Index: head/contrib/llvm/tools/clang/include/clang/AST/DeclBase.h =================================================================== --- head/contrib/llvm/tools/clang/include/clang/AST/DeclBase.h (revision 349875) +++ head/contrib/llvm/tools/clang/include/clang/AST/DeclBase.h (revision 349876) @@ -1,2526 +1,2526 @@ //===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Decl and DeclContext interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLBASE_H #define LLVM_CLANG_AST_DECLBASE_H #include "clang/AST/AttrIterator.h" #include "clang/AST/DeclarationName.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/VersionTuple.h" #include #include #include #include #include #include #include namespace clang { class ASTContext; class ASTMutationListener; class Attr; class DeclContext; class ExternalSourceSymbolAttr; class FunctionDecl; class FunctionType; class IdentifierInfo; enum Linkage : unsigned char; class LinkageSpecDecl; class Module; class NamedDecl; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCMethodDecl; class ObjCProtocolDecl; struct PrintingPolicy; class RecordDecl; class SourceManager; class Stmt; class StoredDeclsMap; class TemplateDecl; class TranslationUnitDecl; class UsingDirectiveDecl; /// Captures the result of checking the availability of a /// declaration. enum AvailabilityResult { AR_Available = 0, AR_NotYetIntroduced, AR_Deprecated, AR_Unavailable }; /// Decl - This represents one declaration (or definition), e.g. a variable, /// typedef, function, struct, etc. /// /// Note: There are objects tacked on before the *beginning* of Decl /// (and its subclasses) in its Decl::operator new(). Proper alignment /// of all subclasses (not requiring more than the alignment of Decl) is /// asserted in DeclBase.cpp. class alignas(8) Decl { public: /// Lists the kind of concrete classes of Decl. enum Kind { #define DECL(DERIVED, BASE) DERIVED, #define ABSTRACT_DECL(DECL) #define DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END, #define LAST_DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END #include "clang/AST/DeclNodes.inc" }; /// A placeholder type used to construct an empty shell of a /// decl-derived type that will be filled in later (e.g., by some /// deserialization method). struct EmptyShell {}; /// IdentifierNamespace - The different namespaces in which /// declarations may appear. According to C99 6.2.3, there are /// four namespaces, labels, tags, members and ordinary /// identifiers. C++ describes lookup completely differently: /// certain lookups merely "ignore" certain kinds of declarations, /// usually based on whether the declaration is of a type, etc. /// /// These are meant as bitmasks, so that searches in /// C++ can look into the "tag" namespace during ordinary lookup. /// /// Decl currently provides 15 bits of IDNS bits. enum IdentifierNamespace { /// Labels, declared with 'x:' and referenced with 'goto x'. IDNS_Label = 0x0001, /// Tags, declared with 'struct foo;' and referenced with /// 'struct foo'. All tags are also types. This is what /// elaborated-type-specifiers look for in C. /// This also contains names that conflict with tags in the /// same scope but that are otherwise ordinary names (non-type /// template parameters and indirect field declarations). IDNS_Tag = 0x0002, /// Types, declared with 'struct foo', typedefs, etc. /// This is what elaborated-type-specifiers look for in C++, /// but note that it's ill-formed to find a non-tag. IDNS_Type = 0x0004, /// Members, declared with object declarations within tag /// definitions. In C, these can only be found by "qualified" /// lookup in member expressions. In C++, they're found by /// normal lookup. IDNS_Member = 0x0008, /// Namespaces, declared with 'namespace foo {}'. /// Lookup for nested-name-specifiers find these. IDNS_Namespace = 0x0010, /// Ordinary names. In C, everything that's not a label, tag, /// member, or function-local extern ends up here. IDNS_Ordinary = 0x0020, /// Objective C \@protocol. IDNS_ObjCProtocol = 0x0040, /// This declaration is a friend function. A friend function /// declaration is always in this namespace but may also be in /// IDNS_Ordinary if it was previously declared. IDNS_OrdinaryFriend = 0x0080, /// This declaration is a friend class. A friend class /// declaration is always in this namespace but may also be in /// IDNS_Tag|IDNS_Type if it was previously declared. IDNS_TagFriend = 0x0100, /// This declaration is a using declaration. A using declaration /// *introduces* a number of other declarations into the current /// scope, and