Index: stable/11/sbin/camcontrol/camcontrol.8 =================================================================== --- stable/11/sbin/camcontrol/camcontrol.8 (revision 350800) +++ stable/11/sbin/camcontrol/camcontrol.8 (revision 350801) @@ -1,2922 +1,2963 @@ .\" .\" Copyright (c) 1998, 1999, 2000, 2002, 2005, 2006, 2007 Kenneth D. Merry. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. The name of the author may not be used to endorse or promote products .\" derived from this software without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd April 22, 2019 +.Dd July 19, 2019 .Dt CAMCONTROL 8 .Os .Sh NAME .Nm camcontrol .Nd CAM control program .Sh SYNOPSIS .Nm .Aq Ar command .Op device id .Op generic args .Op command args .Nm .Ic devlist .Op Fl b .Op Fl v .Nm .Ic periphlist .Op device id .Op Fl n Ar dev_name .Op Fl u Ar unit_number .Nm .Ic tur .Op device id .Op generic args .Nm .Ic inquiry .Op device id .Op generic args .Op Fl D .Op Fl S .Op Fl R .Nm .Ic identify .Op device id .Op generic args .Op Fl v .Nm .Ic reportluns .Op device id .Op generic args .Op Fl c .Op Fl l .Op Fl r Ar reporttype .Nm .Ic readcap .Op device id .Op generic args .Op Fl b .Op Fl h .Op Fl H .Op Fl l .Op Fl N .Op Fl q .Op Fl s .Nm .Ic start .Op device id .Op generic args .Nm .Ic stop .Op device id .Op generic args .Nm .Ic load .Op device id .Op generic args .Nm .Ic eject .Op device id .Op generic args .Nm .Ic reprobe .Op device id .Nm .Ic rescan .Aq all | device id | bus Ns Op :target:lun .Nm .Ic reset .Aq all | device id | bus Ns Op :target:lun .Nm .Ic defects .Op device id .Op generic args .Aq Fl f Ar format .Op Fl P .Op Fl G .Op Fl q .Op Fl s .Op Fl S Ar offset .Op Fl X .Nm .Ic modepage .Op device id .Op generic args .Aq Fl m Ar page[,subpage] | Fl l .Op Fl P Ar pgctl .Op Fl b | Fl e .Op Fl d .Nm .Ic cmd .Op device id .Op generic args .Aq Fl a Ar cmd Op args .Aq Fl c Ar cmd Op args .Op Fl d .Op Fl f .Op Fl i Ar len Ar fmt .Bk -words .Op Fl o Ar len Ar fmt Op args .Op Fl r Ar fmt .Ek .Nm .Ic smpcmd .Op device id .Op generic args .Aq Fl r Ar len Ar fmt Op args .Aq Fl R Ar len Ar fmt Op args .Nm .Ic smprg .Op device id .Op generic args .Op Fl l .Nm .Ic smppc .Op device id .Op generic args .Aq Fl p Ar phy .Op Fl l .Op Fl o Ar operation .Op Fl d Ar name .Op Fl m Ar rate .Op Fl M Ar rate .Op Fl T Ar pp_timeout .Op Fl a Ar enable|disable .Op Fl A Ar enable|disable .Op Fl s Ar enable|disable .Op Fl S Ar enable|disable .Nm .Ic smpphylist .Op device id .Op generic args .Op Fl l .Op Fl q .Nm .Ic smpmaninfo .Op device id .Op generic args .Op Fl l .Nm .Ic debug .Op Fl I .Op Fl P .Op Fl T .Op Fl S .Op Fl X .Op Fl c .Op Fl p .Aq all|off|bus Ns Op :target Ns Op :lun .Nm .Ic tags .Op device id .Op generic args .Op Fl N Ar tags .Op Fl q .Op Fl v .Nm .Ic negotiate .Op device id .Op generic args .Op Fl c .Op Fl D Ar enable|disable .Op Fl M Ar mode .Op Fl O Ar offset .Op Fl q .Op Fl R Ar syncrate .Op Fl T Ar enable|disable .Op Fl U .Op Fl W Ar bus_width .Op Fl v .Nm .Ic format .Op device id .Op generic args .Op Fl q .Op Fl r .Op Fl w .Op Fl y .Nm .Ic sanitize .Op device id .Op generic args .Aq Fl a Ar overwrite | block | crypto | exitfailure .Op Fl c Ar passes .Op Fl I .Op Fl P Ar pattern .Op Fl q .Op Fl U .Op Fl r .Op Fl w .Op Fl y .Nm .Ic idle .Op device id .Op generic args .Op Fl t Ar time .Nm .Ic standby .Op device id .Op generic args .Op Fl t Ar time .Nm .Ic sleep .Op device id .Op generic args .Nm .Ic powermode .Op device id .Op generic args .Nm .Ic apm .Op device id .Op generic args .Op Fl l Ar level .Nm .Ic aam .Op device id .Op generic args .Op Fl l Ar level .Nm .Ic fwdownload .Op device id .Op generic args .Aq Fl f Ar fw_image .Op Fl q .Op Fl s .Op Fl y .Nm .Ic security .Op device id .Op generic args .Op Fl d Ar pwd .Op Fl e Ar pwd .Op Fl f .Op Fl h Ar pwd .Op Fl k Ar pwd .Op Fl l Ar high|maximum .Op Fl q .Op Fl s Ar pwd .Op Fl T Ar timeout .Op Fl U Ar user|master .Op Fl y .Nm .Ic hpa .Op device id .Op generic args .Op Fl f .Op Fl l .Op Fl P .Op Fl p Ar pwd .Op Fl q .Op Fl s Ar max_sectors .Op Fl U Ar pwd .Op Fl y .Nm +.Ic ama +.Op device id +.Op generic args +.Op Fl f +.Op Fl q +.Op Fl s Ar max_sectors +.Nm .Ic persist .Op device id .Op generic args .Aq Fl i Ar action | Fl o Ar action .Op Fl a .Op Fl I Ar trans_id .Op Fl k Ar key .Op Fl K Ar sa_key .Op Fl p .Op Fl R Ar rel_tgt_port .Op Fl s Ar scope .Op Fl S .Op Fl T Ar res_type .Op Fl U .Nm .Ic attrib .Op device id .Op generic args .Aq Fl r Ar action | Fl w Ar attrib .Op Fl a Ar attr_num .Op Fl c .Op Fl e Ar elem_addr .Op Fl F Ar form1,form2 .Op Fl p Ar part .Op Fl s Ar start_addr .Op Fl T Ar elem_type .Op Fl V Ar lv_num .Nm .Ic opcodes .Op device id .Op generic args .Op Fl o Ar opcode .Op Fl s Ar service_action .Op Fl N .Op Fl T .Nm .Ic zone .Aq Fl c Ar cmd .Op Fl a .Op Fl l Ar lba .Op Fl o Ar rep_opts .Op Fl P Ar print_opts .Nm .Ic epc .Aq Fl c Ar cmd .Op Fl d .Op Fl D .Op Fl e .Op Fl H .Op Fl p Ar power_cond .Op Fl P .Op Fl r Ar restore_src .Op Fl s .Op Fl S Ar power_src .Op Fl T Ar timer .Nm .Ic timestamp .Op device id .Op generic args .Ao Fl r Oo Ns Fl f Ar format | Fl m | Fl U Oc | Fl s Ao Fl f Ar format Fl T Ar time | Fl U Ac Ac .Nm .Ic devtype .Op device id .Nm .Ic help .Sh DESCRIPTION The .Nm utility is designed to provide a way for users to access and control the .Fx CAM subsystem. .Pp The .Nm utility can cause a loss of data and/or system crashes if used improperly. Even expert users are encouraged to exercise caution when using this command. Novice users should stay away from this utility. .Pp The .Nm utility has a number of primary functions, many of which support an optional device identifier. A device identifier can take one of three forms: .Bl -tag -width 14n .It deviceUNIT Specify a device name and unit number combination, like "da5" or "cd3". .It bus:target Specify a bus number and target id. The bus number can be determined from the output of .Dq camcontrol devlist . The lun defaults to 0. .It bus:target:lun Specify the bus, target and lun for a device. (e.g.\& 1:2:0) .El .Pp The device identifier, if it is specified, .Em must come immediately after the function name, and before any generic or function-specific arguments. Note that the .Fl n and .Fl u arguments described below will override any device name or unit number specified beforehand. The .Fl n and .Fl u arguments will .Em not override a specified bus:target or bus:target:lun, however. .Pp Most of the .Nm primary functions support these generic arguments: .Bl -tag -width 14n .It Fl C Ar count SCSI command retry count. In order for this to work, error recovery .Pq Fl E must be turned on. .It Fl E Instruct the kernel to perform generic SCSI error recovery for the given command. This is needed in order for the retry count .Pq Fl C to be honored. Other than retrying commands, the generic error recovery in the code will generally attempt to spin up drives that are not spinning. It may take some other actions, depending upon the sense code returned from the command. .It Fl n Ar dev_name Specify the device type to operate on, e.g.\& "da", "cd". .It Fl Q Ar task_attr .Tn SCSI task attribute for the command, if it is a .Tn SCSI command. This may be ordered, simple, head, or aca. In most cases this is not needed. The default is simple, which works with all .Tn SCSI devices. The task attribute may also be specified numerically. .It Fl t Ar timeout SCSI command timeout in seconds. This overrides the default timeout for any given command. .It Fl u Ar unit_number Specify the device unit number, e.g.\& "1", "5". .It Fl v Be verbose, print out sense information for failed SCSI commands. .El .Pp Primary command functions: .Bl -tag -width periphlist .It Ic devlist List all physical devices (logical units) attached to the CAM subsystem. This also includes a list of peripheral drivers attached to each device. With the .Fl v argument, SCSI bus number, adapter name and unit numbers are printed as well. On the other hand, with the .Fl b argument, only the bus adapter, and unit information will be printed, and device information will be omitted. .It Ic periphlist List all peripheral drivers attached to a given physical device (logical unit). .It Ic tur Send the SCSI test unit ready (0x00) command to the given device. The .Nm utility will report whether the device is ready or not. .It Ic inquiry Send a SCSI inquiry command (0x12) to a device. By default, .Nm will print out the standard inquiry data, device serial number, and transfer rate information. The user can specify that only certain types of inquiry data be printed: .Bl -tag -width 4n .It Fl D Get the standard inquiry data. .It Fl S Print out the serial number. If this flag is the only one specified, .Nm will not print out "Serial Number" before the value returned by the drive. This is to aid in script writing. .It Fl R Print out transfer rate information. .El .It Ic identify Send a ATA identify command (0xec) to a device. .It Ic reportluns Send the SCSI REPORT LUNS (0xA0) command to the given device. By default, .Nm will print out the list of logical units (LUNs) supported by the target device. There are a couple of options to modify the output: .Bl -tag -width 14n .It Fl c Just print out a count of LUNs, not the actual LUN numbers. .It Fl l Just print out the LUNs, and do not print out the count. .It Fl r Ar reporttype Specify the type of report to request from the target: .Bl -tag -width 012345678 .It default Return the default report. This is the .Nm default. Most targets will support this report if they support the REPORT LUNS command. .It wellknown Return only well known LUNs. .It all Return all available LUNs. .El .El .Pp .Nm will try to print out LUN numbers in a reasonable format. It can understand the peripheral, flat, LUN and extended LUN formats. .It Ic readcap Send the SCSI READ CAPACITY command to the given device and display the results. If the device is larger than 2TB, the SCSI READ CAPACITY (16) service action will be sent to obtain the full size of the device. By default, .Nm will print out the last logical block of the device, and the blocksize of the device in bytes. To modify the output format, use the following options: .Bl -tag -width 5n .It Fl b Just print out the blocksize, not the last block or device size. This cannot be used with .Fl N or .Fl s . .It Fl h Print out the device size in human readable (base 2, 1K == 1024) format. This implies .Fl N and cannot be used with .Fl q or .Fl b . .It Fl H Print out the device size in human readable (base 10, 1K == 1000) format. .It Fl l Skip sending the SCSI READ CAPACITY (10) command. Send only the SCSI READ CAPACITY (16) service action and report its results. When the two do not match, a quirk is needed to resolve the ambiguity. .It Fl N Print out the number of blocks in the device instead of the last logical block. .It Fl q Quiet, print out the numbers only (separated by a comma if .Fl b or .Fl s are not specified). .It Fl s Print out the last logical block or the size of the device only, and omit the blocksize. .El .Pp Note that this command only displays the information, it does not update the kernel data structures. Use the .Nm reprobe subcommand to do that. .It Ic start Send the SCSI Start/Stop Unit (0x1B) command to the given device with the start bit set. .It Ic stop Send the SCSI Start/Stop Unit (0x1B) command to the given device with the start bit cleared. .It Ic load Send the SCSI Start/Stop Unit (0x1B) command to the given device with the start bit set and the load/eject bit set. .It Ic eject Send the SCSI Start/Stop Unit (0x1B) command to the given device with the start bit cleared and the load/eject bit set. .It Ic rescan Tell the kernel to scan all busses in the system (with the .Ar all argument), the given bus (XPT_SCAN_BUS), bus:target:lun or device (XPT_SCAN_LUN) for new devices or devices that have gone away. The user may specify a scan of all busses, a single bus, or a lun. Scanning all luns on a target is not supported. .Pp If a device is specified by peripheral name and unit number, for instance da4, it may only be rescanned if that device currently exists in the CAM EDT (Existing Device Table). If the device is no longer there (see .Nm devlist ), you must use the bus:target:lun form to rescan it. .It Ic reprobe Tell the kernel to refresh the information about the device and notify the upper layer, .Xr GEOM 4 . This includes sending the SCSI READ CAPACITY command and updating the disk size visible to the rest of the system. .It Ic reset Tell the kernel to reset all busses in the system (with the .Ar all argument), the given bus (XPT_RESET_BUS) by issuing a SCSI bus reset for that bus, or to reset the given bus:target:lun or device (XPT_RESET_DEV), typically by issuing a BUS DEVICE RESET message after connecting to that device. Note that this can have a destructive impact on the system. .It Ic defects Send the .Tn SCSI READ DEFECT DATA (10) command (0x37) or the .Tn SCSI READ DEFECT DATA (12) command (0xB7) to the given device, and print out any combination of: the total number of defects, the primary defect list (PLIST), and the grown defect list (GLIST). .Bl -tag -width 11n .It Fl f Ar format Specify the requested format of the defect list. The format argument is required. Most drives support the physical sector format. Some drives support the logical block format. Many drives, if they do not support the requested format, return the data in an alternate format, along with sense information indicating that the requested data format is not supported. The .Nm utility attempts to detect this, and print out whatever format the drive returns. If the drive uses a non-standard sense code to report that it does not support the requested format, .Nm will probably see the error as a failure to complete the request. .Pp The format options are: .Bl -tag -width 9n .It block Print out the list as logical blocks. This is limited to 32-bit block sizes, and isn't supported by many modern drives. .It longblock Print out the list as logical blocks. This option uses a 64-bit block size. .It bfi Print out the list in bytes from index format. .It extbfi Print out the list in extended bytes from index format. The extended format allows for ranges of blocks to be printed. .It phys Print out the list in physical sector format. Most drives support this format. .It extphys Print out the list in extended physical sector format. The extended format allows for ranges of blocks to be printed. .El .It Fl G Print out the grown defect list. This is a list of bad blocks that have been remapped since the disk left the factory. .It Fl P Print out the primary defect list. This is the list of defects that were present in the factory. .It Fl q When printing status information with .Fl s , only print the number of defects. .It Fl s Just print the number of defects, not the list of defects. .It Fl S Ar offset Specify the starting offset into the defect list. This implies using the .Tn SCSI READ DEFECT DATA (12) command, as the 10 byte version of the command doesn't support the address descriptor index field. Not all drives support the 12 byte command, and some drives that support the 12 byte command don't support the address descriptor index field. .It Fl X Print out defects in hexadecimal (base 16) form instead of base 10 form. .El .Pp If neither .Fl P nor .Fl G is specified, .Nm will print out the number of defects given in the READ DEFECT DATA header returned from the drive. Some drives will report 0 defects if neither the primary or grown defect lists are requested. .It Ic modepage Allows the user to display and optionally edit a SCSI mode page. The mode page formats are located in .Pa /usr/share/misc/scsi_modes . This can be overridden by specifying a different file in the .Ev SCSI_MODES environment variable. The .Ic modepage command takes several arguments: .Bl -tag -width 12n .It Fl d Disable block descriptors for mode sense. .It Fl b Displays mode page data in binary format. .It Fl e This flag allows the user to edit values in the mode page. The user may either edit mode page values with the text editor pointed to by his .Ev EDITOR environment variable, or supply mode page values via standard input, using the same format that .Nm uses to display mode page values. The editor will be invoked if .Nm detects that standard input is terminal. .It Fl l Lists all available mode pages. If specified more then once, also lists subpages. .It Fl m Ar page[,subpage] This specifies the number of the mode page and optionally subpage the user would like to view and/or edit. This argument is mandatory unless .Fl l is specified. .It Fl P Ar pgctl This allows the user to specify the page control field. Possible values are: .Bl -tag -width xxx -compact .It 0 Current values .It 1 Changeable values .It 2 Default values .It 3 Saved values .El .El .It Ic cmd Allows the user to send an arbitrary ATA or SCSI CDB to any device. The .Ic cmd function requires the .Fl c argument to specify SCSI CDB or the .Fl a argument to specify ATA Command Block registers values. Other arguments are optional, depending on the command type. The command and data specification syntax is documented in .Xr cam_cdbparse 3 . NOTE: If the CDB specified causes data to be transferred to or from the SCSI device in question, you MUST specify either .Fl i or .Fl o . .Bl -tag -width 17n .It Fl a Ar cmd Op args This specifies the content of 12 ATA Command Block registers (command, features, lba_low, lba_mid, lba_high, device, lba_low_exp, lba_mid_exp. lba_high_exp, features_exp, sector_count, sector_count_exp). .It Fl c Ar cmd Op args This specifies the SCSI CDB. SCSI CDBs may be 6, 10, 12 or 16 bytes. .It Fl d Specifies DMA protocol to be used for ATA command. .It Fl f Specifies FPDMA (NCQ) protocol to be used for ATA command. .It Fl i Ar len Ar fmt This specifies the amount of data to read, and how it should be displayed. If the format is .Sq - , .Ar len bytes of data will be read from the device and written to standard output. .It Fl o Ar len Ar fmt Op args This specifies the amount of data to be written to a device, and the data that is to be written. If the format is .Sq - , .Ar len bytes of data will be read from standard input and written to the device. .It Fl r Ar fmt This specifies that 11 result ATA Command Block registers should be displayed (status, error, lba_low, lba_mid, lba_high, device, lba_low_exp, lba_mid_exp, lba_high_exp, sector_count, sector_count_exp), and how. If the format is .Sq - , 11 result registers will be written to standard output in hex. .El .It Ic smpcmd Allows the user to send an arbitrary Serial Management Protocol (SMP) command to a device. The .Ic smpcmd function requires the .Fl r argument to specify the SMP request to be sent, and the .Fl R argument to specify the format of the SMP response. The syntax for the SMP request and response arguments is documented in .Xr cam_cdbparse 3 . .Pp Note that SAS adapters that support SMP passthrough (at least the currently known adapters) do not accept CRC bytes from the user in the request and do not pass CRC bytes back to the user in the response. Therefore users should not include the CRC bytes in the length of the request and not expect CRC bytes to be returned in the response. .Bl -tag -width 17n .It Fl r Ar len Ar fmt Op args This specifies the size of the SMP request, without the CRC bytes, and the SMP request format. If the format is .Sq - , .Ar len bytes of data will be read from standard input and written as the SMP request. .It Fl R Ar len Ar fmt Op args This specifies the size of the buffer allocated for the SMP response, and the SMP response format. If the format is .Sq - , .Ar len bytes of data will be allocated for the response and the response will be written to standard output. .El .It Ic smprg Allows the user to send the Serial Management Protocol (SMP) Report General command to a device. .Nm will display the data returned by the Report General command. If the SMP target supports the long response format, the additional data will be requested and displayed automatically. .Bl -tag -width 8n .It Fl l Request the long response format only. Not all SMP targets support the long response format. This option causes .Nm to skip sending the initial report general request without the long bit set and only issue a report general request with the long bit set. .El .It Ic smppc Allows the user to issue the Serial Management Protocol (SMP) PHY Control command to a device. This function should be used with some caution, as it can render devices inaccessible, and could potentially cause data corruption as well. The .Fl p argument is required to specify the PHY to operate on. .Bl -tag -width 17n .It Fl p Ar phy Specify the PHY to operate on. This argument is required. .It Fl l Request the long request/response format. Not all SMP targets support the long response format. For the PHY Control command, this currently only affects whether the request length is set to a value other than 0. .It Fl o Ar operation Specify a PHY control operation. Only one .Fl o operation may be specified. The operation may be specified numerically (in decimal, hexadecimal, or octal) or one of the following operation names may be specified: .Bl -tag -width 16n .It nop No operation. It is not necessary to specify this argument. .It linkreset Send the LINK RESET command to the phy. .It hardreset Send the HARD RESET command to the phy. .It disable Send the DISABLE command to the phy. Note that the LINK RESET or HARD RESET commands should re-enable the phy. .It clearerrlog Send the CLEAR ERROR LOG command. This clears the error log counters for the specified phy. .It clearaffiliation Send the CLEAR AFFILIATION command. This clears the affiliation from the STP initiator port with the same SAS address as the SMP initiator that requests the clear operation. .It sataportsel Send the TRANSMIT SATA PORT SELECTION SIGNAL command to the phy. This will cause a SATA port selector to use the given phy as its active phy and make the other phy inactive. .It clearitnl Send the CLEAR STP I_T NEXUS LOSS command to the PHY. .It setdevname Send the SET ATTACHED DEVICE NAME command to the PHY. This requires the .Fl d argument to specify the device name. .El .It Fl d Ar name Specify the attached device name. This option is needed with the .Fl o Ar setdevname phy operation. The name is a 64-bit number, and can be specified in decimal, hexadecimal or octal format. .It Fl m Ar rate Set the minimum physical link rate for the phy. This is a numeric argument. Currently known link rates are: .Bl -tag -width 5n .It 0x0 Do not change current value. .It 0x8 1.5 Gbps .It 0x9 3 Gbps .It 0xa 6 Gbps .El .Pp Other values may be specified for newer physical link rates. .It Fl M Ar rate Set the maximum physical link rate for the phy. This is a numeric argument. See the .Fl m argument description for known link rate arguments. .It Fl T Ar pp_timeout Set the partial pathway timeout value, in microseconds. See the .Tn ANSI .Tn SAS Protocol Layer (SPL) specification for more information on this field. .It Fl a Ar enable|disable Enable or disable SATA slumber phy power conditions. .It Fl A Ar enable|disable Enable or disable SATA partial power conditions. .It Fl s Ar enable|disable Enable or disable SAS slumber phy power conditions. .It Fl S Ar enable|disable Enable or disable SAS partial phy power conditions. .El .It Ic smpphylist List phys attached to a SAS expander, the address of the end device attached to the phy, and the inquiry data for that device and peripheral devices attached to that device. The inquiry data and peripheral devices are displayed if available. .Bl -tag -width 5n .It Fl l Turn on the long response format for the underlying SMP commands used for this command. .It Fl q Only print out phys that are attached to a device in the CAM EDT (Existing Device Table). .El .It Ic smpmaninfo Send the SMP Report Manufacturer Information command to the device and display the response. .Bl -tag -width 5n .It Fl l Turn on the long response format for the underlying SMP commands used for this command. .El .It Ic debug Turn on CAM debugging printfs in the kernel. This requires options CAMDEBUG in your kernel config file. WARNING: enabling debugging printfs currently causes an EXTREME number of kernel printfs. You may have difficulty turning off the debugging printfs once they start, since the kernel will be busy printing messages and unable to service other requests quickly. The .Ic debug function takes a number of arguments: .Bl -tag -width 18n .It Fl I Enable CAM_DEBUG_INFO printfs. .It Fl P Enable CAM_DEBUG_PERIPH printfs. .It Fl T Enable CAM_DEBUG_TRACE printfs. .It Fl S Enable CAM_DEBUG_SUBTRACE printfs. .It Fl X Enable CAM_DEBUG_XPT printfs. .It Fl c Enable CAM_DEBUG_CDB printfs. This will cause the kernel to print out the SCSI CDBs sent to the specified device(s). .It Fl p Enable CAM_DEBUG_PROBE printfs. .It all Enable debugging for all devices. .It off Turn off debugging for all devices .It bus Ns Op :target Ns Op :lun Turn on debugging for the given bus, target or lun. If the lun or target and lun are not specified, they are wildcarded. (i.e., just specifying a bus turns on debugging printfs for all devices on that bus.) .El .It Ic tags Show or set the number of "tagged openings" or simultaneous transactions we attempt to queue to a particular device. By default, the .Ic tags command, with no command-specific arguments (i.e., only generic arguments) prints out the "soft" maximum number of transactions that can be queued to the device in question. For more detailed information, use the .Fl v argument described below. .Bl -tag -width 7n .It Fl N Ar tags Set the number of tags for the given device. This must be between the minimum and maximum number set in the kernel quirk table. The default for most devices that support tagged queueing is a minimum of 2 and a maximum of 255. The minimum and maximum values for a given device may be determined by using the .Fl v switch. The meaning of the .Fl v switch for this .Nm subcommand is described below. .It Fl q Be quiet, and do not report the number of tags. This is generally used when setting the number of tags. .It Fl v The verbose flag has special functionality for the .Em tags argument. It causes .Nm to print out the tagged queueing related fields of the XPT_GDEV_TYPE CCB: .Bl -tag -width 13n .It dev_openings This is the amount of capacity for transactions queued to a given device. .It dev_active This is the number of transactions currently queued to a device. .It devq_openings This is the kernel queue space for transactions. This count usually mirrors dev_openings except during error recovery operations when the device queue is frozen (device is not allowed to receive commands), the number of dev_openings is reduced, or transaction replay is occurring. .It devq_queued This is the number of transactions waiting in the kernel queue for capacity on the device. This number is usually zero unless error recovery is in progress. .It held The held count is the number of CCBs held by peripheral drivers that have either just been completed or are about to be released to the transport layer for service by a device. Held CCBs reserve capacity on a given device. .It mintags This is the current "hard" minimum number of transactions that can be queued to a device at once. The .Ar dev_openings value above cannot go below this number. The default value for .Ar mintags is 2, although it may be set higher or lower for various devices. .It maxtags This is the "hard" maximum number of transactions that can be queued to a device at one time. The .Ar dev_openings value cannot go above this number. The default value for .Ar maxtags is 255, although it may be set higher or lower for various devices. .El .El .It Ic negotiate Show or negotiate various communication parameters. Some controllers may not support setting or changing some of these values. For instance, the Adaptec 174x controllers do not support changing a device's sync rate or offset. The .Nm utility will not attempt to set the parameter if the controller indicates that it does not support setting the parameter. To find out what the controller supports, use the .Fl v flag. The meaning of the .Fl v flag for the .Ic negotiate command is described below. Also, some controller drivers do not support setting negotiation parameters, even if the underlying controller supports negotiation changes. Some controllers, such as the Advansys wide controllers, support enabling and disabling synchronous negotiation for a device, but do not support setting the synchronous negotiation rate. .Bl -tag -width 17n .It Fl a Attempt to make the negotiation settings take effect immediately by sending a Test Unit Ready command to the device. .It Fl c Show or set current negotiation settings. This is the default. .It Fl D Ar enable|disable Enable or disable disconnection. .It Fl M Ar mode Set ATA mode. .It Fl O Ar offset Set the command delay offset. .It Fl q Be quiet, do not print anything. This is generally useful when you want to set a parameter, but do not want any status information. .It Fl R Ar syncrate Change the synchronization rate for a device. The sync rate is a floating point value specified in MHz. So, for instance, .Sq 20.000 is a legal value, as is .Sq 20 . .It Fl T Ar enable|disable Enable or disable tagged queueing for a device. .It Fl U Show or set user negotiation settings. The default is to show or set current negotiation settings. .It Fl v The verbose switch has special meaning for the .Ic negotiate subcommand. It causes .Nm to print out the contents of a Path Inquiry (XPT_PATH_INQ) CCB sent to the controller driver. .It Fl W Ar bus_width Specify the bus width to negotiate with a device. The bus width is specified in bits. The only useful values to specify are 8, 16, and 32 bits. The controller must support the bus width in question in order for the setting to take effect. .El .Pp In general, sync rate and offset settings will not take effect for a device until a command has been sent to the device. The .Fl a switch above will automatically send a Test Unit Ready to the device so negotiation parameters will take effect. .It Ic format Issue the .Tn SCSI FORMAT UNIT command to the named device. .Pp .Em WARNING! WARNING! WARNING! .Pp Low level formatting a disk will destroy ALL data on the disk. Use extreme caution when issuing this command. Many users low-level format disks that do not really need to be low-level formatted. There are relatively few scenarios that call for low-level formatting a disk. One reason for low-level formatting a disk is to initialize the disk after changing its physical sector size. Another reason for low-level formatting a disk is to revive the disk if you are getting "medium format corrupted" errors from the disk in response to read and write requests. .Pp Some disks take longer than others to format. Users should specify a timeout long enough to allow the format to complete. The default format timeout is 3 hours, which should be long enough for most disks. Some hard disks will complete a format operation in a very short period of time (on the order of 5 minutes or less). This is often because the drive does not really support the FORMAT UNIT command -- it just accepts the command, waits a few minutes and then returns it. .Pp The .Sq format subcommand takes several arguments that modify its default behavior. The .Fl q and .Fl y arguments can be useful for scripts. .Bl -tag -width 6n .It Fl q Be quiet, do not print any status messages. This option will not disable the questions, however. To disable questions, use the .Fl y argument, below. .It Fl r Run in .Dq report only mode. This will report status on a format that is already running on the drive. .It Fl w Issue a non-immediate format command. By default, .Nm issues the FORMAT UNIT command with the immediate bit set. This tells the device to immediately return the format command, before the format has actually completed. Then, .Nm gathers .Tn SCSI sense information from the device every second to determine how far along in the format process it is. If the .Fl w argument is specified, .Nm will issue a non-immediate format command, and will be unable to print any information to let the user know what percentage of the disk has been formatted. .It Fl y Do not ask any questions. By default, .Nm will ask the user if he/she really wants to format the disk in question, and also if the default format command timeout is acceptable. The user will not be asked about the timeout if a timeout is specified on the command line. .El .It Ic sanitize Issue the .Tn SCSI SANITIZE command to the named device. .Pp .Em WARNING! WARNING! WARNING! .Pp ALL data in the cache and on the disk will be destroyed or made inaccessible. Recovery of the data is not possible. Use extreme caution when issuing this command. .Pp The .Sq sanitize subcommand takes several arguments that modify its default behavior. The .Fl q and .Fl y arguments can be useful for scripts. .Bl -tag -width 6n .It Fl a Ar operation Specify the sanitize operation to perform. .Bl -tag -width 16n .It overwrite Perform an overwrite operation by writing a user supplied data pattern to the device one or more times. The pattern is given by the .Fl P argument. The number of times is given by the .Fl c argument. .It block Perform a block erase operation. All the device's blocks are set to a vendor defined value, typically zero. .It crypto Perform a cryptographic erase operation. The encryption keys are changed to prevent the decryption of the data. .It exitfailure Exits a previously failed sanitize operation. A failed sanitize operation can only be exited if it was run in the unrestricted completion mode, as provided by the .Fl U argument. .El .It Fl c Ar passes The number of passes when performing an .Sq overwrite operation. Valid values are between 1 and 31. The default is 1. .It Fl I When performing an .Sq overwrite operation, the pattern is inverted between consecutive passes. .It Fl P Ar pattern Path to the file containing the pattern to use when performing an .Sq overwrite operation. The pattern is repeated as needed to fill each block. .It Fl q Be quiet, do not print any status messages. This option will not disable the questions, however. To disable questions, use the .Fl y argument, below. .It Fl U Perform the sanitize in the unrestricted completion mode. If the operation fails, it can later be exited with the .Sq exitfailure operation. .It Fl r Run in .Dq report only mode. This will report status on a sanitize that is already running on the drive. .It Fl w Issue a non-immediate sanitize command. By default, .Nm issues the SANITIZE command with the immediate bit set. This tells the device to immediately return the sanitize command, before the sanitize has actually completed. Then, .Nm gathers .Tn SCSI sense information from the device every second to determine how far along in the sanitize process it is. If the .Fl w argument is specified, .Nm will issue a non-immediate sanitize command, and will be unable to print any information to let the user know what percentage of the disk has been sanitized. .It Fl y Do not ask any questions. By default, .Nm will ask the user if he/she really wants to sanitize the disk in question, and also if the default sanitize command timeout is acceptable. The user will not be asked about the timeout if a timeout is specified on the command line. .El .It Ic idle Put ATA device into IDLE state. Optional parameter .Pq Fl t specifies automatic standby timer value in seconds. Value 0 disables timer. .It Ic standby Put ATA device into STANDBY state. Optional parameter .Pq Fl t specifies automatic standby timer value in seconds. Value 0 disables timer. .It Ic sleep Put ATA device into SLEEP state. Note that the only way get device out of this state may be reset. .It Ic powermode Report ATA device power mode. .It Ic apm It optional parameter .Pq Fl l specified, enables and sets advanced power management level, where 1 -- minimum power, 127 -- maximum performance with standby, 128 -- minimum power without standby, 254 -- maximum performance. If not specified -- APM is disabled. .It Ic aam It optional parameter .Pq Fl l specified, enables and sets automatic acoustic management level, where 1 -- minimum noise, 254 -- maximum performance. If not specified -- AAM is disabled. .It Ic security Update or report security settings, using an ATA identify command (0xec). By default, .Nm will print out the security support and associated settings of the device. The .Ic security command takes several arguments: .Bl -tag -width 0n .It Fl d Ar pwd .Pp Disable device security using the given password for the selected user according to the devices configured security level. .It Fl e Ar pwd .Pp Erase the device using the given password for the selected user. .Pp .Em WARNING! WARNING! WARNING! .Pp Issuing a secure erase will .Em ERASE ALL user data on the device and may take several hours to complete. .Pp When this command is used against an SSD drive all its cells will be marked as empty, restoring it to factory default write performance. For SSD's this action usually takes just a few seconds. .It Fl f .Pp Freeze the security configuration of the specified device. .Pp After command completion any other commands that update the device lock mode shall be command aborted. Frozen mode is disabled by power-off or hardware reset. .It Fl h Ar pwd .Pp Enhanced erase the device using the given password for the selected user. .Pp .Em WARNING! WARNING! WARNING! .Pp Issuing an enhanced secure erase will .Em ERASE ALL user data on the device and may take several hours to complete. .Pp An enhanced erase writes predetermined data patterns to all user data areas, all previously written user data shall be overwritten, including sectors that are no longer in use due to reallocation. .It Fl k Ar pwd .Pp Unlock the device using the given password for the selected user according to the devices configured security level. .It Fl l Ar high|maximum .Pp Specifies which security level to set when issuing a .Fl s Ar pwd command. The security level determines device behavior when the master password is used to unlock the device. When the security level is set to high the device requires the unlock command and the master password to unlock. When the security level is set to maximum the device requires a secure erase with the master password to unlock. .Pp This option must be used in conjunction with one of the security action commands. .Pp Defaults to .Em high .It Fl q .Pp Be quiet, do not print any status messages. This option will not disable the questions, however. To disable questions, use the .Fl y argument, below. .It Fl s Ar pwd .Pp Password the device (enable security) using the given password for the selected user. This option can be combined with other options such as .Fl e Em pwd .Pp A master password may be set in a addition to the user password. The purpose of the master password is to allow an administrator to establish a password that is kept secret from the user, and which may be used to unlock the device if the user password is lost. .Pp .Em Note: Setting the master password does not enable device security. .Pp If the master password is set and the drive supports a Master Revision Code feature the Master Password Revision Code will be decremented. .It Fl T Ar timeout .Pp Overrides the default timeout, specified in seconds, used for both .Fl e and .Fl h this is useful if your system has problems processing long timeouts correctly. .Pp Usually the timeout is calculated from the information stored on the drive if present, otherwise it defaults to 2 hours. .It Fl U Ar user|master .Pp Specifies which user to set / use for the running action command, valid values are user or master and defaults to master if not set. .Pp This option must be used in conjunction with one of the security action commands. .Pp Defaults to .Em master .It Fl y .Pp Confirm yes to dangerous options such as .Fl e without prompting for confirmation. .El .Pp If the password specified for any action commands does not match the configured password for the specified user the command will fail. .Pp The password in all cases is limited to 32 characters, longer passwords will fail. .It Ic hpa Update or report Host Protected Area details. By default .Nm will print out the HPA support and associated settings of the device. The .Ic hpa command takes several optional arguments: .Bl -tag -width 0n .It Fl f .Pp Freeze the HPA configuration of the specified device. .Pp After command completion any other commands that update the HPA configuration shall be command aborted. Frozen mode is disabled by power-off or hardware reset. .It Fl l .Pp Lock the HPA configuration of the device until a successful call to unlock or the next power-on reset occurs. .It Fl P .Pp Make the HPA max sectors persist across power-on reset or a hardware reset. This must be used in combination with .Fl s Ar max_sectors . .It Fl p Ar pwd .Pp Set the HPA configuration password required for unlock calls. .It Fl q .Pp Be quiet, do not print any status messages. This option will not disable the questions. To disable questions, use the .Fl y argument, below. .It Fl s Ar max_sectors .Pp Configures the maximum user accessible sectors of the device. This will change the number of sectors the device reports. .Pp .Em WARNING! WARNING! WARNING! .Pp Changing the max sectors of a device using this option will make the data on the device beyond the specified value inaccessible. .Pp Only one successful .Fl s Ar max_sectors call can be made without a power-on reset or a hardware reset of the device. .It Fl U Ar pwd .Pp Unlock the HPA configuration of the specified device using the given password. If the password specified does not match the password configured via .Fl p Ar pwd the command will fail. .Pp After 5 failed unlock calls, due to password miss-match, the device will refuse additional unlock calls until after a power-on reset. .It Fl y .Pp Confirm yes to dangerous options such as .Fl e without prompting for confirmation .El .Pp The password for all HPA commands is limited to 32 characters, longer passwords will fail. +.It Ic ama +Update or report Accessible Max Address Configuration. +By default +.Nm +will print out the Accessible Max Address Configuration support and associated +settings of the device. +The +.Ic ama +command takes several optional arguments: +.Bl -tag -width 0n +.It Fl f +.Pp +Freeze the Accessible Max Address Configuration of the specified device. +.Pp +After command completion any other commands that update the configuration +shall be command aborted. +Frozen mode is disabled by power-off. +.It Fl q +.Pp +Be quiet, do not print any status messages. +.It Fl s Ar max_sectors +.Pp +Configures the maximum user accessible sectors of the device. +This will change the number of sectors the device reports. +.Pp +.Em WARNING! WARNING! WARNING! +.Pp +Changing the max sectors of a device using this option will make the data on +the device beyond the specified value indeterminate. +.Pp +Only one successful +.Fl s Ar max_sectors +call can be made without a power-on reset of the device. +.El .It Ic fwdownload Program firmware of the named .Tn SCSI or ATA device using the image file provided. .Pp If the device is a .Tn SCSI device and it provides a recommended timeout for the WRITE BUFFER command (see the .Nm opcodes subcommand), that timeout will be used for the firmware download. The drive-recommended timeout value may be overridden on the command line with the .Fl t option. .Pp Current list of supported vendors for SCSI/SAS drives: .Bl -tag -width 10n .It HGST Tested with 4TB SAS drives, model number HUS724040ALS640. .It HITACHI .It HP .It IBM Tested with LTO-5 (ULTRIUM-HH5) and LTO-6 (ULTRIUM-HH6) tape drives. There is a separate table entry for hard drives, because the update method for hard drives is different than the method for tape drives. .It PLEXTOR .It QUALSTAR .It QUANTUM .It SAMSUNG Tested with SM1625 SSDs. .It SEAGATE Tested with Constellation ES (ST32000444SS), ES.2 (ST33000651SS) and ES.3 (ST1000NM0023) drives. .It SmrtStor Tested with 400GB Optimus SSDs (TXA2D20400GA6001). .El .Pp .Em WARNING! WARNING! WARNING! .Pp Little testing has been done to make sure that different device models from each vendor work correctly with the fwdownload command. A vendor name appearing in the supported list means only that firmware of at least one device type from that vendor has successfully been programmed with the fwdownload command. Extra caution should be taken when using this command since there is no guarantee it will not break a device from the listed vendors. Ensure that you have a recent backup of the data on the device before performing a firmware update. .Pp Note that unknown .Tn SCSI protocol devices will not