arg { vdev_t *vcsec_vd; /* the following fields are only used for printing progress */ uint64_t vcsec_entryid; uint64_t vcsec_num_entries; } verify_checkpoint_sm_entry_cb_arg_t; #define ENTRIES_PER_PROGRESS_UPDATE 10000 static int verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) { verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; vdev_t *vd = vcsec->vcsec_vd; metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; uint64_t end = sme->sme_offset + sme->sme_run; ASSERT(sme->sme_type == SM_FREE); if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { (void) fprintf(stderr, "\rverifying vdev %llu, space map entry %llu of %llu ...", (longlong_t)vd->vdev_id, (longlong_t)vcsec->vcsec_entryid, (longlong_t)vcsec->vcsec_num_entries); } vcsec->vcsec_entryid++; /* * See comment in checkpoint_sm_exclude_entry_cb() */ VERIFY3U(sme->sme_offset, >=, ms->ms_start); VERIFY3U(end, <=, ms->ms_start + ms->ms_size); /* * The entries in the vdev_checkpoint_sm should be marked as * allocated in the checkpointed state of the pool, therefore * their respective ms_allocateable trees should not contain them. */ mutex_enter(&ms->ms_lock); range_tree_verify(ms->ms_allocatable, sme->sme_offset, sme->sme_run); mutex_exit(&ms->ms_lock); return (0); } /* * Verify that all segments in the vdev_checkpoint_sm are allocated * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's * ms_allocatable). * * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of * each vdev in the current state of the pool to the metaslab space maps * (ms_sm) of the checkpointed state of the pool. * * Note that the function changes the state of the ms_allocatable * trees of the current spa_t. The entries of these ms_allocatable * trees are cleared out and then repopulated from with the free * entries of their respective ms_sm space maps. */ static void verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) { vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; vdev_t *current_rvd = current->spa_root_vdev; load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; vdev_t *current_vd = current_rvd->vdev_child[c]; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { /* * Since we don't allow device removal in a pool * that has a checkpoint, we expect that all removed * vdevs were removed from the pool before the * checkpoint. */ ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); continue; } /* * If the checkpoint space map doesn't exist, then nothing * here is checkpointed so there's nothing to verify. */ if (current_vd->vdev_top_zap == 0 || zap_contains(spa_meta_objset(current), current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) continue; VERIFY0(zap_lookup(spa_meta_objset(current), current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), checkpoint_sm_obj, 0, current_vd->vdev_asize, current_vd->vdev_ashift)); space_map_update(checkpoint_sm); verify_checkpoint_sm_entry_cb_arg_t vcsec; vcsec.vcsec_vd = ckpoint_vd; vcsec.vcsec_entryid = 0; vcsec.vcsec_num_entries = space_map_length(checkpoint_sm) / sizeof (uint64_t); VERIFY0(space_map_iterate(checkpoint_sm, verify_checkpoint_sm_entry_cb, &vcsec)); dump_spacemap(current->spa_meta_objset, checkpoint_sm); space_map_close(checkpoint_sm); } /* * If we've added vdevs since we took the checkpoint, ensure * that their checkpoint space maps are empty. */ if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { for (uint64_t c = ckpoint_rvd->vdev_children; c < current_rvd->vdev_children; c++) { vdev_t *current_vd = current_rvd->vdev_child[c]; ASSERT3P(current_vd->vdev_checkpoint_sm, ==, NULL); } } /* for cleaner progress output */ (void) fprintf(stderr, "\n"); } /* * Verifies that all space that's allocated in the checkpoint is * still allocated in the current version, by checking that everything * in checkpoint's ms_allocatable (which is actually allocated, not * allocatable/free) is not present in current's ms_allocatable. * * Note that the function changes the state of the ms_allocatable * trees of both spas when called. The entries of all ms_allocatable * trees are cleared out and then repopulated from their respective * ms_sm space maps. In the checkpointed state we load the allocated * entries, and in the current state we load the free entries. */ static void verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) { vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; vdev_t *current_rvd = current->spa_root_vdev; load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); load_concrete_ms_allocatable_trees(current, SM_FREE); for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; vdev_t *current_vd = current_rvd->vdev_child[i]; if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { /* * See comment in verify_checkpoint_vdev_spacemaps() */ ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); continue; } for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; metaslab_t *current_msp = current_vd->vdev_ms[m]; (void) fprintf(stderr, "\rverifying vdev %llu of %llu, " "metaslab %llu of %llu ...", (longlong_t)current_vd->vdev_id, (longlong_t)current_rvd->vdev_children, (longlong_t)current_vd->vdev_ms[m]->ms_id, (longlong_t)current_vd->vdev_ms_count); /* * We walk through the ms_allocatable trees that * are loaded with the allocated blocks from the * ms_sm spacemaps of the checkpoint. For each * one of these ranges we ensure that none of them * exists in the ms_allocatable trees of the * current state which are loaded with the ranges * that are currently free. * * This way we ensure that none of the blocks that * are part of the checkpoint were freed by mistake. */ range_tree_walk(ckpoint_msp->ms_allocatable, (range_tree_func_t *)range_tree_verify, current_msp->ms_allocatable); } } /* for cleaner progress output */ (void) fprintf(stderr, "\n"); } static void verify_checkpoint_blocks(spa_t *spa) { spa_t *checkpoint_spa; char *checkpoint_pool; nvlist_t *config = NULL; int error = 0; /* * We import the checkpointed state of the pool (under a different * name) so we can do verification on it against the current state * of the pool. */ checkpoint_pool = import_checkpointed_state(spa->spa_name, config, NULL); ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); if (error != 0) { fatal("Tried to open pool \"%s\" but spa_open() failed with " "error %d\n", checkpoint_pool, error); } /* * Ensure that ranges in the checkpoint space maps of each vdev * are allocated according to the checkpointed state's metaslab * space maps. */ verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); /* * Ensure that allocated ranges in the checkpoint's metaslab * space maps remain allocated in the metaslab space maps of * the current state. */ verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); /* * Once we are done, we get rid of the checkpointed state. */ spa_close(checkpoint_spa, FTAG); free(checkpoint_pool); } static void dump_leftover_checkpoint_blocks(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; space_map_t *checkpoint_sm = NULL; uint64_t checkpoint_sm_obj; if (vd->vdev_top_zap == 0) continue; if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) continue; VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &checkpoint_sm_obj)); VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); space_map_update(checkpoint_sm); dump_spacemap(spa->spa_meta_objset, checkpoint_sm); space_map_close(checkpoint_sm); } } static int verify_checkpoint(spa_t *spa) { uberblock_t checkpoint; int error; if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) return (0); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT && !dump_opt['L']) { /* * If the feature is active but the uberblock is missing * then we must be in the middle of discarding the * checkpoint. */ (void) printf("\nPartially discarded checkpoint " "state found:\n"); dump_leftover_checkpoint_blocks(spa); return (0); } else if (error != 0) { (void) printf("lookup error %d when looking for " "checkpointed uberblock in MOS\n", error); return (error); } dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); if (checkpoint.ub_checkpoint_txg == 0) { (void) printf("\nub_checkpoint_txg not set in checkpointed " "uberblock\n"); error = 3; } if (error == 0 && !dump_opt['L']) verify_checkpoint_blocks(spa); return (error); } /* ARGSUSED */ static void mos_leaks_cb(void *arg, uint64_t start, uint64_t size) { for (uint64_t i = start; i < size; i++) { (void) printf("MOS object %llu referenced but not allocated\n", (u_longlong_t)i); } } static range_tree_t *mos_refd_objs; static void mos_obj_refd(uint64_t obj) { if (obj != 0 && mos_refd_objs != NULL) range_tree_add(mos_refd_objs, obj, 1); } static void mos_leak_vdev(vdev_t *vd) { mos_obj_refd(vd->vdev_dtl_object); mos_obj_refd(vd->vdev_ms_array); mos_obj_refd(vd->vdev_top_zap); mos_obj_refd(vd->vdev_indirect_config.vic_births_object); mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); mos_obj_refd(vd->vdev_leaf_zap); if (vd->vdev_checkpoint_sm != NULL) mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); if (vd->vdev_indirect_mapping != NULL) { mos_obj_refd(vd->vdev_indirect_mapping-> vim_phys->vimp_counts_object); } if (vd->vdev_obsolete_sm != NULL) mos_obj_refd(vd->vdev_obsolete_sm->sm_object); for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *ms = vd->vdev_ms[m]; mos_obj_refd(space_map_object(ms->ms_sm)); } for (uint64_t c = 0; c < vd->vdev_children; c++) { mos_leak_vdev(vd->vdev_child[c]); } } static int dump_mos_leaks(spa_t *spa) { int rv = 0; objset_t *mos = spa->spa_meta_objset; dsl_pool_t *dp = spa->spa_dsl_pool; /* Visit and mark all referenced objects in the MOS */ mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); mos_obj_refd(spa->spa_pool_props_object); mos_obj_refd(spa->spa_config_object); mos_obj_refd(spa->spa_ddt_stat_object); mos_obj_refd(spa->spa_feat_desc_obj); mos_obj_refd(spa->spa_feat_enabled_txg_obj); mos_obj_refd(spa->spa_feat_for_read_obj); mos_obj_refd(spa->spa_feat_for_write_obj); mos_obj_refd(spa->spa_history); mos_obj_refd(spa->spa_errlog_last); mos_obj_refd(spa->spa_errlog_scrub); mos_obj_refd(spa->spa_all_vdev_zaps); mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); bpobj_count_refd(&spa->spa_deferred_bpobj); mos_obj_refd(dp->dp_empty_bpobj); bpobj_count_refd(&dp->dp_obsolete_bpobj); bpobj_count_refd(&dp->dp_free_bpobj); mos_obj_refd(spa->spa_l2cache.sav_object); mos_obj_refd(spa->spa_spares.sav_object); mos_obj_refd(spa->spa_condensing_indirect_phys. scip_next_mapping_object); mos_obj_refd(spa->spa_condensing_indirect_phys. scip_prev_obsolete_sm_object); if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { vdev_indirect_mapping_t *vim = vdev_indirect_mapping_open(mos, spa->spa_condensing_indirect_phys.scip_next_mapping_object); mos_obj_refd(vim->vim_phys->vimp_counts_object); vdev_indirect_mapping_close(vim); } if (dp->dp_origin_snap != NULL) { dsl_dataset_t *ds; dsl_pool_config_enter(dp, FTAG); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, FTAG, &ds)); count_ds_mos_objects(ds); dump_deadlist(&ds->ds_deadlist); dsl_dataset_rele(ds, FTAG); dsl_pool_config_exit(dp, FTAG); count_ds_mos_objects(dp->dp_origin_snap); dump_deadlist(&dp->dp_origin_snap->ds_deadlist); } count_dir_mos_objects(dp->dp_mos_dir); if (dp->dp_free_dir != NULL) count_dir_mos_objects(dp->dp_free_dir); if (dp->dp_leak_dir != NULL) count_dir_mos_objects(dp->dp_leak_dir); mos_leak_vdev(spa->spa_root_vdev); for (uint64_t class = 0; class < DDT_CLASSES; class++) { for (uint64_t type = 0; type < DDT_TYPES; type++) { for (uint64_t cksum = 0; cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { ddt_t *ddt = spa->spa_ddt[cksum]; mos_obj_refd(ddt->ddt_object[type][class]); } } } /* * Visit all allocated objects and make sure they are referenced. */ uint64_t object = 0; while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { if (range_tree_contains(mos_refd_objs, object, 1)) { range_tree_remove(mos_refd_objs, object, 1); } else { dmu_object_info_t doi; const char *name; dmu_object_info(mos, object, &doi); if (doi.doi_type & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(doi.doi_type); name = dmu_ot_byteswap[bswap].ob_name; } else { name = dmu_ot[doi.doi_type].ot_name; } (void) printf("MOS object %llu (%s) leaked\n", (u_longlong_t)object, name); rv = 2; } } (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); if (!range_tree_is_empty(mos_refd_objs)) rv = 2; range_tree_vacate(mos_refd_objs, NULL, NULL); range_tree_destroy(mos_refd_objs); return (rv); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['M']) dump_metaslab_groups(spa); if (dump_opt['d'] || dump_opt['i']) { mos_refd_objs = range_tree_create(NULL, NULL); dump_dir(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dsl_pool_t *dp = spa->spa_dsl_pool; dump_full_bpobj(&spa->spa_deferred_bpobj, "Deferred frees", 0); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_full_bpobj(&dp->dp_free_bpobj, "Pool snapshot frees", 0); } if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)); dump_full_bpobj(&dp->dp_obsolete_bpobj, "Pool obsolete blocks", 0); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { dump_bptree(spa->spa_meta_objset, dp->dp_bptree_obj, "Pool dataset frees"); } dump_dtl(spa->spa_root_vdev, 0); } (void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); if (rc == 0 && !dump_opt['L']) rc = dump_mos_leaks(spa); for (spa_feature_t f = 0; f < SPA_FEATURES; f++) { uint64_t refcount; if (!(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET)) { ASSERT0(dataset_feature_count[f]); continue; } (void) feature_get_refcount(spa, &spa_feature_table[f], &refcount); if (dataset_feature_count[f] != refcount) { (void) printf("%s feature refcount mismatch: " "%lld datasets != %lld refcount\n", spa_feature_table[f].fi_uname, (longlong_t)dataset_feature_count[f], (longlong_t)refcount); rc = 2; } else { (void) printf("Verified %s feature refcount " "of %llu is correct\n", spa_feature_table[f].fi_uname, (longlong_t)refcount); } } if (rc == 0) { rc = verify_device_removal_feature_counts(spa); } } if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) rc = dump_block_stats(spa); if (rc == 0) rc = verify_spacemap_refcounts(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc == 0) rc = verify_checkpoint(spa); if (rc != 0) { dump_debug_buffer(); exit(rc); } } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_PHYS 0x0020 #define ZDB_FLAG_RAW 0x0040 #define ZDB_FLAG_PRINT_BLKPTR 0x0080 static int flagbits[256]; static void zdb_print_blkptr(blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); (void) write(1, buf, size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; unsigned nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); unsigned i, j; const char *hdr; char *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the heirarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, const char *path) { char *s, *p, *q; unsigned i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (*s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } /* ARGSUSED */ static int random_get_pseudo_bytes_cb(void *buf, size_t len, void *unused) { return (random_get_pseudo_bytes(buf, len)); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:size[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * *c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * p: Do I/O to physical offset * r: Dump raw data to stdout * * * = not yet implemented */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; abd_t *pabd; void *lbuf, *buf; const char *s, *vdev; char *p, *dup, *flagstr; int i, error; dup = strdup(thing); s = strtok(dup, ":"); vdev = s ? s : ""; s = strtok(NULL, ":"); offset = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); size = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); if (s) flagstr = strdup(s); else flagstr = strdup(""); s = NULL; if (size == 0) s = "size must not be zero"; if (!IS_P2ALIGNED(size, DEV_BSIZE)) s = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) s = "offset must be a multiple of sector size"; if (s) { (void) printf("Invalid block specifier: %s - %s\n", thing, s); free(dup); return; } for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { for (i = 0; flagstr[i]; i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Invalid flag: %c\n", flagstr[i]); continue; } flags |= bit; /* If it's not something with an argument, keep going */ if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_PRINT_BLKPTR)) == 0) continue; p = &flagstr[i + 1]; if (bit == ZDB_FLAG_PRINT_BLKPTR) blkptr_offset = strtoull(p, &p, 16); if (*p != ':' && *p != '\0') { (void) printf("***Invalid flag arg: '%s'\n", s); free(dup); return; } } } free(flagstr); vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); free(dup); return; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } psize = size; lsize = size; pabd = abd_alloc_linear(SPA_MAXBLOCKSIZE, B_FALSE); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } if (flags & ZDB_FLAG_DECOMPRESS) { /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ enum zio_compress c; void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); abd_copy_to_buf(pbuf2, pabd, psize); VERIFY0(abd_iterate_func(pabd, psize, SPA_MAXBLOCKSIZE - psize, random_get_pseudo_bytes_cb, NULL)); VERIFY0(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize, SPA_MAXBLOCKSIZE - psize)); for (lsize = SPA_MAXBLOCKSIZE; lsize > psize; lsize -= SPA_MINBLOCKSIZE) { for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) { if (zio_decompress_data(c, pabd, lbuf, psize, lsize) == 0 && zio_decompress_data_buf(c, pbuf2, lbuf2, psize, lsize) == 0 && bcmp(lbuf, lbuf2, lsize) == 0) break; } if (c != ZIO_COMPRESS_FUNCTIONS) break; lsize -= SPA_MINBLOCKSIZE; } umem_free(pbuf2, SPA_MAXBLOCKSIZE); umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize <= psize) { (void) printf("Decompress of %s failed\n", thing); goto out; } buf = lbuf; size = lsize; } else { buf = abd_to_buf(pabd); size = psize; } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, size, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, size, flags); out: abd_free(pabd); umem_free(lbuf, SPA_MAXBLOCKSIZE); free(dup); } static void zdb_embedded_block(char *thing) { blkptr_t bp; unsigned long long *words = (void *)&bp; char *buf; int err; bzero(&bp, sizeof (bp)); err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", words + 0, words + 1, words + 2, words + 3, words + 4, words + 5, words + 6, words + 7, words + 8, words + 9, words + 10, words + 11, words + 12, words + 13, words + 14, words + 15); if (err != 16) { (void) fprintf(stderr, "invalid input format\n"); exit(1); } ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); buf = malloc(SPA_MAXBLOCKSIZE); if (buf == NULL) { (void) fprintf(stderr, "out of memory\n"); exit(1); } err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); if (err != 0) { (void) fprintf(stderr, "decode failed: %u\n", err); exit(1); } zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); free(buf); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } static char * find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv) { nvlist_t *pools; nvlist_t *match = NULL; char *name = NULL; char *sepp = NULL; char sep = '\0'; int count = 0; importargs_t args; bzero(&args, sizeof (args)); args.paths = dirc; args.path = dirv; args.can_be_active = B_TRUE; if ((sepp = strpbrk(*target, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(g_zfs, &args); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, configp) == 0); if (pool_match(*configp, *target)) { count++; if (match != NULL) { /* print previously found config */ if (name != NULL) { (void) printf("%s\n", name); dump_nvlist(match, 8); name = NULL; } (void) printf("%s\n", nvpair_name(elem)); dump_nvlist(*configp, 8); } else { match = *configp; name = nvpair_name(elem); } } } } if (count > 1) (void) fatal("\tMatched %d pools - use pool GUID " "instead of pool name or \n" "\tpool name part of a dataset name to select pool", count); if (sepp) *sepp = sep; /* * If pool GUID was specified for pool id, replace it with pool name */ if (name && (strstr(*target, name) != *target)) { int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0); *target = umem_alloc(sz, UMEM_NOFAIL); (void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : ""); } *configp = name ? match : NULL; return (name); } int main(int argc, char **argv) { int c; struct rlimit rl = { 1024, 1024 }; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int flags = ZFS_IMPORT_MISSING_LOG; int rewind = ZPOOL_NEVER_REWIND; char *spa_config_path_env; boolean_t target_is_spa = B_TRUE; nvlist_t *cfg = NULL; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); dprintf_setup(&argc, argv); /* * If there is an environment variable SPA_CONFIG_PATH it overrides * default spa_config_path setting. If -U flag is specified it will * override this environment variable settings once again. */ spa_config_path_env = getenv("SPA_CONFIG_PATH"); if (spa_config_path_env != NULL) spa_config_path = spa_config_path_env; while ((c = getopt(argc, argv, "AbcCdDeEFGhiI:klLmMo:Op:PqRsSt:uU:vVx:X")) != -1) { switch (c) { case 'b': case 'c': case 'C': case 'd': case 'D': case 'E': case 'G': case 'h': case 'i': case 'l': case 'm': case 'M': case 'O': case 'R': case 's': case 'S': case 'u': dump_opt[c]++; dump_all = 0; break; case 'A': case 'e': case 'F': case 'k': case 'L': case 'P': case 'q': case 'X': dump_opt[c]++; break; /* NB: Sort single match options below. */ case 'I': max_inflight = strtoull(optarg, NULL, 0); if (max_inflight == 0) { (void) fprintf(stderr, "maximum number " "of inflight I/Os must be greater " "than 0\n"); usage(); } break; case 'o': error = set_global_var(optarg); if (error != 0) usage(); break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; if (spa_config_path[0] != '/') { (void) fprintf(stderr, "cachefile must be an absolute path " "(i.e. start with a slash)\n"); usage(); } break; case 'v': verbose++; break; case 'V': flags = ZFS_IMPORT_VERBATIM; break; case 'x': vn_dumpdir = optarg; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } /* * ZDB does not typically re-read blocks; therefore limit the ARC * to 256 MB, which can be used entirely for metadata. */ zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; /* * "zdb -c" uses checksum-verifying scrub i/os which are async reads. * "zdb -b" uses traversal prefetch which uses async reads. * For good performance, let several of them be active at once. */ zfs_vdev_async_read_max_active = 10; /* * Disable reference tracking for better performance. */ reference_tracking_enable = B_FALSE; /* * Do not fail spa_load when spa_load_verify fails. This is needed * to load non-idle pools. */ spa_load_verify_dryrun = B_TRUE; kernel_init(FREAD); g_zfs = libzfs_init(); ASSERT(g_zfs != NULL); if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && strchr("AeEFklLOPRSX", c) == NULL) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (dump_opt['E']) { if (argc != 1) usage(); zdb_embedded_block(argv[0]); return (0); } if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) return (dump_label(argv[0])); if (dump_opt['O']) { if (argc != 2) usage(); dump_opt['v'] = verbose + 3; return (dump_path(argv[0], argv[1])); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (dump_opt['e']) { char *name = find_zpool(&target, &cfg, nsearch, searchdirs); error = ENOENT; if (name) { if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } if (nvlist_add_nvlist(cfg, ZPOOL_LOAD_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } error = spa_import(name, cfg, NULL, flags); } } char *checkpoint_pool = NULL; char *checkpoint_target = NULL; if (dump_opt['k']) { checkpoint_pool = import_checkpointed_state(target, cfg, &checkpoint_target); if (checkpoint_target != NULL) target = checkpoint_target; } if (strpbrk(target, "/@") != NULL) { size_t targetlen; target_is_spa = B_FALSE; /* * Remove any trailing slash. Later code would get confused * by it, but we want to allow it so that "pool/" can * indicate that we want to dump the topmost filesystem, * rather than the whole pool. */ targetlen = strlen(target); if (targetlen != 0 && target[targetlen - 1] == '/') target[targetlen - 1] = '\0'; } if (error == 0) { if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { ASSERT(checkpoint_pool != NULL); ASSERT(checkpoint_target == NULL); error = spa_open(checkpoint_pool, &spa, FTAG); if (error != 0) { fatal("Tried to open pool \"%s\" but " "spa_open() failed with error %d\n", checkpoint_pool, error); } } else if (target_is_spa || dump_opt['R']) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else { error = open_objset(target, DMU_OST_ANY, FTAG, &os); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); argv++; argc--; if (!dump_opt['R']) { if (argc > 0) { zopt_objects = argc; zopt_object = calloc(zopt_objects, sizeof (uint64_t)); for (unsigned i = 0; i < zopt_objects; i++) { errno = 0; zopt_object[i] = strtoull(argv[i], NULL, 0); if (zopt_object[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } if (os != NULL) { dump_dir(os); } else if (zopt_objects > 0 && !dump_opt['m']) { dump_dir(spa->spa_meta_objset); } else { dump_zpool(spa); } } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['p'] = ZDB_FLAG_PHYS; flagbits['r'] = ZDB_FLAG_RAW; for (int i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } if (dump_opt['k']) { free(checkpoint_pool); if (!target_is_spa) free(checkpoint_target); } if (os != NULL) close_objset(os, FTAG); else spa_close(spa, FTAG); fuid_table_destroy(); dump_debug_buffer(); libzfs_fini(g_zfs); kernel_fini(); return (error); } Index: vendor/illumos/dist/cmd/zdb/zdb_il.c =================================================================== --- vendor/illumos/dist/cmd/zdb/zdb_il.c (revision 350897) +++ vendor/illumos/dist/cmd/zdb/zdb_il.c (revision 350898) @@ -1,422 +1,424 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, 2017 by Delphix. All rights reserved. */ /* * Print intent log header and statistics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "zdb.h" extern uint8_t dump_opt[256]; static char tab_prefix[4] = "\t\t\t"; static void print_log_bp(const blkptr_t *bp, const char *prefix) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s%s\n", prefix, blkbuf); } /* ARGSUSED */ static void zil_prt_rec_create(zilog_t *zilog, int txtype, void *arg) { lr_create_t *lr = arg; time_t crtime = lr->lr_crtime[0]; char *name, *link; lr_attr_t *lrattr; name = (char *)(lr + 1); if (lr->lr_common.lrc_txtype == TX_CREATE_ATTR || lr->lr_common.lrc_txtype == TX_MKDIR_ATTR) { lrattr = (lr_attr_t *)(lr + 1); name += ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); } if (txtype == TX_SYMLINK) { link = name + strlen(name) + 1; (void) printf("%s%s -> %s\n", tab_prefix, name, link); } else if (txtype != TX_MKXATTR) { (void) printf("%s%s\n", tab_prefix, name); } (void) printf("%s%s", tab_prefix, ctime(&crtime)); - (void) printf("%sdoid %llu, foid %llu, mode %llo\n", tab_prefix, - (u_longlong_t)lr->lr_doid, (u_longlong_t)lr->lr_foid, - (longlong_t)lr->lr_mode); - (void) printf("%suid %llu, gid %llu, gen %llu, rdev 0x%llx\n", - tab_prefix, - (u_longlong_t)lr->lr_uid, (u_longlong_t)lr->lr_gid, - (u_longlong_t)lr->lr_gen, (u_longlong_t)lr->lr_rdev); + (void) printf("%sdoid %" PRIu64 ", foid %" PRIu64 ", slots %" PRIu64 + ", mode %" PRIo64 "\n", + tab_prefix, lr->lr_doid, + LR_FOID_GET_OBJ(lr->lr_foid), + LR_FOID_GET_SLOTS(lr->lr_foid), + lr->lr_mode); + (void) printf("%suid %" PRIu64 ", gid %" PRIu64 ", gen %" PRIu64 + ", rdev %#" PRIx64 "\n", + tab_prefix, lr->lr_uid, lr->lr_gid, lr->lr_gen, lr->lr_rdev); } /* ARGSUSED */ static void zil_prt_rec_remove(zilog_t *zilog, int txtype, void *arg) { lr_remove_t *lr = arg; (void) printf("%sdoid %llu, name %s\n", tab_prefix, (u_longlong_t)lr->lr_doid, (char *)(lr + 1)); } /* ARGSUSED */ static void zil_prt_rec_link(zilog_t *zilog, int txtype, void *arg) { lr_link_t *lr = arg; (void) printf("%sdoid %llu, link_obj %llu, name %s\n", tab_prefix, (u_longlong_t)lr->lr_doid, (u_longlong_t)lr->lr_link_obj, (char *)(lr + 1)); } /* ARGSUSED */ static void zil_prt_rec_rename(zilog_t *zilog, int txtype, void *arg) { lr_rename_t *lr = arg; char *snm = (char *)(lr + 1); char *tnm = snm + strlen(snm) + 1; (void) printf("%ssdoid %llu, tdoid %llu\n", tab_prefix, (u_longlong_t)lr->lr_sdoid, (u_longlong_t)lr->lr_tdoid); (void) printf("%ssrc %s tgt %s\n", tab_prefix, snm, tnm); } /* ARGSUSED */ static int zil_prt_rec_write_cb(void *data, size_t len, void *unused) { char *cdata = data; for (size_t i = 0; i < len; i++) { if (isprint(*cdata)) (void) printf("%c ", *cdata); else (void) printf("%2X", *cdata); cdata++; } return (0); } /* ARGSUSED */ static void zil_prt_rec_write(zilog_t *zilog, int txtype, void *arg) { lr_write_t *lr = arg; abd_t *data; blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; int verbose = MAX(dump_opt['d'], dump_opt['i']); int error; (void) printf("%sfoid %llu, offset %llx, length %llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_offset, (u_longlong_t)lr->lr_length); if (txtype == TX_WRITE2 || verbose < 5) return; if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { (void) printf("%shas blkptr, %s\n", tab_prefix, !BP_IS_HOLE(bp) && bp->blk_birth >= spa_min_claim_txg(zilog->zl_spa) ? "will claim" : "won't claim"); print_log_bp(bp, tab_prefix); if (BP_IS_HOLE(bp)) { (void) printf("\t\t\tLSIZE 0x%llx\n", (u_longlong_t)BP_GET_LSIZE(bp)); (void) printf("%s\n", tab_prefix); return; } if (bp->blk_birth < zilog->zl_header->zh_claim_txg) { (void) printf("%s\n", tab_prefix); return; } SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); data = abd_alloc(BP_GET_LSIZE(bp), B_FALSE); error = zio_wait(zio_read(NULL, zilog->zl_spa, bp, data, BP_GET_LSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL, &zb)); if (error) goto out; } else { /* data is stored after the end of the lr_write record */ data = abd_alloc(lr->lr_length, B_FALSE); abd_copy_from_buf(data, lr + 1, lr->lr_length); } (void) printf("%s", tab_prefix); (void) abd_iterate_func(data, 0, MIN(lr->lr_length, (verbose < 6 ? 20 : SPA_MAXBLOCKSIZE)), zil_prt_rec_write_cb, NULL); (void) printf("\n"); out: abd_free(data); } /* ARGSUSED */ static void zil_prt_rec_truncate(zilog_t *zilog, int txtype, void *arg) { lr_truncate_t *lr = arg; (void) printf("%sfoid %llu, offset 0x%llx, length 0x%llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (longlong_t)lr->lr_offset, (u_longlong_t)lr->lr_length); } /* ARGSUSED */ static void zil_prt_rec_setattr(zilog_t *zilog, int txtype, void *arg) { lr_setattr_t *lr = arg; time_t atime = (time_t)lr->lr_atime[0]; time_t mtime = (time_t)lr->lr_mtime[0]; (void) printf("%sfoid %llu, mask 0x%llx\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_mask); if (lr->lr_mask & AT_MODE) { (void) printf("%sAT_MODE %llo\n", tab_prefix, (longlong_t)lr->lr_mode); } if (lr->lr_mask & AT_UID) { (void) printf("%sAT_UID %llu\n", tab_prefix, (u_longlong_t)lr->lr_uid); } if (lr->lr_mask & AT_GID) { (void) printf("%sAT_GID %llu\n", tab_prefix, (u_longlong_t)lr->lr_gid); } if (lr->lr_mask & AT_SIZE) { (void) printf("%sAT_SIZE %llu\n", tab_prefix, (u_longlong_t)lr->lr_size); } if (lr->lr_mask & AT_ATIME) { (void) printf("%sAT_ATIME %llu.%09llu %s", tab_prefix, (u_longlong_t)lr->lr_atime[0], (u_longlong_t)lr->lr_atime[1], ctime(&atime)); } if (lr->lr_mask & AT_MTIME) { (void) printf("%sAT_MTIME %llu.%09llu %s", tab_prefix, (u_longlong_t)lr->lr_mtime[0], (u_longlong_t)lr->lr_mtime[1], ctime(&mtime)); } } /* ARGSUSED */ static void zil_prt_rec_acl(zilog_t *zilog, int txtype, void *arg) { lr_acl_t *lr = arg; (void) printf("%sfoid %llu, aclcnt %llu\n", tab_prefix, (u_longlong_t)lr->lr_foid, (u_longlong_t)lr->lr_aclcnt); } typedef void (*zil_prt_rec_func_t)(zilog_t *, int, void *); typedef struct zil_rec_info { zil_prt_rec_func_t zri_print; const char *zri_name; uint64_t zri_count; } zil_rec_info_t; static zil_rec_info_t zil_rec_info[TX_MAX_TYPE] = { {.zri_print = NULL, .zri_name = "Total "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKXATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_SYMLINK "}, {.zri_print = zil_prt_rec_remove, .zri_name = "TX_REMOVE "}, {.zri_print = zil_prt_rec_remove, .zri_name = "TX_RMDIR "}, {.zri_print = zil_prt_rec_link, .zri_name = "TX_LINK "}, {.zri_print = zil_prt_rec_rename, .zri_name = "TX_RENAME "}, {.zri_print = zil_prt_rec_write, .zri_name = "TX_WRITE "}, {.zri_print = zil_prt_rec_truncate, .zri_name = "TX_TRUNCATE "}, {.zri_print = zil_prt_rec_setattr, .zri_name = "TX_SETATTR "}, {.zri_print = zil_prt_rec_acl, .zri_name = "TX_ACL_V0 "}, {.zri_print = zil_prt_rec_acl, .zri_name = "TX_ACL_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_CREATE_ACL_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ACL "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ATTR "}, {.zri_print = zil_prt_rec_create, .zri_name = "TX_MKDIR_ACL_ATTR "}, {.zri_print = zil_prt_rec_write, .zri_name = "TX_WRITE2 "}, }; /* ARGSUSED */ static int print_log_record(zilog_t *zilog, lr_t *lr, void *arg, uint64_t claim_txg) { int txtype; int verbose = MAX(dump_opt['d'], dump_opt['i']); /* reduce size of txtype to strip off TX_CI bit */ txtype = lr->lrc_txtype; ASSERT(txtype != 0 && (uint_t)txtype < TX_MAX_TYPE); ASSERT(lr->lrc_txg); (void) printf("\t\t%s%s len %6llu, txg %llu, seq %llu\n", (lr->lrc_txtype & TX_CI) ? "CI-" : "", zil_rec_info[txtype].zri_name, (u_longlong_t)lr->lrc_reclen, (u_longlong_t)lr->lrc_txg, (u_longlong_t)lr->lrc_seq); if (txtype && verbose >= 3) zil_rec_info[txtype].zri_print(zilog, txtype, lr); zil_rec_info[txtype].zri_count++; zil_rec_info[0].zri_count++; return (0); } /* ARGSUSED */ static int print_log_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { char blkbuf[BP_SPRINTF_LEN + 10]; int verbose = MAX(dump_opt['d'], dump_opt['i']); const char *claim; if (verbose <= 3) return (0); if (verbose >= 5) { (void) strcpy(blkbuf, ", "); snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), bp); } else { blkbuf[0] = '\0'; } if (claim_txg != 0) claim = "already claimed"; else if (bp->blk_birth >= spa_min_claim_txg(zilog->zl_spa)) claim = "will claim"; else claim = "won't claim"; (void) printf("\tBlock seqno %llu, %s%s\n", (u_longlong_t)bp->blk_cksum.zc_word[ZIL_ZC_SEQ], claim, blkbuf); return (0); } static void print_log_stats(int verbose) { unsigned i, w, p10; if (verbose > 3) (void) printf("\n"); if (zil_rec_info[0].zri_count == 0) return; for (w = 1, p10 = 10; zil_rec_info[0].zri_count >= p10; p10 *= 10) w++; for (i = 0; i < TX_MAX_TYPE; i++) if (zil_rec_info[i].zri_count || verbose >= 3) (void) printf("\t\t%s %*llu\n", zil_rec_info[i].zri_name, w, (u_longlong_t)zil_rec_info[i].zri_count); (void) printf("\n"); } /* ARGSUSED */ void dump_intent_log(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; int verbose = MAX(dump_opt['d'], dump_opt['i']); int i; if (BP_IS_HOLE(&zh->zh_log) || verbose < 1) return; (void) printf("\n ZIL header: claim_txg %llu, " "claim_blk_seq %llu, claim_lr_seq %llu", (u_longlong_t)zh->zh_claim_txg, (u_longlong_t)zh->zh_claim_blk_seq, (u_longlong_t)zh->zh_claim_lr_seq); (void) printf(" replay_seq %llu, flags 0x%llx\n", (u_longlong_t)zh->zh_replay_seq, (u_longlong_t)zh->zh_flags); for (i = 0; i < TX_MAX_TYPE; i++) zil_rec_info[i].zri_count = 0; /* see comment in zil_claim() or zil_check_log_chain() */ if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return; if (verbose >= 2) { (void) printf("\n"); (void) zil_parse(zilog, print_log_block, print_log_record, NULL, zh->zh_claim_txg); print_log_stats(verbose); } } Index: vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c =================================================================== --- vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c (revision 350897) +++ vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c (revision 350898) @@ -1,642 +1,644 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2013, 2015 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include /* * If dump mode is enabled, the number of bytes to print per line */ #define BYTES_PER_LINE 16 /* * If dump mode is enabled, the number of bytes to group together, separated * by newlines or spaces */ #define DUMP_GROUPING 4 uint64_t total_write_size = 0; uint64_t total_stream_len = 0; FILE *send_stream = 0; boolean_t do_byteswap = B_FALSE; boolean_t do_cksum = B_TRUE; static void usage(void) { (void) fprintf(stderr, "usage: zstreamdump [-v] [-C] [-d] < file\n"); (void) fprintf(stderr, "\t -v -- verbose\n"); (void) fprintf(stderr, "\t -C -- suppress checksum verification\n"); (void) fprintf(stderr, "\t -d -- dump contents of blocks modified, " "implies verbose\n"); exit(1); } static void * safe_malloc(size_t size) { void *rv = malloc(size); if (rv == NULL) { (void) fprintf(stderr, "ERROR; failed to allocate %zu bytes\n", size); abort(); } return (rv); } /* * ssread - send stream read. * * Read while computing incremental checksum */ static size_t ssread(void *buf, size_t len, zio_cksum_t *cksum) { size_t outlen; if ((outlen = fread(buf, len, 1, send_stream)) == 0) return (0); if (do_cksum) { if (do_byteswap) fletcher_4_incremental_byteswap(buf, len, cksum); else fletcher_4_incremental_native(buf, len, cksum); } total_stream_len += len; return (outlen); } static size_t read_hdr(dmu_replay_record_t *drr, zio_cksum_t *cksum) { ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); size_t r = ssread(drr, sizeof (*drr) - sizeof (zio_cksum_t), cksum); if (r == 0) return (0); zio_cksum_t saved_cksum = *cksum; r = ssread(&drr->drr_u.drr_checksum.drr_checksum, sizeof (zio_cksum_t), cksum); if (r == 0) return (0); if (!ZIO_CHECKSUM_IS_ZERO(&drr->drr_u.drr_checksum.drr_checksum) && !ZIO_CHECKSUM_EQUAL(saved_cksum, drr->drr_u.drr_checksum.drr_checksum)) { fprintf(stderr, "invalid checksum\n"); (void) printf("Incorrect checksum in record header.\n"); (void) printf("Expected checksum = %llx/%llx/%llx/%llx\n", saved_cksum.zc_word[0], saved_cksum.zc_word[1], saved_cksum.zc_word[2], saved_cksum.zc_word[3]); return (0); } return (sizeof (*drr)); } /* * Print part of a block in ASCII characters */ static void print_ascii_block(char *subbuf, int length) { int i; for (i = 0; i < length; i++) { char char_print = isprint(subbuf[i]) ? subbuf[i] : '.'; if (i != 0 && i % DUMP_GROUPING == 0) { (void) printf(" "); } (void) printf("%c", char_print); } (void) printf("\n"); } /* * print_block - Dump the contents of a modified block to STDOUT * * Assume that buf has capacity evenly divisible by BYTES_PER_LINE */ static void print_block(char *buf, int length) { int i; /* * Start printing ASCII characters at a constant offset, after * the hex prints. Leave 3 characters per byte on a line (2 digit * hex number plus 1 space) plus spaces between characters and * groupings. */ int ascii_start = BYTES_PER_LINE * 3 + BYTES_PER_LINE / DUMP_GROUPING + 2; for (i = 0; i < length; i += BYTES_PER_LINE) { int j; int this_line_length = MIN(BYTES_PER_LINE, length - i); int print_offset = 0; for (j = 0; j < this_line_length; j++) { int buf_offset = i + j; /* * Separate every DUMP_GROUPING bytes by a space. */ if (buf_offset % DUMP_GROUPING == 0) { print_offset += printf(" "); } /* * Print the two-digit hex value for this byte. */ unsigned char hex_print = buf[buf_offset]; print_offset += printf("%02x ", hex_print); } (void) printf("%*s", ascii_start - print_offset, " "); print_ascii_block(buf + i, this_line_length); } } int main(int argc, char *argv[]) { char *buf = safe_malloc(SPA_MAXBLOCKSIZE); uint64_t drr_record_count[DRR_NUMTYPES] = { 0 }; uint64_t total_records = 0; dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; struct drr_begin *drrb = &thedrr.drr_u.drr_begin; struct drr_end *drre = &thedrr.drr_u.drr_end; struct drr_object *drro = &thedrr.drr_u.drr_object; struct drr_freeobjects *drrfo = &thedrr.drr_u.drr_freeobjects; struct drr_write *drrw = &thedrr.drr_u.drr_write; struct drr_write_byref *drrwbr = &thedrr.drr_u.drr_write_byref; struct drr_free *drrf = &thedrr.drr_u.drr_free; struct drr_spill *drrs = &thedrr.drr_u.drr_spill; struct drr_write_embedded *drrwe = &thedrr.drr_u.drr_write_embedded; struct drr_checksum *drrc = &thedrr.drr_u.drr_checksum; char c; boolean_t verbose = B_FALSE; boolean_t very_verbose = B_FALSE; boolean_t first = B_TRUE; /* * dump flag controls whether the contents of any modified data blocks * are printed to the console during processing of the stream. Warning: * for large streams, this can obviously lead to massive prints. */ boolean_t dump = B_FALSE; int err; zio_cksum_t zc = { 0 }; zio_cksum_t pcksum = { 0 }; while ((c = getopt(argc, argv, ":vCd")) != -1) { switch (c) { case 'C': do_cksum = B_FALSE; break; case 'v': if (verbose) very_verbose = B_TRUE; verbose = B_TRUE; break; case 'd': dump = B_TRUE; verbose = B_TRUE; very_verbose = B_TRUE; break; case ':': (void) fprintf(stderr, "missing argument for '%c' option\n", optopt); usage(); break; case '?': (void) fprintf(stderr, "invalid option '%c'\n", optopt); usage(); break; } } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, "Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n"); exit(1); } send_stream = stdin; pcksum = zc; while (read_hdr(drr, &zc)) { /* * If this is the first DMU record being processed, check for * the magic bytes and figure out the endian-ness based on them. */ if (first) { if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { do_byteswap = B_TRUE; if (do_cksum) { ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); /* * recalculate header checksum now * that we know it needs to be * byteswapped. */ fletcher_4_incremental_byteswap(drr, sizeof (dmu_replay_record_t), &zc); } } else if (drrb->drr_magic != DMU_BACKUP_MAGIC) { (void) fprintf(stderr, "Invalid stream " "(bad magic number)\n"); exit(1); } first = B_FALSE; } if (do_byteswap) { drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); } /* * At this point, the leading fields of the replay record * (drr_type and drr_payloadlen) have been byte-swapped if * necessary, but the rest of the data structure (the * union of type-specific structures) is still in its * original state. */ if (drr->drr_type >= DRR_NUMTYPES) { (void) printf("INVALID record found: type 0x%x\n", drr->drr_type); (void) printf("Aborting.\n"); exit(1); } drr_record_count[drr->drr_type]++; total_records++; switch (drr->drr_type) { case DRR_BEGIN: if (do_byteswap) { drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } (void) printf("BEGIN record\n"); (void) printf("\thdrtype = %lld\n", DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo)); (void) printf("\tfeatures = %llx\n", DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo)); (void) printf("\tmagic = %llx\n", (u_longlong_t)drrb->drr_magic); (void) printf("\tcreation_time = %llx\n", (u_longlong_t)drrb->drr_creation_time); (void) printf("\ttype = %u\n", drrb->drr_type); (void) printf("\tflags = 0x%x\n", drrb->drr_flags); (void) printf("\ttoguid = %llx\n", (u_longlong_t)drrb->drr_toguid); (void) printf("\tfromguid = %llx\n", (u_longlong_t)drrb->drr_fromguid); (void) printf("\ttoname = %s\n", drrb->drr_toname); if (verbose) (void) printf("\n"); if (drr->drr_payloadlen != 0) { nvlist_t *nv; int sz = drr->drr_payloadlen; if (sz > SPA_MAXBLOCKSIZE) { free(buf); buf = safe_malloc(sz); } (void) ssread(buf, sz, &zc); if (ferror(send_stream)) perror("fread"); err = nvlist_unpack(buf, sz, &nv, 0); if (err) perror(strerror(err)); nvlist_print(stdout, nv); nvlist_free(nv); } break; case DRR_END: if (do_byteswap) { drre->drr_checksum.zc_word[0] = BSWAP_64(drre->drr_checksum.zc_word[0]); drre->drr_checksum.zc_word[1] = BSWAP_64(drre->drr_checksum.zc_word[1]); drre->drr_checksum.zc_word[2] = BSWAP_64(drre->drr_checksum.zc_word[2]); drre->drr_checksum.zc_word[3] = BSWAP_64(drre->drr_checksum.zc_word[3]); } /* * We compare against the *previous* checksum * value, because the stored checksum is of * everything before the DRR_END record. */ if (do_cksum && !ZIO_CHECKSUM_EQUAL(drre->drr_checksum, pcksum)) { (void) printf("Expected checksum differs from " "checksum in stream.\n"); (void) printf("Expected checksum = " "%llx/%llx/%llx/%llx\n", pcksum.zc_word[0], pcksum.zc_word[1], pcksum.zc_word[2], pcksum.zc_word[3]); } (void) printf("END checksum = %llx/%llx/%llx/%llx\n", drre->drr_checksum.zc_word[0], drre->drr_checksum.zc_word[1], drre->drr_checksum.zc_word[2], drre->drr_checksum.zc_word[3]); ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); break; case DRR_OBJECT: if (do_byteswap) { drro->drr_object = BSWAP_64(drro->drr_object); drro->drr_type = BSWAP_32(drro->drr_type); drro->drr_bonustype = BSWAP_32(drro->drr_bonustype); drro->drr_blksz = BSWAP_32(drro->drr_blksz); drro->drr_bonuslen = BSWAP_32(drro->drr_bonuslen); drro->drr_toguid = BSWAP_64(drro->drr_toguid); } if (verbose) { - (void) printf("OBJECT object = %llu type = %u " - "bonustype = %u blksz = %u bonuslen = %u\n", - (u_longlong_t)drro->drr_object, + (void) printf("OBJECT object = %" PRIu64 + " type = %u bonustype = %u blksz = %u" + " bonuslen = %u dn_slots = %u\n", + drro->drr_object, drro->drr_type, drro->drr_bonustype, drro->drr_blksz, - drro->drr_bonuslen); + drro->drr_bonuslen, + drro->drr_dn_slots); } if (drro->drr_bonuslen > 0) { (void) ssread(buf, P2ROUNDUP(drro->drr_bonuslen, 8), &zc); if (dump) { print_block(buf, P2ROUNDUP(drro->drr_bonuslen, 8)); } } break; case DRR_FREEOBJECTS: if (do_byteswap) { drrfo->drr_firstobj = BSWAP_64(drrfo->drr_firstobj); drrfo->drr_numobjs = BSWAP_64(drrfo->drr_numobjs); drrfo->drr_toguid = BSWAP_64(drrfo->drr_toguid); } if (verbose) { (void) printf("FREEOBJECTS firstobj = %llu " "numobjs = %llu\n", (u_longlong_t)drrfo->drr_firstobj, (u_longlong_t)drrfo->drr_numobjs); } break; case DRR_WRITE: if (do_byteswap) { drrw->drr_object = BSWAP_64(drrw->drr_object); drrw->drr_type = BSWAP_32(drrw->drr_type); drrw->drr_offset = BSWAP_64(drrw->drr_offset); drrw->drr_logical_size = BSWAP_64(drrw->drr_logical_size); drrw->drr_toguid = BSWAP_64(drrw->drr_toguid); drrw->drr_key.ddk_prop = BSWAP_64(drrw->drr_key.ddk_prop); drrw->drr_compressed_size = BSWAP_64(drrw->drr_compressed_size); } uint64_t payload_size = DRR_WRITE_PAYLOAD_SIZE(drrw); /* * If this is verbose and/or dump output, * print info on the modified block */ if (verbose) { (void) printf("WRITE object = %llu type = %u " "checksum type = %u compression type = %u\n" " offset = %llu logical_size = %llu " "compressed_size = %llu " "payload_size = %llu " "props = %llx\n", (u_longlong_t)drrw->drr_object, drrw->drr_type, drrw->drr_checksumtype, drrw->drr_compressiontype, (u_longlong_t)drrw->drr_offset, (u_longlong_t)drrw->drr_logical_size, (u_longlong_t)drrw->drr_compressed_size, (u_longlong_t)payload_size, (u_longlong_t)drrw->drr_key.ddk_prop); } /* * Read the contents of the block in from STDIN to buf */ (void) ssread(buf, payload_size, &zc); /* * If in dump mode */ if (dump) { print_block(buf, payload_size); } total_write_size += payload_size; break; case DRR_WRITE_BYREF: if (do_byteswap) { drrwbr->drr_object = BSWAP_64(drrwbr->drr_object); drrwbr->drr_offset = BSWAP_64(drrwbr->drr_offset); drrwbr->drr_length = BSWAP_64(drrwbr->drr_length); drrwbr->drr_toguid = BSWAP_64(drrwbr->drr_toguid); drrwbr->drr_refguid = BSWAP_64(drrwbr->drr_refguid); drrwbr->drr_refobject = BSWAP_64(drrwbr->drr_refobject); drrwbr->drr_refoffset = BSWAP_64(drrwbr->drr_refoffset); drrwbr->drr_key.ddk_prop = BSWAP_64(drrwbr->drr_key.ddk_prop); } if (verbose) { (void) printf("WRITE_BYREF object = %llu " "checksum type = %u props = %llx\n" " offset = %llu length = %llu\n" "toguid = %llx refguid = %llx\n" " refobject = %llu refoffset = %llu\n", (u_longlong_t)drrwbr->drr_object, drrwbr->drr_checksumtype, (u_longlong_t)drrwbr->drr_key.ddk_prop, (u_longlong_t)drrwbr->drr_offset, (u_longlong_t)drrwbr->drr_length, (u_longlong_t)drrwbr->drr_toguid, (u_longlong_t)drrwbr->drr_refguid, (u_longlong_t)drrwbr->drr_refobject, (u_longlong_t)drrwbr->drr_refoffset); } break; case DRR_FREE: if (do_byteswap) { drrf->drr_object = BSWAP_64(drrf->drr_object); drrf->drr_offset = BSWAP_64(drrf->drr_offset); drrf->drr_length = BSWAP_64(drrf->drr_length); } if (verbose) { (void) printf("FREE object = %llu " "offset = %llu length = %lld\n", (u_longlong_t)drrf->drr_object, (u_longlong_t)drrf->drr_offset, (longlong_t)drrf->drr_length); } break; case DRR_SPILL: if (do_byteswap) { drrs->drr_object = BSWAP_64(drrs->drr_object); drrs->drr_length = BSWAP_64(drrs->drr_length); } if (verbose) { (void) printf("SPILL block for object = %llu " "length = %llu\n", drrs->drr_object, drrs->drr_length); } (void) ssread(buf, drrs->drr_length, &zc); if (dump) { print_block(buf, drrs->drr_length); } break; case DRR_WRITE_EMBEDDED: if (do_byteswap) { drrwe->drr_object = BSWAP_64(drrwe->drr_object); drrwe->drr_offset = BSWAP_64(drrwe->drr_offset); drrwe->drr_length = BSWAP_64(drrwe->drr_length); drrwe->drr_toguid = BSWAP_64(drrwe->drr_toguid); drrwe->drr_lsize = BSWAP_32(drrwe->drr_lsize); drrwe->drr_psize = BSWAP_32(drrwe->drr_psize); } if (verbose) { (void) printf("WRITE_EMBEDDED object = %llu " "offset = %llu length = %llu\n" " toguid = %llx comp = %u etype = %u " "lsize = %u psize = %u\n", (u_longlong_t)drrwe->drr_object, (u_longlong_t)drrwe->drr_offset, (u_longlong_t)drrwe->drr_length, (u_longlong_t)drrwe->drr_toguid, drrwe->drr_compression, drrwe->drr_etype, drrwe->drr_lsize, drrwe->drr_psize); } (void) ssread(buf, P2ROUNDUP(drrwe->drr_psize, 8), &zc); break; } if (drr->drr_type != DRR_BEGIN && very_verbose) { (void) printf(" checksum = %llx/%llx/%llx/%llx\n", (longlong_t)drrc->drr_checksum.zc_word[0], (longlong_t)drrc->drr_checksum.zc_word[1], (longlong_t)drrc->drr_checksum.zc_word[2], (longlong_t)drrc->drr_checksum.zc_word[3]); } pcksum = zc; } free(buf); /* Print final summary */ (void) printf("SUMMARY:\n"); (void) printf("\tTotal DRR_BEGIN records = %lld\n", (u_longlong_t)drr_record_count[DRR_BEGIN]); (void) printf("\tTotal DRR_END records = %lld\n", (u_longlong_t)drr_record_count[DRR_END]); (void) printf("\tTotal DRR_OBJECT records = %lld\n", (u_longlong_t)drr_record_count[DRR_OBJECT]); (void) printf("\tTotal DRR_FREEOBJECTS records = %lld\n", (u_longlong_t)drr_record_count[DRR_FREEOBJECTS]); (void) printf("\tTotal DRR_WRITE records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE]); (void) printf("\tTotal DRR_WRITE_BYREF records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE_BYREF]); (void) printf("\tTotal DRR_WRITE_EMBEDDED records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE_EMBEDDED]); (void) printf("\tTotal DRR_FREE records = %lld\n", (u_longlong_t)drr_record_count[DRR_FREE]); (void) printf("\tTotal DRR_SPILL records = %lld\n", (u_longlong_t)drr_record_count[DRR_SPILL]); (void) printf("\tTotal records = %lld\n", (u_longlong_t)total_records); (void) printf("\tTotal write size = %lld (0x%llx)\n", (u_longlong_t)total_write_size, (u_longlong_t)total_write_size); (void) printf("\tTotal stream length = %lld (0x%llx)\n", (u_longlong_t)total_stream_len, (u_longlong_t)total_stream_len); return (0); } Index: vendor/illumos/dist/cmd/ztest/ztest.c =================================================================== --- vendor/illumos/dist/cmd/ztest/ztest.c (revision 350897) +++ vendor/illumos/dist/cmd/ztest/ztest.c (revision 350898) @@ -1,6664 +1,6827 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright 2017 RackTop Systems. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. If backwards compatibility * testing is enabled ztest will sometimes run the "older" version * of ztest after a SIGKILL. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * Use the -k option to set the desired frequency of kills. * * When ztest invokes itself it passes all relevant information through a * temporary file which is mmap-ed in the child process. This allows shared * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always * stored at offset 0 of this file and contains information on the size and * number of shared structures in the file. The information stored in this file * must remain backwards compatible with older versions of ztest so that * ztest can invoke them during backwards compatibility testing (-B). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ztest_fd_data = -1; static int ztest_fd_rand = -1; typedef struct ztest_shared_hdr { uint64_t zh_hdr_size; uint64_t zh_opts_size; uint64_t zh_size; uint64_t zh_stats_size; uint64_t zh_stats_count; uint64_t zh_ds_size; uint64_t zh_ds_count; } ztest_shared_hdr_t; static ztest_shared_hdr_t *ztest_shared_hdr; typedef struct ztest_shared_opts { char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; char zo_alt_ztest[MAXNAMELEN]; char zo_alt_libpath[MAXNAMELEN]; uint64_t zo_vdevs; uint64_t zo_vdevtime; size_t zo_vdev_size; int zo_ashift; int zo_mirrors; int zo_raidz; int zo_raidz_parity; int zo_datasets; int zo_threads; uint64_t zo_passtime; uint64_t zo_killrate; int zo_verbose; int zo_init; uint64_t zo_time; uint64_t zo_maxloops; uint64_t zo_metaslab_force_ganging; } ztest_shared_opts_t; static const ztest_shared_opts_t ztest_opts_defaults = { .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, .zo_dir = { '/', 't', 'm', 'p', '\0' }, .zo_alt_ztest = { '\0' }, .zo_alt_libpath = { '\0' }, .zo_vdevs = 5, .zo_ashift = SPA_MINBLOCKSHIFT, .zo_mirrors = 2, .zo_raidz = 4, .zo_raidz_parity = 1, .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ .zo_datasets = 7, .zo_threads = 23, .zo_passtime = 60, /* 60 seconds */ .zo_killrate = 70, /* 70% kill rate */ .zo_verbose = 0, .zo_init = 1, .zo_time = 300, /* 5 minutes */ .zo_maxloops = 50, /* max loops during spa_freeze() */ .zo_metaslab_force_ganging = 32 << 10 }; extern uint64_t metaslab_force_ganging; extern uint64_t metaslab_df_alloc_threshold; extern uint64_t zfs_deadman_synctime_ms; extern int metaslab_preload_limit; extern boolean_t zfs_compressed_arc_enabled; extern boolean_t zfs_abd_scatter_enabled; +extern int dmu_object_alloc_chunk_shift; extern boolean_t zfs_force_some_double_word_sm_entries; static ztest_shared_opts_t *ztest_shared_opts; static ztest_shared_opts_t ztest_opts; typedef struct ztest_shared_ds { uint64_t zd_seq; } ztest_shared_ds_t; static ztest_shared_ds_t *ztest_shared_ds; #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS() \ (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_REWRITE, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; + uint64_t bt_dnodesize; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * It would be better to use a rangelock_t per object. Unfortunately * the rangelock_t is not a drop-in replacement for rl_t, because we * still need to map from object ID to rangelock_t. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; kmutex_t rll_lock; kcondvar_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; + uint64_t od_crdnodesize; uint64_t od_gen; uint64_t od_crgen; char od_name[ZFS_MAX_DATASET_NAME_LEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { ztest_shared_ds_t *zd_shared; objset_t *zd_os; krwlock_t zd_zilog_lock; zilog_t *zd_zilog; ztest_od_t *zd_od; /* debugging aid */ char zd_name[ZFS_MAX_DATASET_NAME_LEN]; kmutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ } ztest_info_t; typedef struct ztest_shared_callstate { uint64_t zc_count; /* per-pass count */ uint64_t zc_time; /* per-pass time */ uint64_t zc_next; /* next time to call this function */ } ztest_shared_callstate_t; static ztest_shared_callstate_t *ztest_shared_callstate; #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) /* * Note: these aren't static because we want dladdr() to work. */ ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; +ztest_func_t ztest_dmu_object_next_chunk; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_zil_remount; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_ddt_repair; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; ztest_func_t ztest_reguid; ztest_func_t ztest_spa_upgrade; ztest_func_t ztest_device_removal; ztest_func_t ztest_remap_blocks; ztest_func_t ztest_spa_checkpoint_create_discard; ztest_func_t ztest_initialize; +ztest_func_t ztest_verify_dnode_bt; uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ ztest_info_t ztest_info[] = { { ztest_dmu_read_write, 1, &zopt_always }, { ztest_dmu_write_parallel, 10, &zopt_always }, { ztest_dmu_object_alloc_free, 1, &zopt_always }, + { ztest_dmu_object_next_chunk, 1, &zopt_sometimes }, { ztest_dmu_commit_callbacks, 1, &zopt_always }, { ztest_zap, 30, &zopt_always }, { ztest_zap_parallel, 100, &zopt_always }, { ztest_split_pool, 1, &zopt_always }, { ztest_zil_commit, 1, &zopt_incessant }, { ztest_zil_remount, 1, &zopt_sometimes }, { ztest_dmu_read_write_zcopy, 1, &zopt_often }, { ztest_dmu_objset_create_destroy, 1, &zopt_often }, { ztest_dsl_prop_get_set, 1, &zopt_often }, { ztest_spa_prop_get_set, 1, &zopt_sometimes }, #if 0 { ztest_dmu_prealloc, 1, &zopt_sometimes }, #endif { ztest_fzap, 1, &zopt_sometimes }, { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, { ztest_spa_create_destroy, 1, &zopt_sometimes }, { ztest_fault_inject, 1, &zopt_sometimes }, { ztest_ddt_repair, 1, &zopt_sometimes }, { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, { ztest_reguid, 1, &zopt_rarely }, { ztest_scrub, 1, &zopt_rarely }, { ztest_spa_upgrade, 1, &zopt_rarely }, { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, { ztest_vdev_attach_detach, 1, &zopt_sometimes }, { ztest_vdev_LUN_growth, 1, &zopt_rarely }, { ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime }, { ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime }, { ztest_device_removal, 1, &zopt_sometimes }, { ztest_remap_blocks, 1, &zopt_sometimes }, { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, - { ztest_initialize, 1, &zopt_sometimes } + { ztest_initialize, 1, &zopt_sometimes }, + { ztest_verify_dnode_bt, 1, &zopt_sometimes } }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { kmutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { boolean_t zs_do_init; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; uint64_t zs_splits; uint64_t zs_mirrors; uint64_t zs_metaslab_sz; uint64_t zs_metaslab_df_alloc_threshold; uint64_t zs_guid; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; ztest_shared_t *ztest_shared; static spa_t *ztest_spa = NULL; static ztest_ds_t *ztest_ds; static kmutex_t ztest_vdev_lock; -static kmutex_t ztest_checkpoint_lock; static boolean_t ztest_device_removal_active = B_FALSE; +static kmutex_t ztest_checkpoint_lock; /* * The ztest_name_lock protects the pool and dataset namespace used by * the individual tests. To modify the namespace, consumers must grab * this lock as writer. Grabbing the lock as reader will ensure that the * namespace does not change while the lock is held. */ static krwlock_t ztest_name_lock; static boolean_t ztest_dump_core = B_TRUE; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static void usage(boolean_t) __NORETURN; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #define FATAL_MSG_SZ 1024 char *fatal_msg; static void fatal(int do_perror, char *message, ...) { va_list args; int save_errno = errno; char buf[FATAL_MSG_SZ]; (void) fflush(stdout); va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ if (ztest_dump_core) abort(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); /* NOTREACHED */ } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); if (fval > UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } static void usage(boolean_t requested) { const ztest_shared_opts_t *zo = &ztest_opts_defaults; char nice_vdev_size[NN_NUMBUF_SZ]; char nice_force_ganging[NN_NUMBUF_SZ]; FILE *fp = requested ? stdout : stderr; nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, sizeof (nice_force_ganging)); (void) fprintf(fp, "Usage: %s\n" "\t[-v vdevs (default: %llu)]\n" "\t[-s size_of_each_vdev (default: %s)]\n" "\t[-a alignment_shift (default: %d)] use 0 for random\n" "\t[-m mirror_copies (default: %d)]\n" "\t[-r raidz_disks (default: %d)]\n" "\t[-R raidz_parity (default: %d)]\n" "\t[-d datasets (default: %d)]\n" "\t[-t threads (default: %d)]\n" "\t[-g gang_block_threshold (default: %s)]\n" "\t[-i init_count (default: %d)] initialize pool i times\n" "\t[-k kill_percentage (default: %llu%%)]\n" "\t[-p pool_name (default: %s)]\n" "\t[-f dir (default: %s)] file directory for vdev files\n" "\t[-V] verbose (use multiple times for ever more blather)\n" "\t[-E] use existing pool instead of creating new one\n" "\t[-T time (default: %llu sec)] total run time\n" "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" "\t[-P passtime (default: %llu sec)] time per pass\n" "\t[-B alt_ztest (default: )] alternate ztest path\n" "\t[-o variable=value] ... set global variable to an unsigned\n" "\t 32-bit integer value\n" "\t[-h] (print help)\n" "", zo->zo_pool, (u_longlong_t)zo->zo_vdevs, /* -v */ nice_vdev_size, /* -s */ zo->zo_ashift, /* -a */ zo->zo_mirrors, /* -m */ zo->zo_raidz, /* -r */ zo->zo_raidz_parity, /* -R */ zo->zo_datasets, /* -d */ zo->zo_threads, /* -t */ nice_force_ganging, /* -g */ zo->zo_init, /* -i */ (u_longlong_t)zo->zo_killrate, /* -k */ zo->zo_pool, /* -p */ zo->zo_dir, /* -f */ (u_longlong_t)zo->zo_time, /* -T */ (u_longlong_t)zo->zo_maxloops, /* -F */ (u_longlong_t)zo->zo_passtime); exit(requested ? 0 : 1); } static void process_options(int argc, char **argv) { char *path; ztest_shared_opts_t *zo = &ztest_opts; int opt; uint64_t value; char altdir[MAXNAMELEN] = { 0 }; bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); while ((opt = getopt(argc, argv, "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zo->zo_vdevs = value; break; case 's': zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zo->zo_ashift = value; break; case 'm': zo->zo_mirrors = value; break; case 'r': zo->zo_raidz = MAX(1, value); break; case 'R': zo->zo_raidz_parity = MIN(MAX(value, 1), 3); break; case 'd': zo->zo_datasets = MAX(1, value); break; case 't': zo->zo_threads = MAX(1, value); break; case 'g': zo->zo_metaslab_force_ganging = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zo->zo_init = value; break; case 'k': zo->zo_killrate = value; break; case 'p': (void) strlcpy(zo->zo_pool, optarg, sizeof (zo->zo_pool)); break; case 'f': path = realpath(optarg, NULL); if (path == NULL) { (void) fprintf(stderr, "error: %s: %s\n", optarg, strerror(errno)); usage(B_FALSE); } else { (void) strlcpy(zo->zo_dir, path, sizeof (zo->zo_dir)); } break; case 'V': zo->zo_verbose++; break; case 'E': zo->zo_init = 0; break; case 'T': zo->zo_time = value; break; case 'P': zo->zo_passtime = MAX(1, value); break; case 'F': zo->zo_maxloops = MAX(1, value); break; case 'B': (void) strlcpy(altdir, optarg, sizeof (altdir)); break; case 'o': if (set_global_var(optarg) != 0) usage(B_FALSE); break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); zo->zo_vdevtime = (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : UINT64_MAX >> 2); if (strlen(altdir) > 0) { char *cmd; char *realaltdir; char *bin; char *ztest; char *isa; int isalen; cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); VERIFY(NULL != realpath(getexecname(), cmd)); if (0 != access(altdir, F_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest path: %s", altdir); } VERIFY(NULL != realpath(altdir, realaltdir)); /* * 'cmd' should be of the form "/usr/bin//ztest". * We want to extract to determine if we should use * 32 or 64 bit binaries. */ bin = strstr(cmd, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 9; isalen = ztest - isa; (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), "%s/usr/lib/%.*s", realaltdir, isalen, isa); if (0 != access(zo->zo_alt_ztest, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest: %s", zo->zo_alt_ztest); } else if (0 != access(zo->zo_alt_libpath, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate lib directory %s", zo->zo_alt_libpath); } umem_free(cmd, MAXPATHLEN); umem_free(realaltdir, MAXPATHLEN); } } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); /* * Before we kill off ztest, make sure that the config is updated. * See comment above spa_write_cachefile(). */ mutex_enter(&spa_namespace_lock); spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); mutex_exit(&spa_namespace_lock); zfs_dbgmsg_print(FTAG); (void) kill(getpid(), SIGKILL); } static uint64_t ztest_random(uint64_t range) { uint64_t r; ASSERT3S(ztest_fd_rand, >=, 0); if (range == 0) return (0); if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) fatal(1, "short read from /dev/urandom"); return (r % range); } /* ARGSUSED */ static void ztest_record_enospc(const char *s) { ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (ztest_opts.zo_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(5)); return (ztest_opts.zo_ashift); } static nvlist_t * make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) { char pathbuf[MAXPATHLEN]; uint64_t vdev; nvlist_t *file; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) snprintf(path, sizeof (pathbuf), ztest_aux_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) snprintf(path, sizeof (pathbuf), ztest_dev_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, vdev); } } if (size != 0) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(1, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(1, "can't ftruncate %s", path); (void) close(fd); } VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); return (file); } static nvlist_t * make_vdev_raidz(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r) { nvlist_t *raidz, **child; int c; if (r < 2) return (make_vdev_file(path, aux, pool, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, pool, size, ashift); VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, VDEV_TYPE_RAIDZ) == 0); VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, ztest_opts.zo_raidz_parity) == 0); VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, child, r) == 0); for (c = 0; c < r; c++) nvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raidz); } static nvlist_t * make_vdev_mirror(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raidz(path, aux, pool, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m) == 0); for (c = 0; c < m; c++) nvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int log, int r, int m, int t) { nvlist_t *root, **child; int c; ASSERT(t > 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, pool, size, ashift, r, m); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log) == 0); } VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, child, t) == 0); for (c = 0; c < t; c++) nvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } /* * Find a random spa version. Returns back a random spa version in the * range [initial_version, SPA_VERSION_FEATURES]. */ static uint64_t ztest_random_spa_version(uint64_t initial_version) { uint64_t version = initial_version; if (version <= SPA_VERSION_BEFORE_FEATURES) { version = version + ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); } if (version > SPA_VERSION_BEFORE_FEATURES) version = SPA_VERSION_FEATURES; ASSERT(SPA_VERSION_IS_SUPPORTED(version)); return (version); } static int ztest_random_blocksize(void) { uint64_t block_shift; /* * Choose a block size >= the ashift. * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. */ int maxbs = SPA_OLD_MAXBLOCKSHIFT; if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) maxbs = 20; block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); return (1 << (SPA_MINBLOCKSHIFT + block_shift)); } static int +ztest_random_dnodesize(void) +{ + int slots; + int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; + + if (max_slots == DNODE_MIN_SLOTS) + return (DNODE_MIN_SIZE); + + /* + * Weight the random distribution more heavily toward smaller + * dnode sizes since that is more likely to reflect real-world + * usage. + */ + ASSERT3U(max_slots, >, 4); + switch (ztest_random(10)) { + case 0: + slots = 5 + ztest_random(max_slots - 4); + break; + case 1 ... 4: + slots = 2 + ztest_random(3); + break; + default: + slots = 1; + break; + } + + return (slots << DNODE_SHIFT); +} + +static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char setpoint[MAXPATHLEN]; uint64_t curval; int error; error = dsl_prop_set_int(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); if (ztest_opts.zo_verbose >= 6) { VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } return (error); } static int ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) { spa_t *spa = ztest_spa; nvlist_t *props = NULL; int error; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); error = spa_prop_set(spa, props); nvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); return (error); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); } static void ztest_rll_destroy(rll_t *rll) { ASSERT(rll->rll_writer == NULL); ASSERT(rll->rll_readers == 0); mutex_destroy(&rll->rll_lock); cv_destroy(&rll->rll_cv); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { mutex_enter(&rll->rll_lock); if (type == RL_READER) { while (rll->rll_writer != NULL) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } mutex_exit(&rll->rll_lock); } static void ztest_rll_unlock(rll_t *rll) { mutex_enter(&rll->rll_lock); if (rll->rll_writer) { ASSERT(rll->rll_readers == 0); rll->rll_writer = NULL; } else { ASSERT(rll->rll_readers != 0); ASSERT(rll->rll_writer == NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) cv_broadcast(&rll->rll_cv); mutex_exit(&rll->rll_lock); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_shared = szd; dmu_objset_name(os, zd->zd_name); if (zd->zd_shared != NULL) zd->zd_shared->zd_seq = 0; rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { mutex_destroy(&zd->zd_dirobj_lock); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT(txg_how == TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT(txg != 0); return (txg); } static void ztest_pattern_set(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); while (ip < ip_end) *ip++ = value; } static boolean_t ztest_pattern_match(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); uint64_t diff = 0; while (ip < ip_end) diff |= (value - *ip++); return (diff == 0); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, - uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) + uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, + uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; + bt->bt_dnodesize = dnodesize; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, - uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) + uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, + uint64_t crtxg) { ASSERT3U(bt->bt_magic, ==, BT_MAGIC); ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, object); + ASSERT3U(bt->bt_dnodesize, ==, dnodesize); ASSERT3U(bt->bt_offset, ==, offset); ASSERT3U(bt->bt_gen, <=, gen); ASSERT3U(bt->bt_txg, <=, txg); ASSERT3U(bt->bt_crtxg, ==, crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* + * Generate a token to fill up unused bonus buffer space. Try to make + * it unique to the object, generation, and offset to verify that data + * is not getting overwritten by data from other dnodes. + */ +#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ + (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) + +/* + * Fill up the unused bonus buffer region before the block tag with a + * verifiable pattern. Filling the whole bonus area with non-zero data + * helps ensure that all dnode traversal code properly skips the + * interior regions of large dnodes. + */ +void +ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, + objset_t *os, uint64_t gen) +{ + uint64_t *bonusp; + + ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); + + for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { + uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), + gen, bonusp - (uint64_t *)db->db_data); + *bonusp = token; + } +} + +/* + * Verify that the unused area of a bonus buffer is filled with the + * expected tokens. + */ +void +ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, + objset_t *os, uint64_t gen) +{ + uint64_t *bonusp; + + for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { + uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), + gen, bonusp - (uint64_t *)db->db_data); + VERIFY3U(*bonusp, ==, token); + } +} + +/* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev -#define lrz_bonuslen lr_crtime[1] +#define lrz_dnodesize lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; if (lr->lr_length > ZIL_MAX_LOG_DATA) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_create_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; + int bonuslen; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); + bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { - lr->lr_foid = zap_create(os, + lr->lr_foid = zap_create_dnsize(os, lr->lrz_type, lr->lrz_bonustype, - lr->lrz_bonuslen, tx); + bonuslen, lr->lrz_dnodesize, tx); } else { - error = zap_create_claim(os, lr->lr_foid, + error = zap_create_claim_dnsize(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, - lr->lrz_bonuslen, tx); + bonuslen, lr->lrz_dnodesize, tx); } } else { if (lr->lr_foid == 0) { - lr->lr_foid = dmu_object_alloc(os, + lr->lr_foid = dmu_object_alloc_dnsize(os, lr->lrz_type, 0, lr->lrz_bonustype, - lr->lrz_bonuslen, tx); + bonuslen, lr->lrz_dnodesize, tx); } else { - error = dmu_object_claim(os, lr->lr_foid, + error = dmu_object_claim_dnsize(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, - lr->lrz_bonuslen, tx); + bonuslen, lr->lrz_dnodesize, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT(lr->lr_foid != 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); - ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); + ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, + lr->lr_gen, txg, txg); + ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); dmu_buf_rele(db, FTAG); VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_remove_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); VERIFY3U(0, ==, zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT(object != 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY3U(0, ==, zap_destroy(os, object, tx)); } else { VERIFY3U(0, ==, dmu_object_free(os, object, tx)); } VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_write_t *lr = arg2; objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT(offset % doi.doi_data_block_size == 0); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { - ztest_bt_verify(&rbt, os, lr->lr_foid, + ztest_bt_verify(&rbt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { - ztest_bt_verify(bt, os, lr->lr_foid, offset, + ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ - ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); + ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, + crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { bcopy(data, abuf->b_data, length); dmu_assign_arcbuf(db, offset, abuf, tx); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_truncate_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx) == 0); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_setattr_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; - uint64_t txg, lrtxg, crtxg; + uint64_t txg, lrtxg, crtxg, dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; + dnodesize = bbt->bt_dnodesize; if (zd->zd_zilog->zl_replay) { ASSERT(lr->lr_size != 0); ASSERT(lr->lr_mode != 0); ASSERT(lrtxg != 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT(lrtxg == 0); } /* * Verify that the current bonus buffer is not newer than our txg. */ - ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, + ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); bbt = ztest_bt_bonus(db); - ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); + ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, + txg, crtxg); + ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ }; /* * ZIL get_data callbacks */ /* ARGSUSED */ static void ztest_get_done(zgd_t *zgd, int error) { ztest_ds_t *zd = zgd->zgd_private; uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock((rl_t *)zgd->zgd_lr); ztest_object_unlock(zd, object); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_lwb = lwb; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT(error == 0); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT(offset < size); offset = 0; } zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) bcopy(name, lr + lrsize, namesize); return (lr); } void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT(error == ENOENT); ASSERT(od->od_object == 0); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT(od->od_object != 0); ASSERT(missing == 0); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; - lr->lrz_bonuslen = dmu_bonus_max(); + lr->lrz_dnodesize = od->od_crdnodesize; lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT(missing == 0); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT(od->od_object != 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); od += count - 1; for (int i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } /* * No object was found. */ if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); bcopy(data, lr + 1, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { int err; ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; rw_enter(&zd->zd_zilog_lock, RW_READER); switch (io_type) { case ZTEST_IO_WRITE_TAG: - ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); + ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, + offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: bzero(data, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; case ZTEST_IO_REWRITE: rw_enter(&ztest_name_lock, RW_READER); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), B_FALSE); VERIFY(err == 0 || err == ENOSPC); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COMPRESSION, ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), B_FALSE); VERIFY(err == 0 || err == ENOSPC); rw_exit(&ztest_name_lock); VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, DMU_READ_NO_PREFETCH)); (void) ztest_write(zd, object, offset, blocksize, data); break; } rw_exit(&zd->zd_zilog_lock); umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, - dmu_object_type_t type, uint64_t blocksize, uint64_t gen) + dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, + uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); + od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", tag, (int64_t)id, index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; mutex_enter(&zd->zd_dirobj_lock); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; mutex_exit(&zd->zd_dirobj_lock); return (rv); } /* ARGSUSED */ void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { zilog_t *zilog = zd->zd_zilog; rw_enter(&zd->zd_zilog_lock, RW_READER); zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT(zd->zd_shared != NULL); ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); rw_exit(&zd->zd_zilog_lock); } /* * This function is designed to simulate the operations that occur during a * mount/unmount operation. We hold the dataset across these operations in an * attempt to expose any implicit assumptions about ZIL management. */ /* ARGSUSED */ void ztest_zil_remount(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; /* * We grab the zd_dirobj_lock to ensure that no other thread is * updating the zil (i.e. adding in-memory log records) and the * zd_zilog_lock to block any I/O. */ mutex_enter(&zd->zd_dirobj_lock); rw_enter(&zd->zd_zilog_lock, RW_WRITER); /* zfsvfs_teardown() */ zil_close(zd->zd_zilog); /* zfsvfs_setup() */ VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); zil_replay(os, zd, ztest_replay_vector); rw_exit(&zd->zd_zilog_lock); mutex_exit(&zd->zd_dirobj_lock); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ /* ARGSUSED */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa; nvlist_t *nvroot; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ rw_enter(&ztest_name_lock, RW_READER); nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); spa_close(spa, FTAG); rw_exit(&ztest_name_lock); } /* ARGSUSED */ void ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) { spa_t *spa; uint64_t initial_version = SPA_VERSION_INITIAL; uint64_t version, newversion; nvlist_t *nvroot, *props; char *name; mutex_enter(&ztest_vdev_lock); name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); /* * Clean up from previous runs. */ (void) spa_destroy(name); nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); /* * If we're configuring a RAIDZ device then make sure that the * the initial version is capable of supporting that feature. */ switch (ztest_opts.zo_raidz_parity) { case 0: case 1: initial_version = SPA_VERSION_INITIAL; break; case 2: initial_version = SPA_VERSION_RAIDZ2; break; case 3: initial_version = SPA_VERSION_RAIDZ3; break; } /* * Create a pool with a spa version that can be upgraded. Pick * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. */ do { version = ztest_random_spa_version(initial_version); } while (version > SPA_VERSION_BEFORE_FEATURES); props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), version); VERIFY0(spa_create(name, nvroot, props, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(name, &spa, FTAG)); VERIFY3U(spa_version(spa), ==, version); newversion = ztest_random_spa_version(version + 1); if (ztest_opts.zo_verbose >= 4) { (void) printf("upgrading spa version from %llu to %llu\n", (u_longlong_t)version, (u_longlong_t)newversion); } spa_upgrade(spa, newversion); VERIFY3U(spa_version(spa), >, version); VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, zpool_prop_to_name(ZPOOL_PROP_VERSION))); spa_close(spa, FTAG); strfree(name); mutex_exit(&ztest_vdev_lock); } static void ztest_spa_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DEVRM_IN_PROGRESS: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_CHECKPOINT_EXISTS: break; case ENOSPC: ztest_record_enospc(FTAG); break; default: fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); } } static void ztest_spa_discard_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint_discard(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_NO_CHECKPOINT: break; default: fatal(0, "spa_discard_checkpoint(%s) = %d", spa->spa_name, error); } } /* ARGSUSED */ void ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; mutex_enter(&ztest_checkpoint_lock); if (ztest_random(2) == 0) { ztest_spa_checkpoint(spa); } else { ztest_spa_discard_checkpoint(spa); } mutex_exit(&ztest_checkpoint_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } /* * Find the first available hole which can be used as a top-level. */ int find_vdev_hole(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; if (cvd->vdev_ishole) break; } return (c); } /* * Verify that vdev_add() works as expected. */ /* ARGSUSED */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { /* * Grab the guid from the head of the log class rotor. */ guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ rw_enter(&ztest_name_lock, RW_WRITER); error = spa_vdev_remove(spa, guid, B_FALSE); rw_exit(&ztest_name_lock); switch (error) { case 0: case EEXIST: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(0, "spa_vdev_remove() = %d", error); } } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices. */ nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, ztest_random(4) == 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); switch (error) { case 0: break; case ENOSPC: ztest_record_enospc("spa_vdev_add"); break; default: fatal(0, "spa_vdev_add() = %d", error); } } mutex_exit(&ztest_vdev_lock); } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ /* ARGSUSED */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; char *aux; uint64_t guid = 0; int error; if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { char path[MAXPATHLEN]; int c; (void) snprintf(path, sizeof (path), ztest_aux_template, ztest_opts.zo_dir, ztest_opts.zo_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); error = spa_vdev_add(spa, nvroot); switch (error) { case 0: break; default: fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); } nvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); switch (error) { case 0: case EBUSY: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); } } mutex_exit(&ztest_vdev_lock); } /* * split a pool if it has mirror tlvdevs */ /* ARGSUSED */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; mutex_enter(&ztest_vdev_lock); /* ensure we have a useable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { mutex_exit(&ztest_vdev_lock); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); mutex_exit(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); VERIFY(nvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1) == 0); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); } /* OK, create a config that can be used to split */ VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, lastlogid != 0 ? lastlogid : schildren) == 0); VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); for (c = 0; c < schildren; c++) nvlist_free(schild[c]); free(schild); nvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); rw_enter(&ztest_name_lock, RW_WRITER); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); rw_exit(&ztest_name_lock); nvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } mutex_exit(&ztest_vdev_lock); } /* * Verify that we can attach and detach devices. */ /* ARGSUSED */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; uint64_t oldsize, newsize; char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int oldvd_is_log; int error, expected_error; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * If a vdev is in the process of being removed, its removal may * finish while we are in progress, leading to an unexpected error * value. Don't bother trying to attach while we are in the middle * of removal. */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; if (zs->zs_mirrors >= 1) { ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); ASSERT(oldvd->vdev_children >= zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; } if (ztest_opts.zo_raidz > 1) { ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT(oldvd->vdev_children >= 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_ALL, FTAG); error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && error != ZFS_ERR_DISCARDING_CHECKPOINT) fatal(0, "detach (%s) returned %d", oldpath, error); mutex_exit(&ztest_vdev_lock); return; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { /* * Reopen to ensure the vdev's asize field isn't stale. */ vdev_reopen(newvd); newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else expected_error = 0; spa_config_exit(spa, SCL_ALL, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, ashift, 0, 0, 0, 1); error = spa_vdev_attach(spa, oldguid, root, replacing); nvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; if (error == ZFS_ERR_CHECKPOINT_EXISTS || error == ZFS_ERR_DISCARDING_CHECKPOINT) expected_error = error; /* XXX workaround 6690467 */ if (error != expected_error && expected_error != EBUSY) { fatal(0, "attach (%s %llu, %s %llu, %d) " "returned %d, expected %d", oldpath, oldsize, newpath, newsize, replacing, error, expected_error); } mutex_exit(&ztest_vdev_lock); } /* ARGSUSED */ void ztest_device_removal(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; vdev_t *vd; uint64_t guid; int error; mutex_enter(&ztest_vdev_lock); if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } /* * Remove a random top-level vdev and wait for removal to finish. */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); guid = vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_remove(spa, guid, B_FALSE); if (error == 0) { ztest_device_removal_active = B_TRUE; mutex_exit(&ztest_vdev_lock); while (spa->spa_vdev_removal != NULL) txg_wait_synced(spa_get_dsl(spa), 0); } else { mutex_exit(&ztest_vdev_lock); return; } /* * The pool needs to be scrubbed after completing device removal. * Failure to do so may result in checksum errors due to the * strategy employed by ztest_fault_inject() when selecting which * offset are redundant and can be damaged. */ error = spa_scan(spa, POOL_SCAN_SCRUB); if (error == 0) { while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); } mutex_enter(&ztest_vdev_lock); ztest_device_removal_active = B_FALSE; mutex_exit(&ztest_vdev_lock); } /* * Callback function which expands the physical size of the vdev. */ vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); (void) ftruncate(fd, *newsize); if (ztest_opts.zo_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ /* ARGSUSED */ vdev_t * online_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Unable to expand vdev, state %llu, " "error %d\n", (u_longlong_t)newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (ztest_opts.zo_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %llu, state %llu, expected gen %llu, " "got gen %llu\n", (u_longlong_t)guid, (u_longlong_t)tvd->vdev_state, (u_longlong_t)generation, (u_longlong_t)spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (uint_t c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ /* ARGSUSED */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; mutex_enter(&ztest_checkpoint_lock); mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If there is a vdev removal in progress, it could complete while * we are running, in which case we would not be able to verify * that the metaslab_class space increased (because it decreases * when the device removal completes). */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } ASSERT(psize > 0); newsize = psize + psize / 8; ASSERT3U(newsize, >, psize); if (ztest_opts.zo_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) { fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", old_ms_count, new_ms_count); } /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) { fatal(0, "LUN expansion failed: class_space %llu < %llu\n", old_class_space, new_class_space); } if (ztest_opts.zo_verbose >= 5) { char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ /* ARGSUSED */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { /* * Create the objects common to all ztest datasets. */ VERIFY(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); } static int ztest_dataset_create(char *dsname) { uint64_t zilset = ztest_random(100); int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, ztest_objset_create_cb, NULL); if (err || zilset < 80) return (err); if (ztest_opts.zo_verbose >= 6) (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } /* ARGSUSED */ static int ztest_objset_destroy_cb(const char *name, void *arg) { objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT0(error); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_disown(os, FTAG); /* * Destroy the dataset. */ if (strchr(name, '@') != NULL) { VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); } else { VERIFY0(dsl_destroy_head(name)); } return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); error = dmu_objset_snapshot_one(osname, snapname); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST) { fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, snapname, error); } return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, (u_longlong_t)id); error = dsl_destroy_snapshot(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } /* ARGSUSED */ void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_ds_t zdtmp; int iters; int error; objset_t *os, *os2; char name[ZFS_MAX_DATASET_NAME_LEN]; zilog_t *zilog; rw_enter(&ztest_name_lock, RW_READER); (void) snprintf(name, sizeof (name), "%s/temp_%llu", ztest_opts.zo_pool, (u_longlong_t)id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dmu_objset_destroy() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { ztest_zd_init(&zdtmp, NULL, os); zil_replay(os, &zdtmp, ztest_replay_vector); ztest_zd_fini(&zdtmp); dmu_objset_disown(os, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); rw_exit(&ztest_name_lock); return; } fatal(0, "dmu_objset_create(%s) = %d", name, error); } VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); ztest_zd_init(&zdtmp, NULL, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (int i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(&zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, FTAG); ztest_zd_fini(&zdtmp); rw_exit(&ztest_name_lock); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { rw_enter(&ztest_name_lock, RW_READER); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); rw_exit(&ztest_name_lock); } /* * Cleanup non-standard snapshots and clones. */ void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char snap1name[ZFS_MAX_DATASET_NAME_LEN]; char clone1name[ZFS_MAX_DATASET_NAME_LEN]; char snap2name[ZFS_MAX_DATASET_NAME_LEN]; char clone2name[ZFS_MAX_DATASET_NAME_LEN]; char snap3name[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snap1name, sizeof (snap1name), "%s@s1_%llu", osname, id); (void) snprintf(clone1name, sizeof (clone1name), "%s/c1_%llu", osname, id); (void) snprintf(snap2name, sizeof (snap2name), "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, sizeof (clone2name), "%s/c2_%llu", osname, id); (void) snprintf(snap3name, sizeof (snap3name), "%s@s3_%llu", clone1name, id); error = dsl_destroy_head(clone2name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); error = dsl_destroy_snapshot(snap3name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); error = dsl_destroy_snapshot(snap2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); error = dsl_destroy_head(clone1name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); error = dsl_destroy_snapshot(snap1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { objset_t *os; char snap1name[ZFS_MAX_DATASET_NAME_LEN]; char clone1name[ZFS_MAX_DATASET_NAME_LEN]; char snap2name[ZFS_MAX_DATASET_NAME_LEN]; char clone2name[ZFS_MAX_DATASET_NAME_LEN]; char snap3name[ZFS_MAX_DATASET_NAME_LEN]; char *osname = zd->zd_name; int error; rw_enter(&ztest_name_lock, RW_READER); ztest_dsl_dataset_cleanup(osname, id); (void) snprintf(snap1name, sizeof (snap1name), "%s@s1_%llu", osname, id); (void) snprintf(clone1name, sizeof (clone1name), "%s/c1_%llu", osname, id); (void) snprintf(snap2name, sizeof (snap2name), "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, sizeof (clone2name), "%s/c2_%llu", osname, id); (void) snprintf(snap3name, sizeof (snap3name), "%s@s3_%llu", clone1name, id); error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_clone(clone1name, snap1name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_clone(clone2name, snap3name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); } error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error == ENOSPC) { dmu_objset_disown(os, FTAG); ztest_record_enospc(FTAG); goto out; } if (error != EBUSY) fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dmu_objset_disown(os, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); rw_exit(&ztest_name_lock); } /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[4]; int batchsize = sizeof (od) / sizeof (od[0]); - for (int b = 0; b < batchsize; b++) - ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); + for (int b = 0; b < batchsize; b++) { + ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, + 0, 0, 0); + } /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) return; while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); } /* + * Rewind the global allocator to verify object allocation backfilling. + */ +void +ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) +{ + objset_t *os = zd->zd_os; + int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; + uint64_t object; + + /* + * Rewind the global allocator randomly back to a lower object number + * to force backfilling and reclamation of recently freed dnodes. + */ + mutex_enter(&os->os_obj_lock); + object = ztest_random(os->os_obj_next_chunk); + os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); + mutex_exit(&os->os_obj_lock); +} + +/* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; int i, freeit, error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); - ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, + chunksize); + ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, + chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT(chunksize == od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, ZIO_PRIORITY_SYNC_READ); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); /* This accounts for setting the checksum/compression. */ dmu_tx_hold_bonus(tx, bigobj); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); return; } enum zio_checksum cksum; do { cksum = (enum zio_checksum) ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); dmu_object_set_checksum(os, bigobj, cksum, tx); enum zio_compress comp; do { comp = (enum zio_compress) ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); dmu_object_set_compress(os, bigobj, comp, tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { bzero(pack, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (ztest_opts.zo_verbose >= 7) { (void) printf("freeing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); } void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; uint64_t i; int error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); - ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, + 0, 0); + ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, + chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT(chunksize == od[1].od_gen); VERIFY(dmu_object_info(os, bigobj, &doi) == 0); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY(chunksize == doi.doi_data_block_size); VERIFY(chunksize >= 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf() for the case when there're no * existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[j]->b_data, chunksize); } else { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[2 * j]->b_data, chunksize / 2); bcopy((caddr_t)bigbuf + (off - bigoff) + chunksize / 2, bigbuf_arcbufs[2 * j + 1]->b_data, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[j], tx); } else { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx); dmu_assign_arcbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); } /* ARGSUSED */ void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ - ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); + ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, + 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od[0].od_object, offset); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, + 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) return; ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od[0].od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od[0].od_object, randoff); } umem_free(data, blocksize); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; for (i = 0; i < 2; i++) { value[i] = i; VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY3U(0, ==, zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a buch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); bzero(value, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg) == 0); VERIFY(zap_length(os, object, propname, &zl_intsize, &zl_ints) == 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY(zap_lookup(os, object, propname, zl_intsize, zl_ints, value) == 0); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; if (last_txg > txg) fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) return; ASSERT0(error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); } /* * Testcase to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, txg; - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (int i = 0; i < 2050; i++) { char name[ZFS_MAX_DATASET_NAME_LEN]; uint64_t value = i; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", id, value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } } /* ARGSUSED */ void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; - ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); + ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, + 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; object = od[0].od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY0(zap_count(os, object, &count)); ASSERT(count != -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; bcopy(name, string_value, namelen); } else { tx = NULL; txg = 0; bzero(string_value, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && bcmp(name, data, namelen) != 0) fatal(0, "name '%s' != val '%s' len %d", name, data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY(data != NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(0, "commit callback of txg %" PRIu64 " called prematurely" ", last synced txg = %" PRIu64 "\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT0(data->zcd_txg); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } /* Was this callback added to the global callback list? */ if (!data->zcd_added) goto out; ASSERT3U(data->zcd_txg, !=, 0); /* Remove our callback from the list */ mutex_enter(&zcl.zcl_callbacks_lock); list_remove(&zcl.zcl_callbacks, data); mutex_exit(&zcl.zcl_callbacks_lock); out: umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); return (cb_data); } /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error; - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, old_txg, txg); dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); mutex_enter(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { fatal(0, "Commit callback threshold exceeded, oldest txg: %" PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } mutex_exit(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); } +/* + * Visit each object in the dataset. Verify that its properties + * are consistent what was stored in the block tag when it was created, + * and that its unused bonus buffer space has not been overwritten. + */ +void +ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) +{ + objset_t *os = zd->zd_os; + uint64_t obj; + int err = 0; + + for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { + ztest_block_tag_t *bt = NULL; + dmu_object_info_t doi; + dmu_buf_t *db; + + if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) + continue; + + dmu_object_info_from_db(db, &doi); + if (doi.doi_bonus_size >= sizeof (*bt)) + bt = ztest_bt_bonus(db); + + if (bt && bt->bt_magic == BT_MAGIC) { + ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, + bt->bt_offset, bt->bt_gen, bt->bt_txg, + bt->bt_crtxg); + ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); + } + + dmu_buf_rele(db, FTAG); + } +} + /* ARGSUSED */ void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; rw_enter(&ztest_name_lock, RW_READER); for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); rw_exit(&ztest_name_lock); } /* ARGSUSED */ void ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) { rw_enter(&ztest_name_lock, RW_READER); int error = dmu_objset_remap_indirects(zd->zd_name); if (error == ENOSPC) error = 0; ASSERT0(error); rw_exit(&ztest_name_lock); } /* ARGSUSED */ void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { nvlist_t *props = NULL; rw_enter(&ztest_name_lock, RW_READER); (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); VERIFY0(spa_prop_get(ztest_spa, &props)); if (ztest_opts.zo_verbose >= 6) dump_nvlist(props, 4); nvlist_free(props); rw_exit(&ztest_name_lock); } static int user_release_one(const char *snapname, const char *holdname) { nvlist_t *snaps, *holds; int error; snaps = fnvlist_alloc(); holds = fnvlist_alloc(); fnvlist_add_boolean(holds, holdname); fnvlist_add_nvlist(snaps, snapname, holds); fnvlist_free(holds); error = dsl_dataset_user_release(snaps, NULL); fnvlist_free(snaps); return (error); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *holds; rw_enter(&ztest_name_lock, RW_READER); dmu_objset_name(os, osname); (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%llu", osname, id); (void) snprintf(tag, sizeof (tag), "tag_%llu", id); /* * Clean up from any previous run. */ error = dsl_destroy_head(clonename); if (error != ENOENT) ASSERT0(error); error = user_release_one(fullname, tag); if (error != ESRCH && error != ENOENT) ASSERT0(error); error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != ENOENT) ASSERT0(error); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_clone(clonename, fullname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = dsl_destroy_head(clonename); if (error) fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } holds = fnvlist_alloc(); fnvlist_add_string(holds, fullname, tag); error = dsl_dataset_user_hold(holds, 0, NULL); fnvlist_free(holds); if (error == ENOSPC) { ztest_record_enospc("dsl_dataset_user_hold"); goto out; } else if (error) { fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", fullname, tag, error); } error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != EBUSY) { fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", fullname, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = user_release_one(fullname, tag); if (error) fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); out: rw_exit(&ztest_name_lock); } /* * Inject random faults into the on-disk data. */ /* ARGSUSED */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecade; uint64_t top, leaf; char path0[MAXPATHLEN]; char pathrand[MAXPATHLEN]; size_t fsize; int bshift = SPA_MAXBLOCKSHIFT + 2; int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; mutex_enter(&ztest_vdev_lock); /* * Device removal is in progress, fault injection must be disabled * until it completes and the pool is scrubbed. The fault injection * strategy for damaging blocks does not take in to account evacuated * blocks which may have already been damaged. */ if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } maxfaults = MAXFAULTS(); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; mirror_save = zs->zs_mirrors; mutex_exit(&ztest_vdev_lock); ASSERT(leaves >= 1); /* * Grab the name lock as reader. There are some operations * which don't like to have their vdevs changed while * they are in progress (i.e. spa_change_guid). Those * operations will have grabbed the name lock as writer. */ rw_enter(&ztest_name_lock, RW_READER); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, sizeof (path0), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; /* * If the top-level vdev needs to be resilvered * then we only allow faults on the device that is * resilvering. */ if (vd0 != NULL && maxfaults != 1 && (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || vd0->vdev_resilver_txg != 0)) { /* * Make vd0 explicitly claim to be unreadable, * or unwriteable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", (long long)vd0->vdev_id, (int)maxfaults); if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_vnode->v_fd); vf->vf_vnode->v_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); rw_exit(&ztest_name_lock); return; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); rw_exit(&ztest_name_lock); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) rw_enter(&ztest_name_lock, RW_WRITER); VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); if (islog) rw_exit(&ztest_name_lock); } else { /* * Ideally we would like to be able to randomly * call vdev_[on|off]line without holding locks * to force unpredictable failures but the side * effects of vdev_[on|off]line prevent us from * doing so. We grab the ztest_vdev_lock here to * prevent a race between injection testing and * aux_vdev removal. */ mutex_enter(&ztest_vdev_lock); (void) vdev_online(spa, guid0, 0, NULL); mutex_exit(&ztest_vdev_lock); } } if (maxfaults == 0) return; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ return; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { /* * The offset must be chosen carefully to ensure that * we do not inject a given logical block with errors * on two different leaf devices, because ZFS can not * tolerate that (if maxfaults==1). * * We divide each leaf into chunks of size * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk * there is a series of ranges to which we can inject errors. * Each range can accept errors on only a single leaf vdev. * The error injection ranges are separated by ranges * which we will not inject errors on any device (DMZs). * Each DMZ must be large enough such that a single block * can not straddle it, so that a single block can not be * a target in two different injection ranges (on different * leaf vdevs). * * For example, with 3 leaves, each chunk looks like: * 0 to 32M: injection range for leaf 0 * 32M to 64M: DMZ - no injection allowed * 64M to 96M: injection range for leaf 1 * 96M to 128M: DMZ - no injection allowed * 128M to 160M: injection range for leaf 2 * 160M to 192M: DMZ - no injection allowed */ offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); /* * Only allow damage to the labels at one end of the vdev. * * If all labels are damaged, the device will be totally * inaccessible, which will result in loss of data, * because we also damage (parts of) the other side of * the mirror/raidz. * * Additionally, we will always have both an even and an * odd label, so that we can handle crashes in the * middle of vdev_config_sync(). */ if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) continue; /* * The two end labels are stored at the "end" of the disk, but * the end of the disk (vdev_psize) is aligned to * sizeof (vdev_label_t). */ uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); if ((leaf & 1) == 1 && offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) continue; mutex_enter(&ztest_vdev_lock); if (mirror_save != zs->zs_mirrors) { mutex_exit(&ztest_vdev_lock); (void) close(fd); return; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(1, "can't inject bad word at 0x%llx in %s", offset, pathrand); mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%llx\n", pathrand, (u_longlong_t)offset); } (void) close(fd); } /* * Verify that DDT repair works as expected. */ void ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, blocksize, txg, pattern, psize; enum zio_checksum checksum = spa_dedup_checksum(spa); dmu_buf_t *db; dmu_tx_t *tx; abd_t *abd; blkptr_t blk; int copies = 2 * ZIO_DEDUPDITTO_MIN; blocksize = ztest_random_blocksize(); blocksize = MIN(blocksize, 2048); /* because we write so many */ - ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); + ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, + 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; /* * Take the name lock as writer to prevent anyone else from changing * the pool and dataset properies we need to maintain during this test. */ rw_enter(&ztest_name_lock, RW_WRITER); if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, B_FALSE) != 0 || ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, B_FALSE) != 0) { rw_exit(&ztest_name_lock); return; } dmu_objset_stats_t dds; dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); object = od[0].od_object; blocksize = od[0].od_blocksize; pattern = zs->zs_guid ^ dds.dds_guid; ASSERT(object != 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, 0, copies * blocksize); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { rw_exit(&ztest_name_lock); return; } /* * Write all the copies of our block. */ for (int i = 0; i < copies; i++) { uint64_t offset = i * blocksize; int error = dmu_buf_hold(os, object, offset, FTAG, &db, DMU_READ_NO_PREFETCH); if (error != 0) { fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", os, (long long)object, (long long) offset, error); } ASSERT(db->db_offset == offset); ASSERT(db->db_size == blocksize); ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || ztest_pattern_match(db->db_data, db->db_size, 0ULL)); dmu_buf_will_fill(db, tx); ztest_pattern_set(db->db_data, db->db_size, pattern); dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), txg); /* * Find out what block we got. */ VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); blk = *((dmu_buf_impl_t *)db)->db_blkptr; dmu_buf_rele(db, FTAG); /* * Damage the block. Dedup-ditto will save us when we read it later. */ psize = BP_GET_PSIZE(&blk); abd = abd_alloc_linear(psize, B_TRUE); ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); abd_free(abd); rw_exit(&ztest_name_lock); } /* * Scrub the pool. */ /* ARGSUSED */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; /* * Scrub in progress by device removal. */ if (ztest_device_removal_active) return; (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ (void) spa_scan(spa, POOL_SCAN_SCRUB); } /* * Change the guid for the pool. */ /* ARGSUSED */ void ztest_reguid(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; uint64_t orig, load; int error; orig = spa_guid(spa); load = spa_load_guid(spa); rw_enter(&ztest_name_lock, RW_WRITER); error = spa_change_guid(spa); rw_exit(&ztest_name_lock); if (error != 0) return; if (ztest_opts.zo_verbose >= 4) { (void) printf("Changed guid old %llu -> %llu\n", (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); } VERIFY3U(orig, !=, spa_guid(spa)); VERIFY3U(load, ==, spa_load_guid(spa)); } static vdev_t * ztest_random_concrete_vdev_leaf(vdev_t *vd) { if (vd == NULL) return (NULL); if (vd->vdev_children == 0) return (vd); vdev_t *eligible[vd->vdev_children]; int eligible_idx = 0, i; for (i = 0; i < vd->vdev_children; i++) { vdev_t *cvd = vd->vdev_child[i]; if (cvd->vdev_top->vdev_removing) continue; if (cvd->vdev_children > 0 || (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { eligible[eligible_idx++] = cvd; } } VERIFY(eligible_idx > 0); uint64_t child_no = ztest_random(eligible_idx); return (ztest_random_concrete_vdev_leaf(eligible[child_no])); } /* ARGSUSED */ void ztest_initialize(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_initialize_thread != NULL; zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); error = spa_vdev_initialize(spa, guid, cmd); switch (cmd) { case POOL_INITIALIZE_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; case POOL_INITIALIZE_DO: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start initialize %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_INITIALIZE_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(char *pool) { int status; char zdb[MAXPATHLEN + MAXNAMELEN + 20]; char zbuf[1024]; char *bin; char *ztest; char *isa; int isalen; FILE *fp; (void) realpath(getexecname(), zdb); /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ bin = strstr(zdb, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 8; isalen = ztest - isa; isa = strdup(isa); /* LINTED */ (void) sprintf(bin, "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", isalen, isa, ztest_opts.zo_verbose >= 3 ? "s" : "", ztest_opts.zo_verbose >= 4 ? "v" : "", spa_config_path, pool); free(isa); if (ztest_opts.zo_verbose >= 5) (void) printf("Executing %s\n", strstr(zdb, "zdb ")); fp = popen(zdb, "r"); while (fgets(zbuf, sizeof (zbuf), fp) != NULL) if (ztest_opts.zo_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) return; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); } static void ztest_walk_pool_directory(char *header) { spa_t *spa = NULL; if (ztest_opts.zo_verbose >= 6) (void) printf("%s\n", header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (ztest_opts.zo_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (ztest_opts.zo_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT(newconfig != NULL); nvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL, 0); if (error != 0) { dump_nvlist(config, 0); fatal(B_FALSE, "couldn't import pool %s as %s: error %u", oldname, newname, error); } ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(pool_guid == spa_guid(spa)); spa_close(spa, FTAG); nvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static void * ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); /* * Periodically change the zfs_compressed_arc_enabled setting. */ if (ztest_random(10) == 0) zfs_compressed_arc_enabled = ztest_random(2); /* * Periodically change the zfs_abd_scatter_enabled setting. */ if (ztest_random(10) == 0) zfs_abd_scatter_enabled = ztest_random(2); } return (NULL); } static void * ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; spa_t *spa = ztest_spa; hrtime_t delta, total = 0; for (;;) { delta = zs->zs_thread_stop - zs->zs_thread_start + MSEC2NSEC(zfs_deadman_synctime_ms); (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); /* * If the pool is suspended then fail immediately. Otherwise, * check to see if the pool is making any progress. If * vdev_deadman() discovers that there hasn't been any recent * I/Os then it will end up aborting the tests. */ if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { fatal(0, "aborting test after %llu seconds because " "pool has transitioned to a suspended state.", zfs_deadman_synctime_ms / 1000); return (NULL); } vdev_deadman(spa->spa_root_vdev); total += zfs_deadman_synctime_ms/1000; (void) printf("ztest has been running for %lld seconds\n", total); } } static void ztest_execute(int test, ztest_info_t *zi, uint64_t id) { ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); hrtime_t functime = gethrtime(); for (int i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zc->zc_count, 1); atomic_add_64(&zc->zc_time, functime); if (ztest_opts.zo_verbose >= 4) { Dl_info dli; (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, dli.dli_sname); } } static void * ztest_thread(void *arg) { int rand; uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; ztest_shared_callstate_t *zc; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ rand = ztest_random(ZTEST_FUNCS); zi = &ztest_info[rand]; zc = ZTEST_GET_SHARED_CALLSTATE(rand); call_next = zc->zc_next; if (now >= call_next && atomic_cas_64(&zc->zc_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { ztest_execute(rand, zi, id); } } return (NULL); } static void ztest_dataset_name(char *dsname, char *pool, int d) { (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(int d) { char name[ZFS_MAX_DATASET_NAME_LEN]; ztest_dataset_name(name, ztest_opts.zo_pool, d); if (ztest_opts.zo_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (int t = d; t < ztest_opts.zo_threads; t += ztest_opts.zo_datasets) { ztest_dsl_dataset_cleanup(name, t); } (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(int d) { ztest_ds_t *zd = &ztest_ds[d]; uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; objset_t *os; zilog_t *zilog; char name[ZFS_MAX_DATASET_NAME_LEN]; int error; ztest_dataset_name(name, ztest_opts.zo_pool, d); rw_enter(&ztest_name_lock, RW_READER); error = ztest_dataset_create(name); if (error == ENOSPC) { rw_exit(&ztest_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); rw_exit(&ztest_name_lock); ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(0, "missing log records: claimed %llu < committed %llu", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (ztest_opts.zo_verbose >= 6) (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", zd->zd_name, (u_longlong_t)zilog->zl_parse_blk_count, (u_longlong_t)zilog->zl_parse_lr_count, (u_longlong_t)zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(0, "missing log records: replayed %llu < committed %llu", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(int d) { ztest_ds_t *zd = &ztest_ds[d]; zil_close(zd->zd_zilog); dmu_objset_disown(zd->zd_os, zd); ztest_zd_fini(zd); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { thread_t *tid; spa_t *spa; objset_t *os; thread_t resume_tid; int error; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < ztest_opts.zo_killrate) { zs->zs_thread_kill -= ztest_random(ztest_opts.zo_passtime * NANOSEC); } mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. */ kernel_init(FREAD | FWRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); metaslab_preload_limit = ztest_random(20) + 1; ztest_spa = spa; dmu_objset_stats_t dds; VERIFY0(dmu_objset_own(ztest_opts.zo_pool, DMU_OST_ANY, B_TRUE, FTAG, &os)); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); zs->zs_guid = dds.dds_guid; dmu_objset_disown(os, FTAG); spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ if (MAXFAULTS() == 0) spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; else spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; /* * Create a thread to periodically resume suspended I/O. */ VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, &resume_tid) == 0); /* * Create a deadman thread to abort() if we hang. */ VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, NULL) == 0); /* * Verify that we can safely inquire about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (int t = 0; t < 64; t++) { for (int d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(ztest_opts.zo_datasets); ztest_dataset_destroy(d); } zs->zs_enospc_count = 0; tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), UMEM_NOFAIL); if (ztest_opts.zo_verbose >= 4) (void) printf("starting main threads...\n"); /* * Kick off all the tests that run in parallel. */ for (int t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) return; VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, THR_BOUND, &tid[t]) == 0); } /* * Wait for all of the tests to complete. We go in reverse order * so we don't close datasets while threads are still using them. */ for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { VERIFY(thr_join(tid[t], NULL, NULL) == 0); if (t < ztest_opts.zo_datasets) ztest_dataset_close(t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); zfs_dbgmsg_print(FTAG); umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); /* Kill the resume thread */ ztest_exiting = B_TRUE; VERIFY(thr_join(resume_tid, NULL, NULL) == 0); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (uint64_t object = 1; object < 50; object++) { dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, ZIO_PRIORITY_SYNC_READ); } spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (ztest_opts.zo_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if (ztest_random(2) == 0) { char name[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(name, sizeof (name), "%s_import", ztest_opts.zo_pool); ztest_spa_import_export(ztest_opts.zo_pool, name); ztest_spa_import_export(name, ztest_opts.zo_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); mutex_destroy(&zcl.zcl_callbacks_lock); rw_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void ztest_freeze(void) { ztest_ds_t *zd = &ztest_ds[0]; spa_t *spa; int numloops = 0; if (ztest_opts.zo_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); VERIFY3U(0, ==, ztest_dataset_open(0)); ztest_spa = spa; /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Because it is hard to predict how much space a write will actually * require beforehand, we leave ourselves some fudge space to write over * capacity. */ uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. * * Run a random number of times less than zo_maxloops and ensure we do * not run out of space on the pool. */ while (ztest_random(10) != 0 && numloops++ < ztest_opts.zo_maxloops && metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { ztest_od_t od; - ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); + ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); ztest_io(zd, od.od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); ASSERT(spa_freeze_txg(spa) == UINT64_MAX); VERIFY3U(0, ==, ztest_dataset_open(0)); ztest_dataset_close(0); ztest_spa = spa; txg_wait_synced(spa_get_dsl(spa), 0); ztest_reguid(NULL, 0); spa_close(spa, FTAG); kernel_fini(); } void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props() { nvlist_t *props; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); if (ztest_random(2) == 0) return (props); VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); return (props); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); kernel_init(FREAD | FWRITE); /* * Create the storage pool. */ (void) spa_destroy(ztest_opts.zo_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = ztest_opts.zo_mirrors; nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); props = make_random_props(); for (int i = 0; i < SPA_FEATURES; i++) { char buf[1024]; (void) snprintf(buf, sizeof (buf), "feature@%s", spa_feature_table[i].fi_uname); VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); } VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); rw_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void setup_data_fd(void) { static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; ztest_fd_data = mkstemp(ztest_name_data); ASSERT3S(ztest_fd_data, >=, 0); (void) unlink(ztest_name_data); } static int shared_data_size(ztest_shared_hdr_t *hdr) { int size; size = hdr->zh_hdr_size; size += hdr->zh_opts_size; size += hdr->zh_size; size += hdr->zh_stats_size * hdr->zh_stats_count; size += hdr->zh_ds_size * hdr->zh_ds_count; return (size); } static void setup_hdr(void) { int size; ztest_shared_hdr_t *hdr; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); hdr->zh_opts_size = sizeof (ztest_shared_opts_t); hdr->zh_size = sizeof (ztest_shared_t); hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); hdr->zh_stats_count = ZTEST_FUNCS; hdr->zh_ds_size = sizeof (ztest_shared_ds_t); hdr->zh_ds_count = ztest_opts.zo_datasets; size = shared_data_size(hdr); VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); } static void setup_data(void) { int size, offset; ztest_shared_hdr_t *hdr; uint8_t *buf; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); size = shared_data_size(hdr); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); buf = (uint8_t *)hdr; offset = hdr->zh_hdr_size; ztest_shared_opts = (void *)&buf[offset]; offset += hdr->zh_opts_size; ztest_shared = (void *)&buf[offset]; offset += hdr->zh_size; ztest_shared_callstate = (void *)&buf[offset]; offset += hdr->zh_stats_size * hdr->zh_stats_count; ztest_shared_ds = (void *)&buf[offset]; } static boolean_t exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) { pid_t pid; int status; char *cmdbuf = NULL; pid = fork(); if (cmd == NULL) { cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); cmd = cmdbuf; } if (pid == -1) fatal(1, "fork failed"); if (pid == 0) { /* child */ char *emptyargv[2] = { cmd, NULL }; char fd_data_str[12]; struct rlimit rl = { 1024, 1024 }; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) close(ztest_fd_rand); VERIFY3U(11, >=, snprintf(fd_data_str, 12, "%d", ztest_fd_data)); VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); (void) enable_extended_FILE_stdio(-1, -1); if (libpath != NULL) VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); (void) execv(cmd, emptyargv); ztest_dump_core = B_FALSE; fatal(B_TRUE, "exec failed: %s", cmd); } if (cmdbuf != NULL) { umem_free(cmdbuf, MAXPATHLEN); cmd = NULL; } while (waitpid(pid, &status, 0) != pid) continue; if (statusp != NULL) *statusp = status; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } return (B_FALSE); } else if (WIFSIGNALED(status)) { if (!ignorekill || WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } return (B_TRUE); } else { (void) fprintf(stderr, "something strange happened to child\n"); exit(4); /* NOTREACHED */ } } static void ztest_run_init(void) { ztest_shared_t *zs = ztest_shared; ASSERT(ztest_opts.zo_init != 0); /* * Blow away any existing copy of zpool.cache */ (void) remove(spa_config_path); /* * Create and initialize our storage pool. */ for (int i = 1; i <= ztest_opts.zo_init; i++) { bzero(zs, sizeof (ztest_shared_t)); if (ztest_opts.zo_verbose >= 3 && ztest_opts.zo_init != 1) { (void) printf("ztest_init(), pass %d\n", i); } ztest_init(zs); } } int main(int argc, char **argv) { int kills = 0; int iters = 0; int older = 0; int newer = 0; ztest_shared_t *zs; ztest_info_t *zi; ztest_shared_callstate_t *zc; char timebuf[100]; char numbuf[NN_NUMBUF_SZ]; char *cmd; boolean_t hasalt; char *fd_data_str = getenv("ZTEST_FD_DATA"); (void) setvbuf(stdout, NULL, _IOLBF, 0); dprintf_setup(&argc, argv); zfs_deadman_synctime_ms = 300000; /* * As two-word space map entries may not come up often (especially * if pool and vdev sizes are small) we want to force at least some * of them so the feature get tested. */ zfs_force_some_double_word_sm_entries = B_TRUE; ztest_fd_rand = open("/dev/urandom", O_RDONLY); ASSERT3S(ztest_fd_rand, >=, 0); if (!fd_data_str) { process_options(argc, argv); setup_data_fd(); setup_hdr(); setup_data(); bcopy(&ztest_opts, ztest_shared_opts, sizeof (*ztest_shared_opts)); } else { ztest_fd_data = atoi(fd_data_str); setup_data(); bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); } ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); /* Override location of zpool.cache */ VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", ztest_opts.zo_dir), !=, -1); ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), UMEM_NOFAIL); zs = ztest_shared; if (fd_data_str) { metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; metaslab_df_alloc_threshold = zs->zs_metaslab_df_alloc_threshold; if (zs->zs_do_init) ztest_run_init(); else ztest_run(zs); exit(0); } hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); if (ztest_opts.zo_verbose >= 1) { (void) printf("%llu vdevs, %d datasets, %d threads," " %llu seconds...\n", (u_longlong_t)ztest_opts.zo_vdevs, ztest_opts.zo_datasets, ztest_opts.zo_threads, (u_longlong_t)ztest_opts.zo_time); } cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); (void) strlcpy(cmd, getexecname(), MAXNAMELEN); zs->zs_do_init = B_TRUE; if (strlen(ztest_opts.zo_alt_ztest) != 0) { if (ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest for " "initialization: %s\n", ztest_opts.zo_alt_ztest); } VERIFY(!exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_FALSE, NULL)); } else { VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); } zs->zs_do_init = B_FALSE; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; for (int f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zc->zc_next = UINT64_MAX; else zc->zc_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; boolean_t killed; /* * Initialize the workload counters for each function. */ for (int f = 0; f < ZTEST_FUNCS; f++) { zc = ZTEST_GET_SHARED_CALLSTATE(f); zc->zc_count = 0; zc->zc_time = 0; } /* Set the allocation switch size */ zs->zs_metaslab_df_alloc_threshold = ztest_random(zs->zs_metaslab_sz / 4) + 1; if (!hasalt || ztest_random(2) == 0) { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing newer ztest: %s\n", cmd); } newer++; killed = exec_child(cmd, NULL, B_TRUE, &status); } else { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest: %s\n", ztest_opts.zo_alt_ztest); } older++; killed = exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_TRUE, &status); } if (killed) kills++; iters++; if (ztest_opts.zo_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf, sizeof (numbuf)); (void) printf("Pass %3d, %8s, %3llu ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", (u_longlong_t)zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (ztest_opts.zo_time * NANOSEC), timebuf); } if (ztest_opts.zo_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (int f = 0; f < ZTEST_FUNCS; f++) { Dl_info dli; zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); print_time(zc->zc_time, timebuf); (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%7llu %9s %s\n", (u_longlong_t)zc->zc_count, timebuf, dli.dli_sname); } (void) printf("\n"); } ztest_run_zdb(ztest_opts.zo_pool); } if (ztest_opts.zo_verbose >= 1) { if (hasalt) { (void) printf("%d runs of older ztest: %s\n", older, ztest_opts.zo_alt_ztest); (void) printf("%d runs of newer ztest: %s\n", newer, cmd); } (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } umem_free(cmd, MAXNAMELEN); return (0); } Index: vendor/illumos/dist/man/man5/zpool-features.5 =================================================================== --- vendor/illumos/dist/man/man5/zpool-features.5 (revision 350897) +++ vendor/illumos/dist/man/man5/zpool-features.5 (revision 350898) @@ -1,641 +1,665 @@ '\" te .\" Copyright (c) 2013, 2017 by Delphix. All rights reserved. .\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved. .\" Copyright (c) 2014, Joyent, Inc. All rights reserved. .\" Copyright (c) 2014 Integros [integros.com] .\" The contents of this file are subject to the terms of the Common Development .\" and Distribution License (the "License"). You may not use this file except .\" in compliance with the License. You can obtain a copy of the license at .\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. .\" .\" See the License for the specific language governing permissions and .\" limitations under the License. When distributing Covered Code, include this .\" CDDL HEADER in each file and include the License file at .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your .\" own identifying information: .\" Portions Copyright [yyyy] [name of copyright owner] .TH ZPOOL-FEATURES 5 "Jun 8, 2018" .SH NAME zpool\-features \- ZFS pool feature descriptions .SH DESCRIPTION .LP ZFS pool on\-disk format versions are specified via "features" which replace the old on\-disk format numbers (the last supported on\-disk format number is 28). To enable a feature on a pool use the \fBupgrade\fR subcommand of the \fBzpool\fR(1M) command, or set the \fBfeature@\fR\fIfeature_name\fR property to \fBenabled\fR. .sp .LP The pool format does not affect file system version compatibility or the ability to send file systems between pools. .sp .LP Since most features can be enabled independently of each other the on\-disk format of the pool is specified by the set of all features marked as \fBactive\fR on the pool. If the pool was created by another software version this set may include unsupported features. .SS "Identifying features" .LP Every feature has a guid of the form \fIcom.example:feature_name\fR. The reverse DNS name ensures that the feature's guid is unique across all ZFS implementations. When unsupported features are encountered on a pool they will be identified by their guids. Refer to the documentation for the ZFS implementation that created the pool for information about those features. .sp .LP Each supported feature also has a short name. By convention a feature's short name is the portion of its guid which follows the ':' (e.g. \fIcom.example:feature_name\fR would have the short name \fIfeature_name\fR), however a feature's short name may differ across ZFS implementations if following the convention would result in name conflicts. .SS "Feature states" .LP Features can be in one of three states: .sp .ne 2 .na \fB\fBactive\fR\fR .ad .RS 12n This feature's on\-disk format changes are in effect on the pool. Support for this feature is required to import the pool in read\-write mode. If this feature is not read-only compatible, support is also required to import the pool in read\-only mode (see "Read\-only compatibility"). .RE .sp .ne 2 .na \fB\fBenabled\fR\fR .ad .RS 12n An administrator has marked this feature as enabled on the pool, but the feature's on\-disk format changes have not been made yet. The pool can still be imported by software that does not support this feature, but changes may be made to the on\-disk format at any time which will move the feature to the \fBactive\fR state. Some features may support returning to the \fBenabled\fR state after becoming \fBactive\fR. See feature\-specific documentation for details. .RE .sp .ne 2 .na \fBdisabled\fR .ad .RS 12n This feature's on\-disk format changes have not been made and will not be made unless an administrator moves the feature to the \fBenabled\fR state. Features cannot be disabled once they have been enabled. .RE .sp .LP The state of supported features is exposed through pool properties of the form \fIfeature@short_name\fR. .SS "Read\-only compatibility" .LP Some features may make on\-disk format changes that do not interfere with other software's ability to read from the pool. These features are referred to as "read\-only compatible". If all unsupported features on a pool are read\-only compatible, the pool can be imported in read\-only mode by setting the \fBreadonly\fR property during import (see \fBzpool\fR(1M) for details on importing pools). .SS "Unsupported features" .LP For each unsupported feature enabled on an imported pool a pool property named \fIunsupported@feature_guid\fR will indicate why the import was allowed despite the unsupported feature. Possible values for this property are: .sp .ne 2 .na \fB\fBinactive\fR\fR .ad .RS 12n The feature is in the \fBenabled\fR state and therefore the pool's on\-disk format is still compatible with software that does not support this feature. .RE .sp .ne 2 .na \fB\fBreadonly\fR\fR .ad .RS 12n The feature is read\-only compatible and the pool has been imported in read\-only mode. .RE .SS "Feature dependencies" .LP Some features depend on other features being enabled in order to function properly. Enabling a feature will automatically enable any features it depends on. .SH FEATURES .LP The following features are supported on this system: .sp .ne 2 .na \fB\fBasync_destroy\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:async_destroy READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE Destroying a file system requires traversing all of its data in order to return its used space to the pool. Without \fBasync_destroy\fR the file system is not fully removed until all space has been reclaimed. If the destroy operation is interrupted by a reboot or power outage the next attempt to open the pool will need to complete the destroy operation synchronously. When \fBasync_destroy\fR is enabled the file system's data will be reclaimed by a background process, allowing the destroy operation to complete without traversing the entire file system. The background process is able to resume interrupted destroys after the pool has been opened, eliminating the need to finish interrupted destroys as part of the open operation. The amount of space remaining to be reclaimed by the background process is available through the \fBfreeing\fR property. This feature is only \fBactive\fR while \fBfreeing\fR is non\-zero. .RE .sp .ne 2 .na \fB\fBempty_bpobj\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:empty_bpobj READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This feature increases the performance of creating and using a large number of snapshots of a single filesystem or volume, and also reduces the disk space required. When there are many snapshots, each snapshot uses many Block Pointer Objects (bpobj's) to track blocks associated with that snapshot. However, in common use cases, most of these bpobj's are empty. This feature allows us to create each bpobj on-demand, thus eliminating the empty bpobjs. This feature is \fBactive\fR while there are any filesystems, volumes, or snapshots which were created after enabling this feature. .RE .sp .ne 2 .na \fB\fBfilesystem_limits\fR\fR .ad .RS 4n .TS l l . GUID com.joyent:filesystem_limits READ\-ONLY COMPATIBLE yes DEPENDENCIES extensible_dataset .TE This feature enables filesystem and snapshot limits. These limits can be used to control how many filesystems and/or snapshots can be created at the point in the tree on which the limits are set. This feature is \fBactive\fR once either of the limit properties has been set on a dataset. Once activated the feature is never deactivated. .RE .sp .ne 2 .na \fB\fBlz4_compress\fR\fR .ad .RS 4n .TS l l . GUID org.illumos:lz4_compress READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE \fBlz4\fR is a high-performance real-time compression algorithm that features significantly faster compression and decompression as well as a higher compression ratio than the older \fBlzjb\fR compression. Typically, \fBlz4\fR compression is approximately 50% faster on compressible data and 200% faster on incompressible data than \fBlzjb\fR. It is also approximately 80% faster on decompression, while giving approximately 10% better compression ratio. When the \fBlz4_compress\fR feature is set to \fBenabled\fR, the administrator can turn on \fBlz4\fR compression on any dataset on the pool using the \fBzfs\fR(1M) command. Also, all newly written metadata will be compressed with \fBlz4\fR algorithm. Since this feature is not read-only compatible, this operation will render the pool unimportable on systems without support for the \fBlz4_compress\fR feature. Booting off of \fBlz4\fR-compressed root pools is supported. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBspacemap_histogram\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:spacemap_histogram READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This features allows ZFS to maintain more information about how free space is organized within the pool. If this feature is \fBenabled\fR, ZFS will set this feature to \fBactive\fR when a new space map object is created or an existing space map is upgraded to the new format. Once the feature is \fBactive\fR, it will remain in that state until the pool is destroyed. .RE .sp .ne 2 .na \fB\fBmulti_vdev_crash_dump\fR\fR .ad .RS 4n .TS l l . GUID com.joyent:multi_vdev_crash_dump READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature allows a dump device to be configured with a pool comprised of multiple vdevs. Those vdevs may be arranged in any mirrored or raidz configuration. When the \fBmulti_vdev_crash_dump\fR feature is set to \fBenabled\fR, the administrator can use the \fBdumpadm\fR(1M) command to configure a dump device on a pool comprised of multiple vdevs. .RE .sp .ne 2 .na \fB\fBextensible_dataset\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:extensible_dataset READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature allows more flexible use of internal ZFS data structures, and exists for other features to depend on. This feature will be \fBactive\fR when the first dependent feature uses it, and will be returned to the \fBenabled\fR state when all datasets that use this feature are destroyed. .RE .sp .ne 2 .na \fB\fBbookmarks\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:bookmarks READ\-ONLY COMPATIBLE yes DEPENDENCIES extensible_dataset .TE This feature enables use of the \fBzfs bookmark\fR subcommand. This feature is \fBactive\fR while any bookmarks exist in the pool. All bookmarks in the pool can be listed by running \fBzfs list -t bookmark -r \fIpoolname\fR\fR. .RE .sp .ne 2 .na \fB\fBenabled_txg\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:enabled_txg READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE Once this feature is enabled ZFS records the transaction group number in which new features are enabled. This has no user-visible impact, but other features may depend on this feature. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBhole_birth\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:hole_birth READ\-ONLY COMPATIBLE no DEPENDENCIES enabled_txg .TE This feature improves performance of incremental sends ("zfs send -i") and receives for objects with many holes. The most common case of hole-filled objects is zvols. An incremental send stream from snapshot \fBA\fR to snapshot \fBB\fR contains information about every block that changed between \fBA\fR and \fBB\fR. Blocks which did not change between those snapshots can be identified and omitted from the stream using a piece of metadata called the 'block birth time', but birth times are not recorded for holes (blocks filled only with zeroes). Since holes created after \fBA\fR cannot be distinguished from holes created before \fBA\fR, information about every hole in the entire filesystem or zvol is included in the send stream. For workloads where holes are rare this is not a problem. However, when incrementally replicating filesystems or zvols with many holes (for example a zvol formatted with another filesystem) a lot of time will be spent sending and receiving unnecessary information about holes that already exist on the receiving side. Once the \fBhole_birth\fR feature has been enabled the block birth times of all new holes will be recorded. Incremental sends between snapshots created after this feature is enabled will use this new metadata to avoid sending information about holes that already exist on the receiving side. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBembedded_data\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:embedded_data READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature improves the performance and compression ratio of highly-compressible blocks. Blocks whose contents can compress to 112 bytes or smaller can take advantage of this feature. When this feature is enabled, the contents of highly-compressible blocks are stored in the block "pointer" itself (a misnomer in this case, as it contains the compresseed data, rather than a pointer to its location on disk). Thus the space of the block (one sector, typically 512 bytes or 4KB) is saved, and no additional i/o is needed to read and write the data block. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fR. .RE .sp .ne 2 .na \fB\fBdevice_removal\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:device_removal READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature enables the "zpool remove" subcommand to remove top-level vdevs, evacuating them to reduce the total size of the pool. This feature becomes \fBactive\fR when the "zpool remove" command is used on a top-level vdev, and will never return to being \fBenabled\fR. .RE .sp .ne 2 .na \fB\fBobsolete_counts\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:obsolete_counts READ\-ONLY COMPATIBLE yes DEPENDENCIES device_removal .TE This feature is an enhancement of device_removal, which will over time reduce the memory used to track removed devices. When indirect blocks are freed or remapped, we note that their part of the indirect mapping is "obsolete", i.e. no longer needed. See also the \fBzfs remap\fR subcommand in \fBzfs\fR(1M). This feature becomes \fBactive\fR when the "zpool remove" command is used on a top-level vdev, and will never return to being \fBenabled\fR. .RE .sp .ne 2 .na \fB\fBzpool_checkpoint\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:zpool_checkpoint READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This feature enables the "zpool checkpoint" subcommand that can checkpoint the state of the pool at the time it was issued and later rewind back to it or discard it. This feature becomes \fBactive\fR when the "zpool checkpoint" command is used to checkpoint the pool. The feature will only return back to being \fBenabled\fR when the pool is rewound or the checkpoint has been discarded. .RE .sp .ne 2 .na \fB\fBspacemap_v2\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:spacemap_v2 READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This feature enables the use of the new space map encoding which consists of two words (instead of one) whenever it is advantageous. The new encoding allows space maps to represent large regions of space more efficiently on-disk while also increasing their maximum addressable offset. This feature becomes \fBactive\fR once it is \fBenabled\fR, and never returns back to being \fBenabled\fR. .RE .sp .ne 2 .na \fB\fBlarge_blocks\fR\fR .ad .RS 4n .TS l l . GUID org.open-zfs:large_block READ\-ONLY COMPATIBLE no DEPENDENCIES extensible_dataset .TE The \fBlarge_block\fR feature allows the record size on a dataset to be set larger than 128KB. This feature becomes \fBactive\fR once a \fBrecordsize\fR property has been set larger than 128KB, and will return to being \fBenabled\fR once all filesystems that have ever had their recordsize larger than 128KB are destroyed. .RE +.ne 2 +.na +\fB\fBlarge_dnode\fR\fR +.ad +.RS 4n +.TS +l l . +GUID org.zfsonlinux:large_dnode +READ\-ONLY COMPATIBLE no +DEPENDENCIES extensible_dataset +.TE + +The \fBlarge_dnode\fR feature allows the size of dnodes in a dataset to be +set larger than 512B. + +This feature becomes \fBactive\fR once a dataset contains an object with a +dnode larger than 512B, which occurs as a result of setting the \fBdnodesize\fR +dataset property to a value other than \fBlegacy\fR. The feature will return to +being \fBenabled\fR once all filesystems that have ever contained a dnode larger +than 512B are destroyed. Large dnodes allow more data to be stored in the +bonus buffer, thus potentially improving performance by avoiding the use of +spill blocks. +.RE + .sp .ne 2 .na \fB\fBsha512\fR\fR .ad .RS 4n .TS l l . GUID org.illumos:sha512 READ\-ONLY COMPATIBLE no DEPENDENCIES extensible_dataset .TE This feature enables the use of the SHA-512/256 truncated hash algorithm (FIPS 180-4) for checksum and dedup. The native 64-bit arithmetic of SHA-512 provides an approximate 50% performance boost over SHA-256 on 64-bit hardware and is thus a good minimum-change replacement candidate for systems where hash performance is important, but these systems cannot for whatever reason utilize the faster \fBskein\fR and \fBedonr\fR algorithms. When the \fBsha512\fR feature is set to \fBenabled\fR, the administrator can turn on the \fBsha512\fR checksum on any dataset using the \fBzfs set checksum=sha512\fR(1M) command. This feature becomes \fBactive\fR once a \fBchecksum\fR property has been set to \fBsha512\fR, and will return to being \fBenabled\fR once all filesystems that have ever had their checksum set to \fBsha512\fR are destroyed. Booting off of pools utilizing SHA-512/256 is supported. .RE .sp .ne 2 .na \fB\fBskein\fR\fR .ad .RS 4n .TS l l . GUID org.illumos:skein READ\-ONLY COMPATIBLE no DEPENDENCIES extensible_dataset .TE This feature enables the use of the Skein hash algorithm for checksum and dedup. Skein is a high-performance secure hash algorithm that was a finalist in the NIST SHA-3 competition. It provides a very high security margin and high performance on 64-bit hardware (80% faster than SHA-256). This implementation also utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key (stored on the pool) before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool, preventing hash collision attacks on systems with dedup. When the \fBskein\fR feature is set to \fBenabled\fR, the administrator can turn on the \fBskein\fR checksum on any dataset using the \fBzfs set checksum=skein\fR(1M) command. This feature becomes \fBactive\fR once a \fBchecksum\fR property has been set to \fBskein\fR, and will return to being \fBenabled\fR once all filesystems that have ever had their checksum set to \fBskein\fR are destroyed. Booting off of pools using \fBskein\fR is supported. .RE .sp .ne 2 .na \fB\fBedonr\fR\fR .ad .RS 4n .TS l l . GUID org.illumos:edonr READ\-ONLY COMPATIBLE no DEPENDENCIES extensible_dataset .TE This feature enables the use of the Edon-R hash algorithm for checksum, including for nopwrite (if compression is also enabled, an overwrite of a block whose checksum matches the data being written will be ignored). In an abundance of caution, Edon-R can not be used with dedup (without verification). Edon-R is a very high-performance hash algorithm that was part of the NIST SHA-3 competition. It provides extremely high hash performance (over 350% faster than SHA-256), but was not selected because of its unsuitability as a general purpose secure hash algorithm. This implementation utilizes the new salted checksumming functionality in ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key (stored on the pool) before being fed the data block to be checksummed. Thus the produced checksums are unique to a given pool. When the \fBedonr\fR feature is set to \fBenabled\fR, the administrator can turn on the \fBedonr\fR checksum on any dataset using the \fBzfs set checksum=edonr\fR(1M) command. This feature becomes \fBactive\fR once a \fBchecksum\fR property has been set to \fBedonr\fR, and will return to being \fBenabled\fR once all filesystems that have ever had their checksum set to \fBedonr\fR are destroyed. Booting off of pools using \fBedonr\fR is supported. .SH "SEE ALSO" \fBzpool\fR(1M) Index: vendor-sys/illumos/dist/common/zfs/zfeature_common.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfeature_common.c (revision 350897) +++ vendor-sys/illumos/dist/common/zfs/zfeature_common.c (revision 350898) @@ -1,290 +1,301 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #ifdef _KERNEL #include #else #include #include #endif #include #include #include #include #include "zfeature_common.h" /* * Set to disable all feature checks while opening pools, allowing pools with * unsupported features to be opened. Set for testing only. */ boolean_t zfeature_checks_disable = B_FALSE; zfeature_info_t spa_feature_table[SPA_FEATURES]; /* * Valid characters for feature guids. This list is mainly for aesthetic * purposes and could be expanded in the future. There are different allowed * characters in the guids reverse dns portion (before the colon) and its * short name (after the colon). */ static int valid_char(char c, boolean_t after_colon) { return ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || (after_colon && c == '_') || (!after_colon && (c == '.' || c == '-'))); } /* * Every feature guid must contain exactly one colon which separates a reverse * dns organization name from the feature's "short" name (e.g. * "com.company:feature_name"). */ boolean_t zfeature_is_valid_guid(const char *name) { int i; boolean_t has_colon = B_FALSE; i = 0; while (name[i] != '\0') { char c = name[i++]; if (c == ':') { if (has_colon) return (B_FALSE); has_colon = B_TRUE; continue; } if (!valid_char(c, has_colon)) return (B_FALSE); } return (has_colon); } boolean_t zfeature_is_supported(const char *guid) { if (zfeature_checks_disable) return (B_TRUE); for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (strcmp(guid, feature->fi_guid) == 0) return (B_TRUE); } return (B_FALSE); } int zfeature_lookup_name(const char *name, spa_feature_t *res) { for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (strcmp(name, feature->fi_uname) == 0) { if (res != NULL) *res = i; return (0); } } return (ENOENT); } boolean_t zfeature_depends_on(spa_feature_t fid, spa_feature_t check) { zfeature_info_t *feature = &spa_feature_table[fid]; for (int i = 0; feature->fi_depends[i] != SPA_FEATURE_NONE; i++) { if (feature->fi_depends[i] == check) return (B_TRUE); } return (B_FALSE); } static void zfeature_register(spa_feature_t fid, const char *guid, const char *name, const char *desc, zfeature_flags_t flags, const spa_feature_t *deps) { zfeature_info_t *feature = &spa_feature_table[fid]; static spa_feature_t nodeps[] = { SPA_FEATURE_NONE }; ASSERT(name != NULL); ASSERT(desc != NULL); ASSERT((flags & ZFEATURE_FLAG_READONLY_COMPAT) == 0 || (flags & ZFEATURE_FLAG_MOS) == 0); ASSERT3U(fid, <, SPA_FEATURES); ASSERT(zfeature_is_valid_guid(guid)); if (deps == NULL) deps = nodeps; feature->fi_feature = fid; feature->fi_guid = guid; feature->fi_uname = name; feature->fi_desc = desc; feature->fi_flags = flags; feature->fi_depends = deps; } void zpool_feature_init(void) { zfeature_register(SPA_FEATURE_ASYNC_DESTROY, "com.delphix:async_destroy", "async_destroy", "Destroy filesystems asynchronously.", ZFEATURE_FLAG_READONLY_COMPAT, NULL); zfeature_register(SPA_FEATURE_EMPTY_BPOBJ, "com.delphix:empty_bpobj", "empty_bpobj", "Snapshots use less space.", ZFEATURE_FLAG_READONLY_COMPAT, NULL); zfeature_register(SPA_FEATURE_LZ4_COMPRESS, "org.illumos:lz4_compress", "lz4_compress", "LZ4 compression algorithm support.", ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, NULL); zfeature_register(SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, "com.joyent:multi_vdev_crash_dump", "multi_vdev_crash_dump", "Crash dumps to multiple vdev pools.", 0, NULL); zfeature_register(SPA_FEATURE_SPACEMAP_HISTOGRAM, "com.delphix:spacemap_histogram", "spacemap_histogram", "Spacemaps maintain space histograms.", ZFEATURE_FLAG_READONLY_COMPAT, NULL); zfeature_register(SPA_FEATURE_ENABLED_TXG, "com.delphix:enabled_txg", "enabled_txg", "Record txg at which a feature is enabled", ZFEATURE_FLAG_READONLY_COMPAT, NULL); static spa_feature_t hole_birth_deps[] = { SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_HOLE_BIRTH, "com.delphix:hole_birth", "hole_birth", "Retain hole birth txg for more precise zfs send", ZFEATURE_FLAG_MOS | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, hole_birth_deps); zfeature_register(SPA_FEATURE_EXTENSIBLE_DATASET, "com.delphix:extensible_dataset", "extensible_dataset", "Enhanced dataset functionality, used by other features.", 0, NULL); static const spa_feature_t bookmarks_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BOOKMARKS, "com.delphix:bookmarks", "bookmarks", "\"zfs bookmark\" command", ZFEATURE_FLAG_READONLY_COMPAT, bookmarks_deps); static const spa_feature_t filesystem_limits_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_FS_SS_LIMIT, "com.joyent:filesystem_limits", "filesystem_limits", "Filesystem and snapshot limits.", ZFEATURE_FLAG_READONLY_COMPAT, filesystem_limits_deps); zfeature_register(SPA_FEATURE_EMBEDDED_DATA, "com.delphix:embedded_data", "embedded_data", "Blocks which compress very well use even less space.", ZFEATURE_FLAG_MOS | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, NULL); zfeature_register(SPA_FEATURE_POOL_CHECKPOINT, "com.delphix:zpool_checkpoint", "zpool_checkpoint", "Pool state can be checkpointed, allowing rewind later.", ZFEATURE_FLAG_READONLY_COMPAT, NULL); zfeature_register(SPA_FEATURE_SPACEMAP_V2, "com.delphix:spacemap_v2", "spacemap_v2", "Space maps representing large segments are more efficient.", ZFEATURE_FLAG_READONLY_COMPAT | ZFEATURE_FLAG_ACTIVATE_ON_ENABLE, NULL); static const spa_feature_t large_blocks_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_LARGE_BLOCKS, "org.open-zfs:large_blocks", "large_blocks", "Support for blocks larger than 128KB.", ZFEATURE_FLAG_PER_DATASET, large_blocks_deps); + { + static const spa_feature_t large_dnode_deps[] = { + SPA_FEATURE_EXTENSIBLE_DATASET, + SPA_FEATURE_NONE + }; + zfeature_register(SPA_FEATURE_LARGE_DNODE, + "org.zfsonlinux:large_dnode", "large_dnode", + "Variable on-disk size of dnodes.", + ZFEATURE_FLAG_PER_DATASET, large_dnode_deps); + } + static const spa_feature_t sha512_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_SHA512, "org.illumos:sha512", "sha512", "SHA-512/256 hash algorithm.", ZFEATURE_FLAG_PER_DATASET, sha512_deps); static const spa_feature_t skein_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_SKEIN, "org.illumos:skein", "skein", "Skein hash algorithm.", ZFEATURE_FLAG_PER_DATASET, skein_deps); static const spa_feature_t edonr_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_EDONR, "org.illumos:edonr", "edonr", "Edon-R hash algorithm.", ZFEATURE_FLAG_PER_DATASET, edonr_deps); zfeature_register(SPA_FEATURE_DEVICE_REMOVAL, "com.delphix:device_removal", "device_removal", "Top-level vdevs can be removed, reducing logical pool size.", ZFEATURE_FLAG_MOS, NULL); static const spa_feature_t obsolete_counts_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_DEVICE_REMOVAL, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_OBSOLETE_COUNTS, "com.delphix:obsolete_counts", "obsolete_counts", "Reduce memory used by removed devices when their blocks are " "freed or remapped.", ZFEATURE_FLAG_READONLY_COMPAT, obsolete_counts_deps); } Index: vendor-sys/illumos/dist/common/zfs/zfeature_common.h =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfeature_common.h (revision 350897) +++ vendor-sys/illumos/dist/common/zfs/zfeature_common.h (revision 350898) @@ -1,107 +1,108 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #ifndef _ZFEATURE_COMMON_H #define _ZFEATURE_COMMON_H #include #include #include #ifdef __cplusplus extern "C" { #endif struct zfeature_info; typedef enum spa_feature { SPA_FEATURE_NONE = -1, SPA_FEATURE_ASYNC_DESTROY, SPA_FEATURE_EMPTY_BPOBJ, SPA_FEATURE_LZ4_COMPRESS, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, SPA_FEATURE_SPACEMAP_HISTOGRAM, SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_HOLE_BIRTH, SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_EMBEDDED_DATA, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_FS_SS_LIMIT, SPA_FEATURE_LARGE_BLOCKS, + SPA_FEATURE_LARGE_DNODE, SPA_FEATURE_SHA512, SPA_FEATURE_SKEIN, SPA_FEATURE_EDONR, SPA_FEATURE_DEVICE_REMOVAL, SPA_FEATURE_OBSOLETE_COUNTS, SPA_FEATURE_POOL_CHECKPOINT, SPA_FEATURE_SPACEMAP_V2, SPA_FEATURES } spa_feature_t; #define SPA_FEATURE_DISABLED (-1ULL) typedef enum zfeature_flags { /* Can open pool readonly even if this feature is not supported. */ ZFEATURE_FLAG_READONLY_COMPAT = (1 << 0), /* Is this feature necessary to read the MOS? */ ZFEATURE_FLAG_MOS = (1 << 1), /* Activate this feature at the same time it is enabled. */ ZFEATURE_FLAG_ACTIVATE_ON_ENABLE = (1 << 2), /* Each dataset has a field set if it has ever used this feature. */ ZFEATURE_FLAG_PER_DATASET = (1 << 3) } zfeature_flags_t; typedef struct zfeature_info { spa_feature_t fi_feature; const char *fi_uname; /* User-facing feature name */ const char *fi_guid; /* On-disk feature identifier */ const char *fi_desc; /* Feature description */ zfeature_flags_t fi_flags; /* array of dependencies, terminated by SPA_FEATURE_NONE */ const spa_feature_t *fi_depends; } zfeature_info_t; typedef int (zfeature_func_t)(zfeature_info_t *, void *); #define ZFS_FEATURE_DEBUG extern zfeature_info_t spa_feature_table[SPA_FEATURES]; extern boolean_t zfeature_is_valid_guid(const char *); extern boolean_t zfeature_is_supported(const char *); extern int zfeature_lookup_name(const char *, spa_feature_t *); extern boolean_t zfeature_depends_on(spa_feature_t, spa_feature_t); extern void zpool_feature_init(void); #ifdef __cplusplus } #endif #endif /* _ZFEATURE_COMMON_H */ Index: vendor-sys/illumos/dist/common/zfs/zfs_prop.