Index: head/sys/dev/mmc/mmcsd.c =================================================================== --- head/sys/dev/mmc/mmcsd.c (revision 350230) +++ head/sys/dev/mmc/mmcsd.c (revision 350231) @@ -1,1576 +1,1576 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Bernd Walter. All rights reserved. * Copyright (c) 2006 M. Warner Losh. * Copyright (c) 2017 Marius Strobl * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Portions of this software may have been developed with reference to * the SD Simplified Specification. The following disclaimer may apply: * * The following conditions apply to the release of the simplified * specification ("Simplified Specification") by the SD Card Association and * the SD Group. The Simplified Specification is a subset of the complete SD * Specification which is owned by the SD Card Association and the SD * Group. This Simplified Specification is provided on a non-confidential * basis subject to the disclaimers below. Any implementation of the * Simplified Specification may require a license from the SD Card * Association, SD Group, SD-3C LLC or other third parties. * * Disclaimers: * * The information contained in the Simplified Specification is presented only * as a standard specification for SD Cards and SD Host/Ancillary products and * is provided "AS-IS" without any representations or warranties of any * kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD * Card Association for any damages, any infringements of patents or other * right of the SD Group, SD-3C LLC, the SD Card Association or any third * parties, which may result from its use. No license is granted by * implication, estoppel or otherwise under any patent or other rights of the * SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing * herein shall be construed as an obligation by the SD Group, the SD-3C LLC * or the SD Card Association to disclose or distribute any technical * information, know-how or other confidential information to any third party. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmcbus_if.h" #if __FreeBSD_version < 800002 #define kproc_create kthread_create #define kproc_exit kthread_exit #endif #define MMCSD_CMD_RETRIES 5 #define MMCSD_FMT_BOOT "mmcsd%dboot" #define MMCSD_FMT_GP "mmcsd%dgp" #define MMCSD_FMT_RPMB "mmcsd%drpmb" #define MMCSD_LABEL_ENH "enh" #define MMCSD_PART_NAMELEN (16 + 1) struct mmcsd_softc; struct mmcsd_part { struct mtx disk_mtx; struct mtx ioctl_mtx; struct mmcsd_softc *sc; struct disk *disk; struct proc *p; struct bio_queue_head bio_queue; daddr_t eblock, eend; /* Range remaining after the last erase. */ u_int cnt; u_int type; int running; int suspend; int ioctl; bool ro; char name[MMCSD_PART_NAMELEN]; }; struct mmcsd_softc { device_t dev; device_t mmcbus; struct mmcsd_part *part[MMC_PART_MAX]; enum mmc_card_mode mode; u_int max_data; /* Maximum data size [blocks] */ u_int erase_sector; /* Device native erase sector size [blocks] */ uint8_t high_cap; /* High Capacity device (block addressed) */ uint8_t part_curr; /* Partition currently switched to */ uint8_t ext_csd[MMC_EXTCSD_SIZE]; uint16_t rca; uint32_t flags; #define MMCSD_INAND_CMD38 0x0001 #define MMCSD_USE_TRIM 0x0002 #define MMCSD_FLUSH_CACHE 0x0004 #define MMCSD_DIRTY 0x0008 uint32_t cmd6_time; /* Generic switch timeout [us] */ uint32_t part_time; /* Partition switch timeout [us] */ off_t enh_base; /* Enhanced user data area slice base ... */ off_t enh_size; /* ... and size [bytes] */ int log_count; struct timeval log_time; struct cdev *rpmb_dev; }; static const char *errmsg[] = { "None", "Timeout", "Bad CRC", "Fifo", "Failed", "Invalid", "NO MEMORY" }; static SYSCTL_NODE(_hw, OID_AUTO, mmcsd, CTLFLAG_RD, NULL, "mmcsd driver"); static int mmcsd_cache = 1; SYSCTL_INT(_hw_mmcsd, OID_AUTO, cache, CTLFLAG_RDTUN, &mmcsd_cache, 0, "Device R/W cache enabled if present"); #define LOG_PPS 5 /* Log no more than 5 errors per second. */ /* bus entry points */ static int mmcsd_attach(device_t dev); static int mmcsd_detach(device_t dev); static int mmcsd_probe(device_t dev); static int mmcsd_shutdown(device_t dev); /* disk routines */ static int mmcsd_close(struct disk *dp); static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length); static int mmcsd_getattr(struct bio *); static int mmcsd_ioctl_disk(struct disk *disk, u_long cmd, void *data, int fflag, struct thread *td); static void mmcsd_strategy(struct bio *bp); static void mmcsd_task(void *arg); /* RMPB cdev interface */ static int mmcsd_ioctl_rpmb(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); static void mmcsd_add_part(struct mmcsd_softc *sc, u_int type, const char *name, u_int cnt, off_t media_size, bool ro); static int mmcsd_bus_bit_width(device_t dev); static daddr_t mmcsd_delete(struct mmcsd_part *part, struct bio *bp); static const char *mmcsd_errmsg(int e); static int mmcsd_flush_cache(struct mmcsd_softc *sc); static int mmcsd_ioctl(struct mmcsd_part *part, u_long cmd, void *data, int fflag, struct thread *td); static int mmcsd_ioctl_cmd(struct mmcsd_part *part, struct mmc_ioc_cmd *mic, int fflag); static uintmax_t mmcsd_pretty_size(off_t size, char *unit); static daddr_t mmcsd_rw(struct mmcsd_part *part, struct bio *bp); static int mmcsd_set_blockcount(struct mmcsd_softc *sc, u_int count, bool rel); static int mmcsd_slicer(device_t dev, const char *provider, struct flash_slice *slices, int *nslices); static int mmcsd_switch_part(device_t bus, device_t dev, uint16_t rca, u_int part); #define MMCSD_DISK_LOCK(_part) mtx_lock(&(_part)->disk_mtx) #define MMCSD_DISK_UNLOCK(_part) mtx_unlock(&(_part)->disk_mtx) #define MMCSD_DISK_LOCK_INIT(_part) \ mtx_init(&(_part)->disk_mtx, (_part)->name, "mmcsd disk", MTX_DEF) #define MMCSD_DISK_LOCK_DESTROY(_part) mtx_destroy(&(_part)->disk_mtx); #define MMCSD_DISK_ASSERT_LOCKED(_part) \ mtx_assert(&(_part)->disk_mtx, MA_OWNED); #define MMCSD_DISK_ASSERT_UNLOCKED(_part) \ mtx_assert(&(_part)->disk_mtx, MA_NOTOWNED); #define MMCSD_IOCTL_LOCK(_part) mtx_lock(&(_part)->ioctl_mtx) #define MMCSD_IOCTL_UNLOCK(_part) mtx_unlock(&(_part)->ioctl_mtx) #define MMCSD_IOCTL_LOCK_INIT(_part) \ mtx_init(&(_part)->ioctl_mtx, (_part)->name, "mmcsd IOCTL", MTX_DEF) #define MMCSD_IOCTL_LOCK_DESTROY(_part) mtx_destroy(&(_part)->ioctl_mtx); #define MMCSD_IOCTL_ASSERT_LOCKED(_part) \ mtx_assert(&(_part)->ioctl_mtx, MA_OWNED); #define MMCSD_IOCLT_ASSERT_UNLOCKED(_part) \ mtx_assert(&(_part)->ioctl_mtx, MA_NOTOWNED); static int mmcsd_probe(device_t dev) { device_quiet(dev); device_set_desc(dev, "MMC/SD Memory Card"); return (0); } static int mmcsd_attach(device_t dev) { device_t mmcbus; struct mmcsd_softc *sc; const uint8_t *ext_csd; off_t erase_size, sector_size, size, wp_size; uintmax_t bytes; int err, i; uint32_t quirks; uint8_t rev; bool comp, ro; char unit[2]; sc = device_get_softc(dev); sc->dev = dev; sc->mmcbus = mmcbus = device_get_parent(dev); sc->mode = mmc_get_card_type(dev); /* * Note that in principle with an SDHCI-like re-tuning implementation, * the maximum data size can change at runtime due to a device removal/ * insertion that results in switches to/from a transfer mode involving * re-tuning, iff there are multiple devices on a given bus. Until now * mmc(4) lacks support for rescanning already attached buses, however, * and sdhci(4) to date has no support for shared buses in the first * place either. */ sc->max_data = mmc_get_max_data(dev); sc->high_cap = mmc_get_high_cap(dev); sc->rca = mmc_get_rca(dev); sc->cmd6_time = mmc_get_cmd6_timeout(dev); quirks = mmc_get_quirks(dev); /* Only MMC >= 4.x devices support EXT_CSD. */ if (mmc_get_spec_vers(dev) >= 4) { MMCBUS_ACQUIRE_BUS(mmcbus, dev); err = mmc_send_ext_csd(mmcbus, dev, sc->ext_csd); MMCBUS_RELEASE_BUS(mmcbus, dev); if (err != MMC_ERR_NONE) { device_printf(dev, "Error reading EXT_CSD %s\n", mmcsd_errmsg(err)); return (ENXIO); } } ext_csd = sc->ext_csd; if ((quirks & MMC_QUIRK_INAND_CMD38) != 0) { if (mmc_get_spec_vers(dev) < 4) { device_printf(dev, "MMC_QUIRK_INAND_CMD38 set but no EXT_CSD\n"); return (EINVAL); } sc->flags |= MMCSD_INAND_CMD38; } /* * EXT_CSD_SEC_FEATURE_SUPPORT_GB_CL_EN denotes support for both * insecure and secure TRIM. */ if ((ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] & EXT_CSD_SEC_FEATURE_SUPPORT_GB_CL_EN) != 0 && (quirks & MMC_QUIRK_BROKEN_TRIM) == 0) { if (bootverbose) device_printf(dev, "taking advantage of TRIM\n"); sc->flags |= MMCSD_USE_TRIM; sc->erase_sector = 1; } else sc->erase_sector = mmc_get_erase_sector(dev); /* * Enhanced user data area and general purpose partitions are only * supported in revision 1.4 (EXT_CSD_REV == 4) and later, the RPMB * partition in revision 1.5 (MMC v4.41, EXT_CSD_REV == 5) and later. */ rev = ext_csd[EXT_CSD_REV]; /* * With revision 1.5 (MMC v4.5, EXT_CSD_REV == 6) and later, take * advantage of the device R/W cache if present and useage is not * disabled. */ if (rev >= 6 && mmcsd_cache != 0) { size = le32dec(&ext_csd[EXT_CSD_CACHE_SIZE]); if (bootverbose) device_printf(dev, "cache size %juKB\n", size); if (size > 0) { MMCBUS_ACQUIRE_BUS(mmcbus, dev); err = mmc_switch(mmcbus, dev, sc->rca, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, EXT_CSD_CACHE_CTRL_CACHE_EN, sc->cmd6_time, true); MMCBUS_RELEASE_BUS(mmcbus, dev); if (err != MMC_ERR_NONE) device_printf(dev, "failed to enable cache\n"); else sc->flags |= MMCSD_FLUSH_CACHE; } } /* * Ignore user-creatable enhanced user data area and general purpose * partitions partitions as long as partitioning hasn't been finished. */ comp = (ext_csd[EXT_CSD_PART_SET] & EXT_CSD_PART_SET_COMPLETED) != 0; /* * Add enhanced user data area slice, unless it spans the entirety of * the user data area. The enhanced area is of a multiple of high * capacity write protect groups ((ERASE_GRP_SIZE + HC_WP_GRP_SIZE) * * 512 KB) and its offset given in either sectors or bytes, depending * on whether it's a high capacity device or