Index: stable/12/sys/contrib/ipfilter/netinet/fil.c =================================================================== --- stable/12/sys/contrib/ipfilter/netinet/fil.c (revision 349931) +++ stable/12/sys/contrib/ipfilter/netinet/fil.c (revision 349932) @@ -1,10226 +1,10281 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * Copyright 2008 Sun Microsystems. * * $Id$ * */ #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #include #include #include #include #if defined(_KERNEL) && defined(__FreeBSD_version) # if !defined(IPFILTER_LKM) # include "opt_inet6.h" # endif # include #else # include #endif #if defined(__SVR4) || defined(sun) /* SOLARIS */ # include #endif # include #if defined(_KERNEL) # include # include #else # include # include # include # include # include # define _KERNEL # include # undef _KERNEL #endif #if !defined(__SVR4) # include #else # include # if (SOLARIS2 < 5) && defined(sun) # include # endif #endif # include #include #include #ifdef sun # include #endif #include #include #include #include # include # include #include "netinet/ip_compat.h" #ifdef USE_INET6 # include # if !SOLARIS && defined(_KERNEL) # include # endif #endif #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_auth.h" #ifdef IPFILTER_SCAN # include "netinet/ip_scan.h" #endif #include "netinet/ip_sync.h" #include "netinet/ip_lookup.h" #include "netinet/ip_pool.h" #include "netinet/ip_htable.h" #ifdef IPFILTER_COMPILED # include "netinet/ip_rules.h" #endif #if defined(IPFILTER_BPF) && defined(_KERNEL) # include #endif #if defined(__FreeBSD_version) # include #endif #include "netinet/ipl.h" #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000) # include extern struct callout ipf_slowtimer_ch; #endif /* END OF INCLUDES */ #if !defined(lint) static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; static const char rcsid[] = "@(#)$FreeBSD$"; /* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */ #endif #ifndef _KERNEL # include "ipf.h" # include "ipt.h" extern int opts; extern int blockreason; #endif /* _KERNEL */ #define LBUMP(x) softc->x++ #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0) static INLINE int ipf_check_ipf __P((fr_info_t *, frentry_t *, int)); static u_32_t ipf_checkcipso __P((fr_info_t *, u_char *, int)); static u_32_t ipf_checkripso __P((u_char *)); static u_32_t ipf_decaps __P((fr_info_t *, u_32_t, int)); #ifdef IPFILTER_LOG static frentry_t *ipf_dolog __P((fr_info_t *, u_32_t *)); #endif static int ipf_flushlist __P((ipf_main_softc_t *, int *, frentry_t **)); static int ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **, int)); static ipfunc_t ipf_findfunc __P((ipfunc_t)); static void *ipf_findlookup __P((ipf_main_softc_t *, int, frentry_t *, i6addr_t *, i6addr_t *)); static frentry_t *ipf_firewall __P((fr_info_t *, u_32_t *)); static int ipf_fr_matcharray __P((fr_info_t *, int *)); static int ipf_frruleiter __P((ipf_main_softc_t *, void *, int, void *)); static void ipf_funcfini __P((ipf_main_softc_t *, frentry_t *)); static int ipf_funcinit __P((ipf_main_softc_t *, frentry_t *)); static int ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *, ipfgeniter_t *)); static void ipf_getstat __P((ipf_main_softc_t *, struct friostat *, int)); static int ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *)); static void ipf_group_free __P((frgroup_t *)); static int ipf_grpmapfini __P((struct ipf_main_softc_s *, frentry_t *)); static int ipf_grpmapinit __P((struct ipf_main_softc_s *, frentry_t *)); static frentry_t *ipf_nextrule __P((ipf_main_softc_t *, int, int, frentry_t *, int)); static int ipf_portcheck __P((frpcmp_t *, u_32_t)); static INLINE int ipf_pr_ah __P((fr_info_t *)); static INLINE void ipf_pr_esp __P((fr_info_t *)); static INLINE void ipf_pr_gre __P((fr_info_t *)); static INLINE void ipf_pr_udp __P((fr_info_t *)); static INLINE void ipf_pr_tcp __P((fr_info_t *)); static INLINE void ipf_pr_icmp __P((fr_info_t *)); static INLINE void ipf_pr_ipv4hdr __P((fr_info_t *)); static INLINE void ipf_pr_short __P((fr_info_t *, int)); static INLINE int ipf_pr_tcpcommon __P((fr_info_t *)); static INLINE int ipf_pr_udpcommon __P((fr_info_t *)); static void ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f, int, int)); static void ipf_rule_expire_insert __P((ipf_main_softc_t *, frentry_t *, int)); static int ipf_synclist __P((ipf_main_softc_t *, frentry_t *, void *)); static void ipf_token_flush __P((ipf_main_softc_t *)); static void ipf_token_unlink __P((ipf_main_softc_t *, ipftoken_t *)); static ipftuneable_t *ipf_tune_findbyname __P((ipftuneable_t *, const char *)); static ipftuneable_t *ipf_tune_findbycookie __P((ipftuneable_t **, void *, void **)); static int ipf_updateipid __P((fr_info_t *)); static int ipf_settimeout __P((struct ipf_main_softc_s *, struct ipftuneable *, ipftuneval_t *)); +#ifdef USE_INET6 +static u_int ipf_pcksum6 __P((fr_info_t *, ip6_t *, + u_int32_t, u_int32_t)); +#endif #if !defined(_KERNEL) || SOLARIS static int ppsratecheck(struct timeval *, int *, int); #endif /* * bit values for identifying presence of individual IP options * All of these tables should be ordered by increasing key value on the left * hand side to allow for binary searching of the array and include a trailer * with a 0 for the bitmask for linear searches to easily find the end with. */ static const struct optlist ipopts[20] = { { IPOPT_NOP, 0x000001 }, { IPOPT_RR, 0x000002 }, { IPOPT_ZSU, 0x000004 }, { IPOPT_MTUP, 0x000008 }, { IPOPT_MTUR, 0x000010 }, { IPOPT_ENCODE, 0x000020 }, { IPOPT_TS, 0x000040 }, { IPOPT_TR, 0x000080 }, { IPOPT_SECURITY, 0x000100 }, { IPOPT_LSRR, 0x000200 }, { IPOPT_E_SEC, 0x000400 }, { IPOPT_CIPSO, 0x000800 }, { IPOPT_SATID, 0x001000 }, { IPOPT_SSRR, 0x002000 }, { IPOPT_ADDEXT, 0x004000 }, { IPOPT_VISA, 0x008000 }, { IPOPT_IMITD, 0x010000 }, { IPOPT_EIP, 0x020000 }, { IPOPT_FINN, 0x040000 }, { 0, 0x000000 } }; #ifdef USE_INET6 static const struct optlist ip6exthdr[] = { { IPPROTO_HOPOPTS, 0x000001 }, { IPPROTO_IPV6, 0x000002 }, { IPPROTO_ROUTING, 0x000004 }, { IPPROTO_FRAGMENT, 0x000008 }, { IPPROTO_ESP, 0x000010 }, { IPPROTO_AH, 0x000020 }, { IPPROTO_NONE, 0x000040 }, { IPPROTO_DSTOPTS, 0x000080 }, { IPPROTO_MOBILITY, 0x000100 }, { 0, 0 } }; #endif /* * bit values for identifying presence of individual IP security options */ static const struct optlist secopt[8] = { { IPSO_CLASS_RES4, 0x01 }, { IPSO_CLASS_TOPS, 0x02 }, { IPSO_CLASS_SECR, 0x04 }, { IPSO_CLASS_RES3, 0x08 }, { IPSO_CLASS_CONF, 0x10 }, { IPSO_CLASS_UNCL, 0x20 }, { IPSO_CLASS_RES2, 0x40 }, { IPSO_CLASS_RES1, 0x80 } }; char ipfilter_version[] = IPL_VERSION; int ipf_features = 0 #ifdef IPFILTER_LKM | IPF_FEAT_LKM #endif #ifdef IPFILTER_LOG | IPF_FEAT_LOG #endif | IPF_FEAT_LOOKUP #ifdef IPFILTER_BPF | IPF_FEAT_BPF #endif #ifdef IPFILTER_COMPILED | IPF_FEAT_COMPILED #endif #ifdef IPFILTER_CKSUM | IPF_FEAT_CKSUM #endif | IPF_FEAT_SYNC #ifdef IPFILTER_SCAN | IPF_FEAT_SCAN #endif #ifdef USE_INET6 | IPF_FEAT_IPV6 #endif ; /* * Table of functions available for use with call rules. */ static ipfunc_resolve_t ipf_availfuncs[] = { { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini }, { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini }, { "", NULL, NULL, NULL } }; static ipftuneable_t ipf_main_tuneables[] = { { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) }, "ipf_flags", 0, 0xffffffff, stsizeof(ipf_main_softc_t, ipf_flags), 0, NULL, NULL }, { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) }, "active", 0, 0, stsizeof(ipf_main_softc_t, ipf_active), IPFT_RDONLY, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) }, "control_forwarding", 0, 1, stsizeof(ipf_main_softc_t, ipf_control_forwarding), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) }, "update_ipid", 0, 1, stsizeof(ipf_main_softc_t, ipf_update_ipid), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) }, "chksrc", 0, 1, stsizeof(ipf_main_softc_t, ipf_chksrc), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) }, "min_ttl", 0, 1, stsizeof(ipf_main_softc_t, ipf_minttl), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) }, "icmp_minfragmtu", 0, 1, stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_pass) }, "default_pass", 0, 0xffffffff, stsizeof(ipf_main_softc_t, ipf_pass), 0, NULL, NULL }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) }, "tcp_idle_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpidletimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) }, "tcp_close_wait", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpclosewait), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) }, "tcp_last_ack", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcplastack), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) }, "tcp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) }, "tcp_syn_sent", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpsynsent), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) }, "tcp_syn_received", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpsynrecv), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) }, "tcp_closed", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcpclosed), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) }, "tcp_half_closed", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcphalfclosed), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) }, "tcp_time_wait", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_tcptimewait), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) }, "udp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_udptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) }, "udp_ack_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_udpacktimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) }, "icmp_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_icmptimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) }, "icmp_ack_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_icmpacktimeout), 0, NULL, ipf_settimeout }, { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) }, "ip_timeout", 1, 0x7fffffff, stsizeof(ipf_main_softc_t, ipf_iptimeout), 0, NULL, ipf_settimeout }, #if defined(INSTANCES) && defined(_KERNEL) { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) }, "intercept_loopback", 0, 1, stsizeof(ipf_main_softc_t, ipf_get_loopback), 0, NULL, ipf_set_loopback }, #endif { { 0 }, NULL, 0, 0, 0, 0, NULL, NULL } }; /* * The next section of code is a collection of small routines that set * fields in the fr_info_t structure passed based on properties of the * current packet. There are different routines for the same protocol * for each of IPv4 and IPv6. Adding a new protocol, for which there * will "special" inspection for setup, is now more easily done by adding * a new routine and expanding the ipf_pr_ipinit*() function rather than by * adding more code to a growing switch statement. */ #ifdef USE_INET6 static INLINE int ipf_pr_ah6 __P((fr_info_t *)); static INLINE void ipf_pr_esp6 __P((fr_info_t *)); static INLINE void ipf_pr_gre6 __P((fr_info_t *)); static INLINE void ipf_pr_udp6 __P((fr_info_t *)); static INLINE void ipf_pr_tcp6 __P((fr_info_t *)); static INLINE void ipf_pr_icmp6 __P((fr_info_t *)); static INLINE void ipf_pr_ipv6hdr __P((fr_info_t *)); static INLINE void ipf_pr_short6 __P((fr_info_t *, int)); static INLINE int ipf_pr_hopopts6 __P((fr_info_t *)); static INLINE int ipf_pr_mobility6 __P((fr_info_t *)); static INLINE int ipf_pr_routing6 __P((fr_info_t *)); static INLINE int ipf_pr_dstopts6 __P((fr_info_t *)); static INLINE int ipf_pr_fragment6 __P((fr_info_t *)); static INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int)); /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_short6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* xmin(I) - minimum header size */ /* */ /* IPv6 Only */ /* This is function enforces the 'is a packet too short to be legit' rule */ /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ /* for ipf_pr_short() for more details. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_short6(fin, xmin) fr_info_t *fin; int xmin; { if (fin->fin_dlen < xmin) fin->fin_flx |= FI_SHORT; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv6hdr */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Copy values from the IPv6 header into the fr_info_t struct and call the */ /* per-protocol analyzer if it exists. In validating the packet, a protocol*/ /* analyzer may pullup or free the packet itself so we need to be vigiliant */ /* of that possibility arising. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_ipv6hdr(fin) fr_info_t *fin; { ip6_t *ip6 = (ip6_t *)fin->fin_ip; int p, go = 1, i, hdrcount; fr_ip_t *fi = &fin->fin_fi; fin->fin_off = 0; fi->fi_tos = 0; fi->fi_optmsk = 0; fi->fi_secmsk = 0; fi->fi_auth = 0; p = ip6->ip6_nxt; fin->fin_crc = p; fi->fi_ttl = ip6->ip6_hlim; fi->fi_src.in6 = ip6->ip6_src; fin->fin_crc += fi->fi_src.i6[0]; fin->fin_crc += fi->fi_src.i6[1]; fin->fin_crc += fi->fi_src.i6[2]; fin->fin_crc += fi->fi_src.i6[3]; fi->fi_dst.in6 = ip6->ip6_dst; fin->fin_crc += fi->fi_dst.i6[0]; fin->fin_crc += fi->fi_dst.i6[1]; fin->fin_crc += fi->fi_dst.i6[2]; fin->fin_crc += fi->fi_dst.i6[3]; fin->fin_id = 0; if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) fin->fin_flx |= FI_MULTICAST|FI_MBCAST; hdrcount = 0; while (go && !(fin->fin_flx & FI_SHORT)) { switch (p) { case IPPROTO_UDP : ipf_pr_udp6(fin); go = 0; break; case IPPROTO_TCP : ipf_pr_tcp6(fin); go = 0; break; case IPPROTO_ICMPV6 : ipf_pr_icmp6(fin); go = 0; break; case IPPROTO_GRE : ipf_pr_gre6(fin); go = 0; break; case IPPROTO_HOPOPTS : p = ipf_pr_hopopts6(fin); break; case IPPROTO_MOBILITY : p = ipf_pr_mobility6(fin); break; case IPPROTO_DSTOPTS : p = ipf_pr_dstopts6(fin); break; case IPPROTO_ROUTING : p = ipf_pr_routing6(fin); break; case IPPROTO_AH : p = ipf_pr_ah6(fin); break; case IPPROTO_ESP : ipf_pr_esp6(fin); go = 0; break; case IPPROTO_IPV6 : for (i = 0; ip6exthdr[i].ol_bit != 0; i++) if (ip6exthdr[i].ol_val == p) { fin->fin_flx |= ip6exthdr[i].ol_bit; break; } go = 0; break; case IPPROTO_NONE : go = 0; break; case IPPROTO_FRAGMENT : p = ipf_pr_fragment6(fin); /* * Given that the only fragments we want to let through * (where fin_off != 0) are those where the non-first * fragments only have data, we can safely stop looking * at headers if this is a non-leading fragment. */ if (fin->fin_off != 0) go = 0; break; default : go = 0; break; } hdrcount++; /* * It is important to note that at this point, for the * extension headers (go != 0), the entire header may not have * been pulled up when the code gets to this point. This is * only done for "go != 0" because the other header handlers * will all pullup their complete header. The other indicator * of an incomplete packet is that this was just an extension * header. */ if ((go != 0) && (p != IPPROTO_NONE) && (ipf_pr_pullup(fin, 0) == -1)) { p = IPPROTO_NONE; break; } } /* * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup * and destroy whatever packet was here. The caller of this function * expects us to return if there is a problem with ipf_pullup. */ if (fin->fin_m == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad); return; } fi->fi_p = p; /* * IPv6 fragment case 1 - see comment for ipf_pr_fragment6(). * "go != 0" imples the above loop hasn't arrived at a layer 4 header. */ if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go); LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag); LBUMP(ipf_stats[fin->fin_out].fr_v6_bad); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv6exthdr */ /* Returns: struct ip6_ext * - pointer to the start of the next header */ /* or NULL if there is a prolblem. */ /* Parameters: fin(I) - pointer to packet information */ /* multiple(I) - flag indicating yes/no if multiple occurances */ /* of this extension header are allowed. */ /* proto(I) - protocol number for this extension header */ /* */ /* IPv6 Only */ /* This function embodies a number of common checks that all IPv6 extension */ /* headers must be subjected to. For example, making sure the packet is */ /* big enough for it to be in, checking if it is repeated and setting a */ /* flag to indicate its presence. */ /* ------------------------------------------------------------------------ */ static INLINE struct ip6_ext * ipf_pr_ipv6exthdr(fin, multiple, proto) fr_info_t *fin; int multiple, proto; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_ext *hdr; u_short shift; int i; fin->fin_flx |= FI_V6EXTHDR; /* 8 is default length of extension hdr */ if ((fin->fin_dlen - 8) < 0) { fin->fin_flx |= FI_SHORT; LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short); return NULL; } if (ipf_pr_pullup(fin, 8) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup); return NULL; } hdr = fin->fin_dp; switch (proto) { case IPPROTO_FRAGMENT : shift = 8; break; default : shift = 8 + (hdr->ip6e_len << 3); break; } if (shift > fin->fin_dlen) { /* Nasty extension header length? */ fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen); LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen); return NULL; } fin->fin_dp = (char *)fin->fin_dp + shift; fin->fin_dlen -= shift; /* * If we have seen a fragment header, do not set any flags to indicate * the presence of this extension header as it has no impact on the * end result until after it has been defragmented. */ if (fin->fin_flx & FI_FRAG) return hdr; for (i = 0; ip6exthdr[i].ol_bit != 0; i++) if (ip6exthdr[i].ol_val == proto) { /* * Most IPv6 extension headers are only allowed once. */ if ((multiple == 0) && ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit)); } else fin->fin_optmsk |= ip6exthdr[i].ol_bit; break; } return hdr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_hopopts6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending hop by hop options extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_hopopts6(fin) fr_info_t *fin; { struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); if (hdr == NULL) return IPPROTO_NONE; return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_mobility6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks the IPv6 mobility extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_mobility6(fin) fr_info_t *fin; { struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY); if (hdr == NULL) return IPPROTO_NONE; return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_routing6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending routing extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_routing6(fin) fr_info_t *fin; { struct ip6_routing *hdr; hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING); if (hdr == NULL) return IPPROTO_NONE; switch (hdr->ip6r_type) { case 0 : /* * Nasty extension header length? */ if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) || (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_routing6, fr_info_t *, fin); LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad); return IPPROTO_NONE; } break; default : break; } return hdr->ip6r_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_fragment6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Examine the IPv6 fragment header and extract fragment offset information.*/ /* */ /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */ /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */ /* packets with a fragment header can fit into. They are as follows: */ /* */ /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */ /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */ /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */ /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */ /* 5. [IPV6][0-n EH][FH][data] */ /* */ /* IPV6 = IPv6 header, FH = Fragment Header, */ /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */ /* */ /* Packets that match 1, 2, 3 will be dropped as the only reasonable */ /* scenario in which they happen is in extreme circumstances that are most */ /* likely to be an indication of an attack rather than normal traffic. */ /* A type 3 packet may be sent by an attacked after a type 4 packet. There */ /* are two rules that can be used to guard against type 3 packets: L4 */ /* headers must always be in a packet that has the offset field set to 0 */ /* and no packet is allowed to overlay that where offset = 0. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_fragment6(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_frag *frag; fin->fin_flx |= FI_FRAG; frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT); if (frag == NULL) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad); return IPPROTO_NONE; } if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { /* * Any fragment that isn't the last fragment must have its * length as a multiple of 8. */ if ((fin->fin_plen & 7) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7)); } } fin->fin_fraghdr = frag; fin->fin_id = frag->ip6f_ident; fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); if (fin->fin_off != 0) fin->fin_flx |= FI_FRAGBODY; /* * Jumbograms aren't handled, so the max. length is 64k */ if ((fin->fin_off << 3) + fin->fin_dlen > 65535) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen)); } /* * We don't know where the transport layer header (or whatever is next * is), as it could be behind destination options (amongst others) so * return the fragment header as the type of packet this is. Note that * this effectively disables the fragment cache for > 1 protocol at a * time. */ return frag->ip6f_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_dstopts6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This is function checks pending destination options extension header */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_dstopts6(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; struct ip6_ext *hdr; hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS); if (hdr == NULL) { LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad); return IPPROTO_NONE; } return hdr->ip6e_nxt; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_icmp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* This routine is mainly concerned with determining the minimum valid size */ /* for an ICMPv6 packet. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_icmp6(fin) fr_info_t *fin; { int minicmpsz = sizeof(struct icmp6_hdr); struct icmp6_hdr *icmp6; if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup); return; } if (fin->fin_dlen > 1) { ip6_t *ip6; icmp6 = fin->fin_dp; fin->fin_data[0] = *(u_short *)icmp6; if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) fin->fin_flx |= FI_ICMPQUERY; switch (icmp6->icmp6_type) { case ICMP6_ECHO_REPLY : case ICMP6_ECHO_REQUEST : if (fin->fin_dlen >= 6) fin->fin_data[1] = icmp6->icmp6_id; minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); break; case ICMP6_DST_UNREACH : case ICMP6_PACKET_TOO_BIG : case ICMP6_TIME_EXCEEDED : case ICMP6_PARAM_PROB : fin->fin_flx |= FI_ICMPERR; minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) break; if (M_LEN(fin->fin_m) < fin->fin_plen) { if (ipf_coalesce(fin) != 1) return; } if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1) return; /* * If the destination of this packet doesn't match the * source of the original packet then this packet is * not correct. */ icmp6 = fin->fin_dp; ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN); if (IP6_NEQ(&fin->fin_fi.fi_dst, (i6addr_t *)&ip6->ip6_src)) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_icmp6, fr_info_t *, fin); } break; default : break; } } ipf_pr_short6(fin, minicmpsz); if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_ICMPV6; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for IPv6/UDP properties. */ /* Is not expected to be called for fragmented packets. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_udp6(fin) fr_info_t *fin; { if (ipf_pr_udpcommon(fin) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_UDP; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for IPv6/TCP properties. */ /* Is not expected to be called for fragmented packets. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_tcp6(fin) fr_info_t *fin; { if (ipf_pr_tcpcommon(fin) == 0) { u_char p = fin->fin_p; fin->fin_p = IPPROTO_TCP; ipf_checkv6sum(fin); fin->fin_p = p; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_esp6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for ESP properties. */ /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ /* even though the newer ESP packets must also have a sequence number that */ /* is 32bits as well, it is not possible(?) to determine the version from a */ /* simple packet header. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_esp6(fin) fr_info_t *fin; { if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup); return; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ah6 */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv6 Only */ /* Analyse the packet for AH properties. */ /* The minimum length is taken to be the combination of all fields in the */ /* header being present and no authentication data (null algorithm used.) */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_ah6(fin) fr_info_t *fin; { authhdr_t *ah; fin->fin_flx |= FI_AH; ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); if (ah == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad); return IPPROTO_NONE; } ipf_pr_short6(fin, sizeof(*ah)); /* * No need for another pullup, ipf_pr_ipv6exthdr() will pullup * enough data to satisfy ah_next (the very first one.) */ return ah->ah_next; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_gre6 */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for GRE properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_gre6(fin) fr_info_t *fin; { grehdr_t *gre; if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup); return; } gre = fin->fin_dp; if (GRE_REV(gre->gr_flags) == 1) fin->fin_data[0] = gre->gr_call; } #endif /* USE_INET6 */ /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_pullup */ /* Returns: int - 0 == pullup succeeded, -1 == failure */ /* Parameters: fin(I) - pointer to packet information */ /* plen(I) - length (excluding L3 header) to pullup */ /* */ /* Short inline function to cut down on code duplication to perform a call */ /* to ipf_pullup to ensure there is the required amount of data, */ /* consecutively in the packet buffer. */ /* */ /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */ /* points to the first byte after the complete layer 3 header, which will */ /* include all of the known extension headers for IPv6 or options for IPv4. */ /* */ /* Since fr_pullup() expects the total length of bytes to be pulled up, it */ /* is necessary to add those we can already assume to be pulled up (fin_dp */ /* - fin_ip) to what is passed through. */ /* ------------------------------------------------------------------------ */ int ipf_pr_pullup(fin, plen) fr_info_t *fin; int plen; { ipf_main_softc_t *softc = fin->fin_main_soft; if (fin->fin_m != NULL) { if (fin->fin_dp != NULL) plen += (char *)fin->fin_dp - ((char *)fin->fin_ip + fin->fin_hlen); plen += fin->fin_hlen; if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) { #if defined(_KERNEL) if (ipf_pullup(fin->fin_m, fin, plen) == NULL) { DT(ipf_pullup_fail); LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); return -1; } LBUMP(ipf_stats[fin->fin_out].fr_pull[0]); #else LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); /* * Fake ipf_pullup failing */ fin->fin_reason = FRB_PULLUP; *fin->fin_mp = NULL; fin->fin_m = NULL; fin->fin_ip = NULL; return -1; #endif } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_short */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* xmin(I) - minimum header size */ /* */ /* Check if a packet is "short" as defined by xmin. The rule we are */ /* applying here is that the packet must not be fragmented within the layer */ /* 4 header. That is, it must not be a fragment that has its offset set to */ /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ /* entire layer 4 header must be present (min). */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_short(fin, xmin) fr_info_t *fin; int xmin; { if (fin->fin_off == 0) { if (fin->fin_dlen < xmin) fin->fin_flx |= FI_SHORT; } else if (fin->fin_off < xmin) { fin->fin_flx |= FI_SHORT; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_icmp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ /* except extrememly bad packets, both type and code will be present. */ /* The expected minimum size of an ICMP packet is very much dependent on */ /* the type of it. */ /* */ /* XXX - other ICMP sanity checks? */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_icmp(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int minicmpsz = sizeof(struct icmp); icmphdr_t *icmp; ip_t *oip; ipf_pr_short(fin, ICMPERR_ICMPHLEN); if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag); return; } if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup); return; } icmp = fin->fin_dp; fin->fin_data[0] = *(u_short *)icmp; fin->fin_data[1] = icmp->icmp_id; switch (icmp->icmp_type) { case ICMP_ECHOREPLY : case ICMP_ECHO : /* Router discovery messaes - RFC 1256 */ case ICMP_ROUTERADVERT : case ICMP_ROUTERSOLICIT : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = ICMP_MINLEN; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + * 3 * timestamp(3 * 4) */ case ICMP_TSTAMP : case ICMP_TSTAMPREPLY : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = 20; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + * mask(4) */ case ICMP_IREQ : case ICMP_IREQREPLY : case ICMP_MASKREQ : case ICMP_MASKREPLY : fin->fin_flx |= FI_ICMPQUERY; minicmpsz = 12; break; /* * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) */ case ICMP_UNREACH : #ifdef icmp_nextmtu if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) { fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu); } } #endif /* FALLTHROUGH */ case ICMP_SOURCEQUENCH : case ICMP_REDIRECT : case ICMP_TIMXCEED : case ICMP_PARAMPROB : fin->fin_flx |= FI_ICMPERR; if (ipf_coalesce(fin) != 1) { LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce); return; } /* * ICMP error packets should not be generated for IP * packets that are a fragment that isn't the first * fragment. */ oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK)); } /* * If the destination of this packet doesn't match the * source of the original packet then this packet is * not correct. */ if (oip->ip_src.s_addr != fin->fin_daddr) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin); } break; default : break; } ipf_pr_short(fin, minicmpsz); ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcpcommon */ /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* TCP header sanity checking. Look for bad combinations of TCP flags, */ /* and make some checks with how they interact with other fields. */ /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ /* valid and mark the packet as bad if not. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_tcpcommon(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int flags, tlen; tcphdr_t *tcp; fin->fin_flx |= FI_TCPUDP; if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag); return 0; } if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); return -1; } tcp = fin->fin_dp; if (fin->fin_dlen > 3) { fin->fin_sport = ntohs(tcp->th_sport); fin->fin_dport = ntohs(tcp->th_dport); } if ((fin->fin_flx & FI_SHORT) != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short); return 1; } /* * Use of the TCP data offset *must* result in a value that is at * least the same size as the TCP header. */ tlen = TCP_OFF(tcp) << 2; if (tlen < sizeof(tcphdr_t)) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small); fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t)); return 1; } flags = tcp->th_flags; fin->fin_tcpf = tcp->th_flags; /* * If the urgent flag is set, then the urgent pointer must * also be set and vice versa. Good TCP packets do not have * just one of these set. */ if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); #if 0 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { /* * Ignore this case (#if 0) as it shows up in "real" * traffic with bogus values in the urgent pointer field. */ fin->fin_flx |= FI_BAD; DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); #endif } else if (((flags & (TH_SYN|TH_FIN)) != 0) && ((flags & (TH_RST|TH_ACK)) == TH_RST)) { /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin); #if 1 } else if (((flags & TH_SYN) != 0) && ((flags & (TH_URG|TH_PUSH)) != 0)) { /* * SYN with URG and PUSH set is not for normal TCP but it is * possible(?) with T/TCP...but who uses T/TCP? */ fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin); #endif } else if (!(flags & TH_ACK)) { /* * If the ack bit isn't set, then either the SYN or * RST bit must be set. If the SYN bit is set, then * we expect the ACK field to be 0. If the ACK is * not set and if URG, PSH or FIN are set, consdier * that to indicate a bad TCP packet. */ if ((flags == TH_SYN) && (tcp->th_ack != 0)) { /* * Cisco PIX sets the ACK field to a random value. * In light of this, do not set FI_BAD until a patch * is available from Cisco to ensure that * interoperability between existing systems is * achieved. */ /*fin->fin_flx |= FI_BAD*/; /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/ } else if (!(flags & (TH_RST|TH_SYN))) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin); } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { fin->fin_flx |= FI_BAD; DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin); } } if (fin->fin_flx & FI_BAD) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags); return 1; } /* * At this point, it's not exactly clear what is to be gained by * marking up which TCP options are and are not present. The one we * are most interested in is the TCP window scale. This is only in * a SYN packet [RFC1323] so we don't need this here...? * Now if we were to analyse the header for passive fingerprinting, * then that might add some weight to adding this... */ if (tlen == sizeof(tcphdr_t)) { return 0; } if (ipf_pr_pullup(fin, tlen) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); return -1; } #if 0 tcp = fin->fin_dp; ip = fin->fin_ip; s = (u_char *)(tcp + 1); off = IP_HL(ip) << 2; # ifdef _KERNEL if (fin->fin_mp != NULL) { mb_t *m = *fin->fin_mp; if (off + tlen > M_LEN(m)) return; } # endif for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { opt = *s; if (opt == '\0') break; else if (opt == TCPOPT_NOP) ol = 1; else { if (tlen < 2) break; ol = (int)*(s + 1); if (ol < 2 || ol > tlen) break; } for (i = 9, mv = 4; mv >= 0; ) { op = ipopts + i; if (opt == (u_char)op->ol_val) { optmsk |= op->ol_bit; break; } } tlen -= ol; s += ol; } #endif /* 0 */ return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udpcommon */ /* Returns: int - 0 = header ok, 1 = bad packet */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Extract the UDP source and destination ports, if present. If compiled */ /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_udpcommon(fin) fr_info_t *fin; { udphdr_t *udp; fin->fin_flx |= FI_TCPUDP; if (!fin->fin_off && (fin->fin_dlen > 3)) { if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; fin->fin_flx |= FI_SHORT; LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup); return 1; } udp = fin->fin_dp; fin->fin_sport = ntohs(udp->uh_sport); fin->fin_dport = ntohs(udp->uh_dport); } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_tcp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyse the packet for IPv4/TCP properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_tcp(fin) fr_info_t *fin; { ipf_pr_short(fin, sizeof(tcphdr_t)); if (ipf_pr_tcpcommon(fin) == 0) ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_udp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyse the packet for IPv4/UDP properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_udp(fin) fr_info_t *fin; { ipf_pr_short(fin, sizeof(udphdr_t)); if (ipf_pr_udpcommon(fin) == 0) ipf_checkv4sum(fin); } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_esp */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for ESP properties. */ /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ /* even though the newer ESP packets must also have a sequence number that */ /* is 32bits as well, it is not possible(?) to determine the version from a */ /* simple packet header. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_esp(fin) fr_info_t *fin; { if (fin->fin_off == 0) { ipf_pr_short(fin, 8); if (ipf_pr_pullup(fin, 8) == -1) { ipf_main_softc_t *softc = fin->fin_main_soft; LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup); } } } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ah */ /* Returns: int - value of the next header or IPPROTO_NONE if error */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for AH properties. */ /* The minimum length is taken to be the combination of all fields in the */ /* header being present and no authentication data (null algorithm used.) */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_pr_ah(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; authhdr_t *ah; int len; fin->fin_flx |= FI_AH; ipf_pr_short(fin, sizeof(*ah)); if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad); return IPPROTO_NONE; } if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) { DT(fr_v4_ah_pullup_1); LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); return IPPROTO_NONE; } ah = (authhdr_t *)fin->fin_dp; len = (ah->ah_plen + 2) << 2; ipf_pr_short(fin, len); if (ipf_pr_pullup(fin, len) == -1) { DT(fr_v4_ah_pullup_2); LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); return IPPROTO_NONE; } /* * Adjust fin_dp and fin_dlen for skipping over the authentication * header. */ fin->fin_dp = (char *)fin->fin_dp + len; fin->fin_dlen -= len; return ah->ah_next; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_gre */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Analyse the packet for GRE properties. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_gre(fin) fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; grehdr_t *gre; ipf_pr_short(fin, sizeof(grehdr_t)); if (fin->fin_off != 0) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag); return; } if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup); return; } gre = fin->fin_dp; if (GRE_REV(gre->gr_flags) == 1) fin->fin_data[0] = gre->gr_call; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pr_ipv4hdr */ /* Returns: void */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* IPv4 Only */ /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ /* Check all options present and flag their presence if any exist. */ /* ------------------------------------------------------------------------ */ static INLINE void ipf_pr_ipv4hdr(fin) fr_info_t *fin; { u_short optmsk = 0, secmsk = 0, auth = 0; int hlen, ol, mv, p, i; const struct optlist *op; u_char *s, opt; u_short off; fr_ip_t *fi; ip_t *ip; fi = &fin->fin_fi; hlen = fin->fin_hlen; ip = fin->fin_ip; p = ip->ip_p; fi->fi_p = p; fin->fin_crc = p; fi->fi_tos = ip->ip_tos; fin->fin_id = ip->ip_id; off = ntohs(ip->ip_off); /* Get both TTL and protocol */ fi->fi_p = ip->ip_p; fi->fi_ttl = ip->ip_ttl; /* Zero out bits not used in IPv6 address */ fi->fi_src.i6[1] = 0; fi->fi_src.i6[2] = 0; fi->fi_src.i6[3] = 0; fi->fi_dst.i6[1] = 0; fi->fi_dst.i6[2] = 0; fi->fi_dst.i6[3] = 0; fi->fi_saddr = ip->ip_src.s_addr; fin->fin_crc += fi->fi_saddr; fi->fi_daddr = ip->ip_dst.s_addr; fin->fin_crc += fi->fi_daddr; if (IN_CLASSD(ntohl(fi->fi_daddr))) fin->fin_flx |= FI_MULTICAST|FI_MBCAST; /* * set packet attribute flags based on the offset and * calculate the byte offset that it represents. */ off &= IP_MF|IP_OFFMASK; if (off != 0) { int morefrag = off & IP_MF; fi->fi_flx |= FI_FRAG; off &= IP_OFFMASK; if (off == 1 && p == IPPROTO_TCP) { fin->fin_flx |= FI_SHORT; /* RFC 3128 */ DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin); } if (off != 0) { fin->fin_flx |= FI_FRAGBODY; off <<= 3; if ((off + fin->fin_dlen > 65535) || (fin->fin_dlen == 0) || ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { /* * The length of the packet, starting at its * offset cannot exceed 65535 (0xffff) as the * length of an IP packet is only 16 bits. * * Any fragment that isn't the last fragment * must have a length greater than 0 and it * must be an even multiple of 8. */ fi->fi_flx |= FI_BAD; DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin); } } } fin->fin_off = off; /* * Call per-protocol setup and checking */ if (p == IPPROTO_AH) { /* * Treat AH differently because we expect there to be another * layer 4 header after it. */ p = ipf_pr_ah(fin); } switch (p) { case IPPROTO_UDP : ipf_pr_udp(fin); break; case IPPROTO_TCP : ipf_pr_tcp(fin); break; case IPPROTO_ICMP : ipf_pr_icmp(fin); break; case IPPROTO_ESP : ipf_pr_esp(fin); break; case IPPROTO_GRE : ipf_pr_gre(fin); break; } ip = fin->fin_ip; if (ip == NULL) return; /* * If it is a standard IP header (no options), set the flag fields * which relate to options to 0. */ if (hlen == sizeof(*ip)) { fi->fi_optmsk = 0; fi->fi_secmsk = 0; fi->fi_auth = 0; return; } /* * So the IP header has some IP options attached. Walk the entire * list of options present with this packet and set flags to indicate * which ones are here and which ones are not. For the somewhat out * of date and obscure security classification options, set a flag to * represent which classification is present. */ fi->fi_flx |= FI_OPTIONS; for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { opt = *s; if (opt == '\0') break; else if (opt == IPOPT_NOP) ol = 1; else { if (hlen < 2) break; ol = (int)*(s + 1); if (ol < 2 || ol > hlen) break; } for (i = 9, mv = 4; mv >= 0; ) { op = ipopts + i; if ((opt == (u_char)op->ol_val) && (ol > 4)) { u_32_t doi; switch (opt) { case IPOPT_SECURITY : if (optmsk & op->ol_bit) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); } else { doi = ipf_checkripso(s); secmsk = doi >> 16; auth = doi & 0xffff; } break; case IPOPT_CIPSO : if (optmsk & op->ol_bit) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); } else { doi = ipf_checkcipso(fin, s, ol); secmsk = doi >> 16; auth = doi & 0xffff; } break; } optmsk |= op->ol_bit; } if (opt < op->ol_val) i -= mv; else i += mv; mv--; } hlen -= ol; s += ol; } /* * */ if (auth && !