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfs_prop.c (revision 350897) +++ vendor-sys/illumos/dist/common/zfs/zfs_prop.c (revision 350898) @@ -1,684 +1,699 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_deleg.h" #if defined(_KERNEL) #include #else #include #include #include #endif static zprop_desc_t zfs_prop_table[ZFS_NUM_PROPS]; /* Note this is indexed by zfs_userquota_prop_t, keep the order the same */ const char *zfs_userquota_prop_prefixes[] = { "userused@", "userquota@", "groupused@", "groupquota@" }; zprop_desc_t * zfs_prop_get_table(void) { return (zfs_prop_table); } void zfs_prop_init(void) { static zprop_index_t checksum_table[] = { { "on", ZIO_CHECKSUM_ON }, { "off", ZIO_CHECKSUM_OFF }, { "fletcher2", ZIO_CHECKSUM_FLETCHER_2 }, { "fletcher4", ZIO_CHECKSUM_FLETCHER_4 }, { "sha256", ZIO_CHECKSUM_SHA256 }, { "noparity", ZIO_CHECKSUM_NOPARITY }, { "sha512", ZIO_CHECKSUM_SHA512 }, { "skein", ZIO_CHECKSUM_SKEIN }, { "edonr", ZIO_CHECKSUM_EDONR }, { NULL } }; static zprop_index_t dedup_table[] = { { "on", ZIO_CHECKSUM_ON }, { "off", ZIO_CHECKSUM_OFF }, { "verify", ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY }, { "sha256", ZIO_CHECKSUM_SHA256 }, { "sha256,verify", ZIO_CHECKSUM_SHA256 | ZIO_CHECKSUM_VERIFY }, { "sha512", ZIO_CHECKSUM_SHA512 }, { "sha512,verify", ZIO_CHECKSUM_SHA512 | ZIO_CHECKSUM_VERIFY }, { "skein", ZIO_CHECKSUM_SKEIN }, { "skein,verify", ZIO_CHECKSUM_SKEIN | ZIO_CHECKSUM_VERIFY }, { "edonr,verify", ZIO_CHECKSUM_EDONR | ZIO_CHECKSUM_VERIFY }, { NULL } }; static zprop_index_t compress_table[] = { { "on", ZIO_COMPRESS_ON }, { "off", ZIO_COMPRESS_OFF }, { "lzjb", ZIO_COMPRESS_LZJB }, { "gzip", ZIO_COMPRESS_GZIP_6 }, /* gzip default */ { "gzip-1", ZIO_COMPRESS_GZIP_1 }, { "gzip-2", ZIO_COMPRESS_GZIP_2 }, { "gzip-3", ZIO_COMPRESS_GZIP_3 }, { "gzip-4", ZIO_COMPRESS_GZIP_4 }, { "gzip-5", ZIO_COMPRESS_GZIP_5 }, { "gzip-6", ZIO_COMPRESS_GZIP_6 }, { "gzip-7", ZIO_COMPRESS_GZIP_7 }, { "gzip-8", ZIO_COMPRESS_GZIP_8 }, { "gzip-9", ZIO_COMPRESS_GZIP_9 }, { "zle", ZIO_COMPRESS_ZLE }, { "lz4", ZIO_COMPRESS_LZ4 }, { NULL } }; static zprop_index_t snapdir_table[] = { { "hidden", ZFS_SNAPDIR_HIDDEN }, { "visible", ZFS_SNAPDIR_VISIBLE }, { NULL } }; static zprop_index_t acl_mode_table[] = { { "discard", ZFS_ACL_DISCARD }, { "groupmask", ZFS_ACL_GROUPMASK }, { "passthrough", ZFS_ACL_PASSTHROUGH }, { "restricted", ZFS_ACL_RESTRICTED }, { NULL } }; static zprop_index_t acl_inherit_table[] = { { "discard", ZFS_ACL_DISCARD }, { "noallow", ZFS_ACL_NOALLOW }, { "restricted", ZFS_ACL_RESTRICTED }, { "passthrough", ZFS_ACL_PASSTHROUGH }, { "secure", ZFS_ACL_RESTRICTED }, /* bkwrd compatability */ { "passthrough-x", ZFS_ACL_PASSTHROUGH_X }, { NULL } }; static zprop_index_t case_table[] = { { "sensitive", ZFS_CASE_SENSITIVE }, { "insensitive", ZFS_CASE_INSENSITIVE }, { "mixed", ZFS_CASE_MIXED }, { NULL } }; static zprop_index_t copies_table[] = { { "1", 1 }, { "2", 2 }, { "3", 3 }, { NULL } }; /* * Use the unique flags we have to send to u8_strcmp() and/or * u8_textprep() to represent the various normalization property * values. */ static zprop_index_t normalize_table[] = { { "none", 0 }, { "formD", U8_TEXTPREP_NFD }, { "formKC", U8_TEXTPREP_NFKC }, { "formC", U8_TEXTPREP_NFC }, { "formKD", U8_TEXTPREP_NFKD }, { NULL } }; static zprop_index_t version_table[] = { { "1", 1 }, { "2", 2 }, { "3", 3 }, { "4", 4 }, { "5", 5 }, { "current", ZPL_VERSION }, { NULL } }; static zprop_index_t boolean_table[] = { { "off", 0 }, { "on", 1 }, { NULL } }; static zprop_index_t logbias_table[] = { { "latency", ZFS_LOGBIAS_LATENCY }, { "throughput", ZFS_LOGBIAS_THROUGHPUT }, { NULL } }; static zprop_index_t canmount_table[] = { { "off", ZFS_CANMOUNT_OFF }, { "on", ZFS_CANMOUNT_ON }, { "noauto", ZFS_CANMOUNT_NOAUTO }, { NULL } }; static zprop_index_t cache_table[] = { { "none", ZFS_CACHE_NONE }, { "metadata", ZFS_CACHE_METADATA }, { "all", ZFS_CACHE_ALL }, { NULL } }; static zprop_index_t sync_table[] = { { "standard", ZFS_SYNC_STANDARD }, { "always", ZFS_SYNC_ALWAYS }, { "disabled", ZFS_SYNC_DISABLED }, { NULL } }; + static zprop_index_t dnsize_table[] = { + { "legacy", ZFS_DNSIZE_LEGACY }, + { "auto", ZFS_DNSIZE_AUTO }, + { "1k", ZFS_DNSIZE_1K }, + { "2k", ZFS_DNSIZE_2K }, + { "4k", ZFS_DNSIZE_4K }, + { "8k", ZFS_DNSIZE_8K }, + { "16k", ZFS_DNSIZE_16K }, + { NULL } + }; + static zprop_index_t redundant_metadata_table[] = { { "all", ZFS_REDUNDANT_METADATA_ALL }, { "most", ZFS_REDUNDANT_METADATA_MOST }, { NULL } }; /* inherit index properties */ zprop_register_index(ZFS_PROP_REDUNDANT_METADATA, "redundant_metadata", ZFS_REDUNDANT_METADATA_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "all | most", "REDUND_MD", redundant_metadata_table); zprop_register_index(ZFS_PROP_SYNC, "sync", ZFS_SYNC_STANDARD, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "standard | always | disabled", "SYNC", sync_table); zprop_register_index(ZFS_PROP_CHECKSUM, "checksum", ZIO_CHECKSUM_DEFAULT, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | fletcher2 | fletcher4 | sha256 | sha512 | " "skein | edonr", "CHECKSUM", checksum_table); zprop_register_index(ZFS_PROP_DEDUP, "dedup", ZIO_CHECKSUM_OFF, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | verify | sha256[,verify], sha512[,verify], " "skein[,verify], edonr,verify", "DEDUP", dedup_table); zprop_register_index(ZFS_PROP_COMPRESSION, "compression", ZIO_COMPRESS_DEFAULT, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | lzjb | gzip | gzip-[1-9] | zle | lz4", "COMPRESS", compress_table); zprop_register_index(ZFS_PROP_SNAPDIR, "snapdir", ZFS_SNAPDIR_HIDDEN, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "hidden | visible", "SNAPDIR", snapdir_table); zprop_register_index(ZFS_PROP_ACLMODE, "aclmode", ZFS_ACL_DISCARD, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "discard | groupmask | passthrough | restricted", "ACLMODE", acl_mode_table); zprop_register_index(ZFS_PROP_ACLINHERIT, "aclinherit", ZFS_ACL_RESTRICTED, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "discard | noallow | restricted | passthrough | passthrough-x", "ACLINHERIT", acl_inherit_table); zprop_register_index(ZFS_PROP_COPIES, "copies", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "1 | 2 | 3", "COPIES", copies_table); zprop_register_index(ZFS_PROP_PRIMARYCACHE, "primarycache", ZFS_CACHE_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT | ZFS_TYPE_VOLUME, "all | none | metadata", "PRIMARYCACHE", cache_table); zprop_register_index(ZFS_PROP_SECONDARYCACHE, "secondarycache", ZFS_CACHE_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT | ZFS_TYPE_VOLUME, "all | none | metadata", "SECONDARYCACHE", cache_table); zprop_register_index(ZFS_PROP_LOGBIAS, "logbias", ZFS_LOGBIAS_LATENCY, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "latency | throughput", "LOGBIAS", logbias_table); + + zprop_register_index(ZFS_PROP_DNODESIZE, "dnodesize", + ZFS_DNSIZE_LEGACY, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, + "legacy | auto | 1k | 2k | 4k | 8k | 16k", "DNSIZE", dnsize_table); /* inherit index (boolean) properties */ zprop_register_index(ZFS_PROP_ATIME, "atime", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "ATIME", boolean_table); zprop_register_index(ZFS_PROP_DEVICES, "devices", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "DEVICES", boolean_table); zprop_register_index(ZFS_PROP_EXEC, "exec", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "EXEC", boolean_table); zprop_register_index(ZFS_PROP_SETUID, "setuid", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "SETUID", boolean_table); zprop_register_index(ZFS_PROP_READONLY, "readonly", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off", "RDONLY", boolean_table); zprop_register_index(ZFS_PROP_ZONED, "zoned", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "ZONED", boolean_table); zprop_register_index(ZFS_PROP_XATTR, "xattr", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "XATTR", boolean_table); zprop_register_index(ZFS_PROP_VSCAN, "vscan", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "VSCAN", boolean_table); zprop_register_index(ZFS_PROP_NBMAND, "nbmand", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "NBMAND", boolean_table); /* default index properties */ zprop_register_index(ZFS_PROP_VERSION, "version", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "1 | 2 | 3 | 4 | 5 | current", "VERSION", version_table); zprop_register_index(ZFS_PROP_CANMOUNT, "canmount", ZFS_CANMOUNT_ON, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, "on | off | noauto", "CANMOUNT", canmount_table); /* readonly index (boolean) properties */ zprop_register_index(ZFS_PROP_MOUNTED, "mounted", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM, "yes | no", "MOUNTED", boolean_table); zprop_register_index(ZFS_PROP_DEFER_DESTROY, "defer_destroy", 0, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "yes | no", "DEFER_DESTROY", boolean_table); /* set once index properties */ zprop_register_index(ZFS_PROP_NORMALIZE, "normalization", 0, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "none | formC | formD | formKC | formKD", "NORMALIZATION", normalize_table); zprop_register_index(ZFS_PROP_CASE, "casesensitivity", ZFS_CASE_SENSITIVE, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "sensitive | insensitive | mixed", "CASE", case_table); /* set once index (boolean) properties */ zprop_register_index(ZFS_PROP_UTF8ONLY, "utf8only", 0, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "UTF8ONLY", boolean_table); /* string properties */ zprop_register_string(ZFS_PROP_ORIGIN, "origin", NULL, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "ORIGIN"); zprop_register_string(ZFS_PROP_CLONES, "clones", NULL, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "[,...]", "CLONES"); zprop_register_string(ZFS_PROP_MOUNTPOINT, "mountpoint", "/", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, " | legacy | none", "MOUNTPOINT"); zprop_register_string(ZFS_PROP_SHARENFS, "sharenfs", "off", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off | share(1M) options", "SHARENFS"); zprop_register_string(ZFS_PROP_TYPE, "type", NULL, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "filesystem | volume | snapshot | bookmark", "TYPE"); zprop_register_string(ZFS_PROP_SHARESMB, "sharesmb", "off", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off | sharemgr(1M) options", "SHARESMB"); zprop_register_string(ZFS_PROP_MLSLABEL, "mlslabel", ZFS_MLSLABEL_DEFAULT, PROP_INHERIT, ZFS_TYPE_DATASET, "", "MLSLABEL"); zprop_register_string(ZFS_PROP_RECEIVE_RESUME_TOKEN, "receive_resume_token", NULL, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "RESUMETOK"); /* readonly number properties */ zprop_register_number(ZFS_PROP_USED, "used", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "USED"); zprop_register_number(ZFS_PROP_AVAILABLE, "available", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "AVAIL"); zprop_register_number(ZFS_PROP_REFERENCED, "referenced", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "REFER"); zprop_register_number(ZFS_PROP_COMPRESSRATIO, "compressratio", 0, PROP_READONLY, ZFS_TYPE_DATASET, "<1.00x or higher if compressed>", "RATIO"); zprop_register_number(ZFS_PROP_REFRATIO, "refcompressratio", 0, PROP_READONLY, ZFS_TYPE_DATASET, "<1.00x or higher if compressed>", "REFRATIO"); zprop_register_number(ZFS_PROP_VOLBLOCKSIZE, "volblocksize", ZVOL_DEFAULT_BLOCKSIZE, PROP_ONETIME, ZFS_TYPE_VOLUME, "512 to 128k, power of 2", "VOLBLOCK"); zprop_register_number(ZFS_PROP_USEDSNAP, "usedbysnapshots", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDSNAP"); zprop_register_number(ZFS_PROP_USEDDS, "usedbydataset", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDDS"); zprop_register_number(ZFS_PROP_USEDCHILD, "usedbychildren", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDCHILD"); zprop_register_number(ZFS_PROP_USEDREFRESERV, "usedbyrefreservation", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDREFRESERV"); zprop_register_number(ZFS_PROP_USERREFS, "userrefs", 0, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "", "USERREFS"); zprop_register_number(ZFS_PROP_WRITTEN, "written", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "WRITTEN"); zprop_register_number(ZFS_PROP_LOGICALUSED, "logicalused", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "LUSED"); zprop_register_number(ZFS_PROP_LOGICALREFERENCED, "logicalreferenced", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "LREFER"); /* default number properties */ zprop_register_number(ZFS_PROP_QUOTA, "quota", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "QUOTA"); zprop_register_number(ZFS_PROP_RESERVATION, "reservation", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "RESERV"); zprop_register_number(ZFS_PROP_VOLSIZE, "volsize", 0, PROP_DEFAULT, ZFS_TYPE_VOLUME, "", "VOLSIZE"); zprop_register_number(ZFS_PROP_REFQUOTA, "refquota", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "REFQUOTA"); zprop_register_number(ZFS_PROP_REFRESERVATION, "refreservation", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "REFRESERV"); zprop_register_number(ZFS_PROP_FILESYSTEM_LIMIT, "filesystem_limit", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "FSLIMIT"); zprop_register_number(ZFS_PROP_SNAPSHOT_LIMIT, "snapshot_limit", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "SSLIMIT"); zprop_register_number(ZFS_PROP_FILESYSTEM_COUNT, "filesystem_count", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, "", "FSCOUNT"); zprop_register_number(ZFS_PROP_SNAPSHOT_COUNT, "snapshot_count", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "SSCOUNT"); zprop_register_number(ZFS_PROP_GUID, "guid", 0, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "", "GUID"); zprop_register_number(ZFS_PROP_CREATETXG, "createtxg", 0, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "", "CREATETXG"); /* inherit number properties */ zprop_register_number(ZFS_PROP_RECORDSIZE, "recordsize", SPA_OLD_MAXBLOCKSIZE, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "512 to 1M, power of 2", "RECSIZE"); /* hidden properties */ zprop_register_hidden(ZFS_PROP_REMAPTXG, "remaptxg", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "REMAPTXG"); zprop_register_hidden(ZFS_PROP_NUMCLONES, "numclones", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "NUMCLONES"); zprop_register_hidden(ZFS_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "NAME"); zprop_register_hidden(ZFS_PROP_ISCSIOPTIONS, "iscsioptions", PROP_TYPE_STRING, PROP_INHERIT, ZFS_TYPE_VOLUME, "ISCSIOPTIONS"); zprop_register_hidden(ZFS_PROP_STMF_SHAREINFO, "stmf_sbd_lu", PROP_TYPE_STRING, PROP_INHERIT, ZFS_TYPE_VOLUME, "STMF_SBD_LU"); zprop_register_hidden(ZFS_PROP_USERACCOUNTING, "useraccounting", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "USERACCOUNTING"); zprop_register_hidden(ZFS_PROP_UNIQUE, "unique", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "UNIQUE"); zprop_register_hidden(ZFS_PROP_OBJSETID, "objsetid", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "OBJSETID"); zprop_register_hidden(ZFS_PROP_INCONSISTENT, "inconsistent", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "INCONSISTENT"); zprop_register_hidden(ZFS_PROP_PREV_SNAP, "prevsnap", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "PREVSNAP"); /* oddball properties */ zprop_register_impl(ZFS_PROP_CREATION, "creation", PROP_TYPE_NUMBER, 0, NULL, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "", "CREATION", B_FALSE, B_TRUE, NULL); } boolean_t zfs_prop_delegatable(zfs_prop_t prop) { zprop_desc_t *pd = &zfs_prop_table[prop]; /* The mlslabel property is never delegatable. */ if (prop == ZFS_PROP_MLSLABEL) return (B_FALSE); return (pd->pd_attr != PROP_READONLY); } /* * Given a zfs dataset property name, returns the corresponding property ID. */ zfs_prop_t zfs_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_DATASET)); } /* * For user property names, we allow all lowercase alphanumeric characters, plus * a few useful punctuation characters. */ static int valid_char(char c) { return ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || c == '-' || c == '_' || c == '.' || c == ':'); } /* * Returns true if this is a valid user-defined property (one with a ':'). */ boolean_t zfs_prop_user(const char *name) { int i; char c; boolean_t foundsep = B_FALSE; for (i = 0; i < strlen(name); i++) { c = name[i]; if (!valid_char(c)) return (B_FALSE); if (c == ':') foundsep = B_TRUE; } if (!foundsep) return (B_FALSE); return (B_TRUE); } /* * Returns true if this is a valid userspace-type property (one with a '@'). * Note that after the @, any character is valid (eg, another @, for SID * user@domain). */ boolean_t zfs_prop_userquota(const char *name) { zfs_userquota_prop_t prop; for (prop = 0; prop < ZFS_NUM_USERQUOTA_PROPS; prop++) { if (strncmp(name, zfs_userquota_prop_prefixes[prop], strlen(zfs_userquota_prop_prefixes[prop])) == 0) { return (B_TRUE); } } return (B_FALSE); } /* * Returns true if this is a valid written@ property. * Note that after the @, any character is valid (eg, another @, for * written@pool/fs@origin). */ boolean_t zfs_prop_written(const char *name) { static const char *prefix = "written@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } /* * Tables of index types, plus functions to convert between the user view * (strings) and internal representation (uint64_t). */ int zfs_prop_string_to_index(zfs_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_DATASET)); } int zfs_prop_index_to_string(zfs_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_DATASET)); } uint64_t zfs_prop_random_value(zfs_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_DATASET)); } /* * Returns TRUE if the property applies to any of the given dataset types. */ boolean_t zfs_prop_valid_for_type(int prop, zfs_type_t types) { return (zprop_valid_for_type(prop, types)); } zprop_type_t zfs_prop_get_type(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_proptype); } /* * Returns TRUE if the property is readonly. */ boolean_t zfs_prop_readonly(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_READONLY || zfs_prop_table[prop].pd_attr == PROP_ONETIME); } /* * Returns TRUE if the property is visible (not hidden). */ boolean_t zfs_prop_visible(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_visible); } /* * Returns TRUE if the property is only allowed to be set once. */ boolean_t zfs_prop_setonce(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_ONETIME); } const char * zfs_prop_default_string(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_strdefault); } uint64_t zfs_prop_default_numeric(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_numdefault); } /* * Given a dataset property ID, returns the corresponding name. * Assuming the zfs dataset property ID is valid. */ const char * zfs_prop_to_name(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_name); } /* * Returns TRUE if the property is inheritable. */ boolean_t zfs_prop_inheritable(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_INHERIT || zfs_prop_table[prop].pd_attr == PROP_ONETIME); } #ifndef _KERNEL /* * Returns a string describing the set of acceptable values for the given * zfs property, or NULL if it cannot be set. */ const char * zfs_prop_values(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_values); } /* * Returns TRUE if this property is a string type. Note that index types * (compression, checksum) are treated as strings in userland, even though they * are stored numerically on disk. */ int zfs_prop_is_string(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_proptype == PROP_TYPE_STRING || zfs_prop_table[prop].pd_proptype == PROP_TYPE_INDEX); } /* * Returns the column header for the given property. Used only in * 'zfs list -o', but centralized here with the other property information. */ const char * zfs_prop_column_name(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_colname); } /* * Returns whether the given property should be displayed right-justified for * 'zfs list'. */ boolean_t zfs_prop_align_right(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_rightalign); } #endif Index: vendor-sys/illumos/dist/common/zfs/zpool_prop.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zpool_prop.c (revision 350897) +++ vendor-sys/illumos/dist/common/zfs/zpool_prop.c (revision 350898) @@ -1,245 +1,247 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include "zfs_prop.h" #if defined(_KERNEL) #include #else #include #include #include #endif static zprop_desc_t zpool_prop_table[ZPOOL_NUM_PROPS]; zprop_desc_t * zpool_prop_get_table(void) { return (zpool_prop_table); } void zpool_prop_init(void) { static zprop_index_t boolean_table[] = { { "off", 0}, { "on", 1}, { NULL } }; static zprop_index_t failuremode_table[] = { { "wait", ZIO_FAILURE_MODE_WAIT }, { "continue", ZIO_FAILURE_MODE_CONTINUE }, { "panic", ZIO_FAILURE_MODE_PANIC }, { NULL } }; /* string properties */ zprop_register_string(ZPOOL_PROP_ALTROOT, "altroot", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "ALTROOT"); zprop_register_string(ZPOOL_PROP_BOOTFS, "bootfs", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "BOOTFS"); zprop_register_string(ZPOOL_PROP_CACHEFILE, "cachefile", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, " | none", "CACHEFILE"); zprop_register_string(ZPOOL_PROP_COMMENT, "comment", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "COMMENT"); /* readonly number properties */ zprop_register_number(ZPOOL_PROP_SIZE, "size", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "SIZE"); zprop_register_number(ZPOOL_PROP_FREE, "free", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREE"); zprop_register_number(ZPOOL_PROP_FREEING, "freeing", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREEING"); zprop_register_number(ZPOOL_PROP_CHECKPOINT, "checkpoint", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "CKPOINT"); zprop_register_number(ZPOOL_PROP_LEAKED, "leaked", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "LEAKED"); zprop_register_number(ZPOOL_PROP_ALLOCATED, "allocated", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "ALLOC"); zprop_register_number(ZPOOL_PROP_EXPANDSZ, "expandsize", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "EXPANDSZ"); zprop_register_number(ZPOOL_PROP_FRAGMENTATION, "fragmentation", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FRAG"); zprop_register_number(ZPOOL_PROP_CAPACITY, "capacity", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "CAP"); zprop_register_number(ZPOOL_PROP_GUID, "guid", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "GUID"); zprop_register_number(ZPOOL_PROP_HEALTH, "health", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "HEALTH"); zprop_register_number(ZPOOL_PROP_DEDUPRATIO, "dedupratio", 0, PROP_READONLY, ZFS_TYPE_POOL, "<1.00x or higher if deduped>", "DEDUP"); /* system partition size */ zprop_register_number(ZPOOL_PROP_BOOTSIZE, "bootsize", 0, PROP_ONETIME, ZFS_TYPE_POOL, "", "BOOTSIZE"); /* default number properties */ zprop_register_number(ZPOOL_PROP_VERSION, "version", SPA_VERSION, PROP_DEFAULT, ZFS_TYPE_POOL, "", "VERSION"); zprop_register_number(ZPOOL_PROP_DEDUPDITTO, "dedupditto", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "", "DEDUPDITTO"); /* default index (boolean) properties */ zprop_register_index(ZPOOL_PROP_DELEGATION, "delegation", 1, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "DELEGATION", boolean_table); zprop_register_index(ZPOOL_PROP_AUTOREPLACE, "autoreplace", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "REPLACE", boolean_table); zprop_register_index(ZPOOL_PROP_LISTSNAPS, "listsnapshots", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "LISTSNAPS", boolean_table); zprop_register_index(ZPOOL_PROP_AUTOEXPAND, "autoexpand", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "EXPAND", boolean_table); zprop_register_index(ZPOOL_PROP_READONLY, "readonly", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "RDONLY", boolean_table); /* default index properties */ zprop_register_index(ZPOOL_PROP_FAILUREMODE, "failmode", ZIO_FAILURE_MODE_WAIT, PROP_DEFAULT, ZFS_TYPE_POOL, "wait | continue | panic", "FAILMODE", failuremode_table); /* hidden properties */ zprop_register_hidden(ZPOOL_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_POOL, "NAME"); zprop_register_hidden(ZPOOL_PROP_MAXBLOCKSIZE, "maxblocksize", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_POOL, "MAXBLOCKSIZE"); zprop_register_hidden(ZPOOL_PROP_TNAME, "tname", PROP_TYPE_STRING, PROP_ONETIME, ZFS_TYPE_POOL, "TNAME"); + zprop_register_hidden(ZPOOL_PROP_MAXDNODESIZE, "maxdnodesize", + PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_POOL, "MAXDNODESIZE"); } /* * Given a property name and its type, returns the corresponding property ID. */ zpool_prop_t zpool_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_POOL)); } /* * Given a pool property ID, returns the corresponding name. * Assuming the pool propety ID is valid. */ const char * zpool_prop_to_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_name); } zprop_type_t zpool_prop_get_type(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_proptype); } boolean_t zpool_prop_readonly(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_attr == PROP_READONLY); } const char * zpool_prop_default_string(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_strdefault); } uint64_t zpool_prop_default_numeric(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_numdefault); } /* * Returns true if this is a valid feature@ property. */ boolean_t zpool_prop_feature(const char *name) { static const char *prefix = "feature@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } /* * Returns true if this is a valid unsupported@ property. */ boolean_t zpool_prop_unsupported(const char *name) { static const char *prefix = "unsupported@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } int zpool_prop_string_to_index(zpool_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_POOL)); } int zpool_prop_index_to_string(zpool_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_POOL)); } uint64_t zpool_prop_random_value(zpool_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_POOL)); } #ifndef _KERNEL const char * zpool_prop_values(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_values); } const char * zpool_prop_column_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_colname); } boolean_t zpool_prop_align_right(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_rightalign); } #endif Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c (revision 350898) @@ -1,3841 +1,3860 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); #ifndef __lint extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp); #endif /* ! __lint */ /* * Global data structures and functions for the dbuf cache. */ static kmem_cache_t *dbuf_kmem_cache; static taskq_t *dbu_evict_taskq; static kthread_t *dbuf_cache_evict_thread; static kmutex_t dbuf_evict_lock; static kcondvar_t dbuf_evict_cv; static boolean_t dbuf_evict_thread_exit; /* * There are two dbuf caches; each dbuf can only be in one of them at a time. * * 1. Cache of metadata dbufs, to help make read-heavy administrative commands * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs * that represent the metadata that describes filesystems/snapshots/ * bookmarks/properties/etc. We only evict from this cache when we export a * pool, to short-circuit as much I/O as possible for all administrative * commands that need the metadata. There is no eviction policy for this * cache, because we try to only include types in it which would occupy a * very small amount of space per object but create a large impact on the * performance of these commands. Instead, after it reaches a maximum size * (which should only happen on very small memory systems with a very large * number of filesystem objects), we stop taking new dbufs into the * metadata cache, instead putting them in the normal dbuf cache. * * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that * are not currently held but have been recently released. These dbufs * are not eligible for arc eviction until they are aged out of the cache. * Dbufs that are aged out of the cache will be immediately destroyed and * become eligible for arc eviction. * * Dbufs are added to these caches once the last hold is released. If a dbuf is * later accessed and still exists in the dbuf cache, then it will be removed * from the cache and later re-added to the head of the cache. * * If a given dbuf meets the requirements for the metadata cache, it will go * there, otherwise it will be considered for the generic LRU dbuf cache. The * caches and the refcounts tracking their sizes are stored in an array indexed * by those caches' matching enum values (from dbuf_cached_state_t). */ typedef struct dbuf_cache { multilist_t *cache; refcount_t size; } dbuf_cache_t; dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; /* Size limits for the caches */ uint64_t dbuf_cache_max_bytes = 0; uint64_t dbuf_metadata_cache_max_bytes = 0; /* Set the default sizes of the caches to log2 fraction of arc size */ int dbuf_cache_shift = 5; int dbuf_metadata_cache_shift = 6; /* * For diagnostic purposes, this is incremented whenever we can't add * something to the metadata cache because it's full, and instead put * the data in the regular dbuf cache. */ uint64_t dbuf_metadata_cache_overflow; /* * The LRU dbuf cache uses a three-stage eviction policy: * - A low water marker designates when the dbuf eviction thread * should stop evicting from the dbuf cache. * - When we reach the maximum size (aka mid water mark), we * signal the eviction thread to run. * - The high water mark indicates when the eviction thread * is unable to keep up with the incoming load and eviction must * happen in the context of the calling thread. * * The dbuf cache: * (max size) * low water mid water hi water * +----------------------------------------+----------+----------+ * | | | | * | | | | * | | | | * | | | | * +----------------------------------------+----------+----------+ * stop signal evict * evicting eviction directly * thread * * The high and low water marks indicate the operating range for the eviction * thread. The low water mark is, by default, 90% of the total size of the * cache and the high water mark is at 110% (both of these percentages can be * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, * respectively). The eviction thread will try to ensure that the cache remains * within this range by waking up every second and checking if the cache is * above the low water mark. The thread can also be woken up by callers adding * elements into the cache if the cache is larger than the mid water (i.e max * cache size). Once the eviction thread is woken up and eviction is required, * it will continue evicting buffers until it's able to reduce the cache size * to the low water mark. If the cache size continues to grow and hits the high * water mark, then callers adding elments to the cache will begin to evict * directly from the cache until the cache is no longer above the high water * mark. */ /* * The percentage above and below the maximum cache size. */ uint_t dbuf_cache_hiwater_pct = 10; uint_t dbuf_cache_lowater_pct = 10; /* ARGSUSED */ static int dbuf_cons(void *vdb, void *unused, int kmflag) { dmu_buf_impl_t *db = vdb; bzero(db, sizeof (dmu_buf_impl_t)); mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); multilist_link_init(&db->db_cache_link); refcount_create(&db->db_holds); return (0); } /* ARGSUSED */ static void dbuf_dest(void *vdb, void *unused) { dmu_buf_impl_t *db = vdb; mutex_destroy(&db->db_mtx); cv_destroy(&db->db_changed); ASSERT(!multilist_link_active(&db->db_cache_link)); refcount_destroy(&db->db_holds); } /* * dbuf hash table routines */ static dbuf_hash_table_t dbuf_hash_table; static uint64_t dbuf_hash_count; /* * We use Cityhash for this. It's fast, and has good hash properties without * requiring any large static buffers. */ static uint64_t dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) { return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); } #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ ((dbuf)->db.db_object == (obj) && \ (dbuf)->db_objset == (os) && \ (dbuf)->db_level == (level) && \ (dbuf)->db_blkid == (blkid)) dmu_buf_impl_t * dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t hv = dbuf_hash(os, obj, level, blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *db; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { if (DBUF_EQUAL(db, os, obj, level, blkid)) { mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (db); } mutex_exit(&db->db_mtx); } } mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (NULL); } static dmu_buf_impl_t * dbuf_find_bonus(objset_t *os, uint64_t object) { dnode_t *dn; dmu_buf_impl_t *db = NULL; if (dnode_hold(os, object, FTAG, &dn) == 0) { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus != NULL) { db = dn->dn_bonus; mutex_enter(&db->db_mtx); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } return (db); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static dmu_buf_impl_t * dbuf_hash_insert(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; objset_t *os = db->db_objset; uint64_t obj = db->db.db_object; int level = db->db_level; uint64_t blkid = db->db_blkid; uint64_t hv = dbuf_hash(os, obj, level, blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *dbf; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { mutex_enter(&dbf->db_mtx); if (dbf->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (dbf); } mutex_exit(&dbf->db_mtx); } } mutex_enter(&db->db_mtx); db->db_hash_next = h->hash_table[idx]; h->hash_table[idx] = db; mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_inc_64(&dbuf_hash_count); return (NULL); } /* * Remove an entry from the hash table. It must be in the EVICTING state. */ static void dbuf_hash_remove(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *dbf, **dbp; /* * We musn't hold db_mtx to maintain lock ordering: * DBUF_HASH_MUTEX > db_mtx. */ ASSERT(refcount_is_zero(&db->db_holds)); ASSERT(db->db_state == DB_EVICTING); ASSERT(!MUTEX_HELD(&db->db_mtx)); mutex_enter(DBUF_HASH_MUTEX(h, idx)); dbp = &h->hash_table[idx]; while ((dbf = *dbp) != db) { dbp = &dbf->db_hash_next; ASSERT(dbf != NULL); } *dbp = db->db_hash_next; db->db_hash_next = NULL; mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_dec_64(&dbuf_hash_count); } typedef enum { DBVU_EVICTING, DBVU_NOT_EVICTING } dbvu_verify_type_t; static void dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) { #ifdef ZFS_DEBUG int64_t holds; if (db->db_user == NULL) return; /* Only data blocks support the attachment of user data. */ ASSERT(db->db_level == 0); /* Clients must resolve a dbuf before attaching user data. */ ASSERT(db->db.db_data != NULL); ASSERT3U(db->db_state, ==, DB_CACHED); holds = refcount_count(&db->db_holds); if (verify_type == DBVU_EVICTING) { /* * Immediate eviction occurs when holds == dirtycnt. * For normal eviction buffers, holds is zero on * eviction, except when dbuf_fix_old_data() calls * dbuf_clear_data(). However, the hold count can grow * during eviction even though db_mtx is held (see * dmu_bonus_hold() for an example), so we can only * test the generic invariant that holds >= dirtycnt. */ ASSERT3U(holds, >=, db->db_dirtycnt); } else { if (db->db_user_immediate_evict == TRUE) ASSERT3U(holds, >=, db->db_dirtycnt); else ASSERT3U(holds, >, 0); } #endif } static void dbuf_evict_user(dmu_buf_impl_t *db) { dmu_buf_user_t *dbu = db->db_user; ASSERT(MUTEX_HELD(&db->db_mtx)); if (dbu == NULL) return; dbuf_verify_user(db, DBVU_EVICTING); db->db_user = NULL; #ifdef ZFS_DEBUG if (dbu->dbu_clear_on_evict_dbufp != NULL) *dbu->dbu_clear_on_evict_dbufp = NULL; #endif /* * There are two eviction callbacks - one that we call synchronously * and one that we invoke via a taskq. The async one is useful for * avoiding lock order reversals and limiting stack depth. * * Note that if we have a sync callback but no async callback, * it's likely that the sync callback will free the structure * containing the dbu. In that case we need to take care to not * dereference dbu after calling the sync evict func. */ boolean_t has_async = (dbu->dbu_evict_func_async != NULL); if (dbu->dbu_evict_func_sync != NULL) dbu->dbu_evict_func_sync(dbu); if (has_async) { taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, dbu, 0, &dbu->dbu_tqent); } } boolean_t dbuf_is_metadata(dmu_buf_impl_t *db) { if (db->db_level > 0) { return (B_TRUE); } else { boolean_t is_metadata; DB_DNODE_ENTER(db); is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); DB_DNODE_EXIT(db); return (is_metadata); } } /* * This returns whether this dbuf should be stored in the metadata cache, which * is based on whether it's from one of the dnode types that store data related * to traversing dataset hierarchies. */ static boolean_t dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) { DB_DNODE_ENTER(db); dmu_object_type_t type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); /* Check if this dbuf is one of the types we care about */ if (DMU_OT_IS_METADATA_CACHED(type)) { /* If we hit this, then we set something up wrong in dmu_ot */ ASSERT(DMU_OT_IS_METADATA(type)); /* * Sanity check for small-memory systems: don't allocate too * much memory for this purpose. */ if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) > dbuf_metadata_cache_max_bytes) { dbuf_metadata_cache_overflow++; DTRACE_PROBE1(dbuf__metadata__cache__overflow, dmu_buf_impl_t *, db); return (B_FALSE); } return (B_TRUE); } return (B_FALSE); } /* * This function *must* return indices evenly distributed between all * sublists of the multilist. This is needed due to how the dbuf eviction * code is laid out; dbuf_evict_thread() assumes dbufs are evenly * distributed between all sublists and uses this assumption when * deciding which sublist to evict from and how much to evict from it. */ unsigned int dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) { dmu_buf_impl_t *db = obj; /* * The assumption here, is the hash value for a given * dmu_buf_impl_t will remain constant throughout it's lifetime * (i.e. it's objset, object, level and blkid fields don't change). * Thus, we don't need to store the dbuf's sublist index * on insertion, as this index can be recalculated on removal. * * Also, the low order bits of the hash value are thought to be * distributed evenly. Otherwise, in the case that the multilist * has a power of two number of sublists, each sublists' usage * would not be evenly distributed. */ return (dbuf_hash(db->db_objset, db->db.db_object, db->db_level, db->db_blkid) % multilist_get_num_sublists(ml)); } static inline boolean_t dbuf_cache_above_hiwater(void) { uint64_t dbuf_cache_hiwater_bytes = (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); } static inline boolean_t dbuf_cache_above_lowater(void) { uint64_t dbuf_cache_lowater_bytes = (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); } /* * Evict the oldest eligible dbuf from the dbuf cache. */ static void dbuf_evict_one(void) { int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); multilist_sublist_t *mls = multilist_sublist_lock( dbuf_caches[DB_DBUF_CACHE].cache, idx); ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); dmu_buf_impl_t *db = multilist_sublist_tail(mls); while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { db = multilist_sublist_prev(mls, db); } DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, multilist_sublist_t *, mls); if (db != NULL) { multilist_sublist_remove(mls, db); multilist_sublist_unlock(mls); (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); db->db_caching_status = DB_NO_CACHE; dbuf_destroy(db); } else { multilist_sublist_unlock(mls); } } /* * The dbuf evict thread is responsible for aging out dbufs from the * cache. Once the cache has reached it's maximum size, dbufs are removed * and destroyed. The eviction thread will continue running until the size * of the dbuf cache is at or below the maximum size. Once the dbuf is aged * out of the cache it is destroyed and becomes eligible for arc eviction. */ /* ARGSUSED */ static void dbuf_evict_thread(void *unused) { callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); mutex_enter(&dbuf_evict_lock); while (!dbuf_evict_thread_exit) { while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait_hires(&dbuf_evict_cv, &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); /* * Keep evicting as long as we're above the low water mark * for the cache. We do this without holding the locks to * minimize lock contention. */ while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { dbuf_evict_one(); } mutex_enter(&dbuf_evict_lock); } dbuf_evict_thread_exit = B_FALSE; cv_broadcast(&dbuf_evict_cv); CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ thread_exit(); } /* * Wake up the dbuf eviction thread if the dbuf cache is at its max size. * If the dbuf cache is at its high water mark, then evict a dbuf from the * dbuf cache using the callers context. */ static void dbuf_evict_notify(void) { /* * We check if we should evict without holding the dbuf_evict_lock, * because it's OK to occasionally make the wrong decision here, * and grabbing the lock results in massive lock contention. */ if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > dbuf_cache_max_bytes) { if (dbuf_cache_above_hiwater()) dbuf_evict_one(); cv_signal(&dbuf_evict_cv); } } void dbuf_init(void) { uint64_t hsize = 1ULL << 16; dbuf_hash_table_t *h = &dbuf_hash_table; int i; /* * The hash table is big enough to fill all of physical memory * with an average 4K block size. The table will take up * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). */ while (hsize * 4096 < physmem * PAGESIZE) hsize <<= 1; retry: h->hash_table_mask = hsize - 1; h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); if (h->hash_table == NULL) { /* XXX - we should really return an error instead of assert */ ASSERT(hsize > (1ULL << 10)); hsize >>= 1; goto retry; } dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", sizeof (dmu_buf_impl_t), 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); for (i = 0; i < DBUF_MUTEXES; i++) mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); /* * Setup the parameters for the dbuf caches. We set the sizes of the * dbuf cache and the metadata cache to 1/32nd and 1/16th (default) * of the size of the ARC, respectively. If the values are set in * /etc/system and they're not greater than the size of the ARC, then * we honor that value. */ if (dbuf_cache_max_bytes == 0 || dbuf_cache_max_bytes >= arc_max_bytes()) { dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift; } if (dbuf_metadata_cache_max_bytes == 0 || dbuf_metadata_cache_max_bytes >= arc_max_bytes()) { dbuf_metadata_cache_max_bytes = arc_max_bytes() >> dbuf_metadata_cache_shift; } /* * All entries are queued via taskq_dispatch_ent(), so min/maxalloc * configuration is not required. */ dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { dbuf_caches[dcs].cache = multilist_create(sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_cache_link), dbuf_cache_multilist_index_func); refcount_create(&dbuf_caches[dcs].size); } dbuf_evict_thread_exit = B_FALSE; mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, NULL, 0, &p0, TS_RUN, minclsyspri); } void dbuf_fini(void) { dbuf_hash_table_t *h = &dbuf_hash_table; int i; for (i = 0; i < DBUF_MUTEXES; i++) mutex_destroy(&h->hash_mutexes[i]); kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); kmem_cache_destroy(dbuf_kmem_cache); taskq_destroy(dbu_evict_taskq); mutex_enter(&dbuf_evict_lock); dbuf_evict_thread_exit = B_TRUE; while (dbuf_evict_thread_exit) { cv_signal(&dbuf_evict_cv); cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); } mutex_exit(&dbuf_evict_lock); mutex_destroy(&dbuf_evict_lock); cv_destroy(&dbuf_evict_cv); for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { refcount_destroy(&dbuf_caches[dcs].size); multilist_destroy(dbuf_caches[dcs].cache); } } /* * Other stuff. */ #ifdef ZFS_DEBUG static void dbuf_verify(dmu_buf_impl_t *db) { dnode_t *dn; dbuf_dirty_record_t *dr; ASSERT(MUTEX_HELD(&db->db_mtx)); if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) return; ASSERT(db->db_objset != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn == NULL) { ASSERT(db->db_parent == NULL); ASSERT(db->db_blkptr == NULL); } else { ASSERT3U(db->db.db_object, ==, dn->dn_object); ASSERT3P(db->db_objset, ==, dn->dn_objset); ASSERT3U(db->db_level, <, dn->dn_nlevels); ASSERT(db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID || !avl_is_empty(&dn->dn_dbufs)); } if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dn != NULL); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); } else if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn != NULL); - ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT0(db->db.db_offset); } else { ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); } for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) ASSERT(dr->dr_dbuf == db); for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) ASSERT(dr->dr_dbuf == db); /* * We can't assert that db_size matches dn_datablksz because it * can be momentarily different when another thread is doing * dnode_set_blksz(). */ if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { dr = db->db_data_pending; /* * It should only be modified in syncing context, so * make sure we only have one copy of the data. */ ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); } /* verify db->db_blkptr */ if (db->db_blkptr) { if (db->db_parent == dn->dn_dbuf) { /* db is pointed to by the dnode */ /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) ASSERT(db->db_parent == NULL); else ASSERT(db->db_parent != NULL); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); } else { /* db is pointed to by an indirect block */ int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); ASSERT3U(db->db_parent->db.db_object, ==, db->db.db_object); /* * dnode_grow_indblksz() can make this fail if we don't * have the struct_rwlock. XXX indblksz no longer * grows. safe to do this now? */ if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { ASSERT3P(db->db_blkptr, ==, ((blkptr_t *)db->db_parent->db.db_data + db->db_blkid % epb)); } } } if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && (db->db_buf == NULL || db->db_buf->b_data) && db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_FILL && !dn->dn_free_txg) { /* * If the blkptr isn't set but they have nonzero data, * it had better be dirty, otherwise we'll lose that * data when we evict this buffer. * * There is an exception to this rule for indirect blocks; in * this case, if the indirect block is a hole, we fill in a few * fields on each of the child blocks (importantly, birth time) * to prevent hole birth times from being lost when you * partially fill in a hole. */ if (db->db_dirtycnt == 0) { if (db->db_level == 0) { uint64_t *buf = db->db.db_data; int i; for (i = 0; i < db->db.db_size >> 3; i++) { ASSERT(buf[i] == 0); } } else { blkptr_t *bps = db->db.db_data; ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, db->db.db_size); /* * We want to verify that all the blkptrs in the * indirect block are holes, but we may have * automatically set up a few fields for them. * We iterate through each blkptr and verify * they only have those fields set. */ for (int i = 0; i < db->db.db_size / sizeof (blkptr_t); i++) { blkptr_t *bp = &bps[i]; ASSERT(ZIO_CHECKSUM_IS_ZERO( &bp->blk_cksum)); ASSERT( DVA_IS_EMPTY(&bp->blk_dva[0]) && DVA_IS_EMPTY(&bp->blk_dva[1]) && DVA_IS_EMPTY(&bp->blk_dva[2])); ASSERT0(bp->blk_fill); ASSERT0(bp->blk_pad[0]); ASSERT0(bp->blk_pad[1]); ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(BP_IS_HOLE(bp)); ASSERT0(bp->blk_phys_birth); } } } } DB_DNODE_EXIT(db); } #endif static void dbuf_clear_data(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); dbuf_evict_user(db); ASSERT3P(db->db_buf, ==, NULL); db->db.db_data = NULL; if (db->db_state != DB_NOFILL) db->db_state = DB_UNCACHED; } static void dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) { ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(buf != NULL); db->db_buf = buf; ASSERT(buf->b_data != NULL); db->db.db_data = buf->b_data; } /* * Loan out an arc_buf for read. Return the loaned arc_buf. */ arc_buf_t * dbuf_loan_arcbuf(dmu_buf_impl_t *db) { arc_buf_t *abuf; ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { int blksz = db->db.db_size; spa_t *spa = db->db_objset->os_spa; mutex_exit(&db->db_mtx); abuf = arc_loan_buf(spa, B_FALSE, blksz); bcopy(db->db.db_data, abuf->b_data, blksz); } else { abuf = db->db_buf; arc_loan_inuse_buf(abuf, db); db->db_buf = NULL; dbuf_clear_data(db); mutex_exit(&db->db_mtx); } return (abuf); } /* * Calculate which level n block references the data at the level 0 offset * provided. */ uint64_t dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) { if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { /* * The level n blkid is equal to the level 0 blkid divided by * the number of level 0s in a level n block. * * The level 0 blkid is offset >> datablkshift = * offset / 2^datablkshift. * * The number of level 0s in a level n is the number of block * pointers in an indirect block, raised to the power of level. * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). * * Thus, the level n blkid is: offset / * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) * = offset / 2^(datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) * = offset >> (datablkshift + level * * (indblkshift - SPA_BLKPTRSHIFT)) */ return (offset >> (dn->dn_datablkshift + level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); } else { ASSERT3U(offset, <, dn->dn_datablksz); return (0); } } static void dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; mutex_enter(&db->db_mtx); ASSERT3U(db->db_state, ==, DB_READ); /* * All reads are synchronous, so we must have a hold on the dbuf */ ASSERT(refcount_count(&db->db_holds) > 0); ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); if (buf == NULL) { /* i/o error */ ASSERT(zio == NULL || zio->io_error != 0); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT3P(db->db_buf, ==, NULL); db->db_state = DB_UNCACHED; } else if (db->db_level == 0 && db->db_freed_in_flight) { /* freed in flight */ ASSERT(zio == NULL || zio->io_error == 0); arc_release(buf, db); bzero(buf->b_data, db->db.db_size); arc_buf_freeze(buf); db->db_freed_in_flight = FALSE; dbuf_set_data(db, buf); db->db_state = DB_CACHED; } else { /* success */ ASSERT(zio == NULL || zio->io_error == 0); dbuf_set_data(db, buf); db->db_state = DB_CACHED; } cv_broadcast(&db->db_changed); dbuf_rele_and_unlock(db, NULL, B_FALSE); } static void dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) { dnode_t *dn; zbookmark_phys_t zb; arc_flags_t aflags = ARC_FLAG_NOWAIT; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(!refcount_is_zero(&db->db_holds)); /* We need the struct_rwlock to prevent db_blkptr from changing. */ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_state == DB_UNCACHED); ASSERT(db->db_buf == NULL); if (db->db_blkid == DMU_BONUS_BLKID) { + /* + * The bonus length stored in the dnode may be less than + * the maximum available space in the bonus buffer. + */ int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); + int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT3U(bonuslen, <=, db->db.db_size); - db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); - arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); - if (bonuslen < DN_MAX_BONUSLEN) - bzero(db->db.db_data, DN_MAX_BONUSLEN); + db->db.db_data = zio_buf_alloc(max_bonuslen); + arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); + if (bonuslen < max_bonuslen) + bzero(db->db.db_data, max_bonuslen); if (bonuslen) bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); DB_DNODE_EXIT(db); db->db_state = DB_CACHED; mutex_exit(&db->db_mtx); return; } /* * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() * processes the delete record and clears the bp while we are waiting * for the dn_mtx (resulting in a "no" from block_freed). */ if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(db->db_blkptr)))) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, db->db.db_size)); bzero(db->db.db_data, db->db.db_size); if (db->db_blkptr != NULL && db->db_level > 0 && BP_IS_HOLE(db->db_blkptr) && db->db_blkptr->blk_birth != 0) { blkptr_t *bps = db->db.db_data; for (int i = 0; i < ((1 << DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); i++) { blkptr_t *bp = &bps[i]; ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 1 << dn->dn_indblkshift); BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); } } DB_DNODE_EXIT(db); db->db_state = DB_CACHED; mutex_exit(&db->db_mtx); return; } DB_DNODE_EXIT(db); db->db_state = DB_READ; mutex_exit(&db->db_mtx); if (DBUF_IS_L2CACHEABLE(db)) aflags |= ARC_FLAG_L2CACHE; SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); dbuf_add_ref(db, NULL); (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, &aflags, &zb); } /* * This is our just-in-time copy function. It makes a copy of buffers that * have been modified in a previous transaction group before we access them in * the current active group. * * This function is used in three places: when we are dirtying a buffer for the * first time in a txg, when we are freeing a range in a dnode that includes * this buffer, and when we are accessing a buffer which was received compressed * and later referenced in a WRITE_BYREF record. * * Note that when we are called from dbuf_free_range() we do not put a hold on * the buffer, we just traverse the active dbuf list for the dnode. */ static void dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr = db->db_last_dirty; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db.db_data != NULL); ASSERT(db->db_level == 0); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); if (dr == NULL || (dr->dt.dl.dr_data != ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) return; /* * If the last dirty record for this dbuf has not yet synced * and its referencing the dbuf data, either: * reset the reference to point to a new copy, * or (if there a no active holders) * just null out the current db_data pointer. */ ASSERT(dr->dr_txg >= txg - 2); if (db->db_blkid == DMU_BONUS_BLKID) { /* Note that the data bufs here are zio_bufs */ - dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); - arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); - bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); + dnode_t *dn = DB_DNODE(db); + int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); + dr->dt.dl.dr_data = zio_buf_alloc(bonuslen); + arc_space_consume(bonuslen, ARC_SPACE_BONUS); + bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { int size = arc_buf_size(db->db_buf); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; enum zio_compress compress_type = arc_get_compression(db->db_buf); if (compress_type == ZIO_COMPRESS_OFF) { dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); } else { ASSERT3U(type, ==, ARC_BUFC_DATA); dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, size, arc_buf_lsize(db->db_buf), compress_type); } bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); } else { db->db_buf = NULL; dbuf_clear_data(db); } } int dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) { int err = 0; boolean_t prefetch; dnode_t *dn; /* * We don't have to hold the mutex to check db_state because it * can't be freed while we have a hold on the buffer. */ ASSERT(!refcount_is_zero(&db->db_holds)); if (db->db_state == DB_NOFILL) return (SET_ERROR(EIO)); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && DBUF_IS_CACHEABLE(db); mutex_enter(&db->db_mtx); if (db->db_state == DB_CACHED) { /* * If the arc buf is compressed, we need to decompress it to * read the data. This could happen during the "zfs receive" of * a stream which is compressed and deduplicated. */ if (db->db_buf != NULL && arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { dbuf_fix_old_data(db, spa_syncing_txg(dmu_objset_spa(db->db_objset))); err = arc_decompress(db->db_buf); dbuf_set_data(db, db->db_buf); } mutex_exit(&db->db_mtx); if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); } else if (db->db_state == DB_UNCACHED) { spa_t *spa = dn->dn_objset->os_spa; boolean_t need_wait = B_FALSE; if (zio == NULL && db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); need_wait = B_TRUE; } dbuf_read_impl(db, zio, flags); /* dbuf_read_impl has dropped db_mtx for us */ if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); if (need_wait) err = zio_wait(zio); } else { /* * Another reader came in while the dbuf was in flight * between UNCACHED and CACHED. Either a writer will finish * writing the buffer (sending the dbuf to CACHED) or the * first reader's request will reach the read_done callback * and send the dbuf to CACHED. Otherwise, a failure * occurred and the dbuf went to UNCACHED. */ mutex_exit(&db->db_mtx); if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); /* Skip the wait per the caller's request. */ mutex_enter(&db->db_mtx); if ((flags & DB_RF_NEVERWAIT) == 0) { while (db->db_state == DB_READ || db->db_state == DB_FILL) { ASSERT(db->db_state == DB_READ || (flags & DB_RF_HAVESTRUCT) == 0); DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, zio_t *, zio); cv_wait(&db->db_changed, &db->db_mtx); } if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); } mutex_exit(&db->db_mtx); } return (err); } static void dbuf_noread(dmu_buf_impl_t *db) { ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); db->db_state = DB_FILL; } else if (db->db_state == DB_NOFILL) { dbuf_clear_data(db); } else { ASSERT3U(db->db_state, ==, DB_CACHED); } mutex_exit(&db->db_mtx); } void dbuf_unoverride(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *bp = &dr->dt.dl.dr_overridden_by; uint64_t txg = dr->dr_txg; ASSERT(MUTEX_HELD(&db->db_mtx)); /* * This assert is valid because dmu_sync() expects to be called by * a zilog's get_data while holding a range lock. This call only * comes from dbuf_dirty() callers who must also hold a range lock. */ ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); ASSERT(db->db_level == 0); if (db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) return; ASSERT(db->db_data_pending != dr); /* free this block */ if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) zio_free(db->db_objset->os_spa, txg, bp); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; dr->dt.dl.dr_nopwrite = B_FALSE; /* * Release the already-written buffer, so we leave it in * a consistent dirty state. Note that all callers are * modifying the buffer, so they will immediately do * another (redundant) arc_release(). Therefore, leave * the buf thawed to save the effort of freezing & * immediately re-thawing it. */ arc_release(dr->dt.dl.dr_data, db); } /* * Evict (if its unreferenced) or clear (if its referenced) any level-0 * data blocks in the free range, so that any future readers will find * empty blocks. */ void dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t db_search; dmu_buf_impl_t *db, *db_next; uint64_t txg = tx->tx_txg; avl_index_t where; if (end_blkid > dn->dn_maxblkid && !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) end_blkid = dn->dn_maxblkid; dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); db_search.db_level = 0; db_search.db_blkid = start_blkid; db_search.db_state = DB_SEARCH; mutex_enter(&dn->dn_dbufs_mtx); db = avl_find(&dn->dn_dbufs, &db_search, &where); ASSERT3P(db, ==, NULL); db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = db_next) { db_next = AVL_NEXT(&dn->dn_dbufs, db); ASSERT(db->db_blkid != DMU_BONUS_BLKID); if (db->db_level != 0 || db->db_blkid > end_blkid) { break; } ASSERT3U(db->db_blkid, >=, start_blkid); /* found a level 0 buffer in the range */ mutex_enter(&db->db_mtx); if (dbuf_undirty(db, tx)) { /* mutex has been dropped and dbuf destroyed */ continue; } if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL || db->db_state == DB_EVICTING) { ASSERT(db->db.db_data == NULL); mutex_exit(&db->db_mtx); continue; } if (db->db_state == DB_READ || db->db_state == DB_FILL) { /* will be handled in dbuf_read_done or dbuf_rele */ db->db_freed_in_flight = TRUE; mutex_exit(&db->db_mtx); continue; } if (refcount_count(&db->db_holds) == 0) { ASSERT(db->db_buf); dbuf_destroy(db); continue; } /* The dbuf is referenced */ if (db->db_last_dirty != NULL) { dbuf_dirty_record_t *dr = db->db_last_dirty; if (dr->dr_txg == txg) { /* * This buffer is "in-use", re-adjust the file * size to reflect that this buffer may * contain new data when we sync. */ if (db->db_blkid != DMU_SPILL_BLKID && db->db_blkid > dn->dn_maxblkid) dn->dn_maxblkid = db->db_blkid; dbuf_unoverride(dr); } else { /* * This dbuf is not dirty in the open context. * Either uncache it (if its not referenced in * the open context) or reset its contents to * empty. */ dbuf_fix_old_data(db, txg); } } /* clear the contents if its cached */ if (db->db_state == DB_CACHED) { ASSERT(db->db.db_data != NULL); arc_release(db->db_buf, db); bzero(db->db.db_data, db->db.db_size); arc_buf_freeze(db->db_buf); } mutex_exit(&db->db_mtx); } mutex_exit(&dn->dn_dbufs_mtx); } void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) { arc_buf_t *buf, *obuf; int osize = db->db.db_size; arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dnode_t *dn; ASSERT(db->db_blkid != DMU_BONUS_BLKID); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* XXX does *this* func really need the lock? */ ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); /* * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held * is OK, because there can be no other references to the db * when we are changing its size, so no concurrent DB_FILL can * be happening. */ /* * XXX we should be doing a dbuf_read, checking the return * value and returning that up to our callers */ dmu_buf_will_dirty(&db->db, tx); /* create the data buffer for the new block */ buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); /* copy old block data to the new block */ obuf = db->db_buf; bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); /* zero the remainder */ if (size > osize) bzero((uint8_t *)buf->b_data + osize, size - osize); mutex_enter(&db->db_mtx); dbuf_set_data(db, buf); arc_buf_destroy(obuf, db); db->db.db_size = size; if (db->db_level == 0) { ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); db->db_last_dirty->dt.dl.dr_data = buf; } mutex_exit(&db->db_mtx); dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); DB_DNODE_EXIT(db); } void dbuf_release_bp(dmu_buf_impl_t *db) { objset_t *os = db->db_objset; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(arc_released(os->os_phys_buf) || list_link_active(&os->os_dsl_dataset->ds_synced_link)); ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); (void) arc_release(db->db_buf, db); } /* * We already have a dirty record for this TXG, and we are being * dirtied again. */ static void dbuf_redirty(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { /* * If this buffer has already been written out, * we now need to reset its state. */ dbuf_unoverride(dr); if (db->db.db_object != DMU_META_DNODE_OBJECT && db->db_state != DB_NOFILL) { /* Already released on initial dirty, so just thaw. */ ASSERT(arc_released(db->db_buf)); arc_buf_thaw(db->db_buf); } } } dbuf_dirty_record_t * dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; objset_t *os; dbuf_dirty_record_t **drp, *dr; int drop_struct_lock = FALSE; int txgoff = tx->tx_txg & TXG_MASK; ASSERT(tx->tx_txg != 0); ASSERT(!refcount_is_zero(&db->db_holds)); DMU_TX_DIRTY_BUF(tx, db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * Shouldn't dirty a regular buffer in syncing context. Private * objects may be dirtied in syncing context, but only if they * were already pre-dirtied in open context. */ #ifdef DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) { rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); } ASSERT(!dmu_tx_is_syncing(tx) || BP_IS_HOLE(dn->dn_objset->os_rootbp) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_objset->os_dsl_dataset == NULL); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif /* * We make this assert for private objects as well, but after we * check if we're already dirty. They are allowed to re-dirty * in syncing context. */ ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); mutex_enter(&db->db_mtx); /* * XXX make this true for indirects too? The problem is that * transactions created with dmu_tx_create_assigned() from * syncing context don't bother holding ahead. */ ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || db->db_state == DB_FILL || db->db_state == DB_NOFILL); mutex_enter(&dn->dn_mtx); /* * Don't set dirtyctx to SYNC if we're just modifying this as we * initialize the objset. */ if (dn->dn_dirtyctx == DN_UNDIRTIED) { if (dn->dn_objset->os_dsl_dataset != NULL) { rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); } if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); ASSERT(dn->dn_dirtyctx_firstset == NULL); dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); } if (dn->dn_objset->os_dsl_dataset != NULL) { rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); } } mutex_exit(&dn->dn_mtx); if (db->db_blkid == DMU_SPILL_BLKID) dn->dn_have_spill = B_TRUE; /* * If this buffer is already dirty, we're done. */ drp = &db->db_last_dirty; ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || db->db.db_object == DMU_META_DNODE_OBJECT); while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) drp = &dr->dr_next; if (dr && dr->dr_txg == tx->tx_txg) { DB_DNODE_EXIT(db); dbuf_redirty(dr); mutex_exit(&db->db_mtx); return (dr); } /* * Only valid if not already dirty. */ ASSERT(dn->dn_object == 0 || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); ASSERT3U(dn->dn_nlevels, >, db->db_level); /* * We should only be dirtying in syncing context if it's the * mos or we're initializing the os or it's a special object. * However, we are allowed to dirty in syncing context provided * we already dirtied it in open context. Hence we must make * this assertion only if we're not already dirty. */ os = dn->dn_objset; VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); #ifdef DEBUG if (dn->dn_objset->os_dsl_dataset != NULL) rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); if (dn->dn_objset->os_dsl_dataset != NULL) rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); #endif ASSERT(db->db.db_size != 0); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); if (db->db_blkid != DMU_BONUS_BLKID) { dmu_objset_willuse_space(os, db->db.db_size, tx); } /* * If this buffer is dirty in an old transaction group we need * to make a copy of it so that the changes we make in this * transaction group won't leak out when we sync the older txg. */ dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); if (db->db_level == 0) { void *data_old = db->db_buf; if (db->db_state != DB_NOFILL) { if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db.db_data; } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { /* * Release the data buffer from the cache so * that we can modify it without impacting * possible other users of this cached data * block. Note that indirect blocks and * private objects are not released until the * syncing state (since they are only modified * then). */ arc_release(db->db_buf, db); dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db_buf; } ASSERT(data_old != NULL); } dr->dt.dl.dr_data = data_old; } else { mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); list_create(&dr->dt.di.dr_children, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) dr->dr_accounted = db->db.db_size; dr->dr_dbuf = db; dr->dr_txg = tx->tx_txg; dr->dr_next = *drp; *drp = dr; /* * We could have been freed_in_flight between the dbuf_noread * and dbuf_dirty. We win, as though the dbuf_noread() had * happened after the free. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], db->db_blkid, 1); } mutex_exit(&dn->dn_mtx); db->db_freed_in_flight = FALSE; } /* * This buffer is now part of this txg */ dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); db->db_dirtycnt += 1; ASSERT3U(db->db_dirtycnt, <=, 3); mutex_exit(&db->db_mtx); if (db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } /* * The dn_struct_rwlock prevents db_blkptr from changing * due to a write from syncing context completing * while we are running, so we want to acquire it before * looking at db_blkptr. */ if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } /* * We need to hold the dn_struct_rwlock to make this assertion, * because it protects dn_phys / dn_next_nlevels from changing. */ ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || dn->dn_phys->dn_nlevels > db->db_level || dn->dn_next_nlevels[txgoff] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); /* * If we are overwriting a dedup BP, then unless it is snapshotted, * when we get to syncing context we will need to decrement its * refcount in the DDT. Prefetch the relevant DDT block so that * syncing context won't have to wait for the i/o. */ ddt_prefetch(os->os_spa, db->db_blkptr); if (db->db_level == 0) { dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); ASSERT(dn->dn_maxblkid >= db->db_blkid); } if (db->db_level+1 < dn->dn_nlevels) { dmu_buf_impl_t *parent = db->db_parent; dbuf_dirty_record_t *di; int parent_held = FALSE; if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; parent = dbuf_hold_level(dn, db->db_level+1, db->db_blkid >> epbs, FTAG); ASSERT(parent != NULL); parent_held = TRUE; } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); ASSERT3U(db->db_level+1, ==, parent->db_level); di = dbuf_dirty(parent, tx); if (parent_held) dbuf_rele(parent, FTAG); mutex_enter(&db->db_mtx); /* * Since we've dropped the mutex, it's possible that * dbuf_undirty() might have changed this out from under us. */ if (db->db_last_dirty == dr || dn->dn_object == DMU_META_DNODE_OBJECT) { mutex_enter(&di->dt.di.dr_mtx); ASSERT3U(di->dr_txg, ==, tx->tx_txg); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&di->dt.di.dr_children, dr); mutex_exit(&di->dt.di.dr_mtx); dr->dr_parent = di; } mutex_exit(&db->db_mtx); } else { ASSERT(db->db_level+1 == dn->dn_nlevels); ASSERT(db->db_blkid < dn->dn_nblkptr); ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } /* * Undirty a buffer in the transaction group referenced by the given * transaction. Return whether this evicted the dbuf. */ static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; uint64_t txg = tx->tx_txg; dbuf_dirty_record_t *dr, **drp; ASSERT(txg != 0); /* * Due to our use of dn_nlevels below, this can only be called * in open context, unless we are operating on the MOS. * From syncing context, dn_nlevels may be different from the * dn_nlevels used when dbuf was dirtied. */ ASSERT(db->db_objset == dmu_objset_pool(db->db_objset)->dp_meta_objset || txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); /* * If this buffer is not dirty, we're done. */ for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) if (dr->dr_txg <= txg) break; if (dr == NULL || dr->dr_txg < txg) return (B_FALSE); ASSERT(dr->dr_txg == txg); ASSERT(dr->dr_dbuf == db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); ASSERT(db->db.db_size != 0); dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), dr->dr_accounted, txg); *drp = dr->dr_next; /* * Note that there are three places in dbuf_dirty() * where this dirty record may be put on a list. * Make sure to do a list_remove corresponding to * every one of those list_insert calls. */ if (dr->dr_parent) { mutex_enter(&dr->dr_parent->dt.di.dr_mtx); list_remove(&dr->dr_parent->dt.di.dr_children, dr); mutex_exit(&dr->dr_parent->dt.di.dr_mtx); } else if (db->db_blkid == DMU_SPILL_BLKID || db->db_level + 1 == dn->dn_nlevels) { ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); mutex_exit(&dn->dn_mtx); } DB_DNODE_EXIT(db); if (db->db_state != DB_NOFILL) { dbuf_unoverride(dr); ASSERT(db->db_buf != NULL); ASSERT(dr->dt.dl.dr_data != NULL); if (dr->dt.dl.dr_data != db->db_buf) arc_buf_destroy(dr->dt.dl.dr_data, db); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); dbuf_destroy(db); return (B_TRUE); } return (B_FALSE); } void dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; ASSERT(tx->tx_txg != 0); ASSERT(!refcount_is_zero(&db->db_holds)); /* * Quick check for dirtyness. For already dirty blocks, this * reduces runtime of this function by >90%, and overall performance * by 50% for some workloads (e.g. file deletion with indirect blocks * cached). */ mutex_enter(&db->db_mtx); dbuf_dirty_record_t *dr; for (dr = db->db_last_dirty; dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { /* * It's possible that it is already dirty but not cached, * because there are some calls to dbuf_dirty() that don't * go through dmu_buf_will_dirty(). */ if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { /* This dbuf is already dirty and cached. */ dbuf_redirty(dr); mutex_exit(&db->db_mtx); return; } } mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) rf |= DB_RF_HAVESTRUCT; DB_DNODE_EXIT(db); (void) dbuf_read(db, NULL, rf); (void) dbuf_dirty(db, tx); } void dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_state = DB_NOFILL; dmu_buf_will_fill(db_fake, tx); } void dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(tx->tx_txg != 0); ASSERT(db->db_level == 0); ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); dbuf_noread(db); (void) dbuf_dirty(db, tx); } #pragma weak dmu_buf_fill_done = dbuf_fill_done /* ARGSUSED */ void dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) { mutex_enter(&db->db_mtx); DBUF_VERIFY(db); if (db->db_state == DB_FILL) { if (db->db_level == 0 && db->db_freed_in_flight) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); /* we were freed while filling */ /* XXX dbuf_undirty? */ bzero(db->db.db_data, db->db.db_size); db->db_freed_in_flight = FALSE; } db->db_state = DB_CACHED; cv_broadcast(&db->db_changed); } mutex_exit(&db->db_mtx); } void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, bp_embedded_type_t etype, enum zio_compress comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; struct dirty_leaf *dl; dmu_object_type_t type; if (etype == BP_EMBEDDED_TYPE_DATA) { ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), SPA_FEATURE_EMBEDDED_DATA)); } DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); ASSERT(db->db_blkid != DMU_BONUS_BLKID); dmu_buf_will_not_fill(dbuf, tx); ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); dl = &db->db_last_dirty->dt.dl; encode_embedded_bp_compressed(&dl->dr_overridden_by, data, comp, uncompressed_size, compressed_size); BPE_SET_ETYPE(&dl->dr_overridden_by, etype); BP_SET_TYPE(&dl->dr_overridden_by, type); BP_SET_LEVEL(&dl->dr_overridden_by, 0); BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; } /* * Directly assign a provided arc buf to a given dbuf if it's not referenced * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. */ void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) { ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(db->db_level == 0); ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); ASSERT(buf != NULL); ASSERT(arc_buf_lsize(buf) == db->db.db_size); ASSERT(tx->tx_txg != 0); arc_return_buf(buf, db); ASSERT(arc_released(buf)); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); if (db->db_state == DB_CACHED && refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); bcopy(buf->b_data, db->db.db_data, db->db.db_size); arc_buf_destroy(buf, db); xuio_stat_wbuf_copied(); return; } xuio_stat_wbuf_nocopy(); if (db->db_state == DB_CACHED) { dbuf_dirty_record_t *dr = db->db_last_dirty; ASSERT(db->db_buf != NULL); if (dr != NULL && dr->dr_txg == tx->tx_txg) { ASSERT(dr->dt.dl.dr_data == db->db_buf); if (!arc_released(db->db_buf)) { ASSERT(dr->dt.dl.dr_override_state == DR_OVERRIDDEN); arc_release(db->db_buf, db); } dr->dt.dl.dr_data = buf; arc_buf_destroy(db->db_buf, db); } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { arc_release(db->db_buf, db); arc_buf_destroy(db->db_buf, db); } db->db_buf = NULL; } ASSERT(db->db_buf == NULL); dbuf_set_data(db, buf); db->db_state = DB_FILL; mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); dmu_buf_fill_done(&db->db, tx); } void dbuf_destroy(dmu_buf_impl_t *db) { dnode_t *dn; dmu_buf_impl_t *parent = db->db_parent; dmu_buf_impl_t *dndb; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(refcount_is_zero(&db->db_holds)); if (db->db_buf != NULL) { arc_buf_destroy(db->db_buf, db); db->db_buf = NULL; } if (db->db_blkid == DMU_BONUS_BLKID) { - ASSERT(db->db.db_data != NULL); - zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); - arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); - db->db_state = DB_UNCACHED; + int slots = DB_DNODE(db)->dn_num_slots; + int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); + if (db->db.db_data != NULL) { + zio_buf_free(db->db.db_data, bonuslen); + arc_space_return(bonuslen, ARC_SPACE_BONUS); + db->db_state = DB_UNCACHED; + } } dbuf_clear_data(db); if (multilist_link_active(&db->db_cache_link)) { ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(dbuf_caches[db->db_caching_status].cache, db); (void) refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); db->db_caching_status = DB_NO_CACHE; } ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_data_pending == NULL); db->db_state = DB_EVICTING; db->db_blkptr = NULL; /* * Now that db_state is DB_EVICTING, nobody else can find this via * the hash table. We can now drop db_mtx, which allows us to * acquire the dn_dbufs_mtx. */ mutex_exit(&db->db_mtx); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dndb = dn->dn_dbuf; if (db->db_blkid != DMU_BONUS_BLKID) { boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); if (needlock) mutex_enter(&dn->dn_dbufs_mtx); avl_remove(&dn->dn_dbufs, db); atomic_dec_32(&dn->dn_dbufs_count); membar_producer(); DB_DNODE_EXIT(db); if (needlock) mutex_exit(&dn->dn_dbufs_mtx); /* * Decrementing the dbuf count means that the hold corresponding * to the removed dbuf is no longer discounted in dnode_move(), * so the dnode cannot be moved until after we release the hold. * The membar_producer() ensures visibility of the decremented * value in dnode_move(), since DB_DNODE_EXIT doesn't actually * release any lock. */ mutex_enter(&dn->dn_mtx); dnode_rele_and_unlock(dn, db, B_TRUE); db->db_dnode_handle = NULL; dbuf_hash_remove(db); } else { DB_DNODE_EXIT(db); } ASSERT(refcount_is_zero(&db->db_holds)); db->db_parent = NULL; ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); ASSERT(db->db_hash_next == NULL); ASSERT(db->db_blkptr == NULL); ASSERT(db->db_data_pending == NULL); ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); ASSERT(!multilist_link_active(&db->db_cache_link)); kmem_cache_free(dbuf_kmem_cache, db); arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); /* * If this dbuf is referenced from an indirect dbuf, * decrement the ref count on the indirect dbuf. */ if (parent && parent != dndb) { mutex_enter(&parent->db_mtx); dbuf_rele_and_unlock(parent, db, B_TRUE); } } /* * Note: While bpp will always be updated if the function returns success, * parentp will not be updated if the dnode does not have dn_dbuf filled in; * this happens when the dnode is the meta-dnode, or a userused or groupused * object. */ static int dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, dmu_buf_impl_t **parentp, blkptr_t **bpp) { *parentp = NULL; *bpp = NULL; ASSERT(blkid != DMU_BONUS_BLKID); if (blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_have_spill && (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) - *bpp = &dn->dn_phys->dn_spill; + *bpp = DN_SPILL_BLKPTR(dn->dn_phys); else *bpp = NULL; dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; mutex_exit(&dn->dn_mtx); return (0); } int nlevels = (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(level * epbs, <, 64); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); /* * This assertion shouldn't trip as long as the max indirect block size * is less than 1M. The reason for this is that up to that point, * the number of levels required to address an entire object with blocks * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 * (i.e. we can address the entire object), objects will all use at most * N-1 levels and the assertion won't overflow. However, once epbs is * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be * enough to address an entire object, so objects will have 5 levels, * but then this assertion will overflow. * * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we * need to redo this logic to handle overflows. */ ASSERT(level >= nlevels || ((nlevels - level - 1) * epbs) + highbit64(dn->dn_phys->dn_nblkptr) <= 64); if (level >= nlevels || blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << ((nlevels - level - 1) * epbs)) || (fail_sparse && blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { /* the buffer has no parent yet */ return (SET_ERROR(ENOENT)); } else if (level < nlevels-1) { /* this block is referenced from an indirect block */ int err = dbuf_hold_impl(dn, level+1, blkid >> epbs, fail_sparse, FALSE, NULL, parentp); if (err) return (err); err = dbuf_read(*parentp, NULL, (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err) { dbuf_rele(*parentp, NULL); *parentp = NULL; return (err); } *bpp = ((blkptr_t *)(*parentp)->db.db_data) + (blkid & ((1ULL << epbs) - 1)); if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) ASSERT(BP_IS_HOLE(*bpp)); return (0); } else { /* the block is referenced from the dnode */ ASSERT3U(level, ==, nlevels-1); ASSERT(dn->dn_phys->dn_nblkptr == 0 || blkid < dn->dn_phys->dn_nblkptr); if (dn->dn_dbuf) { dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; } *bpp = &dn->dn_phys->dn_blkptr[blkid]; return (0); } } static dmu_buf_impl_t * dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, dmu_buf_impl_t *parent, blkptr_t *blkptr) { objset_t *os = dn->dn_objset; dmu_buf_impl_t *db, *odb; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_type != DMU_OT_NONE); db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); db->db_objset = os; db->db.db_object = dn->dn_object; db->db_level = level; db->db_blkid = blkid; db->db_last_dirty = NULL; db->db_dirtycnt = 0; db->db_dnode_handle = dn->dn_handle; db->db_parent = parent; db->db_blkptr = blkptr; db->db_user = NULL; db->db_user_immediate_evict = FALSE; db->db_freed_in_flight = FALSE; db->db_pending_evict = FALSE; if (blkid == DMU_BONUS_BLKID) { ASSERT3P(parent, ==, dn->dn_dbuf); - db->db.db_size = DN_MAX_BONUSLEN - + db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); db->db.db_offset = DMU_BONUS_BLKID; db->db_state = DB_UNCACHED; db->db_caching_status = DB_NO_CACHE; /* the bonus dbuf is not placed in the hash table */ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); return (db); } else if (blkid == DMU_SPILL_BLKID) { db->db.db_size = (blkptr != NULL) ? BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; db->db.db_offset = 0; } else { int blocksize = db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; db->db.db_size = blocksize; db->db.db_offset = db->db_blkid * blocksize; } /* * Hold the dn_dbufs_mtx while we get the new dbuf * in the hash table *and* added to the dbufs list. * This prevents a possible deadlock with someone * trying to look up this dbuf before its added to the * dn_dbufs list. */ mutex_enter(&dn->dn_dbufs_mtx); db->db_state = DB_EVICTING; if ((odb = dbuf_hash_insert(db)) != NULL) { /* someone else inserted it first */ kmem_cache_free(dbuf_kmem_cache, db); mutex_exit(&dn->dn_dbufs_mtx); return (odb); } avl_add(&dn->dn_dbufs, db); db->db_state = DB_UNCACHED; db->db_caching_status = DB_NO_CACHE; mutex_exit(&dn->dn_dbufs_mtx); arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); if (parent && parent != dn->dn_dbuf) dbuf_add_ref(parent, db); ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || refcount_count(&dn->dn_holds) > 0); (void) refcount_add(&dn->dn_holds, db); atomic_inc_32(&dn->dn_dbufs_count); dprintf_dbuf(db, "db=%p\n", db); return (db); } typedef struct dbuf_prefetch_arg { spa_t *dpa_spa; /* The spa to issue the prefetch in. */ zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ int dpa_curlevel; /* The current level that we're reading */ dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ } dbuf_prefetch_arg_t; /* * Actually issue the prefetch read for the block given. */ static void dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) { if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return; arc_flags_t aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); ASSERT(dpa->dpa_zio != NULL); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, &dpa->dpa_zb); } /* * Called when an indirect block above our prefetch target is read in. This * will either read in the next indirect block down the tree or issue the actual * prefetch if the next block down is our target. */ static void dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) { dbuf_prefetch_arg_t *dpa = private; ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); ASSERT3S(dpa->dpa_curlevel, >, 0); if (abuf == NULL) { ASSERT(zio == NULL || zio->io_error != 0); kmem_free(dpa, sizeof (*dpa)); return; } ASSERT(zio == NULL || zio->io_error == 0); /* * The dpa_dnode is only valid if we are called with a NULL * zio. This indicates that the arc_read() returned without * first calling zio_read() to issue a physical read. Once * a physical read is made the dpa_dnode must be invalidated * as the locks guarding it may have been dropped. If the * dpa_dnode is still valid, then we want to add it to the dbuf * cache. To do so, we must hold the dbuf associated with the block * we just prefetched, read its contents so that we associate it * with an arc_buf_t, and then release it. */ if (zio != NULL) { ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); if (zio->io_flags & ZIO_FLAG_RAW) { ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); } else { ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); } ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); dpa->dpa_dnode = NULL; } else if (dpa->dpa_dnode != NULL) { uint64_t curblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, dpa->dpa_curlevel, curblkid, FTAG); (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); dbuf_rele(db, FTAG); } dpa->dpa_curlevel--; uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); blkptr_t *bp = ((blkptr_t *)abuf->b_data) + P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); if (BP_IS_HOLE(bp)) { kmem_free(dpa, sizeof (*dpa)); } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); dbuf_issue_final_prefetch(dpa, bp); kmem_free(dpa, sizeof (*dpa)); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) iter_aflags |= ARC_FLAG_L2CACHE; ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } arc_buf_destroy(abuf, private); } /* * Issue prefetch reads for the given block on the given level. If the indirect * blocks above that block are not in memory, we will read them in * asynchronously. As a result, this call never blocks waiting for a read to * complete. */ void dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, arc_flags_t aflags) { blkptr_t bp; int epbs, nlevels, curlevel; uint64_t curblkid; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); if (blkid > dn->dn_maxblkid) return; if (dnode_block_freed(dn, blkid)) return; /* * This dnode hasn't been written to disk yet, so there's nothing to * prefetch. */ nlevels = dn->dn_phys->dn_nlevels; if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) return; epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) return; dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); if (db != NULL) { mutex_exit(&db->db_mtx); /* * This dbuf already exists. It is either CACHED, or * (we assume) about to be read or filled. */ return; } /* * Find the closest ancestor (indirect block) of the target block * that is present in the cache. In this indirect block, we will * find the bp that is at curlevel, curblkid. */ curlevel = level; curblkid = blkid; while (curlevel < nlevels - 1) { int parent_level = curlevel + 1; uint64_t parent_blkid = curblkid >> epbs; dmu_buf_impl_t *db; if (dbuf_hold_impl(dn, parent_level, parent_blkid, FALSE, TRUE, FTAG, &db) == 0) { blkptr_t *bpp = db->db_buf->b_data; bp = bpp[P2PHASE(curblkid, 1 << epbs)]; dbuf_rele(db, FTAG); break; } curlevel = parent_level; curblkid = parent_blkid; } if (curlevel == nlevels - 1) { /* No cached indirect blocks found. */ ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); bp = dn->dn_phys->dn_blkptr[curblkid]; } if (BP_IS_HOLE(&bp)) return; ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, ZIO_FLAG_CANFAIL); dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, level, blkid); dpa->dpa_curlevel = curlevel; dpa->dpa_prio = prio; dpa->dpa_aflags = aflags; dpa->dpa_spa = dn->dn_objset->os_spa; dpa->dpa_dnode = dn; dpa->dpa_epbs = epbs; dpa->dpa_zio = pio; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) dpa->dpa_aflags |= ARC_FLAG_L2CACHE; /* * If we have the indirect just above us, no need to do the asynchronous * prefetch chain; we'll just run the last step ourselves. If we're at * a higher level, though, we want to issue the prefetches for all the * indirect blocks asynchronously, so we can go on with whatever we were * doing. */ if (curlevel == level) { ASSERT3U(curblkid, ==, blkid); dbuf_issue_final_prefetch(dpa, &bp); kmem_free(dpa, sizeof (*dpa)); } else { arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; zbookmark_phys_t zb; /* flag if L2ARC eligible, l2arc_noprefetch then decides */ if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) iter_aflags |= ARC_FLAG_L2CACHE; SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, curlevel, curblkid); (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, &bp, dbuf_prefetch_indirect_done, dpa, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &iter_aflags, &zb); } /* * We use pio here instead of dpa_zio since it's possible that * dpa may have already been freed. */ zio_nowait(pio); } /* * Returns with db_holds incremented, and db_mtx not held. * Note: dn_struct_rwlock must be held. */ int dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached, void *tag, dmu_buf_impl_t **dbp) { dmu_buf_impl_t *db, *parent = NULL; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT3U(dn->dn_nlevels, >, level); *dbp = NULL; top: /* dbuf_find() returns with db_mtx held */ db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); if (db == NULL) { blkptr_t *bp = NULL; int err; if (fail_uncached) return (SET_ERROR(ENOENT)); ASSERT3P(parent, ==, NULL); err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); if (fail_sparse) { if (err == 0 && bp && BP_IS_HOLE(bp)) err = SET_ERROR(ENOENT); if (err) { if (parent) dbuf_rele(parent, NULL); return (err); } } if (err && err != ENOENT) return (err); db = dbuf_create(dn, level, blkid, parent, bp); } if (fail_uncached && db->db_state != DB_CACHED) { mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } if (db->db_buf != NULL) ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); /* * If this buffer is currently syncing out, and we are are * still referencing it from db_data, we need to make a copy * of it in case we decide we want to dirty it again in this txg. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && dn->dn_object != DMU_META_DNODE_OBJECT && db->db_state == DB_CACHED && db->db_data_pending) { dbuf_dirty_record_t *dr = db->db_data_pending; if (dr->dt.dl.dr_data == db->db_buf) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, type, db->db.db_size)); bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, db->db.db_size); } } if (multilist_link_active(&db->db_cache_link)) { ASSERT(refcount_is_zero(&db->db_holds)); ASSERT(db->db_caching_status == DB_DBUF_CACHE || db->db_caching_status == DB_DBUF_METADATA_CACHE); multilist_remove(dbuf_caches[db->db_caching_status].cache, db); (void) refcount_remove_many( &dbuf_caches[db->db_caching_status].size, db->db.db_size, db); db->db_caching_status = DB_NO_CACHE; } (void) refcount_add(&db->db_holds, tag); DBUF_VERIFY(db); mutex_exit(&db->db_mtx); /* NOTE: we can't rele the parent until after we drop the db_mtx */ if (parent) dbuf_rele(parent, NULL); ASSERT3P(DB_DNODE(db), ==, dn); ASSERT3U(db->db_blkid, ==, blkid); ASSERT3U(db->db_level, ==, level); *dbp = db; return (0); } dmu_buf_impl_t * dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) { return (dbuf_hold_level(dn, 0, blkid, tag)); } dmu_buf_impl_t * dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) { dmu_buf_impl_t *db; int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); return (err ? NULL : db); } void dbuf_create_bonus(dnode_t *dn) { ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_bonus == NULL); dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); } int dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; if (db->db_blkid != DMU_SPILL_BLKID) return (SET_ERROR(ENOTSUP)); if (blksz == 0) blksz = SPA_MINBLOCKSIZE; ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); DB_DNODE_ENTER(db); dn = DB_DNODE(db); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dbuf_new_size(db, blksz, tx); rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); return (0); } void dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) { dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); } #pragma weak dmu_buf_add_ref = dbuf_add_ref void dbuf_add_ref(dmu_buf_impl_t *db, void *tag) { int64_t holds = refcount_add(&db->db_holds, tag); ASSERT3S(holds, >, 1); } #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref boolean_t dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, void *tag) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dmu_buf_impl_t *found_db; boolean_t result = B_FALSE; if (db->db_blkid == DMU_BONUS_BLKID) found_db = dbuf_find_bonus(os, obj); else found_db = dbuf_find(os, obj, 0, blkid); if (found_db != NULL) { if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { (void) refcount_add(&db->db_holds, tag); result = B_TRUE; } mutex_exit(&db->db_mtx); } return (result); } /* * If you call dbuf_rele() you had better not be referencing the dnode handle * unless you have some other direct or indirect hold on the dnode. (An indirect * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the * dnode's parent dbuf evicting its dnode handles. */ void dbuf_rele(dmu_buf_impl_t *db, void *tag) { mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, tag, B_FALSE); } void dmu_buf_rele(dmu_buf_t *db, void *tag) { dbuf_rele((dmu_buf_impl_t *)db, tag); } /* * dbuf_rele() for an already-locked dbuf. This is necessary to allow * db_dirtycnt and db_holds to be updated atomically. The 'evicting' * argument should be set if we are already in the dbuf-evicting code * path, in which case we don't want to recursively evict. This allows us to * avoid deeply nested stacks that would have a call flow similar to this: * * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() * ^ | * | | * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ * */ void dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) { int64_t holds; ASSERT(MUTEX_HELD(&db->db_mtx)); DBUF_VERIFY(db); /* * Remove the reference to the dbuf before removing its hold on the * dnode so we can guarantee in dnode_move() that a referenced bonus * buffer has a corresponding dnode hold. */ holds = refcount_remove(&db->db_holds, tag); ASSERT(holds >= 0); /* * We can't freeze indirects if there is a possibility that they * may be modified in the current syncing context. */ if (db->db_buf != NULL && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { arc_buf_freeze(db->db_buf); } if (holds == db->db_dirtycnt && db->db_level == 0 && db->db_user_immediate_evict) dbuf_evict_user(db); if (holds == 0) { if (db->db_blkid == DMU_BONUS_BLKID) { dnode_t *dn; boolean_t evict_dbuf = db->db_pending_evict; /* * If the dnode moves here, we cannot cross this * barrier until the move completes. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); atomic_dec_32(&dn->dn_dbufs_count); /* * Decrementing the dbuf count means that the bonus * buffer's dnode hold is no longer discounted in * dnode_move(). The dnode cannot move until after * the dnode_rele() below. */ DB_DNODE_EXIT(db); /* * Do not reference db after its lock is dropped. * Another thread may evict it. */ mutex_exit(&db->db_mtx); if (evict_dbuf) dnode_evict_bonus(dn); dnode_rele(dn, db); } else if (db->db_buf == NULL) { /* * This is a special case: we never associated this * dbuf with any data allocated from the ARC. */ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); dbuf_destroy(db); } else if (arc_released(db->db_buf)) { /* * This dbuf has anonymous data associated with it. */ dbuf_destroy(db); } else { boolean_t do_arc_evict = B_FALSE; blkptr_t bp; spa_t *spa = dmu_objset_spa(db->db_objset); if (!DBUF_IS_CACHEABLE(db) && db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr) && !BP_IS_EMBEDDED(db->db_blkptr)) { do_arc_evict = B_TRUE; bp = *db->db_blkptr; } if (!DBUF_IS_CACHEABLE(db) || db->db_pending_evict) { dbuf_destroy(db); } else if (!multilist_link_active(&db->db_cache_link)) { ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); dbuf_cached_state_t dcs = dbuf_include_in_metadata_cache(db) ? DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; db->db_caching_status = dcs; multilist_insert(dbuf_caches[dcs].cache, db); (void) refcount_add_many(&dbuf_caches[dcs].size, db->db.db_size, db); mutex_exit(&db->db_mtx); if (db->db_caching_status == DB_DBUF_CACHE && !evicting) { dbuf_evict_notify(); } } if (do_arc_evict) arc_freed(spa, &bp); } } else { mutex_exit(&db->db_mtx); } } #pragma weak dmu_buf_refcount = dbuf_refcount uint64_t dbuf_refcount(dmu_buf_impl_t *db) { return (refcount_count(&db->db_holds)); } void * dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; mutex_enter(&db->db_mtx); dbuf_verify_user(db, DBVU_NOT_EVICTING); if (db->db_user == old_user) db->db_user = new_user; else old_user = db->db_user; dbuf_verify_user(db, DBVU_NOT_EVICTING); mutex_exit(&db->db_mtx); return (old_user); } void * dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, NULL, user)); } void * dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_user_immediate_evict = TRUE; return (dmu_buf_set_user(db_fake, user)); } void * dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) { return (dmu_buf_replace_user(db_fake, user, NULL)); } void * dmu_buf_get_user(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dbuf_verify_user(db, DBVU_NOT_EVICTING); return (db->db_user); } void dmu_buf_user_evict_wait() { taskq_wait(dbu_evict_taskq); } blkptr_t * dmu_buf_get_blkptr(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_blkptr); } objset_t * dmu_buf_get_objset(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_objset); } dnode_t * dmu_buf_dnode_enter(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; DB_DNODE_ENTER(dbi); return (DB_DNODE(dbi)); } void dmu_buf_dnode_exit(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; DB_DNODE_EXIT(dbi); } static void dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) { /* ASSERT(dmu_tx_is_syncing(tx) */ ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_blkptr != NULL) return; if (db->db_blkid == DMU_SPILL_BLKID) { - db->db_blkptr = &dn->dn_phys->dn_spill; + db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); BP_ZERO(db->db_blkptr); return; } if (db->db_level == dn->dn_phys->dn_nlevels-1) { /* * This buffer was allocated at a time when there was * no available blkptrs from the dnode, or it was * inappropriate to hook it in (i.e., nlevels mis-match). */ ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); ASSERT(db->db_parent == NULL); db->db_parent = dn->dn_dbuf; db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; DBUF_VERIFY(db); } else { dmu_buf_impl_t *parent = db->db_parent; int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT(dn->dn_phys->dn_nlevels > 1); if (parent == NULL) { mutex_exit(&db->db_mtx); rw_enter(&dn->dn_struct_rwlock, RW_READER); parent = dbuf_hold_level(dn, db->db_level + 1, db->db_blkid >> epbs, db); rw_exit(&dn->dn_struct_rwlock); mutex_enter(&db->db_mtx); db->db_parent = parent; } db->db_blkptr = (blkptr_t *)parent->db.db_data + (db->db_blkid & ((1ULL << epbs) - 1)); DBUF_VERIFY(db); } } static void dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; zio_t *zio; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); ASSERT(db->db_level > 0); DBUF_VERIFY(db); /* Read the block if it hasn't been read yet. */ if (db->db_buf == NULL) { mutex_exit(&db->db_mtx); (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); mutex_enter(&db->db_mtx); } ASSERT3U(db->db_state, ==, DB_CACHED); ASSERT(db->db_buf != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* Indirect block size must match what the dnode thinks it is. */ ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); dbuf_check_blkptr(dn, db); DB_DNODE_EXIT(db); /* Provide the pending dirty record to child dbufs */ db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, db->db_buf, tx); zio = dr->dr_zio; mutex_enter(&dr->dt.di.dr_mtx); dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); mutex_exit(&dr->dt.di.dr_mtx); zio_nowait(zio); } static void dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { arc_buf_t **datap = &dr->dt.dl.dr_data; dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; objset_t *os; uint64_t txg = tx->tx_txg; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); /* * To be synced, we must be dirtied. But we * might have been freed after the dirty. */ if (db->db_state == DB_UNCACHED) { /* This buffer has been freed since it was dirtied */ ASSERT(db->db.db_data == NULL); } else if (db->db_state == DB_FILL) { /* This buffer was freed and is now being re-filled */ ASSERT(db->db.db_data != dr->dt.dl.dr_data); } else { ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); } DBUF_VERIFY(db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* * If this is a bonus buffer, simply copy the bonus data into the * dnode. It will be written out when the dnode is synced (and it * will be synced, since it must have been dirty for dbuf_sync to * be called). */ if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_dirty_record_t **drp; ASSERT(*datap != NULL); ASSERT0(db->db_level); - ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); - bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); + ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, + DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); + bcopy(*datap, DN_BONUS(dn->dn_phys), + DN_MAX_BONUS_LEN(dn->dn_phys)); DB_DNODE_EXIT(db); if (*datap != db->db.db_data) { - zio_buf_free(*datap, DN_MAX_BONUSLEN); - arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); + int slots = DB_DNODE(db)->dn_num_slots; + int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); + zio_buf_free(*datap, bonuslen); + arc_space_return(bonuslen, ARC_SPACE_BONUS); } db->db_data_pending = NULL; drp = &db->db_last_dirty; while (*drp != dr) drp = &(*drp)->dr_next; ASSERT(dr->dr_next == NULL); ASSERT(dr->dr_dbuf == db); *drp = dr->dr_next; kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); return; } os = dn->dn_objset; /* * This function may have dropped the db_mtx lock allowing a dmu_sync * operation to sneak in. As a result, we need to ensure that we * don't check the dr_override_state until we have returned from * dbuf_check_blkptr. */ dbuf_check_blkptr(dn, db); /* * If this buffer is in the middle of an immediate write, * wait for the synchronous IO to complete. */ while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); cv_wait(&db->db_changed, &db->db_mtx); ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); } if (db->db_state != DB_NOFILL && dn->dn_object != DMU_META_DNODE_OBJECT && refcount_count(&db->db_holds) > 1 && dr->dt.dl.dr_override_state != DR_OVERRIDDEN && *datap == db->db_buf) { /* * If this buffer is currently "in use" (i.e., there * are active holds and db_data still references it), * then make a copy before we start the write so that * any modifications from the open txg will not leak * into this write. * * NOTE: this copy does not need to be made for * objects only modified in the syncing context (e.g. * DNONE_DNODE blocks). */ int psize = arc_buf_size(*datap); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); enum zio_compress compress_type = arc_get_compression(*datap); if (compress_type == ZIO_COMPRESS_OFF) { *datap = arc_alloc_buf(os->os_spa, db, type, psize); } else { ASSERT3U(type, ==, ARC_BUFC_DATA); int lsize = arc_buf_lsize(*datap); *datap = arc_alloc_compressed_buf(os->os_spa, db, psize, lsize, compress_type); } bcopy(db->db.db_data, (*datap)->b_data, psize); } db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, *datap, tx); ASSERT(!list_link_active(&dr->dr_dirty_node)); if (dn->dn_object == DMU_META_DNODE_OBJECT) { list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); DB_DNODE_EXIT(db); } else { /* * Although zio_nowait() does not "wait for an IO", it does * initiate the IO. If this is an empty write it seems plausible * that the IO could actually be completed before the nowait * returns. We need to DB_DNODE_EXIT() first in case * zio_nowait() invalidates the dbuf. */ DB_DNODE_EXIT(db); zio_nowait(dr->dr_zio); } } void dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) { dbuf_dirty_record_t *dr; while (dr = list_head(list)) { if (dr->dr_zio != NULL) { /* * If we find an already initialized zio then we * are processing the meta-dnode, and we have finished. * The dbufs for all dnodes are put back on the list * during processing, so that we can zio_wait() * these IOs after initiating all child IOs. */ ASSERT3U(dr->dr_dbuf->db.db_object, ==, DMU_META_DNODE_OBJECT); break; } if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { VERIFY3U(dr->dr_dbuf->db_level, ==, level); } list_remove(list, dr); if (dr->dr_dbuf->db_level > 0) dbuf_sync_indirect(dr, tx); else dbuf_sync_leaf(dr, tx); } } /* ARGSUSED */ static void dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; spa_t *spa = zio->io_spa; int64_t delta; uint64_t fill = 0; int i; ASSERT3P(db->db_blkptr, !=, NULL); ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); DB_DNODE_ENTER(db); dn = DB_DNODE(db); delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta - zio->io_prev_space_delta); zio->io_prev_space_delta = delta; if (bp->blk_birth != 0) { ASSERT((db->db_blkid != DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_type) || (db->db_blkid == DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_bonustype) || BP_IS_EMBEDDED(bp)); ASSERT(BP_GET_LEVEL(bp) == db->db_level); } mutex_enter(&db->db_mtx); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(bp)) && - db->db_blkptr == &dn->dn_phys->dn_spill); + db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); } #endif if (db->db_level == 0) { mutex_enter(&dn->dn_mtx); if (db->db_blkid > dn->dn_phys->dn_maxblkid && db->db_blkid != DMU_SPILL_BLKID) dn->dn_phys->dn_maxblkid = db->db_blkid; mutex_exit(&dn->dn_mtx); if (dn->dn_type == DMU_OT_DNODE) { - dnode_phys_t *dnp = db->db.db_data; - for (i = db->db.db_size >> DNODE_SHIFT; i > 0; - i--, dnp++) { - if (dnp->dn_type != DMU_OT_NONE) + i = 0; + while (i < db->db.db_size) { + dnode_phys_t *dnp = + (void *)(((char *)db->db.db_data) + i); + + i += DNODE_MIN_SIZE; + if (dnp->dn_type != DMU_OT_NONE) { fill++; + i += dnp->dn_extra_slots * + DNODE_MIN_SIZE; + } } } else { if (BP_IS_HOLE(bp)) { fill = 0; } else { fill = 1; } } } else { blkptr_t *ibp = db->db.db_data; ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { if (BP_IS_HOLE(ibp)) continue; fill += BP_GET_FILL(ibp); } } DB_DNODE_EXIT(db); if (!BP_IS_EMBEDDED(bp)) bp->blk_fill = fill; mutex_exit(&db->db_mtx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); *db->db_blkptr = *bp; rw_exit(&dn->dn_struct_rwlock); } /* ARGSUSED */ /* * This function gets called just prior to running through the compression * stage of the zio pipeline. If we're an indirect block comprised of only * holes, then we want this indirect to be compressed away to a hole. In * order to do that we must zero out any information about the holes that * this indirect points to prior to before we try to compress it. */ static void dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp; unsigned int epbs, i; ASSERT3U(db->db_level, >, 0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(epbs, <, 31); /* Determine if all our children are holes */ for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { if (!BP_IS_HOLE(bp)) break; } /* * If all the children are holes, then zero them all out so that * we may get compressed away. */ if (i == 1 << epbs) { /* * We only found holes. Grab the rwlock to prevent * anybody from reading the blocks we're about to * zero out. */ rw_enter(&dn->dn_struct_rwlock, RW_WRITER); bzero(db->db.db_data, db->db.db_size); rw_exit(&dn->dn_struct_rwlock); } DB_DNODE_EXIT(db); } /* * The SPA will call this callback several times for each zio - once * for every physical child i/o (zio->io_phys_children times). This * allows the DMU to monitor the progress of each logical i/o. For example, * there may be 2 copies of an indirect block, or many fragments of a RAID-Z * block. There may be a long delay before all copies/fragments are completed, * so this callback allows us to retire dirty space gradually, as the physical * i/os complete. */ /* ARGSUSED */ static void dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) { dmu_buf_impl_t *db = arg; objset_t *os = db->db_objset; dsl_pool_t *dp = dmu_objset_pool(os); dbuf_dirty_record_t *dr; int delta = 0; dr = db->db_data_pending; ASSERT3U(dr->dr_txg, ==, zio->io_txg); /* * The callback will be called io_phys_children times. Retire one * portion of our dirty space each time we are called. Any rounding * error will be cleaned up by dsl_pool_sync()'s call to * dsl_pool_undirty_space(). */ delta = dr->dr_accounted / zio->io_phys_children; dsl_pool_undirty_space(dp, delta, zio->io_txg); } /* ARGSUSED */ static void dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; blkptr_t *bp_orig = &zio->io_bp_orig; blkptr_t *bp = db->db_blkptr; objset_t *os = db->db_objset; dmu_tx_t *tx = os->os_synctx; dbuf_dirty_record_t **drp, *dr; ASSERT0(zio->io_error); ASSERT(db->db_blkptr == bp); /* * For nopwrites and rewrites we ensure that the bp matches our * original and bypass all the accounting. */ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } mutex_enter(&db->db_mtx); DBUF_VERIFY(db); drp = &db->db_last_dirty; while ((dr = *drp) != db->db_data_pending) drp = &dr->dr_next; ASSERT(!list_link_active(&dr->dr_dirty_node)); ASSERT(dr->dr_dbuf == db); ASSERT(dr->dr_next == NULL); *drp = dr->dr_next; #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && - db->db_blkptr == &dn->dn_phys->dn_spill); + db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); DB_DNODE_EXIT(db); } #endif if (db->db_level == 0) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); if (db->db_state != DB_NOFILL) { if (dr->dt.dl.dr_data != db->db_buf) arc_buf_destroy(dr->dt.dl.dr_data, db); } } else { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); if (!BP_IS_HOLE(db->db_blkptr)) { int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(db->db_blkid, <=, dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, db->db.db_size); } DB_DNODE_EXIT(db); mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); cv_broadcast(&db->db_changed); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; db->db_data_pending = NULL; dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); } static void dbuf_write_nofill_ready(zio_t *zio) { dbuf_write_ready(zio, NULL, zio->io_private); } static void dbuf_write_nofill_done(zio_t *zio) { dbuf_write_done(zio, NULL, zio->io_private); } static void dbuf_write_override_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; dbuf_write_ready(zio, NULL, db); } static void dbuf_write_override_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *obp = &dr->dt.dl.dr_overridden_by; mutex_enter(&db->db_mtx); if (!BP_EQUAL(zio->io_bp, obp)) { if (!BP_IS_HOLE(obp)) dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); arc_release(dr->dt.dl.dr_data, db); } mutex_exit(&db->db_mtx); dbuf_write_done(zio, NULL, db); if (zio->io_abd != NULL) abd_put(zio->io_abd); } typedef struct dbuf_remap_impl_callback_arg { objset_t *drica_os; uint64_t drica_blk_birth; dmu_tx_t *drica_tx; } dbuf_remap_impl_callback_arg_t; static void dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, void *arg) { dbuf_remap_impl_callback_arg_t *drica = arg; objset_t *os = drica->drica_os; spa_t *spa = dmu_objset_spa(os); dmu_tx_t *tx = drica->drica_tx; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (os == spa_meta_objset(spa)) { spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); } else { dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, size, drica->drica_blk_birth, tx); } } static void dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx) { blkptr_t bp_copy = *bp; spa_t *spa = dmu_objset_spa(dn->dn_objset); dbuf_remap_impl_callback_arg_t drica; ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); drica.drica_os = dn->dn_objset; drica.drica_blk_birth = bp->blk_birth; drica.drica_tx = tx; if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, &drica)) { /* * The struct_rwlock prevents dbuf_read_impl() from * dereferencing the BP while we are changing it. To * avoid lock contention, only grab it when we are actually * changing the BP. */ rw_enter(&dn->dn_struct_rwlock, RW_WRITER); *bp = bp_copy; rw_exit(&dn->dn_struct_rwlock); } } /* * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting * to remap a copy of every bp in the dbuf. */ boolean_t dbuf_can_remap(const dmu_buf_impl_t *db) { spa_t *spa = dmu_objset_spa(db->db_objset); blkptr_t *bp = db->db.db_data; boolean_t ret = B_FALSE; ASSERT3U(db->db_level, >, 0); ASSERT3S(db->db_state, ==, DB_CACHED); ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { blkptr_t bp_copy = bp[i]; if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { ret = B_TRUE; break; } } spa_config_exit(spa, SCL_VDEV, FTAG); return (ret); } boolean_t dnode_needs_remap(const dnode_t *dn) { spa_t *spa = dmu_objset_spa(dn->dn_objset); boolean_t ret = B_FALSE; if (dn->dn_phys->dn_nlevels == 0) { return (B_FALSE); } ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) { blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j]; if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { ret = B_TRUE; break; } } spa_config_exit(spa, SCL_VDEV, FTAG); return (ret); } /* * Remap any existing BP's to concrete vdevs, if possible. */ static void dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(db->db_objset); ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) return; if (db->db_level > 0) { blkptr_t *bp = db->db.db_data; for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { dbuf_remap_impl(dn, &bp[i], tx); } } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { dnode_phys_t *dnp = db->db.db_data; ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, DMU_OT_DNODE); for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) { for (int j = 0; j < dnp[i].dn_nblkptr; j++) { dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx); } } } } /* Issue I/O to commit a dirty buffer to disk. */ static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; objset_t *os; dmu_buf_impl_t *parent = db->db_parent; uint64_t txg = tx->tx_txg; zbookmark_phys_t zb; zio_prop_t zp; zio_t *zio; int wp_flag = 0; ASSERT(dmu_tx_is_syncing(tx)); DB_DNODE_ENTER(db); dn = DB_DNODE(db); os = dn->dn_objset; if (db->db_state != DB_NOFILL) { if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { /* * Private object buffers are released here rather * than in dbuf_dirty() since they are only modified * in the syncing context and we don't want the * overhead of making multiple copies of the data. */ if (BP_IS_HOLE(db->db_blkptr)) { arc_buf_thaw(data); } else { dbuf_release_bp(db); } dbuf_remap(dn, db, tx); } } if (parent != dn->dn_dbuf) { /* Our parent is an indirect block. */ /* We have a dirty parent that has been scheduled for write. */ ASSERT(parent && parent->db_data_pending); /* Our parent's buffer is one level closer to the dnode. */ ASSERT(db->db_level == parent->db_level-1); /* * We're about to modify our parent's db_data by modifying * our block pointer, so the parent must be released. */ ASSERT(arc_released(parent->db_buf)); zio = parent->db_data_pending->dr_zio; } else { /* Our parent is the dnode itself. */ ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && db->db_blkid != DMU_SPILL_BLKID) || (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); zio = dn->dn_zio; } ASSERT(db->db_level == 0 || data == db->db_buf); ASSERT3U(db->db_blkptr->blk_birth, <=, txg); ASSERT(zio); SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); if (db->db_blkid == DMU_SPILL_BLKID) wp_flag = WP_SPILL; wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); DB_DNODE_EXIT(db); /* * We copy the blkptr now (rather than when we instantiate the dirty * record), because its value can change between open context and * syncing context. We do not need to hold dn_struct_rwlock to read * db_blkptr because we are in syncing context. */ dr->dr_bp_copy = *db->db_blkptr; if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * The BP for this block has been provided by open context * (by dmu_sync() or dmu_buf_write_embedded()). */ abd_t *contents = (data != NULL) ? abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size, &zp, dbuf_write_override_ready, NULL, NULL, dbuf_write_override_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); mutex_enter(&db->db_mtx); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); mutex_exit(&db->db_mtx); } else if (db->db_state == DB_NOFILL) { ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, dbuf_write_nofill_ready, NULL, NULL, dbuf_write_nofill_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); } else { ASSERT(arc_released(data)); /* * For indirect blocks, we want to setup the children * ready callback so that we can properly handle an indirect * block that only contains holes. */ arc_done_func_t *children_ready_cb = NULL; if (db->db_level != 0) children_ready_cb = dbuf_write_children_ready; dr->dr_zio = arc_write(zio, os->os_spa, txg, &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), &zp, dbuf_write_ready, children_ready_cb, dbuf_write_physdone, dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu.c (revision 350898) @@ -1,2408 +1,2421 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2018 DilOS */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #endif static xuio_stats_t xuio_stats = { { "onloan_read_buf", KSTAT_DATA_UINT64 }, { "onloan_write_buf", KSTAT_DATA_UINT64 }, { "read_buf_copied", KSTAT_DATA_UINT64 }, { "read_buf_nocopy", KSTAT_DATA_UINT64 }, { "write_buf_copied", KSTAT_DATA_UINT64 }, { "write_buf_nocopy", KSTAT_DATA_UINT64 } }; #define XUIOSTAT_INCR(stat, val) \ atomic_add_64(&xuio_stats.stat.value.ui64, (val)) #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) /* * Enable/disable nopwrite feature. */ int zfs_nopwrite_enabled = 1; /* * Tunable to control percentage of dirtied blocks from frees in one TXG. * After this threshold is crossed, additional dirty blocks from frees * wait until the next TXG. * A value of zero will disable this throttle. */ uint32_t zfs_per_txg_dirty_frees_percent = 30; /* * This can be used for testing, to ensure that certain actions happen * while in the middle of a remap (which might otherwise complete too * quickly). */ int zfs_object_remap_one_indirect_delay_ticks = 0; const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "object directory" }, { DMU_BSWAP_UINT64, TRUE, TRUE, "object array" }, { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "ZIL intent log" }, { DMU_BSWAP_DNODE, TRUE, FALSE, "DMU dnode" }, { DMU_BSWAP_OBJSET, TRUE, TRUE, "DMU objset" }, { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL directory" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL directory child map" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset snap map" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL props" }, { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL dataset" }, { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" }, { DMU_BSWAP_OLDACL, TRUE, FALSE, "ZFS V0 ACL" }, { DMU_BSWAP_UINT8, FALSE, FALSE, "ZFS plain file" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS directory" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS delete queue" }, { DMU_BSWAP_UINT8, FALSE, FALSE, "zvol object" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" }, { DMU_BSWAP_UINT8, FALSE, FALSE, "other uint8[]" }, { DMU_BSWAP_UINT64, FALSE, FALSE, "other uint64[]" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" }, { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "Pool properties" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL permissions" }, { DMU_BSWAP_ACL, TRUE, FALSE, "ZFS ACL" }, { DMU_BSWAP_UINT8, TRUE, FALSE, "ZFS SYSACL" }, { DMU_BSWAP_UINT8, TRUE, FALSE, "FUID table" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset next clones" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group used" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group quota" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "snapshot refcount tags" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" }, { DMU_BSWAP_UINT8, TRUE, FALSE, "System attributes" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "SA master node" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr registration" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr layouts" }, { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" }, { DMU_BSWAP_UINT8, FALSE, FALSE, "deduplicated block" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL deadlist map" }, { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL deadlist map hdr" }, { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dir clones" }, { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" } }; const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { { byteswap_uint8_array, "uint8" }, { byteswap_uint16_array, "uint16" }, { byteswap_uint32_array, "uint32" }, { byteswap_uint64_array, "uint64" }, { zap_byteswap, "zap" }, { dnode_buf_byteswap, "dnode" }, { dmu_objset_byteswap, "objset" }, { zfs_znode_byteswap, "znode" }, { zfs_oldacl_byteswap, "oldacl" }, { zfs_acl_byteswap, "acl" } }; int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp) { uint64_t blkid; dmu_buf_impl_t *db; blkid = dbuf_whichblock(dn, 0, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (0); } int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp) { dnode_t *dn; uint64_t blkid; dmu_buf_impl_t *db; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); blkid = dbuf_whichblock(dn, 0, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (err); } int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; err = dmu_buf_hold_noread(os, object, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_bonus_max(void) { - return (DN_MAX_BONUSLEN); + return (DN_OLD_MAX_BONUSLEN); } int dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else if (newsize < 0 || newsize > db_fake->db_size) { error = SET_ERROR(EINVAL); } else { dnode_setbonuslen(dn, newsize, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } int dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (!DMU_OT_IS_VALID(type)) { error = SET_ERROR(EINVAL); } else if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else { dnode_setbonus_type(dn, type, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } dmu_object_type_t dmu_get_bonustype(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; dmu_object_type_t type; DB_DNODE_ENTER(db); dn = DB_DNODE(db); type = dn->dn_bonustype; DB_DNODE_EXIT(db); return (type); } int dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; int error; error = dnode_hold(os, object, FTAG, &dn); dbuf_rm_spill(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_rm_spill(dn, tx); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); return (error); } /* * returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) { dnode_t *dn; dmu_buf_impl_t *db; int error; error = dnode_hold(os, object, FTAG, &dn); if (error) return (error); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus == NULL) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus == NULL) dbuf_create_bonus(dn); } db = dn->dn_bonus; /* as long as the bonus buf is held, the dnode will be held */ if (refcount_add(&db->db_holds, tag) == 1) { VERIFY(dnode_add_ref(dn, db)); atomic_inc_32(&dn->dn_dbufs_count); } /* * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's * hold and incrementing the dbuf count to ensure that dnode_move() sees * a dnode hold for every dbuf. */ rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); *dbp = &db->db; return (0); } /* * returns ENOENT, EIO, or 0. * * This interface will allocate a blank spill dbuf when a spill blk * doesn't already exist on the dnode. * * if you only want to find an already existing spill db, then * dmu_spill_hold_existing() should be used. */ int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = NULL; int err; if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); ASSERT(db != NULL); err = dbuf_read(db, NULL, flags); if (err == 0) *dbp = &db->db; else dbuf_rele(db, tag); return (err); } int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { err = SET_ERROR(EINVAL); } else { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (!dn->dn_have_spill) { err = SET_ERROR(ENOENT); } else { err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); } rw_exit(&dn->dn_struct_rwlock); } DB_DNODE_EXIT(db); return (err); } int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); DB_DNODE_EXIT(db); return (err); } /* * Note: longer-term, we should modify all of the dmu_buf_*() interfaces * to take a held dnode rather than -- the lookup is wasteful, * and can induce severe lock contention when writing to several files * whose dnodes are in the same block. */ int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) { dmu_buf_t **dbp; uint64_t blkid, nblks, i; uint32_t dbuf_flags; int err; zio_t *zio; ASSERT(length <= DMU_MAX_ACCESS); /* * Note: We directly notify the prefetch code of this read, so that * we can tell it about the multi-block read. dbuf_read() only knows * about the one block it is accessing. */ dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; } else { if (offset + length > dn->dn_datablksz) { zfs_panic_recover("zfs: accessing past end of object " "%llx/%llx (size=%u access=%llu+%llu)", (longlong_t)dn->dn_objset-> os_dsl_dataset->ds_object, (longlong_t)dn->dn_object, dn->dn_datablksz, (longlong_t)offset, (longlong_t)length); rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(EIO)); } nblks = 1; } dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); blkid = dbuf_whichblock(dn, 0, offset); for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); if (db == NULL) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_rele_array(dbp, nblks, tag); zio_nowait(zio); return (SET_ERROR(EIO)); } /* initiate async i/o */ if (read) (void) dbuf_read(db, zio, dbuf_flags); dbp[i] = &db->db; } if ((flags & DMU_READ_NO_PREFETCH) == 0 && DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { dmu_zfetch(&dn->dn_zfetch, blkid, nblks, read && DNODE_IS_CACHEABLE(dn)); } rw_exit(&dn->dn_struct_rwlock); /* wait for async i/o */ err = zio_wait(zio); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } /* wait for other io to complete */ if (read) { for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); mutex_exit(&db->db_mtx); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } } } *numbufsp = nblks; *dbpp = dbp; return (0); } static int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); dnode_rele(dn, FTAG); return (err); } int dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); DB_DNODE_EXIT(db); return (err); } void dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) { int i; dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; if (numbufs == 0) return; for (i = 0; i < numbufs; i++) { if (dbp[i]) dbuf_rele(dbp[i], tag); } kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); } /* * Issue prefetch i/os for the given blocks. If level is greater than 0, the * indirect blocks prefeteched will be those that point to the blocks containing * the data starting at offset, and continuing to offset + len. * * Note that if the indirect blocks above the blocks being prefetched are not in * cache, they will be asychronously read in. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, zio_priority_t pri) { dnode_t *dn; uint64_t blkid; int nblks, err; if (len == 0) { /* they're interested in the bonus buffer */ dn = DMU_META_DNODE(os); if (object == 0 || object >= DN_MAX_OBJECT) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, level, object * sizeof (dnode_phys_t)); dbuf_prefetch(dn, level, blkid, pri, 0); rw_exit(&dn->dn_struct_rwlock); return; } /* * XXX - Note, if the dnode for the requested object is not * already cached, we will do a *synchronous* read in the * dnode_hold() call. The same is true for any indirects. */ err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); /* * offset + len - 1 is the last byte we want to prefetch for, and offset * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the * last block we want to prefetch, and dbuf_whichblock(dn, level, * offset) is the first. Then the number we need to prefetch is the * last - first + 1. */ if (level > 0 || dn->dn_datablkshift != 0) { nblks = dbuf_whichblock(dn, level, offset + len - 1) - dbuf_whichblock(dn, level, offset) + 1; } else { nblks = (offset < dn->dn_datablksz); } if (nblks != 0) { blkid = dbuf_whichblock(dn, level, offset); for (int i = 0; i < nblks; i++) dbuf_prefetch(dn, level, blkid + i, pri, 0); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } /* * Get the next "chunk" of file data to free. We traverse the file from * the end so that the file gets shorter over time (if we crashes in the * middle, this will leave us in a better state). We find allocated file * data by simply searching the allocated level 1 indirects. * * On input, *start should be the first offset that does not need to be * freed (e.g. "offset + length"). On return, *start will be the first * offset that should be freed. */ static int get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) { uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); /* bytes of data covered by a level-1 indirect block */ uint64_t iblkrange = dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); ASSERT3U(minimum, <=, *start); if (*start - minimum <= iblkrange * maxblks) { *start = minimum; return (0); } ASSERT(ISP2(iblkrange)); for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { int err; /* * dnode_next_offset(BACKWARDS) will find an allocated L1 * indirect block at or before the input offset. We must * decrement *start so that it is at the end of the region * to search. */ (*start)--; err = dnode_next_offset(dn, DNODE_FIND_BACKWARDS, start, 2, 1, 0); /* if there are no indirect blocks before start, we are done */ if (err == ESRCH) { *start = minimum; break; } else if (err != 0) { return (err); } /* set start to the beginning of this L1 indirect */ *start = P2ALIGN(*start, iblkrange); } if (*start < minimum) *start = minimum; return (0); } /* * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, * otherwise return false. * Used below in dmu_free_long_range_impl() to enable abort when unmounting */ /*ARGSUSED*/ static boolean_t dmu_objset_zfs_unmounting(objset_t *os) { #ifdef _KERNEL if (dmu_objset_type(os) == DMU_OST_ZFS) return (zfs_get_vfs_flag_unmounted(os)); #endif return (B_FALSE); } static int dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, uint64_t length) { uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; int err; uint64_t dirty_frees_threshold; dsl_pool_t *dp = dmu_objset_pool(os); if (offset >= object_size) return (0); if (zfs_per_txg_dirty_frees_percent <= 100) dirty_frees_threshold = zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; else dirty_frees_threshold = zfs_dirty_data_max / 4; if (length == DMU_OBJECT_END || offset + length > object_size) length = object_size - offset; while (length != 0) { uint64_t chunk_end, chunk_begin, chunk_len; uint64_t long_free_dirty_all_txgs = 0; dmu_tx_t *tx; if (dmu_objset_zfs_unmounting(dn->dn_objset)) return (SET_ERROR(EINTR)); chunk_end = chunk_begin = offset + length; /* move chunk_begin backwards to the beginning of this chunk */ err = get_next_chunk(dn, &chunk_begin, offset); if (err) return (err); ASSERT3U(chunk_begin, >=, offset); ASSERT3U(chunk_begin, <=, chunk_end); chunk_len = chunk_end - chunk_begin; mutex_enter(&dp->dp_lock); for (int t = 0; t < TXG_SIZE; t++) { long_free_dirty_all_txgs += dp->dp_long_free_dirty_pertxg[t]; } mutex_exit(&dp->dp_lock); /* * To avoid filling up a TXG with just frees wait for * the next TXG to open before freeing more chunks if * we have reached the threshold of frees */ if (dirty_frees_threshold != 0 && long_free_dirty_all_txgs >= dirty_frees_threshold) { txg_wait_open(dp, 0); continue; } tx = dmu_tx_create(os); dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); /* * Mark this transaction as typically resulting in a net * reduction in space used. */ dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&dp->dp_lock); dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += chunk_len; mutex_exit(&dp->dp_lock); DTRACE_PROBE3(free__long__range, uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, uint64_t, dmu_tx_get_txg(tx)); dnode_free_range(dn, chunk_begin, chunk_len, tx); dmu_tx_commit(tx); length -= chunk_len; } return (0); } int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t length) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_free_long_range_impl(os, dn, offset, length); /* * It is important to zero out the maxblkid when freeing the entire * file, so that (a) subsequent calls to dmu_free_long_range_impl() * will take the fast path, and (b) dnode_reallocate() can verify * that the entire file has been freed. */ if (err == 0 && offset == 0 && length == DMU_OBJECT_END) dn->dn_maxblkid = 0; dnode_rele(dn, FTAG); return (err); } int dmu_free_long_object(objset_t *os, uint64_t object) { dmu_tx_t *tx; int err; err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); if (err != 0) return (err); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, object); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err == 0) { err = dmu_object_free(os, object, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } return (err); } int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); ASSERT(offset < UINT64_MAX); ASSERT(size == -1ULL || size <= UINT64_MAX - offset); dnode_free_range(dn, offset, size, tx); dnode_rele(dn, FTAG); return (0); } static int dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dmu_buf_t **dbp; int numbufs, err = 0; /* * Deal with odd block sizes, where there can't be data past the first * block. If we ever do the tail block optimization, we will need to * handle that here as well. */ if (dn->dn_maxblkid == 0) { int newsz = offset > dn->dn_datablksz ? 0 : MIN(size, dn->dn_datablksz - offset); bzero((char *)buf + newsz, size - newsz); size = newsz; } while (size > 0) { uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); int i; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, TRUE, FTAG, &numbufs, &dbp, flags); if (err) break; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); bcopy((char *)db->db_data + bufoff, buf, tocpy); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } return (err); } int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_read_impl(dn, offset, size, buf, flags); dnode_rele(dn, FTAG); return (err); } int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { return (dmu_read_impl(dn, offset, size, buf, flags)); } static void dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { int i; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); bcopy(buf, (char *)db->db_data + bufoff, tocpy); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } } void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; if (size == 0) return; VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); dmu_write_impl(dbp, numbufs, offset, size, buf, tx); dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; if (size == 0) return; VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); dmu_write_impl(dbp, numbufs, offset, size, buf, tx); dmu_buf_rele_array(dbp, numbufs, FTAG); } static int dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, uint64_t last_removal_txg, uint64_t offset) { uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); int err = 0; rw_enter(&dn->dn_struct_rwlock, RW_READER); dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); ASSERT3P(dbuf, !=, NULL); /* * If the block hasn't been written yet, this default will ensure * we don't try to remap it. */ uint64_t birth = UINT64_MAX; ASSERT3U(last_removal_txg, !=, UINT64_MAX); if (dbuf->db_blkptr != NULL) birth = dbuf->db_blkptr->blk_birth; rw_exit(&dn->dn_struct_rwlock); /* * If this L1 was already written after the last removal, then we've * already tried to remap it. */ if (birth <= last_removal_txg && dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && dbuf_can_remap(dbuf)) { dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err == 0) { (void) dbuf_dirty(dbuf, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } } dbuf_rele(dbuf, FTAG); delay(zfs_object_remap_one_indirect_delay_ticks); return (err); } /* * Remap all blockpointers in the object, if possible, so that they reference * only concrete vdevs. * * To do this, iterate over the L0 blockpointers and remap any that reference * an indirect vdev. Note that we only examine L0 blockpointers; since we * cannot guarantee that we can remap all blockpointer anyways (due to split * blocks), we do not want to make the code unnecessarily complicated to * catch the unlikely case that there is an L1 block on an indirect vdev that * contains no indirect blockpointers. */ int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t last_removal_txg) { uint64_t offset, l1span; int err; dnode_t *dn; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) { return (err); } if (dn->dn_nlevels <= 1) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); } /* * If the dnode has no indirect blocks, we cannot dirty them. * We still want to remap the blkptr(s) in the dnode if * appropriate, so mark it as dirty. */ if (err == 0 && dnode_needs_remap(dn)) { dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, dn->dn_object); if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { dnode_setdirty(dn, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } } dnode_rele(dn, FTAG); return (err); } offset = 0; l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + dn->dn_datablkshift); /* * Find the next L1 indirect that is not a hole. */ while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); break; } if ((err = dmu_object_remap_one_indirect(os, dn, last_removal_txg, offset)) != 0) { break; } offset += l1span; } dnode_rele(dn, FTAG); return (err); } void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { dmu_buf_t *db = dbp[i]; dmu_buf_will_not_fill(db, tx); } dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_t *db; ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); VERIFY0(dmu_buf_hold_noread(os, object, offset, FTAG, &db)); dmu_buf_write_embedded(db, data, (bp_embedded_type_t)etype, (enum zio_compress)comp, uncompressed_size, compressed_size, byteorder, tx); dmu_buf_rele(db, FTAG); } /* * DMU support for xuio */ kstat_t *xuio_ksp = NULL; int dmu_xuio_init(xuio_t *xuio, int nblk) { dmu_xuio_t *priv; uio_t *uio = &xuio->xu_uio; uio->uio_iovcnt = nblk; uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); priv->cnt = nblk; priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); priv->iovp = uio->uio_iov; XUIO_XUZC_PRIV(xuio) = priv; if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); return (0); } void dmu_xuio_fini(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int nblk = priv->cnt; kmem_free(priv->iovp, nblk * sizeof (iovec_t)); kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); kmem_free(priv, sizeof (dmu_xuio_t)); if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); } /* * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } * and increase priv->next by 1. */ int dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) { struct iovec *iov; uio_t *uio = &xuio->xu_uio; dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int i = priv->next++; ASSERT(i < priv->cnt); ASSERT(off + n <= arc_buf_lsize(abuf)); iov = uio->uio_iov + i; iov->iov_base = (char *)abuf->b_data + off; iov->iov_len = n; priv->bufs[i] = abuf; return (0); } int dmu_xuio_cnt(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); return (priv->cnt); } arc_buf_t * dmu_xuio_arcbuf(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); return (priv->bufs[i]); } void dmu_xuio_clear(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); priv->bufs[i] = NULL; } static void xuio_stat_init(void) { xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (xuio_ksp != NULL) { xuio_ksp->ks_data = &xuio_stats; kstat_install(xuio_ksp); } } static void xuio_stat_fini(void) { if (xuio_ksp != NULL) { kstat_delete(xuio_ksp); xuio_ksp = NULL; } } void xuio_stat_wbuf_copied(void) { XUIOSTAT_BUMP(xuiostat_wbuf_copied); } void xuio_stat_wbuf_nocopy(void) { XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); } #ifdef _KERNEL int dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) { dmu_buf_t **dbp; int numbufs, i, err; xuio_t *xuio = NULL; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, TRUE, FTAG, &numbufs, &dbp, 0); if (err) return (err); if (uio->uio_extflg == UIO_XUIO) xuio = (xuio_t *)uio; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); if (xuio) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; arc_buf_t *dbuf_abuf = dbi->db_buf; arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); if (!err) { uio->uio_resid -= tocpy; uio->uio_loffset += tocpy; } if (abuf == dbuf_abuf) XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); else XUIOSTAT_BUMP(xuiostat_rbuf_copied); } else { err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_READ, uio); } if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Read 'size' bytes into the uio buffer. * From object zdb->db_object. * Starting at offset uio->uio_loffset. * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_read_uio_dnode(dn, uio, size); DB_DNODE_EXIT(db); return (err); } /* * Read 'size' bytes into the uio buffer. * From the specified object * Starting at offset uio->uio_loffset. */ int dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_read_uio_dnode(dn, uio, size); dnode_rele(dn, FTAG); return (err); } int dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; int err = 0; int i; err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); /* * XXX uiomove could block forever (eg. nfs-backed * pages). There needs to be a uiolockdown() function * to lock the pages in memory, so that uiomove won't * block. */ err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_WRITE, uio); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Write 'size' bytes from the uio buffer. * To object zdb->db_object. * Starting at offset uio->uio_loffset. * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_write_uio_dnode(dn, uio, size, tx); DB_DNODE_EXIT(db); return (err); } /* * Write 'size' bytes from the uio buffer. * To the specified object. * Starting at offset uio->uio_loffset. */ int dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_write_uio_dnode(dn, uio, size, tx); dnode_rele(dn, FTAG); return (err); } int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, page_t *pp, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; int err; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy, copied, thiscpy; int bufoff; dmu_buf_t *db = dbp[i]; caddr_t va; ASSERT(size > 0); ASSERT3U(db->db_size, >=, PAGESIZE); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); for (copied = 0; copied < tocpy; copied += PAGESIZE) { ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); thiscpy = MIN(PAGESIZE, tocpy - copied); va = zfs_map_page(pp, S_READ); bcopy(va, (char *)db->db_data + bufoff, thiscpy); zfs_unmap_page(pp, va); pp = pp->p_next; bufoff += PAGESIZE; } if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } #endif /* * Allocate a loaned anonymous arc buffer. */ arc_buf_t * dmu_request_arcbuf(dmu_buf_t *handle, int size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); } /* * Free a loaned arc buffer. */ void dmu_return_arcbuf(arc_buf_t *buf) { arc_return_buf(buf, FTAG); arc_buf_destroy(buf, FTAG); } /* * When possible directly assign passed loaned arc buffer to a dbuf. * If this is not possible copy the contents of passed arc buf via * dmu_write(). */ void dmu_assign_arcbuf_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { dmu_buf_impl_t *db; uint32_t blksz = (uint32_t)arc_buf_lsize(buf); uint64_t blkid; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, 0, offset); VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); rw_exit(&dn->dn_struct_rwlock); /* * We can only assign if the offset is aligned, the arc buf is the * same size as the dbuf, and the dbuf is not metadata. */ if (offset == db->db.db_offset && blksz == db->db.db_size) { dbuf_assign_arcbuf(db, buf, tx); dbuf_rele(db, FTAG); } else { objset_t *os; uint64_t object; /* compressed bufs must always be assignable to their dbuf */ ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); os = dn->dn_objset; object = dn->dn_object; dbuf_rele(db, FTAG); dmu_write(os, object, offset, blksz, buf->b_data, tx); dmu_return_arcbuf(buf); XUIOSTAT_BUMP(xuiostat_wbuf_copied); } } void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; DB_DNODE_ENTER(dbuf); dmu_assign_arcbuf_dnode(DB_DNODE(dbuf), offset, buf, tx); DB_DNODE_EXIT(dbuf); } typedef struct { dbuf_dirty_record_t *dsa_dr; dmu_sync_cb_t *dsa_done; zgd_t *dsa_zgd; dmu_tx_t *dsa_tx; } dmu_sync_arg_t; /* ARGSUSED */ static void dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dmu_buf_t *db = dsa->dsa_zgd->zgd_db; blkptr_t *bp = zio->io_bp; if (zio->io_error == 0) { if (BP_IS_HOLE(bp)) { /* * A block of zeros may compress to a hole, but the * block size still needs to be known for replay. */ BP_SET_LSIZE(bp, db->db_size); } else if (!BP_IS_EMBEDDED(bp)) { ASSERT(BP_GET_LEVEL(bp) == 0); bp->blk_fill = 1; } } } static void dmu_sync_late_arrival_ready(zio_t *zio) { dmu_sync_ready(zio, NULL, zio->io_private); } /* ARGSUSED */ static void dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dbuf_dirty_record_t *dr = dsa->dsa_dr; dmu_buf_impl_t *db = dr->dr_dbuf; zgd_t *zgd = dsa->dsa_zgd; /* * Record the vdev(s) backing this blkptr so they can be flushed after * the writes for the lwb have completed. */ if (zio->io_error == 0) { zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); } mutex_enter(&db->db_mtx); ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); if (zio->io_error == 0) { dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); if (dr->dt.dl.dr_nopwrite) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; uint8_t chksum = BP_GET_CHECKSUM(bp_orig); ASSERT(BP_EQUAL(bp, bp_orig)); VERIFY(BP_EQUAL(bp, db->db_blkptr)); ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); ASSERT(zio_checksum_table[chksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); } dr->dt.dl.dr_overridden_by = *zio->io_bp; dr->dt.dl.dr_override_state = DR_OVERRIDDEN; dr->dt.dl.dr_copies = zio->io_prop.zp_copies; /* * Old style holes are filled with all zeros, whereas * new-style holes maintain their lsize, type, level, * and birth time (see zio_write_compress). While we * need to reset the BP_SET_LSIZE() call that happened * in dmu_sync_ready for old style holes, we do *not* * want to wipe out the information contained in new * style holes. Thus, only zero out the block pointer if * it's an old style hole. */ if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && dr->dt.dl.dr_overridden_by.blk_birth == 0) BP_ZERO(&dr->dt.dl.dr_overridden_by); } else { dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; } cv_broadcast(&db->db_changed); mutex_exit(&db->db_mtx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static void dmu_sync_late_arrival_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; dmu_sync_arg_t *dsa = zio->io_private; blkptr_t *bp_orig = &zio->io_bp_orig; zgd_t *zgd = dsa->dsa_zgd; if (zio->io_error == 0) { /* * Record the vdev(s) backing this blkptr so they can be * flushed after the writes for the lwb have completed. */ zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); if (!BP_IS_HOLE(bp)) { ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); ASSERT(zio->io_bp->blk_birth == zio->io_txg); ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); zio_free(zio->io_spa, zio->io_txg, zio->io_bp); } } dmu_tx_commit(dsa->dsa_tx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); abd_put(zio->io_abd); kmem_free(dsa, sizeof (*dsa)); } static int dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, zio_prop_t *zp, zbookmark_phys_t *zb) { dmu_sync_arg_t *dsa; dmu_tx_t *tx; tx = dmu_tx_create(os); dmu_tx_hold_space(tx, zgd->zgd_db->db_size); if (dmu_tx_assign(tx, TXG_WAIT) != 0) { dmu_tx_abort(tx); /* Make zl_get_data do txg_waited_synced() */ return (SET_ERROR(EIO)); } /* * In order to prevent the zgd's lwb from being free'd prior to * dmu_sync_late_arrival_done() being called, we have to ensure * the lwb's "max txg" takes this tx's txg into account. */ zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = NULL; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = tx; /* * Since we are currently syncing this txg, it's nontrivial to * determine what BP to nopwrite against, so we disable nopwrite. * * When syncing, the db_blkptr is initially the BP of the previous * txg. We can not nopwrite against it because it will be changed * (this is similar to the non-late-arrival case where the dbuf is * dirty in a future txg). * * Then dbuf_write_ready() sets bp_blkptr to the location we will write. * We can not nopwrite against it because although the BP will not * (typically) be changed, the data has not yet been persisted to this * location. * * Finally, when dbuf_write_done() is called, it is theoretically * possible to always nopwrite, because the data that was written in * this txg is the same data that we are trying to write. However we * would need to check that this dbuf is not dirty in any future * txg's (as we do in the normal dmu_sync() path). For simplicity, we * don't nopwrite in this case. */ zp->zp_nopwrite = B_FALSE; zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); return (0); } /* * Intent log support: sync the block associated with db to disk. * N.B. and XXX: the caller is responsible for making sure that the * data isn't changing while dmu_sync() is writing it. * * Return values: * * EEXIST: this txg has already been synced, so there's nothing to do. * The caller should not log the write. * * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. * The caller should not log the write. * * EALREADY: this block is already in the process of being synced. * The caller should track its progress (somehow). * * EIO: could not do the I/O. * The caller should do a txg_wait_synced(). * * 0: the I/O has been initiated. * The caller should log this blkptr in the done callback. * It is possible that the I/O will fail, in which case * the error will be reported to the done callback and * propagated to pio from zio_done(). */ int dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; objset_t *os = db->db_objset; dsl_dataset_t *ds = os->os_dsl_dataset; dbuf_dirty_record_t *dr; dmu_sync_arg_t *dsa; zbookmark_phys_t zb; zio_prop_t zp; dnode_t *dn; ASSERT(pio != NULL); ASSERT(txg != 0); SET_BOOKMARK(&zb, ds->ds_object, db->db.db_object, db->db_level, db->db_blkid); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); DB_DNODE_EXIT(db); /* * If we're frozen (running ziltest), we always need to generate a bp. */ if (txg > spa_freeze_txg(os->os_spa)) return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); /* * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() * and us. If we determine that this txg is not yet syncing, * but it begins to sync a moment later, that's OK because the * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. */ mutex_enter(&db->db_mtx); if (txg <= spa_last_synced_txg(os->os_spa)) { /* * This txg has already synced. There's nothing to do. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EEXIST)); } if (txg <= spa_syncing_txg(os->os_spa)) { /* * This txg is currently syncing, so we can't mess with * the dirty record anymore; just write a new log block. */ mutex_exit(&db->db_mtx); return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); } dr = db->db_last_dirty; while (dr && dr->dr_txg != txg) dr = dr->dr_next; if (dr == NULL) { /* * There's no dr for this dbuf, so it must have been freed. * There's no need to log writes to freed blocks, so we're done. */ mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); if (db->db_blkptr != NULL) { /* * We need to fill in zgd_bp with the current blkptr so that * the nopwrite code can check if we're writing the same * data that's already on disk. We can only nopwrite if we * are sure that after making the copy, db_blkptr will not * change until our i/o completes. We ensure this by * holding the db_mtx, and only allowing nopwrite if the * block is not already dirty (see below). This is verified * by dmu_sync_done(), which VERIFYs that the db_blkptr has * not changed. */ *zgd->zgd_bp = *db->db_blkptr; } /* * Assume the on-disk data is X, the current syncing data (in * txg - 1) is Y, and the current in-memory data is Z (currently * in dmu_sync). * * We usually want to perform a nopwrite if X and Z are the * same. However, if Y is different (i.e. the BP is going to * change before this write takes effect), then a nopwrite will * be incorrect - we would override with X, which could have * been freed when Y was written. * * (Note that this is not a concern when we are nop-writing from * syncing context, because X and Y must be identical, because * all previous txgs have been synced.) * * Therefore, we disable nopwrite if the current BP could change * before this TXG. There are two ways it could change: by * being dirty (dr_next is non-NULL), or by being freed * (dnode_block_freed()). This behavior is verified by * zio_done(), which VERIFYs that the override BP is identical * to the on-disk BP. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) zp.zp_nopwrite = B_FALSE; DB_DNODE_EXIT(db); ASSERT(dr->dr_txg == txg); if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * We have already issued a sync write for this buffer, * or this buffer has already been synced. It could not * have been dirtied since, or we would have cleared the state. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EALREADY)); } ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; mutex_exit(&db->db_mtx); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = dr; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = NULL; zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); return (0); } int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dnode_set_blksz(dn, size, ibs, tx); dnode_rele(dn, FTAG); return (err); } void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's checksum function. This * check ensures that the receiving system can understand the * checksum function transmitted. */ ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); dn->dn_checksum = checksum; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's compression function. This * check ensures that the receiving system can understand the * compression function transmitted. */ ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); dn->dn_compress = compress; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } int zfs_mdcomp_disable = 0; /* * When the "redundant_metadata" property is set to "most", only indirect * blocks of this level and higher will have an additional ditto block. */ int zfs_redundant_metadata_most_ditto_level = 2; void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) { dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)); enum zio_checksum checksum = os->os_checksum; enum zio_compress compress = os->os_compress; enum zio_checksum dedup_checksum = os->os_dedup_checksum; boolean_t dedup = B_FALSE; boolean_t nopwrite = B_FALSE; boolean_t dedup_verify = os->os_dedup_verify; int copies = os->os_copies; /* * We maintain different write policies for each of the following * types of data: * 1. metadata * 2. preallocated blocks (i.e. level-0 blocks of a dump device) * 3. all other level 0 blocks */ if (ismd) { if (zfs_mdcomp_disable) { compress = ZIO_COMPRESS_EMPTY; } else { /* * XXX -- we should design a compression algorithm * that specializes in arrays of bps. */ compress = zio_compress_select(os->os_spa, ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); } /* * Metadata always gets checksummed. If the data * checksum is multi-bit correctable, and it's not a * ZBT-style checksum, then it's suitable for metadata * as well. Otherwise, the metadata checksum defaults * to fletcher4. */ if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_METADATA) || (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED)) checksum = ZIO_CHECKSUM_FLETCHER_4; if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_MOST && (level >= zfs_redundant_metadata_most_ditto_level || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) copies++; } else if (wp & WP_NOFILL) { ASSERT(level == 0); /* * If we're writing preallocated blocks, we aren't actually * writing them so don't set any policy properties. These * blocks are currently only used by an external subsystem * outside of zfs (i.e. dump) and not written by the zio * pipeline. */ compress = ZIO_COMPRESS_OFF; checksum = ZIO_CHECKSUM_NOPARITY; } else { compress = zio_compress_select(os->os_spa, dn->dn_compress, compress); checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? zio_checksum_select(dn->dn_checksum, checksum) : dedup_checksum; /* * Determine dedup setting. If we are in dmu_sync(), * we won't actually dedup now because that's all * done in syncing context; but we do want to use the * dedup checkum. If the checksum is not strong * enough to ensure unique signatures, force * dedup_verify. */ if (dedup_checksum != ZIO_CHECKSUM_OFF) { dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) dedup_verify = B_TRUE; } /* * Enable nopwrite if we have secure enough checksum * algorithm (see comment in zio_nop_write) and * compression is enabled. We don't enable nopwrite if * dedup is enabled as the two features are mutually * exclusive. */ nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) && compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); } zp->zp_checksum = checksum; zp->zp_compress = compress; ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; zp->zp_level = level; zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); zp->zp_dedup = dedup; zp->zp_dedup_verify = dedup && dedup_verify; zp->zp_nopwrite = nopwrite; } int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) { dnode_t *dn; int err; /* * Sync any current changes before * we go trundling through the block pointers. */ err = dmu_object_wait_synced(os, object); if (err) { return (err); } err = dnode_hold(os, object, FTAG, &dn); if (err) { return (err); } err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); dnode_rele(dn, FTAG); return (err); } /* * Given the ZFS object, if it contains any dirty nodes * this function flushes all dirty blocks to disk. This * ensures the DMU object info is updated. A more efficient * future version might just find the TXG with the maximum * ID and wait for that to be synced. */ int dmu_object_wait_synced(objset_t *os, uint64_t object) { dnode_t *dn; int error, i; error = dnode_hold(os, object, FTAG, &dn); if (error) { return (error); } for (i = 0; i < TXG_SIZE; i++) { if (list_link_active(&dn->dn_dirty_link[i])) { break; } } dnode_rele(dn, FTAG); if (i != TXG_SIZE) { txg_wait_synced(dmu_objset_pool(os), 0); } return (0); } void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { dnode_phys_t *dnp; rw_enter(&dn->dn_struct_rwlock, RW_READER); mutex_enter(&dn->dn_mtx); dnp = dn->dn_phys; doi->doi_data_block_size = dn->dn_datablksz; doi->doi_metadata_block_size = dn->dn_indblkshift ? 1ULL << dn->dn_indblkshift : 0; doi->doi_type = dn->dn_type; doi->doi_bonus_type = dn->dn_bonustype; doi->doi_bonus_size = dn->dn_bonuslen; + doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; doi->doi_indirection = dn->dn_nlevels; doi->doi_checksum = dn->dn_checksum; doi->doi_compress = dn->dn_compress; doi->doi_nblkptr = dn->dn_nblkptr; doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; doi->doi_fill_count = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); } /* * Get information on a DMU object. * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); if (doi != NULL) dmu_object_info_from_dnode(dn, doi); dnode_rele(dn, FTAG); return (0); } /* * As above, but faster; can be used when you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; DB_DNODE_ENTER(db); dmu_object_info_from_dnode(DB_DNODE(db), doi); DB_DNODE_EXIT(db); } /* * Faster still when you only care about the size. * This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, u_longlong_t *nblk512) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); *blksize = dn->dn_datablksz; - /* add 1 for dnode space */ + /* add in number of slots used for the dnode itself */ *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> - SPA_MINBLOCKSHIFT) + 1; + SPA_MINBLOCKSHIFT) + dn->dn_num_slots; + DB_DNODE_EXIT(db); +} + +void +dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) +{ + dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; + dnode_t *dn; + + DB_DNODE_ENTER(db); + dn = DB_DNODE(db); + *dnsize = dn->dn_num_slots << DNODE_SHIFT; DB_DNODE_EXIT(db); } void byteswap_uint64_array(void *vbuf, size_t size) { uint64_t *buf = vbuf; size_t count = size >> 3; int i; ASSERT((size & 7) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_64(buf[i]); } void byteswap_uint32_array(void *vbuf, size_t size) { uint32_t *buf = vbuf; size_t count = size >> 2; int i; ASSERT((size & 3) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_32(buf[i]); } void byteswap_uint16_array(void *vbuf, size_t size) { uint16_t *buf = vbuf; size_t count = size >> 1; int i; ASSERT((size & 1) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_16(buf[i]); } /* ARGSUSED */ void byteswap_uint8_array(void *vbuf, size_t size) { } void dmu_init(void) { abd_init(); zfs_dbgmsg_init(); sa_cache_init(); xuio_stat_init(); dmu_objset_init(); dnode_init(); zfetch_init(); l2arc_init(); arc_init(); dbuf_init(); } void dmu_fini(void) { arc_fini(); /* arc depends on l2arc, so arc must go first */ l2arc_fini(); zfetch_fini(); dbuf_fini(); dnode_fini(); dmu_objset_fini(); xuio_stat_fini(); sa_cache_fini(); zfs_dbgmsg_fini(); abd_fini(); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_object.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_object.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_object.c (revision 350898) @@ -1,255 +1,436 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2017 by Delphix. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. */ #include #include #include #include #include #include +#include -uint64_t -dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, - int indirect_blockshift, - dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) +/* + * Each of the concurrent object allocators will grab + * 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to + * grab 128 slots, which is 4 blocks worth. This was experimentally + * determined to be the lowest value that eliminates the measurable effect + * of lock contention from this code path. + */ +int dmu_object_alloc_chunk_shift = 7; + +static uint64_t +dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize, + int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, + int dnodesize, dmu_tx_t *tx) { uint64_t object; uint64_t L1_dnode_count = DNODES_PER_BLOCK << (DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT); dnode_t *dn = NULL; + int dn_slots = dnodesize >> DNODE_SHIFT; + boolean_t restarted = B_FALSE; + uint64_t *cpuobj = &os->os_obj_next_percpu[CPU_SEQID % + os->os_obj_next_percpu_len]; + int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; + int error; - mutex_enter(&os->os_obj_lock); + if (dn_slots == 0) { + dn_slots = DNODE_MIN_SLOTS; + } else { + ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS); + ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS); + } + + /* + * The "chunk" of dnodes that is assigned to a CPU-specific + * allocator needs to be at least one block's worth, to avoid + * lock contention on the dbuf. It can be at most one L1 block's + * worth, so that the "rescan after polishing off a L1's worth" + * logic below will be sure to kick in. + */ + if (dnodes_per_chunk < DNODES_PER_BLOCK) + dnodes_per_chunk = DNODES_PER_BLOCK; + if (dnodes_per_chunk > L1_dnode_count) + dnodes_per_chunk = L1_dnode_count; + + object = *cpuobj; + for (;;) { - object = os->os_obj_next; /* - * Each time we polish off a L1 bp worth of dnodes (2^12 - * objects), move to another L1 bp that's still reasonably - * sparse (at most 1/4 full). Look from the beginning at most - * once per txg, but after that keep looking from here. - * os_scan_dnodes is set during txg sync if enough objects - * have been freed since the previous rescan to justify - * backfilling again. If we can't find a suitable block, just - * keep going from here. - * - * Note that dmu_traverse depends on the behavior that we use - * multiple blocks of the dnode object before going back to - * reuse objects. Any change to this algorithm should preserve - * that property or find another solution to the issues - * described in traverse_visitbp. + * If we finished a chunk of dnodes, get a new one from + * the global allocator. */ + if ((P2PHASE(object, dnodes_per_chunk) == 0) || + (P2PHASE(object + dn_slots - 1, dnodes_per_chunk) < + dn_slots)) { + DNODE_STAT_BUMP(dnode_alloc_next_chunk); + mutex_enter(&os->os_obj_lock); + ASSERT0(P2PHASE(os->os_obj_next_chunk, + dnodes_per_chunk)); + object = os->os_obj_next_chunk; - if (P2PHASE(object, L1_dnode_count) == 0) { - uint64_t offset; - int error; - if (os->os_rescan_dnodes) { - offset = 0; - os->os_rescan_dnodes = B_FALSE; - } else { - offset = object << DNODE_SHIFT; + /* + * Each time we polish off a L1 bp worth of dnodes + * (2^12 objects), move to another L1 bp that's + * still reasonably sparse (at most 1/4 full). Look + * from the beginning at most once per txg. If we + * still can't allocate from that L1 block, search + * for an empty L0 block, which will quickly skip + * to the end of the metadnode if the no nearby L0 + * blocks are empty. This fallback avoids a + * pathology where full dnode blocks containing + * large dnodes appear sparse because they have a + * low blk_fill, leading to many failed allocation + * attempts. In the long term a better mechanism to + * search for sparse metadnode regions, such as + * spacemaps, could be implemented. + * + * os_scan_dnodes is set during txg sync if enough + * objects have been freed since the previous + * rescan to justify backfilling again. + * + * Note that dmu_traverse depends on the behavior + * that we use multiple blocks of the dnode object + * before going back to reuse objects. Any change + * to this algorithm should preserve that property + * or find another solution to the issues described + * in traverse_visitbp. + */ + if (P2PHASE(object, L1_dnode_count) == 0) { + uint64_t offset; + uint64_t blkfill; + int minlvl; + if (os->os_rescan_dnodes) { + offset = 0; + os->os_rescan_dnodes = B_FALSE; + } else { + offset = object << DNODE_SHIFT; + } + blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2; + minlvl = restarted ? 