those declarations use the IDNS of their targets, /// but the actual using declarations go in this namespace. IDNS_Using = 0x0200, /// This declaration is a C++ operator declared in a non-class /// context. All such operators are also in IDNS_Ordinary. /// C++ lexical operator lookup looks for these. IDNS_NonMemberOperator = 0x0400, /// This declaration is a function-local extern declaration of a /// variable or function. This may also be IDNS_Ordinary if it /// has been declared outside any function. These act mostly like /// invisible friend declarations, but are also visible to unqualified /// lookup within the scope of the declaring function. IDNS_LocalExtern = 0x0800, /// This declaration is an OpenMP user defined reduction construction. IDNS_OMPReduction = 0x1000 }; /// ObjCDeclQualifier - 'Qualifiers' written next to the return and /// parameter types in method declarations. Other than remembering /// them and mangling them into the method's signature string, these /// are ignored by the compiler; they are consumed by certain /// remote-messaging frameworks. /// /// in, inout, and out are mutually exclusive and apply only to /// method parameters. bycopy and byref are mutually exclusive and /// apply only to method parameters (?). oneway applies only to /// results. All of these expect their corresponding parameter to /// have a particular type. None of this is currently enforced by /// clang. /// /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier. enum ObjCDeclQualifier { OBJC_TQ_None = 0x0, OBJC_TQ_In = 0x1, OBJC_TQ_Inout = 0x2, OBJC_TQ_Out = 0x4, OBJC_TQ_Bycopy = 0x8, OBJC_TQ_Byref = 0x10, OBJC_TQ_Oneway = 0x20, /// The nullability qualifier is set when the nullability of the /// result or parameter was expressed via a context-sensitive /// keyword. OBJC_TQ_CSNullability = 0x40 }; /// The kind of ownership a declaration has, for visibility purposes. /// This enumeration is designed such that higher values represent higher /// levels of name hiding. enum class ModuleOwnershipKind : unsigned { /// This declaration is not owned by a module. Unowned, /// This declaration has an owning module, but is globally visible /// (typically because its owning module is visible and we know that /// modules cannot later become hidden in this compilation). /// After serialization and deserialization, this will be converted /// to VisibleWhenImported. Visible, /// This declaration has an owning module, and is visible when that /// module is imported. VisibleWhenImported, /// This declaration has an owning module, but is only visible to /// lookups that occur within that module. ModulePrivate }; protected: /// The next declaration within the same lexical /// DeclContext. These pointers form the linked list that is /// traversed via DeclContext's decls_begin()/decls_end(). /// /// The extra two bits are used for the ModuleOwnershipKind. llvm::PointerIntPair NextInContextAndBits; private: friend class DeclContext; struct MultipleDC { DeclContext *SemanticDC; DeclContext *LexicalDC; }; /// DeclCtx - Holds either a DeclContext* or a MultipleDC*. /// For declarations that don't contain C++ scope specifiers, it contains /// the DeclContext where the Decl was declared. /// For declarations with C++ scope specifiers, it contains a MultipleDC* /// with the context where it semantically belongs (SemanticDC) and the /// context where it was lexically declared (LexicalDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace llvm::PointerUnion DeclCtx; bool isInSemaDC() const { return DeclCtx.is(); } bool isOutOfSemaDC() const { return DeclCtx.is(); } MultipleDC *getMultipleDC() const { return DeclCtx.get(); } DeclContext *getSemanticDC() const { return DeclCtx.get(); } /// Loc - The location of this decl. SourceLocation Loc; /// DeclKind - This indicates which class this is. unsigned DeclKind : 7; /// InvalidDecl - This indicates a semantic error occurred. unsigned InvalidDecl : 1; /// HasAttrs - This indicates whether the decl has attributes or not. unsigned HasAttrs : 1; /// Implicit - Whether this declaration was implicitly generated by /// the implementation rather than explicitly written by the user. unsigned Implicit : 1; /// Whether this declaration was "used", meaning that a definition is /// required. unsigned Used : 1; /// Whether this declaration was "referenced". /// The difference with 'Used' is whether the reference appears in a /// evaluated context or not, e.g. functions used in uninstantiated templates /// are regarded as "referenced" but not "used". unsigned Referenced : 