be programmed, since there is little chance of the firmware download succeeding. .Pp .Nm will currently attempt a firmware download to any .Tn ATA or .Tn SATA device, since the standard .Tn ATA DOWNLOAD MICROCODE command may work. Firmware downloads to .Tn ATA and .Tn SATA devices are supported for devices connected to standard .Tn ATA and .Tn SATA controllers, and devices connected to SAS controllers with .Tn SCSI to .Tn ATA translation capability. In the latter case, .Nm uses the .Tn SCSI .Tn ATA PASS-THROUGH command to send the .Tn ATA DOWNLOAD MICROCODE command to the drive. Some .Tn SCSI to .Tn ATA translation implementations don't work fully when translating .Tn SCSI WRITE BUFFER commands to .Tn ATA DOWNLOAD MICROCODE commands, but do support .Tn ATA passthrough well enough to do a firmware download. .Bl -tag -width 11n .It Fl f Ar fw_image Path to the firmware image file to be downloaded to the specified device. .It Fl q Do not print informational messages, only print errors. This option should be used with the .Fl y option to suppress all output. .It Fl s Run in simulation mode. Device checks are run and the confirmation dialog is shown, but no firmware download will occur. .It Fl v Show .Tn SCSI or .Tn ATA errors in the event of a failure. .Pp In simulation mode, print out the .Tn SCSI CDB or .Tn ATA register values that would be used for the firmware download command. .It Fl y Do not ask for confirmation. .El .It Ic persist Persistent reservation support. Persistent reservations are a way to reserve a particular .Tn SCSI LUN for use by one or more .Tn SCSI initiators. If the .Fl i option is specified, .Nm will issue the .Tn SCSI PERSISTENT RESERVE IN command using the requested service action. If the .Fl o option is specified, .Nm will issue the .Tn SCSI PERSISTENT RESERVE OUT command using the requested service action. One of those two options is required. .Pp Persistent reservations are complex, and fully explaining them is outside the scope of this manual. Please visit http://www.t10.org and download the latest SPC spec for a full explanation of persistent reservations. .Bl -tag -width 8n .It Fl i Ar mode Specify the service action for the PERSISTENT RESERVE IN command. Supported service actions: .Bl -tag -width 19n .It read_keys Report the current persistent reservation generation (PRgeneration) and any registered keys. .It read_reservation Report the persistent reservation, if any. .It report_capabilities Report the persistent reservation capabilities of the LUN. .It read_full_status Report the full status of persistent reservations on the LUN. .El .It Fl o Ar mode Specify the service action for the PERSISTENT RESERVE OUT command. For service actions like register that are components of other service action names, the entire name must be specified. Otherwise, enough of the service action name must be specified to distinguish it from other possible service actions. Supported service actions: .Bl -tag -width 15n .It register Register a reservation key with the LUN or unregister a reservation key. To register a key, specify the requested key as the Service Action Reservation Key. To unregister a key, specify the previously registered key as the Reservation Key. To change a key, specify the old key as the Reservation Key and the new key as the Service Action Reservation Key. .It register_ignore This is similar to the register subcommand, except that the Reservation Key is ignored. The Service Action Reservation Key will overwrite any previous key registered for the initiator. .It reserve Create a reservation. A key must be registered with the LUN before the LUN can be reserved, and it must be specified as the Reservation Key. The type of reservation must also be specified. The scope defaults to LUN scope (LU_SCOPE), but may be changed. .It release Release a reservation. The Reservation Key must be specified. .It clear Release a reservation and remove all keys from the device. The Reservation Key must be specified. .It preempt Remove a reservation belonging to another initiator. The Reservation Key must be specified. The Service Action Reservation Key may be specified, depending on the operation being performed. .It preempt_abort Remove a reservation belonging to another initiator and abort all outstanding commands from that initiator. The Reservation Key must be specified. The Service Action Reservation Key may be specified, depending on the operation being performed. .It register_move Register another initiator with the LUN, and establish a reservation on the LUN for that initiator. The Reservation Key and Service Action Reservation Key must be specified. .It replace_lost Replace Lost Reservation information. .El .It Fl a Set the All Target Ports (ALL_TG_PT) bit. This requests that the key registration be applied to all target ports and not just the particular target port that receives the command. This only applies to the register and register_ignore actions. .It Fl I Ar tid Specify a Transport ID. This only applies to the Register and Register and Move service actions for Persistent Reserve Out. Multiple Transport IDs may be specified with multiple .Fl I arguments. With the Register service action, specifying one or more Transport IDs implicitly enables the .Fl S option which turns on the SPEC_I_PT bit. Transport IDs generally have the format protocol,id. .Bl -tag -width 5n .It SAS A SAS Transport ID consists of .Dq sas, followed by a 64-bit SAS address. For example: .Pp .Dl sas,0x1234567812345678 .It FC A Fibre Channel Transport ID consists of .Dq fcp, followed by a 64-bit Fibre Channel World Wide Name. For example: .Pp .Dl fcp,0x1234567812345678 .It SPI A Parallel SCSI address consists of .Dq spi, followed by a SCSI target ID and a relative target port identifier. For example: .Pp .Dl spi,4,1 .It 1394 An IEEE 1394 (Firewire) Transport ID consists of .Dq sbp, followed by a 64-bit EUI-64 IEEE 1394 node unique identifier. For example: .Pp .Dl sbp,0x1234567812345678 .It RDMA A SCSI over RDMA Transport ID consists of .Dq srp, followed by a 128-bit RDMA initiator port identifier. The port identifier must be exactly 32 or 34 (if the leading 0x is included) hexadecimal digits. Only hexadecimal (base 16) numbers are supported. For example: .Pp .Dl srp,0x12345678123456781234567812345678 .It iSCSI An iSCSI Transport ID consists an iSCSI name and optionally a separator and iSCSI session ID. For example, if only the iSCSI name is specified: .Pp .Dl iqn.2012-06.com.example:target0 .Pp If the iSCSI separator and initiator session ID are specified: .Pp .Dl iqn.2012-06.com.example:target0,i,0x123 .It PCIe A SCSI over PCIe Transport ID consists of .Dq sop, followed by a PCIe Routing ID. The Routing ID consists of a bus, device and function or in the alternate form, a bus and function. The bus must be in the range of 0 to 255 inclusive and the device must be in the range of 0 to 31 inclusive. The function must be in the range of 0 to 7 inclusive if the standard form is used, and in the range of 0 to 255 inclusive if the alternate form is used. For example, if a bus, device and function are specified for the standard Routing ID form: .Pp .Dl sop,4,5,1 .Pp If the alternate Routing ID form is used: .Pp .Dl sop,4,1 .El .It Fl k Ar key Specify the Reservation Key. This may be in decimal, octal or hexadecimal format. The value is zero by default if not otherwise specified. The value must be between 0 and 2^64 - 1, inclusive. .It Fl K Ar key Specify the Service Action Reservation Key. This may be in decimal, octal or hexadecimal format. The value is zero by default if not otherwise specified. The value must be between 0 and 2^64 - 1, inclusive. .It Fl p Enable the Activate Persist Through Power Loss bit. This is only used for the register and register_ignore actions. This requests that the reservation persist across power loss events. .It Fl s Ar scope Specify the scope of the reservation. The scope may be specified by name or by number. The scope is ignored for register, register_ignore and clear. If the desired scope isn't available by name, you may specify the number. .Bl -tag -width 7n .It lun LUN scope (0x00). This encompasses the entire LUN. .It extent Extent scope (0x01). .It element Element scope (0x02). .El .It Fl R Ar rtp Specify the Relative Target Port. This only applies to the Register and Move service action of the Persistent Reserve Out command. .It Fl S Enable the SPEC_I_PT bit. This only applies to the Register service action of Persistent Reserve Out. You must also specify at least one Transport ID with .Fl I if this option is set. If you specify a Transport ID, this option is automatically set. It is an error to specify this option for any service action other than Register. .It Fl T Ar type Specify the reservation type. The reservation type may be specified by name or by number. If the desired reservation type isn't available by name, you may specify the number. Supported reservation type names: .Bl -tag -width 11n .It read_shared Read Shared mode. .It wr_ex Write Exclusive mode. May also be specified as .Dq write_exclusive . .It rd_ex Read Exclusive mode. May also be specified as .Dq read_exclusive . .It ex_ac Exclusive access mode. May also be specified as .Dq exclusive_access . .It wr_ex_ro Write Exclusive Registrants Only mode. May also be specified as .Dq write_exclusive_reg_only . .It ex_ac_ro Exclusive Access Registrants Only mode. May also be specified as .Dq exclusive_access_reg_only . .It wr_ex_ar Write Exclusive All Registrants mode. May also be specified as .Dq write_exclusive_all_regs . .It ex_ac_ar Exclusive Access All Registrants mode. May also be specified as .Dq exclusive_access_all_regs . .El .It Fl U Specify that the target should unregister the initiator that sent the Register and Move request. By default, the target will not unregister the initiator that sends the Register and Move request. This option only applies to the Register and Move service action of the Persistent Reserve Out command. .El .It Ic attrib Issue the .Tn SCSI READ or WRITE ATTRIBUTE commands. These commands are used to read and write attributes in Medium Auxiliary Memory (MAM). The most common place Medium Auxiliary Memory is found is small flash chips included tape cartriges. For instance, .Tn LTO tapes have MAM. Either the .Fl r option or the .Fl w option must be specified. .Bl -tag -width 14n .It Fl r Ar action Specify the READ ATTRIBUTE service action. .Bl -tag -width 11n .It attr_values Issue the ATTRIBUTE VALUES service action. Read and decode the available attributes and their values. .It attr_list Issue the ATTRIBUTE LIST service action. List the attributes that are available to read and write. .It lv_list Issue the LOGICAL VOLUME LIST service action. List the available logical volumes in the MAM. .It part_list Issue the PARTITION LIST service action. List the available partitions in the MAM. .It supp_attr Issue the SUPPORTED ATTRIBUTES service action. List attributes that are supported for reading or writing. These attributes may or may not be currently present in the MAM. .El .It Fl w Ar attr Specify an attribute to write to the MAM. This option is not yet implemented. .It Fl a Ar num Specify the attribute number to display. This option only works with the attr_values, attr_list and supp_attr arguments to .Fl r . .It Fl c Display cached attributes. If the device supports this flag, it allows displaying attributes for the last piece of media loaded in the drive. .It Fl e Ar num Specify the element address. This is used for specifying which element number in a medium changer to access when reading attributes. The element number could be for a picker, portal, slot or drive. .It Fl F Ar form1,form2 Specify the output format for the attribute values (attr_val) display as a comma separated list of options. The default output is currently set to field_all,nonascii_trim,text_raw. Once this code is ported to FreeBSD 10, any text fields will be converted from their codeset to the user's native codeset with .Xr iconv 3 . .Pp The text options are mutually exclusive; if you specify more than one, you will get unpredictable results. The nonascii options are also mutually exclusive. Most of the field options may be logically ORed together. .Bl -tag -width 12n .It text_esc Print text fields with non-ASCII characters escaped. .It text_raw Print text fields natively, with no codeset conversion. .It nonascii_esc If any non-ASCII characters occur in fields that are supposed to be ASCII, escape the non-ASCII characters. .It nonascii_trim If any non-ASCII characters occur in fields that are supposed to be ASCII, omit the non-ASCII characters. .It nonascii_raw If any non-ASCII characters occur in fields that are supposed to be ASCII, print them as they are. .It field_all Print all of the prefix fields: description, attribute number, attribute size, and the attribute's readonly status. If field_all is specified, specifying any other field options will not have an effect. .It field_none Print none of the prefix fields, and only print out the attribute value. If field_none is specified, specifying any other field options will result in those fields being printed. .It field_desc Print out the attribute description. .It field_num Print out the attribute number. .It field_size Print out the attribute size. .It field_rw Print out the attribute's readonly status. .El .It Fl p Ar part Specify the partition. When the media has multiple partitions, specifying different partition numbers allows seeing the values for each individual partition. .It Fl s Ar start_num Specify the starting attribute number. This requests that the target device return attribute information starting at the given number. .It Fl T Ar elem_type Specify the element type. For medium changer devices, this allows specifying the type the element referenced in the element address ( .Fl e ) . Valid types are: .Dq all , .Dq picker , .Dq slot , .Dq portal , and .Dq drive . .It Fl V Ar vol_num Specify the number of the logical volume to operate on. If the media has multiple logical volumes, this will allow displaying or writing attributes on the given logical volume. .El .It Ic opcodes Issue the REPORT SUPPORTED OPCODES service action of the .Tn SCSI MAINTENANCE IN command. Without arguments, this command will return a list of all .Tn SCSI commands supported by the device, including service actions of commands that support service actions. It will also include the .Tn SCSI CDB (Command Data Block) length for each command, and the description of each command if it is known. .Bl -tag -width 18n .It Fl o Ar opcode Request information on a specific opcode instead of the list of supported commands. If supported, the target will return a CDB-like structure that indicates the opcode, service action (if any), and a mask of bits that are supported in that CDB. .It Fl s Ar service_action For commands that support a service action, specify the service action to query. .It Fl N If a service action is specified for a given opcode, and the device does not support the given service action, the device should not return a .Tn SCSI error, but rather indicate in the returned parameter data that the command is not supported. By default, if a service action is specified for an opcode, and service actions are not supported for the opcode in question, the device will return an error. .It Fl T Include timeout values. This option works with the default display, which includes all commands supported by the device, and with the .Fl o and .Fl s options, which request information on a specific command and service action. This requests that the device report Nominal and Recommended timeout values for the given command or commands. The timeout values are in seconds. The timeout descriptor also includes a command-specific .El .It Ic zone Manage .Tn SCSI and .Tn ATA Zoned Block devices. This allows managing devices that conform to the .Tn SCSI Zoned Block Commands (ZBC) and .Tn ATA Zoned ATA Command Set (ZAC) specifications. Devices using these command sets are usually hard drives using Shingled Magnetic Recording (SMR). There are three types of SMR drives: .Bl -tag -width 13n .It Drive Managed Drive Managed drives look and act just like a standard random access block device, but underneath, the drive reads and writes the bulk of its capacity using SMR zones. Sequential writes will yield better performance, but writing sequentially is not required. .It Host Aware Host Aware drives expose the underlying zone layout via .Tn SCSI or .Tn ATA commands and allow the host to manage the zone conditions. The host is not required to manage the zones on the drive, though. Sequential writes will yield better performance in Sequential Write Preferred zones, but the host can write randomly in those zones. .It Host Managed Host Managed drives expose the underlying zone layout via .Tn SCSI or .Tn ATA commands. The host is required to access the zones according to the rules described by the zone layout. Any commands that violate the rules will be returned with an error. .El .Pp SMR drives are divided into zones (typically in the range of 256MB each) that fall into three general categories: .Bl -tag -width 20n .It Conventional These are also known as Non Write Pointer zones. These zones can be randomly written without an unexpected performance penalty. .It Sequential Preferred These zones should be written sequentially starting at the write pointer for the zone. They may be written randomly. Writes that do not conform to the zone layout may be significantly slower than expected. .It Sequential Required These zones must be written sequentially. If they are not written sequentially, starting at the write pointer, the command will fail. .El .Pp .Bl -tag -width 12n .It Fl c Ar cmd Specify the zone subcommand: .Bl -tag -width 6n .It rz Issue the Report Zones command. All zones are returned by default. Specify report options with .Fl o and printing options with .Fl P . Specify the starting LBA with .Fl l . Note that .Dq reportzones is also accepted as a command argument. .It open Explicitly open the zone specified by the starting LBA. .It close Close the zone specified by starting LBA. .It finish Finish the zone specified by the starting LBA. .It rwp Reset the write pointer for the zone specified by the starting LBA. .El .It Fl a For the Open, Close, Finish, and Reset Write Pointer operations, apply the operation to all zones on the drive. .It Fl l Ar lba Specify the starting LBA. For the Report Zones command, this tells the drive to report starting with the zone that starts at the given LBA. For the other commands, this allows the user to identify the zone requested by its starting LBA. The LBA may be specified in decimal, hexadecimal or octal notation. .It Fl o Ar rep_opt For the Report Zones command, specify a subset of zones to report. .Bl -tag -width 8n .It all Report all zones. This is the default. .It emtpy Report only empty zones. .It imp_open Report zones that are implicitly open. This means that the host has sent a write to the zone without explicitly opening the zone. .It exp_open Report zones that are explicitly open. .It closed Report zones that have been closed by the host. .It full Report zones that are full. .It ro Report zones that are in the read only state. Note that .Dq readonly is also accepted as an argument. .It offline Report zones that are in the offline state. .It reset Report zones where the device recommends resetting write pointers. .It nonseq Report zones that have the Non Sequential Resources Active flag set. These are zones that are Sequential Write Preferred, but have been written non-sequentially. .It nonwp Report Non Write Pointer zones, also known as Conventional zones. .El .It Fl P Ar print_opt Specify a printing option for Report Zones: .Bl -tag -width 7n .It normal Normal Report Zones output. This is the default. The summary and column headings are printed, fields are separated by spaces and the fields themselves may contain spaces. .It summary Just print the summary: the number of zones, the maximum LBA (LBA of the last logical block on the drive), and the value of the .Dq same field. The .Dq same field describes whether the zones on the drive are all identical, all different, or whether they are the same except for the last zone, etc. .It script Print the zones in a script friendly format. The summary and column headings are omitted, the fields are separated by commas, and the fields do not contain spaces. The fields contain underscores where spaces would normally be used. .El .El .It Ic epc Issue .Tn ATA Extended Power Conditions (EPC) feature set commands. This only works on .Tn ATA protocol drives, and will not work on .Tn SCSI protocol drives. It will work on .Tn SATA drives behind a .Tn SCSI to .Tn ATA translation layer (SAT). It may be helpful to read the ATA Command Set - 4 (ACS-4) description of the Extended Power Conditions feature set, available at t13.org, to understand the details of this particular .Nm subcommand. .Bl -tag -width 6n .It Fl c Ar cmd Specify the epc subcommand .Bl -tag -width 7n .It restore Restore drive power condition settings. .Bl -tag -width 6n .It Fl r Ar src Specify the source for the restored power settings, either .Dq default or .Dq saved . This argument is required. .It Fl s Save the settings. This only makes sense to specify when restoring from defaults. .El .It goto Go to the specified power condition. .Bl -tag -width 7n .It Fl p Ar cond Specify the power condition: Idle_a, Idle_b, Idle_c, Standby_y, Standby_z. This argument is required. .It Fl D Specify delayed entry to the power condition. The drive, if it supports this, can enter the power condition after the command completes. .It Fl H Hold the power condition. If the drive supports this option, it will hold the power condition and reject all commands that would normally cause it to exit that power condition. .El .It timer Set the timer value for a power condition and enable or disable the condition. See the .Dq list display described below to see what the current timer settings are for each Idle and Standby mode supported by the drive. .Bl -tag -width 8n .It Fl e Enable the power condition. One of .Fl e or .Fl d is required. .It Fl d Disable the power condition. One of .Fl d or .Fl e is required. .It Fl T Ar timer Specify the timer in seconds. The user may specify a timer as a floating point number with a maximum supported resolution of tenths of a second. Drives may or may not support sub-second timer values. .It Fl p Ar cond Specify the power condition: Idle_a, Idle_b, Idle_c, Standby_y, Standby_z. This argument is required. .It Fl s Save the timer and power condition enable/disable state. By default, if this option is not specified, only the current values for this power condition will be affected. .El .It state Enable or disable a particular power condition. .Bl -tag -width 7n .It Fl e Enable the power condition. One of .Fl e or .Fl d is required. .It Fl d Disable the power condition. One of .Fl d or .Fl e is required. .It Fl p Ar cond Specify the power condition: Idle_a, Idle_b, Idle_c, Standby_y, Standby_z. This argument is required. .It Fl s Save the power condition enable/disable state. By default, if this option is not specified, only the current values for this power condition will be affected. .El .It enable Enable the Extended Power Condition (EPC) feature set. .It disable Disable the Extended Power Condition (EPC) feature set. .It source Specify the EPC power source. .Bl -tag -width 6n .It Fl S Ar src Specify the power source, either .Dq battery or .Dq nonbattery . .El .It status Get the current status of several parameters related to the Extended Power Condition (EPC) feature set, including whether APM and EPC are supported and enabled, whether Low Power Standby is supported, whether setting the EPC power source is supported, whether Low Power Standby is supported and the current power condition. .Bl -tag -width 3n .It Fl P Only report the current power condition. Some drives will exit their current power condition if a command other than the .Tn ATA CHECK POWER MODE command is received. If this flag is specified, .Nm will only issue the .Tn ATA CHECK POWER MODE command to the drive. .El .It list Display the .Tn ATA Power Conditions log (Log Address 0x08). This shows the list of Idle and Standby power conditions the drive supports, and a number of parameters about each condition, including whether it is enabled and what the timer value is. .El .El .It Ic timestamp Issue REPORT TIMESTAMP or SET TIMESTAMP .Tn SCSI commands. Either the .Fl r option or the .Fl s option must be specified. .Bl -tag -width 6n .It Fl r Report the device's timestamp. If no more arguments are specified, the timestamp will be reported using the national representation of the date and time, followed by the time zone. .Bl -tag -width 9n .It Fl f Ar format Specify the strftime format string, as documented in strftime(3), to be used to format the reported timestamp. .It Fl m Report the timestamp as milliseconds since the epoch. .It Fl U Report the timestamp using the national representation of the date and time, but override the system time zone and use UTC instead. .El .El .Bl -tag -width 6n .It Fl s Set the device's timestamp. Either the .Fl f and .Fl T options or the .Fl U option must be specified. .Bl -tag -width 9n .It Fl f Ar format Specify the strptime format string, as documented in strptime(3). The time must also be specified with the .Fl T option. .It Fl T Ar time Provide the time in the format specified with the .Fl f option. .It Fl U Set the timestamp to the host system's time in UTC. .El .El .It Ic devtype Print out the device type for specified device. .Bl -tag -width 10n .It ata An ATA device attached directly to an ATA controller .It satl An SATA device attached behind a SAS controller via SCSI-ATA Translation Layer (SATL) .It scsi A SCSI device .It nvme An directly attached NVMe device .It mmcsd An MMC or SD device attached via a mmcsd bus .It none No device type reported .It unknown Device type is unknown .It illegal A programming error occurred .El .It Ic help Print out verbose usage information. .El .Sh ENVIRONMENT The .Ev SCSI_MODES variable allows the user to specify an alternate mode page format file. .Pp The .Ev EDITOR variable determines which text editor .Nm starts when editing mode pages. .Sh FILES .Bl -tag -width /usr/share/misc/scsi_modes -compact .It Pa /usr/share/misc/scsi_modes is the SCSI mode format database. .It Pa /dev/xpt0 is the transport layer device. .It Pa /dev/pass* are the CAM application passthrough devices. .El .Sh EXAMPLES .Dl camcontrol eject -n cd -u 1 -v .Pp Eject the CD from cd1, and print SCSI sense information if the command fails. .Pp .Dl camcontrol tur da0 .Pp Send the SCSI test unit ready command to da0. The .Nm utility will report whether the disk is ready, but will not display sense information if the command fails since the .Fl v switch was not specified. .Bd -literal -offset indent camcontrol tur da1 -E -C 4 -t 50 -Q head -v .Ed .Pp Send a test unit ready command to da1. Enable kernel error recovery. Specify a retry count of 4, and a timeout of 50 seconds. Enable sense printing (with the .Fl v flag) if the command fails. Since error recovery is turned on, the disk will be spun up if it is not currently spinning. The .Tn SCSI task attribute for the command will be set to Head of Queue. The .Nm utility will report whether the disk is ready. .Bd -literal -offset indent camcontrol cmd -n cd -u 1 -v -c "3C 00 00 00 00 00 00 00 0e 00" \e -i 0xe "s1 i3 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1" .Ed .Pp Issue a READ BUFFER command (0x3C) to cd1. Display the buffer size of cd1, and display the first 10 bytes from the cache on cd1. Display SCSI sense information if the command fails. .Bd -literal -offset indent camcontrol cmd -n cd -u 1 -v -c "3B 00 00 00 00 00 00 00 0e 00" \e -o 14 "00 00 00 00 1 2 3 4 5 6 v v v v" 7 8 9 8 .Ed .Pp Issue a WRITE BUFFER (0x3B) command to cd1. Write out 10 bytes of data, not including the (reserved) 4 byte header. Print out sense information if the command fails. Be very careful with this command, improper use may cause data corruption. .Bd -literal -offset indent camcontrol modepage da3 -m 1 -e -P 3 .Ed .Pp Edit mode page 1 (the Read-Write Error Recover page) for da3, and save the settings on the drive. Mode page 1 contains a disk drive's auto read and write reallocation settings, among other things. .Pp .Dl camcontrol rescan all .Pp Rescan all SCSI busses in the system for devices that have been added, removed or changed. .Pp .Dl camcontrol rescan 0 .Pp Rescan SCSI bus 0 for devices that have been added, removed or changed. .Pp .Dl camcontrol rescan 0:1:0 .Pp Rescan SCSI bus 0, target 1, lun 0 to see if it has been added, removed, or changed. .Pp .Dl camcontrol tags da5 -N 24 .Pp Set the number of concurrent transactions for da5 to 24. .Bd -literal -offset indent camcontrol negotiate -n da -u 4 -T disable .Ed .Pp Disable tagged queueing for da4. .Bd -literal -offset indent camcontrol negotiate -n da -u 3 -R 20.000 -O 15 -a .Ed .Pp Negotiate a sync rate of 20MHz and an offset of 15 with da3. Then send a Test Unit Ready command to make the settings take effect. .Bd -literal -offset indent camcontrol smpcmd ses0 -v -r 4 "40 0 00 0" -R 1020 "s9 i1" .Ed .Pp Send the SMP REPORT GENERAL command to ses0, and display the number of PHYs it contains. Display SMP errors if the command fails. .Bd -literal -offset indent camcontrol security ada0 .Ed .Pp Report security support and settings for ada0 .Bd -literal -offset indent camcontrol security ada0 -U user -s MyPass .Ed .Pp Enable security on device ada0 with the password MyPass .Bd -literal -offset indent camcontrol security ada0 -U user -e MyPass .Ed .Pp Secure erase ada0 which has had security enabled with user password MyPass .Pp .Em WARNING! WARNING! WARNING! .Pp This will .Em ERASE ALL data from the device, so backup your data before using! .Pp This command can be used against an SSD drive to restoring it to factory default write performance. .Bd -literal -offset indent camcontrol hpa ada0 .Ed .Pp Report HPA support and settings for ada0 (also reported via identify). .Bd -literal -offset indent camcontrol hpa ada0 -s 10240 .Ed .Pp Enables HPA on ada0 setting the maximum reported sectors to 10240. .Pp .Em WARNING! WARNING! WARNING! .Pp This will .Em PREVENT ACCESS to all data on the device beyond this limit until HPA is disabled by setting HPA to native max sectors of the device, which can only be done after a power-on or hardware reset! .Pp .Em DO NOT use this on a device which has an active filesystem! .Bd -literal -offset indent camcontrol persist da0 -v -i read_keys .Ed .Pp This will read any persistent reservation keys registered with da0, and display any errors encountered when sending the PERSISTENT RESERVE IN .Tn SCSI command. .Bd -literal -offset indent camcontrol persist da0 -v -o register -a -K 0x12345678 .Ed .Pp This will register the persistent reservation key 0x12345678 with da0, apply that registration to all ports on da0, and display any errors that occur when sending the PERSISTENT RESERVE OUT command. .Bd -literal -offset indent camcontrol persist da0 -v -o reserve -s lun -k 0x12345678 -T ex_ac .Ed .Pp This will reserve da0 for the exlusive use of the initiator issuing the command. The scope of the reservation is the entire LUN. Any errors sending the PERSISTENT RESERVE OUT command will be displayed. .Bd -literal -offset indent camcontrol persist da0 -v -i read_full .Ed .Pp This will display the full status of all reservations on da0 and print out status if there are any errors. .Bd -literal -offset indent camcontrol persist da0 -v -o release -k 0x12345678 -T ex_ac .Ed .Pp This will release a reservation on da0 of the type ex_ac (Exclusive Access). The Reservation Key for this registration is 0x12345678. Any errors that occur will be displayed. .Bd -literal -offset indent camcontrol persist da0 -v -o register -K 0x12345678 -S \e -I sas,0x1234567812345678 -I sas,0x8765432187654321 .Ed .Pp This will register the key 0x12345678 with da0, specifying that it applies to the SAS initiators with SAS addresses 0x1234567812345678 and 0x8765432187654321. .Bd -literal -offset indent camcontrol persist da0 -v -o register_move -k 0x87654321 \e -K 0x12345678 -U -p -R 2 -I fcp,0x1234567812345678 .Ed .Pp This will move the registration from the current initiator, whose Registration Key is 0x87654321, to the Fibre Channel initiator with the Fiber Channel World Wide Node Name 0x1234567812345678. A new registration key, 0x12345678, will be registered for the initiator with the Fibre Channel World Wide Node Name 0x1234567812345678, and the current initiator will be unregistered from the target. The reservation will be moved to relative target port 2 on the target device. The registration will persist across power losses. .Bd -literal -offset indent camcontrol attrib sa0 -v -i attr_values -p 1 .Ed .Pp This will read and decode the attribute values from partition 1 on the tape in tape drive sa0, and will display any .Tn SCSI errors that result. .Pp .Bd -literal -offset indent camcontrol zone da0 -v -c rz -P summary .Ed .Pp This will request the SMR zone list from disk da0, and print out a summary of the zone parameters, and display any .Tn SCSI or .Tn ATA errors that result. .Pp .Bd -literal -offset indent camcontrol zone da0 -v -c rz -o reset .Ed .Pp This will request the list of SMR zones that should have their write pointer reset from the disk da0, and display any .Tn SCSI or .Tn ATA errors that result. .Pp .Bd -literal -offset indent camcontrol zone da0 -v -c rwp -l 0x2c80000 .Ed .Pp This will issue the Reset Write Pointer command to disk da0 for the zone that starts at LBA 0x2c80000 and display any .Tn SCSI or .Tn ATA errors that result. .Pp .Bd -literal -offset indent camcontrol epc ada0 -c timer -T 60.1 -p Idle_a -e -s .Ed .Pp Set the timer for the Idle_a power condition on drive .Pa ada0 to 60.1 seconds, enable that particular power condition, and save the timer value and the enabled state of the power condition. .Pp .Bd -literal -offset indent camcontrol epc da4 -c goto -p Standby_z -H .Ed .Pp Tell drive .Pa da4 to go to the Standby_z power state (which is the drive's lowest power state) and hold in that state until it is explicitly released by another .Cm goto command. .Pp .Bd -literal -offset indent camcontrol epc da2 -c status -P .Ed .Pp Report only the power state of drive .Pa da2 . Some drives will power up in response to the commands sent by the .Pa status subcommand, and the .Fl P option causes .Nm to only send the .Tn ATA CHECK POWER MODE command, which should not trigger a change in the drive's power state. .Pp .Bd -literal -offset indent camcontrol epc ada0 -c list .Ed .Pp Display the ATA Power Conditions log (Log Address 0x08) for drive .Pa ada0 . .Pp .Bd -literal -offset indent camcontrol timestamp sa0 -s -f "%a, %d %b %Y %T %z" \e -T "Wed, 26 Oct 2016 21:43:57 -0600" .Ed .Pp Set the timestamp of drive .Pa sa0 using a .Xr strptime 3 format string followed by a time string that was created using this format string. .Sh SEE ALSO .Xr cam 3 , .Xr cam_cdbparse 3 , .Xr cam 4 , .Xr pass 4 , .Xr xpt 4 .Sh HISTORY The .Nm utility first appeared in .Fx 3.0 . .Pp The mode page editing code and arbitrary SCSI command code are based upon code in the old .Xr scsi 8 utility and .Xr scsi 3 library, written by Julian Elischer and Peter Dufault. The .Xr scsi 8 program first appeared in .Bx 386 0.1.2.4 , and first appeared in .Fx in .Fx 2.0.5 . .Sh AUTHORS .An Kenneth Merry Aq Mt ken@FreeBSD.org .Sh BUGS The code that parses the generic command line arguments does not know that some of the subcommands take multiple arguments. So if, for instance, you tried something like this: .Bd -literal -offset indent camcontrol cmd -n da -u 1 -c "00 00 00 00 00 v" 0x00 -v .Ed .Pp The sense information from the test unit ready command would not get printed out, since the first .Xr getopt 3 call in .Nm bails out when it sees the second argument to .Fl c (0x00), above. Fixing this behavior would take some gross code, or changes to the .Xr getopt 3 interface. The best way to circumvent this problem is to always make sure to specify generic .Nm arguments before any command-specific arguments. Index: stable/11/sbin/camcontrol/camcontrol.c =================================================================== --- stable/11/sbin/camcontrol/camcontrol.c (revision 350800) +++ stable/11/sbin/camcontrol/camcontrol.c (revision 350801) @@ -1,9890 +1,10150 @@ /* * Copyright (c) 1997-2007 Kenneth D. Merry * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MINIMALISTIC #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "camcontrol.h" typedef enum { CAM_CMD_NONE = 0x00000000, CAM_CMD_DEVLIST = 0x00000001, CAM_CMD_TUR = 0x00000002, CAM_CMD_INQUIRY = 0x00000003, CAM_CMD_STARTSTOP = 0x00000004, CAM_CMD_RESCAN = 0x00000005, CAM_CMD_READ_DEFECTS = 0x00000006, CAM_CMD_MODE_PAGE = 0x00000007, CAM_CMD_SCSI_CMD = 0x00000008, CAM_CMD_DEVTREE = 0x00000009, CAM_CMD_USAGE = 0x0000000a, CAM_CMD_DEBUG = 0x0000000b, CAM_CMD_RESET = 0x0000000c, CAM_CMD_FORMAT = 0x0000000d, CAM_CMD_TAG = 0x0000000e, CAM_CMD_RATE = 0x0000000f, CAM_CMD_DETACH = 0x00000010, CAM_CMD_REPORTLUNS = 0x00000011, CAM_CMD_READCAP = 0x00000012, CAM_CMD_IDENTIFY = 0x00000013, CAM_CMD_IDLE = 0x00000014, CAM_CMD_STANDBY = 0x00000015, CAM_CMD_SLEEP = 0x00000016, CAM_CMD_SMP_CMD = 0x00000017, CAM_CMD_SMP_RG = 0x00000018, CAM_CMD_SMP_PC = 0x00000019, CAM_CMD_SMP_PHYLIST = 0x0000001a, CAM_CMD_SMP_MANINFO = 0x0000001b, CAM_CMD_DOWNLOAD_FW = 0x0000001c, CAM_CMD_SECURITY = 0x0000001d, CAM_CMD_HPA = 0x0000001e, CAM_CMD_SANITIZE = 0x0000001f, CAM_CMD_PERSIST = 0x00000020, CAM_CMD_APM = 0x00000021, CAM_CMD_AAM = 0x00000022, CAM_CMD_ATTRIB = 0x00000023, CAM_CMD_OPCODES = 0x00000024, CAM_CMD_REPROBE = 0x00000025, CAM_CMD_ZONE = 0x00000026, CAM_CMD_EPC = 0x00000027, CAM_CMD_TIMESTAMP = 0x00000028, CAM_CMD_POWER_MODE = 0x0000002a, CAM_CMD_DEVTYPE = 0x0000002b, + CAM_CMD_AMA = 0x0000002c, } cam_cmdmask; typedef enum { CAM_ARG_NONE = 0x00000000, CAM_ARG_VERBOSE = 0x00000001, CAM_ARG_DEVICE = 0x00000002, CAM_ARG_BUS = 0x00000004, CAM_ARG_TARGET = 0x00000008, CAM_ARG_LUN = 0x00000010, CAM_ARG_EJECT = 0x00000020, CAM_ARG_UNIT = 0x00000040, CAM_ARG_FORMAT_BLOCK = 0x00000080, CAM_ARG_FORMAT_BFI = 0x00000100, CAM_ARG_FORMAT_PHYS = 0x00000200, CAM_ARG_PLIST = 0x00000400, CAM_ARG_GLIST = 0x00000800, CAM_ARG_GET_SERIAL = 0x00001000, CAM_ARG_GET_STDINQ = 0x00002000, CAM_ARG_GET_XFERRATE = 0x00004000, CAM_ARG_INQ_MASK = 0x00007000, CAM_ARG_TIMEOUT = 0x00020000, CAM_ARG_CMD_IN = 0x00040000, CAM_ARG_CMD_OUT = 0x00080000, CAM_ARG_ERR_RECOVER = 0x00200000, CAM_ARG_RETRIES = 0x00400000, CAM_ARG_START_UNIT = 0x00800000, CAM_ARG_DEBUG_INFO = 0x01000000, CAM_ARG_DEBUG_TRACE = 0x02000000, CAM_ARG_DEBUG_SUBTRACE = 0x04000000, CAM_ARG_DEBUG_CDB = 0x08000000, CAM_ARG_DEBUG_XPT = 0x10000000, CAM_ARG_DEBUG_PERIPH = 0x20000000, CAM_ARG_DEBUG_PROBE = 0x40000000, } cam_argmask; struct camcontrol_opts { const char *optname; uint32_t cmdnum; cam_argmask argnum; const char *subopt; }; #ifndef MINIMALISTIC struct ata_res_pass16 { u_int16_t reserved[5]; u_int8_t flags; u_int8_t error; u_int8_t sector_count_exp; u_int8_t sector_count; u_int8_t lba_low_exp; u_int8_t lba_low; u_int8_t lba_mid_exp; u_int8_t lba_mid; u_int8_t lba_high_exp; u_int8_t lba_high; u_int8_t device; u_int8_t status; }; struct ata_set_max_pwd { u_int16_t reserved1; u_int8_t password[32]; u_int16_t reserved2[239]; }; static struct scsi_nv task_attrs[] = { { "simple", MSG_SIMPLE_Q_TAG }, { "head", MSG_HEAD_OF_Q_TAG }, { "ordered", MSG_ORDERED_Q_TAG }, { "iwr", MSG_IGN_WIDE_RESIDUE }, { "aca", MSG_ACA_TASK } }; static const char scsicmd_opts[] = "a:c:dfi:o:r"; static const char readdefect_opts[] = "f:GPqsS:X"; static const char negotiate_opts[] = "acD:M:O:qR:T:UW:"; static const char smprg_opts[] = "l"; static const char smppc_opts[] = "a:A:d:lm:M:o:p:s:S:T:"; static const char smpphylist_opts[] = "lq"; static char pwd_opt; #endif static struct camcontrol_opts option_table[] = { #ifndef MINIMALISTIC {"tur", CAM_CMD_TUR, CAM_ARG_NONE, NULL}, {"inquiry", CAM_CMD_INQUIRY, CAM_ARG_NONE, "DSR"}, {"identify", CAM_CMD_IDENTIFY, CAM_ARG_NONE, NULL}, {"start", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT, NULL}, {"stop", CAM_CMD_STARTSTOP, CAM_ARG_NONE, NULL}, {"load", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT | CAM_ARG_EJECT, NULL}, {"eject", CAM_CMD_STARTSTOP, CAM_ARG_EJECT, NULL}, {"reportluns", CAM_CMD_REPORTLUNS, CAM_ARG_NONE, "clr:"}, {"readcapacity", CAM_CMD_READCAP, CAM_ARG_NONE, "bhHlNqs"}, {"reprobe", CAM_CMD_REPROBE, CAM_ARG_NONE, NULL}, #endif /* MINIMALISTIC */ {"rescan", CAM_CMD_RESCAN, CAM_ARG_NONE, NULL}, {"reset", CAM_CMD_RESET, CAM_ARG_NONE, NULL}, #ifndef MINIMALISTIC {"cmd", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts}, {"command", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts}, {"smpcmd", CAM_CMD_SMP_CMD, CAM_ARG_NONE, "r:R:"}, {"smprg", CAM_CMD_SMP_RG, CAM_ARG_NONE, smprg_opts}, {"smpreportgeneral", CAM_CMD_SMP_RG, CAM_ARG_NONE, smprg_opts}, {"smppc", CAM_CMD_SMP_PC, CAM_ARG_NONE, smppc_opts}, {"smpphycontrol", CAM_CMD_SMP_PC, CAM_ARG_NONE, smppc_opts}, {"smpplist", CAM_CMD_SMP_PHYLIST, CAM_ARG_NONE, smpphylist_opts}, {"smpphylist", CAM_CMD_SMP_PHYLIST, CAM_ARG_NONE, smpphylist_opts}, {"smpmaninfo", CAM_CMD_SMP_MANINFO, CAM_ARG_NONE, "l"}, {"defects", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts}, {"defectlist", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts}, #endif /* MINIMALISTIC */ {"devlist", CAM_CMD_DEVTREE, CAM_ARG_NONE, "-b"}, {"devtype", CAM_CMD_DEVTYPE, CAM_ARG_NONE, ""}, #ifndef MINIMALISTIC {"periphlist", CAM_CMD_DEVLIST, CAM_ARG_NONE, NULL}, {"modepage", CAM_CMD_MODE_PAGE, CAM_ARG_NONE, "bdelm:P:"}, {"tags", CAM_CMD_TAG, CAM_ARG_NONE, "N:q"}, {"negotiate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts}, {"rate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts}, {"debug", CAM_CMD_DEBUG, CAM_ARG_NONE, "IPTSXcp"}, {"format", CAM_CMD_FORMAT, CAM_ARG_NONE, "qrwy"}, {"sanitize", CAM_CMD_SANITIZE, CAM_ARG_NONE, "a:c:IP:qrUwy"}, {"idle", CAM_CMD_IDLE, CAM_ARG_NONE, "t:"}, {"standby", CAM_CMD_STANDBY, CAM_ARG_NONE, "t:"}, {"sleep", CAM_CMD_SLEEP, CAM_ARG_NONE, ""}, {"powermode", CAM_CMD_POWER_MODE, CAM_ARG_NONE, ""}, {"apm", CAM_CMD_APM, CAM_ARG_NONE, "l:"}, {"aam", CAM_CMD_AAM, CAM_ARG_NONE, "l:"}, {"fwdownload", CAM_CMD_DOWNLOAD_FW, CAM_ARG_NONE, "f:qsy"}, {"security", CAM_CMD_SECURITY, CAM_ARG_NONE, "d:e:fh:k:l:qs:T:U:y"}, {"hpa", CAM_CMD_HPA, CAM_ARG_NONE, "Pflp:qs:U:y"}, + {"ama", CAM_CMD_AMA, CAM_ARG_NONE, "fqs:"}, {"persist", CAM_CMD_PERSIST, CAM_ARG_NONE, "ai:I:k:K:o:ps:ST:U"}, {"attrib", CAM_CMD_ATTRIB, CAM_ARG_NONE, "a:ce:F:p:r:s:T:w:V:"}, {"opcodes", CAM_CMD_OPCODES, CAM_ARG_NONE, "No:s:T"}, {"zone", CAM_CMD_ZONE, CAM_ARG_NONE, "ac:l:No:P:"}, {"epc", CAM_CMD_EPC, CAM_ARG_NONE, "c:dDeHp:Pr:sS:T:"}, {"timestamp", CAM_CMD_TIMESTAMP, CAM_ARG_NONE, "f:mrsUT:"}, #endif /* MINIMALISTIC */ {"help", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {"-?", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {"-h", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {NULL, 0, 0, NULL} }; struct cam_devitem { struct device_match_result dev_match; int num_periphs; struct periph_match_result *periph_matches; struct scsi_vpd_device_id *device_id; int device_id_len; STAILQ_ENTRY(cam_devitem) links; }; struct cam_devlist { STAILQ_HEAD(, cam_devitem) dev_queue; path_id_t path_id; }; static cam_cmdmask cmdlist; static cam_argmask arglist; static const char *devtype_names[] = { "none", "scsi", "satl", "ata", "nvme", "mmcsd", "unknown", }; camcontrol_optret getoption(struct camcontrol_opts *table, char *arg, uint32_t *cmdnum, cam_argmask *argnum, const char **subopt); #ifndef MINIMALISTIC static int getdevlist(struct cam_device *device); #endif /* MINIMALISTIC */ static int getdevtree(int argc, char **argv, char *combinedopt); static int getdevtype(struct cam_device *device); #ifndef MINIMALISTIC static int testunitready(struct cam_device *device, int task_attr, int retry_count, int timeout, int quiet); static int scsistart(struct cam_device *device, int startstop, int loadeject, int task_attr, int retry_count, int timeout); static int scsiinquiry(struct cam_device *device, int task_attr, int retry_count, int timeout); static int scsiserial(struct cam_device *device, int task_attr, int retry_count, int timeout); #endif /* MINIMALISTIC */ static int parse_btl(char *tstr, path_id_t *bus, target_id_t *target, lun_id_t *lun, cam_argmask *arglst); static int dorescan_or_reset(int argc, char **argv, int rescan); static int rescan_or_reset_bus(path_id_t bus, int rescan); static int scanlun_or_reset_dev(path_id_t bus, target_id_t target, lun_id_t lun, int scan); #ifndef MINIMALISTIC static int readdefects(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static void modepage(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int smpcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpreportgeneral(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpphycontrol(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpmaninfo(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int getdevid(struct cam_devitem *item); static int buildbusdevlist(struct cam_devlist *devlist); static void freebusdevlist(struct cam_devlist *devlist); static struct cam_devitem *findsasdevice(struct cam_devlist *devlist, uint64_t sasaddr); static int smpphylist(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int tagcontrol(struct cam_device *device, int argc, char **argv, char *combinedopt); static void cts_print(struct cam_device *device, struct ccb_trans_settings *cts); static void cpi_print(struct ccb_pathinq *cpi); static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi); static int get_cgd(struct cam_device *device, struct ccb_getdev *cgd); static int get_print_cts(struct cam_device *device, int user_settings, int quiet, struct ccb_trans_settings *cts); static int ratecontrol(struct cam_device *device, int task_attr, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int scsiformat(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsisanitize(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsireportluns(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsireadcapacity(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int atapm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int atasecurity(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int atahpa(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt); +static int ataama(struct cam_device *device, int retry_count, int timeout, + int argc, char **argv, char *combinedopt); static int scsiprintoneopcode(struct cam_device *device, int req_opcode, int sa_set, int req_sa, uint8_t *buf, uint32_t valid_len); static int scsiprintopcodes(struct cam_device *device, int td_req, uint8_t *buf, uint32_t valid_len); static int scsiopcodes(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout, int verbose); static int scsireprobe(struct cam_device *device); #endif /* MINIMALISTIC */ #ifndef min #define min(a,b) (((a)<(b))?