1 : 2; + restarted = B_TRUE; + error = dnode_next_offset(DMU_META_DNODE(os), + DNODE_FIND_HOLE, &offset, minlvl, + blkfill, 0); + if (error == 0) { + object = offset >> DNODE_SHIFT; + } } - error = dnode_next_offset(DMU_META_DNODE(os), - DNODE_FIND_HOLE, - &offset, 2, DNODES_PER_BLOCK >> 2, 0); - if (error == 0) - object = offset >> DNODE_SHIFT; + /* + * Note: if "restarted", we may find a L0 that + * is not suitably aligned. + */ + os->os_obj_next_chunk = + P2ALIGN(object, dnodes_per_chunk) + + dnodes_per_chunk; + (void) atomic_swap_64(cpuobj, object); + mutex_exit(&os->os_obj_lock); } - os->os_obj_next = ++object; /* + * The value of (*cpuobj) before adding dn_slots is the object + * ID assigned to us. The value afterwards is the object ID + * assigned to whoever wants to do an allocation next. + */ + object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots; + + /* * XXX We should check for an i/o error here and return * up to our caller. Actually we should pre-read it in * dmu_tx_assign(), but there is currently no mechanism * to do so. */ - (void) dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, - FTAG, &dn); - if (dn) - break; + error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, + dn_slots, FTAG, &dn); + if (error == 0) { + rw_enter(&dn->dn_struct_rwlock, RW_WRITER); + /* + * Another thread could have allocated it; check + * again now that we have the struct lock. + */ + if (dn->dn_type == DMU_OT_NONE) { + dnode_allocate(dn, ot, blocksize, 0, + bonustype, bonuslen, dn_slots, tx); + rw_exit(&dn->dn_struct_rwlock); + dmu_tx_add_new_object(tx, dn); + dnode_rele(dn, FTAG); + return (object); + } + rw_exit(&dn->dn_struct_rwlock); + dnode_rele(dn, FTAG); + DNODE_STAT_BUMP(dnode_alloc_race); + } - if (dmu_object_next(os, &object, B_TRUE, 0) == 0) - os->os_obj_next = object - 1; + /* + * Skip to next known valid starting point on error. This + * is the start of the next block of dnodes. + */ + if (dmu_object_next(os, &object, B_TRUE, 0) != 0) { + object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK); + DNODE_STAT_BUMP(dnode_alloc_next_block); + } + (void) atomic_swap_64(cpuobj, object); } - - dnode_allocate(dn, ot, blocksize, indirect_blockshift, - bonustype, bonuslen, tx); - mutex_exit(&os->os_obj_lock); - - dmu_tx_add_new_object(tx, dn); - dnode_rele(dn, FTAG); - - return (object); } uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { - return (dmu_object_alloc_ibs(os, ot, blocksize, 0, - bonustype, bonuslen, tx)); + return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype, + bonuslen, 0, tx)); } +uint64_t +dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, + int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, + dmu_tx_t *tx) +{ + return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift, + bonustype, bonuslen, 0, tx)); +} + +uint64_t +dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) +{ + return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype, + bonuslen, dnodesize, tx)); +} + int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { + return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype, + bonuslen, 0, tx)); +} + +int +dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, + int blocksize, dmu_object_type_t bonustype, int bonuslen, + int dnodesize, dmu_tx_t *tx) +{ dnode_t *dn; + int dn_slots = dnodesize >> DNODE_SHIFT; int err; + if (dn_slots == 0) + dn_slots = DNODE_MIN_SLOTS; + ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS); + ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS); + if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx)) return (SET_ERROR(EBADF)); - err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, FTAG, &dn); + err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots, + FTAG, &dn); if (err) return (err); - dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, tx); + dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx); dmu_tx_add_new_object(tx, dn); dnode_rele(dn, FTAG); return (0); } int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { + return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype, + bonuslen, 0, tx)); +} + +int +dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, + int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize, + dmu_tx_t *tx) +{ dnode_t *dn; + int dn_slots = dnodesize >> DNODE_SHIFT; int err; if (object == DMU_META_DNODE_OBJECT) return (SET_ERROR(EBADF)); - err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, + err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, FTAG, &dn); if (err) return (err); - dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, tx); + dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx); dnode_rele(dn, FTAG); return (err); } int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; int err; ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); - err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, + err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, FTAG, &dn); if (err) return (err); ASSERT(dn->dn_type != DMU_OT_NONE); /* * If we don't create this free range, we'll leak indirect blocks when * we get to freeing the dnode in syncing context. */ dnode_free_range(dn, 0, DMU_OBJECT_END, tx); dnode_free(dn, tx); dnode_rele(dn, FTAG); return (0); } /* * Return (in *objectp) the next object which is allocated (or a hole) * after *object, taking into account only objects that may have been modified * after the specified txg. */ int dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg) { - uint64_t offset = (*objectp + 1) << DNODE_SHIFT; + uint64_t offset; + uint64_t start_obj; + struct dsl_dataset *ds = os->os_dsl_dataset; int error; + + if (*objectp == 0) { + start_obj = 1; + } else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) { + uint64_t i = *objectp + 1; + uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1); + dmu_object_info_t doi; + + /* + * Scan through the remaining meta dnode block. The contents + * of each slot in the block are known so it can be quickly + * checked. If the block is exhausted without a match then + * hand off to dnode_next_offset() for further scanning. + */ + while (i <= last_obj) { + error = dmu_object_info(os, i, &doi); + if (error == ENOENT) { + if (hole) { + *objectp = i; + return (0); + } else { + i++; + } + } else if (error == EEXIST) { + i++; + } else if (error == 0) { + if (hole) { + i += doi.doi_dnodesize >> DNODE_SHIFT; + } else { + *objectp = i; + return (0); + } + } else { + return (error); + } + } + + start_obj = i; + } else { + start_obj = *objectp + 1; + } + + offset = start_obj << DNODE_SHIFT; error = dnode_next_offset(DMU_META_DNODE(os), (hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg); *objectp = offset >> DNODE_SHIFT; return (error); } /* * Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the * refcount on SPA_FEATURE_EXTENSIBLE_DATASET. * * Only for use from syncing context, on MOS objects. */ void dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type, dmu_tx_t *tx) { dnode_t *dn; ASSERT(dmu_tx_is_syncing(tx)); VERIFY0(dnode_hold(mos, object, FTAG, &dn)); if (dn->dn_type == DMU_OTN_ZAP_METADATA) { dnode_rele(dn, FTAG); return; } ASSERT3U(dn->dn_type, ==, old_type); ASSERT0(dn->dn_maxblkid); /* * We must initialize the ZAP data before changing the type, * so that concurrent calls to *_is_zapified() can determine if * the object has been completely zapified by checking the type. */ mzap_create_impl(mos, object, 0, 0, tx); dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type = DMU_OTN_ZAP_METADATA; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); spa_feature_incr(dmu_objset_spa(mos), SPA_FEATURE_EXTENSIBLE_DATASET, tx); } void dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; dmu_object_type_t t; ASSERT(dmu_tx_is_syncing(tx)); VERIFY0(dnode_hold(mos, object, FTAG, &dn)); t = dn->dn_type; dnode_rele(dn, FTAG); if (t == DMU_OTN_ZAP_METADATA) { spa_feature_decr(dmu_objset_spa(mos), SPA_FEATURE_EXTENSIBLE_DATASET, tx); } VERIFY0(dmu_object_free(mos, object, tx)); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c (revision 350898) @@ -1,2359 +1,2405 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2015, STRATO AG, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Nexenta Systems, Inc. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" /* * Needed to close a window in dnode_move() that allows the objset to be freed * before it can be safely accessed. */ krwlock_t os_lock; /* * Tunable to overwrite the maximum number of threads for the parallization * of dmu_objset_find_dp, needed to speed up the import of pools with many * datasets. * Default is 4 times the number of leaf vdevs. */ int dmu_find_threads = 0; /* * Backfill lower metadnode objects after this many have been freed. * Backfilling negatively impacts object creation rates, so only do it * if there are enough holes to fill. */ int dmu_rescan_dnode_threshold = 131072; static void dmu_objset_find_dp_cb(void *arg); void dmu_objset_init(void) { rw_init(&os_lock, NULL, RW_DEFAULT, NULL); } void dmu_objset_fini(void) { rw_destroy(&os_lock); } spa_t * dmu_objset_spa(objset_t *os) { return (os->os_spa); } zilog_t * dmu_objset_zil(objset_t *os) { return (os->os_zil); } dsl_pool_t * dmu_objset_pool(objset_t *os) { dsl_dataset_t *ds; if ((ds = os->os_dsl_dataset) != NULL && ds->ds_dir) return (ds->ds_dir->dd_pool); else return (spa_get_dsl(os->os_spa)); } dsl_dataset_t * dmu_objset_ds(objset_t *os) { return (os->os_dsl_dataset); } dmu_objset_type_t dmu_objset_type(objset_t *os) { return (os->os_phys->os_type); } void dmu_objset_name(objset_t *os, char *buf) { dsl_dataset_name(os->os_dsl_dataset, buf); } uint64_t dmu_objset_id(objset_t *os) { dsl_dataset_t *ds = os->os_dsl_dataset; return (ds ? ds->ds_object : 0); } +uint64_t +dmu_objset_dnodesize(objset_t *os) +{ + return (os->os_dnodesize); +} + zfs_sync_type_t dmu_objset_syncprop(objset_t *os) { return (os->os_sync); } zfs_logbias_op_t dmu_objset_logbias(objset_t *os) { return (os->os_logbias); } static void checksum_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance should have been done by now. */ ASSERT(newval != ZIO_CHECKSUM_INHERIT); os->os_checksum = zio_checksum_select(newval, ZIO_CHECKSUM_ON_VALUE); } static void compression_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval != ZIO_COMPRESS_INHERIT); os->os_compress = zio_compress_select(os->os_spa, newval, ZIO_COMPRESS_ON); } static void copies_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval > 0); ASSERT(newval <= spa_max_replication(os->os_spa)); os->os_copies = newval; } static void dedup_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; spa_t *spa = os->os_spa; enum zio_checksum checksum; /* * Inheritance should have been done by now. */ ASSERT(newval != ZIO_CHECKSUM_INHERIT); checksum = zio_checksum_dedup_select(spa, newval, ZIO_CHECKSUM_OFF); os->os_dedup_checksum = checksum & ZIO_CHECKSUM_MASK; os->os_dedup_verify = !!(checksum & ZIO_CHECKSUM_VERIFY); } static void primary_cache_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE || newval == ZFS_CACHE_METADATA); os->os_primary_cache = newval; } static void secondary_cache_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE || newval == ZFS_CACHE_METADATA); os->os_secondary_cache = newval; } static void sync_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_SYNC_STANDARD || newval == ZFS_SYNC_ALWAYS || newval == ZFS_SYNC_DISABLED); os->os_sync = newval; if (os->os_zil) zil_set_sync(os->os_zil, newval); } static void redundant_metadata_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_REDUNDANT_METADATA_ALL || newval == ZFS_REDUNDANT_METADATA_MOST); os->os_redundant_metadata = newval; } static void +dnodesize_changed_cb(void *arg, uint64_t newval) +{ + objset_t *os = arg; + + switch (newval) { + case ZFS_DNSIZE_LEGACY: + os->os_dnodesize = DNODE_MIN_SIZE; + break; + case ZFS_DNSIZE_AUTO: + /* + * Choose a dnode size that will work well for most + * workloads if the user specified "auto". Future code + * improvements could dynamically select a dnode size + * based on observed workload patterns. + */ + os->os_dnodesize = DNODE_MIN_SIZE * 2; + break; + case ZFS_DNSIZE_1K: + case ZFS_DNSIZE_2K: + case ZFS_DNSIZE_4K: + case ZFS_DNSIZE_8K: + case ZFS_DNSIZE_16K: + os->os_dnodesize = newval; + break; + } +} + +static void logbias_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; ASSERT(newval == ZFS_LOGBIAS_LATENCY || newval == ZFS_LOGBIAS_THROUGHPUT); os->os_logbias = newval; if (os->os_zil) zil_set_logbias(os->os_zil, newval); } static void recordsize_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; os->os_recordsize = newval; } void dmu_objset_byteswap(void *buf, size_t size) { objset_phys_t *osp = buf; ASSERT(size == OBJSET_OLD_PHYS_SIZE || size == sizeof (objset_phys_t)); dnode_byteswap(&osp->os_meta_dnode); byteswap_uint64_array(&osp->os_zil_header, sizeof (zil_header_t)); osp->os_type = BSWAP_64(osp->os_type); osp->os_flags = BSWAP_64(osp->os_flags); if (size == sizeof (objset_phys_t)) { dnode_byteswap(&osp->os_userused_dnode); dnode_byteswap(&osp->os_groupused_dnode); } } /* * The hash is a CRC-based hash of the objset_t pointer and the object number. */ static uint64_t dnode_hash(const objset_t *os, uint64_t obj) { uintptr_t osv = (uintptr_t)os; uint64_t crc = -1ULL; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); /* * The low 6 bits of the pointer don't have much entropy, because * the objset_t is larger than 2^6 bytes long. */ crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 16)) & 0xFF]; crc ^= (osv>>14) ^ (obj>>24); return (crc); } unsigned int dnode_multilist_index_func(multilist_t *ml, void *obj) { dnode_t *dn = obj; return (dnode_hash(dn->dn_objset, dn->dn_object) % multilist_get_num_sublists(ml)); } /* * Instantiates the objset_t in-memory structure corresponding to the * objset_phys_t that's pointed to by the specified blkptr_t. */ int dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp, objset_t **osp) { objset_t *os; int i, err; ASSERT(ds == NULL || MUTEX_HELD(&ds->ds_opening_lock)); /* * The $ORIGIN dataset (if it exists) doesn't have an associated * objset, so there's no reason to open it. The $ORIGIN dataset * will not exist on pools older than SPA_VERSION_ORIGIN. */ if (ds != NULL && spa_get_dsl(spa) != NULL && spa_get_dsl(spa)->dp_origin_snap != NULL) { ASSERT3P(ds->ds_dir, !=, spa_get_dsl(spa)->dp_origin_snap->ds_dir); } os = kmem_zalloc(sizeof (objset_t), KM_SLEEP); os->os_dsl_dataset = ds; os->os_spa = spa; os->os_rootbp = bp; if (!BP_IS_HOLE(os->os_rootbp)) { arc_flags_t aflags = ARC_FLAG_WAIT; zbookmark_phys_t zb; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); if (DMU_OS_IS_L2CACHEABLE(os)) aflags |= ARC_FLAG_L2CACHE; dprintf_bp(os->os_rootbp, "reading %s", ""); err = arc_read(NULL, spa, os->os_rootbp, arc_getbuf_func, &os->os_phys_buf, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL, &aflags, &zb); if (err != 0) { kmem_free(os, sizeof (objset_t)); /* convert checksum errors into IO errors */ if (err == ECKSUM) err = SET_ERROR(EIO); return (err); } /* Increase the blocksize if we are permitted. */ if (spa_version(spa) >= SPA_VERSION_USERSPACE && arc_buf_size(os->os_phys_buf) < sizeof (objset_phys_t)) { arc_buf_t *buf = arc_alloc_buf(spa, &os->os_phys_buf, ARC_BUFC_METADATA, sizeof (objset_phys_t)); bzero(buf->b_data, sizeof (objset_phys_t)); bcopy(os->os_phys_buf->b_data, buf->b_data, arc_buf_size(os->os_phys_buf)); arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf); os->os_phys_buf = buf; } os->os_phys = os->os_phys_buf->b_data; os->os_flags = os->os_phys->os_flags; } else { int size = spa_version(spa) >= SPA_VERSION_USERSPACE ? sizeof (objset_phys_t) : OBJSET_OLD_PHYS_SIZE; os->os_phys_buf = arc_alloc_buf(spa, &os->os_phys_buf, ARC_BUFC_METADATA, size); os->os_phys = os->os_phys_buf->b_data; bzero(os->os_phys, size); } /* * Note: the changed_cb will be called once before the register * func returns, thus changing the checksum/compression from the * default (fletcher2/off). Snapshots don't need to know about * checksum/compression/copies. */ if (ds != NULL) { boolean_t needlock = B_FALSE; /* * Note: it's valid to open the objset if the dataset is * long-held, in which case the pool_config lock will not * be held. */ if (!dsl_pool_config_held(dmu_objset_pool(os))) { needlock = B_TRUE; dsl_pool_config_enter(dmu_objset_pool(os), FTAG); } err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE), primary_cache_changed_cb, os); if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE), secondary_cache_changed_cb, os); } if (!ds->ds_is_snapshot) { if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_COMPRESSION), compression_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_COPIES), copies_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEDUP), dedup_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_LOGBIAS), logbias_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SYNC), sync_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name( ZFS_PROP_REDUNDANT_METADATA), redundant_metadata_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), recordsize_changed_cb, os); } + if (err == 0) { + err = dsl_prop_register(ds, + zfs_prop_to_name(ZFS_PROP_DNODESIZE), + dnodesize_changed_cb, os); + } } if (needlock) dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (err != 0) { arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf); kmem_free(os, sizeof (objset_t)); return (err); } } else { /* It's the meta-objset. */ os->os_checksum = ZIO_CHECKSUM_FLETCHER_4; os->os_compress = ZIO_COMPRESS_ON; os->os_copies = spa_max_replication(spa); os->os_dedup_checksum = ZIO_CHECKSUM_OFF; os->os_dedup_verify = B_FALSE; os->os_logbias = ZFS_LOGBIAS_LATENCY; os->os_sync = ZFS_SYNC_STANDARD; os->os_primary_cache = ZFS_CACHE_ALL; os->os_secondary_cache = ZFS_CACHE_ALL; + os->os_dnodesize = DNODE_MIN_SIZE; } /* * These properties will be filled in by the logic in zfs_get_zplprop() * when they are queried for the first time. */ os->os_version = OBJSET_PROP_UNINITIALIZED; os->os_normalization = OBJSET_PROP_UNINITIALIZED; os->os_utf8only = OBJSET_PROP_UNINITIALIZED; os->os_casesensitivity = OBJSET_PROP_UNINITIALIZED; if (ds == NULL || !ds->ds_is_snapshot) os->os_zil_header = os->os_phys->os_zil_header; os->os_zil = zil_alloc(os, &os->os_zil_header); for (i = 0; i < TXG_SIZE; i++) { os->os_dirty_dnodes[i] = multilist_create(sizeof (dnode_t), offsetof(dnode_t, dn_dirty_link[i]), dnode_multilist_index_func); } list_create(&os->os_dnodes, sizeof (dnode_t), offsetof(dnode_t, dn_link)); list_create(&os->os_downgraded_dbufs, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); mutex_init(&os->os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&os->os_userused_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&os->os_obj_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&os->os_user_ptr_lock, NULL, MUTEX_DEFAULT, NULL); + os->os_obj_next_percpu_len = boot_ncpus; + os->os_obj_next_percpu = kmem_zalloc(os->os_obj_next_percpu_len * + sizeof (os->os_obj_next_percpu[0]), KM_SLEEP); dnode_special_open(os, &os->os_phys->os_meta_dnode, DMU_META_DNODE_OBJECT, &os->os_meta_dnode); if (arc_buf_size(os->os_phys_buf) >= sizeof (objset_phys_t)) { dnode_special_open(os, &os->os_phys->os_userused_dnode, DMU_USERUSED_OBJECT, &os->os_userused_dnode); dnode_special_open(os, &os->os_phys->os_groupused_dnode, DMU_GROUPUSED_OBJECT, &os->os_groupused_dnode); } *osp = os; return (0); } int dmu_objset_from_ds(dsl_dataset_t *ds, objset_t **osp) { int err = 0; /* * We shouldn't be doing anything with dsl_dataset_t's unless the * pool_config lock is held, or the dataset is long-held. */ ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool) || dsl_dataset_long_held(ds)); mutex_enter(&ds->ds_opening_lock); if (ds->ds_objset == NULL) { objset_t *os; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); err = dmu_objset_open_impl(dsl_dataset_get_spa(ds), ds, dsl_dataset_get_blkptr(ds), &os); rrw_exit(&ds->ds_bp_rwlock, FTAG); if (err == 0) { mutex_enter(&ds->ds_lock); ASSERT(ds->ds_objset == NULL); ds->ds_objset = os; mutex_exit(&ds->ds_lock); } } *osp = ds->ds_objset; mutex_exit(&ds->ds_opening_lock); return (err); } /* * Holds the pool while the objset is held. Therefore only one objset * can be held at a time. */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; err = dsl_pool_hold(name, tag, &dp); if (err != 0) return (err); err = dsl_dataset_hold(dp, name, tag, &ds); if (err != 0) { dsl_pool_rele(dp, tag); return (err); } err = dmu_objset_from_ds(ds, osp); if (err != 0) { dsl_dataset_rele(ds, tag); dsl_pool_rele(dp, tag); } return (err); } static int dmu_objset_own_impl(dsl_dataset_t *ds, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp) { int err; err = dmu_objset_from_ds(ds, osp); if (err != 0) { dsl_dataset_disown(ds, tag); } else if (type != DMU_OST_ANY && type != (*osp)->os_phys->os_type) { dsl_dataset_disown(ds, tag); return (SET_ERROR(EINVAL)); } else if (!readonly && dsl_dataset_is_snapshot(ds)) { dsl_dataset_disown(ds, tag); return (SET_ERROR(EROFS)); } return (err); } /* * dsl_pool must not be held when this is called. * Upon successful return, there will be a longhold on the dataset, * and the dsl_pool will not be held. */ int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; err = dsl_pool_hold(name, FTAG, &dp); if (err != 0) return (err); err = dsl_dataset_own(dp, name, tag, &ds); if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } err = dmu_objset_own_impl(ds, type, readonly, tag, osp); dsl_pool_rele(dp, FTAG); return (err); } int dmu_objset_own_obj(dsl_pool_t *dp, uint64_t obj, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp) { dsl_dataset_t *ds; int err; err = dsl_dataset_own_obj(dp, obj, tag, &ds); if (err != 0) return (err); return (dmu_objset_own_impl(ds, type, readonly, tag, osp)); } void dmu_objset_rele(objset_t *os, void *tag) { dsl_pool_t *dp = dmu_objset_pool(os); dsl_dataset_rele(os->os_dsl_dataset, tag); dsl_pool_rele(dp, tag); } /* * When we are called, os MUST refer to an objset associated with a dataset * that is owned by 'tag'; that is, is held and long held by 'tag' and ds_owner * == tag. We will then release and reacquire ownership of the dataset while * holding the pool config_rwlock to avoid intervening namespace or ownership * changes may occur. * * This exists solely to accommodate zfs_ioc_userspace_upgrade()'s desire to * release the hold on its dataset and acquire a new one on the dataset of the * same name so that it can be partially torn down and reconstructed. */ void dmu_objset_refresh_ownership(dsl_dataset_t *ds, dsl_dataset_t **newds, void *tag) { dsl_pool_t *dp; char name[ZFS_MAX_DATASET_NAME_LEN]; VERIFY3P(ds, !=, NULL); VERIFY3P(ds->ds_owner, ==, tag); VERIFY(dsl_dataset_long_held(ds)); dsl_dataset_name(ds, name); dp = ds->ds_dir->dd_pool; dsl_pool_config_enter(dp, FTAG); dsl_dataset_disown(ds, tag); VERIFY0(dsl_dataset_own(dp, name, tag, newds)); dsl_pool_config_exit(dp, FTAG); } void dmu_objset_disown(objset_t *os, void *tag) { dsl_dataset_disown(os->os_dsl_dataset, tag); } void dmu_objset_evict_dbufs(objset_t *os) { dnode_t dn_marker; dnode_t *dn; mutex_enter(&os->os_lock); dn = list_head(&os->os_dnodes); while (dn != NULL) { /* * Skip dnodes without holds. We have to do this dance * because dnode_add_ref() only works if there is already a * hold. If the dnode has no holds, then it has no dbufs. */ if (dnode_add_ref(dn, FTAG)) { list_insert_after(&os->os_dnodes, dn, &dn_marker); mutex_exit(&os->os_lock); dnode_evict_dbufs(dn); dnode_rele(dn, FTAG); mutex_enter(&os->os_lock); dn = list_next(&os->os_dnodes, &dn_marker); list_remove(&os->os_dnodes, &dn_marker); } else { dn = list_next(&os->os_dnodes, dn); } } mutex_exit(&os->os_lock); if (DMU_USERUSED_DNODE(os) != NULL) { dnode_evict_dbufs(DMU_GROUPUSED_DNODE(os)); dnode_evict_dbufs(DMU_USERUSED_DNODE(os)); } dnode_evict_dbufs(DMU_META_DNODE(os)); } /* * Objset eviction processing is split into into two pieces. * The first marks the objset as evicting, evicts any dbufs that * have a refcount of zero, and then queues up the objset for the * second phase of eviction. Once os->os_dnodes has been cleared by * dnode_buf_pageout()->dnode_destroy(), the second phase is executed. * The second phase closes the special dnodes, dequeues the objset from * the list of those undergoing eviction, and finally frees the objset. * * NOTE: Due to asynchronous eviction processing (invocation of * dnode_buf_pageout()), it is possible for the meta dnode for the * objset to have no holds even though os->os_dnodes is not empty. */ void dmu_objset_evict(objset_t *os) { dsl_dataset_t *ds = os->os_dsl_dataset; for (int t = 0; t < TXG_SIZE; t++) ASSERT(!dmu_objset_is_dirty(os, t)); if (ds) dsl_prop_unregister_all(ds, os); if (os->os_sa) sa_tear_down(os); dmu_objset_evict_dbufs(os); mutex_enter(&os->os_lock); spa_evicting_os_register(os->os_spa, os); if (list_is_empty(&os->os_dnodes)) { mutex_exit(&os->os_lock); dmu_objset_evict_done(os); } else { mutex_exit(&os->os_lock); } } void dmu_objset_evict_done(objset_t *os) { ASSERT3P(list_head(&os->os_dnodes), ==, NULL); dnode_special_close(&os->os_meta_dnode); if (DMU_USERUSED_DNODE(os)) { dnode_special_close(&os->os_userused_dnode); dnode_special_close(&os->os_groupused_dnode); } zil_free(os->os_zil); arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf); /* * This is a barrier to prevent the objset from going away in * dnode_move() until we can safely ensure that the objset is still in * use. We consider the objset valid before the barrier and invalid * after the barrier. */ rw_enter(&os_lock, RW_READER); rw_exit(&os_lock); + kmem_free(os->os_obj_next_percpu, + os->os_obj_next_percpu_len * sizeof (os->os_obj_next_percpu[0])); + mutex_destroy(&os->os_lock); mutex_destroy(&os->os_userused_lock); mutex_destroy(&os->os_obj_lock); mutex_destroy(&os->os_user_ptr_lock); for (int i = 0; i < TXG_SIZE; i++) { multilist_destroy(os->os_dirty_dnodes[i]); } spa_evicting_os_deregister(os->os_spa, os); kmem_free(os, sizeof (objset_t)); } timestruc_t dmu_objset_snap_cmtime(objset_t *os) { return (dsl_dir_snap_cmtime(os->os_dsl_dataset->ds_dir)); } /* called from dsl for meta-objset */ objset_t * dmu_objset_create_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx) { objset_t *os; dnode_t *mdn; ASSERT(dmu_tx_is_syncing(tx)); if (ds != NULL) VERIFY0(dmu_objset_from_ds(ds, &os)); else VERIFY0(dmu_objset_open_impl(spa, NULL, bp, &os)); mdn = DMU_META_DNODE(os); - dnode_allocate(mdn, DMU_OT_DNODE, 1 << DNODE_BLOCK_SHIFT, - DN_MAX_INDBLKSHIFT, DMU_OT_NONE, 0, tx); + dnode_allocate(mdn, DMU_OT_DNODE, DNODE_BLOCK_SIZE, DN_MAX_INDBLKSHIFT, + DMU_OT_NONE, 0, DNODE_MIN_SLOTS, tx); /* * We don't want to have to increase the meta-dnode's nlevels * later, because then we could do it in quescing context while * we are also accessing it in open context. * * This precaution is not necessary for the MOS (ds == NULL), * because the MOS is only updated in syncing context. * This is most fortunate: the MOS is the only objset that * needs to be synced multiple times as spa_sync() iterates * to convergence, so minimizing its dn_nlevels matters. */ if (ds != NULL) { int levels = 1; /* * Determine the number of levels necessary for the meta-dnode * to contain DN_MAX_OBJECT dnodes. Note that in order to * ensure that we do not overflow 64 bits, there has to be * a nlevels that gives us a number of blocks > DN_MAX_OBJECT * but < 2^64. Therefore, * (mdn->dn_indblkshift - SPA_BLKPTRSHIFT) (10) must be * less than (64 - log2(DN_MAX_OBJECT)) (16). */ while ((uint64_t)mdn->dn_nblkptr << (mdn->dn_datablkshift - DNODE_SHIFT + (levels - 1) * (mdn->dn_indblkshift - SPA_BLKPTRSHIFT)) < DN_MAX_OBJECT) levels++; mdn->dn_next_nlevels[tx->tx_txg & TXG_MASK] = mdn->dn_nlevels = levels; } ASSERT(type != DMU_OST_NONE); ASSERT(type != DMU_OST_ANY); ASSERT(type < DMU_OST_NUMTYPES); os->os_phys->os_type = type; if (dmu_objset_userused_enabled(os)) { os->os_phys->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE; os->os_flags = os->os_phys->os_flags; } dsl_dataset_dirty(ds, tx); return (os); } typedef struct dmu_objset_create_arg { const char *doca_name; cred_t *doca_cred; void (*doca_userfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); void *doca_userarg; dmu_objset_type_t doca_type; uint64_t doca_flags; } dmu_objset_create_arg_t; /*ARGSUSED*/ static int dmu_objset_create_check(void *arg, dmu_tx_t *tx) { dmu_objset_create_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; int error; if (strchr(doca->doca_name, '@') != NULL) return (SET_ERROR(EINVAL)); if (strlen(doca->doca_name) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); if (dataset_nestcheck(doca->doca_name) != 0) return (SET_ERROR(ENAMETOOLONG)); error = dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail); if (error != 0) return (error); if (tail == NULL) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EEXIST)); } error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, doca->doca_cred); dsl_dir_rele(pdd, FTAG); return (error); } static void dmu_objset_create_sync(void *arg, dmu_tx_t *tx) { dmu_objset_create_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; dsl_dataset_t *ds; uint64_t obj; blkptr_t *bp; objset_t *os; VERIFY0(dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail)); obj = dsl_dataset_create_sync(pdd, tail, NULL, doca->doca_flags, doca->doca_cred, tx); VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds)); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); bp = dsl_dataset_get_blkptr(ds); os = dmu_objset_create_impl(pdd->dd_pool->dp_spa, ds, bp, doca->doca_type, tx); rrw_exit(&ds->ds_bp_rwlock, FTAG); if (doca->doca_userfunc != NULL) { doca->doca_userfunc(os, doca->doca_userarg, doca->doca_cred, tx); } spa_history_log_internal_ds(ds, "create", tx, ""); dsl_dataset_rele(ds, FTAG); dsl_dir_rele(pdd, FTAG); } int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg) { dmu_objset_create_arg_t doca; doca.doca_name = name; doca.doca_cred = CRED(); doca.doca_flags = flags; doca.doca_userfunc = func; doca.doca_userarg = arg; doca.doca_type = type; return (dsl_sync_task(name, dmu_objset_create_check, dmu_objset_create_sync, &doca, 5, ZFS_SPACE_CHECK_NORMAL)); } typedef struct dmu_objset_clone_arg { const char *doca_clone; const char *doca_origin; cred_t *doca_cred; } dmu_objset_clone_arg_t; /*ARGSUSED*/ static int dmu_objset_clone_check(void *arg, dmu_tx_t *tx) { dmu_objset_clone_arg_t *doca = arg; dsl_dir_t *pdd; const char *tail; int error; dsl_dataset_t *origin; dsl_pool_t *dp = dmu_tx_pool(tx); if (strchr(doca->doca_clone, '@') != NULL) return (SET_ERROR(EINVAL)); if (strlen(doca->doca_clone) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); error = dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail); if (error != 0) return (error); if (tail == NULL) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EEXIST)); } error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, doca->doca_cred); if (error != 0) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EDQUOT)); } dsl_dir_rele(pdd, FTAG); error = dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin); if (error != 0) return (error); /* You can only clone snapshots, not the head datasets. */ if (!origin->ds_is_snapshot) { dsl_dataset_rele(origin, FTAG); return (SET_ERROR(EINVAL)); } dsl_dataset_rele(origin, FTAG); return (0); } static void dmu_objset_clone_sync(void *arg, dmu_tx_t *tx) { dmu_objset_clone_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; dsl_dataset_t *origin, *ds; uint64_t obj; char namebuf[ZFS_MAX_DATASET_NAME_LEN]; VERIFY0(dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail)); VERIFY0(dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin)); obj = dsl_dataset_create_sync(pdd, tail, origin, 0, doca->doca_cred, tx); VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds)); dsl_dataset_name(origin, namebuf); spa_history_log_internal_ds(ds, "clone", tx, "origin=%s (%llu)", namebuf, origin->ds_object); dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(origin, FTAG); dsl_dir_rele(pdd, FTAG); } int dmu_objset_clone(const char *clone, const char *origin) { dmu_objset_clone_arg_t doca; doca.doca_clone = clone; doca.doca_origin = origin; doca.doca_cred = CRED(); return (dsl_sync_task(clone, dmu_objset_clone_check, dmu_objset_clone_sync, &doca, 5, ZFS_SPACE_CHECK_NORMAL)); } static int dmu_objset_remap_indirects_impl(objset_t *os, uint64_t last_removed_txg) { int error = 0; uint64_t object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { error = dmu_object_remap_indirects(os, object, last_removed_txg); /* * If the ZPL removed the object before we managed to dnode_hold * it, we would get an ENOENT. If the ZPL declares its intent * to remove the object (dnode_free) before we manage to * dnode_hold it, we would get an EEXIST. In either case, we * want to continue remapping the other objects in the objset; * in all other cases, we want to break early. */ if (error != 0 && error != ENOENT && error != EEXIST) { break; } } if (error == ESRCH) { error = 0; } return (error); } int dmu_objset_remap_indirects(const char *fsname) { int error = 0; objset_t *os = NULL; uint64_t last_removed_txg; uint64_t remap_start_txg; dsl_dir_t *dd; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) { return (error); } dd = dmu_objset_ds(os)->ds_dir; if (!spa_feature_is_enabled(dmu_objset_spa(os), SPA_FEATURE_OBSOLETE_COUNTS)) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ENOTSUP)); } if (dsl_dataset_is_snapshot(dmu_objset_ds(os))) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } /* * If there has not been a removal, we're done. */ last_removed_txg = spa_get_last_removal_txg(dmu_objset_spa(os)); if (last_removed_txg == -1ULL) { dmu_objset_rele(os, FTAG); return (0); } /* * If we have remapped since the last removal, we're done. */ if (dsl_dir_is_zapified(dd)) { uint64_t last_remap_txg; if (zap_lookup(spa_meta_objset(dmu_objset_spa(os)), dd->dd_object, DD_FIELD_LAST_REMAP_TXG, sizeof (last_remap_txg), 1, &last_remap_txg) == 0 && last_remap_txg > last_removed_txg) { dmu_objset_rele(os, FTAG); return (0); } } dsl_dataset_long_hold(dmu_objset_ds(os), FTAG); dsl_pool_rele(dmu_objset_pool(os), FTAG); remap_start_txg = spa_last_synced_txg(dmu_objset_spa(os)); error = dmu_objset_remap_indirects_impl(os, last_removed_txg); if (error == 0) { /* * We update the last_remap_txg to be the start txg so that * we can guarantee that every block older than last_remap_txg * that can be remapped has been remapped. */ error = dsl_dir_update_last_remap_txg(dd, remap_start_txg); } dsl_dataset_long_rele(dmu_objset_ds(os), FTAG); dsl_dataset_rele(dmu_objset_ds(os), FTAG); return (error); } int dmu_objset_snapshot_one(const char *fsname, const char *snapname) { int err; char *longsnap = kmem_asprintf("%s@%s", fsname, snapname); nvlist_t *snaps = fnvlist_alloc(); fnvlist_add_boolean(snaps, longsnap); strfree(longsnap); err = dsl_dataset_snapshot(snaps, NULL, NULL); fnvlist_free(snaps); return (err); } static void dmu_objset_sync_dnodes(multilist_sublist_t *list, dmu_tx_t *tx) { dnode_t *dn; while ((dn = multilist_sublist_head(list)) != NULL) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); ASSERT(dn->dn_dbuf->db_data_pending); /* * Initialize dn_zio outside dnode_sync() because the * meta-dnode needs to set it ouside dnode_sync(). */ dn->dn_zio = dn->dn_dbuf->db_data_pending->dr_zio; ASSERT(dn->dn_zio); ASSERT3U(dn->dn_nlevels, <=, DN_MAX_LEVELS); multilist_sublist_remove(list, dn); multilist_t *newlist = dn->dn_objset->os_synced_dnodes; if (newlist != NULL) { (void) dnode_add_ref(dn, newlist); multilist_insert(newlist, dn); } dnode_sync(dn, tx); } } /* ARGSUSED */ static void dmu_objset_write_ready(zio_t *zio, arc_buf_t *abuf, void *arg) { blkptr_t *bp = zio->io_bp; objset_t *os = arg; dnode_phys_t *dnp = &os->os_phys->os_meta_dnode; ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_OBJSET); ASSERT0(BP_GET_LEVEL(bp)); /* * Update rootbp fill count: it should be the number of objects * allocated in the object set (not counting the "special" * objects that are stored in the objset_phys_t -- the meta * dnode and user/group accounting objects). */ bp->blk_fill = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) bp->blk_fill += BP_GET_FILL(&dnp->dn_blkptr[i]); if (os->os_dsl_dataset != NULL) rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_WRITER, FTAG); *os->os_rootbp = *bp; if (os->os_dsl_dataset != NULL) rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); } /* ARGSUSED */ static void dmu_objset_write_done(zio_t *zio, arc_buf_t *abuf, void *arg) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; objset_t *os = arg; if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; dmu_tx_t *tx = os->os_synctx; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } kmem_free(bp, sizeof (*bp)); } typedef struct sync_dnodes_arg { multilist_t *sda_list; int sda_sublist_idx; multilist_t *sda_newlist; dmu_tx_t *sda_tx; } sync_dnodes_arg_t; static void sync_dnodes_task(void *arg) { sync_dnodes_arg_t *sda = arg; multilist_sublist_t *ms = multilist_sublist_lock(sda->sda_list, sda->sda_sublist_idx); dmu_objset_sync_dnodes(ms, sda->sda_tx); multilist_sublist_unlock(ms); kmem_free(sda, sizeof (*sda)); } /* called from dsl */ void dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx) { int txgoff; zbookmark_phys_t zb; zio_prop_t zp; zio_t *zio; list_t *list; dbuf_dirty_record_t *dr; blkptr_t *blkptr_copy = kmem_alloc(sizeof (*os->os_rootbp), KM_SLEEP); *blkptr_copy = *os->os_rootbp; dprintf_ds(os->os_dsl_dataset, "txg=%llu\n", tx->tx_txg); ASSERT(dmu_tx_is_syncing(tx)); /* XXX the write_done callback should really give us the tx... */ os->os_synctx = tx; if (os->os_dsl_dataset == NULL) { /* * This is the MOS. If we have upgraded, * spa_max_replication() could change, so reset * os_copies here. */ os->os_copies = spa_max_replication(os->os_spa); } /* * Create the root block IO */ SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); arc_release(os->os_phys_buf, &os->os_phys_buf); dmu_write_policy(os, NULL, 0, 0, &zp); zio = arc_write(pio, os->os_spa, tx->tx_txg, blkptr_copy, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os), &zp, dmu_objset_write_ready, NULL, NULL, dmu_objset_write_done, os, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); /* * Sync special dnodes - the parent IO for the sync is the root block */ DMU_META_DNODE(os)->dn_zio = zio; dnode_sync(DMU_META_DNODE(os), tx); os->os_phys->os_flags = os->os_flags; if (DMU_USERUSED_DNODE(os) && DMU_USERUSED_DNODE(os)->dn_type != DMU_OT_NONE) { DMU_USERUSED_DNODE(os)->dn_zio = zio; dnode_sync(DMU_USERUSED_DNODE(os), tx); DMU_GROUPUSED_DNODE(os)->dn_zio = zio; dnode_sync(DMU_GROUPUSED_DNODE(os), tx); } txgoff = tx->tx_txg & TXG_MASK; if (dmu_objset_userused_enabled(os)) { /* * We must create the list here because it uses the * dn_dirty_link[] of this txg. But it may already * exist because we call dsl_dataset_sync() twice per txg. */ if (os->os_synced_dnodes == NULL) { os->os_synced_dnodes = multilist_create(sizeof (dnode_t), offsetof(dnode_t, dn_dirty_link[txgoff]), dnode_multilist_index_func); } else { ASSERT3U(os->os_synced_dnodes->ml_offset, ==, offsetof(dnode_t, dn_dirty_link[txgoff])); } } for (int i = 0; i < multilist_get_num_sublists(os->os_dirty_dnodes[txgoff]); i++) { sync_dnodes_arg_t *sda = kmem_alloc(sizeof (*sda), KM_SLEEP); sda->sda_list = os->os_dirty_dnodes[txgoff]; sda->sda_sublist_idx = i; sda->sda_tx = tx; (void) taskq_dispatch(dmu_objset_pool(os)->dp_sync_taskq, sync_dnodes_task, sda, 0); /* callback frees sda */ } taskq_wait(dmu_objset_pool(os)->dp_sync_taskq); list = &DMU_META_DNODE(os)->dn_dirty_records[txgoff]; while ((dr = list_head(list)) != NULL) { ASSERT0(dr->dr_dbuf->db_level); list_remove(list, dr); if (dr->dr_zio) zio_nowait(dr->dr_zio); } /* Enable dnode backfill if enough objects have been freed. */ if (os->os_freed_dnodes >= dmu_rescan_dnode_threshold) { os->os_rescan_dnodes = B_TRUE; os->os_freed_dnodes = 0; } /* * Free intent log blocks up to this tx. */ zil_sync(os->os_zil, tx); os->os_phys->os_zil_header = os->os_zil_header; zio_nowait(zio); } boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg) { return (!multilist_is_empty(os->os_dirty_dnodes[txg & TXG_MASK])); } static objset_used_cb_t *used_cbs[DMU_OST_NUMTYPES]; void dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb) { used_cbs[ost] = cb; } boolean_t dmu_objset_userused_enabled(objset_t *os) { return (spa_version(os->os_spa) >= SPA_VERSION_USERSPACE && used_cbs[os->os_phys->os_type] != NULL && DMU_USERUSED_DNODE(os) != NULL); } typedef struct userquota_node { uint64_t uqn_id; int64_t uqn_delta; avl_node_t uqn_node; } userquota_node_t; typedef struct userquota_cache { avl_tree_t uqc_user_deltas; avl_tree_t uqc_group_deltas; } userquota_cache_t; static int userquota_compare(const void *l, const void *r) { const userquota_node_t *luqn = l; const userquota_node_t *ruqn = r; if (luqn->uqn_id < ruqn->uqn_id) return (-1); if (luqn->uqn_id > ruqn->uqn_id) return (1); return (0); } static void do_userquota_cacheflush(objset_t *os, userquota_cache_t *cache, dmu_tx_t *tx) { void *cookie; userquota_node_t *uqn; ASSERT(dmu_tx_is_syncing(tx)); cookie = NULL; while ((uqn = avl_destroy_nodes(&cache->uqc_user_deltas, &cookie)) != NULL) { /* * os_userused_lock protects against concurrent calls to * zap_increment_int(). It's needed because zap_increment_int() * is not thread-safe (i.e. not atomic). */ mutex_enter(&os->os_userused_lock); VERIFY0(zap_increment_int(os, DMU_USERUSED_OBJECT, uqn->uqn_id, uqn->uqn_delta, tx)); mutex_exit(&os->os_userused_lock); kmem_free(uqn, sizeof (*uqn)); } avl_destroy(&cache->uqc_user_deltas); cookie = NULL; while ((uqn = avl_destroy_nodes(&cache->uqc_group_deltas, &cookie)) != NULL) { mutex_enter(&os->os_userused_lock); VERIFY0(zap_increment_int(os, DMU_GROUPUSED_OBJECT, uqn->uqn_id, uqn->uqn_delta, tx)); mutex_exit(&os->os_userused_lock); kmem_free(uqn, sizeof (*uqn)); } avl_destroy(&cache->uqc_group_deltas); } static void userquota_update_cache(avl_tree_t *avl, uint64_t id, int64_t delta) { userquota_node_t search = { .uqn_id = id }; avl_index_t idx; userquota_node_t *uqn = avl_find(avl, &search, &idx); if (uqn == NULL) { uqn = kmem_zalloc(sizeof (*uqn), KM_SLEEP); uqn->uqn_id = id; avl_insert(avl, uqn, idx); } uqn->uqn_delta += delta; } static void do_userquota_update(userquota_cache_t *cache, uint64_t used, uint64_t flags, uint64_t user, uint64_t group, boolean_t subtract) { if ((flags & DNODE_FLAG_USERUSED_ACCOUNTED)) { - int64_t delta = DNODE_SIZE + used; + int64_t delta = DNODE_MIN_SIZE + used; if (subtract) delta = -delta; userquota_update_cache(&cache->uqc_user_deltas, user, delta); userquota_update_cache(&cache->uqc_group_deltas, group, delta); } } typedef struct userquota_updates_arg { objset_t *uua_os; int uua_sublist_idx; dmu_tx_t *uua_tx; } userquota_updates_arg_t; static void userquota_updates_task(void *arg) { userquota_updates_arg_t *uua = arg; objset_t *os = uua->uua_os; dmu_tx_t *tx = uua->uua_tx; dnode_t *dn; userquota_cache_t cache = { 0 }; multilist_sublist_t *list = multilist_sublist_lock(os->os_synced_dnodes, uua->uua_sublist_idx); ASSERT(multilist_sublist_head(list) == NULL || dmu_objset_userused_enabled(os)); avl_create(&cache.uqc_user_deltas, userquota_compare, sizeof (userquota_node_t), offsetof(userquota_node_t, uqn_node)); avl_create(&cache.uqc_group_deltas, userquota_compare, sizeof (userquota_node_t), offsetof(userquota_node_t, uqn_node)); while ((dn = multilist_sublist_head(list)) != NULL) { int flags; ASSERT(!DMU_OBJECT_IS_SPECIAL(dn->dn_object)); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE || dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED); flags = dn->dn_id_flags; ASSERT(flags); if (flags & DN_ID_OLD_EXIST) { do_userquota_update(&cache, dn->dn_oldused, dn->dn_oldflags, dn->dn_olduid, dn->dn_oldgid, B_TRUE); } if (flags & DN_ID_NEW_EXIST) { do_userquota_update(&cache, DN_USED_BYTES(dn->dn_phys), dn->dn_phys->dn_flags, dn->dn_newuid, dn->dn_newgid, B_FALSE); } mutex_enter(&dn->dn_mtx); dn->dn_oldused = 0; dn->dn_oldflags = 0; if (dn->dn_id_flags & DN_ID_NEW_EXIST) { dn->dn_olduid = dn->dn_newuid; dn->dn_oldgid = dn->dn_newgid; dn->dn_id_flags |= DN_ID_OLD_EXIST; if (dn->dn_bonuslen == 0) dn->dn_id_flags |= DN_ID_CHKED_SPILL; else dn->dn_id_flags |= DN_ID_CHKED_BONUS; } dn->dn_id_flags &= ~(DN_ID_NEW_EXIST); mutex_exit(&dn->dn_mtx); multilist_sublist_remove(list, dn); dnode_rele(dn, os->os_synced_dnodes); } do_userquota_cacheflush(os, &cache, tx); multilist_sublist_unlock(list); kmem_free(uua, sizeof (*uua)); } void dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx) { if (!dmu_objset_userused_enabled(os)) return; /* Allocate the user/groupused objects if necessary. */ if (DMU_USERUSED_DNODE(os)->dn_type == DMU_OT_NONE) { VERIFY0(zap_create_claim(os, DMU_USERUSED_OBJECT, DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx)); VERIFY0(zap_create_claim(os, DMU_GROUPUSED_OBJECT, DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx)); } for (int i = 0; i < multilist_get_num_sublists(os->os_synced_dnodes); i++) { userquota_updates_arg_t *uua = kmem_alloc(sizeof (*uua), KM_SLEEP); uua->uua_os = os; uua->uua_sublist_idx = i; uua->uua_tx = tx; /* note: caller does taskq_wait() */ (void) taskq_dispatch(dmu_objset_pool(os)->dp_sync_taskq, userquota_updates_task, uua, 0); /* callback frees uua */ } } /* * Returns a pointer to data to find uid/gid from * * If a dirty record for transaction group that is syncing can't * be found then NULL is returned. In the NULL case it is assumed * the uid/gid aren't changing. */ static void * dmu_objset_userquota_find_data(dmu_buf_impl_t *db, dmu_tx_t *tx) { dbuf_dirty_record_t *dr, **drp; void *data; if (db->db_dirtycnt == 0) return (db->db.db_data); /* Nothing is changing */ for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) if (dr->dr_txg == tx->tx_txg) break; if (dr == NULL) { data = NULL; } else { dnode_t *dn; DB_DNODE_ENTER(dr->dr_dbuf); dn = DB_DNODE(dr->dr_dbuf); if (dn->dn_bonuslen == 0 && dr->dr_dbuf->db_blkid == DMU_SPILL_BLKID) data = dr->dt.dl.dr_data->b_data; else data = dr->dt.dl.dr_data; DB_DNODE_EXIT(dr->dr_dbuf); } return (data); } void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; void *data = NULL; dmu_buf_impl_t *db = NULL; uint64_t *user = NULL; uint64_t *group = NULL; int flags = dn->dn_id_flags; int error; boolean_t have_spill = B_FALSE; if (!dmu_objset_userused_enabled(dn->dn_objset)) return; if (before && (flags & (DN_ID_CHKED_BONUS|DN_ID_OLD_EXIST| DN_ID_CHKED_SPILL))) return; if (before && dn->dn_bonuslen != 0) data = DN_BONUS(dn->dn_phys); else if (!before && dn->dn_bonuslen != 0) { if (dn->dn_bonus) { db = dn->dn_bonus; mutex_enter(&db->db_mtx); data = dmu_objset_userquota_find_data(db, tx); } else { data = DN_BONUS(dn->dn_phys); } } else if (dn->dn_bonuslen == 0 && dn->dn_bonustype == DMU_OT_SA) { int rf = 0; if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) rf |= DB_RF_HAVESTRUCT; error = dmu_spill_hold_by_dnode(dn, rf | DB_RF_MUST_SUCCEED, FTAG, (dmu_buf_t **)&db); ASSERT(error == 0); mutex_enter(&db->db_mtx); data = (before) ? db->db.db_data : dmu_objset_userquota_find_data(db, tx); have_spill = B_TRUE; } else { mutex_enter(&dn->dn_mtx); dn->dn_id_flags |= DN_ID_CHKED_BONUS; mutex_exit(&dn->dn_mtx); return; } if (before) { ASSERT(data); user = &dn->dn_olduid; group = &dn->dn_oldgid; } else if (data) { user = &dn->dn_newuid; group = &dn->dn_newgid; } /* * Must always call the callback in case the object * type has changed and that type isn't an object type to track */ error = used_cbs[os->os_phys->os_type](dn->dn_bonustype, data, user, group); /* * Preserve existing uid/gid when the callback can't determine * what the new uid/gid are and the callback returned EEXIST. * The EEXIST error tells us to just use the existing uid/gid. * If we don't know what the old values are then just assign * them to 0, since that is a new file being created. */ if (!before && data == NULL && error == EEXIST) { if (flags & DN_ID_OLD_EXIST) { dn->dn_newuid = dn->dn_olduid; dn->dn_newgid = dn->dn_oldgid; } else { dn->dn_newuid = 0; dn->dn_newgid = 0; } error = 0; } if (db) mutex_exit(&db->db_mtx); mutex_enter(&dn->dn_mtx); if (error == 0 && before) dn->dn_id_flags |= DN_ID_OLD_EXIST; if (error == 0 && !before) dn->dn_id_flags |= DN_ID_NEW_EXIST; if (have_spill) { dn->dn_id_flags |= DN_ID_CHKED_SPILL; } else { dn->dn_id_flags |= DN_ID_CHKED_BONUS; } mutex_exit(&dn->dn_mtx); if (have_spill) dmu_buf_rele((dmu_buf_t *)db, FTAG); } boolean_t dmu_objset_userspace_present(objset_t *os) { return (os->os_phys->os_flags & OBJSET_FLAG_USERACCOUNTING_COMPLETE); } int dmu_objset_userspace_upgrade(objset_t *os) { uint64_t obj; int err = 0; if (dmu_objset_userspace_present(os)) return (0); if (!dmu_objset_userused_enabled(os)) return (SET_ERROR(ENOTSUP)); if (dmu_objset_is_snapshot(os)) return (SET_ERROR(EINVAL)); /* * We simply need to mark every object dirty, so that it will be * synced out and now accounted. If this is called * concurrently, or if we already did some work before crashing, * that's fine, since we track each object's accounted state * independently. */ for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { dmu_tx_t *tx; dmu_buf_t *db; int objerr; if (issig(JUSTLOOKING) && issig(FORREAL)) return (SET_ERROR(EINTR)); objerr = dmu_bonus_hold(os, obj, FTAG, &db); if (objerr != 0) continue; tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, obj); objerr = dmu_tx_assign(tx, TXG_WAIT); if (objerr != 0) { dmu_tx_abort(tx); continue; } dmu_buf_will_dirty(db, tx); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } os->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE; txg_wait_synced(dmu_objset_pool(os), 0); return (0); } void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp) { dsl_dataset_space(os->os_dsl_dataset, refdbytesp, availbytesp, usedobjsp, availobjsp); } uint64_t dmu_objset_fsid_guid(objset_t *os) { return (dsl_dataset_fsid_guid(os->os_dsl_dataset)); } void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat) { stat->dds_type = os->os_phys->os_type; if (os->os_dsl_dataset) dsl_dataset_fast_stat(os->os_dsl_dataset, stat); } void dmu_objset_stats(objset_t *os, nvlist_t *nv) { ASSERT(os->os_dsl_dataset || os->os_phys->os_type == DMU_OST_META); if (os->os_dsl_dataset != NULL) dsl_dataset_stats(os->os_dsl_dataset, nv); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_TYPE, os->os_phys->os_type); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERACCOUNTING, dmu_objset_userspace_present(os)); } int dmu_objset_is_snapshot(objset_t *os) { if (os->os_dsl_dataset != NULL) return (os->os_dsl_dataset->ds_is_snapshot); else return (B_FALSE); } int dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen, boolean_t *conflict) { dsl_dataset_t *ds = os->os_dsl_dataset; uint64_t ignored; if (dsl_dataset_phys(ds)->ds_snapnames_zapobj == 0) return (SET_ERROR(ENOENT)); return (zap_lookup_norm(ds->ds_dir->dd_pool->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, name, 8, 1, &ignored, MT_NORMALIZE, real, maxlen, conflict)); } int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp, boolean_t *case_conflict) { dsl_dataset_t *ds = os->os_dsl_dataset; zap_cursor_t cursor; zap_attribute_t attr; ASSERT(dsl_pool_config_held(dmu_objset_pool(os))); if (dsl_dataset_phys(ds)->ds_snapnames_zapobj == 0) return (SET_ERROR(ENOENT)); zap_cursor_init_serialized(&cursor, ds->ds_dir->dd_pool->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, *offp); if (zap_cursor_retrieve(&cursor, &attr) != 0) { zap_cursor_fini(&cursor); return (SET_ERROR(ENOENT)); } if (strlen(attr.za_name) + 1 > namelen) { zap_cursor_fini(&cursor); return (SET_ERROR(ENAMETOOLONG)); } (void) strcpy(name, attr.za_name); if (idp) *idp = attr.za_first_integer; if (case_conflict) *case_conflict = attr.za_normalization_conflict; zap_cursor_advance(&cursor); *offp = zap_cursor_serialize(&cursor); zap_cursor_fini(&cursor); return (0); } int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp) { dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; zap_cursor_t cursor; zap_attribute_t attr; /* there is no next dir on a snapshot! */ if (os->os_dsl_dataset->ds_object != dsl_dir_phys(dd)->dd_head_dataset_obj) return (SET_ERROR(ENOENT)); zap_cursor_init_serialized(&cursor, dd->dd_pool->dp_meta_objset, dsl_dir_phys(dd)->dd_child_dir_zapobj, *offp); if (zap_cursor_retrieve(&cursor, &attr) != 0) { zap_cursor_fini(&cursor); return (SET_ERROR(ENOENT)); } if (strlen(attr.za_name) + 1 > namelen) { zap_cursor_fini(&cursor); return (SET_ERROR(ENAMETOOLONG)); } (void) strcpy(name, attr.za_name); if (idp) *idp = attr.za_first_integer; zap_cursor_advance(&cursor); *offp = zap_cursor_serialize(&cursor); zap_cursor_fini(&cursor); return (0); } typedef struct dmu_objset_find_ctx { taskq_t *dc_tq; dsl_pool_t *dc_dp; uint64_t dc_ddobj; char *dc_ddname; /* last component of ddobj's name */ int (*dc_func)(dsl_pool_t *, dsl_dataset_t *, void *); void *dc_arg; int dc_flags; kmutex_t *dc_error_lock; int *dc_error; } dmu_objset_find_ctx_t; static void dmu_objset_find_dp_impl(dmu_objset_find_ctx_t *dcp) { dsl_pool_t *dp = dcp->dc_dp; dsl_dir_t *dd; dsl_dataset_t *ds; zap_cursor_t zc; zap_attribute_t *attr; uint64_t thisobj; int err = 0; /* don't process if there already was an error */ if (*dcp->dc_error != 0) goto out; /* * Note: passing the name (dc_ddname) here is optional, but it * improves performance because we don't need to call * zap_value_search() to determine the name. */ err = dsl_dir_hold_obj(dp, dcp->dc_ddobj, dcp->dc_ddname, FTAG, &dd); if (err != 0) goto out; /* Don't visit hidden ($MOS & $ORIGIN) objsets. */ if (dd->dd_myname[0] == '$') { dsl_dir_rele(dd, FTAG); goto out; } thisobj = dsl_dir_phys(dd)->dd_head_dataset_obj; attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* * Iterate over all children. */ if (dcp->dc_flags & DS_FIND_CHILDREN) { for (zap_cursor_init(&zc, dp->dp_meta_objset, dsl_dir_phys(dd)->dd_child_dir_zapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); dmu_objset_find_ctx_t *child_dcp = kmem_alloc(sizeof (*child_dcp), KM_SLEEP); *child_dcp = *dcp; child_dcp->dc_ddobj = attr->za_first_integer; child_dcp->dc_ddname = spa_strdup(attr->za_name); if (dcp->dc_tq != NULL) (void) taskq_dispatch(dcp->dc_tq, dmu_objset_find_dp_cb, child_dcp, TQ_SLEEP); else dmu_objset_find_dp_impl(child_dcp); } zap_cursor_fini(&zc); } /* * Iterate over all snapshots. */ if (dcp->dc_flags & DS_FIND_SNAPSHOTS) { dsl_dataset_t *ds; err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); if (err == 0) { uint64_t snapobj; snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj; dsl_dataset_rele(ds, FTAG); for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); err = dsl_dataset_hold_obj(dp, attr->za_first_integer, FTAG, &ds); if (err != 0) break; err = dcp->dc_func(dp, ds, dcp->dc_arg); dsl_dataset_rele(ds, FTAG); if (err != 0) break; } zap_cursor_fini(&zc); } } kmem_free(attr, sizeof (zap_attribute_t)); if (err != 0) { dsl_dir_rele(dd, FTAG); goto out; } /* * Apply to self. */ err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); /* * Note: we hold the dir while calling dsl_dataset_hold_obj() so * that the dir will remain cached, and we won't have to re-instantiate * it (which could be expensive due to finding its name via * zap_value_search()). */ dsl_dir_rele(dd, FTAG); if (err != 0) goto out; err = dcp->dc_func(dp, ds, dcp->dc_arg); dsl_dataset_rele(ds, FTAG); out: if (err != 0) { mutex_enter(dcp->dc_error_lock); /* only keep first error */ if (*dcp->dc_error == 0) *dcp->dc_error = err; mutex_exit(dcp->dc_error_lock); } if (dcp->dc_ddname != NULL) spa_strfree(dcp->dc_ddname); kmem_free(dcp, sizeof (*dcp)); } static void dmu_objset_find_dp_cb(void *arg) { dmu_objset_find_ctx_t *dcp = arg; dsl_pool_t *dp = dcp->dc_dp; /* * We need to get a pool_config_lock here, as there are several * asssert(pool_config_held) down the stack. Getting a lock via * dsl_pool_config_enter is risky, as it might be stalled by a * pending writer. This would deadlock, as the write lock can * only be granted when our parent thread gives up the lock. * The _prio interface gives us priority over a pending writer. */ dsl_pool_config_enter_prio(dp, FTAG); dmu_objset_find_dp_impl(dcp); dsl_pool_config_exit(dp, FTAG); } /* * Find objsets under and including ddobj, call func(ds) on each. * The order for the enumeration is completely undefined. * func is called with dsl_pool_config held. */ int dmu_objset_find_dp(dsl_pool_t *dp, uint64_t ddobj, int func(dsl_pool_t *, dsl_dataset_t *, void *), void *arg, int flags) { int error = 0; taskq_t *tq = NULL; int ntasks; dmu_objset_find_ctx_t *dcp; kmutex_t err_lock; mutex_init(&err_lock, NULL, MUTEX_DEFAULT, NULL); dcp = kmem_alloc(sizeof (*dcp), KM_SLEEP); dcp->dc_tq = NULL; dcp->dc_dp = dp; dcp->dc_ddobj = ddobj; dcp->dc_ddname = NULL; dcp->dc_func = func; dcp->dc_arg = arg; dcp->dc_flags = flags; dcp->dc_error_lock = &err_lock; dcp->dc_error = &error; if ((flags & DS_FIND_SERIALIZE) || dsl_pool_config_held_writer(dp)) { /* * In case a write lock is held we can't make use of * parallelism, as down the stack of the worker threads * the lock is asserted via dsl_pool_config_held. * In case of a read lock this is solved by getting a read * lock in each worker thread, which isn't possible in case * of a writer lock. So we fall back to the synchronous path * here. * In the future it might be possible to get some magic into * dsl_pool_config_held in a way that it returns true for * the worker threads so that a single lock held from this * thread suffices. For now, stay single threaded. */ dmu_objset_find_dp_impl(dcp); mutex_destroy(&err_lock); return (error); } ntasks = dmu_find_threads; if (ntasks == 0) ntasks = vdev_count_leaves(dp->dp_spa) * 4; tq = taskq_create("dmu_objset_find", ntasks, minclsyspri, ntasks, INT_MAX, 0); if (tq == NULL) { kmem_free(dcp, sizeof (*dcp)); mutex_destroy(&err_lock); return (SET_ERROR(ENOMEM)); } dcp->dc_tq = tq; /* dcp will be freed by task */ (void) taskq_dispatch(tq, dmu_objset_find_dp_cb, dcp, TQ_SLEEP); /* * PORTING: this code relies on the property of taskq_wait to wait * until no more tasks are queued and no more tasks are active. As * we always queue new tasks from within other tasks, task_wait * reliably waits for the full recursion to finish, even though we * enqueue new tasks after taskq_wait has been called. * On platforms other than illumos, taskq_wait may not have this * property. */ taskq_wait(tq); taskq_destroy(tq); mutex_destroy(&err_lock); return (error); } /* * Find all objsets under name, and for each, call 'func(child_name, arg)'. * The dp_config_rwlock must not be held when this is called, and it * will not be held when the callback is called. * Therefore this function should only be used when the pool is not changing * (e.g. in syncing context), or the callback can deal with the possible races. */ static int dmu_objset_find_impl(spa_t *spa, const char *name, int func(const char *, void *), void *arg, int flags) { dsl_dir_t *dd; dsl_pool_t *dp = spa_get_dsl(spa); dsl_dataset_t *ds; zap_cursor_t zc; zap_attribute_t *attr; char *child; uint64_t thisobj; int err; dsl_pool_config_enter(dp, FTAG); err = dsl_dir_hold(dp, name, FTAG, &dd, NULL); if (err != 0) { dsl_pool_config_exit(dp, FTAG); return (err); } /* Don't visit hidden ($MOS & $ORIGIN) objsets. */ if (dd->dd_myname[0] == '$') { dsl_dir_rele(dd, FTAG); dsl_pool_config_exit(dp, FTAG); return (0); } thisobj = dsl_dir_phys(dd)->dd_head_dataset_obj; attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* * Iterate over all children. */ if (flags & DS_FIND_CHILDREN) { for (zap_cursor_init(&zc, dp->dp_meta_objset, dsl_dir_phys(dd)->dd_child_dir_zapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); child = kmem_asprintf("%s/%s", name, attr->za_name); dsl_pool_config_exit(dp, FTAG); err = dmu_objset_find_impl(spa, child, func, arg, flags); dsl_pool_config_enter(dp, FTAG); strfree(child); if (err != 0) break; } zap_cursor_fini(&zc); if (err != 0) { dsl_dir_rele(dd, FTAG); dsl_pool_config_exit(dp, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); return (err); } } /* * Iterate over all snapshots. */ if (flags & DS_FIND_SNAPSHOTS) { err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); if (err == 0) { uint64_t snapobj; snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj; dsl_dataset_rele(ds, FTAG); for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); child = kmem_asprintf("%s@%s", name, attr->za_name); dsl_pool_config_exit(dp, FTAG); err = func(child, arg); dsl_pool_config_enter(dp, FTAG); strfree(child); if (err != 0) break; } zap_cursor_fini(&zc); } } dsl_dir_rele(dd, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); dsl_pool_config_exit(dp, FTAG); if (err != 0) return (err); /* Apply to self. */ return (func(name, arg)); } /* * See comment above dmu_objset_find_impl(). */ int dmu_objset_find(char *name, int func(const char *, void *), void *arg, int flags) { spa_t *spa; int error; error = spa_open(name, &spa, FTAG); if (error != 0) return (error); error = dmu_objset_find_impl(spa, name, func, arg, flags); spa_close(spa, FTAG); return (error); } void dmu_objset_set_user(objset_t *os, void *user_ptr) { ASSERT(MUTEX_HELD(&os->os_user_ptr_lock)); os->os_user_ptr = user_ptr; } void * dmu_objset_get_user(objset_t *os) { ASSERT(MUTEX_HELD(&os->os_user_ptr_lock)); return (os->os_user_ptr); } /* * Determine name of filesystem, given name of snapshot. * buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ int dmu_fsname(const char *snapname, char *buf) { char *atp = strchr(snapname, '@'); if (atp == NULL) return (SET_ERROR(EINVAL)); if (atp - snapname >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); (void) strlcpy(buf, snapname, atp - snapname + 1); return (0); } /* * Call when we think we're going to write/free space in open context to track * the amount of dirty data in the open txg, which is also the amount * of memory that can not be evicted until this txg syncs. */ void dmu_objset_willuse_space(objset_t *os, int64_t space, dmu_tx_t *tx) { dsl_dataset_t *ds = os->os_dsl_dataset; int64_t aspace = spa_get_worst_case_asize(os->os_spa, space); if (ds != NULL) { dsl_dir_willuse_space(ds->ds_dir, aspace, tx); dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c (revision 350898) @@ -1,3376 +1,3453 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. * Copyright 2016 RackTop Systems. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ int zfs_send_corrupt_data = B_FALSE; int zfs_send_queue_length = 16 * 1024 * 1024; int zfs_recv_queue_length = 16 * 1024 * 1024; /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ int zfs_send_set_freerecords_bit = B_TRUE; static char *dmu_recv_tag = "dmu_recv_tag"; const char *recv_clone_name = "%recv"; /* * Use this to override the recordsize calculation for fast zfs send estimates. */ uint64_t zfs_override_estimate_recordsize = 0; #define BP_SPAN(datablkszsec, indblkshift, level) \ (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ (level) * (indblkshift - SPA_BLKPTRSHIFT))) static void byteswap_record(dmu_replay_record_t *drr); struct send_thread_arg { bqueue_t q; dsl_dataset_t *ds; /* Dataset to traverse */ uint64_t fromtxg; /* Traverse from this txg */ int flags; /* flags to pass to traverse_dataset */ int error_code; boolean_t cancel; zbookmark_phys_t resume; }; struct send_block_record { boolean_t eos_marker; /* Marks the end of the stream */ blkptr_t bp; zbookmark_phys_t zb; uint8_t indblkshift; uint16_t datablkszsec; bqueue_node_t ln; }; static int dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) { dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); ssize_t resid; /* have to get resid to get detailed errno */ /* * The code does not rely on this (len being a multiple of 8). We keep * this assertion because of the corresponding assertion in * receive_read(). Keeping this assertion ensures that we do not * inadvertently break backwards compatibility (causing the assertion * in receive_read() to trigger on old software). * * Removing the assertions could be rolled into a new feature that uses * data that isn't 8-byte aligned; if the assertions were removed, a * feature flag would have to be added. */ ASSERT0(len % 8); dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, (caddr_t)buf, len, 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); mutex_enter(&ds->ds_sendstream_lock); *dsp->dsa_off += len; mutex_exit(&ds->ds_sendstream_lock); return (dsp->dsa_err); } /* * For all record types except BEGIN, fill in the checksum (overlaid in * drr_u.drr_checksum.drr_checksum). The checksum verifies everything * up to the start of the checksum itself. */ static int dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) { ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); (void) fletcher_4_incremental_native(dsp->dsa_drr, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), &dsp->dsa_zc); if (dsp->dsa_drr->drr_type == DRR_BEGIN) { dsp->dsa_sent_begin = B_TRUE; } else { ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. drr_checksum.drr_checksum)); dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; } if (dsp->dsa_drr->drr_type == DRR_END) { dsp->dsa_sent_end = B_TRUE; } (void) fletcher_4_incremental_native(&dsp->dsa_drr-> drr_u.drr_checksum.drr_checksum, sizeof (zio_cksum_t), &dsp->dsa_zc); if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); if (payload_len != 0) { (void) fletcher_4_incremental_native(payload, payload_len, &dsp->dsa_zc); if (dump_bytes(dsp, payload, payload_len) != 0) return (SET_ERROR(EINTR)); } return (0); } /* * Fill in the drr_free struct, or perform aggregation if the previous record is * also a free record, and the two are adjacent. * * Note that we send free records even for a full send, because we want to be * able to receive a full send as a clone, which requires a list of all the free * and freeobject records that were generated on the source. */ static int dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, uint64_t length) { struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); /* * When we receive a free record, dbuf_free_range() assumes * that the receiving system doesn't have any dbufs in the range * being freed. This is always true because there is a one-record * constraint: we only send one WRITE record for any given * object,offset. We know that the one-record constraint is * true because we always send data in increasing order by * object,offset. * * If the increasing-order constraint ever changes, we should find * another way to assert that the one-record constraint is still * satisfied. */ ASSERT(object > dsp->dsa_last_data_object || (object == dsp->dsa_last_data_object && offset > dsp->dsa_last_data_offset)); if (length != -1ULL && offset + length < offset) length = -1ULL; /* * If there is a pending op, but it's not PENDING_FREE, push it out, * since free block aggregation can only be done for blocks of the * same type (i.e., DRR_FREE records can only be aggregated with * other DRR_FREE records. DRR_FREEOBJECTS records can only be * aggregated with other DRR_FREEOBJECTS records. */ if (dsp->dsa_pending_op != PENDING_NONE && dsp->dsa_pending_op != PENDING_FREE) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } if (dsp->dsa_pending_op == PENDING_FREE) { /* * There should never be a PENDING_FREE if length is -1 * (because dump_dnode is the only place where this * function is called with a -1, and only after flushing * any pending record). */ ASSERT(length != -1ULL); /* * Check to see whether this free block can be aggregated * with pending one. */ if (drrf->drr_object == object && drrf->drr_offset + drrf->drr_length == offset) { drrf->drr_length += length; return (0); } else { /* not a continuation. Push out pending record */ if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } } /* create a FREE record and make it pending */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_FREE; drrf->drr_object = object; drrf->drr_offset = offset; drrf->drr_length = length; drrf->drr_toguid = dsp->dsa_toguid; if (length == -1ULL) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); } else { dsp->dsa_pending_op = PENDING_FREE; } return (0); } static int dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp, void *data) { uint64_t payload_size; struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); /* * We send data in increasing object, offset order. * See comment in dump_free() for details. */ ASSERT(object > dsp->dsa_last_data_object || (object == dsp->dsa_last_data_object && offset > dsp->dsa_last_data_offset)); dsp->dsa_last_data_object = object; dsp->dsa_last_data_offset = offset + lsize - 1; /* * If there is any kind of pending aggregation (currently either * a grouping of free objects or free blocks), push it out to * the stream, since aggregation can't be done across operations * of different types. */ if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write a WRITE record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_WRITE; drrw->drr_object = object; drrw->drr_type = type; drrw->drr_offset = offset; drrw->drr_toguid = dsp->dsa_toguid; drrw->drr_logical_size = lsize; /* only set the compression fields if the buf is compressed */ if (lsize != psize) { ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED); ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(!BP_SHOULD_BYTESWAP(bp)); ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); ASSERT3S(psize, >, 0); ASSERT3S(lsize, >=, psize); drrw->drr_compressiontype = BP_GET_COMPRESS(bp); drrw->drr_compressed_size = psize; payload_size = drrw->drr_compressed_size; } else { payload_size = drrw->drr_logical_size; } if (bp == NULL || BP_IS_EMBEDDED(bp)) { /* * There's no pre-computed checksum for partial-block * writes or embedded BP's, so (like * fletcher4-checkummed blocks) userland will have to * compute a dedup-capable checksum itself. */ drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; } else { drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & ZCHECKSUM_FLAG_DEDUP) drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); drrw->drr_key.ddk_cksum = bp->blk_cksum; } if (dump_record(dsp, data, payload_size) != 0) return (SET_ERROR(EINTR)); return (0); } static int dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp) { char buf[BPE_PAYLOAD_SIZE]; struct drr_write_embedded *drrw = &(dsp->dsa_drr->drr_u.drr_write_embedded); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_record(dsp, NULL, 0) != 0) return (EINTR); dsp->dsa_pending_op = PENDING_NONE; } ASSERT(BP_IS_EMBEDDED(bp)); bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; drrw->drr_object = object; drrw->drr_offset = offset; drrw->drr_length = blksz; drrw->drr_toguid = dsp->dsa_toguid; drrw->drr_compression = BP_GET_COMPRESS(bp); drrw->drr_etype = BPE_GET_ETYPE(bp); drrw->drr_lsize = BPE_GET_LSIZE(bp); drrw->drr_psize = BPE_GET_PSIZE(bp); decode_embedded_bp_compressed(bp, buf); if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) return (EINTR); return (0); } static int dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) { struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write a SPILL record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_SPILL; drrs->drr_object = object; drrs->drr_length = blksz; drrs->drr_toguid = dsp->dsa_toguid; if (dump_record(dsp, data, blksz) != 0) return (SET_ERROR(EINTR)); return (0); } static int dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) { struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); /* * If there is a pending op, but it's not PENDING_FREEOBJECTS, * push it out, since free block aggregation can only be done for * blocks of the same type (i.e., DRR_FREE records can only be * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records * can only be aggregated with other DRR_FREEOBJECTS records. */ if (dsp->dsa_pending_op != PENDING_NONE && dsp->dsa_pending_op != PENDING_FREEOBJECTS) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { /* * See whether this free object array can be aggregated * with pending one */ if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { drrfo->drr_numobjs += numobjs; return (0); } else { /* can't be aggregated. Push out pending record */ if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } } /* write a FREEOBJECTS record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; drrfo->drr_firstobj = firstobj; drrfo->drr_numobjs = numobjs; drrfo->drr_toguid = dsp->dsa_toguid; dsp->dsa_pending_op = PENDING_FREEOBJECTS; return (0); } static int dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) { struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); if (object < dsp->dsa_resume_object) { /* * Note: when resuming, we will visit all the dnodes in * the block of dnodes that we are resuming from. In * this case it's unnecessary to send the dnodes prior to * the one we are resuming from. We should be at most one * block's worth of dnodes behind the resume point. */ ASSERT3U(dsp->dsa_resume_object - object, <, 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); return (0); } if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) return (dump_freeobjects(dsp, object, 1)); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_record(dsp, NULL, 0) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write an OBJECT record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_OBJECT; drro->drr_object = object; drro->drr_type = dnp->dn_type; drro->drr_bonustype = dnp->dn_bonustype; drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; drro->drr_bonuslen = dnp->dn_bonuslen; + drro->drr_dn_slots = dnp->dn_extra_slots + 1; drro->drr_checksumtype = dnp->dn_checksum; drro->drr_compress = dnp->dn_compress; drro->drr_toguid = dsp->dsa_toguid; if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; if (dump_record(dsp, DN_BONUS(dnp), P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { return (SET_ERROR(EINTR)); } /* Free anything past the end of the file. */ if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) return (SET_ERROR(EINTR)); if (dsp->dsa_err != 0) return (SET_ERROR(EINTR)); return (0); } static boolean_t backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) { if (!BP_IS_EMBEDDED(bp)) return (B_FALSE); /* * Compression function must be legacy, or explicitly enabled. */ if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4))) return (B_FALSE); /* * Embed type must be explicitly enabled. */ switch (BPE_GET_ETYPE(bp)) { case BP_EMBEDDED_TYPE_DATA: if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) return (B_TRUE); break; default: return (B_FALSE); } return (B_FALSE); } /* * This is the callback function to traverse_dataset that acts as the worker * thread for dmu_send_impl. */ /*ARGSUSED*/ static int send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) { struct send_thread_arg *sta = arg; struct send_block_record *record; uint64_t record_size; int err = 0; ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || zb->zb_object >= sta->resume.zb_object); if (sta->cancel) return (SET_ERROR(EINTR)); if (bp == NULL) { ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); return (0); } else if (zb->zb_level < 0) { return (0); } record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); record->eos_marker = B_FALSE; record->bp = *bp; record->zb = *zb; record->indblkshift = dnp->dn_indblkshift; record->datablkszsec = dnp->dn_datablkszsec; record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; bqueue_enqueue(&sta->q, record, record_size); return (err); } /* * This function kicks off the traverse_dataset. It also handles setting the * error code of the thread in case something goes wrong, and pushes the End of * Stream record when the traverse_dataset call has finished. If there is no * dataset to traverse, the thread immediately pushes End of Stream marker. */ static void send_traverse_thread(void *arg) { struct send_thread_arg *st_arg = arg; int err; struct send_block_record *data; if (st_arg->ds != NULL) { err = traverse_dataset_resume(st_arg->ds, st_arg->fromtxg, &st_arg->resume, st_arg->flags, send_cb, st_arg); if (err != EINTR) st_arg->error_code = err; } data = kmem_zalloc(sizeof (*data), KM_SLEEP); data->eos_marker = B_TRUE; bqueue_enqueue(&st_arg->q, data, 1); thread_exit(); } /* * This function actually handles figuring out what kind of record needs to be * dumped, reading the data (which has hopefully been prefetched), and calling * the appropriate helper function. */ static int do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) { dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); const blkptr_t *bp = &data->bp; const zbookmark_phys_t *zb = &data->zb; uint8_t indblkshift = data->indblkshift; uint16_t dblkszsec = data->datablkszsec; spa_t *spa = ds->ds_dir->dd_pool->dp_spa; dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; int err = 0; ASSERT3U(zb->zb_level, >=, 0); ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || zb->zb_object >= dsa->dsa_resume_object); if (zb->zb_object != DMU_META_DNODE_OBJECT && DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { return (0); } else if (BP_IS_HOLE(bp) && zb->zb_object == DMU_META_DNODE_OBJECT) { uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); } else if (BP_IS_HOLE(bp)) { uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); uint64_t offset = zb->zb_blkid * span; err = dump_free(dsa, zb->zb_object, offset, span); } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { return (0); } else if (type == DMU_OT_DNODE) { - int blksz = BP_GET_LSIZE(bp); + int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf; ASSERT0(zb->zb_level); if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &aflags, zb) != 0) return (SET_ERROR(EIO)); dnode_phys_t *blk = abuf->b_data; - uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); - for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { + uint64_t dnobj = zb->zb_blkid * epb; + for (int i = 0; i < epb; i += blk[i].dn_extra_slots + 1) { err = dump_dnode(dsa, dnobj + i, blk + i); if (err != 0) break; } arc_buf_destroy(abuf, &abuf); } else if (type == DMU_OT_SA) { arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf; int blksz = BP_GET_LSIZE(bp); if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &aflags, zb) != 0) return (SET_ERROR(EIO)); err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); arc_buf_destroy(abuf, &abuf); } else if (backup_do_embed(dsa, bp)) { /* it's an embedded level-0 block of a regular object */ int blksz = dblkszsec << SPA_MINBLOCKSHIFT; ASSERT0(zb->zb_level); err = dump_write_embedded(dsa, zb->zb_object, zb->zb_blkid * blksz, blksz, bp); } else { /* it's a level-0 block of a regular object */ arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf; int blksz = dblkszsec << SPA_MINBLOCKSHIFT; uint64_t offset; /* * If we have large blocks stored on disk but the send flags * don't allow us to send large blocks, we split the data from * the arc buf into chunks. */ boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE && !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); /* * We should only request compressed data from the ARC if all * the following are true: * - stream compression was requested * - we aren't splitting large blocks into smaller chunks * - the data won't need to be byteswapped before sending * - this isn't an embedded block * - this isn't metadata (if receiving on a different endian * system it can be byteswapped more easily) */ boolean_t request_compressed = (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); ASSERT0(zb->zb_level); ASSERT(zb->zb_object > dsa->dsa_resume_object || (zb->zb_object == dsa->dsa_resume_object && zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); ASSERT0(zb->zb_level); ASSERT(zb->zb_object > dsa->dsa_resume_object || (zb->zb_object == dsa->dsa_resume_object && zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); ASSERT3U(blksz, ==, BP_GET_LSIZE(bp)); enum zio_flag zioflags = ZIO_FLAG_CANFAIL; if (request_compressed) zioflags |= ZIO_FLAG_RAW; if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) { if (zfs_send_corrupt_data) { /* Send a block filled with 0x"zfs badd bloc" */ abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA, blksz); uint64_t *ptr; for (ptr = abuf->b_data; (char *)ptr < (char *)abuf->b_data + blksz; ptr++) *ptr = 0x2f5baddb10cULL; } else { return (SET_ERROR(EIO)); } } offset = zb->zb_blkid * blksz; if (split_large_blocks) { ASSERT3U(arc_get_compression(abuf), ==, ZIO_COMPRESS_OFF); char *buf = abuf->b_data; while (blksz > 0 && err == 0) { int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); err = dump_write(dsa, type, zb->zb_object, offset, n, n, NULL, buf); offset += n; buf += n; blksz -= n; } } else { err = dump_write(dsa, type, zb->zb_object, offset, blksz, arc_buf_size(abuf), bp, abuf->b_data); } arc_buf_destroy(abuf, &abuf); } ASSERT(err == 0 || err == EINTR); return (err); } /* * Pop the new data off the queue, and free the old data. */ static struct send_block_record * get_next_record(bqueue_t *bq, struct send_block_record *data) { struct send_block_record *tmp = bqueue_dequeue(bq); kmem_free(data, sizeof (*data)); return (tmp); } /* * Actually do the bulk of the work in a zfs send. * * Note: Releases dp using the specified tag. */ static int dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, int outfd, uint64_t resumeobj, uint64_t resumeoff, vnode_t *vp, offset_t *off) { objset_t *os; dmu_replay_record_t *drr; dmu_sendarg_t *dsp; int err; uint64_t fromtxg = 0; uint64_t featureflags = 0; struct send_thread_arg to_arg = { 0 }; err = dmu_objset_from_ds(to_ds, &os); if (err != 0) { dsl_pool_rele(dp, tag); return (err); } drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); drr->drr_type = DRR_BEGIN; drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, DMU_SUBSTREAM); #ifdef _KERNEL if (dmu_objset_type(os) == DMU_OST_ZFS) { uint64_t version; if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { kmem_free(drr, sizeof (dmu_replay_record_t)); dsl_pool_rele(dp, tag); return (SET_ERROR(EINVAL)); } if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } #endif if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; + if (to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) + featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE; if (embedok && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) featureflags |= DMU_BACKUP_FEATURE_LZ4; } if (compressok) { featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; } if ((featureflags & (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) != 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { featureflags |= DMU_BACKUP_FEATURE_LZ4; } if (resumeobj != 0 || resumeoff != 0) { featureflags |= DMU_BACKUP_FEATURE_RESUMING; } DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, featureflags); drr->drr_u.drr_begin.drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time; drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); if (is_clone) drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; if (zfs_send_set_freerecords_bit) drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; if (ancestor_zb != NULL) { drr->drr_u.drr_begin.drr_fromguid = ancestor_zb->zbm_guid; fromtxg = ancestor_zb->zbm_creation_txg; } dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); if (!to_ds->ds_is_snapshot) { (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", sizeof (drr->drr_u.drr_begin.drr_toname)); } dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); dsp->dsa_drr = drr; dsp->dsa_vp = vp; dsp->dsa_outfd = outfd; dsp->dsa_proc = curproc; dsp->dsa_os = os; dsp->dsa_off = off; dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; dsp->dsa_pending_op = PENDING_NONE; dsp->dsa_featureflags = featureflags; dsp->dsa_resume_object = resumeobj; dsp->dsa_resume_offset = resumeoff; mutex_enter(&to_ds->ds_sendstream_lock); list_insert_head(&to_ds->ds_sendstreams, dsp); mutex_exit(&to_ds->ds_sendstream_lock); dsl_dataset_long_hold(to_ds, FTAG); dsl_pool_rele(dp, tag); void *payload = NULL; size_t payload_len = 0; if (resumeobj != 0 || resumeoff != 0) { dmu_object_info_t to_doi; err = dmu_object_info(os, resumeobj, &to_doi); if (err != 0) goto out; SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, resumeoff / to_doi.doi_data_block_size); nvlist_t *nvl = fnvlist_alloc(); fnvlist_add_uint64(nvl, "resume_object", resumeobj); fnvlist_add_uint64(nvl, "resume_offset", resumeoff); payload = fnvlist_pack(nvl, &payload_len); drr->drr_payloadlen = payload_len; fnvlist_free(nvl); } err = dump_record(dsp, payload, payload_len); fnvlist_pack_free(payload, payload_len); if (err != 0) { err = dsp->dsa_err; goto out; } err = bqueue_init(&to_arg.q, zfs_send_queue_length, offsetof(struct send_block_record, ln)); to_arg.error_code = 0; to_arg.cancel = B_FALSE; to_arg.ds = to_ds; to_arg.fromtxg = fromtxg; to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, TS_RUN, minclsyspri); struct send_block_record *to_data; to_data = bqueue_dequeue(&to_arg.q); while (!to_data->eos_marker && err == 0) { err = do_dump(dsp, to_data); to_data = get_next_record(&to_arg.q, to_data); if (issig(JUSTLOOKING) && issig(FORREAL)) err = EINTR; } if (err != 0) { to_arg.cancel = B_TRUE; while (!to_data->eos_marker) { to_data = get_next_record(&to_arg.q, to_data); } } kmem_free(to_data, sizeof (*to_data)); bqueue_destroy(&to_arg.q); if (err == 0 && to_arg.error_code != 0) err = to_arg.error_code; if (err != 0) goto out; if (dsp->dsa_pending_op != PENDING_NONE) if (dump_record(dsp, NULL, 0) != 0) err = SET_ERROR(EINTR); if (err != 0) { if (err == EINTR && dsp->dsa_err != 0) err = dsp->dsa_err; goto out; } bzero(drr, sizeof (dmu_replay_record_t)); drr->drr_type = DRR_END; drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; if (dump_record(dsp, NULL, 0) != 0) err = dsp->dsa_err; out: mutex_enter(&to_ds->ds_sendstream_lock); list_remove(&to_ds->ds_sendstreams, dsp); mutex_exit(&to_ds->ds_sendstream_lock); VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); kmem_free(drr, sizeof (dmu_replay_record_t)); kmem_free(dsp, sizeof (dmu_sendarg_t)); dsl_dataset_long_rele(to_ds, FTAG); return (err); } int dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, int outfd, vnode_t *vp, offset_t *off) { dsl_pool_t *dp; dsl_dataset_t *ds; dsl_dataset_t *fromds = NULL; int err; err = dsl_pool_hold(pool, FTAG, &dp); if (err != 0) return (err); err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } if (fromsnap != 0) { zfs_bookmark_phys_t zb; boolean_t is_clone; err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); if (err != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (err); } if (!dsl_dataset_is_before(ds, fromds, 0)) err = SET_ERROR(EXDEV); zb.zbm_creation_time = dsl_dataset_phys(fromds)->ds_creation_time; zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; is_clone = (fromds->ds_dir != ds->ds_dir); dsl_dataset_rele(fromds, FTAG); err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); } else { err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); } dsl_dataset_rele(ds, FTAG); return (err); } int dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, int outfd, uint64_t resumeobj, uint64_t resumeoff, vnode_t *vp, offset_t *off) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; boolean_t owned = B_FALSE; if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) return (SET_ERROR(EINVAL)); err = dsl_pool_hold(tosnap, FTAG, &dp); if (err != 0) return (err); if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { /* * We are sending a filesystem or volume. Ensure * that it doesn't change by owning the dataset. */ err = dsl_dataset_own(dp, tosnap, FTAG, &ds); owned = B_TRUE; } else { err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); } if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } if (fromsnap != NULL) { zfs_bookmark_phys_t zb; boolean_t is_clone = B_FALSE; int fsnamelen = strchr(tosnap, '@') - tosnap; /* * If the fromsnap is in a different filesystem, then * mark the send stream as a clone. */ if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || (fromsnap[fsnamelen] != '@' && fromsnap[fsnamelen] != '#')) { is_clone = B_TRUE; } if (strchr(fromsnap, '@')) { dsl_dataset_t *fromds; err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); if (err == 0) { if (!dsl_dataset_is_before(ds, fromds, 0)) err = SET_ERROR(EXDEV); zb.zbm_creation_time = dsl_dataset_phys(fromds)->ds_creation_time; zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; is_clone = (ds->ds_dir != fromds->ds_dir); dsl_dataset_rele(fromds, FTAG); } } else { err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); } if (err != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (err); } err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, embedok, large_block_ok, compressok, outfd, resumeobj, resumeoff, vp, off); } else { err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, embedok, large_block_ok, compressok, outfd, resumeobj, resumeoff, vp, off); } if (owned) dsl_dataset_disown(ds, FTAG); else dsl_dataset_rele(ds, FTAG); return (err); } static int dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) { int err = 0; uint64_t size; /* * Assume that space (both on-disk and in-stream) is dominated by * data. We will adjust for indirect blocks and the copies property, * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). */ uint64_t recordsize; uint64_t record_count; objset_t *os; VERIFY0(dmu_objset_from_ds(ds, &os)); /* Assume all (uncompressed) blocks are recordsize. */ if (zfs_override_estimate_recordsize != 0) { recordsize = zfs_override_estimate_recordsize; } else if (os->os_phys->os_type == DMU_OST_ZVOL) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); } else { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); } if (err != 0) return (err); record_count = uncompressed / recordsize; /* * If we're estimating a send size for a compressed stream, use the * compressed data size to estimate the stream size. Otherwise, use the * uncompressed data size. */ size = stream_compressed ? compressed : uncompressed; /* * Subtract out approximate space used by indirect blocks. * Assume most space is used by data blocks (non-indirect, non-dnode). * Assume no ditto blocks or internal fragmentation. * * Therefore, space used by indirect blocks is sizeof(blkptr_t) per * block. */ size -= record_count * sizeof (blkptr_t); /* Add in the space for the record associated with each block. */ size += record_count * sizeof (dmu_replay_record_t); *sizep = size; return (0); } int dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, boolean_t stream_compressed, uint64_t *sizep) { dsl_pool_t *dp = ds->ds_dir->dd_pool; int err; uint64_t uncomp, comp; ASSERT(dsl_pool_config_held(dp)); /* tosnap must be a snapshot */ if (!ds->ds_is_snapshot) return (SET_ERROR(EINVAL)); /* fromsnap, if provided, must be a snapshot */ if (fromds != NULL && !fromds->ds_is_snapshot) return (SET_ERROR(EINVAL)); /* * fromsnap must be an earlier snapshot from the same fs as tosnap, * or the origin's fs. */ if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) return (SET_ERROR(EXDEV)); /* Get compressed and uncompressed size estimates of changed data. */ if (fromds == NULL) { uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; comp = dsl_dataset_phys(ds)->ds_compressed_bytes; } else { uint64_t used; err = dsl_dataset_space_written(fromds, ds, &used, &comp, &uncomp); if (err != 0) return (err); } err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, stream_compressed, sizep); /* * Add the size of the BEGIN and END records to the estimate. */ *sizep += 2 * sizeof (dmu_replay_record_t); return (err); } struct calculate_send_arg { uint64_t uncompressed; uint64_t compressed; }; /* * Simple callback used to traverse the blocks of a snapshot and sum their * uncompressed and compressed sizes. */ /* ARGSUSED */ static int dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { struct calculate_send_arg *space = arg; if (bp != NULL && !BP_IS_HOLE(bp)) { space->uncompressed += BP_GET_UCSIZE(bp); space->compressed += BP_GET_PSIZE(bp); } return (0); } /* * Given a desination snapshot and a TXG, calculate the approximate size of a * send stream sent from that TXG. from_txg may be zero, indicating that the * whole snapshot will be sent. */ int dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, boolean_t stream_compressed, uint64_t *sizep) { dsl_pool_t *dp = ds->ds_dir->dd_pool; int err; struct calculate_send_arg size = { 0 }; ASSERT(dsl_pool_config_held(dp)); /* tosnap must be a snapshot */ if (!ds->ds_is_snapshot) return (SET_ERROR(EINVAL)); /* verify that from_txg is before the provided snapshot was taken */ if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { return (SET_ERROR(EXDEV)); } /* * traverse the blocks of the snapshot with birth times after * from_txg, summing their uncompressed size */ err = traverse_dataset(ds, from_txg, TRAVERSE_POST, dmu_calculate_send_traversal, &size); if (err) return (err); err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed, size.compressed, stream_compressed, sizep); return (err); } typedef struct dmu_recv_begin_arg { const char *drba_origin; dmu_recv_cookie_t *drba_cookie; cred_t *drba_cred; uint64_t drba_snapobj; } dmu_recv_begin_arg_t; static int recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, uint64_t fromguid) { uint64_t val; int error; dsl_pool_t *dp = ds->ds_dir->dd_pool; /* temporary clone name must not exist */ error = zap_lookup(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EBUSY : error); /* new snapshot name must not exist */ error = zap_lookup(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, drba->drba_cookie->drc_tosnap, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EEXIST : error); /* * Check snapshot limit before receiving. We'll recheck again at the * end, but might as well abort before receiving if we're already over * the limit. * * Note that we do not check the file system limit with * dsl_dir_fscount_check because the temporary %clones don't count * against that limit. */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) return (error); if (fromguid != 0) { dsl_dataset_t *snap; uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; /* Find snapshot in this dir that matches fromguid. */ while (obj != 0) { error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (SET_ERROR(ENODEV)); if (snap->ds_dir != ds->ds_dir) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENODEV)); } if (dsl_dataset_phys(snap)->ds_guid == fromguid) break; obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); } if (obj == 0) return (SET_ERROR(ENODEV)); if (drba->drba_cookie->drc_force) { drba->drba_snapobj = obj; } else { /* * If we are not forcing, there must be no * changes since fromsnap. */ if (dsl_dataset_modified_since_snap(ds, snap)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ETXTBSY)); } drba->drba_snapobj = ds->ds_prev->ds_object; } dsl_dataset_rele(snap, FTAG); } else { /* if full, then must be forced */ if (!drba->drba_cookie->drc_force) return (SET_ERROR(EEXIST)); /* start from $ORIGIN@$ORIGIN, if supported */ drba->drba_snapobj = dp->dp_origin_snap != NULL ? dp->dp_origin_snap->ds_object : 0; } return (0); } static int dmu_recv_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t fromguid = drrb->drr_fromguid; int flags = drrb->drr_flags; int error; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES || ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) return (SET_ERROR(EINVAL)); /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(dp->dp_spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); if (drba->drba_cookie->drc_resumable && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate a WRITE_EMBEDDED * record to a plain WRITE record, so the pool must have the * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED * records. Same with WRITE_EMBEDDED records that use LZ4 compression. */ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate large blocks * to smaller ones, so the pool must have the LARGE_BLOCKS - * feature enabled if the stream has LARGE_BLOCKS. + * feature enabled if the stream has LARGE_BLOCKS. Same with + * large dnodes. */ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) + return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, tofs, FTAG, &ds); if (error == 0) { /* target fs already exists; recv into temp clone */ /* Can't recv a clone into an existing fs */ if (flags & DRR_FLAG_CLONE || drba->drba_origin) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = recv_begin_check_existing_impl(drba, ds, fromguid); dsl_dataset_rele(ds, FTAG); } else if (error == ENOENT) { /* target fs does not exist; must be a full backup or clone */ char buf[ZFS_MAX_DATASET_NAME_LEN]; /* * If it's a non-clone incremental, we are missing the * target fs, so fail the recv. */ if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || drba->drba_origin)) return (SET_ERROR(ENOENT)); /* * If we're receiving a full send as a clone, and it doesn't * contain all the necessary free records and freeobject * records, reject it. */ if (fromguid == 0 && drba->drba_origin && !(flags & DRR_FLAG_FREERECORDS)) return (SET_ERROR(EINVAL)); /* Open the parent of tofs */ ASSERT3U(strlen(tofs), <, sizeof (buf)); (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); error = dsl_dataset_hold(dp, buf, FTAG, &ds); if (error != 0) return (error); /* * Check filesystem and snapshot limits before receiving. We'll * recheck snapshot limits again at the end (we create the * filesystems and increment those counts during begin_sync). */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (drba->drba_origin != NULL) { dsl_dataset_t *origin; error = dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (!origin->ds_is_snapshot) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (dsl_dataset_phys(origin)->ds_guid != fromguid && fromguid != 0) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENODEV)); } dsl_dataset_rele(origin, FTAG); } dsl_dataset_rele(ds, FTAG); error = 0; } return (error); } static void dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; struct drr_begin *drrb = drba->drba_cookie->drc_drrb; const char *tofs = drba->drba_cookie->drc_tofs; dsl_dataset_t *ds, *newds; uint64_t dsobj; int error; uint64_t crflags = 0; if (drrb->drr_flags & DRR_FLAG_CI_DATA) crflags |= DS_FLAG_CI_DATASET; error = dsl_dataset_hold(dp, tofs, FTAG, &ds); if (error == 0) { /* create temporary clone */ dsl_dataset_t *snap = NULL; if (drba->drba_snapobj != 0) { VERIFY0(dsl_dataset_hold_obj(dp, drba->drba_snapobj, FTAG, &snap)); } dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, snap, crflags, drba->drba_cred, tx); if (drba->drba_snapobj != 0) dsl_dataset_rele(snap, FTAG); dsl_dataset_rele(ds, FTAG); } else { dsl_dir_t *dd; const char *tail; dsl_dataset_t *origin = NULL; VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); if (drba->drba_origin != NULL) { VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin)); } /* Create new dataset. */ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, origin, crflags, drba->drba_cred, tx); if (origin != NULL) dsl_dataset_rele(origin, FTAG); dsl_dir_rele(dd, FTAG); drba->drba_cookie->drc_newfs = B_TRUE; } VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); if (drba->drba_cookie->drc_resumable) { dsl_dataset_zapify(newds, tx); if (drrb->drr_fromguid != 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 8, 1, &drrb->drr_fromguid, tx)); } VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 8, 1, &drrb->drr_toguid, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); uint64_t one = 1; uint64_t zero = 0; VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 8, 1, &one, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 8, 1, &zero, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 8, 1, &zero, tx)); if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 8, 1, &one, tx)); } if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_EMBED_DATA) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 8, 1, &one, tx)); } if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_COMPRESSED) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 8, 1, &one, tx)); } } dmu_buf_will_dirty(newds->ds_dbuf, tx); dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; /* * If we actually created a non-clone, we need to create the * objset in our new dataset. */ rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { (void) dmu_objset_create_impl(dp->dp_spa, newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); } rrw_exit(&newds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = newds; spa_history_log_internal_ds(newds, "receive", tx, ""); } static int dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; int error; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; + /* 6 extra bytes for /%recv */ + char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; + /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES) return (SET_ERROR(EINVAL)); /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(dp->dp_spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate a WRITE_EMBEDDED * record to a plain WRITE record, so the pool must have the * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED * records. Same with WRITE_EMBEDDED records that use LZ4 compression. */ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); - /* 6 extra bytes for /%recv */ - char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; + /* + * The receiving code doesn't know how to translate large blocks + * to smaller ones, so the pool must have the LARGE_BLOCKS + * feature enabled if the stream has LARGE_BLOCKS. Same with + * large dnodes. + */ + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) + return (SET_ERROR(ENOTSUP)); (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ error = dsl_dataset_hold(dp, tofs, FTAG, &ds); if (error != 0) return (error); } /* check that ds is marked inconsistent */ if (!DS_IS_INCONSISTENT(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* check that there is resuming data, and that the toguid matches */ if (!dsl_dataset_is_zapified(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } uint64_t val; error = zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); if (error != 0 || drrb->drr_toguid != val) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* * Check if the receive is still running. If so, it will be owned. * Note that nothing else can own the dataset (e.g. after the receive * fails) because it will be marked inconsistent. */ if (dsl_dataset_has_owner(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EBUSY)); } /* There should not be any snapshots of this fs yet. */ if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* * Note: resume point will be checked when we process the first WRITE * record. */ /* check that the origin matches */ val = 0; (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); if (drrb->drr_fromguid != val) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); const char *tofs = drba->drba_cookie->drc_tofs; dsl_dataset_t *ds; uint64_t dsobj; /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); drba->drba_cookie->drc_newfs = B_TRUE; } /* clear the inconsistent flag so that we can own it */ ASSERT(DS_IS_INCONSISTENT(ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; dsobj = ds->ds_object; dsl_dataset_rele(ds, FTAG); VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); rrw_exit(&ds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = ds; spa_history_log_internal_ds(ds, "resume receive", tx, ""); } /* * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() * succeeds; otherwise we will leak the holds on the datasets. */ int dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) { dmu_recv_begin_arg_t drba = { 0 }; bzero(drc, sizeof (dmu_recv_cookie_t)); drc->drc_drr_begin = drr_begin; drc->drc_drrb = &drr_begin->drr_u.drr_begin; drc->drc_tosnap = tosnap; drc->drc_tofs = tofs; drc->drc_force = force; drc->drc_resumable = resumable; drc->drc_cred = CRED(); drc->drc_clone = (origin != NULL); if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { drc->drc_byteswap = B_TRUE; (void) fletcher_4_incremental_byteswap(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); byteswap_record(drr_begin); } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { (void) fletcher_4_incremental_native(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); } else { return (SET_ERROR(EINVAL)); } drba.drba_origin = origin; drba.drba_cookie = drc; drba.drba_cred = CRED(); if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RESUMING) { return (dsl_sync_task(tofs, dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL)); } else { return (dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL)); } } struct receive_record_arg { dmu_replay_record_t header; void *payload; /* Pointer to a buffer containing the payload */ /* * If the record is a write, pointer to the arc_buf_t containing the * payload. */ arc_buf_t *write_buf; int payload_size; uint64_t bytes_read; /* bytes read from stream when record created */ boolean_t eos_marker; /* Marks the end of the stream */ bqueue_node_t node; }; struct receive_writer_arg { objset_t *os; boolean_t byteswap; bqueue_t q; /* * These three args are used to signal to the main thread that we're * done. */ kmutex_t mutex; kcondvar_t cv; boolean_t done; int err; /* A map from guid to dataset to help handle dedup'd streams. */ avl_tree_t *guid_to_ds_map; boolean_t resumable; uint64_t last_object; uint64_t last_offset; uint64_t max_object; /* highest object ID referenced in stream */ uint64_t bytes_read; /* bytes read when current record created */ }; struct objlist { list_t list; /* List of struct receive_objnode. */ /* * Last object looked up. Used to assert that objects are being looked * up in ascending order. */ uint64_t last_lookup; }; struct receive_objnode { list_node_t node; uint64_t object; }; struct receive_arg { objset_t *os; vnode_t *vp; /* The vnode to read the stream from */ uint64_t voff; /* The current offset in the stream */ uint64_t bytes_read; /* * A record that has had its payload read in, but hasn't yet been handed * off to the worker thread. */ struct receive_record_arg *rrd; /* A record that has had its header read in, but not its payload. */ struct receive_record_arg *next_rrd; zio_cksum_t cksum; zio_cksum_t prev_cksum; int err; boolean_t byteswap; /* Sorted list of objects not to issue prefetches for. */ struct objlist ignore_objlist; }; typedef struct guid_map_entry { uint64_t guid; dsl_dataset_t *gme_ds; avl_node_t avlnode; } guid_map_entry_t; static int guid_compare(const void *arg1, const void *arg2) { const guid_map_entry_t *gmep1 = arg1; const guid_map_entry_t *gmep2 = arg2; if (gmep1->guid < gmep2->guid) return (-1); else if (gmep1->guid > gmep2->guid) return (1); return (0); } static void free_guid_map_onexit(void *arg) { avl_tree_t *ca = arg; void *cookie = NULL; guid_map_entry_t *gmep; while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { dsl_dataset_long_rele(gmep->gme_ds, gmep); dsl_dataset_rele(gmep->gme_ds, gmep); kmem_free(gmep, sizeof (guid_map_entry_t)); } avl_destroy(ca); kmem_free(ca, sizeof (avl_tree_t)); } static int receive_read(struct receive_arg *ra, int len, void *buf) { int done = 0; /* * The code doesn't rely on this (lengths being multiples of 8). See * comment in dump_bytes. */ ASSERT0(len % 8); while (done < len) { ssize_t resid; ra->err = vn_rdwr(UIO_READ, ra->vp, (char *)buf + done, len - done, ra->voff, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); if (resid == len - done) { /* * Note: ECKSUM indicates that the receive * was interrupted and can potentially be resumed. */ ra->err = SET_ERROR(ECKSUM); } ra->voff += len - done - resid; done = len - resid; if (ra->err != 0) return (ra->err); } ra->bytes_read += len; ASSERT3U(done, ==, len); return (0); } static void byteswap_record(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_versioninfo); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO32(drr_begin.drr_flags); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); DO64(drr_object.drr_toguid); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); DO64(drr_freeobjects.drr_toguid); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_logical_size); DO64(drr_write.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); DO64(drr_write.drr_key.ddk_prop); DO64(drr_write.drr_compressed_size); break; case DRR_WRITE_BYREF: DO64(drr_write_byref.drr_object); DO64(drr_write_byref.drr_offset); DO64(drr_write_byref.drr_length); DO64(drr_write_byref.drr_toguid); DO64(drr_write_byref.drr_refguid); DO64(drr_write_byref.drr_refobject); DO64(drr_write_byref.drr_refoffset); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. drr_key.ddk_cksum); DO64(drr_write_byref.drr_key.ddk_prop); break; case DRR_WRITE_EMBEDDED: DO64(drr_write_embedded.drr_object); DO64(drr_write_embedded.drr_offset); DO64(drr_write_embedded.drr_length); DO64(drr_write_embedded.drr_toguid); DO32(drr_write_embedded.drr_lsize); DO32(drr_write_embedded.drr_psize); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); DO64(drr_free.drr_toguid); break; case DRR_SPILL: DO64(drr_spill.drr_object); DO64(drr_spill.drr_length); DO64(drr_spill.drr_toguid); break; case DRR_END: DO64(drr_end.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); break; } if (drr->drr_type != DRR_BEGIN) { ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); } #undef DO64 #undef DO32 } static inline uint8_t deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) { if (bonus_type == DMU_OT_SA) { return (1); } else { return (1 + - ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); + ((DN_OLD_MAX_BONUSLEN - + MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); } } static void save_resume_state(struct receive_writer_arg *rwa, uint64_t object, uint64_t offset, dmu_tx_t *tx) { int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; if (!rwa->resumable) return; /* * We use ds_resume_bytes[] != 0 to indicate that we need to * update this on disk, so it must not be 0. */ ASSERT(rwa->bytes_read != 0); /* * We only resume from write records, which have a valid * (non-meta-dnode) object number. */ ASSERT(object != 0); /* * For resuming to work correctly, we must receive records in order, * sorted by object,offset. This is checked by the callers, but * assert it here for good measure. */ ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); ASSERT3U(rwa->bytes_read, >=, rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; } static int receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, void *data) { dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object; int err; if (drro->drr_type == DMU_OT_NONE || !DMU_OT_IS_VALID(drro->drr_type) || !DMU_OT_IS_VALID(drro->drr_bonustype) || drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || - drro->drr_bonuslen > DN_MAX_BONUSLEN) { + drro->drr_bonuslen > + DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || + drro->drr_dn_slots > + (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { return (SET_ERROR(EINVAL)); } err = dmu_object_info(rwa->os, drro->drr_object, &doi); - if (err != 0 && err != ENOENT) + if (err != 0 && err != ENOENT && err != EEXIST) return (SET_ERROR(EINVAL)); - object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; if (drro->drr_object > rwa->max_object) rwa->max_object = drro->drr_object; /* * If we are losing blkptrs or changing the block size this must * be a new file instance. We must clear out the previous file * contents before we can change this type of metadata in the dnode. */ if (err == 0) { int nblkptr; + object = drro->drr_object; + nblkptr = deduce_nblkptr(drro->drr_bonustype, drro->drr_bonuslen); if (drro->drr_blksz != doi.doi_data_block_size || - nblkptr < doi.doi_nblkptr) { + nblkptr < doi.doi_nblkptr || + drro->drr_dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { err = dmu_free_long_range(rwa->os, drro->drr_object, 0, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } + } else if (err == EEXIST) { + /* + * The object requested is currently an interior slot of a + * multi-slot dnode. This will be resolved when the next txg + * is synced out, since the send stream will have told us + * to free this slot when we freed the associated dnode + * earlier in the stream. + */ + txg_wait_synced(dmu_objset_pool(rwa->os), 0); + object = drro->drr_object; + } else { + /* object is free and we are about to allocate a new one */ + object = DMU_NEW_OBJECT; } + /* + * If this is a multi-slot dnode there is a chance that this + * object will expand into a slot that is already used by + * another object from the previous snapshot. We must free + * these objects before we attempt to allocate the new dnode. + */ + if (drro->drr_dn_slots > 1) { + boolean_t need_sync = B_FALSE; + + for (uint64_t slot = drro->drr_object + 1; + slot < drro->drr_object + drro->drr_dn_slots; + slot++) { + dmu_object_info_t slot_doi; + + err = dmu_object_info(rwa->os, slot, &slot_doi); + if (err == ENOENT || err == EEXIST) + continue; + else if (err != 0) + return (err); + + err = dmu_free_long_object(rwa->os, slot); + + if (err != 0) + return (err); + + need_sync = B_TRUE; + } + + if (need_sync) + txg_wait_synced(dmu_objset_pool(rwa->os), 0); + } + tx = dmu_tx_create(rwa->os); dmu_tx_hold_bonus(tx, object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (object == DMU_NEW_OBJECT) { /* currently free, want to be allocated */ - err = dmu_object_claim(rwa->os, drro->drr_object, + err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, drro->drr_type, drro->drr_blksz, - drro->drr_bonustype, drro->drr_bonuslen, tx); + drro->drr_bonustype, drro->drr_bonuslen, + drro->drr_dn_slots << DNODE_SHIFT, tx); } else if (drro->drr_type != doi.doi_type || drro->drr_blksz != doi.doi_data_block_size || drro->drr_bonustype != doi.doi_bonus_type || drro->drr_bonuslen != doi.doi_bonus_size) { /* currently allocated, but with different properties */ err = dmu_object_reclaim(rwa->os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, tx); } if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } dmu_object_set_checksum(rwa->os, drro->drr_object, drro->drr_checksumtype, tx); dmu_object_set_compress(rwa->os, drro->drr_object, drro->drr_compress, tx); if (data != NULL) { dmu_buf_t *db; VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, drro->drr_bonuslen); bcopy(data, db->db_data, drro->drr_bonuslen); if (rwa->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drro->drr_bonustype); dmu_ot_byteswap[byteswap].ob_func(db->db_data, drro->drr_bonuslen); } dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int receive_freeobjects(struct receive_writer_arg *rwa, struct drr_freeobjects *drrfo) { uint64_t obj; int next_err = 0; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (SET_ERROR(EINVAL)); - for (obj = drrfo->drr_firstobj; + for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { int err; - if (dmu_object_info(rwa->os, obj, NULL) != 0) + err = dmu_object_info(rwa->os, obj, NULL); + if (err == ENOENT) { + obj++; continue; + } else if (err != 0) { + return (err); + } err = dmu_free_long_object(rwa->os, obj); if (err != 0) return (err); if (obj > rwa->max_object) rwa->max_object = obj; } if (next_err != ESRCH) return (next_err); return (0); } static int receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, arc_buf_t *abuf) { dmu_tx_t *tx; int err; if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || !DMU_OT_IS_VALID(drrw->drr_type)) return (SET_ERROR(EINVAL)); /* * For resuming to work, records must be in increasing order * by (object, offset). */ if (drrw->drr_object < rwa->last_object || (drrw->drr_object == rwa->last_object && drrw->drr_offset < rwa->last_offset)) { return (SET_ERROR(EINVAL)); } rwa->last_object = drrw->drr_object; rwa->last_offset = drrw->drr_offset; if (rwa->last_object > rwa->max_object) rwa->max_object = rwa->last_object; if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (rwa->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, DRR_WRITE_PAYLOAD_SIZE(drrw)); } /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */ dmu_buf_t *bonus; if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) return (SET_ERROR(EINVAL)); dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); /* * Note: If the receive fails, we want the resume stream to start * with the same record that we last successfully received (as opposed * to the next record), so that we can verify that we are * resuming from the correct location. */ save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); dmu_tx_commit(tx); dmu_buf_rele(bonus, FTAG); return (0); } /* * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed * streams to refer to a copy of the data that is already on the * system because it came in earlier in the stream. This function * finds the earlier copy of the data, and uses that copy instead of * data from the stream to fulfill this write. */ static int receive_write_byref(struct receive_writer_arg *rwa, struct drr_write_byref *drrwbr) { dmu_tx_t *tx; int err; guid_map_entry_t gmesrch; guid_map_entry_t *gmep; avl_index_t where; objset_t *ref_os = NULL; dmu_buf_t *dbp; if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) return (SET_ERROR(EINVAL)); /* * If the GUID of the referenced dataset is different from the * GUID of the target dataset, find the referenced dataset. */ if (drrwbr->drr_toguid != drrwbr->drr_refguid) { gmesrch.guid = drrwbr->drr_refguid; if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, &where)) == NULL) { return (SET_ERROR(EINVAL)); } if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) return (SET_ERROR(EINVAL)); } else { ref_os = rwa->os; } if (drrwbr->drr_object > rwa->max_object) rwa->max_object = drrwbr->drr_object; err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); if (err != 0) return (err); tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write(rwa->os, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); dmu_buf_rele(dbp, FTAG); /* See comment in restore_write. */ save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_write_embedded(struct receive_writer_arg *rwa, struct drr_write_embedded *drrwe, void *data) { dmu_tx_t *tx; int err; if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) return (EINVAL); if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) return (EINVAL); if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) return (EINVAL); if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) return (EINVAL); if (drrwe->drr_object > rwa->max_object) rwa->max_object = drrwe->drr_object; tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write_embedded(rwa->os, drrwe->drr_object, drrwe->drr_offset, data, drrwe->drr_etype, drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); /* See comment in restore_write. */ save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, void *data) { dmu_tx_t *tx; dmu_buf_t *db, *db_spill; int err; if (drrs->drr_length < SPA_MINBLOCKSIZE || drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) return (SET_ERROR(EINVAL)); if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrs->drr_object > rwa->max_object) rwa->max_object = drrs->drr_object; VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { dmu_buf_rele(db, FTAG); return (err); } tx = dmu_tx_create(rwa->os); dmu_tx_hold_spill(tx, db->db_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_abort(tx); return (err); } dmu_buf_will_dirty(db_spill, tx); if (db_spill->db_size < drrs->drr_length) VERIFY(0 == dbuf_spill_set_blksz(db_spill, drrs->drr_length, tx)); bcopy(data, db_spill->db_data, drrs->drr_length); dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) { int err; if (drrf->drr_length != -1ULL && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (SET_ERROR(EINVAL)); if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrf->drr_object > rwa->max_object) rwa->max_object = drrf->drr_object; err = dmu_free_long_range(rwa->os, drrf->drr_object, drrf->drr_offset, drrf->drr_length); return (err); } /* used to destroy the drc_ds on error */ static void dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) { if (drc->drc_resumable) { /* wait for our resume state to be written to disk */ txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); } else { char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(drc->drc_ds, name); dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); (void) dsl_destroy_head(name); } } static void receive_cksum(struct receive_arg *ra, int len, void *buf) { if (ra->byteswap) { (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); } else { (void) fletcher_4_incremental_native(buf, len, &ra->cksum); } } /* * Read the payload into a buffer of size len, and update the current record's * payload field. * Allocate ra->next_rrd and read the next record's header into * ra->next_rrd->header. * Verify checksum of payload and next record. */ static int receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) { int err; if (len != 0) { ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); err = receive_read(ra, len, buf); if (err != 0) return (err); receive_cksum(ra, len, buf); /* note: rrd is NULL when reading the begin record's payload */ if (ra->rrd != NULL) { ra->rrd->payload = buf; ra->rrd->payload_size = len; ra->rrd->bytes_read = ra->bytes_read; } } ra->prev_cksum = ra->cksum; ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); err = receive_read(ra, sizeof (ra->next_rrd->header), &ra->next_rrd->header); ra->next_rrd->bytes_read = ra->bytes_read; if (err != 0) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (err); } if (ra->next_rrd->header.drr_type == DRR_BEGIN) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (SET_ERROR(EINVAL)); } /* * Note: checksum is of everything up to but not including the * checksum itself. */ ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); receive_cksum(ra, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), &ra->next_rrd->header); zio_cksum_t cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; zio_cksum_t *cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; if (ra->byteswap) byteswap_record(&ra->next_rrd->header); if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (SET_ERROR(ECKSUM)); } receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); return (0); } static void objlist_create(struct objlist *list) { list_create(&list->list, sizeof (struct receive_objnode), offsetof(struct receive_objnode, node)); list->last_lookup = 0; } static void objlist_destroy(struct objlist *list) { for (struct receive_objnode *n = list_remove_head(&list->list); n != NULL; n = list_remove_head(&list->list)) { kmem_free(n, sizeof (*n)); } list_destroy(&list->list); } /* * This function looks through the objlist to see if the specified object number * is contained in the objlist. In the process, it will remove all object * numbers in the list that are smaller than the specified object number. Thus, * any lookup of an object number smaller than a previously looked up object * number will always return false; therefore, all lookups should be done in * ascending order. */ static boolean_t objlist_exists(struct objlist *list, uint64_t object) { struct receive_objnode *node = list_head(&list->list); ASSERT3U(object, >=, list->last_lookup); list->last_lookup = object; while (node != NULL && node->object < object) { VERIFY3P(node, ==, list_remove_head(&list->list)); kmem_free(node, sizeof (*node)); node = list_head(&list->list); } return (node != NULL && node->object == object); } /* * The objlist is a list of object numbers stored in ascending order. However, * the insertion of new object numbers does not seek out the correct location to * store a new object number; instead, it appends it to the list for simplicity. * Thus, any users must take care to only insert new object numbers in ascending * order. */ static void objlist_insert(struct objlist *list, uint64_t object) { struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); node->object = object; #ifdef ZFS_DEBUG struct receive_objnode *last_object = list_tail(&list->list); uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); ASSERT3U(node->object, >, last_objnum); #endif list_insert_tail(&list->list, node); } /* * Issue the prefetch reads for any necessary indirect blocks. * * We use the object ignore list to tell us whether or not to issue prefetches * for a given object. We do this for both correctness (in case the blocksize * of an object has changed) and performance (if the object doesn't exist, don't * needlessly try to issue prefetches). We also trim the list as we go through * the stream to prevent it from growing to an unbounded size. * * The object numbers within will always be in sorted order, and any write * records we see will also be in sorted order, but they're not sorted with * respect to each other (i.e. we can get several object records before * receiving each object's write records). As a result, once we've reached a * given object number, we can safely remove any reference to lower object * numbers in the ignore list. In practice, we receive up to 32 object records * before receiving write records, so the list can have up to 32 nodes in it. */ /* ARGSUSED */ static void receive_read_prefetch(struct receive_arg *ra, uint64_t object, uint64_t offset, uint64_t length) { if (!objlist_exists(&ra->ignore_objlist, object)) { dmu_prefetch(ra->os, object, 1, offset, length, ZIO_PRIORITY_SYNC_READ); } } /* * Read records off the stream, issuing any necessary prefetches. */ static int receive_read_record(struct receive_arg *ra) { int err; switch (ra->rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); void *buf = kmem_zalloc(size, KM_SLEEP); dmu_object_info_t doi; err = receive_read_payload_and_next_header(ra, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } err = dmu_object_info(ra->os, drro->drr_object, &doi); /* * See receive_read_prefetch for an explanation why we're * storing this object in the ignore_obj_list. */ if (err == ENOENT || (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { objlist_insert(&ra->ignore_objlist, drro->drr_object); err = 0; } return (err); } case DRR_FREEOBJECTS: { err = receive_read_payload_and_next_header(ra, 0, NULL); return (err); } case DRR_WRITE: { struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; arc_buf_t *abuf; boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); if (DRR_WRITE_COMPRESSED(drrw)) { ASSERT3U(drrw->drr_compressed_size, >, 0); ASSERT3U(drrw->drr_logical_size, >=, drrw->drr_compressed_size); ASSERT(!is_meta); abuf = arc_loan_compressed_buf( dmu_objset_spa(ra->os), drrw->drr_compressed_size, drrw->drr_logical_size, drrw->drr_compressiontype); } else { abuf = arc_loan_buf(dmu_objset_spa(ra->os), is_meta, drrw->drr_logical_size); } err = receive_read_payload_and_next_header(ra, DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); if (err != 0) { dmu_return_arcbuf(abuf); return (err); } ra->rrd->write_buf = abuf; receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); return (err); } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwb = &ra->rrd->header.drr_u.drr_write_byref; err = receive_read_payload_and_next_header(ra, 0, NULL); receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, drrwb->drr_length); return (err); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &ra->rrd->header.drr_u.drr_write_embedded; uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); void *buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(ra, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); return (err); } case DRR_FREE: { /* * It might be beneficial to prefetch indirect blocks here, but * we don't really have the data to decide for sure. */ err = receive_read_payload_and_next_header(ra, 0, NULL); return (err); } case DRR_END: { struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) return (SET_ERROR(ECKSUM)); return (0); } case DRR_SPILL: { struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); err = receive_read_payload_and_next_header(ra, drrs->drr_length, buf); if (err != 0) kmem_free(buf, drrs->drr_length); return (err); } default: return (SET_ERROR(EINVAL)); } } /* * Commit the records to the pool. */ static int receive_process_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err; /* Processing in order, therefore bytes_read should be increasing. */ ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); rwa->bytes_read = rrd->bytes_read; switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; err = receive_object(rwa, drro, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; return (err); } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; return (receive_freeobjects(rwa, drrfo)); } case DRR_WRITE: { struct drr_write *drrw = &rrd->header.drr_u.drr_write; err = receive_write(rwa, drrw, rrd->write_buf); /* if receive_write() is successful, it consumes the arc_buf */ if (err != 0) dmu_return_arcbuf(rrd->write_buf); rrd->write_buf = NULL; rrd->payload = NULL; return (err); } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwbr = &rrd->header.drr_u.drr_write_byref; return (receive_write_byref(rwa, drrwbr)); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; err = receive_write_embedded(rwa, drrwe, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; return (err); } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; return (receive_free(rwa, drrf)); } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; err = receive_spill(rwa, drrs, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; return (err); } default: return (SET_ERROR(EINVAL)); } } /* * dmu_recv_stream's worker thread; pull records off the queue, and then call * receive_process_record When we're done, signal the main thread and exit. */ static void receive_writer_thread(void *arg) { struct receive_writer_arg *rwa = arg; struct receive_record_arg *rrd; for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; rrd = bqueue_dequeue(&rwa->q)) { /* * If there's an error, the main thread will stop putting things * on the queue, but we need to clear everything in it before we * can exit. */ if (rwa->err == 0) { rwa->err = receive_process_record(rwa, rrd); } else if (rrd->write_buf != NULL) { dmu_return_arcbuf(rrd->write_buf); rrd->write_buf = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } kmem_free(rrd, sizeof (*rrd)); } kmem_free(rrd, sizeof (*rrd)); mutex_enter(&rwa->mutex); rwa->done = B_TRUE; cv_signal(&rwa->cv); mutex_exit(&rwa->mutex); thread_exit(); } static int resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) { uint64_t val; objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; uint64_t dsobj = dmu_objset_id(ra->os); uint64_t resume_obj, resume_off; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &resume_obj) != 0 || nvlist_lookup_uint64(begin_nvl, "resume_offset", &resume_off) != 0) { return (SET_ERROR(EINVAL)); } VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); if (resume_obj != val) return (SET_ERROR(EINVAL)); VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); if (resume_off != val) return (SET_ERROR(EINVAL)); return (0); } /* * Read in the stream's records, one by one, and apply them to the pool. There * are two threads involved; the thread that calls this function will spin up a * worker thread, read the records off the stream one by one, and issue * prefetches for any necessary indirect blocks. It will then push the records * onto an internal blocking queue. The worker thread will pull the records off * the queue, and actually write the data into the DMU. This way, the worker * thread doesn't have to wait for reads to complete, since everything it needs * (the indirect blocks) will be prefetched. * * NB: callers *must* call dmu_recv_end() if this succeeds. */ int dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, int cleanup_fd, uint64_t *action_handlep) { int err = 0; struct receive_arg ra = { 0 }; struct receive_writer_arg rwa = { 0 }; int featureflags; nvlist_t *begin_nvl = NULL; ra.byteswap = drc->drc_byteswap; ra.cksum = drc->drc_cksum; ra.vp = vp; ra.voff = *voffp; if (dsl_dataset_is_zapified(drc->drc_ds)) { (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, sizeof (ra.bytes_read), 1, &ra.bytes_read); } objlist_create(&ra.ignore_objlist); /* these were verified in dmu_recv_begin */ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, DMU_SUBSTREAM); ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); /* * Open the objset we are modifying. */ VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); /* if this stream is dedup'ed, set up the avl tree for guid mapping */ if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { minor_t minor; if (cleanup_fd == -1) { ra.err = SET_ERROR(EBADF); goto out; } ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); if (ra.err != 0) { cleanup_fd = -1; goto out; } if (*action_handlep == 0) { rwa.guid_to_ds_map = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); avl_create(rwa.guid_to_ds_map, guid_compare, sizeof (guid_map_entry_t), offsetof(guid_map_entry_t, avlnode)); err = zfs_onexit_add_cb(minor, free_guid_map_onexit, rwa.guid_to_ds_map, action_handlep); if (ra.err != 0) goto out; } else { err = zfs_onexit_cb_data(minor, *action_handlep, (void **)&rwa.guid_to_ds_map); if (ra.err != 0) goto out; } drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; } uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; void *payload = NULL; if (payloadlen != 0) payload = kmem_alloc(payloadlen, KM_SLEEP); err = receive_read_payload_and_next_header(&ra, payloadlen, payload); if (err != 0) { if (payloadlen != 0) kmem_free(payload, payloadlen); goto out; } if (payloadlen != 0) { err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); kmem_free(payload, payloadlen); if (err != 0) goto out; } if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = resume_check(&ra, begin_nvl); if (err != 0) goto out; } (void) bqueue_init(&rwa.q, zfs_recv_queue_length, offsetof(struct receive_record_arg, node)); cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); rwa.os = ra.os; rwa.byteswap = drc->drc_byteswap; rwa.resumable = drc->drc_resumable; (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, TS_RUN, minclsyspri); /* * We're reading rwa.err without locks, which is safe since we are the * only reader, and the worker thread is the only writer. It's ok if we * miss a write for an iteration or two of the loop, since the writer * thread will keep freeing records we send it until we send it an eos * marker. * * We can leave this loop in 3 ways: First, if rwa.err is * non-zero. In that case, the writer thread will free the rrd we just * pushed. Second, if we're interrupted; in that case, either it's the * first loop and ra.rrd was never allocated, or it's later, and ra.rrd * has been handed off to the writer thread who will free it. Finally, * if receive_read_record fails or we're at the end of the stream, then * we free ra.rrd and exit. */ while (rwa.err == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); break; } ASSERT3P(ra.rrd, ==, NULL); ra.rrd = ra.next_rrd; ra.next_rrd = NULL; /* Allocates and loads header into ra.next_rrd */ err = receive_read_record(&ra); if (ra.rrd->header.drr_type == DRR_END || err != 0) { kmem_free(ra.rrd, sizeof (*ra.rrd)); ra.rrd = NULL; break; } bqueue_enqueue(&rwa.q, ra.rrd, sizeof (struct receive_record_arg) + ra.rrd->payload_size); ra.rrd = NULL; } if (ra.next_rrd == NULL) ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); ra.next_rrd->eos_marker = B_TRUE; bqueue_enqueue(&rwa.q, ra.next_rrd, 1); mutex_enter(&rwa.mutex); while (!rwa.done) { cv_wait(&rwa.cv, &rwa.mutex); } mutex_exit(&rwa.mutex); /* * If we are receiving a full stream as a clone, all object IDs which * are greater than the maximum ID referenced in the stream are * by definition unused and must be freed. Note that it's possible that * we've resumed this send and the first record we received was the END * record. In that case, max_object would be 0, but we shouldn't start * freeing all objects from there; instead we should start from the * resumeobj. */ if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { uint64_t obj; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) obj = 0; if (rwa.max_object > obj) obj = rwa.max_object; obj++; int free_err = 0; int next_err = 0; while (next_err == 0) { free_err = dmu_free_long_object(rwa.os, obj); if (free_err != 0 && free_err != ENOENT) break; next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); } if (err == 0) { if (free_err != 0 && free_err != ENOENT) err = free_err; else if (next_err != ESRCH) err = next_err; } } cv_destroy(&rwa.cv); mutex_destroy(&rwa.mutex); bqueue_destroy(&rwa.q); if (err == 0) err = rwa.err; out: nvlist_free(begin_nvl); if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) zfs_onexit_fd_rele(cleanup_fd); if (err != 0) { /* * Clean up references. If receive is not resumable, * destroy what we created, so we don't leave it in * the inconsistent state. */ dmu_recv_cleanup_ds(drc); } *voffp = ra.voff; objlist_destroy(&ra.ignore_objlist); return (err); } static int dmu_recv_end_check(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); int error; ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); if (error != 0) return (error); if (drc->drc_force) { /* * We will destroy any snapshots in tofs (i.e. before * origin_head) that are after the origin (which is * the snap before drc_ds, because drc_ds can not * have any snaps of its own). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) break; if (snap->ds_dir != origin_head->ds_dir) error = SET_ERROR(EINVAL); if (error == 0) { error = dsl_destroy_snapshot_check_impl( snap, B_FALSE); } obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); if (error != 0) break; } if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, origin_head, drc->drc_force, drc->drc_owner, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } error = dsl_dataset_snapshot_check_impl(origin_head, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); dsl_dataset_rele(origin_head, FTAG); if (error != 0) return (error); error = dsl_destroy_head_check_impl(drc->drc_ds, 1); } else { error = dsl_dataset_snapshot_check_impl(drc->drc_ds, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); } return (error); } static void dmu_recv_end_sync(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); spa_history_log_internal_ds(drc->drc_ds, "finish receiving", tx, "snap=%s", drc->drc_tosnap); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head)); if (drc->drc_force) { /* * Destroy any snapshots of drc_tofs (origin_head) * after the origin (the snap before drc_ds). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &snap)); ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_destroy_snapshot_sync_impl(snap, B_FALSE, tx); dsl_dataset_rele(snap, FTAG); } } VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); dsl_dataset_clone_swap_sync_impl(drc->drc_ds, origin_head, tx); dsl_dataset_snapshot_sync_impl(origin_head, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(origin_head->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(origin_head->ds_dbuf, tx); dsl_dataset_phys(origin_head)->ds_flags &= ~DS_FLAG_INCONSISTENT; drc->drc_newsnapobj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; dsl_dataset_rele(origin_head, FTAG); dsl_destroy_head_sync_impl(drc->drc_ds, tx); if (drc->drc_owner != NULL) VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); } else { dsl_dataset_t *ds = drc->drc_ds; dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); dsl_dataset_phys(ds->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(ds->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(ds->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; if (dsl_dataset_has_resume_receive_state(ds)) { (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TONAME, tx); } drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; } /* * Release the hold from dmu_recv_begin. This must be done before * we return to open context, so that when we free the dataset's dnode, * we can evict its bonus buffer. */ dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); drc->drc_ds = NULL; } static int add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) { dsl_pool_t *dp; dsl_dataset_t *snapds; guid_map_entry_t *gmep; int err; ASSERT(guid_map != NULL); err = dsl_pool_hold(name, FTAG, &dp); if (err != 0) return (err); gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); if (err == 0) { gmep->guid = dsl_dataset_phys(snapds)->ds_guid; gmep->gme_ds = snapds; avl_add(guid_map, gmep); dsl_dataset_long_hold(snapds, gmep); } else { kmem_free(gmep, sizeof (*gmep)); } dsl_pool_rele(dp, FTAG); return (err); } static int dmu_recv_end_modified_blocks = 3; static int dmu_recv_existing_end(dmu_recv_cookie_t *drc) { #ifdef _KERNEL /* * We will be destroying the ds; make sure its origin is unmounted if * necessary. */ char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(drc->drc_ds, name); zfs_destroy_unmount_origin(name); #endif return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } static int dmu_recv_new_end(dmu_recv_cookie_t *drc) { return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) { int error; drc->drc_owner = owner; if (drc->drc_newfs) error = dmu_recv_new_end(drc); else error = dmu_recv_existing_end(drc); if (error != 0) { dmu_recv_cleanup_ds(drc); } else if (drc->drc_guid_to_ds_map != NULL) { (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, drc->drc_newsnapobj); } return (error); } /* * Return TRUE if this objset is currently being received into. */ boolean_t dmu_objset_is_receiving(objset_t *os) { return (os->os_dsl_dataset != NULL && os->os_dsl_dataset->ds_owner == dmu_recv_tag); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_traverse.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_traverse.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_traverse.c (revision 350898) @@ -1,704 +1,704 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int32_t zfs_pd_bytes_max = 50 * 1024 * 1024; /* 50MB */ boolean_t send_holes_without_birth_time = B_TRUE; typedef struct prefetch_data { kmutex_t pd_mtx; kcondvar_t pd_cv; int32_t pd_bytes_fetched; int pd_flags; boolean_t pd_cancel; boolean_t pd_exited; zbookmark_phys_t pd_resume; } prefetch_data_t; typedef struct traverse_data { spa_t *td_spa; uint64_t td_objset; blkptr_t *td_rootbp; uint64_t td_min_txg; zbookmark_phys_t *td_resume; int td_flags; prefetch_data_t *td_pfd; boolean_t td_paused; uint64_t td_hole_birth_enabled_txg; blkptr_cb_t *td_func; void *td_arg; boolean_t td_realloc_possible; } traverse_data_t; static int traverse_dnode(traverse_data_t *td, const dnode_phys_t *dnp, uint64_t objset, uint64_t object); static void prefetch_dnode_metadata(traverse_data_t *td, const dnode_phys_t *, uint64_t objset, uint64_t object); static int traverse_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { traverse_data_t *td = arg; zbookmark_phys_t zb; if (BP_IS_HOLE(bp)) return (0); if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(td->td_spa)) return (-1); SET_BOOKMARK(&zb, td->td_objset, ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); (void) td->td_func(td->td_spa, zilog, bp, &zb, NULL, td->td_arg); return (0); } static int traverse_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) { traverse_data_t *td = arg; if (lrc->lrc_txtype == TX_WRITE) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; if (BP_IS_HOLE(bp)) return (0); if (claim_txg == 0 || bp->blk_birth < claim_txg) return (0); SET_BOOKMARK(&zb, td->td_objset, lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); (void) td->td_func(td->td_spa, zilog, bp, &zb, NULL, td->td_arg); } return (0); } static void traverse_zil(traverse_data_t *td, zil_header_t *zh) { uint64_t claim_txg = zh->zh_claim_txg; /* * We only want to visit blocks that have been claimed but not yet * replayed; plus blocks that are already stable in read-only mode. */ if (claim_txg == 0 && spa_writeable(td->td_spa)) return; zilog_t *zilog = zil_alloc(spa_get_dsl(td->td_spa)->dp_meta_objset, zh); (void) zil_parse(zilog, traverse_zil_block, traverse_zil_record, td, claim_txg); zil_free(zilog); } typedef enum resume_skip { RESUME_SKIP_ALL, RESUME_SKIP_NONE, RESUME_SKIP_CHILDREN } resume_skip_t; /* * Returns RESUME_SKIP_ALL if td indicates that we are resuming a traversal and * the block indicated by zb does not need to be visited at all. Returns * RESUME_SKIP_CHILDREN if we are resuming a post traversal and we reach the * resume point. This indicates that this block should be visited but not its * children (since they must have been visited in a previous traversal). * Otherwise returns RESUME_SKIP_NONE. */ static resume_skip_t resume_skip_check(traverse_data_t *td, const dnode_phys_t *dnp, const zbookmark_phys_t *zb) { if (td->td_resume != NULL && !ZB_IS_ZERO(td->td_resume)) { /* * If we already visited this bp & everything below, * don't bother doing it again. */ if (zbookmark_subtree_completed(dnp, zb, td->td_resume)) return (RESUME_SKIP_ALL); /* * If we found the block we're trying to resume from, zero * the bookmark out to indicate that we have resumed. */ if (bcmp(zb, td->td_resume, sizeof (*zb)) == 0) { bzero(td->td_resume, sizeof (*zb)); if (td->td_flags & TRAVERSE_POST) return (RESUME_SKIP_CHILDREN); } } return (RESUME_SKIP_NONE); } static void traverse_prefetch_metadata(traverse_data_t *td, const blkptr_t *bp, const zbookmark_phys_t *zb) { arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; if (!(td->td_flags & TRAVERSE_PREFETCH_METADATA)) return; /* * If we are in the process of resuming, don't prefetch, because * some children will not be needed (and in fact may have already * been freed). */ if (td->td_resume != NULL && !ZB_IS_ZERO(td->td_resume)) return; if (BP_IS_HOLE(bp) || bp->blk_birth <= td->td_min_txg) return; if (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE) return; (void) arc_read(NULL, td->td_spa, bp, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); } static boolean_t prefetch_needed(prefetch_data_t *pfd, const blkptr_t *bp) { ASSERT(pfd->pd_flags & TRAVERSE_PREFETCH_DATA); if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) return (B_FALSE); return (B_TRUE); } static int traverse_visitbp(traverse_data_t *td, const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb) { zbookmark_phys_t czb; int err = 0; arc_buf_t *buf = NULL; prefetch_data_t *pd = td->td_pfd; boolean_t hard = td->td_flags & TRAVERSE_HARD; switch (resume_skip_check(td, dnp, zb)) { case RESUME_SKIP_ALL: return (0); case RESUME_SKIP_CHILDREN: goto post; case RESUME_SKIP_NONE: break; default: ASSERT(0); } if (bp->blk_birth == 0) { /* * Since this block has a birth time of 0 it must be one of * two things: a hole created before the * SPA_FEATURE_HOLE_BIRTH feature was enabled, or a hole * which has always been a hole in an object. * * If a file is written sparsely, then the unwritten parts of * the file were "always holes" -- that is, they have been * holes since this object was allocated. However, we (and * our callers) can not necessarily tell when an object was * allocated. Therefore, if it's possible that this object * was freed and then its object number reused, we need to * visit all the holes with birth==0. * * If it isn't possible that the object number was reused, * then if SPA_FEATURE_HOLE_BIRTH was enabled before we wrote * all the blocks we will visit as part of this traversal, * then this hole must have always existed, so we can skip * it. We visit blocks born after (exclusive) td_min_txg. * * Note that the meta-dnode cannot be reallocated. */ if (!send_holes_without_birth_time && (!td->td_realloc_possible || zb->zb_object == DMU_META_DNODE_OBJECT) && td->td_hole_birth_enabled_txg <= td->td_min_txg) return (0); } else if (bp->blk_birth <= td->td_min_txg) { return (0); } if (pd != NULL && !pd->pd_exited && prefetch_needed(pd, bp)) { uint64_t size = BP_GET_LSIZE(bp); mutex_enter(&pd->pd_mtx); ASSERT(pd->pd_bytes_fetched >= 0); while (pd->pd_bytes_fetched < size && !pd->pd_exited) cv_wait(&pd->pd_cv, &pd->pd_mtx); pd->pd_bytes_fetched -= size; cv_broadcast(&pd->pd_cv); mutex_exit(&pd->pd_mtx); } if (BP_IS_HOLE(bp)) { err = td->td_func(td->td_spa, NULL, bp, zb, dnp, td->td_arg); if (err != 0) goto post; return (0); } if (td->td_flags & TRAVERSE_PRE) { err = td->td_func(td->td_spa, NULL, bp, zb, dnp, td->td_arg); if (err == TRAVERSE_VISIT_NO_CHILDREN) return (0); if (err != 0) goto post; } if (BP_GET_LEVEL(bp) > 0) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err != 0) goto post; cbp = buf->b_data; for (i = 0; i < epb; i++) { SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); traverse_prefetch_metadata(td, &cbp[i], &czb); } /* recursively visitbp() blocks below this */ for (i = 0; i < epb; i++) { SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = traverse_visitbp(td, dnp, &cbp[i], &czb); if (err != 0) break; } } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { arc_flags_t flags = ARC_FLAG_WAIT; int i; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err != 0) goto post; dnode_phys_t *child_dnp = buf->b_data; - for (i = 0; i < epb; i++) { + for (i = 0; i < epb; i += child_dnp[i].dn_extra_slots + 1) { prefetch_dnode_metadata(td, &child_dnp[i], zb->zb_objset, zb->zb_blkid * epb + i); } /* recursively visitbp() blocks below this */ - for (i = 0; i < epb; i++) { + for (i = 0; i < epb; i += child_dnp[i].dn_extra_slots + 1) { err = traverse_dnode(td, &child_dnp[i], zb->zb_objset, zb->zb_blkid * epb + i); if (err != 0) break; } } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { arc_flags_t flags = ARC_FLAG_WAIT; err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err != 0) goto post; objset_phys_t *osp = buf->b_data; prefetch_dnode_metadata(td, &osp->os_meta_dnode, zb->zb_objset, DMU_META_DNODE_OBJECT); /* * See the block comment above for the goal of this variable. * If the maxblkid of the meta-dnode is 0, then we know that * we've never had more than DNODES_PER_BLOCK objects in the * dataset, which means we can't have reused any object ids. */ if (osp->os_meta_dnode.dn_maxblkid == 0) td->td_realloc_possible = B_FALSE; if (arc_buf_size(buf) >= sizeof (objset_phys_t)) { prefetch_dnode_metadata(td, &osp->os_groupused_dnode, zb->zb_objset, DMU_GROUPUSED_OBJECT); prefetch_dnode_metadata(td, &osp->os_userused_dnode, zb->zb_objset, DMU_USERUSED_OBJECT); } err = traverse_dnode(td, &osp->os_meta_dnode, zb->zb_objset, DMU_META_DNODE_OBJECT); if (err == 0 && arc_buf_size(buf) >= sizeof (objset_phys_t)) { err = traverse_dnode(td, &osp->os_groupused_dnode, zb->zb_objset, DMU_GROUPUSED_OBJECT); } if (err == 0 && arc_buf_size(buf) >= sizeof (objset_phys_t)) { err = traverse_dnode(td, &osp->os_userused_dnode, zb->zb_objset, DMU_USERUSED_OBJECT); } } if (buf) arc_buf_destroy(buf, &buf); post: if (err == 0 && (td->td_flags & TRAVERSE_POST)) err = td->td_func(td->td_spa, NULL, bp, zb, dnp, td->td_arg); if (hard && (err == EIO || err == ECKSUM)) { /* * Ignore this disk error as requested by the HARD flag, * and continue traversal. */ err = 0; } /* * If we are stopping here, set td_resume. */ if (td->td_resume != NULL && err != 0 && !td->td_paused) { td->td_resume->zb_objset = zb->zb_objset; td->td_resume->zb_object = zb->zb_object; td->td_resume->zb_level = 0; /* * If we have stopped on an indirect block (e.g. due to * i/o error), we have not visited anything below it. * Set the bookmark to the first level-0 block that we need * to visit. This way, the resuming code does not need to * deal with resuming from indirect blocks. * * Note, if zb_level <= 0, dnp may be NULL, so we don't want * to dereference it. */ td->td_resume->zb_blkid = zb->zb_blkid; if (zb->zb_level > 0) { td->td_resume->zb_blkid <<= zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT); } td->td_paused = B_TRUE; } return (err); } static void prefetch_dnode_metadata(traverse_data_t *td, const dnode_phys_t *dnp, uint64_t objset, uint64_t object) { int j; zbookmark_phys_t czb; for (j = 0; j < dnp->dn_nblkptr; j++) { SET_BOOKMARK(&czb, objset, object, dnp->dn_nlevels - 1, j); traverse_prefetch_metadata(td, &dnp->dn_blkptr[j], &czb); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { SET_BOOKMARK(&czb, objset, object, 0, DMU_SPILL_BLKID); - traverse_prefetch_metadata(td, &dnp->dn_spill, &czb); + traverse_prefetch_metadata(td, DN_SPILL_BLKPTR(dnp), &czb); } } static int traverse_dnode(traverse_data_t *td, const dnode_phys_t *dnp, uint64_t objset, uint64_t object) { int j, err = 0; zbookmark_phys_t czb; if (object != DMU_META_DNODE_OBJECT && td->td_resume != NULL && object < td->td_resume->zb_object) return (0); if (td->td_flags & TRAVERSE_PRE) { SET_BOOKMARK(&czb, objset, object, ZB_DNODE_LEVEL, ZB_DNODE_BLKID); err = td->td_func(td->td_spa, NULL, NULL, &czb, dnp, td->td_arg); if (err == TRAVERSE_VISIT_NO_CHILDREN) return (0); if (err != 0) return (err); } for (j = 0; j < dnp->dn_nblkptr; j++) { SET_BOOKMARK(&czb, objset, object, dnp->dn_nlevels - 1, j); err = traverse_visitbp(td, dnp, &dnp->dn_blkptr[j], &czb); if (err != 0) break; } if (err == 0 && (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { SET_BOOKMARK(&czb, objset, object, 0, DMU_SPILL_BLKID); - err = traverse_visitbp(td, dnp, &dnp->dn_spill, &czb); + err = traverse_visitbp(td, dnp, DN_SPILL_BLKPTR(dnp), &czb); } if (err == 0 && (td->td_flags & TRAVERSE_POST)) { SET_BOOKMARK(&czb, objset, object, ZB_DNODE_LEVEL, ZB_DNODE_BLKID); err = td->td_func(td->td_spa, NULL, NULL, &czb, dnp, td->td_arg); if (err == TRAVERSE_VISIT_NO_CHILDREN) return (0); if (err != 0) return (err); } return (err); } /* ARGSUSED */ static int traverse_prefetcher(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { prefetch_data_t *pfd = arg; arc_flags_t aflags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; ASSERT(pfd->pd_bytes_fetched >= 0); if (bp == NULL) return (0); if (pfd->pd_cancel) return (SET_ERROR(EINTR)); if (!prefetch_needed(pfd, bp)) return (0); mutex_enter(&pfd->pd_mtx); while (!pfd->pd_cancel && pfd->pd_bytes_fetched >= zfs_pd_bytes_max) cv_wait(&pfd->pd_cv, &pfd->pd_mtx); pfd->pd_bytes_fetched += BP_GET_LSIZE(bp); cv_broadcast(&pfd->pd_cv); mutex_exit(&pfd->pd_mtx); (void) arc_read(NULL, spa, bp, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, zb); return (0); } static void traverse_prefetch_thread(void *arg) { traverse_data_t *td_main = arg; traverse_data_t td = *td_main; zbookmark_phys_t czb; td.td_func = traverse_prefetcher; td.td_arg = td_main->td_pfd; td.td_pfd = NULL; td.td_resume = &td_main->td_pfd->pd_resume; SET_BOOKMARK(&czb, td.td_objset, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); (void) traverse_visitbp(&td, NULL, td.td_rootbp, &czb); mutex_enter(&td_main->td_pfd->pd_mtx); td_main->td_pfd->pd_exited = B_TRUE; cv_broadcast(&td_main->td_pfd->pd_cv); mutex_exit(&td_main->td_pfd->pd_mtx); } /* * NB: dataset must not be changing on-disk (eg, is a snapshot or we are * in syncing context). */ static int traverse_impl(spa_t *spa, dsl_dataset_t *ds, uint64_t objset, blkptr_t *rootbp, uint64_t txg_start, zbookmark_phys_t *resume, int flags, blkptr_cb_t func, void *arg) { traverse_data_t td; prefetch_data_t pd = { 0 }; zbookmark_phys_t czb; int err; ASSERT(ds == NULL || objset == ds->ds_object); ASSERT(!(flags & TRAVERSE_PRE) || !(flags & TRAVERSE_POST)); td.td_spa = spa; td.td_objset = objset; td.td_rootbp = rootbp; td.td_min_txg = txg_start; td.td_resume = resume; td.td_func = func; td.td_arg = arg; td.td_pfd = &pd; td.td_flags = flags; td.td_paused = B_FALSE; td.td_realloc_possible = (txg_start == 0 ? B_FALSE : B_TRUE); if (spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { VERIFY(spa_feature_enabled_txg(spa, SPA_FEATURE_HOLE_BIRTH, &td.td_hole_birth_enabled_txg)); } else { td.td_hole_birth_enabled_txg = UINT64_MAX; } pd.pd_flags = flags; if (resume != NULL) pd.pd_resume = *resume; mutex_init(&pd.pd_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&pd.pd_cv, NULL, CV_DEFAULT, NULL); /* See comment on ZIL traversal in dsl_scan_visitds. */ if (ds != NULL && !ds->ds_is_snapshot && !BP_IS_HOLE(rootbp)) { arc_flags_t flags = ARC_FLAG_WAIT; objset_phys_t *osp; arc_buf_t *buf; err = arc_read(NULL, td.td_spa, rootbp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, NULL); if (err != 0) return (err); osp = buf->b_data; traverse_zil(&td, &osp->os_zil_header); arc_buf_destroy(buf, &buf); } if (!(flags & TRAVERSE_PREFETCH_DATA) || 0 == taskq_dispatch(system_taskq, traverse_prefetch_thread, &td, TQ_NOQUEUE)) pd.pd_exited = B_TRUE; SET_BOOKMARK(&czb, td.td_objset, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); err = traverse_visitbp(&td, NULL, rootbp, &czb); mutex_enter(&pd.pd_mtx); pd.pd_cancel = B_TRUE; cv_broadcast(&pd.pd_cv); while (!pd.pd_exited) cv_wait(&pd.pd_cv, &pd.pd_mtx); mutex_exit(&pd.pd_mtx); mutex_destroy(&pd.pd_mtx); cv_destroy(&pd.pd_cv); return (err); } /* * NB: dataset must not be changing on-disk (eg, is a snapshot or we are * in syncing context). */ int traverse_dataset_resume(dsl_dataset_t *ds, uint64_t txg_start, zbookmark_phys_t *resume, int flags, blkptr_cb_t func, void *arg) { return (traverse_impl(ds->ds_dir->dd_pool->dp_spa, ds, ds->ds_object, &dsl_dataset_phys(ds)->ds_bp, txg_start, resume, flags, func, arg)); } int traverse_dataset(dsl_dataset_t *ds, uint64_t txg_start, int flags, blkptr_cb_t func, void *arg) { return (traverse_dataset_resume(ds, txg_start, NULL, flags, func, arg)); } int traverse_dataset_destroyed(spa_t *spa, blkptr_t *blkptr, uint64_t txg_start, zbookmark_phys_t *resume, int flags, blkptr_cb_t func, void *arg) { return (traverse_impl(spa, NULL, ZB_DESTROYED_OBJSET, blkptr, txg_start, resume, flags, func, arg)); } /* * NB: pool must not be changing on-disk (eg, from zdb or sync context). */ int traverse_pool(spa_t *spa, uint64_t txg_start, int flags, blkptr_cb_t func, void *arg) { int err; dsl_pool_t *dp = spa_get_dsl(spa); objset_t *mos = dp->dp_meta_objset; boolean_t hard = (flags & TRAVERSE_HARD); /* visit the MOS */ err = traverse_impl(spa, NULL, 0, spa_get_rootblkptr(spa), txg_start, NULL, flags, func, arg); if (err != 0) return (err); /* visit each dataset */ for (uint64_t obj = 1; err == 0; err = dmu_object_next(mos, &obj, B_FALSE, txg_start)) { dmu_object_info_t doi; err = dmu_object_info(mos, obj, &doi); if (err != 0) { if (hard) continue; break; } if (doi.doi_bonus_type == DMU_OT_DSL_DATASET) { dsl_dataset_t *ds; uint64_t txg = txg_start; dsl_pool_config_enter(dp, FTAG); err = dsl_dataset_hold_obj(dp, obj, FTAG, &ds); dsl_pool_config_exit(dp, FTAG); if (err != 0) { if (hard) continue; break; } if (dsl_dataset_phys(ds)->ds_prev_snap_txg > txg) txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; err = traverse_dataset(ds, txg, flags, func, arg); dsl_dataset_rele(ds, FTAG); if (err != 0) break; } } if (err == ESRCH) err = 0; return (err); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c (revision 350898) @@ -1,1336 +1,1338 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, uint64_t arg1, uint64_t arg2); dmu_tx_t * dmu_tx_create_dd(dsl_dir_t *dd) { dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); tx->tx_dir = dd; if (dd != NULL) tx->tx_pool = dd->dd_pool; list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), offsetof(dmu_tx_hold_t, txh_node)); list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); tx->tx_start = gethrtime(); return (tx); } dmu_tx_t * dmu_tx_create(objset_t *os) { dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); tx->tx_objset = os; return (tx); } dmu_tx_t * dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) { dmu_tx_t *tx = dmu_tx_create_dd(NULL); txg_verify(dp->dp_spa, txg); tx->tx_pool = dp; tx->tx_txg = txg; tx->tx_anyobj = TRUE; return (tx); } int dmu_tx_is_syncing(dmu_tx_t *tx) { return (tx->tx_anyobj); } int dmu_tx_private_ok(dmu_tx_t *tx) { return (tx->tx_anyobj); } static dmu_tx_hold_t * dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dmu_tx_hold_t *txh; if (dn != NULL) { (void) refcount_add(&dn->dn_holds, tx); if (tx->tx_txg != 0) { mutex_enter(&dn->dn_mtx); /* * dn->dn_assigned_txg == tx->tx_txg doesn't pose a * problem, but there's no way for it to happen (for * now, at least). */ ASSERT(dn->dn_assigned_txg == 0); dn->dn_assigned_txg = tx->tx_txg; (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } } txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); txh->txh_tx = tx; txh->txh_dnode = dn; refcount_create(&txh->txh_space_towrite); refcount_create(&txh->txh_memory_tohold); txh->txh_type = type; txh->txh_arg1 = arg1; txh->txh_arg2 = arg2; list_insert_tail(&tx->tx_holds, txh); return (txh); } static dmu_tx_hold_t * dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dnode_t *dn = NULL; dmu_tx_hold_t *txh; int err; if (object != DMU_NEW_OBJECT) { err = dnode_hold(os, object, FTAG, &dn); if (err != 0) { tx->tx_err = err; return (NULL); } } txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2); if (dn != NULL) dnode_rele(dn, FTAG); return (txh); } void dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn) { /* * If we're syncing, they can manipulate any object anyhow, and * the hold on the dnode_t can cause problems. */ if (!dmu_tx_is_syncing(tx)) (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0); } /* * This function reads specified data from disk. The specified data will * be needed to perform the transaction -- i.e, it will be read after * we do dmu_tx_assign(). There are two reasons that we read the data now * (before dmu_tx_assign()): * * 1. Reading it now has potentially better performance. The transaction * has not yet been assigned, so the TXG is not held open, and also the * caller typically has less locks held when calling dmu_tx_hold_*() than * after the transaction has been assigned. This reduces the lock (and txg) * hold times, thus reducing lock contention. * * 2. It is easier for callers (primarily the ZPL) to handle i/o errors * that are detected before they start making changes to the DMU state * (i.e. now). Once the transaction has been assigned, and some DMU * state has been changed, it can be difficult to recover from an i/o * error (e.g. to undo the changes already made in memory at the DMU * layer). Typically code to do so does not exist in the caller -- it * assumes that the data has already been cached and thus i/o errors are * not possible. * * It has been observed that the i/o initiated here can be a performance * problem, and it appears to be optional, because we don't look at the * data which is read. However, removing this read would only serve to * move the work elsewhere (after the dmu_tx_assign()), where it may * have a greater impact on performance (in addition to the impact on * fault tolerance noted above). */ static int dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) { int err; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold_level(dn, level, blkid, FTAG); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) return (SET_ERROR(EIO)); err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); dbuf_rele(db, FTAG); return (err); } /* ARGSUSED */ static void dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dnode_t *dn = txh->txh_dnode; int err = 0; if (len == 0) return; (void) refcount_add_many(&txh->txh_space_towrite, len, FTAG); if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS) err = SET_ERROR(EFBIG); if (dn == NULL) return; /* * For i/o error checking, read the blocks that will be needed * to perform the write: the first and last level-0 blocks (if * they are not aligned, i.e. if they are partial-block writes), * and all the level-1 blocks. */ if (dn->dn_maxblkid == 0) { if (off < dn->dn_datablksz && (off > 0 || len < dn->dn_datablksz)) { err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err != 0) { txh->txh_tx->tx_err = err; } } } else { zio_t *zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* first level-0 block */ uint64_t start = off >> dn->dn_datablkshift; if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { err = dmu_tx_check_ioerr(zio, dn, 0, start); if (err != 0) { txh->txh_tx->tx_err = err; } } /* last level-0 block */ uint64_t end = (off + len - 1) >> dn->dn_datablkshift; if (end != start && end <= dn->dn_maxblkid && P2PHASE(off + len, dn->dn_datablksz)) { err = dmu_tx_check_ioerr(zio, dn, 0, end); if (err != 0) { txh->txh_tx->tx_err = err; } } /* level-1 blocks */ if (dn->dn_nlevels > 1) { int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (uint64_t i = (start >> shft) + 1; i < end >> shft; i++) { err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err != 0) { txh->txh_tx->tx_err = err; } } } err = zio_wait(zio); if (err != 0) { txh->txh_tx->tx_err = err; } } } static void dmu_tx_count_dnode(dmu_tx_hold_t *txh) { - (void) refcount_add_many(&txh->txh_space_towrite, DNODE_SIZE, FTAG); + (void) refcount_add_many(&txh->txh_space_towrite, DNODE_MIN_SIZE, FTAG); } void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT3U(len, <=, DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, off, len); if (txh != NULL) { dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } } void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, 0, 0); if (txh == NULL) return; dnode_t *dn = txh->txh_dnode; (void) refcount_add_many(&txh->txh_space_towrite, 1ULL << dn->dn_indblkshift, FTAG); dmu_tx_count_dnode(txh); } void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT3U(len, <=, DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len); if (txh != NULL) { dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } } /* * This function marks the transaction as being a "net free". The end * result is that refquotas will be disabled for this transaction, and * this transaction will be able to use half of the pool space overhead * (see dsl_pool_adjustedsize()). Therefore this function should only * be called for transactions that we expect will not cause a net increase * in the amount of space used (but it's OK if that is occasionally not true). */ void dmu_tx_mark_netfree(dmu_tx_t *tx) { tx->tx_netfree = B_TRUE; } static void dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dmu_tx_t *tx; dnode_t *dn; int err; tx = txh->txh_tx; ASSERT(tx->tx_txg == 0); dn = txh->txh_dnode; dmu_tx_count_dnode(txh); if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz) return; if (len == DMU_OBJECT_END) len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off; /* * For i/o error checking, we read the first and last level-0 * blocks if they are not aligned, and all the level-1 blocks. * * Note: dbuf_free_range() assumes that we have not instantiated * any level-0 dbufs that will be completely freed. Therefore we must * exercise care to not read or count the first and last blocks * if they are blocksize-aligned. */ if (dn->dn_datablkshift == 0) { if (off != 0 || len < dn->dn_datablksz) dmu_tx_count_write(txh, 0, dn->dn_datablksz); } else { /* first block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off, 1); /* last block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off + len, 1); } /* * Check level-1 blocks. */ if (dn->dn_nlevels > 1) { int shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t start = off >> shift; uint64_t end = (off + len) >> shift; ASSERT(dn->dn_indblkshift != 0); /* * dnode_reallocate() can result in an object with indirect * blocks having an odd data block size. In this case, * just check the single block. */ if (dn->dn_datablkshift == 0) start = end = 0; zio_t *zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); for (uint64_t i = start; i <= end; i++) { uint64_t ibyte = i << shift; err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); i = ibyte >> shift; if (err == ESRCH || i > end) break; if (err != 0) { tx->tx_err = err; (void) zio_wait(zio); return; } (void) refcount_add_many(&txh->txh_memory_tohold, 1 << dn->dn_indblkshift, FTAG); err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err != 0) { tx->tx_err = err; (void) zio_wait(zio); return; } } err = zio_wait(zio); if (err != 0) { tx->tx_err = err; return; } } } void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_FREE, off, len); if (txh != NULL) (void) dmu_tx_hold_free_impl(txh, off, len); } void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len); if (txh != NULL) (void) dmu_tx_hold_free_impl(txh, off, len); } static void dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name) { dmu_tx_t *tx = txh->txh_tx; dnode_t *dn; int err; ASSERT(tx->tx_txg == 0); dn = txh->txh_dnode; dmu_tx_count_dnode(txh); /* * Modifying a almost-full microzap is around the worst case (128KB) * * If it is a fat zap, the worst case would be 7*16KB=112KB: * - 3 blocks overwritten: target leaf, ptrtbl block, header block * - 4 new blocks written if adding: * - 2 blocks for possibly split leaves, * - 2 grown ptrtbl blocks */ (void) refcount_add_many(&txh->txh_space_towrite, MZAP_MAX_BLKSZ, FTAG); if (dn == NULL) return; ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); if (dn->dn_maxblkid == 0 || name == NULL) { /* * This is a microzap (only one block), or we don't know * the name. Check the first block for i/o errors. */ err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err != 0) { tx->tx_err = err; } } else { /* * Access the name so that we'll check for i/o errors to * the leaf blocks, etc. We ignore ENOENT, as this name * may not yet exist. */ err = zap_lookup_by_dnode(dn, name, 8, 0, NULL); if (err == EIO || err == ECKSUM || err == ENXIO) { tx->tx_err = err; } } } void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_ZAP, add, (uintptr_t)name); if (txh != NULL) dmu_tx_hold_zap_impl(txh, name); } void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); ASSERT(dn != NULL); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name); if (txh != NULL) dmu_tx_hold_zap_impl(txh, name); } void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn) { dmu_tx_hold_t *txh; ASSERT0(tx->tx_txg); txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPACE, space, 0); (void) refcount_add_many(&txh->txh_space_towrite, space, FTAG); } #ifdef ZFS_DEBUG void dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) { boolean_t match_object = B_FALSE; boolean_t match_offset = B_FALSE; DB_DNODE_ENTER(db); dnode_t *dn = DB_DNODE(db); ASSERT(tx->tx_txg != 0); ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); ASSERT3U(dn->dn_object, ==, db->db.db_object); if (tx->tx_anyobj) { DB_DNODE_EXIT(db); return; } /* XXX No checking on the meta dnode for now */ if (db->db.db_object == DMU_META_DNODE_OBJECT) { DB_DNODE_EXIT(db); return; } for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) match_object = TRUE; if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { int datablkshift = dn->dn_datablkshift ? dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; int shift = datablkshift + epbs * db->db_level; uint64_t beginblk = shift >= 64 ? 