(auth & 0x0100)) auth &= 0xff00; fi->fi_optmsk = optmsk; fi->fi_secmsk = secmsk; fi->fi_auth = auth; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkripso */ /* Returns: void */ /* Parameters: s(I) - pointer to start of RIPSO option */ /* */ /* ------------------------------------------------------------------------ */ static u_32_t ipf_checkripso(s) u_char *s; { const struct optlist *sp; u_short secmsk = 0, auth = 0; u_char sec; int j, m; sec = *(s + 2); /* classification */ for (j = 3, m = 2; m >= 0; ) { sp = secopt + j; if (sec == sp->ol_val) { secmsk |= sp->ol_bit; auth = *(s + 3); auth *= 256; auth += *(s + 4); break; } if (sec < sp->ol_val) j -= m; else j += m; m--; } return (secmsk << 16) | auth; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkcipso */ /* Returns: u_32_t - 0 = failure, else the doi from the header */ /* Parameters: fin(IO) - pointer to packet information */ /* s(I) - pointer to start of CIPSO option */ /* ol(I) - length of CIPSO option field */ /* */ /* This function returns the domain of integrity (DOI) field from the CIPSO */ /* header and returns that whilst also storing the highest sensitivity */ /* value found in the fr_info_t structure. */ /* */ /* No attempt is made to extract the category bitmaps as these are defined */ /* by the user (rather than the protocol) and can be rather numerous on the */ /* end nodes. */ /* ------------------------------------------------------------------------ */ static u_32_t ipf_checkcipso(fin, s, ol) fr_info_t *fin; u_char *s; int ol; { ipf_main_softc_t *softc = fin->fin_main_soft; fr_ip_t *fi; u_32_t doi; u_char *t, tag, tlen, sensitivity; int len; if (ol < 6 || ol > 40) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad); fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol); return 0; } fi = &fin->fin_fi; fi->fi_sensitivity = 0; /* * The DOI field MUST be there. */ bcopy(s + 2, &doi, sizeof(doi)); t = (u_char *)s + 6; for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) { tag = *t; tlen = *(t + 1); if (tlen > len || tlen < 4 || tlen > 34) { LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen); fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen); return 0; } sensitivity = 0; /* * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet * draft (16 July 1992) that has expired. */ if (tag == 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag); continue; } else if (tag == 1) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Category bitmap for categories 0-239 */ } else if (tag == 4) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Enumerated categories, 16bits each, upto 15 */ } else if (tag == 5) { if (*(t + 2) != 0) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2)); continue; } sensitivity = *(t + 3); /* Range of categories (2*16bits), up to 7 pairs */ } else if (tag > 127) { /* Custom defined DOI */ ; } else { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag); continue; } if (sensitivity > fi->fi_sensitivity) fi->fi_sensitivity = sensitivity; } return doi; } /* ------------------------------------------------------------------------ */ /* Function: ipf_makefrip */ /* Returns: int - 0 == packet ok, -1 == packet freed */ /* Parameters: hlen(I) - length of IP packet header */ /* ip(I) - pointer to the IP header */ /* fin(IO) - pointer to packet information */ /* */ /* Compact the IP header into a structure which contains just the info. */ /* which is useful for comparing IP headers with and store this information */ /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ /* this function will be called with either an IPv4 or IPv6 packet. */ /* ------------------------------------------------------------------------ */ int ipf_makefrip(hlen, ip, fin) int hlen; ip_t *ip; fr_info_t *fin; { ipf_main_softc_t *softc = fin->fin_main_soft; int v; fin->fin_depth = 0; fin->fin_hlen = (u_short)hlen; fin->fin_ip = ip; fin->fin_rule = 0xffffffff; fin->fin_group[0] = -1; fin->fin_group[1] = '\0'; fin->fin_dp = (char *)ip + hlen; v = fin->fin_v; if (v == 4) { fin->fin_plen = ntohs(ip->ip_len); fin->fin_dlen = fin->fin_plen - hlen; ipf_pr_ipv4hdr(fin); #ifdef USE_INET6 } else if (v == 6) { fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen); fin->fin_dlen = fin->fin_plen; fin->fin_plen += hlen; ipf_pr_ipv6hdr(fin); #endif } if (fin->fin_ip == NULL) { LBUMP(ipf_stats[fin->fin_out].fr_ip_freed); return -1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_portcheck */ /* Returns: int - 1 == port matched, 0 == port match failed */ /* Parameters: frp(I) - pointer to port check `expression' */ /* pop(I) - port number to evaluate */ /* */ /* Perform a comparison of a port number against some other(s), using a */ /* structure with compare information stored in it. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_portcheck(frp, pop) frpcmp_t *frp; u_32_t pop; { int err = 1; u_32_t po; po = frp->frp_port; /* * Do opposite test to that required and continue if that succeeds. */ switch (frp->frp_cmp) { case FR_EQUAL : if (pop != po) /* EQUAL */ err = 0; break; case FR_NEQUAL : if (pop == po) /* NOTEQUAL */ err = 0; break; case FR_LESST : if (pop >= po) /* LESSTHAN */ err = 0; break; case FR_GREATERT : if (pop <= po) /* GREATERTHAN */ err = 0; break; case FR_LESSTE : if (pop > po) /* LT or EQ */ err = 0; break; case FR_GREATERTE : if (pop < po) /* GT or EQ */ err = 0; break; case FR_OUTRANGE : if (pop >= po && pop <= frp->frp_top) /* Out of range */ err = 0; break; case FR_INRANGE : if (pop <= po || pop >= frp->frp_top) /* In range */ err = 0; break; case FR_INCRANGE : if (pop < po || pop > frp->frp_top) /* Inclusive range */ err = 0; break; default : break; } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tcpudpchk */ /* Returns: int - 1 == protocol matched, 0 == check failed */ /* Parameters: fda(I) - pointer to packet information */ /* ft(I) - pointer to structure with comparison data */ /* */ /* Compares the current pcket (assuming it is TCP/UDP) information with a */ /* structure containing information that we want to match against. */ /* ------------------------------------------------------------------------ */ int ipf_tcpudpchk(fi, ft) fr_ip_t *fi; frtuc_t *ft; { int err = 1; /* * Both ports should *always* be in the first fragment. * So far, I cannot find any cases where they can not be. * * compare destination ports */ if (ft->ftu_dcmp) err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]); /* * compare source ports */ if (err && ft->ftu_scmp) err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]); /* * If we don't have all the TCP/UDP header, then how can we * expect to do any sort of match on it ? If we were looking for * TCP flags, then NO match. If not, then match (which should * satisfy the "short" class too). */ if (err && (fi->fi_p == IPPROTO_TCP)) { if (fi->fi_flx & FI_SHORT) return !(ft->ftu_tcpf | ft->ftu_tcpfm); /* * Match the flags ? If not, abort this match. */ if (ft->ftu_tcpfm && ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) { FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf, ft->ftu_tcpfm, ft->ftu_tcpf)); err = 0; } } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_check_ipf */ /* Returns: int - 0 == match, else no match */ /* Parameters: fin(I) - pointer to packet information */ /* fr(I) - pointer to filter rule */ /* portcmp(I) - flag indicating whether to attempt matching on */ /* TCP/UDP port data. */ /* */ /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ /* this function. */ /* ------------------------------------------------------------------------ */ static INLINE int ipf_check_ipf(fin, fr, portcmp) fr_info_t *fin; frentry_t *fr; int portcmp; { u_32_t *ld, *lm, *lip; fripf_t *fri; fr_ip_t *fi; int i; fi = &fin->fin_fi; fri = fr->fr_ipf; lip = (u_32_t *)fi; lm = (u_32_t *)&fri->fri_mip; ld = (u_32_t *)&fri->fri_ip; /* * first 32 bits to check coversion: * IP version, TOS, TTL, protocol */ i = ((*lip & *lm) != *ld); FR_DEBUG(("0. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (i) return 1; /* * Next 32 bits is a constructed bitmask indicating which IP options * are present (if any) in this packet. */ lip++, lm++, ld++; i = ((*lip & *lm) != *ld); FR_DEBUG(("1. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (i != 0) return 1; lip++, lm++, ld++; /* * Unrolled loops (4 each, for 32 bits) for address checks. */ /* * Check the source address. */ if (fr->fr_satype == FRI_LOOKUP) { i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr, fi->fi_v, lip, fin->fin_plen); if (i == -1) return 1; lip += 3; lm += 3; ld += 3; } else { i = ((*lip & *lm) != *ld); FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (fi->fi_v == 6) { lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); } else { lip += 3; lm += 3; ld += 3; } } i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; if (i != 0) return 1; /* * Check the destination address. */ lip++, lm++, ld++; if (fr->fr_datype == FRI_LOOKUP) { i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr, fi->fi_v, lip, fin->fin_plen); if (i == -1) return 1; lip += 3; lm += 3; ld += 3; } else { i = ((*lip & *lm) != *ld); FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); if (fi->fi_v == 6) { lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); lip++, lm++, ld++; i |= ((*lip & *lm) != *ld); FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", ntohl(*lip), ntohl(*lm), ntohl(*ld))); } else { lip += 3; lm += 3; ld += 3; } } i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; if (i != 0) return 1; /* * IP addresses matched. The next 32bits contains: * mast of old IP header security & authentication bits. */ lip++, lm++, ld++; i = (*ld - (*lip & *lm)); FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); /* * Next we have 32 bits of packet flags. */ lip++, lm++, ld++; i |= (*ld - (*lip & *lm)); FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); if (i == 0) { /* * If a fragment, then only the first has what we're * looking for here... */ if (portcmp) { if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc)) i = 1; } else { if (fr->fr_dcmp || fr->fr_scmp || fr->fr_tcpf || fr->fr_tcpfm) i = 1; if (fr->fr_icmpm || fr->fr_icmp) { if (((fi->fi_p != IPPROTO_ICMP) && (fi->fi_p != IPPROTO_ICMPV6)) || fin->fin_off || (fin->fin_dlen < 2)) i = 1; else if ((fin->fin_data[0] & fr->fr_icmpm) != fr->fr_icmp) { FR_DEBUG(("i. %#x & %#x != %#x\n", fin->fin_data[0], fr->fr_icmpm, fr->fr_icmp)); i = 1; } } } } return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_scanlist */ /* Returns: int - result flags of scanning filter list */ /* Parameters: fin(I) - pointer to packet information */ /* pass(I) - default result to return for filtering */ /* */ /* Check the input/output list of rules for a match to the current packet. */ /* If a match is found, the value of fr_flags from the rule becomes the */ /* return value and fin->fin_fr points to the matched rule. */ /* */ /* This function may be called recusively upto 16 times (limit inbuilt.) */ /* When unwinding, it should finish up with fin_depth as 0. */ /* */ /* Could be per interface, but this gets real nasty when you don't have, */ /* or can't easily change, the kernel source code to . */ /* ------------------------------------------------------------------------ */ int ipf_scanlist(fin, pass) fr_info_t *fin; u_32_t pass; { ipf_main_softc_t *softc = fin->fin_main_soft; int rulen, portcmp, off, skip; struct frentry *fr, *fnext; u_32_t passt, passo; /* * Do not allow nesting deeper than 16 levels. */ if (fin->fin_depth >= 16) return pass; fr = fin->fin_fr; /* * If there are no rules in this list, return now. */ if (fr == NULL) return pass; skip = 0; portcmp = 0; fin->fin_depth++; fin->fin_fr = NULL; off = fin->fin_off; if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) portcmp = 1; for (rulen = 0; fr; fr = fnext, rulen++) { fnext = fr->fr_next; if (skip != 0) { FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags)); skip--; continue; } /* * In all checks below, a null (zero) value in the * filter struture is taken to mean a wildcard. * * check that we are working for the right interface */ #ifdef _KERNEL if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) continue; #else if (opts & (OPT_VERBOSE|OPT_DEBUG)) printf("\n"); FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : FR_ISPASS(pass) ? 'p' : FR_ISACCOUNT(pass) ? 'A' : FR_ISAUTH(pass) ? 'a' : (pass & FR_NOMATCH) ? 'n' :'b')); if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) continue; FR_VERBOSE((":i")); #endif switch (fr->fr_type) { case FR_T_IPF : case FR_T_IPF_BUILTIN : if (ipf_check_ipf(fin, fr, portcmp)) continue; break; #if defined(IPFILTER_BPF) case FR_T_BPFOPC : case FR_T_BPFOPC_BUILTIN : { u_char *mc; int wlen; if (*fin->fin_mp == NULL) continue; if (fin->fin_family != fr->fr_family) continue; mc = (u_char *)fin->fin_m; wlen = fin->fin_dlen + fin->fin_hlen; if (!bpf_filter(fr->fr_data, mc, wlen, 0)) continue; break; } #endif case FR_T_CALLFUNC_BUILTIN : { frentry_t *f; f = (*fr->fr_func)(fin, &pass); if (f != NULL) fr = f; else continue; break; } case FR_T_IPFEXPR : case FR_T_IPFEXPR_BUILTIN : if (fin->fin_family != fr->fr_family) continue; if (ipf_fr_matcharray(fin, fr->fr_data) == 0) continue; break; default : break; } if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { if (fin->fin_nattag == NULL) continue; if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) continue; } FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen)); passt = fr->fr_flags; /* * If the rule is a "call now" rule, then call the function * in the rule, if it exists and use the results from that. * If the function pointer is bad, just make like we ignore * it, except for increasing the hit counter. */ if ((passt & FR_CALLNOW) != 0) { frentry_t *frs; ATOMIC_INC64(fr->fr_hits); if ((fr->fr_func == NULL) || (fr->fr_func == (ipfunc_t)-1)) continue; frs = fin->fin_fr; fin->fin_fr = fr; fr = (*fr->fr_func)(fin, &passt); if (fr == NULL) { fin->fin_fr = frs; continue; } passt = fr->fr_flags; } fin->fin_fr = fr; #ifdef IPFILTER_LOG /* * Just log this packet... */ if ((passt & FR_LOGMASK) == FR_LOG) { if (ipf_log_pkt(fin, passt) == -1) { if (passt & FR_LOGORBLOCK) { DT(frb_logfail); passt &= ~FR_CMDMASK; passt |= FR_BLOCK|FR_QUICK; fin->fin_reason = FRB_LOGFAIL; } } } #endif /* IPFILTER_LOG */ MUTEX_ENTER(&fr->fr_lock); fr->fr_bytes += (U_QUAD_T)fin->fin_plen; fr->fr_hits++; MUTEX_EXIT(&fr->fr_lock); fin->fin_rule = rulen; passo = pass; if (FR_ISSKIP(passt)) { skip = fr->fr_arg; continue; } else if (((passt & FR_LOGMASK) != FR_LOG) && ((passt & FR_LOGMASK) != FR_DECAPSULATE)) { pass = passt; } if (passt & (FR_RETICMP|FR_FAKEICMP)) fin->fin_icode = fr->fr_icode; if (fr->fr_group != -1) { (void) strncpy(fin->fin_group, FR_NAME(fr, fr_group), strlen(FR_NAME(fr, fr_group))); } else { fin->fin_group[0] = '\0'; } FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt)); if (fr->fr_grphead != NULL) { fin->fin_fr = fr->fr_grphead->fg_start; FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead))); if (FR_ISDECAPS(passt)) passt = ipf_decaps(fin, pass, fr->fr_icode); else passt = ipf_scanlist(fin, pass); if (fin->fin_fr == NULL) { fin->fin_rule = rulen; if (fr->fr_group != -1) (void) strncpy(fin->fin_group, fr->fr_names + fr->fr_group, strlen(fr->fr_names + fr->fr_group)); fin->fin_fr = fr; passt = pass; } pass = passt; } if (pass & FR_QUICK) { /* * Finally, if we've asked to track state for this * packet, set it up. Add state for "quick" rules * here so that if the action fails we can consider * the rule to "not match" and keep on processing * filter rules. */ if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) && !(fin->fin_flx & FI_STATE)) { int out = fin->fin_out; fin->fin_fr = fr; if (ipf_state_add(softc, fin, NULL, 0) == 0) { LBUMPD(ipf_stats[out], fr_ads); } else { LBUMPD(ipf_stats[out], fr_bads); pass = passo; continue; } } break; } } fin->fin_depth--; return pass; } /* ------------------------------------------------------------------------ */ /* Function: ipf_acctpkt */ /* Returns: frentry_t* - always returns NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Checks a packet against accounting rules, if there are any for the given */ /* IP protocol version. */ /* */ /* N.B.: this function returns NULL to match the prototype used by other */ /* functions called from the IPFilter "mainline" in ipf_check(). */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_acctpkt(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; char group[FR_GROUPLEN]; frentry_t *fr, *frsave; u_32_t pass, rulen; passp = passp; fr = softc->ipf_acct[fin->fin_out][softc->ipf_active]; if (fr != NULL) { frsave = fin->fin_fr; bcopy(fin->fin_group, group, FR_GROUPLEN); rulen = fin->fin_rule; fin->fin_fr = fr; pass = ipf_scanlist(fin, FR_NOMATCH); if (FR_ISACCOUNT(pass)) { LBUMPD(ipf_stats[0], fr_acct); } fin->fin_fr = frsave; bcopy(group, fin->fin_group, FR_GROUPLEN); fin->fin_rule = rulen; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_firewall */ /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ /* were found, returns NULL. */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Applies an appropriate set of firewall rules to the packet, to see if */ /* there are any matches. The first check is to see if a match can be seen */ /* in the cache. If not, then search an appropriate list of rules. Once a */ /* matching rule is found, take any appropriate actions as defined by the */ /* rule - except logging. */ /* ------------------------------------------------------------------------ */ static frentry_t * ipf_firewall(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; frentry_t *fr; u_32_t pass; int out; out = fin->fin_out; pass = *passp; /* * This rule cache will only affect packets that are not being * statefully filtered. */ fin->fin_fr = softc->ipf_rules[out][softc->ipf_active]; if (fin->fin_fr != NULL) pass = ipf_scanlist(fin, softc->ipf_pass); if ((pass & FR_NOMATCH)) { LBUMPD(ipf_stats[out], fr_nom); } fr = fin->fin_fr; /* * Apply packets per second rate-limiting to a rule as required. */ if ((fr != NULL) && (fr->fr_pps != 0) && !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr); pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST); pass |= FR_BLOCK; LBUMPD(ipf_stats[out], fr_ppshit); fin->fin_reason = FRB_PPSRATE; } /* * If we fail to add a packet to the authorization queue, then we * drop the packet later. However, if it was added then pretend * we've dropped it already. */ if (FR_ISAUTH(pass)) { if (ipf_auth_new(fin->fin_m, fin) != 0) { DT1(frb_authnew, fr_info_t *, fin); fin->fin_m = *fin->fin_mp = NULL; fin->fin_reason = FRB_AUTHNEW; fin->fin_error = 0; } else { IPFERROR(1); fin->fin_error = ENOSPC; } } if ((fr != NULL) && (fr->fr_func != NULL) && (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) (void) (*fr->fr_func)(fin, &pass); /* * If a rule is a pre-auth rule, check again in the list of rules * loaded for authenticated use. It does not particulary matter * if this search fails because a "preauth" result, from a rule, * is treated as "not a pass", hence the packet is blocked. */ if (FR_ISPREAUTH(pass)) { pass = ipf_auth_pre_scanlist(softc, fin, pass); } /* * If the rule has "keep frag" and the packet is actually a fragment, * then create a fragment state entry. */ if (pass & FR_KEEPFRAG) { if (fin->fin_flx & FI_FRAG) { if (ipf_frag_new(softc, fin, pass) == -1) { LBUMP(ipf_stats[out].fr_bnfr); } else { LBUMP(ipf_stats[out].fr_nfr); } } else { LBUMP(ipf_stats[out].fr_cfr); } } fr = fin->fin_fr; *passp = pass; return fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_check */ /* Returns: int - 0 == packet allowed through, */ /* User space: */ /* -1 == packet blocked */ /* 1 == packet not matched */ /* -2 == requires authentication */ /* Kernel: */ /* > 0 == filter error # for packet */ /* Parameters: ctx(I) - pointer to the instance context */ /* ip(I) - pointer to start of IPv4/6 packet */ /* hlen(I) - length of header */ /* ifp(I) - pointer to interface this packet is on */ /* out(I) - 0 == packet going in, 1 == packet going out */ /* mp(IO) - pointer to caller's buffer pointer that holds this */ /* IP packet. */ /* Solaris: */ /* qpi(I) - pointer to STREAMS queue information for this */ /* interface & direction. */ /* */ /* ipf_check() is the master function for all IPFilter packet processing. */ /* It orchestrates: Network Address Translation (NAT), checking for packet */ /* authorisation (or pre-authorisation), presence of related state info., */ /* generating log entries, IP packet accounting, routing of packets as */ /* directed by firewall rules and of course whether or not to allow the */ /* packet to be further processed by the kernel. */ /* */ /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ /* freed. Packets passed may be returned with the pointer pointed to by */ /* by "mp" changed to a new buffer. */ /* ------------------------------------------------------------------------ */ int ipf_check(ctx, ip, hlen, ifp, out #if defined(_KERNEL) && defined(MENTAT) , qif, mp) void *qif; #else , mp) #endif mb_t **mp; ip_t *ip; int hlen; struct ifnet *ifp; int out; void *ctx; { /* * The above really sucks, but short of writing a diff */ ipf_main_softc_t *softc = ctx; fr_info_t frinfo; fr_info_t *fin = &frinfo; u_32_t pass = softc->ipf_pass; frentry_t *fr = NULL; int v = IP_V(ip); mb_t *mc = NULL; mb_t *m; /* * The first part of ipf_check() deals with making sure that what goes * into the filtering engine makes some sense. Information about the * the packet is distilled, collected into a fr_info_t structure and * the an attempt to ensure the buffer the packet is in is big enough * to hold all the required packet headers. */ #ifdef _KERNEL # ifdef MENTAT qpktinfo_t *qpi = qif; # ifdef __sparc if ((u_int)ip & 0x3) return 2; # endif # else SPL_INT(s); # endif if (softc->ipf_running <= 0) { return 0; } bzero((char *)fin, sizeof(*fin)); # ifdef MENTAT if (qpi->qpi_flags & QF_BROADCAST) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; if (qpi->qpi_flags & QF_MULTICAST) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; m = qpi->qpi_m; fin->fin_qfm = m; fin->fin_qpi = qpi; # else /* MENTAT */ m = *mp; # if defined(M_MCAST) if ((m->m_flags & M_MCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_MLOOP) if ((m->m_flags & M_MLOOP) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_BCAST) if ((m->m_flags & M_BCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; # endif # ifdef M_CANFASTFWD /* * XXX For now, IP Filter and fast-forwarding of cached flows * XXX are mutually exclusive. Eventually, IP Filter should * XXX get a "can-fast-forward" filter rule. */ m->m_flags &= ~M_CANFASTFWD; # endif /* M_CANFASTFWD */ # if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD_version) /* * disable delayed checksums. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } # endif /* CSUM_DELAY_DATA */ # endif /* MENTAT */ #else bzero((char *)fin, sizeof(*fin)); m = *mp; # if defined(M_MCAST) if ((m->m_flags & M_MCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_MLOOP) if ((m->m_flags & M_MLOOP) != 0) fin->fin_flx |= FI_MBCAST|FI_MULTICAST; # endif # if defined(M_BCAST) if ((m->m_flags & M_BCAST) != 0) fin->fin_flx |= FI_MBCAST|FI_BROADCAST; # endif #endif /* _KERNEL */ fin->fin_v = v; fin->fin_m = m; fin->fin_ip = ip; fin->fin_mp = mp; fin->fin_out = out; fin->fin_ifp = ifp; fin->fin_error = ENETUNREACH; fin->fin_hlen = (u_short)hlen; fin->fin_dp = (char *)ip + hlen; fin->fin_main_soft = softc; fin->fin_ipoff = (char *)ip - MTOD(m, char *); SPL_NET(s); #ifdef USE_INET6 if (v == 6) { LBUMP(ipf_stats[out].fr_ipv6); /* * Jumbo grams are quite likely too big for internal buffer * structures to handle comfortably, for now, so just drop * them. */ if (((ip6_t *)ip)->ip6_plen == 0) { DT1(frb_jumbo, ip6_t *, (ip6_t *)ip); pass = FR_BLOCK|FR_NOMATCH; fin->fin_reason = FRB_JUMBO; goto finished; } fin->fin_family = AF_INET6; } else #endif { fin->fin_family = AF_INET; } if (ipf_makefrip(hlen, ip, fin) == -1) { DT1(frb_makefrip, fr_info_t *, fin); pass = FR_BLOCK|FR_NOMATCH; fin->fin_reason = FRB_MAKEFRIP; goto finished; } /* * For at least IPv6 packets, if a m_pullup() fails then this pointer * becomes NULL and so we have no packet to free. */ if (*fin->fin_mp == NULL) goto finished; if (!out) { if (v == 4) { if (softc->ipf_chksrc && !ipf_verifysrc(fin)) { LBUMPD(ipf_stats[0], fr_v4_badsrc); fin->fin_flx |= FI_BADSRC; } if (fin->fin_ip->ip_ttl < softc->ipf_minttl) { LBUMPD(ipf_stats[0], fr_v4_badttl); fin->fin_flx |= FI_LOWTTL; } } #ifdef USE_INET6 else if (v == 6) { if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) { LBUMPD(ipf_stats[0], fr_v6_badttl); fin->fin_flx |= FI_LOWTTL; } } #endif } if (fin->fin_flx & FI_SHORT) { LBUMPD(ipf_stats[out], fr_short); } READ_ENTER(&softc->ipf_mutex); if (!out) { switch (fin->fin_v) { case 4 : if (ipf_nat_checkin(fin, &pass) == -1) { goto filterdone; } break; #ifdef USE_INET6 case 6 : if (ipf_nat6_checkin(fin, &pass) == -1) { goto filterdone; } break; #endif default : break; } } /* * Check auth now. * If a packet is found in the auth table, then skip checking * the access lists for permission but we do need to consider * the result as if it were from the ACL's. In addition, being * found in the auth table means it has been seen before, so do * not pass it through accounting (again), lest it be counted twice. */ fr = ipf_auth_check(fin, &pass); if (!out && (fr == NULL)) (void) ipf_acctpkt(fin, NULL); if (fr == NULL) { if ((fin->fin_flx & FI_FRAG) != 0) fr = ipf_frag_known(fin, &pass); if (fr == NULL) fr = ipf_state_check(fin, &pass); } if ((pass & FR_NOMATCH) || (fr == NULL)) fr = ipf_firewall(fin, &pass); /* * If we've asked to track state for this packet, set it up. * Here rather than ipf_firewall because ipf_checkauth may decide * to return a packet for "keep state" */ if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) && !(fin->fin_flx & FI_STATE)) { if (ipf_state_add(softc, fin, NULL, 0) == 0) { LBUMP(ipf_stats[out].fr_ads); } else { LBUMP(ipf_stats[out].fr_bads); if (FR_ISPASS(pass)) { DT(frb_stateadd); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_STATEADD; } } } fin->fin_fr = fr; if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) { fin->fin_dif = &fr->fr_dif; fin->fin_tif = &fr->fr_tifs[fin->fin_rev]; } /* * Only count/translate packets which will be passed on, out the * interface. */ if (out && FR_ISPASS(pass)) { (void) ipf_acctpkt(fin, NULL); switch (fin->fin_v) { case 4 : if (ipf_nat_checkout(fin, &pass) == -1) { ; } else if ((softc->ipf_update_ipid != 0) && (v == 4)) { if (ipf_updateipid(fin) == -1) { DT(frb_updateipid); LBUMP(ipf_stats[1].fr_ipud); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_UPDATEIPID; } else { LBUMP(ipf_stats[0].fr_ipud); } } break; #ifdef USE_INET6 case 6 : (void) ipf_nat6_checkout(fin, &pass); break; #endif default : break; } } filterdone: #ifdef IPFILTER_LOG if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { (void) ipf_dolog(fin, &pass); } #endif /* * The FI_STATE flag is cleared here so that calling ipf_state_check * will work when called from inside of fr_fastroute. Although * there is a similar flag, FI_NATED, for NAT, it does have the same * impact on code execution. */ fin->fin_flx &= ~FI_STATE; #if defined(FASTROUTE_RECURSION) /* * Up the reference on fr_lock and exit ipf_mutex. The generation of * a packet below can sometimes cause a recursive call into IPFilter. * On those platforms where that does happen, we need to hang onto * the filter rule just in case someone decides to remove or flush it * in the meantime. */ if (fr != NULL) { MUTEX_ENTER(&fr->fr_lock); fr->fr_ref++; MUTEX_EXIT(&fr->fr_lock); } RWLOCK_EXIT(&softc->ipf_mutex); #endif if ((pass & FR_RETMASK) != 0) { /* * Should we return an ICMP packet to indicate error * status passing through the packet filter ? * WARNING: ICMP error packets AND TCP RST packets should * ONLY be sent in repsonse to incoming packets. Sending * them in response to outbound packets can result in a * panic on some operating systems. */ if (!out) { if (pass & FR_RETICMP) { int dst; if ((pass & FR_RETMASK) == FR_FAKEICMP) dst = 1; else dst = 0; (void) ipf_send_icmp_err(ICMP_UNREACH, fin, dst); LBUMP(ipf_stats[0].fr_ret); } else if (((pass & FR_RETMASK) == FR_RETRST) && !(fin->fin_flx & FI_SHORT)) { if (((fin->fin_flx & FI_OOW) != 0) || (ipf_send_reset(fin) == 0)) { LBUMP(ipf_stats[1].fr_ret); } } /* * When using return-* with auth rules, the auth code * takes over disposing of this packet. */ if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) { DT1(frb_authcapture, fr_info_t *, fin); fin->fin_m = *fin->fin_mp = NULL; fin->fin_reason = FRB_AUTHCAPTURE; m = NULL; } } else { if (pass & FR_RETRST) { fin->fin_error = ECONNRESET; } } } /* * After the above so that ICMP unreachables and TCP RSTs get * created properly. */ if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) ipf_nat_uncreate(fin); /* * If we didn't drop off the bottom of the list of rules (and thus * the 'current' rule fr is not NULL), then we may have some extra * instructions about what to do with a packet. * Once we're finished return to our caller, freeing the packet if * we are dropping it. */ if (fr != NULL) { frdest_t *fdp; /* * Generate a duplicated packet first because ipf_fastroute * can lead to fin_m being free'd... not good. */ fdp = fin->fin_dif; if ((fdp != NULL) && (fdp->fd_ptr != NULL) && (fdp->fd_ptr != (void *)-1)) { mc = M_COPY(fin->fin_m); if (mc != NULL) ipf_fastroute(mc, &mc, fin, fdp); } fdp = fin->fin_tif; if (!out && (pass & FR_FASTROUTE)) { /* * For fastroute rule, no destination interface defined * so pass NULL as the frdest_t parameter */ (void) ipf_fastroute(fin->fin_m, mp, fin, NULL); m = *mp = NULL; } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) && (fdp->fd_ptr != (struct ifnet *)-1)) { /* this is for to rules: */ ipf_fastroute(fin->fin_m, mp, fin, fdp); m = *mp = NULL; } #if defined(FASTROUTE_RECURSION) (void) ipf_derefrule(softc, &fr); #endif } #if !defined(FASTROUTE_RECURSION) RWLOCK_EXIT(&softc->ipf_mutex); #endif finished: if (!FR_ISPASS(pass)) { LBUMP(ipf_stats[out].fr_block); if (*mp != NULL) { #ifdef _KERNEL FREE_MB_T(*mp); #endif m = *mp = NULL; } } else { LBUMP(ipf_stats[out].fr_pass); } SPL_X(s); #ifdef _KERNEL if (FR_ISPASS(pass)) return 0; LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); return fin->fin_error; #else /* _KERNEL */ if (*mp != NULL) (*mp)->mb_ifp = fin->fin_ifp; blockreason = fin->fin_reason; FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/ if ((pass & FR_NOMATCH) != 0) return 1; if ((pass & FR_RETMASK) != 0) switch (pass & FR_RETMASK) { case FR_RETRST : return 3; case FR_RETICMP : return 4; case FR_FAKEICMP : return 5; } switch (pass & FR_CMDMASK) { case FR_PASS : return 0; case FR_BLOCK : return -1; case FR_AUTH : return -2; case FR_ACCOUNT : return -3; case FR_PREAUTH : return -4; } return 2; #endif /* _KERNEL */ } #ifdef IPFILTER_LOG /* ------------------------------------------------------------------------ */ /* Function: ipf_dolog */ /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Checks flags set to see how a packet should be logged, if it is to be */ /* logged. Adjust statistics based on its success or not. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_dolog(fin, passp) fr_info_t *fin; u_32_t *passp; { ipf_main_softc_t *softc = fin->fin_main_soft; u_32_t pass; int out; out = fin->fin_out; pass = *passp; if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { pass |= FF_LOGNOMATCH; LBUMPD(ipf_stats[out], fr_npkl); goto logit; } else if (((pass & FR_LOGMASK) == FR_LOGP) || (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) { if ((pass & FR_LOGMASK) != FR_LOGP) pass |= FF_LOGPASS; LBUMPD(ipf_stats[out], fr_ppkl); goto logit; } else if (((pass & FR_LOGMASK) == FR_LOGB) || (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) { if ((pass & FR_LOGMASK) != FR_LOGB) pass |= FF_LOGBLOCK; LBUMPD(ipf_stats[out], fr_bpkl); logit: if (ipf_log_pkt(fin, pass) == -1) { /* * If the "or-block" option has been used then * block the packet if we failed to log it. */ if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) { DT1(frb_logfail2, u_int, pass); pass &= ~FR_CMDMASK; pass |= FR_BLOCK; fin->fin_reason = FRB_LOGFAIL2; } } *passp = pass; } return fin->fin_fr; } #endif /* IPFILTER_LOG */ /* ------------------------------------------------------------------------ */ /* Function: ipf_cksum */ /* Returns: u_short - IP header checksum */ /* Parameters: addr(I) - pointer to start of buffer to checksum */ /* len(I) - length of buffer in bytes */ /* */ /* Calculate the two's complement 16 bit checksum of the buffer passed. */ /* */ /* N.B.: addr should be 16bit aligned. */ /* ------------------------------------------------------------------------ */ u_short ipf_cksum(addr, len) u_short *addr; int len; { u_32_t sum = 0; for (sum = 0; len > 1; len -= 2) sum += *addr++; /* mop up an odd byte, if necessary */ if (len == 1) sum += *(u_char *)addr; /* * add back carry outs from top 16 bits to low 16 bits */ sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ sum += (sum >> 16); /* add carry */ return (u_short)(~sum); } /* ------------------------------------------------------------------------ */ /* Function: fr_cksum */ /* Returns: u_short - layer 4 checksum */ /* Parameters: fin(I) - pointer to packet information */ /* ip(I) - pointer to IP header */ /* l4proto(I) - protocol to caclulate checksum for */ /* l4hdr(I) - pointer to layer 4 header */ /* */ /* Calculates the TCP checksum for the packet held in "m", using the data */ /* in the IP header "ip" to seed it. */ /* */ /* NB: This function assumes we've pullup'd enough for all of the IP header */ /* and the TCP header. We also assume that data blocks aren't allocated in */ /* odd sizes. */ /* */ /* Expects ip_len and ip_off to be in network byte order when called. */ /* ------------------------------------------------------------------------ */ u_short fr_cksum(fin, ip, l4proto, l4hdr) fr_info_t *fin; ip_t *ip; int l4proto; void *l4hdr; { u_short *sp, slen, sumsave, *csump; u_int sum, sum2; int hlen; int off; #ifdef USE_INET6 ip6_t *ip6; #endif csump = NULL; sumsave = 0; sp = NULL; slen = 0; hlen = 0; sum = 0; sum = htons((u_short)l4proto); /* * Add up IP Header portion */ #ifdef USE_INET6 if (IP_V(ip) == 4) { #endif hlen = IP_HL(ip) << 2; off = hlen; sp = (u_short *)&ip->ip_src; sum += *sp++; /* ip_src */ sum += *sp++; sum += *sp++; /* ip_dst */ sum += *sp++; slen = fin->fin_plen - off; sum += htons(slen); #ifdef USE_INET6 } else if (IP_V(ip) == 6) { mb_t *m; m = fin->fin_m; ip6 = (ip6_t *)ip; off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr); int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6)); return(ipf_pcksum6(fin, ip6, off, len)); } else { return 0xffff; } #endif switch (l4proto) { case IPPROTO_UDP : csump = &((udphdr_t *)l4hdr)->uh_sum; break; case IPPROTO_TCP : csump = &((tcphdr_t *)l4hdr)->th_sum; break; case IPPROTO_ICMP : csump = &((icmphdr_t *)l4hdr)->icmp_cksum; sum = 0; /* Pseudo-checksum is not included */ break; #ifdef USE_INET6 case IPPROTO_ICMPV6 : csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum; break; #endif default : break; } if (csump != NULL) { sumsave = *csump; *csump = 0; } sum2 = ipf_pcksum(fin, off, sum); if (csump != NULL) *csump = sumsave; return sum2; } /* ------------------------------------------------------------------------ */ /* Function: ipf_findgroup */ /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* group(I) - group name to search for */ /* unit(I) - device to which this group belongs */ /* set(I) - which set of rules (inactive/inactive) this is */ /* fgpp(O) - pointer to place to store pointer to the pointer */ /* to where to add the next (last) group or where */ /* to delete group from. */ /* */ /* Search amongst the defined groups for a particular group number. */ /* ------------------------------------------------------------------------ */ frgroup_t * ipf_findgroup(softc, group, unit, set, fgpp) ipf_main_softc_t *softc; char *group; minor_t unit; int set; frgroup_t ***fgpp; { frgroup_t *fg, **fgp; /* * Which list of groups to search in is dependent on which list of * rules are being operated on. */ fgp = &softc->ipf_groups[unit][set]; while ((fg = *fgp) != NULL) { if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) break; else fgp = &fg->fg_next; } if (fgpp != NULL) *fgpp = fgp; return fg; } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_add */ /* Returns: frgroup_t * - NULL == did not create group, */ /* != NULL == pointer to the group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* num(I) - group number to add */ /* head(I) - rule pointer that is using this as the head */ /* flags(I) - rule flags which describe the type of rule it is */ /* unit(I) - device to which this group will belong to */ /* set(I) - which set of rules (inactive/inactive) this is */ /* Write Locks: ipf_mutex */ /* */ /* Add a new group head, or if it already exists, increase the reference */ /* count to it. */ /* ------------------------------------------------------------------------ */ frgroup_t * ipf_group_add(softc, group, head, flags, unit, set) ipf_main_softc_t *softc; char *group; void *head; u_32_t flags; minor_t unit; int set; { frgroup_t *fg, **fgp; u_32_t gflags; if (group == NULL) return NULL; if (unit == IPL_LOGIPF && *group == '\0') return NULL; fgp = NULL; gflags = flags & FR_INOUT; fg = ipf_findgroup(softc, group, unit, set, &fgp); if (fg != NULL) { if (fg->fg_head == NULL && head != NULL) fg->fg_head = head; if (fg->fg_flags == 0) fg->fg_flags = gflags; else if (gflags != fg->fg_flags) return NULL; fg->fg_ref++; return fg; } KMALLOC(fg, frgroup_t *); if (fg != NULL) { fg->fg_head = head; fg->fg_start = NULL; fg->fg_next = *fgp; bcopy(group, fg->fg_name, strlen(group) + 1); fg->fg_flags = gflags; fg->fg_ref = 1; fg->fg_set = &softc->ipf_groups[unit][set]; *fgp = fg; } return fg; } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_del */ /* Returns: int - number of rules deleted */ /* Parameters: softc(I) - pointer to soft context main structure */ /* group(I) - group name to delete */ /* fr(I) - filter rule from which group is referenced */ /* Write Locks: ipf_mutex */ /* */ /* This function is called whenever a reference to a group is to be dropped */ /* and thus its reference count needs to be lowered and the group free'd if */ /* the reference count reaches zero. Passing in fr is really for the sole */ /* purpose of knowing when the head rule is being deleted. */ /* ------------------------------------------------------------------------ */ void ipf_group_del(softc, group, fr) ipf_main_softc_t *softc; frgroup_t *group; frentry_t *fr; { if (group->fg_head == fr) group->fg_head = NULL; group->fg_ref--; if ((group->fg_ref == 0) && (group->fg_start == NULL)) ipf_group_free(group); } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_free */ /* Returns: Nil */ /* Parameters: group(I) - pointer to filter rule group */ /* */ /* Remove the group from the list of groups and free it. */ /* ------------------------------------------------------------------------ */ static void ipf_group_free(group) frgroup_t *group; { frgroup_t **gp; for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) { if (*gp == group) { *gp = group->fg_next; break; } } KFREE(group); } /* ------------------------------------------------------------------------ */ /* Function: ipf_group_flush */ /* Returns: int - number of rules flush from group */ /* Parameters: softc(I) - pointer to soft context main structure */ /* Parameters: group(I) - pointer to filter rule group */ /* */ /* Remove all of the rules that currently are listed under the given group. */ /* ------------------------------------------------------------------------ */ static int ipf_group_flush(softc, group) ipf_main_softc_t *softc; frgroup_t *group; { int gone = 0; (void) ipf_flushlist(softc, &gone, &group->fg_start); return gone; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getrulen */ /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ /* Parameters: softc(I) - pointer to soft context main structure */ /* Parameters: unit(I) - device for which to count the rule's number */ /* flags(I) - which set of rules to find the rule in */ /* group(I) - group name */ /* n(I) - rule number to find */ /* */ /* Find rule # n in group # g and return a pointer to it. Return NULl if */ /* group # g doesn't exist or there are less than n rules in the group. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_getrulen(softc, unit, group, n) ipf_main_softc_t *softc; int unit; char *group; u_32_t n; { frentry_t *fr; frgroup_t *fg; fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL); if (fg == NULL) return NULL; for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--) ; if (n != 0) return NULL; return fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flushlist */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - pointer to soft context main structure */ /* nfreedp(O) - pointer to int where flush count is stored */ /* listp(I) - pointer to list to flush pointer */ /* Write Locks: ipf_mutex */ /* */ /* Recursively flush rules from the list, descending groups as they are */ /* encountered. if a rule is the head of a group and it has lost all its */ /* group members, then also delete the group reference. nfreedp is needed */ /* to store the accumulating count of rules removed, whereas the returned */ /* value is just the number removed from the current list. The latter is */ /* needed to correctly adjust reference counts on rules that define groups. */ /* */ /* NOTE: Rules not loaded from user space cannot be flushed. */ /* ------------------------------------------------------------------------ */ static int ipf_flushlist(softc, nfreedp, listp) ipf_main_softc_t *softc; int *nfreedp; frentry_t **listp; { int freed = 0; frentry_t *fp; while ((fp = *listp) != NULL) { if ((fp->fr_type & FR_T_BUILTIN) || !(fp->fr_flags & FR_COPIED)) { listp = &fp->fr_next; continue; } *listp = fp->fr_next; if (fp->fr_next != NULL) fp->fr_next->fr_pnext = fp->fr_pnext; fp->fr_pnext = NULL; if (fp->fr_grphead != NULL) { freed += ipf_group_flush(softc, fp->fr_grphead); fp->fr_names[fp->fr_grhead] = '\0'; } if (fp->fr_icmpgrp != NULL) { freed += ipf_group_flush(softc, fp->fr_icmpgrp); fp->fr_names[fp->fr_icmphead] = '\0'; } if (fp->fr_srctrack.ht_max_nodes) ipf_rb_ht_flush(&fp->fr_srctrack); fp->fr_next = NULL; ASSERT(fp->fr_ref > 0); if (ipf_derefrule(softc, &fp) == 0) freed++; } *nfreedp += freed; return freed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flush */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - pointer to soft context main structure */ /* unit(I) - device for which to flush rules */ /* flags(I) - which set of rules to flush */ /* */ /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ /* and IPv6) as defined by the value of flags. */ /* ------------------------------------------------------------------------ */ int ipf_flush(softc, unit, flags) ipf_main_softc_t *softc; minor_t unit; int flags; { int flushed = 0, set; WRITE_ENTER(&softc->ipf_mutex); set = softc->ipf_active; if ((flags & FR_INACTIVE) == FR_INACTIVE) set = 1 - set; if (flags & FR_OUTQUE) { ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]); ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]); } if (flags & FR_INQUE) { ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]); ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]); } flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set], flags & (FR_INQUE|FR_OUTQUE)); RWLOCK_EXIT(&softc->ipf_mutex); if (unit == IPL_LOGIPF) { int tmp; tmp = ipf_flush(softc, IPL_LOGCOUNT, flags); if (tmp >= 0) flushed += tmp; } return flushed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_flush_groups */ /* Returns: int - >= 0 - number of flushed rules */ /* Parameters: softc(I) - soft context pointerto work with */ /* grhead(I) - pointer to the start of the group list to flush */ /* flags(I) - which set of rules to flush */ /* */ /* Walk through all of the groups under the given group head and remove all */ /* of those that match the flags passed in. The for loop here is bit more */ /* complicated than usual because the removal of a rule with ipf_derefrule */ /* may end up removing not only the structure pointed to by "fg" but also */ /* what is fg_next and fg_next after that. So if a filter rule is actually */ /* removed from the group then it is necessary to start again. */ /* ------------------------------------------------------------------------ */ static int ipf_flush_groups(softc, grhead, flags) ipf_main_softc_t *softc; frgroup_t **grhead; int flags; { frentry_t *fr, **frp; frgroup_t *fg, **fgp; int flushed = 0; int removed = 0; for (fgp = grhead; (fg = *fgp) != NULL; ) { while ((fg != NULL) && ((fg->fg_flags & flags) == 0)) fg = fg->fg_next; if (fg == NULL) break; removed = 0; frp = &fg->fg_start; while ((removed == 0) && ((fr = *frp) != NULL)) { if ((fr->fr_flags & flags) == 0) { frp = &fr->fr_next; } else { if (fr->fr_next != NULL) fr->fr_next->fr_pnext = fr->fr_pnext; *frp = fr->fr_next; fr->fr_pnext = NULL; fr->fr_next = NULL; (void) ipf_derefrule(softc, &fr); flushed++; removed++; } } if (removed == 0) fgp = &fg->fg_next; } return flushed; } /* ------------------------------------------------------------------------ */ /* Function: memstr */ /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ /* Parameters: src(I) - pointer to byte sequence to match */ /* dst(I) - pointer to byte sequence to search */ /* slen(I) - match length */ /* dlen(I) - length available to search in */ /* */ /* Search dst for a sequence of bytes matching those at src and extend for */ /* slen bytes. */ /* ------------------------------------------------------------------------ */ char * memstr(src, dst, slen, dlen) const char *src; char *dst; size_t slen, dlen; { char *s = NULL; while (dlen >= slen) { if (bcmp(src, dst, slen) == 0) { s = dst; break; } dst++; dlen--; } return s; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fixskip */ /* Returns: Nil */ /* Parameters: listp(IO) - pointer to start of list with skip rule */ /* rp(I) - rule added/removed with skip in it. */ /* addremove(I) - adjustment (-1/+1) to make to skip count, */ /* depending on whether a rule was just added */ /* or removed. */ /* */ /* Adjust all the rules in a list which would have skip'd past the position */ /* where we are inserting to skip to the right place given the change. */ /* ------------------------------------------------------------------------ */ void ipf_fixskip(listp, rp, addremove) frentry_t **listp, *rp; int addremove; { int rules, rn; frentry_t *fp; rules = 0; for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) rules++; if (fp == NULL) return; for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) fp->fr_arg += addremove; } #ifdef _KERNEL /* ------------------------------------------------------------------------ */ /* Function: count4bits */ /* Returns: int - >= 0 - number of consecutive bits in input */ /* Parameters: ip(I) - 32bit IP address */ /* */ /* IPv4 ONLY */ /* count consecutive 1's in bit mask. If the mask generated by counting */ /* consecutive 1's is different to that passed, return -1, else return # */ /* of bits. */ /* ------------------------------------------------------------------------ */ int count4bits(ip) u_32_t ip; { u_32_t ipn; int cnt = 0, i, j; ip = ipn = ntohl(ip); for (i = 32; i; i--, ipn *= 2) if (ipn & 0x80000000) cnt++; else break; ipn = 0; for (i = 32, j = cnt; i; i--, j--) { ipn *= 2; if (j > 0) ipn++; } if (ipn == ip) return cnt; return -1; } /* ------------------------------------------------------------------------ */ /* Function: count6bits */ /* Returns: int - >= 0 - number of consecutive bits in input */ /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ /* */ /* IPv6 ONLY */ /* count consecutive 1's in bit mask. */ /* ------------------------------------------------------------------------ */ # ifdef USE_INET6 int count6bits(msk) u_32_t *msk; { int i = 0, k; u_32_t j; for (k = 3; k >= 0; k--) if (msk[k] == 0xffffffff) i += 32; else { for (j = msk[k]; j; j <<= 1) if (j & 0x80000000) i++; } return i; } # endif #endif /* _KERNEL */ /* ------------------------------------------------------------------------ */ /* Function: ipf_synclist */ /* Returns: int - 0 = no failures, else indication of first failure */ /* Parameters: fr(I) - start of filter list to sync interface names for */ /* ifp(I) - interface pointer for limiting sync lookups */ /* Write Locks: ipf_mutex */ /* */ /* Walk through a list of filter rules and resolve any interface names into */ /* pointers. Where dynamic addresses are used, also update the IP address */ /* used in the rule. The interface pointer is used to limit the lookups to */ /* a specific set of matching names if it is non-NULL. */ /* Errors can occur when resolving the destination name of to/dup-to fields */ /* when the name points to a pool and that pool doest not exist. If this */ /* does happen then it is necessary to check if there are any lookup refs */ /* that need to be dropped before returning with an error. */ /* ------------------------------------------------------------------------ */ static int ipf_synclist(softc, fr, ifp) ipf_main_softc_t *softc; frentry_t *fr; void *ifp; { frentry_t *frt, *start = fr; frdest_t *fdp; char *name; int error; void *ifa; int v, i; error = 0; for (; fr; fr = fr->fr_next) { if (fr->fr_family == AF_INET) v = 4; else if (fr->fr_family == AF_INET6) v = 6; else v = 0; /* * Lookup all the interface names that are part of the rule. */ for (i = 0; i < 4; i++) { if ((ifp != NULL) && (fr->fr_ifas[i] != ifp)) continue; if (fr->fr_ifnames[i] == -1) continue; name = FR_NAME(fr, fr_ifnames[i]); fr->fr_ifas[i] = ipf_resolvenic(softc, name, v); } if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { if (fr->fr_satype != FRI_NORMAL && fr->fr_satype != FRI_LOOKUP) { ifa = ipf_resolvenic(softc, fr->fr_names + fr->fr_sifpidx, v); ipf_ifpaddr(softc, v, fr->fr_satype, ifa, &fr->fr_src6, &fr->fr_smsk6); } if (fr->fr_datype != FRI_NORMAL && fr->fr_datype != FRI_LOOKUP) { ifa = ipf_resolvenic(softc, fr->fr_names + fr->fr_sifpidx, v); ipf_ifpaddr(softc, v, fr->fr_datype, ifa, &fr->fr_dst6, &fr->fr_dmsk6); } } fdp = &fr->fr_tifs[0]; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } fdp = &fr->fr_tifs[1]; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } fdp = &fr->fr_dif; if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { error = ipf_resolvedest(softc, fr->fr_names, fdp, v); if (error != 0) goto unwind; } if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) { fr->fr_srcptr = ipf_lookup_res_num(softc, fr->fr_srctype, IPL_LOGIPF, fr->fr_srcnum, &fr->fr_srcfunc); } if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) { fr->fr_dstptr = ipf_lookup_res_num(softc, fr->fr_dsttype, IPL_LOGIPF, fr->fr_dstnum, &fr->fr_dstfunc); } } return 0; unwind: for (frt = start; frt != fr; fr = fr->fr_next) { if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL)) ipf_lookup_deref(softc, frt->fr_srctype, frt->fr_srcptr); if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL)) ipf_lookup_deref(softc, frt->fr_dsttype, frt->fr_dstptr); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_sync */ /* Returns: void */ /* Parameters: Nil */ /* */ /* ipf_sync() is called when we suspect that the interface list or */ /* information about interfaces (like IP#) has changed. Go through all */ /* filter rules, NAT entries and the state table and check if anything */ /* needs to be changed/updated. */ /* ------------------------------------------------------------------------ */ int ipf_sync(softc, ifp) ipf_main_softc_t *softc; void *ifp; { int i; # if !SOLARIS ipf_nat_sync(softc, ifp); ipf_state_sync(softc, ifp); ipf_lookup_sync(softc, ifp); # endif WRITE_ENTER(&softc->ipf_mutex); (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp); (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp); for (i = 0; i < IPL_LOGSIZE; i++) { frgroup_t *g; for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next) (void) ipf_synclist(softc, g->fg_start, ifp); for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next) (void) ipf_synclist(softc, g->fg_start, ifp); } RWLOCK_EXIT(&softc->ipf_mutex); return 0; } /* * In the functions below, bcopy() is called because the pointer being * copied _from_ in this instance is a pointer to a char buf (which could * end up being unaligned) and on the kernel's local stack. */ /* ------------------------------------------------------------------------ */ /* Function: copyinptr */ /* Returns: int - 0 = success, else failure */ /* Parameters: src(I) - pointer to the source address */ /* dst(I) - destination address */ /* size(I) - number of bytes to copy */ /* */ /* Copy a block of data in from user space, given a pointer to the pointer */ /* to start copying from (src) and a pointer to where to store it (dst). */ /* NB: src - pointer to user space pointer, dst - kernel space pointer */ /* ------------------------------------------------------------------------ */ int copyinptr(softc, src, dst, size) ipf_main_softc_t *softc; void *src, *dst; size_t size; { caddr_t ca; int error; # if SOLARIS error = COPYIN(src, &ca, sizeof(ca)); if (error != 0) return error; # else bcopy(src, (caddr_t)&ca, sizeof(ca)); # endif error = COPYIN(ca, dst, size); if (error != 0) { IPFERROR(3); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: copyoutptr */ /* Returns: int - 0 = success, else failure */ /* Parameters: src(I) - pointer to the source address */ /* dst(I) - destination address */ /* size(I) - number of bytes to copy */ /* */ /* Copy a block of data out to user space, given a pointer to the pointer */ /* to start copying from (src) and a pointer to where to store it (dst). */ /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ /* ------------------------------------------------------------------------ */ int copyoutptr(softc, src, dst, size) ipf_main_softc_t *softc; void *src, *dst; size_t size; { caddr_t ca; int error; bcopy(dst, (caddr_t)&ca, sizeof(ca)); error = COPYOUT(src, ca, size); if (error != 0) { IPFERROR(4); error = EFAULT; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_lock */ /* Returns: int - 0 = success, else error */ /* Parameters: data(I) - pointer to lock value to set */ /* lockp(O) - pointer to location to store old lock value */ /* */ /* Get the new value for the lock integer, set it and return the old value */ /* in *lockp. */ /* ------------------------------------------------------------------------ */ int ipf_lock(data, lockp) caddr_t data; int *lockp; { int arg, err; err = BCOPYIN(data, &arg, sizeof(arg)); if (err != 0) return EFAULT; err = BCOPYOUT(lockp, data, sizeof(*lockp)); if (err != 0) return EFAULT; *lockp = arg; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getstat */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fiop(I) - pointer to ipfilter stats structure */ /* rev(I) - version claim by program doing ioctl */ /* */ /* Stores a copy of current pointers, counters, etc, in the friostat */ /* structure. */ /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */ /* program is looking for. This ensure that validation of the version it */ /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */ /* allow older binaries to work but kernels without it will not. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ static void ipf_getstat(softc, fiop, rev) ipf_main_softc_t *softc; friostat_t *fiop; int rev; { int i; bcopy((char *)softc->ipf_stats, (char *)fiop->f_st, sizeof(ipf_statistics_t) * 2); fiop->f_locks[IPL_LOGSTATE] = -1; fiop->f_locks[IPL_LOGNAT] = -1; fiop->f_locks[IPL_LOGIPF] = -1; fiop->f_locks[IPL_LOGAUTH] = -1; fiop->f_ipf[0][0] = softc->ipf_rules[0][0]; fiop->f_acct[0][0] = softc->ipf_acct[0][0]; fiop->f_ipf[0][1] = softc->ipf_rules[0][1]; fiop->f_acct[0][1] = softc->ipf_acct[0][1]; fiop->f_ipf[1][0] = softc->ipf_rules[1][0]; fiop->f_acct[1][0] = softc->ipf_acct[1][0]; fiop->f_ipf[1][1] = softc->ipf_rules[1][1]; fiop->f_acct[1][1] = softc->ipf_acct[1][1]; fiop->f_ticks = softc->ipf_ticks; fiop->f_active = softc->ipf_active; fiop->f_froute[0] = softc->ipf_frouteok[0]; fiop->f_froute[1] = softc->ipf_frouteok[1]; fiop->f_rb_no_mem = softc->ipf_rb_no_mem; fiop->f_rb_node_max = softc->ipf_rb_node_max; fiop->f_running = softc->ipf_running; for (i = 0; i < IPL_LOGSIZE; i++) { fiop->f_groups[i][0] = softc->ipf_groups[i][0]; fiop->f_groups[i][1] = softc->ipf_groups[i][1]; } #ifdef IPFILTER_LOG fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF); fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF); fiop->f_logging = 1; #else fiop->f_log_ok = 0; fiop->f_log_fail = 0; fiop->f_logging = 0; #endif fiop->f_defpass = softc->ipf_pass; fiop->f_features = ipf_features; #ifdef IPFILTER_COMPAT sprintf(fiop->f_version, "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, (rev / 10000) % 100, (rev / 100) % 100); #else rev = rev; (void) strncpy(fiop->f_version, ipfilter_version, sizeof(fiop->f_version)); #endif } #ifdef USE_INET6 int icmptoicmp6types[ICMP_MAXTYPE+1] = { ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ -1, /* 1: UNUSED */ -1, /* 2: UNUSED */ ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ -1, /* 4: ICMP_SOURCEQUENCH */ ND_REDIRECT, /* 5: ICMP_REDIRECT */ -1, /* 6: UNUSED */ -1, /* 7: UNUSED */ ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ -1, /* 9: UNUSED */ -1, /* 10: UNUSED */ ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ -1, /* 13: ICMP_TSTAMP */ -1, /* 14: ICMP_TSTAMPREPLY */ -1, /* 15: ICMP_IREQ */ -1, /* 16: ICMP_IREQREPLY */ -1, /* 17: ICMP_MASKREQ */ -1, /* 18: ICMP_MASKREPLY */ }; int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ -1, /* 2: ICMP_UNREACH_PROTOCOL */ ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ -1, /* 4: ICMP_UNREACH_NEEDFRAG */ ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ -1, /* 8: ICMP_UNREACH_ISOLATED */ ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ -1, /* 11: ICMP_UNREACH_TOSNET */ -1, /* 12: ICMP_UNREACH_TOSHOST */ ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ }; int icmpreplytype6[ICMP6_MAXTYPE + 1]; #endif int icmpreplytype4[ICMP_MAXTYPE + 1]; /* ------------------------------------------------------------------------ */ /* Function: ipf_matchicmpqueryreply */ /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ /* Parameters: v(I) - IP protocol version (4 or 6) */ /* ic(I) - ICMP information */ /* icmp(I) - ICMP packet header */ /* rev(I) - direction (0 = forward/1 = reverse) of packet */ /* */ /* Check if the ICMP packet defined by the header pointed to by icmp is a */ /* reply to one as described by what's in ic. If it is a match, return 1, */ /* else return 0 for no match. */ /* ------------------------------------------------------------------------ */ int ipf_matchicmpqueryreply(v, ic, icmp, rev) int v; icmpinfo_t *ic; icmphdr_t *icmp; int rev; { int ictype; ictype = ic->ici_type; if (v == 4) { /* * If we matched its type on the way in, then when going out * it will still be the same type. */ if ((!rev && (icmp->icmp_type == ictype)) || (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { if (icmp->icmp_type != ICMP_ECHOREPLY) return 1; if (icmp->icmp_id == ic->ici_id) return 1; } } #ifdef USE_INET6 else if (v == 6) { if ((!rev && (icmp->icmp_type == ictype)) || (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { if (icmp->icmp_type != ICMP6_ECHO_REPLY) return 1; if (icmp->icmp_id == ic->ici_id) return 1; } } #endif return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_compare */ /* Parameters: fr1(I) - first rule structure to compare */ /* fr2(I) - second rule structure to compare */ /* Returns: int - 0 == rules are the same, else mismatch */ /* */ /* Compare two rules and return 0 if they match or a number indicating */ /* which of the individual checks failed. */ /* ------------------------------------------------------------------------ */ static int ipf_rule_compare(frentry_t *fr1, frentry_t *fr2) { if (fr1->fr_cksum != fr2->fr_cksum) return 1; if (fr1->fr_size != fr2->fr_size) return 2; if (fr1->fr_dsize != fr2->fr_dsize) return 3; if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, fr1->fr_size - offsetof(struct frentry, fr_func)) != 0) return 4; if (fr1->fr_data && !fr2->fr_data) return 5; if (!fr1->fr_data && fr2->fr_data) return 6; if (fr1->fr_data) { if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize)) return 7; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: frrequest */ /* Returns: int - 0 == success, > 0 == errno value */ /* Parameters: unit(I) - device for which this is for */ /* req(I) - ioctl command (SIOC*) */ /* data(I) - pointr to ioctl data */ /* set(I) - 1 or 0 (filter set) */ /* makecopy(I) - flag indicating whether data points to a rule */ /* in kernel space & hence doesn't need copying. */ /* */ /* This function handles all the requests which operate on the list of */ /* filter rules. This includes adding, deleting, insertion. It is also */ /* responsible for creating groups when a "head" rule is loaded. Interface */ /* names are resolved here and other sanity checks are made on the content */ /* of the rule structure being loaded. If a rule has user defined timeouts */ /* then make sure they are created and initialised before exiting. */ /* ------------------------------------------------------------------------ */ int frrequest(softc, unit, req, data, set, makecopy) ipf_main_softc_t *softc; int unit; ioctlcmd_t req; int set, makecopy; caddr_t data; { int error = 0, in, family, addrem, need_free = 0; frentry_t frd, *fp, *f, **fprev, **ftail; void *ptr, *uptr, *cptr; u_int *p, *pp; frgroup_t *fg; char *group; ptr = NULL; cptr = NULL; fg = NULL; fp = &frd; if (makecopy != 0) { bzero(fp, sizeof(frd)); error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY); if (error) { return error; } if ((fp->fr_type & FR_T_BUILTIN) != 0) { IPFERROR(6); return EINVAL; } KMALLOCS(f, frentry_t *, fp->fr_size); if (f == NULL) { IPFERROR(131); return ENOMEM; } bzero(f, fp->fr_size); error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY, fp->fr_size); if (error) { KFREES(f, fp->fr_size); return error; } fp = f; f = NULL; fp->fr_next = NULL; fp->fr_dnext = NULL; fp->fr_pnext = NULL; fp->fr_pdnext = NULL; fp->fr_grp = NULL; fp->fr_grphead = NULL; fp->fr_icmpgrp = NULL; fp->fr_isc = (void *)-1; fp->fr_ptr = NULL; fp->fr_ref = 0; fp->fr_flags |= FR_COPIED; } else { fp = (frentry_t *)data; if ((fp->fr_type & FR_T_BUILTIN) == 0) { IPFERROR(7); return EINVAL; } fp->fr_flags &= ~FR_COPIED; } if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) { IPFERROR(8); error = EINVAL; goto donenolock; } family = fp->fr_family; uptr = fp->fr_data; if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR || req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) addrem = 0; else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) addrem = 1; else if (req == (ioctlcmd_t)SIOCZRLST) addrem = 2; else { IPFERROR(9); error = EINVAL; goto donenolock; } /* * Only filter rules for IPv4 or IPv6 are accepted. */ if (family == AF_INET) { /*EMPTY*/; #ifdef USE_INET6 } else if (family == AF_INET6) { /*EMPTY*/; #endif } else if (family != 0) { IPFERROR(10); error = EINVAL; goto donenolock; } /* * If the rule is being loaded from user space, i.e. we had to copy it * into kernel space, then do not trust the function pointer in the * rule. */ if ((makecopy == 1) && (fp->fr_func != NULL)) { if (ipf_findfunc(fp->fr_func) == NULL) { IPFERROR(11); error = ESRCH; goto donenolock; } if (addrem == 0) { error = ipf_funcinit(softc, fp); if (error != 0) goto donenolock; } } if ((fp->fr_flags & FR_CALLNOW) && ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { IPFERROR(142); error = ESRCH; goto donenolock; } if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) && ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { IPFERROR(143); error = ESRCH; goto donenolock; } ptr = NULL; cptr = NULL; if (FR_ISACCOUNT(fp->fr_flags)) unit = IPL_LOGCOUNT; /* * Check that each group name in the rule has a start index that * is valid. */ if (fp->fr_icmphead != -1) { if ((fp->fr_icmphead < 0) || (fp->fr_icmphead >= fp->fr_namelen)) { IPFERROR(136); error = EINVAL; goto donenolock; } if (!strcmp(FR_NAME(fp, fr_icmphead), "0")) fp->fr_names[fp->fr_icmphead] = '\0'; } if (fp->fr_grhead != -1) { if ((fp->fr_grhead < 0) || (fp->fr_grhead >= fp->fr_namelen)) { IPFERROR(137); error = EINVAL; goto donenolock; } if (!strcmp(FR_NAME(fp, fr_grhead), "0")) fp->fr_names[fp->fr_grhead] = '\0'; } if (fp->fr_group != -1) { if ((fp->fr_group < 0) || (fp->fr_group >= fp->fr_namelen)) { IPFERROR(138); error = EINVAL; goto donenolock; } if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) { /* * Allow loading rules that are in groups to cause * them to be created if they don't already exit. */ group = FR_NAME(fp, fr_group); if (addrem == 0) { fg = ipf_group_add(softc, group, NULL, fp->fr_flags, unit, set); fp->fr_grp = fg; } else { fg = ipf_findgroup(softc, group, unit, set, NULL); if (fg == NULL) { IPFERROR(12); error = ESRCH; goto donenolock; } } if (fg->fg_flags == 0) { fg->fg_flags = fp->fr_flags & FR_INOUT; } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) { IPFERROR(13); error = ESRCH; goto donenolock; } } } else { /* * If a rule is going to be part of a group then it does * not matter whether it is an in or out rule, but if it * isn't in a group, then it does... */ if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) { IPFERROR(14); error = EINVAL; goto donenolock; } } in = (fp->fr_flags & FR_INQUE) ? 0 : 1; /* * Work out which rule list this change is being applied to. */ ftail = NULL; fprev = NULL; if (unit == IPL_LOGAUTH) { if ((fp->fr_tifs[0].fd_ptr != NULL) || (fp->fr_tifs[1].fd_ptr != NULL) || (fp->fr_dif.fd_ptr != NULL) || (fp->fr_flags & FR_FASTROUTE)) { softc->ipf_interror = 145; error = EINVAL; goto donenolock; } fprev = ipf_auth_rulehead(softc); } else { if (FR_ISACCOUNT(fp->fr_flags)) fprev = &softc->ipf_acct[in][set]; else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) fprev = &softc->ipf_rules[in][set]; } if (fprev == NULL) { IPFERROR(15); error = ESRCH; goto donenolock; } if (fg != NULL) fprev = &fg->fg_start; /* * Copy in extra data for the rule. */ if (fp->fr_dsize != 0) { if (makecopy != 0) { KMALLOCS(ptr, void *, fp->fr_dsize); if (ptr == NULL) { IPFERROR(16); error = ENOMEM; goto donenolock; } /* * The bcopy case is for when the data is appended * to the rule by ipf_in_compat(). */ if (uptr >= (void *)fp && uptr < (void *)((char *)fp + fp->fr_size)) { bcopy(uptr, ptr, fp->fr_dsize); error = 0; } else { error = COPYIN(uptr, ptr, fp->fr_dsize); if (error != 0) { IPFERROR(17); error = EFAULT; goto donenolock; } } } else { ptr = uptr; } fp->fr_data = ptr; } else { fp->fr_data = NULL; } /* * Perform per-rule type sanity checks of their members. * All code after this needs to be aware that allocated memory * may need to be free'd before exiting. */ switch (fp->fr_type & ~FR_T_BUILTIN) { #if defined(IPFILTER_BPF) case FR_T_BPFOPC : if (fp->fr_dsize == 0) { IPFERROR(19); error = EINVAL; break; } if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { IPFERROR(20); error = EINVAL; break; } break; #endif case FR_T_IPF : /* * Preparation for error case at the bottom of this function. */ if (fp->fr_datype == FRI_LOOKUP) fp->fr_dstptr = NULL; if (fp->fr_satype == FRI_LOOKUP) fp->fr_srcptr = NULL; if (fp->fr_dsize != sizeof(fripf_t)) { IPFERROR(21); error = EINVAL; break; } /* * Allowing a rule with both "keep state" and "with oow" is * pointless because adding a state entry to the table will * fail with the out of window (oow) flag set. */ if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { IPFERROR(22); error = EINVAL; break; } switch (fp->fr_satype) { case FRI_BROADCAST : case FRI_DYNAMIC : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (fp->fr_sifpidx < 0) { IPFERROR(23); error = EINVAL; } break; case FRI_LOOKUP : fp->fr_srcptr = ipf_findlookup(softc, unit, fp, &fp->fr_src6, &fp->fr_smsk6); if (fp->fr_srcfunc == NULL) { IPFERROR(132); error = ESRCH; break; } break; case FRI_NORMAL : break; default : IPFERROR(133); error = EINVAL; break; } if (error != 0) break; switch (fp->fr_datype) { case FRI_BROADCAST : case FRI_DYNAMIC : case FRI_NETWORK : case FRI_NETMASKED : case FRI_PEERADDR : if (fp->fr_difpidx < 0) { IPFERROR(24); error = EINVAL; } break; case FRI_LOOKUP : fp->fr_dstptr = ipf_findlookup(softc, unit, fp, &fp->fr_dst6, &fp->fr_dmsk6); if (fp->fr_dstfunc == NULL) { IPFERROR(134); error = ESRCH; } break; case FRI_NORMAL : break; default : IPFERROR(135); error = EINVAL; } break; case FR_T_NONE : case FR_T_CALLFUNC : case FR_T_COMPIPF : break; case FR_T_IPFEXPR : if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) { IPFERROR(25); error = EINVAL; } break; default : IPFERROR(26); error = EINVAL; break; } if (error != 0) goto donenolock; if (fp->fr_tif.fd_name != -1) { if ((fp->fr_tif.fd_name < 0) || (fp->fr_tif.fd_name >= fp->fr_namelen)) { IPFERROR(139); error = EINVAL; goto donenolock; } } if (fp->fr_dif.fd_name != -1) { if ((fp->fr_dif.fd_name < 0) || (fp->fr_dif.fd_name >= fp->fr_namelen)) { IPFERROR(140); error = EINVAL; goto donenolock; } } if (fp->fr_rif.fd_name != -1) { if ((fp->fr_rif.fd_name < 0) || (fp->fr_rif.fd_name >= fp->fr_namelen)) { IPFERROR(141); error = EINVAL; goto donenolock; } } /* * Lookup all the interface names that are part of the rule. */ error = ipf_synclist(softc, fp, NULL); if (error != 0) goto donenolock; fp->fr_statecnt = 0; if (fp->fr_srctrack.ht_max_nodes != 0) ipf_rb_ht_init(&fp->fr_srctrack); /* * Look for an existing matching filter rule, but don't include the * next or interface pointer in the comparison (fr_next, fr_ifa). * This elminates rules which are indentical being loaded. Checksum * the constant part of the filter rule to make comparisons quicker * (this meaning no pointers are included). */ for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; p < pp; p++) fp->fr_cksum += *p; pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); for (p = (u_int *)fp->fr_data; p < pp; p++) fp->fr_cksum += *p; WRITE_ENTER(&softc->ipf_mutex); /* * Now that the filter rule lists are locked, we can walk the * chain of them without fear. */ ftail = fprev; for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { if (fp->fr_collect <= f->fr_collect) { ftail = fprev; f = NULL; break; } fprev = ftail; } for (; (f = *ftail) != NULL; ftail = &f->fr_next) { if (ipf_rule_compare(fp, f) == 0) break; } /* * If zero'ing statistics, copy current to caller and zero. */ if (addrem == 2) { if (f == NULL) { IPFERROR(27); error = ESRCH; } else { /* * Copy and reduce lock because of impending copyout. * Well we should, but if we do then the atomicity of * this call and the correctness of fr_hits and * fr_bytes cannot be guaranteed. As it is, this code * only resets them to 0 if they are successfully * copied out into user space. */ bcopy((char *)f, (char *)fp, f->fr_size); /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */ /* * When we copy this rule back out, set the data * pointer to be what it was in user space. */ fp->fr_data = uptr; error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY); if (error == 0) { if ((f->fr_dsize != 0) && (uptr != NULL)) { error = COPYOUT(f->fr_data, uptr, f->fr_dsize); if (error == 0) { f->fr_hits = 0; f->fr_bytes = 0; } else { IPFERROR(28); error = EFAULT; } } } } if (makecopy != 0) { if (ptr != NULL) { KFREES(ptr, fp->fr_dsize); } KFREES(fp, fp->fr_size); } RWLOCK_EXIT(&softc->ipf_mutex); return error; } if (f == NULL) { /* * At the end of this, ftail must point to the place where the * new rule is to be saved/inserted/added. * For SIOCAD*FR, this should be the last rule in the group of * rules that have equal fr_collect fields. * For SIOCIN*FR, ... */ if (req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) { for (ftail = fprev; (f = *ftail) != NULL; ) { if (f->fr_collect > fp->fr_collect) break; ftail = &f->fr_next; fprev = ftail; } ftail = fprev; f = NULL; ptr = NULL; } else if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR) { while ((f = *fprev) != NULL) { if (f->fr_collect >= fp->fr_collect) break; fprev = &f->fr_next; } ftail = fprev; if (fp->fr_hits != 0) { while (fp->fr_hits && (f = *ftail)) { if (f->fr_collect != fp->fr_collect) break; fprev = ftail; ftail = &f->fr_next; fp->fr_hits--; } } f = NULL; ptr = NULL; } } /* * Request to remove a rule. */ if (addrem == 1) { if (f == NULL) { IPFERROR(29); error = ESRCH; } else { /* * Do not allow activity from user space to interfere * with rules not loaded that way. */ if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { IPFERROR(30); error = EPERM; goto done; } /* * Return EBUSY if the rule is being reference by * something else (eg state information.) */ if (f->fr_ref > 1) { IPFERROR(31); error = EBUSY; goto done; } #ifdef IPFILTER_SCAN if (f->fr_isctag != -1 && (f->fr_isc != (struct ipscan *)-1)) ipf_scan_detachfr(f); #endif if (unit == IPL_LOGAUTH) { error = ipf_auth_precmd(softc, req, f, ftail); goto done; } ipf_rule_delete(softc, f, unit, set); need_free = makecopy; } } else { /* * Not removing, so we must be adding/inserting a rule. */ if (f != NULL) { IPFERROR(32); error = EEXIST; goto done; } if (unit == IPL_LOGAUTH) { error = ipf_auth_precmd(softc, req, fp, ftail); goto done; } MUTEX_NUKE(&fp->fr_lock); MUTEX_INIT(&fp->fr_lock, "filter rule lock"); if (fp->fr_die != 0) ipf_rule_expire_insert(softc, fp, set); fp->fr_hits = 0; if (makecopy != 0) fp->fr_ref = 1; fp->fr_pnext = ftail; fp->fr_next = *ftail; if (fp->fr_next != NULL) fp->fr_next->fr_pnext = &fp->fr_next; *ftail = fp; if (addrem == 0) ipf_fixskip(ftail, fp, 1); fp->fr_icmpgrp = NULL; if (fp->fr_icmphead != -1) { group = FR_NAME(fp, fr_icmphead); fg = ipf_group_add(softc, group, fp, 0, unit, set); fp->fr_icmpgrp = fg; } fp->fr_grphead = NULL; if (fp->fr_grhead != -1) { group = FR_NAME(fp, fr_grhead); fg = ipf_group_add(softc, group, fp, fp->fr_flags, unit, set); fp->fr_grphead = fg; } } done: RWLOCK_EXIT(&softc->ipf_mutex); donenolock: if (need_free || (error != 0)) { if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { if ((fp->fr_satype == FRI_LOOKUP) && (fp->fr_srcptr != NULL)) ipf_lookup_deref(softc, fp->fr_srctype, fp->fr_srcptr); if ((fp->fr_datype == FRI_LOOKUP) && (fp->fr_dstptr != NULL)) ipf_lookup_deref(softc, fp->fr_dsttype, fp->fr_dstptr); } if (fp->fr_grp != NULL) { WRITE_ENTER(&softc->ipf_mutex); ipf_group_del(softc, fp->fr_grp, fp); RWLOCK_EXIT(&softc->ipf_mutex); } if ((ptr != NULL) && (makecopy != 0)) { KFREES(ptr, fp->fr_dsize); } KFREES(fp, fp->fr_size); } return (error); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_delete */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* f(I) - pointer to the rule being deleted */ /* ftail(I) - pointer to the pointer to f */ /* unit(I) - device for which this is for */ /* set(I) - 1 or 0 (filter set) */ /* */ /* This function attempts to do what it can to delete a filter rule: remove */ /* it from any linked lists and remove any groups it is responsible for. */ /* But in the end, removing a rule can only drop the reference count - we */ /* must use that as the guide for whether or not it can be freed. */ /* ------------------------------------------------------------------------ */ static void ipf_rule_delete(softc, f, unit, set) ipf_main_softc_t *softc; frentry_t *f; int unit, set; { /* * If fr_pdnext is set, then the rule is on the expire list, so * remove it from there. */ if (f->fr_pdnext != NULL) { *f->fr_pdnext = f->fr_dnext; if (f->fr_dnext != NULL) f->fr_dnext->fr_pdnext = f->fr_pdnext; f->fr_pdnext = NULL; f->fr_dnext = NULL; } ipf_fixskip(f->fr_pnext, f, -1); if (f->fr_pnext != NULL) *f->fr_pnext = f->fr_next; if (f->fr_next != NULL) f->fr_next->fr_pnext = f->fr_pnext; f->fr_pnext = NULL; f->fr_next = NULL; (void) ipf_derefrule(softc, &f); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_expire_insert */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* f(I) - pointer to rule to be added to expire list */ /* set(I) - 1 or 0 (filter set) */ /* */ /* If the new rule has a given expiration time, insert it into the list of */ /* expiring rules with the ones to be removed first added to the front of */ /* the list. The insertion is O(n) but it is kept sorted for quick scans at */ /* expiration interval checks. */ /* ------------------------------------------------------------------------ */ static void ipf_rule_expire_insert(softc, f, set) ipf_main_softc_t *softc; frentry_t *f; int set; { frentry_t *fr; /* */ f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die); for (fr = softc->ipf_rule_explist[set]; fr != NULL; fr = fr->fr_dnext) { if (f->fr_die < fr->fr_die) break; if (fr->fr_dnext == NULL) { /* * We've got to the last rule and everything * wanted to be expired before this new node, * so we have to tack it on the end... */ fr->fr_dnext = f; f->fr_pdnext = &fr->fr_dnext; fr = NULL; break; } } if (softc->ipf_rule_explist[set] == NULL) { softc->ipf_rule_explist[set] = f; f->fr_pdnext = &softc->ipf_rule_explist[set]; } else if (fr != NULL) { f->fr_dnext = fr; f->fr_pdnext = fr->fr_pdnext; fr->fr_pdnext = &f->fr_dnext; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_findlookup */ /* Returns: NULL = failure, else success */ /* Parameters: softc(I) - pointer to soft context main structure */ /* unit(I) - ipf device we want to find match for */ /* fp(I) - rule for which lookup is for */ /* addrp(I) - pointer to lookup information in address struct */ /* maskp(O) - pointer to lookup information for storage */ /* */ /* When using pools and hash tables to store addresses for matching in */ /* rules, it is necessary to resolve both the object referred to by the */ /* name or address (and return that pointer) and also provide the means by */ /* which to determine if an address belongs to that object to make the */ /* packet matching quicker. */ /* ------------------------------------------------------------------------ */ static void * ipf_findlookup(softc, unit, fr, addrp, maskp) ipf_main_softc_t *softc; int unit; frentry_t *fr; i6addr_t *addrp, *maskp; { void *ptr = NULL; switch (addrp->iplookupsubtype) { case 0 : ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype, addrp->iplookupnum, &maskp->iplookupfunc); break; case 1 : if (addrp->iplookupname < 0) break; if (addrp->iplookupname >= fr->fr_namelen) break; ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype, fr->fr_names + addrp->iplookupname, &maskp->iplookupfunc); break; default : break; } return ptr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_funcinit */ /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* */ /* If a rule is a call rule, then check if the function it points to needs */ /* an init function to be called now the rule has been loaded. */ /* ------------------------------------------------------------------------ */ static int ipf_funcinit(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { ipfunc_resolve_t *ft; int err; IPFERROR(34); err = ESRCH; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == fr->fr_func) { err = 0; if (ft->ipfu_init != NULL) err = (*ft->ipfu_init)(softc, fr); break; } return err; } /* ------------------------------------------------------------------------ */ /* Function: ipf_funcfini */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* */ /* For a given filter rule, call the matching "fini" function if the rule */ /* is using a known function that would have resulted in the "init" being */ /* called for ealier. */ /* ------------------------------------------------------------------------ */ static void ipf_funcfini(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { ipfunc_resolve_t *ft; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == fr->fr_func) { if (ft->ipfu_fini != NULL) (void) (*ft->ipfu_fini)(softc, fr); break; } } /* ------------------------------------------------------------------------ */ /* Function: ipf_findfunc */ /* Returns: ipfunc_t - pointer to function if found, else NULL */ /* Parameters: funcptr(I) - function pointer to lookup */ /* */ /* Look for a function in the table of known functions. */ /* ------------------------------------------------------------------------ */ static ipfunc_t ipf_findfunc(funcptr) ipfunc_t funcptr; { ipfunc_resolve_t *ft; for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == funcptr) return funcptr; return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvefunc */ /* Returns: int - 0 == success, else error */ /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ /* */ /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ /* This will either be the function name (if the pointer is set) or the */ /* function pointer if the name is set. When found, fill in the other one */ /* so that the entire, complete, structure can be copied back to user space.