(a):(b)) #endif #ifndef max #define max(a,b) (((a)>(b))?(a):(b)) #endif camcontrol_optret getoption(struct camcontrol_opts *table, char *arg, uint32_t *cmdnum, cam_argmask *argnum, const char **subopt) { struct camcontrol_opts *opts; int num_matches = 0; for (opts = table; (opts != NULL) && (opts->optname != NULL); opts++) { if (strncmp(opts->optname, arg, strlen(arg)) == 0) { *cmdnum = opts->cmdnum; *argnum = opts->argnum; *subopt = opts->subopt; if (++num_matches > 1) return (CC_OR_AMBIGUOUS); } } if (num_matches > 0) return (CC_OR_FOUND); else return (CC_OR_NOT_FOUND); } #ifndef MINIMALISTIC static int getdevlist(struct cam_device *device) { union ccb *ccb; char status[32]; int error = 0; ccb = cam_getccb(device); ccb->ccb_h.func_code = XPT_GDEVLIST; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 1; ccb->cgdl.index = 0; ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { if (cam_send_ccb(device, ccb) < 0) { perror("error getting device list"); cam_freeccb(ccb); return (1); } status[0] = '\0'; switch (ccb->cgdl.status) { case CAM_GDEVLIST_MORE_DEVS: strcpy(status, "MORE"); break; case CAM_GDEVLIST_LAST_DEVICE: strcpy(status, "LAST"); break; case CAM_GDEVLIST_LIST_CHANGED: strcpy(status, "CHANGED"); break; case CAM_GDEVLIST_ERROR: strcpy(status, "ERROR"); error = 1; break; } fprintf(stdout, "%s%d: generation: %d index: %d status: %s\n", ccb->cgdl.periph_name, ccb->cgdl.unit_number, ccb->cgdl.generation, ccb->cgdl.index, status); /* * If the list has changed, we need to start over from the * beginning. */ if (ccb->cgdl.status == CAM_GDEVLIST_LIST_CHANGED) ccb->cgdl.index = 0; } cam_freeccb(ccb); return (error); } #endif /* MINIMALISTIC */ static int getdevtree(int argc, char **argv, char *combinedopt) { union ccb ccb; int bufsize, fd; unsigned int i; int need_close = 0; int error = 0; int skip_device = 0; int busonly = 0; int c; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'b': if ((arglist & CAM_ARG_VERBOSE) == 0) busonly = 1; break; default: break; } } if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("couldn't open %s", XPT_DEVICE); return (1); } bzero(&ccb, sizeof(union ccb)); ccb.ccb_h.path_id = CAM_XPT_PATH_ID; ccb.ccb_h.target_id = CAM_TARGET_WILDCARD; ccb.ccb_h.target_lun = CAM_LUN_WILDCARD; ccb.ccb_h.func_code = XPT_DEV_MATCH; bufsize = sizeof(struct dev_match_result) * 100; ccb.cdm.match_buf_len = bufsize; ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize); if (ccb.cdm.matches == NULL) { warnx("can't malloc memory for matches"); close(fd); return (1); } ccb.cdm.num_matches = 0; /* * We fetch all nodes, since we display most of them in the default * case, and all in the verbose case. */ ccb.cdm.num_patterns = 0; ccb.cdm.pattern_buf_len = 0; /* * We do the ioctl multiple times if necessary, in case there are * more than 100 nodes in the EDT. */ do { if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("error sending CAMIOCOMMAND ioctl"); error = 1; break; } if ((ccb.ccb_h.status != CAM_REQ_CMP) || ((ccb.cdm.status != CAM_DEV_MATCH_LAST) && (ccb.cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", ccb.ccb_h.status, ccb.cdm.status); error = 1; break; } for (i = 0; i < ccb.cdm.num_matches; i++) { switch (ccb.cdm.matches[i].type) { case DEV_MATCH_BUS: { struct bus_match_result *bus_result; /* * Only print the bus information if the * user turns on the verbose flag. */ if ((busonly == 0) && (arglist & CAM_ARG_VERBOSE) == 0) break; bus_result = &ccb.cdm.matches[i].result.bus_result; if (need_close) { fprintf(stdout, ")\n"); need_close = 0; } fprintf(stdout, "scbus%d on %s%d bus %d%s\n", bus_result->path_id, bus_result->dev_name, bus_result->unit_number, bus_result->bus_id, (busonly ? "" : ":")); break; } case DEV_MATCH_DEVICE: { struct device_match_result *dev_result; char vendor[16], product[48], revision[16]; char fw[5], tmpstr[256]; if (busonly == 1) break; dev_result = &ccb.cdm.matches[i].result.device_result; if ((dev_result->flags & DEV_RESULT_UNCONFIGURED) && ((arglist & CAM_ARG_VERBOSE) == 0)) { skip_device = 1; break; } else skip_device = 0; if (dev_result->protocol == PROTO_SCSI) { cam_strvis(vendor, dev_result->inq_data.vendor, sizeof(dev_result->inq_data.vendor), sizeof(vendor)); cam_strvis(product, dev_result->inq_data.product, sizeof(dev_result->inq_data.product), sizeof(product)); cam_strvis(revision, dev_result->inq_data.revision, sizeof(dev_result->inq_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s %s>", vendor, product, revision); } else if (dev_result->protocol == PROTO_ATA || dev_result->protocol == PROTO_SATAPM) { cam_strvis(product, dev_result->ident_data.model, sizeof(dev_result->ident_data.model), sizeof(product)); cam_strvis(revision, dev_result->ident_data.revision, sizeof(dev_result->ident_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s>", product, revision); } else if (dev_result->protocol == PROTO_SEMB) { struct sep_identify_data *sid; sid = (struct sep_identify_data *) &dev_result->ident_data; cam_strvis(vendor, sid->vendor_id, sizeof(sid->vendor_id), sizeof(vendor)); cam_strvis(product, sid->product_id, sizeof(sid->product_id), sizeof(product)); cam_strvis(revision, sid->product_rev, sizeof(sid->product_rev), sizeof(revision)); cam_strvis(fw, sid->firmware_rev, sizeof(sid->firmware_rev), sizeof(fw)); sprintf(tmpstr, "<%s %s %s %s>", vendor, product, revision, fw); } else { sprintf(tmpstr, "<>"); } if (need_close) { fprintf(stdout, ")\n"); need_close = 0; } fprintf(stdout, "%-33s at scbus%d " "target %d lun %jx (", tmpstr, dev_result->path_id, dev_result->target_id, (uintmax_t)dev_result->target_lun); need_close = 1; break; } case DEV_MATCH_PERIPH: { struct periph_match_result *periph_result; periph_result = &ccb.cdm.matches[i].result.periph_result; if (busonly || skip_device != 0) break; if (need_close > 1) fprintf(stdout, ","); fprintf(stdout, "%s%d", periph_result->periph_name, periph_result->unit_number); need_close++; break; } default: fprintf(stdout, "unknown match type\n"); break; } } } while ((ccb.ccb_h.status == CAM_REQ_CMP) && (ccb.cdm.status == CAM_DEV_MATCH_MORE)); if (need_close) fprintf(stdout, ")\n"); close(fd); return (error); } static int getdevtype(struct cam_device *cam_dev) { camcontrol_devtype dt; int error; /* * Get the device type and report it, request no I/O be done to do this. */ error = get_device_type(cam_dev, -1, 0, 0, &dt); if (error != 0 || (unsigned)dt > CC_DT_UNKNOWN) { fprintf(stdout, "illegal\n"); return (1); } fprintf(stdout, "%s\n", devtype_names[dt]); return (0); } #ifndef MINIMALISTIC static int testunitready(struct cam_device *device, int task_attr, int retry_count, int timeout, int quiet) { int error = 0; union ccb *ccb; ccb = cam_getccb(device); scsi_test_unit_ready(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { if (quiet == 0) perror("error sending test unit ready"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { if (quiet == 0) fprintf(stdout, "Unit is ready\n"); } else { if (quiet == 0) fprintf(stdout, "Unit is not ready\n"); error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); return (error); } static int scsistart(struct cam_device *device, int startstop, int loadeject, int task_attr, int retry_count, int timeout) { union ccb *ccb; int error = 0; ccb = cam_getccb(device); /* * If we're stopping, send an ordered tag so the drive in question * will finish any previously queued writes before stopping. If * the device isn't capable of tagged queueing, or if tagged * queueing is turned off, the tag action is a no-op. We override * the default simple tag, although this also has the effect of * overriding the user's wishes if he wanted to specify a simple * tag. */ if ((startstop == 0) && (task_attr == MSG_SIMPLE_Q_TAG)) task_attr = MSG_ORDERED_Q_TAG; scsi_start_stop(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* start/stop */ startstop, /* load_eject */ loadeject, /* immediate */ 0, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 120000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { perror("error sending start unit"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) if (startstop) { fprintf(stdout, "Unit started successfully"); if (loadeject) fprintf(stdout,", Media loaded\n"); else fprintf(stdout,"\n"); } else { fprintf(stdout, "Unit stopped successfully"); if (loadeject) fprintf(stdout, ", Media ejected\n"); else fprintf(stdout, "\n"); } else { error = 1; if (startstop) fprintf(stdout, "Error received from start unit command\n"); else fprintf(stdout, "Error received from stop unit command\n"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); return (error); } int scsidoinquiry(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { int c; int error = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'D': arglist |= CAM_ARG_GET_STDINQ; break; case 'R': arglist |= CAM_ARG_GET_XFERRATE; break; case 'S': arglist |= CAM_ARG_GET_SERIAL; break; default: break; } } /* * If the user didn't specify any inquiry options, he wants all of * them. */ if ((arglist & CAM_ARG_INQ_MASK) == 0) arglist |= CAM_ARG_INQ_MASK; if (arglist & CAM_ARG_GET_STDINQ) error = scsiinquiry(device, task_attr, retry_count, timeout); if (error != 0) return (error); if (arglist & CAM_ARG_GET_SERIAL) scsiserial(device, task_attr, retry_count, timeout); if (arglist & CAM_ARG_GET_XFERRATE) error = camxferrate(device); return (error); } static int scsiinquiry(struct cam_device *device, int task_attr, int retry_count, int timeout) { union ccb *ccb; struct scsi_inquiry_data *inq_buf; int error = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } /* cam_getccb cleans up the header, caller has to zero the payload */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); inq_buf = (struct scsi_inquiry_data *)malloc( sizeof(struct scsi_inquiry_data)); if (inq_buf == NULL) { cam_freeccb(ccb); warnx("can't malloc memory for inquiry\n"); return (1); } bzero(inq_buf, sizeof(*inq_buf)); /* * Note that although the size of the inquiry buffer is the full * 256 bytes specified in the SCSI spec, we only tell the device * that we have allocated SHORT_INQUIRY_LENGTH bytes. There are * two reasons for this: * * - The SCSI spec says that when a length field is only 1 byte, * a value of 0 will be interpreted as 256. Therefore * scsi_inquiry() will convert an inq_len (which is passed in as * a u_int32_t, but the field in the CDB is only 1 byte) of 256 * to 0. Evidently, very few devices meet the spec in that * regard. Some devices, like many Seagate disks, take the 0 as * 0, and don't return any data. One Pioneer DVD-R drive * returns more data than the command asked for. * * So, since there are numerous devices that just don't work * right with the full inquiry size, we don't send the full size. * * - The second reason not to use the full inquiry data length is * that we don't need it here. The only reason we issue a * standard inquiry is to get the vendor name, device name, * and revision so scsi_print_inquiry() can print them. * * If, at some point in the future, more inquiry data is needed for * some reason, this code should use a procedure similar to the * probe code. i.e., issue a short inquiry, and determine from * the additional length passed back from the device how much * inquiry data the device supports. Once the amount the device * supports is determined, issue an inquiry for that amount and no * more. * * KDM, 2/18/2000 */ scsi_inquiry(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* inq_buf */ (u_int8_t *)inq_buf, /* inq_len */ SHORT_INQUIRY_LENGTH, /* evpd */ 0, /* page_code */ 0, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { perror("error sending SCSI inquiry"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); if (error != 0) { free(inq_buf); return (error); } fprintf(stdout, "%s%d: ", device->device_name, device->dev_unit_num); scsi_print_inquiry(inq_buf); free(inq_buf); return (0); } static int scsiserial(struct cam_device *device, int task_attr, int retry_count, int timeout) { union ccb *ccb; struct scsi_vpd_unit_serial_number *serial_buf; char serial_num[SVPD_SERIAL_NUM_SIZE + 1]; int error = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } /* cam_getccb cleans up the header, caller has to zero the payload */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); serial_buf = (struct scsi_vpd_unit_serial_number *) malloc(sizeof(*serial_buf)); if (serial_buf == NULL) { cam_freeccb(ccb); warnx("can't malloc memory for serial number"); return (1); } scsi_inquiry(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /* tag_action */ task_attr, /* inq_buf */ (u_int8_t *)serial_buf, /* inq_len */ sizeof(*serial_buf), /* evpd */ 1, /* page_code */ SVPD_UNIT_SERIAL_NUMBER, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error getting serial number"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); free(serial_buf); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); if (error != 0) { free(serial_buf); return (error); } bcopy(serial_buf->serial_num, serial_num, serial_buf->length); serial_num[serial_buf->length] = '\0'; if ((arglist & CAM_ARG_GET_STDINQ) || (arglist & CAM_ARG_GET_XFERRATE)) fprintf(stdout, "%s%d: Serial Number ", device->device_name, device->dev_unit_num); fprintf(stdout, "%.60s\n", serial_num); free(serial_buf); return (0); } int camxferrate(struct cam_device *device) { struct ccb_pathinq cpi; u_int32_t freq = 0; u_int32_t speed = 0; union ccb *ccb; u_int mb; int retval = 0; if ((retval = get_cpi(device, &cpi)) != 0) return (1); ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cts); ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char error_string[] = "error getting transfer settings"; if (retval < 0) warn(error_string); else warnx(error_string); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto xferrate_bailout; } speed = cpi.base_transfer_speed; freq = 0; if (ccb->cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &ccb->cts.xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) { freq = scsi_calc_syncsrate(spi->sync_period); speed = freq; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { speed *= (0x01 << spi->bus_width); } } else if (ccb->cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &ccb->cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_SPEED) speed = fc->bitrate; } else if (ccb->cts.transport == XPORT_SAS) { struct ccb_trans_settings_sas *sas = &ccb->cts.xport_specific.sas; if (sas->valid & CTS_SAS_VALID_SPEED) speed = sas->bitrate; } else if (ccb->cts.transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &ccb->cts.xport_specific.ata; if (pata->valid & CTS_ATA_VALID_MODE) speed = ata_mode2speed(pata->mode); } else if (ccb->cts.transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &ccb->cts.xport_specific.sata; if (sata->valid & CTS_SATA_VALID_REVISION) speed = ata_revision2speed(sata->revision); } mb = speed / 1000; if (mb > 0) { fprintf(stdout, "%s%d: %d.%03dMB/s transfers", device->device_name, device->dev_unit_num, mb, speed % 1000); } else { fprintf(stdout, "%s%d: %dKB/s transfers", device->device_name, device->dev_unit_num, speed); } if (ccb->cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &ccb->cts.xport_specific.spi; if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) fprintf(stdout, " (%d.%03dMHz, offset %d", freq / 1000, freq % 1000, spi->sync_offset); if (((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) && (spi->bus_width > 0)) { if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) { fprintf(stdout, ", "); } else { fprintf(stdout, " ("); } fprintf(stdout, "%dbit)", 8 * (0x01 << spi->bus_width)); } else if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) { fprintf(stdout, ")"); } } else if (ccb->cts.transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &ccb->cts.xport_specific.ata; printf(" ("); if (pata->valid & CTS_ATA_VALID_MODE) printf("%s, ", ata_mode2string(pata->mode)); if ((pata->valid & CTS_ATA_VALID_ATAPI) && pata->atapi != 0) printf("ATAPI %dbytes, ", pata->atapi); if (pata->valid & CTS_ATA_VALID_BYTECOUNT) printf("PIO %dbytes", pata->bytecount); printf(")"); } else if (ccb->cts.transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &ccb->cts.xport_specific.sata; printf(" ("); if (sata->valid & CTS_SATA_VALID_REVISION) printf("SATA %d.x, ", sata->revision); else printf("SATA, "); if (sata->valid & CTS_SATA_VALID_MODE) printf("%s, ", ata_mode2string(sata->mode)); if ((sata->valid & CTS_SATA_VALID_ATAPI) && sata->atapi != 0) printf("ATAPI %dbytes, ", sata->atapi); if (sata->valid & CTS_SATA_VALID_BYTECOUNT) printf("PIO %dbytes", sata->bytecount); printf(")"); } if (ccb->cts.protocol == PROTO_SCSI) { struct ccb_trans_settings_scsi *scsi = &ccb->cts.proto_specific.scsi; if (scsi->valid & CTS_SCSI_VALID_TQ) { if (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) { fprintf(stdout, ", Command Queueing Enabled"); } } } fprintf(stdout, "\n"); xferrate_bailout: cam_freeccb(ccb); return (retval); } static void atahpa_print(struct ata_params *parm, u_int64_t hpasize, int header) { u_int32_t lbasize = (u_int32_t)parm->lba_size_1 | ((u_int32_t)parm->lba_size_2 << 16); u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | ((u_int64_t)parm->lba_size48_2 << 16) | ((u_int64_t)parm->lba_size48_3 << 32) | ((u_int64_t)parm->lba_size48_4 << 48); if (header) { printf("\nFeature " "Support Enabled Value\n"); } printf("Host Protected Area (HPA) "); if (parm->support.command1 & ATA_SUPPORT_PROTECTED) { u_int64_t lba = lbasize48 ? lbasize48 : lbasize; printf("yes %s %ju/%ju\n", (hpasize > lba) ? "yes" : "no ", lba, hpasize); printf("HPA - Security "); - if (parm->support.command1 & ATA_SUPPORT_MAXSECURITY) - printf("yes\n"); + if (parm->support.command2 & ATA_SUPPORT_MAXSECURITY) + printf("yes %s\n", (parm->enabled.command2 & + ATA_SUPPORT_MAXSECURITY) ? "yes" : "no "); else printf("no\n"); } else { printf("no\n"); } } +static void +ataama_print(struct ata_params *parm, u_int64_t nativesize, int header) +{ + u_int32_t lbasize = (u_int32_t)parm->lba_size_1 | + ((u_int32_t)parm->lba_size_2 << 16); + + u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | + ((u_int64_t)parm->lba_size48_2 << 16) | + ((u_int64_t)parm->lba_size48_3 << 32) | + ((u_int64_t)parm->lba_size48_4 << 48); + + if (header) { + printf("\nFeature " + "Support Enabled Value\n"); + } + + printf("Accessible Max Address Config "); + if (parm->support2 & ATA_SUPPORT_AMAX_ADDR) { + u_int64_t lba = lbasize48 ? lbasize48 : lbasize; + printf("yes %s %ju/%ju\n", + (nativesize > lba) ? "yes" : "no ", lba, nativesize); + } else { + printf("no\n"); + } +} + static int atasata(struct ata_params *parm) { if (parm->satacapabilities != 0xffff && parm->satacapabilities != 0x0000) return 1; return 0; } static void atacapprint(struct ata_params *parm) { u_int32_t lbasize = (u_int32_t)parm->lba_size_1 | ((u_int32_t)parm->lba_size_2 << 16); u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | ((u_int64_t)parm->lba_size48_2 << 16) | ((u_int64_t)parm->lba_size48_3 << 32) | ((u_int64_t)parm->lba_size48_4 << 48); printf("\n"); printf("protocol "); printf("ATA/ATAPI-%d", ata_version(parm->version_major)); if (parm->satacapabilities && parm->satacapabilities != 0xffff) { if (parm->satacapabilities & ATA_SATA_GEN3) printf(" SATA 3.x\n"); else if (parm->satacapabilities & ATA_SATA_GEN2) printf(" SATA 2.x\n"); else if (parm->satacapabilities & ATA_SATA_GEN1) printf(" SATA 1.x\n"); else printf(" SATA\n"); } else printf("\n"); printf("device model %.40s\n", parm->model); printf("firmware revision %.8s\n", parm->revision); printf("serial number %.20s\n", parm->serial); if (parm->enabled.extension & ATA_SUPPORT_64BITWWN) { printf("WWN %04x%04x%04x%04x\n", parm->wwn[0], parm->wwn[1], parm->wwn[2], parm->wwn[3]); } if (parm->enabled.extension & ATA_SUPPORT_MEDIASN) { printf("media serial number %.30s\n", parm->media_serial); } printf("cylinders %d\n", parm->cylinders); printf("heads %d\n", parm->heads); printf("sectors/track %d\n", parm->sectors); printf("sector size logical %u, physical %lu, offset %lu\n", ata_logical_sector_size(parm), (unsigned long)ata_physical_sector_size(parm), (unsigned long)ata_logical_sector_offset(parm)); if (parm->config == ATA_PROTO_CFA || (parm->support.command2 & ATA_SUPPORT_CFA)) printf("CFA supported\n"); printf("LBA%ssupported ", parm->capabilities1 & ATA_SUPPORT_LBA ? " " : " not "); if (lbasize) printf("%d sectors\n", lbasize); else printf("\n"); printf("LBA48%ssupported ", parm->support.command2 & ATA_SUPPORT_ADDRESS48 ? " " : " not "); if (lbasize48) printf("%ju sectors\n", (uintmax_t)lbasize48); else printf("\n"); printf("PIO supported PIO"); switch (ata_max_pmode(parm)) { case ATA_PIO4: printf("4"); break; case ATA_PIO3: printf("3"); break; case ATA_PIO2: printf("2"); break; case ATA_PIO1: printf("1"); break; default: printf("0"); } if ((parm->capabilities1 & ATA_SUPPORT_IORDY) == 0) printf(" w/o IORDY"); printf("\n"); printf("DMA%ssupported ", parm->capabilities1 & ATA_SUPPORT_DMA ? " " : " not "); if (parm->capabilities1 & ATA_SUPPORT_DMA) { if (parm->mwdmamodes & 0xff) { printf("WDMA"); if (parm->mwdmamodes & 0x04) printf("2"); else if (parm->mwdmamodes & 0x02) printf("1"); else if (parm->mwdmamodes & 0x01) printf("0"); printf(" "); } if ((parm->atavalid & ATA_FLAG_88) && (parm->udmamodes & 0xff)) { printf("UDMA"); if (parm->udmamodes & 0x40) printf("6"); else if (parm->udmamodes & 0x20) printf("5"); else if (parm->udmamodes & 0x10) printf("4"); else if (parm->udmamodes & 0x08) printf("3"); else if (parm->udmamodes & 0x04) printf("2"); else if (parm->udmamodes & 0x02) printf("1"); else if (parm->udmamodes & 0x01) printf("0"); printf(" "); } } printf("\n"); if (parm->media_rotation_rate == 1) { printf("media RPM non-rotating\n"); } else if (parm->media_rotation_rate >= 0x0401 && parm->media_rotation_rate <= 0xFFFE) { printf("media RPM %d\n", parm->media_rotation_rate); } printf("Zoned-Device Commands "); switch (parm->support3 & ATA_SUPPORT_ZONE_MASK) { case ATA_SUPPORT_ZONE_DEV_MANAGED: printf("device managed\n"); break; case ATA_SUPPORT_ZONE_HOST_AWARE: printf("host aware\n"); break; default: printf("no\n"); } printf("\nFeature " "Support Enabled Value Vendor\n"); printf("read ahead %s %s\n", parm->support.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no"); printf("write cache %s %s\n", parm->support.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no"); printf("flush cache %s %s\n", parm->support.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no"); printf("overlap %s\n", parm->capabilities1 & ATA_SUPPORT_OVERLAP ? "yes" : "no"); printf("Tagged Command Queuing (TCQ) %s %s", parm->support.command2 & ATA_SUPPORT_QUEUED ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_QUEUED ? "yes" : "no"); if (parm->support.command2 & ATA_SUPPORT_QUEUED) { printf(" %d tags\n", ATA_QUEUE_LEN(parm->queue) + 1); } else printf("\n"); printf("Native Command Queuing (NCQ) "); if (parm->satacapabilities != 0xffff && (parm->satacapabilities & ATA_SUPPORT_NCQ)) { printf("yes %d tags\n", ATA_QUEUE_LEN(parm->queue) + 1); } else printf("no\n"); printf("NCQ Queue Management %s\n", atasata(parm) && parm->satacapabilities2 & ATA_SUPPORT_NCQ_QMANAGEMENT ? "yes" : "no"); printf("NCQ Streaming %s\n", atasata(parm) && parm->satacapabilities2 & ATA_SUPPORT_NCQ_STREAM ? "yes" : "no"); printf("Receive & Send FPDMA Queued %s\n", atasata(parm) && parm->satacapabilities2 & ATA_SUPPORT_RCVSND_FPDMA_QUEUED ? "yes" : "no"); printf("SMART %s %s\n", parm->support.command1 & ATA_SUPPORT_SMART ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_SMART ? "yes" : "no"); printf("microcode download %s %s\n", parm->support.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no"); printf("security %s %s\n", parm->support.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no"); printf("power management %s %s\n", parm->support.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no"); printf("advanced power management %s %s", parm->support.command2 & ATA_SUPPORT_APM ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_APM ? "yes" : "no"); if (parm->support.command2 & ATA_SUPPORT_APM) { printf(" %d/0x%02X\n", parm->apm_value & 0xff, parm->apm_value & 0xff); } else printf("\n"); printf("automatic acoustic management %s %s", parm->support.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no", parm->enabled.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no"); if (parm->support.command2 & ATA_SUPPORT_AUTOACOUSTIC) { printf(" %d/0x%02X %d/0x%02X\n", ATA_ACOUSTIC_CURRENT(parm->acoustic), ATA_ACOUSTIC_CURRENT(parm->acoustic), ATA_ACOUSTIC_VENDOR(parm->acoustic), ATA_ACOUSTIC_VENDOR(parm->acoustic)); } else printf("\n"); printf("media status notification %s %s\n", parm->support.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no"); printf("power-up in Standby %s %s\n", parm->support.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no"); printf("write-read-verify %s %s", parm->support2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no"); if (parm->support2 & ATA_SUPPORT_WRITEREADVERIFY) { printf(" %d/0x%x\n", parm->wrv_mode, parm->wrv_mode); } else printf("\n"); printf("unload %s %s\n", parm->support.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no", parm->enabled.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no"); printf("general purpose logging %s %s\n", parm->support.extension & ATA_SUPPORT_GENLOG ? "yes" : "no", parm->enabled.extension & ATA_SUPPORT_GENLOG ? "yes" : "no"); printf("free-fall %s %s\n", parm->support2 & ATA_SUPPORT_FREEFALL ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_FREEFALL ? "yes" : "no"); printf("Data Set Management (DSM/TRIM) "); if (parm->support_dsm & ATA_SUPPORT_DSM_TRIM) { printf("yes\n"); printf("DSM - max 512byte blocks "); if (parm->max_dsm_blocks == 0x00) printf("yes not specified\n"); else printf("yes %d\n", parm->max_dsm_blocks); printf("DSM - deterministic read "); if (parm->support3 & ATA_SUPPORT_DRAT) { if (parm->support3 & ATA_SUPPORT_RZAT) printf("yes zeroed\n"); else printf("yes any value\n"); } else { printf("no\n"); } } else { printf("no\n"); } } static int scsi_cam_pass_16_send(struct cam_device *device, union ccb *ccb, int quiet) { struct ata_pass_16 *ata_pass_16; struct ata_cmd ata_cmd; ata_pass_16 = (struct ata_pass_16 *)ccb->csio.cdb_io.cdb_bytes; ata_cmd.command = ata_pass_16->command; ata_cmd.control = ata_pass_16->control; ata_cmd.features = ata_pass_16->features; if (arglist & CAM_ARG_VERBOSE) { warnx("sending ATA %s via pass_16 with timeout of %u msecs", ata_op_string(&ata_cmd), ccb->csio.ccb_h.timeout); } /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { if (quiet != 1 || arglist & CAM_ARG_VERBOSE) { warn("error sending ATA %s via pass_16", ata_op_string(&ata_cmd)); } if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } if (!(ata_pass_16->flags & AP_FLAG_CHK_COND) && (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (quiet != 1 || arglist & CAM_ARG_VERBOSE) { warnx("ATA %s via pass_16 failed", ata_op_string(&ata_cmd)); } if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } return (0); } static int ata_cam_send(struct cam_device *device, union ccb *ccb, int quiet) { if (arglist & CAM_ARG_VERBOSE) { warnx("sending ATA %s with timeout of %u msecs", ata_op_string(&(ccb->ataio.cmd)), ccb->ataio.ccb_h.timeout); } /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { if (quiet != 1 || arglist & CAM_ARG_VERBOSE) { warn("error sending ATA %s", ata_op_string(&(ccb->ataio.cmd))); } if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (quiet != 1 || arglist & CAM_ARG_VERBOSE) { warnx("ATA %s failed: %d", ata_op_string(&(ccb->ataio.cmd)), quiet); } if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } return (0); } static int ata_do_pass_16(struct cam_device *device, union ccb *ccb, int retries, u_int32_t flags, u_int8_t protocol, u_int8_t ata_flags, u_int8_t tag_action, u_int8_t command, u_int8_t features, u_int64_t lba, u_int8_t sector_count, u_int8_t *data_ptr, u_int16_t dxfer_len, int timeout, int quiet) { if (data_ptr != NULL) { ata_flags |= AP_FLAG_BYT_BLOK_BYTES | AP_FLAG_TLEN_SECT_CNT; if (flags & CAM_DIR_OUT) ata_flags |= AP_FLAG_TDIR_TO_DEV; else ata_flags |= AP_FLAG_TDIR_FROM_DEV; } else { ata_flags |= AP_FLAG_TLEN_NO_DATA; } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_ata_pass_16(&ccb->csio, retries, NULL, flags, tag_action, protocol, ata_flags, features, sector_count, lba, command, /*control*/0, data_ptr, dxfer_len, /*sense_len*/SSD_FULL_SIZE, timeout); return scsi_cam_pass_16_send(device, ccb, quiet); } static int ata_try_pass_16(struct cam_device *device) { struct ccb_pathinq cpi; if (get_cpi(device, &cpi) != 0) { warnx("couldn't get CPI"); return (-1); } if (cpi.protocol == PROTO_SCSI) { /* possibly compatible with pass_16 */ return (1); } /* likely not compatible with pass_16 */ return (0); } static int ata_do_28bit_cmd(struct cam_device *device, union ccb *ccb, int retries, u_int32_t flags, u_int8_t protocol, u_int8_t tag_action, u_int8_t command, u_int8_t features, u_int32_t lba, u_int8_t sector_count, u_int8_t *data_ptr, u_int16_t dxfer_len, int timeout, int quiet) { switch (ata_try_pass_16(device)) { case -1: return (1); case 1: /* Try using SCSI Passthrough */ return ata_do_pass_16(device, ccb, retries, flags, protocol, 0, tag_action, command, features, lba, sector_count, data_ptr, dxfer_len, timeout, quiet); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->ataio); cam_fill_ataio(&ccb->ataio, retries, NULL, flags, tag_action, data_ptr, dxfer_len, timeout); ata_28bit_cmd(&ccb->ataio, command, features, lba, sector_count); return ata_cam_send(device, ccb, quiet); } static int ata_do_cmd(struct cam_device *device, union ccb *ccb, int retries, u_int32_t flags, u_int8_t protocol, u_int8_t ata_flags, u_int8_t tag_action, u_int8_t command, u_int8_t features, u_int64_t lba, u_int8_t sector_count, u_int8_t *data_ptr, u_int16_t dxfer_len, int timeout, int force48bit) { int retval; retval = ata_try_pass_16(device); if (retval == -1) return (1); if (retval == 1) { int error; /* Try using SCSI Passthrough */ error = ata_do_pass_16(device, ccb, retries, flags, protocol, ata_flags, tag_action, command, features, lba, sector_count, data_ptr, dxfer_len, timeout, 0); if (ata_flags & AP_FLAG_CHK_COND) { /* Decode ata_res from sense data */ struct ata_res_pass16 *res_pass16; struct ata_res *res; u_int i; u_int16_t *ptr; /* sense_data is 4 byte aligned */ ptr = (uint16_t*)(uintptr_t)&ccb->csio.sense_data; for (i = 0; i < sizeof(*res_pass16) / 2; i++) ptr[i] = le16toh(ptr[i]); /* sense_data is 4 byte aligned */ res_pass16 = (struct ata_res_pass16 *)(uintptr_t) &ccb->csio.sense_data; res = &ccb->ataio.res; res->flags = res_pass16->flags; res->status = res_pass16->status; res->error = res_pass16->error; res->lba_low = res_pass16->lba_low; res->lba_mid = res_pass16->lba_mid; res->lba_high = res_pass16->lba_high; res->device = res_pass16->device; res->lba_low_exp = res_pass16->lba_low_exp; res->lba_mid_exp = res_pass16->lba_mid_exp; res->lba_high_exp = res_pass16->lba_high_exp; res->sector_count = res_pass16->sector_count; res->sector_count_exp = res_pass16->sector_count_exp; } return (error); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->ataio); cam_fill_ataio(&ccb->ataio, retries, NULL, flags, tag_action, data_ptr, dxfer_len, timeout); if (force48bit || lba > ATA_MAX_28BIT_LBA) ata_48bit_cmd(&ccb->ataio, command, features, lba, sector_count); else ata_28bit_cmd(&ccb->ataio, command, features, lba, sector_count); if (ata_flags & AP_FLAG_CHK_COND) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; return ata_cam_send(device, ccb, 0); } static void dump_data(uint16_t *ptr, uint32_t len) { u_int i; for (i = 0; i < len / 2; i++) { if ((i % 8) == 0) printf(" %3d: ", i); printf("%04hx ", ptr[i]); if ((i % 8) == 7) printf("\n"); } if ((i % 8) != 7) printf("\n"); } static int atahpa_proc_resp(struct cam_device *device, union ccb *ccb, int is48bit, u_int64_t *hpasize) { struct ata_res *res; res = &ccb->ataio.res; if (res->status & ATA_STATUS_ERROR) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); printf("error = 0x%02x, sector_count = 0x%04x, " "device = 0x%02x, status = 0x%02x\n", res->error, res->sector_count, res->device, res->status); } if (res->error & ATA_ERROR_ID_NOT_FOUND) { warnx("Max address has already been set since " "last power-on or hardware reset"); } return (1); } if (arglist & CAM_ARG_VERBOSE) { fprintf(stdout, "%s%d: Raw native max data:\n", device->device_name, device->dev_unit_num); /* res is 4 byte aligned */ dump_data((uint16_t*)(uintptr_t)res, sizeof(struct ata_res)); printf("error = 0x%02x, sector_count = 0x%04x, device = 0x%02x, " "status = 0x%02x\n", res->error, res->sector_count, res->device, res->status); } if (hpasize != NULL) { if (is48bit) { *hpasize = (((u_int64_t)((res->lba_high_exp << 16) | (res->lba_mid_exp << 8) | res->lba_low_exp) << 24) | ((res->lba_high << 16) | (res->lba_mid << 8) | res->lba_low)) + 1; } else { *hpasize = (((res->device & 0x0f) << 24) | (res->lba_high << 16) | (res->lba_mid << 8) | res->lba_low) + 1; } } return (0); } static int ata_read_native_max(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, struct ata_params *parm, u_int64_t *hpasize) { int error; u_int cmd, is48bit; u_int8_t protocol; is48bit = parm->support.command2 & ATA_SUPPORT_ADDRESS48; protocol = AP_PROTO_NON_DATA; if (is48bit) { cmd = ATA_READ_NATIVE_MAX_ADDRESS48; protocol |= AP_EXTEND; } else { cmd = ATA_READ_NATIVE_MAX_ADDRESS; } error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 5000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, hpasize); } static int atahpa_set_max(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, int is48bit, u_int64_t maxsize, int persist) { int error; u_int cmd; u_int8_t protocol; protocol = AP_PROTO_NON_DATA; if (is48bit) { cmd = ATA_SET_MAX_ADDRESS48; protocol |= AP_EXTEND; } else { cmd = ATA_SET_MAX_ADDRESS; } /* lba's are zero indexed so the max lba is requested max - 1 */ if (maxsize) maxsize--; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_MAX_ADDR, /*lba*/maxsize, /*sector_count*/persist, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, NULL); } static int atahpa_password(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, int is48bit, struct ata_set_max_pwd *pwd) { int error; u_int cmd; u_int8_t protocol; protocol = AP_PROTO_PIO_OUT; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_SET_PWD, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t*)pwd, /*dxfer_len*/sizeof(struct ata_set_max_pwd), timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, NULL); } static int atahpa_lock(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, int is48bit) { int error; u_int cmd; u_int8_t protocol; protocol = AP_PROTO_NON_DATA; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_LOCK, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, NULL); } static int atahpa_unlock(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, int is48bit, struct ata_set_max_pwd *pwd) { int error; u_int cmd; u_int8_t protocol; protocol = AP_PROTO_PIO_OUT; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_UNLOCK, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t*)pwd, /*dxfer_len*/sizeof(struct ata_set_max_pwd), timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, NULL); } static int atahpa_freeze_lock(struct cam_device *device, int retry_count, u_int32_t timeout, union ccb *ccb, int is48bit) { int error; u_int cmd; u_int8_t protocol; protocol = AP_PROTO_NON_DATA; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_FREEZE, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, is48bit, NULL); } +static int +ata_get_native_max(struct cam_device *device, int retry_count, + u_int32_t timeout, union ccb *ccb, + u_int64_t *nativesize) +{ + int error; + error = ata_do_cmd(device, + ccb, + retry_count, + /*flags*/CAM_DIR_NONE, + /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, + /*ata_flags*/AP_FLAG_CHK_COND, + /*tag_action*/MSG_SIMPLE_Q_TAG, + /*command*/ATA_AMAX_ADDR, + /*features*/ATA_AMAX_ADDR_GET, + /*lba*/0, + /*sector_count*/0, + /*data_ptr*/NULL, + /*dxfer_len*/0, + timeout ? timeout : 30 * 1000, + /*force48bit*/1); + + if (error) + return (error); + + return atahpa_proc_resp(device, ccb, /*is48bit*/1, nativesize); +} + +static int +ataama_set(struct cam_device *device, int retry_count, + u_int32_t timeout, union ccb *ccb, u_int64_t maxsize) +{ + int error; + + /* lba's are zero indexed so the max lba is requested max - 1 */ + if (maxsize) + maxsize--; + + error = ata_do_cmd(device, + ccb, + retry_count, + /*flags*/CAM_DIR_NONE, + /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, + /*ata_flags*/AP_FLAG_CHK_COND, + /*tag_action*/MSG_SIMPLE_Q_TAG, + /*command*/ATA_AMAX_ADDR, + /*features*/ATA_AMAX_ADDR_SET, + /*lba*/maxsize, + /*sector_count*/0, + /*data_ptr*/NULL, + /*dxfer_len*/0, + timeout ? timeout : 30 * 1000, + /*force48bit*/1); + + if (error) + return (error); + + return atahpa_proc_resp(device, ccb, /*is48bit*/1, NULL); +} + +static int +ataama_freeze(struct cam_device *device, int retry_count, + u_int32_t timeout, union ccb *ccb) +{ + int error; + + error = ata_do_cmd(device, + ccb, + retry_count, + /*flags*/CAM_DIR_NONE, + /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, + /*ata_flags*/AP_FLAG_CHK_COND, + /*tag_action*/MSG_SIMPLE_Q_TAG, + /*command*/ATA_AMAX_ADDR, + /*features*/ATA_AMAX_ADDR_FREEZE, + /*lba*/0, + /*sector_count*/0, + /*data_ptr*/NULL, + /*dxfer_len*/0, + timeout ? timeout : 30 * 1000, + /*force48bit*/1); + + if (error) + return (error); + + return atahpa_proc_resp(device, ccb, /*is48bit*/1, NULL); +} + int ata_do_identify(struct cam_device *device, int retry_count, int timeout, union ccb *ccb, struct ata_params** ident_bufp) { struct ata_params *ident_buf; struct ccb_pathinq cpi; struct ccb_getdev cgd; u_int i, error; int16_t *ptr; u_int8_t command, retry_command; if (get_cpi(device, &cpi) != 0) { warnx("couldn't get CPI"); return (-1); } /* Neither PROTO_ATAPI or PROTO_SATAPM are used in cpi.protocol */ if (cpi.protocol == PROTO_ATA) { if (get_cgd(device, &cgd) != 0) { warnx("couldn't get CGD"); return (-1); } command = (cgd.protocol == PROTO_ATA) ? ATA_ATA_IDENTIFY : ATA_ATAPI_IDENTIFY; retry_command = 0; } else { /* We don't know which for sure so try both */ command = ATA_ATA_IDENTIFY; retry_command = ATA_ATAPI_IDENTIFY; } ptr = (uint16_t *)calloc(1, sizeof(struct ata_params)); if (ptr == NULL) { warnx("can't calloc memory for identify\n"); return (1); } error = ata_do_28bit_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_IN, /*protocol*/AP_PROTO_PIO_IN, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/command, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)ptr, /*dxfer_len*/sizeof(struct ata_params), /*timeout*/timeout ? timeout : 30 * 1000, /*quiet*/1); if (error != 0) { if (retry_command == 0) { free(ptr); return (1); } error = ata_do_28bit_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_IN, /*protocol*/AP_PROTO_PIO_IN, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/retry_command, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)ptr, /*dxfer_len*/sizeof(struct ata_params), /*timeout*/timeout ? timeout : 30 * 1000, /*quiet*/0); if (error != 0) { free(ptr); return (1); } } error = 1; for (i = 0; i < sizeof(struct ata_params) / 2; i++) { ptr[i] = le16toh(ptr[i]); if (ptr[i] != 0) error = 0; } if (arglist & CAM_ARG_VERBOSE) { fprintf(stdout, "%s%d: Raw identify data:\n", device->device_name, device->dev_unit_num); dump_data(ptr, sizeof(struct ata_params)); } /* check for invalid (all zero) response */ if (error != 0) { warnx("Invalid identify response detected"); free(ptr); return (error); } ident_buf = (struct ata_params *)ptr; if (strncmp(ident_buf->model, "FX", 2) && strncmp(ident_buf->model, "NEC", 3) && strncmp(ident_buf->model, "Pioneer", 7) && strncmp(ident_buf->model, "SHARP", 5)) { ata_bswap(ident_buf->model, sizeof(ident_buf->model)); ata_bswap(ident_buf->revision, sizeof(ident_buf->revision)); ata_bswap(ident_buf->serial, sizeof(ident_buf->serial)); ata_bswap(ident_buf->media_serial, sizeof(ident_buf->media_serial)); } ata_btrim(ident_buf->model, sizeof(ident_buf->model)); ata_bpack(ident_buf->model, ident_buf->model, sizeof(ident_buf->model)); ata_btrim(ident_buf->revision, sizeof(ident_buf->revision)); ata_bpack(ident_buf->revision, ident_buf->revision, sizeof(ident_buf->revision)); ata_btrim(ident_buf->serial, sizeof(ident_buf->serial)); ata_bpack(ident_buf->serial, ident_buf->serial, sizeof(ident_buf->serial)); ata_btrim(ident_buf->media_serial, sizeof(ident_buf->media_serial)); ata_bpack(ident_buf->media_serial, ident_buf->media_serial, sizeof(ident_buf->media_serial)); *ident_bufp = ident_buf; return (0); } static int ataidentify(struct cam_device *device, int retry_count, int timeout) { union ccb *ccb; struct ata_params *ident_buf; - u_int64_t hpasize; + u_int64_t hpasize, nativesize; if ((ccb = cam_getccb(device)) == NULL) { warnx("couldn't allocate CCB"); return (1); } if (ata_do_identify(device, retry_count, timeout, ccb, &ident_buf) != 0) { cam_freeccb(ccb); return (1); } if (ident_buf->support.command1 & ATA_SUPPORT_PROTECTED) { if (ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize) != 0) { cam_freeccb(ccb); return (1); } } else { hpasize = 0; } + if (ident_buf->support2 & ATA_SUPPORT_AMAX_ADDR) { + if (ata_get_native_max(device, retry_count, timeout, ccb, + &nativesize) != 0) { + cam_freeccb(ccb); + return (1); + } + } else { + nativesize = 0; + } printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); atacapprint(ident_buf); atahpa_print(ident_buf, hpasize, 0); + ataama_print(ident_buf, nativesize, 0); free(ident_buf); cam_freeccb(ccb); return (0); } #endif /* MINIMALISTIC */ #ifndef MINIMALISTIC enum { ATA_SECURITY_ACTION_PRINT, ATA_SECURITY_ACTION_FREEZE, ATA_SECURITY_ACTION_UNLOCK, ATA_SECURITY_ACTION_DISABLE, ATA_SECURITY_ACTION_ERASE, ATA_SECURITY_ACTION_ERASE_ENHANCED, ATA_SECURITY_ACTION_SET_PASSWORD }; static void atasecurity_print_time(u_int16_t tw) { if (tw == 0) printf("unspecified"); else if (tw >= 255) printf("> 508 min"); else printf("%i min", 2 * tw); } static u_int32_t atasecurity_erase_timeout_msecs(u_int16_t timeout) { if (timeout == 0) return 2 * 3600 * 1000; /* default: two hours */ else if (timeout > 255) return (508 + 60) * 60 * 1000; /* spec says > 508 minutes */ return ((2 * timeout) + 5) * 60 * 1000; /* add a 5min margin */ } static void atasecurity_notify(u_int8_t command, struct ata_security_password *pwd) { struct ata_cmd cmd; bzero(&cmd, sizeof(cmd)); cmd.command = command; printf("Issuing %s", ata_op_string(&cmd)); if (pwd != NULL) { char pass[sizeof(pwd->password)+1]; /* pwd->password may not be null terminated */ pass[sizeof(pwd->password)] = '\0'; strncpy(pass, pwd->password, sizeof(pwd->password)); printf(" password='%s', user='%s'", pass, (pwd->ctrl & ATA_SECURITY_PASSWORD_MASTER) ? "master" : "user"); if (command == ATA_SECURITY_SET_PASSWORD) { printf(", mode='%s'", (pwd->ctrl & ATA_SECURITY_LEVEL_MAXIMUM) ? "maximum" : "high"); } } printf("\n"); } static int atasecurity_freeze(struct cam_device *device, union ccb *ccb, int retry_count, u_int32_t timeout, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_FREEZE_LOCK, NULL); return ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_FREEZE_LOCK, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout, /*quiet*/0); } static int atasecurity_unlock(struct cam_device *device, union ccb *ccb, int retry_count, u_int32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_UNLOCK, pwd); return ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_UNLOCK, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*quiet*/0); } static int atasecurity_disable(struct cam_device *device, union ccb *ccb, int retry_count, u_int32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_DISABLE_PASSWORD, pwd); return ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_DISABLE_PASSWORD, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*quiet*/0); } static int atasecurity_erase_confirm(struct cam_device *device, struct ata_params* ident_buf) { printf("\nYou are about to ERASE ALL DATA from the following" " device:\n%s%d,%s%d: ", device->device_name, device->dev_unit_num, device->given_dev_name, device->given_unit_number); ata_print_ident(ident_buf); for(;;) { char str[50]; printf("\nAre you SURE you want to ERASE ALL DATA? (yes/no) "); if (fgets(str, sizeof(str), stdin) != NULL) { if (strncasecmp(str, "yes", 3) == 0) { return (1); } else if (strncasecmp(str, "no", 2) == 0) { return (0); } else { printf("Please answer \"yes\" or " "\"no\"\n"); } } } /* NOTREACHED */ return (0); } static int atasecurity_erase(struct cam_device *device, union ccb *ccb, int retry_count, u_int32_t timeout, u_int32_t erase_timeout, struct ata_security_password *pwd, int quiet) { int error; if (quiet == 0) atasecurity_notify(ATA_SECURITY_ERASE_PREPARE, NULL); error = ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_ERASE_PREPARE, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout, /*quiet*/0); if (error != 0) return error; if (quiet == 0) atasecurity_notify(ATA_SECURITY_ERASE_UNIT, pwd); error = ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_ERASE_UNIT, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/erase_timeout, /*quiet*/0); if (error == 0 && quiet == 0) printf("\nErase Complete\n"); return error; } static int atasecurity_set_password(struct cam_device *device, union ccb *ccb, int retry_count, u_int32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_SET_PASSWORD, pwd); return ata_do_28bit_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_SET_PASSWORD, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/(u_int8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*quiet*/0); } static void atasecurity_print(struct ata_params *parm) { printf("\nSecurity Option Value\n"); if (arglist & CAM_ARG_VERBOSE) { printf("status %04x\n", parm->security_status); } printf("supported %s\n", parm->security_status & ATA_SECURITY_SUPPORTED ? "yes" : "no"); if (!