0 : (txh->txh_arg1 >> shift); uint64_t endblk = shift >= 64 ? 0 : ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); uint64_t blkid = db->db_blkid; /* XXX txh_arg2 better not be zero... */ dprintf("found txh type %x beginblk=%llx endblk=%llx\n", txh->txh_type, beginblk, endblk); switch (txh->txh_type) { case THT_WRITE: if (blkid >= beginblk && blkid <= endblk) match_offset = TRUE; /* * We will let this hold work for the bonus * or spill buffer so that we don't need to * hold it when creating a new object. */ if (blkid == DMU_BONUS_BLKID || blkid == DMU_SPILL_BLKID) match_offset = TRUE; /* * They might have to increase nlevels, * thus dirtying the new TLIBs. Or the * might have to change the block size, * thus dirying the new lvl=0 blk=0. */ if (blkid == 0) match_offset = TRUE; break; case THT_FREE: /* * We will dirty all the level 1 blocks in * the free range and perhaps the first and * last level 0 block. */ if (blkid >= beginblk && (blkid <= endblk || txh->txh_arg2 == DMU_OBJECT_END)) match_offset = TRUE; break; case THT_SPILL: if (blkid == DMU_SPILL_BLKID) match_offset = TRUE; break; case THT_BONUS: if (blkid == DMU_BONUS_BLKID) match_offset = TRUE; break; case THT_ZAP: match_offset = TRUE; break; case THT_NEWOBJECT: match_object = TRUE; break; default: ASSERT(!"bad txh_type"); } } if (match_object && match_offset) { DB_DNODE_EXIT(db); return; } } DB_DNODE_EXIT(db); panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", (u_longlong_t)db->db.db_object, db->db_level, (u_longlong_t)db->db_blkid); } #endif /* * If we can't do 10 iops, something is wrong. Let us go ahead * and hit zfs_dirty_data_max. */ hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ /* * We delay transactions when we've determined that the backend storage * isn't able to accommodate the rate of incoming writes. * * If there is already a transaction waiting, we delay relative to when * that transaction finishes waiting. This way the calculated min_time * is independent of the number of threads concurrently executing * transactions. * * If we are the only waiter, wait relative to when the transaction * started, rather than the current time. This credits the transaction for * "time already served", e.g. reading indirect blocks. * * The minimum time for a transaction to take is calculated as: * min_time = scale * (dirty - min) / (max - dirty) * min_time is then capped at zfs_delay_max_ns. * * The delay has two degrees of freedom that can be adjusted via tunables. * The percentage of dirty data at which we start to delay is defined by * zfs_delay_min_dirty_percent. This should typically be at or above * zfs_vdev_async_write_active_max_dirty_percent so that we only start to * delay after writing at full speed has failed to keep up with the incoming * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly * speaking, this variable determines the amount of delay at the midpoint of * the curve. * * delay * 10ms +-------------------------------------------------------------*+ * | *| * 9ms + *+ * | *| * 8ms + *+ * | * | * 7ms + * + * | * | * 6ms + * + * | * | * 5ms + * + * | * | * 4ms + * + * | * | * 3ms + * + * | * | * 2ms + (midpoint) * + * | | ** | * 1ms + v *** + * | zfs_delay_scale ----------> ******** | * 0 +-------------------------------------*********----------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note that since the delay is added to the outstanding time remaining on the * most recent transaction, the delay is effectively the inverse of IOPS. * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve * was chosen such that small changes in the amount of accumulated dirty data * in the first 3/4 of the curve yield relatively small differences in the * amount of delay. * * The effects can be easier to understand when the amount of delay is * represented on a log scale: * * delay * 100ms +-------------------------------------------------------------++ * + + * | | * + *+ * 10ms + *+ * + ** + * | (midpoint) ** | * + | ** + * 1ms + v **** + * + zfs_delay_scale ----------> ***** + * | **** | * + **** + * 100us + ** + * + * + * | * | * + * + * 10us + * + * + + * | | * + + * +--------------------------------------------------------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note here that only as the amount of dirty data approaches its limit does * the delay start to increase rapidly. The goal of a properly tuned system * should be to keep the amount of dirty data out of that range by first * ensuring that the appropriate limits are set for the I/O scheduler to reach * optimal throughput on the backend storage, and then by changing the value * of zfs_delay_scale to increase the steepness of the curve. */ static void dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) { dsl_pool_t *dp = tx->tx_pool; uint64_t delay_min_bytes = zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; hrtime_t wakeup, min_tx_time, now; if (dirty <= delay_min_bytes) return; /* * The caller has already waited until we are under the max. * We make them pass us the amount of dirty data so we don't * have to handle the case of it being >= the max, which could * cause a divide-by-zero if it's == the max. */ ASSERT3U(dirty, <, zfs_dirty_data_max); now = gethrtime(); min_tx_time = zfs_delay_scale * (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); if (now > tx->tx_start + min_tx_time) return; min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, uint64_t, min_tx_time); mutex_enter(&dp->dp_lock); wakeup = MAX(tx->tx_start + min_tx_time, dp->dp_last_wakeup + min_tx_time); dp->dp_last_wakeup = wakeup; mutex_exit(&dp->dp_lock); #ifdef _KERNEL mutex_enter(&curthread->t_delay_lock); while (cv_timedwait_hires(&curthread->t_delay_cv, &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) continue; mutex_exit(&curthread->t_delay_lock); #else hrtime_t delta = wakeup - gethrtime(); struct timespec ts; ts.tv_sec = delta / NANOSEC; ts.tv_nsec = delta % NANOSEC; (void) nanosleep(&ts, NULL); #endif } /* * This routine attempts to assign the transaction to a transaction group. * To do so, we must determine if there is sufficient free space on disk. * * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree() * on it), then it is assumed that there is sufficient free space, * unless there's insufficient slop space in the pool (see the comment * above spa_slop_shift in spa_misc.c). * * If it is not a "netfree" transaction, then if the data already on disk * is over the allowed usage (e.g. quota), this will fail with EDQUOT or * ENOSPC. Otherwise, if the current rough estimate of pending changes, * plus the rough estimate of this transaction's changes, may exceed the * allowed usage, then this will fail with ERESTART, which will cause the * caller to wait for the pending changes to be written to disk (by waiting * for the next TXG to open), and then check the space usage again. * * The rough estimate of pending changes is comprised of the sum of: * * - this transaction's holds' txh_space_towrite * * - dd_tempreserved[], which is the sum of in-flight transactions' * holds' txh_space_towrite (i.e. those transactions that have called * dmu_tx_assign() but not yet called dmu_tx_commit()). * * - dd_space_towrite[], which is the amount of dirtied dbufs. * * Note that all of these values are inflated by spa_get_worst_case_asize(), * which means that we may get ERESTART well before we are actually in danger * of running out of space, but this also mitigates any small inaccuracies * in the rough estimate (e.g. txh_space_towrite doesn't take into account * indirect blocks, and dd_space_towrite[] doesn't take into account changes * to the MOS). * * Note that due to this algorithm, it is possible to exceed the allowed * usage by one transaction. Also, as we approach the allowed usage, * we will allow a very limited amount of changes into each TXG, thus * decreasing performance. */ static int dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) { spa_t *spa = tx->tx_pool->dp_spa; ASSERT0(tx->tx_txg); if (tx->tx_err) return (tx->tx_err); if (spa_suspended(spa)) { /* * If the user has indicated a blocking failure mode * then return ERESTART which will block in dmu_tx_wait(). * Otherwise, return EIO so that an error can get * propagated back to the VOP calls. * * Note that we always honor the txg_how flag regardless * of the failuremode setting. */ if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && !(txg_how & TXG_WAIT)) return (SET_ERROR(EIO)); return (SET_ERROR(ERESTART)); } if (!tx->tx_dirty_delayed && dsl_pool_need_dirty_delay(tx->tx_pool)) { tx->tx_wait_dirty = B_TRUE; return (SET_ERROR(ERESTART)); } tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); tx->tx_needassign_txh = NULL; /* * NB: No error returns are allowed after txg_hold_open, but * before processing the dnode holds, due to the * dmu_tx_unassign() logic. */ uint64_t towrite = 0; uint64_t tohold = 0; for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn != NULL) { mutex_enter(&dn->dn_mtx); if (dn->dn_assigned_txg == tx->tx_txg - 1) { mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = txh; return (SET_ERROR(ERESTART)); } if (dn->dn_assigned_txg == 0) dn->dn_assigned_txg = tx->tx_txg; ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } towrite += refcount_count(&txh->txh_space_towrite); tohold += refcount_count(&txh->txh_memory_tohold); } /* needed allocation: worst-case estimate of write space */ uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite); /* calculate memory footprint estimate */ uint64_t memory = towrite + tohold; if (tx->tx_dir != NULL && asize != 0) { int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx); if (err != 0) return (err); } return (0); } static void dmu_tx_unassign(dmu_tx_t *tx) { if (tx->tx_txg == 0) return; txg_rele_to_quiesce(&tx->tx_txgh); /* * Walk the transaction's hold list, removing the hold on the * associated dnode, and notifying waiters if the refcount drops to 0. */ for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } txg_rele_to_sync(&tx->tx_txgh); tx->tx_lasttried_txg = tx->tx_txg; tx->tx_txg = 0; } /* * Assign tx to a transaction group; txg_how is a bitmask: * * If TXG_WAIT is set and the currently open txg is full, this function * will wait until there's a new txg. This should be used when no locks * are being held. With this bit set, this function will only fail if * we're truly out of space (or over quota). * * If TXG_WAIT is *not* set and we can't assign into the currently open * txg without blocking, this function will return immediately with * ERESTART. This should be used whenever locks are being held. On an * ERESTART error, the caller should drop all locks, call dmu_tx_wait(), * and try again. * * If TXG_NOTHROTTLE is set, this indicates that this tx should not be * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for * details on the throttle). This is used by the VFS operations, after * they have already called dmu_tx_wait() (though most likely on a * different tx). */ int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) { int err; ASSERT(tx->tx_txg == 0); ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE)); ASSERT(!dsl_pool_sync_context(tx->tx_pool)); /* If we might wait, we must not hold the config lock. */ IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool)); if ((txg_how & TXG_NOTHROTTLE)) tx->tx_dirty_delayed = B_TRUE; while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { dmu_tx_unassign(tx); if (err != ERESTART || !(txg_how & TXG_WAIT)) return (err); dmu_tx_wait(tx); } txg_rele_to_quiesce(&tx->tx_txgh); return (0); } void dmu_tx_wait(dmu_tx_t *tx) { spa_t *spa = tx->tx_pool->dp_spa; dsl_pool_t *dp = tx->tx_pool; ASSERT(tx->tx_txg == 0); ASSERT(!dsl_pool_config_held(tx->tx_pool)); if (tx->tx_wait_dirty) { /* * dmu_tx_try_assign() has determined that we need to wait * because we've consumed much or all of the dirty buffer * space. */ mutex_enter(&dp->dp_lock); while (dp->dp_dirty_total >= zfs_dirty_data_max) cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); uint64_t dirty = dp->dp_dirty_total; mutex_exit(&dp->dp_lock); dmu_tx_delay(tx, dirty); tx->tx_wait_dirty = B_FALSE; /* * Note: setting tx_dirty_delayed only has effect if the * caller used TX_WAIT. Otherwise they are going to * destroy this tx and try again. The common case, * zfs_write(), uses TX_WAIT. */ tx->tx_dirty_delayed = B_TRUE; } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { /* * If the pool is suspended we need to wait until it * is resumed. Note that it's possible that the pool * has become active after this thread has tried to * obtain a tx. If that's the case then tx_lasttried_txg * would not have been set. */ txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); } else if (tx->tx_needassign_txh) { /* * A dnode is assigned to the quiescing txg. Wait for its * transaction to complete. */ dnode_t *dn = tx->tx_needassign_txh->txh_dnode; mutex_enter(&dn->dn_mtx); while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) cv_wait(&dn->dn_notxholds, &dn->dn_mtx); mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = NULL; } else { /* * If we have a lot of dirty data just wait until we sync * out a TXG at which point we'll hopefully have synced * a portion of the changes. */ txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); } } static void dmu_tx_destroy(dmu_tx_t *tx) { dmu_tx_hold_t *txh; while ((txh = list_head(&tx->tx_holds)) != NULL) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); refcount_destroy_many(&txh->txh_space_towrite, refcount_count(&txh->txh_space_towrite)); refcount_destroy_many(&txh->txh_memory_tohold, refcount_count(&txh->txh_memory_tohold)); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn != NULL) dnode_rele(dn, tx); } list_destroy(&tx->tx_callbacks); list_destroy(&tx->tx_holds); kmem_free(tx, sizeof (dmu_tx_t)); } void dmu_tx_commit(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); /* * Go through the transaction's hold list and remove holds on * associated dnodes, notifying waiters if no holds remain. */ for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } if (tx->tx_tempreserve_cookie) dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); if (!list_is_empty(&tx->tx_callbacks)) txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); if (tx->tx_anyobj == FALSE) txg_rele_to_sync(&tx->tx_txgh); dmu_tx_destroy(tx); } void dmu_tx_abort(dmu_tx_t *tx) { ASSERT(tx->tx_txg == 0); /* * Call any registered callbacks with an error code. */ if (!list_is_empty(&tx->tx_callbacks)) dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); dmu_tx_destroy(tx); } uint64_t dmu_tx_get_txg(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); return (tx->tx_txg); } dsl_pool_t * dmu_tx_pool(dmu_tx_t *tx) { ASSERT(tx->tx_pool != NULL); return (tx->tx_pool); } void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) { dmu_tx_callback_t *dcb; dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); dcb->dcb_func = func; dcb->dcb_data = data; list_insert_tail(&tx->tx_callbacks, dcb); } /* * Call all the commit callbacks on a list, with a given error code. */ void dmu_tx_do_callbacks(list_t *cb_list, int error) { dmu_tx_callback_t *dcb; while ((dcb = list_head(cb_list)) != NULL) { list_remove(cb_list, dcb); dcb->dcb_func(dcb->dcb_data, error); kmem_free(dcb, sizeof (dmu_tx_callback_t)); } } /* * Interface to hold a bunch of attributes. * used for creating new files. * attrsize is the total size of all attributes * to be added during object creation * * For updating/adding a single attribute dmu_tx_hold_sa() should be used. */ /* * hold necessary attribute name for attribute registration. * should be a very rare case where this is needed. If it does * happen it would only happen on the first write to the file system. */ static void dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) { if (!sa->sa_need_attr_registration) return; for (int i = 0; i != sa->sa_num_attrs; i++) { if (!sa->sa_attr_table[i].sa_registered) { if (sa->sa_reg_attr_obj) dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, B_TRUE, sa->sa_attr_table[i].sa_name); else dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, sa->sa_attr_table[i].sa_name); } } } void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) { - dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx, - tx->tx_objset, object, THT_SPILL, 0, 0); + dmu_tx_hold_t *txh; - (void) refcount_add_many(&txh->txh_space_towrite, - SPA_OLD_MAXBLOCKSIZE, FTAG); + txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, + THT_SPILL, 0, 0); + if (txh != NULL) + (void) refcount_add_many(&txh->txh_space_towrite, + SPA_OLD_MAXBLOCKSIZE, FTAG); } void dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) { sa_os_t *sa = tx->tx_objset->os_sa; dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_layout_attr_obj) { dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); } else { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); - if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) + if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill) return; (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPILL, 0, 0); } /* * Hold SA attribute * * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) * * variable_size is the total size of all variable sized attributes * passed to this function. It is not the total size of all * variable size attributes that *may* exist on this object. */ void dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) { uint64_t object; sa_os_t *sa = tx->tx_objset->os_sa; ASSERT(hdl != NULL); object = sa_handle_object(hdl); dmu_tx_hold_bonus(tx, object); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); if (sa->sa_force_spill || may_grow || hdl->sa_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } else { dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_have_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } DB_DNODE_EXIT(db); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c (revision 350898) @@ -1,2070 +1,2409 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 RackTop Systems. */ #include #include #include #include #include #include #include #include #include #include #include #include #include +dnode_stats_t dnode_stats = { + { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, + { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, + { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, + { "dnode_hold_free_txg", KSTAT_DATA_UINT64 }, + { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, + { "dnode_allocate", KSTAT_DATA_UINT64 }, + { "dnode_reallocate", KSTAT_DATA_UINT64 }, + { "dnode_buf_evict", KSTAT_DATA_UINT64 }, + { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, + { "dnode_alloc_race", KSTAT_DATA_UINT64 }, + { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, + { "dnode_move_invalid", KSTAT_DATA_UINT64 }, + { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, + { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, + { "dnode_move_special", KSTAT_DATA_UINT64 }, + { "dnode_move_handle", KSTAT_DATA_UINT64 }, + { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, + { "dnode_move_active", KSTAT_DATA_UINT64 }, +}; + +static kstat_t *dnode_ksp; static kmem_cache_t *dnode_cache; -/* - * Define DNODE_STATS to turn on statistic gathering. By default, it is only - * turned on when DEBUG is also defined. - */ -#ifdef DEBUG -#define DNODE_STATS -#endif /* DEBUG */ -#ifdef DNODE_STATS -#define DNODE_STAT_ADD(stat) ((stat)++) -#else -#define DNODE_STAT_ADD(stat) /* nothing */ -#endif /* DNODE_STATS */ - static dnode_phys_t dnode_phys_zero; int zfs_default_bs = SPA_MINBLOCKSHIFT; int zfs_default_ibs = DN_MAX_INDBLKSHIFT; #ifdef _KERNEL static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); #endif /* _KERNEL */ static int dbuf_compare(const void *x1, const void *x2) { const dmu_buf_impl_t *d1 = x1; const dmu_buf_impl_t *d2 = x2; if (d1->db_level < d2->db_level) { return (-1); } if (d1->db_level > d2->db_level) { return (1); } if (d1->db_blkid < d2->db_blkid) { return (-1); } if (d1->db_blkid > d2->db_blkid) { return (1); } if (d1->db_state == DB_SEARCH) { ASSERT3S(d2->db_state, !=, DB_SEARCH); return (-1); } else if (d2->db_state == DB_SEARCH) { ASSERT3S(d1->db_state, !=, DB_SEARCH); return (1); } if ((uintptr_t)d1 < (uintptr_t)d2) { return (-1); } if ((uintptr_t)d1 > (uintptr_t)d2) { return (1); } return (0); } /* ARGSUSED */ static int dnode_cons(void *arg, void *unused, int kmflag) { dnode_t *dn = arg; int i; rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); /* * Every dbuf has a reference, and dropping a tracked reference is * O(number of references), so don't track dn_holds. */ refcount_create_untracked(&dn->dn_holds); refcount_create(&dn->dn_tx_holds); list_link_init(&dn->dn_link); bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); for (i = 0; i < TXG_SIZE; i++) { list_link_init(&dn->dn_dirty_link[i]); dn->dn_free_ranges[i] = NULL; list_create(&dn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirtyctx = 0; dn->dn_dirtyctx_firstset = NULL; dn->dn_bonus = NULL; dn->dn_have_spill = B_FALSE; dn->dn_zio = NULL; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_id_flags = 0; dn->dn_dbufs_count = 0; avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); dn->dn_moved = 0; return (0); } /* ARGSUSED */ static void dnode_dest(void *arg, void *unused) { int i; dnode_t *dn = arg; rw_destroy(&dn->dn_struct_rwlock); mutex_destroy(&dn->dn_mtx); mutex_destroy(&dn->dn_dbufs_mtx); cv_destroy(&dn->dn_notxholds); refcount_destroy(&dn->dn_holds); refcount_destroy(&dn->dn_tx_holds); ASSERT(!list_link_active(&dn->dn_link)); for (i = 0; i < TXG_SIZE; i++) { ASSERT(!list_link_active(&dn->dn_dirty_link[i])); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); list_destroy(&dn->dn_dirty_records[i]); ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_blksz[i]); } ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_free_txg); ASSERT0(dn->dn_assigned_txg); ASSERT0(dn->dn_dirtyctx); ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); ASSERT3P(dn->dn_bonus, ==, NULL); ASSERT(!dn->dn_have_spill); ASSERT3P(dn->dn_zio, ==, NULL); ASSERT0(dn->dn_oldused); ASSERT0(dn->dn_oldflags); ASSERT0(dn->dn_olduid); ASSERT0(dn->dn_oldgid); ASSERT0(dn->dn_newuid); ASSERT0(dn->dn_newgid); ASSERT0(dn->dn_id_flags); ASSERT0(dn->dn_dbufs_count); avl_destroy(&dn->dn_dbufs); } void dnode_init(void) { ASSERT(dnode_cache == NULL); dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); #ifdef _KERNEL kmem_cache_set_move(dnode_cache, dnode_move); + + dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", + KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), + KSTAT_FLAG_VIRTUAL); + if (dnode_ksp != NULL) { + dnode_ksp->ks_data = &dnode_stats; + kstat_install(dnode_ksp); + } #endif /* _KERNEL */ } void dnode_fini(void) { + if (dnode_ksp != NULL) { + kstat_delete(dnode_ksp); + dnode_ksp = NULL; + } + kmem_cache_destroy(dnode_cache); dnode_cache = NULL; } #ifdef ZFS_DEBUG void dnode_verify(dnode_t *dn) { int drop_struct_lock = FALSE; ASSERT(dn->dn_phys); ASSERT(dn->dn_objset); ASSERT(dn->dn_handle->dnh_dnode == dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) return; if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { int i; + int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); ASSERT3U(dn->dn_indblkshift, >=, 0); ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); if (dn->dn_datablkshift) { ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); ASSERT3U(1<dn_datablkshift, ==, dn->dn_datablksz); } ASSERT3U(dn->dn_nlevels, <=, 30); ASSERT(DMU_OT_IS_VALID(dn->dn_type)); ASSERT3U(dn->dn_nblkptr, >=, 1); ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); - ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); + ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); ASSERT3U(dn->dn_datablksz, ==, dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + - dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); + dn->dn_bonuslen, <=, max_bonuslen); for (i = 0; i < TXG_SIZE; i++) { ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); } } if (dn->dn_phys->dn_type != DMU_OT_NONE) ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); if (dn->dn_dbuf != NULL) { ASSERT3P(dn->dn_phys, ==, (dnode_phys_t *)dn->dn_dbuf->db.db_data + (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } #endif void dnode_byteswap(dnode_phys_t *dnp) { uint64_t *buf64 = (void*)&dnp->dn_blkptr; int i; if (dnp->dn_type == DMU_OT_NONE) { bzero(dnp, sizeof (dnode_phys_t)); return; } dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); + dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); dnp->dn_used = BSWAP_64(dnp->dn_used); /* * dn_nblkptr is only one byte, so it's OK to read it in either * byte order. We can't read dn_bouslen. */ ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) buf64[i] = BSWAP_64(buf64[i]); /* * OK to check dn_bonuslen for zero, because it won't matter if * we have the wrong byte order. This is necessary because the * dnode dnode is smaller than a regular dnode. */ if (dnp->dn_bonuslen != 0) { /* * Note that the bonus length calculated here may be * longer than the actual bonus buffer. This is because * we always put the bonus buffer after the last block * pointer (instead of packing it against the end of the * dnode buffer). */ int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); - size_t len = DN_MAX_BONUSLEN - off; + int slots = dnp->dn_extra_slots + 1; + size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); } /* Swap SPILL block if we have one */ if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) - byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); + byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); } void dnode_buf_byteswap(void *vbuf, size_t size) { - dnode_phys_t *buf = vbuf; - int i; + int i = 0; ASSERT3U(sizeof (dnode_phys_t), ==, (1<>= DNODE_SHIFT; - for (i = 0; i < size; i++) { - dnode_byteswap(buf); - buf++; + while (i < size) { + dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); + dnode_byteswap(dnp); + + i += DNODE_MIN_SIZE; + if (dnp->dn_type != DMU_OT_NONE) + i += dnp->dn_extra_slots * DNODE_MIN_SIZE; } } void dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); - ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - + ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - (dn->dn_nblkptr-1) * sizeof (blkptr_t)); dn->dn_bonuslen = newsize; if (newsize == 0) dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; else dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; rw_exit(&dn->dn_struct_rwlock); } void dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dn->dn_bonustype = newtype; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; rw_exit(&dn->dn_struct_rwlock); } void dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); dnode_setdirty(dn, tx); dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; dn->dn_have_spill = B_FALSE; } static void dnode_setdblksz(dnode_t *dn, int size) { ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(size, >=, SPA_MINBLOCKSIZE); ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); dn->dn_datablksz = size; dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; } static dnode_t * dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn; dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); #ifdef _KERNEL ASSERT(!POINTER_IS_VALID(dn->dn_objset)); #endif /* _KERNEL */ dn->dn_moved = 0; /* * Defer setting dn_objset until the dnode is ready to be a candidate * for the dnode_move() callback. */ dn->dn_object = object; dn->dn_dbuf = db; dn->dn_handle = dnh; dn->dn_phys = dnp; if (dnp->dn_datablkszsec) { dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } else { dn->dn_datablksz = 0; dn->dn_datablkszsec = 0; dn->dn_datablkshift = 0; } dn->dn_indblkshift = dnp->dn_indblkshift; dn->dn_nlevels = dnp->dn_nlevels; dn->dn_type = dnp->dn_type; dn->dn_nblkptr = dnp->dn_nblkptr; dn->dn_checksum = dnp->dn_checksum; dn->dn_compress = dnp->dn_compress; dn->dn_bonustype = dnp->dn_bonustype; dn->dn_bonuslen = dnp->dn_bonuslen; + dn->dn_num_slots = dnp->dn_extra_slots + 1; dn->dn_maxblkid = dnp->dn_maxblkid; dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); dn->dn_id_flags = 0; dmu_zfetch_init(&dn->dn_zfetch, dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); + ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); + ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); mutex_enter(&os->os_lock); - if (dnh->dnh_dnode != NULL) { - /* Lost the allocation race. */ - mutex_exit(&os->os_lock); - kmem_cache_free(dnode_cache, dn); - return (dnh->dnh_dnode); - } /* * Exclude special dnodes from os_dnodes so an empty os_dnodes * signifies that the special dnodes have no references from * their children (the entries in os_dnodes). This allows * dnode_destroy() to easily determine if the last child has * been removed and then complete eviction of the objset. */ if (!DMU_OBJECT_IS_SPECIAL(object)) list_insert_head(&os->os_dnodes, dn); membar_producer(); /* * Everything else must be valid before assigning dn_objset * makes the dnode eligible for dnode_move(). */ dn->dn_objset = os; dnh->dnh_dnode = dn; mutex_exit(&os->os_lock); arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); + return (dn); } /* * Caller must be holding the dnode handle, which is released upon return. */ static void dnode_destroy(dnode_t *dn) { objset_t *os = dn->dn_objset; boolean_t complete_os_eviction = B_FALSE; ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); mutex_enter(&os->os_lock); POINTER_INVALIDATE(&dn->dn_objset); if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { list_remove(&os->os_dnodes, dn); complete_os_eviction = list_is_empty(&os->os_dnodes) && list_link_active(&os->os_evicting_node); } mutex_exit(&os->os_lock); /* the dnode can no longer move, so we can release the handle */ - zrl_remove(&dn->dn_handle->dnh_zrlock); + if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) + zrl_remove(&dn->dn_handle->dnh_zrlock); dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirtyctx = 0; if (dn->dn_dirtyctx_firstset != NULL) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } if (dn->dn_bonus != NULL) { mutex_enter(&dn->dn_bonus->db_mtx); dbuf_destroy(dn->dn_bonus); dn->dn_bonus = NULL; } dn->dn_zio = NULL; dn->dn_have_spill = B_FALSE; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_id_flags = 0; dmu_zfetch_fini(&dn->dn_zfetch); kmem_cache_free(dnode_cache, dn); arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); if (complete_os_eviction) dmu_objset_evict_done(os); } void dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, - dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) + dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) { int i; + ASSERT3U(dn_slots, >, 0); + ASSERT3U(dn_slots << DNODE_SHIFT, <=, + spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); ASSERT3U(blocksize, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (blocksize == 0) blocksize = 1 << zfs_default_bs; else blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); if (ibs == 0) ibs = zfs_default_ibs; ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); - dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, - dn->dn_object, tx->tx_txg, blocksize, ibs); + dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 + " blocksize=%d ibs=%d dn_slots=%d\n", + dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); + DNODE_STAT_BUMP(dnode_allocate); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); ASSERT(ot != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(ot)); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype == DMU_OT_SA && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); - ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); + ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT0(dn->dn_maxblkid); ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_assigned_txg); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); ASSERT(avl_is_empty(&dn->dn_dbufs)); for (i = 0; i < TXG_SIZE; i++) { ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_blksz[i]); ASSERT(!list_link_active(&dn->dn_dirty_link[i])); ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); } dn->dn_type = ot; dnode_setdblksz(dn, blocksize); dn->dn_indblkshift = ibs; dn->dn_nlevels = 1; + dn->dn_num_slots = dn_slots; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ dn->dn_nblkptr = 1; - else - dn->dn_nblkptr = 1 + - ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); + else { + dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, + 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> + SPA_BLKPTRSHIFT)); + } + dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; dn->dn_dirtyctx = 0; dn->dn_free_txg = 0; if (dn->dn_dirtyctx_firstset) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } dn->dn_allocated_txg = tx->tx_txg; dn->dn_id_flags = 0; dnode_setdirty(dn, tx); dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; } void dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, - dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) + dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) { int nblkptr; ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); ASSERT3U(blocksize, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); ASSERT0(blocksize % SPA_MINBLOCKSIZE); ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); ASSERT(tx->tx_txg != 0); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0) || (bonustype == DMU_OT_SA && bonuslen == 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); - ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); + ASSERT3U(bonuslen, <=, + DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); + dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS; + + dnode_free_interior_slots(dn); + DNODE_STAT_BUMP(dnode_reallocate); + /* clean up any unreferenced dbufs */ dnode_evict_dbufs(dn); dn->dn_id_flags = 0; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_setdirty(dn, tx); if (dn->dn_datablksz != blocksize) { /* change blocksize */ ASSERT(dn->dn_maxblkid == 0 && (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || dnode_block_freed(dn, 0))); dnode_setdblksz(dn, blocksize); dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; } if (dn->dn_bonuslen != bonuslen) dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ nblkptr = 1; else - nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); + nblkptr = MIN(DN_MAX_NBLKPTR, + 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> + SPA_BLKPTRSHIFT)); if (dn->dn_bonustype != bonustype) dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; if (dn->dn_nblkptr != nblkptr) dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { dbuf_rm_spill(dn, tx); dnode_rm_spill(dn, tx); } rw_exit(&dn->dn_struct_rwlock); /* change type */ dn->dn_type = ot; /* change bonus size and type */ mutex_enter(&dn->dn_mtx); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; + dn->dn_num_slots = dn_slots; dn->dn_nblkptr = nblkptr; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); /* fix up the bonus db_size */ if (dn->dn_bonus) { dn->dn_bonus->db.db_size = - DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); + DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - + (dn->dn_nblkptr - 1) * sizeof (blkptr_t); ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); } dn->dn_allocated_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); } -#ifdef DNODE_STATS -static struct { - uint64_t dms_dnode_invalid; - uint64_t dms_dnode_recheck1; - uint64_t dms_dnode_recheck2; - uint64_t dms_dnode_special; - uint64_t dms_dnode_handle; - uint64_t dms_dnode_rwlock; - uint64_t dms_dnode_active; -} dnode_move_stats; -#endif /* DNODE_STATS */ - #ifdef _KERNEL static void dnode_move_impl(dnode_t *odn, dnode_t *ndn) { int i; ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); /* Copy fields. */ ndn->dn_objset = odn->dn_objset; ndn->dn_object = odn->dn_object; ndn->dn_dbuf = odn->dn_dbuf; ndn->dn_handle = odn->dn_handle; ndn->dn_phys = odn->dn_phys; ndn->dn_type = odn->dn_type; ndn->dn_bonuslen = odn->dn_bonuslen; ndn->dn_bonustype = odn->dn_bonustype; ndn->dn_nblkptr = odn->dn_nblkptr; ndn->dn_checksum = odn->dn_checksum; ndn->dn_compress = odn->dn_compress; ndn->dn_nlevels = odn->dn_nlevels; ndn->dn_indblkshift = odn->dn_indblkshift; ndn->dn_datablkshift = odn->dn_datablkshift; ndn->dn_datablkszsec = odn->dn_datablkszsec; ndn->dn_datablksz = odn->dn_datablksz; ndn->dn_maxblkid = odn->dn_maxblkid; + ndn->dn_num_slots = odn->dn_num_slots; bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], sizeof (odn->dn_next_type)); bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], sizeof (odn->dn_next_nblkptr)); bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], sizeof (odn->dn_next_nlevels)); bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], sizeof (odn->dn_next_indblkshift)); bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], sizeof (odn->dn_next_bonustype)); bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], sizeof (odn->dn_rm_spillblk)); bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], sizeof (odn->dn_next_bonuslen)); bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], sizeof (odn->dn_next_blksz)); for (i = 0; i < TXG_SIZE; i++) { list_move_tail(&ndn->dn_dirty_records[i], &odn->dn_dirty_records[i]); } bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], sizeof (odn->dn_free_ranges)); ndn->dn_allocated_txg = odn->dn_allocated_txg; ndn->dn_free_txg = odn->dn_free_txg; ndn->dn_assigned_txg = odn->dn_assigned_txg; ndn->dn_dirtyctx = odn->dn_dirtyctx; ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; ASSERT(refcount_count(&odn->dn_tx_holds) == 0); refcount_transfer(&ndn->dn_holds, &odn->dn_holds); ASSERT(avl_is_empty(&ndn->dn_dbufs)); avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); ndn->dn_dbufs_count = odn->dn_dbufs_count; ndn->dn_bonus = odn->dn_bonus; ndn->dn_have_spill = odn->dn_have_spill; ndn->dn_zio = odn->dn_zio; ndn->dn_oldused = odn->dn_oldused; ndn->dn_oldflags = odn->dn_oldflags; ndn->dn_olduid = odn->dn_olduid; ndn->dn_oldgid = odn->dn_oldgid; ndn->dn_newuid = odn->dn_newuid; ndn->dn_newgid = odn->dn_newgid; ndn->dn_id_flags = odn->dn_id_flags; dmu_zfetch_init(&ndn->dn_zfetch, NULL); list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; /* * Update back pointers. Updating the handle fixes the back pointer of * every descendant dbuf as well as the bonus dbuf. */ ASSERT(ndn->dn_handle->dnh_dnode == odn); ndn->dn_handle->dnh_dnode = ndn; if (ndn->dn_zfetch.zf_dnode == odn) { ndn->dn_zfetch.zf_dnode = ndn; } /* * Invalidate the original dnode by clearing all of its back pointers. */ odn->dn_dbuf = NULL; odn->dn_handle = NULL; avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); odn->dn_dbufs_count = 0; odn->dn_bonus = NULL; odn->dn_zfetch.zf_dnode = NULL; /* * Set the low bit of the objset pointer to ensure that dnode_move() * recognizes the dnode as invalid in any subsequent callback. */ POINTER_INVALIDATE(&odn->dn_objset); /* * Satisfy the destructor. */ for (i = 0; i < TXG_SIZE; i++) { list_create(&odn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); odn->dn_free_ranges[i] = NULL; odn->dn_next_nlevels[i] = 0; odn->dn_next_indblkshift[i] = 0; odn->dn_next_bonustype[i] = 0; odn->dn_rm_spillblk[i] = 0; odn->dn_next_bonuslen[i] = 0; odn->dn_next_blksz[i] = 0; } odn->dn_allocated_txg = 0; odn->dn_free_txg = 0; odn->dn_assigned_txg = 0; odn->dn_dirtyctx = 0; odn->dn_dirtyctx_firstset = NULL; odn->dn_have_spill = B_FALSE; odn->dn_zio = NULL; odn->dn_oldused = 0; odn->dn_oldflags = 0; odn->dn_olduid = 0; odn->dn_oldgid = 0; odn->dn_newuid = 0; odn->dn_newgid = 0; odn->dn_id_flags = 0; /* * Mark the dnode. */ ndn->dn_moved = 1; odn->dn_moved = (uint8_t)-1; } /*ARGSUSED*/ static kmem_cbrc_t dnode_move(void *buf, void *newbuf, size_t size, void *arg) { dnode_t *odn = buf, *ndn = newbuf; objset_t *os; int64_t refcount; uint32_t dbufs; /* * The dnode is on the objset's list of known dnodes if the objset * pointer is valid. We set the low bit of the objset pointer when * freeing the dnode to invalidate it, and the memory patterns written * by kmem (baddcafe and deadbeef) set at least one of the two low bits. * A newly created dnode sets the objset pointer last of all to indicate * that the dnode is known and in a valid state to be moved by this * function. */ os = odn->dn_objset; if (!POINTER_IS_VALID(os)) { - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); + DNODE_STAT_BUMP(dnode_move_invalid); return (KMEM_CBRC_DONT_KNOW); } /* * Ensure that the objset does not go away during the move. */ rw_enter(&os_lock, RW_WRITER); if (os != odn->dn_objset) { rw_exit(&os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); + DNODE_STAT_BUMP(dnode_move_recheck1); return (KMEM_CBRC_DONT_KNOW); } /* * If the dnode is still valid, then so is the objset. We know that no * valid objset can be freed while we hold os_lock, so we can safely * ensure that the objset remains in use. */ mutex_enter(&os->os_lock); /* * Recheck the objset pointer in case the dnode was removed just before * acquiring the lock. */ if (os != odn->dn_objset) { mutex_exit(&os->os_lock); rw_exit(&os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); + DNODE_STAT_BUMP(dnode_move_recheck2); return (KMEM_CBRC_DONT_KNOW); } /* * At this point we know that as long as we hold os->os_lock, the dnode * cannot be freed and fields within the dnode can be safely accessed. * The objset listing this dnode cannot go away as long as this dnode is * on its list. */ rw_exit(&os_lock); if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { mutex_exit(&os->os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); + DNODE_STAT_BUMP(dnode_move_special); return (KMEM_CBRC_NO); } ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ /* * Lock the dnode handle to prevent the dnode from obtaining any new * holds. This also prevents the descendant dbufs and the bonus dbuf * from accessing the dnode, so that we can discount their holds. The * handle is safe to access because we know that while the dnode cannot * go away, neither can its handle. Once we hold dnh_zrlock, we can * safely move any dnode referenced only by dbufs. */ if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { mutex_exit(&os->os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); + DNODE_STAT_BUMP(dnode_move_handle); return (KMEM_CBRC_LATER); } /* * Ensure a consistent view of the dnode's holds and the dnode's dbufs. * We need to guarantee that there is a hold for every dbuf in order to * determine whether the dnode is actively referenced. Falsely matching * a dbuf to an active hold would lead to an unsafe move. It's possible * that a thread already having an active dnode hold is about to add a * dbuf, and we can't compare hold and dbuf counts while the add is in * progress. */ if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); + DNODE_STAT_BUMP(dnode_move_rwlock); return (KMEM_CBRC_LATER); } /* * A dbuf may be removed (evicted) without an active dnode hold. In that * case, the dbuf count is decremented under the handle lock before the * dbuf's hold is released. This order ensures that if we count the hold * after the dbuf is removed but before its hold is released, we will * treat the unmatched hold as active and exit safely. If we count the * hold before the dbuf is removed, the hold is discounted, and the * removal is blocked until the move completes. */ refcount = refcount_count(&odn->dn_holds); ASSERT(refcount >= 0); dbufs = odn->dn_dbufs_count; /* We can't have more dbufs than dnode holds. */ ASSERT3U(dbufs, <=, refcount); DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, uint32_t, dbufs); if (refcount > dbufs) { rw_exit(&odn->dn_struct_rwlock); zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); - DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); + DNODE_STAT_BUMP(dnode_move_active); return (KMEM_CBRC_LATER); } rw_exit(&odn->dn_struct_rwlock); /* * At this point we know that anyone with a hold on the dnode is not * actively referencing it. The dnode is known and in a valid state to * move. We're holding the locks needed to execute the critical section. */ dnode_move_impl(odn, ndn); list_link_replace(&odn->dn_link, &ndn->dn_link); /* If the dnode was safe to move, the refcount cannot have changed. */ ASSERT(refcount == refcount_count(&ndn->dn_holds)); ASSERT(dbufs == ndn->dn_dbufs_count); zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ mutex_exit(&os->os_lock); return (KMEM_CBRC_YES); } #endif /* _KERNEL */ +static void +dnode_slots_hold(dnode_children_t *children, int idx, int slots) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + zrl_add(&dnh->dnh_zrlock); + } +} + +static void +dnode_slots_rele(dnode_children_t *children, int idx, int slots) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + + if (zrl_is_locked(&dnh->dnh_zrlock)) + zrl_exit(&dnh->dnh_zrlock); + else + zrl_remove(&dnh->dnh_zrlock); + } +} + +static int +dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + + if (!zrl_tryenter(&dnh->dnh_zrlock)) { + for (int j = idx; j < i; j++) { + dnh = &children->dnc_children[j]; + zrl_exit(&dnh->dnh_zrlock); + } + + return (0); + } + } + + return (1); +} + +static void +dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + dnh->dnh_dnode = ptr; + } +} + +static boolean_t +dnode_check_slots_free(dnode_children_t *children, int idx, int slots) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + dnode_t *dn = dnh->dnh_dnode; + + if (dn == DN_SLOT_FREE) { + continue; + } else if (DN_SLOT_IS_PTR(dn)) { + mutex_enter(&dn->dn_mtx); + dmu_object_type_t type = dn->dn_type; + mutex_exit(&dn->dn_mtx); + + if (type != DMU_OT_NONE) + return (B_FALSE); + + continue; + } else { + return (B_FALSE); + } + + return (B_FALSE); + } + + return (B_TRUE); +} + +static void +dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) +{ + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + for (int i = idx; i < idx + slots; i++) { + dnode_handle_t *dnh = &children->dnc_children[i]; + + ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); + + if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { + ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); + dnode_destroy(dnh->dnh_dnode); + dnh->dnh_dnode = DN_SLOT_FREE; + } + } +} + void +dnode_free_interior_slots(dnode_t *dn) +{ + dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); + int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; + int idx = (dn->dn_object & (epb - 1)) + 1; + int slots = dn->dn_num_slots - 1; + + if (slots == 0) + return; + + ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); + + while (!dnode_slots_tryenter(children, idx, slots)) + DNODE_STAT_BUMP(dnode_free_interior_lock_retry); + + dnode_set_slots(children, idx, slots, DN_SLOT_FREE); + dnode_slots_rele(children, idx, slots); +} + +void dnode_special_close(dnode_handle_t *dnh) { dnode_t *dn = dnh->dnh_dnode; /* * Wait for final references to the dnode to clear. This can - * only happen if the arc is asyncronously evicting state that + * only happen if the arc is asynchronously evicting state that * has a hold on this dnode while we are trying to evict this * dnode. */ while (refcount_count(&dn->dn_holds) > 0) delay(1); ASSERT(dn->dn_dbuf == NULL || dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); zrl_add(&dnh->dnh_zrlock); dnode_destroy(dn); /* implicit zrl_remove() */ zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = NULL; } void dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn; - dn = dnode_create(os, dnp, NULL, object, dnh); zrl_init(&dnh->dnh_zrlock); + zrl_tryenter(&dnh->dnh_zrlock); + + dn = dnode_create(os, dnp, NULL, object, dnh); DNODE_VERIFY(dn); + + zrl_exit(&dnh->dnh_zrlock); } static void dnode_buf_evict_async(void *dbu) { - dnode_children_t *children_dnodes = dbu; - int i; + dnode_children_t *dnc = dbu; - for (i = 0; i < children_dnodes->dnc_count; i++) { - dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; + DNODE_STAT_BUMP(dnode_buf_evict); + + for (int i = 0; i < dnc->dnc_count; i++) { + dnode_handle_t *dnh = &dnc->dnc_children[i]; dnode_t *dn; /* * The dnode handle lock guards against the dnode moving to * another valid address, so there is no need here to guard * against changes to or from NULL. */ - if (dnh->dnh_dnode == NULL) { + if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { zrl_destroy(&dnh->dnh_zrlock); + dnh->dnh_dnode = DN_SLOT_UNINIT; continue; } zrl_add(&dnh->dnh_zrlock); dn = dnh->dnh_dnode; /* * If there are holds on this dnode, then there should * be holds on the dnode's containing dbuf as well; thus * it wouldn't be eligible for eviction and this function * would not have been called. */ ASSERT(refcount_is_zero(&dn->dn_holds)); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); - dnode_destroy(dn); /* implicit zrl_remove() */ + dnode_destroy(dn); /* implicit zrl_remove() for first slot */ zrl_destroy(&dnh->dnh_zrlock); - dnh->dnh_dnode = NULL; + dnh->dnh_dnode = DN_SLOT_UNINIT; } - kmem_free(children_dnodes, sizeof (dnode_children_t) + - children_dnodes->dnc_count * sizeof (dnode_handle_t)); + kmem_free(dnc, sizeof (dnode_children_t) + + dnc->dnc_count * sizeof (dnode_handle_t)); } /* + * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used + * to ensure the hole at the specified object offset is large enough to + * hold the dnode being created. The slots parameter is also used to ensure + * a dnode does not span multiple dnode blocks. In both of these cases, if + * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases + * are only possible when using DNODE_MUST_BE_FREE. + * + * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. + * dnode_hold_impl() will check if the requested dnode is already consumed + * as an extra dnode slot by an large dnode, in which case it returns + * ENOENT. + * * errors: - * EINVAL - invalid object number. - * EIO - i/o error. + * EINVAL - invalid object number or flags. + * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) + * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) + * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) + * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) + * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) + * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) + * EIO - i/o error error when reading the meta dnode dbuf. * succeeds even for free dnodes. */ int -dnode_hold_impl(objset_t *os, uint64_t object, int flag, +dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, void *tag, dnode_t **dnp) { int epb, idx, err; int drop_struct_lock = FALSE; int type; uint64_t blk; dnode_t *mdn, *dn; dmu_buf_impl_t *db; - dnode_children_t *children_dnodes; + dnode_children_t *dnc; + dnode_phys_t *dn_block; dnode_handle_t *dnh; + ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); + ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); + /* * If you are holding the spa config lock as writer, you shouldn't * be asking the DMU to do *anything* unless it's the root pool * which may require us to read from the root filesystem while * holding some (not all) of the locks as writer. */ ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || (spa_is_root(os->os_spa) && spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { dn = (object == DMU_USERUSED_OBJECT) ? DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); if (dn == NULL) return (SET_ERROR(ENOENT)); type = dn->dn_type; if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) return (SET_ERROR(ENOENT)); if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) return (SET_ERROR(EEXIST)); DNODE_VERIFY(dn); (void) refcount_add(&dn->dn_holds, tag); *dnp = dn; return (0); } if (object == 0 || object >= DN_MAX_OBJECT) return (SET_ERROR(EINVAL)); mdn = DMU_META_DNODE(os); ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); DNODE_VERIFY(mdn); if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { rw_enter(&mdn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); db = dbuf_hold(mdn, blk, FTAG); if (drop_struct_lock) rw_exit(&mdn->dn_struct_rwlock); - if (db == NULL) + if (db == NULL) { + DNODE_STAT_BUMP(dnode_hold_dbuf_hold); return (SET_ERROR(EIO)); + } err = dbuf_read(db, NULL, DB_RF_CANFAIL); if (err) { + DNODE_STAT_BUMP(dnode_hold_dbuf_read); dbuf_rele(db, FTAG); return (err); } ASSERT3U(db->db.db_size, >=, 1<db.db_size >> DNODE_SHIFT; - idx = object & (epb-1); + idx = object & (epb - 1); + dn_block = (dnode_phys_t *)db->db.db_data; ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); - children_dnodes = dmu_buf_get_user(&db->db); - if (children_dnodes == NULL) { - int i; + dnc = dmu_buf_get_user(&db->db); + dnh = NULL; + if (dnc == NULL) { dnode_children_t *winner; - children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + + int skip = 0; + + dnc = kmem_zalloc(sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t), KM_SLEEP); - children_dnodes->dnc_count = epb; - dnh = &children_dnodes->dnc_children[0]; - for (i = 0; i < epb; i++) { + dnc->dnc_count = epb; + dnh = &dnc->dnc_children[0]; + + /* Initialize dnode slot status from dnode_phys_t */ + for (int i = 0; i < epb; i++) { zrl_init(&dnh[i].dnh_zrlock); + + if (skip) { + skip--; + continue; + } + + if (dn_block[i].dn_type != DMU_OT_NONE) { + int interior = dn_block[i].dn_extra_slots; + + dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); + dnode_set_slots(dnc, i + 1, interior, + DN_SLOT_INTERIOR); + skip = interior; + } else { + dnh[i].dnh_dnode = DN_SLOT_FREE; + skip = 0; + } } - dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL, + + dmu_buf_init_user(&dnc->dnc_dbu, NULL, dnode_buf_evict_async, NULL); - winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu); + winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); if (winner != NULL) { - for (i = 0; i < epb; i++) { + for (int i = 0; i < epb; i++) zrl_destroy(&dnh[i].dnh_zrlock); - } - kmem_free(children_dnodes, sizeof (dnode_children_t) + + kmem_free(dnc, sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t)); - children_dnodes = winner; + dnc = winner; } } - ASSERT(children_dnodes->dnc_count == epb); - dnh = &children_dnodes->dnc_children[idx]; - zrl_add(&dnh->dnh_zrlock); - dn = dnh->dnh_dnode; - if (dn == NULL) { - dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; + ASSERT(dnc->dnc_count == epb); + dn = DN_SLOT_UNINIT; - dn = dnode_create(os, phys, db, object, dnh); + if (flag & DNODE_MUST_BE_ALLOCATED) { + slots = 1; + + while (dn == DN_SLOT_UNINIT) { + dnode_slots_hold(dnc, idx, slots); + dnh = &dnc->dnc_children[idx]; + + if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { + dn = dnh->dnh_dnode; + break; + } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { + DNODE_STAT_BUMP(dnode_hold_alloc_interior); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(EEXIST)); + } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { + DNODE_STAT_BUMP(dnode_hold_alloc_misses); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(ENOENT)); + } + + dnode_slots_rele(dnc, idx, slots); + if (!dnode_slots_tryenter(dnc, idx, slots)) { + DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); + continue; + } + + /* + * Someone else won the race and called dnode_create() + * after we checked DN_SLOT_IS_PTR() above but before + * we acquired the lock. + */ + if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { + DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); + dn = dnh->dnh_dnode; + } else { + dn = dnode_create(os, dn_block + idx, db, + object, dnh); + } + } + + mutex_enter(&dn->dn_mtx); + if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { + DNODE_STAT_BUMP(dnode_hold_alloc_type_none); + mutex_exit(&dn->dn_mtx); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(ENOENT)); + } + + DNODE_STAT_BUMP(dnode_hold_alloc_hits); + } else if (flag & DNODE_MUST_BE_FREE) { + + if (idx + slots - 1 >= DNODES_PER_BLOCK) { + DNODE_STAT_BUMP(dnode_hold_free_overflow); + dbuf_rele(db, FTAG); + return (SET_ERROR(ENOSPC)); + } + + while (dn == DN_SLOT_UNINIT) { + dnode_slots_hold(dnc, idx, slots); + + if (!dnode_check_slots_free(dnc, idx, slots)) { + DNODE_STAT_BUMP(dnode_hold_free_misses); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(ENOSPC)); + } + + dnode_slots_rele(dnc, idx, slots); + if (!dnode_slots_tryenter(dnc, idx, slots)) { + DNODE_STAT_BUMP(dnode_hold_free_lock_retry); + continue; + } + + if (!dnode_check_slots_free(dnc, idx, slots)) { + DNODE_STAT_BUMP(dnode_hold_free_lock_misses); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(ENOSPC)); + } + + /* + * Allocated but otherwise free dnodes which would + * be in the interior of a multi-slot dnodes need + * to be freed. Single slot dnodes can be safely + * re-purposed as a performance optimization. + */ + if (slots > 1) + dnode_reclaim_slots(dnc, idx + 1, slots - 1); + + dnh = &dnc->dnc_children[idx]; + if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { + dn = dnh->dnh_dnode; + } else { + dn = dnode_create(os, dn_block + idx, db, + object, dnh); + } + } + + mutex_enter(&dn->dn_mtx); + if (!refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { + DNODE_STAT_BUMP(dnode_hold_free_refcount); + mutex_exit(&dn->dn_mtx); + dnode_slots_rele(dnc, idx, slots); + dbuf_rele(db, FTAG); + return (SET_ERROR(EEXIST)); + } + + dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); + DNODE_STAT_BUMP(dnode_hold_free_hits); + } else { + dbuf_rele(db, FTAG); + return (SET_ERROR(EINVAL)); } - mutex_enter(&dn->dn_mtx); - type = dn->dn_type; - if (dn->dn_free_txg || - ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || - ((flag & DNODE_MUST_BE_FREE) && - (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { + if (dn->dn_free_txg) { + DNODE_STAT_BUMP(dnode_hold_free_txg); + type = dn->dn_type; mutex_exit(&dn->dn_mtx); - zrl_remove(&dnh->dnh_zrlock); + dnode_slots_rele(dnc, idx, slots); dbuf_rele(db, FTAG); - return ((flag & DNODE_MUST_BE_ALLOCATED) ? ENOENT : EEXIST); + return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ? + ENOENT : EEXIST)); } + if (refcount_add(&dn->dn_holds, tag) == 1) dbuf_add_ref(db, dnh); + mutex_exit(&dn->dn_mtx); /* Now we can rely on the hold to prevent the dnode from moving. */ - zrl_remove(&dnh->dnh_zrlock); + dnode_slots_rele(dnc, idx, slots); DNODE_VERIFY(dn); ASSERT3P(dn->dn_dbuf, ==, db); ASSERT3U(dn->dn_object, ==, object); dbuf_rele(db, FTAG); *dnp = dn; return (0); } /* * Return held dnode if the object is allocated, NULL if not. */ int dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) { - return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); + return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, + dnp)); } /* * Can only add a reference if there is already at least one * reference on the dnode. Returns FALSE if unable to add a * new reference. */ boolean_t dnode_add_ref(dnode_t *dn, void *tag) { mutex_enter(&dn->dn_mtx); if (refcount_is_zero(&dn->dn_holds)) { mutex_exit(&dn->dn_mtx); return (FALSE); } VERIFY(1 < refcount_add(&dn->dn_holds, tag)); mutex_exit(&dn->dn_mtx); return (TRUE); } void dnode_rele(dnode_t *dn, void *tag) { mutex_enter(&dn->dn_mtx); dnode_rele_and_unlock(dn, tag, B_FALSE); } void dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) { uint64_t refs; /* Get while the hold prevents the dnode from moving. */ dmu_buf_impl_t *db = dn->dn_dbuf; dnode_handle_t *dnh = dn->dn_handle; refs = refcount_remove(&dn->dn_holds, tag); mutex_exit(&dn->dn_mtx); /* * It's unsafe to release the last hold on a dnode by dnode_rele() or * indirectly by dbuf_rele() while relying on the dnode handle to * prevent the dnode from moving, since releasing the last hold could * result in the dnode's parent dbuf evicting its dnode handles. For * that reason anyone calling dnode_rele() or dbuf_rele() without some * other direct or indirect hold on the dnode must first drop the dnode * handle. */ ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ if (refs == 0 && db != NULL) { /* * Another thread could add a hold to the dnode handle in * dnode_hold_impl() while holding the parent dbuf. Since the * hold on the parent dbuf prevents the handle from being * destroyed, the hold on the handle is OK. We can't yet assert * that the handle has zero references, but that will be * asserted anyway when the handle gets destroyed. */ mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, dnh, evicting); } } void dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; uint64_t txg = tx->tx_txg; if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { dsl_dataset_dirty(os->os_dsl_dataset, tx); return; } DNODE_VERIFY(dn); #ifdef ZFS_DEBUG mutex_enter(&dn->dn_mtx); ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); mutex_exit(&dn->dn_mtx); #endif /* * Determine old uid/gid when necessary */ dmu_objset_userquota_get_ids(dn, B_TRUE, tx); multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); /* * If we are already marked dirty, we're done. */ if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { multilist_sublist_unlock(mls); return; } ASSERT(!refcount_is_zero(&dn->dn_holds) || !avl_is_empty(&dn->dn_dbufs)); ASSERT(dn->dn_datablksz != 0); ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", dn->dn_object, txg); multilist_sublist_insert_head(mls, dn); multilist_sublist_unlock(mls); /* * The dnode maintains a hold on its containing dbuf as * long as there are holds on it. Each instantiated child * dbuf maintains a hold on the dnode. When the last child * drops its hold, the dnode will drop its hold on the * containing dbuf. We add a "dirty hold" here so that the * dnode will hang around after we finish processing its * children. */ VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); (void) dbuf_dirty(dn->dn_dbuf, tx); dsl_dataset_dirty(os->os_dsl_dataset, tx); } void dnode_free(dnode_t *dn, dmu_tx_t *tx) { mutex_enter(&dn->dn_mtx); if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { mutex_exit(&dn->dn_mtx); return; } dn->dn_free_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); } /* * Try to change the block size for the indicated dnode. This can only * succeed if there are no blocks allocated or dirty beyond first block */ int dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) { dmu_buf_impl_t *db; int err; ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (size == 0) size = SPA_MINBLOCKSIZE; else size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); if (ibs == dn->dn_indblkshift) ibs = 0; if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) return (0); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* Check for any allocated blocks beyond the first */ if (dn->dn_maxblkid != 0) goto fail; mutex_enter(&dn->dn_dbufs_mtx); for (db = avl_first(&dn->dn_dbufs); db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_exit(&dn->dn_dbufs_mtx); goto fail; } } mutex_exit(&dn->dn_dbufs_mtx); if (ibs && dn->dn_nlevels != 1) goto fail; /* resize the old block */ err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); if (err == 0) dbuf_new_size(db, size, tx); else if (err != ENOENT) goto fail; dnode_setdblksz(dn, size); dnode_setdirty(dn, tx); dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; if (ibs) { dn->dn_indblkshift = ibs; dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; } /* rele after we have fixed the blocksize in the dnode */ if (db) dbuf_rele(db, FTAG); rw_exit(&dn->dn_struct_rwlock); return (0); fail: rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(ENOTSUP)); } /* read-holding callers must not rely on the lock being continuously held */ void dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) { uint64_t txgoff = tx->tx_txg & TXG_MASK; int epbs, new_nlevels; uint64_t sz; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(have_read ? RW_READ_HELD(&dn->dn_struct_rwlock) : RW_WRITE_HELD(&dn->dn_struct_rwlock)); /* * if we have a read-lock, check to see if we need to do any work * before upgrading to a write-lock. */ if (have_read) { if (blkid <= dn->dn_maxblkid) return; if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); } } if (blkid <= dn->dn_maxblkid) goto out; dn->dn_maxblkid = blkid; /* * Compute the number of levels necessary to support the new maxblkid. */ new_nlevels = 1; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (sz = dn->dn_nblkptr; sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) new_nlevels++; if (new_nlevels > dn->dn_nlevels) { int old_nlevels = dn->dn_nlevels; dmu_buf_impl_t *db; list_t *list; dbuf_dirty_record_t *new, *dr, *dr_next; dn->dn_nlevels = new_nlevels; ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); dn->dn_next_nlevels[txgoff] = new_nlevels; /* dirty the left indirects */ db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); ASSERT(db != NULL); new = dbuf_dirty(db, tx); dbuf_rele(db, FTAG); /* transfer the dirty records to the new indirect */ mutex_enter(&dn->dn_mtx); mutex_enter(&new->dt.di.dr_mtx); list = &dn->dn_dirty_records[txgoff]; for (dr = list_head(list); dr; dr = dr_next) { dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); if (dr->dr_dbuf->db_level != new_nlevels-1 && dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); list_remove(&dn->dn_dirty_records[txgoff], dr); list_insert_tail(&new->dt.di.dr_children, dr); dr->dr_parent = new; } } mutex_exit(&new->dt.di.dr_mtx); mutex_exit(&dn->dn_mtx); } out: if (have_read) rw_downgrade(&dn->dn_struct_rwlock); } static void dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); if (db != NULL) { dmu_buf_will_dirty(&db->db, tx); dbuf_rele(db, FTAG); } } /* * Dirty all the in-core level-1 dbufs in the range specified by start_blkid * and end_blkid. */ static void dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t db_search; dmu_buf_impl_t *db; avl_index_t where; mutex_enter(&dn->dn_dbufs_mtx); db_search.db_level = 1; db_search.db_blkid = start_blkid + 1; db_search.db_state = DB_SEARCH; for (;;) { db = avl_find(&dn->dn_dbufs, &db_search, &where); if (db == NULL) db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); if (db == NULL || db->db_level != 1 || db->db_blkid >= end_blkid) { break; } /* * Setup the next blkid we want to search for. */ db_search.db_blkid = db->db_blkid + 1; ASSERT3U(db->db_blkid, >=, start_blkid); /* * If the dbuf transitions to DB_EVICTING while we're trying * to dirty it, then we will be unable to discover it in * the dbuf hash table. This will result in a call to * dbuf_create() which needs to acquire the dn_dbufs_mtx * lock. To avoid a deadlock, we drop the lock before * dirtying the level-1 dbuf. */ mutex_exit(&dn->dn_dbufs_mtx); dnode_dirty_l1(dn, db->db_blkid, tx); mutex_enter(&dn->dn_dbufs_mtx); } #ifdef ZFS_DEBUG /* * Walk all the in-core level-1 dbufs and verify they have been dirtied. */ db_search.db_level = 1; db_search.db_blkid = start_blkid + 1; db_search.db_state = DB_SEARCH; db = avl_find(&dn->dn_dbufs, &db_search, &where); if (db == NULL) db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { if (db->db_level != 1 || db->db_blkid >= end_blkid) break; ASSERT(db->db_dirtycnt > 0); } #endif mutex_exit(&dn->dn_dbufs_mtx); } void dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) { dmu_buf_impl_t *db; uint64_t blkoff, blkid, nblks; int blksz, blkshift, head, tail; int trunc = FALSE; int epbs; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); blksz = dn->dn_datablksz; blkshift = dn->dn_datablkshift; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; if (len == DMU_OBJECT_END) { len = UINT64_MAX - off; trunc = TRUE; } /* * First, block align the region to free: */ if (ISP2(blksz)) { head = P2NPHASE(off, blksz); blkoff = P2PHASE(off, blksz); if ((off >> blkshift) > dn->dn_maxblkid) goto out; } else { ASSERT(dn->dn_maxblkid == 0); if (off == 0 && len >= blksz) { /* * Freeing the whole block; fast-track this request. */ blkid = 0; nblks = 1; if (dn->dn_nlevels > 1) dnode_dirty_l1(dn, 0, tx); goto done; } else if (off >= blksz) { /* Freeing past end-of-data */ goto out; } else { /* Freeing part of the block. */ head = blksz - off; ASSERT3U(head, >, 0); } blkoff = off; } /* zero out any partial block data at the start of the range */ if (head) { ASSERT3U(blkoff + head, ==, blksz); if (len < head) head = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE, FTAG, &db) == 0) { caddr_t data; /* don't dirty if it isn't on disk and isn't dirty */ if (db->db_last_dirty || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_will_dirty(&db->db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); data = db->db.db_data; bzero(data + blkoff, head); } dbuf_rele(db, FTAG); } off += head; len -= head; } /* If the range was less than one block, we're done */ if (len == 0) goto out; /* If the remaining range is past end of file, we're done */ if ((off >> blkshift) > dn->dn_maxblkid) goto out; ASSERT(ISP2(blksz)); if (trunc) tail = 0; else tail = P2PHASE(len, blksz); ASSERT0(P2PHASE(off, blksz)); /* zero out any partial block data at the end of the range */ if (tail) { if (len < tail) tail = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), TRUE, FALSE, FTAG, &db) == 0) { /* don't dirty if not on disk and not dirty */ if (db->db_last_dirty || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_will_dirty(&db->db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); bzero(db->db.db_data, tail); } dbuf_rele(db, FTAG); } len -= tail; } /* If the range did not include a full block, we are done */ if (len == 0) goto out; ASSERT(IS_P2ALIGNED(off, blksz)); ASSERT(trunc || IS_P2ALIGNED(len, blksz)); blkid = off >> blkshift; nblks = len >> blkshift; if (trunc) nblks += 1; /* * Dirty all the indirect blocks in this range. Note that only * the first and last indirect blocks can actually be written * (if they were partially freed) -- they must be dirtied, even if * they do not exist on disk yet. The interior blocks will * be freed by free_children(), so they will not actually be written. * Even though these interior blocks will not be written, we * dirty them for two reasons: * * - It ensures that the indirect blocks remain in memory until * syncing context. (They have already been prefetched by * dmu_tx_hold_free(), so we don't have to worry about reading * them serially here.) * * - The dirty space accounting will put pressure on the txg sync * mechanism to begin syncing, and to delay transactions if there * is a large amount of freeing. Even though these indirect * blocks will not be written, we could need to write the same * amount of space if we copy the freed BPs into deadlists. */ if (dn->dn_nlevels > 1) { uint64_t first, last; first = blkid >> epbs; dnode_dirty_l1(dn, first, tx); if (trunc) last = dn->dn_maxblkid >> epbs; else last = (blkid + nblks - 1) >> epbs; if (last != first) dnode_dirty_l1(dn, last, tx); dnode_dirty_l1range(dn, first, last, tx); int shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (uint64_t i = first + 1; i < last; i++) { /* * Set i to the blockid of the next non-hole * level-1 indirect block at or after i. Note * that dnode_next_offset() operates in terms of * level-0-equivalent bytes. */ uint64_t ibyte = i << shift; int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); i = ibyte >> shift; if (i >= last) break; /* * Normally we should not see an error, either * from dnode_next_offset() or dbuf_hold_level() * (except for ESRCH from dnode_next_offset). * If there is an i/o error, then when we read * this block in syncing context, it will use * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according * to the "failmode" property. dnode_next_offset() * doesn't have a flag to indicate MUSTSUCCEED. */ if (err != 0) break; dnode_dirty_l1(dn, i, tx); } } done: /* * Add this range to the dnode range list. * We will finish up this free operation in the syncing phase. */ mutex_enter(&dn->dn_mtx); int txgoff = tx->tx_txg & TXG_MASK; if (dn->dn_free_ranges[txgoff] == NULL) { dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); } range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", blkid, nblks, tx->tx_txg); mutex_exit(&dn->dn_mtx); dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); dnode_setdirty(dn, tx); out: rw_exit(&dn->dn_struct_rwlock); } static boolean_t dnode_spill_freed(dnode_t *dn) { int i; mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ uint64_t dnode_block_freed(dnode_t *dn, uint64_t blkid) { void *dp = spa_get_dsl(dn->dn_objset->os_spa); int i; if (blkid == DMU_BONUS_BLKID) return (FALSE); /* * If we're in the process of opening the pool, dp will not be * set yet, but there shouldn't be anything dirty. */ if (dp == NULL) return (FALSE); if (dn->dn_free_txg) return (TRUE); if (blkid == DMU_SPILL_BLKID) return (dnode_spill_freed(dn)); mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_free_ranges[i] != NULL && range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* call from syncing context when we actually write/free space for this dnode */ void dnode_diduse_space(dnode_t *dn, int64_t delta) { uint64_t space; dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", dn, dn->dn_phys, (u_longlong_t)dn->dn_phys->dn_used, (longlong_t)delta); mutex_enter(&dn->dn_mtx); space = DN_USED_BYTES(dn->dn_phys); if (delta > 0) { ASSERT3U(space + delta, >=, space); /* no overflow */ } else { ASSERT3U(space, >=, -delta); /* no underflow */ } space += delta; if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); ASSERT0(P2PHASE(space, 1<dn_phys->dn_used = space >> DEV_BSHIFT; } else { dn->dn_phys->dn_used = space; dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; } mutex_exit(&dn->dn_mtx); } /* * Scans a block at the indicated "level" looking for a hole or data, * depending on 'flags'. * * If level > 0, then we are scanning an indirect block looking at its * pointers. If level == 0, then we are looking at a block of dnodes. * * If we don't find what we are looking for in the block, we return ESRCH. * Otherwise, return with *offset pointing to the beginning (if searching * forwards) or end (if searching backwards) of the range covered by the * block pointer we matched on (or dnode). * * The basic search algorithm used below by dnode_next_offset() is to * use this function to search up the block tree (widen the search) until * we find something (i.e., we don't return ESRCH) and then search back * down the tree (narrow the search) until we reach our original search * level. */ static int dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, int lvl, uint64_t blkfill, uint64_t txg) { dmu_buf_impl_t *db = NULL; void *data = NULL; uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t epb = 1ULL << epbs; uint64_t minfill, maxfill; boolean_t hole; int i, inc, error, span; dprintf("probing object %llu offset %llx level %d of %u\n", dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); hole = ((flags & DNODE_FIND_HOLE) != 0); inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; ASSERT(txg == 0 || !hole); if (lvl == dn->dn_phys->dn_nlevels) { error = 0; epb = dn->dn_phys->dn_nblkptr; data = dn->dn_phys->dn_blkptr; } else { uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); if (error) { if (error != ENOENT) return (error); if (hole) return (0); /* * This can only happen when we are searching up * the block tree for data. We don't really need to * adjust the offset, as we will just end up looking * at the pointer to this block in its parent, and its * going to be unallocated, so we will skip over it. */ return (SET_ERROR(ESRCH)); } error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); if (error) { dbuf_rele(db, FTAG); return (error); } data = db->db.db_data; } if (db != NULL && txg != 0 && (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg || BP_IS_HOLE(db->db_blkptr))) { /* * This can only happen when we are searching up the tree * and these conditions mean that we need to keep climbing. */ error = SET_ERROR(ESRCH); } else if (lvl == 0) { dnode_phys_t *dnp = data; - span = DNODE_SHIFT; + ASSERT(dn->dn_type == DMU_OT_DNODE); + ASSERT(!(flags & DNODE_FIND_BACKWARDS)); - for (i = (*offset >> span) & (blkfill - 1); - i >= 0 && i < blkfill; i += inc) { + for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); + i < blkfill; i += dnp[i].dn_extra_slots + 1) { if ((dnp[i].dn_type == DMU_OT_NONE) == hole) break; - *offset += (1ULL << span) * inc; } - if (i < 0 || i == blkfill) + + if (i == blkfill) error = SET_ERROR(ESRCH); + + *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + + (i << DNODE_SHIFT); } else { blkptr_t *bp = data; uint64_t start = *offset; span = (lvl - 1) * epbs + dn->dn_datablkshift; minfill = 0; maxfill = blkfill << ((lvl - 1) * epbs); if (hole) maxfill--; else minfill++; *offset = *offset >> span; for (i = BF64_GET(*offset, 0, epbs); i >= 0 && i < epb; i += inc) { if (BP_GET_FILL(&bp[i]) >= minfill && BP_GET_FILL(&bp[i]) <= maxfill && (hole || bp[i].blk_birth > txg)) break; if (inc > 0 || *offset > 0) *offset += inc; } *offset = *offset << span; if (inc < 0) { /* traversing backwards; position offset at the end */ ASSERT3U(*offset, <=, start); *offset = MIN(*offset + (1ULL << span) - 1, start); } else if (*offset < start) { *offset = start; } if (i < 0 || i >= epb) error = SET_ERROR(ESRCH); } if (db) dbuf_rele(db, FTAG); return (error); } /* * Find the next hole, data, or sparse region at or after *offset. * The value 'blkfill' tells us how many items we expect to find * in an L0 data block; this value is 1 for normal objects, * DNODES_PER_BLOCK for the meta dnode, and some fraction of * DNODES_PER_BLOCK when searching for sparse regions thereof. * * Examples: * * dnode_next_offset(dn, flags, offset, 1, 1, 0); * Finds the next/previous hole/data in a file. * Used in dmu_offset_next(). * * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); * Finds the next free/allocated dnode an objset's meta-dnode. * Only finds objects that have new contents since txg (ie. * bonus buffer changes and content removal are ignored). * Used in dmu_object_next(). * * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); * Finds the next L2 meta-dnode bp that's at most 1/4 full. * Used in dmu_object_alloc(). */ int dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, int minlvl, uint64_t blkfill, uint64_t txg) { uint64_t initial_offset = *offset; int lvl, maxlvl; int error = 0; if (!(flags & DNODE_FIND_HAVELOCK)) rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_phys->dn_nlevels == 0) { error = SET_ERROR(ESRCH); goto out; } if (dn->dn_datablkshift == 0) { if (*offset < dn->dn_datablksz) { if (flags & DNODE_FIND_HOLE) *offset = dn->dn_datablksz; } else { error = SET_ERROR(ESRCH); } goto out; } maxlvl = dn->dn_phys->dn_nlevels; for (lvl = minlvl; lvl <= maxlvl; lvl++) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); if (error != ESRCH) break; } while (error == 0 && --lvl >= minlvl) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); } /* * There's always a "virtual hole" at the end of the object, even * if all BP's which physically exist are non-holes. */ if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { error = 0; } if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? initial_offset < *offset : initial_offset > *offset)) error = SET_ERROR(ESRCH); out: if (!(flags & DNODE_FIND_HAVELOCK)) rw_exit(&dn->dn_struct_rwlock); return (error); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dnode_sync.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dnode_sync.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dnode_sync.c (revision 350898) @@ -1,765 +1,779 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ #include #include #include #include #include #include #include #include #include #include static void dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) { dmu_buf_impl_t *db; int txgoff = tx->tx_txg & TXG_MASK; int nblkptr = dn->dn_phys->dn_nblkptr; int old_toplvl = dn->dn_phys->dn_nlevels - 1; int new_level = dn->dn_next_nlevels[txgoff]; int i; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* this dnode can't be paged out because it's dirty */ ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); ASSERT(db != NULL); dn->dn_phys->dn_nlevels = new_level; dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, dn->dn_object, dn->dn_phys->dn_nlevels); /* transfer dnode's block pointers to new indirect block */ (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); ASSERT(db->db.db_data); ASSERT(arc_released(db->db_buf)); ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); bcopy(dn->dn_phys->dn_blkptr, db->db.db_data, sizeof (blkptr_t) * nblkptr); arc_buf_freeze(db->db_buf); /* set dbuf's parent pointers to new indirect buf */ for (i = 0; i < nblkptr; i++) { dmu_buf_impl_t *child = dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i); if (child == NULL) continue; #ifdef DEBUG DB_DNODE_ENTER(child); ASSERT3P(DB_DNODE(child), ==, dn); DB_DNODE_EXIT(child); #endif /* DEBUG */ if (child->db_parent && child->db_parent != dn->dn_dbuf) { ASSERT(child->db_parent->db_level == db->db_level); ASSERT(child->db_blkptr != &dn->dn_phys->dn_blkptr[child->db_blkid]); mutex_exit(&child->db_mtx); continue; } ASSERT(child->db_parent == NULL || child->db_parent == dn->dn_dbuf); child->db_parent = db; dbuf_add_ref(db, child); if (db->db.db_data) child->db_blkptr = (blkptr_t *)db->db.db_data + i; else child->db_blkptr = NULL; dprintf_dbuf_bp(child, child->db_blkptr, "changed db_blkptr to new indirect %s", ""); mutex_exit(&child->db_mtx); } bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); dbuf_rele(db, FTAG); rw_exit(&dn->dn_struct_rwlock); } static void free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) { dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; uint64_t bytesfreed = 0; dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num); for (int i = 0; i < num; i++, bp++) { if (BP_IS_HOLE(bp)) continue; bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); /* * Save some useful information on the holes being * punched, including logical size, type, and indirection * level. Retaining birth time enables detection of when * holes are punched for reducing the number of free * records transmitted during a zfs send. */ uint64_t lsize = BP_GET_LSIZE(bp); dmu_object_type_t type = BP_GET_TYPE(bp); uint64_t lvl = BP_GET_LEVEL(bp); bzero(bp, sizeof (blkptr_t)); if (spa_feature_is_active(dn->dn_objset->os_spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, type); BP_SET_LEVEL(bp, lvl); BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); } } dnode_diduse_space(dn, -bytesfreed); } #ifdef ZFS_DEBUG static void free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) { int off, num; int i, err, epbs; uint64_t txg = tx->tx_txg; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; off = start - (db->db_blkid * 1<=, 0); ASSERT3U(num, >=, 0); ASSERT3U(db->db_level, >, 0); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); ASSERT(db->db_blkptr != NULL); for (i = off; i < off+num; i++) { uint64_t *buf; dmu_buf_impl_t *child; dbuf_dirty_record_t *dr; int j; ASSERT(db->db_level == 1); rw_enter(&dn->dn_struct_rwlock, RW_READER); err = dbuf_hold_impl(dn, db->db_level-1, (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); rw_exit(&dn->dn_struct_rwlock); if (err == ENOENT) continue; ASSERT(err == 0); ASSERT(child->db_level == 0); dr = child->db_last_dirty; while (dr && dr->dr_txg > txg) dr = dr->dr_next; ASSERT(dr == NULL || dr->dr_txg == txg); /* data_old better be zeroed */ if (dr) { buf = dr->dt.dl.dr_data->b_data; for (j = 0; j < child->db.db_size >> 3; j++) { if (buf[j] != 0) { panic("freed data not zero: " "child=%p i=%d off=%d num=%d\n", (void *)child, i, off, num); } } } /* * db_data better be zeroed unless it's dirty in a * future txg. */ mutex_enter(&child->db_mtx); buf = child->db.db_data; if (buf != NULL && child->db_state != DB_FILL && child->db_last_dirty == NULL) { for (j = 0; j < child->db.db_size >> 3; j++) { if (buf[j] != 0) { panic("freed data not zero: " "child=%p i=%d off=%d num=%d\n", (void *)child, i, off, num); } } } mutex_exit(&child->db_mtx); dbuf_rele(child, FTAG); } DB_DNODE_EXIT(db); } #endif /* * We don't usually free the indirect blocks here. If in one txg we have a * free_range and a write to the same indirect block, it's important that we * preserve the hole's birth times. Therefore, we don't free any any indirect * blocks in free_children(). If an indirect block happens to turn into all * holes, it will be freed by dbuf_write_children_ready, which happens at a * point in the syncing process where we know for certain the contents of the * indirect block. * * However, if we're freeing a dnode, its space accounting must go to zero * before we actually try to free the dnode, or we will trip an assertion. In * addition, we know the case described above cannot occur, because the dnode is * being freed. Therefore, we free the indirect blocks immediately in that * case. */ static void free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, boolean_t free_indirects, dmu_tx_t *tx) { dnode_t *dn; blkptr_t *bp; dmu_buf_impl_t *subdb; uint64_t start, end, dbstart, dbend; unsigned int epbs, shift, i; /* * There is a small possibility that this block will not be cached: * 1 - if level > 1 and there are no children with level <= 1 * 2 - if this block was evicted since we read it from * dmu_tx_hold_free(). */ if (db->db_state != DB_CACHED) (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); /* * If we modify this indirect block, and we are not freeing the * dnode (!free_indirects), then this indirect block needs to get * written to disk by dbuf_write(). If it is dirty, we know it will * be written (otherwise, we would have incorrect on-disk state * because the space would be freed but still referenced by the BP * in this indirect block). Therefore we VERIFY that it is * dirty. * * Our VERIFY covers some cases that do not actually have to be * dirty, but the open-context code happens to dirty. E.g. if the * blocks we are freeing are all holes, because in that case, we * are only freeing part of this indirect block, so it is an * ancestor of the first or last block to be freed. The first and * last L1 indirect blocks are always dirtied by dnode_free_range(). */ VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); dbuf_release_bp(db); bp = db->db.db_data; DB_DNODE_ENTER(db); dn = DB_DNODE(db); epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(epbs, <, 31); shift = (db->db_level - 1) * epbs; dbstart = db->db_blkid << epbs; start = blkid >> shift; if (dbstart < start) { bp += start - dbstart; } else { start = dbstart; } dbend = ((db->db_blkid + 1) << epbs) - 1; end = (blkid + nblks - 1) >> shift; if (dbend <= end) end = dbend; ASSERT3U(start, <=, end); if (db->db_level == 1) { FREE_VERIFY(db, start, end, tx); free_blocks(dn, bp, end-start+1, tx); } else { for (uint64_t id = start; id <= end; id++, bp++) { if (BP_IS_HOLE(bp)) continue; rw_enter(&dn->dn_struct_rwlock, RW_READER); VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, id, TRUE, FALSE, FTAG, &subdb)); rw_exit(&dn->dn_struct_rwlock); ASSERT3P(bp, ==, subdb->db_blkptr); free_children(subdb, blkid, nblks, free_indirects, tx); dbuf_rele(subdb, FTAG); } } if (free_indirects) { for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) ASSERT(BP_IS_HOLE(bp)); bzero(db->db.db_data, db->db.db_size); free_blocks(dn, db->db_blkptr, 1, tx); } DB_DNODE_EXIT(db); arc_buf_freeze(db->db_buf); } /* * Traverse the indicated range of the provided file * and "free" all the blocks contained there. */ static void dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, boolean_t free_indirects, dmu_tx_t *tx) { blkptr_t *bp = dn->dn_phys->dn_blkptr; int dnlevel = dn->dn_phys->dn_nlevels; boolean_t trunc = B_FALSE; if (blkid > dn->dn_phys->dn_maxblkid) return; ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); if (blkid + nblks > dn->dn_phys->dn_maxblkid) { nblks = dn->dn_phys->dn_maxblkid - blkid + 1; trunc = B_TRUE; } /* There are no indirect blocks in the object */ if (dnlevel == 1) { if (blkid >= dn->dn_phys->dn_nblkptr) { /* this range was never made persistent */ return; } ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); free_blocks(dn, bp + blkid, nblks, tx); } else { int shift = (dnlevel - 1) * (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); int start = blkid >> shift; int end = (blkid + nblks - 1) >> shift; dmu_buf_impl_t *db; ASSERT(start < dn->dn_phys->dn_nblkptr); bp += start; for (int i = start; i <= end; i++, bp++) { if (BP_IS_HOLE(bp)) continue; rw_enter(&dn->dn_struct_rwlock, RW_READER); VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, TRUE, FALSE, FTAG, &db)); rw_exit(&dn->dn_struct_rwlock); free_children(db, blkid, nblks, free_indirects, tx); dbuf_rele(db, FTAG); } } if (trunc) { dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; uint64_t off = (dn->dn_phys->dn_maxblkid + 1) * (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT(off < dn->dn_phys->dn_maxblkid || dn->dn_phys->dn_maxblkid == 0 || dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); } } typedef struct dnode_sync_free_range_arg { dnode_t *dsfra_dnode; dmu_tx_t *dsfra_tx; boolean_t dsfra_free_indirects; } dnode_sync_free_range_arg_t; static void dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) { dnode_sync_free_range_arg_t *dsfra = arg; dnode_t *dn = dsfra->dsfra_dnode; mutex_exit(&dn->dn_mtx); dnode_sync_free_range_impl(dn, blkid, nblks, dsfra->dsfra_free_indirects, dsfra->dsfra_tx); mutex_enter(&dn->dn_mtx); } /* * Try to kick all the dnode's dbufs out of the cache... */ void dnode_evict_dbufs(dnode_t *dn) { dmu_buf_impl_t db_marker; dmu_buf_impl_t *db, *db_next; mutex_enter(&dn->dn_dbufs_mtx); for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { #ifdef DEBUG DB_DNODE_ENTER(db); ASSERT3P(DB_DNODE(db), ==, dn); DB_DNODE_EXIT(db); #endif /* DEBUG */ mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING && refcount_is_zero(&db->db_holds)) { db_marker.db_level = db->db_level; db_marker.db_blkid = db->db_blkid; db_marker.db_state = DB_SEARCH; avl_insert_here(&dn->dn_dbufs, &db_marker, db, AVL_BEFORE); /* * We need to use the "marker" dbuf rather than * simply getting the next dbuf, because * dbuf_destroy() may actually remove multiple dbufs. * It can call itself recursively on the parent dbuf, * which may also be removed from dn_dbufs. The code * flow would look like: * * dbuf_destroy(): * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): * if (!cacheable || pending_evict) * dbuf_destroy() */ dbuf_destroy(db); db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker); avl_remove(&dn->dn_dbufs, &db_marker); } else { db->db_pending_evict = TRUE; mutex_exit(&db->db_mtx); db_next = AVL_NEXT(&dn->dn_dbufs, db); } } mutex_exit(&dn->dn_dbufs_mtx); dnode_evict_bonus(dn); } void dnode_evict_bonus(dnode_t *dn) { rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus != NULL) { if (refcount_is_zero(&dn->dn_bonus->db_holds)) { mutex_enter(&dn->dn_bonus->db_mtx); dbuf_destroy(dn->dn_bonus); dn->dn_bonus = NULL; } else { dn->dn_bonus->db_pending_evict = TRUE; } } rw_exit(&dn->dn_struct_rwlock); } static void dnode_undirty_dbufs(list_t *list) { dbuf_dirty_record_t *dr; while (dr = list_head(list)) { dmu_buf_impl_t *db = dr->dr_dbuf; uint64_t txg = dr->dr_txg; if (db->db_level != 0) dnode_undirty_dbufs(&dr->dt.di.dr_children); mutex_enter(&db->db_mtx); /* XXX - use dbuf_undirty()? */ list_remove(list, dr); ASSERT(db->db_last_dirty == dr); db->db_last_dirty = NULL; db->db_dirtycnt -= 1; if (db->db_level == 0) { ASSERT(db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_data == db->db_buf); dbuf_unoverride(dr); } else { mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); } } static void dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) { int txgoff = tx->tx_txg & TXG_MASK; ASSERT(dmu_tx_is_syncing(tx)); /* * Our contents should have been freed in dnode_sync() by the * free range record inserted by the caller of dnode_free(). */ ASSERT0(DN_USED_BYTES(dn->dn_phys)); ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); dnode_evict_dbufs(dn); /* * XXX - It would be nice to assert this, but we may still * have residual holds from async evictions from the arc... * * zfs_obj_to_path() also depends on this being * commented out. * * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ /* Undirty next bits */ dn->dn_next_nlevels[txgoff] = 0; dn->dn_next_indblkshift[txgoff] = 0; dn->dn_next_blksz[txgoff] = 0; /* ASSERT(blkptrs are zero); */ ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); ASSERT(dn->dn_type != DMU_OT_NONE); ASSERT(dn->dn_free_txg > 0); if (dn->dn_allocated_txg != dn->dn_free_txg) dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); - bzero(dn->dn_phys, sizeof (dnode_phys_t)); + bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots); + dnode_free_interior_slots(dn); mutex_enter(&dn->dn_mtx); dn->dn_type = DMU_OT_NONE; dn->dn_maxblkid = 0; dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_have_spill = B_FALSE; + dn->dn_num_slots = 1; mutex_exit(&dn->dn_mtx); ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); /* * Now that we've released our hold, the dnode may * be evicted, so we musn't access it. */ } /* * Write out the dnode's dirty buffers. */ void dnode_sync(dnode_t *dn, dmu_tx_t *tx) { dnode_phys_t *dnp = dn->dn_phys; int txgoff = tx->tx_txg & TXG_MASK; list_t *list = &dn->dn_dirty_records[txgoff]; static const dnode_phys_t zerodn = { 0 }; boolean_t kill_spill = B_FALSE; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); ASSERT(dnp->dn_type != DMU_OT_NONE || - bcmp(dnp, &zerodn, DNODE_SIZE) == 0); + bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); DNODE_VERIFY(dn); ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); if (dmu_objset_userused_enabled(dn->dn_objset) && !DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { mutex_enter(&dn->dn_mtx); dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); dn->dn_oldflags = dn->dn_phys->dn_flags; dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; mutex_exit(&dn->dn_mtx); dmu_objset_userquota_get_ids(dn, B_FALSE, tx); } else { /* Once we account for it, we should always account for it. */ ASSERT(!(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED)); } mutex_enter(&dn->dn_mtx); if (dn->dn_allocated_txg == tx->tx_txg) { /* The dnode is newly allocated or reallocated */ if (dnp->dn_type == DMU_OT_NONE) { /* this is a first alloc, not a realloc */ dnp->dn_nlevels = 1; dnp->dn_nblkptr = dn->dn_nblkptr; } dnp->dn_type = dn->dn_type; dnp->dn_bonustype = dn->dn_bonustype; dnp->dn_bonuslen = dn->dn_bonuslen; } + + dnp->dn_extra_slots = dn->dn_num_slots - 1; + ASSERT(dnp->dn_nlevels > 1 || BP_IS_HOLE(&dnp->dn_blkptr[0]) || BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || BP_GET_LSIZE(&dnp->dn_blkptr[0]) == dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT(dnp->dn_nlevels < 2 || BP_IS_HOLE(&dnp->dn_blkptr[0]) || BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); if (dn->dn_next_type[txgoff] != 0) { dnp->dn_type = dn->dn_type; dn->dn_next_type[txgoff] = 0; } if (dn->dn_next_blksz[txgoff] != 0) { ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], SPA_MINBLOCKSIZE) == 0); ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || dn->dn_maxblkid == 0 || list_head(list) != NULL || dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == dnp->dn_datablkszsec || !range_tree_is_empty(dn->dn_free_ranges[txgoff])); dnp->dn_datablkszsec = dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; dn->dn_next_blksz[txgoff] = 0; } if (dn->dn_next_bonuslen[txgoff] != 0) { if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) dnp->dn_bonuslen = 0; else dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; - ASSERT(dnp->dn_bonuslen <= DN_MAX_BONUSLEN); + ASSERT(dnp->dn_bonuslen <= + DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); dn->dn_next_bonuslen[txgoff] = 0; } if (dn->dn_next_bonustype[txgoff] != 0) { ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; dn->dn_next_bonustype[txgoff] = 0; } boolean_t freeing_dnode = dn->dn_free_txg > 0 && dn->dn_free_txg <= tx->tx_txg; /* * Remove the spill block if we have been explicitly asked to * remove it, or if the object is being removed. */ if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) kill_spill = B_TRUE; dn->dn_rm_spillblk[txgoff] = 0; } if (dn->dn_next_indblkshift[txgoff] != 0) { ASSERT(dnp->dn_nlevels == 1); dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; dn->dn_next_indblkshift[txgoff] = 0; } /* * Just take the live (open-context) values for checksum and compress. * Strictly speaking it's a future leak, but nothing bad happens if we * start using the new checksum or compress algorithm a little early. */ dnp->dn_checksum = dn->dn_checksum; dnp->dn_compress = dn->dn_compress; mutex_exit(&dn->dn_mtx); if (kill_spill) { - free_blocks(dn, &dn->dn_phys->dn_spill, 1, tx); + free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); mutex_enter(&dn->dn_mtx); dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* process all the "freed" ranges in the file */ if (dn->dn_free_ranges[txgoff] != NULL) { dnode_sync_free_range_arg_t dsfra; dsfra.dsfra_dnode = dn; dsfra.dsfra_tx = tx; dsfra.dsfra_free_indirects = freeing_dnode; if (freeing_dnode) { ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 0, dn->dn_maxblkid + 1)); } mutex_enter(&dn->dn_mtx); range_tree_vacate(dn->dn_free_ranges[txgoff], dnode_sync_free_range, &dsfra); range_tree_destroy(dn->dn_free_ranges[txgoff]); dn->dn_free_ranges[txgoff] = NULL; mutex_exit(&dn->dn_mtx); } if (freeing_dnode) { dn->dn_objset->os_freed_dnodes++; dnode_sync_free(dn, tx); return; + } + + if (dn->dn_num_slots > DNODE_MIN_SLOTS) { + dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; + mutex_enter(&ds->ds_lock); + ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] = + B_TRUE; + mutex_exit(&ds->ds_lock); } if (dn->dn_next_nlevels[txgoff]) { dnode_increase_indirection(dn, tx); dn->dn_next_nlevels[txgoff] = 0; } if (dn->dn_next_nblkptr[txgoff]) { /* this should only happen on a realloc */ ASSERT(dn->dn_allocated_txg == tx->tx_txg); if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { /* zero the new blkptrs we are gaining */ bzero(dnp->dn_blkptr + dnp->dn_nblkptr, sizeof (blkptr_t) * (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); #ifdef ZFS_DEBUG } else { int i; ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); /* the blkptrs we are losing better be unallocated */ for (i = dn->dn_next_nblkptr[txgoff]; i < dnp->dn_nblkptr; i++) ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); #endif } mutex_enter(&dn->dn_mtx); dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; dn->dn_next_nblkptr[txgoff] = 0; mutex_exit(&dn->dn_mtx); } dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { ASSERT3P(list_head(list), ==, NULL); dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); } /* * Although we have dropped our reference to the dnode, it * can't be evicted until its written, and we haven't yet * initiated the IO for the dnode's dbuf. */ } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_scan.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_scan.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_scan.c (revision 350898) @@ -1,2088 +1,2092 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2016 Gary Mills * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, const zbookmark_phys_t *); static scan_cb_t dsl_scan_scrub_cb; static void dsl_scan_cancel_sync(void *, dmu_tx_t *); static void dsl_scan_sync_state(dsl_scan_t *, dmu_tx_t *); static boolean_t dsl_scan_restarting(dsl_scan_t *, dmu_tx_t *); int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ int zfs_scan_idle = 50; /* idle window in clock ticks */ int zfs_scan_min_time_ms = 1000; /* min millisecs to scrub per txg */ int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; int dsl_scan_delay_completion = B_FALSE; /* set to delay scan completion */ /* max number of blocks to free in a single TXG */ uint64_t zfs_async_block_max_blocks = UINT64_MAX; #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) extern int zfs_txg_timeout; /* * Enable/disable the processing of the free_bpobj object. */ boolean_t zfs_free_bpobj_enabled = B_TRUE; /* the order has to match pool_scan_type */ static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { NULL, dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ }; int dsl_scan_init(dsl_pool_t *dp, uint64_t txg) { int err; dsl_scan_t *scn; spa_t *spa = dp->dp_spa; uint64_t f; scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); scn->scn_dp = dp; /* * It's possible that we're resuming a scan after a reboot so * make sure that the scan_async_destroying flag is initialized * appropriately. */ ASSERT(!scn->scn_async_destroying); scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_func", sizeof (uint64_t), 1, &f); if (err == 0) { /* * There was an old-style scrub in progress. Restart a * new-style scrub from the beginning. */ scn->scn_restart_txg = txg; zfs_dbgmsg("old-style scrub was in progress; " "restarting new-style scrub in txg %llu", scn->scn_restart_txg); /* * Load the queue obj from the old location so that it * can be freed by dsl_scan_done(). */ (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, "scrub_queue", sizeof (uint64_t), 1, &scn->scn_phys.scn_queue_obj); } else { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys); if (err == ENOENT) return (0); else if (err) return (err); if (scn->scn_phys.scn_state == DSS_SCANNING && spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { /* * A new-type scrub was in progress on an old * pool, and the pool was accessed by old * software. Restart from the beginning, since * the old software may have changed the pool in * the meantime. */ scn->scn_restart_txg = txg; zfs_dbgmsg("new-style scrub was modified " "by old software; restarting in txg %llu", scn->scn_restart_txg); } } spa_scan_stat_init(spa); return (0); } void dsl_scan_fini(dsl_pool_t *dp) { if (dp->dp_scan) { kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); dp->dp_scan = NULL; } } /* ARGSUSED */ static int dsl_scan_setup_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (scn->scn_phys.scn_state == DSS_SCANNING) return (SET_ERROR(EBUSY)); return (0); } static void dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; pool_scan_func_t *funcp = arg; dmu_object_type_t ot = 0; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; ASSERT(scn->scn_phys.scn_state != DSS_SCANNING); ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); bzero(&scn->scn_phys, sizeof (scn->scn_phys)); scn->scn_phys.scn_func = *funcp; scn->scn_phys.scn_state = DSS_SCANNING; scn->scn_phys.scn_min_txg = 0; scn->scn_phys.scn_max_txg = tx->tx_txg; scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ scn->scn_phys.scn_start_time = gethrestime_sec(); scn->scn_phys.scn_errors = 0; scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; scn->scn_restart_txg = 0; scn->scn_done_txg = 0; spa_scan_stat_init(spa); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; /* rewrite all disk labels */ vdev_config_dirty(spa->spa_root_vdev); if (vdev_resilver_needed(spa->spa_root_vdev, &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { spa_event_notify(spa, NULL, NULL, ESC_ZFS_RESILVER_START); } else { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); } spa->spa_scrub_started = B_TRUE; /* * If this is an incremental scrub, limit the DDT scrub phase * to just the auto-ditto class (for correctness); the rest * of the scrub should go faster using top-down pruning. */ if (scn->scn_phys.scn_min_txg > TXG_INITIAL) scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; } /* back to the generic stuff */ if (dp->dp_blkstats == NULL) { dp->dp_blkstats = kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); } bzero(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) ot = DMU_OT_ZAP_OTHER; scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); dsl_scan_sync_state(scn, tx); spa_history_log_internal(spa, "scan setup", tx, "func=%u mintxg=%llu maxtxg=%llu", *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); } /* ARGSUSED */ static void dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) { static const char *old_names[] = { "scrub_bookmark", "scrub_ddt_bookmark", "scrub_ddt_class_max", "scrub_queue", "scrub_min_txg", "scrub_max_txg", "scrub_func", "scrub_errors", NULL }; dsl_pool_t *dp = scn->scn_dp; spa_t *spa = dp->dp_spa; int i; /* Remove any remnants of an old-style scrub. */ for (i = 0; old_names[i]; i++) { (void) zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); } if (scn->scn_phys.scn_queue_obj != 0) { VERIFY(0 == dmu_object_free(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, tx)); scn->scn_phys.scn_queue_obj = 0; } scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; /* * If we were "restarted" from a stopped state, don't bother * with anything else. */ if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (complete) scn->scn_phys.scn_state = DSS_FINISHED; else scn->scn_phys.scn_state = DSS_CANCELED; if (dsl_scan_restarting(scn, tx)) spa_history_log_internal(spa, "scan aborted, restarting", tx, "errors=%llu", spa_get_errlog_size(spa)); else if (!complete) spa_history_log_internal(spa, "scan cancelled", tx, "errors=%llu", spa_get_errlog_size(spa)); else spa_history_log_internal(spa, "scan done", tx, "errors=%llu", spa_get_errlog_size(spa)); if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > 0) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } mutex_exit(&spa->spa_scrub_lock); spa->spa_scrub_started = B_FALSE; spa->spa_scrub_active = B_FALSE; /* * If the scrub/resilver completed, update all DTLs to * reflect this. Whether it succeeded or not, vacate * all temporary scrub DTLs. * * As the scrub does not currently support traversing * data that have been freed but are part of a checkpoint, * we don't mark the scrub as done in the DTLs as faults * may still exist in those vdevs. */ if (complete && !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, scn->scn_phys.scn_max_txg, B_TRUE); spa_event_notify(spa, NULL, NULL, scn->scn_phys.scn_min_txg ? ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); } else { vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 0, B_TRUE); } spa_errlog_rotate(spa); /* * We may have finished replacing a device. * Let the async thread assess this and handle the detach. */ spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); } scn->scn_phys.scn_end_time = gethrestime_sec(); } /* ARGSUSED */ static int dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; if (scn->scn_phys.scn_state != DSS_SCANNING) return (SET_ERROR(ENOENT)); return (0); } /* ARGSUSED */ static void dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) { dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; dsl_scan_done(scn, B_FALSE, tx); dsl_scan_sync_state(scn, tx); spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); } int dsl_scan_cancel(dsl_pool_t *dp) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); } boolean_t dsl_scan_is_paused_scrub(const dsl_scan_t *scn) { if (dsl_scan_scrubbing(scn->scn_dp) && scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED) return (B_TRUE); return (B_FALSE); } static int dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ if (!dsl_scan_scrubbing(dp)) return (SET_ERROR(ENOENT)); /* can't pause a paused scrub */ if (dsl_scan_is_paused_scrub(scn)) return (SET_ERROR(EBUSY)); } else if (*cmd != POOL_SCRUB_NORMAL) { return (SET_ERROR(ENOTSUP)); } return (0); } static void dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) { pool_scrub_cmd_t *cmd = arg; dsl_pool_t *dp = dmu_tx_pool(tx); spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; if (*cmd == POOL_SCRUB_PAUSE) { /* can't pause a scrub when there is no in-progress scrub */ spa->spa_scan_pass_scrub_pause = gethrestime_sec(); scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx); spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); } else { ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); if (dsl_scan_is_paused_scrub(scn)) { /* * We need to keep track of how much time we spend * paused per pass so that we can adjust the scrub rate * shown in the output of 'zpool status' */ spa->spa_scan_pass_scrub_spent_paused += gethrestime_sec() - spa->spa_scan_pass_scrub_pause; spa->spa_scan_pass_scrub_pause = 0; scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; dsl_scan_sync_state(scn, tx); } } } /* * Set scrub pause/resume state if it makes sense to do so */ int dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) { return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, ZFS_SPACE_CHECK_RESERVED)); } boolean_t dsl_scan_scrubbing(const dsl_pool_t *dp) { dsl_scan_t *scn = dp->dp_scan; if (scn->scn_phys.scn_state == DSS_SCANNING && scn->scn_phys.scn_func == POOL_SCAN_SCRUB) return (B_TRUE); return (B_FALSE); } static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx); static void dsl_scan_visitdnode(dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) { zio_free(dp->dp_spa, txg, bp); } void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) { ASSERT(dsl_pool_sync_context(dp)); zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); } static uint64_t dsl_scan_ds_maxtxg(dsl_dataset_t *ds) { uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; if (ds->ds_is_snapshot) return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); return (smt); } static void dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) { VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, &scn->scn_phys, tx)); } extern int zfs_vdev_async_write_active_min_dirty_percent; static boolean_t dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) { /* we never skip user/group accounting objects */ if (zb && (int64_t)zb->zb_object < 0) return (B_FALSE); if (scn->scn_suspending) return (B_TRUE); /* we're already suspending */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) return (B_FALSE); /* we're resuming */ /* We only know how to resume from level-0 blocks. */ if (zb && zb->zb_level != 0) return (B_FALSE); /* * We suspend if: * - we have scanned for the maximum time: an entire txg * timeout (default 5 sec) * or * - we have scanned for at least the minimum time (default 1 sec * for scrub, 3 sec for resilver), and either we have sufficient * dirty data that we are starting to write more quickly * (default 30%), or someone is explicitly waiting for this txg * to complete. * or * - the spa is shutting down because this pool is being exported * or the machine is rebooting. */ int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : zfs_scan_min_time_ms; uint64_t elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; if (elapsed_nanosecs / NANOSEC >= zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > mintime && (txg_sync_waiting(scn->scn_dp) || dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent)) || spa_shutting_down(scn->scn_dp->dp_spa)) { if (zb) { dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); scn->scn_phys.scn_bookmark = *zb; } dprintf("suspending at DDT bookmark %llx/%llx/%llx/%llx\n", (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor); scn->scn_suspending = B_TRUE; return (B_TRUE); } return (B_FALSE); } typedef struct zil_scan_arg { dsl_pool_t *zsa_dp; zil_header_t *zsa_zh; } zil_scan_arg_t; /* ARGSUSED */ static int dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * One block ("stubby") can be allocated a long time ago; we * want to visit that one because it has been allocated * (on-disk) even if it hasn't been claimed (even though for * scrub there's nothing to do to it). */ if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); return (0); } /* ARGSUSED */ static int dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) { if (lrc->lrc_txtype == TX_WRITE) { zil_scan_arg_t *zsa = arg; dsl_pool_t *dp = zsa->zsa_dp; dsl_scan_t *scn = dp->dp_scan; zil_header_t *zh = zsa->zsa_zh; lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; zbookmark_phys_t zb; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return (0); /* * birth can be < claim_txg if this record's txg is * already txg sync'ed (but this log block contains * other records that are not synced) */ if (claim_txg == 0 || bp->blk_birth < claim_txg) return (0); SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); } return (0); } static void dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) { uint64_t claim_txg = zh->zh_claim_txg; zil_scan_arg_t zsa = { dp, zh }; zilog_t *zilog; ASSERT(spa_writeable(dp->dp_spa)); /* * We only want to visit blocks that have been claimed * but not yet replayed. */ if (claim_txg == 0) return; zilog = zil_alloc(dp->dp_meta_objset, zh); (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, claim_txg); zil_free(zilog); } /* ARGSUSED */ static void dsl_scan_prefetch(dsl_scan_t *scn, arc_buf_t *buf, blkptr_t *bp, uint64_t objset, uint64_t object, uint64_t blkid) { zbookmark_phys_t czb; arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; if (zfs_no_scrub_prefetch) return; if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_min_txg || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE)) return; SET_BOOKMARK(&czb, objset, object, BP_GET_LEVEL(bp), blkid); (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, bp, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD, &flags, &czb); } static boolean_t dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, const zbookmark_phys_t *zb) { /* * We never skip over user/group accounting objects (obj<0) */ if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && (int64_t)zb->zb_object >= 0) { /* * If we already visited this bp & everything below (in * a prior txg sync), don't bother doing it again. */ if (zbookmark_subtree_completed(dnp, zb, &scn->scn_phys.scn_bookmark)) return (B_TRUE); /* * If we found the block we're trying to resume from, or * we went past it to a different object, zero it out to * indicate that it's OK to start checking for suspending * again. */ if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { dprintf("resuming at %llx/%llx/%llx/%llx\n", (longlong_t)zb->zb_objset, (longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (longlong_t)zb->zb_blkid); bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); } } return (B_FALSE); } /* * Return nonzero on i/o error. * Return new buf to write out in *bufp. */ static int dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; int err; if (BP_GET_LEVEL(bp) > 0) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { dsl_scan_prefetch(scn, buf, cbp, zb->zb_objset, zb->zb_object, zb->zb_blkid * epb + i); } for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); dsl_scan_visitbp(cbp, &czb, dnp, ds, scn, ostype, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { arc_flags_t flags = ARC_FLAG_WAIT; dnode_phys_t *cdnp; int i, j; int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } - for (i = 0, cdnp = buf->b_data; i < epb; i++, cdnp++) { + for (i = 0, cdnp = buf->b_data; i < epb; + i += cdnp->dn_extra_slots + 1, + cdnp += cdnp->dn_extra_slots + 1) { for (j = 0; j < cdnp->dn_nblkptr; j++) { blkptr_t *cbp = &cdnp->dn_blkptr[j]; dsl_scan_prefetch(scn, buf, cbp, zb->zb_objset, zb->zb_blkid * epb + i, j); } } - for (i = 0, cdnp = buf->b_data; i < epb; i++, cdnp++) { + for (i = 0, cdnp = buf->b_data; i < epb; + i += cdnp->dn_extra_slots + 1, + cdnp += cdnp->dn_extra_slots + 1) { dsl_scan_visitdnode(scn, ds, ostype, cdnp, zb->zb_blkid * epb + i, tx); } arc_buf_destroy(buf, &buf); } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { arc_flags_t flags = ARC_FLAG_WAIT; objset_phys_t *osp; arc_buf_t *buf; err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, zio_flags, &flags, zb); if (err) { scn->scn_phys.scn_errors++; return (err); } osp = buf->b_data; dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); if (OBJSET_BUF_HAS_USERUSED(buf)) { /* * We also always visit user/group accounting * objects, and never skip them, even if we are * suspending. This is necessary so that the space * deltas from this txg get integrated. */ dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_groupused_dnode, DMU_GROUPUSED_OBJECT, tx); dsl_scan_visitdnode(scn, ds, osp->os_type, &osp->os_userused_dnode, DMU_USERUSED_OBJECT, tx); } arc_buf_destroy(buf, &buf); } return (0); } static void dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx) { int j; for (j = 0; j < dnp->dn_nblkptr; j++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, dnp->dn_nlevels - 1, j); dsl_scan_visitbp(&dnp->dn_blkptr[j], &czb, dnp, ds, scn, ostype, tx); } if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 0, DMU_SPILL_BLKID); - dsl_scan_visitbp(&dnp->dn_spill, + dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), &czb, dnp, ds, scn, ostype, tx); } } /* * The arguments are in this order because mdb can only print the * first 5; we want them to be useful. */ static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, dmu_objset_type_t ostype, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; arc_buf_t *buf = NULL; blkptr_t bp_toread = *bp; /* ASSERT(pbuf == NULL || arc_released(pbuf)); */ if (dsl_scan_check_suspend(scn, zb)) return; if (dsl_scan_check_resume(scn, dnp, zb)) return; if (BP_IS_HOLE(bp)) return; scn->scn_visited_this_txg++; dprintf_bp(bp, "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", ds, ds ? ds->ds_object : 0, zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, bp); if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) return; if (dsl_scan_recurse(scn, ds, ostype, dnp, &bp_toread, zb, tx) != 0) return; /* * If dsl_scan_ddt() has already visited this block, it will have * already done any translations or scrubbing, so don't call the * callback again. */ if (ddt_class_contains(dp->dp_spa, scn->scn_phys.scn_ddt_class_max, bp)) { ASSERT(buf == NULL); return; } /* * If this block is from the future (after cur_max_txg), then we * are doing this on behalf of a deleted snapshot, and we will * revisit the future block on the next pass of this dataset. * Don't scan it now unless we need to because something * under it was modified. */ if (BP_PHYSICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_max_txg) { scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); } } static void dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { zbookmark_phys_t zb; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); dprintf_ds(ds, "finished scan%s", ""); } void dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) { if (ds->ds_is_snapshot) { /* * Note: * - scn_cur_{min,max}_txg stays the same. * - Setting the flag is not really necessary if * scn_cur_max_txg == scn_max_txg, because there * is nothing after this snapshot that we care * about. However, we set it anyway and then * ignore it when we retraverse it in * dsl_scan_visitds(). */ scn->scn_phys.scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_next_snap_obj; zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); scn->scn_phys.scn_flags |= DSF_VISIT_DS_AGAIN; } else { SET_BOOKMARK(&scn->scn_phys.scn_bookmark, ZB_DESTROYED_OBJSET, 0, 0, 0); zfs_dbgmsg("destroying ds %llu; currently traversing; " "reset bookmark to -1,0,0,0", (u_longlong_t)ds->ds_object); } } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); if (ds->ds_is_snapshot) { /* * We keep the same mintxg; it could be > * ds_creation_txg if the previous snapshot was * deleted too. */ VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("destroying ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)-> ds_next_snap_obj); } else { zfs_dbgmsg("destroying ds %llu; in queue; removing", (u_longlong_t)ds->ds_object); } } /* * dsl_scan_sync() should be called after this, and should sync * out our changed state, but just to be safe, do it here. */ dsl_scan_sync_state(scn, tx); } void dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = dsl_dataset_phys(ds)->ds_prev_snap_obj; zfs_dbgmsg("snapshotting ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) { VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); zfs_dbgmsg("snapshotting ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds->ds_object, (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); } dsl_scan_sync_state(scn, tx); } void dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) { dsl_pool_t *dp = ds1->ds_dir->dd_pool; dsl_scan_t *scn = dp->dp_scan; uint64_t mintxg; if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_phys.scn_bookmark.zb_objset == ds1->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = ds2->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (scn->scn_phys.scn_bookmark.zb_objset == ds2->ds_object) { scn->scn_phys.scn_bookmark.zb_objset = ds1->ds_object; zfs_dbgmsg("clone_swap ds %llu; currently traversing; " "reset zb_objset to %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg) == 0) { int err; ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); err = zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); VERIFY(err == 0 || err == EEXIST); if (err == EEXIST) { /* Both were there to begin with */ VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); } zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds1->ds_object, (u_longlong_t)ds2->ds_object); } else if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg) == 0) { ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); zfs_dbgmsg("clone_swap ds %llu; in queue; " "replacing with %llu", (u_longlong_t)ds2->ds_object, (u_longlong_t)ds1->ds_object); } dsl_scan_sync_state(scn, tx); } struct enqueue_clones_arg { dmu_tx_t *tx; uint64_t originobj; }; /* ARGSUSED */ static int enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { struct enqueue_clones_arg *eca = arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != eca->originobj) return (0); err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != eca->originobj) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); dsl_dataset_rele(ds, FTAG); if (err) return (err); ds = prev; } VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg, eca->tx) == 0); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; dsl_dataset_t *ds; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (scn->scn_phys.scn_cur_min_txg >= scn->scn_phys.scn_max_txg) { /* * This can happen if this snapshot was created after the * scan started, and we already completed a previous snapshot * that was created after the scan started. This snapshot * only references blocks with: * * birth < our ds_creation_txg * cur_min_txg is no less than ds_creation_txg. * We have already visited these blocks. * or * birth > scn_max_txg * The scan requested not to visit these blocks. * * Subsequent snapshots (and clones) can reference our * blocks, or blocks with even higher birth times. * Therefore we do not need to visit them either, * so we do not add them to the work queue. * * Note that checking for cur_min_txg >= cur_max_txg * is not sufficient, because in that case we may need to * visit subsequent snapshots. This happens when min_txg > 0, * which raises cur_min_txg. In this case we will visit * this dataset but skip all of its blocks, because the * rootbp's birth time is < cur_min_txg. Then we will * add the next snapshots/clones to the work queue. */ char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " "cur_min_txg (%llu) >= max_txg (%llu)", dsobj, dsname, scn->scn_phys.scn_cur_min_txg, scn->scn_phys.scn_max_txg); kmem_free(dsname, MAXNAMELEN); goto out; } /* * Only the ZIL in the head (non-snapshot) is valid. Even though * snapshots can have ZIL block pointers (which may be the same * BP as in the head), they must be ignored. In addition, $ORIGIN * doesn't have a objset (i.e. its ds_bp is a hole) so we don't * need to look for a ZIL in it either. So we traverse the ZIL here, * rather than in scan_recurse(), because the regular snapshot * block-sharing rules don't apply to it. */ if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && (dp->dp_origin_snap == NULL || ds->ds_dir != dp->dp_origin_snap->ds_dir)) { objset_t *os; if (dmu_objset_from_ds(ds, &os) != 0) { goto out; } dsl_scan_zil(dp, &os->os_zil_header); } /* * Iterate over the bps in this ds. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); rrw_exit(&ds->ds_bp_rwlock, FTAG); char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, dsname); zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " "suspending=%u", (longlong_t)dsobj, dsname, (longlong_t)scn->scn_phys.scn_cur_min_txg, (longlong_t)scn->scn_phys.scn_cur_max_txg, (int)scn->scn_suspending); kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); if (scn->scn_suspending) goto out; /* * We've finished this pass over this dataset. */ /* * If we did not completely visit this dataset, do another pass. */ if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { zfs_dbgmsg("incomplete pass; visiting again"); scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, scn->scn_phys.scn_cur_max_txg, tx) == 0); goto out; } /* * Add descendent datasets to work queue. */ if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_next_snap_obj, dsl_dataset_phys(ds)->ds_creation_txg, tx) == 0); } if (dsl_dataset_phys(ds)->ds_num_children > 1) { boolean_t usenext = B_FALSE; if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { uint64_t count; /* * A bug in a previous version of the code could * cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a * missing entry. Therefore we can only use the * next_clones_obj when its count is correct. */ int err = zap_count(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, &count); if (err == 0 && count == dsl_dataset_phys(ds)->ds_num_children - 1) usenext = B_TRUE; } if (usenext) { VERIFY0(zap_join_key(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_next_clones_obj, scn->scn_phys.scn_queue_obj, dsl_dataset_phys(ds)->ds_creation_txg, tx)); } else { struct enqueue_clones_arg eca; eca.tx = tx; eca.originobj = ds->ds_object; VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_clones_cb, &eca, DS_FIND_CHILDREN)); } } out: dsl_dataset_rele(ds, FTAG); } /* ARGSUSED */ static int enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dmu_tx_t *tx = arg; dsl_dataset_t *ds; int err; dsl_scan_t *scn = dp->dp_scan; err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { dsl_dataset_t *prev; err = dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } /* * If this is a clone, we don't need to worry about it for now. */ if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(prev, FTAG); return (0); } dsl_dataset_rele(ds, FTAG); ds = prev; } VERIFY(zap_add_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, ds->ds_object, dsl_dataset_phys(ds)->ds_prev_snap_txg, tx) == 0); dsl_dataset_rele(ds, FTAG); return (0); } /* * Scrub/dedup interaction. * * If there are N references to a deduped block, we don't want to scrub it * N times -- ideally, we should scrub it exactly once. * * We leverage the fact that the dde's replication class (enum ddt_class) * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. * * To prevent excess scrubbing, the scrub begins by walking the DDT * to find all blocks with refcnt > 1, and scrubs each of these once. * Since there are two replication classes which contain blocks with * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. * * There would be nothing more to say if a block's refcnt couldn't change * during a scrub, but of course it can so we must account for changes * in a block's replication class. * * Here's an example of what can occur: * * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 * when visited during the top-down scrub phase, it will be scrubbed twice. * This negates our scrub optimization, but is otherwise harmless. * * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 * on each visit during the top-down scrub phase, it will never be scrubbed. * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 * while a scrub is in progress, it scrubs the block right then. */ static void dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) { ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; ddt_entry_t dde = { 0 }; int error; uint64_t n = 0; while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { ddt_t *ddt; if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) break; dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", (longlong_t)ddb->ddb_class, (longlong_t)ddb->ddb_type, (longlong_t)ddb->ddb_checksum, (longlong_t)ddb->ddb_cursor); /* There should be no pending changes to the dedup table */ ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; ASSERT(avl_first(&ddt->ddt_tree) == NULL); dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); n++; if (dsl_scan_check_suspend(scn, NULL)) break; } zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " "suspending=%u", (longlong_t)n, (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); ASSERT(error == 0 || error == ENOENT); ASSERT(error != ENOENT || ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); } /* ARGSUSED */ void dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, ddt_entry_t *dde, dmu_tx_t *tx) { const ddt_key_t *ddk = &dde->dde_key; ddt_phys_t *ddp = dde->dde_phys; blkptr_t bp; zbookmark_phys_t zb = { 0 }; if (scn->scn_phys.scn_state != DSS_SCANNING) return; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) continue; ddt_bp_create(checksum, ddk, ddp, &bp); scn->scn_visited_this_txg++; scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); } } static void dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) { dsl_pool_t *dp = scn->scn_dp; zap_cursor_t zc; zap_attribute_t za; if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_ddt(scn, tx); if (scn->scn_suspending) return; } if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { /* First do the MOS & ORIGIN */ scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; dsl_scan_visit_rootbp(scn, NULL, &dp->dp_meta_rootbp, tx); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); if (scn->scn_suspending) return; if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, enqueue_cb, tx, DS_FIND_CHILDREN)); } else { dsl_scan_visitds(scn, dp->dp_origin_snap->ds_object, tx); } ASSERT(!scn->scn_suspending); } else if (scn->scn_phys.scn_bookmark.zb_objset != ZB_DESTROYED_OBJSET) { /* * If we were suspended, continue from here. Note if the * ds we were suspended on was deleted, the zb_objset may * be -1, so we will skip this and find a new objset * below. */ dsl_scan_visitds(scn, scn->scn_phys.scn_bookmark.zb_objset, tx); if (scn->scn_suspending) return; } /* * In case we were suspended right at the end of the ds, zero the * bookmark so we don't think that we're still trying to resume. */ bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); /* keep pulling things out of the zap-object-as-queue */ while (zap_cursor_init(&zc, dp->dp_meta_objset, scn->scn_phys.scn_queue_obj), zap_cursor_retrieve(&zc, &za) == 0) { dsl_dataset_t *ds; uint64_t dsobj; dsobj = zfs_strtonum(za.za_name, NULL); VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, dsobj, tx)); /* Set up min/max txg */ VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (za.za_first_integer != 0) { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, za.za_first_integer); } else { scn->scn_phys.scn_cur_min_txg = MAX(scn->scn_phys.scn_min_txg, dsl_dataset_phys(ds)->ds_prev_snap_txg); } scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); dsl_dataset_rele(ds, FTAG); dsl_scan_visitds(scn, dsobj, tx); zap_cursor_fini(&zc); if (scn->scn_suspending) return; } zap_cursor_fini(&zc); } static boolean_t dsl_scan_async_block_should_pause(dsl_scan_t *scn) { uint64_t elapsed_nanosecs; if (zfs_recover) return (B_FALSE); if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) return (B_TRUE); elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && txg_sync_waiting(scn->scn_dp)) || spa_shutting_down(scn->scn_dp->dp_spa)); } static int dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; if (!scn->scn_is_bptree || (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); } zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, dmu_tx_get_txg(tx), bp, 0)); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); scn->scn_visited_this_txg++; return (0); } static int dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_scan_t *scn = arg; const dva_t *dva = &bp->blk_dva[0]; if (dsl_scan_async_block_should_pause(scn)) return (SET_ERROR(ERESTART)); spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), tx); scn->scn_visited_this_txg++; return (0); } boolean_t dsl_scan_active(dsl_scan_t *scn) { spa_t *spa = scn->scn_dp->dp_spa; uint64_t used = 0, comp, uncomp; if (spa->spa_load_state != SPA_LOAD_NONE) return (B_FALSE); if (spa_shutting_down(spa)) return (B_FALSE); if ((scn->scn_phys.scn_state == DSS_SCANNING && !dsl_scan_is_paused_scrub(scn)) || (scn->scn_async_destroying && !scn->scn_async_stalled)) return (B_TRUE); if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, &used, &comp, &uncomp); } return (used != 0); } static int dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; int err = 0; if (spa_suspend_async_destroy(spa)) return (0); if (zfs_free_bpobj_enabled && spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bpobj_iterate(&dp->dp_free_bpobj, dsl_scan_free_block_cb, scn, tx); VERIFY3U(0, ==, zio_wait(scn->scn_zio_root)); if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); } if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { ASSERT(scn->scn_async_destroying); scn->scn_is_bptree = B_TRUE; scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); err = bptree_iterate(dp->dp_meta_objset, dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); VERIFY0(zio_wait(scn->scn_zio_root)); if (err == EIO || err == ECKSUM) { err = 0; } else if (err != 0 && err != ERESTART) { zfs_panic_recover("error %u from " "traverse_dataset_destroyed()", err); } if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { /* finished; deactivate async destroy feature */ spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); ASSERT(!spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)); VERIFY0(zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, tx)); VERIFY0(bptree_free(dp->dp_meta_objset, dp->dp_bptree_obj, tx)); dp->dp_bptree_obj = 0; scn->scn_async_destroying = B_FALSE; scn->scn_async_stalled = B_FALSE; } else { /* * If we didn't make progress, mark the async * destroy as stalled, so that we will not initiate * a spa_sync() on its behalf. Note that we only * check this if we are not finished, because if the * bptree had no blocks for us to visit, we can * finish without "making progress". */ scn->scn_async_stalled = (scn->scn_visited_this_txg == 0); } } if (scn->scn_visited_this_txg) { zfs_dbgmsg("freed %llu blocks in %llums from " "free_bpobj/bptree txg %llu; err=%u", (longlong_t)scn->scn_visited_this_txg, (longlong_t) NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), (longlong_t)tx->tx_txg, err); scn->scn_visited_this_txg = 0; /* * Write out changes to the DDT that may be required as a * result of the blocks freed. This ensures that the DDT * is clean when a scrub/resilver runs. */ ddt_sync(spa, tx->tx_txg); } if (err != 0) return (err); if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && zfs_free_leak_on_eio && (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { /* * We have finished background destroying, but there is still * some space left in the dp_free_dir. Transfer this leaked * space to the dp_leak_dir. */ if (dp->dp_leak_dir == NULL) { rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); (void) dsl_dir_create_sync(dp, dp->dp_root_dir, LEAK_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, &dp->dp_leak_dir)); rrw_exit(&dp->dp_config_rwlock, FTAG); } dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); } if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { /* finished; verify that space accounting went to zero */ ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); } EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_OBSOLETE_BPOBJ)); if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)); scn->scn_is_bptree = B_FALSE; scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; err = bpobj_iterate(&dp->dp_obsolete_bpobj, dsl_scan_obsolete_block_cb, scn, tx); if (err != 0 && err != ERESTART) zfs_panic_recover("error %u from bpobj_iterate()", err); if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) dsl_pool_destroy_obsolete_bpobj(dp, tx); } return (0); } void dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) { dsl_scan_t *scn = dp->dp_scan; spa_t *spa = dp->dp_spa; int err = 0; /* * Check for scn_restart_txg before checking spa_load_state, so * that we can restart an old-style scan while the pool is being * imported (see dsl_scan_init). */ if (dsl_scan_restarting(scn, tx)) { pool_scan_func_t func = POOL_SCAN_SCRUB; dsl_scan_done(scn, B_FALSE, tx); if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) func = POOL_SCAN_RESILVER; zfs_dbgmsg("restarting scan func=%u txg=%llu", func, tx->tx_txg); dsl_scan_setup_sync(&func, tx); } /* * Only process scans in sync pass 1. */ if (spa_sync_pass(dp->dp_spa) > 1) return; /* * If the spa is shutting down, then stop scanning. This will * ensure that the scan does not dirty any new data during the * shutdown phase. */ if (spa_shutting_down(spa)) return; /* * If the scan is inactive due to a stalled async destroy, try again. */ if (!scn->scn_async_stalled && !dsl_scan_active(scn)) return; scn->scn_visited_this_txg = 0; scn->scn_suspending = B_FALSE; scn->scn_sync_start_time = gethrtime(); spa->spa_scrub_active = B_TRUE; /* * First process the async destroys. If we pause, don't do * any scrubbing or resilvering. This ensures that there are no * async destroys while we are scanning, so the scan code doesn't * have to worry about traversing it. It is also faster to free the * blocks than to scrub them. */ err = dsl_process_async_destroys(dp, tx); if (err != 0) return; if (scn->scn_phys.scn_state != DSS_SCANNING) return; if (scn->scn_done_txg == tx->tx_txg) { ASSERT(!scn->scn_suspending); /* finished with scan. */ zfs_dbgmsg("txg %llu scan complete", tx->tx_txg); dsl_scan_done(scn, B_TRUE, tx); ASSERT3U(spa->spa_scrub_inflight, ==, 0); dsl_scan_sync_state(scn, tx); return; } if (dsl_scan_is_paused_scrub(scn)) return; if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= scn->scn_phys.scn_ddt_class_max) { zfs_dbgmsg("doing scan sync txg %llu; " "ddt bm=%llu/%llu/%llu/%llx", (longlong_t)tx->tx_txg, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum, (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor); ASSERT(scn->scn_phys.scn_bookmark.zb_objset == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_object == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_level == 0); ASSERT(scn->scn_phys.scn_bookmark.zb_blkid == 0); } else { zfs_dbgmsg("doing scan sync txg %llu; bm=%llu/%llu/%llu/%llu", (longlong_t)tx->tx_txg, (longlong_t)scn->scn_phys.scn_bookmark.zb_objset, (longlong_t)scn->scn_phys.scn_bookmark.zb_object, (longlong_t)scn->scn_phys.scn_bookmark.zb_level, (longlong_t)scn->scn_phys.scn_bookmark.zb_blkid); } scn->scn_zio_root = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); dsl_pool_config_enter(dp, FTAG); dsl_scan_visit(scn, tx); dsl_pool_config_exit(dp, FTAG); (void) zio_wait(scn->scn_zio_root); scn->scn_zio_root = NULL; zfs_dbgmsg("visited %llu blocks in %llums", (longlong_t)scn->scn_visited_this_txg, (longlong_t)NSEC2MSEC(gethrtime() - scn->scn_sync_start_time)); if (!scn->scn_suspending) { scn->scn_done_txg = tx->tx_txg + 1; zfs_dbgmsg("txg %llu traversal complete, waiting till txg %llu", tx->tx_txg, scn->scn_done_txg); } if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > 0) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } mutex_exit(&spa->spa_scrub_lock); } dsl_scan_sync_state(scn, tx); } /* * This will start a new scan, or restart an existing one. */ void dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) { if (txg == 0) { dmu_tx_t *tx; tx = dmu_tx_create_dd(dp->dp_mos_dir); VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); txg = dmu_tx_get_txg(tx); dp->dp_scan->scn_restart_txg = txg; dmu_tx_commit(tx); } else { dp->dp_scan->scn_restart_txg = txg; } zfs_dbgmsg("restarting resilver txg=%llu", txg); } boolean_t dsl_scan_resilvering(dsl_pool_t *dp) { return (dp->dp_scan->scn_phys.scn_state == DSS_SCANNING && dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); } /* * scrub consumers */ static void count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) { int i; /* * If we resume after a reboot, zab will be NULL; don't record * incomplete stats in that case. */ if (zab == NULL) return; for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; if (t & DMU_OT_NEWTYPE) t = DMU_OT_OTHER; zfs_blkstat_t *zb = &zab->zab_type[l][t]; int equal; zb->zb_count++; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_2_of_2_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal == 1) zb->zb_ditto_2_of_3_samevdev++; else if (equal == 3) zb->zb_ditto_3_of_3_samevdev++; break; } } } static void dsl_scan_scrub_done(zio_t *zio) { spa_t *spa = zio->io_spa; abd_free(zio->io_abd); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (zio->io_error && (zio->io_error != ECKSUM || !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors++; } mutex_exit(&spa->spa_scrub_lock); } static int dsl_scan_scrub_cb(dsl_pool_t *dp, const blkptr_t *bp, const zbookmark_phys_t *zb) { dsl_scan_t *scn = dp->dp_scan; size_t size = BP_GET_PSIZE(bp); spa_t *spa = dp->dp_spa; uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); boolean_t needs_io; int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; int scan_delay = 0; count_block(dp->dp_blkstats, bp); if (phys_birth <= scn->scn_phys.scn_min_txg || phys_birth >= scn->scn_phys.scn_max_txg) return (0); /* Embedded BP's have phys_birth==0, so we reject them above. */ ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { zio_flags |= ZIO_FLAG_SCRUB; needs_io = B_TRUE; scan_delay = zfs_scrub_delay; } else { ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); zio_flags |= ZIO_FLAG_RESILVER; needs_io = B_FALSE; scan_delay = zfs_resilver_delay; } /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) zio_flags |= ZIO_FLAG_SPECULATIVE; for (int d = 0; d < BP_GET_NDVAS(bp); d++) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[d])); /* * Keep track of how much data we've examined so that * zpool(1M) status can make useful progress reports. */ scn->scn_phys.scn_examined += DVA_GET_ASIZE(&bp->blk_dva[d]); spa->spa_scan_pass_exam += DVA_GET_ASIZE(&bp->blk_dva[d]); /* if it's a resilver, this may not be in the target range */ if (!needs_io) { if (vd->vdev_ops == &vdev_indirect_ops) { /* * The indirect vdev can point to multiple * vdevs. For simplicity, always create * the resilver zio_t. zio_vdev_io_start() * will bypass the child resilver i/o's if * they are on vdevs that don't have DTL's. */ needs_io = B_TRUE; } else if (DVA_GET_GANG(&bp->blk_dva[d])) { /* * Gang members may be spread across multiple * vdevs, so the best estimate we have is the * scrub range, which has already been checked. * XXX -- it would be better to change our * allocation policy to ensure that all * gang members reside on the same vdev. */ needs_io = B_TRUE; } else { needs_io = vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1); } } } if (needs_io && !zfs_no_scrub_io) { vdev_t *rvd = spa->spa_root_vdev; uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= maxinflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); /* * If we're seeing recent (zfs_scan_idle) "important" I/Os * then throttle our workload to limit the impact of a scan. */ if (ddi_get_lbolt64() - spa->spa_last_io <= zfs_scan_idle) delay(scan_delay); zio_nowait(zio_read(NULL, spa, bp, abd_alloc_for_io(size, B_FALSE), size, dsl_scan_scrub_done, NULL, ZIO_PRIORITY_SCRUB, zio_flags, zb)); } /* do not relocate this block */ return (0); } /* * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. * Can also be called to resume a paused scrub. */ int dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) { spa_t *spa = dp->dp_spa; dsl_scan_t *scn = dp->dp_scan; /* * Purge all vdev caches and probe all devices. We do this here * rather than in sync context because this requires a writer lock * on the spa_config lock, which we can't do from sync context. The * spa_scrub_reopen flag indicates that vdev_open() should not * attempt to start another scrub. */ spa_vdev_state_enter(spa, SCL_NONE); spa->spa_scrub_reopen = B_TRUE; vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { /* got scrub start cmd, resume paused scrub */ int err = dsl_scrub_set_pause_resume(scn->scn_dp, POOL_SCRUB_NORMAL); if (err == 0) { spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); return (ECANCELED); } return (SET_ERROR(err)); } return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); } static boolean_t dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) { return (scn->scn_restart_txg != 0 && scn->scn_restart_txg <= tx->tx_txg); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c (revision 350898) @@ -1,2011 +1,2015 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 iXsystems, Inc * Copyright (c) 2013, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include /* * ZFS System attributes: * * A generic mechanism to allow for arbitrary attributes * to be stored in a dnode. The data will be stored in the bonus buffer of * the dnode and if necessary a special "spill" block will be used to handle * overflow situations. The spill block will be sized to fit the data * from 512 - 128K. When a spill block is used the BP (blkptr_t) for the * spill block is stored at the end of the current bonus buffer. Any * attributes that would be in the way of the blkptr_t will be relocated * into the spill block. * * Attribute registration: * * Stored persistently on a per dataset basis * a mapping between attribute "string" names and their actual attribute * numeric values, length, and byteswap function. The names are only used * during registration. All attributes are known by their unique attribute * id value. If an attribute can have a variable size then the value * 0 will be used to indicate this. * * Attribute Layout: * * Attribute layouts are a way to compactly store multiple attributes, but * without taking the overhead associated with managing each attribute * individually. Since you will typically have the same set of attributes * stored in the same order a single table will be used to represent that * layout. The ZPL for example will usually have only about 10 different * layouts (regular files, device files, symlinks, * regular files + scanstamp, files/dir with extended attributes, and then * you have the possibility of all of those minus ACL, because it would * be kicked out into the spill block) * * Layouts are simply an array of the attributes and their * ordering i.e. [0, 1, 4, 5, 2] * * Each distinct layout is given a unique layout number and that is whats * stored in the header at the beginning of the SA data buffer. * * A layout only covers a single dbuf (bonus or spill). If a set of * attributes is split up between the bonus buffer and a spill buffer then * two different layouts will be used. This allows us to byteswap the * spill without looking at the bonus buffer and keeps the on disk format of * the bonus and spill buffer the same. * * Adding a single attribute will cause the entire set of attributes to * be rewritten and could result in a new layout number being constructed * as part of the rewrite if no such layout exists for the new set of * attribues. The new attribute will be appended to the end of the already * existing attributes. * * Both the attribute registration and attribute layout information are * stored in normal ZAP attributes. Their should be a small number of * known layouts and the set of attributes is assumed to typically be quite * small. * * The registered attributes and layout "table" information is maintained * in core and a special "sa_os_t" is attached to the objset_t. * * A special interface is provided to allow for quickly applying * a large set of attributes at once. sa_replace_all_by_template() is * used to set an array of attributes. This is used by the ZPL when * creating a brand new file. The template that is passed into the function * specifies the attribute, size for variable length attributes, location of * data and special "data locator" function if the data isn't in a contiguous * location. * * Byteswap implications: * * Since the SA attributes are not entirely self describing we can't do * the normal byteswap processing. The special ZAP layout attribute and * attribute registration attributes define the byteswap function and the * size of the attributes, unless it is variable sized. * The normal ZFS byteswapping infrastructure assumes you don't need * to read any objects in order to do the necessary byteswapping. Whereas * SA attributes can only be properly byteswapped if the dataset is opened * and the layout/attribute ZAP attributes are available. Because of this * the SA attributes will be byteswapped when they are first accessed by * the SA code that will read the SA data. */ typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t, uint16_t length, int length_idx, boolean_t, void *userp); static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype); static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab); static sa_idx_tab_t *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, sa_hdr_phys_t *hdr); static void sa_idx_tab_rele(objset_t *os, void *arg); static void sa_copy_data(sa_data_locator_t *func, void *start, void *target, int buflen); static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx); arc_byteswap_func_t *sa_bswap_table[] = { byteswap_uint64_array, byteswap_uint32_array, byteswap_uint16_array, byteswap_uint8_array, zfs_acl_byteswap, }; #define SA_COPY_DATA(f, s, t, l) \ { \ if (f == NULL) { \ if (l == 8) { \ *(uint64_t *)t = *(uint64_t *)s; \ } else if (l == 16) { \ *(uint64_t *)t = *(uint64_t *)s; \ *(uint64_t *)((uintptr_t)t + 8) = \ *(uint64_t *)((uintptr_t)s + 8); \ } else { \ bcopy(s, t, l); \ } \ } else \ sa_copy_data(f, s, t, l); \ } /* * This table is fixed and cannot be changed. Its purpose is to * allow the SA code to work with both old/new ZPL file systems. * It contains the list of legacy attributes. These attributes aren't * stored in the "attribute" registry zap objects, since older ZPL file systems * won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will * use this static table. */ sa_attr_reg_t sa_legacy_attrs[] = { {"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0}, {"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1}, {"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2}, {"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3}, {"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4}, {"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5}, {"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6}, {"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7}, {"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8}, {"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9}, {"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10}, {"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11}, {"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12}, {"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13}, {"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14}, {"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15}, }; /* * This is only used for objects of type DMU_OT_ZNODE */ sa_attr_type_t sa_legacy_zpl_layout[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* * Special dummy layout used for buffers with no attributes. */ sa_attr_type_t sa_dummy_zpl_layout[] = { 0 }; static int sa_legacy_attr_count = 16; static kmem_cache_t *sa_cache = NULL; /*ARGSUSED*/ static int sa_cache_constructor(void *buf, void *unused, int kmflag) { sa_handle_t *hdl = buf; mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void sa_cache_destructor(void *buf, void *unused) { sa_handle_t *hdl = buf; mutex_destroy(&hdl->sa_lock); } void sa_cache_init(void) { sa_cache = kmem_cache_create("sa_cache", sizeof (sa_handle_t), 0, sa_cache_constructor, sa_cache_destructor, NULL, NULL, NULL, 0); } void sa_cache_fini(void) { if (sa_cache) kmem_cache_destroy(sa_cache); } static int layout_num_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_num > node2->lot_num) return (1); else if (node1->lot_num < node2->lot_num) return (-1); return (0); } static int layout_hash_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_hash > node2->lot_hash) return (1); if (node1->lot_hash < node2->lot_hash) return (-1); if (node1->lot_instance > node2->lot_instance) return (1); if (node1->lot_instance < node2->lot_instance) return (-1); return (0); } boolean_t sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count) { int i; if (count != tbf->lot_attr_count) return (1); for (i = 0; i != count; i++) { if (attrs[i] != tbf->lot_attrs[i]) return (1); } return (0); } #define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF]) static uint64_t sa_layout_info_hash(sa_attr_type_t *attrs, int attr_count) { int i; uint64_t crc = -1ULL; for (i = 0; i != attr_count; i++) crc ^= SA_ATTR_HASH(attrs[i]); return (crc); } static int sa_get_spill(sa_handle_t *hdl) { int rc; if (hdl->sa_spill == NULL) { if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL, &hdl->sa_spill)) == 0) VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } else { rc = 0; } return (rc); } /* * Main attribute lookup/update function * returns 0 for success or non zero for failures * * Operates on bulk array, first failure will abort further processing */ int sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, sa_data_op_t data_op, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; int i; int error = 0; sa_buf_type_t buftypes; buftypes = 0; ASSERT(count > 0); for (i = 0; i != count; i++) { ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs); bulk[i].sa_addr = NULL; /* First check the bonus buffer */ if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT( hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_bonus_tab, SA_GET_HDR(hdl, SA_BONUS), bulk[i].sa_attr, bulk[i], SA_BONUS, hdl); if (tx && !(buftypes & SA_BONUS)) { dmu_buf_will_dirty(hdl->sa_bonus, tx); buftypes |= SA_BONUS; } } if (bulk[i].sa_addr == NULL && ((error = sa_get_spill(hdl)) == 0)) { if (TOC_ATTR_PRESENT( hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_spill_tab, SA_GET_HDR(hdl, SA_SPILL), bulk[i].sa_attr, bulk[i], SA_SPILL, hdl); if (tx && !