*/ /* ------------------------------------------------------------------------ */ int ipf_resolvefunc(softc, data) ipf_main_softc_t *softc; void *data; { ipfunc_resolve_t res, *ft; int error; error = BCOPYIN(data, &res, sizeof(res)); if (error != 0) { IPFERROR(123); return EFAULT; } if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (strncmp(res.ipfu_name, ft->ipfu_name, sizeof(res.ipfu_name)) == 0) { res.ipfu_addr = ft->ipfu_addr; res.ipfu_init = ft->ipfu_init; if (COPYOUT(&res, data, sizeof(res)) != 0) { IPFERROR(35); return EFAULT; } return 0; } } if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) if (ft->ipfu_addr == res.ipfu_addr) { (void) strncpy(res.ipfu_name, ft->ipfu_name, sizeof(res.ipfu_name)); res.ipfu_init = ft->ipfu_init; if (COPYOUT(&res, data, sizeof(res)) != 0) { IPFERROR(36); return EFAULT; } return 0; } } IPFERROR(37); return ESRCH; } #if !defined(_KERNEL) || SOLARIS /* * From: NetBSD * ppsratecheck(): packets (or events) per second limitation. */ int ppsratecheck(lasttime, curpps, maxpps) struct timeval *lasttime; int *curpps; int maxpps; /* maximum pps allowed */ { struct timeval tv, delta; int rv; GETKTIME(&tv); delta.tv_sec = tv.tv_sec - lasttime->tv_sec; delta.tv_usec = tv.tv_usec - lasttime->tv_usec; if (delta.tv_usec < 0) { delta.tv_sec--; delta.tv_usec += 1000000; } /* * check for 0,0 is so that the message will be seen at least once. * if more than one second have passed since the last update of * lasttime, reset the counter. * * we do increment *curpps even in *curpps < maxpps case, as some may * try to use *curpps for stat purposes as well. */ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || delta.tv_sec >= 1) { *lasttime = tv; *curpps = 0; rv = 1; } else if (maxpps < 0) rv = 1; else if (*curpps < maxpps) rv = 1; else rv = 0; *curpps = *curpps + 1; return (rv); } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_derefrule */ /* Returns: int - 0 == rule freed up, else rule not freed */ /* Parameters: fr(I) - pointer to filter rule */ /* */ /* Decrement the reference counter to a rule by one. If it reaches zero, */ /* free it and any associated storage space being used by it. */ /* ------------------------------------------------------------------------ */ int ipf_derefrule(softc, frp) ipf_main_softc_t *softc; frentry_t **frp; { frentry_t *fr; frdest_t *fdp; fr = *frp; *frp = NULL; MUTEX_ENTER(&fr->fr_lock); fr->fr_ref--; if (fr->fr_ref == 0) { MUTEX_EXIT(&fr->fr_lock); MUTEX_DESTROY(&fr->fr_lock); ipf_funcfini(softc, fr); fdp = &fr->fr_tif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); fdp = &fr->fr_rif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); fdp = &fr->fr_dif; if (fdp->fd_type == FRD_DSTLIST) ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr); if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr); if (fr->fr_grp != NULL) ipf_group_del(softc, fr->fr_grp, fr); if (fr->fr_grphead != NULL) ipf_group_del(softc, fr->fr_grphead, fr); if (fr->fr_icmpgrp != NULL) ipf_group_del(softc, fr->fr_icmpgrp, fr); if ((fr->fr_flags & FR_COPIED) != 0) { if (fr->fr_dsize) { KFREES(fr->fr_data, fr->fr_dsize); } KFREES(fr, fr->fr_size); return 0; } return 1; } else { MUTEX_EXIT(&fr->fr_lock); } return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_grpmapinit */ /* Returns: int - 0 == success, else ESRCH because table entry not found*/ /* Parameters: fr(I) - pointer to rule to find hash table for */ /* */ /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */ /* ------------------------------------------------------------------------ */ static int ipf_grpmapinit(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { char name[FR_GROUPLEN]; iphtable_t *iph; #if defined(SNPRINTF) && defined(_KERNEL) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); #else (void) sprintf(name, "%d", fr->fr_arg); #endif iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name); if (iph == NULL) { IPFERROR(38); return ESRCH; } if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) { IPFERROR(39); return ESRCH; } iph->iph_ref++; fr->fr_ptr = iph; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_grpmapfini */ /* Returns: int - 0 == success, else ESRCH because table entry not found*/ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to rule to release hash table for */ /* */ /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */ /* be called to undo what ipf_grpmapinit caused to be done. */ /* ------------------------------------------------------------------------ */ static int ipf_grpmapfini(softc, fr) ipf_main_softc_t *softc; frentry_t *fr; { iphtable_t *iph; iph = fr->fr_ptr; if (iph != NULL) ipf_lookup_deref(softc, IPLT_HASH, iph); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_srcgrpmap */ /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Look for a rule group head in a hash table, using the source address as */ /* the key, and descend into that group and continue matching rules against */ /* the packet. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_srcgrpmap(fin, passp) fr_info_t *fin; u_32_t *passp; { frgroup_t *fg; void *rval; rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, &fin->fin_src); if (rval == NULL) return NULL; fg = rval; fin->fin_fr = fg->fg_start; (void) ipf_scanlist(fin, *passp); return fin->fin_fr; } /* ------------------------------------------------------------------------ */ /* Function: ipf_dstgrpmap */ /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ /* Parameters: fin(I) - pointer to packet information */ /* passp(IO) - pointer to current/new filter decision (unused) */ /* */ /* Look for a rule group head in a hash table, using the destination */ /* address as the key, and descend into that group and continue matching */ /* rules against the packet. */ /* ------------------------------------------------------------------------ */ frentry_t * ipf_dstgrpmap(fin, passp) fr_info_t *fin; u_32_t *passp; { frgroup_t *fg; void *rval; rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, &fin->fin_dst); if (rval == NULL) return NULL; fg = rval; fin->fin_fr = fg->fg_start; (void) ipf_scanlist(fin, *passp); return fin->fin_fr; } /* * Queue functions * =============== * These functions manage objects on queues for efficient timeouts. There * are a number of system defined queues as well as user defined timeouts. * It is expected that a lock is held in the domain in which the queue * belongs (i.e. either state or NAT) when calling any of these functions * that prevents ipf_freetimeoutqueue() from being called at the same time * as any other. */ /* ------------------------------------------------------------------------ */ /* Function: ipf_addtimeoutqueue */ /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ /* timeout queue with given interval. */ /* Parameters: parent(I) - pointer to pointer to parent node of this list */ /* of interface queues. */ /* seconds(I) - timeout value in seconds for this queue. */ /* */ /* This routine first looks for a timeout queue that matches the interval */ /* being requested. If it finds one, increments the reference counter and */ /* returns a pointer to it. If none are found, it allocates a new one and */ /* inserts it at the top of the list. */ /* */ /* Locking. */ /* It is assumed that the caller of this function has an appropriate lock */ /* held (exclusively) in the domain that encompases 'parent'. */ /* ------------------------------------------------------------------------ */ ipftq_t * ipf_addtimeoutqueue(softc, parent, seconds) ipf_main_softc_t *softc; ipftq_t **parent; u_int seconds; { ipftq_t *ifq; u_int period; period = seconds * IPF_HZ_DIVIDE; MUTEX_ENTER(&softc->ipf_timeoutlock); for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { if (ifq->ifq_ttl == period) { /* * Reset the delete flag, if set, so the structure * gets reused rather than freed and reallocated. */ MUTEX_ENTER(&ifq->ifq_lock); ifq->ifq_flags &= ~IFQF_DELETE; ifq->ifq_ref++; MUTEX_EXIT(&ifq->ifq_lock); MUTEX_EXIT(&softc->ipf_timeoutlock); return ifq; } } KMALLOC(ifq, ipftq_t *); if (ifq != NULL) { MUTEX_NUKE(&ifq->ifq_lock); IPFTQ_INIT(ifq, period, "ipftq mutex"); ifq->ifq_next = *parent; ifq->ifq_pnext = parent; ifq->ifq_flags = IFQF_USER; ifq->ifq_ref++; *parent = ifq; softc->ipf_userifqs++; } MUTEX_EXIT(&softc->ipf_timeoutlock); return ifq; } /* ------------------------------------------------------------------------ */ /* Function: ipf_deletetimeoutqueue */ /* Returns: int - new reference count value of the timeout queue */ /* Parameters: ifq(I) - timeout queue which is losing a reference. */ /* Locks: ifq->ifq_lock */ /* */ /* This routine must be called when we're discarding a pointer to a timeout */ /* queue object, taking care of the reference counter. */ /* */ /* Now that this just sets a DELETE flag, it requires the expire code to */ /* check the list of user defined timeout queues and call the free function */ /* below (currently commented out) to stop memory leaking. It is done this */ /* way because the locking may not be sufficient to safely do a free when */ /* this function is called. */ /* ------------------------------------------------------------------------ */ int ipf_deletetimeoutqueue(ifq) ipftq_t *ifq; { ifq->ifq_ref--; if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { ifq->ifq_flags |= IFQF_DELETE; } return ifq->ifq_ref; } /* ------------------------------------------------------------------------ */ /* Function: ipf_freetimeoutqueue */ /* Parameters: ifq(I) - timeout queue which is losing a reference. */ /* Returns: Nil */ /* */ /* Locking: */ /* It is assumed that the caller of this function has an appropriate lock */ /* held (exclusively) in the domain that encompases the callers "domain". */ /* The ifq_lock for this structure should not be held. */ /* */ /* Remove a user defined timeout queue from the list of queues it is in and */ /* tidy up after this is done. */ /* ------------------------------------------------------------------------ */ void ipf_freetimeoutqueue(softc, ifq) ipf_main_softc_t *softc; ipftq_t *ifq; { if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || ((ifq->ifq_flags & IFQF_USER) == 0)) { printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, ifq->ifq_ref); return; } /* * Remove from its position in the list. */ *ifq->ifq_pnext = ifq->ifq_next; if (ifq->ifq_next != NULL) ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; ifq->ifq_next = NULL; ifq->ifq_pnext = NULL; MUTEX_DESTROY(&ifq->ifq_lock); ATOMIC_DEC(softc->ipf_userifqs); KFREE(ifq); } /* ------------------------------------------------------------------------ */ /* Function: ipf_deletequeueentry */ /* Returns: Nil */ /* Parameters: tqe(I) - timeout queue entry to delete */ /* */ /* Remove a tail queue entry from its queue and make it an orphan. */ /* ipf_deletetimeoutqueue is called to make sure the reference count on the */ /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */ /* the correct lock(s) may not be held that would make it safe to do so. */ /* ------------------------------------------------------------------------ */ void ipf_deletequeueentry(tqe) ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; MUTEX_ENTER(&ifq->ifq_lock); if (tqe->tqe_pnext != NULL) { *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next != NULL) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else /* we must be the tail anyway */ ifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_pnext = NULL; tqe->tqe_ifq = NULL; } (void) ipf_deletetimeoutqueue(ifq); ASSERT(ifq->ifq_ref > 0); MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queuefront */ /* Returns: Nil */ /* Parameters: tqe(I) - pointer to timeout queue entry */ /* */ /* Move a queue entry to the front of the queue, if it isn't already there. */ /* ------------------------------------------------------------------------ */ void ipf_queuefront(tqe) ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; if (ifq == NULL) return; MUTEX_ENTER(&ifq->ifq_lock); if (ifq->ifq_head != tqe) { *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else ifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_next = ifq->ifq_head; ifq->ifq_head->tqe_pnext = &tqe->tqe_next; ifq->ifq_head = tqe; tqe->tqe_pnext = &ifq->ifq_head; } MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueback */ /* Returns: Nil */ /* Parameters: ticks(I) - ipf tick time to use with this call */ /* tqe(I) - pointer to timeout queue entry */ /* */ /* Move a queue entry to the back of the queue, if it isn't already there. */ /* We use use ticks to calculate the expiration and mark for when we last */ /* touched the structure. */ /* ------------------------------------------------------------------------ */ void ipf_queueback(ticks, tqe) u_long ticks; ipftqent_t *tqe; { ipftq_t *ifq; ifq = tqe->tqe_ifq; if (ifq == NULL) return; tqe->tqe_die = ticks + ifq->ifq_ttl; tqe->tqe_touched = ticks; MUTEX_ENTER(&ifq->ifq_lock); if (tqe->tqe_next != NULL) { /* at the end already ? */ /* * Remove from list */ *tqe->tqe_pnext = tqe->tqe_next; tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; /* * Make it the last entry. */ tqe->tqe_next = NULL; tqe->tqe_pnext = ifq->ifq_tail; *ifq->ifq_tail = tqe; ifq->ifq_tail = &tqe->tqe_next; } MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueappend */ /* Returns: Nil */ /* Parameters: ticks(I) - ipf tick time to use with this call */ /* tqe(I) - pointer to timeout queue entry */ /* ifq(I) - pointer to timeout queue */ /* parent(I) - owing object pointer */ /* */ /* Add a new item to this queue and put it on the very end. */ /* We use use ticks to calculate the expiration and mark for when we last */ /* touched the structure. */ /* ------------------------------------------------------------------------ */ void ipf_queueappend(ticks, tqe, ifq, parent) u_long ticks; ipftqent_t *tqe; ipftq_t *ifq; void *parent; { MUTEX_ENTER(&ifq->ifq_lock); tqe->tqe_parent = parent; tqe->tqe_pnext = ifq->ifq_tail; *ifq->ifq_tail = tqe; ifq->ifq_tail = &tqe->tqe_next; tqe->tqe_next = NULL; tqe->tqe_ifq = ifq; tqe->tqe_die = ticks + ifq->ifq_ttl; tqe->tqe_touched = ticks; ifq->ifq_ref++; MUTEX_EXIT(&ifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_movequeue */ /* Returns: Nil */ /* Parameters: tq(I) - pointer to timeout queue information */ /* oifp(I) - old timeout queue entry was on */ /* nifp(I) - new timeout queue to put entry on */ /* */ /* Move a queue entry from one timeout queue to another timeout queue. */ /* If it notices that the current entry is already last and does not need */ /* to move queue, the return. */ /* ------------------------------------------------------------------------ */ void ipf_movequeue(ticks, tqe, oifq, nifq) u_long ticks; ipftqent_t *tqe; ipftq_t *oifq, *nifq; { /* * If the queue hasn't changed and we last touched this entry at the * same ipf time, then we're not going to achieve anything by either * changing the ttl or moving it on the queue. */ if (oifq == nifq && tqe->tqe_touched == ticks) return; /* * For any of this to be outside the lock, there is a risk that two * packets entering simultaneously, with one changing to a different * queue and one not, could end up with things in a bizarre state. */ MUTEX_ENTER(&oifq->ifq_lock); tqe->tqe_touched = ticks; tqe->tqe_die = ticks + nifq->ifq_ttl; /* * Is the operation here going to be a no-op ? */ if (oifq == nifq) { if ((tqe->tqe_next == NULL) || (tqe->tqe_next->tqe_die == tqe->tqe_die)) { MUTEX_EXIT(&oifq->ifq_lock); return; } } /* * Remove from the old queue */ *tqe->tqe_pnext = tqe->tqe_next; if (tqe->tqe_next) tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; else oifq->ifq_tail = tqe->tqe_pnext; tqe->tqe_next = NULL; /* * If we're moving from one queue to another, release the * lock on the old queue and get a lock on the new queue. * For user defined queues, if we're moving off it, call * delete in case it can now be freed. */ if (oifq != nifq) { tqe->tqe_ifq = NULL; (void) ipf_deletetimeoutqueue(oifq); MUTEX_EXIT(&oifq->ifq_lock); MUTEX_ENTER(&nifq->ifq_lock); tqe->tqe_ifq = nifq; nifq->ifq_ref++; } /* * Add to the bottom of the new queue */ tqe->tqe_pnext = nifq->ifq_tail; *nifq->ifq_tail = tqe; nifq->ifq_tail = &tqe->tqe_next; MUTEX_EXIT(&nifq->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_updateipid */ /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* When we are doing NAT, change the IP of every packet to represent a */ /* single sequence of packets coming from the host, hiding any host */ /* specific sequencing that might otherwise be revealed. If the packet is */ /* a fragment, then store the 'new' IPid in the fragment cache and look up */ /* the fragment cache for non-leading fragments. If a non-leading fragment */ /* has no match in the cache, return an error. */ /* ------------------------------------------------------------------------ */ static int ipf_updateipid(fin) fr_info_t *fin; { u_short id, ido, sums; u_32_t sumd, sum; ip_t *ip; ip = fin->fin_ip; ido = ntohs(ip->ip_id); if (fin->fin_off != 0) { sum = ipf_frag_ipidknown(fin); if (sum == 0xffffffff) return -1; sum &= 0xffff; id = (u_short)sum; ip->ip_id = htons(id); } else { ip_fillid(ip); id = ntohs(ip->ip_id); if ((fin->fin_flx & FI_FRAG) != 0) (void) ipf_frag_ipidnew(fin, (u_32_t)id); } if (id == ido) return 0; CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ sum = (~ntohs(ip->ip_sum)) & 0xffff; sum += sumd; sum = (sum >> 16) + (sum & 0xffff); sum = (sum >> 16) + (sum & 0xffff); sums = ~(u_short)sum; ip->ip_sum = htons(sums); return 0; } #ifdef NEED_FRGETIFNAME /* ------------------------------------------------------------------------ */ /* Function: ipf_getifname */ /* Returns: char * - pointer to interface name */ /* Parameters: ifp(I) - pointer to network interface */ /* buffer(O) - pointer to where to store interface name */ /* */ /* Constructs an interface name in the buffer passed. The buffer passed is */ /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ /* as a NULL pointer then return a pointer to a static array. */ /* ------------------------------------------------------------------------ */ char * ipf_getifname(ifp, buffer) struct ifnet *ifp; char *buffer; { static char namebuf[LIFNAMSIZ]; # if defined(MENTAT) || defined(__FreeBSD__) int unit, space; char temp[20]; char *s; # endif if (buffer == NULL) buffer = namebuf; (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); buffer[LIFNAMSIZ - 1] = '\0'; # if defined(MENTAT) || defined(__FreeBSD__) for (s = buffer; *s; s++) ; unit = ifp->if_unit; space = LIFNAMSIZ - (s - buffer); if ((space > 0) && (unit >= 0)) { # if defined(SNPRINTF) && defined(_KERNEL) SNPRINTF(temp, sizeof(temp), "%d", unit); # else (void) sprintf(temp, "%d", unit); # endif (void) strncpy(s, temp, space); } # endif return buffer; } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_ioctlswitch */ /* Returns: int - -1 continue processing, else ioctl return value */ /* Parameters: unit(I) - device unit opened */ /* data(I) - pointer to ioctl data */ /* cmd(I) - ioctl command */ /* mode(I) - mode value */ /* uid(I) - uid making the ioctl call */ /* ctx(I) - pointer to context data */ /* */ /* Based on the value of unit, call the appropriate ioctl handler or return */ /* EIO if ipfilter is not running. Also checks if write perms are req'd */ /* for the device in order to execute the ioctl. A special case is made */ /* SIOCIPFINTERROR so that the same code isn't required in every handler. */ /* The context data pointer is passed through as this is used as the key */ /* for locating a matching token for continued access for walking lists, */ /* etc. */ /* ------------------------------------------------------------------------ */ int ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; int unit, mode, uid; ioctlcmd_t cmd; void *data, *ctx; { int error = 0; switch (cmd) { case SIOCIPFINTERROR : error = BCOPYOUT(&softc->ipf_interror, data, sizeof(softc->ipf_interror)); if (error != 0) { IPFERROR(40); error = EFAULT; } return error; default : break; } switch (unit) { case IPL_LOGIPF : error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx); break; case IPL_LOGNAT : if (softc->ipf_running > 0) { error = ipf_nat_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(42); error = EIO; } break; case IPL_LOGSTATE : if (softc->ipf_running > 0) { error = ipf_state_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(43); error = EIO; } break; case IPL_LOGAUTH : if (softc->ipf_running > 0) { error = ipf_auth_ioctl(softc, data, cmd, mode, uid, ctx); } else { IPFERROR(44); error = EIO; } break; case IPL_LOGSYNC : if (softc->ipf_running > 0) { error = ipf_sync_ioctl(softc, data, cmd, mode, uid, ctx); } else { error = EIO; IPFERROR(45); } break; case IPL_LOGSCAN : #ifdef IPFILTER_SCAN if (softc->ipf_running > 0) error = ipf_scan_ioctl(softc, data, cmd, mode, uid, ctx); else #endif { error = EIO; IPFERROR(46); } break; case IPL_LOGLOOKUP : if (softc->ipf_running > 0) { error = ipf_lookup_ioctl(softc, data, cmd, mode, uid, ctx); } else { error = EIO; IPFERROR(47); } break; default : IPFERROR(48); error = EIO; break; } return error; } /* * This array defines the expected size of objects coming into the kernel * for the various recognised object types. The first column is flags (see * below), 2nd column is current size, 3rd column is the version number of * when the current size became current. * Flags: * 1 = minimum size, not absolute size */ static const int ipf_objbytes[IPFOBJ_COUNT][3] = { { 1, sizeof(struct frentry), 5010000 }, /* 0 */ { 1, sizeof(struct friostat), 5010000 }, { 0, sizeof(struct fr_info), 5010000 }, { 0, sizeof(struct ipf_authstat), 4010100 }, { 0, sizeof(struct ipfrstat), 5010000 }, { 1, sizeof(struct ipnat), 5010000 }, /* 5 */ { 0, sizeof(struct natstat), 5010000 }, { 0, sizeof(struct ipstate_save), 5010000 }, { 1, sizeof(struct nat_save), 5010000 }, { 0, sizeof(struct natlookup), 5010000 }, { 1, sizeof(struct ipstate), 5010000 }, /* 10 */ { 0, sizeof(struct ips_stat), 5010000 }, { 0, sizeof(struct frauth), 5010000 }, { 0, sizeof(struct ipftune), 4010100 }, { 0, sizeof(struct nat), 5010000 }, { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */ { 0, sizeof(struct ipfgeniter), 4011400 }, { 0, sizeof(struct ipftable), 4011400 }, { 0, sizeof(struct ipflookupiter), 4011400 }, { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES }, { 1, 0, 0 }, /* IPFEXPR */ { 0, 0, 0 }, /* PROXYCTL */ { 0, sizeof (struct fripf), 5010000 } }; /* ------------------------------------------------------------------------ */ /* Function: ipf_inobj */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* data(I) - pointer to ioctl data */ /* objp(O) - where to store ipfobj structure */ /* ptr(I) - pointer to data to copy out */ /* type(I) - type of structure being moved */ /* */ /* Copy in the contents of what the ipfobj_t points to. In future, we */ /* add things to check for version numbers, sizes, etc, to make it backward */ /* compatible at the ABI for user land. */ /* If objp is not NULL then we assume that the caller wants to see what is */ /* in the ipfobj_t structure being copied in. As an example, this can tell */ /* the caller what version of ipfilter the ioctl program was written to. */ /* ------------------------------------------------------------------------ */ int ipf_inobj(softc, data, objp, ptr, type) ipf_main_softc_t *softc; void *data; ipfobj_t *objp; void *ptr; int type; { ipfobj_t obj; int error; int size; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(49); return EINVAL; } if (objp == NULL) objp = &obj; error = BCOPYIN(data, objp, sizeof(*objp)); if (error != 0) { IPFERROR(124); return EFAULT; } if (objp->ipfo_type != type) { IPFERROR(50); return EINVAL; } if (objp->ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (objp->ipfo_size < ipf_objbytes[type][1]) { IPFERROR(51); return EINVAL; } size = ipf_objbytes[type][1]; } else if (objp->ipfo_size == ipf_objbytes[type][1]) { size = objp->ipfo_size; } else { IPFERROR(52); return EINVAL; } error = COPYIN(objp->ipfo_ptr, ptr, size); if (error != 0) { IPFERROR(55); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_in_compat(softc, objp, ptr, 0); #else IPFERROR(54); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inobjsz */ /* Returns: int - 0 = success, else failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* sz(I) - size of data to copy */ /* */ /* As per ipf_inobj, except the size of the object to copy in is passed in */ /* but it must not be smaller than the size defined for the type and the */ /* type must allow for varied sized objects. The extra requirement here is */ /* that sz must match the size of the object being passed in - this is not */ /* not possible nor required in ipf_inobj(). */ /* ------------------------------------------------------------------------ */ int ipf_inobjsz(softc, data, ptr, type, sz) ipf_main_softc_t *softc; void *data; void *ptr; int type, sz; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(56); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(125); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(58); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if (((ipf_objbytes[type][0] & 1) == 0) || (sz < ipf_objbytes[type][1])) { IPFERROR(57); return EINVAL; } error = COPYIN(obj.ipfo_ptr, ptr, sz); if (error != 0) { IPFERROR(61); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_in_compat(softc, &obj, ptr, sz); #else IPFERROR(60); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobjsz */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* sz(I) - size of data to copy */ /* */ /* As per ipf_outobj, except the size of the object to copy out is passed in*/ /* but it must not be smaller than the size defined for the type and the */ /* type must allow for varied sized objects. The extra requirement here is */ /* that sz must match the size of the object being passed in - this is not */ /* not possible nor required in ipf_outobj(). */ /* ------------------------------------------------------------------------ */ int ipf_outobjsz(softc, data, ptr, type, sz) ipf_main_softc_t *softc; void *data; void *ptr; int type, sz; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(62); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(127); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(63); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if (((ipf_objbytes[type][0] & 1) == 0) || (sz < ipf_objbytes[type][1])) { IPFERROR(146); return EINVAL; } error = COPYOUT(ptr, obj.ipfo_ptr, sz); if (error != 0) { IPFERROR(66); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, &obj, ptr); #else IPFERROR(65); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobj */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(I) - pointer to ioctl data */ /* ptr(I) - pointer to store real data in */ /* type(I) - type of structure being moved */ /* */ /* Copy out the contents of what ptr is to where ipfobj points to. In */ /* future, we add things to check for version numbers, sizes, etc, to make */ /* it backward compatible at the ABI for user land. */ /* ------------------------------------------------------------------------ */ int ipf_outobj(softc, data, ptr, type) ipf_main_softc_t *softc; void *data; void *ptr; int type; { ipfobj_t obj; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(67); return EINVAL; } error = BCOPYIN(data, &obj, sizeof(obj)); if (error != 0) { IPFERROR(126); return EFAULT; } if (obj.ipfo_type != type) { IPFERROR(68); return EINVAL; } if (obj.ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (obj.ipfo_size < ipf_objbytes[type][1]) { IPFERROR(69); return EINVAL; } } else if (obj.ipfo_size != ipf_objbytes[type][1]) { IPFERROR(70); return EINVAL; } error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size); if (error != 0) { IPFERROR(73); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, &obj, ptr); #else IPFERROR(72); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_outobjk */ /* Returns: int - 0 = success, else failure */ /* Parameters: obj(I) - pointer to data description structure */ /* ptr(I) - pointer to kernel data to copy out */ /* */ /* In the above functions, the ipfobj_t structure is copied into the kernel,*/ /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */ /* already populated with information and now we just need to use it. */ /* There is no need for this function to have a "type" parameter as there */ /* is no point in validating information that comes from the kernel with */ /* itself. */ /* ------------------------------------------------------------------------ */ int ipf_outobjk(softc, obj, ptr) ipf_main_softc_t *softc; ipfobj_t *obj; void *ptr; { int type = obj->ipfo_type; int error; if ((type < 0) || (type >= IPFOBJ_COUNT)) { IPFERROR(147); return EINVAL; } if (obj->ipfo_rev >= ipf_objbytes[type][2]) { if ((ipf_objbytes[type][0] & 1) != 0) { if (obj->ipfo_size < ipf_objbytes[type][1]) { IPFERROR(148); return EINVAL; } } else if (obj->ipfo_size != ipf_objbytes[type][1]) { IPFERROR(149); return EINVAL; } error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size); if (error != 0) { IPFERROR(150); error = EFAULT; } } else { #ifdef IPFILTER_COMPAT error = ipf_out_compat(softc, obj, ptr); #else IPFERROR(151); error = EINVAL; #endif } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_checkl4sum */ /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* If possible, calculate the layer 4 checksum for the packet. If this is */ /* not possible, return without indicating a failure or success but in a */ /* way that is ditinguishable. This function should only be called by the */ /* ipf_checkv6sum() for each platform. */ /* ------------------------------------------------------------------------ */ INLINE int ipf_checkl4sum(fin) fr_info_t *fin; { u_short sum, hdrsum, *csump; udphdr_t *udp; int dosum; /* * If the TCP packet isn't a fragment, isn't too short and otherwise * isn't already considered "bad", then validate the checksum. If * this check fails then considered the packet to be "bad". */ if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) return 1; DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p); if (fin->fin_out == 1) { fin->fin_cksum = FI_CK_SUMOK; return 0; } csump = NULL; hdrsum = 0; dosum = 0; sum = 0; switch (fin->fin_p) { case IPPROTO_TCP : csump = &((tcphdr_t *)fin->fin_dp)->th_sum; dosum = 1; break; case IPPROTO_UDP : udp = fin->fin_dp; if (udp->uh_sum != 0) { csump = &udp->uh_sum; dosum = 1; } break; #ifdef USE_INET6 case IPPROTO_ICMPV6 : csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum; dosum = 1; break; #endif case IPPROTO_ICMP : csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; dosum = 1; break; default : return 1; /*NOTREACHED*/ } if (csump != NULL) hdrsum = *csump; if (dosum) { sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp); } #if !defined(_KERNEL) if (sum == hdrsum) { FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); } else { FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); } #endif DT2(l4sums, u_short, hdrsum, u_short, sum); #ifdef USE_INET6 if (hdrsum == sum || (sum == 0 && fin->fin_p == IPPROTO_ICMPV6)) { #else if (hdrsum == sum) { #endif fin->fin_cksum = FI_CK_SUMOK; return 0; } fin->fin_cksum = FI_CK_BAD; return -1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ifpfillv4addr */ /* Returns: int - 0 = address update, -1 = address not updated */ /* Parameters: atype(I) - type of network address update to perform */ /* sin(I) - pointer to source of address information */ /* mask(I) - pointer to source of netmask information */ /* inp(I) - pointer to destination address store */ /* inpmask(I) - pointer to destination netmask store */ /* */ /* Given a type of network address update (atype) to perform, copy */ /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ /* which case the operation fails. For all values of atype other than */ /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ /* value. */ /* ------------------------------------------------------------------------ */ int ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask) int atype; struct sockaddr_in *sin, *mask; struct in_addr *inp, *inpmask; { if (inpmask != NULL && atype != FRI_NETMASKED) inpmask->s_addr = 0xffffffff; if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { if (atype == FRI_NETMASKED) { if (inpmask == NULL) return -1; inpmask->s_addr = mask->sin_addr.s_addr; } inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; } else { inp->s_addr = sin->sin_addr.s_addr; } return 0; } #ifdef USE_INET6 /* ------------------------------------------------------------------------ */ /* Function: ipf_ifpfillv6addr */ /* Returns: int - 0 = address update, -1 = address not updated */ /* Parameters: atype(I) - type of network address update to perform */ /* sin(I) - pointer to source of address information */ /* mask(I) - pointer to source of netmask information */ /* inp(I) - pointer to destination address store */ /* inpmask(I) - pointer to destination netmask store */ /* */ /* Given a type of network address update (atype) to perform, copy */ /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ /* which case the operation fails. For all values of atype other than */ /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ /* value. */ /* ------------------------------------------------------------------------ */ int ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask) int atype; struct sockaddr_in6 *sin, *mask; i6addr_t *inp, *inpmask; { i6addr_t *src, *and; src = (i6addr_t *)&sin->sin6_addr; and = (i6addr_t *)&mask->sin6_addr; if (inpmask != NULL && atype != FRI_NETMASKED) { inpmask->i6[0] = 0xffffffff; inpmask->i6[1] = 0xffffffff; inpmask->i6[2] = 0xffffffff; inpmask->i6[3] = 0xffffffff; } if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { if (atype == FRI_NETMASKED) { if (inpmask == NULL) return -1; inpmask->i6[0] = and->i6[0]; inpmask->i6[1] = and->i6[1]; inpmask->i6[2] = and->i6[2]; inpmask->i6[3] = and->i6[3]; } inp->i6[0] = src->i6[0] & and->i6[0]; inp->i6[1] = src->i6[1] & and->i6[1]; inp->i6[2] = src->i6[2] & and->i6[2]; inp->i6[3] = src->i6[3] & and->i6[3]; } else { inp->i6[0] = src->i6[0]; inp->i6[1] = src->i6[1]; inp->i6[2] = src->i6[2]; inp->i6[3] = src->i6[3]; } return 0; } #endif /* ------------------------------------------------------------------------ */ /* Function: ipf_matchtag */ /* Returns: 0 == mismatch, 1 == match. */ /* Parameters: tag1(I) - pointer to first tag to compare */ /* tag2(I) - pointer to second tag to compare */ /* */ /* Returns true (non-zero) or false(0) if the two tag structures can be */ /* considered to be a match or not match, respectively. The tag is 16 */ /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ /* compare the ints instead, for speed. tag1 is the master of the */ /* comparison. This function should only be called with both tag1 and tag2 */ /* as non-NULL pointers. */ /* ------------------------------------------------------------------------ */ int ipf_matchtag(tag1, tag2) ipftag_t *tag1, *tag2; { if (tag1 == tag2) return 1; if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) return 1; if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && (tag1->ipt_num[1] == tag2->ipt_num[1]) && (tag1->ipt_num[2] == tag2->ipt_num[2]) && (tag1->ipt_num[3] == tag2->ipt_num[3])) return 1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_coalesce */ /* Returns: 1 == success, -1 == failure, 0 == no change */ /* Parameters: fin(I) - pointer to packet information */ /* */ /* Attempt to get all of the packet data into a single, contiguous buffer. */ /* If this call returns a failure then the buffers have also been freed. */ /* ------------------------------------------------------------------------ */ int ipf_coalesce(fin) fr_info_t *fin; { if ((fin->fin_flx & FI_COALESCE) != 0) return 1; /* * If the mbuf pointers indicate that there is no mbuf to work with, * return but do not indicate success or failure. */ if (fin->fin_m == NULL || fin->fin_mp == NULL) return 0; #if defined(_KERNEL) if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { ipf_main_softc_t *softc = fin->fin_main_soft; DT1(frb_coalesce, fr_info_t *, fin); LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces); # ifdef MENTAT FREE_MB_T(*fin->fin_mp); # endif fin->fin_reason = FRB_COALESCE; *fin->fin_mp = NULL; fin->fin_m = NULL; return -1; } #else fin = fin; /* LINT */ #endif return 1; } /* * The following table lists all of the tunable variables that can be * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row * in the table below is as follows: * * pointer to value, name of value, minimum, maximum, size of the value's * container, value attribute flags * * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED * means the value can only be written to when IPFilter is loaded but disabled. * The obvious implication is if neither of these are set then the value can be * changed at any time without harm. */ /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_findbycookie */ /* Returns: NULL = search failed, else pointer to tune struct */ /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ /* next(O) - pointer to place to store the cookie for the */ /* "next" tuneable, if it is desired. */ /* */ /* This function is used to walk through all of the existing tunables with */ /* successive calls. It searches the known tunables for the one which has */ /* a matching value for "cookie" - ie its address. When returning a match, */ /* the next one to be found may be returned inside next. */ /* ------------------------------------------------------------------------ */ static ipftuneable_t * ipf_tune_findbycookie(ptop, cookie, next) ipftuneable_t **ptop; void *cookie, **next; { ipftuneable_t *ta, **tap; for (ta = *ptop; ta->ipft_name != NULL; ta++) if (ta == cookie) { if (next != NULL) { /* * If the next entry in the array has a name * present, then return a pointer to it for * where to go next, else return a pointer to * the dynaminc list as a key to search there * next. This facilitates a weak linking of * the two "lists" together. */ if ((ta + 1)->ipft_name != NULL) *next = ta + 1; else *next = ptop; } return ta; } for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next) if (tap == cookie) { if (next != NULL) *next = &ta->ipft_next; return ta; } if (next != NULL) *next = NULL; return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_findbyname */ /* Returns: NULL = search failed, else pointer to tune struct */ /* Parameters: name(I) - name of the tuneable entry to find. */ /* */ /* Search the static array of tuneables and the list of dynamic tuneables */ /* for an entry with a matching name. If we can find one, return a pointer */ /* to the matching structure. */ /* ------------------------------------------------------------------------ */ static ipftuneable_t * ipf_tune_findbyname(top, name) ipftuneable_t *top; const char *name; { ipftuneable_t *ta; for (ta = top; ta != NULL; ta = ta->ipft_next) if (!strcmp(ta->ipft_name, name)) { return ta; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_add_array */ /* Returns: int - 0 == success, else failure */ /* Parameters: newtune - pointer to new tune array to add to tuneables */ /* */ /* Appends tune structures from the array passed in (newtune) to the end of */ /* the current list of "dynamic" tuneable parameters. */ /* If any entry to be added is already present (by name) then the operation */ /* is aborted - entries that have been added are removed before returning. */ /* An entry with no name (NULL) is used as the indication that the end of */ /* the array has been reached. */ /* ------------------------------------------------------------------------ */ int ipf_tune_add_array(softc, newtune) ipf_main_softc_t *softc; ipftuneable_t *newtune; { ipftuneable_t *nt, *dt; int error = 0; for (nt = newtune; nt->ipft_name != NULL; nt++) { error = ipf_tune_add(softc, nt); if (error != 0) { for (dt = newtune; dt != nt; dt++) { (void) ipf_tune_del(softc, dt); } } } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_link */ /* Returns: 0 == success, -1 == failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* array(I) - pointer to an array of tuneables */ /* */ /* Given an array of tunables (array), append them to the current list of */ /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */ /* the array for being appended to the list, initialise all of the next */ /* pointers so we don't need to walk parts of it with ++ and others with */ /* next. The array is expected to have an entry with a NULL name as the */ /* terminator. Trying to add an array with no non-NULL names will return as */ /* a failure. */ /* ------------------------------------------------------------------------ */ int ipf_tune_array_link(softc, array) ipf_main_softc_t *softc; ipftuneable_t *array; { ipftuneable_t *t, **p; t = array; if (t->ipft_name == NULL) return -1; for (; t[1].ipft_name != NULL; t++) t[0].ipft_next = &t[1]; t->ipft_next = NULL; /* * Since a pointer to the last entry isn't kept, we need to find it * each time we want to add new variables to the list. */ for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) if (t->ipft_name == NULL) break; *p = array; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_unlink */ /* Returns: 0 == success, -1 == failure */ /* Parameters: softc(I) - soft context pointerto work with */ /* array(I) - pointer to an array of tuneables */ /* */ /* ------------------------------------------------------------------------ */ int ipf_tune_array_unlink(softc, array) ipf_main_softc_t *softc; ipftuneable_t *array; { ipftuneable_t *t, **p; for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) if (t == array) break; if (t == NULL) return -1; for (; t[1].ipft_name != NULL; t++) ; *p = t->ipft_next; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_array_copy */ /* Returns: NULL = failure, else pointer to new array */ /* Parameters: base(I) - pointer to structure base */ /* size(I) - size of the array at template */ /* template(I) - original array to copy */ /* */ /* Allocate memory for a new set of tuneable values and copy everything */ /* from template into the new region of memory. The new region is full of */ /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */ /* */ /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */ /* In the array template, ipftp_offset is the offset (in bytes) of the */ /* location of the tuneable value inside the structure pointed to by base. */ /* As ipftp_offset is a union over the pointers to the tuneable values, if */ /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */ /* ipftp_void that points to the stored value. */ /* ------------------------------------------------------------------------ */ ipftuneable_t * ipf_tune_array_copy(base, size, template) void *base; size_t size; ipftuneable_t *template; { ipftuneable_t *copy; int i; KMALLOCS(copy, ipftuneable_t *, size); if (copy == NULL) { return NULL; } bcopy(template, copy, size); for (i = 0; copy[i].ipft_name; i++) { copy[i].ipft_una.ipftp_offset += (u_long)base; copy[i].ipft_next = copy + i + 1; } return copy; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_add */ /* Returns: int - 0 == success, else failure */ /* Parameters: newtune - pointer to new tune entry to add to tuneables */ /* */ /* Appends tune structures from the array passed in (newtune) to the end of */ /* the current list of "dynamic" tuneable parameters. Once added, the */ /* owner of the object is not expected to ever change "ipft_next". */ /* ------------------------------------------------------------------------ */ int ipf_tune_add(softc, newtune) ipf_main_softc_t *softc; ipftuneable_t *newtune; { ipftuneable_t *ta, **tap; ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name); if (ta != NULL) { IPFERROR(74); return EEXIST; } for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next) ; newtune->ipft_next = NULL; *tap = newtune; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_del */ /* Returns: int - 0 == success, else failure */ /* Parameters: oldtune - pointer to tune entry to remove from the list of */ /* current dynamic tuneables */ /* */ /* Search for the tune structure, by pointer, in the list of those that are */ /* dynamically added at run time. If found, adjust the list so that this */ /* structure is no longer part of it. */ /* ------------------------------------------------------------------------ */ int ipf_tune_del(softc, oldtune) ipf_main_softc_t *softc; ipftuneable_t *oldtune; { ipftuneable_t *ta, **tap; int error = 0; for (tap = &softc->ipf_tuners; (ta = *tap) != NULL; tap = &ta->ipft_next) { if (ta == oldtune) { *tap = oldtune->ipft_next; oldtune->ipft_next = NULL; break; } } if (ta == NULL) { error = ESRCH; IPFERROR(75); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune_del_array */ /* Returns: int - 0 == success, else failure */ /* Parameters: oldtune - pointer to tuneables array */ /* */ /* Remove each tuneable entry in the array from the list of "dynamic" */ /* tunables. If one entry should fail to be found, an error will be */ /* returned and no further ones removed. */ /* An entry with a NULL name is used as the indicator of the last entry in */ /* the array. */ /* ------------------------------------------------------------------------ */ int ipf_tune_del_array(softc, oldtune) ipf_main_softc_t *softc; ipftuneable_t *oldtune; { ipftuneable_t *ot; int error = 0; for (ot = oldtune; ot->ipft_name != NULL; ot++) { error = ipf_tune_del(softc, ot); if (error != 0) break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_tune */ /* Returns: int - 0 == success, else failure */ /* Parameters: cmd(I) - ioctl command number */ /* data(I) - pointer to ioctl data structure */ /* */ /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ /* three ioctls provide the means to access and control global variables */ /* within IPFilter, allowing (for example) timeouts and table sizes to be */ /* changed without rebooting, reloading or recompiling. The initialisation */ /* and 'destruction' routines of the various components of ipfilter are all */ /* each responsible for handling their own values being too big. */ /* ------------------------------------------------------------------------ */ int ipf_ipftune(softc, cmd, data) ipf_main_softc_t *softc; ioctlcmd_t cmd; void *data; { ipftuneable_t *ta; ipftune_t tu; void *cookie; int error; error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE); if (error != 0) return error; tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; cookie = tu.ipft_cookie; ta = NULL; switch (cmd) { case SIOCIPFGETNEXT : /* * If cookie is non-NULL, assume it to be a pointer to the last * entry we looked at, so find it (if possible) and return a * pointer to the next one after it. The last entry in the * the table is a NULL entry, so when we get to it, set cookie * to NULL and return that, indicating end of list, erstwhile * if we come in with cookie set to NULL, we are starting anew * at the front of the list. */ if (cookie != NULL) { ta = ipf_tune_findbycookie(&softc->ipf_tuners, cookie, &tu.ipft_cookie); } else { ta = softc->ipf_tuners; tu.ipft_cookie = ta + 1; } if (ta != NULL) { /* * Entry found, but does the data pointed to by that * row fit in what we can return? */ if (ta->ipft_sz > sizeof(tu.ipft_un)) { IPFERROR(76); return EINVAL; } tu.ipft_vlong = 0; if (ta->ipft_sz == sizeof(u_long)) tu.ipft_vlong = *ta->ipft_plong; else if (ta->ipft_sz == sizeof(u_int)) tu.ipft_vint = *ta->ipft_pint; else if (ta->ipft_sz == sizeof(u_short)) tu.ipft_vshort = *ta->ipft_pshort; else if (ta->ipft_sz == sizeof(u_char)) tu.ipft_vchar = *ta->ipft_pchar; tu.ipft_sz = ta->ipft_sz; tu.ipft_min = ta->ipft_min; tu.ipft_max = ta->ipft_max; tu.ipft_flags = ta->ipft_flags; bcopy(ta->ipft_name, tu.ipft_name, MIN(sizeof(tu.ipft_name), strlen(ta->ipft_name) + 1)); } error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); break; case SIOCIPFGET : case SIOCIPFSET : /* * Search by name or by cookie value for a particular entry * in the tuning paramter table. */ IPFERROR(77); error = ESRCH; if (cookie != NULL) { ta = ipf_tune_findbycookie(&softc->ipf_tuners, cookie, NULL); if (ta != NULL) error = 0; } else if (tu.ipft_name[0] != '\0') { ta = ipf_tune_findbyname(softc->ipf_tuners, tu.ipft_name); if (ta != NULL) error = 0; } if (error != 0) break; if (cmd == (ioctlcmd_t)SIOCIPFGET) { /* * Fetch the tuning parameters for a particular value */ tu.ipft_vlong = 0; if (ta->ipft_sz == sizeof(u_long)) tu.ipft_vlong = *ta->ipft_plong; else if (ta->ipft_sz == sizeof(u_int)) tu.ipft_vint = *ta->ipft_pint; else if (ta->ipft_sz == sizeof(u_short)) tu.ipft_vshort = *ta->ipft_pshort; else if (ta->ipft_sz == sizeof(u_char)) tu.ipft_vchar = *ta->ipft_pchar; tu.ipft_cookie = ta; tu.ipft_sz = ta->ipft_sz; tu.ipft_min = ta->ipft_min; tu.ipft_max = ta->ipft_max; tu.ipft_flags = ta->ipft_flags; error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { /* * Set an internal parameter. The hard part here is * getting the new value safely and correctly out of * the kernel (given we only know its size, not type.) */ u_long in; if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && (softc->ipf_running > 0)) { IPFERROR(78); error = EBUSY; break; } in = tu.ipft_vlong; if (in < ta->ipft_min || in > ta->ipft_max) { IPFERROR(79); error = EINVAL; break; } if (ta->ipft_func != NULL) { SPL_INT(s); SPL_NET(s); error = (*ta->ipft_func)(softc, ta, &tu.ipft_un); SPL_X(s); } else if (ta->ipft_sz == sizeof(u_long)) { tu.ipft_vlong = *ta->ipft_plong; *ta->ipft_plong = in; } else if (ta->ipft_sz == sizeof(u_int)) { tu.ipft_vint = *ta->ipft_pint; *ta->ipft_pint = (u_int)(in & 0xffffffff); } else if (ta->ipft_sz == sizeof(u_short)) { tu.ipft_vshort = *ta->ipft_pshort; *ta->ipft_pshort = (u_short)(in & 0xffff); } else if (ta->ipft_sz == sizeof(u_char)) { tu.ipft_vchar = *ta->ipft_pchar; *ta->ipft_pchar = (u_char)(in & 0xff); } error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); } break; default : IPFERROR(80); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_zerostats */ /* Returns: int - 0 = success, else failure */ /* Parameters: data(O) - pointer to pointer for copying data back to */ /* */ /* Copies the current statistics out to userspace and then zero's the */ /* current ones in the kernel. The lock is only held across the bzero() as */ /* the copyout may result in paging (ie network activity.) */ /* ------------------------------------------------------------------------ */ int ipf_zerostats(softc, data) ipf_main_softc_t *softc; caddr_t data; { friostat_t fio; ipfobj_t obj; int error; error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT); if (error != 0) return error; ipf_getstat(softc, &fio, obj.ipfo_rev); error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT); if (error != 0) return error; WRITE_ENTER(&softc->ipf_mutex); bzero(&softc->ipf_stats, sizeof(softc->ipf_stats)); RWLOCK_EXIT(&softc->ipf_mutex); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvedest */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* base(I) - where strings are stored */ /* fdp(IO) - pointer to destination information to resolve */ /* v(I) - IP protocol version to match */ /* */ /* Looks up an interface name in the frdest structure pointed to by fdp and */ /* if a matching name can be found for the particular IP protocol version */ /* then store the interface pointer in the frdest struct. If no match is */ /* found, then set the interface pointer to be -1 as NULL is considered to */ /* indicate there is no information at all in the structure. */ /* ------------------------------------------------------------------------ */ int ipf_resolvedest(softc, base, fdp, v) ipf_main_softc_t *softc; char *base; frdest_t *fdp; int v; { int errval = 0; void *ifp; ifp = NULL; if (fdp->fd_name != -1) { if (fdp->fd_type == FRD_DSTLIST) { ifp = ipf_lookup_res_name(softc, IPL_LOGIPF, IPLT_DSTLIST, base + fdp->fd_name, NULL); if (ifp == NULL) { IPFERROR(144); errval = ESRCH; } } else { ifp = GETIFP(base + fdp->fd_name, v); if (ifp == NULL) ifp = (void *)-1; } } fdp->fd_ptr = ifp; return errval; } /* ------------------------------------------------------------------------ */ /* Function: ipf_resolvenic */ /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ /* pointer to interface structure for NIC */ /* Parameters: softc(I)- pointer to soft context main structure */ /* name(I) - complete interface name */ /* v(I) - IP protocol version */ /* */ /* Look for a network interface structure that firstly has a matching name */ /* to that passed in and that is also being used for that IP protocol */ /* version (necessary on some platforms where there are separate listings */ /* for both IPv4 and IPv6 on the same physical NIC. */ /* ------------------------------------------------------------------------ */ void * ipf_resolvenic(softc, name, v) ipf_main_softc_t *softc; char *name; int v; { void *nic; softc = softc; /* gcc -Wextra */ if (name[0] == '\0') return NULL; if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { return NULL; } nic = GETIFP(name, v); if (nic == NULL) nic = (void *)-1; return nic; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_expire */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* This function is run every ipf tick to see if there are any tokens that */ /* have been held for too long and need to be freed up. */ /* ------------------------------------------------------------------------ */ void ipf_token_expire(softc) ipf_main_softc_t *softc; { ipftoken_t *it; WRITE_ENTER(&softc->ipf_tokens); while ((it = softc->ipf_token_head) != NULL) { if (it->ipt_die > softc->ipf_ticks) break; ipf_token_deref(softc, it); } RWLOCK_EXIT(&softc->ipf_tokens); } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_flush */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Loop through all of the existing tokens and call deref to see if they */ /* can be freed. Normally a function like this might just loop on */ /* ipf_token_head but there is a chance that a token might have a ref count */ /* of greater than one and in that case the the reference would drop twice */ /* by code that is only entitled to drop it once. */ /* ------------------------------------------------------------------------ */ static void ipf_token_flush(softc) ipf_main_softc_t *softc; { ipftoken_t *it, *next; WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = next) { next = it->ipt_next; (void) ipf_token_deref(softc, it); } RWLOCK_EXIT(&softc->ipf_tokens); } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_del */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* type(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function looks for a a token in the current list that matches up */ /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ /* call ipf_token_dewref() to remove it from the list. In the event that */ /* the token has a reference held elsewhere, setting ipt_complete to 2 */ /* enables debugging to distinguish between the two paths that ultimately */ /* lead to a token to be deleted. */ /* ------------------------------------------------------------------------ */ int ipf_token_del(softc, type, uid, ptr) ipf_main_softc_t *softc; int type, uid; void *ptr; { ipftoken_t *it; int error; IPFERROR(82); error = ESRCH; WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { if (ptr == it->ipt_ctx && type == it->ipt_type && uid == it->ipt_uid) { it->ipt_complete = 2; ipf_token_deref(softc, it); error = 0; break; } } RWLOCK_EXIT(&softc->ipf_tokens); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_mark_complete */ /* Returns: None. */ /* Parameters: token(I) - pointer to token structure */ /* */ /* Mark a token as being ineligable for being found with ipf_token_find. */ /* ------------------------------------------------------------------------ */ void ipf_token_mark_complete(token) ipftoken_t *token; { if (token->ipt_complete == 0) token->ipt_complete = 1; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_find */ /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ /* Parameters: softc(I)- pointer to soft context main structure */ /* type(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function looks for a live token in the list of current tokens that */ /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ /* allocated. If one is found then it is moved to the top of the list of */ /* currently active tokens. */ /* ------------------------------------------------------------------------ */ ipftoken_t * ipf_token_find(softc, type, uid, ptr) ipf_main_softc_t *softc; int type, uid; void *ptr; { ipftoken_t *it, *new; KMALLOC(new, ipftoken_t *); if (new != NULL) bzero((char *)new, sizeof(*new)); WRITE_ENTER(&softc->ipf_tokens); for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { if ((ptr == it->ipt_ctx) && (type == it->ipt_type) && (uid == it->ipt_uid) && (it->ipt_complete < 2)) break; } if (it == NULL) { it = new; new = NULL; if (it == NULL) { RWLOCK_EXIT(&softc->ipf_tokens); return NULL; } it->ipt_ctx = ptr; it->ipt_uid = uid; it->ipt_type = type; it->ipt_ref = 1; } else { if (new != NULL) { KFREE(new); new = NULL; } if (it->ipt_complete > 0) it = NULL; else ipf_token_unlink(softc, it); } if (it != NULL) { it->ipt_pnext = softc->ipf_token_tail; *softc->ipf_token_tail = it; softc->ipf_token_tail = &it->ipt_next; it->ipt_next = NULL; it->ipt_ref++; it->ipt_die = softc->ipf_ticks + 20; } RWLOCK_EXIT(&softc->ipf_tokens); return it; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_unlink */ /* Returns: None. */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to token structure */ /* Write Locks: ipf_tokens */ /* */ /* This function unlinks a token structure from the linked list of tokens */ /* that "own" it. The head pointer never needs to be explicitly adjusted */ /* but the tail does due to the linked list implementation. */ /* ------------------------------------------------------------------------ */ static void ipf_token_unlink(softc, token) ipf_main_softc_t *softc; ipftoken_t *token; { if (softc->ipf_token_tail == &token->ipt_next) softc->ipf_token_tail = token->ipt_pnext; *token->ipt_pnext = token->ipt_next; if (token->ipt_next != NULL) token->ipt_next->ipt_pnext = token->ipt_pnext; token->ipt_next = NULL; token->ipt_pnext = NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_token_deref */ /* Returns: int - 0 == token freed, else reference count */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to token structure */ /* Write Locks: ipf_tokens */ /* */ /* Drop the reference count on the token structure and if it drops to zero, */ /* call the dereference function for the token type because it is then */ /* possible to free the token data structure. */ /* ------------------------------------------------------------------------ */ int ipf_token_deref(softc, token) ipf_main_softc_t *softc; ipftoken_t *token; { void *data, **datap; ASSERT(token->ipt_ref > 0); token->ipt_ref--; if (token->ipt_ref > 0) return token->ipt_ref; data = token->ipt_data; datap = &data; if ((data != NULL) && (data != (void *)-1)) { switch (token->ipt_type) { case IPFGENITER_IPF : (void) ipf_derefrule(softc, (frentry_t **)datap); break; case IPFGENITER_IPNAT : WRITE_ENTER(&softc->ipf_nat); ipf_nat_rule_deref(softc, (ipnat_t **)datap); RWLOCK_EXIT(&softc->ipf_nat); break; case IPFGENITER_NAT : ipf_nat_deref(softc, (nat_t **)datap); break; case IPFGENITER_STATE : ipf_state_deref(softc, (ipstate_t **)datap); break; case IPFGENITER_FRAG : ipf_frag_pkt_deref(softc, (ipfr_t **)datap); break; case IPFGENITER_NATFRAG : ipf_frag_nat_deref(softc, (ipfr_t **)datap); break; case IPFGENITER_HOSTMAP : WRITE_ENTER(&softc->ipf_nat); ipf_nat_hostmapdel(softc, (hostmap_t **)datap); RWLOCK_EXIT(&softc->ipf_nat); break; default : ipf_lookup_iterderef(softc, token->ipt_type, data); break; } } ipf_token_unlink(softc, token); KFREE(token); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_nextrule */ /* Returns: frentry_t * - NULL == no more rules, else pointer to next */ /* Parameters: softc(I) - pointer to soft context main structure */ /* fr(I) - pointer to filter rule */ /* out(I) - 1 == out rules, 0 == input rules */ /* */ /* Starting with "fr", find the next rule to visit. This includes visiting */ /* the list of rule groups if either fr is NULL (empty list) or it is the */ /* last rule in the list. When walking rule lists, it is either input or */ /* output rules that are returned, never both. */ /* ------------------------------------------------------------------------ */ static frentry_t * ipf_nextrule(softc, active, unit, fr, out) ipf_main_softc_t *softc; int active, unit; frentry_t *fr; int out; { frentry_t *next; frgroup_t *fg; if (fr != NULL && fr->fr_group != -1) { fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group, unit, active, NULL); if (fg != NULL) fg = fg->fg_next; } else { fg = softc->ipf_groups[unit][active]; } while (fg != NULL) { next = fg->fg_start; while (next != NULL) { if (out) { if (next->fr_flags & FR_OUTQUE) return next; } else if (next->fr_flags & FR_INQUE) { return next; } next = next->fr_next; } if (next == NULL) fg = fg->fg_next; } return NULL; } /* ------------------------------------------------------------------------ */ /* Function: ipf_getnextrule */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* t(I) - pointer to destination information to resolve */ /* ptr(I) - pointer to ipfobj_t to copyin from user space */ /* */ /* This function's first job is to bring in the ipfruleiter_t structure via */ /* the ipfobj_t structure to determine what should be the next rule to */ /* return. Once the ipfruleiter_t has been brought in, it then tries to */ /* find the 'next rule'. This may include searching rule group lists or */ /* just be as simple as looking at the 'next' field in the rule structure. */ /* When we have found the rule to return, increase its reference count and */ /* if we used an existing rule to get here, decrease its reference count. */ /* ------------------------------------------------------------------------ */ int ipf_getnextrule(softc, t, ptr) ipf_main_softc_t *softc; ipftoken_t *t; void *ptr; { frentry_t *fr, *next, zero; ipfruleiter_t it; int error, out; frgroup_t *fg; ipfobj_t obj; int predict; char *dst; int unit; if (t == NULL || ptr == NULL) { IPFERROR(84); return EFAULT; } error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER); if (error != 0) return error; if ((it.iri_inout < 0) || (it.iri_inout > 3)) { IPFERROR(85); return EINVAL; } if ((it.iri_active != 0) && (it.iri_active != 1)) { IPFERROR(86); return EINVAL; } if (it.iri_nrules == 0) { IPFERROR(87); return ENOSPC; } if (it.iri_rule == NULL) { IPFERROR(88); return EFAULT; } fg = NULL; fr = t->ipt_data; if ((it.iri_inout & F_OUT) != 0) out = 1; else out = 0; if ((it.iri_inout & F_ACIN) != 0) unit = IPL_LOGCOUNT; else unit = IPL_LOGIPF; READ_ENTER(&softc->ipf_mutex); if (fr == NULL) { if (*it.iri_group == '\0') { if (unit == IPL_LOGCOUNT) { next = softc->ipf_acct[out][it.iri_active]; } else { next = softc->ipf_rules[out][it.iri_active]; } if (next == NULL) next = ipf_nextrule(softc, it.iri_active, unit, NULL, out); } else { fg = ipf_findgroup(softc, it.iri_group, unit, it.iri_active, NULL); if (fg != NULL) next = fg->fg_start; else next = NULL; } } else { next = fr->fr_next; if (next == NULL) next = ipf_nextrule(softc, it.iri_active, unit, fr, out); } if (next != NULL && next->fr_next != NULL) predict = 1; else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL) predict = 1; else predict = 0; if (fr != NULL) (void) ipf_derefrule(softc, &fr); obj.ipfo_type = IPFOBJ_FRENTRY; dst = (char *)it.iri_rule; if (next != NULL) { obj.ipfo_size = next->fr_size; MUTEX_ENTER(&next->fr_lock); next->fr_ref++; MUTEX_EXIT(&next->fr_lock); t->ipt_data = next; } else { obj.ipfo_size = sizeof(frentry_t); bzero(&zero, sizeof(zero)); next = &zero; t->ipt_data = NULL; } it.iri_rule = predict ? next : NULL; if (predict == 0) ipf_token_mark_complete(t); RWLOCK_EXIT(&softc->ipf_mutex); obj.ipfo_ptr = dst; error = ipf_outobjk(softc, &obj, next); if (error == 0 && t->ipt_data != NULL) { dst += obj.ipfo_size; if (next->fr_data != NULL) { ipfobj_t dobj; if (next->fr_type == FR_T_IPFEXPR) dobj.ipfo_type = IPFOBJ_IPFEXPR; else dobj.ipfo_type = IPFOBJ_FRIPF; dobj.ipfo_size = next->fr_dsize; dobj.ipfo_rev = obj.ipfo_rev; dobj.ipfo_ptr = dst; error = ipf_outobjk(softc, &dobj, next->fr_data); } } if ((fr != NULL) && (next == &zero)) (void) ipf_derefrule(softc, &fr); return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_frruleiter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function serves as a stepping stone between ipf_ipf_ioctl and */ /* ipf_getnextrule. It's role is to find the right token in the kernel for */ /* the process doing the ioctl and use that to ask for the next rule. */ /* ------------------------------------------------------------------------ */ static int ipf_frruleiter(softc, data, uid, ctx) ipf_main_softc_t *softc; void *data, *ctx; int uid; { ipftoken_t *token; ipfruleiter_t it; ipfobj_t obj; int error; token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx); if (token != NULL) { error = ipf_getnextrule(softc, token, data); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } else { error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER); if (error != 0) return error; it.iri_rule = NULL; error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER); } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_geniter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* token(I) - pointer to ipftoken_t structure */ /* itp(I) - pointer to iterator data */ /* */ /* Decide which iterator function to call using information passed through */ /* the ipfgeniter_t structure at itp. */ /* ------------------------------------------------------------------------ */ static int ipf_geniter(softc, token, itp) ipf_main_softc_t *softc; ipftoken_t *token; ipfgeniter_t *itp; { int error; switch (itp->igi_type) { case IPFGENITER_FRAG : error = ipf_frag_pkt_next(softc, token, itp); break; default : IPFERROR(92); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_genericiter */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */ /* ------------------------------------------------------------------------ */ int ipf_genericiter(softc, data, uid, ctx) ipf_main_softc_t *softc; void *data, *ctx; int uid; { ipftoken_t *token; ipfgeniter_t iter; int error; error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER); if (error != 0) return error; token = ipf_token_find(softc, iter.igi_type, uid, ctx); if (token != NULL) { token->ipt_subtype = iter.igi_type; error = ipf_geniter(softc, token, &iter); WRITE_ENTER(&softc->ipf_tokens); ipf_token_deref(softc, token); RWLOCK_EXIT(&softc->ipf_tokens); } else { IPFERROR(93); error = 0; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ipf_ioctl */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I)- pointer to soft context main structure */ /* data(I) - the token type to match */ /* cmd(I) - the ioctl command number */ /* mode(I) - mode flags for the ioctl */ /* uid(I) - uid owning the token */ /* ptr(I) - context pointer for the token */ /* */ /* This function handles all of the ioctl command that are actually isssued */ /* to the /dev/ipl device. */ /* ------------------------------------------------------------------------ */ int ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx) ipf_main_softc_t *softc; caddr_t data; ioctlcmd_t cmd; int mode, uid; void *ctx; { friostat_t fio; int error, tmp; ipfobj_t obj; SPL_INT(s); switch (cmd) { case SIOCFRENB : if (!(mode & FWRITE)) { IPFERROR(94); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error != 0) { IPFERROR(95); error = EFAULT; break; } WRITE_ENTER(&softc->ipf_global); if (tmp) { if (softc->ipf_running > 0) error = 0; else error = ipfattach(softc); if (error == 0) softc->ipf_running = 1; else (void) ipfdetach(softc); } else { if (softc->ipf_running == 1) error = ipfdetach(softc); else error = 0; if (error == 0) softc->ipf_running = -1; } RWLOCK_EXIT(&softc->ipf_global); } break; case SIOCIPFSET : if (!(mode & FWRITE)) { IPFERROR(96); error = EPERM; break; } /* FALLTHRU */ case SIOCIPFGETNEXT : case SIOCIPFGET : error = ipf_ipftune(softc, cmd, (void *)data); break; case SIOCSETFF : if (!(mode & FWRITE)) { IPFERROR(97); error = EPERM; } else { error = BCOPYIN(data, &softc->ipf_flags, sizeof(softc->ipf_flags)); if (error != 0) { IPFERROR(98); error = EFAULT; } } break; case SIOCGETFF : error = BCOPYOUT(&softc->ipf_flags, data, sizeof(softc->ipf_flags)); if (error != 0) { IPFERROR(99); error = EFAULT; } break; case SIOCFUNCL : error = ipf_resolvefunc(softc, (void *)data); break; case SIOCINAFR : case SIOCRMAFR : case SIOCADAFR : case SIOCZRLST : if (!(mode & FWRITE)) { IPFERROR(100); error = EPERM; } else { error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data, softc->ipf_active, 1); } break; case SIOCINIFR : case SIOCRMIFR : case SIOCADIFR : if (!(mode & FWRITE)) { IPFERROR(101); error = EPERM; } else { error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data, 1 - softc->ipf_active, 1); } break; case SIOCSWAPA : if (!(mode & FWRITE)) { IPFERROR(102); error = EPERM; } else { WRITE_ENTER(&softc->ipf_mutex); error = BCOPYOUT(&softc->ipf_active, data, sizeof(softc->ipf_active)); if (error != 0) { IPFERROR(103); error = EFAULT; } else { softc->ipf_active = 1 - softc->ipf_active; } RWLOCK_EXIT(&softc->ipf_mutex); } break; case SIOCGETFS : error = ipf_inobj(softc, (void *)data, &obj, &fio, IPFOBJ_IPFSTAT); if (error != 0) break; ipf_getstat(softc, &fio, obj.ipfo_rev); error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT); break; case SIOCFRZST : if (!(mode & FWRITE)) { IPFERROR(104); error = EPERM; } else error = ipf_zerostats(softc, (caddr_t)data); break; case SIOCIPFFL : if (!(mode & FWRITE)) { IPFERROR(105); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (!error) { tmp = ipf_flush(softc, IPL_LOGIPF, tmp); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(106); error = EFAULT; } } else { IPFERROR(107); error = EFAULT; } } break; #ifdef USE_INET6 case SIOCIPFL6 : if (!(mode & FWRITE)) { IPFERROR(108); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (!error) { tmp = ipf_flush(softc, IPL_LOGIPF, tmp); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error != 0) { IPFERROR(109); error = EFAULT; } } else { IPFERROR(110); error = EFAULT; } } break; #endif case SIOCSTLCK : if (!(mode & FWRITE)) { IPFERROR(122); error = EPERM; } else { error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error == 0) { ipf_state_setlock(softc->ipf_state_soft, tmp); ipf_nat_setlock(softc->ipf_nat_soft, tmp); ipf_frag_setlock(softc->ipf_frag_soft, tmp); ipf_auth_setlock(softc->ipf_auth_soft, tmp); } else { IPFERROR(111); error = EFAULT; } } break; #ifdef IPFILTER_LOG case SIOCIPFFB : if (!(mode & FWRITE)) { IPFERROR(112); error = EPERM; } else { tmp = ipf_log_clear(softc, IPL_LOGIPF); error = BCOPYOUT(&tmp, data, sizeof(tmp)); if (error) { IPFERROR(113); error = EFAULT; } } break; #endif /* IPFILTER_LOG */ case SIOCFRSYN : if (!(mode & FWRITE)) { IPFERROR(114); error = EPERM; } else { WRITE_ENTER(&softc->ipf_global); #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES) error = ipfsync(); #else ipf_sync(softc, NULL); error = 0; #endif RWLOCK_EXIT(&softc->ipf_global); } break; case SIOCGFRST : error = ipf_outobj(softc, (void *)data, ipf_frag_stats(softc->ipf_frag_soft), IPFOBJ_FRAGSTAT); break; #ifdef IPFILTER_LOG case FIONREAD : tmp = ipf_log_bytesused(softc, IPL_LOGIPF); error = BCOPYOUT(&tmp, data, sizeof(tmp)); break; #endif case SIOCIPFITER : SPL_SCHED(s); error = ipf_frruleiter(softc, data, uid, ctx); SPL_X(s); break; case SIOCGENITER : SPL_SCHED(s); error = ipf_genericiter(softc, data, uid, ctx); SPL_X(s); break; case SIOCIPFDELTOK : error = BCOPYIN(data, &tmp, sizeof(tmp)); if (error == 0) { SPL_SCHED(s); error = ipf_token_del(softc, tmp, uid, ctx); SPL_X(s); } break; default : IPFERROR(115); error = EINVAL; break; } return error; } /* ------------------------------------------------------------------------ */ /* Function: ipf_decaps */ /* Returns: int - -1 == decapsulation failed, else bit mask of */ /* flags indicating packet filtering decision. */ /* Parameters: fin(I) - pointer to packet information */ /* pass(I) - IP protocol version to match */ /* l5proto(I) - layer 5 protocol to decode UDP data as. */ /* */ /* This function is called for packets that are wrapt up in other packets, */ /* for example, an IP packet that is the entire data segment for another IP */ /* packet. If the basic constraints for this are satisfied, change the */ /* buffer to point to the start of the inner packet and start processing */ /* rules belonging to the head group this rule specifies. */ /* ------------------------------------------------------------------------ */ u_32_t ipf_decaps(fin, pass, l5proto) fr_info_t *fin; u_32_t pass; int l5proto; { fr_info_t fin2, *fino = NULL; int elen, hlen, nh; grehdr_t gre; ip_t *ip; mb_t *m; if ((fin->fin_flx & FI_COALESCE) == 0) if (ipf_coalesce(fin) == -1) goto cantdecaps; m = fin->fin_m; hlen = fin->fin_hlen; switch (fin->fin_p) { case IPPROTO_UDP : /* * In this case, the specific protocol being decapsulated * inside UDP frames comes from the rule. */ nh = fin->fin_fr->fr_icode; break; case IPPROTO_GRE : /* 47 */ bcopy(fin->fin_dp, (char *)&gre, sizeof(gre)); hlen += sizeof(grehdr_t); if (gre.gr_R|gre.gr_s) goto cantdecaps; if (gre.gr_C) hlen += 4; if (gre.gr_K) hlen += 4; if (gre.gr_S) hlen += 4; nh = IPPROTO_IP; /* * If the routing options flag is set, validate that it is * there and bounce over it. */ #if 0 /* This is really heavy weight and lots of room for error, */ /* so for now, put it off and get the simple stuff right. */ if (gre.gr_R) { u_char off, len, *s; u_short af; int end; end = 0; s = fin->fin_dp; s += hlen; aplen = fin->fin_plen - hlen; while (aplen > 3) { af = (s[0] << 8) | s[1]; off = s[2]; len = s[3]; aplen -= 4; s += 4; if (af == 0 && len == 0) { end = 1; break; } if (aplen < len) break; s += len; aplen -= len; } if (end != 1) goto cantdecaps; hlen = s - (u_char *)fin->fin_dp; } #endif break; #ifdef IPPROTO_IPIP case IPPROTO_IPIP : /* 4 */ #endif nh = IPPROTO_IP; break; default : /* Includes ESP, AH is special for IPv4 */ goto cantdecaps; } switch (nh) { case IPPROTO_IP : case IPPROTO_IPV6 : break; default : goto cantdecaps; } bcopy((char *)fin, (char *)&fin2, sizeof(fin2)); fino = fin; fin = &fin2; elen = hlen; #if defined(MENTAT) && defined(_KERNEL) m->b_rptr += elen; #else m->m_data += elen; m->m_len -= elen; #endif fin->fin_plen -= elen; ip = (ip_t *)((char *)fin->fin_ip + elen); /* * Make sure we have at least enough data for the network layer * header. */ if (IP_V(ip) == 4) hlen = IP_HL(ip) << 2; #ifdef USE_INET6 else if (IP_V(ip) == 6) hlen = sizeof(ip6_t); #endif else goto cantdecaps2; if (fin->fin_plen < hlen) goto cantdecaps2; fin->fin_dp = (char *)ip + hlen; if (IP_V(ip) == 4) { /* * Perform IPv4 header checksum validation. */ if (ipf_cksum((u_short *)ip, hlen)) goto cantdecaps2; } if (ipf_makefrip(hlen, ip, fin) == -1) { cantdecaps2: if (m != NULL) { #if defined(MENTAT) && defined(_KERNEL) m->b_rptr -= elen; #else m->m_data -= elen; m->m_len += elen; #endif } cantdecaps: DT1(frb_decapfrip, fr_info_t *, fin); pass &= ~FR_CMDMASK; pass |= FR_BLOCK|FR_QUICK; fin->fin_reason = FRB_DECAPFRIP; return -1; } pass = ipf_scanlist(fin, pass); /* * Copy the packet filter "result" fields out of the fr_info_t struct * that is local to the decapsulation processing and back into the * one we were called with. */ fino->fin_flx = fin->fin_flx; fino->fin_rev = fin->fin_rev; fino->fin_icode = fin->fin_icode; fino->fin_rule = fin->fin_rule; (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN); fino->fin_fr = fin->fin_fr; fino->fin_error = fin->fin_error; fino->fin_mp = fin->fin_mp; fino->fin_m = fin->fin_m; m = fin->fin_m; if (m != NULL) { #if defined(MENTAT) && defined(_KERNEL) m->b_rptr -= elen; #else m->m_data -= elen; m->m_len += elen; #endif } return pass; } /* ------------------------------------------------------------------------ */ /* Function: ipf_matcharray_load */ /* Returns: int - 0 = success, else error */ /* Parameters: softc(I) - pointer to soft context main structure */ /* data(I) - pointer to ioctl data */ /* objp(I) - ipfobj_t structure to load data into */ /* arrayptr(I) - pointer to location to store array pointer */ /* */ /* This function loads in a mathing array through the ipfobj_t struct that */ /* describes it. Sanity checking and array size limitations are enforced */ /* in this function to prevent userspace from trying to load in something */ /* that is insanely big. Once the size of the array is known, the memory */ /* required is malloc'd and returned through changing *arrayptr. The */ /* contents of the array are verified before returning. Only in the event */ /* of a successful call is the caller required to free up the malloc area. */ /* ------------------------------------------------------------------------ */ int ipf_matcharray_load(softc, data, objp, arrayptr) ipf_main_softc_t *softc; caddr_t data; ipfobj_t *objp; int **arrayptr; { int arraysize, *array, error; *arrayptr = NULL; error = BCOPYIN(data, objp, sizeof(*objp)); if (error != 0) { IPFERROR(116); return EFAULT; } if (objp->ipfo_type != IPFOBJ_IPFEXPR) { IPFERROR(117); return EINVAL; } if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) || (objp->ipfo_size > 1024)) { IPFERROR(118); return EINVAL; } arraysize = objp->ipfo_size * sizeof(*array); KMALLOCS(array, int *, arraysize); if (array == NULL) { IPFERROR(119); return ENOMEM; } error = COPYIN(objp->ipfo_ptr, array, arraysize); if (error != 0) { KFREES(array, arraysize); IPFERROR(120); return EFAULT; } if (ipf_matcharray_verify(array, arraysize) != 0) { KFREES(array, arraysize); IPFERROR(121); return EINVAL; } *arrayptr = array; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_matcharray_verify */ /* Returns: Nil */ /* Parameters: array(I) - pointer to matching array */ /* arraysize(I) - number of elements in the array */ /* */ /* Verify the contents of a matching array by stepping through each element */ /* in it. The actual commands in the array are not verified for */ /* correctness, only that all of the sizes are correctly within limits. */ /* ------------------------------------------------------------------------ */ int ipf_matcharray_verify(array, arraysize) int *array, arraysize; { int i, nelem, maxidx; ipfexp_t *e; nelem = arraysize / sizeof(*array); /* * Currently, it makes no sense to have an array less than 6 * elements long - the initial size at the from, a single operation * (minimum 4 in length) and a trailer, for a total of 6. */ if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) { return -1; } /* * Verify the size of data pointed to by array with how long * the array claims to be itself. */ if (array[0] * sizeof(*array) != arraysize) { return -1; } maxidx = nelem - 1; /* * The last opcode in this array should be an IPF_EXP_END. */ if (array[maxidx] != IPF_EXP_END) { return -1; } for (i = 1; i < maxidx; ) { e = (ipfexp_t *)(array + i); /* * The length of the bits to check must be at least 1 * (or else there is nothing to comapre with!) and it * cannot exceed the length of the data present. */ if ((e->ipfe_size < 1 ) || (e->ipfe_size + i > maxidx)) { return -1; } i += e->ipfe_size; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fr_matcharray */ /* Returns: int - 0 = match failed, else positive match */ /* Parameters: fin(I) - pointer to packet information */ /* array(I) - pointer to matching array */ /* */ /* This function is used to apply a matching array against a packet and */ /* return an indication of whether or not the packet successfully matches */ /* all of the commands in it. */ /* ------------------------------------------------------------------------ */ static int ipf_fr_matcharray(fin, array) fr_info_t *fin; int *array; { int i, n, *x, rv, p; ipfexp_t *e; rv = 0; n = array[0]; x = array + 1; for (; n > 0; x += 3 + x[3], rv = 0) { e = (ipfexp_t *)x; if (e->ipfe_cmd == IPF_EXP_END) break; n -= e->ipfe_size; /* * The upper 16 bits currently store the protocol value. * This is currently used with TCP and UDP port compares and * allows "tcp.port = 80" without requiring an explicit " "ip.pr = tcp" first. */ p = e->ipfe_cmd >> 16; if ((p != 0) && (p != fin->fin_p)) break; switch (e->ipfe_cmd) { case IPF_EXP_IP_PR : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_p == e->ipfe_arg0[i]); } break; case