(parm->security_status & ATA_SECURITY_SUPPORTED)) return; printf("enabled %s\n", parm->security_status & ATA_SECURITY_ENABLED ? "yes" : "no"); printf("drive locked %s\n", parm->security_status & ATA_SECURITY_LOCKED ? "yes" : "no"); printf("security config frozen %s\n", parm->security_status & ATA_SECURITY_FROZEN ? "yes" : "no"); printf("count expired %s\n", parm->security_status & ATA_SECURITY_COUNT_EXP ? "yes" : "no"); printf("security level %s\n", parm->security_status & ATA_SECURITY_LEVEL ? "maximum" : "high"); printf("enhanced erase supported %s\n", parm->security_status & ATA_SECURITY_ENH_SUPP ? "yes" : "no"); printf("erase time "); atasecurity_print_time(parm->erase_time); printf("\n"); printf("enhanced erase time "); atasecurity_print_time(parm->enhanced_erase_time); printf("\n"); printf("master password rev %04x%s\n", parm->master_passwd_revision, parm->master_passwd_revision == 0x0000 || parm->master_passwd_revision == 0xFFFF ? " (unsupported)" : ""); } /* * Validates and copies the password in optarg to the passed buffer. * If the password in optarg is the same length as the buffer then * the data will still be copied but no null termination will occur. */ static int ata_getpwd(u_int8_t *passwd, int max, char opt) { int len; len = strlen(optarg); if (len > max) { warnx("-%c password is too long", opt); return (1); } else if (len == 0) { warnx("-%c password is missing", opt); return (1); } else if (optarg[0] == '-'){ warnx("-%c password starts with '-' (generic arg?)", opt); return (1); } else if (strlen(passwd) != 0 && strcmp(passwd, optarg) != 0) { warnx("-%c password conflicts with existing password from -%c", opt, pwd_opt); return (1); } /* Callers pass in a buffer which does NOT need to be terminated */ strncpy(passwd, optarg, max); pwd_opt = opt; return (0); } enum { ATA_HPA_ACTION_PRINT, ATA_HPA_ACTION_SET_MAX, ATA_HPA_ACTION_SET_PWD, ATA_HPA_ACTION_LOCK, ATA_HPA_ACTION_UNLOCK, ATA_HPA_ACTION_FREEZE_LOCK }; static int atahpa_set_confirm(struct cam_device *device, struct ata_params* ident_buf, u_int64_t maxsize, int persist) { printf("\nYou are about to configure HPA to limit the user accessible\n" "sectors to %ju %s on the device:\n%s%d,%s%d: ", maxsize, persist ? "persistently" : "temporarily", device->device_name, device->dev_unit_num, device->given_dev_name, device->given_unit_number); ata_print_ident(ident_buf); for(;;) { char str[50]; printf("\nAre you SURE you want to configure HPA? (yes/no) "); if (NULL != fgets(str, sizeof(str), stdin)) { if (0 == strncasecmp(str, "yes", 3)) { return (1); } else if (0 == strncasecmp(str, "no", 2)) { return (0); } else { printf("Please answer \"yes\" or " "\"no\"\n"); } } } /* NOTREACHED */ return (0); } static int atahpa(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { union ccb *ccb; struct ata_params *ident_buf; struct ccb_getdev cgd; struct ata_set_max_pwd pwd; int error, confirm, quiet, c, action, actions, persist; int security, is48bit, pwdsize; u_int64_t hpasize, maxsize; actions = 0; confirm = 0; quiet = 0; maxsize = 0; persist = 0; security = 0; memset(&pwd, 0, sizeof(pwd)); /* default action is to print hpa information */ action = ATA_HPA_ACTION_PRINT; pwdsize = sizeof(pwd.password); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 's': action = ATA_HPA_ACTION_SET_MAX; maxsize = strtoumax(optarg, NULL, 0); actions++; break; case 'p': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_HPA_ACTION_SET_PWD; security = 1; actions++; break; case 'l': action = ATA_HPA_ACTION_LOCK; security = 1; actions++; break; case 'U': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_HPA_ACTION_UNLOCK; security = 1; actions++; break; case 'f': action = ATA_HPA_ACTION_FREEZE_LOCK; security = 1; actions++; break; case 'P': persist = 1; break; case 'y': confirm++; break; case 'q': quiet++; break; } } if (actions > 1) { warnx("too many hpa actions specified"); return (1); } if (get_cgd(device, &cgd) != 0) { warnx("couldn't get CGD"); return (1); } ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error != 0) { cam_freeccb(ccb); return (1); } if (quiet == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); } if (action == ATA_HPA_ACTION_PRINT) { error = ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize); if (error == 0) atahpa_print(ident_buf, hpasize, 1); cam_freeccb(ccb); free(ident_buf); return (error); } if (!(ident_buf->support.command1 & ATA_SUPPORT_PROTECTED)) { warnx("HPA is not supported by this device"); cam_freeccb(ccb); free(ident_buf); return (1); } - if (security && !(ident_buf->support.command1 & ATA_SUPPORT_MAXSECURITY)) { + if (security && !(ident_buf->support.command2 & ATA_SUPPORT_MAXSECURITY)) { warnx("HPA Security is not supported by this device"); cam_freeccb(ccb); free(ident_buf); return (1); } is48bit = ident_buf->support.command2 & ATA_SUPPORT_ADDRESS48; /* * The ATA spec requires: * 1. Read native max addr is called directly before set max addr * 2. Read native max addr is NOT called before any other set max call */ switch(action) { case ATA_HPA_ACTION_SET_MAX: if (confirm == 0 && atahpa_set_confirm(device, ident_buf, maxsize, persist) == 0) { cam_freeccb(ccb); free(ident_buf); return (1); } error = ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize); if (error == 0) { error = atahpa_set_max(device, retry_count, timeout, ccb, is48bit, maxsize, persist); - if (error == 0) { + if (error == 0 && quiet == 0) { /* redo identify to get new lba values */ error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); atahpa_print(ident_buf, hpasize, 1); } } break; case ATA_HPA_ACTION_SET_PWD: error = atahpa_password(device, retry_count, timeout, ccb, is48bit, &pwd); - if (error == 0) + if (error == 0 && quiet == 0) printf("HPA password has been set\n"); break; case ATA_HPA_ACTION_LOCK: error = atahpa_lock(device, retry_count, timeout, ccb, is48bit); - if (error == 0) + if (error == 0 && quiet == 0) printf("HPA has been locked\n"); break; case ATA_HPA_ACTION_UNLOCK: error = atahpa_unlock(device, retry_count, timeout, ccb, is48bit, &pwd); - if (error == 0) + if (error == 0 && quiet == 0) printf("HPA has been unlocked\n"); break; case ATA_HPA_ACTION_FREEZE_LOCK: error = atahpa_freeze_lock(device, retry_count, timeout, ccb, is48bit); - if (error == 0) + if (error == 0 && quiet == 0) printf("HPA has been frozen\n"); break; default: errx(1, "Option currently not supported"); } cam_freeccb(ccb); free(ident_buf); return (error); } +enum { + ATA_AMA_ACTION_PRINT, + ATA_AMA_ACTION_SET_MAX, + ATA_AMA_ACTION_FREEZE_LOCK +}; + static int +ataama(struct cam_device *device, int retry_count, int timeout, + int argc, char **argv, char *combinedopt) +{ + union ccb *ccb; + struct ata_params *ident_buf; + struct ccb_getdev cgd; + int error, quiet, c, action, actions; + u_int64_t nativesize, maxsize; + + actions = 0; + quiet = 0; + maxsize = 0; + + /* default action is to print AMA information */ + action = ATA_AMA_ACTION_PRINT; + + while ((c = getopt(argc, argv, combinedopt)) != -1) { + switch(c){ + case 's': + action = ATA_AMA_ACTION_SET_MAX; + maxsize = strtoumax(optarg, NULL, 0); + actions++; + break; + + case 'f': + action = ATA_AMA_ACTION_FREEZE_LOCK; + actions++; + break; + + case 'q': + quiet++; + break; + } + } + + if (actions > 1) { + warnx("too many AMA actions specified"); + return (1); + } + + if (get_cgd(device, &cgd) != 0) { + warnx("couldn't get CGD"); + return (1); + } + + ccb = cam_getccb(device); + if (ccb == NULL) { + warnx("couldn't allocate CCB"); + return (1); + } + + error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); + if (error != 0) { + cam_freeccb(ccb); + return (1); + } + + if (quiet == 0) { + printf("%s%d: ", device->device_name, device->dev_unit_num); + ata_print_ident(ident_buf); + camxferrate(device); + } + + if (action == ATA_AMA_ACTION_PRINT) { + error = ata_get_native_max(device, retry_count, timeout, ccb, + &nativesize); + if (error == 0) + ataama_print(ident_buf, nativesize, 1); + + cam_freeccb(ccb); + free(ident_buf); + return (error); + } + + if (!(ident_buf->support2 & ATA_SUPPORT_AMAX_ADDR)) { + warnx("Accessible Max Address is not supported by this device"); + cam_freeccb(ccb); + free(ident_buf); + return (1); + } + + switch(action) { + case ATA_AMA_ACTION_SET_MAX: + error = ata_get_native_max(device, retry_count, timeout, ccb, + &nativesize); + if (error == 0) { + error = ataama_set(device, retry_count, timeout, + ccb, maxsize); + if (error == 0 && quiet == 0) { + /* redo identify to get new lba values */ + error = ata_do_identify(device, retry_count, + timeout, ccb, &ident_buf); + ataama_print(ident_buf, nativesize, 1); + } + } + break; + + case ATA_AMA_ACTION_FREEZE_LOCK: + error = ataama_freeze(device, retry_count, timeout, + ccb); + if (error == 0 && quiet == 0) + printf("Accessible Max Address has been frozen\n"); + break; + + default: + errx(1, "Option currently not supported"); + } + + cam_freeccb(ccb); + free(ident_buf); + + return (error); +} + +static int atasecurity(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { union ccb *ccb; struct ata_params *ident_buf; int error, confirm, quiet, c, action, actions, setpwd; int security_enabled, erase_timeout, pwdsize; struct ata_security_password pwd; actions = 0; setpwd = 0; erase_timeout = 0; confirm = 0; quiet = 0; memset(&pwd, 0, sizeof(pwd)); /* default action is to print security information */ action = ATA_SECURITY_ACTION_PRINT; /* user is master by default as its safer that way */ pwd.ctrl |= ATA_SECURITY_PASSWORD_MASTER; pwdsize = sizeof(pwd.password); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'f': action = ATA_SECURITY_ACTION_FREEZE; actions++; break; case 'U': if (strcasecmp(optarg, "user") == 0) { pwd.ctrl |= ATA_SECURITY_PASSWORD_USER; pwd.ctrl &= ~ATA_SECURITY_PASSWORD_MASTER; } else if (strcasecmp(optarg, "master") == 0) { pwd.ctrl |= ATA_SECURITY_PASSWORD_MASTER; pwd.ctrl &= ~ATA_SECURITY_PASSWORD_USER; } else { warnx("-U argument '%s' is invalid (must be " "'user' or 'master')", optarg); return (1); } break; case 'l': if (strcasecmp(optarg, "high") == 0) { pwd.ctrl |= ATA_SECURITY_LEVEL_HIGH; pwd.ctrl &= ~ATA_SECURITY_LEVEL_MAXIMUM; } else if (strcasecmp(optarg, "maximum") == 0) { pwd.ctrl |= ATA_SECURITY_LEVEL_MAXIMUM; pwd.ctrl &= ~ATA_SECURITY_LEVEL_HIGH; } else { warnx("-l argument '%s' is unknown (must be " "'high' or 'maximum')", optarg); return (1); } break; case 'k': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_UNLOCK; actions++; break; case 'd': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_DISABLE; actions++; break; case 'e': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_ERASE; actions++; break; case 'h': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); pwd.ctrl |= ATA_SECURITY_ERASE_ENHANCED; action = ATA_SECURITY_ACTION_ERASE_ENHANCED; actions++; break; case 's': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); setpwd = 1; if (action == ATA_SECURITY_ACTION_PRINT) action = ATA_SECURITY_ACTION_SET_PASSWORD; /* * Don't increment action as this can be combined * with other actions. */ break; case 'y': confirm++; break; case 'q': quiet++; break; case 'T': erase_timeout = atoi(optarg) * 1000; break; } } if (actions > 1) { warnx("too many security actions specified"); return (1); } if ((ccb = cam_getccb(device)) == NULL) { warnx("couldn't allocate CCB"); return (1); } error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error != 0) { cam_freeccb(ccb); return (1); } if (quiet == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); } if (action == ATA_SECURITY_ACTION_PRINT) { atasecurity_print(ident_buf); free(ident_buf); cam_freeccb(ccb); return (0); } if ((ident_buf->support.command1 & ATA_SUPPORT_SECURITY) == 0) { warnx("Security not supported"); free(ident_buf); cam_freeccb(ccb); return (1); } /* default timeout 15 seconds the same as linux hdparm */ timeout = timeout ? timeout : 15 * 1000; security_enabled = ident_buf->security_status & ATA_SECURITY_ENABLED; /* first set the password if requested */ if (setpwd == 1) { /* confirm we can erase before setting the password if erasing */ if (confirm == 0 && (action == ATA_SECURITY_ACTION_ERASE_ENHANCED || action == ATA_SECURITY_ACTION_ERASE) && atasecurity_erase_confirm(device, ident_buf) == 0) { cam_freeccb(ccb); free(ident_buf); return (error); } if (pwd.ctrl & ATA_SECURITY_PASSWORD_MASTER) { pwd.revision = ident_buf->master_passwd_revision; if (pwd.revision != 0 && pwd.revision != 0xfff && --pwd.revision == 0) { pwd.revision = 0xfffe; } } error = atasecurity_set_password(device, ccb, retry_count, timeout, &pwd, quiet); if (error != 0) { cam_freeccb(ccb); free(ident_buf); return (error); } security_enabled = 1; } switch(action) { case ATA_SECURITY_ACTION_FREEZE: error = atasecurity_freeze(device, ccb, retry_count, timeout, quiet); break; case ATA_SECURITY_ACTION_UNLOCK: if (security_enabled) { if (ident_buf->security_status & ATA_SECURITY_LOCKED) { error = atasecurity_unlock(device, ccb, retry_count, timeout, &pwd, quiet); } else { warnx("Can't unlock, drive is not locked"); error = 1; } } else { warnx("Can't unlock, security is disabled"); error = 1; } break; case ATA_SECURITY_ACTION_DISABLE: if (security_enabled) { /* First unlock the drive if its locked */ if (ident_buf->security_status & ATA_SECURITY_LOCKED) { error = atasecurity_unlock(device, ccb, retry_count, timeout, &pwd, quiet); } if (error == 0) { error = atasecurity_disable(device, ccb, retry_count, timeout, &pwd, quiet); } } else { warnx("Can't disable security (already disabled)"); error = 1; } break; case ATA_SECURITY_ACTION_ERASE: if (security_enabled) { if (erase_timeout == 0) { erase_timeout = atasecurity_erase_timeout_msecs( ident_buf->erase_time); } error = atasecurity_erase(device, ccb, retry_count, timeout, erase_timeout, &pwd, quiet); } else { warnx("Can't secure erase (security is disabled)"); error = 1; } break; case ATA_SECURITY_ACTION_ERASE_ENHANCED: if (security_enabled) { if (ident_buf->security_status & ATA_SECURITY_ENH_SUPP) { if (erase_timeout == 0) { erase_timeout = atasecurity_erase_timeout_msecs( ident_buf->enhanced_erase_time); } error = atasecurity_erase(device, ccb, retry_count, timeout, erase_timeout, &pwd, quiet); } else { warnx("Enhanced erase is not supported"); error = 1; } } else { warnx("Can't secure erase (enhanced), " "(security is disabled)"); error = 1; } break; } cam_freeccb(ccb); free(ident_buf); return (error); } #endif /* MINIMALISTIC */ /* * Parse out a bus, or a bus, target and lun in the following * format: * bus * bus:target * bus:target:lun * * Returns the number of parsed components, or 0. */ static int parse_btl(char *tstr, path_id_t *bus, target_id_t *target, lun_id_t *lun, cam_argmask *arglst) { char *tmpstr; int convs = 0; while (isspace(*tstr) && (*tstr != '\0')) tstr++; tmpstr = (char *)strtok(tstr, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *bus = strtol(tmpstr, NULL, 0); *arglst |= CAM_ARG_BUS; convs++; tmpstr = (char *)strtok(NULL, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *target = strtol(tmpstr, NULL, 0); *arglst |= CAM_ARG_TARGET; convs++; tmpstr = (char *)strtok(NULL, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *lun = strtol(tmpstr, NULL, 0); *arglst |= CAM_ARG_LUN; convs++; } } } return convs; } static int dorescan_or_reset(int argc, char **argv, int rescan) { static const char must[] = "you must specify \"all\", a bus, or a bus:target:lun to %s"; int rv, error = 0; path_id_t bus = CAM_BUS_WILDCARD; target_id_t target = CAM_TARGET_WILDCARD; lun_id_t lun = CAM_LUN_WILDCARD; char *tstr; if (argc < 3) { warnx(must, rescan? "rescan" : "reset"); return (1); } tstr = argv[optind]; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (strncasecmp(tstr, "all", strlen("all")) == 0) arglist |= CAM_ARG_BUS; else if (isdigit(*tstr)) { rv = parse_btl(argv[optind], &bus, &target, &lun, &arglist); if (rv != 1 && rv != 3) { warnx(must, rescan? "rescan" : "reset"); return (1); } } else { char name[30]; int unit; int fd = -1; union ccb ccb; /* * Note that resetting or rescanning a device used to * require a bus or bus:target:lun. This is because the * device in question may not exist and you're trying to * get the controller to rescan to find it. It may also be * because the device is hung / unresponsive, and opening * an unresponsive device is not desireable. * * It can be more convenient to reference a device by * peripheral name and unit number, though, and it is * possible to get the bus:target:lun for devices that * currently exist in the EDT. So this can work for * devices that we want to reset, or devices that exist * that we want to rescan, but not devices that do not * exist yet. * * So, we are careful here to look up the bus/target/lun * for the device the user wants to operate on, specified * by peripheral instance (e.g. da0, pass32) without * actually opening that device. The process is similar to * what cam_lookup_pass() does, except that we don't * actually open the passthrough driver instance in the end. */ if (cam_get_device(tstr, name, sizeof(name), &unit) == -1) { warnx("%s", cam_errbuf); error = 1; goto bailout; } if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("Unable to open %s", XPT_DEVICE); error = 1; goto bailout; } bzero(&ccb, sizeof(ccb)); /* * The function code isn't strictly necessary for the * GETPASSTHRU ioctl. */ ccb.ccb_h.func_code = XPT_GDEVLIST; /* * These two are necessary for the GETPASSTHRU ioctl to * work. */ strlcpy(ccb.cgdl.periph_name, name, sizeof(ccb.cgdl.periph_name)); ccb.cgdl.unit_number = unit; /* * Attempt to get the passthrough device. This ioctl will * fail if the device name is null, if the device doesn't * exist, or if the passthrough driver isn't in the kernel. */ if (ioctl(fd, CAMGETPASSTHRU, &ccb) == -1) { warn("Unable to find bus:target:lun for device %s%d", name, unit); error = 1; close(fd); goto bailout; } if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(ccb.ccb_h.status); warnx("Unable to find bus:target_lun for device %s%d, " "CAM status: %s (%#x)", name, unit, entry ? entry->status_text : "Unknown", ccb.ccb_h.status); error = 1; close(fd); goto bailout; } /* * The kernel fills in the bus/target/lun. We don't * need the passthrough device name and unit number since * we aren't going to open it. */ bus = ccb.ccb_h.path_id; target = ccb.ccb_h.target_id; lun = ccb.ccb_h.target_lun; arglist |= CAM_ARG_BUS | CAM_ARG_TARGET | CAM_ARG_LUN; close(fd); } if ((arglist & CAM_ARG_BUS) && (arglist & CAM_ARG_TARGET) && (arglist & CAM_ARG_LUN)) error = scanlun_or_reset_dev(bus, target, lun, rescan); else error = rescan_or_reset_bus(bus, rescan); bailout: return (error); } static int rescan_or_reset_bus(path_id_t bus, int rescan) { union ccb *ccb = NULL, *matchccb = NULL; int fd = -1, retval; int bufsize; retval = 0; if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } ccb = malloc(sizeof(*ccb)); if (ccb == NULL) { warn("failed to allocate CCB"); retval = 1; goto bailout; } bzero(ccb, sizeof(*ccb)); if (bus != CAM_BUS_WILDCARD) { ccb->ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS; ccb->ccb_h.path_id = bus; ccb->ccb_h.target_id = CAM_TARGET_WILDCARD; ccb->ccb_h.target_lun = CAM_LUN_WILDCARD; ccb->crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb->ccb_h.pinfo.priority = 5; if (ioctl(fd, CAMIOCOMMAND, ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { fprintf(stdout, "%s of bus %d was successful\n", rescan ? "Re-scan" : "Reset", bus); } else { fprintf(stdout, "%s of bus %d returned error %#x\n", rescan ? "Re-scan" : "Reset", bus, ccb->ccb_h.status & CAM_STATUS_MASK); retval = 1; } goto bailout; } /* * The right way to handle this is to modify the xpt so that it can * handle a wildcarded bus in a rescan or reset CCB. At the moment * that isn't implemented, so instead we enumerate the busses and * send the rescan or reset to those busses in the case where the * given bus is -1 (wildcard). We don't send a rescan or reset * to the xpt bus; sending a rescan to the xpt bus is effectively a * no-op, sending a rescan to the xpt bus would result in a status of * CAM_REQ_INVALID. */ matchccb = malloc(sizeof(*matchccb)); if (matchccb == NULL) { warn("failed to allocate CCB"); retval = 1; goto bailout; } bzero(matchccb, sizeof(*matchccb)); matchccb->ccb_h.func_code = XPT_DEV_MATCH; matchccb->ccb_h.path_id = CAM_BUS_WILDCARD; bufsize = sizeof(struct dev_match_result) * 20; matchccb->cdm.match_buf_len = bufsize; matchccb->cdm.matches=(struct dev_match_result *)malloc(bufsize); if (matchccb->cdm.matches == NULL) { warnx("can't malloc memory for matches"); retval = 1; goto bailout; } matchccb->cdm.num_matches = 0; matchccb->cdm.num_patterns = 1; matchccb->cdm.pattern_buf_len = sizeof(struct dev_match_pattern); matchccb->cdm.patterns = (struct dev_match_pattern *)malloc( matchccb->cdm.pattern_buf_len); if (matchccb->cdm.patterns == NULL) { warnx("can't malloc memory for patterns"); retval = 1; goto bailout; } matchccb->cdm.patterns[0].type = DEV_MATCH_BUS; matchccb->cdm.patterns[0].pattern.bus_pattern.flags = BUS_MATCH_ANY; do { unsigned int i; if (ioctl(fd, CAMIOCOMMAND, matchccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((matchccb->ccb_h.status != CAM_REQ_CMP) || ((matchccb->cdm.status != CAM_DEV_MATCH_LAST) && (matchccb->cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", matchccb->ccb_h.status, matchccb->cdm.status); retval = 1; goto bailout; } for (i = 0; i < matchccb->cdm.num_matches; i++) { struct bus_match_result *bus_result; /* This shouldn't happen. */ if (matchccb->cdm.matches[i].type != DEV_MATCH_BUS) continue; bus_result =&matchccb->cdm.matches[i].result.bus_result; /* * We don't want to rescan or reset the xpt bus. * See above. */ if (bus_result->path_id == CAM_XPT_PATH_ID) continue; ccb->ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS; ccb->ccb_h.path_id = bus_result->path_id; ccb->ccb_h.target_id = CAM_TARGET_WILDCARD; ccb->ccb_h.target_lun = CAM_LUN_WILDCARD; ccb->crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb->ccb_h.pinfo.priority = 5; if (ioctl(fd, CAMIOCOMMAND, ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK)==CAM_REQ_CMP){ fprintf(stdout, "%s of bus %d was successful\n", rescan? "Re-scan" : "Reset", bus_result->path_id); } else { /* * Don't bail out just yet, maybe the other * rescan or reset commands will complete * successfully. */ fprintf(stderr, "%s of bus %d returned error " "%#x\n", rescan? "Re-scan" : "Reset", bus_result->path_id, ccb->ccb_h.status & CAM_STATUS_MASK); retval = 1; } } } while ((matchccb->ccb_h.status == CAM_REQ_CMP) && (matchccb->cdm.status == CAM_DEV_MATCH_MORE)); bailout: if (fd != -1) close(fd); if (matchccb != NULL) { free(matchccb->cdm.patterns); free(matchccb->cdm.matches); free(matchccb); } free(ccb); return (retval); } static int scanlun_or_reset_dev(path_id_t bus, target_id_t target, lun_id_t lun, int scan) { union ccb ccb; struct cam_device *device; int fd; device = NULL; if (bus == CAM_BUS_WILDCARD) { warnx("invalid bus number %d", bus); return (1); } if (target == CAM_TARGET_WILDCARD) { warnx("invalid target number %d", target); return (1); } if (lun == CAM_LUN_WILDCARD) { warnx("invalid lun number %jx", (uintmax_t)lun); return (1); } fd = -1; bzero(&ccb, sizeof(union ccb)); if (scan) { if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s\n", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } } else { device = cam_open_btl(bus, target, lun, O_RDWR, NULL); if (device == NULL) { warnx("%s", cam_errbuf); return (1); } } ccb.ccb_h.func_code = (scan)? XPT_SCAN_LUN : XPT_RESET_DEV; ccb.ccb_h.path_id = bus; ccb.ccb_h.target_id = target; ccb.ccb_h.target_lun = lun; ccb.ccb_h.timeout = 5000; ccb.crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb.ccb_h.pinfo.priority = 5; if (scan) { if (ioctl(fd, CAMIOCOMMAND, &ccb) < 0) { warn("CAMIOCOMMAND ioctl failed"); close(fd); return (1); } } else { if (cam_send_ccb(device, &ccb) < 0) { warn("error sending XPT_RESET_DEV CCB"); cam_close_device(device); return (1); } } if (scan) close(fd); else cam_close_device(device); /* * An error code of CAM_BDR_SENT is normal for a BDR request. */ if (((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) || ((!scan) && ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_BDR_SENT))) { fprintf(stdout, "%s of %d:%d:%jx was successful\n", scan? "Re-scan" : "Reset", bus, target, (uintmax_t)lun); return (0); } else { fprintf(stdout, "%s of %d:%d:%jx returned error %#x\n", scan? "Re-scan" : "Reset", bus, target, (uintmax_t)lun, ccb.ccb_h.status & CAM_STATUS_MASK); return (1); } } #ifndef MINIMALISTIC static struct scsi_nv defect_list_type_map[] = { { "block", SRDD10_BLOCK_FORMAT }, { "extbfi", SRDD10_EXT_BFI_FORMAT }, { "extphys", SRDD10_EXT_PHYS_FORMAT }, { "longblock", SRDD10_LONG_BLOCK_FORMAT }, { "bfi", SRDD10_BYTES_FROM_INDEX_FORMAT }, { "phys", SRDD10_PHYSICAL_SECTOR_FORMAT } }; static int readdefects(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb = NULL; struct scsi_read_defect_data_hdr_10 *hdr10 = NULL; struct scsi_read_defect_data_hdr_12 *hdr12 = NULL; size_t hdr_size = 0, entry_size = 0; int use_12byte = 0; int hex_format = 0; u_int8_t *defect_list = NULL; u_int8_t list_format = 0; int list_type_set = 0; u_int32_t dlist_length = 0; u_int32_t returned_length = 0, valid_len = 0; u_int32_t num_returned = 0, num_valid = 0; u_int32_t max_possible_size = 0, hdr_max = 0; u_int32_t starting_offset = 0; u_int8_t returned_format, returned_type; unsigned int i; int summary = 0, quiet = 0; int c, error = 0; int lists_specified = 0; int get_length = 1, first_pass = 1; int mads = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'f': { scsi_nv_status status; int entry_num = 0; status = scsi_get_nv(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), optarg, &entry_num, SCSI_NV_FLAG_IG_CASE); if (status == SCSI_NV_FOUND) { list_format = defect_list_type_map[ entry_num].value; list_type_set = 1; } else { warnx("%s: %s %s option %s", __func__, (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : "invalid", "defect list type", optarg); error = 1; goto defect_bailout; } break; } case 'G': arglist |= CAM_ARG_GLIST; break; case 'P': arglist |= CAM_ARG_PLIST; break; case 'q': quiet = 1; break; case 's': summary = 1; break; case 'S': { char *endptr; starting_offset = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { error = 1; warnx("invalid starting offset %s", optarg); goto defect_bailout; } break; } case 'X': hex_format = 1; break; default: break; } } if (list_type_set == 0) { error = 1; warnx("no defect list format specified"); goto defect_bailout; } if (arglist & CAM_ARG_PLIST) { list_format |= SRDD10_PLIST; lists_specified++; } if (arglist & CAM_ARG_GLIST) { list_format |= SRDD10_GLIST; lists_specified++; } /* * This implies a summary, and was the previous behavior. */ if (lists_specified == 0) summary = 1; ccb = cam_getccb(device); retry_12byte: /* * We start off asking for just the header to determine how much * defect data is available. Some Hitachi drives return an error * if you ask for more data than the drive has. Once we know the * length, we retry the command with the returned length. */ if (use_12byte == 0) dlist_length = sizeof(*hdr10); else dlist_length = sizeof(*hdr12); retry: if (defect_list != NULL) { free(defect_list); defect_list = NULL; } defect_list = malloc(dlist_length); if (defect_list == NULL) { warnx("can't malloc memory for defect list"); error = 1; goto defect_bailout; } next_batch: bzero(defect_list, dlist_length); /* * cam_getccb() zeros the CCB header only. So we need to zero the * payload portion of the ccb. */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_read_defects(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*list_format*/ list_format, /*addr_desc_index*/ starting_offset, /*data_ptr*/ defect_list, /*dxfer_len*/ dlist_length, /*minimum_cmd_size*/ use_12byte ? 12 : 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (cam_send_ccb(device, ccb) < 0) { perror("error reading defect list"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto defect_bailout; } valid_len = ccb->csio.dxfer_len - ccb->csio.resid; if (use_12byte == 0) { hdr10 = (struct scsi_read_defect_data_hdr_10 *)defect_list; hdr_size = sizeof(*hdr10); hdr_max = SRDDH10_MAX_LENGTH; if (valid_len >= hdr_size) { returned_length = scsi_2btoul(hdr10->length); returned_format = hdr10->format; } else { returned_length = 0; returned_format = 0; } } else { hdr12 = (struct scsi_read_defect_data_hdr_12 *)defect_list; hdr_size = sizeof(*hdr12); hdr_max = SRDDH12_MAX_LENGTH; if (valid_len >= hdr_size) { returned_length = scsi_4btoul(hdr12->length); returned_format = hdr12->format; } else { returned_length = 0; returned_format = 0; } } returned_type = returned_format & SRDDH10_DLIST_FORMAT_MASK; switch (returned_type) { case SRDD10_BLOCK_FORMAT: entry_size = sizeof(struct scsi_defect_desc_block); break; case SRDD10_LONG_BLOCK_FORMAT: entry_size = sizeof(struct scsi_defect_desc_long_block); break; case SRDD10_EXT_PHYS_FORMAT: case SRDD10_PHYSICAL_SECTOR_FORMAT: entry_size = sizeof(struct scsi_defect_desc_phys_sector); break; case SRDD10_EXT_BFI_FORMAT: case SRDD10_BYTES_FROM_INDEX_FORMAT: entry_size = sizeof(struct scsi_defect_desc_bytes_from_index); break; default: warnx("Unknown defect format 0x%x\n", returned_type); error = 1; goto defect_bailout; break; } max_possible_size = (hdr_max / entry_size) * entry_size; num_returned = returned_length / entry_size; num_valid = min(returned_length, valid_len - hdr_size); num_valid /= entry_size; if (get_length != 0) { get_length = 0; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * If the drive is reporting that it just doesn't * support the defect list format, go ahead and use * the length it reported. Otherwise, the length * may not be valid, so use the maximum. */ if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1c) && (ascq == 0x00) && (returned_length > 0)) { if ((use_12byte == 0) && (returned_length >= max_possible_size)) { get_length = 1; use_12byte = 1; goto retry_12byte; } dlist_length = returned_length + hdr_size; } else if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1f) && (ascq == 0x00) && (returned_length > 0)) { /* Partial defect list transfer */ /* * Hitachi drives return this error * along with a partial defect list if they * have more defects than the 10 byte * command can support. Retry with the 12 * byte command. */ if (use_12byte == 0) { get_length = 1; use_12byte = 1; goto retry_12byte; } dlist_length = returned_length + hdr_size; } else if ((sense_key == SSD_KEY_ILLEGAL_REQUEST) && (asc == 0x24) && (ascq == 0x00)) { /* Invalid field in CDB */ /* * SBC-3 says that if the drive has more * defects than can be reported with the * 10 byte command, it should return this * error and no data. Retry with the 12 * byte command. */ if (use_12byte == 0) { get_length = 1; use_12byte = 1; goto retry_12byte; } dlist_length = returned_length + hdr_size; } else { /* * If we got a SCSI error and no valid length, * just use the 10 byte maximum. The 12 * byte maximum is too large. */ if (returned_length == 0) dlist_length = SRDD10_MAX_LENGTH; else { if ((use_12byte == 0) && (returned_length >= max_possible_size)) { get_length = 1; use_12byte = 1; goto retry_12byte; } dlist_length = returned_length + hdr_size; } } } else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP){ error = 1; warnx("Error reading defect header"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } else { if ((use_12byte == 0) && (returned_length >= max_possible_size)) { get_length = 1; use_12byte = 1; goto retry_12byte; } dlist_length = returned_length + hdr_size; } if (summary != 0) { fprintf(stdout, "%u", num_returned); if (quiet == 0) { fprintf(stdout, " defect%s", (num_returned != 1) ? "s" : ""); } fprintf(stdout, "\n"); goto defect_bailout; } /* * We always limit the list length to the 10-byte maximum * length (0xffff). The reason is that some controllers * can't handle larger I/Os, and we can transfer the entire * 10 byte list in one shot. For drives that support the 12 * byte read defects command, we'll step through the list * by specifying a starting offset. For drives that don't * support the 12 byte command's starting offset, we'll * just display the first 64K. */ dlist_length = min(dlist_length, SRDD10_MAX_LENGTH); goto retry; } if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) && (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI spec, if the disk doesn't support * the requested format, it will generally return a sense * key of RECOVERED ERROR, and an additional sense code * of "DEFECT LIST NOT FOUND". HGST drives also return * Primary/Grown defect list not found errors. So just * check for an ASC of 0x1c. */ if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1c)) { const char *format_str; format_str = scsi_nv_to_str(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), list_format & SRDD10_DLIST_FORMAT_MASK); warnx("requested defect format %s not available", format_str ? format_str : "unknown"); format_str = scsi_nv_to_str(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), returned_type); if (format_str != NULL) { warnx("Device returned %s format", format_str); } else { error = 1; warnx("Device returned unknown defect" " data format %#x", returned_type); goto defect_bailout; } } else { error = 1; warnx("Error returned from read defect data command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } } else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; warnx("Error returned from read defect data command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } if (first_pass != 0) { fprintf(stderr, "Got %d defect", num_returned); if ((lists_specified == 0) || (num_returned == 0)) { fprintf(stderr, "s.\n"); goto defect_bailout; } else if (num_returned == 1) fprintf(stderr, ":\n"); else fprintf(stderr, "s:\n"); first_pass = 0; } /* * XXX KDM I should probably clean up the printout format for the * disk defects. */ switch (returned_type) { case SRDD10_PHYSICAL_SECTOR_FORMAT: case SRDD10_EXT_PHYS_FORMAT: { struct scsi_defect_desc_phys_sector *dlist; dlist = (struct scsi_defect_desc_phys_sector *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { uint32_t sector; sector = scsi_4btoul(dlist[i].sector); if (returned_type == SRDD10_EXT_PHYS_FORMAT) { mads = (sector & SDD_EXT_PHYS_MADS) ? 0 : 1; sector &= ~SDD_EXT_PHYS_FLAG_MASK; } if (hex_format == 0) fprintf(stdout, "%d:%d:%d%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].sector), mads ? " - " : "\n"); else fprintf(stdout, "0x%x:0x%x:0x%x%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].sector), mads ? " - " : "\n"); mads = 0; } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDD10_BYTES_FROM_INDEX_FORMAT: case SRDD10_EXT_BFI_FORMAT: { struct scsi_defect_desc_bytes_from_index *dlist; dlist = (struct scsi_defect_desc_bytes_from_index *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { uint32_t bfi; bfi = scsi_4btoul(dlist[i].bytes_from_index); if (returned_type == SRDD10_EXT_BFI_FORMAT) { mads = (bfi & SDD_EXT_BFI_MADS) ? 1 : 0; bfi &= ~SDD_EXT_BFI_FLAG_MASK; } if (hex_format == 0) fprintf(stdout, "%d:%d:%d%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].bytes_from_index), mads ? " - " : "\n"); else fprintf(stdout, "0x%x:0x%x:0x%x%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].bytes_from_index), mads ? " - " : "\n"); mads = 0; } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDDH10_BLOCK_FORMAT: { struct scsi_defect_desc_block *dlist; dlist = (struct scsi_defect_desc_block *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { if (hex_format == 0) fprintf(stdout, "%u\n", scsi_4btoul(dlist[i].address)); else fprintf(stdout, "0x%x\n", scsi_4btoul(dlist[i].address)); } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDD10_LONG_BLOCK_FORMAT: { struct scsi_defect_desc_long_block *dlist; dlist = (struct scsi_defect_desc_long_block *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { if (hex_format == 0) fprintf(stdout, "%ju\n", (uintmax_t)scsi_8btou64( dlist[i].address)); else fprintf(stdout, "0x%jx\n", (uintmax_t)scsi_8btou64( dlist[i].address)); } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } default: fprintf(stderr, "Unknown defect format 0x%x\n", returned_type); error = 1; break; } defect_bailout: if (defect_list != NULL) free(defect_list); if (ccb != NULL) cam_freeccb(ccb); return (error); } #endif /* MINIMALISTIC */ #if 0 void reassignblocks(struct cam_device *device, u_int32_t *blocks, int num_blocks) { union ccb *ccb; ccb = cam_getccb(device); cam_freeccb(ccb); } #endif #ifndef MINIMALISTIC void mode_sense(struct cam_device *device, int dbd, int pc, int page, int subpage, int task_attr, int retry_count, int timeout, u_int8_t *data, int datalen) { union ccb *ccb; int retval; ccb = cam_getccb(device); if (ccb == NULL) errx(1, "mode_sense: couldn't allocate CCB"); CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_mode_sense_subpage(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* dbd */ dbd, /* pc */ pc << 6, /* page */ page, /* subpage */ subpage, /* param_buf */ data, /* param_len */ datalen, /* minimum_cmd_size */ 0, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); cam_close_device(device); if (retval < 0) err(1, "error sending mode sense command"); else errx(1, "error sending mode sense command"); } cam_freeccb(ccb); } void mode_select(struct cam_device *device, int save_pages, int task_attr, int retry_count, int timeout, u_int8_t *data, int datalen) { union ccb *ccb; int retval; ccb = cam_getccb(device); if (ccb == NULL) errx(1, "mode_select: couldn't allocate CCB"); CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_mode_select(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* scsi_page_fmt */ 1, /* save_pages */ save_pages, /* param_buf */ data, /* param_len */ datalen, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); cam_close_device(device); if (retval < 0) err(1, "error sending mode select command"); else errx(1, "error sending mode select command"); } cam_freeccb(ccb); } void modepage(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { char *str_subpage; int c, page = -1, subpage = -1, pc = 0; int binary = 0, dbd = 0, edit = 0, list = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'b': binary = 1; break; case 'd': dbd = 1; break; case 'e': edit = 1; break; case 'l': list++; break; case 'm': str_subpage = optarg; strsep(&str_subpage, ","); page = strtol(optarg, NULL, 0); if (str_subpage) subpage = strtol(str_subpage, NULL, 0); else subpage = 0; if (page < 0) errx(1, "invalid mode page %d", page); if (subpage < 0) errx(1, "invalid mode subpage %d", subpage); break; case 'P': pc = strtol(optarg, NULL, 0); if ((pc < 0) || (pc > 3)) errx(1, "invalid page control field %d", pc); break; default: break; } } if (page == -1 && list == 0) errx(1, "you must specify a mode page!"); if (list != 0) { mode_list(device, dbd, pc, list > 1, task_attr, retry_count, timeout); } else { mode_edit(device, dbd, pc, page, subpage, edit, binary, task_attr, retry_count, timeout); } } static int scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; u_int32_t flags = CAM_DIR_NONE; u_int8_t *data_ptr = NULL; u_int8_t cdb[20]; u_int8_t atacmd[12]; struct get_hook hook; int c, data_bytes = 0, valid_bytes; int cdb_len = 0; int atacmd_len = 0; int dmacmd = 0; int fpdmacmd = 0; int need_res = 0; char *datastr = NULL, *tstr, *resstr = NULL; int error = 0; int fd_data = 0, fd_res = 0; int retval; ccb = cam_getccb(device); if (ccb == NULL) { warnx("scsicmd: error allocating ccb"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(ccb); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'a': tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; atacmd_len = buff_encode_visit(atacmd, sizeof(atacmd), tstr, iget, &hook); /* * Increment optind by the number of arguments the * encoding routine processed. After each call to * getopt(3), optind points to the argument that * getopt should process _next_. In this case, * that means it points to the first command string * argument, if there is one. Once we increment * this, it should point to either the next command * line argument, or it should be past the end of * the list. */ optind += hook.got; break; case 'c': tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; cdb_len = buff_encode_visit(cdb, sizeof(cdb), tstr, iget, &hook); /* * Increment optind by the number of arguments the * encoding routine processed. After each call to * getopt(3), optind points to the argument that * getopt should process _next_. In this case, * that means it points to the first command string * argument, if there is one. Once we increment * this, it should point to either the next command * line argument, or it should be past the end of * the list. */ optind += hook.got; break; case 'd': dmacmd = 1; break; case 'f': fpdmacmd = 1; break; case 'i': if (arglist & CAM_ARG_CMD_OUT) { warnx("command must either be " "read or write, not both"); error = 1; goto scsicmd_bailout; } arglist |= CAM_ARG_CMD_IN; flags = CAM_DIR_IN; data_bytes = strtol(optarg, NULL, 0); if (data_bytes <= 0) { warnx("invalid number of input bytes %d", data_bytes); error = 1; goto scsicmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; optind++; datastr = cget(&hook, NULL); /* * If the user supplied "-" instead of a format, he * wants the data to be written to stdout. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_data = 1; data_ptr = (u_int8_t *)malloc(data_bytes); if (data_ptr == NULL) { warnx("can't malloc memory for data_ptr"); error = 1; goto scsicmd_bailout; } break; case 'o': if (arglist & CAM_ARG_CMD_IN) { warnx("command must either be " "read or write, not both"); error = 1; goto scsicmd_bailout; } arglist |= CAM_ARG_CMD_OUT; flags = CAM_DIR_OUT; data_bytes = strtol(optarg, NULL, 0); if (data_bytes <= 0) { warnx("invalid number of output bytes %d", data_bytes); error = 1; goto scsicmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; datastr = cget(&hook, NULL); data_ptr = (u_int8_t *)malloc(data_bytes); if (data_ptr == NULL) { warnx("can't malloc memory for data_ptr"); error = 1; goto scsicmd_bailout; } bzero(data_ptr, data_bytes); /* * If the user supplied "-" instead of a format, he * wants the data to be read from stdin. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_data = 1; else buff_encode_visit(data_ptr, data_bytes, datastr, iget, &hook); optind += hook.got; break; case 'r': need_res = 1; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; resstr = cget(&hook, NULL); if ((resstr != NULL) && (resstr[0] == '-')) fd_res = 1; optind += hook.got; break; default: break; } } /* * If fd_data is set, and we're writing to the device, we need to * read the data the user wants written from stdin. */ if ((fd_data == 1) && (arglist & CAM_ARG_CMD_OUT)) { ssize_t amt_read; int amt_to_read = data_bytes; u_int8_t *buf_ptr = data_ptr; for (amt_read = 0; amt_to_read > 0; amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) { if (amt_read == -1) { warn("error reading data from stdin"); error = 1; goto scsicmd_bailout; } amt_to_read -= amt_read; buf_ptr += amt_read; } } if (arglist & CAM_ARG_ERR_RECOVER) flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ flags |= CAM_DEV_QFRZDIS; if (cdb_len) { /* * This is taken from the SCSI-3 draft spec. * (T10/1157D revision 0.3) * The top 3 bits of an opcode are the group code. * The next 5 bits are the command code. * Group 0: six byte commands * Group 1: ten byte commands * Group 2: ten byte commands * Group 3: reserved * Group 4: sixteen byte commands * Group 5: twelve byte commands * Group 6: vendor specific * Group 7: vendor specific */ switch((cdb[0] >> 5) & 0x7) { case 0: cdb_len = 6; break; case 1: case 2: cdb_len = 10; break; case 3: case 6: case 7: /* computed by buff_encode_visit */ break; case 4: cdb_len = 16; break; case 5: cdb_len = 12; break; } /* * We should probably use csio_build_visit or something like that * here, but it's easier to encode arguments as you go. The * alternative would be skipping the CDB argument and then encoding * it here, since we've got the data buffer argument by now. */ bcopy(cdb, &ccb->csio.cdb_io.cdb_bytes, cdb_len); cam_fill_csio(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ task_attr, /*data_ptr*/ data_ptr, /*dxfer_len*/ data_bytes, /*sense_len*/ SSD_FULL_SIZE, /*cdb_len*/ cdb_len, /*timeout*/ timeout ? timeout : 5000); } else { atacmd_len = 12; bcopy(atacmd, &ccb->ataio.cmd.command, atacmd_len); if (need_res) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; if (dmacmd) ccb->ataio.cmd.flags |= CAM_ATAIO_DMA; if (fpdmacmd) ccb->ataio.cmd.flags |= CAM_ATAIO_FPDMA; cam_fill_ataio(&ccb->ataio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ data_bytes, /*timeout*/ timeout ? timeout : 5000); } if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsicmd_bailout; } if (atacmd_len && need_res) { if (fd_res == 0) { buff_decode_visit(&ccb->ataio.res.status, 11, resstr, arg_put, NULL); fprintf(stdout, "\n"); } else { fprintf(stdout, "%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n", ccb->ataio.res.status, ccb->ataio.res.error, ccb->ataio.res.lba_low, ccb->ataio.res.lba_mid, ccb->ataio.res.lba_high, ccb->ataio.res.device, ccb->ataio.res.lba_low_exp, ccb->ataio.res.lba_mid_exp, ccb->ataio.res.lba_high_exp, ccb->ataio.res.sector_count, ccb->ataio.res.sector_count_exp); fflush(stdout); } } if (cdb_len) valid_bytes = ccb->csio.dxfer_len - ccb->csio.resid; else valid_bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) && (arglist & CAM_ARG_CMD_IN) && (valid_bytes > 0)) { if (fd_data == 0) { buff_decode_visit(data_ptr, valid_bytes, datastr, arg_put, NULL); fprintf(stdout, "\n"); } else { ssize_t amt_written; int amt_to_write = valid_bytes; u_int8_t *buf_ptr = data_ptr; for (amt_written = 0; (amt_to_write > 0) && (amt_written =write(1, buf_ptr,amt_to_write))> 0;){ amt_to_write -= amt_written; buf_ptr += amt_written; } if (amt_written == -1) { warn("error writing data to stdout"); error = 1; goto scsicmd_bailout; } else if ((amt_written == 0) && (amt_to_write > 0)) { warnx("only wrote %u bytes out of %u", valid_bytes - amt_to_write, valid_bytes); } } } scsicmd_bailout: if ((data_bytes > 0) && (data_ptr != NULL)) free(data_ptr); cam_freeccb(ccb); return (error); } static int camdebug(int argc, char **argv, char *combinedopt) { int c, fd; path_id_t bus = CAM_BUS_WILDCARD; target_id_t target = CAM_TARGET_WILDCARD; lun_id_t lun = CAM_LUN_WILDCARD; char *tstr, *tmpstr = NULL; union ccb ccb; int error = 0; bzero(&ccb, sizeof(union ccb)); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'I': arglist |= CAM_ARG_DEBUG_INFO; ccb.cdbg.flags |= CAM_DEBUG_INFO; break; case 'P': arglist |= CAM_ARG_DEBUG_PERIPH; ccb.cdbg.flags |= CAM_DEBUG_PERIPH; break; case 'S': arglist |= CAM_ARG_DEBUG_SUBTRACE; ccb.cdbg.flags |= CAM_DEBUG_SUBTRACE; break; case 'T': arglist |= CAM_ARG_DEBUG_TRACE; ccb.cdbg.flags |= CAM_DEBUG_TRACE; break; case 'X': arglist |= CAM_ARG_DEBUG_XPT; ccb.cdbg.flags |= CAM_DEBUG_XPT; break; case 'c': arglist |= CAM_ARG_DEBUG_CDB; ccb.cdbg.flags |= CAM_DEBUG_CDB; break; case 'p': arglist |= CAM_ARG_DEBUG_PROBE; ccb.cdbg.flags |= CAM_DEBUG_PROBE; break; default: break; } } if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } argc -= optind; argv += optind; if (argc <= 0) { warnx("you must specify \"off\", \"all\" or a bus,"); warnx("bus:target, or bus:target:lun"); close(fd); return (1); } tstr = *argv; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (strncmp(tstr, "off", 3) == 0) { ccb.cdbg.flags = CAM_DEBUG_NONE; arglist &= ~(CAM_ARG_DEBUG_INFO|CAM_ARG_DEBUG_PERIPH| CAM_ARG_DEBUG_TRACE|CAM_ARG_DEBUG_SUBTRACE| CAM_ARG_DEBUG_XPT|CAM_ARG_DEBUG_PROBE); } else if (strncmp(tstr, "all", 3) != 0) { tmpstr = (char *)strtok(tstr, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')){ bus = strtol(tmpstr, NULL, 0); arglist |= CAM_ARG_BUS; tmpstr = (char *)strtok(NULL, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')){ target = strtol(tmpstr, NULL, 0); arglist |= CAM_ARG_TARGET; tmpstr = (char *)strtok(NULL, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')){ lun = strtol(tmpstr, NULL, 0); arglist |= CAM_ARG_LUN; } } } else { error = 1; warnx("you must specify \"all\", \"off\", or a bus,"); warnx("bus:target, or bus:target:lun to debug"); } } if (error == 0) { ccb.ccb_h.func_code = XPT_DEBUG; ccb.ccb_h.path_id = bus; ccb.ccb_h.target_id = target; ccb.ccb_h.target_lun = lun; if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); error = 1; } if (error == 0) { if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_FUNC_NOTAVAIL) { warnx("CAM debugging not available"); warnx("you need to put options CAMDEBUG in" " your kernel config file!"); error = 1; } else if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_DEBUG CCB failed with status %#x", ccb.ccb_h.status); error = 1; } else { if (ccb.cdbg.flags == CAM_DEBUG_NONE) { fprintf(stderr, "Debugging turned off\n"); } else { fprintf(stderr, "Debugging enabled for " "%d:%d:%jx\n", bus, target, (uintmax_t)lun); } } } close(fd); } return (error); } static int tagcontrol(struct cam_device *device, int argc, char **argv, char *combinedopt) { int c; union ccb *ccb; int numtags = -1; int retval = 0; int quiet = 0; char pathstr[1024]; ccb = cam_getccb(device); if (ccb == NULL) { warnx("tagcontrol: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'N': numtags = strtol(optarg, NULL, 0); if (numtags < 0) { warnx("tag count %d is < 0", numtags); retval = 1; goto tagcontrol_bailout; } break; case 'q': quiet++; break; default: break; } } cam_path_string(device, pathstr, sizeof(pathstr)); if (numtags >= 0) { CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->crs); ccb->ccb_h.func_code = XPT_REL_SIMQ; ccb->ccb_h.flags = CAM_DEV_QFREEZE; ccb->crs.release_flags = RELSIM_ADJUST_OPENINGS; ccb->crs.openings = numtags; if (cam_send_ccb(device, ccb) < 0) { perror("error sending XPT_REL_SIMQ CCB"); retval = 1; goto tagcontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_REL_SIMQ CCB failed"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto tagcontrol_bailout; } if (quiet == 0) fprintf(stdout, "%stagged openings now %d\n", pathstr, ccb->crs.openings); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgds); ccb->ccb_h.func_code = XPT_GDEV_STATS; if (cam_send_ccb(device, ccb) < 0) { perror("error sending XPT_GDEV_STATS CCB"); retval = 1; goto tagcontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_GDEV_STATS CCB failed"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto tagcontrol_bailout; } if (arglist & CAM_ARG_VERBOSE) { fprintf(stdout, "%s", pathstr); fprintf(stdout, "dev_openings %d\n", ccb->cgds.dev_openings); fprintf(stdout, "%s", pathstr); fprintf(stdout, "dev_active %d\n", ccb->cgds.dev_active); fprintf(stdout, "%s", pathstr); fprintf(stdout, "allocated %d\n", ccb->cgds.allocated); fprintf(stdout, "%s", pathstr); fprintf(stdout, "queued %d\n", ccb->cgds.queued); fprintf(stdout, "%s", pathstr); fprintf(stdout, "held %d\n", ccb->cgds.held); fprintf(stdout, "%s", pathstr); fprintf(stdout, "mintags %d\n", ccb->cgds.mintags); fprintf(stdout, "%s", pathstr); fprintf(stdout, "maxtags %d\n", ccb->cgds.maxtags); } else { if (quiet == 0) { fprintf(stdout, "%s", pathstr); fprintf(stdout, "device openings: "); } fprintf(stdout, "%d\n", ccb->cgds.dev_openings + ccb->cgds.dev_active); } tagcontrol_bailout: cam_freeccb(ccb); return (retval); } static void cts_print(struct cam_device *device, struct ccb_trans_settings *cts) { char pathstr[1024]; cam_path_string(device, pathstr, sizeof(pathstr)); if (cts->transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) { fprintf(stdout, "%ssync parameter: %d\n", pathstr, spi->sync_period); if (spi->sync_offset != 0) { u_int freq; freq = scsi_calc_syncsrate(spi->sync_period); fprintf(stdout, "%sfrequency: %d.%03dMHz\n", pathstr, freq / 1000, freq % 1000); } } if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) { fprintf(stdout, "%soffset: %d\n", pathstr, spi->sync_offset); } if (spi->valid & CTS_SPI_VALID_BUS_WIDTH) { fprintf(stdout, "%sbus width: %d bits\n", pathstr, (0x01 << spi->bus_width) * 8); } if (spi->valid & CTS_SPI_VALID_DISC) { fprintf(stdout, "%sdisconnection is %s\n", pathstr, (spi->flags & CTS_SPI_FLAGS_DISC_ENB) ? "enabled" : "disabled"); } } if (cts->transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; if (fc->valid & CTS_FC_VALID_WWNN) fprintf(stdout, "%sWWNN: 0x%llx\n", pathstr, (long long) fc->wwnn); if (fc->valid & CTS_FC_VALID_WWPN) fprintf(stdout, "%sWWPN: 0x%llx\n", pathstr, (long long) fc->wwpn); if (fc->valid & CTS_FC_VALID_PORT) fprintf(stdout, "%sPortID: 0x%x\n", pathstr, fc->port); if (fc->valid & CTS_FC_VALID_SPEED) fprintf(stdout, "%stransfer speed: %d.%03dMB/s\n", pathstr, fc->bitrate / 1000, fc->bitrate % 1000); } if (cts->transport == XPORT_SAS) { struct ccb_trans_settings_sas *sas = &cts->xport_specific.sas; if (sas->valid & CTS_SAS_VALID_SPEED) fprintf(stdout, "%stransfer speed: %d.%03dMB/s\n", pathstr, sas->bitrate / 1000, sas->bitrate % 1000); } if (cts->transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &cts->xport_specific.ata; if ((pata->valid & CTS_ATA_VALID_MODE) != 0) { fprintf(stdout, "%sATA mode: %s\n", pathstr, ata_mode2string(pata->mode)); } if ((pata->valid & CTS_ATA_VALID_ATAPI) != 0) { fprintf(stdout, "%sATAPI packet length: %d\n", pathstr, pata->atapi); } if ((pata->valid & CTS_ATA_VALID_BYTECOUNT) != 0) { fprintf(stdout, "%sPIO transaction length: %d\n", pathstr, pata->bytecount); } } if (cts->transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &cts->xport_specific.sata; if ((sata->valid & CTS_SATA_VALID_REVISION) != 0) { fprintf(stdout, "%sSATA revision: %d.x\n", pathstr, sata->revision); } if ((sata->valid & CTS_SATA_VALID_MODE) != 0) { fprintf(stdout, "%sATA mode: %s\n", pathstr, ata_mode2string(sata->mode)); } if ((sata->valid & CTS_SATA_VALID_ATAPI) != 0) { fprintf(stdout, "%sATAPI packet length: %d\n", pathstr, sata->atapi); } if ((sata->valid & CTS_SATA_VALID_BYTECOUNT) != 0) { fprintf(stdout, "%sPIO transaction length: %d\n", pathstr, sata->bytecount); } if ((sata->valid & CTS_SATA_VALID_PM) != 0) { fprintf(stdout, "%sPMP presence: %d\n", pathstr, sata->pm_present); } if ((sata->valid & CTS_SATA_VALID_TAGS) != 0) { fprintf(stdout, "%sNumber of tags: %d\n", pathstr, sata->tags); } if ((sata->valid & CTS_SATA_VALID_CAPS) != 0) { fprintf(stdout, "%sSATA capabilities: %08x\n", pathstr, sata->caps); } } if (cts->protocol == PROTO_ATA) { struct ccb_trans_settings_ata *ata= &cts->proto_specific.ata; if (ata->valid & CTS_ATA_VALID_TQ) { fprintf(stdout, "%stagged queueing: %s\n", pathstr, (ata->flags & CTS_ATA_FLAGS_TAG_ENB) ? "enabled" : "disabled"); } } if (cts->protocol == PROTO_SCSI) { struct ccb_trans_settings_scsi *scsi= &cts->proto_specific.scsi; if (scsi->valid & CTS_SCSI_VALID_TQ) { fprintf(stdout, "%stagged queueing: %s\n", pathstr, (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) ? "enabled" : "disabled"); } } } /* * Get a path inquiry CCB for the specified device. */ static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_cpi: couldn't allocate CCB"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi); ccb->ccb_h.func_code = XPT_PATH_INQ; if (cam_send_ccb(device, ccb) < 0) { warn("get_cpi: error sending Path Inquiry CCB"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cpi_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cpi_bailout; } bcopy(&ccb->cpi, cpi, sizeof(struct ccb_pathinq)); get_cpi_bailout: cam_freeccb(ccb); return (retval); } /* * Get a get device CCB for the specified device. */ static int get_cgd(struct cam_device *device, struct ccb_getdev *cgd) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_cgd: couldn't allocate CCB"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgd); ccb->ccb_h.func_code = XPT_GDEV_TYPE; if (cam_send_ccb(device, ccb) < 0) { warn("get_cgd: error sending Path Inquiry CCB"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cgd_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cgd_bailout; } bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev)); get_cgd_bailout: cam_freeccb(ccb); return (retval); } /* * Returns 1 if the device has the VPD page, 0 if it does not, and -1 on an * error. */ int dev_has_vpd_page(struct cam_device *dev, uint8_t page_id, int retry_count, int timeout, int verbosemode) { union ccb *ccb = NULL; struct scsi_vpd_supported_page_list sup_pages; int i; int retval = 0; ccb = cam_getccb(dev); if (ccb == NULL) { warn("Unable to allocate CCB"); retval = -1; goto bailout; } /* cam_getccb cleans up the header, caller has to zero the payload */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); bzero(&sup_pages, sizeof(sup_pages)); scsi_inquiry(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /* tag_action */ MSG_SIMPLE_Q_TAG, /* inq_buf */ (u_int8_t *)&sup_pages, /* inq_len */ sizeof(sup_pages), /* evpd */ 1, /* page_code */ SVPD_SUPPORTED_PAGE_LIST, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (retry_count != 0) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(dev, ccb) < 0) { cam_freeccb(ccb); ccb = NULL; retval = -1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (verbosemode != 0) cam_error_print(dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = -1; goto bailout; } for (i = 0; i < sup_pages.length; i++) { if (sup_pages.list[i] == page_id) { retval = 1; goto bailout; } } bailout: if (ccb != NULL) cam_freeccb(ccb); return (retval); } /* * devtype is filled in with the type of device. * Returns 0 for success, non-zero for failure. */ int get_device_type(struct cam_device *dev, int retry_count, int timeout, int verbosemode, camcontrol_devtype *devtype) { struct ccb_getdev cgd; int retval; retval = get_cgd(dev, &cgd); if (retval != 0) goto bailout; switch (cgd.protocol) { case PROTO_SCSI: break; case PROTO_ATA: case PROTO_ATAPI: case PROTO_SATAPM: *devtype = CC_DT_ATA; goto bailout; break; /*NOTREACHED*/ case PROTO_NVME: *devtype = CC_DT_NVME; goto bailout; break; /*NOTREACHED*/ default: *devtype = CC_DT_UNKNOWN; goto bailout; break; /*NOTREACHED*/ } if (retry_count == -1) { /* * For a retry count of -1, used only the cached data to avoid * I/O to the drive. Sending the identify command to the drive * can cause issues for SATL attachaed drives since identify is * not an NCQ command. */ if (cgd.ident_data.config != 0) *devtype = CC_DT_SATL; else *devtype = CC_DT_SCSI; } else { /* * Check for the ATA Information VPD page (0x89). If this is an * ATA device behind a SCSI to ATA translation layer (SATL), * this VPD page should be present. * * If that VPD page isn't present, or we get an error back from * the INQUIRY command, we'll just treat it as a normal SCSI * device. */ retval = dev_has_vpd_page(dev, SVPD_ATA_INFORMATION, retry_count, timeout, verbosemode); if (retval == 1) *devtype = CC_DT_SATL; else *devtype = CC_DT_SCSI; } retval = 0; bailout: return (retval); } int build_ata_cmd(union ccb *ccb, uint32_t retry_count, uint32_t flags, uint8_t tag_action, uint8_t protocol, uint8_t ata_flags, uint16_t features, uint16_t sector_count, uint64_t lba, uint8_t command, uint32_t auxiliary, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, uint8_t sense_len, uint32_t timeout, int is48bit, camcontrol_devtype devtype) { int retval = 0; if (devtype == CC_DT_ATA) { cam_fill_ataio(&ccb->ataio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); if (is48bit || lba > ATA_MAX_28BIT_LBA) ata_48bit_cmd(&ccb->ataio, command, features, lba, sector_count); else ata_28bit_cmd(&ccb->ataio, command, features, lba, sector_count); if (auxiliary != 0) { ccb->ataio.ata_flags |= ATA_FLAG_AUX; ccb->ataio.aux = auxiliary; } if (ata_flags & AP_FLAG_CHK_COND) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; if ((protocol & AP_PROTO_MASK) == AP_PROTO_DMA) ccb->ataio.cmd.flags |= CAM_ATAIO_DMA; else if ((protocol & AP_PROTO_MASK) == AP_PROTO_FPDMA) ccb->ataio.cmd.flags |= CAM_ATAIO_FPDMA; } else { if (is48bit || lba > ATA_MAX_28BIT_LBA) protocol |= AP_EXTEND; retval = scsi_ata_pass(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ tag_action, /*protocol*/ protocol, /*ata_flags*/ ata_flags, /*features*/ features, /*sector_count*/ sector_count, /*lba*/ lba, /*command*/ command, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ auxiliary, /*control*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*cdb_storage*/ cdb_storage, /*cdb_storage_len*/ cdb_storage_len, /*minimum_cmd_size*/ 0, /*sense_len*/ sense_len, /*timeout*/ timeout); } return (retval); } int get_ata_status(struct cam_device *dev, union ccb *ccb, uint8_t *error, uint16_t *count, uint64_t *lba, uint8_t *device, uint8_t *status) { int retval = 0; switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: { uint8_t opcode; int error_code = 0, sense_key = 0, asc = 0, ascq = 0; /* * In this case, we have SCSI ATA PASS-THROUGH command, 12 * or 16 byte, and need to see what */ if (ccb->ccb_h.flags & CAM_CDB_POINTER) opcode = ccb->csio.cdb_io.cdb_ptr[0]; else opcode = ccb->csio.cdb_io.cdb_bytes[0]; if ((opcode != ATA_PASS_12) && (opcode != ATA_PASS_16)) { retval = 1; warnx("%s: unsupported opcode %02x", __func__, opcode); goto bailout; } retval = scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq); /* Note: the _ccb() variant returns 0 for an error */ if (retval == 0) { retval = 1; goto bailout; } else retval = 0; switch (error_code) { case SSD_DESC_CURRENT_ERROR: case SSD_DESC_DEFERRED_ERROR: { struct scsi_sense_data_desc *sense; struct scsi_sense_ata_ret_desc *desc; uint8_t *desc_ptr; sense = (struct scsi_sense_data_desc *) &ccb->csio.sense_data; desc_ptr = scsi_find_desc(sense, ccb->csio.sense_len - ccb->csio.sense_resid, SSD_DESC_ATA); if (desc_ptr == NULL) { cam_error_print(dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } desc = (struct scsi_sense_ata_ret_desc *)desc_ptr; *error = desc->error; *count = (desc->count_15_8 << 8) | desc->count_7_0; *lba = ((uint64_t)desc->lba_47_40 << 40) | ((uint64_t)desc->lba_39_32 << 32) | ((uint64_t)desc->lba_31_24 << 24) | (desc->lba_23_16 << 16) | (desc->lba_15_8 << 8) | desc->lba_7_0; *device = desc->device; *status = desc->status; /* * If the extend bit isn't set, the result is for a * 12-byte ATA PASS-THROUGH command or a 16 or 32 byte * command without the extend bit set. This means * that the device is supposed to return 28-bit * status. The count field is only 8 bits, and the * LBA field is only 8 bits. */ if ((desc->flags & SSD_DESC_ATA_FLAG_EXTEND) == 0){ *count &= 0xff; *lba &= 0x0fffffff; } break; } case SSD_CURRENT_ERROR: case SSD_DEFERRED_ERROR: { #if 0 struct scsi_sense_data_fixed *sense; #endif /* * XXX KDM need to support fixed sense data. */ warnx("%s: Fixed sense data not supported yet", __func__); retval = 1; goto bailout; break; /*NOTREACHED*/ } default: retval = 1; goto bailout; break; } break; } case XPT_ATA_IO: { struct ata_res *res; /* * In this case, we have an ATA command, and we need to * fill in the requested values from the result register * set. */ res = &ccb->ataio.res; *error = res->error; *status = res->status; *device = res->device; *count = res->sector_count; *lba = (res->lba_high << 16) | (res->lba_mid << 8) | (res->lba_low); if (res->flags & CAM_ATAIO_48BIT) { *count |= (res->sector_count_exp << 8); *lba |= ((uint64_t)res->lba_low_exp << 24) | ((uint64_t)res->lba_mid_exp << 32) | ((uint64_t)res->lba_high_exp << 40); } else { *lba |= (res->device & 0xf) << 24; } break; } default: retval = 1; break; } bailout: return (retval); } static void cpi_print(struct ccb_pathinq *cpi) { char adapter_str[1024]; uint64_t i; snprintf(adapter_str, sizeof(adapter_str), "%s%d:", cpi->dev_name, cpi->unit_number); fprintf(stdout, "%s SIM/HBA version: %d\n", adapter_str, cpi->version_num); for (i = 1; i < UINT8_MAX; i = i << 1) { const char *str; if ((i & cpi->hba_inquiry) == 0) continue; fprintf(stdout, "%s supports ", adapter_str); switch(i) { case PI_MDP_ABLE: str = "MDP message"; break; case PI_WIDE_32: str = "32 bit wide SCSI"; break; case PI_WIDE_16: str = "16 bit wide SCSI"; break; case PI_SDTR_ABLE: str = "SDTR message"; break; case PI_LINKED_CDB: str = "linked CDBs"; break; case PI_TAG_ABLE: str = "tag queue messages"; break; case PI_SOFT_RST: str = "soft reset alternative"; break; case PI_SATAPM: str = "SATA Port Multiplier"; break; default: str = "unknown PI bit set"; break; } fprintf(stdout, "%s\n", str); } for (i = 1; i < UINT32_MAX; i = i << 1) { const char *str; if ((i & cpi->hba_misc) == 0) continue; fprintf(stdout, "%s ", adapter_str); switch(i) { case PIM_ATA_EXT: str = "can understand ata_ext requests"; break; case PIM_EXTLUNS: str = "64bit extended LUNs supported"; break; case PIM_SCANHILO: str = "bus scans from high ID to low ID"; break; case PIM_NOREMOVE: str = "removable devices not included in scan"; break; case PIM_NOINITIATOR: str = "initiator role not supported"; break; case PIM_NOBUSRESET: str = "user has disabled initial BUS RESET or" " controller is in target/mixed mode"; break; case PIM_NO_6_BYTE: str = "do not send 6-byte commands"; break; case PIM_SEQSCAN: str = "scan bus sequentially"; break; case PIM_UNMAPPED: str = "unmapped I/O supported"; break; case PIM_NOSCAN: str = "does its own scanning"; break; default: str = "unknown PIM bit set"; break; } fprintf(stdout, "%s\n", str); } for (i = 1; i < UINT16_MAX; i = i << 1) { const char *str; if ((i & cpi->target_sprt) == 0) continue; fprintf(stdout, "%s supports ", adapter_str); switch(i) { case PIT_PROCESSOR: str = "target mode processor mode"; break; case PIT_PHASE: str = "target mode phase cog. mode"; break; case PIT_DISCONNECT: str = "disconnects in target mode"; break; case PIT_TERM_IO: str = "terminate I/O message in target mode"; break; case PIT_GRP_6: str = "group 6 commands in target mode"; break; case PIT_GRP_7: str = "group 7 commands in target mode"; break; default: str = "unknown PIT bit set"; break; } fprintf(stdout, "%s\n", str); } fprintf(stdout, "%s HBA engine count: %d\n", adapter_str, cpi->hba_eng_cnt); fprintf(stdout, "%s maximum target: %d\n", adapter_str, cpi->max_target); fprintf(stdout, "%s maximum LUN: %d\n", adapter_str, cpi->max_lun); fprintf(stdout, "%s highest path ID in subsystem: %d\n", adapter_str, cpi->hpath_id); fprintf(stdout, "%s initiator ID: %d\n", adapter_str, cpi->initiator_id); fprintf(stdout, "%s SIM vendor: %s\n", adapter_str, cpi->sim_vid); fprintf(stdout, "%s HBA vendor: %s\n", adapter_str, cpi->hba_vid); fprintf(stdout, "%s HBA vendor ID: 0x%04x\n", adapter_str, cpi->hba_vendor); fprintf(stdout, "%s HBA device ID: 0x%04x\n", adapter_str, cpi->hba_device); fprintf(stdout, "%s HBA subvendor ID: 0x%04x\n", adapter_str, cpi->hba_subvendor); fprintf(stdout, "%s HBA subdevice ID: 0x%04x\n", adapter_str, cpi->hba_subdevice); fprintf(stdout, "%s bus ID: %d\n", adapter_str, cpi->bus_id); fprintf(stdout, "%s base transfer speed: ", adapter_str); if (cpi->base_transfer_speed > 1000) fprintf(stdout, "%d.%03dMB/sec\n", cpi->base_transfer_speed / 1000, cpi->base_transfer_speed % 1000); else fprintf(stdout, "%dKB/sec\n", (cpi->base_transfer_speed % 1000) * 1000); fprintf(stdout, "%s maximum transfer size: %u bytes\n", adapter_str, cpi->maxio); } static int get_print_cts(struct cam_device *device, int user_settings, int quiet, struct ccb_trans_settings *cts) { int retval; union ccb *ccb; retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_print_cts: error allocating ccb"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cts); ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; if (user_settings == 0) ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS; else ccb->cts.type = CTS_TYPE_USER_SETTINGS; if (cam_send_ccb(device, ccb) < 0) { perror("error sending XPT_GET_TRAN_SETTINGS CCB"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_print_cts_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_GET_TRANS_SETTINGS CCB failed"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_print_cts_bailout; } if (quiet == 0) cts_print(device, &ccb->cts); if (cts != NULL) bcopy(&ccb->cts, cts, sizeof(struct ccb_trans_settings)); get_print_cts_bailout: cam_freeccb(ccb); return (retval); } static int ratecontrol(struct cam_device *device, int task_attr, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { int c; union ccb *ccb; int user_settings = 0; int retval = 0; int disc_enable = -1, tag_enable = -1; int mode = -1; int offset = -1; double syncrate = -1; int bus_width = -1; int quiet = 0; int change_settings = 0, send_tur = 0; struct ccb_pathinq cpi; ccb = cam_getccb(device); if (ccb == NULL) { warnx("ratecontrol: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'a': send_tur = 1; break; case 'c': user_settings = 0; break; case 'D': if (strncasecmp(optarg, "enable", 6) == 0) disc_enable = 1; else if (strncasecmp(optarg, "disable", 7) == 0) disc_enable = 0; else { warnx("-D argument \"%s\" is unknown", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'M': mode = ata_string2mode(optarg); if (mode < 0) { warnx("unknown mode '%s'", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'O': offset = strtol(optarg, NULL, 0); if (offset < 0) { warnx("offset value %d is < 0", offset); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'q': quiet++; break; case 'R': syncrate = atof(optarg); if (syncrate < 0) { warnx("sync rate %f is < 0", syncrate); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'T': if (strncasecmp(optarg, "enable", 6) == 0) tag_enable = 1; else if (strncasecmp(optarg, "disable", 7) == 0) tag_enable = 0; else { warnx("-T argument \"%s\" is unknown", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'U': user_settings = 1; break; case 'W': bus_width = strtol(optarg, NULL, 0); if (bus_width < 0) { warnx("bus width %d is < 0", bus_width); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; default: break; } } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi); /* * Grab path inquiry information, so we can determine whether * or not the initiator is capable of the things that the user * requests. */ ccb->ccb_h.func_code = XPT_PATH_INQ; if (cam_send_ccb(device, ccb) < 0) { perror("error sending XPT_PATH_INQ CCB"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto ratecontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_PATH_INQ CCB failed"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto ratecontrol_bailout; } bcopy(&ccb->cpi, &cpi, sizeof(struct ccb_pathinq)); CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cts); if (quiet == 0) { fprintf(stdout, "%s parameters:\n", user_settings ? "User" : "Current"); } retval = get_print_cts(device, user_settings, quiet, &ccb->cts); if (retval != 0) goto ratecontrol_bailout; if (arglist & CAM_ARG_VERBOSE) cpi_print(&cpi); if (change_settings) { int didsettings = 0; struct ccb_trans_settings_spi *spi = NULL; struct ccb_trans_settings_pata *pata = NULL; struct ccb_trans_settings_sata *sata = NULL; struct ccb_trans_settings_ata *ata = NULL; struct ccb_trans_settings_scsi *scsi = NULL; if (ccb->cts.transport == XPORT_SPI) spi = &ccb->cts.xport_specific.spi; if (ccb->cts.transport == XPORT_ATA) pata = &ccb->cts.xport_specific.ata; if (ccb->cts.transport == XPORT_SATA) sata = &ccb->cts.xport_specific.sata; if (ccb->cts.protocol == PROTO_ATA) ata = &ccb->cts.proto_specific.ata; if (ccb->cts.protocol == PROTO_SCSI) scsi = &ccb->cts.proto_specific.scsi; ccb->cts.xport_specific.valid = 0; ccb->cts.proto_specific.valid = 0; if (spi && disc_enable != -1) { spi->valid |= CTS_SPI_VALID_DISC; if (disc_enable == 0) spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; else spi->flags |= CTS_SPI_FLAGS_DISC_ENB; didsettings++; } if (tag_enable != -1) { if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0) { warnx("HBA does not support tagged queueing, " "so you cannot modify tag settings"); retval = 1; goto ratecontrol_bailout; } if (ata) { ata->valid |= CTS_SCSI_VALID_TQ; if (tag_enable == 0) ata->flags &= ~CTS_ATA_FLAGS_TAG_ENB; else ata->flags |= CTS_ATA_FLAGS_TAG_ENB; didsettings++; } else if (scsi) { scsi->valid |= CTS_SCSI_VALID_TQ; if (tag_enable == 0) scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; else scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; didsettings++; } } if (spi && offset != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing offset"); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->sync_offset = offset; didsettings++; } if (spi && syncrate != -1) { int prelim_sync_period; if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_SYNC_RATE; /* * The sync rate the user gives us is in MHz. * We need to translate it into KHz for this * calculation. */ syncrate *= 1000; /* * Next, we calculate a "preliminary" sync period * in tenths of a nanosecond. */ if (syncrate == 0) prelim_sync_period = 0; else prelim_sync_period = 10000000 / syncrate; spi->sync_period = scsi_calc_syncparam(prelim_sync_period); didsettings++; } if (sata && syncrate != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } if (!user_settings) { warnx("You can modify only user rate " "settings for SATA"); retval = 1; goto ratecontrol_bailout; } sata->revision = ata_speed2revision(syncrate * 100); if (sata->revision < 0) { warnx("Invalid rate %f", syncrate); retval = 1; goto ratecontrol_bailout; } sata->valid |= CTS_SATA_VALID_REVISION; didsettings++; } if ((pata || sata) && mode != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } if (!user_settings) { warnx("You can modify only user mode " "settings for ATA/SATA"); retval = 1; goto ratecontrol_bailout; } if (pata) { pata->mode = mode; pata->valid |= CTS_ATA_VALID_MODE; } else { sata->mode = mode; sata->valid |= CTS_SATA_VALID_MODE; } didsettings++; } /* * The bus_width argument goes like this: * 0 == 8 bit * 1 == 16 bit * 2 == 32 bit * Therefore, if you shift the number of bits given on the * command line right by 4, you should get the correct * number. */ if (spi && bus_width != -1) { /* * We might as well validate things here with a * decipherable error message, rather than what * will probably be an indecipherable error message * by the time it gets back to us. */ if ((bus_width == 16) && ((cpi.hba_inquiry & PI_WIDE_16) == 0)) { warnx("HBA does not support 16 bit bus width"); retval = 1; goto ratecontrol_bailout; } else if ((bus_width == 32) && ((cpi.hba_inquiry & PI_WIDE_32) == 0)) { warnx("HBA does not support 32 bit bus width"); retval = 1; goto ratecontrol_bailout; } else if ((bus_width != 8) && (bus_width != 16) && (bus_width != 32)) { warnx("Invalid bus width %d", bus_width); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_BUS_WIDTH; spi->bus_width = bus_width >> 4; didsettings++; } if (didsettings == 0) { goto ratecontrol_bailout; } ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; if (cam_send_ccb(device, ccb) < 0) { perror("error sending XPT_SET_TRAN_SETTINGS CCB"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto ratecontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_SET_TRANS_SETTINGS CCB failed"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto ratecontrol_bailout; } } if (send_tur) { retval = testunitready(device, task_attr, retry_count, timeout, (arglist & CAM_ARG_VERBOSE) ? 0 : 1); /* * If the TUR didn't succeed, just bail. */ if (retval != 0) { if (quiet == 0) fprintf(stderr, "Test Unit Ready failed\n"); goto ratecontrol_bailout; } } if ((change_settings || send_tur) && !quiet && (ccb->cts.transport == XPORT_ATA || ccb->cts.transport == XPORT_SATA || send_tur)) { fprintf(stdout, "New parameters:\n"); retval = get_print_cts(device, user_settings, 0, NULL); } ratecontrol_bailout: cam_freeccb(ccb); return (retval); } static int scsiformat(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int c; int ycount = 0, quiet = 0; int error = 0, retval = 0; int use_timeout = 10800 * 1000; int immediate = 1; struct format_defect_list_header fh; u_int8_t *data_ptr = NULL; u_int32_t dxfer_len = 0; u_int8_t byte2 = 0; int num_warnings = 0; int reportonly = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("scsiformat: error allocating ccb"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'q': quiet++; break; case 'r': reportonly = 1; break; case 'w': immediate = 0; break; case 'y': ycount++; break; } } if (reportonly) goto doreport; if (quiet == 0) { fprintf(stdout, "You are about to REMOVE ALL DATA from the " "following device:\n"); error = scsidoinquiry(device, argc, argv, combinedopt, task_attr, retry_count, timeout); if (error != 0) { warnx("scsiformat: error sending inquiry"); goto scsiformat_bailout; } } if (ycount == 0) { if (!get_confirmation()) { error = 1; goto scsiformat_bailout; } } if (timeout != 0) use_timeout = timeout; if (quiet == 0) { fprintf(stdout, "Current format timeout is %d seconds\n", use_timeout / 1000); } /* * If the user hasn't disabled questions and didn't specify a * timeout on the command line, ask them if they want the current * timeout. */ if ((ycount == 0) && (timeout == 0)) { char str[1024]; int new_timeout = 0; fprintf(stdout, "Enter new timeout in seconds or press\n" "return to keep the current timeout [%d] ", use_timeout / 1000); if (fgets(str, sizeof(str), stdin) != NULL) { if (str[0] != '\0') new_timeout = atoi(str); } if (new_timeout != 0) { use_timeout = new_timeout * 1000; fprintf(stdout, "Using new timeout value %d\n", use_timeout / 1000); } } /* * Keep this outside the if block below to silence any unused * variable warnings. */ bzero(&fh, sizeof(fh)); /* * If we're in immediate mode, we've got to include the format * header */ if (immediate != 0) { fh.byte2 = FU_DLH_IMMED; data_ptr = (u_int8_t *)&fh; dxfer_len = sizeof(fh); byte2 = FU_FMT_DATA; } else if (quiet == 0) { fprintf(stdout, "Formatting..."); fflush(stdout); } scsi_format_unit(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* byte2 */ byte2, /* ileave */ 0, /* data_ptr */ data_ptr, /* dxfer_len */ dxfer_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ use_timeout); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((immediate == 0) && ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP))) { const char errstr[] = "error sending format command"; if (retval < 0) warn(errstr); else warnx(errstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsiformat_bailout; } /* * If we ran in non-immediate mode, we already checked for errors * above and printed out any necessary information. If we're in * immediate mode, we need to loop through and get status * information periodically. */ if (immediate == 0) { if (quiet == 0) { fprintf(stdout, "Format Complete\n"); } goto scsiformat_bailout; } doreport: do { cam_status status; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); /* * There's really no need to do error recovery or * retries here, since we're just going to sit in a * loop and wait for the device to finish formatting. */ scsi_test_unit_ready(&ccb->csio, /* retries */ 0, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; retval = cam_send_ccb(device, ccb); /* * If we get an error from the ioctl, bail out. SCSI * errors are expected. */ if (retval < 0) { warn("error sending CAMIOCOMMAND ioctl"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsiformat_bailout; } status = ccb->ccb_h.status & CAM_STATUS_MASK; if ((status != CAM_REQ_CMP) && (status == CAM_SCSI_STATUS_ERROR) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI-2 and SCSI-3 specs, a * drive that is in the middle of a format should * return NOT READY with an ASC of "logical unit * not ready, format in progress". The sense key * specific bytes will then be a progress indicator. */ if ((sense_key == SSD_KEY_NOT_READY) && (asc == 0x04) && (ascq == 0x04)) { uint8_t sks[3]; if ((scsi_get_sks(sense, ccb->csio.sense_len - ccb->csio.sense_resid, sks) == 0) && (quiet == 0)) { uint32_t val; u_int64_t percentage; val = scsi_2btoul(&sks[1]); percentage = 10000ull * val; fprintf(stdout, "\rFormatting: %ju.%02u %% " "(%u/%d) done", (uintmax_t)(percentage / (0x10000 * 100)), (unsigned)((percentage / 0x10000) % 100), val, 0x10000); fflush(stdout); } else if ((quiet == 0) && (++num_warnings <= 1)) { warnx("Unexpected SCSI Sense Key " "Specific value returned " "during format:"); scsi_sense_print(device, &ccb->csio, stderr); warnx("Unable to print status " "information, but format will " "proceed."); warnx("will exit when format is " "complete"); } sleep(1); } else { warnx("Unexpected SCSI error during format"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsiformat_bailout; } } else if (status != CAM_REQ_CMP) { warnx("Unexpected CAM status %#x", status); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsiformat_bailout; } } while((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP); if (quiet == 0) fprintf(stdout, "\nFormat Complete\n"); scsiformat_bailout: cam_freeccb(ccb); return (error); } static int scsisanitize(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; u_int8_t action = 0; int c; int ycount = 0, quiet = 0; int error = 0, retval = 0; int use_timeout = 10800 * 1000; int immediate = 1; int invert = 0; int passes = 0; int ause = 0; int fd = -1; const char *pattern = NULL; u_int8_t *data_ptr = NULL; u_int32_t dxfer_len = 0; u_int8_t byte2 = 0; int num_warnings = 0; int reportonly = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("scsisanitize: error allocating ccb"); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'a': if (strcasecmp(optarg, "overwrite") == 0) action = SSZ_SERVICE_ACTION_OVERWRITE; else if (strcasecmp(optarg, "block") == 0) action = SSZ_SERVICE_ACTION_BLOCK_ERASE; else if (strcasecmp(optarg, "crypto") == 0) action = SSZ_SERVICE_ACTION_CRYPTO_ERASE; else if (strcasecmp(optarg, "exitfailure") == 0) action = SSZ_SERVICE_ACTION_EXIT_MODE_FAILURE; else { warnx("invalid service operation \"%s\"", optarg); error = 1; goto scsisanitize_bailout; } break; case 'c': passes = strtol(optarg, NULL, 0); if (passes < 1 || passes > 31) { warnx("invalid passes value %d", passes); error = 1; goto scsisanitize_bailout; } break; case 'I': invert = 1; break; case 'P': pattern = optarg; break; case 'q': quiet++; break; case 'U': ause = 1; break; case 'r': reportonly = 1; break; case 'w': immediate = 0; break; case 'y': ycount++; break; } } if (reportonly) goto doreport; if (action == 0) { warnx("an action is required"); error = 1; goto scsisanitize_bailout; } else if (action == SSZ_SERVICE_ACTION_OVERWRITE) { struct scsi_sanitize_parameter_list *pl; struct stat sb; ssize_t sz, amt; if (pattern == NULL) { warnx("overwrite action requires -P argument"); error = 1; goto scsisanitize_bailout; } fd = open(pattern, O_RDONLY); if (fd < 0) { warn("cannot open pattern file %s", pattern); error = 1; goto scsisanitize_bailout; } if (fstat(fd, &sb) < 0) { warn("cannot stat pattern file %s", pattern); error = 1; goto scsisanitize_bailout; } sz = sb.st_size; if (sz > SSZPL_MAX_PATTERN_LENGTH) { warnx("pattern file size exceeds maximum value %d", SSZPL_MAX_PATTERN_LENGTH); error = 1; goto scsisanitize_bailout; } dxfer_len = sizeof(*pl) + sz; data_ptr = calloc(1, dxfer_len); if (data_ptr == NULL) { warnx("cannot allocate parameter list buffer"); error = 1; goto scsisanitize_bailout; } amt = read(fd, data_ptr + sizeof(*pl), sz); if (amt < 0) { warn("cannot read pattern file"); error = 1; goto scsisanitize_bailout; } else if (amt != sz) { warnx("short pattern file read"); error = 1; goto scsisanitize_bailout; } pl = (struct scsi_sanitize_parameter_list *)data_ptr; if (passes == 0) pl->byte1 = 1; else pl->byte1 = passes; if (invert != 0) pl->byte1 |= SSZPL_INVERT; scsi_ulto2b(sz, pl->length); } else { const char *arg; if (passes != 0) arg = "-c"; else if (invert != 0) arg = "-I"; else if (pattern != NULL) arg = "-P"; else arg = NULL; if (arg != NULL) { warnx("%s argument only valid with overwrite " "operation", arg); error = 1; goto scsisanitize_bailout; } } if (quiet == 0) { fprintf(stdout, "You are about to REMOVE ALL DATA from the " "following device:\n"); error = scsidoinquiry(device, argc, argv, combinedopt, task_attr, retry_count, timeout); if (error != 0) { warnx("scsisanitize: error sending inquiry"); goto scsisanitize_bailout; } } if (ycount == 0) { if (!get_confirmation()) { error = 1; goto scsisanitize_bailout; } } if (timeout != 0) use_timeout = timeout; if (quiet == 0) { fprintf(stdout, "Current sanitize timeout is %d seconds\n", use_timeout / 1000); } /* * If the user hasn't disabled questions and didn't specify a * timeout on the command line, ask them if they want the current * timeout. */ if ((ycount == 0) && (timeout == 0)) { char str[1024]; int new_timeout = 0; fprintf(stdout, "Enter new timeout in seconds or press\n" "return to keep the current timeout [%d] ", use_timeout / 1000); if (fgets(str, sizeof(str), stdin) != NULL) { if (str[0] != '\0') new_timeout = atoi(str); } if (new_timeout != 0) { use_timeout = new_timeout * 1000; fprintf(stdout, "Using new timeout value %d\n", use_timeout / 1000); } } byte2 = action; if (ause != 0) byte2 |= SSZ_UNRESTRICTED_EXIT; if (immediate != 0) byte2 |= SSZ_IMMED; scsi_sanitize(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* byte2 */ byte2, /* control */ 0, /* data_ptr */ data_ptr, /* dxfer_len */ dxfer_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ use_timeout); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending sanitize command"); error = 1; goto scsisanitize_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) { sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); if (sense_key == SSD_KEY_ILLEGAL_REQUEST && asc == 0x20 && ascq == 0x00) warnx("sanitize is not supported by " "this device"); else warnx("error sanitizing this device"); } else warnx("error sanitizing this device"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsisanitize_bailout; } /* * If we ran in non-immediate mode, we already checked for errors * above and printed out any necessary information. If we're in * immediate mode, we need to loop through and get status * information periodically. */ if (immediate == 0) { if (quiet == 0) { fprintf(stdout, "Sanitize Complete\n"); } goto scsisanitize_bailout; } doreport: do { cam_status status; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); /* * There's really no need to do error recovery or * retries here, since we're just going to sit in a * loop and wait for the device to finish sanitizing. */ scsi_test_unit_ready(&ccb->csio, /* retries */ 0, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; retval = cam_send_ccb(device, ccb); /* * If we get an error from the ioctl, bail out. SCSI * errors are expected. */ if (retval < 0) { warn("error sending CAMIOCOMMAND ioctl"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsisanitize_bailout; } status = ccb->ccb_h.status & CAM_STATUS_MASK; if ((status != CAM_REQ_CMP) && (status == CAM_SCSI_STATUS_ERROR) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI-3 spec, a drive that is in the * middle of a sanitize should return NOT READY with an * ASC of "logical unit not ready, sanitize in * progress". The sense key specific bytes will then * be a progress indicator. */ if ((sense_key == SSD_KEY_NOT_READY) && (asc == 0x04) && (ascq == 0x1b)) { uint8_t sks[3]; if ((scsi_get_sks(sense, ccb->csio.sense_len - ccb->csio.sense_resid, sks) == 0) && (quiet == 0)) { int val; u_int64_t percentage; val = scsi_2btoul(&sks[1]); percentage = 10000 * val; fprintf(stdout, "\rSanitizing: %ju.