(buftypes & SA_SPILL) && bulk[i].sa_size == bulk[i].sa_length) { dmu_buf_will_dirty(hdl->sa_spill, tx); buftypes |= SA_SPILL; } } } if (error && error != ENOENT) { return ((error == ECKSUM) ? EIO : error); } switch (data_op) { case SA_LOOKUP: if (bulk[i].sa_addr == NULL) return (SET_ERROR(ENOENT)); if (bulk[i].sa_data) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_addr, bulk[i].sa_data, bulk[i].sa_size); } continue; case SA_UPDATE: /* existing rewrite of attr */ if (bulk[i].sa_addr && bulk[i].sa_size == bulk[i].sa_length) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_addr, bulk[i].sa_length); continue; } else if (bulk[i].sa_addr) { /* attr size change */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_REPLACE, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } else { /* adding new attribute */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_ADD, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } if (error) return (error); break; } } return (error); } static sa_lot_t * sa_add_layout_entry(objset_t *os, sa_attr_type_t *attrs, int attr_count, uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx) { sa_os_t *sa = os->os_sa; sa_lot_t *tb, *findtb; int i; avl_index_t loc; ASSERT(MUTEX_HELD(&sa->sa_lock)); tb = kmem_zalloc(sizeof (sa_lot_t), KM_SLEEP); tb->lot_attr_count = attr_count; tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); bcopy(attrs, tb->lot_attrs, sizeof (sa_attr_type_t) * attr_count); tb->lot_num = lot_num; tb->lot_hash = hash; tb->lot_instance = 0; if (zapadd) { char attr_name[8]; if (sa->sa_layout_attr_obj == 0) { sa->sa_layout_attr_obj = zap_create_link(os, DMU_OT_SA_ATTR_LAYOUTS, sa->sa_master_obj, SA_LAYOUTS, tx); } (void) snprintf(attr_name, sizeof (attr_name), "%d", (int)lot_num); VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj, attr_name, 2, attr_count, attrs, tx)); } list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t), offsetof(sa_idx_tab_t, sa_next)); for (i = 0; i != attr_count; i++) { if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0) tb->lot_var_sizes++; } avl_add(&sa->sa_layout_num_tree, tb); /* verify we don't have a hash collision */ if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) { for (; findtb && findtb->lot_hash == hash; findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) { if (findtb->lot_instance != tb->lot_instance) break; tb->lot_instance++; } } avl_add(&sa->sa_layout_hash_tree, tb); return (tb); } static void sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs, int count, dmu_tx_t *tx, sa_lot_t **lot) { sa_lot_t *tb, tbsearch; avl_index_t loc; sa_os_t *sa = os->os_sa; boolean_t found = B_FALSE; mutex_enter(&sa->sa_lock); tbsearch.lot_hash = hash; tbsearch.lot_instance = 0; tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc); if (tb) { for (; tb && tb->lot_hash == hash; tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) { if (sa_layout_equal(tb, attrs, count) == 0) { found = B_TRUE; break; } } } if (!found) { tb = sa_add_layout_entry(os, attrs, count, avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx); } mutex_exit(&sa->sa_lock); *lot = tb; } static int sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx) { int error; uint32_t blocksize; if (size == 0) { blocksize = SPA_MINBLOCKSIZE; } else if (size > SPA_OLD_MAXBLOCKSIZE) { ASSERT(0); return (SET_ERROR(EFBIG)); } else { blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t); } error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx); ASSERT(error == 0); return (error); } static void sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen) { if (func == NULL) { bcopy(datastart, target, buflen); } else { boolean_t start; int bytes; void *dataptr; void *saptr = target; uint32_t length; start = B_TRUE; bytes = 0; while (bytes < buflen) { func(&dataptr, &length, buflen, start, datastart); bcopy(dataptr, saptr, length); saptr = (void *)((caddr_t)saptr + length); bytes += length; start = B_FALSE; } } } /* * Determine several different sizes * first the sa header size * the number of bytes to be stored * if spill would occur the index in the attribute array is returned * * the boolean will_spill will be set when spilling is necessary. It * is only set when the buftype is SA_BONUS */ static int sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count, - dmu_buf_t *db, sa_buf_type_t buftype, int *index, int *total, - boolean_t *will_spill) + dmu_buf_t *db, sa_buf_type_t buftype, int full_space, int *index, + int *total, boolean_t *will_spill) { int var_size = 0; int i; - int full_space; int hdrsize; int extra_hdrsize; if (buftype == SA_BONUS && sa->sa_force_spill) { *total = 0; *index = 0; *will_spill = B_TRUE; return (0); } *index = -1; *total = 0; *will_spill = B_FALSE; extra_hdrsize = 0; hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 : sizeof (sa_hdr_phys_t); - full_space = (buftype == SA_BONUS) ? DN_MAX_BONUSLEN : db->db_size; ASSERT(IS_P2ALIGNED(full_space, 8)); for (i = 0; i != attr_count; i++) { boolean_t is_var_sz; *total = P2ROUNDUP(*total, 8); *total += attr_desc[i].sa_length; if (*will_spill) continue; is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0); if (is_var_sz) { var_size++; } if (is_var_sz && var_size > 1) { /* * Don't worry that the spill block might overflow. * It will be resized if needed in sa_build_layouts(). */ if (buftype == SA_SPILL || P2ROUNDUP(hdrsize + sizeof (uint16_t), 8) + *total < full_space) { /* * Account for header space used by array of * optional sizes of variable-length attributes. * Record the extra header size in case this * increase needs to be reversed due to * spill-over. */ hdrsize += sizeof (uint16_t); if (*index != -1) extra_hdrsize += sizeof (uint16_t); } else { ASSERT(buftype == SA_BONUS); if (*index == -1) *index = i; *will_spill = B_TRUE; continue; } } /* * find index of where spill *could* occur. * Then continue to count of remainder attribute * space. The sum is used later for sizing bonus * and spill buffer. */ if (buftype == SA_BONUS && *index == -1 && *total + P2ROUNDUP(hdrsize, 8) > (full_space - sizeof (blkptr_t))) { *index = i; } if (*total + P2ROUNDUP(hdrsize, 8) > full_space && buftype == SA_BONUS) *will_spill = B_TRUE; } if (*will_spill) hdrsize -= extra_hdrsize; hdrsize = P2ROUNDUP(hdrsize, 8); return (hdrsize); } #define BUF_SPACE_NEEDED(total, header) (total + header) /* * Find layout that corresponds to ordering of attributes * If not found a new layout number is created and added to * persistent layout tables. */ static int sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; uint64_t hash; sa_buf_type_t buftype; sa_hdr_phys_t *sahdr; void *data_start; int buf_space; sa_attr_type_t *attrs, *attrs_start; int i, lot_count; + int dnodesize; int hdrsize; int spillhdrsize = 0; int used; dmu_object_type_t bonustype; sa_lot_t *lot; int len_idx; int spill_used; + int bonuslen; boolean_t spilling; dmu_buf_will_dirty(hdl->sa_bonus, tx); bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus); + dmu_object_dnsize_from_db(hdl->sa_bonus, &dnodesize); + bonuslen = DN_BONUS_SIZE(dnodesize); + /* first determine bonus header size and sum of all attributes */ hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus, - SA_BONUS, &i, &used, &spilling); + SA_BONUS, bonuslen, &i, &used, &spilling); if (used > SPA_OLD_MAXBLOCKSIZE) return (SET_ERROR(EFBIG)); VERIFY(0 == dmu_set_bonus(hdl->sa_bonus, spilling ? - MIN(DN_MAX_BONUSLEN - sizeof (blkptr_t), used + hdrsize) : + MIN(bonuslen - sizeof (blkptr_t), used + hdrsize) : used + hdrsize, tx)); ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) || bonustype == DMU_OT_SA); /* setup and size spill buffer when needed */ if (spilling) { boolean_t dummy; if (hdl->sa_spill == NULL) { VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, NULL, &hdl->sa_spill) == 0); } dmu_buf_will_dirty(hdl->sa_spill, tx); spillhdrsize = sa_find_sizes(sa, &attr_desc[i], - attr_count - i, hdl->sa_spill, SA_SPILL, &i, - &spill_used, &dummy); + attr_count - i, hdl->sa_spill, SA_SPILL, + hdl->sa_spill->db_size, &i, &spill_used, &dummy); if (spill_used > SPA_OLD_MAXBLOCKSIZE) return (SET_ERROR(EFBIG)); buf_space = hdl->sa_spill->db_size - spillhdrsize; if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) > hdl->sa_spill->db_size) VERIFY(0 == sa_resize_spill(hdl, BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx)); } /* setup starting pointers to lay down data */ data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize); sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data; buftype = SA_BONUS; if (spilling) buf_space = (sa->sa_force_spill) ? 0 : SA_BLKPTR_SPACE - hdrsize; else buf_space = hdl->sa_bonus->db_size - hdrsize; attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); lot_count = 0; for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) { uint16_t length; ASSERT(IS_P2ALIGNED(data_start, 8)); ASSERT(IS_P2ALIGNED(buf_space, 8)); attrs[i] = attr_desc[i].sa_attr; length = SA_REGISTERED_LEN(sa, attrs[i]); if (length == 0) length = attr_desc[i].sa_length; if (buf_space < length) { /* switch to spill buffer */ VERIFY(spilling); VERIFY(bonustype == DMU_OT_SA); if (buftype == SA_BONUS && !sa->sa_force_spill) { sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); SA_SET_HDR(sahdr, lot->lot_num, hdrsize); } buftype = SA_SPILL; hash = -1ULL; len_idx = 0; sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data; sahdr->sa_magic = SA_MAGIC; data_start = (void *)((uintptr_t)sahdr + spillhdrsize); attrs_start = &attrs[i]; buf_space = hdl->sa_spill->db_size - spillhdrsize; lot_count = 0; } hash ^= SA_ATTR_HASH(attrs[i]); attr_desc[i].sa_addr = data_start; attr_desc[i].sa_size = length; SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data, data_start, length); if (sa->sa_attr_table[attrs[i]].sa_length == 0) { sahdr->sa_lengths[len_idx++] = length; } data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + length), 8); buf_space -= P2ROUNDUP(length, 8); lot_count++; } sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); /* * Verify that old znodes always have layout number 0. * Must be DMU_OT_SA for arbitrary layouts */ VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) || (bonustype == DMU_OT_SA && lot->lot_num > 1)); if (bonustype == DMU_OT_SA) { SA_SET_HDR(sahdr, lot->lot_num, buftype == SA_BONUS ? hdrsize : spillhdrsize); } kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count); if (hdl->sa_bonus_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); hdl->sa_bonus_tab = NULL; } if (!sa->sa_force_spill) VERIFY(0 == sa_build_index(hdl, SA_BONUS)); if (hdl->sa_spill) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); if (!spilling) { /* * remove spill block that is no longer needed. */ dmu_buf_rele(hdl->sa_spill, NULL); hdl->sa_spill = NULL; hdl->sa_spill_tab = NULL; VERIFY(0 == dmu_rm_spill(hdl->sa_os, sa_handle_object(hdl), tx)); } else { VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } } return (0); } static void sa_free_attr_table(sa_os_t *sa) { int i; if (sa->sa_attr_table == NULL) return; for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_name) kmem_free(sa->sa_attr_table[i].sa_name, strlen(sa->sa_attr_table[i].sa_name) + 1); } kmem_free(sa->sa_attr_table, sizeof (sa_attr_table_t) * sa->sa_num_attrs); sa->sa_attr_table = NULL; } static int sa_attr_table_setup(objset_t *os, sa_attr_reg_t *reg_attrs, int count) { sa_os_t *sa = os->os_sa; uint64_t sa_attr_count = 0; uint64_t sa_reg_count = 0; int error = 0; uint64_t attr_value; sa_attr_table_t *tb; zap_cursor_t zc; zap_attribute_t za; int registered_count = 0; int i; dmu_objset_type_t ostype = dmu_objset_type(os); sa->sa_user_table = kmem_zalloc(count * sizeof (sa_attr_type_t), KM_SLEEP); sa->sa_user_table_sz = count * sizeof (sa_attr_type_t); if (sa->sa_reg_attr_obj != 0) { error = zap_count(os, sa->sa_reg_attr_obj, &sa_attr_count); /* * Make sure we retrieved a count and that it isn't zero */ if (error || (error == 0 && sa_attr_count == 0)) { if (error == 0) error = SET_ERROR(EINVAL); goto bail; } sa_reg_count = sa_attr_count; } if (ostype == DMU_OST_ZFS && sa_attr_count == 0) sa_attr_count += sa_legacy_attr_count; /* Allocate attribute numbers for attributes that aren't registered */ for (i = 0; i != count; i++) { boolean_t found = B_FALSE; int j; if (ostype == DMU_OST_ZFS) { for (j = 0; j != sa_legacy_attr_count; j++) { if (strcmp(reg_attrs[i].sa_name, sa_legacy_attrs[j].sa_name) == 0) { sa->sa_user_table[i] = sa_legacy_attrs[j].sa_attr; found = B_TRUE; } } } if (found) continue; if (sa->sa_reg_attr_obj) error = zap_lookup(os, sa->sa_reg_attr_obj, reg_attrs[i].sa_name, 8, 1, &attr_value); else error = SET_ERROR(ENOENT); switch (error) { case ENOENT: sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count; sa_attr_count++; break; case 0: sa->sa_user_table[i] = ATTR_NUM(attr_value); break; default: goto bail; } } sa->sa_num_attrs = sa_attr_count; tb = sa->sa_attr_table = kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_SLEEP); /* * Attribute table is constructed from requested attribute list, * previously foreign registered attributes, and also the legacy * ZPL set of attributes. */ if (sa->sa_reg_attr_obj) { for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t value; value = za.za_first_integer; registered_count++; tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value); tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value); tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value); tb[ATTR_NUM(value)].sa_registered = B_TRUE; if (tb[ATTR_NUM(value)].sa_name) { continue; } tb[ATTR_NUM(value)].sa_name = kmem_zalloc(strlen(za.za_name) +1, KM_SLEEP); (void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name, strlen(za.za_name) +1); } zap_cursor_fini(&zc); /* * Make sure we processed the correct number of registered * attributes */ if (registered_count != sa_reg_count) { ASSERT(error != 0); goto bail; } } if (ostype == DMU_OST_ZFS) { for (i = 0; i != sa_legacy_attr_count; i++) { if (tb[i].sa_name) continue; tb[i].sa_attr = sa_legacy_attrs[i].sa_attr; tb[i].sa_length = sa_legacy_attrs[i].sa_length; tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap; tb[i].sa_registered = B_FALSE; tb[i].sa_name = kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1, KM_SLEEP); (void) strlcpy(tb[i].sa_name, sa_legacy_attrs[i].sa_name, strlen(sa_legacy_attrs[i].sa_name) + 1); } } for (i = 0; i != count; i++) { sa_attr_type_t attr_id; attr_id = sa->sa_user_table[i]; if (tb[attr_id].sa_name) continue; tb[attr_id].sa_length = reg_attrs[i].sa_length; tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap; tb[attr_id].sa_attr = attr_id; tb[attr_id].sa_name = kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_SLEEP); (void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name, strlen(reg_attrs[i].sa_name) + 1); } sa->sa_need_attr_registration = (sa_attr_count != registered_count); return (0); bail: kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t)); sa->sa_user_table = NULL; sa_free_attr_table(sa); return ((error != 0) ? error : EINVAL); } int sa_setup(objset_t *os, uint64_t sa_obj, sa_attr_reg_t *reg_attrs, int count, sa_attr_type_t **user_table) { zap_cursor_t zc; zap_attribute_t za; sa_os_t *sa; dmu_objset_type_t ostype = dmu_objset_type(os); sa_attr_type_t *tb; int error; mutex_enter(&os->os_user_ptr_lock); if (os->os_sa) { mutex_enter(&os->os_sa->sa_lock); mutex_exit(&os->os_user_ptr_lock); tb = os->os_sa->sa_user_table; mutex_exit(&os->os_sa->sa_lock); *user_table = tb; return (0); } sa = kmem_zalloc(sizeof (sa_os_t), KM_SLEEP); mutex_init(&sa->sa_lock, NULL, MUTEX_DEFAULT, NULL); sa->sa_master_obj = sa_obj; os->os_sa = sa; mutex_enter(&sa->sa_lock); mutex_exit(&os->os_user_ptr_lock); avl_create(&sa->sa_layout_num_tree, layout_num_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node)); avl_create(&sa->sa_layout_hash_tree, layout_hash_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node)); if (sa_obj) { error = zap_lookup(os, sa_obj, SA_LAYOUTS, 8, 1, &sa->sa_layout_attr_obj); if (error != 0 && error != ENOENT) goto fail; error = zap_lookup(os, sa_obj, SA_REGISTRY, 8, 1, &sa->sa_reg_attr_obj); if (error != 0 && error != ENOENT) goto fail; } if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0) goto fail; if (sa->sa_layout_attr_obj != 0) { uint64_t layout_count; error = zap_count(os, sa->sa_layout_attr_obj, &layout_count); /* * Layout number count should be > 0 */ if (error || (error == 0 && layout_count == 0)) { if (error == 0) error = SET_ERROR(EINVAL); goto fail; } for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { sa_attr_type_t *lot_attrs; uint64_t lot_num; lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) * za.za_num_integers, KM_SLEEP); if ((error = (zap_lookup(os, sa->sa_layout_attr_obj, za.za_name, 2, za.za_num_integers, lot_attrs))) != 0) { kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); break; } VERIFY(ddi_strtoull(za.za_name, NULL, 10, (unsigned long long *)&lot_num) == 0); (void) sa_add_layout_entry(os, lot_attrs, za.za_num_integers, lot_num, sa_layout_info_hash(lot_attrs, za.za_num_integers), B_FALSE, NULL); kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); } zap_cursor_fini(&zc); /* * Make sure layout count matches number of entries added * to AVL tree */ if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) { ASSERT(error != 0); goto fail; } } /* Add special layout number for old ZNODES */ if (ostype == DMU_OST_ZFS) { (void) sa_add_layout_entry(os, sa_legacy_zpl_layout, sa_legacy_attr_count, 0, sa_layout_info_hash(sa_legacy_zpl_layout, sa_legacy_attr_count), B_FALSE, NULL); (void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1, 0, B_FALSE, NULL); } *user_table = os->os_sa->sa_user_table; mutex_exit(&sa->sa_lock); return (0); fail: os->os_sa = NULL; sa_free_attr_table(sa); if (sa->sa_user_table) kmem_free(sa->sa_user_table, sa->sa_user_table_sz); mutex_exit(&sa->sa_lock); avl_destroy(&sa->sa_layout_hash_tree); avl_destroy(&sa->sa_layout_num_tree); mutex_destroy(&sa->sa_lock); kmem_free(sa, sizeof (sa_os_t)); return ((error == ECKSUM) ? EIO : error); } void sa_tear_down(objset_t *os) { sa_os_t *sa = os->os_sa; sa_lot_t *layout; void *cookie; kmem_free(sa->sa_user_table, sa->sa_user_table_sz); /* Free up attr table */ sa_free_attr_table(sa); cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie)) { sa_idx_tab_t *tab; while (tab = list_head(&layout->lot_idx_tab)) { ASSERT(refcount_count(&tab->sa_refcount)); sa_idx_tab_rele(os, tab); } } cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie)) { kmem_free(layout->lot_attrs, sizeof (sa_attr_type_t) * layout->lot_attr_count); kmem_free(layout, sizeof (sa_lot_t)); } avl_destroy(&sa->sa_layout_hash_tree); avl_destroy(&sa->sa_layout_num_tree); mutex_destroy(&sa->sa_lock); kmem_free(sa, sizeof (sa_os_t)); os->os_sa = NULL; } void sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t var_length, void *userp) { sa_idx_tab_t *idx_tab = userp; if (var_length) { ASSERT(idx_tab->sa_variable_lengths); idx_tab->sa_variable_lengths[length_idx] = length; } TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx, (uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr)); } static void sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type, sa_iterfunc_t func, sa_lot_t *tab, void *userp) { void *data_start; sa_lot_t *tb = tab; sa_lot_t search; avl_index_t loc; sa_os_t *sa = os->os_sa; int i; uint16_t *length_start = NULL; uint8_t length_idx = 0; if (tab == NULL) { search.lot_num = SA_LAYOUT_NUM(hdr, type); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); ASSERT(tb); } if (IS_SA_BONUSTYPE(type)) { data_start = (void *)P2ROUNDUP(((uintptr_t)hdr + offsetof(sa_hdr_phys_t, sa_lengths) + (sizeof (uint16_t) * tb->lot_var_sizes)), 8); length_start = hdr->sa_lengths; } else { data_start = hdr; } for (i = 0; i != tb->lot_attr_count; i++) { int attr_length, reg_length; uint8_t idx_len; reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length; if (reg_length) { attr_length = reg_length; idx_len = 0; } else { attr_length = length_start[length_idx]; idx_len = length_idx++; } func(hdr, data_start, tb->lot_attrs[i], attr_length, idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp); data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + attr_length), 8); } } /*ARGSUSED*/ void sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t variable_length, void *userp) { sa_handle_t *hdl = userp; sa_os_t *sa = hdl->sa_os->os_sa; sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length); } void sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype); dmu_buf_impl_t *db; sa_os_t *sa = hdl->sa_os->os_sa; int num_lengths = 1; int i; ASSERT(MUTEX_HELD(&sa->sa_lock)); if (sa_hdr_phys->sa_magic == SA_MAGIC) return; db = SA_GET_DB(hdl, buftype); if (buftype == SA_SPILL) { arc_release(db->db_buf, NULL); arc_buf_thaw(db->db_buf); } sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic); sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info); /* * Determine number of variable lenghts in header * The standard 8 byte header has one for free and a * 16 byte header would have 4 + 1; */ if (SA_HDR_SIZE(sa_hdr_phys) > 8) num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1; for (i = 0; i != num_lengths; i++) sa_hdr_phys->sa_lengths[i] = BSWAP_16(sa_hdr_phys->sa_lengths[i]); sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA, sa_byteswap_cb, NULL, hdl); if (buftype == SA_SPILL) arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf); } static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys; dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype); dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db); sa_os_t *sa = hdl->sa_os->os_sa; sa_idx_tab_t *idx_tab; sa_hdr_phys = SA_GET_HDR(hdl, buftype); mutex_enter(&sa->sa_lock); /* Do we need to byteswap? */ /* only check if not old znode */ if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC && sa_hdr_phys->sa_magic != 0) { VERIFY(BSWAP_32(sa_hdr_phys->sa_magic) == SA_MAGIC); sa_byteswap(hdl, buftype); } idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys); if (buftype == SA_BONUS) hdl->sa_bonus_tab = idx_tab; else hdl->sa_spill_tab = idx_tab; mutex_exit(&sa->sa_lock); return (0); } /*ARGSUSED*/ static void sa_evict_sync(void *dbu) { panic("evicting sa dbuf\n"); } static void sa_idx_tab_rele(objset_t *os, void *arg) { sa_os_t *sa = os->os_sa; sa_idx_tab_t *idx_tab = arg; if (idx_tab == NULL) return; mutex_enter(&sa->sa_lock); if (refcount_remove(&idx_tab->sa_refcount, NULL) == 0) { list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab); if (idx_tab->sa_variable_lengths) kmem_free(idx_tab->sa_variable_lengths, sizeof (uint16_t) * idx_tab->sa_layout->lot_var_sizes); refcount_destroy(&idx_tab->sa_refcount); kmem_free(idx_tab->sa_idx_tab, sizeof (uint32_t) * sa->sa_num_attrs); kmem_free(idx_tab, sizeof (sa_idx_tab_t)); } mutex_exit(&sa->sa_lock); } static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab) { sa_os_t *sa = os->os_sa; ASSERT(MUTEX_HELD(&sa->sa_lock)); (void) refcount_add(&idx_tab->sa_refcount, NULL); } void sa_handle_destroy(sa_handle_t *hdl) { dmu_buf_t *db = hdl->sa_bonus; mutex_enter(&hdl->sa_lock); (void) dmu_buf_remove_user(db, &hdl->sa_dbu); if (hdl->sa_bonus_tab) sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); if (hdl->sa_spill_tab) sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); dmu_buf_rele(hdl->sa_bonus, NULL); if (hdl->sa_spill) dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL); mutex_exit(&hdl->sa_lock); kmem_cache_free(sa_cache, hdl); } int sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { int error = 0; dmu_object_info_t doi; sa_handle_t *handle = NULL; #ifdef ZFS_DEBUG dmu_object_info_from_db(db, &doi); ASSERT(doi.doi_bonus_type == DMU_OT_SA || doi.doi_bonus_type == DMU_OT_ZNODE); #endif /* find handle, if it exists */ /* if one doesn't exist then create a new one, and initialize it */ if (hdl_type == SA_HDL_SHARED) handle = dmu_buf_get_user(db); if (handle == NULL) { sa_handle_t *winner = NULL; handle = kmem_cache_alloc(sa_cache, KM_SLEEP); handle->sa_dbu.dbu_evict_func_sync = NULL; handle->sa_dbu.dbu_evict_func_async = NULL; handle->sa_userp = userp; handle->sa_bonus = db; handle->sa_os = os; handle->sa_spill = NULL; handle->sa_bonus_tab = NULL; handle->sa_spill_tab = NULL; error = sa_build_index(handle, SA_BONUS); if (hdl_type == SA_HDL_SHARED) { dmu_buf_init_user(&handle->sa_dbu, sa_evict_sync, NULL, NULL); winner = dmu_buf_set_user_ie(db, &handle->sa_dbu); } if (winner != NULL) { kmem_cache_free(sa_cache, handle); handle = winner; } } *handlepp = handle; return (error); } int sa_handle_get(objset_t *objset, uint64_t objid, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { dmu_buf_t *db; int error; if (error = dmu_bonus_hold(objset, objid, NULL, &db)) return (error); return (sa_handle_get_from_db(objset, db, userp, hdl_type, handlepp)); } int sa_buf_hold(objset_t *objset, uint64_t obj_num, void *tag, dmu_buf_t **db) { return (dmu_bonus_hold(objset, obj_num, tag, db)); } void sa_buf_rele(dmu_buf_t *db, void *tag) { dmu_buf_rele(db, tag); } int sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL)); } int sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = buf; bulk.sa_length = buflen; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_lookup_impl(hdl, &bulk, 1); mutex_exit(&hdl->sa_lock); return (error); } #ifdef _KERNEL int sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, uio_t *uio) { int error; sa_bulk_attr_t bulk; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) { error = uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size, uio->uio_resid), UIO_READ, uio); } mutex_exit(&hdl->sa_lock); return (error); } #endif static sa_idx_tab_t * sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, sa_hdr_phys_t *hdr) { sa_idx_tab_t *idx_tab; sa_os_t *sa = os->os_sa; sa_lot_t *tb, search; avl_index_t loc; /* * Deterimine layout number. If SA node and header == 0 then * force the index table to the dummy "1" empty layout. * * The layout number would only be zero for a newly created file * that has not added any attributes yet, or with crypto enabled which * doesn't write any attributes to the bonus buffer. */ search.lot_num = SA_LAYOUT_NUM(hdr, bonustype); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); /* Verify header size is consistent with layout information */ ASSERT(tb); ASSERT(IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)); /* * See if any of the already existing TOC entries can be reused? */ for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab; idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) { boolean_t valid_idx = B_TRUE; int i; if (tb->lot_var_sizes != 0 && idx_tab->sa_variable_lengths != NULL) { for (i = 0; i != tb->lot_var_sizes; i++) { if (hdr->sa_lengths[i] != idx_tab->sa_variable_lengths[i]) { valid_idx = B_FALSE; break; } } } if (valid_idx) { sa_idx_tab_hold(os, idx_tab); return (idx_tab); } } /* No such luck, create a new entry */ idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_SLEEP); idx_tab->sa_idx_tab = kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_SLEEP); idx_tab->sa_layout = tb; refcount_create(&idx_tab->sa_refcount); if (tb->lot_var_sizes) idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) * tb->lot_var_sizes, KM_SLEEP); sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab, tb, idx_tab); sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */ sa_idx_tab_hold(os, idx_tab); /* one for layout */ list_insert_tail(&tb->lot_idx_tab, idx_tab); return (idx_tab); } void sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len, boolean_t start, void *userdata) { ASSERT(start); *dataptr = userdata; *len = total_len; } static void sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx) { uint64_t attr_value = 0; sa_os_t *sa = hdl->sa_os->os_sa; sa_attr_table_t *tb = sa->sa_attr_table; int i; mutex_enter(&sa->sa_lock); if (!sa->sa_need_attr_registration || sa->sa_master_obj == NULL) { mutex_exit(&sa->sa_lock); return; } if (sa->sa_reg_attr_obj == NULL) { sa->sa_reg_attr_obj = zap_create_link(hdl->sa_os, DMU_OT_SA_ATTR_REGISTRATION, sa->sa_master_obj, SA_REGISTRY, tx); } for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_registered) continue; ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length, tb[i].sa_byteswap); VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj, tb[i].sa_name, 8, 1, &attr_value, tx)); tb[i].sa_registered = B_TRUE; } sa->sa_need_attr_registration = B_FALSE; mutex_exit(&sa->sa_lock); } /* * Replace all attributes with attributes specified in template. * If dnode had a spill buffer then those attributes will be * also be replaced, possibly with just an empty spill block * * This interface is intended to only be used for bulk adding of * attributes for a new file. It will also be used by the ZPL * when converting and old formatted znode to native SA support. */ int sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); return (sa_build_layouts(hdl, attr_desc, attr_count, tx)); } int sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_replace_all_by_template_locked(hdl, attr_desc, attr_count, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * Add/remove a single attribute or replace a variable-sized attribute value * with a value of a different size, and then rewrite the entire set * of attributes. * Same-length attribute value replacement (including fixed-length attributes) * is handled more efficiently by the upper layers. */ static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; dnode_t *dn; sa_bulk_attr_t *attr_desc; void *old_data[2]; int bonus_attr_count = 0; int bonus_data_size = 0; int spill_data_size = 0; int spill_attr_count = 0; int error; uint16_t length, reg_length; int i, j, k, length_idx; sa_hdr_phys_t *hdr; sa_idx_tab_t *idx_tab; int attr_count; int count; ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* First make of copy of the old data */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonuslen != 0) { bonus_data_size = hdl->sa_bonus->db_size; old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP); bcopy(hdl->sa_bonus->db_data, old_data[0], hdl->sa_bonus->db_size); bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count; } else { old_data[0] = NULL; } DB_DNODE_EXIT(db); /* Bring spill buffer online if it isn't currently */ if ((error = sa_get_spill(hdl)) == 0) { spill_data_size = hdl->sa_spill->db_size; old_data[1] = kmem_alloc(spill_data_size, KM_SLEEP); bcopy(hdl->sa_spill->db_data, old_data[1], hdl->sa_spill->db_size); spill_attr_count = hdl->sa_spill_tab->sa_layout->lot_attr_count; } else if (error && error != ENOENT) { if (old_data[0]) kmem_free(old_data[0], bonus_data_size); return (error); } else { old_data[1] = NULL; } /* build descriptor of all attributes */ attr_count = bonus_attr_count + spill_attr_count; if (action == SA_ADD) attr_count++; else if (action == SA_REMOVE) attr_count--; attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP); /* * loop through bonus and spill buffer if it exists, and * build up new attr_descriptor to reset the attributes */ k = j = 0; count = bonus_attr_count; hdr = SA_GET_HDR(hdl, SA_BONUS); idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS); for (; k != 2; k++) { /* * Iterate over each attribute in layout. Fetch the * size of variable-length attributes needing rewrite * from sa_lengths[]. */ for (i = 0, length_idx = 0; i != count; i++) { sa_attr_type_t attr; attr = idx_tab->sa_layout->lot_attrs[i]; reg_length = SA_REGISTERED_LEN(sa, attr); if (reg_length == 0) { length = hdr->sa_lengths[length_idx]; length_idx++; } else { length = reg_length; } if (attr == newattr) { /* * There is nothing to do for SA_REMOVE, * so it is just skipped. */ if (action == SA_REMOVE) continue; /* * Duplicate attributes are not allowed, so the * action can not be SA_ADD here. */ ASSERT3S(action, ==, SA_REPLACE); /* * Only a variable-sized attribute can be * replaced here, and its size must be changing. */ ASSERT3U(reg_length, ==, 0); ASSERT3U(length, !=, buflen); SA_ADD_BULK_ATTR(attr_desc, j, attr, locator, datastart, buflen); } else { SA_ADD_BULK_ATTR(attr_desc, j, attr, NULL, (void *) (TOC_OFF(idx_tab->sa_idx_tab[attr]) + (uintptr_t)old_data[k]), length); } } if (k == 0 && hdl->sa_spill) { hdr = SA_GET_HDR(hdl, SA_SPILL); idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL); count = spill_attr_count; } else { break; } } if (action == SA_ADD) { reg_length = SA_REGISTERED_LEN(sa, newattr); IMPLY(reg_length != 0, reg_length == buflen); SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator, datastart, buflen); } ASSERT3U(j, ==, attr_count); error = sa_build_layouts(hdl, attr_desc, attr_count, tx); if (old_data[0]) kmem_free(old_data[0], bonus_data_size); if (old_data[1]) kmem_free(old_data[1], spill_data_size); kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count); return (error); } static int sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, dmu_tx_t *tx) { int error; sa_os_t *sa = hdl->sa_os->os_sa; dmu_object_type_t bonustype; bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS)); ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* sync out registration table if necessary */ if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx); if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb) sa->sa_update_cb(hdl, tx); return (error); } /* * update or add new attribute */ int sa_update(sa_handle_t *hdl, sa_attr_type_t type, void *buf, uint32_t buflen, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = type; bulk.sa_data_func = NULL; bulk.sa_length = buflen; bulk.sa_data = buf; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_update_from_cb(sa_handle_t *hdl, sa_attr_type_t attr, uint32_t buflen, sa_data_locator_t *locator, void *userdata, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = userdata; bulk.sa_data_func = locator; bulk.sa_length = buflen; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * Return size of an attribute */ int sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size) { sa_bulk_attr_t bulk; int error; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) { mutex_exit(&hdl->sa_lock); return (error); } *size = bulk.sa_size; mutex_exit(&hdl->sa_lock); return (0); } int sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_lookup_impl(hdl, attrs, count)); } int sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_lookup_locked(hdl, attrs, count); mutex_exit(&hdl->sa_lock); return (error); } int sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, attrs, count, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL, NULL, 0, tx); mutex_exit(&hdl->sa_lock); return (error); } void sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi) { dmu_object_info_from_db((dmu_buf_t *)hdl->sa_bonus, doi); } void sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks) { dmu_object_size_from_db((dmu_buf_t *)hdl->sa_bonus, blksize, nblocks); } void sa_set_userp(sa_handle_t *hdl, void *ptr) { hdl->sa_userp = ptr; } dmu_buf_t * sa_get_db(sa_handle_t *hdl) { return ((dmu_buf_t *)hdl->sa_bonus); } void * sa_get_userdata(sa_handle_t *hdl) { return (hdl->sa_userp); } void sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func) { ASSERT(MUTEX_HELD(&os->os_sa->sa_lock)); os->os_sa->sa_update_cb = func; } void sa_register_update_callback(objset_t *os, sa_update_cb_t *func) { mutex_enter(&os->os_sa->sa_lock); sa_register_update_callback_locked(os, func); mutex_exit(&os->os_sa->sa_lock); } uint64_t sa_handle_object(sa_handle_t *hdl) { return (hdl->sa_bonus->db_object); } boolean_t sa_enabled(objset_t *os) { return (os->os_sa == NULL); } int sa_set_sa_object(objset_t *os, uint64_t sa_object) { sa_os_t *sa = os->os_sa; if (sa->sa_master_obj) return (1); sa->sa_master_obj = sa_object; return (0); } int sa_hdrsize(void *arg) { sa_hdr_phys_t *hdr = arg; return (SA_HDR_SIZE(hdr)); } void sa_handle_lock(sa_handle_t *hdl) { ASSERT(hdl); mutex_enter(&hdl->sa_lock); } void sa_handle_unlock(sa_handle_t *hdl) { ASSERT(hdl); mutex_exit(&hdl->sa_lock); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c (revision 350898) @@ -1,8106 +1,8113 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright 2018 Joyent, Inc. * Copyright (c) 2017 Datto Inc. * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ int zfs_ccw_retry_interval = 300; typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "issue", "issue_high", "intr", "intr_high" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the * particular taskq is chosen at random. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); static void spa_vdev_resilver_done(spa_t *spa); uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ id_t zio_taskq_psrset_bind = PS_NONE; boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ uint_t zio_taskq_basedc = 80; /* base duty cycle */ boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ extern int zfs_sync_pass_deferred_free; /* * Report any spa_load_verify errors found, but do not fail spa_load. * This is used by zdb to analyze non-idle pools. */ boolean_t spa_load_verify_dryrun = B_FALSE; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* * For debugging purposes: print out vdev tree during pool import. */ boolean_t spa_load_print_vdev_tree = B_FALSE; /* * A non-zero value for zfs_max_missing_tvds means that we allow importing * pools with missing top-level vdevs. This is strictly intended for advanced * pool recovery cases since missing data is almost inevitable. Pools with * missing devices can only be imported read-only for safety reasons, and their * fail-mode will be automatically set to "continue". * * With 1 missing vdev we should be able to import the pool and mount all * datasets. User data that was not modified after the missing device has been * added should be recoverable. This means that snapshots created prior to the * addition of that device should be completely intact. * * With 2 missing vdevs, some datasets may fail to mount since there are * dataset statistics that are stored as regular metadata. Some data might be * recoverable if those vdevs were added recently. * * With 3 or more missing vdevs, the pool is severely damaged and MOS entries * may be missing entirely. Chances of data recovery are very low. Note that * there are also risks of performing an inadvertent rewind as we might be * missing all the vdevs with the latest uberblocks. */ uint64_t zfs_max_missing_tvds = 0; /* * The parameters below are similar to zfs_max_missing_tvds but are only * intended for a preliminary open of the pool with an untrusted config which * might be incomplete or out-dated. * * We are more tolerant for pools opened from a cachefile since we could have * an out-dated cachefile where a device removal was not registered. * We could have set the limit arbitrarily high but in the case where devices * are really missing we would want to return the proper error codes; we chose * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available * and we get a chance to retrieve the trusted config. */ uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; /* * In the case where config was assembled by scanning device paths (/dev/dsks * by default) we are less tolerant since all the existing devices should have * been detected and we want spa_load to return the right error codes. */ uint64_t zfs_max_missing_tvds_scan = 0; /* * Debugging aid that pauses spa_sync() towards the end. */ boolean_t zfs_pause_spa_sync = B_FALSE; /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); if (strval != NULL) VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); else VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(spa_normal_class(spa)); size = metaslab_class_get_space(spa_normal_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, spa->spa_checkpoint_info.sci_dspace, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == FREAD), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); } + if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { + spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, + DNODE_MAX_SIZE, ZPROP_SRC_NONE); + } else { + spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, + DNODE_MIN_SIZE, ZPROP_SRC_NONE); + } + if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; int err; VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) { mutex_exit(&spa->spa_props_lock); return (0); } /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds); if (err != 0) { dsl_pool_config_exit(dp, FTAG); break; } strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); dsl_pool_config_exit(dp, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); mutex_exit(&spa->spa_props_lock); out: if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPOOL_PROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; uint64_t propval; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } error = dmu_objset_hold(strval, FTAG, &os); if (error != 0) break; /* * Must be ZPL, and its property settings - * must be supported by GRUB (compression - * is not gzip, and large blocks are not used). + * must be supported. */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else if ((error = dsl_prop_get_int_ds(dmu_objset_ds(os), zfs_prop_to_name(ZFS_PROP_COMPRESSION), &propval)) == 0 && !BOOTFS_COMPRESS_VALID(propval)) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < ZIO_FAILURE_MODE_WAIT || intval > ZIO_FAILURE_MODE_PANIC)) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { /* * The kernel doesn't have an easy isprint() * check. For this kernel check, we merely * check ASCII apart from DEL. Fix this if * there is an easy-to-use kernel isprint(). */ if (*check >= 0x7f) { error = SET_ERROR(EINVAL); break; } } if (strlen(strval) > ZPROP_MAX_COMMENT) error = E2BIG; break; case ZPOOL_PROP_DEDUPDITTO: if (spa_version(spa) < SPA_VERSION_DEDUP) error = SET_ERROR(ENOTSUP); else error = nvpair_value_uint64(elem, &intval); if (error == 0 && intval != 0 && intval < ZIO_DEDUPDITTO_MIN) error = SET_ERROR(EINVAL); break; } if (error) break; } if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { uint64_t ver; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } /*ARGSUSED*/ static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { int error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (SET_ERROR(error)); } spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", oldguid, *newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { spa_error_entry_t *sa = (spa_error_entry_t *)a; spa_error_entry_t *sb = (spa_error_entry_t *)b; int ret; ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; char name[32]; uint_t flags = 0; boolean_t batch = B_FALSE; if (mode == ZTI_MODE_NULL) { tqs->stqs_count = 0; tqs->stqs_taskq = NULL; return; } ASSERT3U(count, >, 0); tqs->stqs_count = count; tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); switch (mode) { case ZTI_MODE_FIXED: ASSERT3U(value, >=, 1); value = MAX(value, 1); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = zio_taskq_batch_pct; break; default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } for (uint_t i = 0; i < count; i++) { taskq_t *tq; if (count > 1) { (void) snprintf(name, sizeof (name), "%s_%s_%u", zio_type_name[t], zio_taskq_types[q], i); } else { (void) snprintf(name, sizeof (name), "%s_%s", zio_type_name[t], zio_taskq_types[q]); } if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly lower priority * than the other taskqs. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) pri--; tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); } tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT0(tqs->stqs_count); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; } taskq_dispatch_ent(tq, func, arg, flags, ent); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } #ifdef _KERNEL static void spa_thread(void *arg) { callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, int mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } for (size_t i = 0; i < TXG_SIZE; i++) { spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); } list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_evicting_os_list, sizeof (objset_t), offsetof(objset_t, os_evicting_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, spa, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); spa_evicting_os_wait(spa); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_evicting_os_list); list_destroy(&spa->spa_state_dirty_list); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } for (size_t i = 0; i < TXG_SIZE; i++) { ASSERT3P(spa->spa_txg_zio[i], !=, NULL); VERIFY0(zio_wait(spa->spa_txg_zio[i])); spa->spa_txg_zio[i] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { int i; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_load_note(spa, "UNLOADING"); /* * Stop async tasks. */ spa_async_suspend(spa); if (spa->spa_root_vdev) { vdev_initialize_stop_all(spa->spa_root_vdev, VDEV_INITIALIZE_ACTIVE); } /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Even though vdev_free() also calls vdev_metaslab_fini, we need * to call it earlier, before we wait for async i/o to complete. * This ensures that there is no async metaslab prefetching, by * calling taskq_wait(mg_taskq). */ if (spa->spa_root_vdev != NULL) { spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); spa_config_exit(spa, SCL_ALL, spa); } /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } if (spa->spa_vdev_removal != NULL) { spa_vdev_removal_destroy(spa->spa_vdev_removal); spa->spa_vdev_removal = NULL; } if (spa->spa_condense_zthr != NULL) { ASSERT(!zthr_isrunning(spa->spa_condense_zthr)); zthr_destroy(spa->spa_condense_zthr); spa->spa_condense_zthr = NULL; } if (spa->spa_checkpoint_discard_zthr != NULL) { ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr)); zthr_destroy(spa->spa_checkpoint_discard_zthr); spa->spa_checkpoint_discard_zthr = NULL; } spa_condense_fini(spa); bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); for (i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; spa->spa_indirect_vdevs_loaded = B_FALSE; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } spa_config_exit(spa, SCL_ALL, spa); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As spare vdevs are shared among open pools, we skip loading * them when we load the checkpointed state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As L2 caches are part of the ARC which is shared among open * pools, we skip loading them when we load the checkpointed * state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (sav->sav_config != NULL) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); } else { nl2cache = 0; newvdevs = NULL; } oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); } } /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); if (sav->sav_config == NULL) goto out; sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); out: for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); if (error != 0) return (error); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); kmem_free(packed, nvsize); return (error); } /* * Concrete top-level vdevs that are not missing and are not logs. At every * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. */ static uint64_t spa_healthy_core_tvds(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t tvds = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; if (vd->vdev_islog) continue; if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) tvds++; } return (tvds); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { for (uint64_t c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && vdev_is_concrete(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); } } static int spa_check_for_missing_logs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; /* * If we're doing a normal import, then build up any additional * diagnostic information about missing log devices. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), KM_SLEEP); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; /* * We consider a device as missing only if it failed * to open (i.e. offline or faulted is not considered * as missing). */ if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { child[idx++] = vdev_config_generate(spa, tvd, B_FALSE, VDEV_CONFIG_MISSING); } } if (idx > 0) { fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, child, idx); fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_MISSING_DEVICES, nv); for (uint64_t i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); if (idx > 0) { spa_load_failed(spa, "some log devices are missing"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } } else { for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { spa_set_log_state(spa, SPA_LOG_CLEAR); spa_load_note(spa, "some log devices are " "missing, ZIL is dropped."); vdev_dbgmsg_print_tree(rvd, 2); break; } } } return (0); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; dsl_pool_t *dp = spa_get_dsl(spa); switch (spa->spa_log_state) { case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); if (!spa_has_slogs(spa)) return (B_FALSE); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) { metaslab_group_passivate(mg); slog_found = B_TRUE; } } return (slog_found); } static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) metaslab_group_activate(mg); } } int spa_reset_logs(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_reset, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { for (int i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; abd_free(zio->io_abd); if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of concurrent scrub i/os to create while verifying * a pool while importing it. */ int spa_load_verify_maxinflight = 10000; boolean_t spa_load_verify_metadata = B_TRUE; boolean_t spa_load_verify_data = B_TRUE; /*ARGSUSED*/ static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); if (!BP_IS_METADATA(bp) && !spa_load_verify_data) return (0); zio_t *rio = arg; size_t size = BP_GET_PSIZE(bp); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } /* ARGSUSED */ int verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_load_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) return (0); dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); error = dmu_objset_find_dp(spa->spa_dsl_pool, spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, DS_FIND_CHILDREN); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); if (error != 0) return (error); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { if (spa->spa_extreme_rewind) { spa_load_note(spa, "performing a complete scan of the " "pool since extreme rewind is on. This may take " "a very long time.\n (spa_load_verify_data=%u, " "spa_load_verify_metadata=%u)", spa_load_verify_data, spa_load_verify_metadata); } error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, spa_load_verify_cb, rio); } (void) zio_wait(rio); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { spa_load_note(spa, "spa_load_verify found %llu metadata errors " "and %llu data errors", (u_longlong_t)sle.sle_meta_count, (u_longlong_t)sle.sle_data_count); } if (spa_load_verify_dryrun || (!error && sle.sle_meta_count <= policy.zlp_maxmeta && sle.sle_data_count <= policy.zlp_maxdata)) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); VERIFY(nvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (spa_load_verify_dryrun) return (0); if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) { int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val); if (error != 0 && (error != ENOENT || log_enoent)) { spa_load_failed(spa, "couldn't get '%s' value in MOS directory " "[error=%d]", name, error); } return (error); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (SET_ERROR(err)); } static void spa_spawn_aux_threads(spa_t *spa) { ASSERT(spa_writeable(spa)); ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_start_indirect_condensing_thread(spa); ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); spa->spa_checkpoint_discard_zthr = zthr_create(spa_checkpoint_discard_thread_check, spa_checkpoint_discard_thread, spa); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) { char *ereport = FM_EREPORT_ZFS_POOL; int error; spa->spa_load_state = state; gethrestime(&spa->spa_loaded_ts); error = spa_load_impl(spa, type, &ereport); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; return (error); } /* * Count the number of per-vdev ZAPs associated with all of the vdevs in the * vdev tree rooted in the given vd, and ensure that each ZAP is present in the * spa's per-vdev ZAP list. */ static uint64_t vdev_count_verify_zaps(vdev_t *vd) { spa_t *spa = vd->vdev_spa; uint64_t total = 0; if (vd->vdev_top_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_top_zap)); } if (vd->vdev_leaf_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { total += vdev_count_verify_zaps(vd->vdev_child[i]); } return (total); } static int spa_verify_host(spa_t *spa, nvlist_t *mos_config) { uint64_t hostid; char *hostname; uint64_t myhostid = 0; if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { hostname = fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME); myhostid = zone_get_hostid(NULL); if (hostid != 0 && myhostid != 0 && hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%llx). " "See: http://illumos.org/msg/ZFS-8000-EY", spa_name(spa), hostname, (u_longlong_t)hostid); spa_load_failed(spa, "hostid verification failed: pool " "last accessed by host: %s (hostid: 0x%llx)", hostname, (u_longlong_t)hostid); return (SET_ERROR(EBADF)); } } return (0); } static int spa_ld_parse_config(spa_t *spa, spa_import_type_t type) { int error = 0; nvlist_t *nvtree, *nvl, *config = spa->spa_config; int parse; vdev_t *rvd; uint64_t pool_guid; char *comment; /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_POOL_GUID); return (SET_ERROR(EINVAL)); } /* * If we are doing an import, ensure that the pool is not already * imported by checking if its pool guid already exists in the * spa namespace. * * The only case that we allow an already imported pool to be * imported again, is when the pool is checkpointed and we want to * look at its checkpointed state from userland tools like zdb. */ #ifdef _KERNEL if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { #else if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0) && !spa_importing_readonly_checkpoint(spa)) { #endif spa_load_failed(spa, "a pool with guid %llu is already open", (u_longlong_t)pool_guid); return (SET_ERROR(EEXIST)); } spa->spa_config_guid = pool_guid; nvlist_free(spa->spa_load_info); spa->spa_load_info = fnvlist_alloc(); ASSERT(spa->spa_comment == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) spa->spa_comment = spa_strdup(comment); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) spa->spa_config_splitting = fnvlist_dup(nvl); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_VDEV_TREE); return (SET_ERROR(EINVAL)); } /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); parse = (type == SPA_IMPORT_EXISTING ? VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "unable to parse config [error=%d]", error); return (error); } ASSERT(spa->spa_root_vdev == rvd); ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } return (0); } /* * Recursively open all vdevs in the vdev tree. This function is called twice: * first with the untrusted config, then with the trusted config. */ static int spa_ld_open_vdevs(spa_t *spa) { int error = 0; /* * spa_missing_tvds_allowed defines how many top-level vdevs can be * missing/unopenable for the root vdev to be still considered openable. */ if (spa->spa_trust_config) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; } else { spa->spa_missing_tvds_allowed = 0; } spa->spa_missing_tvds_allowed = MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "vdev tree has %lld missing top-level " "vdevs.", (u_longlong_t)spa->spa_missing_tvds); if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { /* * Although theoretically we could allow users to open * incomplete pools in RW mode, we'd need to add a lot * of extra logic (e.g. adjust pool space to account * for missing vdevs). * This limitation also prevents users from accidentally * opening the pool in RW mode during data recovery and * damaging it further. */ spa_load_note(spa, "pools with missing top-level " "vdevs can only be opened in read-only mode."); error = SET_ERROR(ENXIO); } else { spa_load_note(spa, "current settings allow for maximum " "%lld missing top-level vdevs at this stage.", (u_longlong_t)spa->spa_missing_tvds_allowed); } } if (error != 0) { spa_load_failed(spa, "unable to open vdev tree [error=%d]", error); } if (spa->spa_missing_tvds != 0 || error != 0) vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); return (error); } /* * We need to validate the vdev labels against the configuration that * we have in hand. This function is called twice: first with an untrusted * config, then with a trusted config. The validation is more strict when the * config is trusted. */ static int spa_ld_validate_vdevs(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_validate(rvd); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "vdev_validate failed [error=%d]", error); return (error); } if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { spa_load_failed(spa, "cannot open vdev tree after invalidating " "some vdevs"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } return (0); } static void spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) { spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; } static int spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) { vdev_t *rvd = spa->spa_root_vdev; nvlist_t *label; uberblock_t *ub = &spa->spa_uberblock; /* * If we are opening the checkpointed state of the pool by * rewinding to it, at this point we will have written the * checkpointed uberblock to the vdev labels, so searching * the labels will find the right uberblock. However, if * we are opening the checkpointed state read-only, we have * not modified the labels. Therefore, we must ignore the * labels and continue using the spa_uberblock that was set * by spa_ld_checkpoint_rewind. * * Note that it would be fine to ignore the labels when * rewinding (opening writeable) as well. However, if we * crash just after writing the labels, we will end up * searching the labels. Doing so in the common case means * that this code path gets exercised normally, rather than * just in the edge case. */ if (ub->ub_checkpoint_txg != 0 && spa_importing_readonly_checkpoint(spa)) { spa_ld_select_uberblock_done(spa, ub); return (0); } /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); spa_load_failed(spa, "no valid uberblock found"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } spa_load_note(spa, "using uberblock with txg=%llu", (u_longlong_t)ub->ub_txg); /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); spa_load_failed(spa, "version %llu is not supported", (u_longlong_t)ub->ub_version); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL) { spa_load_failed(spa, "label config unavailable"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); spa_load_failed(spa, "invalid label: '%s' missing", ZPOOL_CONFIG_FEATURES_FOR_READ); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { VERIFY(nvlist_add_string(unsup_feat, nvpair_name(nvp), "") == 0); } } if (!nvlist_empty(unsup_feat)) { VERIFY(nvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); nvlist_free(unsup_feat); spa_load_failed(spa, "some features are unsupported"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_try_repair(spa, spa->spa_config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa_ld_select_uberblock_done(spa, ub); return (0); } static int spa_ld_open_rootbp(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error != 0) { spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; return (0); } static int spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t reloading) { vdev_t *mrvd, *rvd = spa->spa_root_vdev; nvlist_t *nv, *mos_config, *policy; int error = 0, copy_error; uint64_t healthy_tvds, healthy_tvds_mos; uint64_t mos_config_txg; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * If we're assembling a pool from a split, the config provided is * already trusted so there is nothing to do. */ if (type == SPA_IMPORT_ASSEMBLE) return (0); healthy_tvds = spa_healthy_core_tvds(spa); if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * If we are doing an open, pool owner wasn't verified yet, thus do * the verification here. */ if (spa->spa_load_state == SPA_LOAD_OPEN) { error = spa_verify_host(spa, mos_config); if (error != 0) { nvlist_free(mos_config); return (error); } } nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Build a new vdev tree from the trusted config */ VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); /* * Vdev paths in the MOS may be obsolete. If the untrusted config was * obtained by scanning /dev/dsk, then it will have the right vdev * paths. We update the trusted MOS config with this information. * We first try to copy the paths with vdev_copy_path_strict, which * succeeds only when both configs have exactly the same vdev tree. * If that fails, we fall back to a more flexible method that has a * best effort policy. */ copy_error = vdev_copy_path_strict(rvd, mrvd); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "provided vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); spa_load_note(spa, "MOS vdev tree:"); vdev_dbgmsg_print_tree(mrvd, 2); } if (copy_error != 0) { spa_load_note(spa, "vdev_copy_path_strict failed, falling " "back to vdev_copy_path_relaxed"); vdev_copy_path_relaxed(rvd, mrvd); } vdev_close(rvd); vdev_free(rvd); spa->spa_root_vdev = mrvd; rvd = mrvd; spa_config_exit(spa, SCL_ALL, FTAG); /* * We will use spa_config if we decide to reload the spa or if spa_load * fails and we rewind. We must thus regenerate the config using the * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to * pass settings on how to load the pool and is not stored in the MOS. * We copy it over to our new, trusted config. */ mos_config_txg = fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_POOL_TXG); nvlist_free(mos_config); mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, &policy) == 0) fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); spa_config_set(spa, mos_config); spa->spa_config_source = SPA_CONFIG_SRC_MOS; /* * Now that we got the config from the MOS, we should be more strict * in checking blkptrs and can make assumptions about the consistency * of the vdev tree. spa_trust_config must be set to true before opening * vdevs in order for them to be writeable. */ spa->spa_trust_config = B_TRUE; /* * Open and validate the new vdev tree */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "final vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); } if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { /* * Sanity check to make sure that we are indeed loading the * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds * in the config provided and they happened to be the only ones * to have the latest uberblock, we could involuntarily perform * an extreme rewind. */ healthy_tvds_mos = spa_healthy_core_tvds(spa); if (healthy_tvds_mos - healthy_tvds >= SPA_SYNC_MIN_VDEVS) { spa_load_note(spa, "config provided misses too many " "top-level vdevs compared to MOS (%lld vs %lld). ", (u_longlong_t)healthy_tvds, (u_longlong_t)healthy_tvds_mos); spa_load_note(spa, "vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); if (reloading) { spa_load_failed(spa, "config was already " "provided from MOS. Aborting."); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_load_note(spa, "spa must be reloaded using MOS " "config"); return (SET_ERROR(EAGAIN)); } } error = spa_check_for_missing_logs(spa); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { spa_load_failed(spa, "uberblock guid sum doesn't match MOS " "guid sum (%llu != %llu)", (u_longlong_t)spa->spa_uberblock.ub_guid_sum, (u_longlong_t)rvd->vdev_guid_sum); return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); } return (0); } static int spa_ld_open_indirect_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * Everything that we read before spa_remove_init() must be stored * on concreted vdevs. Therefore we do this as early as possible. */ error = spa_remove_init(spa); if (error != 0) { spa_load_failed(spa, "spa_remove_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Retrieve information needed to condense indirect vdev mappings. */ error = spa_condense_init(spa); if (error != 0) { spa_load_failed(spa, "spa_condense_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } return (0); } static int spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || spa->spa_load_state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { *missing_feat_writep = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (*missing_feat_writep && spa_writeable(spa))) { spa_load_failed(spa, "pool uses unsupported features"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { spa_load_failed(spa, "error getting refcount " "for feature %s [error=%d]", spa_feature_table[i].fi_guid, error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_load_special_directories(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) { spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_get_props(spa_t *spa) { int error = 0; uint64_t obj; vdev_t *rvd = spa->spa_root_vdev; /* Grab the secret checksum salt from the MOS. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); if (error == ENOENT) { /* Generate a new salt for subsequent use */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); } else if (error != 0) { spa_load_failed(spa, "unable to retrieve checksum salt from " "MOS [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) { spa_load_failed(spa, "error opening deferred-frees bpobj " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the per-vdev ZAP map. If we have an older pool, this will not * be present; in this case, defer its creation to a later time to * avoid dirtying the MOS this early / out of sync context. See * spa_sync_config_object. */ /* The sentinel is only available in the MOS config. */ nvlist_t *mos_config; if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, &spa->spa_all_vdev_zaps, B_FALSE); if (error == ENOENT) { VERIFY(!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); spa->spa_avz_action = AVZ_ACTION_INITIALIZE; ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } else if (error != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { /* * An older version of ZFS overwrote the sentinel value, so * we have orphaned per-vdev ZAPs in the MOS. Defer their * destruction to later; see spa_sync_config_object. */ spa->spa_avz_action = AVZ_ACTION_DESTROY; /* * We're assuming that no vdevs have had their ZAPs created * before this. Better be sure of it. */ ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } nvlist_free(mos_config); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, B_FALSE); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, &spa->spa_dedup_ditto); spa->spa_autoreplace = (autoreplace != 0); } /* * If we are importing a pool with missing top-level vdevs, * we enforce that the pool doesn't panic or get suspended on * error since the likelihood of missing data is extremely high. */ if (spa->spa_missing_tvds > 0 && spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_load_note(spa, "forcing failmode to 'continue' " "as some top level vdevs are missing"); spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; } return (0); } static int spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { spa_load_failed(spa, "error loading spares nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { spa_load_failed(spa, "error loading l2cache nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } return (0); } static int spa_ld_load_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (spa->spa_load_state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. */ error = vdev_load(rvd); if (error != 0) { spa_load_failed(spa, "vdev_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Propagate the leaf DTLs we just loaded all the way up the vdev tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); return (0); } static int spa_ld_load_dedup_tables(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = ddt_load(spa); if (error != 0) { spa_load_failed(spa, "ddt_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) { vdev_t *rvd = spa->spa_root_vdev; if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { boolean_t missing = spa_check_logs(spa); if (missing) { if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "spa_check_logs failed " "so dropping the logs"); } else { *ereport = FM_EREPORT_ZFS_LOG_REPLAY; spa_load_failed(spa, "spa_check_logs failed"); return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); } } } return (0); } static int spa_ld_verify_pool_data(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { error = spa_load_verify(spa); if (error != 0) { spa_load_failed(spa, "spa_load_verify failed " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } } return (0); } static void spa_ld_claim_log_blocks(spa_t *spa) { dmu_tx_t *tx; dsl_pool_t *dp = spa_get_dsl(spa); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); } static void spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, boolean_t update_config_cache) { vdev_t *rvd = spa->spa_root_vdev; int need_update = B_FALSE; /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ if (update_config_cache || config_cache_txg != spa->spa_config_txg || spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asychronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } static void spa_ld_prepare_for_reload(spa_t *spa) { int mode = spa->spa_mode; int async_suspended = spa->spa_async_suspended; spa_unload(spa); spa_deactivate(spa); spa_activate(spa, mode); /* * We save the value of spa_async_suspended as it gets reset to 0 by * spa_unload(). We want to restore it back to the original value before * returning as we might be calling spa_async_resume() later. */ spa->spa_async_suspended = async_suspended; } static int spa_ld_read_checkpoint_txg(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT0(spa->spa_checkpoint_txg); ASSERT(MUTEX_HELD(&spa_namespace_lock)); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT) return (0); if (error != 0) return (error); ASSERT3U(checkpoint.ub_txg, !=, 0); ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); ASSERT3U(checkpoint.ub_timestamp, !=, 0); spa->spa_checkpoint_txg = checkpoint.ub_txg; spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; return (0); } static int spa_ld_mos_init(spa_t *spa, spa_import_type_t type) { int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); /* * Never trust the config that is provided unless we are assembling * a pool following a split. * This means don't trust blkptrs and the vdev tree in general. This * also effectively puts the spa in read-only mode since * spa_writeable() checks for spa_trust_config to be true. * We will later load a trusted config from the MOS. */ if (type != SPA_IMPORT_ASSEMBLE) spa->spa_trust_config = B_FALSE; /* * Parse the config provided to create a vdev tree. */ error = spa_ld_parse_config(spa, type); if (error != 0) return (error); /* * Now that we have the vdev tree, try to open each vdev. This involves * opening the underlying physical device, retrieving its geometry and * probing the vdev with a dummy I/O. The state of each vdev will be set * based on the success of those operations. After this we'll be ready * to read from the vdevs. */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); /* * Read the label of each vdev and make sure that the GUIDs stored * there match the GUIDs in the config provided. * If we're assembling a new pool that's been split off from an * existing pool, the labels haven't yet been updated so we skip * validation for now. */ if (type != SPA_IMPORT_ASSEMBLE) { error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); } /* * Read all vdev labels to find the best uberblock (i.e. latest, * unless spa_load_max_txg is set) and store it in spa_uberblock. We * get the list of features required to read blkptrs in the MOS from * the vdev label with the best uberblock and verify that our version * of zfs supports them all. */ error = spa_ld_select_uberblock(spa, type); if (error != 0) return (error); /* * Pass that uberblock to the dsl_pool layer which will open the root * blkptr. This blkptr points to the latest version of the MOS and will * allow us to read its contents. */ error = spa_ld_open_rootbp(spa); if (error != 0) return (error); return (0); } static int spa_ld_checkpoint_rewind(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error != 0) { spa_load_failed(spa, "unable to retrieve checkpointed " "uberblock from the MOS config [error=%d]", error); if (error == ENOENT) error = ZFS_ERR_NO_CHECKPOINT; return (error); } ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); /* * We need to update the txg and timestamp of the checkpointed * uberblock to be higher than the latest one. This ensures that * the checkpointed uberblock is selected if we were to close and * reopen the pool right after we've written it in the vdev labels. * (also see block comment in vdev_uberblock_compare) */ checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; checkpoint.ub_timestamp = gethrestime_sec(); /* * Set current uberblock to be the checkpointed uberblock. */ spa->spa_uberblock = checkpoint; /* * If we are doing a normal rewind, then the pool is open for * writing and we sync the "updated" checkpointed uberblock to * disk. Once this is done, we've basically rewound the whole * pool and there is no way back. * * There are cases when we don't want to attempt and sync the * checkpointed uberblock to disk because we are opening a * pool as read-only. Specifically, verifying the checkpointed * state with zdb, and importing the checkpointed state to get * a "preview" of its content. */ if (spa_writeable(spa)) { vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "failed to write checkpointed " "uberblock to the vdev labels [error=%d]", error); return (error); } } return (0); } static int spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t *update_config_cache) { int error; /* * Parse the config for pool, open and validate vdevs, * select an uberblock, and use that uberblock to open * the MOS. */ error = spa_ld_mos_init(spa, type); if (error != 0) return (error); /* * Retrieve the trusted config stored in the MOS and use it to create * a new, exact version of the vdev tree, then reopen all vdevs. */ error = spa_ld_trusted_config(spa, type, B_FALSE); if (error == EAGAIN) { if (update_config_cache != NULL) *update_config_cache = B_TRUE; /* * Redo the loading process with the trusted config if it is * too different from the untrusted config. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "RELOADING"); error = spa_ld_mos_init(spa, type); if (error != 0) return (error); error = spa_ld_trusted_config(spa, type, B_TRUE); if (error != 0) return (error); } else if (error != 0) { return (error); } return (0); } /* * Load an existing storage pool, using the config provided. This config * describes which vdevs are part of the pool and is later validated against * partial configs present in each vdev's label and an entire copy of the * config stored in the MOS. */ static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) { int error = 0; boolean_t missing_feat_write = B_FALSE; boolean_t checkpoint_rewind = (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); boolean_t update_config_cache = B_FALSE; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); spa_load_note(spa, "LOADING"); error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); if (error != 0) return (error); /* * If we are rewinding to the checkpoint then we need to repeat * everything we've done so far in this function but this time * selecting the checkpointed uberblock and using that to open * the MOS. */ if (checkpoint_rewind) { /* * If we are rewinding to the checkpoint update config cache * anyway. */ update_config_cache = B_TRUE; /* * Extract the checkpointed uberblock from the current MOS * and use this as the pool's uberblock from now on. If the * pool is imported as writeable we also write the checkpoint * uberblock to the labels, making the rewind permanent. */ error = spa_ld_checkpoint_rewind(spa); if (error != 0) return (error); /* * Redo the loading process process again with the * checkpointed uberblock. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "LOADING checkpointed uberblock"); error = spa_ld_mos_with_trusted_config(spa, type, NULL); if (error != 0) return (error); } /* * Retrieve the checkpoint txg if the pool has a checkpoint. */ error = spa_ld_read_checkpoint_txg(spa); if (error != 0) return (error); /* * Retrieve the mapping of indirect vdevs. Those vdevs were removed * from the pool and their contents were re-mapped to other vdevs. Note * that everything that we read before this step must have been * rewritten on concrete vdevs after the last device removal was * initiated. Otherwise we could be reading from indirect vdevs before * we have loaded their mappings. */ error = spa_ld_open_indirect_vdev_metadata(spa); if (error != 0) return (error); /* * Retrieve the full list of active features from the MOS and check if * they are all supported. */ error = spa_ld_check_features(spa, &missing_feat_write); if (error != 0) return (error); /* * Load several special directories from the MOS needed by the dsl_pool * layer. */ error = spa_ld_load_special_directories(spa); if (error != 0) return (error); /* * Retrieve pool properties from the MOS. */ error = spa_ld_get_props(spa); if (error != 0) return (error); /* * Retrieve the list of auxiliary devices - cache devices and spares - * and open them. */ error = spa_ld_open_aux_vdevs(spa, type); if (error != 0) return (error); /* * Load the metadata for all vdevs. Also check if unopenable devices * should be autoreplaced. */ error = spa_ld_load_vdev_metadata(spa); if (error != 0) return (error); error = spa_ld_load_dedup_tables(spa); if (error != 0) return (error); /* * Verify the logs now to make sure we don't have any unexpected errors * when we claim log blocks later. */ error = spa_ld_verify_logs(spa, type, ereport); if (error != 0) return (error); if (missing_feat_write) { ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Traverse the last txgs to make sure the pool was left off in a safe * state. When performing an extreme rewind, we verify the whole pool, * which can take a very long time. */ error = spa_ld_verify_pool_data(spa); if (error != 0) return (error); /* * Calculate the deflated space for the pool. This must be done before * we write anything to the pool because we'd need to update the space * accounting using the deflated sizes. */ spa_update_dspace(spa); /* * We have now retrieved all the information we needed to open the * pool. If we are importing the pool in read-write mode, a few * additional steps must be performed to finish the import. */ if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { uint64_t config_cache_txg = spa->spa_config_txg; ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); /* * In case of a checkpoint rewind, log the original txg * of the checkpointed uberblock. */ if (checkpoint_rewind) { spa_history_log_internal(spa, "checkpoint rewind", NULL, "rewound state to txg=%llu", (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); } /* * Traverse the ZIL and claim all blocks. */ spa_ld_claim_log_blocks(spa); /* * Kick-off the syncing thread. */ spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by ZIL traversal operations * performed above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * Check if we need to request an update of the config. On the * next sync, we would update the config stored in vdev labels * and the cachefile (by default /etc/zfs/zpool.cache). */ spa_ld_check_for_config_update(spa, config_cache_txg, update_config_cache); /* * Check all DTLs to see if anything needs resilvering. */ if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open"); spa_restart_removal(spa); spa_spawn_aux_threads(spa); /* * Delete any inconsistent datasets. * * Note: * Since we may be issuing deletes for clones here, * we make sure to do so after we've spawned all the * auxiliary threads above (from which the livelist * deletion zthr is part of). */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_load_note(spa, "LOADED"); return (0); } static int spa_load_retry(spa_t *spa, spa_load_state_t state) { int mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", (u_longlong_t)spa->spa_load_max_txg); return (spa_load(spa, state, SPA_IMPORT_EXISTING)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); if (load_error == 0) return (0); if (load_error == ZFS_ERR_NO_CHECKPOINT) { /* * When attempting checkpoint-rewind on a pool with no * checkpoint, we should not attempt to load uberblocks * from previous txgs when spa_load fails. */ ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); return (load_error); } if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; rewind_error = spa_load_retry(spa, state); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); else nvlist_free(config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_load_policy_t policy; zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; zfs_dbgmsg("spa_open_common: opening %s", pool); error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { VERIFY(nvlist_dup(spa->spa_config, config, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER) { VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); } *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); if (nl2cache != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vdev_get_stats(vd, vs); } } } static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; zap_cursor_t zc; zap_attribute_t za; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features) == 0); nvlist_free(features); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; VERIFY(nvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); if (spa_suspended(spa)) VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0); spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } /* * The L2ARC currently only supports disk devices in * kernel context. For user-level testing, we allow it. */ #ifdef _KERNEL if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { error = SET_ERROR(ENOTBLK); vdev_free(vd); goto out; } #endif vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatentating with the * current dev list. */ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs) == 0); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) VERIFY(nvlist_dup(olddevs[i], &newdevs[i], KM_SLEEP) == 0); for (i = 0; i < ndevs; i++) VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], KM_SLEEP) == 0); VERIFY(nvlist_remove(sav->sav_config, config, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, newdevs, ndevs + oldndevs) == 0); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs) == 0); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj; boolean_t has_features; char *poolname; nvlist_t *nvl; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) poolname = (char *)pool; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(poolname) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ nvl = fnvlist_alloc(); fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(poolname, nvl, altroot); fnvlist_free(nvl); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Temporary pool names should never be written to disk. */ if (poolname != pool) spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; has_features = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) has_features = B_TRUE; } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; spa->spa_load_state = SPA_LOAD_CREATE; spa->spa_removing_phys.sr_state = DSS_NONE; spa->spa_removing_phys.sr_removing_vdev = -1; spa->spa_removing_phys.sr_prev_indirect_vdev = -1; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_metaslab_set_size(rvd->vdev_child[c]); vdev_expand(rvd->vdev_child[c], txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); spa->spa_meta_objset = dp->dp_meta_objset; spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (spa_version(spa) >= SPA_VERSION_FEATURES) spa_feature_create_zap_objects(spa, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY) spa_history_create_obj(spa, tx); /* * Generate some random noise for salted checksums to operate on. */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_spawn_aux_threads(spa); spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); spa_history_log_version(spa, "create"); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = refcount_count(&spa->spa_refcount); spa->spa_load_state = SPA_LOAD_NONE; mutex_exit(&spa_namespace_lock); return (0); } #ifdef _KERNEL /* * Get the root pool information from the root disk, then import the root pool * during the system boot up time. */ extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); static nvlist_t * spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) { nvlist_t *config; nvlist_t *nvtop, *nvroot; uint64_t pgid; if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) return (NULL); /* * Add this top-level vdev to the child array. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); /* * Put this pool's top-level vdevs into a root vdev. */ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &nvtop, 1) == 0); /* * Replace the existing vdev_tree with the new root vdev in * this pool's configuration (remove the old, add the new). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); return (config); } /* * Walk the vdev tree and see if we can find a device with "better" * configuration. A configuration is "better" if the label on that * device has a more recent txg. */ static void spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) { for (int c = 0; c < vd->vdev_children; c++) spa_alt_rootvdev(vd->vdev_child[c], avd, txg); if (vd->vdev_ops->vdev_op_leaf) { nvlist_t *label; uint64_t label_txg; if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, &label) != 0) return; VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, &label_txg) == 0); /* * Do we have a better boot device? */ if (label_txg > *txg) { *txg = label_txg; *avd = vd; } nvlist_free(label); } } /* * Import a root pool. * * For x86. devpath_list will consist of devid and/or physpath name of * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). * The GRUB "findroot" command will return the vdev we should boot. * * For Sparc, devpath_list consists the physpath name of the booting device * no matter the rootpool is a single device pool or a mirrored pool. * e.g. * "/pci@1f,0/ide@d/disk@0,0:a" */ int spa_import_rootpool(char *devpath, char *devid) { spa_t *spa; vdev_t *rvd, *bvd, *avd = NULL; nvlist_t *config, *nvtop; uint64_t guid, txg; char *pname; int error; /* * Read the label from the boot device and generate a configuration. */ config = spa_generate_rootconf(devpath, devid, &guid); #if defined(_OBP) && defined(_KERNEL) if (config == NULL) { if (strstr(devpath, "/iscsi/ssd") != NULL) { /* iscsi boot */ get_iscsi_bootpath_phy(devpath); config = spa_generate_rootconf(devpath, devid, &guid); } } #endif if (config == NULL) { cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", devpath); return (SET_ERROR(EIO)); } VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pname)) != NULL) { /* * Remove the existing root pool from the namespace so that we * can replace it with the correct config we just read in. */ spa_remove(spa); } spa = spa_add(pname, config, NULL); spa->spa_is_root = B_TRUE; spa->spa_import_flags = ZFS_IMPORT_VERBATIM; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; /* * Build up a vdev tree based on the boot device's label config. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, VDEV_ALLOC_ROOTPOOL); spa_config_exit(spa, SCL_ALL, FTAG); if (error) { mutex_exit(&spa_namespace_lock); nvlist_free(config); cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", pname); return (error); } /* * Get the boot vdev. */ if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", (u_longlong_t)guid); error = SET_ERROR(ENOENT); goto out; } /* * Determine if there is a better boot device. */ avd = bvd; spa_alt_rootvdev(rvd, &avd, &txg); if (avd != bvd) { cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " "try booting from '%s'", avd->vdev_path); error = SET_ERROR(EINVAL); goto out; } /* * If the boot device is part of a spare vdev then ensure that * we're booting off the active spare. */ if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && !bvd->vdev_isspare) { cmn_err(CE_NOTE, "The boot device is currently spared. Please " "try booting from '%s'", bvd->vdev_parent-> vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); error = SET_ERROR(EINVAL); goto out; } error = 0; out: spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_free(rvd); spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&spa_namespace_lock); nvlist_free(config); return (error); } #endif /* * Import a non-root pool into the system. */ int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_load_policy_t policy; uint64_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = FREAD; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); zfs_dbgmsg("spa_import: verbatim import of %s", pool); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_load_policy(config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; if (state != SPA_LOAD_RECOVER) { spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; zfs_dbgmsg("spa_import: importing %s", pool); } else { zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); } error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_L2CACHE); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); spa_history_log_version(spa, "import"); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); mutex_exit(&spa_namespace_lock); return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname, *cachefile; spa_t *spa; uint64_t state; int error; zpool_load_policy_t policy; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, FREAD); /* * Rewind pool if a max txg was provided. */ zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_txg != UINT64_MAX) { spa->spa_load_max_txg = policy.zlp_txg; spa->spa_extreme_rewind = B_TRUE; zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", poolname, (longlong_t)policy.zlp_txg); } else { zfs_dbgmsg("spa_tryimport: importing %s", poolname); } if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) == 0) { zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; } else { spa->spa_config_source = SPA_CONFIG_SRC_SCAN; } error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname) == 0); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & FWRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ txg_wait_synced(spa->spa_dsl_pool, 0); spa_evicting_os_wait(spa); /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0 && new_state != POOL_STATE_UNINITIALIZED)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EBUSY)); } /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EXDEV)); } /* * We're about to export or destroy this pool. Make sure * we stop all initializtion activity here before we * set the spa_final_txg. This will ensure that all * dirty data resulting from the initialization is * committed to disk before we unload the pool. */ if (spa->spa_root_vdev != NULL) { vdev_initialize_stop_all(spa->spa_root_vdev, VDEV_INITIALIZE_ACTIVE); } /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); } } spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); } mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, id; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * If we are in the middle of a device removal, we can only add * devices which match the existing devices in the pool. * If we are in the middle of a removal, or have some indirect * vdevs, we can not add raidz toplevels. */ if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; if (spa->spa_vdev_removal != NULL && tvd->vdev_ashift != spa->spa_max_ashift) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* Fail if top level vdev is raidz */ if (tvd->vdev_ops == &vdev_raidz_ops) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* * Need the top level mirror to be * a mirror of leaf vdevs only */ if (tvd->vdev_ops == &vdev_mirror_ops) { for (uint64_t cid = 0; cid < tvd->vdev_children; cid++) { vdev_t *cvd = tvd->vdev_child[cid]; if (!cvd->vdev_ops->vdev_op_leaf) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } } } } } for (int c = 0; c < vd->vdev_children; c++) { /* * Set the vdev id to the first hole, if one exists. */ for (id = 0; id < rvd->vdev_children; id++) { if (rvd->vdev_child[id]->vdev_ishole) { vdev_free(rvd->vdev_child[id]); break; } } tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = id; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (spa->spa_vdev_removal != NULL) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH)) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* mark the device being resilvered */ newvd->vdev_resilver_txg = txg; /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver to restart in the future. We do this to * ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); if (spa->spa_bootfs) spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); vd = spa_lookup_by_guid(spa, guid, B_FALSE); /* * Besides being called directly from the userland through the * ioctl interface, spa_vdev_detach() can be potentially called * at the end of spa_vdev_resilver_done(). * * In the regular case, when we have a checkpoint this shouldn't * happen as we never empty the DTLs of a vdev during the scrub * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() * should never get here when we have a checkpoint. * * That said, even in a case when we checkpoint the pool exactly * as spa_vdev_resilver_done() calls this function everything * should be fine as the resilver will return right away. */ ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a spare, then it implies * that the spare should become a real disk, and be removed from the * active spare list for the pool. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0 && pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) unspare = B_TRUE; /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } int spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type) { /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping initialization. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the initializing operation. */ mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EROFS)); } mutex_enter(&vd->vdev_initialize_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate an initialize action we check to see * if the vdev_initialize_thread is NULL. We do this instead * of using the vdev_initialize_state since there might be * a previous initialization process which has completed but * the thread is not exited. */ if (cmd_type == POOL_INITIALIZE_DO && (vd->vdev_initialize_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_initialize_lock); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_INITIALIZE_CANCEL && (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { mutex_exit(&vd->vdev_initialize_lock); mutex_exit(&spa_namespace_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_INITIALIZE_SUSPEND && vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { mutex_exit(&vd->vdev_initialize_lock); mutex_exit(&spa_namespace_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_INITIALIZE_DO: vdev_initialize(vd); break; case POOL_INITIALIZE_CANCEL: vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); break; case POOL_INITIALIZE_SUSPEND: vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_initialize_lock); /* Sync out the initializing state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); return (0); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_reset_logs(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || !vdev_is_concrete(vd)) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || !vdev_is_concrete(vml[c]) || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c])) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift) == 0); /* transfer per-vdev ZAPs */ ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_TOP_ZAP, vml[c]->vdev_parent->vdev_top_zap)); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children) == 0); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl) == 0); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)) == 0); VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_avz_action = AVZ_ACTION_REBUILD; newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); for (c = 0; c < children; c++) { if (vml[c] != NULL) { /* * Temporarily stop the initializing activity. We set * the state to ACTIVE so that we know to resume * the initializing once the split has completed. */ mutex_enter(&vml[c]->vdev_initialize_lock); vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE); mutex_exit(&vml[c]->vdev_initialize_lock); } } newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; /* create the new pool from the disks of the original pool */ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { VERIFY(nvlist_alloc(&newspa->spa_config_splitting, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL) { vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } spa->spa_avz_action = AVZ_ACTION_REBUILD; vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } /* restart initializing disks as necessary */ spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. * Also potentially update faulted state. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); vdev_propagate_state(vd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); } /* * Update the stored path or FRU for this vdev. */ int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); } int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { sysevent_id_t eid; nvlist_t *attr; char *physpath; if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, ESC_DEV_DLE, attr, &eid, DDI_SLEEP); nvlist_free(attr); kmem_free(physpath, MAXPATHLEN); } static void spa_async_thread(void *arg) { spa_t *spa = (spa_t *)arg; int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), new_space, new_space - old_space); } } /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE) spa_vdev_resilver_done(spa); /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER) dsl_resilver_restart(spa->spa_dsl_pool, 0); if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_vdev_remove_suspend(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL && zthr_isrunning(condense_thread)) VERIFY0(zthr_cancel(condense_thread)); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL && zthr_isrunning(discard_thread)) VERIFY0(zthr_cancel(discard_thread)); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); spa_restart_removal(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL && !zthr_isrunning(condense_thread)) zthr_resume(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL && !zthr_isrunning(discard_thread)) zthr_resume(discard_thread); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < (zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL && rootdir != NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, tx); return (0); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *zio = arg; zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, zio->io_flags)); return (0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = kmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); bzero(packed + nvsize, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); kmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (sav->sav_count == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); } else { list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(nvroot, config, list, sav->sav_count) == 0); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } /* * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. * The all-vdev ZAP must be empty. */ static void spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; if (vd->vdev_top_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_top_zap, tx)); } if (vd->vdev_leaf_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_leaf_zap, tx)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { spa_avz_build(vd->vdev_child[i], avz, tx); } } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; /* * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, * its config may not be dirty but we still need to build per-vdev ZAPs. * Similarly, if the pool is being assembled (e.g. after a split), we * need to rebuild the AVZ although the config may not be dirty. */ if (list_is_empty(&spa->spa_config_dirty_list) && spa->spa_avz_action == AVZ_ACTION_NONE) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || spa->spa_avz_action == AVZ_ACTION_INITIALIZE || spa->spa_all_vdev_zaps != 0); if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { /* Make and build the new AVZ */ uint64_t new_avz = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); spa_avz_build(spa->spa_root_vdev, new_avz, tx); /* Diff old AVZ with new one */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t vdzap = za.za_first_integer; if (zap_lookup_int(spa->spa_meta_objset, new_avz, vdzap) == ENOENT) { /* * ZAP is listed in old AVZ but not in new one; * destroy it */ VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, tx)); } } zap_cursor_fini(&zc); /* Destroy the old AVZ */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); /* Replace the old AVZ in the dir obj with the new one */ VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, sizeof (new_avz), 1, &new_avz, tx)); spa->spa_all_vdev_zaps = new_avz; } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { zap_cursor_t zc; zap_attribute_t za; /* Walk through the AVZ and destroy all listed ZAPs */ for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t zap = za.za_first_integer; VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); } zap_cursor_fini(&zc); /* Destroy and unlink the AVZ itself */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); spa->spa_all_vdev_zaps = 0; } if (spa->spa_all_vdev_zaps == 0) { spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx); } spa->spa_avz_action = AVZ_ACTION_NONE; /* Create ZAPs for vdevs that don't have them. */ vdev_construct_zaps(spa->spa_root_vdev, tx); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced seperatly before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persisitent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. It's unnecessary * to do this for pool creation since the vdev's * configuratoin has already been dirtied. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), intval); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_DEDUPDITTO: spa->spa_dedup_ditto = intval; break; default: break; } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { dsl_pool_t *dp = spa->spa_dsl_pool; ASSERT(spa->spa_sync_pass == 1); rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } /* * If we haven't written the salt, do so now. Note that the * feature may not be activated yet, but that's fine since * the presence of this ZAP entry is backwards compatible. */ if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT) == ENOENT) { VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes, tx)); } rrw_exit(&dp->dp_config_rwlock, FTAG); } static void vdev_indirect_state_sync_verify(vdev_t *vd) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib = vd->vdev_indirect_births; if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(vim != NULL); ASSERT(vib != NULL); } if (vdev_obsolete_sm_object(vd) != 0) { ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); ASSERT3U(vdev_obsolete_sm_object(vd), ==, space_map_object(vd->vdev_obsolete_sm)); ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, space_map_allocated(vd->vdev_obsolete_sm)); } ASSERT(vd->vdev_obsolete_segments != NULL); /* * Since frees / remaps to an indirect vdev can only * happen in syncing context, the obsolete segments * tree must be empty when we start syncing. */ ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int error; uint32_t max_queue_depth = zfs_vdev_async_write_max_active * zfs_vdev_queue_depth_pct / 100; VERIFY(spa_writeable(spa)); /* * Wait for i/os issued in open context that need to complete * before this txg syncs. */ (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_alloc_locks[i]); VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); mutex_exit(&spa->spa_alloc_locks[i]); } /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while (list_head(&spa->spa_state_dirty_list) != NULL) { /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, spa->spa_sync_starttime + spa->spa_deadman_synctime)); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY(0 == zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } /* * Set the top-level vdev's max queue depth. Evaluate each * top-level's async write queue depth in case it changed. * The max queue depth will not change in the middle of syncing * out this txg. */ uint64_t slots_per_allocator = 0; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || mg->mg_class != spa_normal_class(spa) || !metaslab_group_initialized(mg)) continue; /* * It is safe to do a lock-free check here because only async * allocations look at mg_max_alloc_queue_depth, and async * allocations all happen from spa_sync(). */ for (int i = 0; i < spa->spa_alloc_count; i++) ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i]))); mg->mg_max_alloc_queue_depth = max_queue_depth; for (int i = 0; i < spa->spa_alloc_count; i++) { mg->mg_cur_max_alloc_queue_depth[i] = zfs_vdev_def_queue_depth; } slots_per_allocator += zfs_vdev_def_queue_depth; } metaslab_class_t *mc = spa_normal_class(spa); for (int i = 0; i < spa->spa_alloc_count; i++) { ASSERT0(refcount_count(&mc->mc_alloc_slots[i])); mc->mc_alloc_max_slots[i] = slots_per_allocator; } mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_indirect_state_sync_verify(vd); if (vdev_indirect_should_condense(vd)) { spa_condense_indirect_start_sync(vd, tx); break; } } /* * Iterate to convergence. */ do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free) { spa_sync_frees(spa, free_bpl, tx); } else { /* * We can not defer frees in pass 1, because * we sync the deferred frees later in pass 1. */ ASSERT3U(pass, >, 1); bplist_iterate(free_bpl, bpobj_enqueue_cb, &spa->spa_deferred_bpobj, tx); } ddt_sync(spa, txg); dsl_scan_sync(dp, tx); if (spa->spa_vdev_removal != NULL) svr_sync(spa, tx); while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) != NULL) vdev_sync(vd, txg); if (pass == 1) { spa_sync_upgrades(spa, tx); ASSERT3U(txg, >=, spa->spa_uberblock.ub_rootbp.blk_birth); /* * Note: We need to check if the MOS is dirty * because we could have marked the MOS dirty * without updating the uberblock (e.g. if we * have sync tasks but no dirty user data). We * need to check the uberblock's rootbp because * it is updated if we have synced out dirty * data (though in this case the MOS will most * likely also be dirty due to second order * effects, we don't want to rely on that here). */ if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && !dmu_objset_is_dirty(mos, txg)) { /* * Nothing changed on the first pass, * therefore this TXG is a no-op. Avoid * syncing deferred frees, so that we * can keep this TXG as a no-op. */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); break; } spa_sync_deferred_frees(spa, tx); } } while (dmu_objset_is_dirty(mos, txg)); if (!list_is_empty(&spa->spa_config_dirty_list)) { /* * Make sure that the number of ZAPs for all the vdevs matches * the number of ZAPs in the per-vdev ZAP list. This only gets * called if the config is dirty; otherwise there may be * outstanding AVZ operations that weren't completed in * spa_sync_config_object. */ uint64_t all_vdev_zap_entry_count; ASSERT0(zap_count(spa->spa_meta_objset, spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, all_vdev_zap_entry_count); } if (spa->spa_vdev_removal != NULL) { ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); } /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few * random top-level vdevs that are known to be visible in the * config cache (see spa_vdev_add() for a complete description). * If there *are* dirty vdevs, sync the uberblock to all vdevs. */ for (;;) { /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, txg); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL); zio_resume_wait(spa); } dmu_tx_commit(tx); VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } dsl_pool_sync_done(dp, txg); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_alloc_locks[i]); VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); mutex_exit(&spa->spa_alloc_locks[i]); } /* * Update usable space statistics. */ while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) != NULL) vdev_sync_done(vd, txg); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); while (zfs_pause_spa_sync) delay(1); spa->spa_sync_pass = 0; /* * Update the last synced uberblock here. We want to do this at * the end of spa_sync() so that consumers of spa_last_synced_txg() * will be guaranteed that all the processing associated with * that txg has been completed. */ spa->spa_ubsync = spa->spa_uberblock; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } sysevent_t * spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { sysevent_t *ev = NULL; #ifdef _KERNEL sysevent_attr_list_t *attr = NULL; sysevent_value_t value; ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", SE_SLEEP); ASSERT(ev != NULL); value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = spa_name(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) goto done; value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = spa_guid(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) goto done; if (vd) { value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = vd->vdev_guid; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, SE_SLEEP) != 0) goto done; if (vd->vdev_path) { value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = vd->vdev_path; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, &value, SE_SLEEP) != 0) goto done; } } if (hist_nvl != NULL) { fnvlist_merge((nvlist_t *)attr, hist_nvl); } if (sysevent_attach_attributes(ev, attr) != 0) goto done; attr = NULL; done: if (attr) sysevent_free_attr(attr); #endif return (ev); } void spa_event_post(sysevent_t *ev) { #ifdef _KERNEL sysevent_id_t eid; (void) log_sysevent(ev, SE_SLEEP, &eid); sysevent_free(ev); #endif } void spa_event_discard(sysevent_t *ev) { #ifdef _KERNEL sysevent_free(ev); #endif } /* * Post a sysevent corresponding to the given event. The 'name' must be one of * the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev and history nvl. This * doesn't do anything in the userland libzpool, as we don't want consumers to * misinterpret ztest or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c (revision 350898) @@ -1,2222 +1,2231 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include /* * SPA locking * * There are four basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; static int spa_active_count; int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; kmem_cache_t *spa_buffer_pool; int spa_mode_global; #ifdef ZFS_DEBUG /* * Everything except dprintf, spa, and indirect_remap is on by default * in debug builds. */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ boolean_t zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ boolean_t zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in a system panic. */ uint64_t zfs_deadman_synctime_ms = 1000000ULL; /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ uint64_t zfs_deadman_checktime_ms = 5000ULL; /* * Override the zfs deadman behavior via /etc/system. By default the * deadman is enabled except on VMware and sparc deployments. */ int zfs_deadman_enabled = -1; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ int spa_asize_inflation = 24; /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed. This ensures that we don't run the pool * completely out of space, due to unaccounted changes (e.g. to the MOS). * It also limits the worst-case time to allocate space. If we have * less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * Operations that are almost guaranteed to free up space in the absence of * a pool checkpoint can use up to three quarters of the slop space * (e.g zfs destroy). * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net * increase in the amount of space used, it is possible to run the pool * completely out of space, causing it to be permanently read-only. * * Note that on very small pools, the slop space will be larger than * 3.2%, in an effort to have it be at least spa_min_slop (128MB), * but we never allow it to be more than half the pool size. * * See also the comments in zfs_space_check_t. */ int spa_slop_shift = 5; uint64_t spa_min_slop = 128 * 1024 * 1024; int spa_allocators = 4; /*PRINTFLIKE2*/ void spa_load_failed(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /*PRINTFLIKE2*/ void spa_load_note(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); refcount_create_untracked(&scl->scl_count); scl->scl_writer = NULL; scl->scl_write_wanted = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); refcount_destroy(&scl->scl_count); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); } } int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (!refcount_is_zero(&scl->scl_count)) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } return (1); } void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) { int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || scl->scl_write_wanted) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (!refcount_is_zero(&scl->scl_count)) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } ASSERT3U(wlocks_held, <=, locks); } void spa_config_exit(spa_t *spa, int locks, void *tag) { for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(!refcount_is_zero(&scl->scl_count)); if (refcount_remove(&scl->scl_count, tag) == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ void spa_deadman(void *arg) { spa_t *spa = arg; /* * Disable the deadman timer if the pool is suspended. */ if (spa_suspended(spa)) { VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); return; } zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, ++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev); } /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; cyc_handler_t hdlr; cyc_time_t when; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; spa->spa_trust_config = B_TRUE; hdlr.cyh_func = spa_deadman; hdlr.cyh_arg = spa; hdlr.cyh_level = CY_LOW_LEVEL; spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); /* * This determines how often we need to check for hung I/Os after * the cyclic has already fired. Since checking for hung I/Os is * an expensive operation we don't want to check too frequently. * Instead wait for 5 seconds before checking again. */ when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); when.cyt_when = CY_INFINITY; mutex_enter(&cpu_lock); spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); mutex_exit(&cpu_lock); refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) { spa->spa_root = spa_strdup(altroot); spa_active_count++; } spa->spa_alloc_count = spa_allocators; spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * sizeof (kmutex_t), KM_SLEEP); spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * sizeof (avl_tree_t), KM_SLEEP); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, sizeof (zio_t), offsetof(zio_t, io_alloc_node)); } /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_iokstat = kstat_create("zfs", 0, name, "disk", KSTAT_TYPE_IO, 1, 0); if (spa->spa_iokstat) { spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; kstat_install(spa->spa_iokstat); } spa->spa_min_ashift = INT_MAX; spa->spa_max_ashift = 0; /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) { spa_strfree(spa->spa_root); spa_active_count--; } while ((dp = list_head(&spa->spa_config_list)) != NULL) { list_remove(&spa->spa_config_list, dp); if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } for (int i = 0; i < spa->spa_alloc_count; i++) { avl_destroy(&spa->spa_alloc_trees[i]); mutex_destroy(&spa->spa_alloc_locks[i]); } kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * sizeof (kmutex_t)); kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * sizeof (avl_tree_t)); list_destroy(&spa->spa_config_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); spa_config_set(spa, NULL); mutex_enter(&cpu_lock); if (spa->spa_deadman_cycid != CYCLIC_NONE) cyclic_remove(spa->spa_deadman_cycid); mutex_exit(&cpu_lock); spa->spa_deadman_cycid = CYCLIC_NONE; refcount_destroy(&spa->spa_refcount); spa_config_lock_destroy(spa); kstat_delete(spa->spa_iokstat); spa->spa_iokstat = NULL; for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); zio_checksum_templates_free(spa); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_evicting_os_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_evicting_os_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_cksum_tmpls_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); mutex_destroy(&spa->spa_iokstat_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_remove(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t held by a dsl dir that is * being asynchronously released. Async releases occur from a taskq * performing eviction of dsl datasets and dirs. The namespace lock * isn't held and the hold by the object being evicted may contribute to * spa_minref (e.g. dataset or directory released during pool export), * so the asserts in spa_close() do not apply. */ void spa_async_close(spa_t *spa, void *tag) { (void) refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = a; const spa_aux_t *sb = b; if (sa->aux_guid < sb->aux_guid) return (-1); else if (sa->aux_guid > sb->aux_guid) return (1); else return (0); } void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * - * - A spare may be part of multiple pools. - * - A spare may be added to a pool even if it's actively in use within + * - A spare may be part of multiple pools. + * - A spare may be added to a pool even if it's actively in use within * another pool. - * - A spare in use in any pool can only be the source of a replacement if + * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); if (vd->vdev_ops->vdev_op_leaf) { mutex_enter(&vd->vdev_initialize_lock); vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); mutex_exit(&vd->vdev_initialize_lock); } spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_write_cachefile(spa, B_FALSE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; if (vd != NULL || error == 0) vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 0, 0, B_FALSE); if (vd != NULL) { vdev_state_dirty(vd->vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(1M) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_write_cachefile(spa, B_FALSE, B_TRUE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); bcopy(s, new, len); new[len] = '\0'; return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_get_random(uint64_t range) { uint64_t r; ASSERT(range != 0); (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); return (r % range); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid = spa_get_random(-1ULL); if (spa != NULL) { while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } else { while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; char *checksum = NULL; char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t zfs_strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } boolean_t spa_indirect_vdevs_loaded(spa_t *spa) { return (spa->spa_indirect_vdevs_loaded); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strncpy(buf, spa->spa_root, buflen); } int spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } /* * Return the last txg where data can be dirtied. The final txgs * will be used to just clear out any deferred frees that remain. */ uint64_t spa_final_dirty_txg(spa_t *spa) { return (spa->spa_final_txg - TXG_DEFER_SIZE); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* ARGSUSED */ uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) { return (lsize * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), * or at least 128MB, unless that would cause it to be more than half the * pool size. * * See the comment above spa_slop_shift for details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = spa_get_dspace(spa); return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } uint64_t spa_get_checkpoint_space(spa_t *spa) { return (spa->spa_checkpoint_info.sci_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + ddt_get_dedup_dspace(spa); if (spa->spa_vdev_removal != NULL) { /* * We can't allocate from the removing device, so * subtract its size. This prevents the DMU/DSL from * filling up the (now smaller) pool while we are in the * middle of removing the device. * * Note that the DMU/DSL doesn't actually know or care * how much space is allocated (it does its own tracking * of how much space has been logically used). So it * doesn't matter that the data we are moving may be * allocated twice (on the old device and the new * device). */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); spa->spa_dspace -= spa_deflate(spa) ? vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; spa_config_exit(spa, SCL_VDEV, FTAG); } } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint8_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } void spa_evicting_os_register(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_insert_head(&spa->spa_evicting_os_list, os); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_deregister(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_remove(&spa->spa_evicting_os_list, os); cv_broadcast(&spa->spa_evicting_os_cv); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_wait(spa_t *spa) { mutex_enter(&spa->spa_evicting_os_lock); while (!list_is_empty(&spa->spa_evicting_os_list)) cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); mutex_exit(&spa->spa_evicting_os_lock); dmu_buf_user_evict_wait(); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } uint64_t spa_dirty_data(spa_t *spa) { return (spa->spa_dsl_pool->dp_dirty_total); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); if (s > 0) return (1); if (s < 0) return (-1); return (0); } int spa_busy(void) { return (spa_active_count); } void spa_boot_init() { spa_config_load(); } void spa_init(int mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifdef _KERNEL spa_arch_init(); #else if (spa_mode_global != FREAD && dprintf_find_string("watch")) { arc_procfd = open("/proc/self/ctl", O_WRONLY); if (arc_procfd == -1) { perror("could not enable watchpoints: " "opening /proc/self/ctl failed: "); } else { arc_watch = B_TRUE; } } #endif refcount_init(); unique_init(); range_tree_init(); metaslab_alloc_trace_init(); zio_init(); dmu_init(); zil_init(); vdev_cache_stat_init(); zfs_prop_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); l2arc_start(); } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_cache_stat_fini(); zil_fini(); dmu_fini(); zio_fini(); metaslab_alloc_trace_fini(); range_tree_fini(); unique_fini(); refcount_fini(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has slogs. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_rotor != NULL); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); } int spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_scrub_pause = 0; spa->spa_scan_pass_scrub_spent_paused = 0; spa->spa_scan_pass_exam = 0; vdev_scan_stat_init(spa->spa_root_vdev); } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) return (SET_ERROR(ENOENT)); bzero(ps, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; ps->pss_state = scn->scn_phys.scn_state; /* data not stored on disk */ ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_exam = spa->spa_scan_pass_exam; ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; return (0); } int spa_maxblocksize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SPA_MAXBLOCKSIZE); else return (SPA_OLD_MAXBLOCKSIZE); +} + +int +spa_maxdnodesize(spa_t *spa) +{ + if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) + return (DNODE_MAX_SIZE); + else + return (DNODE_MIN_SIZE); } /* * Returns the txg that the last device removal completed. No indirect mappings * have been added since this txg. */ uint64_t spa_get_last_removal_txg(spa_t *spa) { uint64_t vdevid; uint64_t ret = -1ULL; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * sr_prev_indirect_vdev is only modified while holding all the * config locks, so it is sufficient to hold SCL_VDEV as reader when * examining it. */ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; while (vdevid != -1ULL) { vdev_t *vd = vdev_lookup_top(spa, vdevid); vdev_indirect_births_t *vib = vd->vdev_indirect_births; ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); /* * If the removal did not remap any data, we don't care. */ if (vdev_indirect_births_count(vib) != 0) { ret = vdev_indirect_births_last_entry_txg(vib); break; } vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; } spa_config_exit(spa, SCL_VDEV, FTAG); IMPLY(ret != -1ULL, spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); return (ret); } boolean_t spa_trust_config(spa_t *spa) { return (spa->spa_trust_config); } uint64_t spa_missing_tvds_allowed(spa_t *spa) { return (spa->spa_missing_tvds_allowed); } void spa_set_missing_tvds(spa_t *spa, uint64_t missing) { spa->spa_missing_tvds = missing; } boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } boolean_t spa_has_checkpoint(spa_t *spa) { return (spa->spa_checkpoint_txg != 0); } boolean_t spa_importing_readonly_checkpoint(spa_t *spa) { return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && spa->spa_mode == FREAD); } uint64_t spa_min_claim_txg(spa_t *spa) { uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; if (checkpoint_txg != 0) return (checkpoint_txg + 1); return (spa->spa_first_txg); } /* * If there is a checkpoint, async destroys may consume more space from * the pool instead of freeing it. In an attempt to save the pool from * getting suspended when it is about to run out of space, we stop * processing async destroys. */ boolean_t spa_suspend_async_destroy(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t unreserved = dsl_pool_unreserved_space(dp, ZFS_SPACE_CHECK_EXTRA_RESERVED); uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; if (spa_has_checkpoint(spa) && avail == 0) return (B_TRUE); return (B_FALSE); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/arc.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/arc.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/arc.h (revision 350898) @@ -1,220 +1,221 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ #ifndef _SYS_ARC_H #define _SYS_ARC_H #include #ifdef __cplusplus extern "C" { #endif #include #include #include /* * Used by arc_flush() to inform arc_evict_state() that it should evict * all available buffers from the arc state being passed in. */ #define ARC_EVICT_ALL -1ULL #define HDR_SET_LSIZE(hdr, x) do { \ ASSERT(IS_P2ALIGNED(x, 1U << SPA_MINBLOCKSHIFT)); \ (hdr)->b_lsize = ((x) >> SPA_MINBLOCKSHIFT); \ _NOTE(CONSTCOND) } while (0) #define HDR_SET_PSIZE(hdr, x) do { \ ASSERT(IS_P2ALIGNED((x), 1U << SPA_MINBLOCKSHIFT)); \ (hdr)->b_psize = ((x) >> SPA_MINBLOCKSHIFT); \ _NOTE(CONSTCOND) } while (0) #define HDR_GET_LSIZE(hdr) ((hdr)->b_lsize << SPA_MINBLOCKSHIFT) #define HDR_GET_PSIZE(hdr) ((hdr)->b_psize << SPA_MINBLOCKSHIFT) typedef struct arc_buf_hdr arc_buf_hdr_t; typedef struct arc_buf arc_buf_t; typedef void arc_done_func_t(zio_t *zio, arc_buf_t *buf, void *private); /* generic arc_done_func_t's which you can use */ arc_done_func_t arc_bcopy_func; arc_done_func_t arc_getbuf_func; typedef enum arc_flags { /* * Public flags that can be passed into the ARC by external consumers. */ ARC_FLAG_WAIT = 1 << 0, /* perform sync I/O */ ARC_FLAG_NOWAIT = 1 << 1, /* perform async I/O */ ARC_FLAG_PREFETCH = 1 << 2, /* I/O is a prefetch */ ARC_FLAG_CACHED = 1 << 3, /* I/O was in cache */ ARC_FLAG_L2CACHE = 1 << 4, /* cache in L2ARC */ ARC_FLAG_PREDICTIVE_PREFETCH = 1 << 5, /* I/O from zfetch */ /* * Private ARC flags. These flags are private ARC only flags that * will show up in b_flags in the arc_hdr_buf_t. These flags should * only be set by ARC code. */ ARC_FLAG_IN_HASH_TABLE = 1 << 6, /* buffer is hashed */ ARC_FLAG_IO_IN_PROGRESS = 1 << 7, /* I/O in progress */ ARC_FLAG_IO_ERROR = 1 << 8, /* I/O failed for buf */ ARC_FLAG_INDIRECT = 1 << 9, /* indirect block */ /* Indicates that block was read with ASYNC priority. */ ARC_FLAG_PRIO_ASYNC_READ = 1 << 10, ARC_FLAG_L2_WRITING = 1 << 11, /* write in progress */ ARC_FLAG_L2_EVICTED = 1 << 12, /* evicted during I/O */ ARC_FLAG_L2_WRITE_HEAD = 1 << 13, /* head of write list */ /* indicates that the buffer contains metadata (otherwise, data) */ ARC_FLAG_BUFC_METADATA = 1 << 14, /* Flags specifying whether optional hdr struct fields are defined */ ARC_FLAG_HAS_L1HDR = 1 << 15, ARC_FLAG_HAS_L2HDR = 1 << 16, /* * Indicates the arc_buf_hdr_t's b_pdata matches the on-disk data. * This allows the l2arc to use the blkptr's checksum to verify * the data without having to store the checksum in the hdr. */ ARC_FLAG_COMPRESSED_ARC = 1 << 17, ARC_FLAG_SHARED_DATA = 1 << 18, /* * The arc buffer's compression mode is stored in the top 7 bits of the * flags field, so these dummy flags are included so that MDB can * interpret the enum properly. */ ARC_FLAG_COMPRESS_0 = 1 << 24, ARC_FLAG_COMPRESS_1 = 1 << 25, ARC_FLAG_COMPRESS_2 = 1 << 26, ARC_FLAG_COMPRESS_3 = 1 << 27, ARC_FLAG_COMPRESS_4 = 1 << 28, ARC_FLAG_COMPRESS_5 = 1 << 29, ARC_FLAG_COMPRESS_6 = 1 << 30 } arc_flags_t; typedef enum arc_buf_flags { ARC_BUF_FLAG_SHARED = 1 << 0, ARC_BUF_FLAG_COMPRESSED = 1 << 1 } arc_buf_flags_t; struct arc_buf { arc_buf_hdr_t *b_hdr; arc_buf_t *b_next; kmutex_t b_evict_lock; void *b_data; arc_buf_flags_t b_flags; }; typedef enum arc_buf_contents { ARC_BUFC_INVALID, /* invalid type */ ARC_BUFC_DATA, /* buffer contains data */ ARC_BUFC_METADATA, /* buffer contains metadata */ ARC_BUFC_NUMTYPES } arc_buf_contents_t; /* * The following breakdows of arc_size exist for kstat only. */ typedef enum arc_space_type { ARC_SPACE_DATA, ARC_SPACE_META, ARC_SPACE_HDRS, ARC_SPACE_L2HDRS, ARC_SPACE_OTHER, + ARC_SPACE_BONUS, ARC_SPACE_NUMTYPES } arc_space_type_t; void arc_space_consume(uint64_t space, arc_space_type_t type); void arc_space_return(uint64_t space, arc_space_type_t type); boolean_t arc_is_metadata(arc_buf_t *buf); enum zio_compress arc_get_compression(arc_buf_t *buf); int arc_decompress(arc_buf_t *buf); arc_buf_t *arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size); arc_buf_t *arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, enum zio_compress compression_type); arc_buf_t *arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size); arc_buf_t *arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, enum zio_compress compression_type); void arc_return_buf(arc_buf_t *buf, void *tag); void arc_loan_inuse_buf(arc_buf_t *buf, void *tag); void arc_buf_destroy(arc_buf_t *buf, void *tag); int arc_buf_size(arc_buf_t *buf); int arc_buf_lsize(arc_buf_t *buf); void arc_release(arc_buf_t *buf, void *tag); int arc_released(arc_buf_t *buf); void arc_buf_freeze(arc_buf_t *buf); void arc_buf_thaw(arc_buf_t *buf); #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf); #endif int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, void *private, zio_priority_t priority, int flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb); zio_t *arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *child_ready, arc_done_func_t *physdone, arc_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, const zbookmark_phys_t *zb); void arc_freed(spa_t *spa, const blkptr_t *bp); void arc_flush(spa_t *spa, boolean_t retry); void arc_tempreserve_clear(uint64_t reserve); int arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg); uint64_t arc_max_bytes(void); void arc_init(void); void arc_fini(void); /* * Level 2 ARC */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd); void l2arc_remove_vdev(vdev_t *vd); boolean_t l2arc_vdev_present(vdev_t *vd); void l2arc_init(void); void l2arc_fini(void); void l2arc_start(void); void l2arc_stop(void); #ifndef _KERNEL extern boolean_t arc_watch; extern int arc_procfd; #endif #ifdef __cplusplus } #endif #endif /* _SYS_ARC_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h (revision 350898) @@ -1,992 +1,1005 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright 2013 DEY Storage Systems, Inc. * Copyright 2014 HybridCluster. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_H #define _SYS_DMU_H /* * This file describes the interface that the DMU provides for its * consumers. * * The DMU also interacts with the SPA. That interface is described in * dmu_spa.h. */ #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct uio; struct xuio; struct page; struct vnode; struct spa; struct zilog; struct zio; struct blkptr; struct zap_cursor; struct dsl_dataset; struct dsl_pool; struct dnode; struct drr_begin; struct drr_end; struct zbookmark_phys; struct spa; struct nvlist; struct arc_buf; struct zio_prop; struct sa_handle; struct locked_range; typedef struct objset objset_t; typedef struct dmu_tx dmu_tx_t; typedef struct dsl_dir dsl_dir_t; typedef struct dnode dnode_t; typedef enum dmu_object_byteswap { DMU_BSWAP_UINT8, DMU_BSWAP_UINT16, DMU_BSWAP_UINT32, DMU_BSWAP_UINT64, DMU_BSWAP_ZAP, DMU_BSWAP_DNODE, DMU_BSWAP_OBJSET, DMU_BSWAP_ZNODE, DMU_BSWAP_OLDACL, DMU_BSWAP_ACL, /* * Allocating a new byteswap type number makes the on-disk format * incompatible with any other format that uses the same number. * * Data can usually be structured to work with one of the * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. */ DMU_BSWAP_NUMFUNCS } dmu_object_byteswap_t; #define DMU_OT_NEWTYPE 0x80 #define DMU_OT_METADATA 0x40 #define DMU_OT_BYTESWAP_MASK 0x3f /* * Defines a uint8_t object type. Object types specify if the data * in the object is metadata (boolean) and how to byteswap the data * (dmu_object_byteswap_t). All of the types created by this method * are cached in the dbuf metadata cache. */ #define DMU_OT(byteswap, metadata) \ (DMU_OT_NEWTYPE | \ ((metadata) ? DMU_OT_METADATA : 0) | \ ((byteswap) & DMU_OT_BYTESWAP_MASK)) #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ (ot) < DMU_OT_NUMTYPES) #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_METADATA) : \ dmu_ot[(ot)].ot_metadata) #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) /* * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill * is repurposed for embedded BPs. */ #define DMU_OT_HAS_FILL(ot) \ ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) : \ dmu_ot[(ot)].ot_byteswap) typedef enum dmu_object_type { DMU_OT_NONE, /* general: */ DMU_OT_OBJECT_DIRECTORY, /* ZAP */ DMU_OT_OBJECT_ARRAY, /* UINT64 */ DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ DMU_OT_BPOBJ, /* UINT64 */ DMU_OT_BPOBJ_HDR, /* UINT64 */ /* spa: */ DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ DMU_OT_SPACE_MAP, /* UINT64 */ /* zil: */ DMU_OT_INTENT_LOG, /* UINT64 */ /* dmu: */ DMU_OT_DNODE, /* DNODE */ DMU_OT_OBJSET, /* OBJSET */ /* dsl: */ DMU_OT_DSL_DIR, /* UINT64 */ DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ DMU_OT_DSL_PROPS, /* ZAP */ DMU_OT_DSL_DATASET, /* UINT64 */ /* zpl: */ DMU_OT_ZNODE, /* ZNODE */ DMU_OT_OLDACL, /* Old ACL */ DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ DMU_OT_MASTER_NODE, /* ZAP */ DMU_OT_UNLINKED_SET, /* ZAP */ /* zvol: */ DMU_OT_ZVOL, /* UINT8 */ DMU_OT_ZVOL_PROP, /* ZAP */ /* other; for testing only! */ DMU_OT_PLAIN_OTHER, /* UINT8 */ DMU_OT_UINT64_OTHER, /* UINT64 */ DMU_OT_ZAP_OTHER, /* ZAP */ /* new object types: */ DMU_OT_ERROR_LOG, /* ZAP */ DMU_OT_SPA_HISTORY, /* UINT8 */ DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ DMU_OT_POOL_PROPS, /* ZAP */ DMU_OT_DSL_PERMS, /* ZAP */ DMU_OT_ACL, /* ACL */ DMU_OT_SYSACL, /* SYSACL */ DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ DMU_OT_NEXT_CLONES, /* ZAP */ DMU_OT_SCAN_QUEUE, /* ZAP */ DMU_OT_USERGROUP_USED, /* ZAP */ DMU_OT_USERGROUP_QUOTA, /* ZAP */ DMU_OT_USERREFS, /* ZAP */ DMU_OT_DDT_ZAP, /* ZAP */ DMU_OT_DDT_STATS, /* ZAP */ DMU_OT_SA, /* System attr */ DMU_OT_SA_MASTER_NODE, /* ZAP */ DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ DMU_OT_SCAN_XLATE, /* ZAP */ DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ DMU_OT_DEADLIST, /* ZAP */ DMU_OT_DEADLIST_HDR, /* UINT64 */ DMU_OT_DSL_CLONES, /* ZAP */ DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ /* * Do not allocate new object types here. Doing so makes the on-disk * format incompatible with any other format that uses the same object * type number. * * When creating an object which does not have one of the above types * use the DMU_OTN_* type with the correct byteswap and metadata * values. * * The DMU_OTN_* types do not have entries in the dmu_ot table, * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead * of indexing into dmu_ot directly (this works for both DMU_OT_* types * and DMU_OTN_* types). */ DMU_OT_NUMTYPES, /* * Names for valid types declared with DMU_OT(). */ DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), } dmu_object_type_t; /* * These flags are intended to be used to specify the "txg_how" * parameter when calling the dmu_tx_assign() function. See the comment * above dmu_tx_assign() for more details on the meaning of these flags. */ #define TXG_NOWAIT (0ULL) #define TXG_WAIT (1ULL<<0) #define TXG_NOTHROTTLE (1ULL<<1) void byteswap_uint64_array(void *buf, size_t size); void byteswap_uint32_array(void *buf, size_t size); void byteswap_uint16_array(void *buf, size_t size); void byteswap_uint8_array(void *buf, size_t size); void zap_byteswap(void *buf, size_t size); void zfs_oldacl_byteswap(void *buf, size_t size); void zfs_acl_byteswap(void *buf, size_t size); void zfs_znode_byteswap(void *buf, size_t size); #define DS_FIND_SNAPSHOTS (1<<0) #define DS_FIND_CHILDREN (1<<1) #define DS_FIND_SERIALIZE (1<<2) /* * The maximum number of bytes that can be accessed as part of one * operation, including metadata. */ #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ #define DMU_USERUSED_OBJECT (-1ULL) #define DMU_GROUPUSED_OBJECT (-2ULL) /* * artificial blkids for bonus buffer and spill blocks */ #define DMU_BONUS_BLKID (-1ULL) #define DMU_SPILL_BLKID (-2ULL) /* * Public routines to create, destroy, open, and close objsets. */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); void dmu_objset_rele(objset_t *os, void *tag); void dmu_objset_disown(objset_t *os, void *tag); int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_evict_dbufs(objset_t *os); int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); int dmu_objset_clone(const char *name, const char *origin); int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, struct nvlist *errlist); int dmu_objset_snapshot_one(const char *fsname, const char *snapname); int dmu_objset_snapshot_tmp(const char *, const char *, int); int dmu_objset_find(char *name, int func(const char *, void *), void *arg, int flags); void dmu_objset_byteswap(void *buf, size_t size); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); int dmu_objset_remap_indirects(const char *fsname); typedef struct dmu_buf { uint64_t db_object; /* object that this buffer is part of */ uint64_t db_offset; /* byte offset in this object */ uint64_t db_size; /* size of buffer in bytes */ void *db_data; /* data in buffer */ } dmu_buf_t; /* * The names of zap entries in the DIRECTORY_OBJECT of the MOS. */ #define DMU_POOL_DIRECTORY_OBJECT 1 #define DMU_POOL_CONFIG "config" #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" #define DMU_POOL_FEATURES_FOR_READ "features_for_read" #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" #define DMU_POOL_ROOT_DATASET "root_dataset" #define DMU_POOL_SYNC_BPOBJ "sync_bplist" #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" #define DMU_POOL_ERRLOG_LAST "errlog_last" #define DMU_POOL_SPARES "spares" #define DMU_POOL_DEFLATE "deflate" #define DMU_POOL_HISTORY "history" #define DMU_POOL_PROPS "pool_props" #define DMU_POOL_L2CACHE "l2cache" #define DMU_POOL_TMP_USERREFS "tmp_userrefs" #define DMU_POOL_DDT "DDT-%s-%s-%s" #define DMU_POOL_DDT_STATS "DDT-statistics" #define DMU_POOL_CREATION_VERSION "creation_version" #define DMU_POOL_SCAN "scan" #define DMU_POOL_FREE_BPOBJ "free_bpobj" #define DMU_POOL_BPTREE_OBJ "bptree_obj" #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" #define DMU_POOL_REMOVING "com.delphix:removing" #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" /* * Allocate an object from this objset. The range of object numbers * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. * * The transaction must be assigned to a txg. The newly allocated * object will be "held" in the transaction (ie. you can modify the * newly allocated object in this transaction). * * dmu_object_alloc() chooses an object and returns it in *objectp. * * dmu_object_claim() allocates a specific object number. If that * number is already allocated, it fails and returns EEXIST. * * Return 0 on success, or ENOSPC or EEXIST as specified above. */ uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, + int blocksize, dmu_object_type_t bonus_type, int bonus_len, + int dnodesize, dmu_tx_t *tx); +int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, + int blocksize, dmu_object_type_t bonus_type, int bonus_len, + int dnodesize, dmu_tx_t *tx); +int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, + dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, + int bonuslen, int dnodesize, dmu_tx_t *txp); int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); /* * Free an object from this objset. * * The object's data will be freed as well (ie. you don't need to call * dmu_free(object, 0, -1, tx)). * * The object need not be held in the transaction. * * If there are any holds on this object's buffers (via dmu_buf_hold()), * or tx holds on the object (via dmu_tx_hold_object()), you can not * free it; it fails and returns EBUSY. * * If the object is not allocated, it fails and returns ENOENT. * * Return 0 on success, or EBUSY or ENOENT as specified above. */ int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); /* * Find the next allocated or free object. * * The objectp parameter is in-out. It will be updated to be the next * object which is allocated. Ignore objects which have not been * modified since txg. * * XXX Can only be called on a objset with no dirty data. * * Returns 0 on success, or ENOENT if there are no more objects. */ int dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg); /* * Set the data blocksize for an object. * * The object cannot have any blocks allcated beyond the first. If * the first block is allocated already, the new size must be greater * than the current block size. If these conditions are not met, * ENOTSUP will be returned. * * Returns 0 on success, or EBUSY if there are any holds on the object * contents, or ENOTSUP as described above. */ int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx); /* * Set the checksum property on a dnode. The new checksum algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx); /* * Set the compress property on a dnode. The new compression algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx); int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg); void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx); /* * Decide how to write a block: checksum, compression, number of copies, etc. */ #define WP_NOFILL 0x1 #define WP_DMU_SYNC 0x2 #define WP_SPILL 0x4 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, struct zio_prop *zp); /* * The bonus data is accessed more or less like a regular buffer. * You must dmu_bonus_hold() to get the buffer, which will give you a * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus * data. As with any normal buffer, you must call dmu_buf_will_dirty() * before modifying it, and the * object must be held in an assigned transaction before calling * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus * buffer as well. You must release your hold with dmu_buf_rele(). * * Returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); int dmu_bonus_max(void); int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); /* * Special spill buffer support used by "SA" framework */ int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); /* * Obtain the DMU buffer from the specified object which contains the * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so * that it will remain in memory. You must release the hold with * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. * * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill * on the returned buffer before reading or writing the buffer's * db_data. The comments for those routines describe what particular * operations are valid after calling them. * * The object number must be a valid, allocated object number. */ int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **, int flags); int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags); /* * Add a reference to a dmu buffer that has already been held via * dmu_buf_hold() in the current context. */ void dmu_buf_add_ref(dmu_buf_t *db, void* tag); /* * Attempt to add a reference to a dmu buffer that is in an unknown state, * using a pointer that may have been invalidated by eviction processing. * The request will succeed if the passed in dbuf still represents the * same os/object/blkid, is ineligible for eviction, and has at least * one hold by a user other than the syncer. */ boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, uint64_t blkid, void *tag); void dmu_buf_rele(dmu_buf_t *db, void *tag); uint64_t dmu_buf_refcount(dmu_buf_t *db); /* * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a * range of an object. A pointer to an array of dmu_buf_t*'s is * returned (in *dbpp). * * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and * frees the array. The hold on the array of buffers MUST be released * with dmu_buf_rele_array. You can NOT release the hold on each buffer * individually with dmu_buf_rele. */ int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp); int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags); void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); typedef void dmu_buf_evict_func_t(void *user_ptr); /* * A DMU buffer user object may be associated with a dbuf for the * duration of its lifetime. This allows the user of a dbuf (client) * to attach private data to a dbuf (e.g. in-core only data such as a * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified * when that dbuf has been evicted. Clients typically respond to the * eviction notification by freeing their private data, thus ensuring * the same lifetime for both dbuf and private data. * * The mapping from a dmu_buf_user_t to any client private data is the * client's responsibility. All current consumers of the API with private * data embed a dmu_buf_user_t as the first member of the structure for * their private data. This allows conversions between the two types * with a simple cast. Since the DMU buf user API never needs access * to the private data, other strategies can be employed if necessary * or convenient for the client (e.g. using container_of() to do the * conversion for private data that cannot have the dmu_buf_user_t as * its first member). * * Eviction callbacks are executed without the dbuf mutex held or any * other type of mechanism to guarantee that the dbuf is still available. * For this reason, users must assume the dbuf has already been freed * and not reference the dbuf from the callback context. * * Users requesting "immediate eviction" are notified as soon as the dbuf * is only referenced by dirty records (dirties == holds). Otherwise the * notification occurs after eviction processing for the dbuf begins. */ typedef struct dmu_buf_user { /* * Asynchronous user eviction callback state. */ taskq_ent_t dbu_tqent; /* * This instance's eviction function pointers. * * dbu_evict_func_sync is called synchronously and then * dbu_evict_func_async is executed asynchronously on a taskq. */ dmu_buf_evict_func_t *dbu_evict_func_sync; dmu_buf_evict_func_t *dbu_evict_func_async; #ifdef ZFS_DEBUG /* * Pointer to user's dbuf pointer. NULL for clients that do * not associate a dbuf with their user data. * * The dbuf pointer is cleared upon eviction so as to catch * use-after-evict bugs in clients. */ dmu_buf_t **dbu_clear_on_evict_dbufp; #endif } dmu_buf_user_t; /* * Initialize the given dmu_buf_user_t instance with the eviction function * evict_func, to be called when the user is evicted. * * NOTE: This function should only be called once on a given dmu_buf_user_t. * To allow enforcement of this, dbu must already be zeroed on entry. */ /*ARGSUSED*/ inline void dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) { ASSERT(dbu->dbu_evict_func_sync == NULL); ASSERT(dbu->dbu_evict_func_async == NULL); /* must have at least one evict func */ IMPLY(evict_func_sync == NULL, evict_func_async != NULL); dbu->dbu_evict_func_sync = evict_func_sync; dbu->dbu_evict_func_async = evict_func_async; #ifdef ZFS_DEBUG dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; #endif } /* * Attach user data to a dbuf and mark it for normal (when the dbuf's * data is cleared or its reference count goes to zero) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Attach user data to a dbuf and mark it for immediate (its dirty and * reference counts are equal) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); /* * Replace the current user of a dbuf. * * If given the current user of a dbuf, replaces the dbuf's user with * "new_user" and returns the user data pointer that was replaced. * Otherwise returns the current, and unmodified, dbuf user pointer. */ void *dmu_buf_replace_user(dmu_buf_t *db, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); /* * Remove the specified user data for a DMU buffer. * * Returns the user that was removed on success, or the current user if * another user currently owns the buffer. */ void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Returns the user data (dmu_buf_user_t *) associated with this dbuf. */ void *dmu_buf_get_user(dmu_buf_t *db); objset_t *dmu_buf_get_objset(dmu_buf_t *db); dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); void dmu_buf_dnode_exit(dmu_buf_t *db); /* Block until any in-progress dmu buf user evictions complete. */ void dmu_buf_user_evict_wait(void); /* * Returns the blkptr associated with this dbuf, or NULL if not set. */ struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); /* * Indicate that you are going to modify the buffer's data (db_data). * * The transaction (tx) must be assigned to a txg (ie. you've called * dmu_tx_assign()). The buffer's object must be held in the tx * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). */ void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); /* * You must create a transaction, then hold the objects which you will * (or might) modify as part of this transaction. Then you must assign * the transaction to a transaction group. Once the transaction has * been assigned, you can modify buffers which belong to held objects as * part of this transaction. You can't modify buffers before the * transaction has been assigned; you can't modify buffers which don't * belong to objects which this transaction holds; you can't hold * objects once the transaction has been assigned. You may hold an * object which you are going to free (with dmu_object_free()), but you * don't have to. * * You can abort the transaction before it has been assigned. * * Note that you may hold buffers (with dmu_buf_hold) at any time, * regardless of transaction state. */ #define DMU_NEW_OBJECT (-1ULL) #define DMU_OBJECT_END (-1ULL) dmu_tx_t *dmu_tx_create(objset_t *os); void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len); void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len); void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len); void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name); void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); void dmu_tx_abort(dmu_tx_t *tx); int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); void dmu_tx_wait(dmu_tx_t *tx); void dmu_tx_commit(dmu_tx_t *tx); void dmu_tx_mark_netfree(dmu_tx_t *tx); /* * To register a commit callback, dmu_tx_callback_register() must be called. * * dcb_data is a pointer to caller private data that is passed on as a * callback parameter. The caller is responsible for properly allocating and * freeing it. * * When registering a callback, the transaction must be already created, but * it cannot be committed or aborted. It can be assigned to a txg or not. * * The callback will be called after the transaction has been safely written * to stable storage and will also be called if the dmu_tx is aborted. * If there is any error which prevents the transaction from being committed to * disk, the callback will be called with a value of error != 0. */ typedef void dmu_tx_callback_func_t(void *dcb_data, int error); void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, void *dcb_data); /* * Free up the data blocks for a defined range of a file. If size is * -1, the range from offset to end-of-file is freed. */ int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size); int dmu_free_long_object(objset_t *os, uint64_t object); /* * Convenience functions. * * Canfail routines will return 0 on success, or an errno if there is a * nonrecoverable I/O error. */ #define DMU_READ_PREFETCH 0 /* prefetch */ #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags); int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, uint32_t flags); void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size); int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, struct page *pp, dmu_tx_t *tx); struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); void dmu_return_arcbuf(struct arc_buf *buf); void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); int dmu_xuio_init(struct xuio *uio, int niov); void dmu_xuio_fini(struct xuio *uio); int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, size_t n); int dmu_xuio_cnt(struct xuio *uio); struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); void dmu_xuio_clear(struct xuio *uio, int i); void xuio_stat_wbuf_copied(void); void xuio_stat_wbuf_nocopy(void); extern boolean_t zfs_prefetch_disable; extern int zfs_max_recordsize; /* * Asynchronously try to read in the data. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, enum zio_priority pri); typedef struct dmu_object_info { /* All sizes are in bytes unless otherwise indicated. */ uint32_t doi_data_block_size; uint32_t doi_metadata_block_size; dmu_object_type_t doi_type; dmu_object_type_t doi_bonus_type; uint64_t doi_bonus_size; uint8_t doi_indirection; /* 2 = dnode->indirect->data */ uint8_t doi_checksum; uint8_t doi_compress; uint8_t doi_nblkptr; - uint8_t doi_pad[4]; + int8_t doi_pad[4]; + uint64_t doi_dnodesize; uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ uint64_t doi_max_offset; uint64_t doi_fill_count; /* number of non-empty blocks */ } dmu_object_info_t; typedef void arc_byteswap_func_t(void *buf, size_t size); typedef struct dmu_object_type_info { dmu_object_byteswap_t ot_byteswap; boolean_t ot_metadata; boolean_t ot_dbuf_metadata_cache; char *ot_name; } dmu_object_type_info_t; typedef struct dmu_object_byteswap_info { arc_byteswap_func_t *ob_func; char *ob_name; } dmu_object_byteswap_info_t; extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; /* * Get information on a DMU object. * * Return 0 on success or ENOENT if object is not allocated. * * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dnode in hand. */ void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); /* * Like dmu_object_info_from_db, but faster still when you only care about * the size. This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512); +void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); + typedef struct dmu_objset_stats { uint64_t dds_num_clones; /* number of clones of this */ uint64_t dds_creation_txg; uint64_t dds_guid; dmu_objset_type_t dds_type; uint8_t dds_is_snapshot; uint8_t dds_inconsistent; char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; } dmu_objset_stats_t; /* * Get stats on a dataset. */ void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); /* * Add entries to the nvlist for all the objset's properties. See * zfs_prop_table[] and zfs(1m) for details on the properties. */ void dmu_objset_stats(objset_t *os, struct nvlist *nv); /* * Get the space usage statistics for statvfs(). * * refdbytes is the amount of space "referenced" by this objset. * availbytes is the amount of space available to this objset, taking * into account quotas & reservations, assuming that no other objsets * use the space first. These values correspond to the 'referenced' and * 'available' properties, described in the zfs(1m) manpage. * * usedobjs and availobjs are the number of objects currently allocated, * and available. */ void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); /* * The fsid_guid is a 56-bit ID that can change to avoid collisions. * (Contrast with the ds_guid which is a 64-bit ID that will never * change, so there is a small probability that it will collide.) */ uint64_t dmu_objset_fsid_guid(objset_t *os); /* * Get the [cm]time for an objset's snapshot dir */ timestruc_t dmu_objset_snap_cmtime(objset_t *os); int dmu_objset_is_snapshot(objset_t *os); extern struct spa *dmu_objset_spa(objset_t *os); extern struct zilog *dmu_objset_zil(objset_t *os); extern struct dsl_pool *dmu_objset_pool(objset_t *os); extern struct dsl_dataset *dmu_objset_ds(objset_t *os); extern void dmu_objset_name(objset_t *os, char *buf); extern dmu_objset_type_t dmu_objset_type(objset_t *os); extern uint64_t dmu_objset_id(objset_t *os); +extern uint64_t dmu_objset_dnodesize(objset_t *os); extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *id, uint64_t *offp, boolean_t *case_conflict); extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen, boolean_t *conflict); extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp); typedef int objset_used_cb_t(dmu_object_type_t bonustype, void *bonus, uint64_t *userp, uint64_t *groupp); extern void dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb); extern void dmu_objset_set_user(objset_t *os, void *user_ptr); extern void *dmu_objset_get_user(objset_t *os); /* * Return the txg number for the given assigned transaction. */ uint64_t dmu_tx_get_txg(dmu_tx_t *tx); /* * Synchronous write. * If a parent zio is provided this function initiates a write on the * provided buffer as a child of the parent zio. * In the absence of a parent zio, the write is completed synchronously. * At write completion, blk is filled with the bp of the written block. * Note that while the data covered by this function will be on stable * storage when the write completes this new data does not become a * permanent part of the file until the associated transaction commits. */ /* * {zfs,zvol,ztest}_get_done() args */ typedef struct zgd { struct lwb *zgd_lwb; struct blkptr *zgd_bp; dmu_buf_t *zgd_db; struct locked_range *zgd_lr; void *zgd_private; } zgd_t; typedef void dmu_sync_cb_t(zgd_t *arg, int error); int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); /* * Find the next hole or data block in file starting at *off * Return found offset in *off. Return ESRCH for end of file. */ int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off); /* * Check if a DMU object has any dirty blocks. If so, sync out * all pending transaction groups. Otherwise, this function * does not alter DMU state. This could be improved to only sync * out the necessary transaction groups for this particular * object. */ int dmu_object_wait_synced(objset_t *os, uint64_t object); /* * Initial setup and final teardown. */ extern void dmu_init(void); extern void dmu_fini(void); typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, uint64_t object, uint64_t offset, int len); void dmu_traverse_objset(objset_t *os, uint64_t txg_start, dmu_traverse_cb_t cb, void *arg); int dmu_diff(const char *tosnap_name, const char *fromsnap_name, struct vnode *vp, offset_t *offp); /* CRC64 table */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ extern uint64_t zfs_crc64_table[256]; extern int zfs_mdcomp_disable; #ifdef __cplusplus } #endif #endif /* _SYS_DMU_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h (revision 350898) @@ -1,211 +1,216 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_OBJSET_H #define _SYS_DMU_OBJSET_H #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif extern krwlock_t os_lock; struct dsl_pool; struct dsl_dataset; struct dmu_tx; #define OBJSET_PHYS_SIZE 2048 #define OBJSET_OLD_PHYS_SIZE 1024 #define OBJSET_BUF_HAS_USERUSED(buf) \ (arc_buf_size(buf) > OBJSET_OLD_PHYS_SIZE) #define OBJSET_FLAG_USERACCOUNTING_COMPLETE (1ULL<<0) typedef struct objset_phys { dnode_phys_t os_meta_dnode; zil_header_t os_zil_header; uint64_t os_type; uint64_t os_flags; char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 - sizeof (zil_header_t) - sizeof (uint64_t)*2]; dnode_phys_t os_userused_dnode; dnode_phys_t os_groupused_dnode; } objset_phys_t; #define OBJSET_PROP_UNINITIALIZED ((uint64_t)-1) struct objset { /* Immutable: */ struct dsl_dataset *os_dsl_dataset; spa_t *os_spa; arc_buf_t *os_phys_buf; objset_phys_t *os_phys; /* * The following "special" dnodes have no parent, are exempt * from dnode_move(), and are not recorded in os_dnodes, but they * root their descendents in this objset using handles anyway, so * that all access to dnodes from dbufs consistently uses handles. */ dnode_handle_t os_meta_dnode; dnode_handle_t os_userused_dnode; dnode_handle_t os_groupused_dnode; zilog_t *os_zil; list_node_t os_evicting_node; /* can change, under dsl_dir's locks: */ + uint64_t os_dnodesize; /* default dnode size for new objects */ enum zio_checksum os_checksum; enum zio_compress os_compress; uint8_t os_copies; enum zio_checksum os_dedup_checksum; boolean_t os_dedup_verify; zfs_logbias_op_t os_logbias; zfs_cache_type_t os_primary_cache; zfs_cache_type_t os_secondary_cache; zfs_sync_type_t os_sync; zfs_redundant_metadata_type_t os_redundant_metadata; int os_recordsize; /* * The next four values are used as a cache of whatever's on disk, and * are initialized the first time these properties are queried. Before * being initialized with their real values, their values are * OBJSET_PROP_UNINITIALIZED. */ uint64_t os_version; uint64_t os_normalization; uint64_t os_utf8only; uint64_t os_casesensitivity; /* * Pointer is constant; the blkptr it points to is protected by * os_dsl_dataset->ds_bp_rwlock */ blkptr_t *os_rootbp; /* no lock needed: */ struct dmu_tx *os_synctx; /* XXX sketchy */ zil_header_t os_zil_header; multilist_t *os_synced_dnodes; uint64_t os_flags; uint64_t os_freed_dnodes; boolean_t os_rescan_dnodes; /* Protected by os_obj_lock */ kmutex_t os_obj_lock; - uint64_t os_obj_next; + uint64_t os_obj_next_chunk; + + /* Per-CPU next object to allocate, protected by atomic ops. */ + uint64_t *os_obj_next_percpu; + int os_obj_next_percpu_len; /* Protected by os_lock */ kmutex_t os_lock; multilist_t *os_dirty_dnodes[TXG_SIZE]; list_t os_dnodes; list_t os_downgraded_dbufs; /* Protects changes to DMU_{USER,GROUP}USED_OBJECT */ kmutex_t os_userused_lock; /* stuff we store for the user */ kmutex_t os_user_ptr_lock; void *os_user_ptr; sa_os_t *os_sa; }; #define DMU_META_OBJSET 0 #define DMU_META_DNODE_OBJECT 0 #define DMU_OBJECT_IS_SPECIAL(obj) ((int64_t)(obj) <= 0) #define DMU_META_DNODE(os) ((os)->os_meta_dnode.dnh_dnode) #define DMU_USERUSED_DNODE(os) ((os)->os_userused_dnode.dnh_dnode) #define DMU_GROUPUSED_DNODE(os) ((os)->os_groupused_dnode.dnh_dnode) #define DMU_OS_IS_L2CACHEABLE(os) \ ((os)->os_secondary_cache == ZFS_CACHE_ALL || \ (os)->os_secondary_cache == ZFS_CACHE_METADATA) #define DMU_OS_IS_L2COMPRESSIBLE(os) (zfs_mdcomp_disable == B_FALSE) /* called from zpl */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); int dmu_objset_own_obj(struct dsl_pool *dp, uint64_t obj, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); void dmu_objset_refresh_ownership(struct dsl_dataset *ds, struct dsl_dataset **newds, void *tag); void dmu_objset_rele(objset_t *os, void *tag); void dmu_objset_disown(objset_t *os, void *tag); int dmu_objset_from_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_stats(objset_t *os, nvlist_t *nv); void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); uint64_t dmu_objset_fsid_guid(objset_t *os); int dmu_objset_find_dp(struct dsl_pool *dp, uint64_t ddobj, int func(struct dsl_pool *, struct dsl_dataset *, void *), void *arg, int flags); int dmu_objset_prefetch(const char *name, void *arg); void dmu_objset_evict_dbufs(objset_t *os); timestruc_t dmu_objset_snap_cmtime(objset_t *os); /* called from dsl */ void dmu_objset_sync(objset_t *os, zio_t *zio, dmu_tx_t *tx); boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg); objset_t *dmu_objset_create_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx); int dmu_objset_open_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp, objset_t **osp); void dmu_objset_evict(objset_t *os); void dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx); void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx); boolean_t dmu_objset_userused_enabled(objset_t *os); int dmu_objset_userspace_upgrade(objset_t *os); boolean_t dmu_objset_userspace_present(objset_t *os); int dmu_fsname(const char *snapname, char *buf); void dmu_objset_evict_done(objset_t *os); void dmu_objset_willuse_space(objset_t *os, int64_t space, dmu_tx_t *tx); void dmu_objset_init(void); void dmu_objset_fini(void); #ifdef __cplusplus } #endif #endif /* _SYS_DMU_OBJSET_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dnode.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dnode.