IPF_EXP_IP_SRCADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_DSTADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; case IPF_EXP_IP_ADDR : if (fin->fin_v != 4) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_saddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]) || ((fin->fin_daddr & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; #ifdef USE_INET6 case IPF_EXP_IP6_SRCADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_src6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_DSTADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_dst6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; case IPF_EXP_IP6_ADDR : if (fin->fin_v != 6) break; for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= IP6_MASKEQ(&fin->fin_src6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]) || IP6_MASKEQ(&fin->fin_dst6, &e->ipfe_arg0[i * 8 + 4], &e->ipfe_arg0[i * 8]); } break; #endif case IPF_EXP_UDP_PORT : case IPF_EXP_TCP_PORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_sport == e->ipfe_arg0[i]) || (fin->fin_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_SPORT : case IPF_EXP_TCP_SPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_sport == e->ipfe_arg0[i]); } break; case IPF_EXP_UDP_DPORT : case IPF_EXP_TCP_DPORT : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= (fin->fin_dport == e->ipfe_arg0[i]); } break; case IPF_EXP_TCP_FLAGS : for (i = 0; !rv && i < e->ipfe_narg; i++) { rv |= ((fin->fin_tcpf & e->ipfe_arg0[i * 2 + 1]) == e->ipfe_arg0[i * 2]); } break; } rv ^= e->ipfe_not; if (rv == 0) break; } return rv; } /* ------------------------------------------------------------------------ */ /* Function: ipf_queueflush */ /* Returns: int - number of entries flushed (0 = none) */ /* Parameters: softc(I) - pointer to soft context main structure */ /* deletefn(I) - function to call to delete entry */ /* ipfqs(I) - top of the list of ipf internal queues */ /* userqs(I) - top of the list of user defined timeouts */ /* */ /* This fucntion gets called when the state/NAT hash tables fill up and we */ /* need to try a bit harder to free up some space. The algorithm used here */ /* split into two parts but both halves have the same goal: to reduce the */ /* number of connections considered to be "active" to the low watermark. */ /* There are two steps in doing this: */ /* 1) Remove any TCP connections that are already considered to be "closed" */ /* but have not yet been removed from the state table. The two states */ /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */ /* candidates for this style of removal. If freeing up entries in */ /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */ /* we do not go on to step 2. */ /* */ /* 2) Look for the oldest entries on each timeout queue and free them if */ /* they are within the given window we are considering. Where the */ /* window starts and the steps taken to increase its size depend upon */ /* how long ipf has been running (ipf_ticks.) Anything modified in the */ /* last 30 seconds is not touched. */ /* touched */ /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */ /* | | | | | | */ /* future <--+----------+--------+-----------+-----+-----+-----------> past */ /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */ /* */ /* Points to note: */ /* - tqe_die is the time, in the future, when entries die. */ /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */ /* ticks. */ /* - tqe_touched is when the entry was last used by NAT/state */ /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */ /* ipf_ticks any given timeout queue and vice versa. */ /* - both tqe_die and tqe_touched increase over time */ /* - timeout queues are sorted with the highest value of tqe_die at the */ /* bottom and therefore the smallest values of each are at the top */ /* - the pointer passed in as ipfqs should point to an array of timeout */ /* queues representing each of the TCP states */ /* */ /* We start by setting up a maximum range to scan for things to move of */ /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */ /* found in that range, "interval" is adjusted (so long as it isn't 30) and */ /* we start again with a new value for "iend" and "istart". This is */ /* continued until we either finish the scan of 30 second intervals or the */ /* low water mark is reached. */ /* ------------------------------------------------------------------------ */ int ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low) ipf_main_softc_t *softc; ipftq_delete_fn_t deletefn; ipftq_t *ipfqs, *userqs; u_int *activep; int size, low; { u_long interval, istart, iend; ipftq_t *ifq, *ifqnext; ipftqent_t *tqe, *tqn; int removed = 0; for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } if ((*activep * 100 / size) > low) { for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head; ((tqe = tqn) != NULL); ) { tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } if ((*activep * 100 / size) <= low) { return removed; } /* * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is * used then the operations are upgraded to floating point * and kernels don't like floating point... */ if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) { istart = IPF_TTLVAL(86400 * 4); interval = IPF_TTLVAL(43200); } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) { istart = IPF_TTLVAL(43200); interval = IPF_TTLVAL(1800); } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) { istart = IPF_TTLVAL(1800); interval = IPF_TTLVAL(30); } else { return 0; } if (istart > softc->ipf_ticks) { if (softc->ipf_ticks - interval < interval) istart = interval; else istart = (softc->ipf_ticks / interval) * interval; } iend = softc->ipf_ticks - interval; while ((*activep * 100 / size) > low) { u_long try; try = softc->ipf_ticks - istart; for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) { for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (try < tqe->tqe_touched) break; tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } for (ifq = userqs; ifq != NULL; ifq = ifqnext) { ifqnext = ifq->ifq_next; for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { if (try < tqe->tqe_touched) break; tqn = tqe->tqe_next; if ((*deletefn)(softc, tqe->tqe_parent) == 0) removed++; } } if (try >= iend) { if (interval == IPF_TTLVAL(43200)) { interval = IPF_TTLVAL(1800); } else if (interval == IPF_TTLVAL(1800)) { interval = IPF_TTLVAL(30); } else { break; } if (interval >= softc->ipf_ticks) break; iend = softc->ipf_ticks - interval; } istart -= interval; } return removed; } /* ------------------------------------------------------------------------ */ /* Function: ipf_deliverlocal */ /* Returns: int - 1 = local address, 0 = non-local address */ /* Parameters: softc(I) - pointer to soft context main structure */ /* ipversion(I) - IP protocol version (4 or 6) */ /* ifp(I) - network interface pointer */ /* ipaddr(I) - IPv4/6 destination address */ /* */ /* This fucntion is used to determine in the address "ipaddr" belongs to */ /* the network interface represented by ifp. */ /* ------------------------------------------------------------------------ */ int ipf_deliverlocal(softc, ipversion, ifp, ipaddr) ipf_main_softc_t *softc; int ipversion; void *ifp; i6addr_t *ipaddr; { i6addr_t addr; int islocal = 0; if (ipversion == 4) { if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) { if (addr.in4.s_addr == ipaddr->in4.s_addr) islocal = 1; } #ifdef USE_INET6 } else if (ipversion == 6) { if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) { if (IP6_EQ(&addr, ipaddr)) islocal = 1; } #endif } return islocal; } /* ------------------------------------------------------------------------ */ /* Function: ipf_settimeout */ /* Returns: int - 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* t(I) - pointer to tuneable array entry */ /* p(I) - pointer to values passed in to apply */ /* */ /* This function is called to set the timeout values for each distinct */ /* queue timeout that is available. When called, it calls into both the */ /* state and NAT code, telling them to update their timeout queues. */ /* ------------------------------------------------------------------------ */ static int ipf_settimeout(softc, t, p) struct ipf_main_softc_s *softc; ipftuneable_t *t; ipftuneval_t *p; { /* * ipf_interror should be set by the functions called here, not * by this function - it's just a middle man. */ if (ipf_state_settimeout(softc, t, p) == -1) return -1; if (ipf_nat_settimeout(softc, t, p) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_apply_timeout */ /* Returns: int - 0 = success, -1 = failure */ /* Parameters: head(I) - pointer to tuneable array entry */ /* seconds(I) - pointer to values passed in to apply */ /* */ /* This function applies a timeout of "seconds" to the timeout queue that */ /* is pointed to by "head". All entries on this list have an expiration */ /* set to be the current tick value of ipf plus the ttl. Given that this */ /* function should only be called when the delta is non-zero, the task is */ /* to walk the entire list and apply the change. The sort order will not */ /* change. The only catch is that this is O(n) across the list, so if the */ /* queue has lots of entries (10s of thousands or 100s of thousands), it */ /* could take a relatively long time to work through them all. */ /* ------------------------------------------------------------------------ */ void ipf_apply_timeout(head, seconds) ipftq_t *head; u_int seconds; { u_int oldtimeout, newtimeout; ipftqent_t *tqe; int delta; MUTEX_ENTER(&head->ifq_lock); oldtimeout = head->ifq_ttl; newtimeout = IPF_TTLVAL(seconds); delta = oldtimeout - newtimeout; head->ifq_ttl = newtimeout; for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) { tqe->tqe_die += delta; } MUTEX_EXIT(&head->ifq_lock); } /* ------------------------------------------------------------------------ */ /* Function: ipf_settimeout_tcp */ /* Returns: int - 0 = successfully applied, -1 = failed */ /* Parameters: t(I) - pointer to tuneable to change */ /* p(I) - pointer to new timeout information */ /* tab(I) - pointer to table of TCP queues */ /* */ /* This function applies the new timeout (p) to the TCP tunable (t) and */ /* updates all of the entries on the relevant timeout queue by calling */ /* ipf_apply_timeout(). */ /* ------------------------------------------------------------------------ */ int ipf_settimeout_tcp(t, p, tab) ipftuneable_t *t; ipftuneval_t *p; ipftq_t *tab; { if (!strcmp(t->ipft_name, "tcp_idle_timeout") || !strcmp(t->ipft_name, "tcp_established")) { ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_close_wait")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_last_ack")) { ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_timeout")) { ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_listen")) { ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_half_established")) { ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_closing")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_syn_received")) { ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) { ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_closed")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_half_closed")) { ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); } else if (!strcmp(t->ipft_name, "tcp_time_wait")) { ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int); } else { /* * ipf_interror isn't set here because it should be set * by whatever called this function. */ return -1; } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_create */ /* Returns: NULL = failure, else success */ /* Parameters: arg(I) - pointer to soft context structure if already allocd */ /* */ /* Create the foundation soft context structure. In circumstances where it */ /* is not required to dynamically allocate the context, a pointer can be */ /* passed in (rather than NULL) to a structure to be initialised. */ /* The main thing of interest is that a number of locks are initialised */ /* here instead of in the where might be expected - in the relevant create */ /* function elsewhere. This is done because the current locking design has */ /* some areas where these locks are used outside of their module. */ /* Possibly the most important exercise that is done here is setting of all */ /* the timeout values, allowing them to be changed before init(). */ /* ------------------------------------------------------------------------ */ void * ipf_main_soft_create(arg) void *arg; { ipf_main_softc_t *softc; if (arg == NULL) { KMALLOC(softc, ipf_main_softc_t *); if (softc == NULL) return NULL; } else { softc = arg; } bzero((char *)softc, sizeof(*softc)); /* * This serves as a flag as to whether or not the softc should be * free'd when _destroy is called. */ softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0; softc->ipf_tuners = ipf_tune_array_copy(softc, sizeof(ipf_main_tuneables), ipf_main_tuneables); if (softc->ipf_tuners == NULL) { ipf_main_soft_destroy(softc); return NULL; } MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex"); MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock"); RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex"); RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock"); RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock"); RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock"); RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock"); RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock"); RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock"); softc->ipf_token_head = NULL; softc->ipf_token_tail = &softc->ipf_token_head; softc->ipf_tcpidletimeout = FIVE_DAYS; softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcplastack = IPF_TTLVAL(30); softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL); softc->ipf_tcpclosed = IPF_TTLVAL(30); softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600); softc->ipf_udptimeout = IPF_TTLVAL(120); softc->ipf_udpacktimeout = IPF_TTLVAL(12); softc->ipf_icmptimeout = IPF_TTLVAL(60); softc->ipf_icmpacktimeout = IPF_TTLVAL(6); softc->ipf_iptimeout = IPF_TTLVAL(60); #if defined(IPFILTER_DEFAULT_BLOCK) softc->ipf_pass = FR_BLOCK|FR_NOMATCH; #else softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH; #endif softc->ipf_minttl = 4; softc->ipf_icmpminfragmtu = 68; softc->ipf_flags = IPF_LOGGING; return softc; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_init */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ int ipf_main_soft_init(softc) ipf_main_softc_t *softc; { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_destroy */ /* Returns: void */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Undo everything that we did in ipf_main_soft_create. */ /* */ /* The most important check that needs to be made here is whether or not */ /* the structure was allocated by ipf_main_soft_create() by checking what */ /* value is stored in ipf_dynamic_main. */ /* ------------------------------------------------------------------------ */ /*ARGSUSED*/ void ipf_main_soft_destroy(softc) ipf_main_softc_t *softc; { RW_DESTROY(&softc->ipf_frag); RW_DESTROY(&softc->ipf_poolrw); RW_DESTROY(&softc->ipf_nat); RW_DESTROY(&softc->ipf_state); RW_DESTROY(&softc->ipf_tokens); RW_DESTROY(&softc->ipf_mutex); RW_DESTROY(&softc->ipf_global); MUTEX_DESTROY(&softc->ipf_timeoutlock); MUTEX_DESTROY(&softc->ipf_rw); if (softc->ipf_tuners != NULL) { KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables)); } if (softc->ipf_dynamic_softc == 1) { KFREE(softc); } } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_soft_fini */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Clean out the rules which have been added since _init was last called, */ /* the only dynamic part of the mainline. */ /* ------------------------------------------------------------------------ */ int ipf_main_soft_fini(softc) ipf_main_softc_t *softc; { (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE); (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE); (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE); return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_load */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Handle global initialisation that needs to be done for the base part of */ /* IPFilter. At present this just amounts to initialising some ICMP lookup */ /* arrays that get used by the state/NAT code. */ /* ------------------------------------------------------------------------ */ int ipf_main_load() { int i; /* fill icmp reply type table */ for (i = 0; i <= ICMP_MAXTYPE; i++) icmpreplytype4[i] = -1; icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; #ifdef USE_INET6 /* fill icmp reply type table */ for (i = 0; i <= ICMP6_MAXTYPE; i++) icmpreplytype6[i] = -1; icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; #endif return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_main_unload */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* A null-op function that exists as a placeholder so that the flow in */ /* other functions is obvious. */ /* ------------------------------------------------------------------------ */ int ipf_main_unload() { return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_load_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Work through all of the subsystems inside IPFilter and call the load */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_load_all() { if (ipf_main_load() == -1) return -1; if (ipf_state_main_load() == -1) return -1; if (ipf_nat_main_load() == -1) return -1; if (ipf_frag_main_load() == -1) return -1; if (ipf_auth_main_load() == -1) return -1; if (ipf_proxy_main_load() == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_unload_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: none */ /* */ /* Work through all of the subsystems inside IPFilter and call the unload */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_unload_all() { if (ipf_proxy_main_unload() == -1) return -1; if (ipf_auth_main_unload() == -1) return -1; if (ipf_frag_main_unload() == -1) return -1; if (ipf_nat_main_unload() == -1) return -1; if (ipf_state_main_unload() == -1) return -1; if (ipf_main_unload() == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_create_all */ /* Returns: NULL = failure, else success */ /* Parameters: arg(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the create */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ ipf_main_softc_t * ipf_create_all(arg) void *arg; { ipf_main_softc_t *softc; softc = ipf_main_soft_create(arg); if (softc == NULL) return NULL; #ifdef IPFILTER_LOG softc->ipf_log_soft = ipf_log_soft_create(softc); if (softc->ipf_log_soft == NULL) { ipf_destroy_all(softc); return NULL; } #endif softc->ipf_lookup_soft = ipf_lookup_soft_create(softc); if (softc->ipf_lookup_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_sync_soft = ipf_sync_soft_create(softc); if (softc->ipf_sync_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_state_soft = ipf_state_soft_create(softc); if (softc->ipf_state_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_nat_soft = ipf_nat_soft_create(softc); if (softc->ipf_nat_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_frag_soft = ipf_frag_soft_create(softc); if (softc->ipf_frag_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_auth_soft = ipf_auth_soft_create(softc); if (softc->ipf_auth_soft == NULL) { ipf_destroy_all(softc); return NULL; } softc->ipf_proxy_soft = ipf_proxy_soft_create(softc); if (softc->ipf_proxy_soft == NULL) { ipf_destroy_all(softc); return NULL; } return softc; } /* ------------------------------------------------------------------------ */ /* Function: ipf_destroy_all */ /* Returns: void */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the destroy */ /* function for each in an order that won't lead to a crash :) */ /* */ /* Every one of these functions is expected to succeed, so there is no */ /* checking of return values. */ /* ------------------------------------------------------------------------ */ void ipf_destroy_all(softc) ipf_main_softc_t *softc; { if (softc->ipf_state_soft != NULL) { ipf_state_soft_destroy(softc, softc->ipf_state_soft); softc->ipf_state_soft = NULL; } if (softc->ipf_nat_soft != NULL) { ipf_nat_soft_destroy(softc, softc->ipf_nat_soft); softc->ipf_nat_soft = NULL; } if (softc->ipf_frag_soft != NULL) { ipf_frag_soft_destroy(softc, softc->ipf_frag_soft); softc->ipf_frag_soft = NULL; } if (softc->ipf_auth_soft != NULL) { ipf_auth_soft_destroy(softc, softc->ipf_auth_soft); softc->ipf_auth_soft = NULL; } if (softc->ipf_proxy_soft != NULL) { ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft); softc->ipf_proxy_soft = NULL; } if (softc->ipf_sync_soft != NULL) { ipf_sync_soft_destroy(softc, softc->ipf_sync_soft); softc->ipf_sync_soft = NULL; } if (softc->ipf_lookup_soft != NULL) { ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft); softc->ipf_lookup_soft = NULL; } #ifdef IPFILTER_LOG if (softc->ipf_log_soft != NULL) { ipf_log_soft_destroy(softc, softc->ipf_log_soft); softc->ipf_log_soft = NULL; } #endif ipf_main_soft_destroy(softc); } /* ------------------------------------------------------------------------ */ /* Function: ipf_init_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the init */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_init_all(softc) ipf_main_softc_t *softc; { if (ipf_main_soft_init(softc) == -1) return -1; #ifdef IPFILTER_LOG if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1) return -1; #endif if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1) return -1; if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1) return -1; if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1) return -1; if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1) return -1; if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1) return -1; if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1) return -1; if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_fini_all */ /* Returns: 0 = success, -1 = failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* Work through all of the subsystems inside IPFilter and call the fini */ /* function for each in an order that won't lead to a crash :) */ /* ------------------------------------------------------------------------ */ int ipf_fini_all(softc) ipf_main_softc_t *softc; { ipf_token_flush(softc); if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1) return -1; if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1) return -1; if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1) return -1; if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1) return -1; if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1) return -1; if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1) return -1; if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1) return -1; #ifdef IPFILTER_LOG if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1) return -1; #endif if (ipf_main_soft_fini(softc) == -1) return -1; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_rule_expire */ /* Returns: Nil */ /* Parameters: softc(I) - pointer to soft context main structure */ /* */ /* At present this function exists just to support temporary addition of */ /* firewall rules. Both inactive and active lists are scanned for items to */ /* purge, as by rights, the expiration is computed as soon as the rule is */ /* loaded in. */ /* ------------------------------------------------------------------------ */ void ipf_rule_expire(softc) ipf_main_softc_t *softc; { frentry_t *fr; if ((softc->ipf_rule_explist[0] == NULL) && (softc->ipf_rule_explist[1] == NULL)) return; WRITE_ENTER(&softc->ipf_mutex); while ((fr = softc->ipf_rule_explist[0]) != NULL) { /* * Because the list is kept sorted on insertion, the fist * one that dies in the future means no more work to do. */ if (fr->fr_die > softc->ipf_ticks) break; ipf_rule_delete(softc, fr, IPL_LOGIPF, 0); } while ((fr = softc->ipf_rule_explist[1]) != NULL) { /* * Because the list is kept sorted on insertion, the fist * one that dies in the future means no more work to do. */ if (fr->fr_die > softc->ipf_ticks) break; ipf_rule_delete(softc, fr, IPL_LOGIPF, 1); } RWLOCK_EXIT(&softc->ipf_mutex); } static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *)); static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int, i6addr_t *)); host_node_t RBI_ZERO(ipf_rb); RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp) /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_cmp */ /* Returns: int - 0 == nodes are the same, .. */ /* Parameters: k1(I) - pointer to first key to compare */ /* k2(I) - pointer to second key to compare */ /* */ /* The "key" for the node is a combination of two fields: the address */ /* family and the address itself. */ /* */ /* Because we're not actually interpreting the address data, it isn't */ /* necessary to convert them to/from network/host byte order. The mask is */ /* just used to remove bits that aren't significant - it doesn't matter */ /* where they are, as long as they're always in the same place. */ /* */ /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */ /* this is where individual ones will differ the most - but not true for */ /* for /48's, etc. */ /* ------------------------------------------------------------------------ */ static int ipf_ht_node_cmp(k1, k2) struct host_node_s *k1, *k2; { int i; i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family); if (i != 0) return i; if (k1->hn_addr.adf_family == AF_INET) return (k2->hn_addr.adf_addr.in4.s_addr - k1->hn_addr.adf_addr.in4.s_addr); i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1]; if (i != 0) return i; i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0]; return i; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_make_key */ /* Returns: Nil */ /* parameters: htp(I) - pointer to address tracking structure */ /* key(I) - where to store masked address for lookup */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* Using the "netmask" (number of bits) stored parent host tracking struct, */ /* copy the address passed in into the key structure whilst masking out the */ /* bits that we don't want. */ /* */ /* Because the parser will set ht_netmask to 128 if there is no protocol */ /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */ /* have to be wary of that and not allow 32-128 to happen. */ /* ------------------------------------------------------------------------ */ static void ipf_ht_node_make_key(htp, key, family, addr) host_track_t *htp; host_node_t *key; int family; i6addr_t *addr; { key->hn_addr.adf_family = family; if (family == AF_INET) { u_32_t mask; int bits; key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4); bits = htp->ht_netmask; if (bits >= 32) { mask = 0xffffffff; } else { mask = htonl(0xffffffff << (32 - bits)); } key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask; #ifdef USE_INET6 } else { int bits = htp->ht_netmask; key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6); if (bits > 96) { key->hn_addr.adf_addr.i6[3] = addr->i6[3] & htonl(0xffffffff << (128 - bits)); key->hn_addr.adf_addr.i6[2] = addr->i6[2]; key->hn_addr.adf_addr.i6[1] = addr->i6[2]; key->hn_addr.adf_addr.i6[0] = addr->i6[2]; } else if (bits > 64) { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = addr->i6[2] & htonl(0xffffffff << (96 - bits)); key->hn_addr.adf_addr.i6[1] = addr->i6[1]; key->hn_addr.adf_addr.i6[0] = addr->i6[0]; } else if (bits > 32) { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = 0; key->hn_addr.adf_addr.i6[1] = addr->i6[1] & htonl(0xffffffff << (64 - bits)); key->hn_addr.adf_addr.i6[0] = addr->i6[0]; } else { key->hn_addr.adf_addr.i6[3] = 0; key->hn_addr.adf_addr.i6[2] = 0; key->hn_addr.adf_addr.i6[1] = 0; key->hn_addr.adf_addr.i6[0] = addr->i6[0] & htonl(0xffffffff << (32 - bits)); } #endif } } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_add */ /* Returns: int - 0 == success, -1 == failure */ /* Parameters: softc(I) - pointer to soft context main structure */ /* htp(I) - pointer to address tracking structure */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */ /* */ /* After preparing the key with the address information to find, look in */ /* the red-black tree to see if the address is known. A successful call to */ /* this function can mean one of two things: a new node was added to the */ /* tree or a matching node exists and we're able to bump up its activity. */ /* ------------------------------------------------------------------------ */ int ipf_ht_node_add(softc, htp, family, addr) ipf_main_softc_t *softc; host_track_t *htp; int family; i6addr_t *addr; { host_node_t *h; host_node_t k; ipf_ht_node_make_key(htp, &k, family, addr); h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); if (h == NULL) { if (htp->ht_cur_nodes >= htp->ht_max_nodes) return -1; KMALLOC(h, host_node_t *); if (h == NULL) { DT(ipf_rb_no_mem); LBUMP(ipf_rb_no_mem); return -1; } /* * If there was a macro to initialise the RB node then that * would get used here, but there isn't... */ bzero((char *)h, sizeof(*h)); h->hn_addr = k.hn_addr; h->hn_addr.adf_family = k.hn_addr.adf_family; RBI_INSERT(ipf_rb, &htp->ht_root, h); htp->ht_cur_nodes++; } else { if ((htp->ht_max_per_node != 0) && (h->hn_active >= htp->ht_max_per_node)) { DT(ipf_rb_node_max); LBUMP(ipf_rb_node_max); return -1; } } h->hn_active++; return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_ht_node_del */ /* Returns: int - 0 == success, -1 == failure */ /* parameters: htp(I) - pointer to address tracking structure */ /* family(I) - protocol family of address */ /* addr(I) - pointer to network address */ /* */ /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */ /* */ /* Try and find the address passed in amongst the leavese on this tree to */ /* be friend. If found then drop the active account for that node drops by */ /* one. If that count reaches 0, it is time to free it all up. */ /* ------------------------------------------------------------------------ */ int ipf_ht_node_del(htp, family, addr) host_track_t *htp; int family; i6addr_t *addr; { host_node_t *h; host_node_t k; ipf_ht_node_make_key(htp, &k, family, addr); h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); if (h == NULL) { return -1; } else { h->hn_active--; if (h->hn_active == 0) { (void) RBI_DELETE(ipf_rb, &htp->ht_root, h); htp->ht_cur_nodes--; KFREE(h); } } return 0; } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_init */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* */ /* Initialise the host tracking structure to be ready for use above. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_init(head) host_track_t *head; { RBI_INIT(ipf_rb, &head->ht_root); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_freenode */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* arg(I) - additional argument from walk caller */ /* */ /* Free an actual host_node_t structure. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_freenode(node, arg) host_node_t *node; void *arg; { KFREE(node); } /* ------------------------------------------------------------------------ */ /* Function: ipf_rb_ht_flush */ /* Returns: Nil */ /* Parameters: head(I) - pointer to host tracking structure */ /* */ /* Remove all of the nodes in the tree tracking hosts by calling a walker */ /* and free'ing each one. */ /* ------------------------------------------------------------------------ */ void ipf_rb_ht_flush(head) host_track_t *head; { RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL); } /* ------------------------------------------------------------------------ */ /* Function: ipf_slowtimer */ /* Returns: Nil */ /* Parameters: ptr(I) - pointer to main ipf soft context structure */ /* */ /* Slowly expire held state for fragments. Timeouts are set * in */ /* expectation of this being called twice per second. */ /* ------------------------------------------------------------------------ */ void ipf_slowtimer(softc) ipf_main_softc_t *softc; { ipf_token_expire(softc); ipf_frag_expire(softc); ipf_state_expire(softc); ipf_nat_expire(softc); ipf_auth_expire(softc); ipf_lookup_expire(softc); ipf_rule_expire(softc); ipf_sync_expire(softc); softc->ipf_ticks++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet_mask_add */ /* Returns: Nil */ /* Parameters: bits(I) - pointer to nat context information */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* When called, bits represents the mask of a new NAT rule that has just */ /* been added. This function inserts a bitmask into the array of masks to */ /* search when searching for a matching NAT rule for a packet. */ /* Prevention of duplicate masks is achieved by checking the use count for */ /* a given netmask. */ /* ------------------------------------------------------------------------ */ void ipf_inet_mask_add(bits, mtab) int bits; ipf_v4_masktab_t *mtab; { u_32_t mask; int i, j; mtab->imt4_masks[bits]++; if (mtab->imt4_masks[bits] > 1) return; if (bits == 0) mask = 0; else mask = 0xffffffff << (32 - bits); for (i = 0; i < 33; i++) { if (ntohl(mtab->imt4_active[i]) < mask) { for (j = 32; j > i; j--) mtab->imt4_active[j] = mtab->imt4_active[j - 1]; mtab->imt4_active[i] = htonl(mask); break; } } mtab->imt4_max++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet_mask_del */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in the netmask */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* Remove the 32bit bitmask represented by "bits" from the collection of */ /* netmasks stored inside of mtab. */ /* ------------------------------------------------------------------------ */ void ipf_inet_mask_del(bits, mtab) int bits; ipf_v4_masktab_t *mtab; { u_32_t mask; int i, j; mtab->imt4_masks[bits]--; if (mtab->imt4_masks[bits] > 0) return; mask = htonl(0xffffffff << (32 - bits)); for (i = 0; i < 33; i++) { if (mtab->imt4_active[i] == mask) { for (j = i + 1; j < 33; j++) mtab->imt4_active[j - 1] = mtab->imt4_active[j]; break; } } mtab->imt4_max--; ASSERT(mtab->imt4_max >= 0); } #ifdef USE_INET6 /* ------------------------------------------------------------------------ */ /* Function: ipf_inet6_mask_add */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in mask */ /* mask(I) - pointer to mask to add */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* When called, bitcount represents the mask of a IPv6 NAT map rule that */ /* has just been added. This function inserts a bitmask into the array of */ /* masks to search when searching for a matching NAT rule for a packet. */ /* Prevention of duplicate masks is achieved by checking the use count for */ /* a given netmask. */ /* ------------------------------------------------------------------------ */ void ipf_inet6_mask_add(bits, mask, mtab) int bits; i6addr_t *mask; ipf_v6_masktab_t *mtab; { i6addr_t zero; int i, j; mtab->imt6_masks[bits]++; if (mtab->imt6_masks[bits] > 1) return; if (bits == 0) { mask = &zero; zero.i6[0] = 0; zero.i6[1] = 0; zero.i6[2] = 0; zero.i6[3] = 0; } for (i = 0; i < 129; i++) { if (IP6_LT(&mtab->imt6_active[i], mask)) { for (j = 128; j > i; j--) mtab->imt6_active[j] = mtab->imt6_active[j - 1]; mtab->imt6_active[i] = *mask; break; } } mtab->imt6_max++; } /* ------------------------------------------------------------------------ */ /* Function: ipf_inet6_mask_del */ /* Returns: Nil */ /* Parameters: bits(I) - number of bits set in mask */ /* mask(I) - pointer to mask to remove */ /* mtab(I) - pointer to mask hash table structure */ /* */ /* Remove the 128bit bitmask represented by "bits" from the collection of */ /* netmasks stored inside of mtab. */ /* ------------------------------------------------------------------------ */ void ipf_inet6_mask_del(bits, mask, mtab) int bits; i6addr_t *mask; ipf_v6_masktab_t *mtab; { i6addr_t zero; int i, j; mtab->imt6_masks[bits]--; if (mtab->imt6_masks[bits] > 0) return; if (bits == 0) mask = &zero; zero.i6[0] = 0; zero.i6[1] = 0; zero.i6[2] = 0; zero.i6[3] = 0; for (i = 0; i < 129; i++) { if (IP6_EQ(&mtab->imt6_active[i], mask)) { for (j = i + 1; j < 129; j++) { mtab->imt6_active[j - 1] = mtab->imt6_active[j]; if (IP6_EQ(&mtab->imt6_active[j - 1], &zero)) break; } break; } } mtab->imt6_max--; ASSERT(mtab->imt6_max >= 0); } + +#ifdef _KERNEL +static u_int +ipf_pcksum6(fin, ip6, off, len) + fr_info_t *fin; + ip6_t *ip6; + u_int32_t off; + u_int32_t len; +{ + struct mbuf *m; + int sum; + + m = fin->fin_m; + if (m->m_len < sizeof(struct ip6_hdr)) { + return 0xffff; + } + + sum = in6_cksum(m, ip6->ip6_nxt, off, len); + return(sum); +} +#else +static u_int +ipf_pcksum6(fin, ip6, off, len) + fr_info_t *fin; + ip6_t *ip6; + u_int32_t off; + u_int32_t len; +{ + u_short *sp; + u_int sum; + + sp = (u_short *)&ip6->ip6_src; + sum = *sp++; /* ip6_src */ + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; /* ip6_dst */ + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + sum += *sp++; + return(ipf_pcksum(fin, off, sum)); +} +#endif #endif Index: stable/12/sys/contrib/ipfilter/netinet/ip_fil.h =================================================================== --- stable/12/sys/contrib/ipfilter/netinet/ip_fil.h (revision 349931) +++ stable/12/sys/contrib/ipfilter/netinet/ip_fil.h (revision 349932) @@ -1,1905 +1,1901 @@ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. * * @(#)ip_fil.h 1.35 6/5/96 * $FreeBSD$ * Id: ip_fil.h,v 2.170.2.51 2007/10/10 09:48:03 darrenr Exp $ */ #ifndef __IP_FIL_H__ #define __IP_FIL_H__ # include #include "netinet/ip_compat.h" #include "netinet/ipf_rb.h" #if NETBSD_GE_REV(104040000) # include #endif #if defined(BSD) && defined(_KERNEL) # include #endif #ifndef SOLARIS # if defined(sun) && defined(__SVR4) # define SOLARIS 1 # else # define SOLARIS 0 # endif #endif #ifndef __P # ifdef __STDC__ # define __P(x) x # else # define __P(x) () # endif #endif #if defined(__STDC__) || defined(__GNUC__) # define SIOCADAFR _IOW('r', 60, struct ipfobj) # define SIOCRMAFR _IOW('r', 61, struct ipfobj) # define SIOCSETFF _IOW('r', 62, u_int) # define SIOCGETFF _IOR('r', 63, u_int) # define SIOCGETFS _IOWR('r', 64, struct ipfobj) # define SIOCIPFFL _IOWR('r', 65, int) # define SIOCIPFFB _IOR('r', 66, int) # define SIOCADIFR _IOW('r', 67, struct ipfobj) # define SIOCRMIFR _IOW('r', 68, struct ipfobj) # define SIOCSWAPA _IOR('r', 69, u_int) # define SIOCINAFR _IOW('r', 70, struct ipfobj) # define SIOCINIFR _IOW('r', 71, struct ipfobj) # define SIOCFRENB _IOW('r', 72, u_int) # define SIOCFRSYN _IOW('r', 73, u_int) # define SIOCFRZST _IOWR('r', 74, struct ipfobj) # define SIOCZRLST _IOWR('r', 75, struct ipfobj) # define SIOCAUTHW _IOWR('r', 76, struct ipfobj) # define SIOCAUTHR _IOWR('r', 77, struct ipfobj) # define SIOCSTAT1 _IOWR('r', 78, struct ipfobj) # define SIOCSTLCK _IOWR('r', 79, u_int) # define SIOCSTPUT _IOWR('r', 80, struct ipfobj) # define SIOCSTGET _IOWR('r', 81, struct ipfobj) # define SIOCSTGSZ _IOWR('r', 82, struct ipfobj) # define SIOCSTAT2 _IOWR('r', 83, struct ipfobj) # define SIOCSETLG _IOWR('r', 84, int) # define SIOCGETLG _IOWR('r', 85, int) # define SIOCFUNCL _IOWR('r', 86, struct ipfunc_resolve) # define SIOCIPFGETNEXT _IOWR('r', 87, struct ipfobj) # define SIOCIPFGET _IOWR('r', 88, struct ipfobj) # define SIOCIPFSET _IOWR('r', 89, struct ipfobj) # define SIOCIPFL6 _IOWR('r', 90, int) # define SIOCIPFITER _IOWR('r', 91, struct ipfobj) # define SIOCGENITER _IOWR('r', 92, struct ipfobj) # define SIOCGTABL _IOWR('r', 93, struct ipfobj) # define SIOCIPFDELTOK _IOWR('r', 94, int) # define SIOCLOOKUPITER _IOWR('r', 95, struct ipfobj) # define SIOCGTQTAB _IOWR('r', 96, struct ipfobj) # define SIOCMATCHFLUSH _IOWR('r', 97, struct ipfobj) # define SIOCIPFINTERROR _IOR('r', 98, int) #else # define SIOCADAFR _IOW(r, 60, struct ipfobj) # define SIOCRMAFR _IOW(r, 61, struct ipfobj) # define SIOCSETFF _IOW(r, 62, u_int) # define SIOCGETFF _IOR(r, 63, u_int) # define SIOCGETFS _IOWR(r, 64, struct ipfobj) # define SIOCIPFFL _IOWR(r, 65, int) # define SIOCIPFFB _IOR(r, 66, int) # define SIOCADIFR _IOW(r, 67, struct ipfobj) # define SIOCRMIFR _IOW(r, 68, struct ipfobj) # define SIOCSWAPA _IOR(r, 69, u_int) # define SIOCINAFR _IOW(r, 70, struct ipfobj) # define SIOCINIFR _IOW(r, 71, struct ipfobj) # define SIOCFRENB _IOW(r, 72, u_int) # define SIOCFRSYN _IOW(r, 73, u_int) # define SIOCFRZST _IOWR(r, 74, struct ipfobj) # define SIOCZRLST _IOWR(r, 75, struct ipfobj) # define SIOCAUTHW _IOWR(r, 76, struct ipfobj) # define SIOCAUTHR _IOWR(r, 77, struct ipfobj) # define SIOCSTAT1 _IOWR(r, 78, struct ipfobj) # define SIOCSTLCK _IOWR(r, 79, u_int) # define SIOCSTPUT _IOWR(r, 80, struct ipfobj) # define SIOCSTGET _IOWR(r, 81, struct ipfobj) # define SIOCSTGSZ _IOWR(r, 82, struct ipfobj) # define SIOCSTAT2 _IOWR(r, 83, struct ipfobj) # define SIOCSETLG _IOWR(r, 84, int) # define SIOCGETLG _IOWR(r, 85, int) # define SIOCFUNCL _IOWR(r, 86, struct ipfunc_resolve) # define SIOCIPFGETNEXT _IOWR(r, 87, struct ipfobj) # define SIOCIPFGET _IOWR(r, 88, struct ipfobj) # define SIOCIPFSET _IOWR(r, 89, struct ipfobj) # define SIOCIPFL6 _IOWR(r, 90, int) # define SIOCIPFITER _IOWR(r, 91, struct ipfobj) # define SIOCGENITER _IOWR(r, 92, struct ipfobj) # define SIOCGTABL _IOWR(r, 93, struct ipfobj) # define SIOCIPFDELTOK _IOWR(r, 94, int) # define SIOCLOOKUPITER _IOWR(r, 95, struct ipfobj) # define SIOCGTQTAB _IOWR(r, 96, struct ipfobj) # define SIOCMATCHFLUSH _IOWR(r, 97, struct ipfobj) # define SIOCIPFINTERROR _IOR(r, 98, int) #endif #define SIOCADDFR SIOCADAFR #define SIOCDELFR SIOCRMAFR #define SIOCINSFR SIOCINAFR #define SIOCATHST SIOCSTAT1 #define SIOCGFRST SIOCSTAT2 struct ipscan; struct ifnet; struct ipf_main_softc_s; typedef int (* lookupfunc_t) __P((struct ipf_main_softc_s *, void *, int, void *, u_int)); /* * i6addr is used as a container for both IPv4 and IPv6 addresses, as well * as other types of objects, depending on its qualifier. */ typedef union i6addr { u_32_t i6[4]; struct in_addr in4; #ifdef USE_INET6 struct in6_addr in6; #endif void *vptr[2]; lookupfunc_t lptr[2]; struct { u_short type; u_short subtype; int name; } i6un; } i6addr_t; #define in4_addr in4.s_addr #define iplookupnum i6[1] #define iplookupname i6un.name #define iplookuptype i6un.type #define iplookupsubtype i6un.subtype /* * NOTE: These DO overlap the above on 64bit systems and this IS recognised. */ #define iplookupptr vptr[0] #define iplookupfunc lptr[1] #define I60(x) (((u_32_t *)(x))[0]) #define I61(x) (((u_32_t *)(x))[1]) #define I62(x) (((u_32_t *)(x))[2]) #define I63(x) (((u_32_t *)(x))[3]) #define HI60(x) ntohl(((u_32_t *)(x))[0]) #define HI61(x) ntohl(((u_32_t *)(x))[1]) #define HI62(x) ntohl(((u_32_t *)(x))[2]) #define HI63(x) ntohl(((u_32_t *)(x))[3]) #define IP6_EQ(a,b) ((I63(a) == I63(b)) && (I62(a) == I62(b)) && \ (I61(a) == I61(b)) && (I60(a) == I60(b))) #define IP6_NEQ(a,b) ((I63(a) != I63(b)) || (I62(a) != I62(b)) || \ (I61(a) != I61(b)) || (I60(a) != I60(b))) #define IP6_ISZERO(a) ((I60(a) | I61(a) | I62(a) | I63(a)) == 0) #define IP6_NOTZERO(a) ((I60(a) | I61(a) | I62(a) | I63(a)) != 0) #define IP6_ISONES(a) ((I63(a) == 0xffffffff) && (I62(a) == 0xffffffff) && \ (I61(a) == 0xffffffff) && (I60(a) == 0xffffffff)) #define IP6_GT(a,b) (ntohl(HI60(a)) > ntohl(HI60(b)) || \ (HI60(a) == HI60(b) && \ (ntohl(HI61(a)) > ntohl(HI61(b)) || \ (HI61(a) == HI61(b) && \ (ntohl(HI62(a)) > ntohl(HI62(b)) || \ (HI62(a) == HI62(b) && \ ntohl(HI63(a)) > ntohl(HI63(b)))))))) #define IP6_LT(a,b) (ntohl(HI60(a)) < ntohl(HI60(b)) || \ (HI60(a) == HI60(b) && \ (ntohl(HI61(a)) < ntohl(HI61(b)) || \ (HI61(a) == HI61(b) && \ (ntohl(HI62(a)) < ntohl(HI62(b)) || \ (HI62(a) == HI62(b) && \ ntohl(HI63(a)) < ntohl(HI63(b)))))))) #define NLADD(n,x) htonl(ntohl(n) + (x)) #define IP6_INC(a) \ do { u_32_t *_i6 = (u_32_t *)(a); \ _i6[3] = NLADD(_i6[3], 1); \ if (_i6[3] == 0) { \ _i6[2] = NLADD(_i6[2], 1); \ if (_i6[2] == 0) { \ _i6[1] = NLADD(_i6[1], 1); \ if (_i6[1] == 0) { \ _i6[0] = NLADD(_i6[0], 1); \ } \ } \ } \ } while (0) #define IP6_ADD(a,x,d) \ do { i6addr_t *_s = (i6addr_t *)(a); \ i6addr_t *_d = (i6addr_t *)(d); \ _d->i6[0] = NLADD(_s->i6[0], x); \ if (ntohl(_d->i6[0]) < ntohl(_s->i6[0])) { \ _d->i6[1] = NLADD(_d->i6[1], 1); \ if (ntohl(_d->i6[1]) < ntohl(_s->i6[1])) { \ _d->i6[2] = NLADD(_d->i6[2], 1); \ if (ntohl(_d->i6[2]) < ntohl(_s->i6[2])) { \ _d->i6[3] = NLADD(_d->i6[3], 1); \ } \ } \ } \ } while (0) #define IP6_AND(a,b,d) do { i6addr_t *_s1 = (i6addr_t *)(a); \ i6addr_t *_s2 = (i6addr_t *)(b); \ i6addr_t *_d = (i6addr_t *)(d); \ _d->i6[0] = _s1->i6[0] & _s2->i6[0]; \ _d->i6[1] = _s1->i6[1] & _s2->i6[1]; \ _d->i6[2] = _s1->i6[2] & _s2->i6[2]; \ _d->i6[3] = _s1->i6[3] & _s2->i6[3]; \ } while (0) #define IP6_ANDASSIGN(a,m) \ do { i6addr_t *_d = (i6addr_t *)(a); \ i6addr_t *_m = (i6addr_t *)(m); \ _d->i6[0] &= _m->i6[0]; \ _d->i6[1] &= _m->i6[1]; \ _d->i6[2] &= _m->i6[2]; \ _d->i6[3] &= _m->i6[3]; \ } while (0) #define IP6_MASKEQ(a,m,b) \ (((I60(a) & I60(m)) == I60(b)) && \ ((I61(a) & I61(m)) == I61(b)) && \ ((I62(a) & I62(m)) == I62(b)) && \ ((I63(a) & I63(m)) == I63(b))) #define IP6_MASKNEQ(a,m,b) \ (((I60(a) & I60(m)) != I60(b)) || \ ((I61(a) & I61(m)) != I61(b)) || \ ((I62(a) & I62(m)) != I62(b)) || \ ((I63(a) & I63(m)) != I63(b))) #define IP6_MERGE(a,b,c) \ do { i6addr_t *_d, *_s1, *_s2; \ _d = (i6addr_t *)(a); \ _s1 = (i6addr_t *)(b); \ _s2 = (i6addr_t *)(c); \ _d->i6[0] |= _s1->i6[0] & ~_s2->i6[0]; \ _d->i6[1] |= _s1->i6[1] & ~_s2->i6[1]; \ _d->i6[2] |= _s1->i6[2] & ~_s2->i6[2]; \ _d->i6[3] |= _s1->i6[3] & ~_s2->i6[3]; \ } while (0) #define IP6_MASK(a,b,c) \ do { i6addr_t *_d, *_s1, *_s2; \ _d = (i6addr_t *)(a); \ _s1 = (i6addr_t *)(b); \ _s2 = (i6addr_t *)(c); \ _d->i6[0] = _s1->i6[0] & ~_s2->i6[0]; \ _d->i6[1] = _s1->i6[1] & ~_s2->i6[1]; \ _d->i6[2] = _s1->i6[2] & ~_s2->i6[2]; \ _d->i6[3] = _s1->i6[3] & ~_s2->i6[3]; \ } while (0) #define IP6_SETONES(a) \ do { i6addr_t *_d = (i6addr_t *)(a); \ _d->i6[0] = 0xffffffff; \ _d->i6[1] = 0xffffffff; \ _d->i6[2] = 0xffffffff; \ _d->i6[3] = 0xffffffff; \ } while (0) typedef union ipso_u { u_short ipso_ripso[2]; u_32_t ipso_doi; } ipso_t; typedef struct fr_ip { u_32_t fi_v:4; /* IP version */ u_32_t fi_xx:4; /* spare */ u_32_t fi_tos:8; /* IP packet TOS */ u_32_t fi_ttl:8; /* IP packet TTL */ u_32_t fi_p:8; /* IP packet protocol */ u_32_t fi_optmsk; /* bitmask composed from IP options */ i6addr_t fi_src; /* source address from packet */ i6addr_t fi_dst; /* destination address from packet */ ipso_t fi_ipso; /* IP security options */ u_32_t fi_flx; /* packet flags */ u_32_t fi_tcpmsk; /* TCP options set/reset */ u_32_t fi_ports[2]; /* TCP ports */ u_char fi_tcpf; /* TCP flags */ u_char fi_sensitivity; u_char fi_xxx[2]; /* pad */ } fr_ip_t; /* * For use in fi_flx */ #define FI_TCPUDP 0x0001 /* TCP/UCP implied comparison*/ #define FI_OPTIONS 0x0002 #define FI_FRAG 0x0004 #define FI_SHORT 0x0008 #define FI_NATED 0x0010 #define FI_MULTICAST 0x0020 #define FI_BROADCAST 0x0040 #define FI_MBCAST 0x0080 #define FI_STATE 0x0100 #define FI_BADNAT 0x0200 #define FI_BAD 0x0400 #define FI_OOW 0x0800 /* Out of state window, else match */ #define FI_ICMPERR 0x1000 #define FI_FRAGBODY 0x2000 #define FI_BADSRC 0x4000 #define FI_LOWTTL 0x8000 #define FI_CMP 0x5cfe3 /* Not FI_FRAG,FI_NATED,FI_FRAGTAIL */ #define FI_ICMPCMP 0x0003 /* Flags we can check for ICMP error packets */ #define FI_WITH 0x5effe /* Not FI_TCPUDP */ #define FI_V6EXTHDR 0x10000 #define FI_COALESCE 0x20000 #define FI_NEWNAT 0x40000 #define FI_ICMPQUERY 0x80000 #define FI_ENCAP 0x100000 /* encap/decap with NAT */ #define FI_AH 0x200000 /* AH header present */ #define FI_DOCKSUM 0x10000000 /* Proxy wants L4 recalculation */ #define FI_NOCKSUM 0x20000000 /* don't do a L4 checksum validation */ #define FI_NOWILD 0x40000000 /* Do not do wildcard searches */ #define FI_IGNORE 0x80000000 #define fi_secmsk fi_ipso.ipso_ripso[0] #define fi_auth fi_ipso.ipso_ripso[1] #define fi_doi fi_ipso.ipso_doi #define fi_saddr fi_src.in4.s_addr #define fi_daddr fi_dst.in4.s_addr #define fi_srcnum fi_src.iplookupnum #define fi_dstnum fi_dst.iplookupnum #define fi_srcname fi_src.iplookupname #define fi_dstname fi_dst.iplookupname #define fi_srctype fi_src.iplookuptype #define fi_dsttype fi_dst.iplookuptype #define fi_srcsubtype fi_src.iplookupsubtype #define fi_dstsubtype fi_dst.iplookupsubtype #define fi_srcptr fi_src.iplookupptr #define fi_dstptr fi_dst.iplookupptr #define fi_srcfunc fi_src.iplookupfunc #define fi_dstfunc fi_dst.iplookupfunc /* * These are both used by the state and NAT code to indicate that one port or * the other should be treated as a wildcard. * NOTE: When updating, check bit masks in ip_state.h and update there too. */ #define SI_W_SPORT 0x00000100 #define SI_W_DPORT 0x00000200 #define SI_WILDP (SI_W_SPORT|SI_W_DPORT) #define SI_W_SADDR 0x00000400 #define SI_W_DADDR 0x00000800 #define SI_WILDA (SI_W_SADDR|SI_W_DADDR) #define SI_NEWFR 0x00001000 #define SI_CLONE 0x00002000 #define SI_CLONED 0x00004000 #define SI_NEWCLONE 0x00008000 typedef struct { u_short fda_ports[2]; u_char fda_tcpf; /* TCP header flags (SYN, ACK, etc) */ } frdat_t; typedef enum fr_breasons_e { FRB_BLOCKED = 0, FRB_LOGFAIL = 1, FRB_PPSRATE = 2, FRB_JUMBO = 3, FRB_MAKEFRIP = 4, FRB_STATEADD = 5, FRB_UPDATEIPID = 6, FRB_LOGFAIL2 = 7, FRB_DECAPFRIP = 8, FRB_AUTHNEW = 9, FRB_AUTHCAPTURE = 10, FRB_COALESCE = 11, FRB_PULLUP = 12, FRB_AUTHFEEDBACK = 13, FRB_BADFRAG = 14, FRB_NATV4 = 15, FRB_NATV6 = 16, } fr_breason_t; #define FRB_MAX_VALUE 16 typedef enum ipf_cksum_e { FI_CK_BAD = -1, FI_CK_NEEDED = 0, FI_CK_SUMOK = 1, FI_CK_L4PART = 2, FI_CK_L4FULL = 4 } ipf_cksum_t; typedef struct fr_info { void *fin_main_soft; void *fin_ifp; /* interface packet is `on' */ struct frentry *fin_fr; /* last matching rule */ int fin_out; /* in or out ? 1 == out, 0 == in */ fr_ip_t fin_fi; /* IP Packet summary */ frdat_t fin_dat; /* TCP/UDP ports, ICMP code/type */ int fin_dlen; /* length of data portion of packet */ int fin_plen; u_32_t fin_rule; /* rule # last matched */ u_short fin_hlen; /* length of IP header in bytes */ char fin_group[FR_GROUPLEN]; /* group number, -1 for none */ void *fin_dp; /* start of data past IP header */ /* * Fields after fin_dp aren't used for compression of log records. * fin_fi contains the IP version (fin_family) * fin_rule isn't included because adding a new rule can change it but * not change fin_fr. fin_rule is the rule number reported. * It isn't necessary to include fin_crc because that is checked * for explicitly, before calling bcmp. */ u_32_t fin_crc; /* Simple calculation for logging */ int fin_family; /* AF_INET, etc. */ int fin_icode; /* ICMP error to return */ int fin_mtu; /* MTU input for ICMP need-frag */ int fin_rev; /* state only: 1 = reverse */ int fin_ipoff; /* # bytes from buffer start to hdr */ u_32_t fin_id; /* IP packet id field */ u_short fin_l4hlen; /* length of L4 header, if known */ u_short fin_off; int fin_depth; /* Group nesting depth */ int fin_error; /* Error code to return */ ipf_cksum_t fin_cksum; /* -1 = bad, 1 = good, 0 = not done */ fr_breason_t fin_reason; /* why auto blocked */ u_int fin_pktnum; void *fin_nattag; struct frdest *fin_dif; struct frdest *fin_tif; union { ip_t *fip_ip; #ifdef USE_INET6 ip6_t *fip_ip6; #endif } fin_ipu; mb_t **fin_mp; /* pointer to pointer to mbuf */ mb_t *fin_m; /* pointer to mbuf */ #ifdef MENTAT mb_t *fin_qfm; /* pointer to mblk where pkt starts */ void *fin_qpi; char fin_ifname[LIFNAMSIZ]; #endif void *fin_fraghdr; /* pointer to start of ipv6 frag hdr */ } fr_info_t; #define fin_ip fin_ipu.fip_ip #define fin_ip6 fin_ipu.fip_ip6 #define fin_v fin_fi.fi_v #define fin_p fin_fi.fi_p #define fin_flx fin_fi.fi_flx #define fin_optmsk fin_fi.fi_optmsk #define fin_secmsk fin_fi.fi_secmsk #define fin_doi fin_fi.fi_doi #define fin_auth fin_fi.fi_auth #define fin_src fin_fi.fi_src.in4 #define fin_saddr fin_fi.fi_saddr #define fin_dst fin_fi.fi_dst.in4 #define fin_daddr fin_fi.fi_daddr #define fin_data fin_fi.fi_ports #define fin_sport fin_fi.fi_ports[0] #define fin_dport fin_fi.fi_ports[1] #define fin_tcpf fin_fi.fi_tcpf #define fin_src6 fin_fi.fi_src #define fin_dst6 fin_fi.fi_dst #define fin_srcip6 fin_fi.fi_src.in6 #define fin_dstip6 fin_fi.fi_dst.in6 #define IPF_IN 0 #define IPF_OUT 1 typedef struct frentry *(*ipfunc_t) __P((fr_info_t *, u_32_t *)); typedef int (*ipfuncinit_t) __P((struct ipf_main_softc_s *, struct frentry *)); typedef struct ipfunc_resolve { char ipfu_name[32]; ipfunc_t ipfu_addr; ipfuncinit_t ipfu_init; ipfuncinit_t ipfu_fini; } ipfunc_resolve_t; /* * Size for compares on fr_info structures */ #define FI_CSIZE offsetof(fr_info_t, fin_icode) #define FI_LCSIZE offsetof(fr_info_t, fin_dp) /* * Size for copying cache fr_info structure */ #define FI_COPYSIZE offsetof(fr_info_t, fin_dp) /* * Structure for holding IPFilter's tag information */ #define IPFTAG_LEN 16 typedef struct { union { u_32_t iptu_num[4]; char iptu_tag[IPFTAG_LEN]; } ipt_un; int ipt_not; } ipftag_t; #define ipt_tag ipt_un.iptu_tag #define ipt_num ipt_un.iptu_num /* * Structure to define address for pool lookups. */ typedef struct { u_char adf_len; sa_family_t adf_family; u_char adf_xxx[2]; i6addr_t adf_addr; } addrfamily_t; RBI_LINK(ipf_rb, host_node_s); typedef struct host_node_s { RBI_FIELD(ipf_rb) hn_entry; addrfamily_t hn_addr; int hn_active; } host_node_t; typedef RBI_HEAD(ipf_rb, host_node_s) ipf_rb_head_t; typedef struct host_track_s { ipf_rb_head_t ht_root; int ht_max_nodes; int ht_max_per_node; int ht_netmask; int ht_cur_nodes; } host_track_t; typedef enum fr_dtypes_e { FRD_NORMAL = 0, FRD_DSTLIST } fr_dtypes_t; /* * This structure is used to hold information about the next hop for where * to forward a packet. */ typedef struct frdest { void *fd_ptr; addrfamily_t fd_addr; fr_dtypes_t fd_type; int fd_name; } frdest_t; #define fd_ip6 fd_addr.adf_addr #define fd_ip fd_ip6.in4 typedef enum fr_ctypes_e { FR_NONE = 0, FR_EQUAL, FR_NEQUAL, FR_LESST, FR_GREATERT, FR_LESSTE, FR_GREATERTE, FR_OUTRANGE, FR_INRANGE, FR_INCRANGE } fr_ctypes_t; /* * This structure holds information about a port comparison. */ typedef struct frpcmp { fr_ctypes_t frp_cmp; /* data for port comparisons */ u_32_t frp_port; /* low port for <> and >< */ u_32_t frp_top; /* high port for <> and >< */ } frpcmp_t; /* * Structure containing all the relevant TCP/UDP things that can be checked in * a filter rule. */ typedef struct frtuc { u_char ftu_tcpfm; /* tcp flags mask */ u_char ftu_tcpf; /* tcp flags */ frpcmp_t ftu_src; /* source port */ frpcmp_t ftu_dst; /* destination port */ } frtuc_t; #define ftu_scmp ftu_src.frp_cmp #define ftu_dcmp ftu_dst.frp_cmp #define ftu_sport ftu_src.frp_port #define ftu_dport ftu_dst.frp_port #define ftu_stop ftu_src.frp_top #define ftu_dtop ftu_dst.frp_top #define FR_TCPFMAX 0x3f typedef enum fr_atypes_e { FRI_NONE = -1, /* For LHS of NAT */ FRI_NORMAL = 0, /* Normal address */ FRI_DYNAMIC, /* dynamic address */ FRI_LOOKUP, /* address is a pool # */ FRI_RANGE, /* address/mask is a range */ FRI_NETWORK, /* network address from if */ FRI_BROADCAST, /* broadcast address from if */ FRI_PEERADDR, /* Peer address for P-to-P */ FRI_NETMASKED, /* network address with netmask from if */ FRI_SPLIT, /* For NAT compatibility */ FRI_INTERFACE /* address is based on interface name */ } fr_atypes_t; /* * This structure makes up what is considered to be the IPFilter specific * matching components of a filter rule, as opposed to the data structures * used to define the result which are in frentry_t and not here. */ typedef struct fripf { fr_ip_t fri_ip; fr_ip_t fri_mip; /* mask structure */ u_short fri_icmpm; /* data for ICMP packets (mask) */ u_short fri_icmp; frtuc_t fri_tuc; fr_atypes_t fri_satype; /* addres type */ fr_atypes_t fri_datype; /* addres type */ int fri_sifpidx; /* doing dynamic addressing */ int fri_difpidx; /* index into fr_ifps[] to use when */ } fripf_t; #define fri_dlookup fri_mip.fi_dst #define fri_slookup fri_mip.fi_src #define fri_dstnum fri_mip.fi_dstnum #define fri_srcnum fri_mip.fi_srcnum #define fri_dstname fri_mip.fi_dstname #define fri_srcname fri_mip.fi_srcname #define fri_dstptr fri_mip.fi_dstptr #define fri_srcptr fri_mip.fi_srcptr typedef enum fr_rtypes_e { FR_T_NONE = 0, FR_T_IPF, /* IPF structures */ FR_T_BPFOPC, /* BPF opcode */ FR_T_CALLFUNC, /* callout to function in fr_func only */ FR_T_COMPIPF, /* compiled C code */ FR_T_IPFEXPR, /* IPF expression */ FR_T_BUILTIN = 0x40000000, /* rule is in kernel space */ FR_T_IPF_BUILTIN, FR_T_BPFOPC_BUILTIN, FR_T_CALLFUNC_BUILTIN, FR_T_COMPIPF_BUILTIN, FR_T_IPFEXPR_BUILTIN } fr_rtypes_t; typedef struct frentry * (* frentfunc_t) __P((fr_info_t *)); typedef struct frentry { ipfmutex_t fr_lock; struct frentry *fr_next; struct frentry **fr_pnext; struct frgroup *fr_grp; struct frgroup *fr_grphead; struct frgroup *fr_icmpgrp; struct ipscan *fr_isc; struct frentry *fr_dnext; /* 2 fr_die linked list pointers */ struct frentry **fr_pdnext; void *fr_ifas[4]; void *fr_ptr; /* for use with fr_arg */ int fr_comment; /* text comment for rule */ int fr_size; /* size of this structure */ int fr_ref; /* reference count */ int fr_statecnt; /* state count - for limit rules */ u_32_t fr_die; /* only used on loading the rule */ u_int fr_cksum; /* checksum on filter rules for performance */ /* * The line number from a file is here because we need to be able to * match the rule generated with ``grep rule ipf.conf | ipf -rf -'' * with the rule loaded using ``ipf -f ipf.conf'' - thus it can't be * on the other side of fr_func. */ int fr_flineno; /* line number from conf file */ /* * These are only incremented when a packet matches this rule and * it is the last match */ U_QUAD_T fr_hits; U_QUAD_T fr_bytes; /* * For PPS rate limiting * fr_lpu is used to always have the same size for this field, * allocating 64bits for seconds and 32bits for milliseconds. */ union { struct timeval frp_lastpkt; char frp_bytes[12]; } fr_lpu; int fr_curpps; union { void *fru_data; char *fru_caddr; fripf_t *fru_ipf; frentfunc_t fru_func; } fr_dun; /* * Fields after this may not change whilst in the kernel. */ ipfunc_t fr_func; /* call this function */ int fr_dsize; int fr_pps; fr_rtypes_t fr_type; u_32_t fr_flags; /* per-rule flags && options (see below) */ u_32_t fr_logtag; /* user defined log tag # */ u_32_t fr_collect; /* collection number */ u_int fr_arg; /* misc. numeric arg for rule */ u_int fr_loglevel; /* syslog log facility + priority */ u_char fr_family; u_char fr_icode; /* return ICMP code */ int fr_group; /* group to which this rule belongs */ int fr_grhead; /* group # which this rule starts */ int fr_ifnames[4]; int fr_isctag; int fr_rpc; /* XID Filtering */ ipftag_t fr_nattag; frdest_t fr_tifs[2]; /* "to"/"reply-to" interface */ frdest_t fr_dif; /* duplicate packet interface */ /* * These are all options related to stateful filtering */ host_track_t fr_srctrack; int fr_nostatelog; int fr_statemax; /* max reference count */ int fr_icmphead; /* ICMP group for state options */ u_int fr_age[2]; /* non-TCP state timeouts */ /* * How big is the name buffer at the end? */ int fr_namelen; char fr_names[1]; } frentry_t; #define fr_lastpkt fr_lpu.frp_lastpkt #define fr_caddr fr_dun.fru_caddr #define fr_data fr_dun.fru_data #define fr_dfunc fr_dun.fru_func #define fr_ipf fr_dun.fru_ipf #define fr_ip fr_ipf->fri_ip #define fr_mip fr_ipf->fri_mip #define fr_icmpm fr_ipf->fri_icmpm #define fr_icmp fr_ipf->fri_icmp #define fr_tuc fr_ipf->fri_tuc #define fr_satype fr_ipf->fri_satype #define fr_datype fr_ipf->fri_datype #define fr_sifpidx fr_ipf->fri_sifpidx #define fr_difpidx fr_ipf->fri_difpidx #define fr_proto fr_ip.fi_p #define fr_mproto fr_mip.fi_p #define fr_ttl fr_ip.fi_ttl #define fr_mttl fr_mip.fi_ttl #define fr_tos fr_ip.fi_tos #define fr_mtos fr_mip.fi_tos #define fr_tcpfm fr_tuc.ftu_tcpfm #define fr_tcpf fr_tuc.ftu_tcpf #define fr_scmp fr_tuc.ftu_scmp #define fr_dcmp fr_tuc.ftu_dcmp #define fr_dport fr_tuc.ftu_dport #define fr_sport fr_tuc.ftu_sport #define fr_stop fr_tuc.ftu_stop #define fr_dtop fr_tuc.ftu_dtop #define fr_dst fr_ip.fi_dst.in4 #define fr_dst6 fr_ip.fi_dst #define fr_daddr fr_ip.fi_dst.in4.s_addr #define fr_src fr_ip.fi_src.in4 #define fr_src6 fr_ip.fi_src #define fr_saddr fr_ip.fi_src.in4.s_addr #define fr_dmsk fr_mip.fi_dst.in4 #define fr_dmsk6 fr_mip.fi_dst #define fr_dmask fr_mip.fi_dst.in4.s_addr #define fr_smsk fr_mip.fi_src.in4 #define fr_smsk6 fr_mip.fi_src #define fr_smask fr_mip.fi_src.in4.s_addr #define fr_dstnum fr_ip.fi_dstnum #define fr_srcnum fr_ip.fi_srcnum #define fr_dlookup fr_ip.fi_dst #define fr_slookup fr_ip.fi_src #define fr_dstname fr_ip.fi_dstname #define fr_srcname fr_ip.fi_srcname #define fr_dsttype fr_ip.fi_dsttype #define fr_srctype fr_ip.fi_srctype #define fr_dstsubtype fr_ip.fi_dstsubtype #define fr_srcsubtype fr_ip.fi_srcsubtype #define fr_dstptr fr_mip.fi_dstptr #define fr_srcptr fr_mip.fi_srcptr #define fr_dstfunc fr_mip.fi_dstfunc #define fr_srcfunc fr_mip.fi_srcfunc #define fr_optbits fr_ip.fi_optmsk #define fr_optmask fr_mip.fi_optmsk #define fr_secbits fr_ip.fi_secmsk #define fr_secmask fr_mip.fi_secmsk #define fr_authbits fr_ip.fi_auth #define fr_authmask fr_mip.fi_auth #define fr_doi fr_ip.fi_doi #define fr_doimask fr_mip.fi_doi #define fr_flx fr_ip.fi_flx #define fr_mflx fr_mip.fi_flx #define fr_ifa fr_ifas[0] #define fr_oifa fr_ifas[2] #define fr_tif fr_tifs[0] #define fr_rif fr_tifs[1] #define FR_NOLOGTAG 0 #define FR_CMPSIZ (sizeof(struct frentry) - \ offsetof(struct frentry, fr_func)) #define FR_NAME(_f, _n) (_f)->fr_names + (_f)->_n /* * fr_flags */ #define FR_BLOCK 0x00001 /* do not allow packet to pass */ #define FR_PASS 0x00002 /* allow packet to pass */ #define FR_AUTH 0x00003 /* use authentication */ #define FR_PREAUTH 0x00004 /* require preauthentication */ #define FR_ACCOUNT 0x00005 /* Accounting rule */ #define FR_SKIP 0x00006 /* skip rule */ #define FR_DECAPSULATE 0x00008 /* decapsulate rule */ #define FR_CALL 0x00009 /* call rule */ #define FR_CMDMASK 0x0000f #define FR_LOG 0x00010 /* Log */ #define FR_LOGB 0x00011 /* Log-fail */ #define FR_LOGP 0x00012 /* Log-pass */ #define FR_LOGMASK (FR_LOG|FR_CMDMASK) #define FR_CALLNOW 0x00020 /* call another function (fr_func) if matches */ #define FR_NOTSRCIP 0x00040 #define FR_NOTDSTIP 0x00080 #define FR_QUICK 0x00100 /* match & stop processing list */ #define FR_KEEPFRAG 0x00200 /* keep fragment information */ #define FR_KEEPSTATE 0x00400 /* keep `connection' state information */ #define FR_FASTROUTE 0x00800 /* bypass normal routing */ #define FR_RETRST 0x01000 /* Return TCP RST packet - reset connection */ #define FR_RETICMP 0x02000 /* Return ICMP unreachable packet */ #define FR_FAKEICMP 0x03000 /* Return ICMP unreachable with fake source */ #define FR_OUTQUE 0x04000 /* outgoing packets */ #define FR_INQUE 0x08000 /* ingoing packets */ #define FR_LOGBODY 0x10000 /* Log the body */ #define FR_LOGFIRST 0x20000 /* Log the first byte if state held */ #define FR_LOGORBLOCK 0x40000 /* block the packet if it can't be logged */ #define FR_STLOOSE 0x80000 /* loose state checking */ #define FR_FRSTRICT 0x100000 /* strict frag. cache */ #define FR_STSTRICT 0x200000 /* strict keep state */ #define FR_NEWISN 0x400000 /* new ISN for outgoing TCP */ #define FR_NOICMPERR 0x800000 /* do not match ICMP errors in state */ #define FR_STATESYNC 0x1000000 /* synchronize state to slave */ #define FR_COPIED 0x2000000 /* copied from user space */ #define FR_INACTIVE 0x4000000 /* only used when flush'ing rules */ #define FR_NOMATCH 0x8000000 /* no match occured */ /* 0x10000000 FF_LOGPASS */ /* 0x20000000 FF_LOGBLOCK */ /* 0x40000000 FF_LOGNOMATCH */ /* 0x80000000 FF_BLOCKNONIP */ #define FR_RETMASK (FR_RETICMP|FR_RETRST|FR_FAKEICMP) #define FR_ISBLOCK(x) (((x) & FR_CMDMASK) == FR_BLOCK) #define FR_ISPASS(x) (((x) & FR_CMDMASK) == FR_PASS) #define FR_ISAUTH(x) (((x) & FR_CMDMASK) == FR_AUTH) #define FR_ISPREAUTH(x) (((x) & FR_CMDMASK) == FR_PREAUTH) #define FR_ISACCOUNT(x) (((x) & FR_CMDMASK) == FR_ACCOUNT) #define FR_ISSKIP(x) (((x) & FR_CMDMASK) == FR_SKIP) #define FR_ISDECAPS(x) (((x) & FR_CMDMASK) == FR_DECAPSULATE) #define FR_ISNOMATCH(x) ((x) & FR_NOMATCH) #define FR_INOUT (FR_INQUE|FR_OUTQUE) /* * recognized flags for SIOCGETFF and SIOCSETFF, and get put in fr_flags */ #define FF_LOGPASS 0x10000000 #define FF_LOGBLOCK 0x20000000 #define FF_LOGNOMATCH 0x40000000 #define FF_LOGGING (FF_LOGPASS|FF_LOGBLOCK|FF_LOGNOMATCH) #define FF_BLOCKNONIP 0x80000000 /* Solaris2 Only */ /* * Structure that passes information on what/how to flush to the kernel. */ typedef struct ipfflush { int ipflu_how; int ipflu_arg; } ipfflush_t; /* * */ typedef struct ipfgetctl { u_int ipfg_min; /* min value */ u_int ipfg_current; /* current value */ u_int ipfg_max; /* max value */ u_int ipfg_default; /* default value */ u_int ipfg_steps; /* value increments */ char ipfg_name[40]; /* tag name for this control */ } ipfgetctl_t; typedef struct ipfsetctl { int ipfs_which; /* 0 = min 1 = current 2 = max 3 = default */ u_int ipfs_value; /* min value */ char ipfs_name[40]; /* tag name for this control */ } ipfsetctl_t; /* * Some of the statistics below are in their own counters, but most are kept * in this single structure so that they can all easily be collected and * copied back as required. */ typedef struct ipf_statistics { u_long fr_icmp_coalesce; u_long fr_tcp_frag; u_long fr_tcp_pullup; u_long fr_tcp_short; u_long fr_tcp_small; u_long fr_tcp_bad_flags; u_long fr_udp_pullup; u_long fr_ip_freed; u_long fr_v6_ah_bad; u_long fr_v6_bad; u_long fr_v6_badfrag; u_long fr_v6_dst_bad; u_long fr_v6_esp_pullup; u_long fr_v6_ext_short; u_long fr_v6_ext_pullup; u_long fr_v6_ext_hlen; u_long fr_v6_frag_bad; u_long fr_v6_frag_pullup; u_long fr_v6_frag_size; u_long fr_v6_gre_pullup; u_long fr_v6_icmp6_pullup; u_long fr_v6_rh_bad; u_long fr_v6_badttl; /* TTL in packet doesn't reach minimum */ u_long fr_v4_ah_bad; u_long fr_v4_ah_pullup; u_long fr_v4_esp_pullup; u_long fr_v4_cipso_bad; u_long fr_v4_cipso_tlen; u_long fr_v4_gre_frag; u_long fr_v4_gre_pullup; u_long fr_v4_icmp_frag; u_long fr_v4_icmp_pullup; u_long fr_v4_badttl; /* TTL in packet doesn't reach minimum */ u_long fr_v4_badsrc; /* source received doesn't match route */ u_long fr_l4_badcksum; /* layer 4 header checksum failure */ u_long fr_badcoalesces; u_long fr_pass; /* packets allowed */ u_long fr_block; /* packets denied */ u_long fr_nom; /* packets which don't match any rule */ u_long fr_short; /* packets which are short */ u_long fr_ppkl; /* packets allowed and logged */ u_long fr_bpkl; /* packets denied and logged */ u_long fr_npkl; /* packets unmatched and logged */ u_long fr_ret; /* packets for which a return is sent */ u_long fr_acct; /* packets for which counting was performed */ u_long fr_bnfr; /* bad attempts to allocate fragment state */ u_long fr_nfr; /* new fragment state kept */ u_long fr_cfr; /* add new fragment state but complete pkt */ u_long fr_bads; /* bad attempts to allocate packet state */ u_long fr_ads; /* new packet state kept */ u_long fr_chit; /* cached hit */ u_long fr_cmiss; /* cached miss */ u_long fr_tcpbad; /* TCP checksum check failures */ u_long fr_pull[2]; /* good and bad pullup attempts */ u_long fr_bad; /* bad IP packets to the filter */ u_long fr_ipv6; /* IPv6 packets in/out */ u_long fr_ppshit; /* dropped because of pps ceiling */ u_long fr_ipud; /* IP id update failures */ u_long fr_blocked[FRB_MAX_VALUE + 1]; } ipf_statistics_t; /* * Log structure. Each packet header logged is prepended by one of these. * Following this in the log records read from the device will be an ipflog * structure which is then followed by any packet data. */ typedef struct iplog { u_32_t ipl_magic; u_int ipl_count; u_32_t ipl_seqnum; struct timeval ipl_time; size_t ipl_dsize; struct iplog *ipl_next; } iplog_t; #define ipl_sec ipl_time.tv_sec #define ipl_usec ipl_time.tv_usec #define IPL_MAGIC 0x49504c4d /* 'IPLM' */ #define IPL_MAGIC_NAT 0x49504c4e /* 'IPLN' */ #define IPL_MAGIC_STATE 0x49504c53 /* 'IPLS' */ #define IPLOG_SIZE sizeof(iplog_t) typedef struct ipflog { u_int fl_unit; u_32_t fl_rule; u_32_t fl_flags; u_32_t fl_lflags; u_32_t fl_logtag; ipftag_t fl_nattag; u_short fl_plen; /* extra data after hlen */ u_short fl_loglevel; /* syslog log level */ char fl_group[FR_GROUPLEN]; u_char fl_hlen; /* length of IP headers saved */ u_char fl_dir; u_char fl_breason; /* from fin_reason */ u_char fl_family; /* address family of packet logged */ char fl_ifname[LIFNAMSIZ]; } ipflog_t; #ifndef IPF_LOGGING # define IPF_LOGGING 0 #endif #ifndef IPF_DEFAULT_PASS # define IPF_DEFAULT_PASS FR_PASS #endif #define DEFAULT_IPFLOGSIZE 32768 #ifndef IPFILTER_LOGSIZE # define IPFILTER_LOGSIZE DEFAULT_IPFLOGSIZE #else # if IPFILTER_LOGSIZE < 8192 # error IPFILTER_LOGSIZE too small. Must be >= 8192 # endif #endif #define IPF_OPTCOPY 0x07ff00 /* bit mask of copied options */ /* * Device filenames for reading log information. Use ipf on Solaris2 because * ipl is already a name used by something else. */ #ifndef IPL_NAME # if SOLARIS # define IPL_NAME "/dev/ipf" # else # define IPL_NAME "/dev/ipl" # endif #endif /* * Pathnames for various IP Filter control devices. Used by LKM * and userland, so defined here. */ #define IPNAT_NAME "/dev/ipnat" #define IPSTATE_NAME "/dev/ipstate" #define IPAUTH_NAME "/dev/ipauth" #define IPSYNC_NAME "/dev/ipsync" #define IPSCAN_NAME "/dev/ipscan" #define IPLOOKUP_NAME "/dev/iplookup" #define IPL_LOGIPF 0 /* Minor device #'s for accessing logs */ #define IPL_LOGNAT 1 #define IPL_LOGSTATE 2 #define IPL_LOGAUTH 3 #define IPL_LOGSYNC 4 #define IPL_LOGSCAN 5 #define IPL_LOGLOOKUP 6 #define IPL_LOGCOUNT 7 #define IPL_LOGMAX 7 #define IPL_LOGSIZE IPL_LOGMAX + 1 #define IPL_LOGALL -1 #define IPL_LOGNONE -2 /* * For SIOCGETFS */ typedef struct friostat { ipf_statistics_t f_st[2]; frentry_t *f_ipf[2][2]; frentry_t *f_acct[2][2]; frentry_t *f_auth; struct frgroup *f_groups[IPL_LOGSIZE][2]; u_long f_froute[2]; u_long f_log_ok; u_long f_log_fail; u_long f_rb_no_mem; u_long f_rb_node_max; u_32_t f_ticks; int f_locks[IPL_LOGSIZE]; int f_defpass; /* default pass - from fr_pass */ int f_active; /* 1 or 0 - active rule set */ int f_running; /* 1 if running, else 0 */ int f_logging; /* 1 if enabled, else 0 */ int f_features; char f_version[32]; /* version string */ } friostat_t; #define f_fin f_ipf[0] #define f_fout f_ipf[1] #define f_acctin f_acct[0] #define f_acctout f_acct[1] #define IPF_FEAT_LKM 0x001 #define IPF_FEAT_LOG 0x002 #define IPF_FEAT_LOOKUP 0x004 #define IPF_FEAT_BPF 0x008 #define IPF_FEAT_COMPILED 0x010 #define IPF_FEAT_CKSUM 0x020 #define IPF_FEAT_SYNC 0x040 #define IPF_FEAT_SCAN 0x080 #define IPF_FEAT_IPV6 0x100 typedef struct optlist { u_short ol_val; int ol_bit; } optlist_t; /* * Group list structure. */ typedef struct frgroup { struct frgroup *fg_next; struct frentry *fg_head; struct frentry *fg_start; struct frgroup **fg_set; u_32_t fg_flags; int fg_ref; char fg_name[FR_GROUPLEN]; } frgroup_t; #define FG_NAME(g) (*(g)->fg_name == '\0' ? "" : (g)->fg_name) /* * Used by state and NAT tables */ typedef struct icmpinfo { u_short ici_id; u_short ici_seq; u_char ici_type; } icmpinfo_t; typedef struct udpinfo { u_short us_sport; u_short us_dport; } udpinfo_t; typedef struct tcpdata { u_32_t td_end; u_32_t td_maxend; u_32_t td_maxwin; u_32_t td_winscale; u_32_t td_maxseg; int td_winflags; } tcpdata_t; #define TCP_WSCALE_MAX 14 #define TCP_WSCALE_SEEN 0x00000001 #define TCP_WSCALE_FIRST 0x00000002 #define TCP_SACK_PERMIT 0x00000004 typedef struct tcpinfo { u_32_t ts_sport; u_32_t ts_dport; tcpdata_t ts_data[2]; } tcpinfo_t; /* * Structures to define a GRE header as seen in a packet. */ struct grebits { #if defined(sparc) u_32_t grb_ver:3; u_32_t grb_flags:3; u_32_t grb_A:1; u_32_t grb_recur:1; u_32_t grb_s:1; u_32_t grb_S:1; u_32_t grb_K:1; u_32_t grb_R:1; u_32_t grb_C:1; #else u_32_t grb_C:1; u_32_t grb_R:1; u_32_t grb_K:1; u_32_t grb_S:1; u_32_t grb_s:1; u_32_t grb_recur:1; u_32_t grb_A:1; u_32_t grb_flags:3; u_32_t grb_ver:3; #endif u_short grb_ptype; }; typedef struct grehdr { union { struct grebits gru_bits; u_short gru_flags; } gr_un; u_short gr_len; u_short gr_call; } grehdr_t; #define gr_flags gr_un.gru_flags #define gr_bits gr_un.gru_bits #define gr_ptype gr_bits.grb_ptype #define gr_C gr_bits.grb_C #define gr_R gr_bits.grb_R #define gr_K gr_bits.grb_K #define gr_S gr_bits.grb_S #define gr_s gr_bits.grb_s #define gr_recur gr_bits.grb_recur #define gr_A gr_bits.grb_A #define gr_ver gr_bits.grb_ver /* * GRE information tracked by "keep state" */ typedef struct greinfo { u_short gs_call[2]; u_short gs_flags; u_short gs_ptype; } greinfo_t; #define GRE_REV(x) ((ntohs(x) >> 13) & 7) /* * Format of an Authentication header */ typedef struct authhdr { u_char ah_next; u_char ah_plen; u_short ah_reserved; u_32_t ah_spi; u_32_t ah_seq; /* Following the sequence number field is 0 or more bytes of */ /* authentication data, as specified by ah_plen - RFC 2402. */ } authhdr_t; /* * Timeout tail queue list member */ typedef struct ipftqent { struct ipftqent **tqe_pnext; struct ipftqent *tqe_next; struct ipftq *tqe_ifq; void *tqe_parent; /* pointer back to NAT/state struct */ u_32_t tqe_die; /* when this entriy is to die */ u_32_t tqe_touched; int tqe_flags; int tqe_state[2]; /* current state of this entry */ } ipftqent_t; #define TQE_RULEBASED 0x00000001 #define TQE_DELETE 0x00000002 /* * Timeout tail queue head for IPFilter */ typedef struct ipftq { ipfmutex_t ifq_lock; u_int ifq_ttl; ipftqent_t *ifq_head; ipftqent_t **ifq_tail; struct ipftq *ifq_next; struct ipftq **ifq_pnext; int ifq_ref; u_int ifq_flags; } ipftq_t; #define IFQF_USER 0x01 /* User defined aging */ #define IFQF_DELETE 0x02 /* Marked for deletion */ #define IFQF_PROXY 0x04 /* Timeout queue in use by a proxy */ #define IPFTQ_INIT(x,y,z) do { \ (x)->ifq_ttl = (y); \ (x)->ifq_head = NULL; \ (x)->ifq_ref = 1; \ (x)->ifq_tail = &(x)->ifq_head; \ MUTEX_INIT(&(x)->ifq_lock, (z)); \ } while (0) #define IPF_HZ_MULT 1 #define IPF_HZ_DIVIDE 2 /* How many times a second ipfilter */ /* checks its timeout queues. */ #define IPF_TTLVAL(x) (((x) / IPF_HZ_MULT) * IPF_HZ_DIVIDE) typedef int (*ipftq_delete_fn_t)(struct ipf_main_softc_s *, void *); /* * Object structure description. For passing through in ioctls. */ typedef struct ipfobj { u_32_t ipfo_rev; /* IPFilter version number */ u_32_t ipfo_size; /* size of object at ipfo_ptr */ void *ipfo_ptr; /* pointer to object */ int ipfo_type; /* type of object being pointed to */ int ipfo_offset; /* bytes from ipfo_ptr where to start */ int ipfo_retval; /* return value */ u_char ipfo_xxxpad[28]; /* reserved for future use */ } ipfobj_t; #define IPFOBJ_FRENTRY 0 /* struct frentry */ #define IPFOBJ_IPFSTAT 1 /* struct friostat */ #define IPFOBJ_IPFINFO 2 /* struct fr_info */ #define IPFOBJ_AUTHSTAT 3 /* struct fr_authstat */ #define IPFOBJ_FRAGSTAT 4 /* struct ipfrstat */ #define IPFOBJ_IPNAT 5 /* struct ipnat */ #define IPFOBJ_NATSTAT 6 /* struct natstat */ #define IPFOBJ_STATESAVE 7 /* struct ipstate_save */ #define IPFOBJ_NATSAVE 8 /* struct nat_save */ #define IPFOBJ_NATLOOKUP 9 /* struct natlookup */ #define IPFOBJ_IPSTATE 10 /* struct ipstate */ #define IPFOBJ_STATESTAT 11 /* struct ips_stat */ #define IPFOBJ_FRAUTH 12 /* struct frauth */ #define IPFOBJ_TUNEABLE 13 /* struct ipftune */ #define IPFOBJ_NAT 14 /* struct nat */ #define IPFOBJ_IPFITER 15 /* struct ipfruleiter */ #define IPFOBJ_GENITER 16 /* struct ipfgeniter */ #define IPFOBJ_GTABLE 17 /* struct ipftable */ #define IPFOBJ_LOOKUPITER 18 /* struct ipflookupiter */ #define IPFOBJ_STATETQTAB 19 /* struct ipftq * NSTATES */ #define IPFOBJ_IPFEXPR 20 #define IPFOBJ_PROXYCTL 21 /* strct ap_ctl */ #define IPFOBJ_FRIPF 22 /* structfripf */ #define IPFOBJ_COUNT 23 /* How many #defines are above this? */ typedef union ipftunevalptr { void *ipftp_void; u_long *ipftp_long; u_int *ipftp_int; u_short *ipftp_short; u_char *ipftp_char; u_long ipftp_offset; } ipftunevalptr_t; typedef union ipftuneval { u_long ipftu_long; u_int ipftu_int; u_short ipftu_short; u_char ipftu_char; } ipftuneval_t; struct ipftuneable; typedef int (* ipftunefunc_t) __P((struct ipf_main_softc_s *, struct ipftuneable *, ipftuneval_t *)); typedef struct ipftuneable { ipftunevalptr_t ipft_una; const char *ipft_name; u_long ipft_min; u_long ipft_max; int ipft_sz; int ipft_flags; struct ipftuneable *ipft_next; ipftunefunc_t ipft_func; } ipftuneable_t; #define ipft_addr ipft_una.ipftp_void #define ipft_plong ipft_una.ipftp_long #define ipft_pint ipft_una.ipftp_int #define ipft_pshort ipft_una.ipftp_short #define ipft_pchar ipft_una.ipftp_char #define IPFT_RDONLY 1 /* read-only */ #define IPFT_WRDISABLED 2 /* write when disabled only */ typedef struct ipftune { void *ipft_cookie; ipftuneval_t ipft_un; u_long ipft_min; u_long ipft_max; int ipft_sz; int ipft_flags; char ipft_name[80]; } ipftune_t; #define ipft_vlong ipft_un.ipftu_long #define ipft_vint ipft_un.ipftu_int #define ipft_vshort ipft_un.ipftu_short #define ipft_vchar ipft_un.ipftu_char /* * Hash table header */ #define IPFHASH(x,y) typedef struct { \ ipfrwlock_t ipfh_lock; \ struct x *ipfh_head; \ } y /* ** HPUX Port */ #if !defined(CDEV_MAJOR) && defined (__FreeBSD_version) && \ (__FreeBSD_version >= 220000) # define CDEV_MAJOR 79 #endif #ifdef _KERNEL # define FR_VERBOSE(verb_pr) # define FR_DEBUG(verb_pr) #else extern void ipfkdebug __P((char *, ...)); extern void ipfkverbose __P((char *, ...)); # define FR_VERBOSE(verb_pr) ipfkverbose verb_pr # define FR_DEBUG(verb_pr) ipfkdebug verb_pr #endif /* * */ typedef struct ipfruleiter { int iri_inout; char iri_group[FR_GROUPLEN]; int iri_active; int iri_nrules; int iri_v; /* No longer used (compatibility) */ frentry_t *iri_rule; } ipfruleiter_t; /* * Values for iri_inout */ #define F_IN 0 #define F_OUT 1 #define F_ACIN 2 #define F_ACOUT 3 typedef struct ipfgeniter { int igi_type; int igi_nitems; void *igi_data; } ipfgeniter_t; #define IPFGENITER_IPF 0 #define IPFGENITER_NAT 1 #define IPFGENITER_IPNAT 2 #define IPFGENITER_FRAG 3 #define IPFGENITER_AUTH 4 #define IPFGENITER_STATE 5 #define IPFGENITER_NATFRAG 6 #define IPFGENITER_HOSTMAP 7 #define IPFGENITER_LOOKUP 8 typedef struct ipftable { int ita_type; void *ita_table; } ipftable_t; #define IPFTABLE_BUCKETS 1 #define IPFTABLE_BUCKETS_NATIN 2 #define IPFTABLE_BUCKETS_NATOUT 3 typedef struct ipf_v4_masktab_s { u_32_t imt4_active[33]; int imt4_masks[33]; int imt4_max; } ipf_v4_masktab_t; typedef struct ipf_v6_masktab_s { i6addr_t imt6_active[129]; int imt6_masks[129]; int imt6_max; } ipf_v6_masktab_t; /* * */ typedef struct ipftoken { struct ipftoken *ipt_next; struct ipftoken **ipt_pnext; void *ipt_ctx; void *ipt_data; u_long ipt_die; int ipt_type; int ipt_uid; int ipt_subtype; int ipt_ref; int ipt_complete; } ipftoken_t; /* * */ typedef struct ipfexp { int ipfe_cmd; int ipfe_not; int ipfe_narg; int ipfe_size; int ipfe_arg0[1]; } ipfexp_t; /* * Currently support commands (ipfe_cmd) * 32bits is split up follows: * aabbcccc * aa = 0 = packet matching, 1 = meta data matching * bb = IP protocol number * cccc = command */ #define IPF_EXP_IP_PR 0x00000001 #define IPF_EXP_IP_ADDR 0x00000002 #define IPF_EXP_IP_SRCADDR 0x00000003 #define IPF_EXP_IP_DSTADDR 0x00000004 #define IPF_EXP_IP6_ADDR 0x00000005 #define IPF_EXP_IP6_SRCADDR 0x00000006 #define IPF_EXP_IP6_DSTADDR 0x00000007 #define IPF_EXP_TCP_FLAGS 0x00060001 #define IPF_EXP_TCP_PORT 0x00060002 #define IPF_EXP_TCP_SPORT 0x00060003 #define IPF_EXP_TCP_DPORT 0x00060004 #define IPF_EXP_UDP_PORT 0x00110002 #define IPF_EXP_UDP_SPORT 0x00110003 #define IPF_EXP_UDP_DPORT 0x00110004 #define IPF_EXP_IDLE_GT 0x01000001 #define IPF_EXP_TCP_STATE 0x01060002 #define IPF_EXP_END 0xffffffff #define ONE_DAY IPF_TTLVAL(1 * 86400) /* 1 day */ #define FIVE_DAYS (5 * ONE_DAY) typedef struct ipf_main_softc_s { struct ipf_main_softc_s *ipf_next; ipfmutex_t ipf_rw; ipfmutex_t ipf_timeoutlock; ipfrwlock_t ipf_mutex; ipfrwlock_t ipf_frag; ipfrwlock_t ipf_global; ipfrwlock_t ipf_tokens; ipfrwlock_t ipf_state; ipfrwlock_t ipf_nat; ipfrwlock_t ipf_natfrag; ipfrwlock_t ipf_poolrw; int ipf_dynamic_softc; int ipf_refcnt; int ipf_running; int ipf_flags; int ipf_active; int ipf_control_forwarding; int ipf_update_ipid; int ipf_chksrc; /* causes a system crash if enabled */ int ipf_pass; int ipf_minttl; int ipf_icmpminfragmtu; int ipf_interror; /* Should be in a struct that is per */ /* thread or process. Does not belong */ /* here but there's a lot more work */ /* in doing that properly. For now, */ /* it is squatting. */ u_int ipf_tcpidletimeout; u_int ipf_tcpclosewait; u_int ipf_tcplastack; u_int ipf_tcptimewait; u_int ipf_tcptimeout; u_int ipf_tcpsynsent; u_int ipf_tcpsynrecv; u_int ipf_tcpclosed; u_int ipf_tcphalfclosed; u_int ipf_udptimeout; u_int ipf_udpacktimeout; u_int ipf_icmptimeout; u_int ipf_icmpacktimeout; u_int ipf_iptimeout; u_long ipf_ticks; u_long ipf_userifqs; u_long ipf_rb_no_mem; u_long ipf_rb_node_max; u_long ipf_frouteok[2]; ipftuneable_t *ipf_tuners; void *ipf_frag_soft; void *ipf_nat_soft; void *ipf_state_soft; void *ipf_auth_soft; void *ipf_proxy_soft; void *ipf_sync_soft; void *ipf_lookup_soft; void *ipf_log_soft; struct frgroup *ipf_groups[IPL_LOGSIZE][2]; frentry_t *ipf_rules[2][2]; frentry_t *ipf_acct[2][2]; frentry_t *ipf_rule_explist[2]; ipftoken_t *ipf_token_head; ipftoken_t **ipf_token_tail; #if defined(__FreeBSD_version) && defined(_KERNEL) struct callout ipf_slow_ch; #endif #if NETBSD_GE_REV(104040000) struct callout ipf_slow_ch; #endif #if SOLARIS timeout_id_t ipf_slow_ch; #endif #if defined(_KERNEL) # if SOLARIS struct pollhead ipf_poll_head[IPL_LOGSIZE]; void *ipf_dip; # if defined(INSTANCES) int