%02u %% " "(%d/%d) done", (uintmax_t)(percentage / (0x10000 * 100)), (unsigned)((percentage / 0x10000) % 100), val, 0x10000); fflush(stdout); } else if ((quiet == 0) && (++num_warnings <= 1)) { warnx("Unexpected SCSI Sense Key " "Specific value returned " "during sanitize:"); scsi_sense_print(device, &ccb->csio, stderr); warnx("Unable to print status " "information, but sanitze will " "proceed."); warnx("will exit when sanitize is " "complete"); } sleep(1); } else { warnx("Unexpected SCSI error during sanitize"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsisanitize_bailout; } } else if (status != CAM_REQ_CMP) { warnx("Unexpected CAM status %#x", status); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsisanitize_bailout; } } while((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP); if (quiet == 0) fprintf(stdout, "\nSanitize Complete\n"); scsisanitize_bailout: if (fd >= 0) close(fd); if (data_ptr != NULL) free(data_ptr); cam_freeccb(ccb); return (error); } static int scsireportluns(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int c, countonly, lunsonly; struct scsi_report_luns_data *lundata; int alloc_len; uint8_t report_type; uint32_t list_len, i, j; int retval; retval = 0; lundata = NULL; report_type = RPL_REPORT_DEFAULT; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); countonly = 0; lunsonly = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'c': countonly++; break; case 'l': lunsonly++; break; case 'r': if (strcasecmp(optarg, "default") == 0) report_type = RPL_REPORT_DEFAULT; else if (strcasecmp(optarg, "wellknown") == 0) report_type = RPL_REPORT_WELLKNOWN; else if (strcasecmp(optarg, "all") == 0) report_type = RPL_REPORT_ALL; else { warnx("%s: invalid report type \"%s\"", __func__, optarg); retval = 1; goto bailout; } break; default: break; } } if ((countonly != 0) && (lunsonly != 0)) { warnx("%s: you can only specify one of -c or -l", __func__); retval = 1; goto bailout; } /* * According to SPC-4, the allocation length must be at least 16 * bytes -- enough for the header and one LUN. */ alloc_len = sizeof(*lundata) + 8; retry: lundata = malloc(alloc_len); if (lundata == NULL) { warn("%s: error mallocing %d bytes", __func__, alloc_len); retval = 1; goto bailout; } scsi_report_luns(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*select_report*/ report_type, /*rpl_buf*/ lundata, /*alloc_len*/ alloc_len, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending REPORT LUNS command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } list_len = scsi_4btoul(lundata->length); /* * If we need to list the LUNs, and our allocation * length was too short, reallocate and retry. */ if ((countonly == 0) && (list_len > (alloc_len - sizeof(*lundata)))) { alloc_len = list_len + sizeof(*lundata); free(lundata); goto retry; } if (lunsonly == 0) fprintf(stdout, "%u LUN%s found\n", list_len / 8, ((list_len / 8) > 1) ? "s" : ""); if (countonly != 0) goto bailout; for (i = 0; i < (list_len / 8); i++) { int no_more; no_more = 0; for (j = 0; j < sizeof(lundata->luns[i].lundata); j += 2) { if (j != 0) fprintf(stdout, ","); switch (lundata->luns[i].lundata[j] & RPL_LUNDATA_ATYP_MASK) { case RPL_LUNDATA_ATYP_PERIPH: if ((lundata->luns[i].lundata[j] & RPL_LUNDATA_PERIPH_BUS_MASK) != 0) fprintf(stdout, "%d:", lundata->luns[i].lundata[j] & RPL_LUNDATA_PERIPH_BUS_MASK); else if ((j == 0) && ((lundata->luns[i].lundata[j+2] & RPL_LUNDATA_PERIPH_BUS_MASK) == 0)) no_more = 1; fprintf(stdout, "%d", lundata->luns[i].lundata[j+1]); break; case RPL_LUNDATA_ATYP_FLAT: { uint8_t tmplun[2]; tmplun[0] = lundata->luns[i].lundata[j] & RPL_LUNDATA_FLAT_LUN_MASK; tmplun[1] = lundata->luns[i].lundata[j+1]; fprintf(stdout, "%d", scsi_2btoul(tmplun)); no_more = 1; break; } case RPL_LUNDATA_ATYP_LUN: fprintf(stdout, "%d:%d:%d", (lundata->luns[i].lundata[j+1] & RPL_LUNDATA_LUN_BUS_MASK) >> 5, lundata->luns[i].lundata[j] & RPL_LUNDATA_LUN_TARG_MASK, lundata->luns[i].lundata[j+1] & RPL_LUNDATA_LUN_LUN_MASK); break; case RPL_LUNDATA_ATYP_EXTLUN: { int field_len_code, eam_code; eam_code = lundata->luns[i].lundata[j] & RPL_LUNDATA_EXT_EAM_MASK; field_len_code = (lundata->luns[i].lundata[j] & RPL_LUNDATA_EXT_LEN_MASK) >> 4; if ((eam_code == RPL_LUNDATA_EXT_EAM_WK) && (field_len_code == 0x00)) { fprintf(stdout, "%d", lundata->luns[i].lundata[j+1]); } else if ((eam_code == RPL_LUNDATA_EXT_EAM_NOT_SPEC) && (field_len_code == 0x03)) { uint8_t tmp_lun[8]; /* * This format takes up all 8 bytes. * If we aren't starting at offset 0, * that's a bug. */ if (j != 0) { fprintf(stdout, "Invalid " "offset %d for " "Extended LUN not " "specified format", j); no_more = 1; break; } bzero(tmp_lun, sizeof(tmp_lun)); bcopy(&lundata->luns[i].lundata[j+1], &tmp_lun[1], sizeof(tmp_lun) - 1); fprintf(stdout, "%#jx", (intmax_t)scsi_8btou64(tmp_lun)); no_more = 1; } else { fprintf(stderr, "Unknown Extended LUN" "Address method %#x, length " "code %#x", eam_code, field_len_code); no_more = 1; } break; } default: fprintf(stderr, "Unknown LUN address method " "%#x\n", lundata->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK); break; } /* * For the flat addressing method, there are no * other levels after it. */ if (no_more != 0) break; } fprintf(stdout, "\n"); } bailout: cam_freeccb(ccb); free(lundata); return (retval); } static int scsireadcapacity(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int blocksizeonly, humanize, numblocks, quiet, sizeonly, baseten, longonly; struct scsi_read_capacity_data rcap; struct scsi_read_capacity_data_long rcaplong; uint64_t maxsector; uint32_t block_len; int retval; int c; blocksizeonly = 0; humanize = 0; longonly = 0; numblocks = 0; quiet = 0; sizeonly = 0; baseten = 0; retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'b': blocksizeonly++; break; case 'h': humanize++; baseten = 0; break; case 'H': humanize++; baseten++; break; case 'l': longonly++; break; case 'N': numblocks++; break; case 'q': quiet++; break; case 's': sizeonly++; break; default: break; } } if ((blocksizeonly != 0) && (numblocks != 0)) { warnx("%s: you can only specify one of -b or -N", __func__); retval = 1; goto bailout; } if ((blocksizeonly != 0) && (sizeonly != 0)) { warnx("%s: you can only specify one of -b or -s", __func__); retval = 1; goto bailout; } if ((humanize != 0) && (quiet != 0)) { warnx("%s: you can only specify one of -h/-H or -q", __func__); retval = 1; goto bailout; } if ((humanize != 0) && (blocksizeonly != 0)) { warnx("%s: you can only specify one of -h/-H or -b", __func__); retval = 1; goto bailout; } if (longonly != 0) goto long_only; scsi_read_capacity(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, &rcap, SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending READ CAPACITY command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } maxsector = scsi_4btoul(rcap.addr); block_len = scsi_4btoul(rcap.length); /* * A last block of 2^32-1 means that the true capacity is over 2TB, * and we need to issue the long READ CAPACITY to get the real * capacity. Otherwise, we're all set. */ if (maxsector != 0xffffffff) goto do_print; long_only: scsi_read_capacity_16(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*lba*/ 0, /*reladdr*/ 0, /*pmi*/ 0, /*rcap_buf*/ (uint8_t *)&rcaplong, /*rcap_buf_len*/ sizeof(rcaplong), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending READ CAPACITY (16) command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } maxsector = scsi_8btou64(rcaplong.addr); block_len = scsi_4btoul(rcaplong.length); do_print: if (blocksizeonly == 0) { /* * Humanize implies !quiet, and also implies numblocks. */ if (humanize != 0) { char tmpstr[6]; int64_t tmpbytes; int ret; tmpbytes = (maxsector + 1) * block_len; ret = humanize_number(tmpstr, sizeof(tmpstr), tmpbytes, "", HN_AUTOSCALE, HN_B | HN_DECIMAL | ((baseten != 0) ? HN_DIVISOR_1000 : 0)); if (ret == -1) { warnx("%s: humanize_number failed!", __func__); retval = 1; goto bailout; } fprintf(stdout, "Device Size: %s%s", tmpstr, (sizeonly == 0) ? ", " : "\n"); } else if (numblocks != 0) { fprintf(stdout, "%s%ju%s", (quiet == 0) ? "Blocks: " : "", (uintmax_t)maxsector + 1, (sizeonly == 0) ? ", " : "\n"); } else { fprintf(stdout, "%s%ju%s", (quiet == 0) ? "Last Block: " : "", (uintmax_t)maxsector, (sizeonly == 0) ? ", " : "\n"); } } if (sizeonly == 0) fprintf(stdout, "%s%u%s\n", (quiet == 0) ? "Block Length: " : "", block_len, (quiet == 0) ? " bytes" : ""); bailout: cam_freeccb(ccb); return (retval); } static int smpcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { int c, error = 0; union ccb *ccb; uint8_t *smp_request = NULL, *smp_response = NULL; int request_size = 0, response_size = 0; int fd_request = 0, fd_response = 0; char *datastr = NULL; struct get_hook hook; int retval; int flags = 0; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'R': arglist |= CAM_ARG_CMD_IN; response_size = strtol(optarg, NULL, 0); if (response_size <= 0) { warnx("invalid number of response bytes %d", response_size); error = 1; goto smpcmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; optind++; datastr = cget(&hook, NULL); /* * If the user supplied "-" instead of a format, he * wants the data to be written to stdout. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_response = 1; smp_response = (u_int8_t *)malloc(response_size); if (smp_response == NULL) { warn("can't malloc memory for SMP response"); error = 1; goto smpcmd_bailout; } break; case 'r': arglist |= CAM_ARG_CMD_OUT; request_size = strtol(optarg, NULL, 0); if (request_size <= 0) { warnx("invalid number of request bytes %d", request_size); error = 1; goto smpcmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; datastr = cget(&hook, NULL); smp_request = (u_int8_t *)malloc(request_size); if (smp_request == NULL) { warn("can't malloc memory for SMP request"); error = 1; goto smpcmd_bailout; } bzero(smp_request, request_size); /* * If the user supplied "-" instead of a format, he * wants the data to be read from stdin. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_request = 1; else buff_encode_visit(smp_request, request_size, datastr, iget, &hook); optind += hook.got; break; default: break; } } /* * If fd_data is set, and we're writing to the device, we need to * read the data the user wants written from stdin. */ if ((fd_request == 1) && (arglist & CAM_ARG_CMD_OUT)) { ssize_t amt_read; int amt_to_read = request_size; u_int8_t *buf_ptr = smp_request; for (amt_read = 0; amt_to_read > 0; amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) { if (amt_read == -1) { warn("error reading data from stdin"); error = 1; goto smpcmd_bailout; } amt_to_read -= amt_read; buf_ptr += amt_read; } } if (((arglist & CAM_ARG_CMD_IN) == 0) || ((arglist & CAM_ARG_CMD_OUT) == 0)) { warnx("%s: need both the request (-r) and response (-R) " "arguments", __func__); error = 1; goto smpcmd_bailout; } flags |= CAM_DEV_QFRZDIS; cam_fill_smpio(&ccb->smpio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*smp_request*/ smp_request, /*smp_request_len*/ request_size, /*smp_response*/ smp_response, /*smp_response_len*/ response_size, /*timeout*/ timeout ? timeout : 5000); ccb->smpio.flags = SMP_FLAG_NONE; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) && (response_size > 0)) { if (fd_response == 0) { buff_decode_visit(smp_response, response_size, datastr, arg_put, NULL); fprintf(stdout, "\n"); } else { ssize_t amt_written; int amt_to_write = response_size; u_int8_t *buf_ptr = smp_response; for (amt_written = 0; (amt_to_write > 0) && (amt_written = write(STDOUT_FILENO, buf_ptr, amt_to_write)) > 0;){ amt_to_write -= amt_written; buf_ptr += amt_written; } if (amt_written == -1) { warn("error writing data to stdout"); error = 1; goto smpcmd_bailout; } else if ((amt_written == 0) && (amt_to_write > 0)) { warnx("only wrote %u bytes out of %u", response_size - amt_to_write, response_size); } } } smpcmd_bailout: if (ccb != NULL) cam_freeccb(ccb); if (smp_request != NULL) free(smp_request); if (smp_response != NULL) free(smp_response); return (error); } static int smpreportgeneral(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_report_general_request *request = NULL; struct smp_report_general_response *response = NULL; struct sbuf *sb = NULL; int error = 0; int c, long_response = 0; int retval; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; default: break; } } request = malloc(sizeof(*request)); if (request == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*request)); error = 1; goto bailout; } response = malloc(sizeof(*response)); if (response == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*response)); error = 1; goto bailout; } try_long: smp_report_general(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, request, /*request_len*/ sizeof(*request), (uint8_t *)response, /*response_len*/ sizeof(*response), /*long_response*/ long_response, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto bailout; } /* * If the device supports the long response bit, try again and see * if we can get all of the data. */ if ((response->long_response & SMP_RG_LONG_RESPONSE) && (long_response == 0)) { ccb->ccb_h.status = CAM_REQ_INPROG; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); long_response = 1; goto try_long; } /* * XXX KDM detect and decode SMP errors here. */ sb = sbuf_new_auto(); if (sb == NULL) { warnx("%s: error allocating sbuf", __func__); goto bailout; } smp_report_general_sbuf(response, sizeof(*response), sb); if (sbuf_finish(sb) != 0) { warnx("%s: sbuf_finish", __func__); goto bailout; } printf("%s", sbuf_data(sb)); bailout: if (ccb != NULL) cam_freeccb(ccb); if (request != NULL) free(request); if (response != NULL) free(response); if (sb != NULL) sbuf_delete(sb); return (error); } static struct camcontrol_opts phy_ops[] = { {"nop", SMP_PC_PHY_OP_NOP, CAM_ARG_NONE, NULL}, {"linkreset", SMP_PC_PHY_OP_LINK_RESET, CAM_ARG_NONE, NULL}, {"hardreset", SMP_PC_PHY_OP_HARD_RESET, CAM_ARG_NONE, NULL}, {"disable", SMP_PC_PHY_OP_DISABLE, CAM_ARG_NONE, NULL}, {"clearerrlog", SMP_PC_PHY_OP_CLEAR_ERR_LOG, CAM_ARG_NONE, NULL}, {"clearaffiliation", SMP_PC_PHY_OP_CLEAR_AFFILIATON, CAM_ARG_NONE,NULL}, {"sataportsel", SMP_PC_PHY_OP_TRANS_SATA_PSS, CAM_ARG_NONE, NULL}, {"clearitnl", SMP_PC_PHY_OP_CLEAR_STP_ITN_LS, CAM_ARG_NONE, NULL}, {"setdevname", SMP_PC_PHY_OP_SET_ATT_DEV_NAME, CAM_ARG_NONE, NULL}, {NULL, 0, 0, NULL} }; static int smpphycontrol(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_phy_control_request *request = NULL; struct smp_phy_control_response *response = NULL; int long_response = 0; int retval = 0; int phy = -1; uint32_t phy_operation = SMP_PC_PHY_OP_NOP; int phy_op_set = 0; uint64_t attached_dev_name = 0; int dev_name_set = 0; uint32_t min_plr = 0, max_plr = 0; uint32_t pp_timeout_val = 0; int slumber_partial = 0; int set_pp_timeout_val = 0; int c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'a': case 'A': case 's': case 'S': { int enable = -1; if (strcasecmp(optarg, "enable") == 0) enable = 1; else if (strcasecmp(optarg, "disable") == 0) enable = 2; else { warnx("%s: Invalid argument %s", __func__, optarg); retval = 1; goto bailout; } switch (c) { case 's': slumber_partial |= enable << SMP_PC_SAS_SLUMBER_SHIFT; break; case 'S': slumber_partial |= enable << SMP_PC_SAS_PARTIAL_SHIFT; break; case 'a': slumber_partial |= enable << SMP_PC_SATA_SLUMBER_SHIFT; break; case 'A': slumber_partial |= enable << SMP_PC_SATA_PARTIAL_SHIFT; break; default: warnx("%s: programmer error", __func__); retval = 1; goto bailout; break; /*NOTREACHED*/ } break; } case 'd': attached_dev_name = (uintmax_t)strtoumax(optarg, NULL,0); dev_name_set = 1; break; case 'l': long_response = 1; break; case 'm': /* * We don't do extensive checking here, so this * will continue to work when new speeds come out. */ min_plr = strtoul(optarg, NULL, 0); if ((min_plr == 0) || (min_plr > 0xf)) { warnx("%s: invalid link rate %x", __func__, min_plr); retval = 1; goto bailout; } break; case 'M': /* * We don't do extensive checking here, so this * will continue to work when new speeds come out. */ max_plr = strtoul(optarg, NULL, 0); if ((max_plr == 0) || (max_plr > 0xf)) { warnx("%s: invalid link rate %x", __func__, max_plr); retval = 1; goto bailout; } break; case 'o': { camcontrol_optret optreturn; cam_argmask argnums; const char *subopt; if (phy_op_set != 0) { warnx("%s: only one phy operation argument " "(-o) allowed", __func__); retval = 1; goto bailout; } phy_op_set = 1; /* * Allow the user to specify the phy operation * numerically, as well as with a name. This will * future-proof it a bit, so options that are added * in future specs can be used. */ if (isdigit(optarg[0])) { phy_operation = strtoul(optarg, NULL, 0); if ((phy_operation == 0) || (phy_operation > 0xff)) { warnx("%s: invalid phy operation %#x", __func__, phy_operation); retval = 1; goto bailout; } break; } optreturn = getoption(phy_ops, optarg, &phy_operation, &argnums, &subopt); if (optreturn == CC_OR_AMBIGUOUS) { warnx("%s: ambiguous option %s", __func__, optarg); usage(0); retval = 1; goto bailout; } else if (optreturn == CC_OR_NOT_FOUND) { warnx("%s: option %s not found", __func__, optarg); usage(0); retval = 1; goto bailout; } break; } case 'p': phy = atoi(optarg); break; case 'T': pp_timeout_val = strtoul(optarg, NULL, 0); if (pp_timeout_val > 15) { warnx("%s: invalid partial pathway timeout " "value %u, need a value less than 16", __func__, pp_timeout_val); retval = 1; goto bailout; } set_pp_timeout_val = 1; break; default: break; } } if (phy == -1) { warnx("%s: a PHY (-p phy) argument is required",__func__); retval = 1; goto bailout; } if (((dev_name_set != 0) && (phy_operation != SMP_PC_PHY_OP_SET_ATT_DEV_NAME)) || ((phy_operation == SMP_PC_PHY_OP_SET_ATT_DEV_NAME) && (dev_name_set == 0))) { warnx("%s: -d name and -o setdevname arguments both " "required to set device name", __func__); retval = 1; goto bailout; } request = malloc(sizeof(*request)); if (request == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*request)); retval = 1; goto bailout; } response = malloc(sizeof(*response)); if (response == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*response)); retval = 1; goto bailout; } smp_phy_control(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, request, sizeof(*request), (uint8_t *)response, sizeof(*response), long_response, /*expected_exp_change_count*/ 0, phy, phy_operation, (set_pp_timeout_val != 0) ? 1 : 0, attached_dev_name, min_plr, max_plr, slumber_partial, pp_timeout_val, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { /* * Use CAM_EPF_NORMAL so we only get one line of * SMP command decoding. */ cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_NORMAL, stderr); } retval = 1; goto bailout; } /* XXX KDM print out something here for success? */ bailout: if (ccb != NULL) cam_freeccb(ccb); if (request != NULL) free(request); if (response != NULL) free(response); return (retval); } static int smpmaninfo(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_report_manuf_info_request request; struct smp_report_manuf_info_response response; struct sbuf *sb = NULL; int long_response = 0; int retval = 0; int c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; default: break; } } bzero(&request, sizeof(request)); bzero(&response, sizeof(response)); smp_report_manuf_info(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, &request, sizeof(request), (uint8_t *)&response, sizeof(response), long_response, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } sb = sbuf_new_auto(); if (sb == NULL) { warnx("%s: error allocating sbuf", __func__); goto bailout; } smp_report_manuf_info_sbuf(&response, sizeof(response), sb); if (sbuf_finish(sb) != 0) { warnx("%s: sbuf_finish", __func__); goto bailout; } printf("%s", sbuf_data(sb)); bailout: if (ccb != NULL) cam_freeccb(ccb); if (sb != NULL) sbuf_delete(sb); return (retval); } static int getdevid(struct cam_devitem *item) { int retval = 0; union ccb *ccb = NULL; struct cam_device *dev; dev = cam_open_btl(item->dev_match.path_id, item->dev_match.target_id, item->dev_match.target_lun, O_RDWR, NULL); if (dev == NULL) { warnx("%s", cam_errbuf); retval = 1; goto bailout; } item->device_id_len = 0; ccb = cam_getccb(dev); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); retval = 1; goto bailout; } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cdai); /* * On the first try, we just probe for the size of the data, and * then allocate that much memory and try again. */ retry: ccb->ccb_h.func_code = XPT_DEV_ADVINFO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->cdai.flags = CDAI_FLAG_NONE; ccb->cdai.buftype = CDAI_TYPE_SCSI_DEVID; ccb->cdai.bufsiz = item->device_id_len; if (item->device_id_len != 0) ccb->cdai.buf = (uint8_t *)item->device_id; if (cam_send_ccb(dev, ccb) < 0) { warn("%s: error sending XPT_GDEV_ADVINFO CCB", __func__); retval = 1; goto bailout; } if (ccb->ccb_h.status != CAM_REQ_CMP) { warnx("%s: CAM status %#x", __func__, ccb->ccb_h.status); retval = 1; goto bailout; } if (item->device_id_len == 0) { /* * This is our first time through. Allocate the buffer, * and then go back to get the data. */ if (ccb->cdai.provsiz == 0) { warnx("%s: invalid .provsiz field returned with " "XPT_GDEV_ADVINFO CCB", __func__); retval = 1; goto bailout; } item->device_id_len = ccb->cdai.provsiz; item->device_id = malloc(item->device_id_len); if (item->device_id == NULL) { warn("%s: unable to allocate %d bytes", __func__, item->device_id_len); retval = 1; goto bailout; } ccb->ccb_h.status = CAM_REQ_INPROG; goto retry; } bailout: if (dev != NULL) cam_close_device(dev); if (ccb != NULL) cam_freeccb(ccb); return (retval); } /* * XXX KDM merge this code with getdevtree()? */ static int buildbusdevlist(struct cam_devlist *devlist) { union ccb ccb; int bufsize, fd = -1; struct dev_match_pattern *patterns; struct cam_devitem *item = NULL; int skip_device = 0; int retval = 0; if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("couldn't open %s", XPT_DEVICE); return (1); } bzero(&ccb, sizeof(union ccb)); ccb.ccb_h.path_id = CAM_XPT_PATH_ID; ccb.ccb_h.target_id = CAM_TARGET_WILDCARD; ccb.ccb_h.target_lun = CAM_LUN_WILDCARD; ccb.ccb_h.func_code = XPT_DEV_MATCH; bufsize = sizeof(struct dev_match_result) * 100; ccb.cdm.match_buf_len = bufsize; ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize); if (ccb.cdm.matches == NULL) { warnx("can't malloc memory for matches"); close(fd); return (1); } ccb.cdm.num_matches = 0; ccb.cdm.num_patterns = 2; ccb.cdm.pattern_buf_len = sizeof(struct dev_match_pattern) * ccb.cdm.num_patterns; patterns = (struct dev_match_pattern *)malloc(ccb.cdm.pattern_buf_len); if (patterns == NULL) { warnx("can't malloc memory for patterns"); retval = 1; goto bailout; } ccb.cdm.patterns = patterns; bzero(patterns, ccb.cdm.pattern_buf_len); patterns[0].type = DEV_MATCH_DEVICE; patterns[0].pattern.device_pattern.flags = DEV_MATCH_PATH; patterns[0].pattern.device_pattern.path_id = devlist->path_id; patterns[1].type = DEV_MATCH_PERIPH; patterns[1].pattern.periph_pattern.flags = PERIPH_MATCH_PATH; patterns[1].pattern.periph_pattern.path_id = devlist->path_id; /* * We do the ioctl multiple times if necessary, in case there are * more than 100 nodes in the EDT. */ do { unsigned int i; if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("error sending CAMIOCOMMAND ioctl"); retval = 1; goto bailout; } if ((ccb.ccb_h.status != CAM_REQ_CMP) || ((ccb.cdm.status != CAM_DEV_MATCH_LAST) && (ccb.cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", ccb.ccb_h.status, ccb.cdm.status); retval = 1; goto bailout; } for (i = 0; i < ccb.cdm.num_matches; i++) { switch (ccb.cdm.matches[i].type) { case DEV_MATCH_DEVICE: { struct device_match_result *dev_result; dev_result = &ccb.cdm.matches[i].result.device_result; if (dev_result->flags & DEV_RESULT_UNCONFIGURED) { skip_device = 1; break; } else skip_device = 0; item = malloc(sizeof(*item)); if (item == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*item)); retval = 1; goto bailout; } bzero(item, sizeof(*item)); bcopy(dev_result, &item->dev_match, sizeof(*dev_result)); STAILQ_INSERT_TAIL(&devlist->dev_queue, item, links); if (getdevid(item) != 0) { retval = 1; goto bailout; } break; } case DEV_MATCH_PERIPH: { struct periph_match_result *periph_result; periph_result = &ccb.cdm.matches[i].result.periph_result; if (skip_device != 0) break; item->num_periphs++; item->periph_matches = realloc( item->periph_matches, item->num_periphs * sizeof(struct periph_match_result)); if (item->periph_matches == NULL) { warn("%s: error allocating periph " "list", __func__); retval = 1; goto bailout; } bcopy(periph_result, &item->periph_matches[ item->num_periphs - 1], sizeof(*periph_result)); break; } default: fprintf(stderr, "%s: unexpected match " "type %d\n", __func__, ccb.cdm.matches[i].type); retval = 1; goto bailout; break; /*NOTREACHED*/ } } } while ((ccb.ccb_h.status == CAM_REQ_CMP) && (ccb.cdm.status == CAM_DEV_MATCH_MORE)); bailout: if (fd != -1) close(fd); free(patterns); free(ccb.cdm.matches); if (retval != 0) freebusdevlist(devlist); return (retval); } static void freebusdevlist(struct cam_devlist *devlist) { struct cam_devitem *item, *item2; STAILQ_FOREACH_SAFE(item, &devlist->dev_queue, links, item2) { STAILQ_REMOVE(&devlist->dev_queue, item, cam_devitem, links); free(item->device_id); free(item->periph_matches); free(item); } } static struct cam_devitem * findsasdevice(struct cam_devlist *devlist, uint64_t sasaddr) { struct cam_devitem *item; STAILQ_FOREACH(item, &devlist->dev_queue, links) { struct scsi_vpd_id_descriptor *idd; /* * XXX KDM look for LUN IDs as well? */ idd = scsi_get_devid(item->device_id, item->device_id_len, scsi_devid_is_sas_target); if (idd == NULL) continue; if (scsi_8btou64(idd->identifier) == sasaddr) return (item); } return (NULL); } static int smpphylist(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { struct smp_report_general_request *rgrequest = NULL; struct smp_report_general_response *rgresponse = NULL; struct smp_discover_request *disrequest = NULL; struct smp_discover_response *disresponse = NULL; struct cam_devlist devlist; union ccb *ccb; int long_response = 0; int num_phys = 0; int quiet = 0; int retval; int i, c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); STAILQ_INIT(&devlist.dev_queue); rgrequest = malloc(sizeof(*rgrequest)); if (rgrequest == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*rgrequest)); retval = 1; goto bailout; } rgresponse = malloc(sizeof(*rgresponse)); if (rgresponse == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*rgresponse)); retval = 1; goto bailout; } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; case 'q': quiet = 1; break; default: break; } } smp_report_general(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, rgrequest, /*request_len*/ sizeof(*rgrequest), (uint8_t *)rgresponse, /*response_len*/ sizeof(*rgresponse), /*long_response*/ long_response, timeout); ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } num_phys = rgresponse->num_phys; if (num_phys == 0) { if (quiet == 0) fprintf(stdout, "%s: No Phys reported\n", __func__); retval = 1; goto bailout; } devlist.path_id = device->path_id; retval = buildbusdevlist(&devlist); if (retval != 0) goto bailout; if (quiet == 0) { fprintf(stdout, "%d PHYs:\n", num_phys); fprintf(stdout, "PHY Attached SAS Address\n"); } disrequest = malloc(sizeof(*disrequest)); if (disrequest == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*disrequest)); retval = 1; goto bailout; } disresponse = malloc(sizeof(*disresponse)); if (disresponse == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*disresponse)); retval = 1; goto bailout; } for (i = 0; i < num_phys; i++) { struct cam_devitem *item; struct device_match_result *dev_match; char vendor[16], product[48], revision[16]; char tmpstr[256]; int j; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); ccb->ccb_h.status = CAM_REQ_INPROG; ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; smp_discover(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, disrequest, sizeof(*disrequest), (uint8_t *)disresponse, sizeof(*disresponse), long_response, /*ignore_zone_group*/ 0, /*phy*/ i, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || (((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && (disresponse->function_result != SMP_FR_PHY_VACANT))) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } if (disresponse->function_result == SMP_FR_PHY_VACANT) { if (quiet == 0) fprintf(stdout, "%3d \n", i); continue; } if (disresponse->attached_device == SMP_DIS_AD_TYPE_NONE) { item = NULL; } else { item = findsasdevice(&devlist, scsi_8btou64(disresponse->attached_sas_address)); } if ((quiet == 0) || (item != NULL)) { fprintf(stdout, "%3d 0x%016jx", i, (uintmax_t)scsi_8btou64( disresponse->attached_sas_address)); if (item == NULL) { fprintf(stdout, "\n"); continue; } } else if (quiet != 0) continue; dev_match = &item->dev_match; if (dev_match->protocol == PROTO_SCSI) { cam_strvis(vendor, dev_match->inq_data.vendor, sizeof(dev_match->inq_data.vendor), sizeof(vendor)); cam_strvis(product, dev_match->inq_data.product, sizeof(dev_match->inq_data.product), sizeof(product)); cam_strvis(revision, dev_match->inq_data.revision, sizeof(dev_match->inq_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s %s>", vendor, product, revision); } else if ((dev_match->protocol == PROTO_ATA) || (dev_match->protocol == PROTO_SATAPM)) { cam_strvis(product, dev_match->ident_data.model, sizeof(dev_match->ident_data.model), sizeof(product)); cam_strvis(revision, dev_match->ident_data.revision, sizeof(dev_match->ident_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s>", product, revision); } else { sprintf(tmpstr, "<>"); } fprintf(stdout, " %-33s ", tmpstr); /* * If we have 0 periphs, that's a bug... */ if (item->num_periphs == 0) { fprintf(stdout, "\n"); continue; } fprintf(stdout, "("); for (j = 0; j < item->num_periphs; j++) { if (j > 0) fprintf(stdout, ","); fprintf(stdout, "%s%d", item->periph_matches[j].periph_name, item->periph_matches[j].unit_number); } fprintf(stdout, ")\n"); } bailout: if (ccb != NULL) cam_freeccb(ccb); free(rgrequest); free(rgresponse); free(disrequest); free(disresponse); freebusdevlist(&devlist); return (retval); } static int atapm_proc_resp(struct cam_device *device, union ccb *ccb) { struct ata_res *res; res = &ccb->ataio.res; if (res->status & ATA_STATUS_ERROR) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); printf("error = 0x%02x, sector_count = 0x%04x, " "device = 0x%02x, status = 0x%02x\n", res->error, res->sector_count, res->device, res->status); } return (1); } if (arglist & CAM_ARG_VERBOSE) { fprintf(stdout, "%s%d: Raw native check power data:\n", device->device_name, device->dev_unit_num); /* res is 4 byte aligned */ dump_data((uint16_t*)(uintptr_t)res, sizeof(struct ata_res)); printf("error = 0x%02x, sector_count = 0x%04x, device = 0x%02x, " "status = 0x%02x\n", res->error, res->sector_count, res->device, res->status); } printf("%s%d: ", device->device_name, device->dev_unit_num); switch (res->sector_count) { case 0x00: printf("Standby mode\n"); break; case 0x40: printf("NV Cache Power Mode and the spindle is spun down or spinning down\n"); break; case 0x41: printf("NV Cache Power Mode and the spindle is spun up or spinning up\n"); break; case 0x80: printf("Idle mode\n"); break; case 0xff: printf("Active or Idle mode\n"); break; default: printf("Unknown mode 0x%02x\n", res->sector_count); break; } return (0); } static int atapm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; int retval = 0; int t = -1; int c; u_int8_t ata_flags = 0; u_char cmd, sc; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 't': t = atoi(optarg); break; default: break; } } if (strcmp(argv[1], "idle") == 0) { if (t == -1) cmd = ATA_IDLE_IMMEDIATE; else cmd = ATA_IDLE_CMD; } else if (strcmp(argv[1], "standby") == 0) { if (t == -1) cmd = ATA_STANDBY_IMMEDIATE; else cmd = ATA_STANDBY_CMD; } else if (strcmp(argv[1], "powermode") == 0) { cmd = ATA_CHECK_POWER_MODE; ata_flags = AP_FLAG_CHK_COND; t = -1; } else { cmd = ATA_SLEEP; t = -1; } if (t < 0) sc = 0; else if (t <= (240 * 5)) sc = (t + 4) / 5; else if (t <= (252 * 5)) /* special encoding for 21 minutes */ sc = 252; else if (t <= (11 * 30 * 60)) sc = (t - 1) / (30 * 60) + 241; else sc = 253; retval = ata_do_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*ata_flags*/ata_flags, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/0, /*lba*/0, /*sector_count*/sc, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout ? timeout : 30 * 1000, /*quiet*/1); cam_freeccb(ccb); if (retval || cmd != ATA_CHECK_POWER_MODE) return (retval); return (atapm_proc_resp(device, ccb)); } static int ataaxm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; int retval = 0; int l = -1; int c; u_char cmd, sc; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': l = atoi(optarg); break; default: break; } } sc = 0; if (strcmp(argv[1], "apm") == 0) { if (l == -1) cmd = 0x85; else { cmd = 0x05; sc = l; } } else /* aam */ { if (l == -1) cmd = 0xC2; else { cmd = 0x42; sc = l; } } retval = ata_do_28bit_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SETFEATURES, /*features*/cmd, /*lba*/0, /*sector_count*/sc, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout ? timeout : 30 * 1000, /*quiet*/1); cam_freeccb(ccb); return (retval); } int scsigetopcodes(struct cam_device *device, int opcode_set, int opcode, int show_sa_errors, int sa_set, int service_action, int timeout_desc, int task_attr, int retry_count, int timeout, int verbosemode, uint32_t *fill_len, uint8_t **data_ptr) { union ccb *ccb = NULL; uint8_t *buf = NULL; uint32_t alloc_len = 0, num_opcodes; uint32_t valid_len = 0; uint32_t avail_len = 0; struct scsi_report_supported_opcodes_all *all_hdr; struct scsi_report_supported_opcodes_one *one; int options = 0; int retval = 0; /* * Make it clear that we haven't yet allocated or filled anything. */ *fill_len = 0; *data_ptr = NULL; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); retval = 1; goto bailout; } /* cam_getccb cleans up the header, caller has to zero the payload */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); if (opcode_set != 0) { options |= RSO_OPTIONS_OC; num_opcodes = 1; alloc_len = sizeof(*one) + CAM_MAX_CDBLEN; } else { num_opcodes = 256; alloc_len = sizeof(*all_hdr) + (num_opcodes * sizeof(struct scsi_report_supported_opcodes_descr)); } if (timeout_desc != 0) { options |= RSO_RCTD; alloc_len += num_opcodes * sizeof(struct scsi_report_supported_opcodes_timeout); } if (sa_set != 0) { options |= RSO_OPTIONS_OC_SA; if (show_sa_errors != 0) options &= ~RSO_OPTIONS_OC; } retry_alloc: if (buf != NULL) { free(buf); buf = NULL; } buf = malloc(alloc_len); if (buf == NULL) { warn("Unable to allocate %u bytes", alloc_len); retval = 1; goto bailout; } bzero(buf, alloc_len); scsi_report_supported_opcodes(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*options*/ options, /*req_opcode*/ opcode, /*req_service_action*/ service_action, /*data_ptr*/ buf, /*dxfer_len*/ alloc_len, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 10000); ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (retry_count != 0) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { perror("error sending REPORT SUPPORTED OPERATION CODES"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (verbosemode != 0) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } valid_len = ccb->csio.dxfer_len - ccb->csio.resid; if (((options & RSO_OPTIONS_MASK) == RSO_OPTIONS_ALL) && (valid_len >= sizeof(*all_hdr))) { all_hdr = (struct scsi_report_supported_opcodes_all *)buf; avail_len = scsi_4btoul(all_hdr->length) + sizeof(*all_hdr); } else if (((options & RSO_OPTIONS_MASK) != RSO_OPTIONS_ALL) && (valid_len >= sizeof(*one))) { uint32_t cdb_length; one = (struct scsi_report_supported_opcodes_one *)buf; cdb_length = scsi_2btoul(one->cdb_length); avail_len = sizeof(*one) + cdb_length; if (one->support & RSO_ONE_CTDP) { struct scsi_report_supported_opcodes_timeout *td; td = (struct scsi_report_supported_opcodes_timeout *) &buf[avail_len]; if (valid_len >= (avail_len + sizeof(td->length))) { avail_len += scsi_2btoul(td->length) + sizeof(td->length); } else { avail_len += sizeof(*td); } } } /* * avail_len could be zero if we didn't get enough data back from * thet target to determine */ if ((avail_len != 0) && (avail_len > valid_len)) { alloc_len = avail_len; goto retry_alloc; } *fill_len = valid_len; *data_ptr = buf; bailout: if (retval != 0) free(buf); cam_freeccb(ccb); return (retval); } static int scsiprintoneopcode(struct cam_device *device, int req_opcode, int sa_set, int req_sa, uint8_t *buf, uint32_t valid_len) { struct scsi_report_supported_opcodes_one *one; struct scsi_report_supported_opcodes_timeout *td; uint32_t cdb_len = 0, td_len = 0; const char *op_desc = NULL; unsigned int i; int retval = 0; one = (struct scsi_report_supported_opcodes_one *)buf; /* * If we don't have the full single opcode descriptor, no point in * continuing. */ if (valid_len < __offsetof(struct scsi_report_supported_opcodes_one, cdb_length)) { warnx("Only %u bytes returned, not enough to verify support", valid_len); retval = 1; goto bailout; } op_desc = scsi_op_desc(req_opcode, &device->inq_data); printf("%s (0x%02x)", op_desc != NULL ? op_desc : "UNKNOWN", req_opcode); if (sa_set != 0) printf(", SA 0x%x", req_sa); printf(": "); switch (one->support & RSO_ONE_SUP_MASK) { case RSO_ONE_SUP_UNAVAIL: printf("No command support information currently available\n"); break; case RSO_ONE_SUP_NOT_SUP: printf("Command not supported\n"); retval = 1; goto bailout; break; /*NOTREACHED*/ case RSO_ONE_SUP_AVAIL: printf("Command is supported, complies with a SCSI standard\n"); break; case RSO_ONE_SUP_VENDOR: printf("Command is supported, vendor-specific " "implementation\n"); break; default: printf("Unknown command support flags 0x%#x\n", one->support & RSO_ONE_SUP_MASK); break; } /* * If we don't have the CDB length, it isn't exactly an error, the * command probably isn't supported. */ if (valid_len < __offsetof(struct scsi_report_supported_opcodes_one, cdb_usage)) goto bailout; cdb_len = scsi_2btoul(one->cdb_length); /* * If our valid data doesn't include the full reported length, * return. The caller should have detected this and adjusted his * allocation length to get all of the available data. */ if (valid_len < sizeof(*one) + cdb_len) { retval = 1; goto bailout; } /* * If all we have is the opcode, there is no point in printing out * the usage bitmap. */ if (cdb_len <= 1) { retval = 1; goto bailout; } printf("CDB usage bitmap:"); for (i = 0; i < cdb_len; i++) { printf(" %02x", one->cdb_usage[i]); } printf("\n"); /* * If we don't have a timeout descriptor, we're done. */ if ((one->support & RSO_ONE_CTDP) == 0) goto bailout; /* * If we don't have enough valid length to include the timeout * descriptor length, we're done. */ if (valid_len < (sizeof(*one) + cdb_len + sizeof(td->length))) goto bailout; td = (struct scsi_report_supported_opcodes_timeout *) &buf[sizeof(*one) + cdb_len]; td_len = scsi_2btoul(td->length); td_len += sizeof(td->length); /* * If we don't have the full timeout descriptor, we're done. */ if (td_len < sizeof(*td)) goto bailout; /* * If we don't have enough valid length to contain the full timeout * descriptor, we're done. */ if (valid_len < (sizeof(*one) + cdb_len + td_len)) goto bailout; printf("Timeout information:\n"); printf("Command-specific: 0x%02x\n", td->cmd_specific); printf("Nominal timeout: %u seconds\n", scsi_4btoul(td->nominal_time)); printf("Recommended timeout: %u seconds\n", scsi_4btoul(td->recommended_time)); bailout: return (retval); } static int scsiprintopcodes(struct cam_device *device, int td_req, uint8_t *buf, uint32_t valid_len) { struct scsi_report_supported_opcodes_all *hdr; struct scsi_report_supported_opcodes_descr *desc; uint32_t avail_len = 0, used_len = 0; uint8_t *cur_ptr; int retval = 0; if (valid_len < sizeof(*hdr)) { warnx("%s: not enough returned data (%u bytes) opcode list", __func__, valid_len); retval = 1; goto bailout; } hdr = (struct scsi_report_supported_opcodes_all *)buf; avail_len = scsi_4btoul(hdr->length); avail_len += sizeof(hdr->length); /* * Take the lesser of the amount of data the drive claims is * available, and the amount of data the HBA says was returned. */ avail_len = MIN(avail_len, valid_len); used_len = sizeof(hdr->length); printf("%-6s %4s %8s ", "Opcode", "SA", "CDB len" ); if (td_req != 0) printf("%5s %6s %6s ", "CS", "Nom", "Rec"); printf(" Description\n"); while ((avail_len - used_len) > sizeof(*desc)) { struct scsi_report_supported_opcodes_timeout *td; uint32_t td_len; const char *op_desc = NULL; cur_ptr = &buf[used_len]; desc = (struct scsi_report_supported_opcodes_descr *)cur_ptr; op_desc = scsi_op_desc(desc->opcode, &device->inq_data); if (op_desc == NULL) op_desc = "UNKNOWN"; printf("0x%02x %#4x %8u ", desc->opcode, scsi_2btoul(desc->service_action), scsi_2btoul(desc->cdb_length)); used_len += sizeof(*desc); if ((desc->flags & RSO_CTDP) == 0) { printf(" %s\n", op_desc); continue; } /* * If we don't have enough space to fit a timeout * descriptor, then we're done. */ if (avail_len - used_len < sizeof(*td)) { used_len = avail_len; printf(" %s\n", op_desc); continue; } cur_ptr = &buf[used_len]; td = (struct scsi_report_supported_opcodes_timeout *)cur_ptr; td_len = scsi_2btoul(td->length); td_len += sizeof(td->length); used_len += td_len; /* * If the given timeout descriptor length is less than what * we understand, skip it. */ if (td_len < sizeof(*td)) { printf(" %s\n", op_desc); continue; } printf(" 0x%02x %6u %6u %s\n", td->cmd_specific, scsi_4btoul(td->nominal_time), scsi_4btoul(td->recommended_time), op_desc); } bailout: return (retval); } static int scsiopcodes(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout, int verbosemode) { int c; uint32_t opcode = 0, service_action = 0; int td_set = 0, opcode_set = 0, sa_set = 0; int show_sa_errors = 1; uint32_t valid_len = 0; uint8_t *buf = NULL; char *endptr; int retval = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'N': show_sa_errors = 0; break; case 'o': opcode = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { warnx("Invalid opcode \"%s\", must be a number", optarg); retval = 1; goto bailout; } if (opcode > 0xff) { warnx("Invalid opcode 0x%#x, must be between" "0 and 0xff inclusive", opcode); retval = 1; goto bailout; } opcode_set = 1; break; case 's': service_action = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { warnx("Invalid service action \"%s\", must " "be a number", optarg); retval = 1; goto bailout; } if (service_action > 0xffff) { warnx("Invalid service action 0x%#x, must " "be between 0 and 0xffff inclusive", service_action); retval = 1; } sa_set = 1; break; case 'T': td_set = 1; break; default: break; } } if ((sa_set != 0) && (opcode_set == 0)) { warnx("You must specify an opcode with -o if a service " "action is given"); retval = 1; goto bailout; } retval = scsigetopcodes(device, opcode_set, opcode, show_sa_errors, sa_set, service_action, td_set, task_attr, retry_count, timeout, verbosemode, &valid_len, &buf); if (retval != 0) goto bailout; if ((opcode_set != 0) || (sa_set != 0)) { retval = scsiprintoneopcode(device, opcode, sa_set, service_action, buf, valid_len); } else { retval = scsiprintopcodes(device, td_set, buf, valid_len); } bailout: free(buf); return (retval); } #endif /* MINIMALISTIC */ static int scsireprobe(struct cam_device *device) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); ccb->ccb_h.func_code = XPT_REPROBE_LUN; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_REPROBE_LUN CCB"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } bailout: cam_freeccb(ccb); return (retval); } void usage(int printlong) { fprintf(printlong ? stdout : stderr, "usage: camcontrol [device id][generic args][command args]\n" " camcontrol devlist [-b] [-v]\n" #ifndef MINIMALISTIC " camcontrol periphlist [dev_id][-n dev_name] [-u unit]\n" " camcontrol tur [dev_id][generic args]\n" " camcontrol inquiry [dev_id][generic