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dnode.h (revision 350898) @@ -1,363 +1,581 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ #ifndef _SYS_DNODE_H #define _SYS_DNODE_H #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * dnode_hold() flags. */ #define DNODE_MUST_BE_ALLOCATED 1 #define DNODE_MUST_BE_FREE 2 /* * dnode_next_offset() flags. */ #define DNODE_FIND_HOLE 1 #define DNODE_FIND_BACKWARDS 2 #define DNODE_FIND_HAVELOCK 4 /* * Fixed constants. */ #define DNODE_SHIFT 9 /* 512 bytes */ #define DN_MIN_INDBLKSHIFT 12 /* 4k */ /* * If we ever increase this value beyond 20, we need to revisit all logic that * does x << level * ebps to handle overflow. With a 1M indirect block size, * 4 levels of indirect blocks would not be able to guarantee addressing an * entire object, so 5 levels will be used, but 5 * (20 - 7) = 65. */ #define DN_MAX_INDBLKSHIFT 17 /* 128k */ #define DNODE_BLOCK_SHIFT 14 /* 16k */ #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ /* * dnode id flags * * Note: a file will never ever have its * ids moved from bonus->spill * and only in a crypto environment would it be on spill */ #define DN_ID_CHKED_BONUS 0x1 #define DN_ID_CHKED_SPILL 0x2 #define DN_ID_OLD_EXIST 0x4 #define DN_ID_NEW_EXIST 0x8 /* * Derived constants. */ -#define DNODE_SIZE (1 << DNODE_SHIFT) -#define DN_MAX_NBLKPTR ((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT) -#define DN_MAX_BONUSLEN (DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT)) -#define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) -#define DN_ZERO_BONUSLEN (DN_MAX_BONUSLEN + 1) -#define DN_KILL_SPILLBLK (1) +#define DNODE_MIN_SIZE (1 << DNODE_SHIFT) +#define DNODE_MAX_SIZE (1 << DNODE_BLOCK_SHIFT) +#define DNODE_BLOCK_SIZE (1 << DNODE_BLOCK_SHIFT) +#define DNODE_MIN_SLOTS (DNODE_MIN_SIZE >> DNODE_SHIFT) +#define DNODE_MAX_SLOTS (DNODE_MAX_SIZE >> DNODE_SHIFT) +#define DN_BONUS_SIZE(dnsize) ((dnsize) - DNODE_CORE_SIZE - \ + (1 << SPA_BLKPTRSHIFT)) +#define DN_SLOTS_TO_BONUSLEN(slots) DN_BONUS_SIZE((slots) << DNODE_SHIFT) +#define DN_OLD_MAX_BONUSLEN (DN_BONUS_SIZE(DNODE_MIN_SIZE)) +#define DN_MAX_NBLKPTR ((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT) +#define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) +#define DN_ZERO_BONUSLEN (DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1) +#define DN_KILL_SPILLBLK (1) +#define DN_SLOT_UNINIT ((void *)NULL) /* Uninitialized */ +#define DN_SLOT_FREE ((void *)1UL) /* Free slot */ +#define DN_SLOT_ALLOCATED ((void *)2UL) /* Allocated slot */ +#define DN_SLOT_INTERIOR ((void *)3UL) /* Interior allocated slot */ +#define DN_SLOT_IS_PTR(dn) ((void *)dn > DN_SLOT_INTERIOR) +#define DN_SLOT_IS_VALID(dn) ((void *)dn != NULL) + #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) /* * This is inaccurate if the indblkshift of the particular object is not the * max. But it's only used by userland to calculate the zvol reservation. */ #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) #define DNODES_PER_LEVEL (1ULL << DNODES_PER_LEVEL_SHIFT) /* The +2 here is a cheesy way to round up */ #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) +#define DN_MAX_BONUS_LEN(dnp) \ + ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? \ + (uint8_t *)DN_SPILL_BLKPTR(dnp) - (uint8_t *)DN_BONUS(dnp) : \ + (uint8_t *)(dnp + (dnp->dn_extra_slots + 1)) - (uint8_t *)DN_BONUS(dnp)) #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) struct dmu_buf_impl; struct objset; struct zio; enum dnode_dirtycontext { DN_UNDIRTIED, DN_DIRTY_OPEN, DN_DIRTY_SYNC }; /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ #define DNODE_FLAG_USED_BYTES (1<<0) #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) /* Does dnode have a SA spill blkptr in bonus? */ #define DNODE_FLAG_SPILL_BLKPTR (1<<2) +/* + * VARIABLE-LENGTH (LARGE) DNODES + * + * The motivation for variable-length dnodes is to eliminate the overhead + * associated with using spill blocks. Spill blocks are used to store + * system attribute data (i.e. file metadata) that does not fit in the + * dnode's bonus buffer. By allowing a larger bonus buffer area the use of + * a spill block can be avoided. Spill blocks potentially incur an + * additional read I/O for every dnode in a dnode block. As a worst case + * example, reading 32 dnodes from a 16k dnode block and all of the spill + * blocks could issue 33 separate reads. Now suppose those dnodes have size + * 1024 and therefore don't need spill blocks. Then the worst case number + * of blocks read is reduced to from 33 to two--one per dnode block. + * + * ZFS-on-Linux systems that make heavy use of extended attributes benefit + * from this feature. In particular, ZFS-on-Linux supports the xattr=sa + * dataset property which allows file extended attribute data to be stored + * in the dnode bonus buffer as an alternative to the traditional + * directory-based format. Workloads such as SELinux and the Lustre + * distributed filesystem often store enough xattr data to force spill + * blocks when xattr=sa is in effect. Large dnodes may therefore provide a + * performance benefit to such systems. Other use cases that benefit from + * this feature include files with large ACLs and symbolic links with long + * target names. + * + * The size of a dnode may be a multiple of 512 bytes up to the size of a + * dnode block (currently 16384 bytes). The dn_extra_slots field of the + * on-disk dnode_phys_t structure describes the size of the physical dnode + * on disk. The field represents how many "extra" dnode_phys_t slots a + * dnode consumes in its dnode block. This convention results in a value of + * 0 for 512 byte dnodes which preserves on-disk format compatibility with + * older software which doesn't support large dnodes. + * + * Similarly, the in-memory dnode_t structure has a dn_num_slots field + * to represent the total number of dnode_phys_t slots consumed on disk. + * Thus dn->dn_num_slots is 1 greater than the corresponding + * dnp->dn_extra_slots. This difference in convention was adopted + * because, unlike on-disk structures, backward compatibility is not a + * concern for in-memory objects, so we used a more natural way to + * represent size for a dnode_t. + * + * The default size for newly created dnodes is determined by the value of + * the "dnodesize" dataset property. By default the property is set to + * "legacy" which is compatible with older software. Setting the property + * to "auto" will allow the filesystem to choose the most suitable dnode + * size. Currently this just sets the default dnode size to 1k, but future + * code improvements could dynamically choose a size based on observed + * workload patterns. Dnodes of varying sizes can coexist within the same + * dataset and even within the same dnode block. + */ + typedef struct dnode_phys { uint8_t dn_type; /* dmu_object_type_t */ uint8_t dn_indblkshift; /* ln2(indirect block size) */ uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ uint8_t dn_nblkptr; /* length of dn_blkptr */ uint8_t dn_bonustype; /* type of data in bonus buffer */ uint8_t dn_checksum; /* ZIO_CHECKSUM type */ uint8_t dn_compress; /* ZIO_COMPRESS type */ uint8_t dn_flags; /* DNODE_FLAG_* */ uint16_t dn_datablkszsec; /* data block size in 512b sectors */ uint16_t dn_bonuslen; /* length of dn_bonus */ - uint8_t dn_pad2[4]; + uint8_t dn_extra_slots; /* # of subsequent slots consumed */ + uint8_t dn_pad2[3]; /* accounting is protected by dn_dirty_mtx */ uint64_t dn_maxblkid; /* largest allocated block ID */ uint64_t dn_used; /* bytes (or sectors) of disk space */ uint64_t dn_pad3[4]; - - blkptr_t dn_blkptr[1]; - uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)]; - blkptr_t dn_spill; + union { + blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)]; + struct { + blkptr_t __dn_ignore1; + uint8_t dn_bonus[DN_OLD_MAX_BONUSLEN]; + }; + struct { + blkptr_t __dn_ignore2; + uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN - + sizeof (blkptr_t)]; + blkptr_t dn_spill; + }; + }; } dnode_phys_t; +#define DN_SPILL_BLKPTR(dnp) (blkptr_t *)((char *)(dnp) + \ + (((dnp)->dn_extra_slots + 1) << DNODE_SHIFT) - (1 << SPA_BLKPTRSHIFT)) + struct dnode { /* * Protects the structure of the dnode, including the number of levels * of indirection (dn_nlevels), dn_maxblkid, and dn_next_* */ krwlock_t dn_struct_rwlock; /* Our link on dn_objset->os_dnodes list; protected by os_lock. */ list_node_t dn_link; /* immutable: */ struct objset *dn_objset; uint64_t dn_object; struct dmu_buf_impl *dn_dbuf; struct dnode_handle *dn_handle; dnode_phys_t *dn_phys; /* pointer into dn->dn_dbuf->db.db_data */ /* * Copies of stuff in dn_phys. They're valid in the open * context (eg. even before the dnode is first synced). * Where necessary, these are protected by dn_struct_rwlock. */ dmu_object_type_t dn_type; /* object type */ uint16_t dn_bonuslen; /* bonus length */ uint8_t dn_bonustype; /* bonus type */ uint8_t dn_nblkptr; /* number of blkptrs (immutable) */ uint8_t dn_checksum; /* ZIO_CHECKSUM type */ uint8_t dn_compress; /* ZIO_COMPRESS type */ uint8_t dn_nlevels; uint8_t dn_indblkshift; uint8_t dn_datablkshift; /* zero if blksz not power of 2! */ uint8_t dn_moved; /* Has this dnode been moved? */ uint16_t dn_datablkszsec; /* in 512b sectors */ uint32_t dn_datablksz; /* in bytes */ uint64_t dn_maxblkid; uint8_t dn_next_type[TXG_SIZE]; + uint8_t dn_num_slots; /* metadnode slots consumed on disk */ uint8_t dn_next_nblkptr[TXG_SIZE]; uint8_t dn_next_nlevels[TXG_SIZE]; uint8_t dn_next_indblkshift[TXG_SIZE]; uint8_t dn_next_bonustype[TXG_SIZE]; uint8_t dn_rm_spillblk[TXG_SIZE]; /* for removing spill blk */ uint16_t dn_next_bonuslen[TXG_SIZE]; uint32_t dn_next_blksz[TXG_SIZE]; /* next block size in bytes */ /* protected by dn_dbufs_mtx; declared here to fill 32-bit hole */ uint32_t dn_dbufs_count; /* count of dn_dbufs */ /* protected by os_lock: */ multilist_node_t dn_dirty_link[TXG_SIZE]; /* next on dataset's dirty */ /* protected by dn_mtx: */ kmutex_t dn_mtx; list_t dn_dirty_records[TXG_SIZE]; struct range_tree *dn_free_ranges[TXG_SIZE]; uint64_t dn_allocated_txg; uint64_t dn_free_txg; uint64_t dn_assigned_txg; kcondvar_t dn_notxholds; enum dnode_dirtycontext dn_dirtyctx; uint8_t *dn_dirtyctx_firstset; /* dbg: contents meaningless */ /* protected by own devices */ refcount_t dn_tx_holds; refcount_t dn_holds; kmutex_t dn_dbufs_mtx; /* * Descendent dbufs, ordered by dbuf_compare. Note that dn_dbufs * can contain multiple dbufs of the same (level, blkid) when a * dbuf is marked DB_EVICTING without being removed from * dn_dbufs. To maintain the avl invariant that there cannot be * duplicate entries, we order the dbufs by an arbitrary value - * their address in memory. This means that dn_dbufs cannot be used to * directly look up a dbuf. Instead, callers must use avl_walk, have * a reference to the dbuf, or look up a non-existant node with * db_state = DB_SEARCH (see dbuf_free_range for an example). */ avl_tree_t dn_dbufs; /* protected by dn_struct_rwlock */ struct dmu_buf_impl *dn_bonus; /* bonus buffer dbuf */ boolean_t dn_have_spill; /* have spill or are spilling */ /* parent IO for current sync write */ zio_t *dn_zio; /* used in syncing context */ uint64_t dn_oldused; /* old phys used bytes */ uint64_t dn_oldflags; /* old phys dn_flags */ uint64_t dn_olduid, dn_oldgid; uint64_t dn_newuid, dn_newgid; int dn_id_flags; /* holds prefetch structure */ struct zfetch dn_zfetch; }; /* * Adds a level of indirection between the dbuf and the dnode to avoid * iterating descendent dbufs in dnode_move(). Handles are not allocated * individually, but as an array of child dnodes in dnode_hold_impl(). */ typedef struct dnode_handle { /* Protects dnh_dnode from modification by dnode_move(). */ zrlock_t dnh_zrlock; dnode_t *dnh_dnode; } dnode_handle_t; typedef struct dnode_children { dmu_buf_user_t dnc_dbu; /* User evict data */ size_t dnc_count; /* number of children */ dnode_handle_t dnc_children[]; /* sized dynamically */ } dnode_children_t; typedef struct free_range { avl_node_t fr_node; uint64_t fr_blkid; uint64_t fr_nblks; } free_range_t; void dnode_special_open(struct objset *dd, dnode_phys_t *dnp, uint64_t object, dnode_handle_t *dnh); void dnode_special_close(dnode_handle_t *dnh); void dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx); void dnode_setbonus_type(dnode_t *dn, dmu_object_type_t, dmu_tx_t *tx); void dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx); int dnode_hold(struct objset *dd, uint64_t object, void *ref, dnode_t **dnp); -int dnode_hold_impl(struct objset *dd, uint64_t object, int flag, +int dnode_hold_impl(struct objset *dd, uint64_t object, int flag, int dn_slots, void *ref, dnode_t **dnp); boolean_t dnode_add_ref(dnode_t *dn, void *ref); void dnode_rele(dnode_t *dn, void *ref); void dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting); void dnode_setdirty(dnode_t *dn, dmu_tx_t *tx); void dnode_sync(dnode_t *dn, dmu_tx_t *tx); void dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, - dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); + dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx); void dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, - dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); + dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx); void dnode_free(dnode_t *dn, dmu_tx_t *tx); void dnode_byteswap(dnode_phys_t *dnp); void dnode_buf_byteswap(void *buf, size_t size); void dnode_verify(dnode_t *dn); int dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx); void dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx); void dnode_diduse_space(dnode_t *dn, int64_t space); void dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t); uint64_t dnode_block_freed(dnode_t *dn, uint64_t blkid); void dnode_init(void); void dnode_fini(void); int dnode_next_offset(dnode_t *dn, int flags, uint64_t *off, int minlvl, uint64_t blkfill, uint64_t txg); void dnode_evict_dbufs(dnode_t *dn); void dnode_evict_bonus(dnode_t *dn); +void dnode_free_interior_slots(dnode_t *dn); boolean_t dnode_needs_remap(const dnode_t *dn); #define DNODE_IS_CACHEABLE(_dn) \ ((_dn)->dn_objset->os_primary_cache == ZFS_CACHE_ALL || \ (DMU_OT_IS_METADATA((_dn)->dn_type) && \ (_dn)->dn_objset->os_primary_cache == ZFS_CACHE_METADATA)) #define DNODE_META_IS_CACHEABLE(_dn) \ ((_dn)->dn_objset->os_primary_cache == ZFS_CACHE_ALL || \ (_dn)->dn_objset->os_primary_cache == ZFS_CACHE_METADATA) + +/* + * Used for dnodestats kstat. + */ +typedef struct dnode_stats { + /* + * Number of failed attempts to hold a meta dnode dbuf. + */ + kstat_named_t dnode_hold_dbuf_hold; + /* + * Number of failed attempts to read a meta dnode dbuf. + */ + kstat_named_t dnode_hold_dbuf_read; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was able + * to hold the requested object number which was allocated. This is + * the common case when looking up any allocated object number. + */ + kstat_named_t dnode_hold_alloc_hits; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was not + * able to hold the request object number because it was not allocated. + */ + kstat_named_t dnode_hold_alloc_misses; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was not + * able to hold the request object number because the object number + * refers to an interior large dnode slot. + */ + kstat_named_t dnode_hold_alloc_interior; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) needed + * to retry acquiring slot zrl locks due to contention. + */ + kstat_named_t dnode_hold_alloc_lock_retry; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) did not + * need to create the dnode because another thread did so after + * dropping the read lock but before acquiring the write lock. + */ + kstat_named_t dnode_hold_alloc_lock_misses; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) found + * a free dnode instantiated by dnode_create() but not yet allocated + * by dnode_allocate(). + */ + kstat_named_t dnode_hold_alloc_type_none; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was able + * to hold the requested range of free dnode slots. + */ + kstat_named_t dnode_hold_free_hits; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was not + * able to hold the requested range of free dnode slots because + * at least one slot was allocated. + */ + kstat_named_t dnode_hold_free_misses; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was not + * able to hold the requested range of free dnode slots because + * after acquiring the zrl lock at least one slot was allocated. + */ + kstat_named_t dnode_hold_free_lock_misses; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) needed + * to retry acquiring slot zrl locks due to contention. + */ + kstat_named_t dnode_hold_free_lock_retry; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) requested + * a range of dnode slots which were held by another thread. + */ + kstat_named_t dnode_hold_free_refcount; + /* + * Number of times dnode_hold(..., DNODE_MUST_BE_FREE) requested + * a range of dnode slots which would overflow the dnode_phys_t. + */ + kstat_named_t dnode_hold_free_overflow; + /* + * Number of times a dnode_hold(...) was attempted on a dnode + * which had already been unlinked in an earlier txg. + */ + kstat_named_t dnode_hold_free_txg; + /* + * Number of times dnode_free_interior_slots() needed to retry + * acquiring a slot zrl lock due to contention. + */ + kstat_named_t dnode_free_interior_lock_retry; + /* + * Number of new dnodes allocated by dnode_allocate(). + */ + kstat_named_t dnode_allocate; + /* + * Number of dnodes re-allocated by dnode_reallocate(). + */ + kstat_named_t dnode_reallocate; + /* + * Number of meta dnode dbufs evicted. + */ + kstat_named_t dnode_buf_evict; + /* + * Number of times dmu_object_alloc*() reached the end of the existing + * object ID chunk and advanced to a new one. + */ + kstat_named_t dnode_alloc_next_chunk; + /* + * Number of times multiple threads attempted to allocate a dnode + * from the same block of free dnodes. + */ + kstat_named_t dnode_alloc_race; + /* + * Number of times dmu_object_alloc*() was forced to advance to the + * next meta dnode dbuf due to an error from dmu_object_next(). + */ + kstat_named_t dnode_alloc_next_block; + /* + * Statistics for tracking dnodes which have been moved. + */ + kstat_named_t dnode_move_invalid; + kstat_named_t dnode_move_recheck1; + kstat_named_t dnode_move_recheck2; + kstat_named_t dnode_move_special; + kstat_named_t dnode_move_handle; + kstat_named_t dnode_move_rwlock; + kstat_named_t dnode_move_active; +} dnode_stats_t; + +extern dnode_stats_t dnode_stats; + +#define DNODE_STAT_INCR(stat, val) \ + atomic_add_64(&dnode_stats.stat.value.ui64, (val)); +#define DNODE_STAT_BUMP(stat) \ + DNODE_STAT_INCR(stat, 1); #ifdef ZFS_DEBUG /* * There should be a ## between the string literal and fmt, to make it * clear that we're joining two strings together, but that piece of shit * gcc doesn't support that preprocessor token. */ #define dprintf_dnode(dn, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char __db_buf[32]; \ uint64_t __db_obj = (dn)->dn_object; \ if (__db_obj == DMU_META_DNODE_OBJECT) \ (void) strcpy(__db_buf, "mdn"); \ else \ (void) snprintf(__db_buf, sizeof (__db_buf), "%lld", \ (u_longlong_t)__db_obj);\ dprintf_ds((dn)->dn_objset->os_dsl_dataset, "obj=%s " fmt, \ __db_buf, __VA_ARGS__); \ } \ _NOTE(CONSTCOND) } while (0) #define DNODE_VERIFY(dn) dnode_verify(dn) #define FREE_VERIFY(db, start, end, tx) free_verify(db, start, end, tx) #else #define dprintf_dnode(db, fmt, ...) #define DNODE_VERIFY(dn) #define FREE_VERIFY(db, start, end, tx) #endif #ifdef __cplusplus } #endif #endif /* _SYS_DNODE_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h (revision 350898) @@ -1,450 +1,457 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #ifndef _SYS_DSL_DATASET_H #define _SYS_DSL_DATASET_H #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_dataset; struct dsl_dir; struct dsl_pool; #define DS_FLAG_INCONSISTENT (1ULL<<0) #define DS_IS_INCONSISTENT(ds) \ (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT) /* * Do not allow this dataset to be promoted. */ #define DS_FLAG_NOPROMOTE (1ULL<<1) /* * DS_FLAG_UNIQUE_ACCURATE is set if ds_unique_bytes has been correctly * calculated for head datasets (starting with SPA_VERSION_UNIQUE_ACCURATE, * refquota/refreservations). */ #define DS_FLAG_UNIQUE_ACCURATE (1ULL<<2) /* * DS_FLAG_DEFER_DESTROY is set after 'zfs destroy -d' has been called * on a dataset. This allows the dataset to be destroyed using 'zfs release'. */ #define DS_FLAG_DEFER_DESTROY (1ULL<<3) #define DS_IS_DEFER_DESTROY(ds) \ (dsl_dataset_phys(ds)->ds_flags & DS_FLAG_DEFER_DESTROY) /* * DS_FIELD_* are strings that are used in the "extensified" dataset zap object. * They should be of the format :. */ /* * This field's value is the object ID of a zap object which contains the * bookmarks of this dataset. If it is present, then this dataset is counted * in the refcount of the SPA_FEATURES_BOOKMARKS feature. */ #define DS_FIELD_BOOKMARK_NAMES "com.delphix:bookmarks" /* + * This field is present (with value=0) if this dataset may contain large + * dnodes (>512B). If it is present, then this dataset is counted in the + * refcount of the SPA_FEATURE_LARGE_DNODE feature. + */ +#define DS_FIELD_LARGE_DNODE "org.zfsonlinux:large_dnode" + +/* * These fields are set on datasets that are in the middle of a resumable * receive, and allow the sender to resume the send if it is interrupted. */ #define DS_FIELD_RESUME_FROMGUID "com.delphix:resume_fromguid" #define DS_FIELD_RESUME_TONAME "com.delphix:resume_toname" #define DS_FIELD_RESUME_TOGUID "com.delphix:resume_toguid" #define DS_FIELD_RESUME_OBJECT "com.delphix:resume_object" #define DS_FIELD_RESUME_OFFSET "com.delphix:resume_offset" #define DS_FIELD_RESUME_BYTES "com.delphix:resume_bytes" #define DS_FIELD_RESUME_LARGEBLOCK "com.delphix:resume_largeblockok" #define DS_FIELD_RESUME_EMBEDOK "com.delphix:resume_embedok" #define DS_FIELD_RESUME_COMPRESSOK "com.delphix:resume_compressok" /* * This field is set to the object number of the remap deadlist if one exists. */ #define DS_FIELD_REMAP_DEADLIST "com.delphix:remap_deadlist" /* * DS_FLAG_CI_DATASET is set if the dataset contains a file system whose * name lookups should be performed case-insensitively. */ #define DS_FLAG_CI_DATASET (1ULL<<16) #define DS_CREATE_FLAG_NODIRTY (1ULL<<24) typedef struct dsl_dataset_phys { uint64_t ds_dir_obj; /* DMU_OT_DSL_DIR */ uint64_t ds_prev_snap_obj; /* DMU_OT_DSL_DATASET */ uint64_t ds_prev_snap_txg; uint64_t ds_next_snap_obj; /* DMU_OT_DSL_DATASET */ uint64_t ds_snapnames_zapobj; /* DMU_OT_DSL_DS_SNAP_MAP 0 for snaps */ uint64_t ds_num_children; /* clone/snap children; ==0 for head */ uint64_t ds_creation_time; /* seconds since 1970 */ uint64_t ds_creation_txg; uint64_t ds_deadlist_obj; /* DMU_OT_DEADLIST */ /* * ds_referenced_bytes, ds_compressed_bytes, and ds_uncompressed_bytes * include all blocks referenced by this dataset, including those * shared with any other datasets. */ uint64_t ds_referenced_bytes; uint64_t ds_compressed_bytes; uint64_t ds_uncompressed_bytes; uint64_t ds_unique_bytes; /* only relevant to snapshots */ /* * The ds_fsid_guid is a 56-bit ID that can change to avoid * collisions. The ds_guid is a 64-bit ID that will never * change, so there is a small probability that it will collide. */ uint64_t ds_fsid_guid; uint64_t ds_guid; uint64_t ds_flags; /* DS_FLAG_* */ blkptr_t ds_bp; uint64_t ds_next_clones_obj; /* DMU_OT_DSL_CLONES */ uint64_t ds_props_obj; /* DMU_OT_DSL_PROPS for snaps */ uint64_t ds_userrefs_obj; /* DMU_OT_USERREFS */ uint64_t ds_pad[5]; /* pad out to 320 bytes for good measure */ } dsl_dataset_phys_t; typedef struct dsl_dataset { dmu_buf_user_t ds_dbu; rrwlock_t ds_bp_rwlock; /* Protects ds_phys->ds_bp */ /* Immutable: */ struct dsl_dir *ds_dir; dmu_buf_t *ds_dbuf; uint64_t ds_object; uint64_t ds_fsid_guid; boolean_t ds_is_snapshot; /* only used in syncing context, only valid for non-snapshots: */ struct dsl_dataset *ds_prev; uint64_t ds_bookmarks; /* DMU_OTN_ZAP_METADATA */ /* has internal locking: */ dsl_deadlist_t ds_deadlist; bplist_t ds_pending_deadlist; /* * The remap deadlist contains blocks (DVA's, really) that are * referenced by the previous snapshot and point to indirect vdevs, * but in this dataset they have been remapped to point to concrete * (or at least, less-indirect) vdevs. In other words, the * physical DVA is referenced by the previous snapshot but not by * this dataset. Logically, the DVA continues to be referenced, * but we are using a different (less indirect) physical DVA. * This deadlist is used to determine when physical DVAs that * point to indirect vdevs are no longer referenced anywhere, * and thus should be marked obsolete. * * This is only used if SPA_FEATURE_OBSOLETE_COUNTS is enabled. */ dsl_deadlist_t ds_remap_deadlist; /* protects creation of the ds_remap_deadlist */ kmutex_t ds_remap_deadlist_lock; /* protected by lock on pool's dp_dirty_datasets list */ txg_node_t ds_dirty_link; list_node_t ds_synced_link; /* * ds_phys->ds_ is also protected by ds_lock. * Protected by ds_lock: */ kmutex_t ds_lock; objset_t *ds_objset; uint64_t ds_userrefs; void *ds_owner; /* * Long holds prevent the ds from being destroyed; they allow the * ds to remain held even after dropping the dp_config_rwlock. * Owning counts as a long hold. See the comments above * dsl_pool_hold() for details. */ refcount_t ds_longholds; /* no locking; only for making guesses */ uint64_t ds_trysnap_txg; /* for objset_open() */ kmutex_t ds_opening_lock; uint64_t ds_reserved; /* cached refreservation */ uint64_t ds_quota; /* cached refquota */ kmutex_t ds_sendstream_lock; list_t ds_sendstreams; /* * When in the middle of a resumable receive, tracks how much * progress we have made. */ uint64_t ds_resume_object[TXG_SIZE]; uint64_t ds_resume_offset[TXG_SIZE]; uint64_t ds_resume_bytes[TXG_SIZE]; /* Protected by our dsl_dir's dd_lock */ list_t ds_prop_cbs; /* * For ZFEATURE_FLAG_PER_DATASET features, set if this dataset * uses this feature. */ uint8_t ds_feature_inuse[SPA_FEATURES]; /* * Set if we need to activate the feature on this dataset this txg * (used only in syncing context). */ uint8_t ds_feature_activation_needed[SPA_FEATURES]; /* Protected by ds_lock; keep at end of struct for better locality */ char ds_snapname[ZFS_MAX_DATASET_NAME_LEN]; } dsl_dataset_t; inline dsl_dataset_phys_t * dsl_dataset_phys(dsl_dataset_t *ds) { return (ds->ds_dbuf->db_data); } typedef struct dsl_dataset_promote_arg { const char *ddpa_clonename; dsl_dataset_t *ddpa_clone; list_t shared_snaps, origin_snaps, clone_snaps; dsl_dataset_t *origin_origin; /* origin of the origin */ uint64_t used, comp, uncomp, unique, cloneusedsnap, originusedsnap; nvlist_t *err_ds; cred_t *cr; } dsl_dataset_promote_arg_t; typedef struct dsl_dataset_rollback_arg { const char *ddra_fsname; const char *ddra_tosnap; void *ddra_owner; nvlist_t *ddra_result; } dsl_dataset_rollback_arg_t; typedef struct dsl_dataset_snapshot_arg { nvlist_t *ddsa_snaps; nvlist_t *ddsa_props; nvlist_t *ddsa_errors; cred_t *ddsa_cr; } dsl_dataset_snapshot_arg_t; /* * The max length of a temporary tag prefix is the number of hex digits * required to express UINT64_MAX plus one for the hyphen. */ #define MAX_TAG_PREFIX_LEN 17 #define dsl_dataset_is_snapshot(ds) \ (dsl_dataset_phys(ds)->ds_num_children != 0) #define DS_UNIQUE_IS_ACCURATE(ds) \ ((dsl_dataset_phys(ds)->ds_flags & DS_FLAG_UNIQUE_ACCURATE) != 0) int dsl_dataset_hold(struct dsl_pool *dp, const char *name, void *tag, dsl_dataset_t **dsp); boolean_t dsl_dataset_try_add_ref(struct dsl_pool *dp, dsl_dataset_t *ds, void *tag); int dsl_dataset_hold_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag, dsl_dataset_t **); void dsl_dataset_rele(dsl_dataset_t *ds, void *tag); int dsl_dataset_own(struct dsl_pool *dp, const char *name, void *tag, dsl_dataset_t **dsp); int dsl_dataset_own_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp); void dsl_dataset_disown(dsl_dataset_t *ds, void *tag); void dsl_dataset_name(dsl_dataset_t *ds, char *name); boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag); int dsl_dataset_namelen(dsl_dataset_t *ds); boolean_t dsl_dataset_has_owner(dsl_dataset_t *ds); uint64_t dsl_dataset_create_sync(dsl_dir_t *pds, const char *lastname, dsl_dataset_t *origin, uint64_t flags, cred_t *, dmu_tx_t *); uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin, uint64_t flags, dmu_tx_t *tx); void dsl_dataset_snapshot_sync(void *arg, dmu_tx_t *tx); int dsl_dataset_snapshot_check(void *arg, dmu_tx_t *tx); int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors); void dsl_dataset_promote_sync(void *arg, dmu_tx_t *tx); int dsl_dataset_promote_check(void *arg, dmu_tx_t *tx); int dsl_dataset_promote(const char *name, char *conflsnap); int dsl_dataset_clone_swap(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname, minor_t cleanup_minor, const char *htag); blkptr_t *dsl_dataset_get_blkptr(dsl_dataset_t *ds); spa_t *dsl_dataset_get_spa(dsl_dataset_t *ds); boolean_t dsl_dataset_modified_since_snap(dsl_dataset_t *ds, dsl_dataset_t *snap); void dsl_dataset_sync(dsl_dataset_t *os, zio_t *zio, dmu_tx_t *tx); void dsl_dataset_sync_done(dsl_dataset_t *os, dmu_tx_t *tx); void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx); int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx, boolean_t async); void dsl_dataset_block_remapped(dsl_dataset_t *ds, uint64_t vdev, uint64_t offset, uint64_t size, uint64_t birth, dmu_tx_t *tx); void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx); int get_clones_stat_impl(dsl_dataset_t *ds, nvlist_t *val); char *get_receive_resume_stats_impl(dsl_dataset_t *ds); char *get_child_receive_stats(dsl_dataset_t *ds); uint64_t dsl_get_refratio(dsl_dataset_t *ds); uint64_t dsl_get_logicalreferenced(dsl_dataset_t *ds); uint64_t dsl_get_compressratio(dsl_dataset_t *ds); uint64_t dsl_get_used(dsl_dataset_t *ds); uint64_t dsl_get_creation(dsl_dataset_t *ds); uint64_t dsl_get_creationtxg(dsl_dataset_t *ds); uint64_t dsl_get_refquota(dsl_dataset_t *ds); uint64_t dsl_get_refreservation(dsl_dataset_t *ds); uint64_t dsl_get_guid(dsl_dataset_t *ds); uint64_t dsl_get_unique(dsl_dataset_t *ds); uint64_t dsl_get_objsetid(dsl_dataset_t *ds); uint64_t dsl_get_userrefs(dsl_dataset_t *ds); uint64_t dsl_get_defer_destroy(dsl_dataset_t *ds); uint64_t dsl_get_referenced(dsl_dataset_t *ds); uint64_t dsl_get_numclones(dsl_dataset_t *ds); uint64_t dsl_get_inconsistent(dsl_dataset_t *ds); uint64_t dsl_get_available(dsl_dataset_t *ds); int dsl_get_written(dsl_dataset_t *ds, uint64_t *written); int dsl_get_prev_snap(dsl_dataset_t *ds, char *snap); int dsl_get_mountpoint(dsl_dataset_t *ds, const char *dsname, char *value, char *source); void get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv); void dsl_dataset_stats(dsl_dataset_t *os, nvlist_t *nv); void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat); void dsl_dataset_space(dsl_dataset_t *ds, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds); int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp); int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *last, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp); boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds); int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf); int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota, uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv); int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source, uint64_t quota); int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source, uint64_t reservation); boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier, uint64_t earlier_txg); void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag); void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag); boolean_t dsl_dataset_long_held(dsl_dataset_t *ds); int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force, void *owner, dmu_tx_t *tx); void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, dmu_tx_t *tx); int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx, boolean_t recv, uint64_t cnt, cred_t *cr); void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx); void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx); void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds); int dsl_dataset_get_snapname(dsl_dataset_t *ds); int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value); int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx, boolean_t adj_cnt); void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds, zprop_source_t source, uint64_t value, dmu_tx_t *tx); void dsl_dataset_zapify(dsl_dataset_t *ds, dmu_tx_t *tx); boolean_t dsl_dataset_is_zapified(dsl_dataset_t *ds); boolean_t dsl_dataset_has_resume_receive_state(dsl_dataset_t *ds); int dsl_dataset_rollback_check(void *arg, dmu_tx_t *tx); void dsl_dataset_rollback_sync(void *arg, dmu_tx_t *tx); int dsl_dataset_rollback(const char *fsname, const char *tosnap, void *owner, nvlist_t *result); uint64_t dsl_dataset_get_remap_deadlist_object(dsl_dataset_t *ds); void dsl_dataset_create_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx); boolean_t dsl_dataset_remap_deadlist_exists(dsl_dataset_t *ds); void dsl_dataset_destroy_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx); void dsl_dataset_deactivate_feature(uint64_t dsobj, spa_feature_t f, dmu_tx_t *tx); #ifdef ZFS_DEBUG #define dprintf_ds(ds, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__ds_name = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); \ dsl_dataset_name(ds, __ds_name); \ dprintf("ds=%s " fmt, __ds_name, __VA_ARGS__); \ kmem_free(__ds_name, ZFS_MAX_DATASET_NAME_LEN); \ } \ _NOTE(CONSTCOND) } while (0) #else #define dprintf_ds(dd, fmt, ...) #endif #ifdef __cplusplus } #endif #endif /* _SYS_DSL_DATASET_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/sa_impl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/sa_impl.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/sa_impl.h (revision 350898) @@ -1,291 +1,291 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ #ifndef _SYS_SA_IMPL_H #define _SYS_SA_IMPL_H #include #include #include /* * Array of known attributes and their * various characteristics. */ typedef struct sa_attr_table { sa_attr_type_t sa_attr; uint8_t sa_registered; uint16_t sa_length; sa_bswap_type_t sa_byteswap; char *sa_name; } sa_attr_table_t; /* * Zap attribute format for attribute registration * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * | unused | len | bswap | attr num | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Zap attribute format for layout information. * * layout information is stored as an array of attribute numbers * The name of the attribute is the layout number (0, 1, 2, ...) * * 16 0 * +---- ---+ * | attr # | * +--------+ * | attr # | * +--- ----+ * ...... * */ #define ATTR_BSWAP(x) BF32_GET(x, 16, 8) #define ATTR_LENGTH(x) BF32_GET(x, 24, 16) #define ATTR_NUM(x) BF32_GET(x, 0, 16) #define ATTR_ENCODE(x, attr, length, bswap) \ { \ BF64_SET(x, 24, 16, length); \ BF64_SET(x, 16, 8, bswap); \ BF64_SET(x, 0, 16, attr); \ } #define TOC_OFF(x) BF32_GET(x, 0, 23) #define TOC_ATTR_PRESENT(x) BF32_GET(x, 31, 1) #define TOC_LEN_IDX(x) BF32_GET(x, 24, 4) #define TOC_ATTR_ENCODE(x, len_idx, offset) \ { \ BF32_SET(x, 31, 1, 1); \ BF32_SET(x, 24, 7, len_idx); \ BF32_SET(x, 0, 24, offset); \ } #define SA_LAYOUTS "LAYOUTS" #define SA_REGISTRY "REGISTRY" /* * Each unique layout will have their own table * sa_lot (layout_table) */ typedef struct sa_lot { avl_node_t lot_num_node; avl_node_t lot_hash_node; uint64_t lot_num; uint64_t lot_hash; sa_attr_type_t *lot_attrs; /* array of attr #'s */ uint32_t lot_var_sizes; /* how many aren't fixed size */ uint32_t lot_attr_count; /* total attr count */ - list_t lot_idx_tab; /* should be only a couple of entries */ + list_t lot_idx_tab; /* should be only a couple of entries */ int lot_instance; /* used with lot_hash to identify entry */ } sa_lot_t; /* index table of offsets */ typedef struct sa_idx_tab { list_node_t sa_next; sa_lot_t *sa_layout; uint16_t *sa_variable_lengths; refcount_t sa_refcount; uint32_t *sa_idx_tab; /* array of offsets */ } sa_idx_tab_t; /* * Since the offset/index information into the actual data * will usually be identical we can share that information with * all handles that have the exact same offsets. * * You would typically only have a large number of different table of * contents if you had a several variable sized attributes. * * Two AVL trees are used to track the attribute layout numbers. * one is keyed by number and will be consulted when a DMU_OT_SA * object is first read. The second tree is keyed by the hash signature * of the attributes and will be consulted when an attribute is added * to determine if we already have an instance of that layout. Both * of these tree's are interconnected. The only difference is that * when an entry is found in the "hash" tree the list of attributes will * need to be compared against the list of attributes you have in hand. * The assumption is that typically attributes will just be updated and * adding a completely new attribute is a very rare operation. */ struct sa_os { - kmutex_t sa_lock; + kmutex_t sa_lock; boolean_t sa_need_attr_registration; boolean_t sa_force_spill; uint64_t sa_master_obj; uint64_t sa_reg_attr_obj; uint64_t sa_layout_attr_obj; int sa_num_attrs; sa_attr_table_t *sa_attr_table; /* private attr table */ sa_update_cb_t *sa_update_cb; avl_tree_t sa_layout_num_tree; /* keyed by layout number */ avl_tree_t sa_layout_hash_tree; /* keyed by layout hash value */ int sa_user_table_sz; sa_attr_type_t *sa_user_table; /* user name->attr mapping table */ }; /* * header for all bonus and spill buffers. * * The header has a fixed portion with a variable number * of "lengths" depending on the number of variable sized * attributes which are determined by the "layout number" */ #define SA_MAGIC 0x2F505A /* ZFS SA */ typedef struct sa_hdr_phys { uint32_t sa_magic; /* BEGIN CSTYLED */ /* * Encoded with hdrsize and layout number as follows: * 16 10 0 * +--------+-------+ * | hdrsz |layout | * +--------+-------+ * * Bits 0-10 are the layout number * Bits 11-16 are the size of the header. * The hdrsize is the number * 8 * * For example. * hdrsz of 1 ==> 8 byte header * 2 ==> 16 byte header * */ /* END CSTYLED */ uint16_t sa_layout_info; uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ /* ... Data follows the lengths. */ } sa_hdr_phys_t; #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 6, 3, 0) #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ { \ BF32_SET_SB(x, 10, 6, 3, 0, size); \ BF32_SET(x, 0, 10, num); \ } typedef enum sa_buf_type { SA_BONUS = 1, SA_SPILL = 2 } sa_buf_type_t; typedef enum sa_data_op { SA_LOOKUP, SA_UPDATE, SA_ADD, SA_REPLACE, SA_REMOVE } sa_data_op_t; /* * Opaque handle used for most sa functions * * This needs to be kept as small as possible. */ struct sa_handle { dmu_buf_user_t sa_dbu; kmutex_t sa_lock; dmu_buf_t *sa_bonus; dmu_buf_t *sa_spill; objset_t *sa_os; void *sa_userp; sa_idx_tab_t *sa_bonus_tab; /* idx of bonus */ sa_idx_tab_t *sa_spill_tab; /* only present if spill activated */ }; #define SA_GET_DB(hdl, type) \ (dmu_buf_impl_t *)((type == SA_BONUS) ? hdl->sa_bonus : hdl->sa_spill) #define SA_GET_HDR(hdl, type) \ ((sa_hdr_phys_t *)((dmu_buf_impl_t *)(SA_GET_DB(hdl, \ type))->db.db_data)) #define SA_IDX_TAB_GET(hdl, type) \ (type == SA_BONUS ? hdl->sa_bonus_tab : hdl->sa_spill_tab) #define IS_SA_BONUSTYPE(a) \ ((a == DMU_OT_SA) ? B_TRUE : B_FALSE) #define SA_BONUSTYPE_FROM_DB(db) \ (dmu_get_bonustype((dmu_buf_t *)db)) -#define SA_BLKPTR_SPACE (DN_MAX_BONUSLEN - sizeof (blkptr_t)) +#define SA_BLKPTR_SPACE (DN_OLD_MAX_BONUSLEN - sizeof (blkptr_t)) #define SA_LAYOUT_NUM(x, type) \ ((!IS_SA_BONUSTYPE(type) ? 0 : (((IS_SA_BONUSTYPE(type)) && \ ((SA_HDR_LAYOUT_NUM(x)) == 0)) ? 1 : SA_HDR_LAYOUT_NUM(x)))) #define SA_REGISTERED_LEN(sa, attr) sa->sa_attr_table[attr].sa_length #define SA_ATTR_LEN(sa, idx, attr, hdr) ((SA_REGISTERED_LEN(sa, attr) == 0) ?\ hdr->sa_lengths[TOC_LEN_IDX(idx->sa_idx_tab[attr])] : \ SA_REGISTERED_LEN(sa, attr)) #define SA_SET_HDR(hdr, num, size) \ { \ hdr->sa_magic = SA_MAGIC; \ SA_HDR_LAYOUT_INFO_ENCODE(hdr->sa_layout_info, num, size); \ } #define SA_ATTR_INFO(sa, idx, hdr, attr, bulk, type, hdl) \ { \ bulk.sa_size = SA_ATTR_LEN(sa, idx, attr, hdr); \ bulk.sa_buftype = type; \ bulk.sa_addr = \ (void *)((uintptr_t)TOC_OFF(idx->sa_idx_tab[attr]) + \ (uintptr_t)hdr); \ } #define SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb) \ (SA_HDR_SIZE(hdr) == (sizeof (sa_hdr_phys_t) + \ (tb->lot_var_sizes > 1 ? P2ROUNDUP((tb->lot_var_sizes - 1) * \ sizeof (uint16_t), 8) : 0))) int sa_add_impl(sa_handle_t *, sa_attr_type_t, uint32_t, sa_data_locator_t, void *, dmu_tx_t *); void sa_register_update_callback_locked(objset_t *, sa_update_cb_t *); int sa_size_locked(sa_handle_t *, sa_attr_type_t, int *); void sa_default_locator(void **, uint32_t *, uint32_t, boolean_t, void *); int sa_attr_size(sa_os_t *, sa_idx_tab_t *, sa_attr_type_t, uint16_t *, sa_hdr_phys_t *); #ifdef __cplusplus extern "C" { #endif #ifdef __cplusplus } #endif #endif /* _SYS_SA_IMPL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h (revision 350898) @@ -1,938 +1,939 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ #ifndef _SYS_SPA_H #define _SYS_SPA_H #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Forward references that lots of things need. */ typedef struct spa spa_t; typedef struct vdev vdev_t; typedef struct metaslab metaslab_t; typedef struct metaslab_group metaslab_group_t; typedef struct metaslab_class metaslab_class_t; typedef struct zio zio_t; typedef struct zilog zilog_t; typedef struct spa_aux_vdev spa_aux_vdev_t; typedef struct ddt ddt_t; typedef struct ddt_entry ddt_entry_t; struct dsl_pool; struct dsl_dataset; /* * General-purpose 32-bit and 64-bit bitfield encodings. */ #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) #define BF32_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1U << (len)); \ ASSERT3U(low + len, <=, 32); \ (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1ULL << (len)); \ ASSERT3U(low + len, <=, 64); \ ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \ _NOTE(CONSTCOND) } while (0) #define BF32_GET_SB(x, low, len, shift, bias) \ ((BF32_GET(x, low, len) + (bias)) << (shift)) #define BF64_GET_SB(x, low, len, shift, bias) \ ((BF64_GET(x, low, len) + (bias)) << (shift)) #define BF32_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1U << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) /* * We currently support block sizes from 512 bytes to 16MB. * The benefits of larger blocks, and thus larger IO, need to be weighed * against the cost of COWing a giant block to modify one byte, and the * large latency of reading or writing a large block. * * Note that although blocks up to 16MB are supported, the recordsize * property can not be set larger than zfs_max_recordsize (default 1MB). * See the comment near zfs_max_recordsize in dsl_dataset.c for details. * * Note that although the LSIZE field of the blkptr_t can store sizes up * to 32MB, the dnode's dn_datablkszsec can only store sizes up to * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. */ #define SPA_MINBLOCKSHIFT 9 #define SPA_OLD_MAXBLOCKSHIFT 17 #define SPA_MAXBLOCKSHIFT 24 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) /* * Size of block to hold the configuration data (a packed nvlist) */ #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) /* * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. * The ASIZE encoding should be at least 64 times larger (6 more bits) * to support up to 4-way RAID-Z mirror mode with worst-case gang block * overhead, three DVAs per bp, plus one more bit in case we do anything * else that expands the ASIZE. */ #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ #define SPA_COMPRESSBITS 7 #define SPA_VDEVBITS 24 /* * All SPA data is represented by 128-bit data virtual addresses (DVAs). * The members of the dva_t should be considered opaque outside the SPA. */ typedef struct dva { uint64_t dva_word[2]; } dva_t; /* * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. */ typedef struct zio_cksum { uint64_t zc_word[4]; } zio_cksum_t; /* * Some checksums/hashes need a 256-bit initialization salt. This salt is kept * secret and is suitable for use in MAC algorithms as the key. */ typedef struct zio_cksum_salt { uint8_t zcs_bytes[32]; } zio_cksum_salt_t; /* * Each block is described by its DVAs, time of birth, checksum, etc. * The word-by-word, bit-by-bit layout of the blkptr is as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | pad | vdev1 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 1 |G| offset1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 2 | pad | vdev2 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 3 |G| offset2 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 4 | pad | vdev3 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 5 |G| offset3 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 8 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 9 | physical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | fill count | * +-------+-------+-------+-------+-------+-------+-------+-------+ * c | checksum[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * d | checksum[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * e | checksum[2] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * f | checksum[3] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * vdev virtual device ID * offset offset into virtual device * LSIZE logical size * PSIZE physical size (after compression) * ASIZE allocated size (including RAID-Z parity and gang block headers) * GRID RAID-Z layout information (reserved for future use) * cksum checksum function * comp compression function * G gang block indicator * B byteorder (endianness) * D dedup * X encryption (on version 30, which is not supported) * E blkptr_t contains embedded data (see below) * lvl level of indirection * type DMU object type * phys birth txg when dva[0] was written; zero if same as logical birth txg * note that typically all the dva's would be written in this * txg, but they could be different if they were moved by * device removal. * log. birth transaction group in which the block was logically born * fill count number of non-zero blocks under this bp * checksum[4] 256-bit checksum of the data this bp describes */ /* * "Embedded" blkptr_t's don't actually point to a block, instead they * have a data payload embedded in the blkptr_t itself. See the comment * in blkptr.c for more details. * * The blkptr_t is laid out as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | payload | * 1 | payload | * 2 | payload | * 3 | payload | * 4 | payload | * 5 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | payload | * 8 | payload | * 9 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | payload | * c | payload | * d | payload | * e | payload | * f | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * payload contains the embedded data * B (byteorder) byteorder (endianness) * D (dedup) padding (set to zero) * X encryption (set to zero; see above) * E (embedded) set to one * lvl indirection level * type DMU object type * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) * comp compression function of payload * PSIZE size of payload after compression, in bytes * LSIZE logical size of payload, in bytes * note that 25 bits is enough to store the largest * "normal" BP's LSIZE (2^16 * 2^9) in bytes * log. birth transaction group in which the block was logically born * * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded * bp's they are stored in units of SPA_MINBLOCKSHIFT. * Generally, the generic BP_GET_*() macros can be used on embedded BP's. * The B, D, X, lvl, type, and comp fields are stored the same as with normal * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before * other macros, as they assert that they are only used on BP's of the correct * "embedded-ness". */ #define BPE_GET_ETYPE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET((bp)->blk_prop, 40, 8)) #define BPE_SET_ETYPE(bp, t) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, t); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_LSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) #define BPE_SET_LSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_PSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) #define BPE_SET_PSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) typedef enum bp_embedded_type { BP_EMBEDDED_TYPE_DATA, BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED } bp_embedded_type_t; #define BPE_NUM_WORDS 14 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) #define BPE_IS_PAYLOADWORD(bp, wp) \ ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */ /* * A block is a hole when it has either 1) never been written to, or * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads * without physically allocating disk space. Holes are represented in the * blkptr_t structure by zeroed blk_dva. Correct checking for holes is * done through the BP_IS_HOLE macro. For holes, the logical size, level, * DMU object type, and birth times are all also stored for holes that * were written to at some point (i.e. were punched after having been filled). */ typedef struct blkptr { dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ uint64_t blk_prop; /* size, compression, type, etc */ uint64_t blk_pad[2]; /* Extra space for the future */ uint64_t blk_phys_birth; /* txg when block was allocated */ uint64_t blk_birth; /* transaction group at birth */ uint64_t blk_fill; /* fill count */ zio_cksum_t blk_cksum; /* 256-bit checksum */ } blkptr_t; /* * Macros to get and set fields in a bp or DVA. */ #define DVA_GET_ASIZE(dva) \ BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_ASIZE(dva, x) \ BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS) #define DVA_SET_VDEV(dva, x) \ BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x) #define DVA_GET_OFFSET(dva) \ BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_OFFSET(dva, x) \ BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) #define BP_GET_LSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? \ (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_LSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_PSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_PSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_COMPRESS(bp) \ BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS) #define BP_SET_COMPRESS(bp, x) \ BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x) #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) #define BP_GET_CHECKSUM(bp) \ (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ BF64_GET((bp)->blk_prop, 40, 8)) #define BP_SET_CHECKSUM(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) #define BP_PHYSICAL_BIRTH(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) #define BP_SET_BIRTH(bp, logical, physical) \ { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ (bp)->blk_birth = (logical); \ (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ } #define BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill) #define BP_IS_METADATA(bp) \ (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) #define BP_GET_ASIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_GET_UCSIZE(bp) \ (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) #define BP_GET_NDVAS(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_COUNT_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ DVA_GET_GANG(&(bp)->blk_dva[1]) + \ DVA_GET_GANG(&(bp)->blk_dva[2]))) #define DVA_EQUAL(dva1, dva2) \ ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ (dva1)->dva_word[0] == (dva2)->dva_word[0]) #define BP_EQUAL(bp1, bp2) \ (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ (bp1)->blk_birth == (bp2)->blk_birth && \ DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ ((zc1).zc_word[3] - (zc2).zc_word[3]))) #define ZIO_CHECKSUM_IS_ZERO(zc) \ (0 == ((zc)->zc_word[0] | (zc)->zc_word[1] | \ (zc)->zc_word[2] | (zc)->zc_word[3])) #define ZIO_CHECKSUM_BSWAP(zcp) \ { \ (zcp)->zc_word[0] = BSWAP_64((zcp)->zc_word[0]); \ (zcp)->zc_word[1] = BSWAP_64((zcp)->zc_word[1]); \ (zcp)->zc_word[2] = BSWAP_64((zcp)->zc_word[2]); \ (zcp)->zc_word[3] = BSWAP_64((zcp)->zc_word[3]); \ } #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ { \ (zcp)->zc_word[0] = w0; \ (zcp)->zc_word[1] = w1; \ (zcp)->zc_word[2] = w2; \ (zcp)->zc_word[3] = w3; \ } #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) #define BP_IS_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ (dva)->dva_word[1] == 0ULL) #define BP_IS_HOLE(bp) \ (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) /* BP_IS_RAIDZ(bp) assumes no block compression */ #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ BP_GET_PSIZE(bp)) #define BP_ZERO(bp) \ { \ (bp)->blk_dva[0].dva_word[0] = 0; \ (bp)->blk_dva[0].dva_word[1] = 0; \ (bp)->blk_dva[1].dva_word[0] = 0; \ (bp)->blk_dva[1].dva_word[1] = 0; \ (bp)->blk_dva[2].dva_word[0] = 0; \ (bp)->blk_dva[2].dva_word[1] = 0; \ (bp)->blk_prop = 0; \ (bp)->blk_pad[0] = 0; \ (bp)->blk_pad[1] = 0; \ (bp)->blk_phys_birth = 0; \ (bp)->blk_birth = 0; \ (bp)->blk_fill = 0; \ ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ } #ifdef _BIG_ENDIAN #define ZFS_HOST_BYTEORDER (0ULL) #else #define ZFS_HOST_BYTEORDER (1ULL) #endif #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) #define BP_SPRINTF_LEN 320 /* * This macro allows code sharing between zfs, libzpool, and mdb. * 'func' is either snprintf() or mdb_snprintf(). * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. */ #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ { \ static const char *copyname[] = \ { "zero", "single", "double", "triple" }; \ int len = 0; \ int copies = 0; \ \ if (bp == NULL) { \ len += func(buf + len, size - len, ""); \ } else if (BP_IS_HOLE(bp)) { \ len += func(buf + len, size - len, \ "HOLE [L%llu %s] " \ "size=%llxL birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else if (BP_IS_EMBEDDED(bp)) { \ len = func(buf + len, size - len, \ "EMBEDDED [L%llu %s] et=%u %s " \ "size=%llxL/%llxP birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (int)BPE_GET_ETYPE(bp), \ compress, \ (u_longlong_t)BPE_GET_LSIZE(bp), \ (u_longlong_t)BPE_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else { \ for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ const dva_t *dva = &bp->blk_dva[d]; \ if (DVA_IS_VALID(dva)) \ copies++; \ len += func(buf + len, size - len, \ "DVA[%d]=<%llu:%llx:%llx>%c", d, \ (u_longlong_t)DVA_GET_VDEV(dva), \ (u_longlong_t)DVA_GET_OFFSET(dva), \ (u_longlong_t)DVA_GET_ASIZE(dva), \ ws); \ } \ if (BP_IS_GANG(bp) && \ DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ copies--; \ len += func(buf + len, size - len, \ "[L%llu %s] %s %s %s %s %s %s%c" \ "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ "cksum=%llx:%llx:%llx:%llx", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ checksum, \ compress, \ BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ BP_IS_GANG(bp) ? "gang" : "contiguous", \ BP_GET_DEDUP(bp) ? "dedup" : "unique", \ copyname[copies], \ ws, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)BP_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth, \ (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ (u_longlong_t)BP_GET_FILL(bp), \ ws, \ (u_longlong_t)bp->blk_cksum.zc_word[0], \ (u_longlong_t)bp->blk_cksum.zc_word[1], \ (u_longlong_t)bp->blk_cksum.zc_word[2], \ (u_longlong_t)bp->blk_cksum.zc_word[3]); \ } \ ASSERT(len < size); \ } #define BP_GET_BUFC_TYPE(bp) \ (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) typedef enum spa_import_type { SPA_IMPORT_EXISTING, SPA_IMPORT_ASSEMBLE } spa_import_type_t; /* state manipulation functions */ extern int spa_open(const char *pool, spa_t **, void *tag); extern int spa_open_rewind(const char *pool, spa_t **, void *tag, nvlist_t *policy, nvlist_t **config); extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, size_t buflen); extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props, nvlist_t *zplprops); extern int spa_import_rootpool(char *devpath, char *devid); extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags); extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); extern int spa_destroy(char *pool); extern int spa_checkpoint(const char *pool); extern int spa_checkpoint_discard(const char *pool); extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce); extern int spa_reset(char *pool); extern void spa_async_request(spa_t *spa, int flag); extern void spa_async_unrequest(spa_t *spa, int flag); extern void spa_async_suspend(spa_t *spa); extern void spa_async_resume(spa_t *spa); extern spa_t *spa_inject_addref(char *pool); extern void spa_inject_delref(spa_t *spa); extern void spa_scan_stat_init(spa_t *spa); extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); #define SPA_ASYNC_CONFIG_UPDATE 0x01 #define SPA_ASYNC_REMOVE 0x02 #define SPA_ASYNC_PROBE 0x04 #define SPA_ASYNC_RESILVER_DONE 0x08 #define SPA_ASYNC_RESILVER 0x10 #define SPA_ASYNC_AUTOEXPAND 0x20 #define SPA_ASYNC_REMOVE_DONE 0x40 #define SPA_ASYNC_REMOVE_STOP 0x80 #define SPA_ASYNC_INITIALIZE_RESTART 0x100 /* * Controls the behavior of spa_vdev_remove(). */ #define SPA_REMOVE_UNSPARE 0x01 #define SPA_REMOVE_DONE 0x02 /* device manipulation */ extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing); extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done); extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare); extern boolean_t spa_vdev_remove_active(spa_t *spa); extern int spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type); extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp); /* spare state (which is global across all pools) */ extern void spa_spare_add(vdev_t *vd); extern void spa_spare_remove(vdev_t *vd); extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); extern void spa_spare_activate(vdev_t *vd); /* L2ARC state (which is global across all pools) */ extern void spa_l2cache_add(vdev_t *vd); extern void spa_l2cache_remove(vdev_t *vd); extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); extern void spa_l2cache_activate(vdev_t *vd); extern void spa_l2cache_drop(spa_t *spa); /* scanning */ extern int spa_scan(spa_t *spa, pool_scan_func_t func); extern int spa_scan_stop(spa_t *spa); extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag); /* spa syncing */ extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ extern void spa_sync_allpools(void); /* spa namespace global mutex */ extern kmutex_t spa_namespace_lock; /* * SPA configuration functions in spa_config.c */ #define SPA_CONFIG_UPDATE_POOL 0 #define SPA_CONFIG_UPDATE_VDEVS 1 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t); extern void spa_config_load(void); extern nvlist_t *spa_all_configs(uint64_t *); extern void spa_config_set(spa_t *spa, nvlist_t *config); extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats); extern void spa_config_update(spa_t *spa, int what); /* * Miscellaneous SPA routines in spa_misc.c */ /* Namespace manipulation */ extern spa_t *spa_lookup(const char *name); extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); extern void spa_remove(spa_t *spa); extern spa_t *spa_next(spa_t *prev); /* Refcount functions */ extern void spa_open_ref(spa_t *spa, void *tag); extern void spa_close(spa_t *spa, void *tag); extern void spa_async_close(spa_t *spa, void *tag); extern boolean_t spa_refcount_zero(spa_t *spa); #define SCL_NONE 0x00 #define SCL_CONFIG 0x01 #define SCL_STATE 0x02 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ #define SCL_ALLOC 0x08 #define SCL_ZIO 0x10 #define SCL_FREE 0x20 #define SCL_VDEV 0x40 #define SCL_LOCKS 7 #define SCL_ALL ((1 << SCL_LOCKS) - 1) #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) /* Pool configuration locks */ extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_exit(spa_t *spa, int locks, void *tag); extern int spa_config_held(spa_t *spa, int locks, krw_t rw); /* Pool vdev add/remove lock */ extern uint64_t spa_vdev_enter(spa_t *spa); extern uint64_t spa_vdev_config_enter(spa_t *spa); extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag); extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); /* Pool vdev state change lock */ extern void spa_vdev_state_enter(spa_t *spa, int oplock); extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); /* Log state */ typedef enum spa_log_state { SPA_LOG_UNKNOWN = 0, /* unknown log state */ SPA_LOG_MISSING, /* missing log(s) */ SPA_LOG_CLEAR, /* clear the log(s) */ SPA_LOG_GOOD, /* log(s) are good */ } spa_log_state_t; extern spa_log_state_t spa_get_log_state(spa_t *spa); extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); extern int spa_reset_logs(spa_t *spa); /* Log claim callback */ extern void spa_claim_notify(zio_t *zio); /* Accessor functions */ extern boolean_t spa_shutting_down(spa_t *spa); extern struct dsl_pool *spa_get_dsl(spa_t *spa); extern boolean_t spa_is_initializing(spa_t *spa); extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa); extern blkptr_t *spa_get_rootblkptr(spa_t *spa); extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); extern void spa_altroot(spa_t *, char *, size_t); extern int spa_sync_pass(spa_t *spa); extern char *spa_name(spa_t *spa); extern uint64_t spa_guid(spa_t *spa); extern uint64_t spa_load_guid(spa_t *spa); extern uint64_t spa_last_synced_txg(spa_t *spa); extern uint64_t spa_first_txg(spa_t *spa); extern uint64_t spa_syncing_txg(spa_t *spa); extern uint64_t spa_final_dirty_txg(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern pool_state_t spa_state(spa_t *spa); extern spa_load_state_t spa_load_state(spa_t *spa); extern uint64_t spa_freeze_txg(spa_t *spa); extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize); extern uint64_t spa_get_dspace(spa_t *spa); extern uint64_t spa_get_checkpoint_space(spa_t *spa); extern uint64_t spa_get_slop_space(spa_t *spa); extern void spa_update_dspace(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern boolean_t spa_deflate(spa_t *spa); extern metaslab_class_t *spa_normal_class(spa_t *spa); extern metaslab_class_t *spa_log_class(spa_t *spa); extern void spa_evicting_os_register(spa_t *, objset_t *os); extern void spa_evicting_os_deregister(spa_t *, objset_t *os); extern void spa_evicting_os_wait(spa_t *spa); extern int spa_max_replication(spa_t *spa); extern int spa_prev_software_version(spa_t *spa); extern int spa_busy(void); extern uint8_t spa_get_failmode(spa_t *spa); extern boolean_t spa_suspended(spa_t *spa); extern uint64_t spa_bootfs(spa_t *spa); extern uint64_t spa_delegation(spa_t *spa); extern objset_t *spa_meta_objset(spa_t *spa); extern uint64_t spa_deadman_synctime(spa_t *spa); extern uint64_t spa_dirty_data(spa_t *spa); /* Miscellaneous support routines */ extern void spa_load_failed(spa_t *spa, const char *fmt, ...); extern void spa_load_note(spa_t *spa, const char *fmt, ...); extern void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx); extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); extern char *spa_strdup(const char *); extern void spa_strfree(char *); extern uint64_t spa_get_random(uint64_t range); extern uint64_t spa_generate_guid(spa_t *spa); extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); extern void spa_freeze(spa_t *spa); extern int spa_change_guid(spa_t *spa); extern void spa_upgrade(spa_t *spa, uint64_t version); extern void spa_evict_all(void); extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache); extern boolean_t spa_has_spare(spa_t *, uint64_t guid); extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); extern boolean_t spa_has_slogs(spa_t *spa); extern boolean_t spa_is_root(spa_t *spa); extern boolean_t spa_writeable(spa_t *spa); extern boolean_t spa_has_pending_synctask(spa_t *spa); extern int spa_maxblocksize(spa_t *spa); +extern int spa_maxdnodesize(spa_t *spa); extern boolean_t spa_has_checkpoint(spa_t *spa); extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa); extern boolean_t spa_suspend_async_destroy(spa_t *spa); extern uint64_t spa_min_claim_txg(spa_t *spa); extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp); extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp); typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size, void *arg); extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg); extern uint64_t spa_get_last_removal_txg(spa_t *spa); extern boolean_t spa_trust_config(spa_t *spa); extern uint64_t spa_missing_tvds_allowed(spa_t *spa); extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing); extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa); extern int spa_mode(spa_t *spa); extern uint64_t zfs_strtonum(const char *str, char **nptr); extern char *spa_his_ievent_table[]; extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, char *his_buf); extern int spa_history_log(spa_t *spa, const char *his_buf); extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); extern void spa_history_log_version(spa_t *spa, const char *operation); extern void spa_history_log_internal(spa_t *spa, const char *operation, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, dmu_tx_t *tx, const char *fmt, ...); /* error handling */ struct zbookmark_phys; extern void spa_log_error(spa_t *spa, zio_t *zio); extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t length); extern void zfs_post_remove(spa_t *spa, vdev_t *vd); extern void zfs_post_state_change(spa_t *spa, vdev_t *vd); extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); extern uint64_t spa_get_errlog_size(spa_t *spa); extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count); extern void spa_errlog_rotate(spa_t *spa); extern void spa_errlog_drain(spa_t *spa); extern void spa_errlog_sync(spa_t *spa, uint64_t txg); extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); /* vdev cache */ extern void vdev_cache_stat_init(void); extern void vdev_cache_stat_fini(void); /* Initialization and termination */ extern void spa_init(int flags); extern void spa_fini(void); extern void spa_boot_init(void); /* properties */ extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); /* asynchronous event notification */ extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl, const char *name); extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name); extern void spa_event_post(sysevent_t *ev); extern void spa_event_discard(sysevent_t *ev); #ifdef ZFS_DEBUG #define dprintf_bp(bp, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ kmem_free(__blkbuf, BP_SPRINTF_LEN); \ } \ _NOTE(CONSTCOND) } while (0) #else #define dprintf_bp(bp, fmt, ...) #endif extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */ #ifdef __cplusplus } #endif #endif /* _SYS_SPA_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap.h (revision 350898) @@ -1,485 +1,504 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ #ifndef _SYS_ZAP_H #define _SYS_ZAP_H /* * ZAP - ZFS Attribute Processor * * The ZAP is a module which sits on top of the DMU (Data Management * Unit) and implements a higher-level storage primitive using DMU * objects. Its primary consumer is the ZPL (ZFS Posix Layer). * * A "zapobj" is a DMU object which the ZAP uses to stores attributes. * Users should use only zap routines to access a zapobj - they should * not access the DMU object directly using DMU routines. * * The attributes stored in a zapobj are name-value pairs. The name is * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including * terminating NULL). The value is an array of integers, which may be * 1, 2, 4, or 8 bytes long. The total space used by the array (number * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes. * Note that an 8-byte integer value can be used to store the location * (object number) of another dmu object (which may be itself a zapobj). * Note that you can use a zero-length attribute to store a single bit * of information - the attribute is present or not. * * The ZAP routines are thread-safe. However, you must observe the * DMU's restriction that a transaction may not be operated on * concurrently. * * Any of the routines that return an int may return an I/O error (EIO * or ECHECKSUM). * * * Implementation / Performance Notes: * * The ZAP is intended to operate most efficiently on attributes with * short (49 bytes or less) names and single 8-byte values, for which * the microzap will be used. The ZAP should be efficient enough so * that the user does not need to cache these attributes. * * The ZAP's locking scheme makes its routines thread-safe. Operations * on different zapobjs will be processed concurrently. Operations on * the same zapobj which only read data will be processed concurrently. * Operations on the same zapobj which modify data will be processed * concurrently when there are many attributes in the zapobj (because * the ZAP uses per-block locking - more than 128 * (number of cpus) * small attributes will suffice). */ /* * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C * strings) for the names of attributes, rather than a byte string * bounded by an explicit length. If some day we want to support names * in character sets which have embedded zeros (eg. UTF-16, UTF-32), * we'll have to add routines for using length-bounded strings. */ #include #include #ifdef __cplusplus extern "C" { #endif /* * Specifies matching criteria for ZAP lookups. * MT_NORMALIZE Use ZAP normalization flags, which can include both * unicode normalization and case-insensitivity. * MT_MATCH_CASE Do case-sensitive lookups even if MT_NORMALIZE is * specified and ZAP normalization flags include * U8_TEXTPREP_TOUPPER. */ typedef enum matchtype { MT_NORMALIZE = 1 << 0, MT_MATCH_CASE = 1 << 1, } matchtype_t; typedef enum zap_flags { /* Use 64-bit hash value (serialized cursors will always use 64-bits) */ ZAP_FLAG_HASH64 = 1 << 0, /* Key is binary, not string (zap_add_uint64() can be used) */ ZAP_FLAG_UINT64_KEY = 1 << 1, /* * First word of key (which must be an array of uint64) is * already randomly distributed. */ ZAP_FLAG_PRE_HASHED_KEY = 1 << 2, } zap_flags_t; /* * Create a new zapobj with no attributes and return its object number. + * + * dnodesize specifies the on-disk size of the dnode for the new zapobj. + * Valid values are multiples of 512 up to DNODE_MAX_SIZE. */ uint64_t zap_create(objset_t *ds, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +uint64_t zap_create_dnsize(objset_t *ds, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx); uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +uint64_t zap_create_norm_dnsize(objset_t *ds, int normflags, + dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, + int dnodesize, dmu_tx_t *tx); uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +uint64_t zap_create_flags_dnsize(objset_t *os, int normflags, + zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, + int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, + int dnodesize, dmu_tx_t *tx); uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, const char *name, dmu_tx_t *tx); +uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, + uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx); /* * Initialize an already-allocated object. */ void mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, dmu_tx_t *tx); /* * Create a new zapobj with no attributes from the given (unallocated) * object number. */ int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +int zap_create_claim_dnsize(objset_t *ds, uint64_t obj, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx); int zap_create_claim_norm(objset_t *ds, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); +int zap_create_claim_norm_dnsize(objset_t *ds, uint64_t obj, + int normflags, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx); /* * The zapobj passed in must be a valid ZAP object for all of the * following routines. */ /* * Destroy this zapobj and all its attributes. * * Frees the object number using dmu_object_free. */ int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx); /* * Manipulate attributes. * * 'integer_size' is in bytes, and must be 1, 2, 4, or 8. */ /* * Retrieve the contents of the attribute with the given name. * * If the requested attribute does not exist, the call will fail and * return ENOENT. * * If 'integer_size' is smaller than the attribute's integer size, the * call will fail and return EINVAL. * * If 'integer_size' is equal to or larger than the attribute's integer * size, the call will succeed and return 0. * * When converting to a larger integer size, the integers will be treated as * unsigned (ie. no sign-extension will be performed). * * 'num_integers' is the length (in integers) of 'buf'. * * If the attribute is longer than the buffer, as many integers as will * fit will be transferred to 'buf'. If the entire attribute was not * transferred, the call will return EOVERFLOW. */ int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf); /* * If rn_len is nonzero, realname will be set to the name of the found * entry (which may be different from the requested name if matchtype is * not MT_EXACT). * * If normalization_conflictp is not NULL, it will be set if there is * another name with the same case/unicode normalized form. */ int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *normalization_conflictp); int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf); int zap_contains(objset_t *ds, uint64_t zapobj, const char *name); int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints); int zap_lookup_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf); int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp); int zap_count_write_by_dnode(dnode_t *dn, const char *name, int add, refcount_t *towrite, refcount_t *tooverwrite); /* * Create an attribute with the given name and value. * * If an attribute with the given name already exists, the call will * fail and return EEXIST. */ int zap_add(objset_t *ds, uint64_t zapobj, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); int zap_add_by_dnode(dnode_t *dn, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); /* * Set the attribute with the given name to the given value. If an * attribute with the given name does not exist, it will be created. If * an attribute with the given name already exists, the previous value * will be overwritten. The integer_size may be different from the * existing attribute's integer size, in which case the attribute's * integer size will be updated to the new value. */ int zap_update(objset_t *ds, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); /* * Get the length (in integers) and the integer size of the specified * attribute. * * If the requested attribute does not exist, the call will fail and * return ENOENT. */ int zap_length(objset_t *ds, uint64_t zapobj, const char *name, uint64_t *integer_size, uint64_t *num_integers); int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t *integer_size, uint64_t *num_integers); /* * Remove the specified attribute. * * If the specified attribute does not exist, the call will fail and * return ENOENT. */ int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx); int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name, matchtype_t mt, dmu_tx_t *tx); int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx); int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, dmu_tx_t *tx); /* * Returns (in *count) the number of attributes in the specified zap * object. */ int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count); /* * Returns (in name) the name of the entry whose (value & mask) * (za_first_integer) is value, or ENOENT if not found. The string * pointed to by name must be at least 256 bytes long. If mask==0, the * match must be exact (ie, same as mask=-1ULL). */ int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name); /* * Transfer all the entries from fromobj into intoobj. Only works on * int_size=8 num_integers=1 values. Fails if there are any duplicated * entries. */ int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx); /* Same as zap_join, but set the values to 'value'. */ int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, uint64_t value, dmu_tx_t *tx); /* Same as zap_join, but add together any duplicated entries. */ int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx); /* * Manipulate entries where the name + value are the "same" (the name is * a stringified version of the value). */ int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value); int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx); /* Here the key is an int and the value is a different int. */ int zap_add_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx); int zap_update_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx); int zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep); int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, dmu_tx_t *tx); struct zap; struct zap_leaf; typedef struct zap_cursor { /* This structure is opaque! */ objset_t *zc_objset; struct zap *zc_zap; struct zap_leaf *zc_leaf; uint64_t zc_zapobj; uint64_t zc_serialized; uint64_t zc_hash; uint32_t zc_cd; } zap_cursor_t; typedef struct { int za_integer_length; /* * za_normalization_conflict will be set if there are additional * entries with this normalized form (eg, "foo" and "Foo"). */ boolean_t za_normalization_conflict; uint64_t za_num_integers; uint64_t za_first_integer; /* no sign extension for <8byte ints */ char za_name[ZAP_MAXNAMELEN]; } zap_attribute_t; /* * The interface for listing all the attributes of a zapobj can be * thought of as cursor moving down a list of the attributes one by * one. The cookie returned by the zap_cursor_serialize routine is * persistent across system calls (and across reboot, even). */ /* * Initialize a zap cursor, pointing to the "first" attribute of the * zapobj. You must _fini the cursor when you are done with it. */ void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj); void zap_cursor_fini(zap_cursor_t *zc); /* * Get the attribute currently pointed to by the cursor. Returns * ENOENT if at the end of the attributes. */ int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za); /* * Advance the cursor to the next attribute. */ void zap_cursor_advance(zap_cursor_t *zc); /* * Get a persistent cookie pointing to the current position of the zap * cursor. The low 4 bits in the cookie are always zero, and thus can * be used as to differentiate a serialized cookie from a different type * of value. The cookie will be less than 2^32 as long as there are * fewer than 2^22 (4.2 million) entries in the zap object. */ uint64_t zap_cursor_serialize(zap_cursor_t *zc); /* * Initialize a zap cursor pointing to the position recorded by * zap_cursor_serialize (in the "serialized" argument). You can also * use a "serialized" argument of 0 to start at the beginning of the * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to * zap_cursor_init(...).) */ void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj, uint64_t serialized); #define ZAP_HISTOGRAM_SIZE 10 typedef struct zap_stats { /* * Size of the pointer table (in number of entries). * This is always a power of 2, or zero if it's a microzap. * In general, it should be considerably greater than zs_num_leafs. */ uint64_t zs_ptrtbl_len; uint64_t zs_blocksize; /* size of zap blocks */ /* * The number of blocks used. Note that some blocks may be * wasted because old ptrtbl's and large name/value blocks are * not reused. (Although their space is reclaimed, we don't * reuse those offsets in the object.) */ uint64_t zs_num_blocks; /* * Pointer table values from zap_ptrtbl in the zap_phys_t */ uint64_t zs_ptrtbl_nextblk; /* next (larger) copy start block */ uint64_t zs_ptrtbl_blks_copied; /* number source blocks copied */ uint64_t zs_ptrtbl_zt_blk; /* starting block number */ uint64_t zs_ptrtbl_zt_numblks; /* number of blocks */ uint64_t zs_ptrtbl_zt_shift; /* bits to index it */ /* * Values of the other members of the zap_phys_t */ uint64_t zs_block_type; /* ZBT_HEADER */ uint64_t zs_magic; /* ZAP_MAGIC */ uint64_t zs_num_leafs; /* The number of leaf blocks */ uint64_t zs_num_entries; /* The number of zap entries */ uint64_t zs_salt; /* salt to stir into hash function */ /* * Histograms. For all histograms, the last index * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater * than what can be represented. For example * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number * of leafs with more than 45 entries. */ /* * zs_leafs_with_n_pointers[n] is the number of leafs with * 2^n pointers to it. */ uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE]; /* * zs_leafs_with_n_entries[n] is the number of leafs with * [n*5, (n+1)*5) entries. In the current implementation, there * can be at most 55 entries in any block, but there may be * fewer if the name or value is large, or the block is not * completely full. */ uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE]; /* * zs_leafs_n_tenths_full[n] is the number of leafs whose * fullness is in the range [n/10, (n+1)/10). */ uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE]; /* * zs_entries_using_n_chunks[n] is the number of entries which * consume n 24-byte chunks. (Note, large names/values only use * one chunk, but contribute to zs_num_blocks_large.) */ uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE]; /* * zs_buckets_with_n_entries[n] is the number of buckets (each * leaf has 64 buckets) with n entries. * zs_buckets_with_n_entries[1] should be very close to * zs_num_entries. */ uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE]; } zap_stats_t; /* * Get statistics about a ZAP object. Note: you need to be aware of the * internal implementation of the ZAP to correctly interpret some of the * statistics. This interface shouldn't be relied on unless you really * know what you're doing. */ int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs); #ifdef __cplusplus } #endif #endif /* _SYS_ZAP_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h (revision 350898) @@ -1,466 +1,467 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011-2012 Pawel Jakub Dawidek. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright 2016 RackTop Systems. * Copyright (c) 2014 Integros [integros.com] */ #ifndef _SYS_ZFS_IOCTL_H #define _SYS_ZFS_IOCTL_H #include #include #include #include #include #include #ifdef _KERNEL #include #endif /* _KERNEL */ #ifdef __cplusplus extern "C" { #endif /* * The structures in this file are passed between userland and the * kernel. Userland may be running a 32-bit process, while the kernel * is 64-bit. Therefore, these structures need to compile the same in * 32-bit and 64-bit. This means not using type "long", and adding * explicit padding so that the 32-bit structure will not be packed more * tightly than the 64-bit structure (which requires 64-bit alignment). */ /* * Property values for snapdir */ #define ZFS_SNAPDIR_HIDDEN 0 #define ZFS_SNAPDIR_VISIBLE 1 /* * Field manipulation macros for the drr_versioninfo field of the * send stream header. */ /* * Header types for zfs send streams. */ typedef enum drr_headertype { DMU_SUBSTREAM = 0x1, DMU_COMPOUNDSTREAM = 0x2 } drr_headertype_t; #define DMU_GET_STREAM_HDRTYPE(vi) BF64_GET((vi), 0, 2) #define DMU_SET_STREAM_HDRTYPE(vi, x) BF64_SET((vi), 0, 2, x) #define DMU_GET_FEATUREFLAGS(vi) BF64_GET((vi), 2, 30) #define DMU_SET_FEATUREFLAGS(vi, x) BF64_SET((vi), 2, 30, x) /* * Feature flags for zfs send streams (flags in drr_versioninfo) */ #define DMU_BACKUP_FEATURE_DEDUP (1 << 0) #define DMU_BACKUP_FEATURE_DEDUPPROPS (1 << 1) #define DMU_BACKUP_FEATURE_SA_SPILL (1 << 2) /* flags #3 - #15 are reserved for incompatible closed-source implementations */ #define DMU_BACKUP_FEATURE_EMBED_DATA (1 << 16) #define DMU_BACKUP_FEATURE_LZ4 (1 << 17) /* flag #18 is reserved for a Delphix feature */ #define DMU_BACKUP_FEATURE_LARGE_BLOCKS (1 << 19) #define DMU_BACKUP_FEATURE_RESUMING (1 << 20) /* flag #21 is reserved for a Delphix feature */ #define DMU_BACKUP_FEATURE_COMPRESSED (1 << 22) -/* flag #23 is reserved for the large dnode feature */ +#define DMU_BACKUP_FEATURE_LARGE_DNODE (1 << 23) /* flag #24 is reserved for the raw send feature */ /* flag #25 is reserved for the ZSTD compression feature */ /* * Mask of all supported backup features */ #define DMU_BACKUP_FEATURE_MASK (DMU_BACKUP_FEATURE_DEDUP | \ DMU_BACKUP_FEATURE_DEDUPPROPS | DMU_BACKUP_FEATURE_SA_SPILL | \ DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_LZ4 | \ DMU_BACKUP_FEATURE_RESUMING | \ - DMU_BACKUP_FEATURE_LARGE_BLOCKS | \ + DMU_BACKUP_FEATURE_LARGE_BLOCKS | DMU_BACKUP_FEATURE_LARGE_DNODE | \ DMU_BACKUP_FEATURE_COMPRESSED) /* Are all features in the given flag word currently supported? */ #define DMU_STREAM_SUPPORTED(x) (!((x) & ~DMU_BACKUP_FEATURE_MASK)) typedef enum dmu_send_resume_token_version { ZFS_SEND_RESUME_TOKEN_VERSION = 1 } dmu_send_resume_token_version_t; /* * The drr_versioninfo field of the dmu_replay_record has the * following layout: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ - * | reserved | feature-flags |C|S| + * | reserved | feature-flags |C|S| * +-------+-------+-------+-------+-------+-------+-------+-------+ * * The low order two bits indicate the header type: SUBSTREAM (0x1) * or COMPOUNDSTREAM (0x2). Using two bits for this is historical: * this field used to be a version number, where the two version types * were 1 and 2. Using two bits for this allows earlier versions of * the code to be able to recognize send streams that don't use any * of the features indicated by feature flags. */ #define DMU_BACKUP_MAGIC 0x2F5bacbacULL /* * Send stream flags. Bits 24-31 are reserved for vendor-specific * implementations and should not be used. */ #define DRR_FLAG_CLONE (1<<0) #define DRR_FLAG_CI_DATA (1<<1) /* * This send stream, if it is a full send, includes the FREE and FREEOBJECT * records that are created by the sending process. This means that the send * stream can be received as a clone, even though it is not an incremental. * This is not implemented as a feature flag, because the receiving side does * not need to have implemented it to receive this stream; it is fully backwards * compatible. We need a flag, though, because full send streams without it * cannot necessarily be received as a clone correctly. */ #define DRR_FLAG_FREERECORDS (1<<2) /* * flags in the drr_checksumflags field in the DRR_WRITE and * DRR_WRITE_BYREF blocks */ #define DRR_CHECKSUM_DEDUP (1<<0) #define DRR_IS_DEDUP_CAPABLE(flags) ((flags) & DRR_CHECKSUM_DEDUP) /* deal with compressed drr_write replay records */ #define DRR_WRITE_COMPRESSED(drrw) ((drrw)->drr_compressiontype != 0) #define DRR_WRITE_PAYLOAD_SIZE(drrw) \ (DRR_WRITE_COMPRESSED(drrw) ? (drrw)->drr_compressed_size : \ (drrw)->drr_logical_size) /* * zfs ioctl command structure */ typedef struct dmu_replay_record { enum { DRR_BEGIN, DRR_OBJECT, DRR_FREEOBJECTS, DRR_WRITE, DRR_FREE, DRR_END, DRR_WRITE_BYREF, DRR_SPILL, DRR_WRITE_EMBEDDED, DRR_NUMTYPES } drr_type; uint32_t drr_payloadlen; union { struct drr_begin { uint64_t drr_magic; uint64_t drr_versioninfo; /* was drr_version */ uint64_t drr_creation_time; dmu_objset_type_t drr_type; uint32_t drr_flags; uint64_t drr_toguid; uint64_t drr_fromguid; char drr_toname[MAXNAMELEN]; } drr_begin; struct drr_end { zio_cksum_t drr_checksum; uint64_t drr_toguid; } drr_end; struct drr_object { uint64_t drr_object; dmu_object_type_t drr_type; dmu_object_type_t drr_bonustype; uint32_t drr_blksz; uint32_t drr_bonuslen; uint8_t drr_checksumtype; uint8_t drr_compress; - uint8_t drr_pad[6]; + uint8_t drr_dn_slots; + uint8_t drr_pad[5]; uint64_t drr_toguid; /* bonus content follows */ } drr_object; struct drr_freeobjects { uint64_t drr_firstobj; uint64_t drr_numobjs; uint64_t drr_toguid; } drr_freeobjects; struct drr_write { uint64_t drr_object; dmu_object_type_t drr_type; uint32_t drr_pad; uint64_t drr_offset; uint64_t drr_logical_size; uint64_t drr_toguid; uint8_t drr_checksumtype; uint8_t drr_checksumflags; uint8_t drr_compressiontype; uint8_t drr_pad2[5]; /* deduplication key */ ddt_key_t drr_key; /* only nonzero if drr_compressiontype is not 0 */ uint64_t drr_compressed_size; /* content follows */ } drr_write; struct drr_free { uint64_t drr_object; uint64_t drr_offset; uint64_t drr_length; uint64_t drr_toguid; } drr_free; struct drr_write_byref { /* where to put the data */ uint64_t drr_object; uint64_t drr_offset; uint64_t drr_length; uint64_t drr_toguid; /* where to find the prior copy of the data */ uint64_t drr_refguid; uint64_t drr_refobject; uint64_t drr_refoffset; /* properties of the data */ uint8_t drr_checksumtype; uint8_t drr_checksumflags; uint8_t drr_pad2[6]; ddt_key_t drr_key; /* deduplication key */ } drr_write_byref; struct drr_spill { uint64_t drr_object; uint64_t drr_length; uint64_t drr_toguid; uint64_t drr_pad[4]; /* needed for crypto */ /* spill data follows */ } drr_spill; struct drr_write_embedded { uint64_t drr_object; uint64_t drr_offset; /* logical length, should equal blocksize */ uint64_t drr_length; uint64_t drr_toguid; uint8_t drr_compression; uint8_t drr_etype; uint8_t drr_pad[6]; uint32_t drr_lsize; /* uncompressed size of payload */ uint32_t drr_psize; /* compr. (real) size of payload */ /* (possibly compressed) content follows */ } drr_write_embedded; /* * Nore: drr_checksum is overlaid with all record types * except DRR_BEGIN. Therefore its (non-pad) members * must not overlap with members from the other structs. * We accomplish this by putting its members at the very * end of the struct. */ struct drr_checksum { uint64_t drr_pad[34]; /* * fletcher-4 checksum of everything preceding the * checksum. */ zio_cksum_t drr_checksum; } drr_checksum; } drr_u; } dmu_replay_record_t; /* diff record range types */ typedef enum diff_type { DDR_NONE = 0x1, DDR_INUSE = 0x2, DDR_FREE = 0x4 } diff_type_t; /* * The diff reports back ranges of free or in-use objects. */ typedef struct dmu_diff_record { uint64_t ddr_type; uint64_t ddr_first; uint64_t ddr_last; } dmu_diff_record_t; typedef struct zinject_record { uint64_t zi_objset; uint64_t zi_object; uint64_t zi_start; uint64_t zi_end; uint64_t zi_guid; uint32_t zi_level; uint32_t zi_error; uint64_t zi_type; uint32_t zi_freq; uint32_t zi_failfast; char zi_func[MAXNAMELEN]; uint32_t zi_iotype; int32_t zi_duration; uint64_t zi_timer; uint64_t zi_nlanes; uint32_t zi_cmd; uint32_t zi_pad; } zinject_record_t; #define ZINJECT_NULL 0x1 #define ZINJECT_FLUSH_ARC 0x2 #define ZINJECT_UNLOAD_SPA 0x4 typedef enum zinject_type { ZINJECT_UNINITIALIZED, ZINJECT_DATA_FAULT, ZINJECT_DEVICE_FAULT, ZINJECT_LABEL_FAULT, ZINJECT_IGNORED_WRITES, ZINJECT_PANIC, ZINJECT_DELAY_IO, } zinject_type_t; typedef struct zfs_share { uint64_t z_exportdata; uint64_t z_sharedata; uint64_t z_sharetype; /* 0 = share, 1 = unshare */ uint64_t z_sharemax; /* max length of share string */ } zfs_share_t; /* * ZFS file systems may behave the usual, POSIX-compliant way, where * name lookups are case-sensitive. They may also be set up so that * all the name lookups are case-insensitive, or so that only some * lookups, the ones that set an FIGNORECASE flag, are case-insensitive. */ typedef enum zfs_case { ZFS_CASE_SENSITIVE, ZFS_CASE_INSENSITIVE, ZFS_CASE_MIXED } zfs_case_t; /* * Note: this struct must have the same layout in 32-bit and 64-bit, so * that 32-bit processes (like /sbin/zfs) can pass it to the 64-bit * kernel. Therefore, we add padding to it so that no "hidden" padding * is automatically added on 64-bit (but not on 32-bit). */ typedef struct zfs_cmd { char zc_name[MAXPATHLEN]; /* name of pool or dataset */ uint64_t zc_nvlist_src; /* really (char *) */ uint64_t zc_nvlist_src_size; uint64_t zc_nvlist_dst; /* really (char *) */ uint64_t zc_nvlist_dst_size; boolean_t zc_nvlist_dst_filled; /* put an nvlist in dst? */ int zc_pad2; /* * The following members are for legacy ioctls which haven't been * converted to the new method. */ uint64_t zc_history; /* really (char *) */ char zc_value[MAXPATHLEN * 2]; char zc_string[MAXNAMELEN]; uint64_t zc_guid; uint64_t zc_nvlist_conf; /* really (char *) */ uint64_t zc_nvlist_conf_size; uint64_t zc_cookie; uint64_t zc_objset_type; uint64_t zc_perm_action; uint64_t zc_history_len; uint64_t zc_history_offset; uint64_t zc_obj; uint64_t zc_iflags; /* internal to zfs(7fs) */ zfs_share_t zc_share; dmu_objset_stats_t zc_objset_stats; dmu_replay_record_t zc_begin_record; zinject_record_t zc_inject_record; uint32_t zc_defer_destroy; uint32_t zc_flags; uint64_t zc_action_handle; int zc_cleanup_fd; uint8_t zc_simple; uint8_t zc_pad3[3]; boolean_t zc_resumable; uint32_t zc_pad4; uint64_t zc_sendobj; uint64_t zc_fromobj; uint64_t zc_createtxg; zfs_stat_t zc_stat; } zfs_cmd_t; typedef struct zfs_useracct { char zu_domain[256]; uid_t zu_rid; uint32_t zu_pad; uint64_t zu_space; } zfs_useracct_t; #define ZFSDEV_MAX_MINOR (1 << 16) #define ZFS_MIN_MINOR (ZFSDEV_MAX_MINOR + 1) #define ZPOOL_EXPORT_AFTER_SPLIT 0x1 #ifdef _KERNEL struct objset; struct zfsvfs; typedef struct zfs_creat { nvlist_t *zct_zplprops; nvlist_t *zct_props; } zfs_creat_t; extern dev_info_t *zfs_dip; extern int zfs_secpolicy_snapshot_perms(const char *, cred_t *); extern int zfs_secpolicy_rename_perms(const char *, const char *, cred_t *); extern int zfs_secpolicy_destroy_perms(const char *, cred_t *); extern int zfs_busy(void); extern void zfs_unmount_snap(const char *); extern void zfs_destroy_unmount_origin(const char *); extern int getzfsvfs_impl(struct objset *, struct zfsvfs **); extern int getzfsvfs(const char *, struct zfsvfs **); /* * ZFS minor numbers can refer to either a control device instance or * a zvol. Depending on the value of zss_type, zss_data points to either * a zvol_state_t or a zfs_onexit_t. */ enum zfs_soft_state_type { ZSST_ZVOL, ZSST_CTLDEV }; typedef struct zfs_soft_state { enum zfs_soft_state_type zss_type; void *zss_data; } zfs_soft_state_t; extern void *zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which); extern minor_t zfsdev_minor_alloc(void); extern void *zfsdev_state; extern kmutex_t zfsdev_state_lock; #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_ZFS_IOCTL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h (revision 350898) @@ -1,350 +1,351 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ #ifndef _SYS_FS_ZFS_ZNODE_H #define _SYS_FS_ZFS_ZNODE_H #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #endif #include #include #ifdef __cplusplus extern "C" { #endif /* * Additional file level attributes, that are stored * in the upper half of zp_flags */ #define ZFS_READONLY 0x0000000100000000 #define ZFS_HIDDEN 0x0000000200000000 #define ZFS_SYSTEM 0x0000000400000000 #define ZFS_ARCHIVE 0x0000000800000000 #define ZFS_IMMUTABLE 0x0000001000000000 #define ZFS_NOUNLINK 0x0000002000000000 #define ZFS_APPENDONLY 0x0000004000000000 #define ZFS_NODUMP 0x0000008000000000 #define ZFS_OPAQUE 0x0000010000000000 #define ZFS_AV_QUARANTINED 0x0000020000000000 #define ZFS_AV_MODIFIED 0x0000040000000000 #define ZFS_REPARSE 0x0000080000000000 #define ZFS_OFFLINE 0x0000100000000000 #define ZFS_SPARSE 0x0000200000000000 #define ZFS_ATTR_SET(zp, attr, value, pflags, tx) \ { \ if (value) \ pflags |= attr; \ else \ pflags &= ~attr; \ VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_FLAGS(zp->z_zfsvfs), \ &pflags, sizeof (pflags), tx)); \ } /* * Define special zfs pflags */ #define ZFS_XATTR 0x1 /* is an extended attribute */ #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ #define ZFS_ACL_OBJ_ACE 0x8 /* ACL has CMPLX Object ACE */ #define ZFS_ACL_PROTECTED 0x10 /* ACL protected */ #define ZFS_ACL_DEFAULTED 0x20 /* ACL should be defaulted */ #define ZFS_ACL_AUTO_INHERIT 0x40 /* ACL should be inherited */ #define ZFS_BONUS_SCANSTAMP 0x80 /* Scanstamp in bonus area */ #define ZFS_NO_EXECS_DENIED 0x100 /* exec was given to everyone */ #define SA_ZPL_ATIME(z) z->z_attr_table[ZPL_ATIME] #define SA_ZPL_MTIME(z) z->z_attr_table[ZPL_MTIME] #define SA_ZPL_CTIME(z) z->z_attr_table[ZPL_CTIME] #define SA_ZPL_CRTIME(z) z->z_attr_table[ZPL_CRTIME] #define SA_ZPL_GEN(z) z->z_attr_table[ZPL_GEN] #define SA_ZPL_DACL_ACES(z) z->z_attr_table[ZPL_DACL_ACES] #define SA_ZPL_XATTR(z) z->z_attr_table[ZPL_XATTR] #define SA_ZPL_SYMLINK(z) z->z_attr_table[ZPL_SYMLINK] #define SA_ZPL_RDEV(z) z->z_attr_table[ZPL_RDEV] #define SA_ZPL_SCANSTAMP(z) z->z_attr_table[ZPL_SCANSTAMP] #define SA_ZPL_UID(z) z->z_attr_table[ZPL_UID] #define SA_ZPL_GID(z) z->z_attr_table[ZPL_GID] #define SA_ZPL_PARENT(z) z->z_attr_table[ZPL_PARENT] #define SA_ZPL_LINKS(z) z->z_attr_table[ZPL_LINKS] #define SA_ZPL_MODE(z) z->z_attr_table[ZPL_MODE] #define SA_ZPL_DACL_COUNT(z) z->z_attr_table[ZPL_DACL_COUNT] #define SA_ZPL_FLAGS(z) z->z_attr_table[ZPL_FLAGS] #define SA_ZPL_SIZE(z) z->z_attr_table[ZPL_SIZE] #define SA_ZPL_ZNODE_ACL(z) z->z_attr_table[ZPL_ZNODE_ACL] #define SA_ZPL_PAD(z) z->z_attr_table[ZPL_PAD] /* * Is ID ephemeral? */ #define IS_EPHEMERAL(x) (x > MAXUID) /* * Should we use FUIDs? */ #define USE_FUIDS(version, os) (version >= ZPL_VERSION_FUID && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) #define USE_SA(version, os) (version >= ZPL_VERSION_SA && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_SA) #define MASTER_NODE_OBJ 1 /* * Special attributes for master node. * "userquota@" and "groupquota@" are also valid (from * zfs_userquota_prop_prefixes[]). */ #define ZFS_FSID "FSID" #define ZFS_UNLINKED_SET "DELETE_QUEUE" #define ZFS_ROOT_OBJ "ROOT" #define ZPL_VERSION_STR "VERSION" #define ZFS_FUID_TABLES "FUID" #define ZFS_SHARES_DIR "SHARES" #define ZFS_SA_ATTRS "SA_ATTRS" /* * Convert mode bits (zp_mode) to BSD-style DT_* values for storing in * the directory entries. */ #define IFTODT(mode) (((mode) & S_IFMT) >> 12) /* * The directory entry has the type (currently unused on Solaris) in the * top 4 bits, and the object number in the low 48 bits. The "middle" * 12 bits are unused. */ #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) /* * Directory entry locks control access to directory entries. * They are used to protect creates, deletes, and renames. * Each directory znode has a mutex and a list of locked names. */ #ifdef _KERNEL typedef struct zfs_dirlock { char *dl_name; /* directory entry being locked */ uint32_t dl_sharecnt; /* 0 if exclusive, > 0 if shared */ uint8_t dl_namelock; /* 1 if z_name_lock is NOT held */ uint16_t dl_namesize; /* set if dl_name was allocated */ kcondvar_t dl_cv; /* wait for entry to be unlocked */ struct znode *dl_dzp; /* directory znode */ struct zfs_dirlock *dl_next; /* next in z_dirlocks list */ } zfs_dirlock_t; typedef struct znode { struct zfsvfs *z_zfsvfs; vnode_t *z_vnode; uint64_t z_id; /* object ID for this znode */ kmutex_t z_lock; /* znode modification lock */ krwlock_t z_parent_lock; /* parent lock for directories */ krwlock_t z_name_lock; /* "master" lock for dirent locks */ zfs_dirlock_t *z_dirlocks; /* directory entry lock list */ rangelock_t z_rangelock; /* file range locks */ uint8_t z_unlinked; /* file has been unlinked */ uint8_t z_atime_dirty; /* atime needs to be synced */ uint8_t z_zn_prefetch; /* Prefetch znodes? */ uint8_t z_moved; /* Has this znode been moved? */ uint_t z_blksz; /* block size in bytes */ uint_t z_seq; /* modification sequence number */ uint64_t z_mapcnt; /* number of pages mapped to file */ + uint64_t z_dnodesize; /* dnode size */ uint64_t z_gen; /* generation (cached) */ uint64_t z_size; /* file size (cached) */ uint64_t z_atime[2]; /* atime (cached) */ uint64_t z_links; /* file links (cached) */ uint64_t z_pflags; /* pflags (cached) */ uint64_t z_uid; /* uid fuid (cached) */ uint64_t z_gid; /* gid fuid (cached) */ mode_t z_mode; /* mode (cached) */ uint32_t z_sync_cnt; /* synchronous open count */ kmutex_t z_acl_lock; /* acl data lock */ zfs_acl_t *z_acl_cached; /* cached acl */ list_node_t z_link_node; /* all znodes in fs link */ sa_handle_t *z_sa_hdl; /* handle to sa data */ boolean_t z_is_sa; /* are we native sa? */ } znode_t; /* * Range locking rules * -------------------- * 1. When truncating a file (zfs_create, zfs_setattr, zfs_space) the whole * file range needs to be locked as RL_WRITER. Only then can the pages be * freed etc and zp_size reset. zp_size must be set within range lock. * 2. For writes and punching holes (zfs_write & zfs_space) just the range * being written or freed needs to be locked as RL_WRITER. * Multiple writes at the end of the file must coordinate zp_size updates * to ensure data isn't lost. A compare and swap loop is currently used * to ensure the file size is at least the offset last written. * 3. For reads (zfs_read, zfs_get_data & zfs_putapage) just the range being * read needs to be locked as RL_READER. A check against zp_size can then * be made for reading beyond end of file. */ /* * Convert between znode pointers and vnode pointers */ #define ZTOV(ZP) ((ZP)->z_vnode) #define VTOZ(VP) ((znode_t *)(VP)->v_data) /* Called on entry to each ZFS vnode and vfs operation */ #define ZFS_ENTER(zfsvfs) \ { \ rrm_enter_read(&(zfsvfs)->z_teardown_lock, FTAG); \ if ((zfsvfs)->z_unmounted) { \ ZFS_EXIT(zfsvfs); \ return (EIO); \ } \ } /* Must be called before exiting the vop */ #define ZFS_EXIT(zfsvfs) rrm_exit(&(zfsvfs)->z_teardown_lock, FTAG) /* Verifies the znode is valid */ #define ZFS_VERIFY_ZP(zp) \ if ((zp)->z_sa_hdl == NULL) { \ ZFS_EXIT((zp)->z_zfsvfs); \ return (EIO); \ } \ /* * Macros for dealing with dmu_buf_hold */ #define ZFS_OBJ_HASH(obj_num) ((obj_num) & (ZFS_OBJ_MTX_SZ - 1)) #define ZFS_OBJ_MUTEX(zfsvfs, obj_num) \ (&(zfsvfs)->z_hold_mtx[ZFS_OBJ_HASH(obj_num)]) #define ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num) \ mutex_enter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_TRYENTER(zfsvfs, obj_num) \ mutex_tryenter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num) \ mutex_exit(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) /* Encode ZFS stored time values from a struct timespec */ #define ZFS_TIME_ENCODE(tp, stmp) \ { \ (stmp)[0] = (uint64_t)(tp)->tv_sec; \ (stmp)[1] = (uint64_t)(tp)->tv_nsec; \ } /* Decode ZFS stored time values to a struct timespec */ #define ZFS_TIME_DECODE(tp, stmp) \ { \ (tp)->tv_sec = (time_t)(stmp)[0]; \ (tp)->tv_nsec = (long)(stmp)[1]; \ } /* * Timestamp defines */ #define ACCESSED (AT_ATIME) #define STATE_CHANGED (AT_CTIME) #define CONTENT_MODIFIED (AT_MTIME | AT_CTIME) #define ZFS_ACCESSTIME_STAMP(zfsvfs, zp) \ if ((zfsvfs)->z_atime && !((zfsvfs)->z_vfs->vfs_flag & VFS_RDONLY)) \ zfs_tstamp_update_setup(zp, ACCESSED, NULL, NULL, B_FALSE); extern int zfs_init_fs(zfsvfs_t *, znode_t **); extern void zfs_set_dataprop(objset_t *); extern void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *, dmu_tx_t *tx); extern void zfs_tstamp_update_setup(znode_t *, uint_t, uint64_t [2], uint64_t [2], boolean_t); extern void zfs_grow_blocksize(znode_t *, uint64_t, dmu_tx_t *); extern int zfs_freesp(znode_t *, uint64_t, uint64_t, int, boolean_t); extern void zfs_znode_init(void); extern void zfs_znode_fini(void); extern int zfs_zget(zfsvfs_t *, uint64_t, znode_t **); extern int zfs_rezget(znode_t *); extern void zfs_zinactive(znode_t *); extern void zfs_znode_delete(znode_t *, dmu_tx_t *); extern void zfs_znode_free(znode_t *); extern void zfs_remove_op_tables(); extern int zfs_create_op_tables(); extern int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr); extern dev_t zfs_cmpldev(uint64_t); extern int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value); extern int zfs_get_stats(objset_t *os, nvlist_t *nv); extern boolean_t zfs_get_vfs_flag_unmounted(objset_t *os); extern void zfs_znode_dmu_fini(znode_t *); extern void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, vsecattr_t *, zfs_fuid_info_t *, vattr_t *vap); extern int zfs_log_create_txtype(zil_create_t, vsecattr_t *vsecp, vattr_t *vap); extern void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, char *name, uint64_t foid); #define ZFS_NO_OBJECT 0 /* no object id */ extern void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name); extern void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, char *link); extern void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp); extern void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t len, int ioflag); extern void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len); extern void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp); extern void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp); extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx); extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx); extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx); extern caddr_t zfs_map_page(page_t *, enum seg_rw); extern void zfs_unmap_page(page_t *, caddr_t); extern zil_get_data_t zfs_get_data; extern zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE]; extern int zfsfstype; #endif /* _KERNEL */ extern int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len); #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_ZNODE_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h (revision 350898) @@ -1,447 +1,460 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_H #define _SYS_ZIL_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_pool; struct dsl_dataset; struct lwb; /* * Intent log format: * * Each objset has its own intent log. The log header (zil_header_t) * for objset N's intent log is kept in the Nth object of the SPA's * intent_log objset. The log header points to a chain of log blocks, * each of which contains log records (i.e., transactions) followed by * a log block trailer (zil_trailer_t). The format of a log record * depends on the record (or transaction) type, but all records begin * with a common structure that defines the type, length, and txg. */ /* * Intent log header - this on disk structure holds fields to manage * the log. All fields are 64 bit to easily handle cross architectures. */ typedef struct zil_header { uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ uint64_t zh_replay_seq; /* highest replayed sequence number */ blkptr_t zh_log; /* log chain */ uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */ uint64_t zh_flags; /* header flags */ uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */ uint64_t zh_pad[3]; } zil_header_t; /* * zh_flags bit settings */ #define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */ #define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */ /* * Log block chaining. * * Log blocks are chained together. Originally they were chained at the * end of the block. For performance reasons the chain was moved to the * beginning of the block which allows writes for only the data being used. * The older position is supported for backwards compatability. * * The zio_eck_t contains a zec_cksum which for the intent log is * the sequence number of this log block. A seq of 0 is invalid. * The zec_cksum is checked by the SPA against the sequence * number passed in the blk_cksum field of the blkptr_t */ typedef struct zil_chain { uint64_t zc_pad; blkptr_t zc_next_blk; /* next block in chain */ uint64_t zc_nused; /* bytes in log block used */ zio_eck_t zc_eck; /* block trailer */ } zil_chain_t; #define ZIL_MIN_BLKSZ 4096ULL /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) /* * The words of a log block checksum. */ #define ZIL_ZC_GUID_0 0 #define ZIL_ZC_GUID_1 1 #define ZIL_ZC_OBJSET 2 #define ZIL_ZC_SEQ 3 typedef enum zil_create { Z_FILE, Z_DIR, Z_XATTRDIR, } zil_create_t; /* * size of xvattr log section. * its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps * for create time and a single 64 bit integer for all of the attributes, * and 4 64 bit integers (32 bytes) for the scanstamp. * */ #define ZIL_XVAT_SIZE(mapsize) \ sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \ (sizeof (uint64_t) * 7) /* * Size of ACL in log. The ACE data is padded out to properly align * on 8 byte boundary. */ #define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t))) /* * Intent log transaction types and record structures */ #define TX_COMMIT 0 /* Commit marker (no on-disk state) */ #define TX_CREATE 1 /* Create file */ #define TX_MKDIR 2 /* Make directory */ #define TX_MKXATTR 3 /* Make XATTR directory */ #define TX_SYMLINK 4 /* Create symbolic link to a file */ #define TX_REMOVE 5 /* Remove file */ #define TX_RMDIR 6 /* Remove directory */ #define TX_LINK 7 /* Create hard link to a file */ #define TX_RENAME 8 /* Rename a file */ #define TX_WRITE 9 /* File write */ #define TX_TRUNCATE 10 /* Truncate a file */ #define TX_SETATTR 11 /* Set file attributes */ #define TX_ACL_V0 12 /* Set old formatted ACL */ #define TX_ACL 13 /* Set ACL */ #define TX_CREATE_ACL 14 /* create with ACL */ #define TX_CREATE_ATTR 15 /* create + attrs */ -#define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ +#define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ #define TX_MKDIR_ACL 17 /* mkdir with ACL */ #define TX_MKDIR_ATTR 18 /* mkdir with attr */ #define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */ #define TX_WRITE2 20 /* dmu_sync EALREADY write */ #define TX_MAX_TYPE 21 /* Max transaction type */ /* * The transactions for mkdir, symlink, remove, rmdir, link, and rename * may have the following bit set, indicating the original request * specified case-insensitive handling of names. */ #define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */ /* * Transactions for write, truncate, setattr, acl_v0, and acl can be logged * out of order. For convenience in the code, all such records must have * lr_foid at the same offset. */ #define TX_OOO(txtype) \ ((txtype) == TX_WRITE || \ (txtype) == TX_TRUNCATE || \ (txtype) == TX_SETATTR || \ (txtype) == TX_ACL_V0 || \ (txtype) == TX_ACL || \ (txtype) == TX_WRITE2) /* + * The number of dnode slots consumed by the object is stored in the 8 + * unused upper bits of the object ID. We subtract 1 from the value + * stored on disk for compatibility with implementations that don't + * support large dnodes. The slot count for a single-slot dnode will + * contain 0 for those bits to preserve the log record format for + * "small" dnodes. + */ +#define LR_FOID_GET_SLOTS(oid) (BF64_GET((oid), 56, 8) + 1) +#define LR_FOID_SET_SLOTS(oid, x) BF64_SET((oid), 56, 8, (x) - 1) +#define LR_FOID_GET_OBJ(oid) BF64_GET((oid), 0, DN_MAX_OBJECT_SHIFT) +#define LR_FOID_SET_OBJ(oid, x) BF64_SET((oid), 0, DN_MAX_OBJECT_SHIFT, (x)) + +/* * Format of log records. * The fields are carefully defined to allow them to be aligned * and sized the same on sparc & intel architectures. * Each log record has a common structure at the beginning. * * The log record on disk (lrc_seq) holds the sequence number of all log * records which is used to ensure we don't replay the same record. */ typedef struct { /* common log record header */ uint64_t lrc_txtype; /* intent log transaction type */ uint64_t lrc_reclen; /* transaction record length */ uint64_t lrc_txg; /* dmu transaction group number */ uint64_t lrc_seq; /* see comment above */ } lr_t; /* * Common start of all out-of-order record types (TX_OOO() above). */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id */ } lr_ooo_t; /* * Handle option extended vattr attributes. * * Whenever new attributes are added the version number * will need to be updated as will code in * zfs_log.c and zfs_replay.c */ typedef struct { uint32_t lr_attr_masksize; /* number of elements in array */ uint32_t lr_attr_bitmap; /* First entry of array */ /* remainder of array and any additional fields */ } lr_attr_t; /* * log record for creates without optional ACL. * This log record does support optional xvattr_t attributes. */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* object id of directory */ uint64_t lr_foid; /* object id of created file object */ uint64_t lr_mode; /* mode of object */ uint64_t lr_uid; /* uid of object */ uint64_t lr_gid; /* gid of object */ uint64_t lr_gen; /* generation (txg of creation) */ uint64_t lr_crtime[2]; /* creation time */ uint64_t lr_rdev; /* rdev of object to create */ /* name of object to create follows this */ /* for symlinks, link content follows name */ /* for creates with xvattr data, the name follows the xvattr info */ } lr_create_t; /* * FUID ACL record will be an array of ACEs from the original ACL. * If this array includes ephemeral IDs, the record will also include * an array of log-specific FUIDs to replace the ephemeral IDs. * Only one copy of each unique domain will be present, so the log-specific * FUIDs will use an index into a compressed domain table. On replay this * information will be used to construct real FUIDs (and bypass idmap, * since it may not be available). */ /* * Log record for creates with optional ACL * This log record is also used for recording any FUID * information needed for replaying the create. If the * file doesn't have any actual ACEs then the lr_aclcnt * would be zero. * * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's. * If create is also setting xvattr's, then acl data follows xvattr. * If ACE FUIDs are needed then they will follow the xvattr_t. Following * the FUIDs will be the domain table information. The FUIDs for the owner * and group will be in lr_create. Name follows ACL data. */ typedef struct { lr_create_t lr_create; /* common create portion */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ } lr_acl_create_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ /* name of object to remove follows this */ } lr_remove_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ uint64_t lr_link_obj; /* obj id of link */ /* name of object to link follows this */ } lr_link_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_sdoid; /* obj id of source directory */ uint64_t lr_tdoid; /* obj id of target directory */ /* 2 strings: names of source and destination follow this */ } lr_rename_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to write */ uint64_t lr_offset; /* offset to write to */ uint64_t lr_length; /* user data length to write */ uint64_t lr_blkoff; /* no longer used */ blkptr_t lr_blkptr; /* spa block pointer for replay */ /* write data will follow for small writes */ } lr_write_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id of file to truncate */ uint64_t lr_offset; /* offset to truncate from */ uint64_t lr_length; /* length to truncate */ } lr_truncate_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_mask; /* mask of attributes to set */ uint64_t lr_mode; /* mode to set */ uint64_t lr_uid; /* uid to set */ uint64_t lr_gid; /* gid to set */ uint64_t lr_size; /* size to set */ uint64_t lr_atime[2]; /* access time */ uint64_t lr_mtime[2]; /* modification time */ /* optional attribute lr_attr_t may be here */ } lr_setattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of acl entries */ /* lr_aclcnt number of ace_t entries follow this */ } lr_acl_v0_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ /* lr_acl_bytes number of variable sized ace's follows */ } lr_acl_t; /* * ZIL structure definitions, interface function prototype and globals. */ /* * Writes are handled in three different ways: * * WR_INDIRECT: * In this mode, if we need to commit the write later, then the block * is immediately written into the file system (using dmu_sync), * and a pointer to the block is put into the log record. * When the txg commits the block is linked in. * This saves additionally writing the data into the log record. * There are a few requirements for this to occur: * - write is greater than zfs/zvol_immediate_write_sz * - not using slogs (as slogs are assumed to always be faster * than writing into the main pool) * - the write occupies only one block * WR_COPIED: * If we know we'll immediately be committing the * transaction (FSYNC or FDSYNC), the we allocate a larger * log record here for the data and copy the data in. * WR_NEED_COPY: * Otherwise we don't allocate a buffer, and *if* we need to * flush the write later then a buffer is allocated and * we retrieve the data using the dmu. */ typedef enum { WR_INDIRECT, /* indirect - a large write (dmu_sync() data */ /* and put blkptr in log, rather than actual data) */ WR_COPIED, /* immediate - data is copied into lr_write_t */ WR_NEED_COPY, /* immediate - data needs to be copied if pushed */ WR_NUM_STATES /* number of states */ } itx_wr_state_t; typedef struct itx { list_node_t itx_node; /* linkage on zl_itx_list */ void *itx_private; /* type-specific opaque data */ itx_wr_state_t itx_wr_state; /* write state */ uint8_t itx_sync; /* synchronous transaction */ uint64_t itx_oid; /* object id */ lr_t itx_lr; /* common part of log record */ /* followed by type-specific part of lr_xx_t and its immediate data */ } itx_t; typedef int zil_parse_blk_func_t(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t txg); typedef int zil_parse_lr_func_t(zilog_t *zilog, lr_t *lr, void *arg, uint64_t txg); typedef int zil_replay_func_t(void *arg1, void *arg2, boolean_t byteswap); typedef int zil_get_data_t(void *arg, lr_write_t *lr, char *dbuf, struct lwb *lwb, zio_t *zio); extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg); extern void zil_init(void); extern void zil_fini(void); extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys); extern void zil_free(zilog_t *zilog); extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data); extern void zil_close(zilog_t *zilog); extern void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]); extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx); extern void zil_destroy(zilog_t *zilog, boolean_t keep_first); extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx); extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize); extern void zil_itx_destroy(itx_t *itx); extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx); extern void zil_commit(zilog_t *zilog, uint64_t oid); extern void zil_commit_impl(zilog_t *zilog, uint64_t oid); extern int zil_reset(const char *osname, void *txarg); extern int zil_claim(struct dsl_pool *dp, struct dsl_dataset *ds, void *txarg); -extern int zil_check_log_chain(struct dsl_pool *dp, +extern int zil_check_log_chain(struct dsl_pool *dp, struct dsl_dataset *ds, void *tx); extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_clean(zilog_t *zilog, uint64_t synced_txg); extern int zil_suspend(const char *osname, void **cookiep); extern void zil_resume(void *cookie); extern void zil_lwb_add_block(struct lwb *lwb, const blkptr_t *bp); extern void zil_lwb_add_txg(struct lwb *lwb, uint64_t txg); extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp); extern void zil_set_sync(zilog_t *zilog, uint64_t syncval); extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval); extern int zil_replay_disable; #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zap.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zap.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zap.c (revision 350898) @@ -1,1300 +1,1309 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. */ /* * This file contains the top half of the zfs directory structure * implementation. The bottom half is in zap_leaf.c. * * The zdir is an extendable hash data structure. There is a table of * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are * each a constant size and hold a variable number of directory entries. * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. * * The pointer table holds a power of 2 number of pointers. * (1<zd_data->zd_phys->zd_prefix_len). The bucket pointed to * by the pointer at index i in the table holds entries whose hash value * has a zd_prefix_len - bit prefix */ #include #include #include #include #include #include #include #include #include int fzap_default_block_shift = 14; /* 16k blocksize */ extern inline zap_phys_t *zap_f_phys(zap_t *zap); static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); void fzap_byteswap(void *vbuf, size_t size) { uint64_t block_type = *(uint64_t *)vbuf; if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) zap_leaf_byteswap(vbuf, size); else { /* it's a ptrtbl block */ byteswap_uint64_array(vbuf, size); } } void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) { ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); zap->zap_ismicro = FALSE; zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; zap->zap_dbu.dbu_evict_func_async = NULL; mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; zap_phys_t *zp = zap_f_phys(zap); /* * explicitly zero it since it might be coming from an * initialized microzap */ bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); zp->zap_block_type = ZBT_HEADER; zp->zap_magic = ZAP_MAGIC; zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); zp->zap_freeblk = 2; /* block 1 will be the first leaf */ zp->zap_num_leafs = 1; zp->zap_num_entries = 0; zp->zap_salt = zap->zap_salt; zp->zap_normflags = zap->zap_normflags; zp->zap_flags = flags; /* block 1 will be the first leaf */ for (int i = 0; i < (1<zap_ptrtbl.zt_shift); i++) ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; /* * set up block 1 - the first leaf */ dmu_buf_t *db; VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 1<l_dbuf = db; zap_leaf_init(l, zp->zap_normflags != 0); kmem_free(l, sizeof (zap_leaf_t)); dmu_buf_rele(db, FTAG); } static int zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) { if (RW_WRITE_HELD(&zap->zap_rwlock)) return (1); if (rw_tryupgrade(&zap->zap_rwlock)) { dmu_buf_will_dirty(zap->zap_dbuf, tx); return (1); } return (0); } /* * Generic routines for dealing with the pointer & cookie tables. */ static int zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), dmu_tx_t *tx) { uint64_t newblk; int bs = FZAP_BLOCK_SHIFT(zap); int hepb = 1<<(bs-4); /* hepb = half the number of entries in a block */ ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); ASSERT(tbl->zt_numblks > 0); if (tbl->zt_nextblk != 0) { newblk = tbl->zt_nextblk; } else { newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); tbl->zt_nextblk = newblk; ASSERT0(tbl->zt_blks_copied); dmu_prefetch(zap->zap_objset, zap->zap_object, 0, tbl->zt_blk << bs, tbl->zt_numblks << bs, ZIO_PRIORITY_SYNC_READ); } /* * Copy the ptrtbl from the old to new location. */ uint64_t b = tbl->zt_blks_copied; dmu_buf_t *db_old; int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); if (err != 0) return (err); /* first half of entries in old[b] go to new[2*b+0] */ dmu_buf_t *db_new; VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func(db_old->db_data, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); /* second half of entries in old[b] go to new[2*b+1] */ VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func((uint64_t *)db_old->db_data + hepb, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); dmu_buf_rele(db_old, FTAG); tbl->zt_blks_copied++; dprintf("copied block %llu of %llu\n", tbl->zt_blks_copied, tbl->zt_numblks); if (tbl->zt_blks_copied == tbl->zt_numblks) { (void) dmu_free_range(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); tbl->zt_blk = newblk; tbl->zt_numblks *= 2; tbl->zt_shift++; tbl->zt_nextblk = 0; tbl->zt_blks_copied = 0; dprintf("finished; numblocks now %llu (%lluk entries)\n", tbl->zt_numblks, 1<<(tbl->zt_shift-10)); } return (0); } static int zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, dmu_tx_t *tx) { int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); dprintf("storing %llx at index %llx\n", val, idx); uint64_t blk = idx >> (bs-3); uint64_t off = idx & ((1<<(bs-3))-1); dmu_buf_t *db; int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); dmu_buf_will_dirty(db, tx); if (tbl->zt_nextblk != 0) { uint64_t idx2 = idx * 2; uint64_t blk2 = idx2 >> (bs-3); uint64_t off2 = idx2 & ((1<<(bs-3))-1); dmu_buf_t *db2; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, DMU_READ_NO_PREFETCH); if (err != 0) { dmu_buf_rele(db, FTAG); return (err); } dmu_buf_will_dirty(db2, tx); ((uint64_t *)db2->db_data)[off2] = val; ((uint64_t *)db2->db_data)[off2+1] = val; dmu_buf_rele(db2, FTAG); } ((uint64_t *)db->db_data)[off] = val; dmu_buf_rele(db, FTAG); return (0); } static int zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) { int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); uint64_t blk = idx >> (bs-3); uint64_t off = idx & ((1<<(bs-3))-1); /* * Note: this is equivalent to dmu_buf_hold(), but we use * _dnode_enter / _by_dnode because it's faster because we don't * have to hold the dnode. */ dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); dmu_buf_t *db; int err = dmu_buf_hold_by_dnode(dn, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); dmu_buf_dnode_exit(zap->zap_dbuf); if (err != 0) return (err); *valp = ((uint64_t *)db->db_data)[off]; dmu_buf_rele(db, FTAG); if (tbl->zt_nextblk != 0) { /* * read the nextblk for the sake of i/o error checking, * so that zap_table_load() will catch errors for * zap_table_store. */ blk = (idx*2) >> (bs-3); dn = dmu_buf_dnode_enter(zap->zap_dbuf); err = dmu_buf_hold_by_dnode(dn, (tbl->zt_nextblk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); dmu_buf_dnode_exit(zap->zap_dbuf); if (err == 0) dmu_buf_rele(db, FTAG); } return (err); } /* * Routines for growing the ptrtbl. */ static void zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) { for (int i = 0; i < n; i++) { uint64_t lb = src[i]; dst[2 * i + 0] = lb; dst[2 * i + 1] = lb; } } static int zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) { /* * The pointer table should never use more hash bits than we * have (otherwise we'd be using useless zero bits to index it). * If we are within 2 bits of running out, stop growing, since * this is already an aberrant condition. */ if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) return (SET_ERROR(ENOSPC)); if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { /* * We are outgrowing the "embedded" ptrtbl (the one * stored in the header block). Give it its own entire * block, which will double the size of the ptrtbl. */ ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); uint64_t newblk = zap_allocate_blocks(zap, 1); dmu_buf_t *db_new; int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, DMU_READ_NO_PREFETCH); if (err != 0) return (err); dmu_buf_will_dirty(db_new, tx); zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); dmu_buf_rele(db_new, FTAG); zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; zap_f_phys(zap)->zap_ptrtbl.zt_shift++; ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, zap_f_phys(zap)->zap_ptrtbl.zt_numblks << (FZAP_BLOCK_SHIFT(zap)-3)); return (0); } else { return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, zap_ptrtbl_transfer, tx)); } } static void zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) { dmu_buf_will_dirty(zap->zap_dbuf, tx); mutex_enter(&zap->zap_f.zap_num_entries_mtx); ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); zap_f_phys(zap)->zap_num_entries += delta; mutex_exit(&zap->zap_f.zap_num_entries_mtx); } static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks) { ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); uint64_t newblk = zap_f_phys(zap)->zap_freeblk; zap_f_phys(zap)->zap_freeblk += nblocks; return (newblk); } static void zap_leaf_evict_sync(void *dbu) { zap_leaf_t *l = dbu; rw_destroy(&l->l_rwlock); kmem_free(l, sizeof (zap_leaf_t)); } static zap_leaf_t * zap_create_leaf(zap_t *zap, dmu_tx_t *tx) { zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = zap_allocate_blocks(zap, 1); l->l_dbuf = NULL; VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, DMU_READ_NO_PREFETCH)); dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu)); dmu_buf_will_dirty(l->l_dbuf, tx); zap_leaf_init(l, zap->zap_normflags != 0); zap_f_phys(zap)->zap_num_leafs++; return (l); } int fzap_count(zap_t *zap, uint64_t *count) { ASSERT(!zap->zap_ismicro); mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ *count = zap_f_phys(zap)->zap_num_entries; mutex_exit(&zap->zap_f.zap_num_entries_mtx); return (0); } /* * Routines for obtaining zap_leaf_t's */ void zap_put_leaf(zap_leaf_t *l) { rw_exit(&l->l_rwlock); dmu_buf_rele(l->l_dbuf, NULL); } static zap_leaf_t * zap_open_leaf(uint64_t blkid, dmu_buf_t *db) { ASSERT(blkid != 0); zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = blkid; l->l_bs = highbit64(db->db_size) - 1; l->l_dbuf = db; dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu); rw_exit(&l->l_rwlock); if (winner != NULL) { /* someone else set it first */ zap_leaf_evict_sync(&l->l_dbu); l = winner; } /* * lhr_pad was previously used for the next leaf in the leaf * chain. There should be no chained leafs (as we have removed * support for them). */ ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); /* * There should be more hash entries than there can be * chunks to put in the hash table */ ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); /* The chunks should begin at the end of the hash table */ ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); /* The chunks should end at the end of the block */ ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); return (l); } static int zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { dmu_buf_t *db; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); int bs = FZAP_BLOCK_SHIFT(zap); dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); int err = dmu_buf_hold_by_dnode(dn, blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); dmu_buf_dnode_exit(zap->zap_dbuf); if (err != 0) return (err); ASSERT3U(db->db_object, ==, zap->zap_object); ASSERT3U(db->db_offset, ==, blkid << bs); ASSERT3U(db->db_size, ==, 1 << bs); ASSERT(blkid != 0); zap_leaf_t *l = dmu_buf_get_user(db); if (l == NULL) l = zap_open_leaf(blkid, db); rw_enter(&l->l_rwlock, lt); /* * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, * causing ASSERT below to fail. */ if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3U(l->l_blkid, ==, blkid); ASSERT3P(l->l_dbuf, ==, db); ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); *lp = l; return (0); } static int zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { ASSERT3U(idx, <, (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); return (0); } else { return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, idx, valp)); } } static int zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) { ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; return (0); } else { return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, idx, blk, tx)); } } static int zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { uint64_t blk; ASSERT(zap->zap_dbuf == NULL || zap_f_phys(zap) == zap->zap_dbuf->db_data); /* Reality check for corrupt zap objects (leaf or header). */ if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { return (SET_ERROR(EIO)); } uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); int err = zap_idx_to_blk(zap, idx, &blk); if (err != 0) return (err); err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); ASSERT(err || ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == zap_leaf_phys(*lp)->l_hdr.lh_prefix); return (err); } static int zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, void *tag, dmu_tx_t *tx, zap_leaf_t **lp) { zap_t *zap = zn->zn_zap; uint64_t hash = zn->zn_hash; int err; int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, zap_leaf_phys(l)->l_hdr.lh_prefix); if (zap_tryupgradedir(zap, tx) == 0 || old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { /* We failed to upgrade, or need to grow the pointer table */ objset_t *os = zap->zap_objset; uint64_t object = zap->zap_object; zap_put_leaf(l); zap_unlockdir(zap, tag); err = zap_lockdir(os, object, tx, RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); zap = zn->zn_zap; if (err != 0) return (err); ASSERT(!zap->zap_ismicro); while (old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { err = zap_grow_ptrtbl(zap, tx); if (err != 0) return (err); } err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); if (err != 0) return (err); if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { /* it split while our locks were down */ *lp = l; return (0); } } ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, zap_leaf_phys(l)->l_hdr.lh_prefix); int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - (old_prefix_len + 1); uint64_t sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; /* check for i/o errors before doing zap_leaf_split */ for (int i = 0; i < (1ULL << prefix_diff); i++) { uint64_t blk; err = zap_idx_to_blk(zap, sibling + i, &blk); if (err != 0) return (err); ASSERT3U(blk, ==, l->l_blkid); } zap_leaf_t *nl = zap_create_leaf(zap, tx); zap_leaf_split(l, nl, zap->zap_normflags != 0); /* set sibling pointers */ for (int i = 0; i < (1ULL << prefix_diff); i++) { err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx); ASSERT0(err); /* we checked for i/o errors above */ } if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { /* we want the sibling */ zap_put_leaf(l); *lp = nl; } else { zap_put_leaf(nl); *lp = l; } return (0); } static void zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, void *tag, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); zap_put_leaf(l); if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { /* * We are in the middle of growing the pointer table, or * this leaf will soon make us grow it. */ if (zap_tryupgradedir(zap, tx) == 0) { objset_t *os = zap->zap_objset; uint64_t zapobj = zap->zap_object; zap_unlockdir(zap, tag); int err = zap_lockdir(os, zapobj, tx, RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); zap = zn->zn_zap; if (err != 0) return; } /* could have finished growing while our locks were down */ if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) (void) zap_grow_ptrtbl(zap, tx); } } static int fzap_checkname(zap_name_t *zn) { if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int fzap_checksize(uint64_t integer_size, uint64_t num_integers) { /* Only integer sizes supported by C */ switch (integer_size) { case 1: case 2: case 4: case 8: break; default: return (SET_ERROR(EINVAL)); } if (integer_size * num_integers > ZAP_MAXVALUELEN) return (E2BIG); return (0); } static int fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) { int err = fzap_checkname(zn); if (err != 0) return (err); return (fzap_checksize(integer_size, num_integers)); } /* * Routines for manipulating attributes. */ int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *ncp) { zap_leaf_t *l; zap_entry_handle_t zeh; int err = fzap_checkname(zn); if (err != 0) return (err); err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { if ((err = fzap_checksize(integer_size, num_integers)) != 0) { zap_put_leaf(l); return (err); } err = zap_entry_read(&zeh, integer_size, num_integers, buf); (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); if (ncp) { *ncp = zap_entry_normalization_conflict(&zeh, zn, NULL, zn->zn_zap); } } zap_put_leaf(l); return (err); } int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, void *tag, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(!zap->zap_ismicro); ASSERT(fzap_check(zn, integer_size, num_integers) == 0); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { err = SET_ERROR(EEXIST); goto out; } if (err != ENOENT) goto out; err = zap_entry_create(l, zn, cd, integer_size, num_integers, val, &zeh); if (err == 0) { zap_increment_num_entries(zap, 1, tx); } else if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tag, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } out: if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); return (err); } int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, void *tag, dmu_tx_t *tx) { int err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); return (fzap_add_cd(zn, integer_size, num_integers, val, ZAP_NEED_CD, tag, tx)); } int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, void *tag, dmu_tx_t *tx) { zap_leaf_t *l; int err; boolean_t create; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); create = (err == ENOENT); ASSERT(err == 0 || err == ENOENT); if (create) { err = zap_entry_create(l, zn, ZAP_NEED_CD, integer_size, num_integers, val, &zeh); if (err == 0) zap_increment_num_entries(zap, 1, tx); } else { err = zap_entry_update(&zeh, integer_size, num_integers, val); } if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tag, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); return (err); } int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) goto out; if (integer_size != 0) *integer_size = zeh.zeh_integer_size; if (num_integers != 0) *num_integers = zeh.zeh_num_integers; out: zap_put_leaf(l); return (err); } int fzap_remove(zap_name_t *zn, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zap_entry_remove(&zeh); zap_increment_num_entries(zn->zn_zap, -1, tx); } zap_put_leaf(l); return (err); } void fzap_prefetch(zap_name_t *zn) { uint64_t blk; zap_t *zap = zn->zn_zap; uint64_t idx = ZAP_HASH_IDX(zn->zn_hash, zap_f_phys(zap)->zap_ptrtbl.zt_shift); if (zap_idx_to_blk(zap, idx, &blk) != 0) return; int bs = FZAP_BLOCK_SHIFT(zap); dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs, ZIO_PRIORITY_SYNC_READ); } /* * Helper functions for consumers. */ uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, const char *name, dmu_tx_t *tx) { - uint64_t new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx); - VERIFY(new_obj != 0); + return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx)); +} + +uint64_t +zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, + const char *name, int dnodesize, dmu_tx_t *tx) +{ + uint64_t new_obj; + + VERIFY((new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, + dnodesize, tx)) > 0); VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, tx)); return (new_obj); } int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name) { zap_cursor_t zc; int err; if (mask == 0) mask = -1ULL; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, zapobj); (err = zap_cursor_retrieve(&zc, za)) == 0; zap_cursor_advance(&zc)) { if ((za->za_first_integer & mask) == (value & mask)) { (void) strcpy(name, za->za_name); break; } } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_add(os, intoobj, za->za_name, 8, 1, &za->za_first_integer, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, uint64_t value, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_add(os, intoobj, za->za_name, 8, 1, &value, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; int err = 0; zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, za) == 0; (void) zap_cursor_advance(&zc)) { uint64_t delta = 0; if (za->za_integer_length != 8 || za->za_num_integers != 1) { err = SET_ERROR(EINVAL); break; } err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta); if (err != 0 && err != ENOENT) break; delta += za->za_first_integer; err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx); if (err != 0) break; } zap_cursor_fini(&zc); kmem_free(za, sizeof (*za)); return (err); } int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_remove(os, obj, name, tx)); } int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_lookup(os, obj, name, 8, 1, &value)); } int zap_add_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_update_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_update(os, obj, name, 8, 1, &value, tx)); } int zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_lookup(os, obj, name, 8, 1, valuep)); } int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, dmu_tx_t *tx) { uint64_t value = 0; if (delta == 0) return (0); int err = zap_lookup(os, obj, name, 8, 1, &value); if (err != 0 && err != ENOENT) return (err); value += delta; if (value == 0) err = zap_remove(os, obj, name, tx); else err = zap_update(os, obj, name, 8, 1, &value, tx); return (err); } int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_increment(os, obj, name, delta, tx)); } /* * Routines for iterating over the attributes. */ int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) { int err = ENOENT; zap_entry_handle_t zeh; zap_leaf_t *l; /* retrieve the next entry at or after zc_hash/zc_cd */ /* if no entry, return ENOENT */ if (zc->zc_leaf && (ZAP_HASH_IDX(zc->zc_hash, zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } again: if (zc->zc_leaf == NULL) { err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, &zc->zc_leaf); if (err != 0) return (err); } else { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); } l = zc->zc_leaf; err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); if (err == ENOENT) { uint64_t nocare = (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; zc->zc_cd = 0; if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { zc->zc_hash = -1ULL; } else { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; goto again; } } if (err == 0) { zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; za->za_integer_length = zeh.zeh_integer_size; za->za_num_integers = zeh.zeh_num_integers; if (zeh.zeh_num_integers == 0) { za->za_first_integer = 0; } else { err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); ASSERT(err == 0 || err == EOVERFLOW); } err = zap_entry_read_name(zap, &zeh, sizeof (za->za_name), za->za_name); ASSERT(err == 0); za->za_normalization_conflict = zap_entry_normalization_conflict(&zeh, NULL, za->za_name, zap); } rw_exit(&zc->zc_leaf->l_rwlock); return (err); } static void zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) { uint64_t lastblk = 0; /* * NB: if a leaf has more pointers than an entire ptrtbl block * can hold, then it'll be accounted for more than once, since * we won't have lastblk. */ for (int i = 0; i < len; i++) { zap_leaf_t *l; if (tbl[i] == lastblk) continue; lastblk = tbl[i]; int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); if (err == 0) { zap_leaf_stats(zap, l, zs); zap_put_leaf(l); } } } void fzap_get_stats(zap_t *zap, zap_stats_t *zs) { int bs = FZAP_BLOCK_SHIFT(zap); zs->zs_blocksize = 1ULL << bs; /* * Set zap_phys_t fields */ zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; zs->zs_block_type = zap_f_phys(zap)->zap_block_type; zs->zs_magic = zap_f_phys(zap)->zap_magic; zs->zs_salt = zap_f_phys(zap)->zap_salt; /* * Set zap_ptrtbl fields */ zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; zs->zs_ptrtbl_blks_copied = zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { /* the ptrtbl is entirely in the header block. */ zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); } else { dmu_prefetch(zap->zap_objset, zap->zap_object, 0, zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, ZIO_PRIORITY_SYNC_READ); for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; b++) { dmu_buf_t *db; int err; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err == 0) { zap_stats_ptrtbl(zap, db->db_data, 1<<(bs-3), zs); dmu_buf_rele(db, FTAG); } } } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c (revision 350898) @@ -1,1494 +1,1540 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Nexenta Systems, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif extern inline mzap_phys_t *zap_m_phys(zap_t *zap); static int mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags); uint64_t zap_getflags(zap_t *zap) { if (zap->zap_ismicro) return (0); return (zap_f_phys(zap)->zap_flags); } int zap_hashbits(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return (48); else return (28); } uint32_t zap_maxcd(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return ((1<<16)-1); else return (-1U); } static uint64_t zap_hash(zap_name_t *zn) { zap_t *zap = zn->zn_zap; uint64_t h = 0; if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); h = *(uint64_t *)zn->zn_key_orig; } else { h = zap->zap_salt; ASSERT(h != 0); ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { const uint64_t *wp = zn->zn_key_norm; ASSERT(zn->zn_key_intlen == 8); for (int i = 0; i < zn->zn_key_norm_numints; wp++, i++) { uint64_t word = *wp; for (int j = 0; j < zn->zn_key_intlen; j++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ word) & 0xFF]; word >>= NBBY; } } } else { const uint8_t *cp = zn->zn_key_norm; /* * We previously stored the terminating null on * disk, but didn't hash it, so we need to * continue to not hash it. (The * zn_key_*_numints includes the terminating * null for non-binary keys.) */ int len = zn->zn_key_norm_numints - 1; ASSERT(zn->zn_key_intlen == 1); for (int i = 0; i < len; cp++, i++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ *cp) & 0xFF]; } } } /* * Don't use all 64 bits, since we need some in the cookie for * the collision differentiator. We MUST use the high bits, * since those are the ones that we first pay attention to when * chosing the bucket. */ h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); return (h); } static int zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) { ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); size_t inlen = strlen(name) + 1; size_t outlen = ZAP_MAXNAMELEN; int err = 0; (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); return (err); } boolean_t zap_match(zap_name_t *zn, const char *matchname) { ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); if (zn->zn_matchtype & MT_NORMALIZE) { char norm[ZAP_MAXNAMELEN]; if (zap_normalize(zn->zn_zap, matchname, norm, zn->zn_normflags) != 0) return (B_FALSE); return (strcmp(zn->zn_key_norm, norm) == 0); } else { return (strcmp(zn->zn_key_orig, matchname) == 0); } } void zap_name_free(zap_name_t *zn) { kmem_free(zn, sizeof (zap_name_t)); } zap_name_t * zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); zn->zn_zap = zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = key; zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; zn->zn_matchtype = mt; zn->zn_normflags = zap->zap_normflags; /* * If we're dealing with a case sensitive lookup on a mixed or * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup * will fold case to all caps overriding the lookup request. */ if (mt & MT_MATCH_CASE) zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; if (zap->zap_normflags) { /* * We *must* use zap_normflags because this normalization is * what the hash is computed from. */ if (zap_normalize(zap, key, zn->zn_normbuf, zap->zap_normflags) != 0) { zap_name_free(zn); return (NULL); } zn->zn_key_norm = zn->zn_normbuf; zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; } else { if (mt != 0) { zap_name_free(zn); return (NULL); } zn->zn_key_norm = zn->zn_key_orig; zn->zn_key_norm_numints = zn->zn_key_orig_numints; } zn->zn_hash = zap_hash(zn); if (zap->zap_normflags != zn->zn_normflags) { /* * We *must* use zn_normflags because this normalization is * what the matching is based on. (Not the hash!) */ if (zap_normalize(zap, key, zn->zn_normbuf, zn->zn_normflags) != 0) { zap_name_free(zn); return (NULL); } zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; } return (zn); } zap_name_t * zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); ASSERT(zap->zap_normflags == 0); zn->zn_zap = zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = zn->zn_key_norm = key; zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; zn->zn_matchtype = 0; zn->zn_hash = zap_hash(zn); return (zn); } static void mzap_byteswap(mzap_phys_t *buf, size_t size) { buf->mz_block_type = BSWAP_64(buf->mz_block_type); buf->mz_salt = BSWAP_64(buf->mz_salt); buf->mz_normflags = BSWAP_64(buf->mz_normflags); int max = (size / MZAP_ENT_LEN) - 1; for (int i = 0; i < max; i++) { buf->mz_chunk[i].mze_value = BSWAP_64(buf->mz_chunk[i].mze_value); buf->mz_chunk[i].mze_cd = BSWAP_32(buf->mz_chunk[i].mze_cd); } } void zap_byteswap(void *buf, size_t size) { uint64_t block_type = *(uint64_t *)buf; if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { /* ASSERT(magic == ZAP_LEAF_MAGIC); */ mzap_byteswap(buf, size); } else { fzap_byteswap(buf, size); } } static int mze_compare(const void *arg1, const void *arg2) { const mzap_ent_t *mze1 = arg1; const mzap_ent_t *mze2 = arg2; if (mze1->mze_hash > mze2->mze_hash) return (+1); if (mze1->mze_hash < mze2->mze_hash) return (-1); if (mze1->mze_cd > mze2->mze_cd) return (+1); if (mze1->mze_cd < mze2->mze_cd) return (-1); return (0); } static void mze_insert(zap_t *zap, int chunkid, uint64_t hash) { ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); mze->mze_chunkid = chunkid; mze->mze_hash = hash; mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); avl_add(&zap->zap_m.zap_avl, mze); } static mzap_ent_t * mze_find(zap_name_t *zn) { mzap_ent_t mze_tofind; mzap_ent_t *mze; avl_index_t idx; avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; ASSERT(zn->zn_zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); mze_tofind.mze_hash = zn->zn_hash; mze_tofind.mze_cd = 0; mze = avl_find(avl, &mze_tofind, &idx); if (mze == NULL) mze = avl_nearest(avl, idx, AVL_AFTER); for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) return (mze); } return (NULL); } static uint32_t mze_find_unused_cd(zap_t *zap, uint64_t hash) { mzap_ent_t mze_tofind; avl_index_t idx; avl_tree_t *avl = &zap->zap_m.zap_avl; ASSERT(zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); mze_tofind.mze_hash = hash; mze_tofind.mze_cd = 0; uint32_t cd = 0; for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx); mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { if (mze->mze_cd != cd) break; cd++; } return (cd); } static void mze_remove(zap_t *zap, mzap_ent_t *mze) { ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); avl_remove(&zap->zap_m.zap_avl, mze); kmem_free(mze, sizeof (mzap_ent_t)); } static void mze_destroy(zap_t *zap) { mzap_ent_t *mze; void *avlcookie = NULL; while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) kmem_free(mze, sizeof (mzap_ent_t)); avl_destroy(&zap->zap_m.zap_avl); } static zap_t * mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) { zap_t *winner; uint64_t *zap_hdr = (uint64_t *)db->db_data; uint64_t zap_block_type = zap_hdr[0]; uint64_t zap_magic = zap_hdr[1]; ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); rw_init(&zap->zap_rwlock, 0, 0, 0); rw_enter(&zap->zap_rwlock, RW_WRITER); zap->zap_objset = os; zap->zap_object = obj; zap->zap_dbuf = db; if (zap_block_type != ZBT_MICRO) { mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { winner = NULL; /* No actual winner here... */ goto handle_winner; } } else { zap->zap_ismicro = TRUE; } /* * Make sure that zap_ismicro is set before we let others see * it, because zap_lockdir() checks zap_ismicro without the lock * held. */ dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); winner = dmu_buf_set_user(db, &zap->zap_dbu); if (winner != NULL) goto handle_winner; if (zap->zap_ismicro) { zap->zap_salt = zap_m_phys(zap)->mz_salt; zap->zap_normflags = zap_m_phys(zap)->mz_normflags; zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; avl_create(&zap->zap_m.zap_avl, mze_compare, sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; if (mze->mze_name[0]) { zap_name_t *zn; zap->zap_m.zap_num_entries++; zn = zap_name_alloc(zap, mze->mze_name, 0); mze_insert(zap, i, zn->zn_hash); zap_name_free(zn); } } } else { zap->zap_salt = zap_f_phys(zap)->zap_salt; zap->zap_normflags = zap_f_phys(zap)->zap_normflags; ASSERT3U(sizeof (struct zap_leaf_header), ==, 2*ZAP_LEAF_CHUNKSIZE); /* * The embedded pointer table should not overlap the * other members. */ ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, &zap_f_phys(zap)->zap_salt); /* * The embedded pointer table should end at the end of * the block */ ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 1<zap_dbuf->db_size); } rw_exit(&zap->zap_rwlock); return (zap); handle_winner: rw_exit(&zap->zap_rwlock); rw_destroy(&zap->zap_rwlock); if (!zap->zap_ismicro) mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); return (winner); } /* * This routine "consumes" the caller's hold on the dbuf, which must * have the specified tag. */ static int zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) { ASSERT0(db->db_offset); objset_t *os = dmu_buf_get_objset(db); uint64_t obj = db->db_object; *zapp = NULL; zap_t *zap = dmu_buf_get_user(db); if (zap == NULL) { zap = mzap_open(os, obj, db); if (zap == NULL) { /* * mzap_open() didn't like what it saw on-disk. * Check for corruption! */ return (SET_ERROR(EIO)); } } /* * We're checking zap_ismicro without the lock held, in order to * tell what type of lock we want. Once we have some sort of * lock, see if it really is the right type. In practice this * can only be different if it was upgraded from micro to fat, * and micro wanted WRITER but fat only needs READER. */ krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; rw_enter(&zap->zap_rwlock, lt); if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { /* it was upgraded, now we only need reader */ ASSERT(lt == RW_WRITER); ASSERT(RW_READER == (!zap->zap_ismicro && fatreader) ? RW_READER : lti); rw_downgrade(&zap->zap_rwlock); lt = RW_READER; } zap->zap_objset = os; if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3P(zap->zap_dbuf, ==, db); ASSERT(!zap->zap_ismicro || zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); if (zap->zap_ismicro && tx && adding && zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; if (newsz > MZAP_MAX_BLKSZ) { dprintf("upgrading obj %llu: num_entries=%u\n", obj, zap->zap_m.zap_num_entries); *zapp = zap; int err = mzap_upgrade(zapp, tag, tx, 0); if (err != 0) rw_exit(&zap->zap_rwlock); return (err); } VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; } *zapp = zap; return (0); } static int zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) { dmu_buf_t *db; int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); if (err != 0) { return (err); } #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); } #endif err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); if (err != 0) { dmu_buf_rele(db, tag); } return (err); } int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) { dmu_buf_t *db; int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); } #endif err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); if (err != 0) dmu_buf_rele(db, tag); return (err); } void zap_unlockdir(zap_t *zap, void *tag) { rw_exit(&zap->zap_rwlock); dmu_buf_rele(zap->zap_dbuf, tag); } static int mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags) { int err = 0; zap_t *zap = *zapp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); int sz = zap->zap_dbuf->db_size; mzap_phys_t *mzp = zio_buf_alloc(sz); bcopy(zap->zap_dbuf->db_data, mzp, sz); int nchunks = zap->zap_m.zap_num_chunks; if (!flags) { err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 1ULL << fzap_default_block_shift, 0, tx); if (err != 0) { zio_buf_free(mzp, sz); return (err); } } dprintf("upgrading obj=%llu with %u chunks\n", zap->zap_object, nchunks); /* XXX destroy the avl later, so we can use the stored hash value */ mze_destroy(zap); fzap_upgrade(zap, tx, flags); for (int i = 0; i < nchunks; i++) { mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; if (mze->mze_name[0] == 0) continue; dprintf("adding %s=%llu\n", mze->mze_name, mze->mze_value); zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0); err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tag, tx); zap = zn->zn_zap; /* fzap_add_cd() may change zap */ zap_name_free(zn); if (err != 0) break; } zio_buf_free(mzp, sz); *zapp = zap; return (err); } /* * The "normflags" determine the behavior of the matchtype_t which is * passed to zap_lookup_norm(). Names which have the same normalized * version will be stored with the same hash value, and therefore we can * perform normalization-insensitive lookups. We can be Unicode form- * insensitive and/or case-insensitive. The following flags are valid for * "normflags": * * U8_TEXTPREP_NFC * U8_TEXTPREP_NFD * U8_TEXTPREP_NFKC * U8_TEXTPREP_NFKD * U8_TEXTPREP_TOUPPER * * The *_NF* (Normalization Form) flags are mutually exclusive; at most one * of them may be supplied. */ void mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, dmu_tx_t *tx) { dmu_buf_t *db; VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db, tx); mzap_phys_t *zp = db->db_data; zp->mz_block_type = ZBT_MICRO; zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; zp->mz_normflags = normflags; if (flags != 0) { zap_t *zap; /* Only fat zap supports flags; upgrade immediately. */ VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER, B_FALSE, B_FALSE, &zap)); VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); zap_unlockdir(zap, FTAG); } else { dmu_buf_rele(db, FTAG); } } int zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { - return (zap_create_claim_norm(os, obj, - 0, ot, bonustype, bonuslen, tx)); + return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, + 0, tx)); } int +zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) +{ + return (zap_create_claim_norm_dnsize(os, obj, + 0, ot, bonustype, bonuslen, dnodesize, tx)); +} + +int zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { - ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); - int err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); + return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, + bonuslen, 0, tx)); +} + +int +zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, + dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, + int dnodesize, dmu_tx_t *tx) +{ + int err; + + err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, + dnodesize, tx); if (err != 0) return (err); mzap_create_impl(os, obj, normflags, 0, tx); return (0); } uint64_t zap_create(objset_t *os, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); } uint64_t +zap_create_dnsize(objset_t *os, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) +{ + return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, + dnodesize, tx)); +} + +uint64_t zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); - uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); + return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, + 0, tx)); +} +uint64_t +zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) +{ + uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen, + dnodesize, tx); + mzap_create_impl(os, obj, normflags, 0, tx); return (obj); } uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); - uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); + return (zap_create_flags_dnsize(os, normflags, flags, ot, + leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); +} + +uint64_t +zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, + dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, + dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) +{ + uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen, + dnodesize, tx); ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && indirect_blockshift >= SPA_MINBLOCKSHIFT && indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); VERIFY(dmu_object_set_blocksize(os, obj, 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); mzap_create_impl(os, obj, normflags, flags, tx); return (obj); } int zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) { /* * dmu_object_free will free the object number and free the * data. Freeing the data will cause our pageout function to be * called, which will destroy our data (zap_leaf_t's and zap_t). */ return (dmu_object_free(os, zapobj, tx)); } void zap_evict_sync(void *dbu) { zap_t *zap = dbu; rw_destroy(&zap->zap_rwlock); if (zap->zap_ismicro) mze_destroy(zap); else mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); } int zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); if (!zap->zap_ismicro) { err = fzap_count(zap, count); } else { *count = zap->zap_m.zap_num_entries; } zap_unlockdir(zap, FTAG); return (err); } /* * zn may be NULL; if not specified, it will be computed if needed. * See also the comment above zap_entry_normalization_conflict(). */ static boolean_t mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) { int direction = AVL_BEFORE; boolean_t allocdzn = B_FALSE; if (zap->zap_normflags == 0) return (B_FALSE); again: for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction); other && other->mze_hash == mze->mze_hash; other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { if (zn == NULL) { zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); allocdzn = B_TRUE; } if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (direction == AVL_BEFORE) { direction = AVL_AFTER; goto again; } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for manipulating attributes. */ int zap_lookup(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm(os, zapobj, name, integer_size, num_integers, buf, 0, NULL, 0, NULL)); } static int zap_lookup_impl(zap_t *zap, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { int err = 0; zap_name_t *zn = zap_name_alloc(zap, name, mt); if (zn == NULL) return (SET_ERROR(ENOTSUP)); if (!zap->zap_ismicro) { err = fzap_lookup(zn, integer_size, num_integers, buf, realname, rn_len, ncp); } else { mzap_ent_t *mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (num_integers < 1) { err = SET_ERROR(EOVERFLOW); } else if (integer_size != 8) { err = SET_ERROR(EINVAL); } else { *(uint64_t *)buf = MZE_PHYS(zap, mze)->mze_value; (void) strlcpy(realname, MZE_PHYS(zap, mze)->mze_name, rn_len); if (ncp) { *ncp = mzap_normalization_conflict(zap, zn, mze); } } } } zap_name_free(zn); return (err); } int zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_lookup_impl(zap, name, integer_size, num_integers, buf, mt, realname, rn_len, ncp); zap_unlockdir(zap, FTAG); return (err); } int zap_lookup_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm_by_dnode(dn, name, integer_size, num_integers, buf, 0, NULL, 0, NULL)); } int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_lookup_impl(zap, name, integer_size, num_integers, buf, mt, realname, rn_len, ncp); zap_unlockdir(zap, FTAG); return (err); } int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } fzap_prefetch(zn); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_lookup(zn, integer_size, num_integers, buf, NULL, 0, NULL); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_contains(objset_t *os, uint64_t zapobj, const char *name) { int err = zap_lookup_norm(os, zapobj, name, 0, 0, NULL, 0, NULL, 0, NULL); if (err == EOVERFLOW || err == EINVAL) err = 0; /* found, but skipped reading the value */ return (err); } int zap_length(objset_t *os, uint64_t zapobj, const char *name, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc(zap, name, 0); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_length(zn, integer_size, num_integers); } else { mzap_ent_t *mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (integer_size) *integer_size = 8; if (num_integers) *num_integers = 1; } } zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_length(zn, integer_size, num_integers); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } static void mzap_addent(zap_name_t *zn, uint64_t value) { zap_t *zap = zn->zn_zap; int start = zap->zap_m.zap_alloc_next; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); #ifdef ZFS_DEBUG for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); } #endif uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); /* given the limited size of the microzap, this can't happen */ ASSERT(cd < zap_maxcd(zap)); again: for (int i = start; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; if (mze->mze_name[0] == 0) { mze->mze_value = value; mze->mze_cd = cd; (void) strcpy(mze->mze_name, zn->zn_key_orig); zap->zap_m.zap_num_entries++; zap->zap_m.zap_alloc_next = i+1; if (zap->zap_m.zap_alloc_next == zap->zap_m.zap_num_chunks) zap->zap_m.zap_alloc_next = 0; mze_insert(zap, i, zn->zn_hash); return; } } if (start != 0) { start = 0; goto again; } ASSERT(!"out of entries!"); } static int zap_add_impl(zap_t *zap, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx, void *tag) { const uint64_t *intval = val; int err = 0; zap_name_t *zn = zap_name_alloc(zap, key, 0); if (zn == NULL) { zap_unlockdir(zap, tag); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_add(zn, integer_size, num_integers, val, tag, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(key) >= MZAP_NAME_LEN) { err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); if (err == 0) { err = fzap_add(zn, integer_size, num_integers, val, tag, tx); } zap = zn->zn_zap; /* fzap_add() may change zap */ } else { if (mze_find(zn) != NULL) { err = SET_ERROR(EEXIST); } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap, tag); return (err); } int zap_add(objset_t *os, uint64_t zapobj, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); /* zap_add_impl() calls zap_unlockdir() */ return (err); } int zap_add_by_dnode(dnode_t *dn, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); /* zap_add_impl() calls zap_unlockdir() */ return (err); } int zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap, FTAG); return (err); } int zap_update(objset_t *os, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; uint64_t oldval; const uint64_t *intval = val; #ifdef ZFS_DEBUG /* * If there is an old value, it shouldn't change across the * lockdir (eg, due to bprewrite's xlation). */ if (integer_size == 8 && num_integers == 1) (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); #endif int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc(zap, name, 0); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(name) >= MZAP_NAME_LEN) { dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", zapobj, integer_size, num_integers, name); err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); if (err == 0) { err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); } zap = zn->zn_zap; /* fzap_update() may change zap */ } else { mzap_ent_t *mze = mze_find(zn); if (mze != NULL) { ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); MZE_PHYS(zap, mze)->mze_value = *intval; } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap, FTAG); return (err); } int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap, FTAG); return (err); } int zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) { return (zap_remove_norm(os, zapobj, name, 0, tx)); } static int zap_remove_impl(zap_t *zap, const char *name, matchtype_t mt, dmu_tx_t *tx) { int err = 0; zap_name_t *zn = zap_name_alloc(zap, name, mt); if (zn == NULL) return (SET_ERROR(ENOTSUP)); if (!zap->zap_ismicro) { err = fzap_remove(zn, tx); } else { mzap_ent_t *mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { zap->zap_m.zap_num_entries--; bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], sizeof (mzap_ent_phys_t)); mze_remove(zap, mze); } } zap_name_free(zn); return (err); } int zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, matchtype_t mt, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err) return (err); err = zap_remove_impl(zap, name, mt, tx); zap_unlockdir(zap, FTAG); return (err); } int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err) return (err); err = zap_remove_impl(zap, name, 0, tx); zap_unlockdir(zap, FTAG); return (err); } int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_remove(zn, tx); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } /* * Routines for iterating over the attributes. */ void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, uint64_t serialized) { zc->zc_objset = os; zc->zc_zap = NULL; zc->zc_leaf = NULL; zc->zc_zapobj = zapobj; zc->zc_serialized = serialized; zc->zc_hash = 0; zc->zc_cd = 0; } void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) { zap_cursor_init_serialized(zc, os, zapobj, 0); } void zap_cursor_fini(zap_cursor_t *zc) { if (zc->zc_zap) { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); zap_unlockdir(zc->zc_zap, NULL); zc->zc_zap = NULL; } if (zc->zc_leaf) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } zc->zc_objset = NULL; } uint64_t zap_cursor_serialize(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return (-1ULL); if (zc->zc_zap == NULL) return (zc->zc_serialized); ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); /* * We want to keep the high 32 bits of the cursor zero if we can, so * that 32-bit programs can access this. So usually use a small * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits * of the cursor. * * [ collision differentiator | zap_hashbits()-bit hash value ] */ return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); } int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) { int err; if (zc->zc_hash == -1ULL) return (SET_ERROR(ENOENT)); if (zc->zc_zap == NULL) { int hb; err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); if (err != 0) return (err); /* * To support zap_cursor_init_serialized, advance, retrieve, * we must add to the existing zc_cd, which may already * be 1 due to the zap_cursor_advance. */ ASSERT(zc->zc_hash == 0); hb = zap_hashbits(zc->zc_zap); zc->zc_hash = zc->zc_serialized << (64 - hb); zc->zc_cd += zc->zc_serialized >> hb; if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ zc->zc_cd = 0; } else { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); } if (!zc->zc_zap->zap_ismicro) { err = fzap_cursor_retrieve(zc->zc_zap, zc, za); } else { avl_index_t idx; mzap_ent_t mze_tofind; mze_tofind.mze_hash = zc->zc_hash; mze_tofind.mze_cd = zc->zc_cd; mzap_ent_t *mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); if (mze == NULL) { mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, idx, AVL_AFTER); } if (mze) { mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); za->za_normalization_conflict = mzap_normalization_conflict(zc->zc_zap, NULL, mze); za->za_integer_length = 8; za->za_num_integers = 1; za->za_first_integer = mzep->mze_value; (void) strcpy(za->za_name, mzep->mze_name); zc->zc_hash = mze->mze_hash; zc->zc_cd = mze->mze_cd; err = 0; } else { zc->zc_hash = -1ULL; err = SET_ERROR(ENOENT); } } rw_exit(&zc->zc_zap->zap_rwlock); return (err); } void zap_cursor_advance(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return; zc->zc_cd++; } int zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); bzero(zs, sizeof (zap_stats_t)); if (zap->zap_ismicro) { zs->zs_blocksize = zap->zap_dbuf->db_size; zs->zs_num_entries = zap->zap_m.zap_num_entries; zs->zs_num_blocks = 1; } else { fzap_get_stats(zap, zs); } zap_unlockdir(zap, FTAG); return (0); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_acl.