ipf_get_loopback; u_long ipf_idnum; net_handle_t ipf_nd_v4; net_handle_t ipf_nd_v6; hook_t *ipf_hk_v4_in; hook_t *ipf_hk_v4_out; hook_t *ipf_hk_v4_nic; hook_t *ipf_hk_v6_in; hook_t *ipf_hk_v6_out; hook_t *ipf_hk_v6_nic; hook_t *ipf_hk_loop_v4_in; hook_t *ipf_hk_loop_v4_out; hook_t *ipf_hk_loop_v6_in; hook_t *ipf_hk_loop_v6_out; # endif # else struct selinfo ipf_selwait[IPL_LOGSIZE]; # endif #endif void *ipf_slow; ipf_statistics_t ipf_stats[2]; u_char ipf_iss_secret[32]; u_short ipf_ip_id; } ipf_main_softc_t; #define IPFERROR(_e) do { softc->ipf_interror = (_e); \ DT1(user_error, int, _e); \ } while (0) #ifndef _KERNEL extern int ipf_check __P((void *, struct ip *, int, struct ifnet *, int, mb_t **)); extern struct ifnet *get_unit __P((char *, int)); extern char *get_ifname __P((struct ifnet *)); extern int ipfioctl __P((ipf_main_softc_t *, int, ioctlcmd_t, caddr_t, int)); extern void m_freem __P((mb_t *)); extern size_t msgdsize __P((mb_t *)); extern int bcopywrap __P((void *, void *, size_t)); extern void ip_fillid(struct ip *); #else /* #ifndef _KERNEL */ # if defined(__NetBSD__) && defined(PFIL_HOOKS) extern void ipfilterattach __P((int)); # endif extern int ipl_enable __P((void)); extern int ipl_disable __P((void)); # ifdef MENTAT /* XXX MENTAT is always defined for Solaris */ extern int ipf_check __P((void *, struct ip *, int, struct ifnet *, int, void *, mblk_t **)); # if SOLARIS extern void ipf_prependmbt(fr_info_t *, mblk_t *); extern int ipfioctl __P((dev_t, int, intptr_t, int, cred_t *, int *)); # endif extern int ipf_qout __P((queue_t *, mblk_t *)); # else /* MENTAT */ /* XXX MENTAT is never defined for FreeBSD & NetBSD */ extern int ipf_check __P((void *, struct ip *, int, struct ifnet *, int, mb_t **)); extern int (*fr_checkp) __P((ip_t *, int, void *, int, mb_t **)); extern size_t mbufchainlen __P((mb_t *)); # ifdef IPFILTER_LKM extern int ipf_identify __P((char *)); # endif # if defined(__FreeBSD_version) extern int ipfioctl __P((struct cdev*, u_long, caddr_t, int, struct thread *)); # elif defined(__NetBSD__) extern int ipfioctl __P((dev_t, u_long, void *, int, struct lwp *)); # endif # endif /* MENTAT */ # if defined(__FreeBSD_version) extern int ipf_pfil_hook __P((void)); extern int ipf_pfil_unhook __P((void)); extern void ipf_event_reg __P((void)); extern void ipf_event_dereg __P((void)); # endif # if defined(INSTANCES) extern ipf_main_softc_t *ipf_find_softc __P((u_long)); extern int ipf_set_loopback __P((ipf_main_softc_t *, ipftuneable_t *, ipftuneval_t *)); # endif #endif /* #ifndef _KERNEL */ extern char *memstr __P((const char *, char *, size_t, size_t)); extern int count4bits __P((u_32_t)); #ifdef USE_INET6 extern int count6bits __P((u_32_t *)); #endif extern int frrequest __P((ipf_main_softc_t *, int, ioctlcmd_t, caddr_t, int, int)); extern char *getifname __P((struct ifnet *)); extern int ipfattach __P((ipf_main_softc_t *)); extern int ipfdetach __P((ipf_main_softc_t *)); extern u_short ipf_cksum __P((u_short *, int)); extern int copyinptr __P((ipf_main_softc_t *, void *, void *, size_t)); extern int copyoutptr __P((ipf_main_softc_t *, void *, void *, size_t)); extern int ipf_fastroute __P((mb_t *, mb_t **, fr_info_t *, frdest_t *)); extern int ipf_inject __P((fr_info_t *, mb_t *)); extern int ipf_inobj __P((ipf_main_softc_t *, void *, ipfobj_t *, void *, int)); extern int ipf_inobjsz __P((ipf_main_softc_t *, void *, void *, int , int)); extern int ipf_ioctlswitch __P((ipf_main_softc_t *, int, void *, ioctlcmd_t, int, int, void *)); extern int ipf_ipf_ioctl __P((ipf_main_softc_t *, caddr_t, ioctlcmd_t, int, int, void *)); extern int ipf_ipftune __P((ipf_main_softc_t *, ioctlcmd_t, void *)); extern int ipf_matcharray_load __P((ipf_main_softc_t *, caddr_t, ipfobj_t *, int **)); extern int ipf_matcharray_verify __P((int *, int)); extern int ipf_outobj __P((ipf_main_softc_t *, void *, void *, int)); extern int ipf_outobjk __P((ipf_main_softc_t *, ipfobj_t *, void *)); extern int ipf_outobjsz __P((ipf_main_softc_t *, void *, void *, int, int)); extern void *ipf_pullup __P((mb_t *, fr_info_t *, int)); extern int ipf_resolvedest __P((ipf_main_softc_t *, char *, struct frdest *, int)); extern int ipf_resolvefunc __P((ipf_main_softc_t *, void *)); extern void *ipf_resolvenic __P((ipf_main_softc_t *, char *, int)); extern int ipf_send_icmp_err __P((int, fr_info_t *, int)); extern int ipf_send_reset __P((fr_info_t *)); extern void ipf_apply_timeout __P((ipftq_t *, u_int)); extern ipftq_t *ipf_addtimeoutqueue __P((ipf_main_softc_t *, ipftq_t **, u_int)); extern void ipf_deletequeueentry __P((ipftqent_t *)); extern int ipf_deletetimeoutqueue __P((ipftq_t *)); extern void ipf_freetimeoutqueue __P((ipf_main_softc_t *, ipftq_t *)); extern void ipf_movequeue __P((u_long, ipftqent_t *, ipftq_t *, ipftq_t *)); extern void ipf_queueappend __P((u_long, ipftqent_t *, ipftq_t *, void *)); extern void ipf_queueback __P((u_long, ipftqent_t *)); extern int ipf_queueflush __P((ipf_main_softc_t *, ipftq_delete_fn_t, ipftq_t *, ipftq_t *, u_int *, int, int)); extern void ipf_queuefront __P((ipftqent_t *)); extern int ipf_settimeout_tcp __P((ipftuneable_t *, ipftuneval_t *, ipftq_t *)); extern int ipf_checkv4sum __P((fr_info_t *)); extern int ipf_checkl4sum __P((fr_info_t *)); extern int ipf_ifpfillv4addr __P((int, struct sockaddr_in *, struct sockaddr_in *, struct in_addr *, struct in_addr *)); extern int ipf_coalesce __P((fr_info_t *)); #ifdef USE_INET6 extern int ipf_checkv6sum __P((fr_info_t *)); extern int ipf_ifpfillv6addr __P((int, struct sockaddr_in6 *, struct sockaddr_in6 *, i6addr_t *, i6addr_t *)); #endif extern int ipf_tune_add __P((ipf_main_softc_t *, ipftuneable_t *)); extern int ipf_tune_add_array __P((ipf_main_softc_t *, ipftuneable_t *)); extern int ipf_tune_del __P((ipf_main_softc_t *, ipftuneable_t *)); extern int ipf_tune_del_array __P((ipf_main_softc_t *, ipftuneable_t *)); extern int ipf_tune_array_link __P((ipf_main_softc_t *, ipftuneable_t *)); extern int ipf_tune_array_unlink __P((ipf_main_softc_t *, ipftuneable_t *)); extern ipftuneable_t *ipf_tune_array_copy __P((void *, size_t, ipftuneable_t *)); extern int ipf_pr_pullup __P((fr_info_t *, int)); extern int ipf_flush __P((ipf_main_softc_t *, minor_t, int)); extern frgroup_t *ipf_group_add __P((ipf_main_softc_t *, char *, void *, u_32_t, minor_t, int)); extern void ipf_group_del __P((ipf_main_softc_t *, frgroup_t *, frentry_t *)); extern int ipf_derefrule __P((ipf_main_softc_t *, frentry_t **)); extern frgroup_t *ipf_findgroup __P((ipf_main_softc_t *, char *, minor_t, int, frgroup_t ***)); extern int ipf_log_init __P((void)); extern int ipf_log_bytesused __P((ipf_main_softc_t *, int)); extern int ipf_log_canread __P((ipf_main_softc_t *, int)); extern int ipf_log_clear __P((ipf_main_softc_t *, minor_t)); extern u_long ipf_log_failures __P((ipf_main_softc_t *, int)); extern int ipf_log_read __P((ipf_main_softc_t *, minor_t, uio_t *)); extern int ipf_log_items __P((ipf_main_softc_t *, int, fr_info_t *, void **, size_t *, int *, int)); extern u_long ipf_log_logok __P((ipf_main_softc_t *, int)); extern void ipf_log_unload __P((ipf_main_softc_t *)); extern int ipf_log_pkt __P((fr_info_t *, u_int)); extern frentry_t *ipf_acctpkt __P((fr_info_t *, u_32_t *)); extern u_short fr_cksum __P((fr_info_t *, ip_t *, int, void *)); extern void ipf_deinitialise __P((ipf_main_softc_t *)); extern int ipf_deliverlocal __P((ipf_main_softc_t *, int, void *, i6addr_t *)); extern frentry_t *ipf_dstgrpmap __P((fr_info_t *, u_32_t *)); extern void ipf_fixskip __P((frentry_t **, frentry_t *, int)); extern void ipf_forgetifp __P((ipf_main_softc_t *, void *)); extern frentry_t *ipf_getrulen __P((ipf_main_softc_t *, int, char *, u_32_t)); extern int ipf_ifpaddr __P((ipf_main_softc_t *, int, int, void *, i6addr_t *, i6addr_t *)); extern void ipf_inet_mask_add __P((int, ipf_v4_masktab_t *)); extern void ipf_inet_mask_del __P((int, ipf_v4_masktab_t *)); #ifdef USE_INET6 extern void ipf_inet6_mask_add __P((int, i6addr_t *, ipf_v6_masktab_t *)); extern void ipf_inet6_mask_del __P((int, i6addr_t *, ipf_v6_masktab_t *)); #endif extern int ipf_initialise __P((void)); extern int ipf_lock __P((caddr_t, int *)); extern int ipf_makefrip __P((int, ip_t *, fr_info_t *)); extern int ipf_matchtag __P((ipftag_t *, ipftag_t *)); extern int ipf_matchicmpqueryreply __P((int, icmpinfo_t *, struct icmp *, int)); extern u_32_t ipf_newisn __P((fr_info_t *)); extern u_int ipf_pcksum __P((fr_info_t *, int, u_int)); -#ifdef USE_INET6 -extern u_int ipf_pcksum6 __P((fr_info_t *, ip6_t *, - u_int32_t, u_int32_t)); -#endif extern void ipf_rule_expire __P((ipf_main_softc_t *)); extern int ipf_scanlist __P((fr_info_t *, u_32_t)); extern frentry_t *ipf_srcgrpmap __P((fr_info_t *, u_32_t *)); extern int ipf_tcpudpchk __P((fr_ip_t *, frtuc_t *)); extern int ipf_verifysrc __P((fr_info_t *fin)); extern int ipf_zerostats __P((ipf_main_softc_t *, char *)); extern int ipf_getnextrule __P((ipf_main_softc_t *, ipftoken_t *, void *)); extern int ipf_sync __P((ipf_main_softc_t *, void *)); extern int ipf_token_deref __P((ipf_main_softc_t *, ipftoken_t *)); extern void ipf_token_expire __P((ipf_main_softc_t *)); extern ipftoken_t *ipf_token_find __P((ipf_main_softc_t *, int, int, void *)); extern int ipf_token_del __P((ipf_main_softc_t *, int, int, void *)); extern void ipf_token_mark_complete __P((ipftoken_t *)); extern int ipf_genericiter __P((ipf_main_softc_t *, void *, int, void *)); #ifdef IPFILTER_LOOKUP extern void *ipf_resolvelookup __P((int, u_int, u_int, lookupfunc_t *)); #endif extern u_32_t ipf_random __P((void)); extern int ipf_main_load __P((void)); extern void *ipf_main_soft_create __P((void *)); extern void ipf_main_soft_destroy __P((ipf_main_softc_t *)); extern int ipf_main_soft_init __P((ipf_main_softc_t *)); extern int ipf_main_soft_fini __P((ipf_main_softc_t *)); extern int ipf_main_unload __P((void)); extern int ipf_load_all __P((void)); extern int ipf_unload_all __P((void)); extern void ipf_destroy_all __P((ipf_main_softc_t *)); extern ipf_main_softc_t *ipf_create_all __P((void *)); extern int ipf_init_all __P((ipf_main_softc_t *)); extern int ipf_fini_all __P((ipf_main_softc_t *)); extern void ipf_log_soft_destroy __P((ipf_main_softc_t *, void *)); extern void *ipf_log_soft_create __P((ipf_main_softc_t *)); extern int ipf_log_soft_init __P((ipf_main_softc_t *, void *)); extern int ipf_log_soft_fini __P((ipf_main_softc_t *, void *)); extern int ipf_log_main_load __P((void)); extern int ipf_log_main_unload __P((void)); extern char ipfilter_version[]; #ifdef USE_INET6 extern int icmptoicmp6types[ICMP_MAXTYPE+1]; extern int icmptoicmp6unreach[ICMP_MAX_UNREACH]; extern int icmpreplytype6[ICMP6_MAXTYPE + 1]; #endif #ifdef IPFILTER_COMPAT extern int ipf_in_compat __P((ipf_main_softc_t *, ipfobj_t *, void *,int)); extern int ipf_out_compat __P((ipf_main_softc_t *, ipfobj_t *, void *)); #endif extern int icmpreplytype4[ICMP_MAXTYPE + 1]; extern int ipf_ht_node_add __P((ipf_main_softc_t *, host_track_t *, int, i6addr_t *)); extern int ipf_ht_node_del __P((host_track_t *, int, i6addr_t *)); extern void ipf_rb_ht_flush __P((host_track_t *)); extern void ipf_rb_ht_freenode __P((host_node_t *, void *)); extern void ipf_rb_ht_init __P((host_track_t *)); #endif /* __IP_FIL_H__ */ Index: stable/12/sys/contrib/ipfilter/netinet/ip_fil_freebsd.c =================================================================== --- stable/12/sys/contrib/ipfilter/netinet/ip_fil_freebsd.c (revision 349931) +++ stable/12/sys/contrib/ipfilter/netinet/ip_fil_freebsd.c (revision 349932) @@ -1,1502 +1,1449 @@ /* $FreeBSD$ */ /* * Copyright (C) 2012 by Darren Reed. * * See the IPFILTER.LICENCE file for details on licencing. */ #if !defined(lint) static const char sccsid[] = "@(#)ip_fil.c 2.41 6/5/96 (C) 1993-2000 Darren Reed"; static const char rcsid[] = "@(#)$Id$"; #endif #if defined(KERNEL) || defined(_KERNEL) # undef KERNEL # undef _KERNEL # define KERNEL 1 # define _KERNEL 1 #endif #if defined(__FreeBSD_version) && \ !defined(KLD_MODULE) && !defined(IPFILTER_LKM) # include "opt_inet6.h" #endif #if defined(__FreeBSD_version) && \ !defined(KLD_MODULE) && !defined(IPFILTER_LKM) # include "opt_random_ip_id.h" #endif #include #include #include #include # include # include #include #include # include #if defined(__FreeBSD_version) #include #endif # include # include # include #include # include # include #include # include # include #include #include #include #include #include #include #include #include #include #include #include #include #include "netinet/ip_compat.h" #ifdef USE_INET6 # include #endif #include "netinet/ip_fil.h" #include "netinet/ip_nat.h" #include "netinet/ip_frag.h" #include "netinet/ip_state.h" #include "netinet/ip_proxy.h" #include "netinet/ip_auth.h" #include "netinet/ip_sync.h" #include "netinet/ip_lookup.h" #include "netinet/ip_dstlist.h" #ifdef IPFILTER_SCAN #include "netinet/ip_scan.h" #endif #include "netinet/ip_pool.h" # include #include #ifdef CSUM_DATA_VALID #include #endif extern int ip_optcopy __P((struct ip *, struct ip *)); # ifdef IPFILTER_M_IPFILTER MALLOC_DEFINE(M_IPFILTER, "ipfilter", "IP Filter packet filter data structures"); # endif static int ipf_send_ip __P((fr_info_t *, mb_t *)); static void ipf_timer_func __P((void *arg)); VNET_DEFINE(ipf_main_softc_t, ipfmain) = { .ipf_running = -2, }; #define V_ipfmain VNET(ipfmain) # include # include static eventhandler_tag ipf_arrivetag, ipf_departtag; #if 0 /* * Disable the "cloner" event handler; we are getting interface * events before the firewall is fully initiallized and also no vnet * information thus leading to uninitialised memory accesses. * In addition it is unclear why we need it in first place. * If it turns out to be needed, well need a dedicated event handler * for it to deal with the ifc and the correct vnet. */ static eventhandler_tag ipf_clonetag; #endif static void ipf_ifevent(void *arg, struct ifnet *ifp); static void ipf_ifevent(arg, ifp) void *arg; struct ifnet *ifp; { CURVNET_SET(ifp->if_vnet); if (V_ipfmain.ipf_running > 0) ipf_sync(&V_ipfmain, NULL); CURVNET_RESTORE(); } static int ipf_check_wrapper(void *arg, struct mbuf **mp, struct ifnet *ifp, int dir) { struct ip *ip = mtod(*mp, struct ip *); int rv; /* * IPFilter expects evreything in network byte order */ #if (__FreeBSD_version < 1000019) ip->ip_len = htons(ip->ip_len); ip->ip_off = htons(ip->ip_off); #endif CURVNET_SET(ifp->if_vnet); rv = ipf_check(&V_ipfmain, ip, ip->ip_hl << 2, ifp, (dir == PFIL_OUT), mp); CURVNET_RESTORE(); #if (__FreeBSD_version < 1000019) if ((rv == 0) && (*mp != NULL)) { ip = mtod(*mp, struct ip *); ip->ip_len = ntohs(ip->ip_len); ip->ip_off = ntohs(ip->ip_off); } #endif return rv; } # ifdef USE_INET6 # include static int ipf_check_wrapper6(void *arg, struct mbuf **mp, struct ifnet *ifp, int dir) { int error; CURVNET_SET(ifp->if_vnet); error = ipf_check(&V_ipfmain, mtod(*mp, struct ip *), sizeof(struct ip6_hdr), ifp, (dir == PFIL_OUT), mp); CURVNET_RESTORE(); return (error); } # endif #if defined(IPFILTER_LKM) int ipf_identify(s) char *s; { if (strcmp(s, "ipl") == 0) return 1; return 0; } #endif /* IPFILTER_LKM */ static void ipf_timer_func(arg) void *arg; { ipf_main_softc_t *softc = arg; SPL_INT(s); SPL_NET(s); READ_ENTER(&softc->ipf_global); if (softc->ipf_running > 0) ipf_slowtimer(softc); if (softc->ipf_running == -1 || softc->ipf_running == 1) { #if 0 softc->ipf_slow_ch = timeout(ipf_timer_func, softc, hz/2); #endif callout_init(&softc->ipf_slow_ch, 1); callout_reset(&softc->ipf_slow_ch, (hz / IPF_HZ_DIVIDE) * IPF_HZ_MULT, ipf_timer_func, softc); } RWLOCK_EXIT(&softc->ipf_global); SPL_X(s); } int ipfattach(softc) ipf_main_softc_t *softc; { #ifdef USE_SPL int s; #endif SPL_NET(s); if (softc->ipf_running > 0) { SPL_X(s); return EBUSY; } if (ipf_init_all(softc) < 0) { SPL_X(s); return EIO; } bzero((char *)V_ipfmain.ipf_selwait, sizeof(V_ipfmain.ipf_selwait)); softc->ipf_running = 1; if (softc->ipf_control_forwarding & 1) V_ipforwarding = 1; SPL_X(s); #if 0 softc->ipf_slow_ch = timeout(ipf_timer_func, softc, (hz / IPF_HZ_DIVIDE) * IPF_HZ_MULT); #endif callout_init(&softc->ipf_slow_ch, 1); callout_reset(&softc->ipf_slow_ch, (hz / IPF_HZ_DIVIDE) * IPF_HZ_MULT, ipf_timer_func, softc); return 0; } /* * Disable the filter by removing the hooks from the IP input/output * stream. */ int ipfdetach(softc) ipf_main_softc_t *softc; { #ifdef USE_SPL int s; #endif if (softc->ipf_control_forwarding & 2) V_ipforwarding = 0; SPL_NET(s); #if 0 if (softc->ipf_slow_ch.callout != NULL) untimeout(ipf_timer_func, softc, softc->ipf_slow_ch); bzero(&softc->ipf_slow, sizeof(softc->ipf_slow)); #endif callout_drain(&softc->ipf_slow_ch); ipf_fini_all(softc); softc->ipf_running = -2; SPL_X(s); return 0; } /* * Filter ioctl interface. */ int ipfioctl(dev, cmd, data, mode, p) struct thread *p; # define p_cred td_ucred # define p_uid td_ucred->cr_ruid struct cdev *dev; ioctlcmd_t cmd; caddr_t data; int mode; { int error = 0, unit = 0; SPL_INT(s); CURVNET_SET(TD_TO_VNET(p)); #if (BSD >= 199306) if (securelevel_ge(p->p_cred, 3) && (mode & FWRITE)) { V_ipfmain.ipf_interror = 130001; CURVNET_RESTORE(); return EPERM; } #endif unit = GET_MINOR(dev); if ((IPL_LOGMAX < unit) || (unit < 0)) { V_ipfmain.ipf_interror = 130002; CURVNET_RESTORE(); return ENXIO; } if (V_ipfmain.ipf_running <= 0) { if (unit != IPL_LOGIPF && cmd != SIOCIPFINTERROR) { V_ipfmain.ipf_interror = 130003; CURVNET_RESTORE(); return EIO; } if (cmd != SIOCIPFGETNEXT && cmd != SIOCIPFGET && cmd != SIOCIPFSET && cmd != SIOCFRENB && cmd != SIOCGETFS && cmd != SIOCGETFF && cmd != SIOCIPFINTERROR) { V_ipfmain.ipf_interror = 130004; CURVNET_RESTORE(); return EIO; } } SPL_NET(s); error = ipf_ioctlswitch(&V_ipfmain, unit, data, cmd, mode, p->p_uid, p); CURVNET_RESTORE(); if (error != -1) { SPL_X(s); return error; } SPL_X(s); return error; } /* * ipf_send_reset - this could conceivably be a call to tcp_respond(), but that * requires a large amount of setting up and isn't any more efficient. */ int ipf_send_reset(fin) fr_info_t *fin; { struct tcphdr *tcp, *tcp2; int tlen = 0, hlen; struct mbuf *m; #ifdef USE_INET6 ip6_t *ip6; #endif ip_t *ip; tcp = fin->fin_dp; if (tcp->th_flags & TH_RST) return -1; /* feedback loop */ if (ipf_checkl4sum(fin) == -1) return -1; tlen = fin->fin_dlen - (TCP_OFF(tcp) << 2) + ((tcp->th_flags & TH_SYN) ? 1 : 0) + ((tcp->th_flags & TH_FIN) ? 1 : 0); #ifdef USE_INET6 hlen = (fin->fin_v == 6) ? sizeof(ip6_t) : sizeof(ip_t); #else hlen = sizeof(ip_t); #endif #ifdef MGETHDR MGETHDR(m, M_NOWAIT, MT_HEADER); #else MGET(m, M_NOWAIT, MT_HEADER); #endif if (m == NULL) return -1; if (sizeof(*tcp2) + hlen > MLEN) { if (!(MCLGET(m, M_NOWAIT))) { FREE_MB_T(m); return -1; } } m->m_len = sizeof(*tcp2) + hlen; #if (BSD >= 199103) m->m_data += max_linkhdr; m->m_pkthdr.len = m->m_len; m->m_pkthdr.rcvif = (struct ifnet *)0; #endif ip = mtod(m, struct ip *); bzero((char *)ip, hlen); #ifdef USE_INET6 ip6 = (ip6_t *)ip; #endif tcp2 = (struct tcphdr *)((char *)ip + hlen); tcp2->th_sport = tcp->th_dport; tcp2->th_dport = tcp->th_sport; if (tcp->th_flags & TH_ACK) { tcp2->th_seq = tcp->th_ack; tcp2->th_flags = TH_RST; tcp2->th_ack = 0; } else { tcp2->th_seq = 0; tcp2->th_ack = ntohl(tcp->th_seq); tcp2->th_ack += tlen; tcp2->th_ack = htonl(tcp2->th_ack); tcp2->th_flags = TH_RST|TH_ACK; } TCP_X2_A(tcp2, 0); TCP_OFF_A(tcp2, sizeof(*tcp2) >> 2); tcp2->th_win = tcp->th_win; tcp2->th_sum = 0; tcp2->th_urp = 0; #ifdef USE_INET6 if (fin->fin_v == 6) { ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_hlim = 0; ip6->ip6_src = fin->fin_dst6.in6; ip6->ip6_dst = fin->fin_src6.in6; tcp2->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*ip6), sizeof(*tcp2)); return ipf_send_ip(fin, m); } #endif ip->ip_p = IPPROTO_TCP; ip->ip_len = htons(sizeof(struct tcphdr)); ip->ip_src.s_addr = fin->fin_daddr; ip->ip_dst.s_addr = fin->fin_saddr; tcp2->th_sum = in_cksum(m, hlen + sizeof(*tcp2)); ip->ip_len = htons(hlen + sizeof(*tcp2)); return ipf_send_ip(fin, m); } /* * ip_len must be in network byte order when called. */ static int ipf_send_ip(fin, m) fr_info_t *fin; mb_t *m; { fr_info_t fnew; ip_t *ip, *oip; int hlen; ip = mtod(m, ip_t *); bzero((char *)&fnew, sizeof(fnew)); fnew.fin_main_soft = fin->fin_main_soft; IP_V_A(ip, fin->fin_v); switch (fin->fin_v) { case 4 : oip = fin->fin_ip; hlen = sizeof(*oip); fnew.fin_v = 4; fnew.fin_p = ip->ip_p; fnew.fin_plen = ntohs(ip->ip_len); IP_HL_A(ip, sizeof(*oip) >> 2); ip->ip_tos = oip->ip_tos; ip->ip_id = fin->fin_ip->ip_id; ip->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); ip->ip_ttl = V_ip_defttl; ip->ip_sum = 0; break; #ifdef USE_INET6 case 6 : { ip6_t *ip6 = (ip6_t *)ip; ip6->ip6_vfc = 0x60; ip6->ip6_hlim = IPDEFTTL; hlen = sizeof(*ip6); fnew.fin_p = ip6->ip6_nxt; fnew.fin_v = 6; fnew.fin_plen = ntohs(ip6->ip6_plen) + hlen; break; } #endif default : return EINVAL; } #ifdef IPSEC m->m_pkthdr.rcvif = NULL; #endif fnew.fin_ifp = fin->fin_ifp; fnew.fin_flx = FI_NOCKSUM; fnew.fin_m = m; fnew.fin_ip = ip; fnew.fin_mp = &m; fnew.fin_hlen = hlen; fnew.fin_dp = (char *)ip + hlen; (void) ipf_makefrip(hlen, ip, &fnew); return ipf_fastroute(m, &m, &fnew, NULL); } int ipf_send_icmp_err(type, fin, dst) int type; fr_info_t *fin; int dst; { int err, hlen, xtra, iclen, ohlen, avail, code; struct in_addr dst4; struct icmp *icmp; struct mbuf *m; i6addr_t dst6; void *ifp; #ifdef USE_INET6 ip6_t *ip6; #endif ip_t *ip, *ip2; if ((type < 0) || (type >= ICMP_MAXTYPE)) return -1; code = fin->fin_icode; #ifdef USE_INET6 /* See NetBSD ip_fil_netbsd.c r1.4: */ if ((code < 0) || (code >= sizeof(icmptoicmp6unreach)/sizeof(int))) return -1; #endif if (ipf_checkl4sum(fin) == -1) return -1; #ifdef MGETHDR MGETHDR(m, M_NOWAIT, MT_HEADER); #else MGET(m, M_NOWAIT, MT_HEADER); #endif if (m == NULL) return -1; avail = MHLEN; xtra = 0; hlen = 0; ohlen = 0; dst4.s_addr = 0; ifp = fin->fin_ifp; if (fin->fin_v == 4) { if ((fin->fin_p == IPPROTO_ICMP) && !(fin->fin_flx & FI_SHORT)) switch (ntohs(fin->fin_data[0]) >> 8) { case ICMP_ECHO : case ICMP_TSTAMP : case ICMP_IREQ : case ICMP_MASKREQ : break; default : FREE_MB_T(m); return 0; } if (dst == 0) { if (ipf_ifpaddr(&V_ipfmain, 4, FRI_NORMAL, ifp, &dst6, NULL) == -1) { FREE_MB_T(m); return -1; } dst4 = dst6.in4; } else dst4.s_addr = fin->fin_daddr; hlen = sizeof(ip_t); ohlen = fin->fin_hlen; iclen = hlen + offsetof(struct icmp, icmp_ip) + ohlen; if (fin->fin_hlen < fin->fin_plen) xtra = MIN(fin->fin_dlen, 8); else xtra = 0; } #ifdef USE_INET6 else if (fin->fin_v == 6) { hlen = sizeof(ip6_t); ohlen = sizeof(ip6_t); iclen = hlen + offsetof(struct icmp, icmp_ip) + ohlen; type = icmptoicmp6types[type]; if (type == ICMP6_DST_UNREACH) code = icmptoicmp6unreach[code]; if (iclen + max_linkhdr + fin->fin_plen > avail) { if (!(MCLGET(m, M_NOWAIT))) { FREE_MB_T(m); return -1; } avail = MCLBYTES; } xtra = MIN(fin->fin_plen, avail - iclen - max_linkhdr); xtra = MIN(xtra, IPV6_MMTU - iclen); if (dst == 0) { if (ipf_ifpaddr(&V_ipfmain, 6, FRI_NORMAL, ifp, &dst6, NULL) == -1) { FREE_MB_T(m); return -1; } } else dst6 = fin->fin_dst6; } #endif else { FREE_MB_T(m); return -1; } avail -= (max_linkhdr + iclen); if (avail < 0) { FREE_MB_T(m); return -1; } if (xtra > avail) xtra = avail; iclen += xtra; m->m_data += max_linkhdr; m->m_pkthdr.rcvif = (struct ifnet *)0; m->m_pkthdr.len = iclen; m->m_len = iclen; ip = mtod(m, ip_t *); icmp = (struct icmp *)((char *)ip + hlen); ip2 = (ip_t *)&icmp->icmp_ip; icmp->icmp_type = type; icmp->icmp_code = fin->fin_icode; icmp->icmp_cksum = 0; #ifdef icmp_nextmtu if (type == ICMP_UNREACH && fin->fin_icode == ICMP_UNREACH_NEEDFRAG) { if (fin->fin_mtu != 0) { icmp->icmp_nextmtu = htons(fin->fin_mtu); } else if (ifp != NULL) { icmp->icmp_nextmtu = htons(GETIFMTU_4(ifp)); } else { /* make up a number... */ icmp->icmp_nextmtu = htons(fin->fin_plen - 20); } } #endif bcopy((char *)fin->fin_ip, (char *)ip2, ohlen); #ifdef USE_INET6 ip6 = (ip6_t *)ip; if (fin->fin_v == 6) { ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow; ip6->ip6_plen = htons(iclen - hlen); ip6->ip6_nxt = IPPROTO_ICMPV6; ip6->ip6_hlim = 0; ip6->ip6_src = dst6.in6; ip6->ip6_dst = fin->fin_src6.in6; if (xtra > 0) bcopy((char *)fin->fin_ip + ohlen, (char *)&icmp->icmp_ip + ohlen, xtra); icmp->icmp_cksum = in6_cksum(m, IPPROTO_ICMPV6, sizeof(*ip6), iclen - hlen); } else #endif { ip->ip_p = IPPROTO_ICMP; ip->ip_src.s_addr = dst4.s_addr; ip->ip_dst.s_addr = fin->fin_saddr; if (xtra > 0) bcopy((char *)fin->fin_ip + ohlen, (char *)&icmp->icmp_ip + ohlen, xtra); icmp->icmp_cksum = ipf_cksum((u_short *)icmp, sizeof(*icmp) + 8); ip->ip_len = htons(iclen); ip->ip_p = IPPROTO_ICMP; } err = ipf_send_ip(fin, m); return err; } /* * m0 - pointer to mbuf where the IP packet starts * mpp - pointer to the mbuf pointer that is the start of the mbuf chain */ int ipf_fastroute(m0, mpp, fin, fdp) mb_t *m0, **mpp; fr_info_t *fin; frdest_t *fdp; { register struct ip *ip, *mhip; register struct mbuf *m = *mpp; int len, off, error = 0, hlen, code; struct ifnet *ifp, *sifp; struct sockaddr_in dst; struct nhop4_extended nh4; int has_nhop = 0; u_long fibnum = 0; u_short ip_off; frdest_t node; frentry_t *fr; #ifdef M_WRITABLE /* * HOT FIX/KLUDGE: * * If the mbuf we're about to send is not writable (because of * a cluster reference, for example) we'll need to make a copy * of it since this routine modifies the contents. * * If you have non-crappy network hardware that can transmit data * from the mbuf, rather than making a copy, this is gonna be a * problem. */ if (M_WRITABLE(m) == 0) { m0 = m_dup(m, M_NOWAIT); if (m0 != NULL) { FREE_MB_T(m); m = m0; *mpp = m; } else { error = ENOBUFS; FREE_MB_T(m); goto done; } } #endif #ifdef USE_INET6 if (fin->fin_v == 6) { /* * currently "to " and "to :ip#" are not supported * for IPv6 */ return ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); } #endif hlen = fin->fin_hlen; ip = mtod(m0, struct ip *); ifp = NULL; /* * Route packet. */ bzero(&dst, sizeof (dst)); dst.sin_family = AF_INET; dst.sin_addr = ip->ip_dst; dst.sin_len = sizeof(dst); fr = fin->fin_fr; if ((fr != NULL) && !(fr->fr_flags & FR_KEEPSTATE) && (fdp != NULL) && (fdp->fd_type == FRD_DSTLIST)) { if (ipf_dstlist_select_node(fin, fdp->fd_ptr, NULL, &node) == 0) fdp = &node; } if (fdp != NULL) ifp = fdp->fd_ptr; else ifp = fin->fin_ifp; if ((ifp == NULL) && ((fr == NULL) || !(fr->fr_flags & FR_FASTROUTE))) { error = -2; goto bad; } if ((fdp != NULL) && (fdp->fd_ip.s_addr != 0)) dst.sin_addr = fdp->fd_ip; fibnum = M_GETFIB(m0); if (fib4_lookup_nh_ext(fibnum, dst.sin_addr, NHR_REF, 0, &nh4) != 0) { if (in_localaddr(ip->ip_dst)) error = EHOSTUNREACH; else error = ENETUNREACH; goto bad; } has_nhop = 1; if (ifp == NULL) ifp = nh4.nh_ifp; if (nh4.nh_flags & NHF_GATEWAY) dst.sin_addr = nh4.nh_addr; /* * For input packets which are being "fastrouted", they won't * go back through output filtering and miss their chance to get * NAT'd and counted. Duplicated packets aren't considered to be * part of the normal packet stream, so do not NAT them or pass * them through stateful checking, etc. */ if ((fdp != &fr->fr_dif) && (fin->fin_out == 0)) { sifp = fin->fin_ifp; fin->fin_ifp = ifp; fin->fin_out = 1; (void) ipf_acctpkt(fin, NULL); fin->fin_fr = NULL; if (!fr || !(fr->fr_flags & FR_RETMASK)) { u_32_t pass; (void) ipf_state_check(fin, &pass); } switch (ipf_nat_checkout(fin, NULL)) { case 0 : break; case 1 : ip->ip_sum = 0; break; case -1 : error = -1; goto bad; break; } fin->fin_ifp = sifp; fin->fin_out = 0; } else ip->ip_sum = 0; /* * If small enough for interface, can just send directly. */ if (ntohs(ip->ip_len) <= ifp->if_mtu) { if (!ip->ip_sum) ip->ip_sum = in_cksum(m, hlen); error = (*ifp->if_output)(ifp, m, (struct sockaddr *)&dst, NULL ); goto done; } /* * Too large for interface; fragment if possible. * Must be able to put at least 8 bytes per fragment. */ ip_off = ntohs(ip->ip_off); if (ip_off & IP_DF) { error = EMSGSIZE; goto bad; } len = (ifp->if_mtu - hlen) &~ 7; if (len < 8) { error = EMSGSIZE; goto bad; } { int mhlen, firstlen = len; struct mbuf **mnext = &m->m_act; /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto chain. */ m0 = m; mhlen = sizeof (struct ip); for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { #ifdef MGETHDR MGETHDR(m, M_NOWAIT, MT_HEADER); #else MGET(m, M_NOWAIT, MT_HEADER); #endif if (m == NULL) { m = m0; error = ENOBUFS; goto bad; } m->m_data += max_linkhdr; mhip = mtod(m, struct ip *); bcopy((char *)ip, (char *)mhip, sizeof(*ip)); if (hlen > sizeof (struct ip)) { mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); IP_HL_A(mhip, mhlen >> 2); } m->m_len = mhlen; mhip->ip_off = ((off - hlen) >> 3) + ip_off; if (off + len >= ntohs(ip->ip_len)) len = ntohs(ip->ip_len) - off; else mhip->ip_off |= IP_MF; mhip->ip_len = htons((u_short)(len + mhlen)); *mnext = m; m->m_next = m_copym(m0, off, len, M_NOWAIT); if (m->m_next == 0) { error = ENOBUFS; /* ??? */ goto sendorfree; } m->m_pkthdr.len = mhlen + len; m->m_pkthdr.rcvif = NULL; mhip->ip_off = htons((u_short)mhip->ip_off); mhip->ip_sum = 0; mhip->ip_sum = in_cksum(m, mhlen); mnext = &m->m_act; } /* * Update first fragment by trimming what's been copied out * and updating header, then send each fragment (in order). */ m_adj(m0, hlen + firstlen - ip->ip_len); ip->ip_len = htons((u_short)(hlen + firstlen)); ip->ip_off = htons((u_short)IP_MF); ip->ip_sum = 0; ip->ip_sum = in_cksum(m0, hlen); sendorfree: for (m = m0; m; m = m0) { m0 = m->m_act; m->m_act = 0; if (error == 0) error = (*ifp->if_output)(ifp, m, (struct sockaddr *)&dst, NULL ); else FREE_MB_T(m); } } done: if (!error) V_ipfmain.ipf_frouteok[0]++; else V_ipfmain.ipf_frouteok[1]++; if (has_nhop) fib4_free_nh_ext(fibnum, &nh4); return 0; bad: if (error == EMSGSIZE) { sifp = fin->fin_ifp; code = fin->fin_icode; fin->fin_icode = ICMP_UNREACH_NEEDFRAG; fin->fin_ifp = ifp; (void) ipf_send_icmp_err(ICMP_UNREACH, fin, 1); fin->fin_ifp = sifp; fin->fin_icode = code; } FREE_MB_T(m); goto done; } int ipf_verifysrc(fin) fr_info_t *fin; { struct nhop4_basic nh4; if (fib4_lookup_nh_basic(0, fin->fin_src, 0, 0, &nh4) != 0) return (0); return (fin->fin_ifp == nh4.nh_ifp); } /* * return the first IP Address associated with an interface */ int ipf_ifpaddr(softc, v, atype, ifptr, inp, inpmask) ipf_main_softc_t *softc; int v, atype; void *ifptr; i6addr_t *inp, *inpmask; { #ifdef USE_INET6 struct in6_addr *inp6 = NULL; #endif struct sockaddr *sock, *mask; struct sockaddr_in *sin; struct ifaddr *ifa; struct ifnet *ifp; if ((ifptr == NULL) || (ifptr == (void *)-1)) return -1; sin = NULL; ifp = ifptr; if (v == 4) inp->in4.s_addr = 0; #ifdef USE_INET6 else if (v == 6) bzero((char *)inp, sizeof(*inp)); #endif ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); sock = ifa->ifa_addr; while (sock != NULL && ifa != NULL) { sin = (struct sockaddr_in *)sock; if ((v == 4) && (sin->sin_family == AF_INET)) break; #ifdef USE_INET6 if ((v == 6) && (sin->sin_family == AF_INET6)) { inp6 = &((struct sockaddr_in6 *)sin)->sin6_addr; if (!IN6_IS_ADDR_LINKLOCAL(inp6) && !IN6_IS_ADDR_LOOPBACK(inp6)) break; } #endif ifa = CK_STAILQ_NEXT(ifa, ifa_link); if (ifa != NULL) sock = ifa->ifa_addr; } if (ifa == NULL || sin == NULL) return -1; mask = ifa->ifa_netmask; if (atype == FRI_BROADCAST) sock = ifa->ifa_broadaddr; else if (atype == FRI_PEERADDR) sock = ifa->ifa_dstaddr; if (sock == NULL) return -1; #ifdef USE_INET6 if (v == 6) { return ipf_ifpfillv6addr(atype, (struct sockaddr_in6 *)sock, (struct sockaddr_in6 *)mask, inp, inpmask); } #endif return ipf_ifpfillv4addr(atype, (struct sockaddr_in *)sock, (struct sockaddr_in *)mask, &inp->in4, &inpmask->in4); } u_32_t ipf_newisn(fin) fr_info_t *fin; { u_32_t newiss; newiss = arc4random(); return newiss; } INLINE int ipf_checkv4sum(fin) fr_info_t *fin; { #ifdef CSUM_DATA_VALID int manual = 0; u_short sum; ip_t *ip; mb_t *m; if ((fin->fin_flx & FI_NOCKSUM) != 0) return 0; if ((fin->fin_flx & FI_SHORT) != 0) return 1; if (fin->fin_cksum != FI_CK_NEEDED) return (fin->fin_cksum > FI_CK_NEEDED) ? 0 : -1; m = fin->fin_m; if (m == NULL) { manual = 1; goto skipauto; } ip = fin->fin_ip; if ((m->m_pkthdr.csum_flags & (CSUM_IP_CHECKED|CSUM_IP_VALID)) == CSUM_IP_CHECKED) { fin->fin_cksum = FI_CK_BAD; fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkv4sum_csum_ip_checked, fr_info_t *, fin, u_int, m->m_pkthdr.csum_flags & (CSUM_IP_CHECKED|CSUM_IP_VALID)); return -1; } if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { /* Depending on the driver, UDP may have zero checksum */ if (fin->fin_p == IPPROTO_UDP && (fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) == 0) { udphdr_t *udp = fin->fin_dp; if (udp->uh_sum == 0) { /* * we're good no matter what the hardware * checksum flags and csum_data say (handling * of csum_data for zero UDP checksum is not * consistent across all drivers) */ fin->fin_cksum = 1; return 0; } } if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) sum = m->m_pkthdr.csum_data; else sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data + fin->fin_dlen + fin->fin_p)); sum ^= 0xffff; if (sum != 0) { fin->fin_cksum = FI_CK_BAD; fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkv4sum_sum, fr_info_t *, fin, u_int, sum); } else { fin->fin_cksum = FI_CK_SUMOK; return 0; } } else { if (m->m_pkthdr.csum_flags == CSUM_DELAY_DATA) { fin->fin_cksum = FI_CK_L4FULL; return 0; } else if (m->m_pkthdr.csum_flags == CSUM_TCP || m->m_pkthdr.csum_flags == CSUM_UDP) { fin->fin_cksum = FI_CK_L4PART; return 0; } else if (m->m_pkthdr.csum_flags == CSUM_IP) { fin->fin_cksum = FI_CK_L4PART; return 0; } else { manual = 1; } } skipauto: if (manual != 0) { if (ipf_checkl4sum(fin) == -1) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkv4sum_manual, fr_info_t *, fin, u_int, manual); return -1; } } #else if (ipf_checkl4sum(fin) == -1) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkv4sum_checkl4sum, fr_info_t *, fin, u_int, -1); return -1; } #endif return 0; } #ifdef USE_INET6 INLINE int ipf_checkv6sum(fin) fr_info_t *fin; { if ((fin->fin_flx & FI_NOCKSUM) != 0) { DT(ipf_checkv6sum_fi_nocksum); return 0; } if ((fin->fin_flx & FI_SHORT) != 0) { DT(ipf_checkv6sum_fi_short); return 1; } if (fin->fin_cksum != FI_CK_NEEDED) { DT(ipf_checkv6sum_fi_ck_needed); return (fin->fin_cksum > FI_CK_NEEDED) ? 0 : -1; } if (ipf_checkl4sum(fin) == -1) { fin->fin_flx |= FI_BAD; DT2(ipf_fi_bad_checkv6sum_checkl4sum, fr_info_t *, fin, u_int, -1); return -1; } return 0; } #endif /* USE_INET6 */ size_t mbufchainlen(m0) struct mbuf *m0; { size_t len; if ((m0->m_flags & M_PKTHDR) != 0) { len = m0->m_pkthdr.len; } else { struct mbuf *m; for (m = m0, len = 0; m != NULL; m = m->m_next) len += m->m_len; } return len; } /* ------------------------------------------------------------------------ */ /* Function: ipf_pullup */ /* Returns: NULL == pullup failed, else pointer to protocol header */ /* Parameters: xmin(I)- pointer to buffer where data packet starts */ /* fin(I) - pointer to packet information */ /* len(I) - number of bytes to pullup */ /* */ /* Attempt to move at least len bytes (from the start of the buffer) into a */ /* single buffer for ease of access. Operating system native functions are */ /* used to manage buffers - if necessary. If the entire packet ends up in */ /* a single buffer, set the FI_COALESCE flag even though ipf_coalesce() has */ /* not been called. Both fin_ip and fin_dp are updated before exiting _IF_ */ /* and ONLY if the pullup succeeds. */ /* */ /* We assume that 'xmin' is a pointer to a buffer that is part of the chain */ /* of buffers that starts at *fin->fin_mp. */ /* ------------------------------------------------------------------------ */ void * ipf_pullup(xmin, fin, len) mb_t *xmin; fr_info_t *fin; int len; { int dpoff, ipoff; mb_t *m = xmin; char *ip; if (m == NULL) return NULL; ip = (char *)fin->fin_ip; if ((fin->fin_flx & FI_COALESCE) != 0) return ip; ipoff = fin->fin_ipoff; if (fin->fin_dp != NULL) dpoff = (char *)fin->fin_dp - (char *)ip; else dpoff = 0; if (M_LEN(m) < len) { mb_t *n = *fin->fin_mp; /* * Assume that M_PKTHDR is set and just work with what is left * rather than check.. * Should not make any real difference, anyway. */ if (m != n) { /* * Record the mbuf that points to the mbuf that we're * about to go to work on so that we can update the * m_next appropriately later. */ for (; n->m_next != m; n = n->m_next) ; } else { n = NULL; } #ifdef MHLEN if (len > MHLEN) #else if (len > MLEN) #endif { #ifdef HAVE_M_PULLDOWN if (m_pulldown(m, 0, len, NULL) == NULL) m = NULL; #else FREE_MB_T(*fin->fin_mp); m = NULL; n = NULL; #endif } else { m = m_pullup(m, len); } if (n != NULL) n->m_next = m; if (m == NULL) { /* * When n is non-NULL, it indicates that m pointed to * a sub-chain (tail) of the mbuf and that the head * of this chain has not yet been free'd. */ if (n != NULL) { FREE_MB_T(*fin->fin_mp); } *fin->fin_mp = NULL; fin->fin_m = NULL; return NULL; } if (n == NULL) *fin->fin_mp = m; while (M_LEN(m) == 0) { m = m->m_next; } fin->fin_m = m; ip = MTOD(m, char *) + ipoff; fin->fin_ip = (ip_t *)ip; if (fin->fin_dp != NULL) fin->fin_dp = (char *)fin->fin_ip + dpoff; if (fin->fin_fraghdr != NULL) fin->fin_fraghdr = (char *)ip + ((char *)fin->fin_fraghdr - (char *)fin->fin_ip); } if (len == fin->fin_plen) fin->fin_flx |= FI_COALESCE; return ip; } int ipf_inject(fin, m) fr_info_t *fin; mb_t *m; { int error = 0; if (fin->fin_out == 0) { netisr_dispatch(NETISR_IP, m); } else { fin->fin_ip->ip_len = ntohs(fin->fin_ip->ip_len); fin->fin_ip->ip_off = ntohs(fin->fin_ip->ip_off); error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); } return error; } int ipf_pfil_unhook(void) { struct pfil_head *ph_inet; #ifdef USE_INET6 struct pfil_head *ph_inet6; #endif ph_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET); if (ph_inet != NULL) pfil_remove_hook((void *)ipf_check_wrapper, NULL, PFIL_IN|PFIL_OUT|PFIL_WAITOK, ph_inet); # ifdef USE_INET6 ph_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6); if (ph_inet6 != NULL) pfil_remove_hook((void *)ipf_check_wrapper6, NULL, PFIL_IN|PFIL_OUT|PFIL_WAITOK, ph_inet6); # endif return (0); } int ipf_pfil_hook(void) { struct pfil_head *ph_inet; #ifdef USE_INET6 struct pfil_head *ph_inet6; #endif ph_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET); # ifdef USE_INET6 ph_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6); # endif if (ph_inet == NULL # ifdef USE_INET6 && ph_inet6 == NULL # endif ) { return ENODEV; } if (ph_inet != NULL) pfil_add_hook((void *)ipf_check_wrapper, NULL, PFIL_IN|PFIL_OUT|PFIL_WAITOK, ph_inet); # ifdef USE_INET6 if (ph_inet6 != NULL) pfil_add_hook((void *)ipf_check_wrapper6, NULL, PFIL_IN|PFIL_OUT|PFIL_WAITOK, ph_inet6); # endif return (0); } void ipf_event_reg(void) { ipf_arrivetag = EVENTHANDLER_REGISTER(ifnet_arrival_event, \ ipf_ifevent, NULL, \ EVENTHANDLER_PRI_ANY); ipf_departtag = EVENTHANDLER_REGISTER(ifnet_departure_event, \ ipf_ifevent, NULL, \ EVENTHANDLER_PRI_ANY); #if 0 ipf_clonetag = EVENTHANDLER_REGISTER(if_clone_event, ipf_ifevent, \ NULL, EVENTHANDLER_PRI_ANY); #endif } void ipf_event_dereg(void) { if (ipf_arrivetag != NULL) { EVENTHANDLER_DEREGISTER(ifnet_arrival_event, ipf_arrivetag); } if (ipf_departtag != NULL) { EVENTHANDLER_DEREGISTER(ifnet_departure_event, ipf_departtag); } #if 0 if (ipf_clonetag != NULL) { EVENTHANDLER_DEREGISTER(if_clone_event, ipf_clonetag); } #endif } u_32_t ipf_random() { return arc4random(); } u_int ipf_pcksum(fin, hlen, sum) fr_info_t *fin; int hlen; u_int sum; { struct mbuf *m; u_int sum2; int off; m = fin->fin_m; off = (char *)fin->fin_dp - (char *)fin->fin_ip; m->m_data += hlen; m->m_len -= hlen; sum2 = in_cksum(fin->fin_m, fin->fin_plen - off); m->m_len += hlen; m->m_data -= hlen; /* * Both sum and sum2 are partial sums, so combine them together. */ sum += ~sum2 & 0xffff; while (sum > 0xffff) sum = (sum & 0xffff) + (sum >> 16); sum2 = ~sum & 0xffff; return sum2; } - -#ifdef USE_INET6 -#ifdef _KERNEL -u_int -ipf_pcksum6(fin, ip6, off, len) - fr_info_t *fin; - ip6_t *ip6; - u_int32_t off; - u_int32_t len; -{ - struct mbuf *m; - int sum; - - m = fin->fin_m; - if (m->m_len < sizeof(struct ip6_hdr)) { - return 0xffff; - } - - sum = in6_cksum(m, ip6->ip6_nxt, off, len); - return(sum); -} -#else -u_int -ipf_pcksum6(fin, ip6, off, len) - fr_info_t *fin; - ip6_t *ip6; - u_int32_t off; - u_int32_t len; -{ - u_short *sp; - u_int sum; - - sp = (u_short *)&ip6->ip6_src; - sum = *sp++; /* ip6_src */ - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; /* ip6_dst */ - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - sum += *sp++; - return(ipf_pcksum(fin, off, sum)); -} -#endif -#endif Index: stable/12 =================================================================== --- stable/12 (revision 349931) +++ stable/12 (revision 349932) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r349929