args] [-D] [-S] [-R]\n" " camcontrol identify [dev_id][generic args] [-v]\n" " camcontrol reportluns [dev_id][generic args] [-c] [-l] [-r report]\n" " camcontrol readcap [dev_id][generic args] [-b] [-h] [-H] [-N]\n" " [-q] [-s] [-l]\n" " camcontrol start [dev_id][generic args]\n" " camcontrol stop [dev_id][generic args]\n" " camcontrol load [dev_id][generic args]\n" " camcontrol eject [dev_id][generic args]\n" " camcontrol reprobe [dev_id][generic args]\n" #endif /* MINIMALISTIC */ " camcontrol rescan \n" " camcontrol reset \n" #ifndef MINIMALISTIC " camcontrol defects [dev_id][generic args] <-f format> [-P][-G]\n" " [-q][-s][-S offset][-X]\n" " camcontrol modepage [dev_id][generic args] <-m page | -l>\n" " [-P pagectl][-e | -b][-d]\n" " camcontrol cmd [dev_id][generic args]\n" " <-a cmd [args] | -c cmd [args]>\n" " [-d] [-f] [-i len fmt|-o len fmt [args]] [-r fmt]\n" " camcontrol smpcmd [dev_id][generic args]\n" " <-r len fmt [args]> <-R len fmt [args]>\n" " camcontrol smprg [dev_id][generic args][-l]\n" " camcontrol smppc [dev_id][generic args] <-p phy> [-l]\n" " [-o operation][-d name][-m rate][-M rate]\n" " [-T pp_timeout][-a enable|disable]\n" " [-A enable|disable][-s enable|disable]\n" " [-S enable|disable]\n" " camcontrol smpphylist [dev_id][generic args][-l][-q]\n" " camcontrol smpmaninfo [dev_id][generic args][-l]\n" " camcontrol debug [-I][-P][-T][-S][-X][-c]\n" " \n" " camcontrol tags [dev_id][generic args] [-N tags] [-q] [-v]\n" " camcontrol negotiate [dev_id][generic args] [-a][-c]\n" " [-D ][-M mode][-O offset]\n" " [-q][-R syncrate][-v][-T ]\n" " [-U][-W bus_width]\n" " camcontrol format [dev_id][generic args][-q][-r][-w][-y]\n" " camcontrol sanitize [dev_id][generic args]\n" " [-a overwrite|block|crypto|exitfailure]\n" " [-c passes][-I][-P pattern][-q][-U][-r][-w]\n" " [-y]\n" " camcontrol idle [dev_id][generic args][-t time]\n" " camcontrol standby [dev_id][generic args][-t time]\n" " camcontrol sleep [dev_id][generic args]\n" " camcontrol powermode [dev_id][generic args]\n" " camcontrol apm [dev_id][generic args][-l level]\n" " camcontrol aam [dev_id][generic args][-l level]\n" " camcontrol fwdownload [dev_id][generic args] <-f fw_image> [-q]\n" " [-s][-y]\n" " camcontrol security [dev_id][generic args]\n" " <-d pwd | -e pwd | -f | -h pwd | -k pwd>\n" " [-l ] [-q] [-s pwd] [-T timeout]\n" " [-U ] [-y]\n" " camcontrol hpa [dev_id][generic args] [-f] [-l] [-P] [-p pwd]\n" " [-q] [-s max_sectors] [-U pwd] [-y]\n" +" camcontrol ama [dev_id][generic args] [-f] [-q] [-s max_sectors]\n" " camcontrol persist [dev_id][generic args] <-i action|-o action>\n" " [-a][-I tid][-k key][-K sa_key][-p][-R rtp]\n" " [-s scope][-S][-T type][-U]\n" " camcontrol attrib [dev_id][generic args] <-r action|-w attr>\n" " [-a attr_num][-c][-e elem][-F form1,form1]\n" " [-p part][-s start][-T type][-V vol]\n" " camcontrol opcodes [dev_id][generic args][-o opcode][-s SA]\n" " [-N][-T]\n" " camcontrol zone [dev_id][generic args]<-c cmd> [-a] [-l LBA]\n" " [-o rep_opts] [-P print_opts]\n" " camcontrol epc [dev_id][generic_args]<-c cmd> [-d] [-D] [-e]\n" " [-H] [-p power_cond] [-P] [-r rst_src] [-s]\n" " [-S power_src] [-T timer]\n" " camcontrol timestamp [dev_id][generic_args] <-r [-f format|-m|-U]>|\n" " <-s <-f format -T time | -U >>\n" " camcontrol devtype [dev_id]\n" " \n" #endif /* MINIMALISTIC */ " camcontrol help\n"); if (!printlong) return; #ifndef MINIMALISTIC fprintf(stdout, "Specify one of the following options:\n" "devlist list all CAM devices\n" "periphlist list all CAM peripheral drivers attached to a device\n" "tur send a test unit ready to the named device\n" "inquiry send a SCSI inquiry command to the named device\n" "identify send a ATA identify command to the named device\n" "reportluns send a SCSI report luns command to the device\n" "readcap send a SCSI read capacity command to the device\n" "start send a Start Unit command to the device\n" "stop send a Stop Unit command to the device\n" "load send a Start Unit command to the device with the load bit set\n" "eject send a Stop Unit command to the device with the eject bit set\n" "reprobe update capacity information of the given device\n" "rescan rescan all buses, the given bus, bus:target:lun or device\n" "reset reset all buses, the given bus, bus:target:lun or device\n" "defects read the defect list of the specified device\n" "modepage display or edit (-e) the given mode page\n" "cmd send the given SCSI command, may need -i or -o as well\n" "smpcmd send the given SMP command, requires -o and -i\n" "smprg send the SMP Report General command\n" "smppc send the SMP PHY Control command, requires -p\n" "smpphylist display phys attached to a SAS expander\n" "smpmaninfo send the SMP Report Manufacturer Info command\n" "debug turn debugging on/off for a bus, target, or lun, or all devices\n" "tags report or set the number of transaction slots for a device\n" "negotiate report or set device negotiation parameters\n" "format send the SCSI FORMAT UNIT command to the named device\n" "sanitize send the SCSI SANITIZE command to the named device\n" "idle send the ATA IDLE command to the named device\n" "standby send the ATA STANDBY command to the named device\n" "sleep send the ATA SLEEP command to the named device\n" "powermode send the ATA CHECK POWER MODE command to the named device\n" "fwdownload program firmware of the named device with the given image\n" "security report or send ATA security commands to the named device\n" "persist send the SCSI PERSISTENT RESERVE IN or OUT commands\n" "attrib send the SCSI READ or WRITE ATTRIBUTE commands\n" "opcodes send the SCSI REPORT SUPPORTED OPCODES command\n" "zone manage Zoned Block (Shingled) devices\n" "epc send ATA Extended Power Conditions commands\n" "timestamp report or set the device's timestamp\n" "devtype report the type of device\n" "help this message\n" "Device Identifiers:\n" "bus:target specify the bus and target, lun defaults to 0\n" "bus:target:lun specify the bus, target and lun\n" "deviceUNIT specify the device name, like \"da4\" or \"cd2\"\n" "Generic arguments:\n" "-v be verbose, print out sense information\n" "-t timeout command timeout in seconds, overrides default timeout\n" "-n dev_name specify device name, e.g. \"da\", \"cd\"\n" "-u unit specify unit number, e.g. \"0\", \"5\"\n" "-E have the kernel attempt to perform SCSI error recovery\n" "-C count specify the SCSI command retry count (needs -E to work)\n" "-Q task_attr specify ordered, simple or head tag type for SCSI cmds\n" "modepage arguments:\n" "-l list all available mode pages\n" "-m page specify the mode page to view or edit\n" "-e edit the specified mode page\n" "-b force view to binary mode\n" "-d disable block descriptors for mode sense\n" "-P pgctl page control field 0-3\n" "defects arguments:\n" "-f format specify defect list format (block, bfi or phys)\n" "-G get the grown defect list\n" "-P get the permanent defect list\n" "inquiry arguments:\n" "-D get the standard inquiry data\n" "-S get the serial number\n" "-R get the transfer rate, etc.\n" "reportluns arguments:\n" "-c only report a count of available LUNs\n" "-l only print out luns, and not a count\n" "-r specify \"default\", \"wellknown\" or \"all\"\n" "readcap arguments\n" "-b only report the blocksize\n" "-h human readable device size, base 2\n" "-H human readable device size, base 10\n" "-N print the number of blocks instead of last block\n" "-q quiet, print numbers only\n" "-s only report the last block/device size\n" "cmd arguments:\n" "-c cdb [args] specify the SCSI CDB\n" "-i len fmt specify input data and input data format\n" "-o len fmt [args] specify output data and output data fmt\n" "smpcmd arguments:\n" "-r len fmt [args] specify the SMP command to be sent\n" "-R len fmt [args] specify SMP response format\n" "smprg arguments:\n" "-l specify the long response format\n" "smppc arguments:\n" "-p phy specify the PHY to operate on\n" "-l specify the long request/response format\n" "-o operation specify the phy control operation\n" "-d name set the attached device name\n" "-m rate set the minimum physical link rate\n" "-M rate set the maximum physical link rate\n" "-T pp_timeout set the partial pathway timeout value\n" "-a enable|disable enable or disable SATA slumber\n" "-A enable|disable enable or disable SATA partial phy power\n" "-s enable|disable enable or disable SAS slumber\n" "-S enable|disable enable or disable SAS partial phy power\n" "smpphylist arguments:\n" "-l specify the long response format\n" "-q only print phys with attached devices\n" "smpmaninfo arguments:\n" "-l specify the long response format\n" "debug arguments:\n" "-I CAM_DEBUG_INFO -- scsi commands, errors, data\n" "-T CAM_DEBUG_TRACE -- routine flow tracking\n" "-S CAM_DEBUG_SUBTRACE -- internal routine command flow\n" "-c CAM_DEBUG_CDB -- print out SCSI CDBs only\n" "tags arguments:\n" "-N tags specify the number of tags to use for this device\n" "-q be quiet, don't report the number of tags\n" "-v report a number of tag-related parameters\n" "negotiate arguments:\n" "-a send a test unit ready after negotiation\n" "-c report/set current negotiation settings\n" "-D \"enable\" or \"disable\" disconnection\n" "-M mode set ATA mode\n" "-O offset set command delay offset\n" "-q be quiet, don't report anything\n" "-R syncrate synchronization rate in MHz\n" "-T \"enable\" or \"disable\" tagged queueing\n" "-U report/set user negotiation settings\n" "-W bus_width set the bus width in bits (8, 16 or 32)\n" "-v also print a Path Inquiry CCB for the controller\n" "format arguments:\n" "-q be quiet, don't print status messages\n" "-r run in report only mode\n" "-w don't send immediate format command\n" "-y don't ask any questions\n" "sanitize arguments:\n" "-a operation operation mode: overwrite, block, crypto or exitfailure\n" "-c passes overwrite passes to perform (1 to 31)\n" "-I invert overwrite pattern after each pass\n" "-P pattern path to overwrite pattern file\n" "-q be quiet, don't print status messages\n" "-r run in report only mode\n" "-U run operation in unrestricted completion exit mode\n" "-w don't send immediate sanitize command\n" "-y don't ask any questions\n" "idle/standby arguments:\n" "-t number of seconds before respective state.\n" "fwdownload arguments:\n" "-f fw_image path to firmware image file\n" "-q don't print informational messages, only errors\n" "-s run in simulation mode\n" "-v print info for every firmware segment sent to device\n" "-y don't ask any questions\n" "security arguments:\n" "-d pwd disable security using the given password for the selected\n" " user\n" "-e pwd erase the device using the given pwd for the selected user\n" "-f freeze the security configuration of the specified device\n" "-h pwd enhanced erase the device using the given pwd for the\n" " selected user\n" "-k pwd unlock the device using the given pwd for the selected\n" " user\n" "-l specifies which security level to set: high or maximum\n" "-q be quiet, do not print any status messages\n" "-s pwd password the device (enable security) using the given\n" " pwd for the selected user\n" "-T timeout overrides the timeout (seconds) used for erase operation\n" "-U specifies which user to set: user or master\n" "-y don't ask any questions\n" "hpa arguments:\n" "-f freeze the HPA configuration of the device\n" "-l lock the HPA configuration of the device\n" "-P make the HPA max sectors persist\n" "-p pwd Set the HPA configuration password required for unlock\n" " calls\n" "-q be quiet, do not print any status messages\n" "-s sectors configures the maximum user accessible sectors of the\n" " device\n" "-U pwd unlock the HPA configuration of the device\n" "-y don't ask any questions\n" +"ama arguments:\n" +"-f freeze the AMA configuration of the device\n" +"-q be quiet, do not print any status messages\n" +"-s sectors configures the maximum user accessible sectors of the\n" +" device\n" "persist arguments:\n" "-i action specify read_keys, read_reservation, report_cap, or\n" " read_full_status\n" "-o action specify register, register_ignore, reserve, release,\n" " clear, preempt, preempt_abort, register_move, replace_lost\n" "-a set the All Target Ports (ALL_TG_PT) bit\n" "-I tid specify a Transport ID, e.g.: sas,0x1234567812345678\n" "-k key specify the Reservation Key\n" "-K sa_key specify the Service Action Reservation Key\n" "-p set the Activate Persist Through Power Loss bit\n" "-R rtp specify the Relative Target Port\n" "-s scope specify the scope: lun, extent, element or a number\n" "-S specify Transport ID for register, requires -I\n" "-T res_type specify the reservation type: read_shared, wr_ex, rd_ex,\n" " ex_ac, wr_ex_ro, ex_ac_ro, wr_ex_ar, ex_ac_ar\n" "-U unregister the current initiator for register_move\n" "attrib arguments:\n" "-r action specify attr_values, attr_list, lv_list, part_list, or\n" " supp_attr\n" "-w attr specify an attribute to write, one -w argument per attr\n" "-a attr_num only display this attribute number\n" "-c get cached attributes\n" "-e elem_addr request attributes for the given element in a changer\n" "-F form1,form2 output format, comma separated list: text_esc, text_raw,\n" " nonascii_esc, nonascii_trim, nonascii_raw, field_all,\n" " field_none, field_desc, field_num, field_size, field_rw\n" "-p partition request attributes for the given partition\n" "-s start_attr request attributes starting at the given number\n" "-T elem_type specify the element type (used with -e)\n" "-V logical_vol specify the logical volume ID\n" "opcodes arguments:\n" "-o opcode specify the individual opcode to list\n" "-s service_action specify the service action for the opcode\n" "-N do not return SCSI error for unsupported SA\n" "-T request nominal and recommended timeout values\n" "zone arguments:\n" "-c cmd required: rz, open, close, finish, or rwp\n" "-a apply the action to all zones\n" "-l LBA specify the zone starting LBA\n" "-o rep_opts report zones options: all, empty, imp_open, exp_open,\n" " closed, full, ro, offline, reset, nonseq, nonwp\n" "-P print_opt report zones printing: normal, summary, script\n" "epc arguments:\n" "-c cmd required: restore, goto, timer, state, enable, disable,\n" " source, status, list\n" "-d disable power mode (timer, state)\n" "-D delayed entry (goto)\n" "-e enable power mode (timer, state)\n" "-H hold power mode (goto)\n" "-p power_cond Idle_a, Idle_b, Idle_c, Standby_y, Standby_z (timer,\n" " state, goto)\n" "-P only display power mode (status)\n" "-r rst_src restore settings from: default, saved (restore)\n" "-s save mode (timer, state, restore)\n" "-S power_src set power source: battery, nonbattery (source)\n" "-T timer set timer, seconds, .1 sec resolution (timer)\n" "timestamp arguments:\n" "-r report the timestamp of the device\n" "-f format report the timestamp of the device with the given\n" " strftime(3) format string\n" "-m report the timestamp of the device as milliseconds since\n" " January 1st, 1970\n" "-U report the time with UTC instead of the local time zone\n" "-s set the timestamp of the device\n" "-f format the format of the time string passed into strptime(3)\n" "-T time the time value passed into strptime(3)\n" "-U set the timestamp of the device to UTC time\n" ); #endif /* MINIMALISTIC */ } int main(int argc, char **argv) { int c; char *device = NULL; int unit = 0; struct cam_device *cam_dev = NULL; int timeout = 0, retry_count = 1; camcontrol_optret optreturn; char *tstr; const char *mainopt = "C:En:Q:t:u:v"; const char *subopt = NULL; char combinedopt[256]; int error = 0, optstart = 2; int task_attr = MSG_SIMPLE_Q_TAG; int devopen = 1; #ifndef MINIMALISTIC path_id_t bus; target_id_t target; lun_id_t lun; #endif /* MINIMALISTIC */ cmdlist = CAM_CMD_NONE; arglist = CAM_ARG_NONE; if (argc < 2) { usage(0); exit(1); } /* * Get the base option. */ optreturn = getoption(option_table,argv[1], &cmdlist, &arglist,&subopt); if (optreturn == CC_OR_AMBIGUOUS) { warnx("ambiguous option %s", argv[1]); usage(0); exit(1); } else if (optreturn == CC_OR_NOT_FOUND) { warnx("option %s not found", argv[1]); usage(0); exit(1); } /* * Ahh, getopt(3) is a pain. * * This is a gross hack. There really aren't many other good * options (excuse the pun) for parsing options in a situation like * this. getopt is kinda braindead, so you end up having to run * through the options twice, and give each invocation of getopt * the option string for the other invocation. * * You would think that you could just have two groups of options. * The first group would get parsed by the first invocation of * getopt, and the second group would get parsed by the second * invocation of getopt. It doesn't quite work out that way. When * the first invocation of getopt finishes, it leaves optind pointing * to the argument _after_ the first argument in the second group. * So when the second invocation of getopt comes around, it doesn't * recognize the first argument it gets and then bails out. * * A nice alternative would be to have a flag for getopt that says * "just keep parsing arguments even when you encounter an unknown * argument", but there isn't one. So there's no real clean way to * easily parse two sets of arguments without having one invocation * of getopt know about the other. * * Without this hack, the first invocation of getopt would work as * long as the generic arguments are first, but the second invocation * (in the subfunction) would fail in one of two ways. In the case * where you don't set optreset, it would fail because optind may be * pointing to the argument after the one it should be pointing at. * In the case where you do set optreset, and reset optind, it would * fail because getopt would run into the first set of options, which * it doesn't understand. * * All of this would "sort of" work if you could somehow figure out * whether optind had been incremented one option too far. The * mechanics of that, however, are more daunting than just giving * both invocations all of the expect options for either invocation. * * Needless to say, I wouldn't mind if someone invented a better * (non-GPL!) command line parsing interface than getopt. I * wouldn't mind if someone added more knobs to getopt to make it * work better. Who knows, I may talk myself into doing it someday, * if the standards weenies let me. As it is, it just leads to * hackery like this and causes people to avoid it in some cases. * * KDM, September 8th, 1998 */ if (subopt != NULL) sprintf(combinedopt, "%s%s", mainopt, subopt); else sprintf(combinedopt, "%s", mainopt); /* * For these options we do not parse optional device arguments and * we do not open a passthrough device. */ if ((cmdlist == CAM_CMD_RESCAN) || (cmdlist == CAM_CMD_RESET) || (cmdlist == CAM_CMD_DEVTREE) || (cmdlist == CAM_CMD_USAGE) || (cmdlist == CAM_CMD_DEBUG)) devopen = 0; #ifndef MINIMALISTIC if ((devopen == 1) && (argc > 2 && argv[2][0] != '-')) { char name[30]; int rv; if (isdigit(argv[2][0])) { /* device specified as bus:target[:lun] */ rv = parse_btl(argv[2], &bus, &target, &lun, &arglist); if (rv < 2) errx(1, "numeric device specification must " "be either bus:target, or " "bus:target:lun"); /* default to 0 if lun was not specified */ if ((arglist & CAM_ARG_LUN) == 0) { lun = 0; arglist |= CAM_ARG_LUN; } optstart++; } else { if (cam_get_device(argv[2], name, sizeof name, &unit) == -1) errx(1, "%s", cam_errbuf); device = strdup(name); arglist |= CAM_ARG_DEVICE | CAM_ARG_UNIT; optstart++; } } #endif /* MINIMALISTIC */ /* * Start getopt processing at argv[2/3], since we've already * accepted argv[1..2] as the command name, and as a possible * device name. */ optind = optstart; /* * Now we run through the argument list looking for generic * options, and ignoring options that possibly belong to * subfunctions. */ while ((c = getopt(argc, argv, combinedopt))!= -1){ switch(c) { case 'C': retry_count = strtol(optarg, NULL, 0); if (retry_count < 0) errx(1, "retry count %d is < 0", retry_count); arglist |= CAM_ARG_RETRIES; break; case 'E': arglist |= CAM_ARG_ERR_RECOVER; break; case 'n': arglist |= CAM_ARG_DEVICE; tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; device = (char *)strdup(tstr); break; case 'Q': { char *endptr; int table_entry = 0; tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (isdigit(*tstr)) { task_attr = strtol(tstr, &endptr, 0); if (*endptr != '\0') { errx(1, "Invalid queue option " "%s", tstr); } } else { size_t table_size; scsi_nv_status status; table_size = sizeof(task_attrs) / sizeof(task_attrs[0]); status = scsi_get_nv(task_attrs, table_size, tstr, &table_entry, SCSI_NV_FLAG_IG_CASE); if (status == SCSI_NV_FOUND) task_attr = task_attrs[ table_entry].value; else { errx(1, "%s option %s", (status == SCSI_NV_AMBIGUOUS)? "ambiguous" : "invalid", tstr); } } break; } case 't': timeout = strtol(optarg, NULL, 0); if (timeout < 0) errx(1, "invalid timeout %d", timeout); /* Convert the timeout from seconds to ms */ timeout *= 1000; arglist |= CAM_ARG_TIMEOUT; break; case 'u': arglist |= CAM_ARG_UNIT; unit = strtol(optarg, NULL, 0); break; case 'v': arglist |= CAM_ARG_VERBOSE; break; default: break; } } #ifndef MINIMALISTIC /* * For most commands we'll want to open the passthrough device * associated with the specified device. In the case of the rescan * commands, we don't use a passthrough device at all, just the * transport layer device. */ if (devopen == 1) { if (((arglist & (CAM_ARG_BUS|CAM_ARG_TARGET)) == 0) && (((arglist & CAM_ARG_DEVICE) == 0) || ((arglist & CAM_ARG_UNIT) == 0))) { errx(1, "subcommand \"%s\" requires a valid device " "identifier", argv[1]); } if ((cam_dev = ((arglist & (CAM_ARG_BUS | CAM_ARG_TARGET))? cam_open_btl(bus, target, lun, O_RDWR, NULL) : cam_open_spec_device(device,unit,O_RDWR,NULL))) == NULL) errx(1,"%s", cam_errbuf); } #endif /* MINIMALISTIC */ /* * Reset optind to 2, and reset getopt, so these routines can parse * the arguments again. */ optind = optstart; optreset = 1; switch(cmdlist) { #ifndef MINIMALISTIC case CAM_CMD_DEVLIST: error = getdevlist(cam_dev); break; case CAM_CMD_HPA: error = atahpa(cam_dev, retry_count, timeout, + argc, argv, combinedopt); + break; + case CAM_CMD_AMA: + error = ataama(cam_dev, retry_count, timeout, argc, argv, combinedopt); break; #endif /* MINIMALISTIC */ case CAM_CMD_DEVTREE: error = getdevtree(argc, argv, combinedopt); break; case CAM_CMD_DEVTYPE: error = getdevtype(cam_dev); break; #ifndef MINIMALISTIC case CAM_CMD_TUR: error = testunitready(cam_dev, task_attr, retry_count, timeout, 0); break; case CAM_CMD_INQUIRY: error = scsidoinquiry(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_IDENTIFY: error = ataidentify(cam_dev, retry_count, timeout); break; case CAM_CMD_STARTSTOP: error = scsistart(cam_dev, arglist & CAM_ARG_START_UNIT, arglist & CAM_ARG_EJECT, task_attr, retry_count, timeout); break; #endif /* MINIMALISTIC */ case CAM_CMD_RESCAN: error = dorescan_or_reset(argc, argv, 1); break; case CAM_CMD_RESET: error = dorescan_or_reset(argc, argv, 0); break; #ifndef MINIMALISTIC case CAM_CMD_READ_DEFECTS: error = readdefects(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_MODE_PAGE: modepage(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_SCSI_CMD: error = scsicmd(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_SMP_CMD: error = smpcmd(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_RG: error = smpreportgeneral(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_PC: error = smpphycontrol(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_PHYLIST: error = smpphylist(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_MANINFO: error = smpmaninfo(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_DEBUG: error = camdebug(argc, argv, combinedopt); break; case CAM_CMD_TAG: error = tagcontrol(cam_dev, argc, argv, combinedopt); break; case CAM_CMD_RATE: error = ratecontrol(cam_dev, task_attr, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_FORMAT: error = scsiformat(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_REPORTLUNS: error = scsireportluns(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_READCAP: error = scsireadcapacity(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_IDLE: case CAM_CMD_STANDBY: case CAM_CMD_SLEEP: case CAM_CMD_POWER_MODE: error = atapm(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_APM: case CAM_CMD_AAM: error = ataaxm(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SECURITY: error = atasecurity(cam_dev, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_DOWNLOAD_FW: error = fwdownload(cam_dev, argc, argv, combinedopt, arglist & CAM_ARG_VERBOSE, task_attr, retry_count, timeout); break; case CAM_CMD_SANITIZE: error = scsisanitize(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_PERSIST: error = scsipersist(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE, arglist & CAM_ARG_ERR_RECOVER); break; case CAM_CMD_ATTRIB: error = scsiattrib(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE, arglist & CAM_ARG_ERR_RECOVER); break; case CAM_CMD_OPCODES: error = scsiopcodes(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_REPROBE: error = scsireprobe(cam_dev); break; case CAM_CMD_ZONE: error = zone(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_EPC: error = epc(cam_dev, argc, argv, combinedopt, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_TIMESTAMP: error = timestamp(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; #endif /* MINIMALISTIC */ case CAM_CMD_USAGE: usage(1); break; default: usage(0); error = 1; break; } if (cam_dev != NULL) cam_close_device(cam_dev); exit(error); } Index: stable/11/sys/cam/ata/ata_all.c =================================================================== --- stable/11/sys/cam/ata/ata_all.c (revision 350800) +++ stable/11/sys/cam/ata/ata_all.c (revision 350801) @@ -1,1157 +1,1163 @@ /*- * Copyright (c) 2009 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #ifdef _KERNEL #include #include #include #include #include #else #include #include #include #include #ifndef min #define min(a,b) (((a)<(b))?(a):(b)) #endif #endif #include #include #include #include #include #include #include #include int ata_version(int ver) { int bit; if (ver == 0xffff) return 0; for (bit = 15; bit >= 0; bit--) if (ver & (1<control & 0x04) return ("SOFT_RESET"); switch (cmd->command) { case 0x00: switch (cmd->features) { case 0x00: return ("NOP FLUSHQUEUE"); case 0x01: return ("NOP AUTOPOLL"); } return ("NOP"); case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); case 0x06: switch (cmd->features) { case 0x01: return ("DSM TRIM"); } return "DSM"; case 0x07: switch (cmd->features) { case 0x01: return ("DSM_XL TRIM"); } return "DSM_XL"; case 0x08: return ("DEVICE_RESET"); case 0x0b: return ("REQUEST_SENSE_DATA_EXT"); case 0x12: return ("GET_PHYSICAL_ELEMENT_STATUS"); case 0x20: return ("READ"); case 0x24: return ("READ48"); case 0x25: return ("READ_DMA48"); case 0x26: return ("READ_DMA_QUEUED48"); case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); case 0x29: return ("READ_MUL48"); case 0x2a: return ("READ_STREAM_DMA48"); case 0x2b: return ("READ_STREAM48"); case 0x2f: return ("READ_LOG_EXT"); case 0x30: return ("WRITE"); case 0x34: return ("WRITE48"); case 0x35: return ("WRITE_DMA48"); case 0x36: return ("WRITE_DMA_QUEUED48"); case 0x37: return ("SET_MAX_ADDRESS48"); case 0x39: return ("WRITE_MUL48"); case 0x3a: return ("WRITE_STREAM_DMA48"); case 0x3b: return ("WRITE_STREAM48"); case 0x3d: return ("WRITE_DMA_FUA48"); case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); case 0x3f: return ("WRITE_LOG_EXT"); case 0x40: return ("READ_VERIFY"); case 0x42: return ("READ_VERIFY48"); case 0x44: switch (cmd->features) { case 0x01: return ("ZERO_EXT TRIM"); } return "ZERO_EXT"; case 0x45: switch (cmd->features) { case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); } return "WRITE_UNCORRECTABLE48"; case 0x47: return ("READ_LOG_DMA_EXT"); case 0x4a: return ("ZAC_MANAGEMENT_IN"); case 0x51: return ("CONFIGURE_STREAM"); case 0x57: return ("WRITE_LOG_DMA_EXT"); case 0x5b: return ("TRUSTED_NON_DATA"); case 0x5c: return ("TRUSTED_RECEIVE"); case 0x5d: return ("TRUSTED_RECEIVE_DMA"); case 0x5e: return ("TRUSTED_SEND"); case 0x5f: return ("TRUSTED_SEND_DMA"); case 0x60: return ("READ_FPDMA_QUEUED"); case 0x61: return ("WRITE_FPDMA_QUEUED"); case 0x63: switch (cmd->features & 0xf) { case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE"); case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING"); case 0x02: return ("NCQ_NON_DATA HYBRID DEMOTE BY SIZE"); case 0x03: return ("NCQ_NON_DATA HYBRID CHANGE BY LBA RANGE"); case 0x04: return ("NCQ_NON_DATA HYBRID CONTROL"); case 0x05: return ("NCQ_NON_DATA SET FEATURES"); /* * XXX KDM need common decoding between NCQ and non-NCQ * versions of SET FEATURES. */ case 0x06: return ("NCQ_NON_DATA ZERO EXT"); case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT"); } return ("NCQ_NON_DATA"); case 0x64: switch (cmd->sector_count_exp & 0xf) { case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT"); case 0x01: return ("SEND_FPDMA_QUEUED HYBRID EVICT"); case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT"); case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT"); case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL"); } return ("SEND_FPDMA_QUEUED"); case 0x65: switch (cmd->sector_count_exp & 0xf) { case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT"); case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN"); } return ("RECEIVE_FPDMA_QUEUED"); case 0x67: if (cmd->features == 0xec) return ("SEP_ATTN IDENTIFY"); switch (cmd->lba_low) { case 0x00: return ("SEP_ATTN READ BUFFER"); case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); case 0x80: return ("SEP_ATTN WRITE BUFFER"); case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); } return ("SEP_ATTN"); case 0x70: return ("SEEK"); case 0x77: return ("SET_DATE_TIME_EXT"); - case 0x78: return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION"); + case 0x78: + switch (cmd->features) { + case 0x00: return ("GET_NATIVE_MAX_ADDRESS_EXT"); + case 0x01: return ("SET_ACCESSIBLE_MAX_ADDRESS_EXT"); + case 0x02: return ("FREEZE_ACCESSIBLE_MAX_ADDRESS_EXT"); + } + return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION"); case 0x7C: return ("REMOVE_ELEMENT_AND_TRUNCATE"); case 0x87: return ("CFA_TRANSLATE_SECTOR"); case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); case 0x92: return ("DOWNLOAD_MICROCODE"); case 0x93: return ("DOWNLOAD_MICROCODE_DMA"); case 0x9a: return ("ZAC_MANAGEMENT_OUT"); case 0xa0: return ("PACKET"); case 0xa1: return ("ATAPI_IDENTIFY"); case 0xa2: return ("SERVICE"); case 0xb0: switch(cmd->features) { case 0xd0: return ("SMART READ ATTR VALUES"); case 0xd1: return ("SMART READ ATTR THRESHOLDS"); case 0xd3: return ("SMART SAVE ATTR VALUES"); case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); case 0xd5: return ("SMART READ LOG"); case 0xd6: return ("SMART WRITE LOG"); case 0xd8: return ("SMART ENABLE OPERATION"); case 0xd9: return ("SMART DISABLE OPERATION"); case 0xda: return ("SMART RETURN STATUS"); } return ("SMART"); case 0xb1: return ("DEVICE CONFIGURATION"); case 0xb2: return ("SET_SECTOR_CONFIGURATION_EXT"); case 0xb4: return ("SANITIZE_DEVICE"); case 0xc0: return ("CFA_ERASE"); case 0xc4: return ("READ_MUL"); case 0xc5: return ("WRITE_MUL"); case 0xc6: return ("SET_MULTI"); case 0xc7: return ("READ_DMA_QUEUED"); case 0xc8: return ("READ_DMA"); case 0xca: return ("WRITE_DMA"); case 0xcc: return ("WRITE_DMA_QUEUED"); case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); case 0xce: return ("WRITE_MUL_FUA48"); case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); case 0xda: return ("GET_MEDIA_STATUS"); case 0xde: return ("MEDIA_LOCK"); case 0xdf: return ("MEDIA_UNLOCK"); case 0xe0: return ("STANDBY_IMMEDIATE"); case 0xe1: return ("IDLE_IMMEDIATE"); case 0xe2: return ("STANDBY"); case 0xe3: return ("IDLE"); case 0xe4: return ("READ_BUFFER/PM"); case 0xe5: return ("CHECK_POWER_MODE"); case 0xe6: return ("SLEEP"); case 0xe7: return ("FLUSHCACHE"); case 0xe8: return ("WRITE_BUFFER/PM"); case 0xe9: return ("READ_BUFFER_DMA"); case 0xea: return ("FLUSHCACHE48"); case 0xeb: return ("WRITE_BUFFER_DMA"); case 0xec: return ("ATA_IDENTIFY"); case 0xed: return ("MEDIA_EJECT"); case 0xef: /* * XXX KDM need common decoding between NCQ and non-NCQ * versions of SET FEATURES. */ switch (cmd->features) { case 0x02: return ("SETFEATURES ENABLE WCACHE"); case 0x03: return ("SETFEATURES SET TRANSFER MODE"); case 0x05: return ("SETFEATURES ENABLE APM"); case 0x06: return ("SETFEATURES ENABLE PUIS"); case 0x07: return ("SETFEATURES SPIN-UP"); case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY"); case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL"); case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL"); case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES"); case 0x45: return ("SETFEATURES SET RATE BASIS"); case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS"); case 0x50: return ("SETFEATURES ADVANCED BACKGROUD OPERATION"); case 0x55: return ("SETFEATURES DISABLE RCACHE"); case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC"); case 0x63: return ("SETFEATURES DSN"); case 0x66: return ("SETFEATURES DISABLE DEFAULTS"); case 0x82: return ("SETFEATURES DISABLE WCACHE"); case 0x85: return ("SETFEATURES DISABLE APM"); case 0x86: return ("SETFEATURES DISABLE PUIS"); case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY"); case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL"); case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); case 0xaa: return ("SETFEATURES ENABLE RCACHE"); case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL"); case 0xC3: return ("SETFEATURES SENSE DATA REPORTING"); case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN"); case 0xCC: return ("SETFEATURES ENABLE DEFAULTS"); case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); } return "SETFEATURES"; case 0xf1: return ("SECURITY_SET_PASSWORD"); case 0xf2: return ("SECURITY_UNLOCK"); case 0xf3: return ("SECURITY_ERASE_PREPARE"); case 0xf4: return ("SECURITY_ERASE_UNIT"); case 0xf5: return ("SECURITY_FREEZE_LOCK"); case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); case 0xf9: return ("SET_MAX_ADDRESS"); } return "UNKNOWN"; } char * ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len) { struct sbuf sb; int error; if (len == 0) return (""); sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN); ata_cmd_sbuf(cmd, &sb); error = sbuf_finish(&sb); if (error != 0 && error != ENOMEM) return (""); return(sbuf_data(&sb)); } void ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb) { sbuf_printf(sb, "%02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x", cmd->command, cmd->features, cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device, cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp, cmd->features_exp, cmd->sector_count, cmd->sector_count_exp); } char * ata_res_string(struct ata_res *res, char *res_string, size_t len) { struct sbuf sb; int error; if (len == 0) return (""); sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN); ata_res_sbuf(res, &sb); error = sbuf_finish(&sb); if (error != 0 && error != ENOMEM) return (""); return(sbuf_data(&sb)); } int ata_res_sbuf(struct ata_res *res, struct sbuf *sb) { sbuf_printf(sb, "%02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x", res->status, res->error, res->lba_low, res->lba_mid, res->lba_high, res->device, res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp, res->sector_count, res->sector_count_exp); return (0); } /* * ata_command_sbuf() returns 0 for success and -1 for failure. */ int ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) { sbuf_printf(sb, "%s. ACB: ", ata_op_string(&ataio->cmd)); ata_cmd_sbuf(&ataio->cmd, sb); return(0); } /* * ata_status_abuf() returns 0 for success and -1 for failure. */ int ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) { sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)", ataio->res.status, (ataio->res.status & 0x80) ? "BSY " : "", (ataio->res.status & 0x40) ? "DRDY " : "", (ataio->res.status & 0x20) ? "DF " : "", (ataio->res.status & 0x10) ? "SERV " : "", (ataio->res.status & 0x08) ? "DRQ " : "", (ataio->res.status & 0x04) ? "CORR " : "", (ataio->res.status & 0x02) ? "IDX " : "", (ataio->res.status & 0x01) ? "ERR" : ""); if (ataio->res.status & 1) { sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)", ataio->res.error, (ataio->res.error & 0x80) ? "ICRC " : "", (ataio->res.error & 0x40) ? "UNC " : "", (ataio->res.error & 0x20) ? "MC " : "", (ataio->res.error & 0x10) ? "IDNF " : "", (ataio->res.error & 0x08) ? "MCR " : "", (ataio->res.error & 0x04) ? "ABRT " : "", (ataio->res.error & 0x02) ? "NM " : "", (ataio->res.error & 0x01) ? "ILI" : ""); } return(0); } void ata_print_ident(struct ata_params *ident_data) { const char *proto; char product[48], revision[16], ata[12], sata[12]; cam_strvis(product, ident_data->model, sizeof(ident_data->model), sizeof(product)); cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), sizeof(revision)); proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; if (ata_version(ident_data->version_major) == 0) { snprintf(ata, sizeof(ata), "%s", proto); } else if (ata_version(ident_data->version_major) <= 7) { snprintf(ata, sizeof(ata), "%s-%d", proto, ata_version(ident_data->version_major)); } else if (ata_version(ident_data->version_major) == 8) { snprintf(ata, sizeof(ata), "%s8-ACS", proto); } else { snprintf(ata, sizeof(ata), "ACS-%d %s", ata_version(ident_data->version_major) - 7, proto); } if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { if (ident_data->satacapabilities & ATA_SATA_GEN3) snprintf(sata, sizeof(sata), " SATA 3.x"); else if (ident_data->satacapabilities & ATA_SATA_GEN2) snprintf(sata, sizeof(sata), " SATA 2.x"); else if (ident_data->satacapabilities & ATA_SATA_GEN1) snprintf(sata, sizeof(sata), " SATA 1.x"); else snprintf(sata, sizeof(sata), " SATA"); } else sata[0] = 0; printf("<%s %s> %s%s device\n", product, revision, ata, sata); } void ata_print_ident_short(struct ata_params *ident_data) { char product[48], revision[16]; cam_strvis(product, ident_data->model, sizeof(ident_data->model), sizeof(product)); cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), sizeof(revision)); printf("<%s %s>", product, revision); } void semb_print_ident(struct sep_identify_data *ident_data) { char vendor[9], product[17], revision[5], fw[5], in[7], ins[5]; cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); cam_strvis(product, ident_data->product_id, 16, sizeof(product)); cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); cam_strvis(in, ident_data->interface_id, 6, sizeof(in)); cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins)); printf("<%s %s %s %s> SEMB %s %s device\n", vendor, product, revision, fw, in, ins); } void semb_print_ident_short(struct sep_identify_data *ident_data) { char vendor[9], product[17], revision[5], fw[5]; cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); cam_strvis(product, ident_data->product_id, 16, sizeof(product)); cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); printf("<%s %s %s %s>", vendor, product, revision, fw); } uint32_t ata_logical_sector_size(struct ata_params *ident_data) { if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE && (ident_data->pss & ATA_PSS_LSSABOVE512)) { return (((u_int32_t)ident_data->lss_1 | ((u_int32_t)ident_data->lss_2 << 16)) * 2); } return (512); } uint64_t ata_physical_sector_size(struct ata_params *ident_data) { if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) { if (ident_data->pss & ATA_PSS_MULTLS) { return ((uint64_t)ata_logical_sector_size(ident_data) * (1 << (ident_data->pss & ATA_PSS_LSPPS))); } else { return (uint64_t)ata_logical_sector_size(ident_data); } } return (512); } uint64_t ata_logical_sector_offset(struct ata_params *ident_data) { if ((ident_data->lsalign & 0xc000) == 0x4000) { return ((uint64_t)ata_logical_sector_size(ident_data) * (ident_data->lsalign & 0x3fff)); } return (0); } void ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features, uint32_t lba, uint8_t sector_count) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = 0; if (cmd == ATA_READ_DMA || cmd == ATA_READ_DMA_QUEUED || cmd == ATA_WRITE_DMA || cmd == ATA_WRITE_DMA_QUEUED || cmd == ATA_TRUSTED_RECEIVE_DMA || cmd == ATA_TRUSTED_SEND_DMA || cmd == ATA_DOWNLOAD_MICROCODE_DMA || cmd == ATA_READ_BUFFER_DMA || cmd == ATA_WRITE_BUFFER_DMA) ataio->cmd.flags |= CAM_ATAIO_DMA; ataio->cmd.command = cmd; ataio->cmd.features = features; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f); ataio->cmd.sector_count = sector_count; } void ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features, uint64_t lba, uint16_t sector_count) { ataio->cmd.flags = CAM_ATAIO_48BIT; if (cmd == ATA_READ_DMA48 || cmd == ATA_READ_DMA_QUEUED48 || cmd == ATA_READ_STREAM_DMA48 || cmd == ATA_WRITE_DMA48 || cmd == ATA_WRITE_DMA_FUA48 || cmd == ATA_WRITE_DMA_QUEUED48 || cmd == ATA_WRITE_DMA_QUEUED_FUA48 || cmd == ATA_WRITE_STREAM_DMA48 || cmd == ATA_DATA_SET_MANAGEMENT || cmd == ATA_READ_LOG_DMA_EXT || cmd == ATA_WRITE_LOG_DMA_EXT) ataio->cmd.flags |= CAM_ATAIO_DMA; ataio->cmd.command = cmd; ataio->cmd.features = features; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA; ataio->cmd.lba_low_exp = lba >> 24; ataio->cmd.lba_mid_exp = lba >> 32; ataio->cmd.lba_high_exp = lba >> 40; ataio->cmd.features_exp = features >> 8; ataio->cmd.sector_count = sector_count; ataio->cmd.sector_count_exp = sector_count >> 8; ataio->cmd.control = 0; } void ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint64_t lba, uint16_t sector_count) { ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA; ataio->cmd.command = cmd; ataio->cmd.features = sector_count; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA; ataio->cmd.lba_low_exp = lba >> 24; ataio->cmd.lba_mid_exp = lba >> 32; ataio->cmd.lba_high_exp = lba >> 40; ataio->cmd.features_exp = sector_count >> 8; ataio->cmd.sector_count = 0; ataio->cmd.sector_count_exp = 0; ataio->cmd.control = 0; } void ata_reset_cmd(struct ccb_ataio *ataio) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT; ataio->cmd.control = 0x04; } void ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_NEEDRESULT; ataio->cmd.command = ATA_READ_PM; ataio->cmd.features = reg; ataio->cmd.device = port & 0x0f; } void ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = 0; ataio->cmd.command = ATA_WRITE_PM; ataio->cmd.features = reg; ataio->cmd.sector_count = val; ataio->cmd.lba_low = val >> 8; ataio->cmd.lba_mid = val >> 16; ataio->cmd.lba_high = val >> 24; ataio->cmd.device = port & 0x0f; } void ata_read_log(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t log_address, uint32_t page_number, uint16_t block_count, uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint64_t lba; cam_fill_ataio(ataio, /*retries*/ 1, /*cbfcnp*/ cbfcnp, /*flags*/ CAM_DIR_IN, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); lba = (((uint64_t)page_number & 0xff00) << 32) | ((page_number & 0x00ff) << 8) | (log_address & 0xff); ata_48bit_cmd(ataio, /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT : ATA_READ_LOG_EXT, /*features*/ 0, /*lba*/ lba, /*sector_count*/ block_count); } void ata_bswap(int8_t *buf, int len) { u_int16_t *ptr = (u_int16_t*)(buf + len); while (--ptr >= (u_int16_t*)buf) *ptr = be16toh(*ptr); } void ata_btrim(int8_t *buf, int len) { int8_t *ptr; for (ptr = buf; ptr < buf+len; ++ptr) if (!