not. * NB: The slicer and its slices need to be registered before adding * the disk for the corresponding user data area as re-tasting is * racy. */ sector_size = mmc_get_sector_size(dev); size = ext_csd[EXT_CSD_ENH_SIZE_MULT] + (ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) + (ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16); if (rev >= 4 && comp == TRUE && size > 0 && (ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 && (ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_USR)) != 0) { erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 * MMC_SECTOR_SIZE; wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; size *= erase_size * wp_size; if (size != mmc_get_media_size(dev) * sector_size) { sc->enh_size = size; sc->enh_base = le32dec(&ext_csd[EXT_CSD_ENH_START_ADDR]) * (sc->high_cap == 0 ? MMC_SECTOR_SIZE : 1); } else if (bootverbose) device_printf(dev, "enhanced user data area spans entire device\n"); } /* * Add default partition. This may be the only one or the user * data area in case partitions are supported. */ ro = mmc_get_read_only(dev); mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_DEFAULT, "mmcsd", device_get_unit(dev), mmc_get_media_size(dev) * sector_size, ro); if (mmc_get_spec_vers(dev) < 3) return (0); /* Belatedly announce enhanced user data slice. */ if (sc->enh_size != 0) { bytes = mmcsd_pretty_size(size, unit); printf(FLASH_SLICES_FMT ": %ju%sB enhanced user data area " "slice offset 0x%jx at %s\n", device_get_nameunit(dev), MMCSD_LABEL_ENH, bytes, unit, (uintmax_t)sc->enh_base, device_get_nameunit(dev)); } /* * Determine partition switch timeout (provided in units of 10 ms) * and ensure it's at least 300 ms as some eMMC chips lie. */ sc->part_time = max(ext_csd[EXT_CSD_PART_SWITCH_TO] * 10 * 1000, 300 * 1000); /* Add boot partitions, which are of a fixed multiple of 128 KB. */ size = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE; if (size > 0 && (mmcbr_get_caps(mmcbus) & MMC_CAP_BOOT_NOACC) == 0) { mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_BOOT0, MMCSD_FMT_BOOT, 0, size, ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] & EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK) != 0)); mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_BOOT1, MMCSD_FMT_BOOT, 1, size, ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] & EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK) != 0)); } /* Add RPMB partition, which also is of a fixed multiple of 128 KB. */ size = ext_csd[EXT_CSD_RPMB_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE; if (rev >= 5 && size > 0) mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_RPMB, MMCSD_FMT_RPMB, 0, size, ro); if (rev <= 3 || comp == FALSE) return (0); /* * Add general purpose partitions, which are of a multiple of high * capacity write protect groups, too. */ if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EN) != 0) { erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 * MMC_SECTOR_SIZE; wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; for (i = 0; i < MMC_PART_GP_MAX; i++) { size = ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3] + (ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 1] << 8) + (ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 2] << 16); if (size == 0) continue; mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_GP0 + i, MMCSD_FMT_GP, i, size * erase_size * wp_size, ro); } } return (0); } static uintmax_t mmcsd_pretty_size(off_t size, char *unit) { uintmax_t bytes; int i; /* * Display in most natural units. There's no card < 1MB. However, * RPMB partitions occasionally are smaller than that, though. The * SD standard goes to 2 GiB due to its reliance on FAT, but the data * format supports up to 4 GiB and some card makers push it up to this * limit. The SDHC standard only goes to 32 GiB due to FAT32, but the * data format supports up to 2 TiB however. 2048 GB isn't too ugly, * so we note it in passing here and don't add the code to print TB). * Since these cards are sold in terms of MB and GB not MiB and GiB, * report them like that. We also round to the nearest unit, since * many cards are a few percent short, even of the power of 10 size. */ bytes = size; unit[0] = unit[1] = '\0'; for (i = 0; i <= 2 && bytes >= 1000; i++) { bytes = (bytes + 1000 / 2 - 1) / 1000; switch (i) { case 0: unit[0] = 'k'; break; case 1: unit[0] = 'M'; break; case 2: unit[0] = 'G'; break; default: break; } } return (bytes); } static struct cdevsw mmcsd_rpmb_cdevsw = { .d_version = D_VERSION, .d_name = "mmcsdrpmb", .d_ioctl = mmcsd_ioctl_rpmb }; static void mmcsd_add_part(struct mmcsd_softc *sc, u_int type, const char *name, u_int cnt, off_t media_size, bool ro) { struct make_dev_args args; device_t dev, mmcbus; const char *ext; const uint8_t *ext_csd; struct mmcsd_part *part; struct disk *d; uintmax_t bytes; u_int gp; uint32_t speed; uint8_t extattr; bool enh; char unit[2]; dev = sc->dev; mmcbus = sc->mmcbus; part = sc->part[type] = malloc(sizeof(*part), M_DEVBUF, M_WAITOK | M_ZERO); part->sc = sc; part->cnt = cnt; part->type = type; part->ro = ro; snprintf(part->name, sizeof(part->name), name, device_get_unit(dev)); MMCSD_IOCTL_LOCK_INIT(part); /* * For the RPMB partition, allow IOCTL access only. * NB: If ever attaching RPMB partitions to disk(9), the re-tuning * implementation and especially its pausing need to be revisited, * because then re-tuning requests may be issued by the IOCTL half * of this driver while re-tuning is already paused by the disk(9) * one and vice versa. */ if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) { make_dev_args_init(&args); args.mda_flags = MAKEDEV_CHECKNAME | MAKEDEV_WAITOK; args.mda_devsw = &mmcsd_rpmb_cdevsw; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0640; args.mda_si_drv1 = part; if (make_dev_s(&args, &sc->rpmb_dev, "%s", part->name) != 0) { device_printf(dev, "Failed to make RPMB device\n"); free(part, M_DEVBUF); return; } } else { MMCSD_DISK_LOCK_INIT(part); d = part->disk = disk_alloc(); d->d_close = mmcsd_close; d->d_strategy = mmcsd_strategy; d->d_ioctl = mmcsd_ioctl_disk; d->d_dump = mmcsd_dump; d->d_getattr = mmcsd_getattr; d->d_name = part->name; d->d_drv1 = part; d->d_sectorsize = mmc_get_sector_size(dev); d->d_maxsize = sc->max_data * d->d_sectorsize; d->d_mediasize = media_size; d->d_stripesize = sc->erase_sector * d->d_sectorsize; d->d_unit = cnt; d->d_flags = DISKFLAG_CANDELETE; if ((sc->flags & MMCSD_FLUSH_CACHE) != 0) d->d_flags |= DISKFLAG_CANFLUSHCACHE; d->d_delmaxsize = mmc_get_erase_sector(dev) * d->d_sectorsize; strlcpy(d->d_ident, mmc_get_card_sn_string(dev), sizeof(d->d_ident)); strlcpy(d->d_descr, mmc_get_card_id_string(dev), sizeof(d->d_descr)); d->d_rotation_rate = DISK_RR_NON_ROTATING; disk_create(d, DISK_VERSION); bioq_init(&part->bio_queue); part->running = 1; kproc_create(&mmcsd_task, part, &part->p, 0, 0, "%s%d: mmc/sd card", part->name, cnt); } bytes = mmcsd_pretty_size(media_size, unit); if (type == EXT_CSD_PART_CONFIG_ACC_DEFAULT) { speed = mmcbr_get_clock(mmcbus); printf("%s%d: %ju%sB <%s>%s at %s %d.%01dMHz/%dbit/%d-block\n", part->name, cnt, bytes, unit, mmc_get_card_id_string(dev), ro ? " (read-only)" : "", device_get_nameunit(mmcbus), speed / 1000000, (speed / 100000) % 10, mmcsd_bus_bit_width(dev), sc->max_data); } else if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) { - printf("%s: %ju%sB partion %d%s at %s\n", part->name, bytes, + printf("%s: %ju%sB partition %d%s at %s\n", part->name, bytes, unit, type, ro ? " (read-only)" : "", device_get_nameunit(dev)); } else { enh = false; ext = NULL; extattr = 0; if (type >= EXT_CSD_PART_CONFIG_ACC_GP0 && type <= EXT_CSD_PART_CONFIG_ACC_GP3) { ext_csd = sc->ext_csd; gp = type - EXT_CSD_PART_CONFIG_ACC_GP0; if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 && (ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_GP0 << gp)) != 0) enh = true; else if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EXT_ATTR_EN) != 0) { extattr = (ext_csd[EXT_CSD_EXT_PART_ATTR + (gp / 2)] >> (4 * (gp % 2))) & 0xF; switch (extattr) { case EXT_CSD_EXT_PART_ATTR_DEFAULT: break; case EXT_CSD_EXT_PART_ATTR_SYSTEMCODE: ext = "system code"; break; case EXT_CSD_EXT_PART_ATTR_NPERSISTENT: ext = "non-persistent"; break; default: ext = "reserved"; break; } } } if (ext == NULL) - printf("%s%d: %ju%sB partion %d%s%s at %s\n", + printf("%s%d: %ju%sB partition %d%s%s at %s\n", part->name, cnt, bytes, unit, type, enh ? " enhanced" : "", ro ? " (read-only)" : "", device_get_nameunit(dev)); else - printf("%s%d: %ju%sB partion %d extended 0x%x " + printf("%s%d: %ju%sB partition %d extended 0x%x " "(%s)%s at %s\n", part->name, cnt, bytes, unit, type, extattr, ext, ro ? " (read-only)" : "", device_get_nameunit(dev)); } } static int mmcsd_slicer(device_t dev, const char *provider, struct flash_slice *slices, int *nslices) { char name[MMCSD_PART_NAMELEN]; struct mmcsd_softc *sc; struct mmcsd_part *part; *nslices = 0; if (slices == NULL) return (ENOMEM); sc = device_get_softc(dev); if (sc->enh_size == 0) return (ENXIO); part = sc->part[EXT_CSD_PART_CONFIG_ACC_DEFAULT]; snprintf(name, sizeof(name), "%s%d", part->disk->d_name, part->disk->d_unit); if (strcmp(name, provider) != 0) return (ENXIO); *nslices = 1; slices[0].base = sc->enh_base; slices[0].size = sc->enh_size; slices[0].label = MMCSD_LABEL_ENH; return (0); } static int mmcsd_detach(device_t dev) { struct mmcsd_softc *sc = device_get_softc(dev); struct mmcsd_part *part; int i; for (i = 0; i < MMC_PART_MAX; i++) { part = sc->part[i]; if (part != NULL) { if (part->disk != NULL) { MMCSD_DISK_LOCK(part); part->suspend = 0; if (part->running > 0) { /* kill thread */ part->running = 0; wakeup(part); /* wait for thread to finish. */ while (part->running != -1) msleep(part, &part->disk_mtx, 0, "mmcsd disk detach", 0); } MMCSD_DISK_UNLOCK(part); } MMCSD_IOCTL_LOCK(part); while (part->ioctl > 0) msleep(part, &part->ioctl_mtx, 0, "mmcsd IOCTL detach", 0); part->ioctl = -1; MMCSD_IOCTL_UNLOCK(part); } } if (sc->rpmb_dev != NULL) destroy_dev(sc->rpmb_dev); for (i = 0; i < MMC_PART_MAX; i++) { part = sc->part[i]; if (part != NULL) { if (part->disk != NULL) { /* Flush the request queue. */ bioq_flush(&part->bio_queue, NULL, ENXIO); /* kill disk */ disk_destroy(part->disk); MMCSD_DISK_LOCK_DESTROY(part); } MMCSD_IOCTL_LOCK_DESTROY(part); free(part, M_DEVBUF); } } if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) device_printf(dev, "failed to flush cache\n"); return (0); } static int mmcsd_shutdown(device_t dev) { struct mmcsd_softc *sc = device_get_softc(dev); if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) device_printf(dev, "failed to flush cache\n"); return (0); } static int mmcsd_suspend(device_t dev) { struct mmcsd_softc *sc = device_get_softc(dev); struct mmcsd_part *part; int i; for (i = 0; i < MMC_PART_MAX; i++) { part = sc->part[i]; if (part != NULL) { if (part->disk != NULL) { MMCSD_DISK_LOCK(part); part->suspend = 1; if (part->running > 0) { /* kill thread */ part->running = 0; wakeup(part); /* wait for thread to finish. */ while (part->running != -1) msleep(part, &part->disk_mtx, 0, "mmcsd disk suspension", 0); } MMCSD_DISK_UNLOCK(part); } MMCSD_IOCTL_LOCK(part); while (part->ioctl > 0) msleep(part, &part->ioctl_mtx, 0, "mmcsd IOCTL suspension", 0); part->ioctl = -1; MMCSD_IOCTL_UNLOCK(part); } } if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) device_printf(dev, "failed to flush cache\n"); return (0); } static int mmcsd_resume(device_t dev) { struct mmcsd_softc *sc = device_get_softc(dev); struct mmcsd_part *part; int i; for (i = 0; i < MMC_PART_MAX; i++) { part = sc->part[i]; if (part != NULL) { if (part->disk != NULL) { MMCSD_DISK_LOCK(part); part->suspend = 0; if (part->running <= 0) { part->running = 1; MMCSD_DISK_UNLOCK(part); kproc_create(&mmcsd_task, part, &part->p, 0, 0, "%s%d: mmc/sd card", part->name, part->cnt); } else MMCSD_DISK_UNLOCK(part); } MMCSD_IOCTL_LOCK(part); part->ioctl = 0; MMCSD_IOCTL_UNLOCK(part); } } return (0); } static int mmcsd_close(struct disk *dp) { struct mmcsd_softc *sc; if ((dp->d_flags & DISKFLAG_OPEN) != 0) { sc = ((struct mmcsd_part *)dp->d_drv1)->sc; if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) device_printf(sc->dev, "failed to flush cache\n"); } return (0); } static void mmcsd_strategy(struct bio *bp) { struct mmcsd_part *part; part = bp->bio_disk->d_drv1; MMCSD_DISK_LOCK(part); if (part->running > 0 || part->suspend > 0) { bioq_disksort(&part->bio_queue, bp); MMCSD_DISK_UNLOCK(part); wakeup(part); } else { MMCSD_DISK_UNLOCK(part); biofinish(bp, NULL, ENXIO); } } static int mmcsd_ioctl_rpmb(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { return (mmcsd_ioctl(dev->si_drv1, cmd, data, fflag, td)); } static int mmcsd_ioctl_disk(struct disk *disk, u_long cmd, void *data, int fflag, struct thread *td) { return (mmcsd_ioctl(disk->d_drv1, cmd, data, fflag, td)); } static int mmcsd_ioctl(struct mmcsd_part *part, u_long cmd, void *data, int fflag, struct thread *td) { struct mmc_ioc_cmd *mic; struct mmc_ioc_multi_cmd *mimc; int i, err; u_long cnt, size; if ((fflag & FREAD) == 0) return (EBADF); err = priv_check(td, PRIV_DRIVER); if (err != 0) return (err); err = 0; switch (cmd) { case MMC_IOC_CMD: mic = data; err = mmcsd_ioctl_cmd(part, mic, fflag); break; case MMC_IOC_MULTI_CMD: mimc = data; if (mimc->num_of_cmds == 0) break; if (mimc->num_of_cmds > MMC_IOC_MAX_CMDS) return (EINVAL); cnt = mimc->num_of_cmds; size = sizeof(*mic) * cnt; mic = malloc(size, M_TEMP, M_WAITOK); err = copyin((const void *)mimc->cmds, mic, size); if (err == 0) { for (i = 0; i < cnt; i++) { err = mmcsd_ioctl_cmd(part, &mic[i], fflag); if (err != 0) break; } } free(mic, M_TEMP); break; default: return (ENOIOCTL); } return (err); } static int mmcsd_ioctl_cmd(struct mmcsd_part *part, struct mmc_ioc_cmd *mic, int fflag) { struct mmc_command cmd; struct mmc_data data; struct mmcsd_softc *sc; device_t dev, mmcbus; void *dp; u_long len; int err, retries; uint32_t status; uint16_t rca; if ((fflag & FWRITE) == 0 && mic->write_flag != 0) return (EBADF); if (part->ro == TRUE && mic->write_flag != 0) return (EROFS); /* * We don't need to explicitly lock against the disk(9) half of this * driver as MMCBUS_ACQUIRE_BUS() will serialize us. However, it's * necessary to protect against races with detachment and suspension, * especially since it's required to switch away from RPMB partitions * again after an access (see mmcsd_switch_part()). */ MMCSD_IOCTL_LOCK(part); while (part->ioctl != 0) { if (part->ioctl < 0) { MMCSD_IOCTL_UNLOCK(part); return (ENXIO); } msleep(part, &part->ioctl_mtx, 0, "mmcsd IOCTL", 0); } part->ioctl = 1; MMCSD_IOCTL_UNLOCK(part); err = 0; dp = NULL; len = mic->blksz * mic->blocks; if (len > MMC_IOC_MAX_BYTES) { err = EOVERFLOW; goto out; } if (len != 0) { dp = malloc(len, M_TEMP, M_WAITOK); err = copyin((void *)(uintptr_t)mic->data_ptr, dp, len); if (err != 0) goto out; } memset(&cmd, 0, sizeof(cmd)); memset(&data, 0, sizeof(data)); cmd.opcode = mic->opcode; cmd.arg = mic->arg; cmd.flags = mic->flags; if (len != 0) { data.len = len; data.data = dp; data.flags = mic->write_flag != 0 ? MMC_DATA_WRITE : MMC_DATA_READ; cmd.data = &data; } sc = part->sc; rca = sc->rca; if (mic->is_acmd == 0) { /* Enforce/patch/restrict RCA-based commands */ switch (cmd.opcode) { case MMC_SET_RELATIVE_ADDR: case MMC_SELECT_CARD: err = EPERM; goto out; case MMC_STOP_TRANSMISSION: if ((cmd.arg & 0x1) == 0) break; /* FALLTHROUGH */ case MMC_SLEEP_AWAKE: case MMC_SEND_CSD: case MMC_SEND_CID: case MMC_SEND_STATUS: case MMC_GO_INACTIVE_STATE: case MMC_FAST_IO: case MMC_APP_CMD: cmd.arg = (cmd.arg & 0x0000FFFF) | (rca << 16); break; default: break; } /* * No partition switching in userland; it's almost impossible * to recover from that, especially if things go wrong. */ if (cmd.opcode == MMC_SWITCH_FUNC && dp != NULL && (((uint8_t *)dp)[EXT_CSD_PART_CONFIG] & EXT_CSD_PART_CONFIG_ACC_MASK) != part->type) { err = EINVAL; goto out; } } dev = sc->dev; mmcbus = sc->mmcbus; MMCBUS_ACQUIRE_BUS(mmcbus, dev); err = mmcsd_switch_part(mmcbus, dev, rca, part->type); if (err != MMC_ERR_NONE) goto release; if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) { err = mmcsd_set_blockcount(sc, mic->blocks, mic->write_flag & (1 << 31)); if (err != MMC_ERR_NONE) goto switch_back; } if (mic->write_flag != 0) sc->flags |= MMCSD_DIRTY; if (mic->is_acmd != 0) (void)mmc_wait_for_app_cmd(mmcbus, dev, rca, &cmd, 0); else (void)mmc_wait_for_cmd(mmcbus, dev, &cmd, 0); if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) { /* * If the request went to the RPMB partition, try to ensure * that the command actually has completed. */ retries = MMCSD_CMD_RETRIES; do { err = mmc_send_status(mmcbus, dev, rca, &status); if (err != MMC_ERR_NONE) break; if (R1_STATUS(status) == 0 && R1_CURRENT_STATE(status) != R1_STATE_PRG) break; DELAY(1000); } while (retries-- > 0); } /* * If EXT_CSD was changed, our copy is outdated now. Specifically, * the upper bits of EXT_CSD_PART_CONFIG used in mmcsd_switch_part(), * so retrieve EXT_CSD again. */ if (cmd.opcode == MMC_SWITCH_FUNC) { err = mmc_send_ext_csd(mmcbus, dev, sc->ext_csd); if (err != MMC_ERR_NONE) goto release; } switch_back: if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) { /* * If the request went to the RPMB partition, always switch * back to the default partition (see mmcsd_switch_part()). */ err = mmcsd_switch_part(mmcbus, dev, rca, EXT_CSD_PART_CONFIG_ACC_DEFAULT); if (err != MMC_ERR_NONE) goto release; } MMCBUS_RELEASE_BUS(mmcbus, dev); if (cmd.error != MMC_ERR_NONE) { switch (cmd.error) { case MMC_ERR_TIMEOUT: err = ETIMEDOUT; break; case MMC_ERR_BADCRC: err = EILSEQ; break; case MMC_ERR_INVALID: err = EINVAL; break; case MMC_ERR_NO_MEMORY: err = ENOMEM; break; default: err = EIO; break; } goto out; } memcpy(mic->response, cmd.resp, 4 * sizeof(uint32_t)); if (mic->write_flag == 0 && len != 0) { err = copyout(dp, (void *)(uintptr_t)mic->data_ptr, len); if (err != 0) goto out; } goto out; release: MMCBUS_RELEASE_BUS(mmcbus, dev); err = EIO; out: MMCSD_IOCTL_LOCK(part); part->ioctl = 0; MMCSD_IOCTL_UNLOCK(part); wakeup(part); if (dp != NULL) free(dp, M_TEMP); return (err); } static int mmcsd_getattr(struct bio *bp) { struct mmcsd_part *part; device_t dev; if (strcmp(bp->bio_attribute, "MMC::device") == 0) { if (bp->bio_length != sizeof(dev)) return (EFAULT); part = bp->bio_disk->d_drv1; dev = part->sc->dev; bcopy(&dev, bp->bio_data, sizeof(dev)); bp->bio_completed = bp->bio_length; return (0); } return (-1); } static int mmcsd_set_blockcount(struct mmcsd_softc *sc, u_int count, bool reliable) { struct mmc_command cmd; struct mmc_request req; memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); cmd.mrq = &req; req.cmd = &cmd; cmd.opcode = MMC_SET_BLOCK_COUNT; cmd.arg = count & 0x0000FFFF; if (reliable) cmd.arg |= 1 << 31; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(sc->mmcbus, sc->dev, &req); return (cmd.error); } static int mmcsd_switch_part(device_t bus, device_t dev, uint16_t rca, u_int part) { struct mmcsd_softc *sc; int err; uint8_t value; sc = device_get_softc(dev); if (sc->mode == mode_sd) return (MMC_ERR_NONE); /* * According to section "6.2.2 Command restrictions" of the eMMC * specification v5.1, CMD19/CMD21 aren't allowed to be used with * RPMB partitions. So we pause re-tuning along with triggering * it up-front to decrease the likelihood of re-tuning becoming * necessary while accessing an RPMB partition. Consequently, an * RPMB partition should immediately be switched away from again * after an access in order to allow for re-tuning to take place * anew. */ if (part == EXT_CSD_PART_CONFIG_ACC_RPMB) MMCBUS_RETUNE_PAUSE(sc->mmcbus, sc->dev, true); if (sc->part_curr == part) return (MMC_ERR_NONE); value = (sc->ext_csd[EXT_CSD_PART_CONFIG] & ~EXT_CSD_PART_CONFIG_ACC_MASK) | part; /* Jump! */ err = mmc_switch(bus, dev, rca, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, value, sc->part_time, true); if (err != MMC_ERR_NONE) { if (part == EXT_CSD_PART_CONFIG_ACC_RPMB) MMCBUS_RETUNE_UNPAUSE(sc->mmcbus, sc->dev); return (err); } sc->ext_csd[EXT_CSD_PART_CONFIG] = value; if (sc->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB) MMCBUS_RETUNE_UNPAUSE(sc->mmcbus, sc->dev); sc->part_curr = part; return (MMC_ERR_NONE); } static const char * mmcsd_errmsg(int e) { if (e < 0 || e > MMC_ERR_MAX) return "Bad error code"; return (errmsg[e]); } static daddr_t mmcsd_rw(struct mmcsd_part *part, struct bio *bp) { daddr_t block, end; struct mmc_command cmd; struct mmc_command stop; struct mmc_request req; struct mmc_data data; struct mmcsd_softc *sc; device_t dev, mmcbus; u_int numblocks, sz; char *vaddr; sc = part->sc; dev = sc->dev; mmcbus = sc->mmcbus; block = bp->bio_pblkno; sz = part->disk->d_sectorsize; end = bp->bio_pblkno + (bp->bio_bcount / sz); while (block < end) { vaddr = bp->bio_data + (block - bp->bio_pblkno) * sz; numblocks = min(end - block, sc->max_data); memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); memset(&stop, 0, sizeof(stop)); memset(&data, 0, sizeof(data)); cmd.mrq = &req; req.cmd = &cmd; cmd.data = &data; if (bp->bio_cmd == BIO_READ) { if (numblocks > 1) cmd.opcode = MMC_READ_MULTIPLE_BLOCK; else cmd.opcode = MMC_READ_SINGLE_BLOCK; } else { sc->flags |= MMCSD_DIRTY; if (numblocks > 1) cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK; else cmd.opcode = MMC_WRITE_BLOCK; } cmd.arg = block; if (sc->high_cap == 0) cmd.arg <<= 9; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.data = vaddr; data.mrq = &req; if (bp->bio_cmd == BIO_READ) data.flags = MMC_DATA_READ; else data.flags = MMC_DATA_WRITE; data.len = numblocks * sz; if (numblocks > 1) { data.flags |= MMC_DATA_MULTI; stop.opcode = MMC_STOP_TRANSMISSION; stop.arg = 0; stop.flags = MMC_RSP_R1B | MMC_CMD_AC; stop.mrq = &req; req.stop = &stop; } MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS)) device_printf(dev, "Error indicated: %d %s\n", req.cmd->error, mmcsd_errmsg(req.cmd->error)); break; } block += numblocks; } return (block); } static daddr_t mmcsd_delete(struct mmcsd_part *part, struct bio *bp) { daddr_t block, end, start, stop; struct mmc_command cmd; struct mmc_request req; struct mmcsd_softc *sc; device_t dev, mmcbus; u_int erase_sector, sz; int err; bool use_trim; sc = part->sc; dev = sc->dev; mmcbus = sc->mmcbus; block = bp->bio_pblkno; sz = part->disk->d_sectorsize; end = bp->bio_pblkno + (bp->bio_bcount / sz); use_trim = sc->flags & MMCSD_USE_TRIM; if (use_trim == true) { start = block; stop = end; } else { /* Coalesce with the remainder of the previous request. */ if (block > part->eblock && block <= part->eend) block = part->eblock; if (end >= part->eblock && end < part->eend) end = part->eend; /* Safely round to the erase sector boundaries. */ erase_sector = sc->erase_sector; start = block + erase_sector - 1; /* Round up. */ start -= start % erase_sector; stop = end; /* Round down. */ stop -= end % erase_sector; /* * We can't erase an area smaller than an erase sector, so * store it for later. */ if (start >= stop) { part->eblock = block; part->eend = end; return (end); } } if ((sc->flags & MMCSD_INAND_CMD38) != 0) { err = mmc_switch(mmcbus, dev, sc->rca, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_INAND_CMD38, use_trim == true ? EXT_CSD_INAND_CMD38_TRIM : EXT_CSD_INAND_CMD38_ERASE, sc->cmd6_time, true); if (err != MMC_ERR_NONE) { device_printf(dev, "Setting iNAND erase command failed %s\n", mmcsd_errmsg(err)); return (block); } } /* * Pause re-tuning so it won't interfere with the order of erase * commands. Note that these latter don't use the data lines, so * re-tuning shouldn't actually become necessary during erase. */ MMCBUS_RETUNE_PAUSE(mmcbus, dev, false); /* Set erase start position. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); cmd.mrq = &req; req.cmd = &cmd; if (sc->mode == mode_sd) cmd.opcode = SD_ERASE_WR_BLK_START; else cmd.opcode = MMC_ERASE_GROUP_START; cmd.arg = start; if (sc->high_cap == 0) cmd.arg <<= 9; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { device_printf(dev, "Setting erase start position failed %s\n", mmcsd_errmsg(req.cmd->error)); block = bp->bio_pblkno; goto unpause; } /* Set erase stop position. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); req.cmd = &cmd; if (sc->mode == mode_sd) cmd.opcode = SD_ERASE_WR_BLK_END; else cmd.opcode = MMC_ERASE_GROUP_END; cmd.arg = stop; if (sc->high_cap == 0) cmd.arg <<= 9; cmd.arg--; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { device_printf(dev, "Setting erase stop position failed %s\n", mmcsd_errmsg(req.cmd->error)); block = bp->bio_pblkno; goto unpause; } /* Erase range. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); req.cmd = &cmd; cmd.opcode = MMC_ERASE; cmd.arg = use_trim == true ? MMC_ERASE_TRIM : MMC_ERASE_ERASE; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { device_printf(dev, "Issuing erase command failed %s\n", mmcsd_errmsg(req.cmd->error)); block = bp->bio_pblkno; goto unpause; } if (use_trim == false) { /* Store one of the remaining parts for the next call. */ if (bp->bio_pblkno >= part->eblock || block == start) { part->eblock = stop; /* Predict next forward. */ part->eend = end; } else { part->eblock = block; /* Predict next backward. */ part->eend = start; } } block = end; unpause: MMCBUS_RETUNE_UNPAUSE(mmcbus, dev); return (block); } static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct bio bp; daddr_t block, end; struct disk *disk; struct mmcsd_softc *sc; struct mmcsd_part *part; device_t dev, mmcbus; int err; disk = arg; part = disk->d_drv1; sc = part->sc; /* length zero is special and really means flush buffers to media */ if (length == 0) { err = mmcsd_flush_cache(sc); if (err != MMC_ERR_NONE) return (EIO); return (0); } dev = sc->dev; mmcbus = sc->mmcbus; g_reset_bio(&bp); bp.bio_disk = disk; bp.bio_pblkno = offset / disk->d_sectorsize; bp.bio_bcount = length; bp.bio_data = virtual; bp.bio_cmd = BIO_WRITE; end = bp.bio_pblkno + bp.bio_bcount / disk->d_sectorsize; MMCBUS_ACQUIRE_BUS(mmcbus, dev); err = mmcsd_switch_part(mmcbus, dev, sc->rca, part->type); if (err != MMC_ERR_NONE) { if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS)) device_printf(dev, "Partition switch error\n"); MMCBUS_RELEASE_BUS(mmcbus, dev); return (EIO); } block = mmcsd_rw(part, &bp); MMCBUS_RELEASE_BUS(mmcbus, dev); return ((end < block) ? EIO : 0); } static void mmcsd_task(void *arg) { daddr_t block, end; struct mmcsd_part *part; struct mmcsd_softc *sc; struct bio *bp; device_t dev, mmcbus; int err, sz; part = arg; sc = part->sc; dev = sc->dev; mmcbus = sc->mmcbus; while (1) { MMCSD_DISK_LOCK(part); do { if (part->running == 0) goto out; bp = bioq_takefirst(&part->bio_queue); if (bp == NULL) msleep(part, &part->disk_mtx, PRIBIO, "mmcsd disk jobqueue", 0); } while (bp == NULL); MMCSD_DISK_UNLOCK(part); if (__predict_false(bp->bio_cmd == BIO_FLUSH)) { if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; } biodone(bp); continue; } if (bp->bio_cmd != BIO_READ && part->ro) { bp->bio_error = EROFS; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; biodone(bp); continue; } MMCBUS_ACQUIRE_BUS(mmcbus, dev); sz = part->disk->d_sectorsize; block = bp->bio_pblkno; end = bp->bio_pblkno + (bp->bio_bcount / sz); err = mmcsd_switch_part(mmcbus, dev, sc->rca, part->type); if (err != MMC_ERR_NONE) { if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS)) device_printf(dev, "Partition switch error\n"); goto release; } if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) { /* Access to the remaining erase block obsoletes it. */ if (block < part->eend && end > part->eblock) part->eblock = part->eend = 0; block = mmcsd_rw(part, bp); } else if (bp->bio_cmd == BIO_DELETE) { block = mmcsd_delete(part, bp); } release: MMCBUS_RELEASE_BUS(mmcbus, dev); if (block < end) { bp->bio_error = EIO; bp->bio_resid = (end - block) * sz; bp->bio_flags |= BIO_ERROR; } else { bp->bio_resid = 0; } biodone(bp); } out: /* tell parent we're done */ part->running = -1; MMCSD_DISK_UNLOCK(part); wakeup(part); kproc_exit(0); } static int mmcsd_bus_bit_width(device_t dev) { if (mmc_get_bus_width(dev) == bus_width_1) return (1); if (mmc_get_bus_width(dev) == bus_width_4) return (4); return (8); } static int mmcsd_flush_cache(struct mmcsd_softc *sc) { device_t dev, mmcbus; int err; if ((sc->flags & MMCSD_FLUSH_CACHE) == 0) return (MMC_ERR_NONE); dev = sc->dev; mmcbus = sc->mmcbus; MMCBUS_ACQUIRE_BUS(mmcbus, dev); if ((sc->flags & MMCSD_DIRTY) == 0) { MMCBUS_RELEASE_BUS(mmcbus, dev); return (MMC_ERR_NONE); } err = mmc_switch(mmcbus, dev, sc->rca, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_FLUSH_CACHE, EXT_CSD_FLUSH_CACHE_FLUSH, 60 * 1000, true); if (err == MMC_ERR_NONE) sc->flags &= ~MMCSD_DIRTY; MMCBUS_RELEASE_BUS(mmcbus, dev); return (err); } static device_method_t mmcsd_methods[] = { DEVMETHOD(device_probe, mmcsd_probe), DEVMETHOD(device_attach, mmcsd_attach), DEVMETHOD(device_detach, mmcsd_detach), DEVMETHOD(device_shutdown, mmcsd_shutdown), DEVMETHOD(device_suspend, mmcsd_suspend), DEVMETHOD(device_resume, mmcsd_resume), DEVMETHOD_END }; static driver_t mmcsd_driver = { "mmcsd", mmcsd_methods, sizeof(struct mmcsd_softc), }; static devclass_t mmcsd_devclass; static int mmcsd_handler(module_t mod __unused, int what, void *arg __unused) { switch (what) { case MOD_LOAD: flash_register_slicer(mmcsd_slicer, FLASH_SLICES_TYPE_MMC, TRUE); return (0); case MOD_UNLOAD: flash_register_slicer(NULL, FLASH_SLICES_TYPE_MMC, TRUE); return (0); } return (0); } DRIVER_MODULE(mmcsd, mmc, mmcsd_driver, mmcsd_devclass, mmcsd_handler, NULL); MODULE_DEPEND(mmcsd, g_flashmap, 0, 0, 0); MMC_DEPEND(mmcsd);