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_acl.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_acl.c (revision 350898) @@ -1,2790 +1,2790 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE #define DENY ACE_ACCESS_DENIED_ACE_TYPE #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE #define MIN_ACE_TYPE ALLOW #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP) #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \ ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE) #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \ ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS) #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \ ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS) #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \ ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \ ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \ ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE) #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS) #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \ ACE_DELETE|ACE_DELETE_CHILD) #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS) #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \ ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE) #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \ ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE) #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \ ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE) #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER) #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\ ZFS_ACL_PROTECTED) #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\ ZFS_ACL_OBJ_ACE) #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH) static uint16_t zfs_ace_v0_get_type(void *acep) { return (((zfs_oldace_t *)acep)->z_type); } static uint16_t zfs_ace_v0_get_flags(void *acep) { return (((zfs_oldace_t *)acep)->z_flags); } static uint32_t zfs_ace_v0_get_mask(void *acep) { return (((zfs_oldace_t *)acep)->z_access_mask); } static uint64_t zfs_ace_v0_get_who(void *acep) { return (((zfs_oldace_t *)acep)->z_fuid); } static void zfs_ace_v0_set_type(void *acep, uint16_t type) { ((zfs_oldace_t *)acep)->z_type = type; } static void zfs_ace_v0_set_flags(void *acep, uint16_t flags) { ((zfs_oldace_t *)acep)->z_flags = flags; } static void zfs_ace_v0_set_mask(void *acep, uint32_t mask) { ((zfs_oldace_t *)acep)->z_access_mask = mask; } static void zfs_ace_v0_set_who(void *acep, uint64_t who) { ((zfs_oldace_t *)acep)->z_fuid = who; } /*ARGSUSED*/ static size_t zfs_ace_v0_size(void *acep) { return (sizeof (zfs_oldace_t)); } static size_t zfs_ace_v0_abstract_size(void) { return (sizeof (zfs_oldace_t)); } static int zfs_ace_v0_mask_off(void) { return (offsetof(zfs_oldace_t, z_access_mask)); } /*ARGSUSED*/ static int zfs_ace_v0_data(void *acep, void **datap) { *datap = NULL; return (0); } static acl_ops_t zfs_acl_v0_ops = { zfs_ace_v0_get_mask, zfs_ace_v0_set_mask, zfs_ace_v0_get_flags, zfs_ace_v0_set_flags, zfs_ace_v0_get_type, zfs_ace_v0_set_type, zfs_ace_v0_get_who, zfs_ace_v0_set_who, zfs_ace_v0_size, zfs_ace_v0_abstract_size, zfs_ace_v0_mask_off, zfs_ace_v0_data }; static uint16_t zfs_ace_fuid_get_type(void *acep) { return (((zfs_ace_hdr_t *)acep)->z_type); } static uint16_t zfs_ace_fuid_get_flags(void *acep) { return (((zfs_ace_hdr_t *)acep)->z_flags); } static uint32_t zfs_ace_fuid_get_mask(void *acep) { return (((zfs_ace_hdr_t *)acep)->z_access_mask); } static uint64_t zfs_ace_fuid_get_who(void *args) { uint16_t entry_type; zfs_ace_t *acep = args; entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS; if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || entry_type == ACE_EVERYONE) return (-1); return (((zfs_ace_t *)acep)->z_fuid); } static void zfs_ace_fuid_set_type(void *acep, uint16_t type) { ((zfs_ace_hdr_t *)acep)->z_type = type; } static void zfs_ace_fuid_set_flags(void *acep, uint16_t flags) { ((zfs_ace_hdr_t *)acep)->z_flags = flags; } static void zfs_ace_fuid_set_mask(void *acep, uint32_t mask) { ((zfs_ace_hdr_t *)acep)->z_access_mask = mask; } static void zfs_ace_fuid_set_who(void *arg, uint64_t who) { zfs_ace_t *acep = arg; uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS; if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || entry_type == ACE_EVERYONE) return; acep->z_fuid = who; } static size_t zfs_ace_fuid_size(void *acep) { zfs_ace_hdr_t *zacep = acep; uint16_t entry_type; switch (zacep->z_type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: return (sizeof (zfs_object_ace_t)); case ALLOW: case DENY: entry_type = (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS); if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || entry_type == ACE_EVERYONE) return (sizeof (zfs_ace_hdr_t)); /*FALLTHROUGH*/ default: return (sizeof (zfs_ace_t)); } } static size_t zfs_ace_fuid_abstract_size(void) { return (sizeof (zfs_ace_hdr_t)); } static int zfs_ace_fuid_mask_off(void) { return (offsetof(zfs_ace_hdr_t, z_access_mask)); } static int zfs_ace_fuid_data(void *acep, void **datap) { zfs_ace_t *zacep = acep; zfs_object_ace_t *zobjp; switch (zacep->z_hdr.z_type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: zobjp = acep; *datap = (caddr_t)zobjp + sizeof (zfs_ace_t); return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t)); default: *datap = NULL; return (0); } } static acl_ops_t zfs_acl_fuid_ops = { zfs_ace_fuid_get_mask, zfs_ace_fuid_set_mask, zfs_ace_fuid_get_flags, zfs_ace_fuid_set_flags, zfs_ace_fuid_get_type, zfs_ace_fuid_set_type, zfs_ace_fuid_get_who, zfs_ace_fuid_set_who, zfs_ace_fuid_size, zfs_ace_fuid_abstract_size, zfs_ace_fuid_mask_off, zfs_ace_fuid_data }; /* * The following three functions are provided for compatibility with * older ZPL version in order to determine if the file use to have * an external ACL and what version of ACL previously existed on the * file. Would really be nice to not need this, sigh. */ uint64_t zfs_external_acl(znode_t *zp) { zfs_acl_phys_t acl_phys; int error; if (zp->z_is_sa) return (0); /* * Need to deal with a potential * race where zfs_sa_upgrade could cause * z_isa_sa to change. * * If the lookup fails then the state of z_is_sa should have * changed. */ if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs), &acl_phys, sizeof (acl_phys))) == 0) return (acl_phys.z_acl_extern_obj); else { /* * after upgrade the SA_ZPL_ZNODE_ACL should have been * removed */ VERIFY(zp->z_is_sa && error == ENOENT); return (0); } } /* * Determine size of ACL in bytes * * This is more complicated than it should be since we have to deal * with old external ACLs. */ static int zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount, zfs_acl_phys_t *aclphys) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint64_t acl_count; int size; int error; ASSERT(MUTEX_HELD(&zp->z_acl_lock)); if (zp->z_is_sa) { if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs), &size)) != 0) return (error); *aclsize = size; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs), &acl_count, sizeof (acl_count))) != 0) return (error); *aclcount = acl_count; } else { if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs), aclphys, sizeof (*aclphys))) != 0) return (error); if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) { *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size); *aclcount = aclphys->z_acl_size; } else { *aclsize = aclphys->z_acl_size; *aclcount = aclphys->z_acl_count; } } return (0); } int zfs_znode_acl_version(znode_t *zp) { zfs_acl_phys_t acl_phys; if (zp->z_is_sa) return (ZFS_ACL_VERSION_FUID); else { int error; /* * Need to deal with a potential * race where zfs_sa_upgrade could cause * z_isa_sa to change. * * If the lookup fails then the state of z_is_sa should have * changed. */ if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs), &acl_phys, sizeof (acl_phys))) == 0) return (acl_phys.z_acl_version); else { /* * After upgrade SA_ZPL_ZNODE_ACL should have * been removed. */ VERIFY(zp->z_is_sa && error == ENOENT); return (ZFS_ACL_VERSION_FUID); } } } static int zfs_acl_version(int version) { if (version < ZPL_VERSION_FUID) return (ZFS_ACL_VERSION_INITIAL); else return (ZFS_ACL_VERSION_FUID); } static int zfs_acl_version_zp(znode_t *zp) { return (zfs_acl_version(zp->z_zfsvfs->z_version)); } zfs_acl_t * zfs_acl_alloc(int vers) { zfs_acl_t *aclp; aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP); list_create(&aclp->z_acl, sizeof (zfs_acl_node_t), offsetof(zfs_acl_node_t, z_next)); aclp->z_version = vers; if (vers == ZFS_ACL_VERSION_FUID) aclp->z_ops = zfs_acl_fuid_ops; else aclp->z_ops = zfs_acl_v0_ops; return (aclp); } zfs_acl_node_t * zfs_acl_node_alloc(size_t bytes) { zfs_acl_node_t *aclnode; aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP); if (bytes) { aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP); aclnode->z_allocdata = aclnode->z_acldata; aclnode->z_allocsize = bytes; aclnode->z_size = bytes; } return (aclnode); } static void zfs_acl_node_free(zfs_acl_node_t *aclnode) { if (aclnode->z_allocsize) kmem_free(aclnode->z_allocdata, aclnode->z_allocsize); kmem_free(aclnode, sizeof (zfs_acl_node_t)); } static void zfs_acl_release_nodes(zfs_acl_t *aclp) { zfs_acl_node_t *aclnode; while (aclnode = list_head(&aclp->z_acl)) { list_remove(&aclp->z_acl, aclnode); zfs_acl_node_free(aclnode); } aclp->z_acl_count = 0; aclp->z_acl_bytes = 0; } void zfs_acl_free(zfs_acl_t *aclp) { zfs_acl_release_nodes(aclp); list_destroy(&aclp->z_acl); kmem_free(aclp, sizeof (zfs_acl_t)); } static boolean_t zfs_acl_valid_ace_type(uint_t type, uint_t flags) { uint16_t entry_type; switch (type) { case ALLOW: case DENY: case ACE_SYSTEM_AUDIT_ACE_TYPE: case ACE_SYSTEM_ALARM_ACE_TYPE: entry_type = flags & ACE_TYPE_FLAGS; return (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || entry_type == ACE_EVERYONE || entry_type == 0 || entry_type == ACE_IDENTIFIER_GROUP); default: if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE) return (B_TRUE); } return (B_FALSE); } static boolean_t zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags) { /* * first check type of entry */ if (!zfs_acl_valid_ace_type(type, iflags)) return (B_FALSE); switch (type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: if (aclp->z_version < ZFS_ACL_VERSION_FUID) return (B_FALSE); aclp->z_hints |= ZFS_ACL_OBJ_ACE; } /* * next check inheritance level flags */ if (obj_type == VDIR && (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) aclp->z_hints |= ZFS_INHERIT_ACE; if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) { if ((iflags & (ACE_FILE_INHERIT_ACE| ACE_DIRECTORY_INHERIT_ACE)) == 0) { return (B_FALSE); } } return (B_TRUE); } static void * zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who, uint32_t *access_mask, uint16_t *iflags, uint16_t *type) { zfs_acl_node_t *aclnode; ASSERT(aclp); if (start == NULL) { aclnode = list_head(&aclp->z_acl); if (aclnode == NULL) return (NULL); aclp->z_next_ace = aclnode->z_acldata; aclp->z_curr_node = aclnode; aclnode->z_ace_idx = 0; } aclnode = aclp->z_curr_node; if (aclnode == NULL) return (NULL); if (aclnode->z_ace_idx >= aclnode->z_ace_count) { aclnode = list_next(&aclp->z_acl, aclnode); if (aclnode == NULL) return (NULL); else { aclp->z_curr_node = aclnode; aclnode->z_ace_idx = 0; aclp->z_next_ace = aclnode->z_acldata; } } if (aclnode->z_ace_idx < aclnode->z_ace_count) { void *acep = aclp->z_next_ace; size_t ace_size; /* * Make sure we don't overstep our bounds */ ace_size = aclp->z_ops.ace_size(acep); if (((caddr_t)acep + ace_size) > ((caddr_t)aclnode->z_acldata + aclnode->z_size)) { return (NULL); } *iflags = aclp->z_ops.ace_flags_get(acep); *type = aclp->z_ops.ace_type_get(acep); *access_mask = aclp->z_ops.ace_mask_get(acep); *who = aclp->z_ops.ace_who_get(acep); aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size; aclnode->z_ace_idx++; return ((void *)acep); } return (NULL); } /*ARGSUSED*/ static uint64_t zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt, uint16_t *flags, uint16_t *type, uint32_t *mask) { zfs_acl_t *aclp = datap; zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie; uint64_t who; acep = zfs_acl_next_ace(aclp, acep, &who, mask, flags, type); return ((uint64_t)(uintptr_t)acep); } static zfs_acl_node_t * zfs_acl_curr_node(zfs_acl_t *aclp) { ASSERT(aclp->z_curr_node); return (aclp->z_curr_node); } /* * Copy ACE to internal ZFS format. * While processing the ACL each ACE will be validated for correctness. * ACE FUIDs will be created later. */ int zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp, void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size, zfs_fuid_info_t **fuidp, cred_t *cr) { int i; uint16_t entry_type; zfs_ace_t *aceptr = z_acl; ace_t *acep = datap; zfs_object_ace_t *zobjacep; ace_object_t *aceobjp; for (i = 0; i != aclcnt; i++) { aceptr->z_hdr.z_access_mask = acep->a_access_mask; aceptr->z_hdr.z_flags = acep->a_flags; aceptr->z_hdr.z_type = acep->a_type; entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS; if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP && entry_type != ACE_EVERYONE) { aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who, cr, (entry_type == 0) ? ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp); } /* * Make sure ACE is valid */ if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type, aceptr->z_hdr.z_flags) != B_TRUE) return (SET_ERROR(EINVAL)); switch (acep->a_type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: zobjacep = (zfs_object_ace_t *)aceptr; aceobjp = (ace_object_t *)acep; bcopy(aceobjp->a_obj_type, zobjacep->z_object_type, sizeof (aceobjp->a_obj_type)); bcopy(aceobjp->a_inherit_obj_type, zobjacep->z_inherit_type, sizeof (aceobjp->a_inherit_obj_type)); acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t)); break; default: acep = (ace_t *)((caddr_t)acep + sizeof (ace_t)); } aceptr = (zfs_ace_t *)((caddr_t)aceptr + aclp->z_ops.ace_size(aceptr)); } *size = (caddr_t)aceptr - (caddr_t)z_acl; return (0); } /* * Copy ZFS ACEs to fixed size ace_t layout */ static void zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr, void *datap, int filter) { uint64_t who; uint32_t access_mask; uint16_t iflags, type; zfs_ace_hdr_t *zacep = NULL; ace_t *acep = datap; ace_object_t *objacep; zfs_object_ace_t *zobjacep; size_t ace_size; uint16_t entry_type; while (zacep = zfs_acl_next_ace(aclp, zacep, &who, &access_mask, &iflags, &type)) { switch (type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: if (filter) { continue; } zobjacep = (zfs_object_ace_t *)zacep; objacep = (ace_object_t *)acep; bcopy(zobjacep->z_object_type, objacep->a_obj_type, sizeof (zobjacep->z_object_type)); bcopy(zobjacep->z_inherit_type, objacep->a_inherit_obj_type, sizeof (zobjacep->z_inherit_type)); ace_size = sizeof (ace_object_t); break; default: ace_size = sizeof (ace_t); break; } entry_type = (iflags & ACE_TYPE_FLAGS); if ((entry_type != ACE_OWNER && entry_type != OWNING_GROUP && entry_type != ACE_EVERYONE)) { acep->a_who = zfs_fuid_map_id(zfsvfs, who, cr, (entry_type & ACE_IDENTIFIER_GROUP) ? ZFS_ACE_GROUP : ZFS_ACE_USER); } else { acep->a_who = (uid_t)(int64_t)who; } acep->a_access_mask = access_mask; acep->a_flags = iflags; acep->a_type = type; acep = (ace_t *)((caddr_t)acep + ace_size); } } static int zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep, zfs_oldace_t *z_acl, int aclcnt, size_t *size) { int i; zfs_oldace_t *aceptr = z_acl; for (i = 0; i != aclcnt; i++, aceptr++) { aceptr->z_access_mask = acep[i].a_access_mask; aceptr->z_type = acep[i].a_type; aceptr->z_flags = acep[i].a_flags; aceptr->z_fuid = acep[i].a_who; /* * Make sure ACE is valid */ if (zfs_ace_valid(obj_type, aclp, aceptr->z_type, aceptr->z_flags) != B_TRUE) return (SET_ERROR(EINVAL)); } *size = (caddr_t)aceptr - (caddr_t)z_acl; return (0); } /* * convert old ACL format to new */ void zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr) { zfs_oldace_t *oldaclp; int i; uint16_t type, iflags; uint32_t access_mask; uint64_t who; void *cookie = NULL; zfs_acl_node_t *newaclnode; ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL); /* * First create the ACE in a contiguous piece of memory * for zfs_copy_ace_2_fuid(). * * We only convert an ACL once, so this won't happen * everytime. */ oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count, KM_SLEEP); i = 0; while (cookie = zfs_acl_next_ace(aclp, cookie, &who, &access_mask, &iflags, &type)) { oldaclp[i].z_flags = iflags; oldaclp[i].z_type = type; oldaclp[i].z_fuid = who; oldaclp[i++].z_access_mask = access_mask; } newaclnode = zfs_acl_node_alloc(aclp->z_acl_count * sizeof (zfs_object_ace_t)); aclp->z_ops = zfs_acl_fuid_ops; VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp, oldaclp, newaclnode->z_acldata, aclp->z_acl_count, &newaclnode->z_size, NULL, cr) == 0); newaclnode->z_ace_count = aclp->z_acl_count; aclp->z_version = ZFS_ACL_VERSION; kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t)); /* * Release all previous ACL nodes */ zfs_acl_release_nodes(aclp); list_insert_head(&aclp->z_acl, newaclnode); aclp->z_acl_bytes = newaclnode->z_size; aclp->z_acl_count = newaclnode->z_ace_count; } /* * Convert unix access mask to v4 access mask */ static uint32_t zfs_unix_to_v4(uint32_t access_mask) { uint32_t new_mask = 0; if (access_mask & S_IXOTH) new_mask |= ACE_EXECUTE; if (access_mask & S_IWOTH) new_mask |= ACE_WRITE_DATA; if (access_mask & S_IROTH) new_mask |= ACE_READ_DATA; return (new_mask); } static void zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask, uint16_t access_type, uint64_t fuid, uint16_t entry_type) { uint16_t type = entry_type & ACE_TYPE_FLAGS; aclp->z_ops.ace_mask_set(acep, access_mask); aclp->z_ops.ace_type_set(acep, access_type); aclp->z_ops.ace_flags_set(acep, entry_type); if ((type != ACE_OWNER && type != OWNING_GROUP && type != ACE_EVERYONE)) aclp->z_ops.ace_who_set(acep, fuid); } /* * Determine mode of file based on ACL. */ uint64_t zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp, uint64_t *pflags, uint64_t fuid, uint64_t fgid) { int entry_type; mode_t mode; mode_t seen = 0; - zfs_ace_hdr_t *acep = NULL; + zfs_ace_hdr_t *acep = NULL; uint64_t who; uint16_t iflags, type; uint32_t access_mask; boolean_t an_exec_denied = B_FALSE; mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX)); while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask, &iflags, &type)) { if (!zfs_acl_valid_ace_type(type, iflags)) continue; entry_type = (iflags & ACE_TYPE_FLAGS); /* * Skip over any inherit_only ACEs */ if (iflags & ACE_INHERIT_ONLY_ACE) continue; if (entry_type == ACE_OWNER || (entry_type == 0 && who == fuid)) { if ((access_mask & ACE_READ_DATA) && (!(seen & S_IRUSR))) { seen |= S_IRUSR; if (type == ALLOW) { mode |= S_IRUSR; } } if ((access_mask & ACE_WRITE_DATA) && (!(seen & S_IWUSR))) { seen |= S_IWUSR; if (type == ALLOW) { mode |= S_IWUSR; } } if ((access_mask & ACE_EXECUTE) && (!(seen & S_IXUSR))) { seen |= S_IXUSR; if (type == ALLOW) { mode |= S_IXUSR; } } } else if (entry_type == OWNING_GROUP || (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) { if ((access_mask & ACE_READ_DATA) && (!(seen & S_IRGRP))) { seen |= S_IRGRP; if (type == ALLOW) { mode |= S_IRGRP; } } if ((access_mask & ACE_WRITE_DATA) && (!(seen & S_IWGRP))) { seen |= S_IWGRP; if (type == ALLOW) { mode |= S_IWGRP; } } if ((access_mask & ACE_EXECUTE) && (!(seen & S_IXGRP))) { seen |= S_IXGRP; if (type == ALLOW) { mode |= S_IXGRP; } } } else if (entry_type == ACE_EVERYONE) { if ((access_mask & ACE_READ_DATA)) { if (!(seen & S_IRUSR)) { seen |= S_IRUSR; if (type == ALLOW) { mode |= S_IRUSR; } } if (!(seen & S_IRGRP)) { seen |= S_IRGRP; if (type == ALLOW) { mode |= S_IRGRP; } } if (!(seen & S_IROTH)) { seen |= S_IROTH; if (type == ALLOW) { mode |= S_IROTH; } } } if ((access_mask & ACE_WRITE_DATA)) { if (!(seen & S_IWUSR)) { seen |= S_IWUSR; if (type == ALLOW) { mode |= S_IWUSR; } } if (!(seen & S_IWGRP)) { seen |= S_IWGRP; if (type == ALLOW) { mode |= S_IWGRP; } } if (!(seen & S_IWOTH)) { seen |= S_IWOTH; if (type == ALLOW) { mode |= S_IWOTH; } } } if ((access_mask & ACE_EXECUTE)) { if (!(seen & S_IXUSR)) { seen |= S_IXUSR; if (type == ALLOW) { mode |= S_IXUSR; } } if (!(seen & S_IXGRP)) { seen |= S_IXGRP; if (type == ALLOW) { mode |= S_IXGRP; } } if (!(seen & S_IXOTH)) { seen |= S_IXOTH; if (type == ALLOW) { mode |= S_IXOTH; } } } } else { /* * Only care if this IDENTIFIER_GROUP or * USER ACE denies execute access to someone, * mode is not affected */ if ((access_mask & ACE_EXECUTE) && type == DENY) an_exec_denied = B_TRUE; } } /* * Failure to allow is effectively a deny, so execute permission * is denied if it was never mentioned or if we explicitly * weren't allowed it. */ if (!an_exec_denied && ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS || (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS)) an_exec_denied = B_TRUE; if (an_exec_denied) *pflags &= ~ZFS_NO_EXECS_DENIED; else *pflags |= ZFS_NO_EXECS_DENIED; return (mode); } /* * Read an external acl object. If the intent is to modify, always * create a new acl and leave any cached acl in place. */ static int zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp, boolean_t will_modify) { zfs_acl_t *aclp; int aclsize; int acl_count; zfs_acl_node_t *aclnode; zfs_acl_phys_t znode_acl; int version; int error; boolean_t drop_lock = B_FALSE; ASSERT(MUTEX_HELD(&zp->z_acl_lock)); if (zp->z_acl_cached && !will_modify) { *aclpp = zp->z_acl_cached; return (0); } /* * close race where znode could be upgrade while trying to * read the znode attributes. * * But this could only happen if the file isn't already an SA * znode */ if (!zp->z_is_sa && !have_lock) { mutex_enter(&zp->z_lock); drop_lock = B_TRUE; } version = zfs_znode_acl_version(zp); if ((error = zfs_acl_znode_info(zp, &aclsize, &acl_count, &znode_acl)) != 0) { goto done; } aclp = zfs_acl_alloc(version); aclp->z_acl_count = acl_count; aclp->z_acl_bytes = aclsize; aclnode = zfs_acl_node_alloc(aclsize); aclnode->z_ace_count = aclp->z_acl_count; aclnode->z_size = aclsize; if (!zp->z_is_sa) { if (znode_acl.z_acl_extern_obj) { error = dmu_read(zp->z_zfsvfs->z_os, znode_acl.z_acl_extern_obj, 0, aclnode->z_size, aclnode->z_acldata, DMU_READ_PREFETCH); } else { bcopy(znode_acl.z_ace_data, aclnode->z_acldata, aclnode->z_size); } } else { error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs), aclnode->z_acldata, aclnode->z_size); } if (error != 0) { zfs_acl_free(aclp); zfs_acl_node_free(aclnode); /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); goto done; } list_insert_head(&aclp->z_acl, aclnode); *aclpp = aclp; if (!will_modify) zp->z_acl_cached = aclp; done: if (drop_lock) mutex_exit(&zp->z_lock); return (error); } /*ARGSUSED*/ void zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen, boolean_t start, void *userdata) { zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata; if (start) { cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl); } else { cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl, cb->cb_acl_node); } *dataptr = cb->cb_acl_node->z_acldata; *length = cb->cb_acl_node->z_size; } int zfs_acl_chown_setattr(znode_t *zp) { int error; zfs_acl_t *aclp; ASSERT(MUTEX_HELD(&zp->z_lock)); ASSERT(MUTEX_HELD(&zp->z_acl_lock)); if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0) zp->z_mode = zfs_mode_compute(zp->z_mode, aclp, &zp->z_pflags, zp->z_uid, zp->z_gid); return (error); } /* * common code for setting ACLs. * * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl. * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's * already checked the acl and knows whether to inherit. */ int zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx) { int error; zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_object_type_t otype; zfs_acl_locator_cb_t locate = { 0 }; uint64_t mode; sa_bulk_attr_t bulk[5]; uint64_t ctime[2]; int count = 0; zfs_acl_phys_t acl_phys; mode = zp->z_mode; mode = zfs_mode_compute(mode, aclp, &zp->z_pflags, zp->z_uid, zp->z_gid); zp->z_mode = mode; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, sizeof (mode)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } /* * Upgrade needed? */ if (!zfsvfs->z_use_fuids) { otype = DMU_OT_OLDACL; } else { if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) && (zfsvfs->z_version >= ZPL_VERSION_FUID)) zfs_acl_xform(zp, aclp, cr); ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID); otype = DMU_OT_ACL; } /* * Arrgh, we have to handle old on disk format * as well as newer (preferred) SA format. */ if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */ locate.cb_aclp = aclp; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs), zfs_acl_data_locator, &locate, aclp->z_acl_bytes); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs), NULL, &aclp->z_acl_count, sizeof (uint64_t)); } else { /* Painful legacy way */ zfs_acl_node_t *aclnode; uint64_t off = 0; uint64_t aoid; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs), &acl_phys, sizeof (acl_phys))) != 0) return (error); aoid = acl_phys.z_acl_extern_obj; if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { /* * If ACL was previously external and we are now * converting to new ACL format then release old * ACL object and create a new one. */ if (aoid && aclp->z_version != acl_phys.z_acl_version) { error = dmu_object_free(zfsvfs->z_os, aoid, tx); if (error) return (error); aoid = 0; } if (aoid == 0) { aoid = dmu_object_alloc(zfsvfs->z_os, otype, aclp->z_acl_bytes, otype == DMU_OT_ACL ? DMU_OT_SYSACL : DMU_OT_NONE, otype == DMU_OT_ACL ? - DN_MAX_BONUSLEN : 0, tx); + DN_OLD_MAX_BONUSLEN : 0, tx); } else { (void) dmu_object_set_blocksize(zfsvfs->z_os, aoid, aclp->z_acl_bytes, 0, tx); } acl_phys.z_acl_extern_obj = aoid; for (aclnode = list_head(&aclp->z_acl); aclnode; aclnode = list_next(&aclp->z_acl, aclnode)) { if (aclnode->z_ace_count == 0) continue; dmu_write(zfsvfs->z_os, aoid, off, aclnode->z_size, aclnode->z_acldata, tx); off += aclnode->z_size; } } else { void *start = acl_phys.z_ace_data; /* * Migrating back embedded? */ if (acl_phys.z_acl_extern_obj) { error = dmu_object_free(zfsvfs->z_os, acl_phys.z_acl_extern_obj, tx); if (error) return (error); acl_phys.z_acl_extern_obj = 0; } for (aclnode = list_head(&aclp->z_acl); aclnode; aclnode = list_next(&aclp->z_acl, aclnode)) { if (aclnode->z_ace_count == 0) continue; bcopy(aclnode->z_acldata, start, aclnode->z_size); start = (caddr_t)start + aclnode->z_size; } } /* * If Old version then swap count/bytes to match old * layout of znode_acl_phys_t. */ if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) { acl_phys.z_acl_size = aclp->z_acl_count; acl_phys.z_acl_count = aclp->z_acl_bytes; } else { acl_phys.z_acl_size = aclp->z_acl_bytes; acl_phys.z_acl_count = aclp->z_acl_count; } acl_phys.z_acl_version = aclp->z_version; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, &acl_phys, sizeof (acl_phys)); } /* * Replace ACL wide bits, but first clear them. */ zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS; zp->z_pflags |= aclp->z_hints; if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0) zp->z_pflags |= ZFS_ACL_TRIVIAL; zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE); return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx)); } static void zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim, zfs_acl_t *aclp) { void *acep = NULL; uint64_t who; int new_count, new_bytes; int ace_size; - int entry_type; + int entry_type; uint16_t iflags, type; uint32_t access_mask; zfs_acl_node_t *newnode; - size_t abstract_size = aclp->z_ops.ace_abstract_size(); - void *zacep; + size_t abstract_size = aclp->z_ops.ace_abstract_size(); + void *zacep; boolean_t isdir; trivial_acl_t masks; new_count = new_bytes = 0; isdir = (vtype == VDIR); acl_trivial_access_masks((mode_t)mode, isdir, &masks); newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes); zacep = newnode->z_acldata; if (masks.allow0) { zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER); zacep = (void *)((uintptr_t)zacep + abstract_size); new_count++; new_bytes += abstract_size; } if (masks.deny1) { zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER); zacep = (void *)((uintptr_t)zacep + abstract_size); new_count++; new_bytes += abstract_size; } if (masks.deny2) { zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP); zacep = (void *)((uintptr_t)zacep + abstract_size); new_count++; new_bytes += abstract_size; } while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask, &iflags, &type)) { entry_type = (iflags & ACE_TYPE_FLAGS); /* * ACEs used to represent the file mode may be divided * into an equivalent pair of inherit-only and regular * ACEs, if they are inheritable. * Skip regular ACEs, which are replaced by the new mode. */ if (split && (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || entry_type == ACE_EVERYONE)) { if (!isdir || !(iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) continue; /* * We preserve owner@, group@, or @everyone * permissions, if they are inheritable, by * copying them to inherit_only ACEs. This * prevents inheritable permissions from being * altered along with the file mode. */ iflags |= ACE_INHERIT_ONLY_ACE; } /* * If this ACL has any inheritable ACEs, mark that in * the hints (which are later masked into the pflags) * so create knows to do inheritance. */ if (isdir && (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) aclp->z_hints |= ZFS_INHERIT_ACE; if ((type != ALLOW && type != DENY) || (iflags & ACE_INHERIT_ONLY_ACE)) { switch (type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: aclp->z_hints |= ZFS_ACL_OBJ_ACE; break; } } else { /* * Limit permissions granted by ACEs to be no greater * than permissions of the requested group mode. * Applies when the "aclmode" property is set to * "groupmask". */ if ((type == ALLOW) && trim) access_mask &= masks.group; } zfs_set_ace(aclp, zacep, access_mask, type, who, iflags); ace_size = aclp->z_ops.ace_size(acep); zacep = (void *)((uintptr_t)zacep + ace_size); new_count++; new_bytes += ace_size; } zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER); zacep = (void *)((uintptr_t)zacep + abstract_size); zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP); zacep = (void *)((uintptr_t)zacep + abstract_size); zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE); new_count += 3; new_bytes += abstract_size * 3; zfs_acl_release_nodes(aclp); aclp->z_acl_count = new_count; aclp->z_acl_bytes = new_bytes; newnode->z_ace_count = new_count; newnode->z_size = new_bytes; list_insert_tail(&aclp->z_acl, newnode); } int zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode) { int error = 0; mutex_enter(&zp->z_acl_lock); mutex_enter(&zp->z_lock); if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD) *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp)); else error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE); if (error == 0) { (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS; zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE, (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp); } mutex_exit(&zp->z_lock); mutex_exit(&zp->z_acl_lock); return (error); } /* * Should ACE be inherited? */ static int zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags) { int iflags = (acep_flags & 0xf); if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE)) return (1); else if (iflags & ACE_FILE_INHERIT_ACE) return (!((vtype == VDIR) && (iflags & ACE_NO_PROPAGATE_INHERIT_ACE))); return (0); } /* * inherit inheritable ACEs from parent */ static zfs_acl_t * zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp, uint64_t mode, boolean_t *need_chmod) { void *pacep = NULL; void *acep; zfs_acl_node_t *aclnode; zfs_acl_t *aclp = NULL; uint64_t who; uint32_t access_mask; uint16_t iflags, newflags, type; size_t ace_size; void *data1, *data2; size_t data1sz, data2sz; uint_t aclinherit; boolean_t isdir = (vtype == VDIR); boolean_t isreg = (vtype == VREG); *need_chmod = B_TRUE; aclp = zfs_acl_alloc(paclp->z_version); aclinherit = zfsvfs->z_acl_inherit; if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK) return (aclp); while (pacep = zfs_acl_next_ace(paclp, pacep, &who, &access_mask, &iflags, &type)) { /* * don't inherit bogus ACEs */ if (!zfs_acl_valid_ace_type(type, iflags)) continue; /* * Check if ACE is inheritable by this vnode */ if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) || !zfs_ace_can_use(vtype, iflags)) continue; /* * If owner@, group@, or everyone@ inheritable * then zfs_acl_chmod() isn't needed. */ if ((aclinherit == ZFS_ACL_PASSTHROUGH || aclinherit == ZFS_ACL_PASSTHROUGH_X) && ((iflags & (ACE_OWNER|ACE_EVERYONE)) || ((iflags & OWNING_GROUP) == OWNING_GROUP)) && (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE)))) *need_chmod = B_FALSE; /* * Strip inherited execute permission from file if * not in mode */ if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW && !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) { access_mask &= ~ACE_EXECUTE; } /* * Strip write_acl and write_owner from permissions * when inheriting an ACE */ if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) { access_mask &= ~RESTRICTED_CLEAR; } ace_size = aclp->z_ops.ace_size(pacep); aclnode = zfs_acl_node_alloc(ace_size); list_insert_tail(&aclp->z_acl, aclnode); acep = aclnode->z_acldata; zfs_set_ace(aclp, acep, access_mask, type, who, iflags|ACE_INHERITED_ACE); /* * Copy special opaque data if any */ if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) { VERIFY((data2sz = aclp->z_ops.ace_data(acep, &data2)) == data1sz); bcopy(data1, data2, data2sz); } aclp->z_acl_count++; aclnode->z_ace_count++; aclp->z_acl_bytes += aclnode->z_size; newflags = aclp->z_ops.ace_flags_get(acep); /* * If ACE is not to be inherited further, or if the vnode is * not a directory, remove all inheritance flags */ if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) { newflags &= ~ALL_INHERIT; aclp->z_ops.ace_flags_set(acep, newflags|ACE_INHERITED_ACE); continue; } /* * This directory has an inheritable ACE */ aclp->z_hints |= ZFS_INHERIT_ACE; /* * If only FILE_INHERIT is set then turn on * inherit_only */ if ((iflags & (ACE_FILE_INHERIT_ACE | ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) { newflags |= ACE_INHERIT_ONLY_ACE; aclp->z_ops.ace_flags_set(acep, newflags|ACE_INHERITED_ACE); } else { newflags &= ~ACE_INHERIT_ONLY_ACE; aclp->z_ops.ace_flags_set(acep, newflags|ACE_INHERITED_ACE); } } return (aclp); } /* * Create file system object initial permissions * including inheritable ACEs. * Also, create FUIDs for owner and group. */ int zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr, vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids) { int error; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zfs_acl_t *paclp; gid_t gid; boolean_t need_chmod = B_TRUE; boolean_t trim = B_FALSE; boolean_t inherited = B_FALSE; bzero(acl_ids, sizeof (zfs_acl_ids_t)); acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode); if (vsecp) if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr, &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0) return (error); /* * Determine uid and gid. */ if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay || ((flag & IS_XATTR) && (vap->va_type == VDIR))) { acl_ids->z_fuid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &acl_ids->z_fuidp); acl_ids->z_fgid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &acl_ids->z_fuidp); gid = vap->va_gid; } else { acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER, cr, &acl_ids->z_fuidp); acl_ids->z_fgid = 0; if (vap->va_mask & AT_GID) { acl_ids->z_fgid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &acl_ids->z_fuidp); gid = vap->va_gid; if (acl_ids->z_fgid != dzp->z_gid && !groupmember(vap->va_gid, cr) && secpolicy_vnode_create_gid(cr) != 0) acl_ids->z_fgid = 0; } if (acl_ids->z_fgid == 0) { if (dzp->z_mode & S_ISGID) { char *domain; uint32_t rid; acl_ids->z_fgid = dzp->z_gid; gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid, cr, ZFS_GROUP); if (zfsvfs->z_use_fuids && IS_EPHEMERAL(acl_ids->z_fgid)) { domain = zfs_fuid_idx_domain( &zfsvfs->z_fuid_idx, FUID_INDEX(acl_ids->z_fgid)); rid = FUID_RID(acl_ids->z_fgid); zfs_fuid_node_add(&acl_ids->z_fuidp, domain, rid, FUID_INDEX(acl_ids->z_fgid), acl_ids->z_fgid, ZFS_GROUP); } } else { acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs, ZFS_GROUP, cr, &acl_ids->z_fuidp); gid = crgetgid(cr); } } } /* * If we're creating a directory, and the parent directory has the * set-GID bit set, set in on the new directory. * Otherwise, if the user is neither privileged nor a member of the * file's new group, clear the file's set-GID bit. */ if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) && (vap->va_type == VDIR)) { acl_ids->z_mode |= S_ISGID; } else { if ((acl_ids->z_mode & S_ISGID) && secpolicy_vnode_setids_setgids(cr, gid) != 0) acl_ids->z_mode &= ~S_ISGID; } if (acl_ids->z_aclp == NULL) { mutex_enter(&dzp->z_acl_lock); mutex_enter(&dzp->z_lock); if (!(flag & IS_ROOT_NODE) && (dzp->z_pflags & ZFS_INHERIT_ACE) && !(dzp->z_pflags & ZFS_XATTR)) { VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE, &paclp, B_FALSE)); acl_ids->z_aclp = zfs_acl_inherit(zfsvfs, vap->va_type, paclp, acl_ids->z_mode, &need_chmod); inherited = B_TRUE; } else { acl_ids->z_aclp = zfs_acl_alloc(zfs_acl_version_zp(dzp)); acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL; } mutex_exit(&dzp->z_lock); mutex_exit(&dzp->z_acl_lock); if (need_chmod) { if (vap->va_type == VDIR) acl_ids->z_aclp->z_hints |= ZFS_ACL_AUTO_INHERIT; if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK && zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH && zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X) trim = B_TRUE; zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE, trim, acl_ids->z_aclp); } } if (inherited || vsecp) { acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode, acl_ids->z_aclp, &acl_ids->z_aclp->z_hints, acl_ids->z_fuid, acl_ids->z_fgid); if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0) acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL; } return (0); } /* * Free ACL and fuid_infop, but not the acl_ids structure */ void zfs_acl_ids_free(zfs_acl_ids_t *acl_ids) { if (acl_ids->z_aclp) zfs_acl_free(acl_ids->z_aclp); if (acl_ids->z_fuidp) zfs_fuid_info_free(acl_ids->z_fuidp); acl_ids->z_aclp = NULL; acl_ids->z_fuidp = NULL; } boolean_t zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids) { return (zfs_fuid_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) || zfs_fuid_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid)); } /* * Retrieve a file's ACL */ int zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr) { zfs_acl_t *aclp; ulong_t mask; int error; - int count = 0; + int count = 0; int largeace = 0; mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT | VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES); if (mask == 0) return (SET_ERROR(ENOSYS)); if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr)) return (error); mutex_enter(&zp->z_acl_lock); error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE); if (error != 0) { mutex_exit(&zp->z_acl_lock); return (error); } /* * Scan ACL to determine number of ACEs */ if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) { void *zacep = NULL; uint64_t who; uint32_t access_mask; uint16_t type, iflags; while (zacep = zfs_acl_next_ace(aclp, zacep, &who, &access_mask, &iflags, &type)) { switch (type) { case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: largeace++; continue; default: count++; } } vsecp->vsa_aclcnt = count; } else count = (int)aclp->z_acl_count; if (mask & VSA_ACECNT) { vsecp->vsa_aclcnt = count; } if (mask & VSA_ACE) { size_t aclsz; aclsz = count * sizeof (ace_t) + sizeof (ace_object_t) * largeace; vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP); vsecp->vsa_aclentsz = aclsz; if (aclp->z_version == ZFS_ACL_VERSION_FUID) zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr, vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES)); else { zfs_acl_node_t *aclnode; void *start = vsecp->vsa_aclentp; for (aclnode = list_head(&aclp->z_acl); aclnode; aclnode = list_next(&aclp->z_acl, aclnode)) { bcopy(aclnode->z_acldata, start, aclnode->z_size); start = (caddr_t)start + aclnode->z_size; } ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp == aclp->z_acl_bytes); } } if (mask & VSA_ACE_ACLFLAGS) { vsecp->vsa_aclflags = 0; if (zp->z_pflags & ZFS_ACL_DEFAULTED) vsecp->vsa_aclflags |= ACL_DEFAULTED; if (zp->z_pflags & ZFS_ACL_PROTECTED) vsecp->vsa_aclflags |= ACL_PROTECTED; if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT) vsecp->vsa_aclflags |= ACL_AUTO_INHERIT; } mutex_exit(&zp->z_acl_lock); return (0); } int zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type, vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp) { zfs_acl_t *aclp; zfs_acl_node_t *aclnode; int aclcnt = vsecp->vsa_aclcnt; int error; if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0) return (SET_ERROR(EINVAL)); aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version)); aclp->z_hints = 0; aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t)); if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) { if ((error = zfs_copy_ace_2_oldace(obj_type, aclp, (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt, &aclnode->z_size)) != 0) { zfs_acl_free(aclp); zfs_acl_node_free(aclnode); return (error); } } else { if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp, vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt, &aclnode->z_size, fuidp, cr)) != 0) { zfs_acl_free(aclp); zfs_acl_node_free(aclnode); return (error); } } aclp->z_acl_bytes = aclnode->z_size; aclnode->z_ace_count = aclcnt; aclp->z_acl_count = aclcnt; list_insert_head(&aclp->z_acl, aclnode); /* * If flags are being set then add them to z_hints */ if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) { if (vsecp->vsa_aclflags & ACL_PROTECTED) aclp->z_hints |= ZFS_ACL_PROTECTED; if (vsecp->vsa_aclflags & ACL_DEFAULTED) aclp->z_hints |= ZFS_ACL_DEFAULTED; if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT) aclp->z_hints |= ZFS_ACL_AUTO_INHERIT; } *zaclp = aclp; return (0); } /* * Set a file's ACL */ int zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog = zfsvfs->z_log; ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT); dmu_tx_t *tx; int error; zfs_acl_t *aclp; zfs_fuid_info_t *fuidp = NULL; boolean_t fuid_dirtied; uint64_t acl_obj; if (mask == 0) return (SET_ERROR(ENOSYS)); if (zp->z_pflags & ZFS_IMMUTABLE) return (SET_ERROR(EPERM)); if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr)) return (error); error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp, &aclp); if (error) return (error); /* * If ACL wide flags aren't being set then preserve any * existing flags. */ if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) { aclp->z_hints |= (zp->z_pflags & V4_ACL_WIDE_FLAGS); } top: mutex_enter(&zp->z_acl_lock); mutex_enter(&zp->z_lock); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); /* * If old version and ACL won't fit in bonus and we aren't * upgrading then take out necessary DMU holds */ if ((acl_obj = zfs_external_acl(zp)) != 0) { if (zfsvfs->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_NOWAIT); if (error) { mutex_exit(&zp->z_acl_lock); mutex_exit(&zp->z_lock); if (error == ERESTART) { dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); zfs_acl_free(aclp); return (error); } error = zfs_aclset_common(zp, aclp, cr, tx); ASSERT(error == 0); ASSERT(zp->z_acl_cached == NULL); zp->z_acl_cached = aclp; if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); zfs_log_acl(zilog, tx, zp, vsecp, fuidp); if (fuidp) zfs_fuid_info_free(fuidp); dmu_tx_commit(tx); done: mutex_exit(&zp->z_lock); mutex_exit(&zp->z_acl_lock); return (error); } /* * Check accesses of interest (AoI) against attributes of the dataset * such as read-only. Returns zero if no AoI conflict with dataset * attributes, otherwise an appropriate errno is returned. */ static int zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode) { if ((v4_mode & WRITE_MASK) && (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) && (!IS_DEVVP(ZTOV(zp)) || (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) { return (SET_ERROR(EROFS)); } /* * Intentionally allow ZFS_READONLY through here. * See zfs_zaccess_common(). */ if ((v4_mode & WRITE_MASK_DATA) && (zp->z_pflags & ZFS_IMMUTABLE)) { return (SET_ERROR(EPERM)); } if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) && (zp->z_pflags & ZFS_NOUNLINK)) { return (SET_ERROR(EPERM)); } if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) && (zp->z_pflags & ZFS_AV_QUARANTINED))) { return (SET_ERROR(EACCES)); } return (0); } /* * The primary usage of this function is to loop through all of the * ACEs in the znode, determining what accesses of interest (AoI) to * the caller are allowed or denied. The AoI are expressed as bits in * the working_mode parameter. As each ACE is processed, bits covered * by that ACE are removed from the working_mode. This removal * facilitates two things. The first is that when the working mode is * empty (= 0), we know we've looked at all the AoI. The second is * that the ACE interpretation rules don't allow a later ACE to undo * something granted or denied by an earlier ACE. Removing the * discovered access or denial enforces this rule. At the end of * processing the ACEs, all AoI that were found to be denied are * placed into the working_mode, giving the caller a mask of denied * accesses. Returns: * 0 if all AoI granted * EACCES if the denied mask is non-zero * other error if abnormal failure (e.g., IO error) * * A secondary usage of the function is to determine if any of the * AoI are granted. If an ACE grants any access in * the working_mode, we immediately short circuit out of the function. * This mode is chosen by setting anyaccess to B_TRUE. The * working_mode is not a denied access mask upon exit if the function * is used in this manner. */ static int zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode, boolean_t anyaccess, cred_t *cr) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; zfs_acl_t *aclp; int error; uid_t uid = crgetuid(cr); - uint64_t who; + uint64_t who; uint16_t type, iflags; uint16_t entry_type; uint32_t access_mask; uint32_t deny_mask = 0; zfs_ace_hdr_t *acep = NULL; boolean_t checkit; uid_t gowner; uid_t fowner; zfs_fuid_map_ids(zp, cr, &fowner, &gowner); mutex_enter(&zp->z_acl_lock); error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE); if (error != 0) { mutex_exit(&zp->z_acl_lock); return (error); } ASSERT(zp->z_acl_cached); while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask, &iflags, &type)) { uint32_t mask_matched; if (!zfs_acl_valid_ace_type(type, iflags)) continue; if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE)) continue; /* Skip ACE if it does not affect any AoI */ mask_matched = (access_mask & *working_mode); if (!mask_matched) continue; entry_type = (iflags & ACE_TYPE_FLAGS); checkit = B_FALSE; switch (entry_type) { case ACE_OWNER: if (uid == fowner) checkit = B_TRUE; break; case OWNING_GROUP: who = gowner; /*FALLTHROUGH*/ case ACE_IDENTIFIER_GROUP: checkit = zfs_groupmember(zfsvfs, who, cr); break; case ACE_EVERYONE: checkit = B_TRUE; break; /* USER Entry */ default: if (entry_type == 0) { uid_t newid; newid = zfs_fuid_map_id(zfsvfs, who, cr, ZFS_ACE_USER); if (newid != IDMAP_WK_CREATOR_OWNER_UID && uid == newid) checkit = B_TRUE; break; } else { mutex_exit(&zp->z_acl_lock); return (SET_ERROR(EIO)); } } if (checkit) { if (type == DENY) { DTRACE_PROBE3(zfs__ace__denies, znode_t *, zp, zfs_ace_hdr_t *, acep, uint32_t, mask_matched); deny_mask |= mask_matched; } else { DTRACE_PROBE3(zfs__ace__allows, znode_t *, zp, zfs_ace_hdr_t *, acep, uint32_t, mask_matched); if (anyaccess) { mutex_exit(&zp->z_acl_lock); return (0); } } *working_mode &= ~mask_matched; } /* Are we done? */ if (*working_mode == 0) break; } mutex_exit(&zp->z_acl_lock); /* Put the found 'denies' back on the working mode */ if (deny_mask) { *working_mode |= deny_mask; return (SET_ERROR(EACCES)); } else if (*working_mode) { return (-1); } return (0); } /* * Return true if any access whatsoever granted, we don't actually * care what access is granted. */ boolean_t zfs_has_access(znode_t *zp, cred_t *cr) { uint32_t have = ACE_ALL_PERMS; if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) { uid_t owner; owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0); } return (B_TRUE); } static int zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode, boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; int err; *working_mode = v4_mode; *check_privs = B_TRUE; /* * Short circuit empty requests */ if (v4_mode == 0 || zfsvfs->z_replay) { *working_mode = 0; return (0); } if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) { *check_privs = B_FALSE; return (err); } /* * The caller requested that the ACL check be skipped. This * would only happen if the caller checked VOP_ACCESS() with a * 32 bit ACE mask and already had the appropriate permissions. */ if (skipaclchk) { *working_mode = 0; return (0); } /* * Note: ZFS_READONLY represents the "DOS R/O" attribute. * When that flag is set, we should behave as if write access * were not granted by anything in the ACL. In particular: * We _must_ allow writes after opening the file r/w, then * setting the DOS R/O attribute, and writing some more. * (Similar to how you can write after fchmod(fd, 0444).) * * Therefore ZFS_READONLY is ignored in the dataset check * above, and checked here as if part of the ACL check. * Also note: DOS R/O is ignored for directories. */ if ((v4_mode & WRITE_MASK_DATA) && (ZTOV(zp)->v_type != VDIR) && (zp->z_pflags & ZFS_READONLY)) { return (SET_ERROR(EPERM)); } return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr)); } static int zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs, cred_t *cr) { if (*working_mode != ACE_WRITE_DATA) return (SET_ERROR(EACCES)); return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode, check_privs, B_FALSE, cr)); } int zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr) { boolean_t owner = B_FALSE; boolean_t groupmbr = B_FALSE; boolean_t is_attr; uid_t uid = crgetuid(cr); int error; if (zdp->z_pflags & ZFS_AV_QUARANTINED) return (SET_ERROR(EACCES)); is_attr = ((zdp->z_pflags & ZFS_XATTR) && (ZTOV(zdp)->v_type == VDIR)); if (is_attr) goto slow; mutex_enter(&zdp->z_acl_lock); if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) { mutex_exit(&zdp->z_acl_lock); return (0); } if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) { mutex_exit(&zdp->z_acl_lock); goto slow; } if (uid == zdp->z_uid) { owner = B_TRUE; if (zdp->z_mode & S_IXUSR) { mutex_exit(&zdp->z_acl_lock); return (0); } else { mutex_exit(&zdp->z_acl_lock); goto slow; } } if (groupmember(zdp->z_gid, cr)) { groupmbr = B_TRUE; if (zdp->z_mode & S_IXGRP) { mutex_exit(&zdp->z_acl_lock); return (0); } else { mutex_exit(&zdp->z_acl_lock); goto slow; } } if (!owner && !groupmbr) { if (zdp->z_mode & S_IXOTH) { mutex_exit(&zdp->z_acl_lock); return (0); } } mutex_exit(&zdp->z_acl_lock); slow: DTRACE_PROBE(zfs__fastpath__execute__access__miss); ZFS_ENTER(zdp->z_zfsvfs); error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr); ZFS_EXIT(zdp->z_zfsvfs); return (error); } /* * Determine whether Access should be granted/denied. * * The least priv subsystem is always consulted as a basic privilege * can define any form of access. */ int zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr) { uint32_t working_mode; int error; int is_attr; - boolean_t check_privs; + boolean_t check_privs; znode_t *xzp; - znode_t *check_zp = zp; + znode_t *check_zp = zp; mode_t needed_bits; uid_t owner; is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR)); /* * If attribute then validate against base file */ if (is_attr) { uint64_t parent; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), &parent, sizeof (parent))) != 0) return (error); if ((error = zfs_zget(zp->z_zfsvfs, parent, &xzp)) != 0) { return (error); } check_zp = xzp; /* * fixup mode to map to xattr perms */ if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) { mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA); mode |= ACE_WRITE_NAMED_ATTRS; } if (mode & (ACE_READ_DATA|ACE_EXECUTE)) { mode &= ~(ACE_READ_DATA|ACE_EXECUTE); mode |= ACE_READ_NAMED_ATTRS; } } owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); /* * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC * in needed_bits. Map the bits mapped by working_mode (currently * missing) in missing_bits. * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode), * needed_bits. */ needed_bits = 0; working_mode = mode; if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) && owner == crgetuid(cr)) working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES); if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS| ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE)) needed_bits |= VREAD; if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS| ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE)) needed_bits |= VWRITE; if (working_mode & ACE_EXECUTE) needed_bits |= VEXEC; if ((error = zfs_zaccess_common(check_zp, mode, &working_mode, &check_privs, skipaclchk, cr)) == 0) { if (is_attr) VN_RELE(ZTOV(xzp)); return (secpolicy_vnode_access2(cr, ZTOV(zp), owner, needed_bits, needed_bits)); } if (error && !check_privs) { if (is_attr) VN_RELE(ZTOV(xzp)); return (error); } if (error && (flags & V_APPEND)) { error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr); } if (error && check_privs) { mode_t checkmode = 0; /* * First check for implicit owner permission on * read_acl/read_attributes */ error = 0; ASSERT(working_mode != 0); if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) && owner == crgetuid(cr))) working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES); if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS| ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE)) checkmode |= VREAD; if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS| ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE)) checkmode |= VWRITE; if (working_mode & ACE_EXECUTE) checkmode |= VEXEC; error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner, needed_bits & ~checkmode, needed_bits); if (error == 0 && (working_mode & ACE_WRITE_OWNER)) error = secpolicy_vnode_chown(cr, owner); if (error == 0 && (working_mode & ACE_WRITE_ACL)) error = secpolicy_vnode_setdac(cr, owner); if (error == 0 && (working_mode & (ACE_DELETE|ACE_DELETE_CHILD))) error = secpolicy_vnode_remove(cr); if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) { error = secpolicy_vnode_chown(cr, owner); } if (error == 0) { /* * See if any bits other than those already checked * for are still present. If so then return EACCES */ if (working_mode & ~(ZFS_CHECKED_MASKS)) { error = SET_ERROR(EACCES); } } } else if (error == 0) { error = secpolicy_vnode_access2(cr, ZTOV(zp), owner, needed_bits, needed_bits); } if (is_attr) VN_RELE(ZTOV(xzp)); return (error); } /* * Translate traditional unix VREAD/VWRITE/VEXEC mode into * native ACL format and call zfs_zaccess() */ int zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr) { return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr)); } /* * Access function for secpolicy_vnode_setattr */ int zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr) { int v4_mode = zfs_unix_to_v4(mode >> 6); return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr)); } /* See zfs_zaccess_delete() */ int zfs_write_implies_delete_child = 1; /* * Determine whether delete access should be granted. * * The following chart outlines how we handle delete permissions which is * how recent versions of windows (Windows 2008) handles it. The efficiency * comes from not having to check the parent ACL where the object itself grants * delete: * * ------------------------------------------------------- * | Parent Dir | Target Object Permissions | * | permissions | | * ------------------------------------------------------- * | | ACL Allows | ACL Denies| Delete | * | | Delete | Delete | unspecified| * ------------------------------------------------------- * | ACL Allows | Permit | Deny * | Permit | * | DELETE_CHILD | | | | * ------------------------------------------------------- * | ACL Denies | Permit | Deny | Deny | * | DELETE_CHILD | | | | * ------------------------------------------------------- * | ACL specifies | | | | * | only allow | Permit | Deny * | Permit | * | write and | | | | * | execute | | | | * ------------------------------------------------------- * | ACL denies | | | | * | write and | Permit | Deny | Deny | * | execute | | | | * ------------------------------------------------------- * ^ * | * Re. execute permission on the directory: if that's missing, * the vnode lookup of the target will fail before we get here. * * Re [*] in the table above: NFSv4 would normally Permit delete for * these two cells of the matrix. * See acl.h for notes on which ACE_... flags should be checked for which * operations. Specifically, the NFSv4 committee recommendation is in * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs * should take precedence ahead of ALLOW ACEs. * * This implementation always consults the target object's ACL first. * If a DENY ACE is present on the target object that specifies ACE_DELETE, * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on * the target object, access is allowed. If and only if no entries with * ACE_DELETE are present in the object's ACL, check the container's ACL * for entries with ACE_DELETE_CHILD. * * A summary of the logic implemented from the table above is as follows: * * First check for DENY ACEs that apply. * If either target or container has a deny, EACCES. * * Delete access can then be summarized as follows: * 1: The object to be deleted grants ACE_DELETE, or * 2: The containing directory grants ACE_DELETE_CHILD. * In a Windows system, that would be the end of the story. * In this system, (2) has some complications... * 2a: "sticky" bit on a directory adds restrictions, and * 2b: existing ACEs from previous versions of ZFS may * not carry ACE_DELETE_CHILD where they should, so we * also allow delete when ACE_WRITE_DATA is granted. * * Note: 2b is technically a work-around for a prior bug, * which hopefully can go away some day. For those who * no longer need the work around, and for testing, this * work-around is made conditional via the tunable: * zfs_write_implies_delete_child */ int zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr) { uint32_t wanted_dirperms; uint32_t dzp_working_mode = 0; uint32_t zp_working_mode = 0; int dzp_error, zp_error; boolean_t dzpcheck_privs; boolean_t zpcheck_privs; if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK)) return (SET_ERROR(EPERM)); /* * Case 1: * If target object grants ACE_DELETE then we are done. This is * indicated by a return value of 0. For this case we don't worry * about the sticky bit because sticky only applies to the parent * directory and this is the child access result. * * If we encounter a DENY ACE here, we're also done (EACCES). * Note that if we hit a DENY ACE here (on the target) it should * take precedence over a DENY ACE on the container, so that when * we have more complete auditing support we will be able to * report an access failure against the specific target. * (This is part of why we're checking the target first.) */ zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode, &zpcheck_privs, B_FALSE, cr); if (zp_error == EACCES) { /* We hit a DENY ACE. */ if (!zpcheck_privs) return (SET_ERROR(zp_error)); return (secpolicy_vnode_remove(cr)); } if (zp_error == 0) return (0); /* * Case 2: * If the containing directory grants ACE_DELETE_CHILD, * or we're in backward compatibility mode and the * containing directory has ACE_WRITE_DATA, allow. * Case 2b is handled with wanted_dirperms. */ wanted_dirperms = ACE_DELETE_CHILD; if (zfs_write_implies_delete_child) wanted_dirperms |= ACE_WRITE_DATA; dzp_error = zfs_zaccess_common(dzp, wanted_dirperms, &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr); if (dzp_error == EACCES) { /* We hit a DENY ACE. */ if (!dzpcheck_privs) return (SET_ERROR(dzp_error)); return (secpolicy_vnode_remove(cr)); } /* * Cases 2a, 2b (continued) * * Note: dzp_working_mode now contains any permissions * that were NOT granted. Therefore, if any of the * wanted_dirperms WERE granted, we will have: * dzp_working_mode != wanted_dirperms * We're really asking if ANY of those permissions * were granted, and if so, grant delete access. */ if (dzp_working_mode != wanted_dirperms) dzp_error = 0; /* * dzp_error is 0 if the container granted us permissions to "modify". * If we do not have permission via one or more ACEs, our current * privileges may still permit us to modify the container. * * dzpcheck_privs is false when i.e. the FS is read-only. * Otherwise, do privilege checks for the container. */ if (dzp_error != 0 && dzpcheck_privs) { uid_t owner; /* * The secpolicy call needs the requested access and * the current access mode of the container, but it * only knows about Unix-style modes (VEXEC, VWRITE), * so this must condense the fine-grained ACE bits into * Unix modes. * * The VEXEC flag is easy, because we know that has * always been checked before we get here (during the * lookup of the target vnode). The container has not * granted us permissions to "modify", so we do not set * the VWRITE flag in the current access mode. */ owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, ZFS_OWNER); dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp), owner, VEXEC, VWRITE|VEXEC); } if (dzp_error != 0) { /* * Note: We may have dzp_error = -1 here (from * zfs_zacess_common). Don't return that. */ return (SET_ERROR(EACCES)); } /* * At this point, we know that the directory permissions allow * us to modify, but we still need to check for the additional * restrictions that apply when the "sticky bit" is set. * * Yes, zfs_sticky_remove_access() also checks this bit, but * checking it here and skipping the call below is nice when * you're watching all of this with dtrace. */ if ((dzp->z_mode & S_ISVTX) == 0) return (0); /* * zfs_sticky_remove_access will succeed if: * 1. The sticky bit is absent. * 2. We pass the sticky bit restrictions. * 3. We have privileges that always allow file removal. */ return (zfs_sticky_remove_access(dzp, zp, cr)); } int zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp, znode_t *tzp, cred_t *cr) { int add_perm; int error; if (szp->z_pflags & ZFS_AV_QUARANTINED) return (SET_ERROR(EACCES)); add_perm = (ZTOV(szp)->v_type == VDIR) ? ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE; /* * Rename permissions are combination of delete permission + * add file/subdir permission. */ /* * first make sure we do the delete portion. * * If that succeeds then check for add_file/add_subdir permissions */ if (error = zfs_zaccess_delete(sdzp, szp, cr)) return (error); /* * If we have a tzp, see if we can delete it? */ if (tzp) { if (error = zfs_zaccess_delete(tdzp, tzp, cr)) return (error); } /* * Now check for add permissions */ error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr); return (error); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c (revision 350898) @@ -1,6567 +1,6585 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011-2012 Pawel Jakub Dawidek. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright 2017 RackTop Systems. * Copyright (c) 2017 Datto Inc. */ /* * ZFS ioctls. * * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. * * There are two ways that we handle ioctls: the legacy way where almost * all of the logic is in the ioctl callback, and the new way where most * of the marshalling is handled in the common entry point, zfsdev_ioctl(). * * Non-legacy ioctls should be registered by calling * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked * from userland by lzc_ioctl(). * * The registration arguments are as follows: * * const char *name * The name of the ioctl. This is used for history logging. If the * ioctl returns successfully (the callback returns 0), and allow_log * is true, then a history log entry will be recorded with the input & * output nvlists. The log entry can be printed with "zpool history -i". * * zfs_ioc_t ioc * The ioctl request number, which userland will pass to ioctl(2). * The ioctl numbers can change from release to release, because * the caller (libzfs) must be matched to the kernel. * * zfs_secpolicy_func_t *secpolicy * This function will be called before the zfs_ioc_func_t, to * determine if this operation is permitted. It should return EPERM * on failure, and 0 on success. Checks include determining if the * dataset is visible in this zone, and if the user has either all * zfs privileges in the zone (SYS_MOUNT), or has been granted permission * to do this operation on this dataset with "zfs allow". * * zfs_ioc_namecheck_t namecheck * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool * name, a dataset name, or nothing. If the name is not well-formed, * the ioctl will fail and the callback will not be called. * Therefore, the callback can assume that the name is well-formed * (e.g. is null-terminated, doesn't have more than one '@' character, * doesn't have invalid characters). * * zfs_ioc_poolcheck_t pool_check * This specifies requirements on the pool state. If the pool does * not meet them (is suspended or is readonly), the ioctl will fail * and the callback will not be called. If any checks are specified * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | * POOL_CHECK_READONLY). * * boolean_t smush_outnvlist * If smush_outnvlist is true, then the output is presumed to be a * list of errors, and it will be "smushed" down to fit into the * caller's buffer, by removing some entries and replacing them with a * single "N_MORE_ERRORS" entry indicating how many were removed. See * nvlist_smush() for details. If smush_outnvlist is false, and the * outnvlist does not fit into the userland-provided buffer, then the * ioctl will fail with ENOMEM. * * zfs_ioc_func_t *func * The callback function that will perform the operation. * * The callback should return 0 on success, or an error number on * failure. If the function fails, the userland ioctl will return -1, * and errno will be set to the callback's return value. The callback * will be called with the following arguments: * * const char *name * The name of the pool or dataset to operate on, from * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the * expected type (pool, dataset, or none). * * nvlist_t *innvl * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or * NULL if no input nvlist was provided. Changes to this nvlist are * ignored. If the input nvlist could not be deserialized, the * ioctl will fail and the callback will not be called. * * nvlist_t *outnvl * The output nvlist, initially empty. The callback can fill it in, * and it will be returned to userland by serializing it into * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization * fails (e.g. because the caller didn't supply a large enough * buffer), then the overall ioctl will fail. See the * 'smush_nvlist' argument above for additional behaviors. * * There are two typical uses of the output nvlist: * - To return state, e.g. property values. In this case, * smush_outnvlist should be false. If the buffer was not large * enough, the caller will reallocate a larger buffer and try * the ioctl again. * * - To return multiple errors from an ioctl which makes on-disk * changes. In this case, smush_outnvlist should be true. * Ioctls which make on-disk modifications should generally not * use the outnvl if they succeed, because the caller can not * distinguish between the operation failing, and * deserialization failing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" #include "lua.h" #include "lauxlib.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; uint_t zfs_fsyncer_key; extern uint_t rrw_tsd_key; static uint_t zfs_allow_log_key; typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *); typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *); typedef enum { NO_NAME, POOL_NAME, DATASET_NAME } zfs_ioc_namecheck_t; typedef enum { POOL_CHECK_NONE = 1 << 0, POOL_CHECK_SUSPENDED = 1 << 1, POOL_CHECK_READONLY = 1 << 2, } zfs_ioc_poolcheck_t; typedef struct zfs_ioc_vec { zfs_ioc_legacy_func_t *zvec_legacy_func; zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_allow_log; zfs_ioc_poolcheck_t zvec_pool_check; boolean_t zvec_smush_outnvlist; const char *zvec_name; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); static int zfs_prop_activate_feature(spa_t *spa, spa_feature_t feature); /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[512]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == NULL) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Check to see if the named dataset is currently defined as bootable */ static boolean_t zfs_is_bootfs(const char *name) { objset_t *os; if (dmu_objset_hold(name, FTAG, &os) == 0) { boolean_t ret; ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os))); dmu_objset_rele(os, FTAG); return (ret); } return (B_FALSE); } /* * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (SET_ERROR(ENOENT)); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (SET_ERROR(ENOENT)); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (SET_ERROR(EPERM)); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (SET_ERROR(EPERM)); /* must be writable by this zone */ if (!writable) return (SET_ERROR(EPERM)); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_int_ds(ds, "zoned", &zoned)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error != 0) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } static int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; dsl_dataset_t *ds; dsl_pool_t *dp; /* * First do a quick check for root in the global zone, which * is allowed to do all write_perms. This ensures that zfs_ioc_* * will get to handle nonexistent datasets. */ if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) return (0); error = dsl_pool_hold(name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr) { char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error != 0) return (SET_ERROR(EPERM)); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (SET_ERROR(EINVAL)); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (SET_ERROR(EPERM)); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EPERM)); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (SET_ERROR(EPERM)); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, setsl_tag, &os); if (error != 0) return (SET_ERROR(EPERM)); dmu_objset_disown(os, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (SET_ERROR(EPERM)); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); break; case ZFS_PROP_QUOTA: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[ZFS_MAX_DATASET_NAME_LEN]; /* * Unprivileged users are allowed to modify the * limit on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, "zoned", &zoned, setpoint)) return (SET_ERROR(EPERM)); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (SET_ERROR(EPERM)); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (SET_ERROR(EPERM)); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } /* ARGSUSED */ static int zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error != 0) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } /* ARGSUSED */ static int zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } /* ARGSUSED */ static int zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *ds; char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } /* ARGSUSED */ static int zfs_secpolicy_deleg_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { vnode_t *vp; int error; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (SET_ERROR(EPERM)); } VN_RELE(vp); return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_SHARE, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); if (secpolicy_nfs(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, innvl, cr)); } } int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); if (secpolicy_smb(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, innvl, cr)); } } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (SET_ERROR(ENOENT)); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } /* ARGSUSED */ static int zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendant mount and destroy permissions. */ /* ARGSUSED */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; nvpair_t *pair, *nextpair; int error = 0; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nextpair) { nextpair = nvlist_next_nvpair(snaps, pair); error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); if (error == ENOENT) { /* * Ignore any snapshots that don't exist (we consider * them "already destroyed"). Remove the name from the * nvl here in case the snapshot is created between * now and when we try to destroy it (in which case * we don't want to destroy it since we haven't * checked for permission). */ fnvlist_remove_nvpair(snaps, pair); error = 0; } if (error != 0) break; } return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } /* ARGSUSED */ static int zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } /* ARGSUSED */ static int zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error != 0) return (error); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); if (error == 0) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_t *origin = NULL; dsl_dir_t *dd; dd = clone->ds_dir; error = dsl_dataset_hold_obj(dd->dd_pool, dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); if (error != 0) { dsl_dataset_rele(clone, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(origin, parentname); if (error == 0) { error = zfs_secpolicy_write_perms_ds(parentname, origin, ZFS_DELEG_PERM_PROMOTE, cr); } dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(origin, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } /* * Check for permission to create each snapshot in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; int error = 0; nvpair_t *pair; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char *name = nvpair_name(pair); char *atp = strchr(name, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } *atp = '\0'; error = zfs_secpolicy_snapshot_perms(name, cr); *atp = '@'; if (error != 0) break; } return (error); } /* * Check for permission to create each snapshot in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error = 0; for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_BOOKMARK, cr); *hashp = '#'; if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_remap(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_REMAP, cr)); } /* ARGSUSED */ static int zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair, *nextpair; int error = 0; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nextpair) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); nextpair = nvlist_next_nvpair(innvl, pair); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr); *hashp = '#'; if (error == ENOENT) { /* * Ignore any filesystems that don't exist (we consider * their bookmarks "already destroyed"). Remove * the name from the nvl here in case the filesystem * is created between now and when we try to destroy * the bookmark (in which case we don't want to * destroy it since we haven't checked for permission). */ fnvlist_remove_nvpair(innvl, pair); error = 0; } if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * Even root must have a proper TSD so that we know what pool * to log to. */ if (tsd_get(zfs_allow_log_key) == NULL) return (SET_ERROR(EPERM)); return (0); } static int zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; char *origin; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && (error = zfs_secpolicy_write_perms(origin, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (SET_ERROR(EPERM)); return (0); } /* * Policy for object to name lookups. */ /* ARGSUSED */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (secpolicy_zinject(cr)); } /* ARGSUSED */ static int zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else { if (groupmember(zc->zc_guid, cr)) return (0); } } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } /* ARGSUSED */ static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } /* ARGSUSED */ static int zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; nvlist_t *holds; int error; error = nvlist_lookup_nvlist(innvl, "holds", &holds); if (error != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_HOLD, cr); if (error != 0) return (error); } return (0); } /* ARGSUSED */ static int zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; int error; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_RELEASE, cr); if (error != 0) return (error); } return (0); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr)) == 0) return (0); error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); if (error == 0) error = zfs_secpolicy_hold(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_release(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_destroy(zc, innvl, cr); return (error); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (SET_ERROR(EINVAL)); packed = kmem_alloc(size, KM_SLEEP); if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag)) != 0) { kmem_free(packed, size); return (SET_ERROR(EFAULT)); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = list; return (0); } /* * Reduce the size of this nvlist until it can be serialized in 'max' bytes. * Entries will be removed from the end of the nvlist, and one int32 entry * named "N_MORE_ERRORS" will be added indicating how many entries were * removed. */ static int nvlist_smush(nvlist_t *errors, size_t max) { size_t size; size = fnvlist_size(errors); if (size > max) { nvpair_t *more_errors; int n = 0; if (max < 1024) return (SET_ERROR(ENOMEM)); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); more_errors = nvlist_prev_nvpair(errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(errors, more_errors); fnvlist_remove_nvpair(errors, pair); n++; size = fnvlist_size(errors); } while (size > max); fnvlist_remove_nvpair(errors, more_errors); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); ASSERT3U(fnvlist_size(errors), <=, max); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; size = fnvlist_size(nvl); if (size > zc->zc_nvlist_dst_size) { error = SET_ERROR(ENOMEM); } else { packed = fnvlist_pack(nvl, &size); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = SET_ERROR(EFAULT); fnvlist_pack_free(packed, size); } zc->zc_nvlist_dst_size = size; zc->zc_nvlist_dst_filled = B_TRUE; return (error); } int getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) { int error = 0; if (dmu_objset_type(os) != DMU_OST_ZFS) { return (SET_ERROR(EINVAL)); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); if (*zfvp) { VFS_HOLD((*zfvp)->z_vfs); } else { error = SET_ERROR(ESRCH); } mutex_exit(&os->os_user_ptr_lock); return (error); } int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, zfvp); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_vfs will be NULL, and it will be opened as the owner. * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, * which prevents all vnode ops from running. */ static int zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, zfvp); if (error == 0) { rrm_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER : RW_READER, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ rrm_exit(&(*zfvp)->z_teardown_lock, tag); return (SET_ERROR(EBUSY)); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag) { rrm_exit(&zfsvfs->z_teardown_lock, tag); if (zfsvfs->z_vfs) { VFS_RELE(zfsvfs->z_vfs); } else { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; char *spa_name = zc->zc_name; if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; uint64_t version = SPA_VERSION; char *tname; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (!SPA_VERSION_IS_SUPPORTED(version)) { error = SET_ERROR(EINVAL); goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) { nvlist_free(config); nvlist_free(props); return (error); } (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error != 0) goto pool_props_bad; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) spa_name = tname; } error = spa_create(zc->zc_name, config, props, zplprops); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(spa_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) (void) spa_destroy(spa_name); pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = SET_ERROR(EINVAL); else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (SET_ERROR(EEXIST)); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } /* * inputs: * zc_name name of the pool * * outputs: * zc_cookie real errno * zc_nvlist_dst config nvlist * zc_nvlist_dst_size size of config nvlist */ static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (SET_ERROR(EINVAL)); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) return (SET_ERROR(EINVAL)); if (zc->zc_flags == POOL_SCRUB_PAUSE) error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); else if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_reguid(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { error = spa_change_guid(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config, **l2cache, **spares; uint_t nl2cache = 0, nspares = 0; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES, &spares, &nspares); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool. * * Intent log device can not be added to a rootpool because * during mountroot, zil is replayed, a seperated log device * can not be accessed during the mountroot time. * * l2cache and spare devices are ok to be added to a rootpool. */ if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) { nvlist_free(config); spa_close(spa, FTAG); return (SET_ERROR(EDOM)); } if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_guid guid of vdev to remove * zc_cookie cancel removal */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); if (zc->zc_cookie != 0) { error = spa_vdev_remove_cancel(spa); } else { error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; default: error = SET_ERROR(EINVAL); } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading with out owning */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) { error = zvol_get_stats(os, nv); if (error == EIO) return (error); VERIFY0(error); } error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error == 0) { error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { int error = 0; nvlist_t *nv; /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(zc->zc_name)) return (SET_ERROR(ENOTSUP)); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if (err = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != NULL && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = SET_ERROR(ENOENT); } dmu_objset_rele(os, FTAG); return (err); } static boolean_t dataset_name_hidden(const char *name) { /* * Skip over datasets that are not visible in this zone, * internal datasets (which have a $ in their name), and * temporary datasets (which have a % in their name). */ if (strchr(name, '$') != NULL) return (B_TRUE); if (strchr(name, '%') != NULL) return (B_TRUE); if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL)) return (B_TRUE); return (B_FALSE); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) { if (error == ENOENT) error = SET_ERROR(ESRCH); return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = SET_ERROR(ESRCH); } while (error == 0 && dataset_name_hidden(zc->zc_name)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * zc_simple when set, only name is requested * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) { return (error == ENOENT ? ESRCH : error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= ZFS_MAX_DATASET_NAME_LEN) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ESRCH)); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == 0 && !zc->zc_simple) { dsl_dataset_t *ds; dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds); if (error == 0) { objset_t *ossnap; error = dmu_objset_from_ds(ds, &ossnap); if (error == 0) error = zfs_ioc_objset_stats_impl(zc, ossnap); dsl_dataset_rele(ds, FTAG); } } else if (error == ENOENT) { error = SET_ERROR(ESRCH); } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error != 0) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *domain; char *dash; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (SET_ERROR(EINVAL)); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (SET_ERROR(EINVAL)); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err = -1; if (prop == ZPROP_INVAL) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) return (-1); VERIFY(0 == nvpair_value_uint64(pair, &intval)); switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_refquota(dsname, source, intval); break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (intval == UINT64_MAX) { /* clearing the limit, just do it */ err = 0; } else { err = dsl_dir_activate_fs_ss_limit(dsname); } /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_refreservation(dsname, source, intval); break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dsname); (void) zfs_ioc_userspace_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the last error * encountered. If the caller provides a non-NULL errlist, it will be filled in * with the list of names of all the properties that failed along with the * corresponding error numbers. * * If every property is set successfully, zero is returned and errlist is not * modified. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t *errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; uint64_t intval; char *strval; nvlist_t *genericnvl = fnvlist_alloc(); nvlist_t *retrynvl = fnvlist_alloc(); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); int err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = SET_ERROR(EINVAL); } /* Validate value type */ if (err == 0 && prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = SET_ERROR(EINVAL); } else { err = SET_ERROR(EINVAL); } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; intval = fnvpair_value_uint64(propval); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = SET_ERROR(EINVAL); break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = SET_ERROR(EINVAL); break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = SET_ERROR(EINVAL); } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) { if (errlist != NULL) fnvlist_add_int32(errlist, propname, err); rv = err; } } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (!nvlist_empty(genericnvl) && dsl_props_set(dsname, source, genericnvl) != 0) { /* * If this fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); int err = 0; propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); } if (nvpair_type(propval) == DATA_TYPE_STRING) { strval = fnvpair_value_string(propval); err = dsl_prop_set_string(dsname, propname, source, strval); } else { intval = fnvpair_value_uint64(propval); err = dsl_prop_set_int(dsname, propname, source, intval); } if (err != 0) { if (errlist != NULL) { fnvlist_add_int32(errlist, propname, err); } rv = err; } } } nvlist_free(genericnvl); nvlist_free(retrynvl); return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(const char *fsname, nvlist_t *nvl) { nvpair_t *pair = NULL; int error = 0; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (SET_ERROR(EINVAL)); if (error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_USERPROP, CRED())) return (error); if (strlen(propname) >= ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) return (E2BIG); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(const char *dsname, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { (void) clear_received_props(zc->zc_name, origprops, nvl); nvlist_free(origprops); } error = dsl_prop_set_hasrecvd(zc->zc_name); } errors = fnvlist_alloc(); if (error == 0) error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); if (zc->zc_nvlist_dst != NULL && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ if (received) { nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ if (prop == ZPROP_INVAL) { if (!zfs_prop_user(propname)) return (SET_ERROR(EINVAL)); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (SET_ERROR(EINVAL)); } else { type = zfs_prop_get_type(prop); } VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: nvlist_free(dummy); return (SET_ERROR(EINVAL)); } pair = nvlist_next_nvpair(dummy, NULL); err = zfs_prop_set_special(zc->zc_name, source, pair); nvlist_free(dummy); if (err != -1) return (err); /* special property already handled */ } else { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop)) return (SET_ERROR(EINVAL)); } /* property name has been validated by zfs_secpolicy_inherit_prop() */ return (dsl_prop_inherit(zc->zc_name, zc->zc_value, source)); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != NULL) error = put_nvlist(zc, nvp); else error = SET_ERROR(EFAULT); nvlist_free(nvp); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (SET_ERROR(EINVAL)); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error != 0) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * os parent objset pointer (NULL if root fs) * fuids_ok fuids allowed in this version of the spa? * sa_ok SAs allowed in this version of the spa? * createprops list of properties requested by creator * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; ASSERT(zplprops != NULL); if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) return (SET_ERROR(EINVAL)); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (SET_ERROR(ENOTSUP)); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[ZFS_MAX_DATASET_NAME_LEN]; char *cp; spa_t *spa; uint64_t spa_vers; int error; (void) strlcpy(parentname, dataset, sizeof (parentname)); cp = strrchr(parentname, '/'); ASSERT(cp != NULL); cp[0] = '\0'; if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * innvl: { * "type" -> dmu_objset_type_t (int32) * (optional) "props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static int zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; zfs_creat_t zct = { 0 }; nvlist_t *nvprops = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); int32_t type32; dmu_objset_type_t type; boolean_t is_insensitive = B_FALSE; if (nvlist_lookup_int32(innvl, "type", &type32) != 0) return (SET_ERROR(EINVAL)); type = type32; (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); zct.zct_props = nvprops; if (cbfunc == NULL) return (SET_ERROR(EINVAL)); if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) return (SET_ERROR(EINVAL)); if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) return (SET_ERROR(EINVAL)); if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) return (error); } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(fsname, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } } error = dmu_objset_create(fsname, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct); nvlist_free(zct.zct_zplprops); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } /* * innvl: { * "origin" -> name of origin snapshot * (optional) "props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static int zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; nvlist_t *nvprops = NULL; char *origin_name; if (nvlist_lookup_string(innvl, "origin", &origin_name) != 0) return (SET_ERROR(EINVAL)); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); if (dataset_namecheck(origin_name, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); error = dmu_objset_clone(fsname, origin_name); if (error != 0) return (error); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } /* ARGSUSED */ static int zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); return (dmu_objset_remap_indirects(fsname)); } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional) "props" -> { prop -> value (string) } * } * * outnvl: snapshot -> error code (int32) */ static int zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvlist_t *props = NULL; int error, poollen; nvpair_t *pair; (void) nvlist_lookup_nvlist(innvl, "props", &props); if ((error = zfs_check_userprops(poolname, props)) != 0) return (error); if (!nvlist_empty(props) && zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) return (SET_ERROR(ENOTSUP)); if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The snap must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); /* This must be the only snap of this fs. */ for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { if (strncmp(name, nvpair_name(pair2), cp - name + 1) == 0) { return (SET_ERROR(EXDEV)); } } } error = dsl_dataset_snapshot(snaps, props, outnvl); return (error); } /* * innvl: "message" -> string */ /* ARGSUSED */ static int zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) { char *message; spa_t *spa; int error; char *poolname; /* * The poolname in the ioctl is not set, we get it from the TSD, * which was set at the end of the last successful ioctl that allows * logging. The secpolicy func already checked that it is set. * Only one log ioctl is allowed after each successful ioctl, so * we clear the TSD here. */ poolname = tsd_get(zfs_allow_log_key); (void) tsd_set(zfs_allow_log_key, NULL); error = spa_open(poolname, &spa, FTAG); strfree(poolname); if (error != 0) return (error); if (nvlist_lookup_string(innvl, "message", &message) != 0) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } error = spa_history_log(spa, message); spa_close(spa, FTAG); return (error); } /* * The dp_config_rwlock must not be held when calling this, because the * unmount may need to write out data. * * This function is best-effort. Callers must deal gracefully if it * remains mounted (or is remounted after this call). * * Returns 0 if the argument is not a snapshot, or it is not currently a * filesystem, or we were able to unmount it. Returns error code otherwise. */ void zfs_unmount_snap(const char *snapname) { vfs_t *vfsp = NULL; zfsvfs_t *zfsvfs = NULL; if (strchr(snapname, '@') == NULL) return; int err = getzfsvfs(snapname, &zfsvfs); if (err != 0) { ASSERT3P(zfsvfs, ==, NULL); return; } vfsp = zfsvfs->z_vfs; ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os))); err = vn_vfswlock(vfsp->vfs_vnodecovered); VFS_RELE(vfsp); if (err != 0) return; /* * Always force the unmount for snapshots. */ (void) dounmount(vfsp, MS_FORCE, kcred); } /* ARGSUSED */ static int zfs_unmount_snap_cb(const char *snapname, void *arg) { zfs_unmount_snap(snapname); return (0); } /* * When a clone is destroyed, its origin may also need to be destroyed, * in which case it must be unmounted. This routine will do that unmount * if necessary. */ void zfs_destroy_unmount_origin(const char *fsname) { int error; objset_t *os; dsl_dataset_t *ds; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) return; ds = dmu_objset_ds(os); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { char originname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds->ds_prev, originname); dmu_objset_rele(os, FTAG); zfs_unmount_snap(originname); } else { dmu_objset_rele(os, FTAG); } } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional boolean) "defer" * } * * outnvl: snapshot -> error code (int32) * */ /* ARGSUSED */ static int zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvpair_t *pair; boolean_t defer; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); defer = nvlist_exists(innvl, "defer"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { zfs_unmount_snap(nvpair_name(pair)); } return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); } /* * Create bookmarks. Bookmark names are of the form #. * All bookmarks must be in the same pool. * * innvl: { * bookmark1 -> snapshot1, bookmark2 -> snapshot2 * } * * outnvl: bookmark -> error code (int32) * */ /* ARGSUSED */ static int zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *snap_name; /* * Verify the snapshot argument. */ if (nvpair_value_string(pair, &snap_name) != 0) return (SET_ERROR(EINVAL)); /* Verify that the keys (bookmarks) are unique */ for (nvpair_t *pair2 = nvlist_next_nvpair(innvl, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(innvl, pair2)) { if (strcmp(nvpair_name(pair), nvpair_name(pair2)) == 0) return (SET_ERROR(EINVAL)); } } return (dsl_bookmark_create(innvl, outnvl)); } /* * innvl: { * property 1, property 2, ... * } * * outnvl: { * bookmark name 1 -> { property 1, property 2, ... }, * bookmark name 2 -> { property 1, property 2, ... } * } * */ static int zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { return (dsl_get_bookmarks(fsname, innvl, outnvl)); } /* * innvl: { * bookmark name 1, bookmark name 2 * } * * outnvl: bookmark -> error code (int32) * */ static int zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int error, poollen; poollen = strlen(poolname); for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '#'); /* * The bookmark name must contain an #, and the part after it * must contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The bookmark must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '#')) return (SET_ERROR(EXDEV)); } error = dsl_bookmark_destroy(innvl, outnvl); return (error); } static int zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { char *program; uint64_t instrlimit, memlimit; boolean_t sync_flag; nvpair_t *nvarg = NULL; if (0 != nvlist_lookup_string(innvl, ZCP_ARG_PROGRAM, &program)) { return (EINVAL); } if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { sync_flag = B_TRUE; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { instrlimit = ZCP_DEFAULT_INSTRLIMIT; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { memlimit = ZCP_DEFAULT_MEMLIMIT; } if (0 != nvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST, &nvarg)) { return (EINVAL); } if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) return (EINVAL); if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) return (EINVAL); return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, nvarg, outnvl)); } /* * innvl: unused * outnvl: empty */ /* ARGSUSED */ static int zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { return (spa_checkpoint(poolname)); } /* * innvl: unused * outnvl: empty */ /* ARGSUSED */ static int zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { return (spa_checkpoint_discard(poolname)); } /* * inputs: * zc_name name of dataset to destroy * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; int err; err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); if (ost == DMU_OST_ZFS) zfs_unmount_snap(zc->zc_name); if (strchr(zc->zc_name, '@')) err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); else err = dsl_destroy_head(zc->zc_name); if (ost == DMU_OST_ZVOL && err == 0) (void) zvol_remove_minor(zc->zc_name); return (err); } /* * innvl: { * vdevs: { * guid 1, guid 2, ... * }, * func: POOL_INITIALIZE_{CANCEL|DO|SUSPEND} * } * * outnvl: { * [func: EINVAL (if provided command type didn't make sense)], * [vdevs: { * guid1: errno, (see function body for possible errnos) * ... * }] * } * */ static int zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, &cmd_type) != 0) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } if (!(cmd_type == POOL_INITIALIZE_CANCEL || cmd_type == POOL_INITIALIZE_DO || cmd_type == POOL_INITIALIZE_SUSPEND)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, &vdev_guids) != 0) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = 0; for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); error = spa_vdev_initialize(spa, vdev_guid, cmd_type); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } if (fnvlist_size(vdev_errlist) > 0) { fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, vdev_errlist); } fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? EINVAL : 0); } /* * fsname is name of dataset to rollback (to most recent snapshot) * * innvl may contain name of expected target snapshot * * outnvl: "target" -> name of most recent snapshot * } */ /* ARGSUSED */ static int zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { zfsvfs_t *zfsvfs; char *target = NULL; int error; (void) nvlist_lookup_string(innvl, "target", &target); if (target != NULL) { const char *cp = strchr(target, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); } if (getzfsvfs(fsname, &zfsvfs) == 0) { dsl_dataset_t *ds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; error = dsl_dataset_rollback(fsname, target, zfsvfs, outnvl); resume_err = zfs_resume_fs(zfsvfs, ds); error = error ? error : resume_err; } VFS_RELE(zfsvfs->z_vfs); } else { error = dsl_dataset_rollback(fsname, target, NULL, outnvl); } return (error); } static int recursive_unmount(const char *fsname, void *arg) { const char *snapname = arg; char fullname[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(fullname, sizeof (fullname), "%s@%s", fsname, snapname); zfs_unmount_snap(fullname); return (0); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; boolean_t recursive = zc->zc_cookie & 1; char *at; int err; /* "zfs rename" from and to ...%recv datasets should both fail */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); at = strchr(zc->zc_name, '@'); if (at != NULL) { /* snaps must be in same fs */ int error; if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) return (SET_ERROR(EXDEV)); *at = '\0'; if (ost == DMU_OST_ZFS) { error = dmu_objset_find(zc->zc_name, recursive_unmount, at + 1, recursive ? DS_FIND_CHILDREN : 0); if (error != 0) { *at = '@'; return (error); } } error = dsl_dataset_rename_snapshot(zc->zc_name, at + 1, strchr(zc->zc_value, '@') + 1, recursive); *at = '@'; return (error); } else { if (ost == DMU_OST_ZVOL) (void) zvol_remove_minor(zc->zc_name); return (dsl_dir_rename(zc->zc_name, zc->zc_value)); } } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr)) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else { /* USERUSED and GROUPUSED are read-only */ return (SET_ERROR(EINVAL)); } if (err = zfs_secpolicy_write_perms(dsname, perm, cr)) return (err); return (0); } return (SET_ERROR(EINVAL)); } if (issnap) return (SET_ERROR(EINVAL)); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_value_uint64(pair, &intval) == 0) { if (intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (SET_ERROR(ENOTSUP)); } if (intval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (SET_ERROR(ENOTSUP)); if (intval == ZIO_COMPRESS_LZ4) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } /* * If this is a bootable dataset then * verify that the compression algorithm * is supported for booting. We must return * something other than ENOTSUP since it * implies a downrev pool version. */ if (zfs_is_bootfs(dsname) && !BOOTFS_COMPRESS_VALID(intval)) { return (SET_ERROR(ERANGE)); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_RECORDSIZE: /* Record sizes above 128k need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (intval > zfs_max_recordsize || intval > SPA_MAXBLOCKSIZE) return (SET_ERROR(ERANGE)); if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; + case ZFS_PROP_DNODESIZE: + /* Dnode sizes above 512 need the feature to be enabled */ + if (nvpair_value_uint64(pair, &intval) == 0 && + intval != ZFS_DNSIZE_LEGACY) { + spa_t *spa; + + if ((err = spa_open(dsname, &spa, FTAG)) != 0) + return (err); + + if (!spa_feature_is_enabled(spa, + SPA_FEATURE_LARGE_DNODE)) { + spa_close(spa, FTAG); + return (SET_ERROR(ENOTSUP)); + } + spa_close(spa, FTAG); + } + break; + case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (SET_ERROR(ENOTSUP)); } break; case ZFS_PROP_CHECKSUM: case ZFS_PROP_DEDUP: { spa_feature_t feature; spa_t *spa; /* dedup feature version checks */ if (prop == ZFS_PROP_DEDUP && zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (SET_ERROR(ENOTSUP)); if (nvpair_value_uint64(pair, &intval) != 0) return (SET_ERROR(EINVAL)); /* check prop value is enabled in features */ feature = zio_checksum_to_feature(intval & ZIO_CHECKSUM_MASK); if (feature == SPA_FEATURE_NONE) break; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, feature)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); break; } } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Checks for a race condition to make sure we don't increment a feature flag * multiple times. */ static int zfs_prop_activate_feature_check(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_t *featurep = arg; if (!spa_feature_is_active(spa, *featurep)) return (0); else return (SET_ERROR(EBUSY)); } /* * The callback invoked on feature activation in the sync task caused by * zfs_prop_activate_feature. */ static void zfs_prop_activate_feature_sync(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_t *featurep = arg; spa_feature_incr(spa, *featurep, tx); } /* * Activates a feature on a pool in response to a property setting. This * creates a new sync task which modifies the pool to reflect the feature * as being active. */ static int zfs_prop_activate_feature(spa_t *spa, spa_feature_t feature) { int err; /* EBUSY here indicates that the feature is already active */ err = dsl_sync_task(spa_name(spa), zfs_prop_activate_feature_check, zfs_prop_activate_feature_sync, &feature, 2, ZFS_SPACE_CHECK_RESERVED); if (err != 0 && err != EBUSY) return (err); else return (0); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dataset); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strcpy(zc->zc_value, nvpair_name(pair)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } /* * Extract properties that cannot be set PRIOR to the receipt of a dataset. * For example, refquota cannot be set until after the receipt of a dataset, * because in replication streams, an older/earlier snapshot may exceed the * refquota. We want to receive the older/earlier snapshot, but setting * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent * the older/earlier snapshot from being received (with EDQUOT). * * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. * * libzfs will need to be judicious handling errors encountered by props * extracted by this function. */ static nvlist_t * extract_delay_props(nvlist_t *props) { nvlist_t *delayprops; nvpair_t *nvp, *tmp; static const zfs_prop_t delayable[] = { ZFS_PROP_REFQUOTA, 0 }; int i; VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; nvp = nvlist_next_nvpair(props, nvp)) { /* * strcmp() is safe because zfs_prop_to_name() always returns * a bounded string. */ for (i = 0; delayable[i] != 0; i++) { if (strcmp(zfs_prop_to_name(delayable[i]), nvpair_name(nvp)) == 0) { break; } } if (delayable[i] != 0) { tmp = nvlist_prev_nvpair(props, nvp); VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); VERIFY(nvlist_remove_nvpair(props, nvp) == 0); nvp = tmp; } } if (nvlist_empty(delayprops)) { nvlist_free(delayprops); delayprops = NULL; } return (delayprops); } #ifdef DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * inputs: * zc_name name of containing filesystem * zc_nvlist_src{_size} nvlist of properties to apply * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * zc_cleanup_fd cleanup-on-exit file descriptor * zc_action_handle handle for this guid/ds mapping (or zero on first call) * zc_resumable if data is incomplete assume sender will resume * * outputs: * zc_cookie number of bytes read * zc_nvlist_dst{_size} error for each unapplied received property * zc_obj zprop_errflags_t * zc_action_handle handle for this guid/ds mapping */ static int zfs_ioc_recv(zfs_cmd_t *zc) { file_t *fp; dmu_recv_cookie_t drc; boolean_t force = (boolean_t)zc->zc_guid; int fd; int error = 0; int props_error = 0; nvlist_t *errors; offset_t off; nvlist_t *props = NULL; /* sent properties */ nvlist_t *origprops = NULL; /* existing properties */ nvlist_t *delayprops = NULL; /* sent properties applied post-receive */ char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; boolean_t first_recvd_props = B_FALSE; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); (void) strcpy(tofs, zc->zc_value); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) != 0) return (error); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) { nvlist_free(props); return (SET_ERROR(EBADF)); } errors = fnvlist_alloc(); if (zc->zc_string[0]) origin = zc->zc_string; error = dmu_recv_begin(tofs, tosnap, &zc->zc_begin_record, force, zc->zc_resumable, origin, &drc); if (error != 0) goto out; /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (props != NULL && !drc.drc_newfs) { if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= SPA_VERSION_RECVD_PROPS && !dsl_prop_get_hasrecvd(tofs)) first_recvd_props = B_TRUE; /* * If new received properties are supplied, they are to * completely replace the existing received properties, so stash * away the existing ones. */ if (dsl_prop_get_received(tofs, &origprops) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(props, origprops); if (zfs_check_clearable(tofs, origprops, &errlist) != 0) (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); if (clear_received_props(tofs, origprops, first_recvd_props ? NULL : props) != 0) zc->zc_obj |= ZPROP_ERR_NOCLEAR; } else { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } } if (props != NULL) { props_error = dsl_prop_set_hasrecvd(tofs); if (props_error == 0) { delayprops = extract_delay_props(props); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, props, errors); } } off = fp->f_offset; error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd, &zc->zc_action_handle); if (error == 0) { zfsvfs_t *zfsvfs = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ dsl_dataset_t *ds; int end_err; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc, zfsvfs); if (error == 0) error = zfs_resume_fs(zfsvfs, ds); error = error ? error : end_err; VFS_RELE(zfsvfs->z_vfs); } else { error = dmu_recv_end(&drc, NULL); } /* Set delayed properties now, after we're done receiving. */ if (delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, delayprops, errors); } } if (delayprops != NULL) { /* * Merge delayed props back in with initial props, in case * we're DEBUG and zfs_ioc_recv_inject_err is set (which means * we have to make sure clear_received_props() includes * the delayed properties). * * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, * using ASSERT() will be just like a VERIFY. */ ASSERT(nvlist_merge(props, delayprops, 0) == 0); nvlist_free(delayprops); } /* * Now that all props, initial and delayed, are set, report the prop * errors to the caller. */ if (zc->zc_nvlist_dst_size != 0 && (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || put_nvlist(zc, errors) != 0)) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ props_error = SET_ERROR(EINVAL); } zc->zc_cookie = off - fp->f_offset; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; #ifdef DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error != 0 && props != NULL && !drc.drc_newfs) { if (clear_received_props(tofs, props, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(tofs); } if (origprops == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explictly if we're restoring local properties cleared in the * first new-style receive. */ if (origprops != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origprops, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } } out: nvlist_free(props); nvlist_free(origprops); nvlist_free(errors); releasef(fd); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * zc_guid if set, estimate size of stream only. zc_cookie is ignored. * output size in zc_objset_type. * zc_flags lzc_send_flags * * outputs: * zc_objset_type estimated size, if zc_guid is set */ static int zfs_ioc_send(zfs_cmd_t *zc) { int error; offset_t off; boolean_t estimate = (zc->zc_guid != 0); boolean_t embedok = (zc->zc_flags & 0x1); boolean_t large_block_ok = (zc->zc_flags & 0x2); boolean_t compressok = (zc->zc_flags & 0x4); if (zc->zc_obj != 0) { dsl_pool_t *dp; dsl_dataset_t *tosnap; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (dsl_dir_is_clone(tosnap->ds_dir)) zc->zc_fromobj = dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } if (estimate) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (zc->zc_fromobj != 0) { error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate(tosnap, fromsnap, compressok, &zc->zc_objset_type); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } else { file_t *fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, zc->zc_fromobj, embedok, large_block_ok, compressok, zc->zc_cookie, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); } return (error); } /* * inputs: * zc_name name of snapshot on which to report progress * zc_cookie file descriptor of send stream * * outputs: * zc_cookie number of bytes written in send stream thus far */ static int zfs_ioc_send_progress(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds; dmu_sendarg_t *dsp = NULL; int error; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } mutex_enter(&ds->ds_sendstream_lock); /* * Iterate over all the send streams currently active on this dataset. * If there's one which matches the specified file descriptor _and_ the * stream was started by the current process, return the progress of * that stream. */ for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; dsp = list_next(&ds->ds_sendstreams, dsp)) { if (dsp->dsa_outfd == zc->zc_cookie && dsp->dsa_proc == curproc) break; } if (dsp != NULL) zc->zc_cookie = *(dsp->dsa_off); else error = SET_ERROR(ENOENT); mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EIO)); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == NULL) return (SET_ERROR(EINVAL)); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { (void) spa_vdev_state_exit(spa, NULL, ENODEV); spa_close(spa, FTAG); return (SET_ERROR(ENODEV)); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, NULL, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = SET_ERROR(EIO); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_reopen(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); /* * If a resilver is already in progress then set the * spa_scrub_reopen flag to B_TRUE so that we don't restart * the scan as a side effect of the reopen. Otherwise, let * vdev_open() decided if a resilver is required. */ spa->spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl_pool); vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (0); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds, *ods; char origin[ZFS_MAX_DATASET_NAME_LEN]; char *cp; int error; zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || strchr(zc->zc_name, '%')) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_dataset_hold_obj(dp, dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); if (error != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ods, origin); dsl_dataset_rele(ods, FTAG); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(origin, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(origin, zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (SET_ERROR(ENOMEM)); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); void *buf = kmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } kmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { objset_t *os; int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ dsl_dataset_t *ds, *newds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { dmu_objset_refresh_ownership(ds, &newds, zfsvfs); error = zfs_resume_fs(zfsvfs, newds); } } if (error == 0) error = dmu_objset_userspace_upgrade(zfsvfs->z_os); VFS_RELE(zfsvfs->z_vfs); } else { /* XXX kind of reading contents without owning */ error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_objset_userspace_upgrade(os); dmu_objset_rele(os, FTAG); } return (error); } /* * We don't want to have a hard dependency * against some special symbols in sharefs * nfs, and smbsrv. Determine them if needed when * the first file system is shared. * Neither sharefs, nfs or smbsrv are unloadable modules. */ int (*znfsexport_fs)(void *arg); int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); int (*zsmbexport_fs)(void *arg, boolean_t add_share); int zfs_nfsshare_inited; int zfs_smbshare_inited; ddi_modhandle_t nfs_mod; ddi_modhandle_t sharefs_mod; ddi_modhandle_t smbsrv_mod; kmutex_t zfs_share_lock; static int zfs_init_sharefs() { int error; ASSERT(MUTEX_HELD(&zfs_share_lock)); /* Both NFS and SMB shares also require sharetab support. */ if (sharefs_mod == NULL && ((sharefs_mod = ddi_modopen("fs/sharefs", KRTLD_MODE_FIRST, &error)) == NULL)) { return (SET_ERROR(ENOSYS)); } if (zshare_fs == NULL && ((zshare_fs = (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) { return (SET_ERROR(ENOSYS)); } return (0); } static int zfs_ioc_share(zfs_cmd_t *zc) { int error; int opcode; switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (zfs_nfsshare_inited == 0) { mutex_enter(&zfs_share_lock); if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } if (znfsexport_fs == NULL && ((znfsexport_fs = (int (*)(void *)) ddi_modsym(nfs_mod, "nfs_export", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } error = zfs_init_sharefs(); if (error != 0) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } zfs_nfsshare_inited = 1; mutex_exit(&zfs_share_lock); } break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (zfs_smbshare_inited == 0) { mutex_enter(&zfs_share_lock); if (smbsrv_mod == NULL && ((smbsrv_mod = ddi_modopen("drv/smbsrv", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } if (zsmbexport_fs == NULL && ((zsmbexport_fs = (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod, "smb_server_share", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } error = zfs_init_sharefs(); if (error != 0) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } zfs_smbshare_inited = 1; mutex_exit(&zfs_share_lock); } break; default: return (SET_ERROR(EINVAL)); } switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (error = znfsexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata)) return (error); break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (error = zsmbexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata, zc->zc_share.z_sharetype == ZFS_SHARE_SMB ? B_TRUE: B_FALSE)) { return (error); } break; } opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS || zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ? SHAREFS_ADD : SHAREFS_REMOVE; /* * Add or remove share from sharetab */ error = zshare_fs(opcode, (void *)(uintptr_t)zc->zc_share.z_sharedata, zc->zc_share.z_sharemax); return (error); } ace_t full_access[] = { {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} }; /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, dsl_dataset_phys(os->os_dsl_dataset)->ds_prev_snap_txg); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: * zc_value short name of new snapshot */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; char *hold_name; int error; minor_t minor; error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (error != 0) return (error); snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); hold_name = kmem_asprintf("%%%s", zc->zc_value); error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, hold_name); if (error == 0) (void) strcpy(zc->zc_value, snap_name); strfree(snap_name); strfree(hold_name); zfs_onexit_fd_rele(zc->zc_cleanup_fd); return (error); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { file_t *fp; offset_t off; int error; fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); return (error); } /* * Remove all ACL files in shares dir */ static int zfs_smb_acl_purge(znode_t *dzp) { zap_cursor_t zc; zap_attribute_t zap; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int error; for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); (error = zap_cursor_retrieve(&zc, &zap)) == 0; zap_cursor_advance(&zc)) { if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred, NULL, 0)) != 0) break; } zap_cursor_fini(&zc); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { vnode_t *vp; znode_t *dzp; vnode_t *resourcevp = NULL; znode_t *sharedir; zfsvfs_t *zfsvfs; nvlist_t *nvlist; char *src, *target; vattr_t vattr; vsecattr_t vsec; int error = 0; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (SET_ERROR(EINVAL)); } dzp = VTOZ(vp); zfsvfs = dzp->z_zfsvfs; ZFS_ENTER(zfsvfs); /* * Create share dir if its missing. */ mutex_enter(&zfsvfs->z_lock); if (zfsvfs->z_shares_dir == 0) { dmu_tx_t *tx; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE, ZFS_SHARES_DIR); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { error = zfs_create_share_dir(zfsvfs, tx); dmu_tx_commit(tx); } if (error != 0) { mutex_exit(&zfsvfs->z_lock); VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } } mutex_exit(&zfsvfs->z_lock); ASSERT(zfsvfs->z_shares_dir); if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } switch (zc->zc_cookie) { case ZFS_SMB_ACL_ADD: vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VREG; vattr.va_mode = S_IFREG|0777; vattr.va_uid = 0; vattr.va_gid = 0; vsec.vsa_mask = VSA_ACE; vsec.vsa_aclentp = &full_access; vsec.vsa_aclentsz = sizeof (full_access); vsec.vsa_aclcnt = 1; error = VOP_CREATE(ZTOV(sharedir), zc->zc_string, &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec); if (resourcevp) VN_RELE(resourcevp); break; case ZFS_SMB_ACL_REMOVE: error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred, NULL, 0); break; case ZFS_SMB_ACL_RENAME: if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) { VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); return (error); } if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) || nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET, &target)) { VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); nvlist_free(nvlist); return (error); } error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, kcred, NULL, 0); nvlist_free(nvlist); break; case ZFS_SMB_ACL_PURGE: error = zfs_smb_acl_purge(sharedir); break; default: error = SET_ERROR(EINVAL); break; } VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); return (error); } /* * innvl: { * "holds" -> { snapname -> holdname (string), ... } * (optional) "cleanup_fd" -> fd (int32) * } * * outnvl: { * snapname -> error value (int32) * ... * } */ /* ARGSUSED */ static int zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) { nvpair_t *pair; nvlist_t *holds; int cleanup_fd = -1; int error; minor_t minor = 0; error = nvlist_lookup_nvlist(args, "holds", &holds); if (error != 0) return (SET_ERROR(EINVAL)); /* make sure the user didn't pass us any invalid (empty) tags */ for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char *htag; error = nvpair_value_string(pair, &htag); if (error != 0) return (SET_ERROR(error)); if (strlen(htag) == 0) return (SET_ERROR(EINVAL)); } if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { error = zfs_onexit_fd_hold(cleanup_fd, &minor); if (error != 0) return (error); } error = dsl_dataset_user_hold(holds, minor, errlist); if (minor != 0) zfs_onexit_fd_rele(cleanup_fd); return (error); } /* * innvl is not used. * * outnvl: { * holdname -> time added (uint64 seconds since epoch) * ... * } */ /* ARGSUSED */ static int zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) { return (dsl_dataset_get_holds(snapname, outnvl)); } /* * innvl: { * snapname -> { holdname, ... } * ... * } * * outnvl: { * snapname -> error value (int32) * ... * } */ /* ARGSUSED */ static int zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) { return (dsl_dataset_user_release(holds, errlist)); } /* * inputs: * zc_name name of new filesystem or snapshot * zc_value full name of old snapshot * * outputs: * zc_cookie space in bytes * zc_objset_type compressed space in bytes * zc_perm_action uncompressed space in bytes */ static int zfs_ioc_space_written(zfs_cmd_t *zc) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_written(old, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * innvl: { * "firstsnap" -> snapshot name * } * * outnvl: { * "used" -> space in bytes * "compressed" -> compressed space in bytes * "uncompressed" -> uncompressed space in bytes * } */ static int zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; char *firstsnap; uint64_t used, comp, uncomp; if (nvlist_lookup_string(innvl, "firstsnap", &firstsnap) != 0) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(lastsnap, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); if (error == 0 && !new->ds_is_snapshot) { dsl_dataset_rele(new, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); if (error == 0 && !old->ds_is_snapshot) { dsl_dataset_rele(old, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); fnvlist_add_uint64(outnvl, "used", used); fnvlist_add_uint64(outnvl, "compressed", comp); fnvlist_add_uint64(outnvl, "uncompressed", uncomp); return (error); } /* * innvl: { * "fd" -> file descriptor to write stream to (int32) * (optional) "fromsnap" -> full snap name to send an incremental from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * } * * outnvl is unused */ /* ARGSUSED */ static int zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { int error; offset_t off; char *fromname = NULL; int fd; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; uint64_t resumeobj = 0; uint64_t resumeoff = 0; error = nvlist_lookup_int32(innvl, "fd", &fd); if (error != 0) return (SET_ERROR(EINVAL)); (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); file_t *fp = getf(fd); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, fd, resumeobj, resumeoff, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(fd); return (error); } /* * Determine approximately how large a zfs send stream will be -- the number * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). * * innvl: { * (optional) "from" -> full snap or bookmark name to send an incremental * from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * } * * outnvl: { * "space" -> bytes of space (uint64) * } */ static int zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { dsl_pool_t *dp; dsl_dataset_t *tosnap; int error; char *fromname; boolean_t compressok; uint64_t space; error = dsl_pool_hold(snapname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } compressok = nvlist_exists(innvl, "compressok"); error = nvlist_lookup_string(innvl, "from", &fromname); if (error == 0) { if (strchr(fromname, '@') != NULL) { /* * If from is a snapshot, hold it and use the more * efficient dmu_send_estimate to estimate send space * size using deadlists. */ dsl_dataset_t *fromsnap; error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); if (error != 0) goto out; error = dmu_send_estimate(tosnap, fromsnap, compressok, &space); dsl_dataset_rele(fromsnap, FTAG); } else if (strchr(fromname, '#') != NULL) { /* * If from is a bookmark, fetch the creation TXG of the * snapshot it was created from and use that to find * blocks that were born after it. */ zfs_bookmark_phys_t frombm; error = dsl_bookmark_lookup(dp, fromname, tosnap, &frombm); if (error != 0) goto out; error = dmu_send_estimate_from_txg(tosnap, frombm.zbm_creation_txg, compressok, &space); } else { /* * from is not properly formatted as a snapshot or * bookmark */ error = SET_ERROR(EINVAL); goto out; } } else { /* * If estimating the size of a full send, use dmu_send_estimate. */ error = dmu_send_estimate(tosnap, NULL, compressok, &space); } fnvlist_add_uint64(outnvl, "space", space); out: dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; static void zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); vec->zvec_legacy_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_allow_log = log_history; vec->zvec_pool_check = pool_check; } /* * See the block comment at the beginning of this file for details on * each argument to this function. */ static void zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, boolean_t allow_log) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); /* if we are logging, the name must be valid */ ASSERT(!allow_log || namecheck != NO_NAME); vec->zvec_name = name; vec->zvec_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_pool_check = pool_check; vec->zvec_smush_outnvlist = smush_outnvlist; vec->zvec_allow_log = allow_log; } static void zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, POOL_NAME, log_history, pool_check); } static void zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, pool_check); } static void zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, NO_NAME, B_FALSE, POOL_CHECK_NONE); } static void zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); } static void zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_dataset_read_secpolicy(ioc, func, zfs_secpolicy_read); } static void zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_init(void) { zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE); zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("create", ZFS_IOC_CREATE, zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("clone", ZFS_IOC_CLONE, zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("remap", ZFS_IOC_REMAP, zfs_ioc_remap, zfs_secpolicy_remap, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE); zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("hold", ZFS_IOC_HOLD, zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("release", ZFS_IOC_RELEASE, zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE); zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, zfs_ioc_channel_program, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("zpool_discard_checkpoint", ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); /* IOCTLS that use the legacy function signature */ zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, zfs_ioc_pool_scan); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, zfs_ioc_pool_upgrade); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, zfs_ioc_vdev_add); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, zfs_ioc_vdev_remove); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, zfs_ioc_vdev_set_state); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, zfs_ioc_vdev_attach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, zfs_ioc_vdev_detach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, zfs_ioc_vdev_setpath); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, zfs_ioc_vdev_setfru); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, zfs_ioc_pool_set_props); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, zfs_ioc_vdev_split); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, zfs_ioc_pool_reguid); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, zfs_ioc_pool_configs, zfs_secpolicy_none); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, zfs_ioc_pool_tryimport, zfs_secpolicy_config); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, zfs_ioc_inject_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, zfs_ioc_clear_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, zfs_ioc_inject_list_next, zfs_secpolicy_inject); /* * pool destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_export * does the logging of those commands. */ zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, zfs_ioc_pool_get_history, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, zfs_secpolicy_config, B_TRUE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, zfs_ioc_space_written); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, zfs_ioc_objset_recvd_props); zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, zfs_ioc_next_obj); zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, zfs_ioc_get_fsacl); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, zfs_ioc_objset_stats); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, zfs_ioc_objset_zplprops); zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, zfs_ioc_dataset_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, zfs_ioc_snapshot_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, zfs_ioc_send_progress); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, zfs_ioc_diff, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, zfs_ioc_obj_to_stats, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, zfs_ioc_obj_to_path, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, zfs_ioc_send, zfs_secpolicy_send); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, zfs_secpolicy_none); zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, zfs_secpolicy_destroy); zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, zfs_secpolicy_rename); zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, zfs_secpolicy_recv); zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, zfs_secpolicy_promote); zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, zfs_secpolicy_set_fsacl); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, zfs_secpolicy_share, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = SET_ERROR(EAGAIN); else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = SET_ERROR(EROFS); spa_close(spa, FTAG); } return (error); } /* * Find a free minor number. */ minor_t zfsdev_minor_alloc(void) { static minor_t last_minor; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (ddi_get_soft_state(zfsdev_state, m) == NULL) { last_minor = m; return (m); } } return (0); } static int zfs_ctldev_init(dev_t *devp) { minor_t minor; zfs_soft_state_t *zs; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(getminor(*devp) == 0); minor = zfsdev_minor_alloc(); if (minor == 0) return (SET_ERROR(ENXIO)); if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) return (SET_ERROR(EAGAIN)); *devp = makedevice(getemajor(*devp), minor); zs = ddi_get_soft_state(zfsdev_state, minor); zs->zss_type = ZSST_CTLDEV; zfs_onexit_init((zfs_onexit_t **)&zs->zss_data); return (0); } static void zfs_ctldev_destroy(zfs_onexit_t *zo, minor_t minor) { ASSERT(MUTEX_HELD(&zfsdev_state_lock)); zfs_onexit_destroy(zo); ddi_soft_state_free(zfsdev_state, minor); } void * zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which) { zfs_soft_state_t *zp; zp = ddi_get_soft_state(zfsdev_state, minor); if (zp == NULL || zp->zss_type != which) return (NULL); return (zp->zss_data); } static int zfsdev_open(dev_t *devp, int flag, int otyp, cred_t *cr) { int error = 0; if (getminor(*devp) != 0) return (zvol_open(devp, flag, otyp, cr)); /* This is the control device. Allocate a new minor if requested. */ if (flag & FEXCL) { mutex_enter(&zfsdev_state_lock); error = zfs_ctldev_init(devp); mutex_exit(&zfsdev_state_lock); } return (error); } static int zfsdev_close(dev_t dev, int flag, int otyp, cred_t *cr) { zfs_onexit_t *zo; minor_t minor = getminor(dev); if (minor == 0) return (0); mutex_enter(&zfsdev_state_lock); zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV); if (zo == NULL) { mutex_exit(&zfsdev_state_lock); return (zvol_close(dev, flag, otyp, cr)); } zfs_ctldev_destroy(zo, minor); mutex_exit(&zfsdev_state_lock); return (0); } static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vecnum; int error, rc, len; minor_t minor = getminor(dev); const zfs_ioc_vec_t *vec; char *saved_poolname = NULL; nvlist_t *innvl = NULL; if (minor != 0 && zfsdev_get_soft_state(minor, ZSST_CTLDEV) == NULL) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vecnum = cmd - ZFS_IOC_FIRST; ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip)); if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (SET_ERROR(EINVAL)); vec = &zfs_ioc_vec[vecnum]; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); if (error != 0) { error = SET_ERROR(EFAULT); goto out; } zc->zc_iflags = flag & FKIOCTL; if (zc->zc_nvlist_src_size != 0) { error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &innvl); if (error != 0) goto out; } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (vec->zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case NO_NAME: break; } if (error == 0) error = vec->zvec_secpolicy(zc, innvl, cr); if (error != 0) goto out; /* legacy ioctls can modify zc_name */ len = strcspn(zc->zc_name, "/@#") + 1; saved_poolname = kmem_alloc(len, KM_SLEEP); (void) strlcpy(saved_poolname, zc->zc_name, len); if (vec->zvec_func != NULL) { nvlist_t *outnvl; int puterror = 0; spa_t *spa; nvlist_t *lognv = NULL; ASSERT(vec->zvec_legacy_func == NULL); /* * Add the innvl to the lognv before calling the func, * in case the func changes the innvl. */ if (vec->zvec_allow_log) { lognv = fnvlist_alloc(); fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, vec->zvec_name); if (!nvlist_empty(innvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, innvl); } } outnvl = fnvlist_alloc(); error = vec->zvec_func(zc->zc_name, innvl, outnvl); /* * Some commands can partially execute, modfiy state, and still * return an error. In these cases, attempt to record what * was modified. */ if ((error == 0 || (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && vec->zvec_allow_log && spa_open(zc->zc_name, &spa, FTAG) == 0) { if (!nvlist_empty(outnvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL, outnvl); } if (error != 0) { fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, error); } (void) spa_history_log_nvl(spa, lognv); spa_close(spa, FTAG); } fnvlist_free(lognv); if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { int smusherror = 0; if (vec->zvec_smush_outnvlist) { smusherror = nvlist_smush(outnvl, zc->zc_nvlist_dst_size); } if (smusherror == 0) puterror = put_nvlist(zc, outnvl); } if (puterror != 0) error = puterror; nvlist_free(outnvl); } else { error = vec->zvec_legacy_func(zc); } out: nvlist_free(innvl); rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag); if (error == 0 && rc != 0) error = SET_ERROR(EFAULT); if (error == 0 && vec->zvec_allow_log) { char *s = tsd_get(zfs_allow_log_key); if (s != NULL) strfree(s); (void) tsd_set(zfs_allow_log_key, saved_poolname); } else { if (saved_poolname != NULL) strfree(saved_poolname); } kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zfsdev_open, /* open */ zfsdev_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ zvol_dump, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL, /* no bus operations */ NULL, /* power */ ddi_quiesce_not_needed, /* quiesce */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool", &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; static void zfs_allow_log_destroy(void *arg) { char *poolname = arg; strfree(poolname); } int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); zfs_ioctl_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (SET_ERROR(EBUSY)); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); if (zfs_nfsshare_inited) (void) ddi_modclose(nfs_mod); if (zfs_smbshare_inited) (void) ddi_modclose(smbsrv_mod); if (zfs_nfsshare_inited || zfs_smbshare_inited) (void) ddi_modclose(sharefs_mod); tsd_destroy(&zfs_fsyncer_key); ldi_ident_release(zfs_li); zfs_li = NULL; mutex_destroy(&zfs_share_lock); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c (revision 350898) @@ -1,669 +1,671 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These zfs_log_* functions must be called within a dmu tx, in one * of 2 contexts depending on zilog->z_replay: * * Non replay mode * --------------- * We need to record the transaction so that if it is committed to * the Intent Log then it can be replayed. An intent log transaction * structure (itx_t) is allocated and all the information necessary to * possibly replay the transaction is saved in it. The itx is then assigned * a sequence number and inserted in the in-memory list anchored in the zilog. * * Replay mode * ----------- * We need to mark the intent log record as replayed in the log header. * This is done in the same transaction as the replay so that they * commit atomically. */ int zfs_log_create_txtype(zil_create_t type, vsecattr_t *vsecp, vattr_t *vap) { int isxvattr = (vap->va_mask & AT_XVATTR); switch (type) { case Z_FILE: if (vsecp == NULL && !isxvattr) return (TX_CREATE); if (vsecp && isxvattr) return (TX_CREATE_ACL_ATTR); if (vsecp) return (TX_CREATE_ACL); else return (TX_CREATE_ATTR); /*NOTREACHED*/ case Z_DIR: if (vsecp == NULL && !isxvattr) return (TX_MKDIR); if (vsecp && isxvattr) return (TX_MKDIR_ACL_ATTR); if (vsecp) return (TX_MKDIR_ACL); else return (TX_MKDIR_ATTR); case Z_XATTRDIR: return (TX_MKXATTR); } ASSERT(0); return (TX_MAX_TYPE); } /* * build up the log data necessary for logging xvattr_t * First lr_attr_t is initialized. following the lr_attr_t * is the mapsize and attribute bitmap copied from the xvattr_t. * Following the bitmap and bitmapsize two 64 bit words are reserved * for the create time which may be set. Following the create time * records a single 64 bit integer which has the bits to set on * replay for the xvattr. */ static void zfs_log_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { uint32_t *bitmap; uint64_t *attrs; uint64_t *crtime; xoptattr_t *xoap; void *scanstamp; int i; xoap = xva_getxoptattr(xvap); ASSERT(xoap); lrattr->lr_attr_masksize = xvap->xva_mapsize; bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != xvap->xva_mapsize; i++, bitmap++) { *bitmap = xvap->xva_reqattrmap[i]; } /* Now pack the attributes up in a single uint64_t */ attrs = (uint64_t *)bitmap; crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); *attrs = 0; if (XVA_ISSET_REQ(xvap, XAT_READONLY)) *attrs |= (xoap->xoa_readonly == 0) ? 0 : XAT0_READONLY; if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) *attrs |= (xoap->xoa_hidden == 0) ? 0 : XAT0_HIDDEN; if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) *attrs |= (xoap->xoa_system == 0) ? 0 : XAT0_SYSTEM; if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) *attrs |= (xoap->xoa_archive == 0) ? 0 : XAT0_ARCHIVE; if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) *attrs |= (xoap->xoa_immutable == 0) ? 0 : XAT0_IMMUTABLE; if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) *attrs |= (xoap->xoa_nounlink == 0) ? 0 : XAT0_NOUNLINK; if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) *attrs |= (xoap->xoa_appendonly == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) *attrs |= (xoap->xoa_opaque == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) *attrs |= (xoap->xoa_nodump == 0) ? 0 : XAT0_NODUMP; if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) *attrs |= (xoap->xoa_av_quarantined == 0) ? 0 : XAT0_AV_QUARANTINED; if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) *attrs |= (xoap->xoa_av_modified == 0) ? 0 : XAT0_AV_MODIFIED; if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_ENCODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) bcopy(xoap->xoa_av_scanstamp, scanstamp, AV_SCANSTAMP_SZ); if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) *attrs |= (xoap->xoa_reparse == 0) ? 0 : XAT0_REPARSE; if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) *attrs |= (xoap->xoa_offline == 0) ? 0 : XAT0_OFFLINE; if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) *attrs |= (xoap->xoa_sparse == 0) ? 0 : XAT0_SPARSE; } static void * zfs_log_fuid_ids(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_t *zfuid; uint64_t *fuidloc = start; /* First copy in the ACE FUIDs */ for (zfuid = list_head(&fuidp->z_fuids); zfuid; zfuid = list_next(&fuidp->z_fuids, zfuid)) { *fuidloc++ = zfuid->z_logfuid; } return (fuidloc); } static void * zfs_log_fuid_domains(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_domain_t *zdomain; /* now copy in the domain info, if any */ if (fuidp->z_domain_str_sz != 0) { for (zdomain = list_head(&fuidp->z_domains); zdomain; zdomain = list_next(&fuidp->z_domains, zdomain)) { bcopy((void *)zdomain->z_domain, start, strlen(zdomain->z_domain) + 1); start = (caddr_t)start + strlen(zdomain->z_domain) + 1; } } return (start); } /* * Handles TX_CREATE, TX_CREATE_ATTR, TX_MKDIR, TX_MKDIR_ATTR and * TK_MKXATTR transactions. * * TX_CREATE and TX_MKDIR are standard creates, but they may have FUID * domain information appended prior to the name. In this case the * uid/gid in the log record will be a log centric FUID. * * TX_CREATE_ACL_ATTR and TX_MKDIR_ACL_ATTR handle special creates that * may contain attributes, ACL and optional fuid information. * * TX_CREATE_ACL and TX_MKDIR_ACL handle special creates that specify * and ACL and normal users/groups in the ACEs. * * There may be an optional xvattr attribute information similar * to zfs_log_setattr. * * Also, after the file name "domain" strings may be appended. */ void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp, vattr_t *vap) { itx_t *itx; lr_create_t *lr; lr_acl_create_t *lracl; size_t aclsize = (vsecp != NULL) ? vsecp->vsa_aclentsz : 0; size_t xvatsize = 0; size_t txsize; xvattr_t *xvap = (xvattr_t *)vap; void *end; size_t lrsize; size_t namesize = strlen(name) + 1; size_t fuidsz = 0; if (zil_replaying(zilog, tx)) return; /* * If we have FUIDs present then add in space for * domains and ACE fuid's if any. */ if (fuidp) { fuidsz += fuidp->z_domain_str_sz; fuidsz += fuidp->z_fuid_cnt * sizeof (uint64_t); } if (vap->va_mask & AT_XVATTR) xvatsize = ZIL_XVAT_SIZE(xvap->xva_mapsize); if ((int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MKDIR_ATTR || (int)txtype == TX_CREATE || (int)txtype == TX_MKDIR || (int)txtype == TX_MKXATTR) { txsize = sizeof (*lr) + namesize + fuidsz + xvatsize; lrsize = sizeof (*lr); } else { txsize = sizeof (lr_acl_create_t) + namesize + fuidsz + ZIL_ACE_LENGTH(aclsize) + xvatsize; lrsize = sizeof (lr_acl_create_t); } itx = zil_itx_create(txtype, txsize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; + /* Store dnode slot count in 8 bits above object id. */ + LR_FOID_SET_SLOTS(lr->lr_foid, zp->z_dnodesize >> DNODE_SHIFT); lr->lr_mode = zp->z_mode; if (!IS_EPHEMERAL(zp->z_uid)) { lr->lr_uid = (uint64_t)zp->z_uid; } else { lr->lr_uid = fuidp->z_fuid_owner; } if (!IS_EPHEMERAL(zp->z_gid)) { lr->lr_gid = (uint64_t)zp->z_gid; } else { lr->lr_gid = fuidp->z_fuid_group; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); if (sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zp->z_zfsvfs), &lr->lr_rdev, sizeof (lr->lr_rdev)) != 0) lr->lr_rdev = 0; /* * Fill in xvattr info if any */ if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), xvap); end = (caddr_t)lr + lrsize + xvatsize; } else { end = (caddr_t)lr + lrsize; } /* Now fill in any ACL info */ if (vsecp) { lracl = (lr_acl_create_t *)&itx->itx_lr; lracl->lr_aclcnt = vsecp->vsa_aclcnt; lracl->lr_acl_bytes = aclsize; lracl->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lracl->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_aclflags & VSA_ACE_ACLFLAGS) lracl->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lracl->lr_acl_flags = 0; bcopy(vsecp->vsa_aclentp, end, aclsize); end = (caddr_t)end + ZIL_ACE_LENGTH(aclsize); } /* drop in FUID info */ if (fuidp) { end = zfs_log_fuid_ids(fuidp, end); end = zfs_log_fuid_domains(fuidp, end); } /* * Now place file name in log record */ bcopy(name, end, namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles both TX_REMOVE and TX_RMDIR transactions. */ void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, char *name, uint64_t foid) { itx_t *itx; lr_remove_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_remove_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; bcopy(name, (char *)(lr + 1), namesize); itx->itx_oid = foid; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_LINK transactions. */ void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name) { itx_t *itx; lr_link_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_link_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_link_obj = zp->z_id; bcopy(name, (char *)(lr + 1), namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SYMLINK transactions. */ void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, char *link) { itx_t *itx; lr_create_t *lr; size_t namesize = strlen(name) + 1; size_t linksize = strlen(link) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize + linksize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; lr->lr_uid = zp->z_uid; lr->lr_gid = zp->z_gid; lr->lr_mode = zp->z_mode; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); bcopy(name, (char *)(lr + 1), namesize); bcopy(link, (char *)(lr + 1) + namesize, linksize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_RENAME transactions. */ void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp) { itx_t *itx; lr_rename_t *lr; size_t snamesize = strlen(sname) + 1; size_t dnamesize = strlen(dname) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize); lr = (lr_rename_t *)&itx->itx_lr; lr->lr_sdoid = sdzp->z_id; lr->lr_tdoid = tdzp->z_id; bcopy(sname, (char *)(lr + 1), snamesize); bcopy(dname, (char *)(lr + 1) + snamesize, dnamesize); itx->itx_oid = szp->z_id; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_WRITE transactions. */ ssize_t zfs_immediate_write_sz = 32768; void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t resid, int ioflag) { uint32_t blocksize = zp->z_blksz; itx_wr_state_t write_state; uintptr_t fsync_cnt; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && resid >= zfs_immediate_write_sz) write_state = WR_INDIRECT; else if (ioflag & (FSYNC | FDSYNC)) write_state = WR_COPIED; else write_state = WR_NEED_COPY; if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0) { (void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1)); } while (resid) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = resid; if (wr_state == WR_COPIED && resid > ZIL_MAX_COPIED_DATA) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(off, blocksize), resid); itx = zil_itx_create(txtype, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read(zp->z_zfsvfs->z_os, zp->z_id, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zp->z_zfsvfs; if (!(ioflag & (FSYNC | FDSYNC)) && (zp->z_sync_cnt == 0) && (fsync_cnt == 0)) itx->itx_sync = B_FALSE; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } } /* * Handles TX_TRUNCATE transactions. */ void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len) { itx_t *itx; lr_truncate_t *lr; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SETATTR transactions. */ void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_setattr_t *lr; xvattr_t *xvap = (xvattr_t *)vap; size_t recsize = sizeof (lr_setattr_t); void *start; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; /* * If XVATTR set, then log record size needs to allow * for lr_attr_t + xvattr mask, mapsize and create time * plus actual attribute values */ if (vap->va_mask & AT_XVATTR) recsize = sizeof (*lr) + ZIL_XVAT_SIZE(xvap->xva_mapsize); if (fuidp) recsize += fuidp->z_domain_str_sz; itx = zil_itx_create(txtype, recsize); lr = (lr_setattr_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_mask = (uint64_t)mask_applied; lr->lr_mode = (uint64_t)vap->va_mode; if ((mask_applied & AT_UID) && IS_EPHEMERAL(vap->va_uid)) lr->lr_uid = fuidp->z_fuid_owner; else lr->lr_uid = (uint64_t)vap->va_uid; if ((mask_applied & AT_GID) && IS_EPHEMERAL(vap->va_gid)) lr->lr_gid = fuidp->z_fuid_group; else lr->lr_gid = (uint64_t)vap->va_gid; lr->lr_size = (uint64_t)vap->va_size; ZFS_TIME_ENCODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_ENCODE(&vap->va_mtime, lr->lr_mtime); start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)start, xvap); start = (caddr_t)start + ZIL_XVAT_SIZE(xvap->xva_mapsize); } /* * Now stick on domain information if any on end */ if (fuidp) (void) zfs_log_fuid_domains(fuidp, start); itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_ACL transactions. */ void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_acl_v0_t *lrv0; lr_acl_t *lr; int txtype; int lrsize; size_t txsize; size_t aclbytes = vsecp->vsa_aclentsz; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; txtype = (zp->z_zfsvfs->z_version < ZPL_VERSION_FUID) ? TX_ACL_V0 : TX_ACL; if (txtype == TX_ACL) lrsize = sizeof (*lr); else lrsize = sizeof (*lrv0); txsize = lrsize + ((txtype == TX_ACL) ? ZIL_ACE_LENGTH(aclbytes) : aclbytes) + (fuidp ? fuidp->z_domain_str_sz : 0) + sizeof (uint64_t) * (fuidp ? fuidp->z_fuid_cnt : 0); itx = zil_itx_create(txtype, txsize); lr = (lr_acl_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; if (txtype == TX_ACL) { lr->lr_acl_bytes = aclbytes; lr->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lr->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) lr->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lr->lr_acl_flags = 0; } lr->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt; if (txtype == TX_ACL_V0) { lrv0 = (lr_acl_v0_t *)lr; bcopy(vsecp->vsa_aclentp, (ace_t *)(lrv0 + 1), aclbytes); } else { void *start = (ace_t *)(lr + 1); bcopy(vsecp->vsa_aclentp, start, aclbytes); start = (caddr_t)start + ZIL_ACE_LENGTH(aclbytes); if (fuidp) { start = zfs_log_fuid_ids(fuidp, start); (void) zfs_log_fuid_domains(fuidp, start); } } itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_replay.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_replay.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_replay.c (revision 350898) @@ -1,953 +1,965 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2015 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Functions to replay ZFS intent log (ZIL) records * The functions are called through a function vector (zfs_replay_vector) * which is indexed by the transaction type. */ static void zfs_init_vattr(vattr_t *vap, uint64_t mask, uint64_t mode, uint64_t uid, uint64_t gid, uint64_t rdev, uint64_t nodeid) { bzero(vap, sizeof (*vap)); vap->va_mask = (uint_t)mask; vap->va_type = IFTOVT(mode); vap->va_mode = mode & MODEMASK; vap->va_uid = (uid_t)(IS_EPHEMERAL(uid)) ? -1 : uid; vap->va_gid = (gid_t)(IS_EPHEMERAL(gid)) ? -1 : gid; vap->va_rdev = zfs_cmpldev(rdev); vap->va_nodeid = nodeid; } /* ARGSUSED */ static int zfs_replay_error(void *arg1, void *arg2, boolean_t byteswap) { return (SET_ERROR(ENOTSUP)); } static void zfs_replay_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { xoptattr_t *xoap = NULL; uint64_t *attrs; uint64_t *crtime; uint32_t *bitmap; void *scanstamp; int i; xvap->xva_vattr.va_mask |= AT_XVATTR; if ((xoap = xva_getxoptattr(xvap)) == NULL) { xvap->xva_vattr.va_mask &= ~AT_XVATTR; /* shouldn't happen */ return; } ASSERT(lrattr->lr_attr_masksize == xvap->xva_mapsize); bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != lrattr->lr_attr_masksize; i++, bitmap++) xvap->xva_reqattrmap[i] = *bitmap; attrs = (uint64_t *)(lrattr + lrattr->lr_attr_masksize - 1); crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) xoap->xoa_hidden = ((*attrs & XAT0_HIDDEN) != 0); if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) xoap->xoa_system = ((*attrs & XAT0_SYSTEM) != 0); if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) xoap->xoa_archive = ((*attrs & XAT0_ARCHIVE) != 0); if (XVA_ISSET_REQ(xvap, XAT_READONLY)) xoap->xoa_readonly = ((*attrs & XAT0_READONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) xoap->xoa_immutable = ((*attrs & XAT0_IMMUTABLE) != 0); if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) xoap->xoa_nounlink = ((*attrs & XAT0_NOUNLINK) != 0); if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) xoap->xoa_appendonly = ((*attrs & XAT0_APPENDONLY) != 0); if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) xoap->xoa_nodump = ((*attrs & XAT0_NODUMP) != 0); if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) xoap->xoa_opaque = ((*attrs & XAT0_OPAQUE) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) xoap->xoa_av_modified = ((*attrs & XAT0_AV_MODIFIED) != 0); if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) xoap->xoa_av_quarantined = ((*attrs & XAT0_AV_QUARANTINED) != 0); if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_DECODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) bcopy(scanstamp, xoap->xoa_av_scanstamp, AV_SCANSTAMP_SZ); if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) xoap->xoa_reparse = ((*attrs & XAT0_REPARSE) != 0); if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) xoap->xoa_offline = ((*attrs & XAT0_OFFLINE) != 0); if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) xoap->xoa_sparse = ((*attrs & XAT0_SPARSE) != 0); } static int zfs_replay_domain_cnt(uint64_t uid, uint64_t gid) { uint64_t uid_idx; uint64_t gid_idx; int domcnt = 0; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); if (uid_idx) domcnt++; if (gid_idx > 0 && gid_idx != uid_idx) domcnt++; return (domcnt); } static void * zfs_replay_fuid_domain_common(zfs_fuid_info_t *fuid_infop, void *start, int domcnt) { int i; for (i = 0; i != domcnt; i++) { fuid_infop->z_domain_table[i] = start; start = (caddr_t)start + strlen(start) + 1; } return (start); } /* * Set the uid/gid in the fuid_info structure. */ static void zfs_replay_fuid_ugid(zfs_fuid_info_t *fuid_infop, uint64_t uid, uint64_t gid) { /* * If owner or group are log specific FUIDs then slurp up * domain information and build zfs_fuid_info_t */ if (IS_EPHEMERAL(uid)) fuid_infop->z_fuid_owner = uid; if (IS_EPHEMERAL(gid)) fuid_infop->z_fuid_group = gid; } /* * Load fuid domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuid_domain(void *buf, void **end, uint64_t uid, uint64_t gid) { int domcnt; zfs_fuid_info_t *fuid_infop; fuid_infop = zfs_fuid_info_alloc(); domcnt = zfs_replay_domain_cnt(uid, gid); if (domcnt == 0) return (fuid_infop); fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char **), KM_SLEEP); zfs_replay_fuid_ugid(fuid_infop, uid, gid); fuid_infop->z_domain_cnt = domcnt; *end = zfs_replay_fuid_domain_common(fuid_infop, buf, domcnt); return (fuid_infop); } /* * load zfs_fuid_t's and fuid_domains into fuid_info_t */ static zfs_fuid_info_t * zfs_replay_fuids(void *start, void **end, int idcnt, int domcnt, uint64_t uid, uint64_t gid) { uint64_t *log_fuid = (uint64_t *)start; zfs_fuid_info_t *fuid_infop; int i; fuid_infop = zfs_fuid_info_alloc(); fuid_infop->z_domain_cnt = domcnt; fuid_infop->z_domain_table = kmem_zalloc(domcnt * sizeof (char **), KM_SLEEP); for (i = 0; i != idcnt; i++) { zfs_fuid_t *zfuid; zfuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); zfuid->z_logfuid = *log_fuid; zfuid->z_id = -1; zfuid->z_domidx = 0; list_insert_tail(&fuid_infop->z_fuids, zfuid); log_fuid++; } zfs_replay_fuid_ugid(fuid_infop, uid, gid); *end = zfs_replay_fuid_domain_common(fuid_infop, log_fuid, domcnt); return (fuid_infop); } static void zfs_replay_swap_attrs(lr_attr_t *lrattr) { /* swap the lr_attr structure */ byteswap_uint32_array(lrattr, sizeof (*lrattr)); /* swap the bitmap */ byteswap_uint32_array(lrattr + 1, (lrattr->lr_attr_masksize - 1) * sizeof (uint32_t)); /* swap the attributes, create time + 64 bit word for attributes */ byteswap_uint64_array((caddr_t)(lrattr + 1) + (sizeof (uint32_t) * (lrattr->lr_attr_masksize - 1)), 3 * sizeof (uint64_t)); } /* * Replay file create with optional ACL, xvattr information as well * as option FUID information. */ static int zfs_replay_create_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_create_t *lracl = arg2; char *name = NULL; /* location determined later */ lr_create_t *lr = (lr_create_t *)lracl; znode_t *dzp; vnode_t *vp = NULL; xvattr_t xva; int vflg = 0; vsecattr_t vsec = { 0 }; lr_attr_t *lrattr; void *aclstart; void *fuidstart; size_t xvatlen = 0; uint64_t txtype; + uint64_t objid; + uint64_t dnodesize; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lracl, sizeof (*lracl)); if (txtype == TX_CREATE_ACL_ATTR || txtype == TX_MKDIR_ACL_ATTR) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); zfs_replay_swap_attrs(lrattr); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); } aclstart = (caddr_t)(lracl + 1) + xvatlen; zfs_ace_byteswap(aclstart, lracl->lr_acl_bytes, B_FALSE); /* swap fuids */ if (lracl->lr_fuidcnt) { byteswap_uint64_array((caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes), lracl->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); + objid = LR_FOID_GET_OBJ(lr->lr_foid); + dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; + xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, AT_TYPE | AT_MODE | AT_UID | AT_GID, - lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, lr->lr_foid); + lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's - * creation time and generation number. The generic VOP_CREATE() - * doesn't have either concept, so we smuggle the values inside - * the vattr's otherwise unused va_ctime and va_nblocks fields. + * creation time, generation number, and dnode size. The generic + * zfs_create() has no concept of these attributes, so we smuggle + * the values inside the vattr's otherwise unused va_ctime, + * va_nblocks, and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; + xva.xva_vattr.va_fsid = dnodesize; error = dmu_object_info(zfsvfs->z_os, lr->lr_foid, NULL); if (error != ENOENT) goto bail; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch (txtype) { case TX_CREATE_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); /*FALLTHROUGH*/ case TX_CREATE_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); xva.xva_vattr.va_mask |= AT_XVATTR; zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } error = VOP_CREATE(ZTOV(dzp), name, &xva.xva_vattr, 0, 0, &vp, kcred, vflg, NULL, &vsec); break; case TX_MKDIR_ACL: aclstart = (caddr_t)(lracl + 1); fuidstart = (caddr_t)aclstart + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); /*FALLTHROUGH*/ case TX_MKDIR_ACL_ATTR: if (name == NULL) { lrattr = (lr_attr_t *)(caddr_t)(lracl + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr(lrattr, &xva); } vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS; vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen; vsec.vsa_aclcnt = lracl->lr_aclcnt; vsec.vsa_aclentsz = lracl->lr_acl_bytes; vsec.vsa_aclflags = lracl->lr_acl_flags; if (zfsvfs->z_fuid_replay == NULL) { fuidstart = (caddr_t)(lracl + 1) + xvatlen + ZIL_ACE_LENGTH(lracl->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, (void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt, lr->lr_uid, lr->lr_gid); } error = VOP_MKDIR(ZTOV(dzp), name, &xva.xva_vattr, &vp, kcred, NULL, vflg, &vsec); break; default: error = SET_ERROR(ENOTSUP); } bail: if (error == 0 && vp != NULL) VN_RELE(vp); VN_RELE(ZTOV(dzp)); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_create(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_create_t *lr = arg2; char *name = NULL; /* location determined later */ char *link; /* symlink content follows name */ znode_t *dzp; vnode_t *vp = NULL; xvattr_t xva; int vflg = 0; size_t lrsize = sizeof (lr_create_t); lr_attr_t *lrattr; void *start; size_t xvatlen; uint64_t txtype; int error; txtype = (lr->lr_common.lrc_txtype & ~TX_CI); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if (txtype == TX_CREATE_ATTR || txtype == TX_MKDIR_ATTR) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); + uint64_t objid = LR_FOID_GET_OBJ(lr->lr_foid); + int dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT; + xva_init(&xva); zfs_init_vattr(&xva.xva_vattr, AT_TYPE | AT_MODE | AT_UID | AT_GID, - lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, lr->lr_foid); + lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid); /* * All forms of zfs create (create, mkdir, mkxattrdir, symlink) * eventually end up in zfs_mknode(), which assigns the object's - * creation time and generation number. The generic VOP_CREATE() - * doesn't have either concept, so we smuggle the values inside - * the vattr's otherwise unused va_ctime and va_nblocks fields. + * creation time, generation number, and dnode slot count. The + * generic zfs_create() has no concept of these attributes, so + * we smuggle the values inside the vattr's otherwise unused + * va_ctime, va_nblocks and va_fsid fields. */ ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime); xva.xva_vattr.va_nblocks = lr->lr_gen; + xva.xva_vattr.va_fsid = dnodesize; - error = dmu_object_info(zfsvfs->z_os, lr->lr_foid, NULL); + error = dmu_object_info(zfsvfs->z_os, objid, NULL); if (error != ENOENT) goto out; if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; /* * Symlinks don't have fuid info, and CIFS never creates * symlinks. * * The _ATTR versions will grab the fuid info in their subcases. */ if ((int)lr->lr_common.lrc_txtype != TX_SYMLINK && (int)lr->lr_common.lrc_txtype != TX_MKDIR_ATTR && (int)lr->lr_common.lrc_txtype != TX_CREATE_ATTR) { start = (lr + 1); zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); } switch (txtype) { case TX_CREATE_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; /*FALLTHROUGH*/ case TX_CREATE: if (name == NULL) name = (char *)start; error = VOP_CREATE(ZTOV(dzp), name, &xva.xva_vattr, 0, 0, &vp, kcred, vflg, NULL, NULL); break; case TX_MKDIR_ATTR: lrattr = (lr_attr_t *)(caddr_t)(lr + 1); xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize); zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva); start = (caddr_t)(lr + 1) + xvatlen; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); name = (char *)start; /*FALLTHROUGH*/ case TX_MKDIR: if (name == NULL) name = (char *)(lr + 1); error = VOP_MKDIR(ZTOV(dzp), name, &xva.xva_vattr, &vp, kcred, NULL, vflg, NULL); break; case TX_MKXATTR: error = zfs_make_xattrdir(dzp, &xva.xva_vattr, &vp, kcred); break; case TX_SYMLINK: name = (char *)(lr + 1); link = name + strlen(name) + 1; error = VOP_SYMLINK(ZTOV(dzp), name, &xva.xva_vattr, link, kcred, NULL, vflg); break; default: error = SET_ERROR(ENOTSUP); } out: if (error == 0 && vp != NULL) VN_RELE(vp); VN_RELE(ZTOV(dzp)); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; return (error); } static int zfs_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_remove_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_remove_t */ znode_t *dzp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; switch ((int)lr->lr_common.lrc_txtype) { case TX_REMOVE: error = VOP_REMOVE(ZTOV(dzp), name, kcred, NULL, vflg); break; case TX_RMDIR: error = VOP_RMDIR(ZTOV(dzp), name, NULL, kcred, NULL, vflg); break; default: error = SET_ERROR(ENOTSUP); } VN_RELE(ZTOV(dzp)); return (error); } static int zfs_replay_link(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_link_t *lr = arg2; char *name = (char *)(lr + 1); /* name follows lr_link_t */ znode_t *dzp, *zp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_doid, &dzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_link_obj, &zp)) != 0) { VN_RELE(ZTOV(dzp)); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; error = VOP_LINK(ZTOV(dzp), ZTOV(zp), name, kcred, NULL, vflg); VN_RELE(ZTOV(zp)); VN_RELE(ZTOV(dzp)); return (error); } static int zfs_replay_rename(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_rename_t *lr = arg2; char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */ char *tname = sname + strlen(sname) + 1; znode_t *sdzp, *tdzp; int error; int vflg = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_sdoid, &sdzp)) != 0) return (error); if ((error = zfs_zget(zfsvfs, lr->lr_tdoid, &tdzp)) != 0) { VN_RELE(ZTOV(sdzp)); return (error); } if (lr->lr_common.lrc_txtype & TX_CI) vflg |= FIGNORECASE; error = VOP_RENAME(ZTOV(sdzp), sname, ZTOV(tdzp), tname, kcred, NULL, vflg); VN_RELE(ZTOV(tdzp)); VN_RELE(ZTOV(sdzp)); return (error); } static int zfs_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; char *data = (char *)(lr + 1); /* data follows lr_write_t */ znode_t *zp; int error; ssize_t resid; uint64_t eod, offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) { /* * As we can log writes out of order, it's possible the * file has been removed. In this case just drop the write * and return success. */ if (error == ENOENT) error = 0; return (error); } offset = lr->lr_offset; length = lr->lr_length; eod = offset + length; /* end of data for this write */ /* * This may be a write from a dmu_sync() for a whole block, * and may extend beyond the current end of the file. * We can't just replay what was written for this TX_WRITE as * a future TX_WRITE2 may extend the eof and the data for that * write needs to be there. So we write the whole block and * reduce the eof. This needs to be done within the single dmu * transaction created within vn_rdwr -> zfs_write. So a possible * new end of file is passed through in zfsvfs->z_replay_eof */ zfsvfs->z_replay_eof = 0; /* 0 means don't change end of file */ /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } if (zp->z_size < eod) zfsvfs->z_replay_eof = eod; } error = vn_rdwr(UIO_WRITE, ZTOV(zp), data, length, offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); VN_RELE(ZTOV(zp)); zfsvfs->z_replay_eof = 0; /* safety */ return (error); } /* * TX_WRITE2 are only generated when dmu_sync() returns EALREADY * meaning the pool block is already being synced. So now that we always write * out full blocks, all we have to do is expand the eof if * the file is grown. */ static int zfs_replay_write2(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_write_t *lr = arg2; znode_t *zp; int error; uint64_t end; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); top: end = lr->lr_offset + lr->lr_length; if (end > zp->z_size) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); zp->z_size = end; dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { VN_RELE(ZTOV(zp)); if (error == ERESTART) { dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); return (error); } (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); /* Ensure the replayed seq is updated */ (void) zil_replaying(zfsvfs->z_log, tx); dmu_tx_commit(tx); } VN_RELE(ZTOV(zp)); return (error); } static int zfs_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_truncate_t *lr = arg2; znode_t *zp; flock64_t fl; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); bzero(&fl, sizeof (fl)); fl.l_type = F_WRLCK; fl.l_whence = 0; fl.l_start = lr->lr_offset; fl.l_len = lr->lr_length; error = VOP_SPACE(ZTOV(zp), F_FREESP, &fl, FWRITE | FOFFMAX, lr->lr_offset, kcred, NULL); VN_RELE(ZTOV(zp)); return (error); } static int zfs_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_setattr_t *lr = arg2; znode_t *zp; xvattr_t xva; vattr_t *vap = &xva.xva_vattr; int error; void *start; xva_init(&xva); if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); if ((lr->lr_mask & AT_XVATTR) && zfsvfs->z_version >= ZPL_VERSION_INITIAL) zfs_replay_swap_attrs((lr_attr_t *)(lr + 1)); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); zfs_init_vattr(vap, lr->lr_mask, lr->lr_mode, lr->lr_uid, lr->lr_gid, 0, lr->lr_foid); vap->va_size = lr->lr_size; ZFS_TIME_DECODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_DECODE(&vap->va_mtime, lr->lr_mtime); /* * Fill in xvattr_t portions if necessary. */ start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & AT_XVATTR) { zfs_replay_xvattr((lr_attr_t *)start, &xva); start = (caddr_t)start + ZIL_XVAT_SIZE(((lr_attr_t *)start)->lr_attr_masksize); } else xva.xva_vattr.va_mask &= ~AT_XVATTR; zfsvfs->z_fuid_replay = zfs_replay_fuid_domain(start, &start, lr->lr_uid, lr->lr_gid); error = VOP_SETATTR(ZTOV(zp), vap, 0, kcred, NULL); zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; VN_RELE(ZTOV(zp)); return (error); } static int zfs_replay_acl_v0(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_v0_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); /* ace array follows lr_acl_t */ vsecattr_t vsa; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_oldace_byteswap(ace, lr->lr_aclcnt); } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); bzero(&vsa, sizeof (vsa)); vsa.vsa_mask = VSA_ACE | VSA_ACECNT; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentsz = sizeof (ace_t) * vsa.vsa_aclcnt; vsa.vsa_aclflags = 0; vsa.vsa_aclentp = ace; error = VOP_SETSECATTR(ZTOV(zp), &vsa, 0, kcred, NULL); VN_RELE(ZTOV(zp)); return (error); } /* * Replaying ACLs is complicated by FUID support. * The log record may contain some optional data * to be used for replaying FUID's. These pieces * are the actual FUIDs that were created initially. * The FUID table index may no longer be valid and * during zfs_create() a new index may be assigned. * Because of this the log will contain the original * doman+rid in order to create a new FUID. * * The individual ACEs may contain an ephemeral uid/gid which is no * longer valid and will need to be replaced with an actual FUID. * */ static int zfs_replay_acl(void *arg1, void *arg2, boolean_t byteswap) { zfsvfs_t *zfsvfs = arg1; lr_acl_t *lr = arg2; ace_t *ace = (ace_t *)(lr + 1); vsecattr_t vsa; znode_t *zp; int error; if (byteswap) { byteswap_uint64_array(lr, sizeof (*lr)); zfs_ace_byteswap(ace, lr->lr_acl_bytes, B_FALSE); if (lr->lr_fuidcnt) { byteswap_uint64_array((caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes), lr->lr_fuidcnt * sizeof (uint64_t)); } } if ((error = zfs_zget(zfsvfs, lr->lr_foid, &zp)) != 0) return (error); bzero(&vsa, sizeof (vsa)); vsa.vsa_mask = VSA_ACE | VSA_ACECNT | VSA_ACE_ACLFLAGS; vsa.vsa_aclcnt = lr->lr_aclcnt; vsa.vsa_aclentp = ace; vsa.vsa_aclentsz = lr->lr_acl_bytes; vsa.vsa_aclflags = lr->lr_acl_flags; if (lr->lr_fuidcnt) { void *fuidstart = (caddr_t)ace + ZIL_ACE_LENGTH(lr->lr_acl_bytes); zfsvfs->z_fuid_replay = zfs_replay_fuids(fuidstart, &fuidstart, lr->lr_fuidcnt, lr->lr_domcnt, 0, 0); } error = VOP_SETSECATTR(ZTOV(zp), &vsa, 0, kcred, NULL); if (zfsvfs->z_fuid_replay) zfs_fuid_info_free(zfsvfs->z_fuid_replay); zfsvfs->z_fuid_replay = NULL; VN_RELE(ZTOV(zp)); return (error); } /* * Callback vectors for replaying records */ zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE] = { zfs_replay_error, /* 0 no such transaction type */ zfs_replay_create, /* TX_CREATE */ zfs_replay_create, /* TX_MKDIR */ zfs_replay_create, /* TX_MKXATTR */ zfs_replay_create, /* TX_SYMLINK */ zfs_replay_remove, /* TX_REMOVE */ zfs_replay_remove, /* TX_RMDIR */ zfs_replay_link, /* TX_LINK */ zfs_replay_rename, /* TX_RENAME */ zfs_replay_write, /* TX_WRITE */ zfs_replay_truncate, /* TX_TRUNCATE */ zfs_replay_setattr, /* TX_SETATTR */ zfs_replay_acl_v0, /* TX_ACL_V0 */ zfs_replay_acl, /* TX_ACL */ zfs_replay_create_acl, /* TX_CREATE_ACL */ zfs_replay_create, /* TX_CREATE_ATTR */ zfs_replay_create_acl, /* TX_CREATE_ACL_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL */ zfs_replay_create, /* TX_MKDIR_ATTR */ zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */ zfs_replay_write2, /* TX_WRITE2 */ }; Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_sa.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_sa.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_sa.c (revision 350898) @@ -1,333 +1,332 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include /* * ZPL attribute registration table. * Order of attributes doesn't matter * a unique value will be assigned for each * attribute that is file system specific * * This is just the set of ZPL attributes that this * version of ZFS deals with natively. The file system * could have other attributes stored in files, but they will be * ignored. The SA framework will preserve them, just that * this version of ZFS won't change or delete them. */ sa_attr_reg_t zfs_attr_table[ZPL_END+1] = { {"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0}, {"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1}, {"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2}, {"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3}, {"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4}, {"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5}, {"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6}, {"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7}, {"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8}, {"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9}, {"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10}, {"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11}, {"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12}, {"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13}, {"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14}, {"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15}, {"ZPL_DACL_COUNT", sizeof (uint64_t), SA_UINT64_ARRAY, 0}, {"ZPL_SYMLINK", 0, SA_UINT8_ARRAY, 0}, {"ZPL_SCANSTAMP", 32, SA_UINT8_ARRAY, 0}, {"ZPL_DACL_ACES", 0, SA_ACL, 0}, {NULL, 0, 0, 0} }; #ifdef _KERNEL int zfs_sa_readlink(znode_t *zp, uio_t *uio) { dmu_buf_t *db = sa_get_db(zp->z_sa_hdl); size_t bufsz; int error; bufsz = zp->z_size; if (bufsz + ZFS_OLD_ZNODE_PHYS_SIZE <= db->db_size) { error = uiomove((caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE, MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); } else { dmu_buf_t *dbp; if ((error = dmu_buf_hold(zp->z_zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp, DMU_READ_NO_PREFETCH)) == 0) { error = uiomove(dbp->db_data, MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); dmu_buf_rele(dbp, FTAG); } } return (error); } void zfs_sa_symlink(znode_t *zp, char *link, int len, dmu_tx_t *tx) { dmu_buf_t *db = sa_get_db(zp->z_sa_hdl); if (ZFS_OLD_ZNODE_PHYS_SIZE + len <= dmu_bonus_max()) { - VERIFY(dmu_set_bonus(db, - len + ZFS_OLD_ZNODE_PHYS_SIZE, tx) == 0); + VERIFY0(dmu_set_bonus(db, len + ZFS_OLD_ZNODE_PHYS_SIZE, tx)); if (len) { bcopy(link, (caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE, len); } } else { dmu_buf_t *dbp; zfs_grow_blocksize(zp, len, tx); VERIFY(0 == dmu_buf_hold(zp->z_zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(dbp, tx); ASSERT3U(len, <=, dbp->db_size); bcopy(link, dbp->db_data, len); dmu_buf_rele(dbp, FTAG); } } void zfs_sa_get_scanstamp(znode_t *zp, xvattr_t *xvap) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; xoptattr_t *xoap; ASSERT(MUTEX_HELD(&zp->z_lock)); VERIFY((xoap = xva_getxoptattr(xvap)) != NULL); if (zp->z_is_sa) { if (sa_lookup(zp->z_sa_hdl, SA_ZPL_SCANSTAMP(zfsvfs), &xoap->xoa_av_scanstamp, sizeof (xoap->xoa_av_scanstamp)) != 0) return; } else { dmu_object_info_t doi; dmu_buf_t *db = sa_get_db(zp->z_sa_hdl); int len; if (!(zp->z_pflags & ZFS_BONUS_SCANSTAMP)) return; sa_object_info(zp->z_sa_hdl, &doi); len = sizeof (xoap->xoa_av_scanstamp) + ZFS_OLD_ZNODE_PHYS_SIZE; if (len <= doi.doi_bonus_size) { (void) memcpy(xoap->xoa_av_scanstamp, (caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE, sizeof (xoap->xoa_av_scanstamp)); } } XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); } void zfs_sa_set_scanstamp(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; xoptattr_t *xoap; ASSERT(MUTEX_HELD(&zp->z_lock)); VERIFY((xoap = xva_getxoptattr(xvap)) != NULL); if (zp->z_is_sa) VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SCANSTAMP(zfsvfs), &xoap->xoa_av_scanstamp, sizeof (xoap->xoa_av_scanstamp), tx)); else { dmu_object_info_t doi; dmu_buf_t *db = sa_get_db(zp->z_sa_hdl); int len; sa_object_info(zp->z_sa_hdl, &doi); len = sizeof (xoap->xoa_av_scanstamp) + ZFS_OLD_ZNODE_PHYS_SIZE; if (len > doi.doi_bonus_size) VERIFY(dmu_set_bonus(db, len, tx) == 0); (void) memcpy((caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE, xoap->xoa_av_scanstamp, sizeof (xoap->xoa_av_scanstamp)); zp->z_pflags |= ZFS_BONUS_SCANSTAMP; VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), &zp->z_pflags, sizeof (uint64_t), tx)); } } /* * I'm not convinced we should do any of this upgrade. * since the SA code can read both old/new znode formats * with probably little to no performance difference. * * All new files will be created with the new format. */ void zfs_sa_upgrade(sa_handle_t *hdl, dmu_tx_t *tx) { dmu_buf_t *db = sa_get_db(hdl); znode_t *zp = sa_get_userdata(hdl); zfsvfs_t *zfsvfs = zp->z_zfsvfs; sa_bulk_attr_t bulk[20]; int count = 0; sa_bulk_attr_t sa_attrs[20] = { 0 }; zfs_acl_locator_cb_t locate = { 0 }; uint64_t uid, gid, mode, rdev, xattr, parent; uint64_t crtime[2], mtime[2], ctime[2]; zfs_acl_phys_t znode_acl; char scanstamp[AV_SCANSTAMP_SZ]; boolean_t drop_lock = B_FALSE; /* * No upgrade if ACL isn't cached * since we won't know which locks are held * and ready the ACL would require special "locked" * interfaces that would be messy */ if (zp->z_acl_cached == NULL || ZTOV(zp)->v_type == VLNK) return; /* * If the z_lock is held and we aren't the owner * the just return since we don't want to deadlock * trying to update the status of z_is_sa. This * file can then be upgraded at a later time. * * Otherwise, we know we are doing the * sa_update() that caused us to enter this function. */ if (mutex_owner(&zp->z_lock) != curthread) { if (mutex_tryenter(&zp->z_lock) == 0) return; else drop_lock = B_TRUE; } /* First do a bulk query of the attributes that aren't cached */ SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_XATTR(zfsvfs), NULL, &xattr, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, &znode_acl, 88); if (sa_bulk_lookup_locked(hdl, bulk, count) != 0) goto done; /* * While the order here doesn't matter its best to try and organize * it is such a way to pick up an already existing layout number */ count = 0; SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_UID(zfsvfs), NULL, &uid, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_GID(zfsvfs), NULL, &gid, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_ATIME(zfsvfs), NULL, zp->z_atime, 16); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, 8); if (zp->z_vnode->v_type == VBLK || zp->z_vnode->v_type == VCHR) SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_DACL_COUNT(zfsvfs), NULL, &zp->z_acl_cached->z_acl_count, 8); if (zp->z_acl_cached->z_version < ZFS_ACL_VERSION_FUID) zfs_acl_xform(zp, zp->z_acl_cached, CRED()); locate.cb_aclp = zp->z_acl_cached; SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_DACL_ACES(zfsvfs), zfs_acl_data_locator, &locate, zp->z_acl_cached->z_acl_bytes); if (xattr) SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_XATTR(zfsvfs), NULL, &xattr, 8); /* if scanstamp then add scanstamp */ if (zp->z_pflags & ZFS_BONUS_SCANSTAMP) { bcopy((caddr_t)db->db_data + ZFS_OLD_ZNODE_PHYS_SIZE, scanstamp, AV_SCANSTAMP_SZ); SA_ADD_BULK_ATTR(sa_attrs, count, SA_ZPL_SCANSTAMP(zfsvfs), NULL, scanstamp, AV_SCANSTAMP_SZ); zp->z_pflags &= ~ZFS_BONUS_SCANSTAMP; } VERIFY(dmu_set_bonustype(db, DMU_OT_SA, tx) == 0); VERIFY(sa_replace_all_by_template_locked(hdl, sa_attrs, count, tx) == 0); if (znode_acl.z_acl_extern_obj) VERIFY(0 == dmu_object_free(zfsvfs->z_os, znode_acl.z_acl_extern_obj, tx)); zp->z_is_sa = B_TRUE; done: if (drop_lock) mutex_exit(&zp->z_lock); } void zfs_sa_upgrade_txholds(dmu_tx_t *tx, znode_t *zp) { if (!zp->z_zfsvfs->z_use_sa || zp->z_is_sa) return; dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); if (zfs_external_acl(zp)) { dmu_tx_hold_free(tx, zfs_external_acl(zp), 0, DMU_OBJECT_END); } } #endif Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_znode.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_znode.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_znode.c (revision 350898) @@ -1,2188 +1,2198 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2007 Jeremy Teo */ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #include #include +#include #include #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_comutil.h" /* * Define ZNODE_STATS to turn on statistic gathering. By default, it is only * turned on when DEBUG is also defined. */ #ifdef DEBUG #define ZNODE_STATS #endif /* DEBUG */ #ifdef ZNODE_STATS #define ZNODE_STAT_ADD(stat) ((stat)++) #else #define ZNODE_STAT_ADD(stat) /* nothing */ #endif /* ZNODE_STATS */ /* * Functions needed for userland (ie: libzpool) are not put under * #ifdef_KERNEL; the rest of the functions have dependencies * (such as VFS logic) that will not compile easily in userland. */ #ifdef _KERNEL /* * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to * be freed before it can be safely accessed. */ krwlock_t zfsvfs_lock; static kmem_cache_t *znode_cache = NULL; /*ARGSUSED*/ static void znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) { /* * We should never drop all dbuf refs without first clearing * the eviction callback. */ panic("evicting znode %p\n", user_ptr); } /* * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on * z_rangelock. It will modify the offset and length of the lock to reflect * znode-specific information, and convert RL_APPEND to RL_WRITER. This is * called with the rangelock_t's rl_lock held, which avoids races. */ static void zfs_rangelock_cb(locked_range_t *new, void *arg) { znode_t *zp = arg; /* * If in append mode, convert to writer and lock starting at the * current end of file. */ if (new->lr_type == RL_APPEND) { new->lr_offset = zp->z_size; new->lr_type = RL_WRITER; } /* * If we need to grow the block size then lock the whole file range. */ uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length); if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { new->lr_offset = 0; new->lr_length = UINT64_MAX; } } /*ARGSUSED*/ static int zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) { znode_t *zp = buf; ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); zp->z_vnode = vn_alloc(kmflags); if (zp->z_vnode == NULL) { return (-1); } ZTOV(zp)->v_data = zp; list_link_init(&zp->z_link_node); mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp); zp->z_dirlocks = NULL; zp->z_acl_cached = NULL; zp->z_moved = 0; return (0); } /*ARGSUSED*/ static void zfs_znode_cache_destructor(void *buf, void *arg) { znode_t *zp = buf; ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); ASSERT(ZTOV(zp)->v_data == zp); vn_free(ZTOV(zp)); ASSERT(!list_link_active(&zp->z_link_node)); mutex_destroy(&zp->z_lock); rw_destroy(&zp->z_parent_lock); rw_destroy(&zp->z_name_lock); mutex_destroy(&zp->z_acl_lock); rangelock_fini(&zp->z_rangelock); ASSERT(zp->z_dirlocks == NULL); ASSERT(zp->z_acl_cached == NULL); } #ifdef ZNODE_STATS static struct { uint64_t zms_zfsvfs_invalid; uint64_t zms_zfsvfs_recheck1; uint64_t zms_zfsvfs_unmounted; uint64_t zms_zfsvfs_recheck2; uint64_t zms_obj_held; uint64_t zms_vnode_locked; uint64_t zms_not_only_dnlc; } znode_move_stats; #endif /* ZNODE_STATS */ static void zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) { vnode_t *vp; /* Copy fields. */ nzp->z_zfsvfs = ozp->z_zfsvfs; /* Swap vnodes. */ vp = nzp->z_vnode; nzp->z_vnode = ozp->z_vnode; ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ ZTOV(ozp)->v_data = ozp; ZTOV(nzp)->v_data = nzp; nzp->z_id = ozp->z_id; ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ nzp->z_unlinked = ozp->z_unlinked; nzp->z_atime_dirty = ozp->z_atime_dirty; nzp->z_zn_prefetch = ozp->z_zn_prefetch; nzp->z_blksz = ozp->z_blksz; nzp->z_seq = ozp->z_seq; nzp->z_mapcnt = ozp->z_mapcnt; nzp->z_gen = ozp->z_gen; nzp->z_sync_cnt = ozp->z_sync_cnt; nzp->z_is_sa = ozp->z_is_sa; nzp->z_sa_hdl = ozp->z_sa_hdl; bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); nzp->z_links = ozp->z_links; nzp->z_size = ozp->z_size; nzp->z_pflags = ozp->z_pflags; nzp->z_uid = ozp->z_uid; nzp->z_gid = ozp->z_gid; nzp->z_mode = ozp->z_mode; /* * Since this is just an idle znode and kmem is already dealing with * memory pressure, release any cached ACL. */ if (ozp->z_acl_cached) { zfs_acl_free(ozp->z_acl_cached); ozp->z_acl_cached = NULL; } sa_set_userp(nzp->z_sa_hdl, nzp); /* * Invalidate the original znode by clearing fields that provide a * pointer back to the znode. Set the low bit of the vfs pointer to * ensure that zfs_znode_move() recognizes the znode as invalid in any * subsequent callback. */ ozp->z_sa_hdl = NULL; POINTER_INVALIDATE(&ozp->z_zfsvfs); /* * Mark the znode. */ nzp->z_moved = 1; ozp->z_moved = (uint8_t)-1; } /*ARGSUSED*/ static kmem_cbrc_t zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) { znode_t *ozp = buf, *nzp = newbuf; zfsvfs_t *zfsvfs; vnode_t *vp; /* * The znode is on the file system's list of known znodes if the vfs * pointer is valid. We set the low bit of the vfs pointer when freeing * the znode to invalidate it, and the memory patterns written by kmem * (baddcafe and deadbeef) set at least one of the two low bits. A newly * created znode sets the vfs pointer last of all to indicate that the * znode is known and in a valid state to be moved by this function. */ zfsvfs = ozp->z_zfsvfs; if (!POINTER_IS_VALID(zfsvfs)) { ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); return (KMEM_CBRC_DONT_KNOW); } /* * Close a small window in which it's possible that the filesystem could * be unmounted and freed, and zfsvfs, though valid in the previous * statement, could point to unrelated memory by the time we try to * prevent the filesystem from being unmounted. */ rw_enter(&zfsvfs_lock, RW_WRITER); if (zfsvfs != ozp->z_zfsvfs) { rw_exit(&zfsvfs_lock); ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); return (KMEM_CBRC_DONT_KNOW); } /* * If the znode is still valid, then so is the file system. We know that * no valid file system can be freed while we hold zfsvfs_lock, so we * can safely ensure that the filesystem is not and will not be * unmounted. The next statement is equivalent to ZFS_ENTER(). */ rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); if (zfsvfs->z_unmounted) { ZFS_EXIT(zfsvfs); rw_exit(&zfsvfs_lock); ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); return (KMEM_CBRC_DONT_KNOW); } rw_exit(&zfsvfs_lock); mutex_enter(&zfsvfs->z_znodes_lock); /* * Recheck the vfs pointer in case the znode was removed just before * acquiring the lock. */ if (zfsvfs != ozp->z_zfsvfs) { mutex_exit(&zfsvfs->z_znodes_lock); ZFS_EXIT(zfsvfs); ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); return (KMEM_CBRC_DONT_KNOW); } /* * At this point we know that as long as we hold z_znodes_lock, the * znode cannot be freed and fields within the znode can be safely * accessed. Now, prevent a race with zfs_zget(). */ if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { mutex_exit(&zfsvfs->z_znodes_lock); ZFS_EXIT(zfsvfs); ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); return (KMEM_CBRC_LATER); } vp = ZTOV(ozp); if (mutex_tryenter(&vp->v_lock) == 0) { ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); mutex_exit(&zfsvfs->z_znodes_lock); ZFS_EXIT(zfsvfs); ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); return (KMEM_CBRC_LATER); } /* Only move znodes that are referenced _only_ by the DNLC. */ if (vp->v_count != 1 || !vn_in_dnlc(vp)) { mutex_exit(&vp->v_lock); ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); mutex_exit(&zfsvfs->z_znodes_lock); ZFS_EXIT(zfsvfs); ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); return (KMEM_CBRC_LATER); } /* * The znode is known and in a valid state to move. We're holding the * locks needed to execute the critical section. */ zfs_znode_move_impl(ozp, nzp); mutex_exit(&vp->v_lock); ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); list_link_replace(&ozp->z_link_node, &nzp->z_link_node); mutex_exit(&zfsvfs->z_znodes_lock); ZFS_EXIT(zfsvfs); return (KMEM_CBRC_YES); } void zfs_znode_init(void) { /* * Initialize zcache */ rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); ASSERT(znode_cache == NULL); znode_cache = kmem_cache_create("zfs_znode_cache", sizeof (znode_t), 0, zfs_znode_cache_constructor, zfs_znode_cache_destructor, NULL, NULL, NULL, 0); kmem_cache_set_move(znode_cache, zfs_znode_move); } void zfs_znode_fini(void) { /* * Cleanup vfs & vnode ops */ zfs_remove_op_tables(); /* * Cleanup zcache */ if (znode_cache) kmem_cache_destroy(znode_cache); znode_cache = NULL; rw_destroy(&zfsvfs_lock); } struct vnodeops *zfs_dvnodeops; struct vnodeops *zfs_fvnodeops; struct vnodeops *zfs_symvnodeops; struct vnodeops *zfs_xdvnodeops; struct vnodeops *zfs_evnodeops; struct vnodeops *zfs_sharevnodeops; void zfs_remove_op_tables() { /* * Remove vfs ops */ ASSERT(zfsfstype); (void) vfs_freevfsops_by_type(zfsfstype); zfsfstype = 0; /* * Remove vnode ops */ if (zfs_dvnodeops) vn_freevnodeops(zfs_dvnodeops); if (zfs_fvnodeops) vn_freevnodeops(zfs_fvnodeops); if (zfs_symvnodeops) vn_freevnodeops(zfs_symvnodeops); if (zfs_xdvnodeops) vn_freevnodeops(zfs_xdvnodeops); if (zfs_evnodeops) vn_freevnodeops(zfs_evnodeops); if (zfs_sharevnodeops) vn_freevnodeops(zfs_sharevnodeops); zfs_dvnodeops = NULL; zfs_fvnodeops = NULL; zfs_symvnodeops = NULL; zfs_xdvnodeops = NULL; zfs_evnodeops = NULL; zfs_sharevnodeops = NULL; } extern const fs_operation_def_t zfs_dvnodeops_template[]; extern const fs_operation_def_t zfs_fvnodeops_template[]; extern const fs_operation_def_t zfs_xdvnodeops_template[]; extern const fs_operation_def_t zfs_symvnodeops_template[]; extern const fs_operation_def_t zfs_evnodeops_template[]; extern const fs_operation_def_t zfs_sharevnodeops_template[]; int zfs_create_op_tables() { int error; /* * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). * In this case we just return as the ops vectors are already set up. */ if (zfs_dvnodeops) return (0); error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, &zfs_dvnodeops); if (error) return (error); error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, &zfs_fvnodeops); if (error) return (error); error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, &zfs_symvnodeops); if (error) return (error); error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, &zfs_xdvnodeops); if (error) return (error); error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, &zfs_evnodeops); if (error) return (error); error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, &zfs_sharevnodeops); return (error); } int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) { zfs_acl_ids_t acl_ids; vattr_t vattr; znode_t *sharezp; vnode_t *vp; znode_t *zp; int error; vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VDIR; vattr.va_mode = S_IFDIR|0555; vattr.va_uid = crgetuid(kcred); vattr.va_gid = crgetgid(kcred); sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); sharezp->z_moved = 0; sharezp->z_unlinked = 0; sharezp->z_atime_dirty = 0; sharezp->z_zfsvfs = zfsvfs; sharezp->z_is_sa = zfsvfs->z_use_sa; vp = ZTOV(sharezp); vn_reinit(vp); vp->v_type = VDIR; VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, kcred, NULL, &acl_ids)); zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, sharezp); ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ POINTER_INVALIDATE(&sharezp->z_zfsvfs); error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); zfsvfs->z_shares_dir = sharezp->z_id; zfs_acl_ids_free(&acl_ids); ZTOV(sharezp)->v_count = 0; sa_handle_destroy(sharezp->z_sa_hdl); kmem_cache_free(znode_cache, sharezp); return (error); } /* * define a couple of values we need available * for both 64 and 32 bit environments. */ #ifndef NBITSMINOR64 #define NBITSMINOR64 32 #endif #ifndef MAXMAJ64 #define MAXMAJ64 0xffffffffUL #endif #ifndef MAXMIN64 #define MAXMIN64 0xffffffffUL #endif /* * Create special expldev for ZFS private use. * Can't use standard expldev since it doesn't do * what we want. The standard expldev() takes a * dev32_t in LP64 and expands it to a long dev_t. * We need an interface that takes a dev32_t in ILP32 * and expands it to a long dev_t. */ static uint64_t zfs_expldev(dev_t dev) { #ifndef _LP64 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; return (((uint64_t)major << NBITSMINOR64) | ((minor_t)dev & MAXMIN32)); #else return (dev); #endif } /* * Special cmpldev for ZFS private use. * Can't use standard cmpldev since it takes * a long dev_t and compresses it to dev32_t in * LP64. We need to do a compaction of a long dev_t * to a dev32_t in ILP32. */ dev_t zfs_cmpldev(uint64_t dev) { #ifndef _LP64 minor_t minor = (minor_t)dev & MAXMIN64; major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; if (major > MAXMAJ32 || minor > MAXMIN32) return (NODEV32); return (((dev32_t)major << NBITSMINOR32) | minor); #else return (dev); #endif } static void zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) { ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); mutex_enter(&zp->z_lock); ASSERT(zp->z_sa_hdl == NULL); ASSERT(zp->z_acl_cached == NULL); if (sa_hdl == NULL) { VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, SA_HDL_SHARED, &zp->z_sa_hdl)); } else { zp->z_sa_hdl = sa_hdl; sa_set_userp(sa_hdl, zp); } zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; /* * Slap on VROOT if we are the root znode */ if (zp->z_id == zfsvfs->z_root) ZTOV(zp)->v_flag |= VROOT; mutex_exit(&zp->z_lock); vn_exists(ZTOV(zp)); } void zfs_znode_dmu_fini(znode_t *zp) { ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || zp->z_unlinked || RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); sa_handle_destroy(zp->z_sa_hdl); zp->z_sa_hdl = NULL; } /* * Construct a new znode/vnode and intialize. * * This does not do a call to dmu_set_user() that is * up to the caller to do, in case you don't want to * return the znode */ static znode_t * zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, dmu_object_type_t obj_type, sa_handle_t *hdl) { znode_t *zp; vnode_t *vp; uint64_t mode; uint64_t parent; sa_bulk_attr_t bulk[9]; int count = 0; zp = kmem_cache_alloc(znode_cache, KM_SLEEP); ASSERT(zp->z_dirlocks == NULL); ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); zp->z_moved = 0; /* * Defer setting z_zfsvfs until the znode is ready to be a candidate for * the zfs_znode_move() callback. */ zp->z_sa_hdl = NULL; zp->z_unlinked = 0; zp->z_atime_dirty = 0; zp->z_mapcnt = 0; zp->z_id = db->db_object; zp->z_blksz = blksz; zp->z_seq = 0x7A4653; zp->z_sync_cnt = 0; vp = ZTOV(zp); vn_reinit(vp); zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &zp->z_uid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &zp->z_gid, 8); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { if (hdl == NULL) sa_handle_destroy(zp->z_sa_hdl); kmem_cache_free(znode_cache, zp); return (NULL); } zp->z_mode = mode; vp->v_vfsp = zfsvfs->z_parent->z_vfs; vp->v_type = IFTOVT((mode_t)mode); switch (vp->v_type) { case VDIR: if (zp->z_pflags & ZFS_XATTR) { vn_setops(vp, zfs_xdvnodeops); vp->v_flag |= V_XATTRDIR; } else { vn_setops(vp, zfs_dvnodeops); } zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ break; case VBLK: case VCHR: { uint64_t rdev; VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev, sizeof (rdev)) == 0); vp->v_rdev = zfs_cmpldev(rdev); } /*FALLTHROUGH*/ case VFIFO: case VSOCK: case VDOOR: vn_setops(vp, zfs_fvnodeops); break; case VREG: vp->v_flag |= VMODSORT; if (parent == zfsvfs->z_shares_dir) { ASSERT(zp->z_uid == 0 && zp->z_gid == 0); vn_setops(vp, zfs_sharevnodeops); } else { vn_setops(vp, zfs_fvnodeops); } break; case VLNK: vn_setops(vp, zfs_symvnodeops); break; default: vn_setops(vp, zfs_evnodeops); break; } mutex_enter(&zfsvfs->z_znodes_lock); list_insert_tail(&zfsvfs->z_all_znodes, zp); membar_producer(); /* * Everything else must be valid before assigning z_zfsvfs makes the * znode eligible for zfs_znode_move(). */ zp->z_zfsvfs = zfsvfs; mutex_exit(&zfsvfs->z_znodes_lock); VFS_HOLD(zfsvfs->z_vfs); return (zp); } static uint64_t empty_xattr; static uint64_t pad[4]; static zfs_acl_phys_t acl_phys; /* * Create a new DMU object to hold a zfs znode. * * IN: dzp - parent directory for new znode * vap - file attributes for new znode * tx - dmu transaction id for zap operations * cr - credentials of caller * flag - flags: * IS_ROOT_NODE - new object will be root * IS_XATTR - new object is an attribute * bonuslen - length of bonus buffer * setaclp - File/Dir initial ACL * fuidp - Tracks fuid allocation. * * OUT: zpp - allocated znode * */ void zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) { uint64_t crtime[2], atime[2], mtime[2], ctime[2]; uint64_t mode, size, links, parent, pflags; uint64_t dzp_pflags = 0; uint64_t rdev = 0; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; dmu_buf_t *db; timestruc_t now; uint64_t gen, obj; int bonuslen; + int dnodesize; sa_handle_t *sa_hdl; dmu_object_type_t obj_type; - sa_bulk_attr_t sa_attrs[ZPL_END]; + sa_bulk_attr_t *sa_attrs; int cnt = 0; zfs_acl_locator_cb_t locate = { 0 }; ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); if (zfsvfs->z_replay) { obj = vap->va_nodeid; now = vap->va_ctime; /* see zfs_replay_create() */ gen = vap->va_nblocks; /* ditto */ + dnodesize = vap->va_fsid; /* ditto */ } else { obj = 0; gethrestime(&now); gen = dmu_tx_get_txg(tx); + dnodesize = dmu_objset_dnodesize(zfsvfs->z_os); } + if (dnodesize == 0) + dnodesize = DNODE_MIN_SIZE; + obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; bonuslen = (obj_type == DMU_OT_SA) ? - DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; + DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE; /* * Create a new DMU object. */ /* * There's currently no mechanism for pre-reading the blocks that will * be needed to allocate a new object, so we accept the small chance * that there will be an i/o error and we will fail one of the * assertions below. */ if (vap->va_type == VDIR) { if (zfsvfs->z_replay) { - VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, + VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, - obj_type, bonuslen, tx)); + obj_type, bonuslen, dnodesize, tx)); } else { - obj = zap_create_norm(zfsvfs->z_os, + obj = zap_create_norm_dnsize(zfsvfs->z_os, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, - obj_type, bonuslen, tx); + obj_type, bonuslen, dnodesize, tx); } } else { if (zfsvfs->z_replay) { - VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, + VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj, DMU_OT_PLAIN_FILE_CONTENTS, 0, - obj_type, bonuslen, tx)); + obj_type, bonuslen, dnodesize, tx)); } else { - obj = dmu_object_alloc(zfsvfs->z_os, + obj = dmu_object_alloc_dnsize(zfsvfs->z_os, DMU_OT_PLAIN_FILE_CONTENTS, 0, - obj_type, bonuslen, tx); + obj_type, bonuslen, dnodesize, tx); } } ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); - VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); + VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); /* * If this is the root, fix up the half-initialized parent pointer * to reference the just-allocated physical data area. */ if (flag & IS_ROOT_NODE) { dzp->z_id = obj; } else { dzp_pflags = dzp->z_pflags; } /* * If parent is an xattr, so am I. */ if (dzp_pflags & ZFS_XATTR) { flag |= IS_XATTR; } if (zfsvfs->z_use_fuids) pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; else pflags = 0; if (vap->va_type == VDIR) { size = 2; /* contents ("." and "..") */ links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; } else { size = links = 0; } if (vap->va_type == VBLK || vap->va_type == VCHR) { rdev = zfs_expldev(vap->va_rdev); } parent = dzp->z_id; mode = acl_ids->z_mode; if (flag & IS_XATTR) pflags |= ZFS_XATTR; /* * No execs denied will be deterimed when zfs_mode_compute() is called. */ pflags |= acl_ids->z_aclp->z_hints & (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); ZFS_TIME_ENCODE(&now, crtime); ZFS_TIME_ENCODE(&now, ctime); if (vap->va_mask & AT_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, atime); } else { ZFS_TIME_ENCODE(&now, atime); } if (vap->va_mask & AT_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); } else { ZFS_TIME_ENCODE(&now, mtime); } /* Now add in all of the "SA" attributes */ VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, &sa_hdl)); /* * Setup the array of attributes to be replaced/set on the new file * * order for DMU_OT_ZNODE is critical since it needs to be constructed * in the old znode_phys_t format. Don't change this ordering */ + sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); } else { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); - SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, - &acl_ids->z_fuid, 8); - SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, - &acl_ids->z_fgid, 8); + SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), + NULL, &acl_ids->z_fuid, 8); + SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), + NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); } SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, &empty_xattr, 8); } if (obj_type == DMU_OT_ZNODE || (vap->va_type == VBLK || vap->va_type == VCHR)) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); } if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, &acl_ids->z_fuid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, sizeof (uint64_t) * 4); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, &acl_phys, sizeof (zfs_acl_phys_t)); } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, &acl_ids->z_aclp->z_acl_count, 8); locate.cb_aclp = acl_ids->z_aclp; SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), zfs_acl_data_locator, &locate, acl_ids->z_aclp->z_acl_bytes); mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, acl_ids->z_fuid, acl_ids->z_fgid); } VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); if (!(flag & IS_ROOT_NODE)) { *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); ASSERT(*zpp != NULL); } else { /* * If we are creating the root node, the "parent" we * passed in is the znode for the root. */ *zpp = dzp; (*zpp)->z_sa_hdl = sa_hdl; } (*zpp)->z_pflags = pflags; (*zpp)->z_mode = mode; + (*zpp)->z_dnodesize = dnodesize; if (vap->va_mask & AT_XVATTR) zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); if (obj_type == DMU_OT_ZNODE || acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); } + kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); } /* * Update in-core attributes. It is assumed the caller will be doing an * sa_bulk_update to push the changes out. */ void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) { xoptattr_t *xoap; xoap = xva_getxoptattr(xvap); ASSERT(xoap); if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { uint64_t times[2]; ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), ×, sizeof (times), tx); XVA_SET_RTN(xvap, XAT_CREATETIME); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, xoap->xoa_av_quarantined, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { zfs_sa_set_scanstamp(zp, xvap, tx); XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SPARSE); } } int zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) { dmu_object_info_t doi; dmu_buf_t *db; znode_t *zp; int err; sa_handle_t *hdl; *zpp = NULL; ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EINVAL)); } hdl = dmu_buf_get_user(db); if (hdl != NULL) { zp = sa_get_userdata(hdl); /* * Since "SA" does immediate eviction we * should never find a sa handle that doesn't * know about the znode. */ ASSERT3P(zp, !=, NULL); mutex_enter(&zp->z_lock); ASSERT3U(zp->z_id, ==, obj_num); if (zp->z_unlinked) { err = SET_ERROR(ENOENT); } else { VN_HOLD(ZTOV(zp)); *zpp = zp; err = 0; } mutex_exit(&zp->z_lock); sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (err); } /* * Not found create new znode/vnode * but only if file exists. * * There is a small window where zfs_vget() could * find this object while a file create is still in * progress. This is checked for in zfs_znode_alloc() * * if zfs_znode_alloc() fails it will drop the hold on the * bonus buffer. */ zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, doi.doi_bonus_type, NULL); if (zp == NULL) { err = SET_ERROR(ENOENT); } else { *zpp = zp; } ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (err); } int zfs_rezget(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_object_info_t doi; dmu_buf_t *db; uint64_t obj_num = zp->z_id; uint64_t mode; sa_bulk_attr_t bulk[8]; int err; int count = 0; uint64_t gen; ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); mutex_enter(&zp->z_acl_lock); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } mutex_exit(&zp->z_acl_lock); ASSERT(zp->z_sa_hdl == NULL); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EINVAL)); } zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); /* reload cached values */ SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &gen, sizeof (gen)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &zp->z_links, sizeof (zp->z_links)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, sizeof (zp->z_atime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &zp->z_uid, sizeof (zp->z_uid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &zp->z_gid, sizeof (zp->z_gid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, sizeof (mode)); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EIO)); } zp->z_mode = mode; if (gen != zp->z_gen) { zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (SET_ERROR(EIO)); } zp->z_blksz = doi.doi_data_block_size; /* * If the file has zero links, then it has been unlinked on the send * side and it must be in the received unlinked set. * We call zfs_znode_dmu_fini() now to prevent any accesses to the * stale data and to prevent automatical removal of the file in * zfs_zinactive(). The file will be removed either when it is removed * on the send side and the next incremental stream is received or * when the unlinked set gets processed. */ zp->z_unlinked = (zp->z_links == 0); if (zp->z_unlinked) zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); return (0); } void zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os = zfsvfs->z_os; uint64_t obj = zp->z_id; uint64_t acl_obj = zfs_external_acl(zp); ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); if (acl_obj) { VERIFY(!zp->z_is_sa); VERIFY(0 == dmu_object_free(os, acl_obj, tx)); } VERIFY(0 == dmu_object_free(os, obj, tx)); zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); zfs_znode_free(zp); } void zfs_zinactive(znode_t *zp) { vnode_t *vp = ZTOV(zp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint64_t z_id = zp->z_id; ASSERT(zp->z_sa_hdl); /* * Don't allow a zfs_zget() while were trying to release this znode */ ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); mutex_enter(&zp->z_lock); mutex_enter(&vp->v_lock); VN_RELE_LOCKED(vp); if (vp->v_count > 0 || vn_has_cached_data(vp)) { /* * If the hold count is greater than zero, somebody has * obtained a new reference on this znode while we were * processing it here, so we are done. If we still have * mapped pages then we are also done, since we don't * want to inactivate the znode until the pages get pushed. * * XXX - if vn_has_cached_data(vp) is true, but count == 0, * this seems like it would leave the znode hanging with * no chance to go inactive... */ mutex_exit(&vp->v_lock); mutex_exit(&zp->z_lock); ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); return; } mutex_exit(&vp->v_lock); /* * If this was the last reference to a file with no links, remove * the file from the file system unless the file system is mounted * read-only. That can happen, for example, if the file system was * originally read-write, the file was opened, then unlinked and * the file system was made read-only before the file was finally * closed. The file will remain in the unlinked set. */ if (zp->z_unlinked) { ASSERT(!zfsvfs->z_issnap); if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) { mutex_exit(&zp->z_lock); ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); zfs_rmnode(zp); return; } } mutex_exit(&zp->z_lock); zfs_znode_dmu_fini(zp); ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); zfs_znode_free(zp); } void zfs_znode_free(znode_t *zp) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; vn_invalid(ZTOV(zp)); ASSERT(ZTOV(zp)->v_count == 0); mutex_enter(&zfsvfs->z_znodes_lock); POINTER_INVALIDATE(&zp->z_zfsvfs); list_remove(&zfsvfs->z_all_znodes, zp); mutex_exit(&zfsvfs->z_znodes_lock); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } kmem_cache_free(znode_cache, zp); VFS_RELE(zfsvfs->z_vfs); } void zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], uint64_t ctime[2], boolean_t have_tx) { timestruc_t now; gethrestime(&now); if (have_tx) { /* will sa_bulk_update happen really soon? */ zp->z_atime_dirty = 0; zp->z_seq++; } else { zp->z_atime_dirty = 1; } if (flag & AT_ATIME) { ZFS_TIME_ENCODE(&now, zp->z_atime); } if (flag & AT_MTIME) { ZFS_TIME_ENCODE(&now, mtime); if (zp->z_zfsvfs->z_use_fuids) { zp->z_pflags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); } } if (flag & AT_CTIME) { ZFS_TIME_ENCODE(&now, ctime); if (zp->z_zfsvfs->z_use_fuids) zp->z_pflags |= ZFS_ARCHIVE; } } /* * Grow the block size for a file. * * IN: zp - znode of file to free data in. * size - requested block size * tx - open transaction. * * NOTE: this function assumes that the znode is write locked. */ void zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) { int error; u_longlong_t dummy; if (size <= zp->z_blksz) return; /* * If the file size is already greater than the current blocksize, * we will not grow. If there is more than one block in a file, * the blocksize cannot change. */ if (zp->z_blksz && zp->z_size > zp->z_blksz) return; error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, size, 0, tx); if (error == ENOTSUP) return; ASSERT0(error); /* What blocksize did we actually get? */ dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); } /* * This is a dummy interface used when pvn_vplist_dirty() should *not* * be calling back into the fs for a putpage(). E.g.: when truncating * a file, the pages being "thrown away* don't need to be written out. */ /* ARGSUSED */ static int zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { ASSERT(0); return (0); } /* * Increase the file length * * IN: zp - znode of file to free data in. * end - new end-of-file * * RETURN: 0 on success, error code on failure */ static int zfs_extend(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_tx_t *tx; locked_range_t *lr; uint64_t newblksz; int error; /* * We will change zp_size, lock the whole file. */ lr = rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end <= zp->z_size) { rangelock_exit(lr); return (0); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); if (end > zp->z_blksz && (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { /* * We are growing the file past the current block size. */ if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); } else { newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); } dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); } else { newblksz = 0; } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); rangelock_exit(lr); return (error); } if (newblksz) zfs_grow_blocksize(zp, newblksz, tx); zp->z_size = end; VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), &zp->z_size, sizeof (zp->z_size), tx)); rangelock_exit(lr); dmu_tx_commit(tx); return (0); } /* * Free space in a file. * * IN: zp - znode of file to free data in. * off - start of section to free. * len - length of section to free. * * RETURN: 0 on success, error code on failure */ static int zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; locked_range_t *lr; int error; /* * Lock the range being freed. */ lr = rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (off >= zp->z_size) { rangelock_exit(lr); return (0); } if (off + len > zp->z_size) len = zp->z_size - off; error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); rangelock_exit(lr); return (error); } /* * Truncate a file * * IN: zp - znode of file to free data in. * end - new end-of-file. * * RETURN: 0 on success, error code on failure */ static int zfs_trunc(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = zp->z_zfsvfs; vnode_t *vp = ZTOV(zp); dmu_tx_t *tx; locked_range_t *lr; int error; sa_bulk_attr_t bulk[2]; int count = 0; /* * We will change zp_size, lock the whole file. */ lr = rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end >= zp->z_size) { rangelock_exit(lr); return (0); } error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, DMU_OBJECT_END); if (error) { rangelock_exit(lr); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); rangelock_exit(lr); return (error); } zp->z_size = end; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); if (end == 0) { zp->z_pflags &= ~ZFS_SPARSE; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); } VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); dmu_tx_commit(tx); /* * Clear any mapped pages in the truncated region. This has to * happen outside of the transaction to avoid the possibility of * a deadlock with someone trying to push a page that we are * about to invalidate. */ if (vn_has_cached_data(vp)) { page_t *pp; uint64_t start = end & PAGEMASK; int poff = end & PAGEOFFSET; if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { /* * We need to zero a partial page. */ pagezero(pp, poff, PAGESIZE - poff); start += PAGESIZE; page_unlock(pp); } error = pvn_vplist_dirty(vp, start, zfs_no_putpage, B_INVAL | B_TRUNC, NULL); ASSERT(error == 0); } rangelock_exit(lr); return (0); } /* * Free space in a file * * IN: zp - znode of file to free data in. * off - start of range * len - end of range (0 => EOF) * flag - current file open mode flags. * log - TRUE if this action should be logged * * RETURN: 0 on success, error code on failure */ int zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) { vnode_t *vp = ZTOV(zp); dmu_tx_t *tx; zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog = zfsvfs->z_log; uint64_t mode; uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; int error; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, sizeof (mode))) != 0) return (error); if (off > zp->z_size) { error = zfs_extend(zp, off+len); if (error == 0 && log) goto log; else return (error); } /* * Check for any locks in the region to be freed. */ if (MANDLOCK(vp, (mode_t)mode)) { uint64_t length = (len ? len : zp->z_size - off); if (error = chklock(vp, FWRITE, off, length, flag, NULL)) return (error); } if (len == 0) { error = zfs_trunc(zp, off); } else { if ((error = zfs_free_range(zp, off, len)) == 0 && off + len > zp->z_size) error = zfs_extend(zp, off+len); } if (error || !log) return (error); log: tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT(error == 0); zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); dmu_tx_commit(tx); return (0); } void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) { uint64_t moid, obj, sa_obj, version; uint64_t sense = ZFS_CASE_SENSITIVE; uint64_t norm = 0; nvpair_t *elem; int error; int i; znode_t *rootzp = NULL; zfsvfs_t *zfsvfs; vnode_t *vp; vattr_t vattr; znode_t *zp; zfs_acl_ids_t acl_ids; /* * First attempt to create master node. */ /* * In an empty objset, there are no blocks to read and thus * there can be no i/o errors (which we assert below). */ moid = MASTER_NODE_OBJ; error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, DMU_OT_NONE, 0, tx); ASSERT(error == 0); /* * Set starting attributes. */ version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); elem = NULL; while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { /* For the moment we expect all zpl props to be uint64_ts */ uint64_t val; char *name; ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); VERIFY(nvpair_value_uint64(elem, &val) == 0); name = nvpair_name(elem); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { if (val < version) version = val; } else { error = zap_update(os, moid, name, 8, 1, &val, tx); } ASSERT(error == 0); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) norm = val; else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) sense = val; } ASSERT(version != 0); error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); /* * Create zap object used for SA attribute registration */ if (version >= ZPL_VERSION_SA) { sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT(error == 0); } else { sa_obj = 0; } /* * Create a delete queue. */ obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); ASSERT(error == 0); /* * Create root znode. Create minimal znode/vnode/zfsvfs * to allow zfs_mknode to work. */ vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VDIR; vattr.va_mode = S_IFDIR|0755; vattr.va_uid = crgetuid(cr); vattr.va_gid = crgetgid(cr); rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); rootzp->z_moved = 0; rootzp->z_unlinked = 0; rootzp->z_atime_dirty = 0; rootzp->z_is_sa = USE_SA(version, os); vp = ZTOV(rootzp); vn_reinit(vp); vp->v_type = VDIR; zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); zfsvfs->z_os = os; zfsvfs->z_parent = zfsvfs; zfsvfs->z_version = version; zfsvfs->z_use_fuids = USE_FUIDS(version, os); zfsvfs->z_use_sa = USE_SA(version, os); zfsvfs->z_norm = norm; error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); ASSERT(error == 0); /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); rootzp->z_zfsvfs = zfsvfs; VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, cr, NULL, &acl_ids)); zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, rootzp); ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); ASSERT(error == 0); zfs_acl_ids_free(&acl_ids); POINTER_INVALIDATE(&rootzp->z_zfsvfs); ZTOV(rootzp)->v_count = 0; sa_handle_destroy(rootzp->z_sa_hdl); kmem_cache_free(znode_cache, rootzp); /* * Create shares directory */ error = zfs_create_share_dir(zfsvfs, tx); ASSERT(error == 0); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } #endif /* _KERNEL */ static int zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) { uint64_t sa_obj = 0; int error; error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0 && error != ENOENT) return (error); error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); return (error); } static int zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, dmu_buf_t **db, void *tag) { dmu_object_info_t doi; int error; if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) return (error); dmu_object_info_from_db(*db, &doi); if ((doi.doi_bonus_type != DMU_OT_SA && doi.doi_bonus_type != DMU_OT_ZNODE) || doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)) { sa_buf_rele(*db, tag); return (SET_ERROR(ENOTSUP)); } error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); if (error != 0) { sa_buf_rele(*db, tag); return (error); } return (0); } void zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) { sa_handle_destroy(hdl); sa_buf_rele(db, tag); } /* * Given an object number, return its parent object number and whether * or not the object is an extended attribute directory. */ static int zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, int *is_xattrdir) { uint64_t parent; uint64_t pflags; uint64_t mode; uint64_t parent_mode; sa_bulk_attr_t bulk[3]; sa_handle_t *sa_hdl; dmu_buf_t *sa_db; int count = 0; int error; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, &parent, sizeof (parent)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, &pflags, sizeof (pflags)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &mode, sizeof (mode)); if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) return (error); /* * When a link is removed its parent pointer is not changed and will * be invalid. There are two cases where a link is removed but the * file stays around, when it goes to the delete queue and when there * are additional links. */ error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); if (error != 0) return (error); error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); if (error != 0) return (error); *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); /* * Extended attributes can be applied to files, directories, etc. * Otherwise the parent must be a directory. */ if (!*is_xattrdir && !S_ISDIR(parent_mode)) return (SET_ERROR(EINVAL)); *pobjp = parent; return (0); } /* * Given an object number, return some zpl level statistics */ static int zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, zfs_stat_t *sb) { sa_bulk_attr_t bulk[4]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &sb->zs_mode, sizeof (sb->zs_mode)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, &sb->zs_gen, sizeof (sb->zs_gen)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, &sb->zs_links, sizeof (sb->zs_links)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, &sb->zs_ctime, sizeof (sb->zs_ctime)); return (sa_bulk_lookup(hdl, bulk, count)); } static int zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, sa_attr_type_t *sa_table, char *buf, int len) { sa_handle_t *sa_hdl; sa_handle_t *prevhdl = NULL; dmu_buf_t *prevdb = NULL; dmu_buf_t *sa_db = NULL; char *path = buf + len - 1; int error; *path = '\0'; sa_hdl = hdl; uint64_t deleteq_obj; VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); error = zap_lookup_int(osp, deleteq_obj, obj); if (error == 0) { return (ESTALE); } else if (error != ENOENT) { return (error); } error = 0; for (;;) { uint64_t pobj; char component[MAXNAMELEN + 2]; size_t complen; int is_xattrdir; if (prevdb) zfs_release_sa_handle(prevhdl, prevdb, FTAG); if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, &is_xattrdir)) != 0) break; if (pobj == obj) { if (path[0] != '/') *--path = '/'; break; } component[0] = '/'; if (is_xattrdir) { (void) sprintf(component + 1, ""); } else { error = zap_value_search(osp, pobj, obj, ZFS_DIRENT_OBJ(-1ULL), component + 1); if (error != 0) break; } complen = strlen(component); path -= complen; ASSERT(path >= buf); bcopy(component, path, complen); obj = pobj; if (sa_hdl != hdl) { prevhdl = sa_hdl; prevdb = sa_db; } error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); if (error != 0) { sa_hdl = prevhdl; sa_db = prevdb; break; } } if (sa_hdl != NULL && sa_hdl != hdl) { ASSERT(sa_db != NULL); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); } if (error == 0) (void) memmove(buf, path, buf + len - path); return (error); } int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) { sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } int zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, char *buf, int len) { char *path = buf + len - 1; sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; *path = '\0'; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_stats_impl(hdl, sa_table, sb); if (error != 0) { zfs_release_sa_handle(hdl, db, FTAG); return (error); } error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zil.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zil.c (revision 350897) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zil.c (revision 350898) @@ -1,3431 +1,3433 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system * calls that change the file system. Each itx has enough information to * be able to replay them after a system crash, power loss, or * equivalent failure mode. These are stored in memory until either: * * 1. they are committed to the pool by the DMU transaction group * (txg), at which point they can be discarded; or * 2. they are committed to the on-disk ZIL for the dataset being * modified (e.g. due to an fsync, O_DSYNC, or other synchronous * requirement). * * In the event of a crash or power loss, the itxs contained by each * dataset's on-disk ZIL will be replayed when that dataset is first * instantianted (e.g. if the dataset is a normal fileystem, when it is * first mounted). * * As hinted at above, there is one ZIL per dataset (both the in-memory * representation, and the on-disk representation). The on-disk format * consists of 3 parts: * - * - a single, per-dataset, ZIL header; which points to a chain of - * - zero or more ZIL blocks; each of which contains - * - zero or more ZIL records + * - a single, per-dataset, ZIL header; which points to a chain of + * - zero or more ZIL blocks; each of which contains + * - zero or more ZIL records * * A ZIL record holds the information necessary to replay a single * system call transaction. A ZIL block can hold many ZIL records, and * the blocks are chained together, similarly to a singly linked list. * * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL * block in the chain, and the ZIL header points to the first block in * the chain. * * Note, there is not a fixed place in the pool to hold these ZIL * blocks; they are dynamically allocated and freed as needed from the * blocks available on the pool, though they can be preferentially * allocated from a dedicated "log" vdev. */ /* * This controls the amount of time that a ZIL block (lwb) will remain * "open" when it isn't "full", and it has a thread waiting for it to be * committed to stable storage. Please refer to the zil_commit_waiter() * function (and the comments within it) for more details. */ int zfs_commit_timeout_pct = 5; /* * Disable intent logging replay. This global ZIL switch affects all pools. */ int zil_replay_disable = 0; /* * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to * the disk(s) by the ZIL after an LWB write has completed. Setting this * will cause ZIL corruption on power loss if a volatile out-of-order * write cache is enabled. */ boolean_t zil_nocacheflush = B_FALSE; /* * Limit SLOG write size per commit executed with synchronous priority. * Any writes above that will be executed with lower (asynchronous) priority * to limit potential SLOG device abuse by single active ZIL writer. */ uint64_t zil_slog_bulk = 768 * 1024; static kmem_cache_t *zil_lwb_cache; static kmem_cache_t *zil_zcw_cache; static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) return (-1); if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) return (1); if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) return (-1); if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) return (1); return (0); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva; zil_bp_node_t *zn; avl_index_t where; if (BP_IS_EMBEDDED(bp)) return (0); dva = BP_IDENTITY(bp); if (avl_find(t, dva, &where) != NULL) return (SET_ERROR(EEXIST)); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); bcopy(lr, dst, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(zilc->zc_nused, <=, SPA_OLD_MAXBLOCKSIZE); bcopy(lr, dst, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } arc_buf_destroy(abuf, &abuf); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); arc_buf_destroy(abuf, &abuf); } return (error); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end; if (blk_seq > claim_blk_seq) break; if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); if (error != 0) break; for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); return (error); } /* ARGSUSED */ static int zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { ASSERT(!BP_IS_HOLE(bp)); /* * As we call this function from the context of a rewind to a * checkpoint, each ZIL block whose txg is later than the txg * that we rewind to is invalid. Thus, we return -1 so * zil_parse() doesn't attempt to read it. */ if (bp->blk_birth >= first_txg) return (-1); if (zil_bp_tree_add(zilog, bp) != 0) return (0); zio_free(zilog->zl_spa, first_txg, bp); return (0); } /* ARGSUSED */ static int zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { return (0); } static int zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; if (lrc->lrc_txtype != TX_WRITE) return (0); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg && (error = zil_read_log_data(zilog, lr, NULL)) != 0) return (error); return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } /* ARGSUSED */ static int zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) { zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; /* * If we previously claimed it, we need to free it. */ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_lwb_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; if (v1 < v2) return (-1); if (v1 > v2) return (1); return (0); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_slog = slog; lwb->lwb_state = LWB_STATE_CLOSED; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_max_txg = txg; lwb->lwb_write_zio = NULL; lwb->lwb_root_zio = NULL; lwb->lwb_tx = NULL; lwb->lwb_issued_timestamp = 0; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); VERIFY(list_is_empty(&lwb->lwb_waiters)); return (lwb); } static void zil_free_lwb(zilog_t *zilog, lwb_t *lwb) { ASSERT(MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); VERIFY(list_is_empty(&lwb->lwb_waiters)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); ASSERT3P(lwb->lwb_write_zio, ==, NULL); ASSERT3P(lwb->lwb_root_zio, ==, NULL); ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || lwb->lwb_state == LWB_STATE_FLUSH_DONE); /* * Clear the zilog's field to indicate this lwb is no longer * valid, and prevent use-after-free errors. */ if (zilog->zl_last_lwb_opened == lwb) zilog->zl_last_lwb_opened = NULL; kmem_cache_free(zil_lwb_cache, lwb); } /* * Called when we create in-memory log transactions so that we know * to cleanup the itxs at the end of spa_sync(). */ void zilog_dirty(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(spa_writeable(zilog->zl_spa)); if (ds->ds_is_snapshot) panic("dirtying snapshot!"); if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, zilog); zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); } } /* * Determine if the zil is dirty in the specified txg. Callers wanting to * ensure that the dirty state does not change must hold the itxg_lock for * the specified txg. Holding the lock will ensure that the zil cannot be * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current * state. */ boolean_t zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) return (B_TRUE); return (B_FALSE); } /* * Determine if the zil is dirty. The zil is considered dirty if it has * any pending itx records that have not been cleaned by zil_clean(). */ boolean_t zilog_is_dirty(zilog_t *zilog) { dsl_pool_t *dp = zilog->zl_dmu_pool; for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) return (B_TRUE); } return (B_FALSE); } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; boolean_t slog = FALSE; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianess */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL, ZIL_MIN_BLKSZ, &slog); if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write block (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, slog, txg); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block poiner into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); return (lwb); } /* * In one tx, free all log blocks and clear the log header. If keep_first * is set, then we're replaying a log with no content. We want to keep the * first block, however, so that the first synchronous transaction doesn't * require a txg_wait_synced() in zil_create(). We don't need to * txg_wait_synced() here either when keep_first is set, because both * zil_create() and zil_destroy() will wait for any in-progress destroys * to complete. */ void zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return; tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); VERIFY(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); } } else if (!keep_first) { zil_destroy_sync(zilog, tx); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); } void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); } int zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) { dmu_tx_t *tx = txarg; zilog_t *zilog; uint64_t first_txg; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_own_obj(dp, ds->ds_object, DMU_OST_ANY, B_FALSE, FTAG, &os); if (error != 0) { /* * EBUSY indicates that the objset is inconsistent, in which * case it can not have a ZIL. */ if (error != EBUSY) { cmn_err(CE_WARN, "can't open objset for %llu, error %u", (unsigned long long)ds->ds_object, error); } return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); first_txg = spa_min_claim_txg(zilog->zl_spa); /* * If the spa_log_state is not set to be cleared, check whether * the current uberblock is a checkpoint one and if the current * header has been claimed before moving on. * * If the current uberblock is a checkpointed uberblock then * one of the following scenarios took place: * * 1] We are currently rewinding to the checkpoint of the pool. * 2] We crashed in the middle of a checkpoint rewind but we * did manage to write the checkpointed uberblock to the * vdev labels, so when we tried to import the pool again * the checkpointed uberblock was selected from the import * procedure. * * In both cases we want to zero out all the ZIL blocks, except * the ones that have been claimed at the time of the checkpoint * (their zh_claim_txg != 0). The reason is that these blocks * may be corrupted since we may have reused their locations on * disk after we took the checkpoint. * * We could try to set spa_log_state to SPA_LOG_CLEAR earlier * when we first figure out whether the current uberblock is * checkpointed or not. Unfortunately, that would discard all * the logs, including the ones that are claimed, and we would * leak space. */ if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0)) { if (!BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_clear_log_block, zil_noop_log_record, tx, first_txg); } BP_ZERO(&zh->zh_log); dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_disown(os, FTAG); return (0); } /* * If we are not rewinding and opening the pool normally, then * the min_claim_txg should be equal to the first txg of the pool. */ ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_disown(os, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ /* ARGSUSED */ int zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) { zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_from_ds(ds, &os); if (error != 0) { cmn_err(CE_WARN, "can't open objset %llu, error %d", (unsigned long long)ds->ds_object, error); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the * log as its content should have already been synced to the * pool. */ spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) return (0); /* * Check whether the current uberblock is checkpointed (e.g. * we are rewinding) and whether the current header has been * claimed or not. If it hasn't then skip verifying it. We * do this because its ZIL blocks may be part of the pool's * state before the rewind, which is no longer valid. */ zil_header_t *zh = zil_header_in_syncing_context(zilog); if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return (0); } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_min_claim_txg(os->os_spa)); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } /* * When an itx is "skipped", this function is used to properly mark the * waiter as "done, and signal any thread(s) waiting on it. An itx can * be skipped (and not committed to an lwb) for a variety of reasons, * one of them being that the itx was committed via spa_sync(), prior to * it being committed to an lwb; this can happen if a thread calling * zil_commit() is racing with spa_sync(). */ static void zil_commit_waiter_skip(zil_commit_waiter_t *zcw) { mutex_enter(&zcw->zcw_lock); ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } /* * This function is used when the given waiter is to be linked into an * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. * At this point, the waiter will no longer be referenced by the itx, * and instead, will be referenced by the lwb. */ static void zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) { /* * The lwb_waiters field of the lwb is protected by the zilog's * zl_lock, thus it must be held when calling this function. */ ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3P(lwb, !=, NULL); ASSERT(lwb->lwb_state == LWB_STATE_OPENED || lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE); list_insert_tail(&lwb->lwb_waiters, zcw); zcw->zcw_lwb = lwb; mutex_exit(&zcw->zcw_lock); } /* * This function is used when zio_alloc_zil() fails to allocate a ZIL * block, and the given waiter must be linked to the "nolwb waiters" * list inside of zil_process_commit_list(). */ static void zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) { mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); list_insert_tail(nolwb, zcw); mutex_exit(&zcw->zcw_lock); } void zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) { avl_tree_t *t = &lwb->lwb_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zil_nocacheflush) return; mutex_enter(&lwb->lwb_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&lwb->lwb_vdev_lock); } static void zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) { avl_tree_t *src = &lwb->lwb_vdev_tree; avl_tree_t *dst = &nlwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does * not need the protection of lwb_vdev_lock (it will only be modified * while holding zilog->zl_lock) as its writes and those of its * children have all completed. The younger 'nlwb' may be waiting on * future writes to additional vdevs. */ mutex_enter(&nlwb->lwb_vdev_lock); /* * Tear down the 'lwb' vdev tree, ensuring that entries which do not * exist in 'nlwb' are moved to it, freeing any would-be duplicates. */ while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { avl_index_t where; if (avl_find(dst, zv, &where) == NULL) { avl_insert(dst, zv, where); } else { kmem_free(zv, sizeof (*zv)); } } mutex_exit(&nlwb->lwb_vdev_lock); } void zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) { lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); } /* * This function is a called after all vdevs associated with a given lwb * write have completed their DKIOCFLUSHWRITECACHE command; or as soon * as the lwb write completes, if "zil_nocacheflush" is set. Further, * all "previous" lwb's will have completed before this function is * called; i.e. this function is called for all previous lwbs before * it's called for "this" lwb (enforced via zio the dependencies * configured in zil_lwb_set_zio_dependency()). * * The intention is for this function to be called as soon as the * contents of an lwb are considered "stable" on disk, and will survive * any sudden loss of power. At this point, any threads waiting for the * lwb to reach this state are signalled, and the "waiter" structures * are marked "done". */ static void zil_lwb_flush_vdevs_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; dmu_tx_t *tx = lwb->lwb_tx; zil_commit_waiter_t *zcw; spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); /* * Ensure the lwb buffer pointer is cleared before releasing the * txg. If we have had an allocation failure and the txg is * waiting to sync then we want zil_sync() to remove the lwb so * that it's not picked up as the next new one in * zil_process_commit_list(). zil_sync() will only remove the * lwb if lwb_buf is null. */ lwb->lwb_buf = NULL; lwb->lwb_tx = NULL; ASSERT3U(lwb->lwb_issued_timestamp, >, 0); zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; lwb->lwb_root_zio = NULL; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); lwb->lwb_state = LWB_STATE_FLUSH_DONE; if (zilog->zl_last_lwb_opened == lwb) { /* * Remember the highest committed log sequence number * for ztest. We only update this value when all the log * writes succeeded, because ztest wants to ASSERT that * it got the whole log chain. */ zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { mutex_enter(&zcw->zcw_lock); ASSERT(list_link_active(&zcw->zcw_node)); list_remove(&lwb->lwb_waiters, zcw); ASSERT3P(zcw->zcw_lwb, ==, lwb); zcw->zcw_lwb = NULL; zcw->zcw_zio_error = zio->io_error; ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } mutex_exit(&zilog->zl_lock); /* * Now that we've written this log block, we have a stable pointer * to the next block in the chain, so it's OK to let the txg in * which we allocated the next block sync. */ dmu_tx_commit(tx); } /* * This is called when an lwb's write zio completes. The callback's * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved * in writing out this specific lwb's data, and in the case that cache * flushes have been deferred, vdevs involved in writing the data for * previous lwbs. The writes corresponding to all the vdevs in the * lwb_vdev_tree will have completed by the time this is called, due to * the zio dependencies configured in zil_lwb_set_zio_dependency(), * which takes deferred flushes into account. The lwb will be "done" * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio * completion callback for the lwb's root zio. */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; spa_t *spa = zio->io_spa; zilog_t *zilog = lwb->lwb_zilog; avl_tree_t *t = &lwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; lwb_t *nlwb; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(BP_GET_FILL(zio->io_bp) == 0); abd_put(zio->io_abd); mutex_enter(&zilog->zl_lock); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); lwb->lwb_state = LWB_STATE_WRITE_DONE; lwb->lwb_write_zio = NULL; nlwb = list_next(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); if (avl_numnodes(t) == 0) return; /* * If there was an IO error, we're not going to call zio_flush() * on these vdevs, so we simply empty the tree and free the * nodes. We avoid calling zio_flush() since there isn't any * good reason for doing so, after the lwb block failed to be * written out. */ if (zio->io_error != 0) { while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zv, sizeof (*zv)); return; } /* * If this lwb does not have any threads waiting for it to * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE * command to the vdevs written to by "this" lwb, and instead * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE * command for those vdevs. Thus, we merge the vdev tree of * "this" lwb with the vdev tree of the "next" lwb in the list, * and assume the "next" lwb will handle flushing the vdevs (or * deferring the flush(s) again). * * This is a useful performance optimization, especially for * workloads with lots of async write activity and few sync * write and/or fsync activity, as it has the potential to * coalesce multiple flush commands to a vdev into one. */ if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { zil_lwb_flush_defer(lwb, nlwb); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); return; } while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) zio_flush(lwb->lwb_root_zio, vd); kmem_free(zv, sizeof (*zv)); } } static void zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) { lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zilog->zl_lock)); /* * The zilog's "zl_last_lwb_opened" field is used to build the * lwb/zio dependency chain, which is used to preserve the * ordering of lwb completions that is required by the semantics * of the ZIL. Each new lwb zio becomes a parent of the * "previous" lwb zio, such that the new lwb's zio cannot * complete until the "previous" lwb's zio completes. * * This is required by the semantics of zil_commit(); the commit * waiters attached to the lwbs will be woken in the lwb zio's * completion callback, so this zio dependency graph ensures the * waiters are woken in the correct order (the same order the * lwbs were created). */ if (last_lwb_opened != NULL && last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED || last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); zio_add_child(lwb->lwb_root_zio, last_lwb_opened->lwb_root_zio); /* * If the previous lwb's write hasn't already completed, * we also want to order the completion of the lwb write * zios (above, we only order the completion of the lwb * root zios). This is required because of how we can * defer the DKIOCFLUSHWRITECACHE commands for each lwb. * * When the DKIOCFLUSHWRITECACHE commands are defered, * the previous lwb will rely on this lwb to flush the * vdevs written to by that previous lwb. Thus, we need * to ensure this lwb doesn't issue the flush until * after the previous lwb's write completes. We ensure * this ordering by setting the zio parent/child * relationship here. * * Without this relationship on the lwb's write zio, * it's possible for this lwb's write to complete prior * to the previous lwb's write completing; and thus, the * vdevs for the previous lwb would be flushed prior to * that lwb's data being written to those vdevs (the * vdevs are flushed in the lwb write zio's completion * handler, zil_lwb_write_done()). */ if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED); ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); zio_add_child(lwb->lwb_write_zio, last_lwb_opened->lwb_write_zio); } } } /* * This function's purpose is to "open" an lwb such that it is ready to * accept new itxs being committed to it. To do this, the lwb's zio * structures are created, and linked to the lwb. This function is * idempotent; if the passed in lwb has already been opened, this * function is essentially a no-op. */ static void zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) { zbookmark_phys_t zb; zio_priority_t prio; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); if (lwb->lwb_root_zio == NULL) { abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk)); if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) prio = ZIO_PRIORITY_SYNC_WRITE; else prio = ZIO_PRIORITY_ASYNC_WRITE; lwb->lwb_root_zio = zio_root(zilog->zl_spa, zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); ASSERT3P(lwb->lwb_root_zio, !=, NULL); lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); ASSERT3P(lwb->lwb_write_zio, !=, NULL); lwb->lwb_state = LWB_STATE_OPENED; mutex_enter(&zilog->zl_lock); zil_lwb_set_zio_dependency(zilog, lwb); zilog->zl_last_lwb_opened = lwb; mutex_exit(&zilog->zl_lock); } ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); } /* * Define a limited set of intent log block sizes. * * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. */ uint64_t zil_block_buckets[] = { 4096, /* non TX_WRITE */ 8192+4096, /* data base */ - 32*1024 + 4096, /* NFS writes */ + 32*1024 + 4096, /* NFS writes */ UINT64_MAX }; /* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz, wsz; int i, error; boolean_t slog; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { zilc = (zil_chain_t *)lwb->lwb_buf; bp = &zilc->zc_next_blk; } else { zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; } ASSERT(lwb->lwb_nused <= lwb->lwb_sz); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. * Note that if the allocation of nlwb synced before we wrote * the block that points at it (lwb), we'd leak it if we crashed. * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). * We dirty the dataset to ensure that zil_sync() will be called * to clean up in the event of allocation failure or I/O failure. */ tx = dmu_tx_create(zilog->zl_os); /* * Since we are not going to create any new dirty data, and we * can even help with clearing the existing dirty data, we * should not be subject to the dirty data based delays. We * use TXG_NOTHROTTLE to bypass the delay mechanism. */ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); lwb->lwb_tx = tx; /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i]; i++) continue; zil_blksz = zil_block_buckets[i]; if (zil_blksz == UINT64_MAX) zil_blksz = SPA_OLD_MAXBLOCKSIZE; zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); BP_ZERO(bp); /* pass the old blkptr in order to spread log blocks across devs */ error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object, txg, bp, &lwb->lwb_blk, zil_blksz, &slog); if (error == 0) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write block (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, slog, txg); } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); ASSERT3U(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_write_zio, wsz); } else { wsz = lwb->lwb_sz; } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); zil_lwb_add_block(lwb, &lwb->lwb_blk); lwb->lwb_issued_timestamp = gethrtime(); lwb->lwb_state = LWB_STATE_ISSUED; zio_nowait(lwb->lwb_root_zio); zio_nowait(lwb->lwb_write_zio); /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrcb, *lrc; lr_write_t *lrwb, *lrw; char *lr_buf; uint64_t dlen, dnow, lwb_sp, reclen, txg; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); ASSERT3P(lwb->lwb_buf, !=, NULL); zil_lwb_write_open(zilog, lwb); lrc = &itx->itx_lr; lrw = (lr_write_t *)lrc; /* * A commit itx doesn't represent any on-disk state; instead * it's simply used as a place holder on the commit list, and * provides a mechanism for attaching a "commit waiter" onto the * correct lwb (such that the waiter can be signalled upon * completion of that lwb). Thus, we don't process this itx's * log record if it's a commit itx (these itx's don't have log * records), and instead link the itx's waiter onto the lwb's * list of waiters. * * For more details, see the comment above zil_commit(). */ if (lrc->lrc_txtype == TX_COMMIT) { mutex_enter(&zilog->zl_lock); zil_commit_waiter_link_lwb(itx->itx_private, lwb); itx->itx_private = NULL; mutex_exit(&zilog->zl_lock); return (lwb); } if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); } else { dlen = 0; } reclen = lrc->lrc_reclen; zilog->zl_cur_used += (reclen + dlen); txg = lrc->lrc_txg; ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); cont: /* * If this record won't fit in the current log block, start a new one. * For WR_NEED_COPY optimize layout for minimal number of chunks. */ lwb_sp = lwb->lwb_sz - lwb->lwb_nused; if (reclen > lwb_sp || (reclen + dlen > lwb_sp && lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { lwb = zil_lwb_write_issue(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_open(zilog, lwb); ASSERT(LWB_EMPTY(lwb)); lwb_sp = lwb->lwb_sz - lwb->lwb_nused; ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); } dnow = MIN(dlen, lwb_sp - reclen); lr_buf = lwb->lwb_buf + lwb->lwb_nused; bcopy(lrc, lr_buf, reclen); lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state != WR_COPIED) { char *dbuf; int error; if (itx->itx_wr_state == WR_NEED_COPY) { dbuf = lr_buf + reclen; lrcb->lrc_reclen += dnow; if (lrwb->lr_length > dnow) lrwb->lr_length = dnow; lrw->lr_offset += dnow; lrw->lr_length -= dnow; } else { ASSERT(itx->itx_wr_state == WR_INDIRECT); dbuf = NULL; } /* * We pass in the "lwb_write_zio" rather than * "lwb_root_zio" so that the "lwb_write_zio" * becomes the parent of any zio's created by * the "zl_get_data" callback. The vdevs are * flushed after the "lwb_write_zio" completes, * so we want to make sure that completion * callback waits for these additional zio's, * such that the vdevs used by those zio's will * be included in the lwb's vdev tree, and those * vdevs will be properly flushed. If we passed * in "lwb_root_zio" here, then these additional * vdevs may not be flushed; e.g. if these zio's * completed after "lwb_write_zio" completed. */ error = zilog->zl_get_data(itx->itx_private, lrwb, dbuf, lwb, lwb->lwb_write_zio); if (error == EIO) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } if (error != 0) { ASSERT(error == ENOENT || error == EEXIST || error == EALREADY); return (lwb); } } } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ lrcb->lrc_seq = ++zilog->zl_lr_seq; lwb->lwb_nused += reclen + dnow; zil_lwb_add_txg(lwb, txg); ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); dlen -= dnow; if (dlen > 0) { zilog->zl_cur_used += reclen; goto cont; } return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t lrsize) { itx_t *itx; lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_lr.lrc_seq = 0; /* defensive */ itx->itx_sync = B_TRUE; /* default is synchronous */ return (itx); } void zil_itx_destroy(itx_t *itx) { kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(itxs_t *itxs) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_head(list)) != NULL) { /* * In the general case, commit itxs will not be found * here, as they'll be committed to an lwb via * zil_lwb_commit(), and free'd in that function. Having * said that, it is still possible for commit itxs to be * found here, due to the following race: * * - a thread calls zil_commit() which assigns the * commit itx to a per-txg i_sync_list * - zil_itxg_clean() is called (e.g. via spa_sync()) * while the waiter is still on the i_sync_list * * There's nothing to prevent syncing the txg while the * waiter is on the i_sync_list. This normally doesn't * happen because spa_sync() is slower than zil_commit(), * but if zil_commit() calls txg_wait_synced() (e.g. * because zil_create() or zil_commit_writer_stall() is * called) we will hit this case. */ if (itx->itx_lr.lrc_txtype == TX_COMMIT) zil_commit_waiter_skip(itx->itx_private); list_remove(list, itx); zil_itx_destroy(itx); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; if (o1 < o2) return (-1); if (o1 > o2) return (1); return (0); } /* * Remove all async itx with the given oid. */ static void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Object ids can be re-instantiated in the next txg so * remove any async transactions to avoid future leaks. * This can happen if a fsync occurs on the re-instantiated * object for a WR_INDIRECT or WR_NEED_COPY write, which gets * the new file data and flushes a write record for the old object. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) zil_remove_async(zilog, itx->itx_oid); /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " "txg %llu", itxg->itxg_txg); clean = itxg->itxg_itxs; } itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); } else { avl_tree_t *t = &itxs->i_async_tree; - uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; + uint64_t foid = + LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); /* * We don't want to dirty the ZIL using ZILTEST_TXG, because * zil_clean() will never be called using ZILTEST_TXG. Thus, we * need to be careful to always dirty the ZIL using the "real" * TXG (not itxg_txg) even when the SPA is frozen. */ zilog_dirty(zilog, dmu_tx_get_txg(tx)); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. We should only do this after we * have written out the uberblocks (i.e. txg has been comitted) so that * don't inadvertently clean out in-memory log records that would be required * by zil_commit(). */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; ASSERT3U(synced_txg, <, ZILTEST_TXG); mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT3U(itxg->itxg_txg, !=, 0); clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ ASSERT3P(zilog->zl_dmu_pool, !=, NULL); ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) zil_itxg_clean(clean_me); } /* * This function will traverse the queue of itxs that need to be * committed, and move them onto the ZIL's zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. That's okay since we'll * only commit things in the future. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If we're adding itx records to the zl_itx_commit_list, * then the zil better be dirty in this "txg". We can assert * that here since we're holding the itxg_lock which will * prevent spa_sync from cleaning it. Once we add the itxs * to the zl_itx_commit_list we must commit it to disk even * if it's unnecessary (i.e. the txg was synced). */ ASSERT(zilog_is_dirty_in_txg(zilog, txg) || spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); mutex_exit(&itxg->itxg_lock); } } /* * Move the async itxs for a specified object to commit into sync lists. */ static void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } /* * This function will prune commit itxs that are at the head of the * commit list (it won't prune past the first non-commit itx), and * either: a) attach them to the last lwb that's still pending * completion, or b) skip them altogether. * * This is used as a performance optimization to prevent commit itxs * from generating new lwbs when it's unnecessary to do so. */ static void zil_prune_commit_list(zilog_t *zilog) { itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); while (itx = list_head(&zilog->zl_itx_commit_list)) { lr_t *lrc = &itx->itx_lr; if (lrc->lrc_txtype != TX_COMMIT) break; mutex_enter(&zilog->zl_lock); lwb_t *last_lwb = zilog->zl_last_lwb_opened; if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { /* * All of the itxs this waiter was waiting on * must have already completed (or there were * never any itx's for it to wait on), so it's * safe to skip this waiter and mark it done. */ zil_commit_waiter_skip(itx->itx_private); } else { zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); itx->itx_private = NULL; } mutex_exit(&zilog->zl_lock); list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); } static void zil_commit_writer_stall(zilog_t *zilog) { /* * When zio_alloc_zil() fails to allocate the next lwb block on * disk, we must call txg_wait_synced() to ensure all of the * lwbs in the zilog's zl_lwb_list are synced and then freed (in * zil_sync()), such that any subsequent ZIL writer (i.e. a call * to zil_process_commit_list()) will have to call zil_create(), * and start a new ZIL chain. * * Since zil_alloc_zil() failed, the lwb that was previously * issued does not have a pointer to the "next" lwb on disk. * Thus, if another ZIL writer thread was to allocate the "next" * on-disk lwb, that block could be leaked in the event of a * crash (because the previous lwb on-disk would not point to * it). * * We must hold the zilog's zl_issuer_lock while we do this, to * ensure no new threads enter zil_process_commit_list() until * all lwb's in the zl_lwb_list have been synced and freed * (which is achieved via the txg_wait_synced() call). */ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); txg_wait_synced(zilog->zl_dmu_pool, 0); ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); } /* * This function will traverse the commit list, creating new lwbs as * needed, and committing the itxs from the commit list to these newly * created lwbs. Additionally, as a new lwb is created, the previous * lwb will be issued to the zio layer to be written to disk. */ static void zil_process_commit_list(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; list_t nolwb_waiters; lwb_t *lwb; itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_head(&zilog->zl_itx_commit_list) == NULL) return; list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) { lwb = zil_create(zilog); } else { ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); } while (itx = list_head(&zilog->zl_itx_commit_list)) { lr_t *lrc = &itx->itx_lr; uint64_t txg = lrc->lrc_txg; ASSERT3U(txg, !=, 0); if (lrc->lrc_txtype == TX_COMMIT) { DTRACE_PROBE2(zil__process__commit__itx, zilog_t *, zilog, itx_t *, itx); } else { DTRACE_PROBE2(zil__process__normal__itx, zilog_t *, zilog, itx_t *, itx); } boolean_t synced = txg <= spa_last_synced_txg(spa); boolean_t frozen = txg > spa_freeze_txg(spa); /* * If the txg of this itx has already been synced out, then * we don't need to commit this itx to an lwb. This is * because the data of this itx will have already been * written to the main pool. This is inherently racy, and * it's still ok to commit an itx whose txg has already * been synced; this will result in a write that's * unnecessary, but will do no harm. * * With that said, we always want to commit TX_COMMIT itxs * to an lwb, regardless of whether or not that itx's txg * has been synced out. We do this to ensure any OPENED lwb * will always have at least one zil_commit_waiter_t linked * to the lwb. * * As a counter-example, if we skipped TX_COMMIT itx's * whose txg had already been synced, the following * situation could occur if we happened to be racing with * spa_sync: * * 1. we commit a non-TX_COMMIT itx to an lwb, where the * itx's txg is 10 and the last synced txg is 9. * 2. spa_sync finishes syncing out txg 10. * 3. we move to the next itx in the list, it's a TX_COMMIT * whose txg is 10, so we skip it rather than committing * it to the lwb used in (1). * * If the itx that is skipped in (3) is the last TX_COMMIT * itx in the commit list, than it's possible for the lwb * used in (1) to remain in the OPENED state indefinitely. * * To prevent the above scenario from occuring, ensuring * that once an lwb is OPENED it will transition to ISSUED * and eventually DONE, we always commit TX_COMMIT itx's to * an lwb here, even if that itx's txg has already been * synced. * * Finally, if the pool is frozen, we _always_ commit the * itx. The point of freezing the pool is to prevent data * from being written to the main pool via spa_sync, and * instead rely solely on the ZIL to persistently store the * data; i.e. when the pool is frozen, the last synced txg * value can't be trusted. */ if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { if (lwb != NULL) { lwb = zil_lwb_commit(zilog, itx, lwb); } else if (lrc->lrc_txtype == TX_COMMIT) { ASSERT3P(lwb, ==, NULL); zil_commit_waiter_link_nolwb( itx->itx_private, &nolwb_waiters); } } list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } if (lwb == NULL) { /* * This indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this happens, we must stall * the ZIL write pipeline; see the comment within * zil_commit_writer_stall() for more details. */ zil_commit_writer_stall(zilog); /* * Additionally, we have to signal and mark the "nolwb" * waiters as "done" here, since without an lwb, we * can't do this via zil_lwb_flush_vdevs_done() like * normal. */ zil_commit_waiter_t *zcw; while (zcw = list_head(&nolwb_waiters)) { zil_commit_waiter_skip(zcw); list_remove(&nolwb_waiters, zcw); } } else { ASSERT(list_is_empty(&nolwb_waiters)); ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * At this point, the ZIL block pointed at by the "lwb" * variable is in one of the following states: "closed" * or "open". * * If its "closed", then no itxs have been committed to * it, so there's no point in issuing its zio (i.e. * it's "empty"). * * If its "open" state, then it contains one or more * itxs that eventually need to be committed to stable * storage. In this case we intentionally do not issue * the lwb's zio to disk yet, and instead rely on one of * the following two mechanisms for issuing the zio: * * 1. Ideally, there will be more ZIL activity occuring * on the system, such that this function will be * immediately called again (not necessarily by the same * thread) and this lwb's zio will be issued via * zil_lwb_commit(). This way, the lwb is guaranteed to * be "full" when it is issued to disk, and we'll make * use of the lwb's size the best we can. * * 2. If there isn't sufficient ZIL activity occuring on * the system, such that this lwb's zio isn't issued via * zil_lwb_commit(), zil_commit_waiter() will issue the * lwb's zio. If this occurs, the lwb is not guaranteed * to be "full" by the time its zio is issued, and means * the size of the lwb was "too large" given the amount * of ZIL activity occuring on the system at that time. * * We do this for a couple of reasons: * * 1. To try and reduce the number of IOPs needed to * write the same number of itxs. If an lwb has space * available in it's buffer for more itxs, and more itxs * will be committed relatively soon (relative to the * latency of performing a write), then it's beneficial * to wait for these "next" itxs. This way, more itxs * can be committed to stable storage with fewer writes. * * 2. To try and use the largest lwb block size that the * incoming rate of itxs can support. Again, this is to * try and pack as many itxs into as few lwbs as * possible, without significantly impacting the latency * of each individual itx. */ } } /* * This function is responsible for ensuring the passed in commit waiter * (and associated commit itx) is committed to an lwb. If the waiter is * not already committed to an lwb, all itxs in the zilog's queue of * itxs will be processed. The assumption is the passed in waiter's * commit itx will found in the queue just like the other non-commit * itxs, such that when the entire queue is processed, the waiter will * have been commited to an lwb. * * The lwb associated with the passed in waiter is not guaranteed to * have been issued by the time this function completes. If the lwb is * not issued, we rely on future calls to zil_commit_writer() to issue * the lwb, or the timeout mechanism found in zil_commit_waiter(). */ static void zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zilog->zl_issuer_lock); if (zcw->zcw_lwb != NULL || zcw->zcw_done) { /* * It's possible that, while we were waiting to acquire * the "zl_issuer_lock", another thread committed this * waiter to an lwb. If that occurs, we bail out early, * without processing any of the zilog's queue of itxs. * * On certain workloads and system configurations, the * "zl_issuer_lock" can become highly contended. In an * attempt to reduce this contention, we immediately drop * the lock if the waiter has already been processed. * * We've measured this optimization to reduce CPU spent * contending on this lock by up to 5%, using a system * with 32 CPUs, low latency storage (~50 usec writes), * and 1024 threads performing sync writes. */ goto out; } zil_get_commit_list(zilog); zil_prune_commit_list(zilog); zil_process_commit_list(zilog); out: mutex_exit(&zilog->zl_issuer_lock); } static void zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); ASSERT3B(zcw->zcw_done, ==, B_FALSE); lwb_t *lwb = zcw->zcw_lwb; ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); /* * If the lwb has already been issued by another thread, we can * immediately return since there's no work to be done (the * point of this function is to issue the lwb). Additionally, we * do this prior to acquiring the zl_issuer_lock, to avoid * acquiring it when it's not necessary to do so. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) return; /* * In order to call zil_lwb_write_issue() we must hold the * zilog's "zl_issuer_lock". We can't simply acquire that lock, * since we're already holding the commit waiter's "zcw_lock", * and those two locks are aquired in the opposite order * elsewhere. */ mutex_exit(&zcw->zcw_lock); mutex_enter(&zilog->zl_issuer_lock); mutex_enter(&zcw->zcw_lock); /* * Since we just dropped and re-acquired the commit waiter's * lock, we have to re-check to see if the waiter was marked * "done" during that process. If the waiter was marked "done", * the "lwb" pointer is no longer valid (it can be free'd after * the waiter is marked "done"), so without this check we could * wind up with a use-after-free error below. */ if (zcw->zcw_done) goto out; ASSERT3P(lwb, ==, zcw->zcw_lwb); /* * We've already checked this above, but since we hadn't acquired * the zilog's zl_issuer_lock, we have to perform this check a * second time while holding the lock. * * We don't need to hold the zl_lock since the lwb cannot transition * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb * _can_ transition from ISSUED to DONE, but it's OK to race with * that transition since we treat the lwb the same, whether it's in * the ISSUED or DONE states. * * The important thing, is we treat the lwb differently depending on * if it's ISSUED or OPENED, and block any other threads that might * attempt to issue this lwb. For that reason we hold the * zl_issuer_lock when checking the lwb_state; we must not call * zil_lwb_write_issue() if the lwb had already been issued. * * See the comment above the lwb_state_t structure definition for * more details on the lwb states, and locking requirements. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) goto out; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); /* * As described in the comments above zil_commit_waiter() and * zil_process_commit_list(), we need to issue this lwb's zio * since we've reached the commit waiter's timeout and it still * hasn't been issued. */ lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); /* * Since the lwb's zio hadn't been issued by the time this thread * reached its timeout, we reset the zilog's "zl_cur_used" field * to influence the zil block size selection algorithm. * * By having to issue the lwb's zio here, it means the size of the * lwb was too large, given the incoming throughput of itxs. By * setting "zl_cur_used" to zero, we communicate this fact to the * block size selection algorithm, so it can take this informaiton * into account, and potentially select a smaller size for the * next lwb block that is allocated. */ zilog->zl_cur_used = 0; if (nlwb == NULL) { /* * When zil_lwb_write_issue() returns NULL, this * indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this occurs, the ZIL write * pipeline must be stalled; see the comment within the * zil_commit_writer_stall() function for more details. * * We must drop the commit waiter's lock prior to * calling zil_commit_writer_stall() or else we can wind * up with the following deadlock: * * - This thread is waiting for the txg to sync while * holding the waiter's lock; txg_wait_synced() is * used within txg_commit_writer_stall(). * * - The txg can't sync because it is waiting for this * lwb's zio callback to call dmu_tx_commit(). * * - The lwb's zio callback can't call dmu_tx_commit() * because it's blocked trying to acquire the waiter's * lock, which occurs prior to calling dmu_tx_commit() */ mutex_exit(&zcw->zcw_lock); zil_commit_writer_stall(zilog); mutex_enter(&zcw->zcw_lock); } out: mutex_exit(&zilog->zl_issuer_lock); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); } /* * This function is responsible for performing the following two tasks: * * 1. its primary responsibility is to block until the given "commit * waiter" is considered "done". * * 2. its secondary responsibility is to issue the zio for the lwb that * the given "commit waiter" is waiting on, if this function has * waited "long enough" and the lwb is still in the "open" state. * * Given a sufficient amount of itxs being generated and written using * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() * function. If this does not occur, this secondary responsibility will * ensure the lwb is issued even if there is not other synchronous * activity on the system. * * For more details, see zil_process_commit_list(); more specifically, * the comment at the bottom of that function. */ static void zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zcw->zcw_lock); /* * The timeout is scaled based on the lwb latency to avoid * significantly impacting the latency of each individual itx. * For more details, see the comment at the bottom of the * zil_process_commit_list() function. */ int pct = MAX(zfs_commit_timeout_pct, 1); hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; hrtime_t wakeup = gethrtime() + sleep; boolean_t timedout = B_FALSE; while (!zcw->zcw_done) { ASSERT(MUTEX_HELD(&zcw->zcw_lock)); lwb_t *lwb = zcw->zcw_lwb; /* * Usually, the waiter will have a non-NULL lwb field here, * but it's possible for it to be NULL as a result of * zil_commit() racing with spa_sync(). * * When zil_clean() is called, it's possible for the itxg * list (which may be cleaned via a taskq) to contain * commit itxs. When this occurs, the commit waiters linked * off of these commit itxs will not be committed to an * lwb. Additionally, these commit waiters will not be * marked done until zil_commit_waiter_skip() is called via * zil_itxg_clean(). * * Thus, it's possible for this commit waiter (i.e. the * "zcw" variable) to be found in this "in between" state; * where it's "zcw_lwb" field is NULL, and it hasn't yet * been skipped, so it's "zcw_done" field is still B_FALSE. */ IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { ASSERT3B(timedout, ==, B_FALSE); /* * If the lwb hasn't been issued yet, then we * need to wait with a timeout, in case this * function needs to issue the lwb after the * timeout is reached; responsibility (2) from * the comment above this function. */ clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, &zcw->zcw_lock, wakeup, USEC2NSEC(1), CALLOUT_FLAG_ABSOLUTE); if (timeleft >= 0 || zcw->zcw_done) continue; timedout = B_TRUE; zil_commit_waiter_timeout(zilog, zcw); if (!zcw->zcw_done) { /* * If the commit waiter has already been * marked "done", it's possible for the * waiter's lwb structure to have already * been freed. Thus, we can only reliably * make these assertions if the waiter * isn't done. */ ASSERT3P(lwb, ==, zcw->zcw_lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); } } else { /* * If the lwb isn't open, then it must have already * been issued. In that case, there's no need to * use a timeout when waiting for the lwb to * complete. * * Additionally, if the lwb is NULL, the waiter * will soon be signalled and marked done via * zil_clean() and zil_itxg_clean(), so no timeout * is required. */ IMPLY(lwb != NULL, lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE); cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); } } mutex_exit(&zcw->zcw_lock); } static zil_commit_waiter_t * zil_alloc_commit_waiter() { zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); list_link_init(&zcw->zcw_node); zcw->zcw_lwb = NULL; zcw->zcw_done = B_FALSE; zcw->zcw_zio_error = 0; return (zcw); } static void zil_free_commit_waiter(zil_commit_waiter_t *zcw) { ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3B(zcw->zcw_done, ==, B_TRUE); mutex_destroy(&zcw->zcw_lock); cv_destroy(&zcw->zcw_cv); kmem_cache_free(zil_zcw_cache, zcw); } /* * This function is used to create a TX_COMMIT itx and assign it. This * way, it will be linked into the ZIL's list of synchronous itxs, and * then later committed to an lwb (or skipped) when * zil_process_commit_list() is called. */ static void zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) { dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); itx->itx_sync = B_TRUE; itx->itx_private = zcw; zil_itx_assign(zilog, itx, tx); dmu_tx_commit(tx); } /* * Commit ZFS Intent Log transactions (itxs) to stable storage. * * When writing ZIL transactions to the on-disk representation of the * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple * itxs can be committed to a single lwb. Once a lwb is written and * committed to stable storage (i.e. the lwb is written, and vdevs have * been flushed), each itx that was committed to that lwb is also * considered to be committed to stable storage. * * When an itx is committed to an lwb, the log record (lr_t) contained * by the itx is copied into the lwb's zio buffer, and once this buffer * is written to disk, it becomes an on-disk ZIL block. * * As itxs are generated, they're inserted into the ZIL's queue of * uncommitted itxs. The semantics of zil_commit() are such that it will * block until all itxs that were in the queue when it was called, are * committed to stable storage. * * If "foid" is zero, this means all "synchronous" and "asynchronous" * itxs, for all objects in the dataset, will be committed to stable * storage prior to zil_commit() returning. If "foid" is non-zero, all * "synchronous" itxs for all objects, but only "asynchronous" itxs * that correspond to the foid passed in, will be committed to stable * storage prior to zil_commit() returning. * * Generally speaking, when zil_commit() is called, the consumer doesn't * actually care about _all_ of the uncommitted itxs. Instead, they're * simply trying to waiting for a specific itx to be committed to disk, * but the interface(s) for interacting with the ZIL don't allow such * fine-grained communication. A better interface would allow a consumer * to create and assign an itx, and then pass a reference to this itx to * zil_commit(); such that zil_commit() would return as soon as that * specific itx was committed to disk (instead of waiting for _all_ * itxs to be committed). * * When a thread calls zil_commit() a special "commit itx" will be * generated, along with a corresponding "waiter" for this commit itx. * zil_commit() will wait on this waiter's CV, such that when the waiter * is marked done, and signalled, zil_commit() will return. * * This commit itx is inserted into the queue of uncommitted itxs. This * provides an easy mechanism for determining which itxs were in the * queue prior to zil_commit() having been called, and which itxs were * added after zil_commit() was called. * * The commit it is special; it doesn't have any on-disk representation. * When a commit itx is "committed" to an lwb, the waiter associated * with it is linked onto the lwb's list of waiters. Then, when that lwb * completes, each waiter on the lwb's list is marked done and signalled * -- allowing the thread waiting on the waiter to return from zil_commit(). * * It's important to point out a few critical factors that allow us * to make use of the commit itxs, commit waiters, per-lwb lists of * commit waiters, and zio completion callbacks like we're doing: * * 1. The list of waiters for each lwb is traversed, and each commit * waiter is marked "done" and signalled, in the zio completion * callback of the lwb's zio[*]. * * * Actually, the waiters are signalled in the zio completion * callback of the root zio for the DKIOCFLUSHWRITECACHE commands * that are sent to the vdevs upon completion of the lwb zio. * * 2. When the itxs are inserted into the ZIL's queue of uncommitted * itxs, the order in which they are inserted is preserved[*]; as * itxs are added to the queue, they are added to the tail of * in-memory linked lists. * * When committing the itxs to lwbs (to be written to disk), they * are committed in the same order in which the itxs were added to * the uncommitted queue's linked list(s); i.e. the linked list of * itxs to commit is traversed from head to tail, and each itx is * committed to an lwb in that order. * * * To clarify: * * - the order of "sync" itxs is preserved w.r.t. other * "sync" itxs, regardless of the corresponding objects. * - the order of "async" itxs is preserved w.r.t. other * "async" itxs corresponding to the same object. * - the order of "async" itxs is *not* preserved w.r.t. other * "async" itxs corresponding to different objects. * - the order of "sync" itxs w.r.t. "async" itxs (or vice * versa) is *not* preserved, even for itxs that correspond * to the same object. * * For more details, see: zil_itx_assign(), zil_async_to_sync(), * zil_get_commit_list(), and zil_process_commit_list(). * * 3. The lwbs represent a linked list of blocks on disk. Thus, any * lwb cannot be considered committed to stable storage, until its * "previous" lwb is also committed to stable storage. This fact, * coupled with the fact described above, means that itxs are * committed in (roughly) the order in which they were generated. * This is essential because itxs are dependent on prior itxs. * Thus, we *must not* deem an itx as being committed to stable * storage, until *all* prior itxs have also been committed to * stable storage. * * To enforce this ordering of lwb zio's, while still leveraging as * much of the underlying storage performance as possible, we rely * on two fundamental concepts: * * 1. The creation and issuance of lwb zio's is protected by * the zilog's "zl_issuer_lock", which ensures only a single * thread is creating and/or issuing lwb's at a time * 2. The "previous" lwb is a child of the "current" lwb * (leveraging the zio parent-child depenency graph) * * By relying on this parent-child zio relationship, we can have * many lwb zio's concurrently issued to the underlying storage, * but the order in which they complete will be the same order in * which they were created. */ void zil_commit(zilog_t *zilog, uint64_t foid) { /* * We should never attempt to call zil_commit on a snapshot for * a couple of reasons: * * 1. A snapshot may never be modified, thus it cannot have any * in-flight itxs that would have modified the dataset. * * 2. By design, when zil_commit() is called, a commit itx will * be assigned to this zilog; as a result, the zilog will be * dirtied. We must not dirty the zilog of a snapshot; there's * checks in the code that enforce this invariant, and will * cause a panic if it's not upheld. */ ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; if (!spa_writeable(zilog->zl_spa)) { /* * If the SPA is not writable, there should never be any * pending itxs waiting to be committed to disk. If that * weren't true, we'd skip writing those itxs out, and * would break the sematics of zil_commit(); thus, we're * verifying that truth before we return to the caller. */ ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); for (int i = 0; i < TXG_SIZE; i++) ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); return; } /* * If the ZIL is suspended, we don't want to dirty it by calling * zil_commit_itx_assign() below, nor can we write out * lwbs like would be done in zil_commit_write(). Thus, we * simply rely on txg_wait_synced() to maintain the necessary * semantics, and avoid calling those functions altogether. */ if (zilog->zl_suspend > 0) { txg_wait_synced(zilog->zl_dmu_pool, 0); return; } zil_commit_impl(zilog, foid); } void zil_commit_impl(zilog_t *zilog, uint64_t foid) { /* * Move the "async" itxs for the specified foid to the "sync" * queues, such that they will be later committed (or skipped) * to an lwb when zil_process_commit_list() is called. * * Since these "async" itxs must be committed prior to this * call to zil_commit returning, we must perform this operation * before we call zil_commit_itx_assign(). */ zil_async_to_sync(zilog, foid); /* * We allocate a new "waiter" structure which will initially be * linked to the commit itx using the itx's "itx_private" field. * Since the commit itx doesn't represent any on-disk state, * when it's committed to an lwb, rather than copying the its * lr_t into the lwb's buffer, the commit itx's "waiter" will be * added to the lwb's list of waiters. Then, when the lwb is * committed to stable storage, each waiter in the lwb's list of * waiters will be marked "done", and signalled. * * We must create the waiter and assign the commit itx prior to * calling zil_commit_writer(), or else our specific commit itx * is not guaranteed to be committed to an lwb prior to calling * zil_commit_waiter(). */ zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); zil_commit_itx_assign(zilog, zcw); zil_commit_writer(zilog, zcw); zil_commit_waiter(zilog, zcw); if (zcw->zcw_zio_error != 0) { /* * If there was an error writing out the ZIL blocks that * this thread is waiting on, then we fallback to * relying on spa_sync() to write out the data this * thread is waiting on. Obviously this has performance * implications, but the expectation is for this to be * an exceptional case, and shouldn't occur often. */ DTRACE_PROBE2(zil__commit__io__error, zilog_t *, zilog, zil_commit_waiter_t *, zcw); txg_wait_synced(zilog->zl_dmu_pool, 0); } zil_free_commit_waiter(zcw); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; ASSERT(list_head(&zilog->zl_lwb_list) == NULL); bzero(zh, sizeof (zil_header_t)); bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free(spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } mutex_exit(&zilog->zl_lock); } /* ARGSUSED */ static int zil_lwb_cons(void *vbuf, void *unused, int kmflag) { lwb_t *lwb = vbuf; list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /* ARGSUSED */ static void zil_lwb_dest(void *vbuf, void *unused) { lwb_t *lwb = vbuf; mutex_destroy(&lwb->lwb_vdev_lock); avl_destroy(&lwb->lwb_vdev_tree); list_destroy(&lwb->lwb_waiters); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); zil_zcw_cache = kmem_cache_create("zil_zcw_cache", sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void zil_fini(void) { kmem_cache_destroy(zil_zcw_cache); kmem_cache_destroy(zil_lwb_cache); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_dirty_max_txg = 0; zilog->zl_last_lwb_opened = NULL; zilog->zl_last_lwb_latency = 0; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); for (int i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { zilog->zl_stop_sync = 1; ASSERT0(zilog->zl_suspend); ASSERT0(zilog->zl_suspending); ASSERT(list_is_empty(&zilog->zl_lwb_list)); list_destroy(&zilog->zl_lwb_list); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (int i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_issuer_lock); mutex_destroy(&zilog->zl_lock); cv_destroy(&zilog->zl_cv_suspend); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data) { zilog_t *zilog = dmu_objset_zil(os); ASSERT3P(zilog->zl_get_data, ==, NULL); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); ASSERT(list_is_empty(&zilog->zl_lwb_list)); zilog->zl_get_data = get_data; return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *lwb; uint64_t txg; if (!dmu_objset_is_snapshot(zilog->zl_os)) { zil_commit(zilog, 0); } else { ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); ASSERT0(zilog->zl_dirty_max_txg); ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); } mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) txg = zilog->zl_dirty_max_txg; else txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); mutex_exit(&zilog->zl_lock); /* * We need to use txg_wait_synced() to wait long enough for the * ZIL to be clean, and to wait for all pending lwbs to be * written out. */ if (txg != 0) txg_wait_synced(zilog->zl_dmu_pool, txg); if (zilog_is_dirty(zilog)) zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); - VERIFY(!zilog_is_dirty(zilog)); + if (txg < spa_freeze_txg(zilog->zl_spa)) + VERIFY(!zilog_is_dirty(zilog)); zilog->zl_get_data = NULL; /* * We should have only one lwb left on the list; remove it now. */ mutex_enter(&zilog->zl_lock); lwb = list_head(&zilog->zl_lwb_list); if (lwb != NULL) { ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); list_remove(&zilog->zl_lwb_list, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zil_free_lwb(zilog, lwb); } mutex_exit(&zilog->zl_lock); } static char *suspend_tag = "zil suspending"; /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * On old version pools, we suspend the log briefly when taking a * snapshot so that it will have an empty intent log. * * Long holds are not really intended to be used the way we do here -- * held for such a short time. A concurrent caller of dsl_dataset_long_held() * could fail. Therefore we take pains to only put a long hold if it is * actually necessary. Fortunately, it will only be necessary if the * objset is currently mounted (or the ZVOL equivalent). In that case it * will already have a long hold, so we are not really making things any worse. * * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or * zvol_state_t), and use their mechanism to prevent their hold from being * dropped (e.g. VFS_HOLD()). However, that would be even more pain for * very little gain. * * if cookiep == NULL, this does both the suspend & resume. * Otherwise, it returns with the dataset "long held", and the cookie * should be passed into zil_resume(). */ int zil_suspend(const char *osname, void **cookiep) { objset_t *os; zilog_t *zilog; const zil_header_t *zh; int error; error = dmu_objset_hold(osname, suspend_tag, &os); if (error != 0) return (error); zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); zh = zilog->zl_header; if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (SET_ERROR(EBUSY)); } /* * Don't put a long hold in the cases where we can avoid it. This * is when there is no cookie so we are doing a suspend & resume * (i.e. called from zil_vdev_offline()), and there's nothing to do * for the suspend because it's already suspended, or there's no ZIL. */ if (cookiep == NULL && !zilog->zl_suspending && (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (0); } dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); dsl_pool_rele(dmu_objset_pool(os), suspend_tag); zilog->zl_suspend++; if (zilog->zl_suspend > 1) { /* * Someone else is already suspending it. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } /* * If there is no pointer to an on-disk block, this ZIL must not * be active (e.g. filesystem not mounted), so there's nothing * to clean up. */ if (BP_IS_HOLE(&zh->zh_log)) { ASSERT(cookiep != NULL); /* fast path already handled */ *cookiep = os; mutex_exit(&zilog->zl_lock); return (0); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); /* * We need to use zil_commit_impl to ensure we wait for all * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed * to disk before proceeding. If we used zil_commit instead, it * would just call txg_wait_synced(), because zl_suspend is set. * txg_wait_synced() doesn't wait for these lwb's to be * LWB_STATE_FLUSH_DONE before returning. */ zil_commit_impl(zilog, 0); /* * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we * use txg_wait_synced() to ensure the data from the zilog has * migrated to the main pool before calling zil_destroy(). */ txg_wait_synced(zilog->zl_dmu_pool, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } void zil_resume(void *cookie) { objset_t *os = cookie; zilog_t *zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); } typedef struct zil_replay_arg { zil_replay_func_t **zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, lr_t *lr, int error) { char name[ZFS_MAX_DATASET_NAME_LEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, - ((lr_ooo_t *)lr)->lr_foid, NULL); + LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ bcopy(lr, zr->zr_lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error != 0) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error != 0) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error != 0) return (zil_replay_error(zilog, lr, error)); } return (0); } /* ARGSUSED */ static int zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. */ void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { zil_destroy(zilog, B_TRUE); return; } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg); kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } /* ARGSUSED */ int zil_reset(const char *osname, void *arg) { int error; error = zil_suspend(osname, NULL); if (error != 0) return (SET_ERROR(EEXIST)); return (0); } Index: vendor-sys/illumos/dist/uts/common/sys/fs/zfs.h =================================================================== --- vendor-sys/illumos/dist/uts/common/sys/fs/zfs.h (revision 350897) +++ vendor-sys/illumos/dist/uts/common/sys/fs/zfs.h (revision 350898) @@ -1,1150 +1,1162 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_FS_ZFS_H #define _SYS_FS_ZFS_H #include #ifdef __cplusplus extern "C" { #endif /* * Types and constants shared between userland and the kernel. */ /* * Each dataset can be one of the following types. These constants can be * combined into masks that can be passed to various functions. */ typedef enum { ZFS_TYPE_FILESYSTEM = (1 << 0), ZFS_TYPE_SNAPSHOT = (1 << 1), ZFS_TYPE_VOLUME = (1 << 2), ZFS_TYPE_POOL = (1 << 3), ZFS_TYPE_BOOKMARK = (1 << 4) } zfs_type_t; /* * NB: lzc_dataset_type should be updated whenever a new objset type is added, * if it represents a real type of a dataset that can be created from userland. */ typedef enum dmu_objset_type { DMU_OST_NONE, DMU_OST_META, DMU_OST_ZFS, DMU_OST_ZVOL, DMU_OST_OTHER, /* For testing only! */ DMU_OST_ANY, /* Be careful! */ DMU_OST_NUMTYPES } dmu_objset_type_t; #define ZFS_TYPE_DATASET \ (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME | ZFS_TYPE_SNAPSHOT) /* * All of these include the terminating NUL byte. */ #define ZAP_MAXNAMELEN 256 #define ZAP_MAXVALUELEN (1024 * 8) #define ZAP_OLDMAXVALUELEN 1024 #define ZFS_MAX_DATASET_NAME_LEN 256 /* * Dataset properties are identified by these constants and must be added to * the end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in usr/src/common/zfs/zfs_prop.c. */ typedef enum { ZPROP_CONT = -2, ZPROP_INVAL = -1, ZFS_PROP_TYPE = 0, ZFS_PROP_CREATION, ZFS_PROP_USED, ZFS_PROP_AVAILABLE, ZFS_PROP_REFERENCED, ZFS_PROP_COMPRESSRATIO, ZFS_PROP_MOUNTED, ZFS_PROP_ORIGIN, ZFS_PROP_QUOTA, ZFS_PROP_RESERVATION, ZFS_PROP_VOLSIZE, ZFS_PROP_VOLBLOCKSIZE, ZFS_PROP_RECORDSIZE, ZFS_PROP_MOUNTPOINT, ZFS_PROP_SHARENFS, ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_ATIME, ZFS_PROP_DEVICES, ZFS_PROP_EXEC, ZFS_PROP_SETUID, ZFS_PROP_READONLY, ZFS_PROP_ZONED, ZFS_PROP_SNAPDIR, ZFS_PROP_ACLMODE, ZFS_PROP_ACLINHERIT, ZFS_PROP_CREATETXG, ZFS_PROP_NAME, /* not exposed to the user */ ZFS_PROP_CANMOUNT, ZFS_PROP_ISCSIOPTIONS, /* not exposed to the user */ ZFS_PROP_XATTR, ZFS_PROP_NUMCLONES, /* not exposed to the user */ ZFS_PROP_COPIES, ZFS_PROP_VERSION, ZFS_PROP_UTF8ONLY, ZFS_PROP_NORMALIZE, ZFS_PROP_CASE, ZFS_PROP_VSCAN, ZFS_PROP_NBMAND, ZFS_PROP_SHARESMB, ZFS_PROP_REFQUOTA, ZFS_PROP_REFRESERVATION, ZFS_PROP_GUID, ZFS_PROP_PRIMARYCACHE, ZFS_PROP_SECONDARYCACHE, ZFS_PROP_USEDSNAP, ZFS_PROP_USEDDS, ZFS_PROP_USEDCHILD, ZFS_PROP_USEDREFRESERV, ZFS_PROP_USERACCOUNTING, /* not exposed to the user */ ZFS_PROP_STMF_SHAREINFO, /* not exposed to the user */ ZFS_PROP_DEFER_DESTROY, ZFS_PROP_USERREFS, ZFS_PROP_LOGBIAS, ZFS_PROP_UNIQUE, /* not exposed to the user */ ZFS_PROP_OBJSETID, /* not exposed to the user */ ZFS_PROP_DEDUP, ZFS_PROP_MLSLABEL, ZFS_PROP_SYNC, + ZFS_PROP_DNODESIZE, ZFS_PROP_REFRATIO, ZFS_PROP_WRITTEN, ZFS_PROP_CLONES, ZFS_PROP_LOGICALUSED, ZFS_PROP_LOGICALREFERENCED, ZFS_PROP_INCONSISTENT, /* not exposed to the user */ ZFS_PROP_FILESYSTEM_LIMIT, ZFS_PROP_SNAPSHOT_LIMIT, ZFS_PROP_FILESYSTEM_COUNT, ZFS_PROP_SNAPSHOT_COUNT, ZFS_PROP_REDUNDANT_METADATA, ZFS_PROP_PREV_SNAP, ZFS_PROP_RECEIVE_RESUME_TOKEN, ZFS_PROP_REMAPTXG, /* not exposed to the user */ ZFS_NUM_PROPS } zfs_prop_t; typedef enum { ZFS_PROP_USERUSED, ZFS_PROP_USERQUOTA, ZFS_PROP_GROUPUSED, ZFS_PROP_GROUPQUOTA, ZFS_NUM_USERQUOTA_PROPS } zfs_userquota_prop_t; extern const char *zfs_userquota_prop_prefixes[ZFS_NUM_USERQUOTA_PROPS]; /* * Pool properties are identified by these constants and must be added to the * end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in usr/src/common/zfs/zpool_prop.c. */ typedef enum { ZPOOL_PROP_INVAL = -1, ZPOOL_PROP_NAME, ZPOOL_PROP_SIZE, ZPOOL_PROP_CAPACITY, ZPOOL_PROP_ALTROOT, ZPOOL_PROP_HEALTH, ZPOOL_PROP_GUID, ZPOOL_PROP_VERSION, ZPOOL_PROP_BOOTFS, ZPOOL_PROP_DELEGATION, ZPOOL_PROP_AUTOREPLACE, ZPOOL_PROP_CACHEFILE, ZPOOL_PROP_FAILUREMODE, ZPOOL_PROP_LISTSNAPS, ZPOOL_PROP_AUTOEXPAND, ZPOOL_PROP_DEDUPDITTO, ZPOOL_PROP_DEDUPRATIO, ZPOOL_PROP_FREE, ZPOOL_PROP_ALLOCATED, ZPOOL_PROP_READONLY, ZPOOL_PROP_COMMENT, ZPOOL_PROP_EXPANDSZ, ZPOOL_PROP_FREEING, ZPOOL_PROP_FRAGMENTATION, ZPOOL_PROP_LEAKED, ZPOOL_PROP_MAXBLOCKSIZE, ZPOOL_PROP_BOOTSIZE, ZPOOL_PROP_CHECKPOINT, ZPOOL_PROP_TNAME, + ZPOOL_PROP_MAXDNODESIZE, ZPOOL_NUM_PROPS } zpool_prop_t; /* Small enough to not hog a whole line of printout in zpool(1M). */ #define ZPROP_MAX_COMMENT 32 #define ZPROP_VALUE "value" #define ZPROP_SOURCE "source" typedef enum { ZPROP_SRC_NONE = 0x1, ZPROP_SRC_DEFAULT = 0x2, ZPROP_SRC_TEMPORARY = 0x4, ZPROP_SRC_LOCAL = 0x8, ZPROP_SRC_INHERITED = 0x10, ZPROP_SRC_RECEIVED = 0x20 } zprop_source_t; #define ZPROP_SRC_ALL 0x3f #define ZPROP_SOURCE_VAL_RECVD "$recvd" #define ZPROP_N_MORE_ERRORS "N_MORE_ERRORS" /* * Dataset flag implemented as a special entry in the props zap object * indicating that the dataset has received properties on or after * SPA_VERSION_RECVD_PROPS. The first such receive blows away local properties * just as it did in earlier versions, and thereafter, local properties are * preserved. */ #define ZPROP_HAS_RECVD "$hasrecvd" typedef enum { ZPROP_ERR_NOCLEAR = 0x1, /* failure to clear existing props */ ZPROP_ERR_NORESTORE = 0x2 /* failure to restore props on error */ } zprop_errflags_t; typedef int (*zprop_func)(int, void *); /* * Properties to be set on the root file system of a new pool * are stuffed into their own nvlist, which is then included in * the properties nvlist with the pool properties. */ #define ZPOOL_ROOTFS_PROPS "root-props-nvl" /* * Length of 'written@' and 'written#' */ #define ZFS_WRITTEN_PROP_PREFIX_LEN 8 /* * Dataset property functions shared between libzfs and kernel. */ const char *zfs_prop_default_string(zfs_prop_t); uint64_t zfs_prop_default_numeric(zfs_prop_t); boolean_t zfs_prop_readonly(zfs_prop_t); boolean_t zfs_prop_visible(zfs_prop_t prop); boolean_t zfs_prop_inheritable(zfs_prop_t); boolean_t zfs_prop_setonce(zfs_prop_t); const char *zfs_prop_to_name(zfs_prop_t); zfs_prop_t zfs_name_to_prop(const char *); boolean_t zfs_prop_user(const char *); boolean_t zfs_prop_userquota(const char *); boolean_t zfs_prop_written(const char *); int zfs_prop_index_to_string(zfs_prop_t, uint64_t, const char **); int zfs_prop_string_to_index(zfs_prop_t, const char *, uint64_t *); uint64_t zfs_prop_random_value(zfs_prop_t, uint64_t seed); boolean_t zfs_prop_valid_for_type(int, zfs_type_t); /* * Pool property functions shared between libzfs and kernel. */ zpool_prop_t zpool_name_to_prop(const char *); const char *zpool_prop_to_name(zpool_prop_t); const char *zpool_prop_default_string(zpool_prop_t); uint64_t zpool_prop_default_numeric(zpool_prop_t); boolean_t zpool_prop_readonly(zpool_prop_t); boolean_t zpool_prop_feature(const char *); boolean_t zpool_prop_unsupported(const char *name); int zpool_prop_index_to_string(zpool_prop_t, uint64_t, const char **); int zpool_prop_string_to_index(zpool_prop_t, const char *, uint64_t *); uint64_t zpool_prop_random_value(zpool_prop_t, uint64_t seed); /* * Definitions for the Delegation. */ typedef enum { ZFS_DELEG_WHO_UNKNOWN = 0, ZFS_DELEG_USER = 'u', ZFS_DELEG_USER_SETS = 'U', ZFS_DELEG_GROUP = 'g', ZFS_DELEG_GROUP_SETS = 'G', ZFS_DELEG_EVERYONE = 'e', ZFS_DELEG_EVERYONE_SETS = 'E', ZFS_DELEG_CREATE = 'c', ZFS_DELEG_CREATE_SETS = 'C', ZFS_DELEG_NAMED_SET = 's', ZFS_DELEG_NAMED_SET_SETS = 'S' } zfs_deleg_who_type_t; typedef enum { ZFS_DELEG_NONE = 0, ZFS_DELEG_PERM_LOCAL = 1, ZFS_DELEG_PERM_DESCENDENT = 2, ZFS_DELEG_PERM_LOCALDESCENDENT = 3, ZFS_DELEG_PERM_CREATE = 4 } zfs_deleg_inherit_t; #define ZFS_DELEG_PERM_UID "uid" #define ZFS_DELEG_PERM_GID "gid" #define ZFS_DELEG_PERM_GROUPS "groups" #define ZFS_MLSLABEL_DEFAULT "none" #define ZFS_SMB_ACL_SRC "src" #define ZFS_SMB_ACL_TARGET "target" typedef enum { ZFS_CANMOUNT_OFF = 0, ZFS_CANMOUNT_ON = 1, ZFS_CANMOUNT_NOAUTO = 2 } zfs_canmount_type_t; typedef enum { ZFS_LOGBIAS_LATENCY = 0, ZFS_LOGBIAS_THROUGHPUT = 1 } zfs_logbias_op_t; typedef enum zfs_share_op { ZFS_SHARE_NFS = 0, ZFS_UNSHARE_NFS = 1, ZFS_SHARE_SMB = 2, ZFS_UNSHARE_SMB = 3 } zfs_share_op_t; typedef enum zfs_smb_acl_op { ZFS_SMB_ACL_ADD, ZFS_SMB_ACL_REMOVE, ZFS_SMB_ACL_RENAME, ZFS_SMB_ACL_PURGE } zfs_smb_acl_op_t; typedef enum zfs_cache_type { ZFS_CACHE_NONE = 0, ZFS_CACHE_METADATA = 1, ZFS_CACHE_ALL = 2 } zfs_cache_type_t; typedef enum { ZFS_SYNC_STANDARD = 0, ZFS_SYNC_ALWAYS = 1, ZFS_SYNC_DISABLED = 2 } zfs_sync_type_t; + +typedef enum { + ZFS_DNSIZE_LEGACY = 0, + ZFS_DNSIZE_AUTO = 1, + ZFS_DNSIZE_1K = 1024, + ZFS_DNSIZE_2K = 2048, + ZFS_DNSIZE_4K = 4096, + ZFS_DNSIZE_8K = 8192, + ZFS_DNSIZE_16K = 16384 +} zfs_dnsize_type_t; typedef enum { ZFS_REDUNDANT_METADATA_ALL, ZFS_REDUNDANT_METADATA_MOST } zfs_redundant_metadata_type_t; /* * On-disk version number. */ #define SPA_VERSION_1 1ULL #define SPA_VERSION_2 2ULL #define SPA_VERSION_3 3ULL #define SPA_VERSION_4 4ULL #define SPA_VERSION_5 5ULL #define SPA_VERSION_6 6ULL #define SPA_VERSION_7 7ULL #define SPA_VERSION_8 8ULL #define SPA_VERSION_9 9ULL #define SPA_VERSION_10 10ULL #define SPA_VERSION_11 11ULL #define SPA_VERSION_12 12ULL #define SPA_VERSION_13 13ULL #define SPA_VERSION_14 14ULL #define SPA_VERSION_15 15ULL #define SPA_VERSION_16 16ULL #define SPA_VERSION_17 17ULL #define SPA_VERSION_18 18ULL #define SPA_VERSION_19 19ULL #define SPA_VERSION_20 20ULL #define SPA_VERSION_21 21ULL #define SPA_VERSION_22 22ULL #define SPA_VERSION_23 23ULL #define SPA_VERSION_24 24ULL #define SPA_VERSION_25 25ULL #define SPA_VERSION_26 26ULL #define SPA_VERSION_27 27ULL #define SPA_VERSION_28 28ULL #define SPA_VERSION_5000 5000ULL /* * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, * and do the appropriate changes. Also bump the version number in * usr/src/grub/capability. */ #define SPA_VERSION SPA_VERSION_5000 #define SPA_VERSION_STRING "5000" /* * Symbolic names for the changes that caused a SPA_VERSION switch. * Used in the code when checking for presence or absence of a feature. * Feel free to define multiple symbolic names for each version if there * were multiple changes to on-disk structures during that version. * * NOTE: When checking the current SPA_VERSION in your code, be sure * to use spa_version() since it reports the version of the * last synced uberblock. Checking the in-flight version can * be dangerous in some cases. */ #define SPA_VERSION_INITIAL SPA_VERSION_1 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 #define SPA_VERSION_SPARES SPA_VERSION_3 #define SPA_VERSION_RAIDZ2 SPA_VERSION_3 #define SPA_VERSION_BPOBJ_ACCOUNT SPA_VERSION_3 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 #define SPA_VERSION_BOOTFS SPA_VERSION_6 #define SPA_VERSION_SLOGS SPA_VERSION_7 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 #define SPA_VERSION_FUID SPA_VERSION_9 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 #define SPA_VERSION_L2CACHE SPA_VERSION_10 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 #define SPA_VERSION_ORIGIN SPA_VERSION_11 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 #define SPA_VERSION_USERSPACE SPA_VERSION_15 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 #define SPA_VERSION_USERREFS SPA_VERSION_18 #define SPA_VERSION_HOLES SPA_VERSION_19 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 #define SPA_VERSION_DEDUP SPA_VERSION_21 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 #define SPA_VERSION_SA SPA_VERSION_24 #define SPA_VERSION_SCAN SPA_VERSION_25 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 #define SPA_VERSION_FEATURES SPA_VERSION_5000 #define SPA_VERSION_IS_SUPPORTED(v) \ (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) /* * ZPL version - rev'd whenever an incompatible on-disk format change * occurs. This is independent of SPA/DMU/ZAP versioning. You must * also update the version_table[] and help message in zfs_prop.c. * * When changing, be sure to teach GRUB how to read the new format! * See usr/src/grub/grub-0.97/stage2/{zfs-include/,fsys_zfs*} */ #define ZPL_VERSION_1 1ULL #define ZPL_VERSION_2 2ULL #define ZPL_VERSION_3 3ULL #define ZPL_VERSION_4 4ULL #define ZPL_VERSION_5 5ULL #define ZPL_VERSION ZPL_VERSION_5 #define ZPL_VERSION_STRING "5" #define ZPL_VERSION_INITIAL ZPL_VERSION_1 #define ZPL_VERSION_DIRENT_TYPE ZPL_VERSION_2 #define ZPL_VERSION_FUID ZPL_VERSION_3 #define ZPL_VERSION_NORMALIZATION ZPL_VERSION_3 #define ZPL_VERSION_SYSATTR ZPL_VERSION_3 #define ZPL_VERSION_USERSPACE ZPL_VERSION_4 #define ZPL_VERSION_SA ZPL_VERSION_5 /* Rewind policy information */ #define ZPOOL_NO_REWIND 1 /* No policy - default behavior */ #define ZPOOL_NEVER_REWIND 2 /* Do not search for best txg or rewind */ #define ZPOOL_TRY_REWIND 4 /* Search for best txg, but do not rewind */ #define ZPOOL_DO_REWIND 8 /* Rewind to best txg w/in deferred frees */ #define ZPOOL_EXTREME_REWIND 16 /* Allow extreme measures to find best txg */ #define ZPOOL_REWIND_MASK 28 /* All the possible rewind bits */ #define ZPOOL_REWIND_POLICIES 31 /* All the possible policy bits */ typedef struct zpool_load_policy { uint32_t zlp_rewind; /* rewind policy requested */ uint64_t zlp_maxmeta; /* max acceptable meta-data errors */ uint64_t zlp_maxdata; /* max acceptable data errors */ uint64_t zlp_txg; /* specific txg to load */ } zpool_load_policy_t; /* * The following are configuration names used in the nvlist describing a pool's * configuration. New on-disk names should be prefixed with ":" * (e.g. "org.open-zfs:") to avoid conflicting names being developed * independently. */ #define ZPOOL_CONFIG_VERSION "version" #define ZPOOL_CONFIG_POOL_NAME "name" #define ZPOOL_CONFIG_POOL_STATE "state" #define ZPOOL_CONFIG_POOL_TXG "txg" #define ZPOOL_CONFIG_POOL_GUID "pool_guid" #define ZPOOL_CONFIG_CREATE_TXG "create_txg" #define ZPOOL_CONFIG_TOP_GUID "top_guid" #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" #define ZPOOL_CONFIG_TYPE "type" #define ZPOOL_CONFIG_CHILDREN "children" #define ZPOOL_CONFIG_ID "id" #define ZPOOL_CONFIG_GUID "guid" #define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object" #define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births" #define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev" #define ZPOOL_CONFIG_PATH "path" #define ZPOOL_CONFIG_DEVID "devid" #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" #define ZPOOL_CONFIG_ASHIFT "ashift" #define ZPOOL_CONFIG_ASIZE "asize" #define ZPOOL_CONFIG_DTL "DTL" #define ZPOOL_CONFIG_SCAN_STATS "scan_stats" /* not stored on disk */ #define ZPOOL_CONFIG_REMOVAL_STATS "removal_stats" /* not stored on disk */ #define ZPOOL_CONFIG_CHECKPOINT_STATS "checkpoint_stats" /* not on disk */ #define ZPOOL_CONFIG_VDEV_STATS "vdev_stats" /* not stored on disk */ #define ZPOOL_CONFIG_INDIRECT_SIZE "indirect_size" /* not stored on disk */ #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" #define ZPOOL_CONFIG_ERRCOUNT "error_count" #define ZPOOL_CONFIG_NOT_PRESENT "not_present" #define ZPOOL_CONFIG_SPARES "spares" #define ZPOOL_CONFIG_IS_SPARE "is_spare" #define ZPOOL_CONFIG_NPARITY "nparity" #define ZPOOL_CONFIG_HOSTID "hostid" #define ZPOOL_CONFIG_HOSTNAME "hostname" #define ZPOOL_CONFIG_LOADED_TIME "initial_load_time" #define ZPOOL_CONFIG_UNSPARE "unspare" #define ZPOOL_CONFIG_PHYS_PATH "phys_path" #define ZPOOL_CONFIG_IS_LOG "is_log" #define ZPOOL_CONFIG_L2CACHE "l2cache" #define ZPOOL_CONFIG_HOLE_ARRAY "hole_array" #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children" #define ZPOOL_CONFIG_IS_HOLE "is_hole" #define ZPOOL_CONFIG_DDT_HISTOGRAM "ddt_histogram" #define ZPOOL_CONFIG_DDT_OBJ_STATS "ddt_object_stats" #define ZPOOL_CONFIG_DDT_STATS "ddt_stats" #define ZPOOL_CONFIG_SPLIT "splitcfg" #define ZPOOL_CONFIG_ORIG_GUID "orig_guid" #define ZPOOL_CONFIG_SPLIT_GUID "split_guid" #define ZPOOL_CONFIG_SPLIT_LIST "guid_list" #define ZPOOL_CONFIG_REMOVING "removing" #define ZPOOL_CONFIG_RESILVER_TXG "resilver_txg" #define ZPOOL_CONFIG_COMMENT "comment" #define ZPOOL_CONFIG_SUSPENDED "suspended" /* not stored on disk */ #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ #define ZPOOL_CONFIG_BOOTFS "bootfs" /* not stored on disk */ #define ZPOOL_CONFIG_MISSING_DEVICES "missing_vdevs" /* not stored on disk */ #define ZPOOL_CONFIG_LOAD_INFO "load_info" /* not stored on disk */ #define ZPOOL_CONFIG_REWIND_INFO "rewind_info" /* not stored on disk */ #define ZPOOL_CONFIG_UNSUP_FEAT "unsup_feat" /* not stored on disk */ #define ZPOOL_CONFIG_ENABLED_FEAT "enabled_feat" /* not stored on disk */ #define ZPOOL_CONFIG_CAN_RDONLY "can_rdonly" /* not stored on disk */ #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" #define ZPOOL_CONFIG_FEATURE_STATS "feature_stats" /* not stored on disk */ #define ZPOOL_CONFIG_VDEV_TOP_ZAP "com.delphix:vdev_zap_top" #define ZPOOL_CONFIG_VDEV_LEAF_ZAP "com.delphix:vdev_zap_leaf" #define ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS "com.delphix:has_per_vdev_zaps" #define ZPOOL_CONFIG_CACHEFILE "cachefile" /* not stored on disk */ /* * The persistent vdev state is stored as separate values rather than a single * 'vdev_state' entry. This is because a device can be in multiple states, such * as offline and degraded. */ #define ZPOOL_CONFIG_OFFLINE "offline" #define ZPOOL_CONFIG_FAULTED "faulted" #define ZPOOL_CONFIG_DEGRADED "degraded" #define ZPOOL_CONFIG_REMOVED "removed" #define ZPOOL_CONFIG_FRU "fru" #define ZPOOL_CONFIG_AUX_STATE "aux_state" /* Pool load policy parameters */ #define ZPOOL_LOAD_POLICY "load-policy" #define ZPOOL_LOAD_REWIND_POLICY "load-rewind-policy" #define ZPOOL_LOAD_REQUEST_TXG "load-request-txg" #define ZPOOL_LOAD_META_THRESH "load-meta-thresh" #define ZPOOL_LOAD_DATA_THRESH "load-data-thresh" /* Rewind data discovered */ #define ZPOOL_CONFIG_LOAD_TIME "rewind_txg_ts" #define ZPOOL_CONFIG_LOAD_DATA_ERRORS "verify_data_errors" #define ZPOOL_CONFIG_REWIND_TIME "seconds_of_rewind" #define VDEV_TYPE_ROOT "root" #define VDEV_TYPE_MIRROR "mirror" #define VDEV_TYPE_REPLACING "replacing" #define VDEV_TYPE_RAIDZ "raidz" #define VDEV_TYPE_DISK "disk" #define VDEV_TYPE_FILE "file" #define VDEV_TYPE_MISSING "missing" #define VDEV_TYPE_HOLE "hole" #define VDEV_TYPE_SPARE "spare" #define VDEV_TYPE_LOG "log" #define VDEV_TYPE_L2CACHE "l2cache" #define VDEV_TYPE_INDIRECT "indirect" /* VDEV_TOP_ZAP_* are used in top-level vdev ZAP objects. */ #define VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM \ "com.delphix:indirect_obsolete_sm" #define VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE \ "com.delphix:obsolete_counts_are_precise" #define VDEV_TOP_ZAP_POOL_CHECKPOINT_SM \ "com.delphix:pool_checkpoint_sm" #define VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET \ "com.delphix:next_offset_to_initialize" #define VDEV_LEAF_ZAP_INITIALIZE_STATE \ "com.delphix:vdev_initialize_state" #define VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME \ "com.delphix:vdev_initialize_action_time" /* * This is needed in userland to report the minimum necessary device size. * * Note that the zfs test suite uses 64MB vdevs. */ #define SPA_MINDEVSIZE (64ULL << 20) /* * Set if the fragmentation has not yet been calculated. This can happen * because the space maps have not been upgraded or the histogram feature * is not enabled. */ #define ZFS_FRAG_INVALID UINT64_MAX /* * The location of the pool configuration repository, shared between kernel and * userland. */ #define ZPOOL_CACHE "/etc/zfs/zpool.cache" /* * vdev states are ordered from least to most healthy. * A vdev that's CANT_OPEN or below is considered unusable. */ typedef enum vdev_state { VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ VDEV_STATE_CLOSED, /* Not currently open */ VDEV_STATE_OFFLINE, /* Not allowed to open */ VDEV_STATE_REMOVED, /* Explicitly removed from system */ VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ VDEV_STATE_FAULTED, /* External request to fault device */ VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ VDEV_STATE_HEALTHY /* Presumed good */ } vdev_state_t; #define VDEV_STATE_ONLINE VDEV_STATE_HEALTHY /* * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field * of the vdev stats structure uses these constants to distinguish why. */ typedef enum vdev_aux { VDEV_AUX_NONE, /* no error */ VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ VDEV_AUX_TOO_SMALL, /* vdev size is too small */ VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ VDEV_AUX_UNSUP_FEAT, /* unsupported features */ VDEV_AUX_SPARED, /* hot spare used in another pool */ VDEV_AUX_ERR_EXCEEDED, /* too many errors */ VDEV_AUX_IO_FAILURE, /* experienced I/O failure */ VDEV_AUX_BAD_LOG, /* cannot read log chain(s) */ VDEV_AUX_EXTERNAL, /* external diagnosis */ VDEV_AUX_SPLIT_POOL, /* vdev was split off into another pool */ VDEV_AUX_CHILDREN_OFFLINE /* all children are offline */ } vdev_aux_t; /* * pool state. The following states are written to disk as part of the normal * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE, L2CACHE. The remaining * states are software abstractions used at various levels to communicate * pool state. */ typedef enum pool_state { POOL_STATE_ACTIVE = 0, /* In active use */ POOL_STATE_EXPORTED, /* Explicitly exported */ POOL_STATE_DESTROYED, /* Explicitly destroyed */ POOL_STATE_SPARE, /* Reserved for hot spare use */ POOL_STATE_L2CACHE, /* Level 2 ARC device */ POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ POOL_STATE_UNAVAIL, /* Internal libzfs state */ POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ } pool_state_t; /* * Scan Functions. */ typedef enum pool_scan_func { POOL_SCAN_NONE, POOL_SCAN_SCRUB, POOL_SCAN_RESILVER, POOL_SCAN_FUNCS } pool_scan_func_t; /* * Used to control scrub pause and resume. */ typedef enum pool_scrub_cmd { POOL_SCRUB_NORMAL = 0, POOL_SCRUB_PAUSE, POOL_SCRUB_FLAGS_END } pool_scrub_cmd_t; /* * Initialize functions. */ typedef enum pool_initialize_func { POOL_INITIALIZE_DO, POOL_INITIALIZE_CANCEL, POOL_INITIALIZE_SUSPEND, POOL_INITIALIZE_FUNCS } pool_initialize_func_t; /* * ZIO types. Needed to interpret vdev statistics below. */ typedef enum zio_type { ZIO_TYPE_NULL = 0, ZIO_TYPE_READ, ZIO_TYPE_WRITE, ZIO_TYPE_FREE, ZIO_TYPE_CLAIM, ZIO_TYPE_IOCTL, ZIO_TYPES } zio_type_t; /* * Pool statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct pool_scan_stat { /* values stored on disk */ uint64_t pss_func; /* pool_scan_func_t */ uint64_t pss_state; /* dsl_scan_state_t */ uint64_t pss_start_time; /* scan start time */ uint64_t pss_end_time; /* scan end time */ uint64_t pss_to_examine; /* total bytes to scan */ uint64_t pss_examined; /* total examined bytes */ uint64_t pss_to_process; /* total bytes to process */ uint64_t pss_processed; /* total processed bytes */ uint64_t pss_errors; /* scan errors */ /* values not stored on disk */ uint64_t pss_pass_exam; /* examined bytes per scan pass */ uint64_t pss_pass_start; /* start time of a scan pass */ uint64_t pss_pass_scrub_pause; /* pause time of a scurb pass */ /* cumulative time scrub spent paused, needed for rate calculation */ uint64_t pss_pass_scrub_spent_paused; } pool_scan_stat_t; typedef struct pool_removal_stat { uint64_t prs_state; /* dsl_scan_state_t */ uint64_t prs_removing_vdev; uint64_t prs_start_time; uint64_t prs_end_time; uint64_t prs_to_copy; /* bytes that need to be copied */ uint64_t prs_copied; /* bytes copied so far */ /* * bytes of memory used for indirect mappings. * This includes all removed vdevs. */ uint64_t prs_mapping_memory; } pool_removal_stat_t; typedef enum dsl_scan_state { DSS_NONE, DSS_SCANNING, DSS_FINISHED, DSS_CANCELED, DSS_NUM_STATES } dsl_scan_state_t; typedef enum { CS_NONE, CS_CHECKPOINT_EXISTS, CS_CHECKPOINT_DISCARDING, CS_NUM_STATES } checkpoint_state_t; typedef struct pool_checkpoint_stat { uint64_t pcs_state; /* checkpoint_state_t */ uint64_t pcs_start_time; /* time checkpoint/discard started */ uint64_t pcs_space; /* checkpointed space */ } pool_checkpoint_stat_t; typedef enum { VDEV_INITIALIZE_NONE, VDEV_INITIALIZE_ACTIVE, VDEV_INITIALIZE_CANCELED, VDEV_INITIALIZE_SUSPENDED, VDEV_INITIALIZE_COMPLETE } vdev_initializing_state_t; /* * Vdev statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct vdev_stat { hrtime_t vs_timestamp; /* time since vdev load */ uint64_t vs_state; /* vdev state */ uint64_t vs_aux; /* see vdev_aux_t */ uint64_t vs_alloc; /* space allocated */ uint64_t vs_space; /* total capacity */ uint64_t vs_dspace; /* deflated capacity */ uint64_t vs_rsize; /* replaceable dev size */ uint64_t vs_esize; /* expandable dev size */ uint64_t vs_ops[ZIO_TYPES]; /* operation count */ uint64_t vs_bytes[ZIO_TYPES]; /* bytes read/written */ uint64_t vs_read_errors; /* read errors */ uint64_t vs_write_errors; /* write errors */ uint64_t vs_checksum_errors; /* checksum errors */ uint64_t vs_initialize_errors; /* initializing errors */ uint64_t vs_self_healed; /* self-healed bytes */ uint64_t vs_scan_removing; /* removing? */ uint64_t vs_scan_processed; /* scan processed bytes */ uint64_t vs_fragmentation; /* device fragmentation */ uint64_t vs_initialize_bytes_done; /* bytes initialized */ uint64_t vs_initialize_bytes_est; /* total bytes to initialize */ uint64_t vs_initialize_state; /* vdev_initialzing_state_t */ uint64_t vs_initialize_action_time; /* time_t */ uint64_t vs_checkpoint_space; /* checkpoint-consumed space */ } vdev_stat_t; /* * DDT statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct ddt_object { uint64_t ddo_count; /* number of elments in ddt */ uint64_t ddo_dspace; /* size of ddt on disk */ uint64_t ddo_mspace; /* size of ddt in-core */ } ddt_object_t; typedef struct ddt_stat { uint64_t dds_blocks; /* blocks */ uint64_t dds_lsize; /* logical size */ uint64_t dds_psize; /* physical size */ uint64_t dds_dsize; /* deflated allocated size */ uint64_t dds_ref_blocks; /* referenced blocks */ uint64_t dds_ref_lsize; /* referenced lsize * refcnt */ uint64_t dds_ref_psize; /* referenced psize * refcnt */ uint64_t dds_ref_dsize; /* referenced dsize * refcnt */ } ddt_stat_t; typedef struct ddt_histogram { ddt_stat_t ddh_stat[64]; /* power-of-two histogram buckets */ } ddt_histogram_t; #define ZVOL_DRIVER "zvol" #define ZFS_DRIVER "zfs" #define ZFS_DEV "/dev/zfs" #define ZFS_DISK_ROOT "/dev/dsk" #define ZFS_DISK_ROOTD ZFS_DISK_ROOT "/" #define ZFS_RDISK_ROOT "/dev/rdsk" #define ZFS_RDISK_ROOTD ZFS_RDISK_ROOT "/" /* general zvol path */ #define ZVOL_DIR "/dev/zvol" /* expansion */ #define ZVOL_PSEUDO_DEV "/devices/pseudo/zfs@0:" /* for dump and swap */ #define ZVOL_FULL_DEV_DIR ZVOL_DIR "/dsk/" #define ZVOL_FULL_RDEV_DIR ZVOL_DIR "/rdsk/" #define ZVOL_PROP_NAME "name" #define ZVOL_DEFAULT_BLOCKSIZE 8192 /* * /dev/zfs ioctl numbers. */ typedef enum zfs_ioc { ZFS_IOC_FIRST = ('Z' << 8), ZFS_IOC = ZFS_IOC_FIRST, ZFS_IOC_POOL_CREATE = ZFS_IOC_FIRST, ZFS_IOC_POOL_DESTROY, ZFS_IOC_POOL_IMPORT, ZFS_IOC_POOL_EXPORT, ZFS_IOC_POOL_CONFIGS, ZFS_IOC_POOL_STATS, ZFS_IOC_POOL_TRYIMPORT, ZFS_IOC_POOL_SCAN, ZFS_IOC_POOL_FREEZE, ZFS_IOC_POOL_UPGRADE, ZFS_IOC_POOL_GET_HISTORY, ZFS_IOC_VDEV_ADD, ZFS_IOC_VDEV_REMOVE, ZFS_IOC_VDEV_SET_STATE, ZFS_IOC_VDEV_ATTACH, ZFS_IOC_VDEV_DETACH, ZFS_IOC_VDEV_SETPATH, ZFS_IOC_VDEV_SETFRU, ZFS_IOC_OBJSET_STATS, ZFS_IOC_OBJSET_ZPLPROPS, ZFS_IOC_DATASET_LIST_NEXT, ZFS_IOC_SNAPSHOT_LIST_NEXT, ZFS_IOC_SET_PROP, ZFS_IOC_CREATE, ZFS_IOC_DESTROY, ZFS_IOC_ROLLBACK, ZFS_IOC_RENAME, ZFS_IOC_RECV, ZFS_IOC_SEND, ZFS_IOC_INJECT_FAULT, ZFS_IOC_CLEAR_FAULT, ZFS_IOC_INJECT_LIST_NEXT, ZFS_IOC_ERROR_LOG, ZFS_IOC_CLEAR, ZFS_IOC_PROMOTE, ZFS_IOC_SNAPSHOT, ZFS_IOC_DSOBJ_TO_DSNAME, ZFS_IOC_OBJ_TO_PATH, ZFS_IOC_POOL_SET_PROPS, ZFS_IOC_POOL_GET_PROPS, ZFS_IOC_SET_FSACL, ZFS_IOC_GET_FSACL, ZFS_IOC_SHARE, ZFS_IOC_INHERIT_PROP, ZFS_IOC_SMB_ACL, ZFS_IOC_USERSPACE_ONE, ZFS_IOC_USERSPACE_MANY, ZFS_IOC_USERSPACE_UPGRADE, ZFS_IOC_HOLD, ZFS_IOC_RELEASE, ZFS_IOC_GET_HOLDS, ZFS_IOC_OBJSET_RECVD_PROPS, ZFS_IOC_VDEV_SPLIT, ZFS_IOC_NEXT_OBJ, ZFS_IOC_DIFF, ZFS_IOC_TMP_SNAPSHOT, ZFS_IOC_OBJ_TO_STATS, ZFS_IOC_SPACE_WRITTEN, ZFS_IOC_SPACE_SNAPS, ZFS_IOC_DESTROY_SNAPS, ZFS_IOC_POOL_REGUID, ZFS_IOC_POOL_REOPEN, ZFS_IOC_SEND_PROGRESS, ZFS_IOC_LOG_HISTORY, ZFS_IOC_SEND_NEW, ZFS_IOC_SEND_SPACE, ZFS_IOC_CLONE, ZFS_IOC_BOOKMARK, ZFS_IOC_GET_BOOKMARKS, ZFS_IOC_DESTROY_BOOKMARKS, ZFS_IOC_CHANNEL_PROGRAM, ZFS_IOC_REMAP, ZFS_IOC_POOL_CHECKPOINT, ZFS_IOC_POOL_DISCARD_CHECKPOINT, ZFS_IOC_POOL_INITIALIZE, ZFS_IOC_LAST } zfs_ioc_t; /* * ZFS-specific error codes used for returning descriptive errors * to the userland through zfs ioctls. * * The enum implicitly includes all the error codes from errno.h. * New code should use and extend this enum for errors that are * not described precisely by generic errno codes. */ typedef enum { ZFS_ERR_CHECKPOINT_EXISTS = 1024, ZFS_ERR_DISCARDING_CHECKPOINT, ZFS_ERR_NO_CHECKPOINT, ZFS_ERR_DEVRM_IN_PROGRESS, ZFS_ERR_VDEV_TOO_BIG } zfs_errno_t; /* * Internal SPA load state. Used by FMA diagnosis engine. */ typedef enum { SPA_LOAD_NONE, /* no load in progress */ SPA_LOAD_OPEN, /* normal open */ SPA_LOAD_IMPORT, /* import in progress */ SPA_LOAD_TRYIMPORT, /* tryimport in progress */ SPA_LOAD_RECOVER, /* recovery requested */ SPA_LOAD_ERROR, /* load failed */ SPA_LOAD_CREATE /* creation in progress */ } spa_load_state_t; /* * Bookmark name values. */ #define ZPOOL_ERR_LIST "error list" #define ZPOOL_ERR_DATASET "dataset" #define ZPOOL_ERR_OBJECT "object" #define HIS_MAX_RECORD_LEN (MAXPATHLEN + MAXPATHLEN + 1) /* * The following are names used in the nvlist describing * the pool's history log. */ #define ZPOOL_HIST_RECORD "history record" #define ZPOOL_HIST_TIME "history time" #define ZPOOL_HIST_CMD "history command" #define ZPOOL_HIST_WHO "history who" #define ZPOOL_HIST_ZONE "history zone" #define ZPOOL_HIST_HOST "history hostname" #define ZPOOL_HIST_TXG "history txg" #define ZPOOL_HIST_INT_EVENT "history internal event" #define ZPOOL_HIST_INT_STR "history internal str" #define ZPOOL_HIST_INT_NAME "internal_name" #define ZPOOL_HIST_IOCTL "ioctl" #define ZPOOL_HIST_INPUT_NVL "in_nvl" #define ZPOOL_HIST_OUTPUT_NVL "out_nvl" #define ZPOOL_HIST_DSNAME "dsname" #define ZPOOL_HIST_DSID "dsid" #define ZPOOL_HIST_ERRNO "errno" /* * The following are names used when invoking ZFS_IOC_POOL_INITIALIZE. */ #define ZPOOL_INITIALIZE_COMMAND "initialize_command" #define ZPOOL_INITIALIZE_VDEVS "initialize_vdevs" /* * Flags for ZFS_IOC_VDEV_SET_STATE */ #define ZFS_ONLINE_CHECKREMOVE 0x1 #define ZFS_ONLINE_UNSPARE 0x2 #define ZFS_ONLINE_FORCEFAULT 0x4 #define ZFS_ONLINE_EXPAND 0x8 #define ZFS_OFFLINE_TEMPORARY 0x1 /* * Flags for ZFS_IOC_POOL_IMPORT */ #define ZFS_IMPORT_NORMAL 0x0 #define ZFS_IMPORT_VERBATIM 0x1 #define ZFS_IMPORT_ANY_HOST 0x2 #define ZFS_IMPORT_MISSING_LOG 0x4 #define ZFS_IMPORT_ONLY 0x8 #define ZFS_IMPORT_CHECKPOINT 0x10 #define ZFS_IMPORT_TEMP_NAME 0x20 /* * Channel program argument/return nvlist keys and defaults. */ #define ZCP_ARG_PROGRAM "program" #define ZCP_ARG_ARGLIST "arg" #define ZCP_ARG_SYNC "sync" #define ZCP_ARG_INSTRLIMIT "instrlimit" #define ZCP_ARG_MEMLIMIT "memlimit" #define ZCP_ARG_CLIARGV "argv" #define ZCP_RET_ERROR "error" #define ZCP_RET_RETURN "return" #define ZCP_DEFAULT_INSTRLIMIT (10 * 1000 * 1000) #define ZCP_MAX_INSTRLIMIT (10 * ZCP_DEFAULT_INSTRLIMIT) #define ZCP_DEFAULT_MEMLIMIT (10 * 1024 * 1024) #define ZCP_MAX_MEMLIMIT (10 * ZCP_DEFAULT_MEMLIMIT) /* * Sysevent payload members. ZFS will generate the following sysevents with the * given payloads: * * ESC_ZFS_RESILVER_START * ESC_ZFS_RESILVER_END * ESC_ZFS_POOL_DESTROY * ESC_ZFS_POOL_REGUID * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * * ESC_ZFS_VDEV_REMOVE * ESC_ZFS_VDEV_CLEAR * ESC_ZFS_VDEV_CHECK * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_VDEV_PATH DATA_TYPE_STRING (optional) * ZFS_EV_VDEV_GUID DATA_TYPE_UINT64 * * ESC_ZFS_HISTORY_EVENT * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_HIST_TIME DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_CMD DATA_TYPE_STRING (optional) * ZFS_EV_HIST_WHO DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_ZONE DATA_TYPE_STRING (optional) * ZFS_EV_HIST_HOST DATA_TYPE_STRING (optional) * ZFS_EV_HIST_TXG DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_EVENT DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_STR DATA_TYPE_STRING (optional) * ZFS_EV_HIST_INT_NAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_IOCTL DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSNAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSID DATA_TYPE_UINT64 (optional) * * The ZFS_EV_HIST_* members will correspond to the ZPOOL_HIST_* members in the * history log nvlist. The keynames will be free of any spaces or other * characters that could be potentially unexpected to consumers of the * sysevents. */ #define ZFS_EV_POOL_NAME "pool_name" #define ZFS_EV_POOL_GUID "pool_guid" #define ZFS_EV_VDEV_PATH "vdev_path" #define ZFS_EV_VDEV_GUID "vdev_guid" #define ZFS_EV_HIST_TIME "history_time" #define ZFS_EV_HIST_CMD "history_command" #define ZFS_EV_HIST_WHO "history_who" #define ZFS_EV_HIST_ZONE "history_zone" #define ZFS_EV_HIST_HOST "history_hostname" #define ZFS_EV_HIST_TXG "history_txg" #define ZFS_EV_HIST_INT_EVENT "history_internal_event" #define ZFS_EV_HIST_INT_STR "history_internal_str" #define ZFS_EV_HIST_INT_NAME "history_internal_name" #define ZFS_EV_HIST_IOCTL "history_ioctl" #define ZFS_EV_HIST_DSNAME "history_dsname" #define ZFS_EV_HIST_DSID "history_dsid" #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_H */