*ptr || *ptr == '_') *ptr = ' '; for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr) *ptr = 0; } void ata_bpack(int8_t *src, int8_t *dst, int len) { int i, j, blank; for (i = j = blank = 0 ; i < len; i++) { if (blank && src[i] == ' ') continue; if (blank && src[i] != ' ') { dst[j++] = src[i]; blank = 0; continue; } if (src[i] == ' ') { blank = 1; if (i == 0) continue; } dst[j++] = src[i]; } while (j < len) dst[j++] = 0x00; } int ata_max_pmode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_64_70) { if (ap->apiomodes & 0x02) return ATA_PIO4; if (ap->apiomodes & 0x01) return ATA_PIO3; } if (ap->mwdmamodes & 0x04) return ATA_PIO4; if (ap->mwdmamodes & 0x02) return ATA_PIO3; if (ap->mwdmamodes & 0x01) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100) return ATA_PIO1; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000) return ATA_PIO0; return ATA_PIO0; } int ata_max_wmode(struct ata_params *ap) { if (ap->mwdmamodes & 0x04) return ATA_WDMA2; if (ap->mwdmamodes & 0x02) return ATA_WDMA1; if (ap->mwdmamodes & 0x01) return ATA_WDMA0; return -1; } int ata_max_umode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_88) { if (ap->udmamodes & 0x40) return ATA_UDMA6; if (ap->udmamodes & 0x20) return ATA_UDMA5; if (ap->udmamodes & 0x10) return ATA_UDMA4; if (ap->udmamodes & 0x08) return ATA_UDMA3; if (ap->udmamodes & 0x04) return ATA_UDMA2; if (ap->udmamodes & 0x02) return ATA_UDMA1; if (ap->udmamodes & 0x01) return ATA_UDMA0; } return -1; } int ata_max_mode(struct ata_params *ap, int maxmode) { if (maxmode == 0) maxmode = ATA_DMA_MAX; if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0) return (min(maxmode, ata_max_umode(ap))); if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0) return (min(maxmode, ata_max_wmode(ap))); return (min(maxmode, ata_max_pmode(ap))); } char * ata_mode2string(int mode) { switch (mode) { case -1: return "UNSUPPORTED"; case 0: return "NONE"; case ATA_PIO0: return "PIO0"; case ATA_PIO1: return "PIO1"; case ATA_PIO2: return "PIO2"; case ATA_PIO3: return "PIO3"; case ATA_PIO4: return "PIO4"; case ATA_WDMA0: return "WDMA0"; case ATA_WDMA1: return "WDMA1"; case ATA_WDMA2: return "WDMA2"; case ATA_UDMA0: return "UDMA0"; case ATA_UDMA1: return "UDMA1"; case ATA_UDMA2: return "UDMA2"; case ATA_UDMA3: return "UDMA3"; case ATA_UDMA4: return "UDMA4"; case ATA_UDMA5: return "UDMA5"; case ATA_UDMA6: return "UDMA6"; default: if (mode & ATA_DMA_MASK) return "BIOSDMA"; else return "BIOSPIO"; } } int ata_string2mode(char *str) { if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); return (-1); } u_int ata_mode2speed(int mode) { switch (mode) { case ATA_PIO0: default: return (3300); case ATA_PIO1: return (5200); case ATA_PIO2: return (8300); case ATA_PIO3: return (11100); case ATA_PIO4: return (16700); case ATA_WDMA0: return (4200); case ATA_WDMA1: return (13300); case ATA_WDMA2: return (16700); case ATA_UDMA0: return (16700); case ATA_UDMA1: return (25000); case ATA_UDMA2: return (33300); case ATA_UDMA3: return (44400); case ATA_UDMA4: return (66700); case ATA_UDMA5: return (100000); case ATA_UDMA6: return (133000); } } u_int ata_revision2speed(int revision) { switch (revision) { case 1: default: return (150000); case 2: return (300000); case 3: return (600000); } } int ata_speed2revision(u_int speed) { switch (speed) { case 0: return (0); case 150000: return (1); case 300000: return (2); case 600000: return (3); default: return (-1); } } int ata_identify_match(caddr_t identbuffer, caddr_t table_entry) { struct scsi_inquiry_pattern *entry; struct ata_params *ident; entry = (struct scsi_inquiry_pattern *)table_entry; ident = (struct ata_params *)identbuffer; if ((cam_strmatch(ident->model, entry->product, sizeof(ident->model)) == 0) && (cam_strmatch(ident->revision, entry->revision, sizeof(ident->revision)) == 0)) { return (0); } return (-1); } int ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry) { struct scsi_static_inquiry_pattern *entry; struct ata_params *ident; entry = (struct scsi_static_inquiry_pattern *)table_entry; ident = (struct ata_params *)identbuffer; if ((cam_strmatch(ident->model, entry->product, sizeof(ident->model)) == 0) && (cam_strmatch(ident->revision, entry->revision, sizeof(ident->revision)) == 0)) { return (0); } return (-1); } void semb_receive_diagnostic_results(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int pcv, uint8_t page_code, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, pcv ? page_code : 0, 0x02, length / 4); } void semb_send_diagnostic(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, length > 0 ? data_ptr[0] : 0, 0x82, length / 4); } void semb_read_buffer(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, uint8_t page_code, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, page_code, 0x00, length / 4); } void semb_write_buffer(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, length > 0 ? data_ptr[0] : 0, 0x80, length / 4); } void ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint8_t command_out, ata_flags; uint16_t features_out, sectors_out; uint32_t auxiliary; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_OUT; features_out = (zm_action & 0xf) | (zone_flags << 8); if (dxfer_len == 0) { ata_flags = 0; sectors_out = 0; } else { ata_flags = CAM_ATAIO_DMA; /* XXX KDM use sector count? */ sectors_out = ((dxfer_len >> 9) & 0xffff); } auxiliary = 0; } else { if (dxfer_len == 0) { command_out = ATA_NCQ_NON_DATA; features_out = ATA_NCQ_ZAC_MGMT_OUT; sectors_out = 0; } else { command_out = ATA_SEND_FPDMA_QUEUED; /* Note that we're defaulting to normal priority */ sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8; /* * For SEND FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it seems unlikely that we'll see * a transfer that large. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else { /* * Yes, the caller can theoretically send a * transfer larger than we can handle. * Anyone using this function needs enough * knowledge to avoid doing that. */ features_out = ((dxfer_len >> 9) & 0xffff); } } auxiliary = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_FPDMA; } cam_fill_ataio(ataio, /*retries*/ retries, /*cbfcnp*/ cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); ata_48bit_cmd(ataio, /*cmd*/ command_out, /*features*/ features_out, /*lba*/ zone_id, /*sector_count*/ sectors_out); ataio->cmd.flags |= ata_flags; if (auxiliary != 0) { ataio->ata_flags |= ATA_FLAG_AUX; ataio->aux = auxiliary; } } void ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint8_t command_out, ata_flags; uint16_t features_out, sectors_out; uint32_t auxiliary; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_IN; /* XXX KDM put a macro here */ features_out = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_DMA; sectors_out = ((dxfer_len >> 9) & 0xffff); auxiliary = 0; } else { command_out = ATA_RECV_FPDMA_QUEUED; sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8; auxiliary = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_FPDMA; /* * For RECEIVE FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it is unlikely we will see a transfer that * large. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else { /* * Yes, the caller can theoretically request a * transfer larger than we can handle. * Anyone using this function needs enough * knowledge to avoid doing that. */ features_out = ((dxfer_len >> 9) & 0xffff); } } cam_fill_ataio(ataio, /*retries*/ retries, /*cbfcnp*/ cbfcnp, /*flags*/ CAM_DIR_IN, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); ata_48bit_cmd(ataio, /*cmd*/ command_out, /*features*/ features_out, /*lba*/ zone_id, /*sector_count*/ sectors_out); ataio->cmd.flags |= ata_flags; if (auxiliary != 0) { ataio->ata_flags |= ATA_FLAG_AUX; ataio->aux = auxiliary; } } Index: stable/11/sys/sys/ata.h =================================================================== --- stable/11/sys/sys/ata.h (revision 350800) +++ stable/11/sys/sys/ata.h (revision 350801) @@ -1,1044 +1,1051 @@ /*- * Copyright (c) 2000 - 2008 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_ATA_H_ #define _SYS_ATA_H_ #include /* ATA/ATAPI device parameters */ struct ata_params { /*000*/ u_int16_t config; /* configuration info */ #define ATA_PROTO_MASK 0x8003 #define ATA_PROTO_ATAPI 0x8000 #define ATA_PROTO_ATAPI_12 0x8000 #define ATA_PROTO_ATAPI_16 0x8001 #define ATA_PROTO_CFA 0x848a #define ATA_ATAPI_TYPE_MASK 0x1f00 #define ATA_ATAPI_TYPE_DIRECT 0x0000 /* disk/floppy */ #define ATA_ATAPI_TYPE_TAPE 0x0100 /* streaming tape */ #define ATA_ATAPI_TYPE_CDROM 0x0500 /* CD-ROM device */ #define ATA_ATAPI_TYPE_OPTICAL 0x0700 /* optical disk */ #define ATA_DRQ_MASK 0x0060 #define ATA_DRQ_SLOW 0x0000 /* cpu 3 ms delay */ #define ATA_DRQ_INTR 0x0020 /* interrupt 10 ms delay */ #define ATA_DRQ_FAST 0x0040 /* accel 50 us delay */ #define ATA_RESP_INCOMPLETE 0x0004 /*001*/ u_int16_t cylinders; /* # of cylinders */ /*002*/ u_int16_t specconf; /* specific configuration */ /*003*/ u_int16_t heads; /* # heads */ u_int16_t obsolete4; u_int16_t obsolete5; /*006*/ u_int16_t sectors; /* # sectors/track */ /*007*/ u_int16_t vendor7[3]; /*010*/ u_int8_t serial[20]; /* serial number */ /*020*/ u_int16_t retired20; u_int16_t retired21; u_int16_t obsolete22; /*023*/ u_int8_t revision[8]; /* firmware revision */ /*027*/ u_int8_t model[40]; /* model name */ /*047*/ u_int16_t sectors_intr; /* sectors per interrupt */ /*048*/ u_int16_t tcg; /* Trusted Computing Group */ #define ATA_SUPPORT_TCG 0x0001 /*049*/ u_int16_t capabilities1; #define ATA_SUPPORT_DMA 0x0100 #define ATA_SUPPORT_LBA 0x0200 #define ATA_SUPPORT_IORDYDIS 0x0400 #define ATA_SUPPORT_IORDY 0x0800 #define ATA_SUPPORT_OVERLAP 0x4000 /*050*/ u_int16_t capabilities2; /*051*/ u_int16_t retired_piomode; /* PIO modes 0-2 */ #define ATA_RETIRED_PIO_MASK 0x0300 /*052*/ u_int16_t retired_dmamode; /* DMA modes */ #define ATA_RETIRED_DMA_MASK 0x0003 /*053*/ u_int16_t atavalid; /* fields valid */ #define ATA_FLAG_54_58 0x0001 /* words 54-58 valid */ #define ATA_FLAG_64_70 0x0002 /* words 64-70 valid */ #define ATA_FLAG_88 0x0004 /* word 88 valid */ /*054*/ u_int16_t current_cylinders; /*055*/ u_int16_t current_heads; /*056*/ u_int16_t current_sectors; /*057*/ u_int16_t current_size_1; /*058*/ u_int16_t current_size_2; /*059*/ u_int16_t multi; #define ATA_SUPPORT_BLOCK_ERASE_EXT 0x8000 #define ATA_SUPPORT_OVERWRITE_EXT 0x4000 #define ATA_SUPPORT_CRYPTO_SCRAMBLE_EXT 0x2000 #define ATA_SUPPORT_SANITIZE 0x1000 #define ATA_MULTI_VALID 0x0100 /*060*/ u_int16_t lba_size_1; u_int16_t lba_size_2; u_int16_t obsolete62; /*063*/ u_int16_t mwdmamodes; /* multiword DMA modes */ /*064*/ u_int16_t apiomodes; /* advanced PIO modes */ /*065*/ u_int16_t mwdmamin; /* min. M/W DMA time/word ns */ /*066*/ u_int16_t mwdmarec; /* rec. M/W DMA time ns */ /*067*/ u_int16_t pioblind; /* min. PIO cycle w/o flow */ /*068*/ u_int16_t pioiordy; /* min. PIO cycle IORDY flow */ /*069*/ u_int16_t support3; #define ATA_SUPPORT_RZAT 0x0020 #define ATA_SUPPORT_DRAT 0x4000 #define ATA_ENCRYPTS_ALL_USER_DATA 0x0010 /* Self-encrypting drive */ #define ATA_SUPPORT_ZONE_MASK 0x0003 #define ATA_SUPPORT_ZONE_NR 0x0000 #define ATA_SUPPORT_ZONE_HOST_AWARE 0x0001 #define ATA_SUPPORT_ZONE_DEV_MANAGED 0x0002 u_int16_t reserved70; /*071*/ u_int16_t rlsovlap; /* rel time (us) for overlap */ /*072*/ u_int16_t rlsservice; /* rel time (us) for service */ u_int16_t reserved73; u_int16_t reserved74; /*075*/ u_int16_t queue; #define ATA_QUEUE_LEN(x) ((x) & 0x001f) /*76*/ u_int16_t satacapabilities; #define ATA_SATA_GEN1 0x0002 #define ATA_SATA_GEN2 0x0004 #define ATA_SATA_GEN3 0x0008 #define ATA_SUPPORT_NCQ 0x0100 #define ATA_SUPPORT_IFPWRMNGTRCV 0x0200 #define ATA_SUPPORT_PHYEVENTCNT 0x0400 #define ATA_SUPPORT_NCQ_UNLOAD 0x0800 #define ATA_SUPPORT_NCQ_PRIO 0x1000 #define ATA_SUPPORT_HAPST 0x2000 #define ATA_SUPPORT_DAPST 0x4000 #define ATA_SUPPORT_READLOGDMAEXT 0x8000 /*77*/ u_int16_t satacapabilities2; #define ATA_SATA_CURR_GEN_MASK 0x0006 #define ATA_SUPPORT_NCQ_STREAM 0x0010 #define ATA_SUPPORT_NCQ_QMANAGEMENT 0x0020 #define ATA_SUPPORT_RCVSND_FPDMA_QUEUED 0x0040 /*78*/ u_int16_t satasupport; #define ATA_SUPPORT_NONZERO 0x0002 #define ATA_SUPPORT_AUTOACTIVATE 0x0004 #define ATA_SUPPORT_IFPWRMNGT 0x0008 #define ATA_SUPPORT_INORDERDATA 0x0010 #define ATA_SUPPORT_ASYNCNOTIF 0x0020 #define ATA_SUPPORT_SOFTSETPRESERVE 0x0040 /*79*/ u_int16_t sataenabled; #define ATA_ENABLED_DAPST 0x0080 /*080*/ u_int16_t version_major; /*081*/ u_int16_t version_minor; struct { /*082/085*/ u_int16_t command1; #define ATA_SUPPORT_SMART 0x0001 #define ATA_SUPPORT_SECURITY 0x0002 #define ATA_SUPPORT_REMOVABLE 0x0004 #define ATA_SUPPORT_POWERMGT 0x0008 #define ATA_SUPPORT_PACKET 0x0010 #define ATA_SUPPORT_WRITECACHE 0x0020 #define ATA_SUPPORT_LOOKAHEAD 0x0040 #define ATA_SUPPORT_RELEASEIRQ 0x0080 #define ATA_SUPPORT_SERVICEIRQ 0x0100 #define ATA_SUPPORT_RESET 0x0200 #define ATA_SUPPORT_PROTECTED 0x0400 #define ATA_SUPPORT_WRITEBUFFER 0x1000 #define ATA_SUPPORT_READBUFFER 0x2000 #define ATA_SUPPORT_NOP 0x4000 /*083/086*/ u_int16_t command2; #define ATA_SUPPORT_MICROCODE 0x0001 #define ATA_SUPPORT_QUEUED 0x0002 #define ATA_SUPPORT_CFA 0x0004 #define ATA_SUPPORT_APM 0x0008 #define ATA_SUPPORT_NOTIFY 0x0010 #define ATA_SUPPORT_STANDBY 0x0020 #define ATA_SUPPORT_SPINUP 0x0040 #define ATA_SUPPORT_MAXSECURITY 0x0100 #define ATA_SUPPORT_AUTOACOUSTIC 0x0200 #define ATA_SUPPORT_ADDRESS48 0x0400 #define ATA_SUPPORT_OVERLAY 0x0800 #define ATA_SUPPORT_FLUSHCACHE 0x1000 #define ATA_SUPPORT_FLUSHCACHE48 0x2000 /*084/087*/ u_int16_t extension; #define ATA_SUPPORT_SMARTLOG 0x0001 #define ATA_SUPPORT_SMARTTEST 0x0002 #define ATA_SUPPORT_MEDIASN 0x0004 #define ATA_SUPPORT_MEDIAPASS 0x0008 #define ATA_SUPPORT_STREAMING 0x0010 #define ATA_SUPPORT_GENLOG 0x0020 #define ATA_SUPPORT_WRITEDMAFUAEXT 0x0040 #define ATA_SUPPORT_WRITEDMAQFUAEXT 0x0080 #define ATA_SUPPORT_64BITWWN 0x0100 #define ATA_SUPPORT_UNLOAD 0x2000 } __packed support, enabled; /*088*/ u_int16_t udmamodes; /* UltraDMA modes */ /*089*/ u_int16_t erase_time; /* time req'd in 2min units */ /*090*/ u_int16_t enhanced_erase_time; /* time req'd in 2min units */ /*091*/ u_int16_t apm_value; /*092*/ u_int16_t master_passwd_revision; /* password revision code */ /*093*/ u_int16_t hwres; #define ATA_CABLE_ID 0x2000 /*094*/ u_int16_t acoustic; #define ATA_ACOUSTIC_CURRENT(x) ((x) & 0x00ff) #define ATA_ACOUSTIC_VENDOR(x) (((x) & 0xff00) >> 8) /*095*/ u_int16_t stream_min_req_size; /*096*/ u_int16_t stream_transfer_time; /*097*/ u_int16_t stream_access_latency; /*098*/ u_int32_t stream_granularity; /*100*/ u_int16_t lba_size48_1; u_int16_t lba_size48_2; u_int16_t lba_size48_3; u_int16_t lba_size48_4; u_int16_t reserved104; /*105*/ u_int16_t max_dsm_blocks; /*106*/ u_int16_t pss; #define ATA_PSS_LSPPS 0x000F #define ATA_PSS_LSSABOVE512 0x1000 #define ATA_PSS_MULTLS 0x2000 #define ATA_PSS_VALID_MASK 0xC000 #define ATA_PSS_VALID_VALUE 0x4000 /*107*/ u_int16_t isd; /*108*/ u_int16_t wwn[4]; u_int16_t reserved112[5]; /*117*/ u_int16_t lss_1; /*118*/ u_int16_t lss_2; /*119*/ u_int16_t support2; #define ATA_SUPPORT_WRITEREADVERIFY 0x0002 #define ATA_SUPPORT_WRITEUNCORREXT 0x0004 #define ATA_SUPPORT_RWLOGDMAEXT 0x0008 #define ATA_SUPPORT_MICROCODE3 0x0010 #define ATA_SUPPORT_FREEFALL 0x0020 #define ATA_SUPPORT_SENSE_REPORT 0x0040 #define ATA_SUPPORT_EPC 0x0080 +#define ATA_SUPPORT_AMAX_ADDR 0x0100 +#define ATA_SUPPORT_DSN 0x0200 /*120*/ u_int16_t enabled2; #define ATA_ENABLED_WRITEREADVERIFY 0x0002 #define ATA_ENABLED_WRITEUNCORREXT 0x0004 #define ATA_ENABLED_FREEFALL 0x0020 #define ATA_ENABLED_SENSE_REPORT 0x0040 #define ATA_ENABLED_EPC 0x0080 +#define ATA_ENABLED_DSN 0x0200 u_int16_t reserved121[6]; /*127*/ u_int16_t removable_status; /*128*/ u_int16_t security_status; #define ATA_SECURITY_LEVEL 0x0100 /* 0: high, 1: maximum */ #define ATA_SECURITY_ENH_SUPP 0x0020 /* enhanced erase supported */ #define ATA_SECURITY_COUNT_EXP 0x0010 /* count expired */ #define ATA_SECURITY_FROZEN 0x0008 /* security config is frozen */ #define ATA_SECURITY_LOCKED 0x0004 /* drive is locked */ #define ATA_SECURITY_ENABLED 0x0002 /* ATA Security is enabled */ #define ATA_SECURITY_SUPPORTED 0x0001 /* ATA Security is supported */ u_int16_t reserved129[31]; /*160*/ u_int16_t cfa_powermode1; u_int16_t reserved161; /*162*/ u_int16_t cfa_kms_support; /*163*/ u_int16_t cfa_trueide_modes; /*164*/ u_int16_t cfa_memory_modes; u_int16_t reserved165[3]; /*168*/ u_int16_t form_factor; #define ATA_FORM_FACTOR_MASK 0x000f #define ATA_FORM_FACTOR_NOT_REPORTED 0x0000 #define ATA_FORM_FACTOR_5_25 0x0001 #define ATA_FORM_FACTOR_3_5 0x0002 #define ATA_FORM_FACTOR_2_5 0x0003 #define ATA_FORM_FACTOR_1_8 0x0004 #define ATA_FORM_FACTOR_SUB_1_8 0x0005 #define ATA_FORM_FACTOR_MSATA 0x0006 #define ATA_FORM_FACTOR_M_2 0x0007 #define ATA_FORM_FACTOR_MICRO_SSD 0x0008 #define ATA_FORM_FACTOR_C_FAST 0x0009 /*169*/ u_int16_t support_dsm; #define ATA_SUPPORT_DSM_TRIM 0x0001 u_int16_t reserved170[6]; /*176*/ u_int8_t media_serial[60]; /*206*/ u_int16_t sct; u_int16_t reserved207[2]; /*209*/ u_int16_t lsalign; /*210*/ u_int16_t wrv_sectors_m3_1; u_int16_t wrv_sectors_m3_2; /*212*/ u_int16_t wrv_sectors_m2_1; u_int16_t wrv_sectors_m2_2; /*214*/ u_int16_t nv_cache_caps; /*215*/ u_int16_t nv_cache_size_1; u_int16_t nv_cache_size_2; /*217*/ u_int16_t media_rotation_rate; #define ATA_RATE_NOT_REPORTED 0x0000 #define ATA_RATE_NON_ROTATING 0x0001 u_int16_t reserved218; /*219*/ u_int16_t nv_cache_opt; /*220*/ u_int16_t wrv_mode; u_int16_t reserved221; /*222*/ u_int16_t transport_major; /*223*/ u_int16_t transport_minor; u_int16_t reserved224[31]; /*255*/ u_int16_t integrity; } __packed; /* ATA Dataset Management */ #define ATA_DSM_BLK_SIZE 512 #define ATA_DSM_BLK_RANGES 64 #define ATA_DSM_RANGE_SIZE 8 #define ATA_DSM_RANGE_MAX 65535 /* * ATA Device Register * * bit 7 Obsolete (was 1 in early ATA specs) * bit 6 Sets LBA/CHS mode. 1=LBA, 0=CHS * bit 5 Obsolete (was 1 in early ATA specs) * bit 4 1 = Slave Drive, 0 = Master Drive * bit 3-0 In LBA mode, 27-24 of address. In CHS mode, head number */ #define ATA_DEV_MASTER 0x00 #define ATA_DEV_SLAVE 0x10 #define ATA_DEV_LBA 0x40 /* ATA limits */ #define ATA_MAX_28BIT_LBA 268435455UL /* ATA Status Register */ #define ATA_STATUS_ERROR 0x01 #define ATA_STATUS_SENSE_AVAIL 0x02 #define ATA_STATUS_ALIGN_ERR 0x04 #define ATA_STATUS_DATA_REQ 0x08 #define ATA_STATUS_DEF_WRITE_ERR 0x10 #define ATA_STATUS_DEVICE_FAULT 0x20 #define ATA_STATUS_DEVICE_READY 0x40 #define ATA_STATUS_BUSY 0x80 /* ATA Error Register */ #define ATA_ERROR_ABORT 0x04 #define ATA_ERROR_ID_NOT_FOUND 0x10 /* ATA HPA Features */ #define ATA_HPA_FEAT_MAX_ADDR 0x00 #define ATA_HPA_FEAT_SET_PWD 0x01 #define ATA_HPA_FEAT_LOCK 0x02 #define ATA_HPA_FEAT_UNLOCK 0x03 #define ATA_HPA_FEAT_FREEZE 0x04 /* ATA transfer modes */ #define ATA_MODE_MASK 0x0f #define ATA_DMA_MASK 0xf0 #define ATA_PIO 0x00 #define ATA_PIO0 0x08 #define ATA_PIO1 0x09 #define ATA_PIO2 0x0a #define ATA_PIO3 0x0b #define ATA_PIO4 0x0c #define ATA_PIO_MAX 0x0f #define ATA_DMA 0x10 #define ATA_WDMA0 0x20 #define ATA_WDMA1 0x21 #define ATA_WDMA2 0x22 #define ATA_UDMA0 0x40 #define ATA_UDMA1 0x41 #define ATA_UDMA2 0x42 #define ATA_UDMA3 0x43 #define ATA_UDMA4 0x44 #define ATA_UDMA5 0x45 #define ATA_UDMA6 0x46 #define ATA_SA150 0x47 #define ATA_SA300 0x48 #define ATA_SA600 0x49 #define ATA_DMA_MAX 0x4f /* ATA commands */ #define ATA_NOP 0x00 /* NOP */ #define ATA_NF_FLUSHQUEUE 0x00 /* flush queued cmd's */ #define ATA_NF_AUTOPOLL 0x01 /* start autopoll function */ #define ATA_DATA_SET_MANAGEMENT 0x06 #define ATA_DSM_TRIM 0x01 #define ATA_DEVICE_RESET 0x08 /* reset device */ #define ATA_READ 0x20 /* read */ #define ATA_READ48 0x24 /* read 48bit LBA */ #define ATA_READ_DMA48 0x25 /* read DMA 48bit LBA */ #define ATA_READ_DMA_QUEUED48 0x26 /* read DMA QUEUED 48bit LBA */ #define ATA_READ_NATIVE_MAX_ADDRESS48 0x27 /* read native max addr 48bit */ #define ATA_READ_MUL48 0x29 /* read multi 48bit LBA */ #define ATA_READ_STREAM_DMA48 0x2a /* read DMA stream 48bit LBA */ #define ATA_READ_LOG_EXT 0x2f /* read log ext - PIO Data-In */ #define ATA_READ_STREAM48 0x2b /* read stream 48bit LBA */ #define ATA_WRITE 0x30 /* write */ #define ATA_WRITE48 0x34 /* write 48bit LBA */ #define ATA_WRITE_DMA48 0x35 /* write DMA 48bit LBA */ #define ATA_WRITE_DMA_QUEUED48 0x36 /* write DMA QUEUED 48bit LBA*/ #define ATA_SET_MAX_ADDRESS48 0x37 /* set max address 48bit */ #define ATA_WRITE_MUL48 0x39 /* write multi 48bit LBA */ #define ATA_WRITE_STREAM_DMA48 0x3a #define ATA_WRITE_STREAM48 0x3b #define ATA_WRITE_DMA_FUA48 0x3d #define ATA_WRITE_DMA_QUEUED_FUA48 0x3e #define ATA_WRITE_LOG_EXT 0x3f #define ATA_READ_VERIFY 0x40 #define ATA_READ_VERIFY48 0x42 #define ATA_WRITE_UNCORRECTABLE48 0x45 /* write uncorrectable 48bit LBA */ #define ATA_WU_PSEUDO 0x55 /* pseudo-uncorrectable error */ #define ATA_WU_FLAGGED 0xaa /* flagged-uncorrectable error */ #define ATA_READ_LOG_DMA_EXT 0x47 /* read log DMA ext - PIO Data-In */ #define ATA_ZAC_MANAGEMENT_IN 0x4a /* ZAC management in */ #define ATA_ZM_REPORT_ZONES 0x00 /* report zones */ #define ATA_WRITE_LOG_DMA_EXT 0x57 /* WRITE LOG DMA EXT */ #define ATA_TRUSTED_NON_DATA 0x5b /* TRUSTED NON-DATA */ #define ATA_TRUSTED_RECEIVE 0x5c /* TRUSTED RECEIVE */ #define ATA_TRUSTED_RECEIVE_DMA 0x5d /* TRUSTED RECEIVE DMA */ #define ATA_TRUSTED_SEND 0x5e /* TRUSTED SEND */ #define ATA_TRUSTED_SEND_DMA 0x5f /* TRUSTED SEND DMA */ #define ATA_READ_FPDMA_QUEUED 0x60 /* read DMA NCQ */ #define ATA_WRITE_FPDMA_QUEUED 0x61 /* write DMA NCQ */ #define ATA_NCQ_NON_DATA 0x63 /* NCQ non-data command */ #define ATA_ABORT_NCQ_QUEUE 0x00 /* abort NCQ queue */ #define ATA_DEADLINE_HANDLING 0x01 /* deadline handling */ #define ATA_SET_FEATURES 0x05 /* set features */ #define ATA_ZERO_EXT 0x06 /* zero ext */ #define ATA_NCQ_ZAC_MGMT_OUT 0x07 /* NCQ ZAC mgmt out no data */ #define ATA_SEND_FPDMA_QUEUED 0x64 /* send DMA NCQ */ #define ATA_SFPDMA_DSM 0x00 /* Data set management */ #define ATA_SFPDMA_DSM_TRIM 0x01 /* Set trim bit in auxiliary */ #define ATA_SFPDMA_HYBRID_EVICT 0x01 /* Hybrid Evict */ #define ATA_SFPDMA_WLDMA 0x02 /* Write Log DMA EXT */ #define ATA_SFPDMA_ZAC_MGMT_OUT 0x03 /* NCQ ZAC mgmt out w/data */ #define ATA_RECV_FPDMA_QUEUED 0x65 /* receive DMA NCQ */ #define ATA_RFPDMA_RL_DMA_EXT 0x00 /* Read Log DMA EXT */ #define ATA_RFPDMA_ZAC_MGMT_IN 0x02 /* NCQ ZAC mgmt in w/data */ #define ATA_SEP_ATTN 0x67 /* SEP request */ #define ATA_SEEK 0x70 /* seek */ +#define ATA_AMAX_ADDR 0x78 /* Accessible Max Address */ +#define ATA_AMAX_ADDR_GET 0x00 /* GET NATIVE MAX ADDRESS EXT */ +#define ATA_AMAX_ADDR_SET 0x01 /* SET ACCESSIBLE MAX ADDRESS EXT */ +#define ATA_AMAX_ADDR_FREEZE 0x02 /* FREEZE ACCESSIBLE MAX ADDRESS EXT */ #define ATA_ZAC_MANAGEMENT_OUT 0x9f /* ZAC management out */ #define ATA_ZM_CLOSE_ZONE 0x01 /* close zone */ #define ATA_ZM_FINISH_ZONE 0x02 /* finish zone */ #define ATA_ZM_OPEN_ZONE 0x03 /* open zone */ #define ATA_ZM_RWP 0x04 /* reset write pointer */ #define ATA_DOWNLOAD_MICROCODE 0x92 /* DOWNLOAD MICROCODE */ #define ATA_DOWNLOAD_MICROCODE_DMA 0x93 /* DOWNLOAD MICROCODE DMA */ #define ATA_PACKET_CMD 0xa0 /* packet command */ #define ATA_ATAPI_IDENTIFY 0xa1 /* get ATAPI params*/ #define ATA_SERVICE 0xa2 /* service command */ #define ATA_SMART_CMD 0xb0 /* SMART command */ #define ATA_CFA_ERASE 0xc0 /* CFA erase */ #define ATA_READ_MUL 0xc4 /* read multi */ #define ATA_WRITE_MUL 0xc5 /* write multi */ #define ATA_SET_MULTI 0xc6 /* set multi size */ #define ATA_READ_DMA_QUEUED 0xc7 /* read DMA QUEUED */ #define ATA_READ_DMA 0xc8 /* read DMA */ #define ATA_WRITE_DMA 0xca /* write DMA */ #define ATA_WRITE_DMA_QUEUED 0xcc /* write DMA QUEUED */ #define ATA_WRITE_MUL_FUA48 0xce #define ATA_STANDBY_IMMEDIATE 0xe0 /* standby immediate */ #define ATA_IDLE_IMMEDIATE 0xe1 /* idle immediate */ #define ATA_STANDBY_CMD 0xe2 /* standby */ #define ATA_IDLE_CMD 0xe3 /* idle */ #define ATA_READ_BUFFER 0xe4 /* read buffer */ #define ATA_READ_PM 0xe4 /* read portmultiplier */ #define ATA_CHECK_POWER_MODE 0xe5 /* device power mode */ #define ATA_SLEEP 0xe6 /* sleep */ #define ATA_FLUSHCACHE 0xe7 /* flush cache to disk */ #define ATA_WRITE_BUFFER 0xe8 /* write buffer */ #define ATA_WRITE_PM 0xe8 /* write portmultiplier */ #define ATA_READ_BUFFER_DMA 0xe9 /* read buffer DMA */ #define ATA_FLUSHCACHE48 0xea /* flush cache to disk */ #define ATA_WRITE_BUFFER_DMA 0xeb /* write buffer DMA */ #define ATA_ATA_IDENTIFY 0xec /* get ATA params */ #define ATA_SETFEATURES 0xef /* features command */ #define ATA_SF_ENAB_WCACHE 0x02 /* enable write cache */ #define ATA_SF_DIS_WCACHE 0x82 /* disable write cache */ #define ATA_SF_SETXFER 0x03 /* set transfer mode */ #define ATA_SF_APM 0x05 /* Enable APM feature set */ #define ATA_SF_ENAB_PUIS 0x06 /* enable PUIS */ #define ATA_SF_DIS_PUIS 0x86 /* disable PUIS */ #define ATA_SF_PUIS_SPINUP 0x07 /* PUIS spin-up */ #define ATA_SF_WRV 0x0b /* Enable Write-Read-Verify */ #define ATA_SF_DLC 0x0c /* Enable device life control */ #define ATA_SF_SATA 0x10 /* Enable use of SATA feature */ #define ATA_SF_FFC 0x41 /* Free-fall Control */ #define ATA_SF_MHIST 0x43 /* Set Max Host Sect. Times */ #define ATA_SF_RATE 0x45 /* Set Rate Basis */ #define ATA_SF_EPC 0x4A /* Extended Power Conditions */ #define ATA_SF_ENAB_RCACHE 0xaa /* enable readahead cache */ #define ATA_SF_DIS_RCACHE 0x55 /* disable readahead cache */ #define ATA_SF_ENAB_RELIRQ 0x5d /* enable release interrupt */ #define ATA_SF_DIS_RELIRQ 0xdd /* disable release interrupt */ #define ATA_SF_ENAB_SRVIRQ 0x5e /* enable service interrupt */ #define ATA_SF_DIS_SRVIRQ 0xde /* disable service interrupt */ #define ATA_SF_LPSAERC 0x62 /* Long Phys Sect Align ErrRep*/ #define ATA_SF_DSN 0x63 /* Device Stats Notification */ #define ATA_CHECK_POWER_MODE 0xe5 /* Check Power Mode */ #define ATA_SECURITY_SET_PASSWORD 0xf1 /* set drive password */ #define ATA_SECURITY_UNLOCK 0xf2 /* unlock drive using passwd */ #define ATA_SECURITY_ERASE_PREPARE 0xf3 /* prepare to erase drive */ #define ATA_SECURITY_ERASE_UNIT 0xf4 /* erase all blocks on drive */ #define ATA_SECURITY_FREEZE_LOCK 0xf5 /* freeze security config */ #define ATA_SECURITY_DISABLE_PASSWORD 0xf6 /* disable drive password */ #define ATA_READ_NATIVE_MAX_ADDRESS 0xf8 /* read native max address */ #define ATA_SET_MAX_ADDRESS 0xf9 /* set max address */ /* ATAPI commands */ #define ATAPI_TEST_UNIT_READY 0x00 /* check if device is ready */ #define ATAPI_REZERO 0x01 /* rewind */ #define ATAPI_REQUEST_SENSE 0x03 /* get sense data */ #define ATAPI_FORMAT 0x04 /* format unit */ #define ATAPI_READ 0x08 /* read data */ #define ATAPI_WRITE 0x0a /* write data */ #define ATAPI_WEOF 0x10 /* write filemark */ #define ATAPI_WF_WRITE 0x01 #define ATAPI_SPACE 0x11 /* space command */ #define ATAPI_SP_FM 0x01 #define ATAPI_SP_EOD 0x03 #define ATAPI_INQUIRY 0x12 /* get inquiry data */ #define ATAPI_MODE_SELECT 0x15 /* mode select */ #define ATAPI_ERASE 0x19 /* erase */ #define ATAPI_MODE_SENSE 0x1a /* mode sense */ #define ATAPI_START_STOP 0x1b /* start/stop unit */ #define ATAPI_SS_LOAD 0x01 #define ATAPI_SS_RETENSION 0x02 #define ATAPI_SS_EJECT 0x04 #define ATAPI_PREVENT_ALLOW 0x1e /* media removal */ #define ATAPI_READ_FORMAT_CAPACITIES 0x23 /* get format capacities */ #define ATAPI_READ_CAPACITY 0x25 /* get volume capacity */ #define ATAPI_READ_BIG 0x28 /* read data */ #define ATAPI_WRITE_BIG 0x2a /* write data */ #define ATAPI_LOCATE 0x2b /* locate to position */ #define ATAPI_READ_POSITION 0x34 /* read position */ #define ATAPI_SYNCHRONIZE_CACHE 0x35 /* flush buf, close channel */ #define ATAPI_WRITE_BUFFER 0x3b /* write device buffer */ #define ATAPI_READ_BUFFER 0x3c /* read device buffer */ #define ATAPI_READ_SUBCHANNEL 0x42 /* get subchannel info */ #define ATAPI_READ_TOC 0x43 /* get table of contents */ #define ATAPI_PLAY_10 0x45 /* play by lba */ #define ATAPI_PLAY_MSF 0x47 /* play by MSF address */ #define ATAPI_PLAY_TRACK 0x48 /* play by track number */ #define ATAPI_PAUSE 0x4b /* pause audio operation */ #define ATAPI_READ_DISK_INFO 0x51 /* get disk info structure */ #define ATAPI_READ_TRACK_INFO 0x52 /* get track info structure */ #define ATAPI_RESERVE_TRACK 0x53 /* reserve track */ #define ATAPI_SEND_OPC_INFO 0x54 /* send OPC structurek */ #define ATAPI_MODE_SELECT_BIG 0x55 /* set device parameters */ #define ATAPI_REPAIR_TRACK 0x58 /* repair track */ #define ATAPI_READ_MASTER_CUE 0x59 /* read master CUE info */ #define ATAPI_MODE_SENSE_BIG 0x5a /* get device parameters */ #define ATAPI_CLOSE_TRACK 0x5b /* close track/session */ #define ATAPI_READ_BUFFER_CAPACITY 0x5c /* get buffer capicity */ #define ATAPI_SEND_CUE_SHEET 0x5d /* send CUE sheet */ #define ATAPI_SERVICE_ACTION_IN 0x96 /* get service data */ #define ATAPI_BLANK 0xa1 /* blank the media */ #define ATAPI_SEND_KEY 0xa3 /* send DVD key structure */ #define ATAPI_REPORT_KEY 0xa4 /* get DVD key structure */ #define ATAPI_PLAY_12 0xa5 /* play by lba */ #define ATAPI_LOAD_UNLOAD 0xa6 /* changer control command */ #define ATAPI_READ_STRUCTURE 0xad /* get DVD structure */ #define ATAPI_PLAY_CD 0xb4 /* universal play command */ #define ATAPI_SET_SPEED 0xbb /* set drive speed */ #define ATAPI_MECH_STATUS 0xbd /* get changer status */ #define ATAPI_READ_CD 0xbe /* read data */ #define ATAPI_POLL_DSC 0xff /* poll DSC status bit */ struct ata_ioc_devices { int channel; char name[2][32]; struct ata_params params[2]; }; /* pr channel ATA ioctl calls */ #define IOCATAGMAXCHANNEL _IOR('a', 1, int) #define IOCATAREINIT _IOW('a', 2, int) #define IOCATAATTACH _IOW('a', 3, int) #define IOCATADETACH _IOW('a', 4, int) #define IOCATADEVICES _IOWR('a', 5, struct ata_ioc_devices) /* ATAPI request sense structure */ struct atapi_sense { u_int8_t error; /* current or deferred errors */ #define ATA_SENSE_VALID 0x80 u_int8_t segment; /* segment number */ u_int8_t key; /* sense key */ #define ATA_SENSE_KEY_MASK 0x0f /* sense key mask */ #define ATA_SENSE_NO_SENSE 0x00 /* no specific sense key info */ #define ATA_SENSE_RECOVERED_ERROR 0x01 /* command OK, data recovered */ #define ATA_SENSE_NOT_READY 0x02 /* no access to drive */ #define ATA_SENSE_MEDIUM_ERROR 0x03 /* non-recovered data error */ #define ATA_SENSE_HARDWARE_ERROR 0x04 /* non-recoverable HW failure */ #define ATA_SENSE_ILLEGAL_REQUEST 0x05 /* invalid command param(s) */ #define ATA_SENSE_UNIT_ATTENTION 0x06 /* media changed */ #define ATA_SENSE_DATA_PROTECT 0x07 /* write protect */ #define ATA_SENSE_BLANK_CHECK 0x08 /* blank check */ #define ATA_SENSE_VENDOR_SPECIFIC 0x09 /* vendor specific skey */ #define ATA_SENSE_COPY_ABORTED 0x0a /* copy aborted */ #define ATA_SENSE_ABORTED_COMMAND 0x0b /* command aborted, try again */ #define ATA_SENSE_EQUAL 0x0c /* equal */ #define ATA_SENSE_VOLUME_OVERFLOW 0x0d /* volume overflow */ #define ATA_SENSE_MISCOMPARE 0x0e /* data dont match the medium */ #define ATA_SENSE_RESERVED 0x0f #define ATA_SENSE_ILI 0x20; #define ATA_SENSE_EOM 0x40; #define ATA_SENSE_FILEMARK 0x80; u_int32_t cmd_info; /* cmd information */ u_int8_t sense_length; /* additional sense len (n-7) */ u_int32_t cmd_specific_info; /* additional cmd spec info */ u_int8_t asc; /* additional sense code */ u_int8_t ascq; /* additional sense code qual */ u_int8_t replaceable_unit_code; /* replaceable unit code */ u_int8_t specific; /* sense key specific */ #define ATA_SENSE_SPEC_VALID 0x80 #define ATA_SENSE_SPEC_MASK 0x7f u_int8_t specific1; /* sense key specific */ u_int8_t specific2; /* sense key specific */ } __packed; /* * SET FEATURES subcommands */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * These values go in the LBA 3:0. */ #define ATA_SF_EPC_RESTORE 0x00 /* Restore Power Condition Settings */ #define ATA_SF_EPC_GOTO 0x01 /* Go To Power Condition */ #define ATA_SF_EPC_SET_TIMER 0x02 /* Set Power Condition Timer */ #define ATA_SF_EPC_SET_STATE 0x03 /* Set Power Condition State */ #define ATA_SF_EPC_ENABLE 0x04 /* Enable the EPC feature set */ #define ATA_SF_EPC_DISABLE 0x05 /* Disable the EPC feature set */ #define ATA_SF_EPC_SET_SOURCE 0x06 /* Set EPC Power Source */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Power Condition ID field * These values go in the count register. */ #define ATA_EPC_STANDBY_Z 0x00 /* Substate of PM2:Standby */ #define ATA_EPC_STANDBY_Y 0x01 /* Substate of PM2:Standby */ #define ATA_EPC_IDLE_A 0x81 /* Substate of PM1:Idle */ #define ATA_EPC_IDLE_B 0x82 /* Substate of PM1:Idle */ #define ATA_EPC_IDLE_C 0x83 /* Substate of PM1:Idle */ #define ATA_EPC_ALL 0xff /* All supported power conditions */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Restore Power Conditions Settings subcommand * These values go in the LBA register. */ #define ATA_SF_EPC_RST_DFLT 0x40 /* 1=Rst from Default, 0= from Saved */ #define ATA_SF_EPC_RST_SAVE 0x10 /* 1=Save on completion */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Got To Power Condition subcommand * These values go in the LBA register. */ #define ATA_SF_EPC_GOTO_DELAY 0x02000000 /* Delayed entry bit */ #define ATA_SF_EPC_GOTO_HOLD 0x01000000 /* Hold Power Cond bit */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Set Power Condition Timer subcommand * These values go in the LBA register. */ #define ATA_SF_EPC_TIMER_MASK 0x00ffff00 /* Timer field */ #define ATA_SF_EPC_TIMER_SHIFT 8 #define ATA_SF_EPC_TIMER_SEC 0x00000080 /* Timer units, 1=sec, 0=.1s */ #define ATA_SF_EPC_TIMER_EN 0x00000020 /* Enable/disable cond. */ #define ATA_SF_EPC_TIMER_SAVE 0x00000010 /* Save settings on comp. */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Set Power Condition State subcommand * These values go in the LBA register. */ #define ATA_SF_EPC_SETCON_EN 0x00000020 /* Enable power cond. */ #define ATA_SF_EPC_SETCON_SAVE 0x00000010 /* Save settings on comp */ /* * SET FEATURES command * Extended Power Conditions subcommand -- ATA_SF_EPC (0x4A) * Set EPC Power Source subcommand * These values go in the count register. */ #define ATA_SF_EPC_SRC_UNKNOWN 0x0000 /* Unknown source */ #define ATA_SF_EPC_SRC_BAT 0x0001 /* battery source */ #define ATA_SF_EPC_SRC_NOT_BAT 0x0002 /* not battery source */ #define ATA_LOG_DIRECTORY 0x00 /* Directory of all logs */ #define ATA_POWER_COND_LOG 0x08 /* Power Conditions Log */ #define ATA_PCL_IDLE 0x00 /* Idle Power Conditions Page */ #define ATA_PCL_STANDBY 0x01 /* Standby Power Conditions Page */ #define ATA_IDENTIFY_DATA_LOG 0x30 /* Identify Device Data Log */ #define ATA_IDL_PAGE_LIST 0x00 /* List of supported pages */ #define ATA_IDL_IDENTIFY_DATA 0x01 /* Copy of Identify Device data */ #define ATA_IDL_CAPACITY 0x02 /* Capacity */ #define ATA_IDL_SUP_CAP 0x03 /* Supported Capabilities */ #define ATA_IDL_CUR_SETTINGS 0x04 /* Current Settings */ #define ATA_IDL_ATA_STRINGS 0x05 /* ATA Strings */ #define ATA_IDL_SECURITY 0x06 /* Security */ #define ATA_IDL_PARALLEL_ATA 0x07 /* Parallel ATA */ #define ATA_IDL_SERIAL_ATA 0x08 /* Serial ATA */ #define ATA_IDL_ZDI 0x09 /* Zoned Device Information */ struct ata_gp_log_dir { uint8_t header[2]; #define ATA_GP_LOG_DIR_VERSION 0x0001 uint8_t num_pages[255*2]; /* Number of log pages at address */ }; /* * ATA Power Conditions log descriptor */ struct ata_power_cond_log_desc { uint8_t reserved1; uint8_t flags; #define ATA_PCL_COND_SUPPORTED 0x80 #define ATA_PCL_COND_SAVEABLE 0x40 #define ATA_PCL_COND_CHANGEABLE 0x20 #define ATA_PCL_DEFAULT_TIMER_EN 0x10 #define ATA_PCL_SAVED_TIMER_EN 0x08 #define ATA_PCL_CURRENT_TIMER_EN 0x04 #define ATA_PCL_HOLD_PC_NOT_SUP 0x02 uint8_t reserved2[2]; uint8_t default_timer[4]; uint8_t saved_timer[4]; uint8_t current_timer[4]; uint8_t nom_time_to_active[4]; uint8_t min_timer[4]; uint8_t max_timer[4]; uint8_t num_transitions_to_pc[4]; uint8_t hours_in_pc[4]; uint8_t reserved3[28]; }; /* * ATA Power Conditions Log (0x08), Idle power conditions page (0x00) */ struct ata_power_cond_log_idle { struct ata_power_cond_log_desc idle_a_desc; struct ata_power_cond_log_desc idle_b_desc; struct ata_power_cond_log_desc idle_c_desc; uint8_t reserved[320]; }; /* * ATA Power Conditions Log (0x08), Standby power conditions page (0x01) */ struct ata_power_cond_log_standby { uint8_t reserved[384]; struct ata_power_cond_log_desc standby_y_desc; struct ata_power_cond_log_desc standby_z_desc; }; /* * ATA IDENTIFY DEVICE data log (0x30) page 0x00 * List of Supported IDENTIFY DEVICE data pages. */ struct ata_identify_log_pages { uint8_t header[8]; #define ATA_IDLOG_REVISION 0x0000000000000001 uint8_t entry_count; uint8_t entries[503]; }; /* * ATA IDENTIFY DEVICE data log (0x30) * Capacity (Page 0x02). */ struct ata_identify_log_capacity { uint8_t header[8]; #define ATA_CAP_HEADER_VALID 0x8000000000000000 #define ATA_CAP_PAGE_NUM_MASK 0x0000000000ff0000 #define ATA_CAP_PAGE_NUM_SHIFT 16 #define ATA_CAP_REV_MASK 0x00000000000000ff uint8_t capacity[8]; #define ATA_CAP_CAPACITY_VALID 0x8000000000000000 #define ATA_CAP_ACCESSIBLE_CAP 0x0000ffffffffffff uint8_t phys_logical_sect_size[8]; #define ATA_CAP_PL_VALID 0x8000000000000000 #define ATA_CAP_LTOP_REL_SUP 0x4000000000000000 #define ATA_CAP_LOG_SECT_SUP 0x2000000000000000 #define ATA_CAP_ALIGN_ERR_MASK 0x0000000000300000 #define ATA_CAP_LTOP_MASK 0x00000000000f0000 #define ATA_CAP_LOG_SECT_OFF 0x000000000000ffff uint8_t logical_sect_size[8]; #define ATA_CAP_LOG_SECT_VALID 0x8000000000000000 #define ATA_CAP_LOG_SECT_SIZE 0x00000000ffffffff uint8_t nominal_buffer_size[8]; #define ATA_CAP_NOM_BUF_VALID 0x8000000000000000 #define ATA_CAP_NOM_BUF_SIZE 0x7fffffffffffffff uint8_t reserved[472]; }; /* * ATA IDENTIFY DEVICE data log (0x30) * Supported Capabilities (Page 0x03). */ struct ata_identify_log_sup_cap { uint8_t header[8]; #define ATA_SUP_CAP_HEADER_VALID 0x8000000000000000 #define ATA_SUP_CAP_PAGE_NUM_MASK 0x0000000000ff0000 #define ATA_SUP_CAP_PAGE_NUM_SHIFT 16 #define ATA_SUP_CAP_REV_MASK 0x00000000000000ff uint8_t sup_cap[8]; #define ATA_SUP_CAP_VALID 0x8000000000000000 #define ATA_SC_SET_SECT_CONFIG_SUP 0x0002000000000000 /* Set Sect Conf*/ #define ATA_SC_ZERO_EXT_SUP 0x0001000000000000 /* Zero EXT */ #define ATA_SC_SUCC_NCQ_SENSE_SUP 0x0000800000000000 /* Succ. NCQ Sns */ #define ATA_SC_DLC_SUP 0x0000400000000000 /* DLC */ #define ATA_SC_RQSN_DEV_FAULT_SUP 0x0000200000000000 /* Req Sns Dev Flt*/ #define ATA_SC_DSN_SUP 0x0000100000000000 /* DSN */ #define ATA_SC_LP_STANDBY_SUP 0x0000080000000000 /* LP Standby */ #define ATA_SC_SET_EPC_PS_SUP 0x0000040000000000 /* Set EPC PS */ #define ATA_SC_AMAX_ADDR_SUP 0x0000020000000000 /* AMAX Addr */ #define ATA_SC_DRAT_SUP 0x0000008000000000 /* DRAT */ #define ATA_SC_LPS_MISALGN_SUP 0x0000004000000000 /* LPS Misalign */ #define ATA_SC_RB_DMA_SUP 0x0000001000000000 /* Read Buf DMA */ #define ATA_SC_WB_DMA_SUP 0x0000000800000000 /* Write Buf DMA */ #define ATA_SC_DNLD_MC_DMA_SUP 0x0000000200000000 /* DL MCode DMA */ #define ATA_SC_28BIT_SUP 0x0000000100000000 /* 28-bit */ #define ATA_SC_RZAT_SUP 0x0000000080000000 /* RZAT */ #define ATA_SC_NOP_SUP 0x0000000020000000 /* NOP */ #define ATA_SC_READ_BUFFER_SUP 0x0000000010000000 /* Read Buffer */ #define ATA_SC_WRITE_BUFFER_SUP 0x0000000008000000 /* Write Buffer */ #define ATA_SC_READ_LOOK_AHEAD_SUP 0x0000000002000000 /* Read Look-Ahead*/ #define ATA_SC_VOLATILE_WC_SUP 0x0000000001000000 /* Volatile WC */ #define ATA_SC_SMART_SUP 0x0000000000800000 /* SMART */ #define ATA_SC_FLUSH_CACHE_EXT_SUP 0x0000000000400000 /* Flush Cache Ext */ #define ATA_SC_48BIT_SUP 0x0000000000100000 /* 48-Bit */ #define ATA_SC_SPINUP_SUP 0x0000000000040000 /* Spin-Up */ #define ATA_SC_PUIS_SUP 0x0000000000020000 /* PUIS */ #define ATA_SC_APM_SUP 0x0000000000010000 /* APM */ #define ATA_SC_DL_MICROCODE_SUP 0x0000000000004000 /* DL Microcode */ #define ATA_SC_UNLOAD_SUP 0x0000000000002000 /* Unload */ #define ATA_SC_WRITE_FUA_EXT_SUP 0x0000000000001000 /* Write FUA EXT */ #define ATA_SC_GPL_SUP 0x0000000000000800 /* GPL */ #define ATA_SC_STREAMING_SUP 0x0000000000000400 /* Streaming */ #define ATA_SC_SMART_SELFTEST_SUP 0x0000000000000100 /* SMART self-test */ #define ATA_SC_SMART_ERR_LOG_SUP 0x0000000000000080 /* SMART Err Log */ #define ATA_SC_EPC_SUP 0x0000000000000040 /* EPC */ #define ATA_SC_SENSE_SUP 0x0000000000000020 /* Sense data */ #define ATA_SC_FREEFALL_SUP 0x0000000000000010 /* Free-Fall */ #define ATA_SC_DM_MODE3_SUP 0x0000000000000008 /* DM Mode 3 */ #define ATA_SC_GPL_DMA_SUP 0x0000000000000004 /* GPL DMA */ #define ATA_SC_WRITE_UNCOR_SUP 0x0000000000000002 /* Write uncorr. */ #define ATA_SC_WRV_SUP 0x0000000000000001 /* WRV */ uint8_t download_code_cap[8]; #define ATA_DL_CODE_VALID 0x8000000000000000 #define ATA_DLC_DM_OFFSETS_DEFER_SUP 0x0000000400000000 #define ATA_DLC_DM_IMMED_SUP 0x0000000200000000 #define ATA_DLC_DM_OFF_IMMED_SUP 0x0000000100000000 #define ATA_DLC_DM_MAX_XFER_SIZE_MASK 0x00000000ffff0000 #define ATA_DLC_DM_MAX_XFER_SIZE_SHIFT 16 #define ATA_DLC_DM_MIN_XFER_SIZE_MASK 0x000000000000ffff uint8_t nom_media_rotation_rate[8]; #define ATA_NOM_MEDIA_ROTATION_VALID 0x8000000000000000 #define ATA_ROTATION_MASK 0x000000000000ffff uint8_t form_factor[8]; #define ATA_FORM_FACTOR_VALID 0x8000000000000000 #define ATA_FF_MASK 0x000000000000000f #define ATA_FF_NOT_REPORTED 0x0000000000000000 /* Not reported */ #define ATA_FF_525_IN 0x0000000000000001 /* 5.25 inch */ #define ATA_FF_35_IN 0x0000000000000002 /* 3.5 inch */ #define ATA_FF_25_IN 0x0000000000000003 /* 2.5 inch */ #define ATA_FF_18_IN 0x0000000000000004 /* 1.8 inch */ #define ATA_FF_LT_18_IN 0x0000000000000005 /* < 1.8 inch */ #define ATA_FF_MSATA 0x0000000000000006 /* mSATA */ #define ATA_FF_M2 0x0000000000000007 /* M.2 */ #define ATA_FF_MICROSSD 0x0000000000000008 /* MicroSSD */ #define ATA_FF_CFAST 0x0000000000000009 /* CFast */ uint8_t wrv_sec_cnt_mode3[8]; #define ATA_WRV_MODE3_VALID 0x8000000000000000 #define ATA_WRV_MODE3_COUNT 0x00000000ffffffff uint8_t wrv_sec_cnt_mode2[8]; #define ATA_WRV_MODE2_VALID 0x8000000000000000 #define ATA_WRV_MODE2_COUNT 0x00000000ffffffff uint8_t wwn[16]; /* XXX KDM need to figure out how to handle 128-bit fields */ uint8_t dsm[8]; #define ATA_DSM_VALID 0x8000000000000000 #define ATA_LB_MARKUP_SUP 0x000000000000ff00 #define ATA_TRIM_SUP 0x0000000000000001 uint8_t util_per_unit_time[16]; /* XXX KDM need to figure out how to handle 128-bit fields */ uint8_t util_usage_rate_sup[8]; #define ATA_UTIL_USAGE_RATE_VALID 0x8000000000000000 #define ATA_SETTING_RATE_SUP 0x0000000000800000 #define ATA_SINCE_POWERON_SUP 0x0000000000000100 #define ATA_POH_RATE_SUP 0x0000000000000010 #define ATA_DATE_TIME_RATE_SUP 0x0000000000000001 uint8_t zoned_cap[8]; #define ATA_ZONED_VALID 0x8000000000000000 #define ATA_ZONED_MASK 0x0000000000000003 uint8_t sup_zac_cap[8]; #define ATA_SUP_ZAC_CAP_VALID 0x8000000000000000 #define ATA_ND_RWP_SUP 0x0000000000000010 /* Reset Write Ptr*/ #define ATA_ND_FINISH_ZONE_SUP 0x0000000000000008 /* Finish Zone */ #define ATA_ND_CLOSE_ZONE_SUP 0x0000000000000004 /* Close Zone */ #define ATA_ND_OPEN_ZONE_SUP 0x0000000000000002 /* Open Zone */ #define ATA_REPORT_ZONES_SUP 0x0000000000000001 /* Report Zones */ uint8_t reserved[392]; }; /* * ATA Identify Device Data Log Zoned Device Information Page (0x09). * Current as of ZAC r04a, August 25, 2015. */ struct ata_zoned_info_log { uint8_t header[8]; #define ATA_ZDI_HEADER_VALID 0x8000000000000000 #define ATA_ZDI_PAGE_NUM_MASK 0x0000000000ff0000 #define ATA_ZDI_PAGE_NUM_SHIFT 16 #define ATA_ZDI_REV_MASK 0x00000000000000ff uint8_t zoned_cap[8]; #define ATA_ZDI_CAP_VALID 0x8000000000000000 #define ATA_ZDI_CAP_URSWRZ 0x0000000000000001 uint8_t zoned_settings[8]; #define ATA_ZDI_SETTINGS_VALID 0x8000000000000000 uint8_t optimal_seq_zones[8]; #define ATA_ZDI_OPT_SEQ_VALID 0x8000000000000000 #define ATA_ZDI_OPT_SEQ_MASK 0x00000000ffffffff uint8_t optimal_nonseq_zones[8]; #define ATA_ZDI_OPT_NS_VALID 0x8000000000000000 #define ATA_ZDI_OPT_NS_MASK 0x00000000ffffffff uint8_t max_seq_req_zones[8]; #define ATA_ZDI_MAX_SEQ_VALID 0x8000000000000000 #define ATA_ZDI_MAX_SEQ_MASK 0x00000000ffffffff uint8_t version_info[8]; #define ATA_ZDI_VER_VALID 0x8000000000000000 #define ATA_ZDI_VER_ZAC_SUP 0x0100000000000000 #define ATA_ZDI_VER_ZAC_MASK 0x00000000000000ff uint8_t reserved[456]; }; struct ata_ioc_request { union { struct { u_int8_t command; u_int8_t feature; u_int64_t lba; u_int16_t count; } ata; struct { char ccb[16]; struct atapi_sense sense; } atapi; } u; caddr_t data; int count; int flags; #define ATA_CMD_CONTROL 0x01 #define ATA_CMD_READ 0x02 #define ATA_CMD_WRITE 0x04 #define ATA_CMD_ATAPI 0x08 int timeout; int error; }; struct ata_security_password { u_int16_t ctrl; #define ATA_SECURITY_PASSWORD_USER 0x0000 #define ATA_SECURITY_PASSWORD_MASTER 0x0001 #define ATA_SECURITY_ERASE_NORMAL 0x0000 #define ATA_SECURITY_ERASE_ENHANCED 0x0002 #define ATA_SECURITY_LEVEL_HIGH 0x0000 #define ATA_SECURITY_LEVEL_MAXIMUM 0x0100 u_int8_t password[32]; u_int16_t revision; u_int16_t reserved[238]; }; /* pr device ATA ioctl calls */ #define IOCATAREQUEST _IOWR('a', 100, struct ata_ioc_request) #define IOCATAGPARM _IOR('a', 101, struct ata_params) #define IOCATAGMODE _IOR('a', 102, int) #define IOCATASMODE _IOW('a', 103, int) #define IOCATAGSPINDOWN _IOR('a', 104, int) #define IOCATASSPINDOWN _IOW('a', 105, int) struct ata_ioc_raid_config { int lun; int type; #define AR_JBOD 0x0001 #define AR_SPAN 0x0002 #define AR_RAID0 0x0004 #define AR_RAID1 0x0008 #define AR_RAID01 0x0010 #define AR_RAID3 0x0020 #define AR_RAID4 0x0040 #define AR_RAID5 0x0080 int interleave; int status; #define AR_READY 1 #define AR_DEGRADED 2 #define AR_REBUILDING 4 int progress; int total_disks; int disks[16]; }; struct ata_ioc_raid_status { int lun; int type; int interleave; int status; int progress; int total_disks; struct { int state; #define AR_DISK_ONLINE 0x01 #define AR_DISK_PRESENT 0x02 #define AR_DISK_SPARE 0x04 int lun; } disks[16]; }; /* ATA RAID ioctl calls */ #define IOCATARAIDCREATE _IOWR('a', 200, struct ata_ioc_raid_config) #define IOCATARAIDDELETE _IOW('a', 201, int) #define IOCATARAIDSTATUS _IOWR('a', 202, struct ata_ioc_raid_status) #define IOCATARAIDADDSPARE _IOW('a', 203, struct ata_ioc_raid_config) #define IOCATARAIDREBUILD _IOW('a', 204, int) #endif /* _SYS_ATA_H_ */ Index: stable/11 =================================================================== --- stable/11 (revision 350800) +++ stable/11 (revision 350801) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r350149