1; /// Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. unsigned TopLevelDeclInObjCContainer : 1; /// Whether statistic collection is enabled. static bool StatisticsEnabled; protected: friend class ASTDeclReader; friend class ASTDeclWriter; friend class ASTNodeImporter; friend class ASTReader; friend class CXXClassMemberWrapper; friend class LinkageComputer; template friend class Redeclarable; /// Access - Used by C++ decls for the access specifier. // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum unsigned Access : 2; /// Whether this declaration was loaded from an AST file. unsigned FromASTFile : 1; /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in. unsigned IdentifierNamespace : 13; /// If 0, we have not computed the linkage of this declaration. /// Otherwise, it is the linkage + 1. mutable unsigned CacheValidAndLinkage : 3; /// Allocate memory for a deserialized declaration. /// /// This routine must be used to allocate memory for any declaration that is /// deserialized from a module file. /// /// \param Size The size of the allocated object. /// \param Ctx The context in which we will allocate memory. /// \param ID The global ID of the deserialized declaration. /// \param Extra The amount of extra space to allocate after the object. void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID, std::size_t Extra = 0); /// Allocate memory for a non-deserialized declaration. void *operator new(std::size_t Size, const ASTContext &Ctx, DeclContext *Parent, std::size_t Extra = 0); private: bool AccessDeclContextSanity() const; /// Get the module ownership kind to use for a local lexical child of \p DC, /// which may be either a local or (rarely) an imported declaration. static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) { if (DC) { auto *D = cast(DC); auto MOK = D->getModuleOwnershipKind(); if (MOK != ModuleOwnershipKind::Unowned && (!D->isFromASTFile() || D->hasLocalOwningModuleStorage())) return MOK; // If D is not local and we have no local module storage, then we don't // need to track module ownership at all. } return ModuleOwnershipKind::Unowned; } protected: Decl(Kind DK, DeclContext *DC, SourceLocation L) : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)), DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false), Used(false), Referenced(false), TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), CacheValidAndLinkage(0) { if (StatisticsEnabled) add(DK); } Decl(Kind DK, EmptyShell Empty) : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false), Used(false), Referenced(false), TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), CacheValidAndLinkage(0) { if (StatisticsEnabled) add(DK); } virtual ~Decl(); /// Update a potentially out-of-date declaration. void updateOutOfDate(IdentifierInfo &II) const; Linkage getCachedLinkage() const { return Linkage(CacheValidAndLinkage - 1); } void setCachedLinkage(Linkage L) const { CacheValidAndLinkage = L + 1; } bool hasCachedLinkage() const { return CacheValidAndLinkage; } public: /// Source range that this declaration covers. virtual SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLocation(), getLocation()); } SourceLocation getBeginLoc() const LLVM_READONLY { return getSourceRange().getBegin(); } SourceLocation getEndLoc() const LLVM_READONLY { return getSourceRange().getEnd(); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } Kind getKind() const { return static_cast(DeclKind); } const char *getDeclKindName() const; Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); } const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();} DeclContext *getDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->SemanticDC; } const DeclContext *getDeclContext() const { return const_cast(this)->getDeclContext(); } /// Find the innermost non-closure ancestor of this declaration, /// walking up through blocks, lambdas, etc. If that ancestor is /// not a code context (!isFunctionOrMethod()), returns null. /// /// A declaration may be its own non-closure context. Decl *getNonClosureContext(); const Decl *getNonClosureContext() const { return const_cast(this)->getNonClosureContext(); } TranslationUnitDecl *getTranslationUnitDecl(); const TranslationUnitDecl *getTranslationUnitDecl() const { return const_cast(this)->getTranslationUnitDecl(); } bool isInAnonymousNamespace() const; bool isInStdNamespace() const; ASTContext &getASTContext() const LLVM_READONLY; void setAccess(AccessSpecifier AS) { Access = AS; assert(AccessDeclContextSanity()); } AccessSpecifier getAccess() const { assert(AccessDeclContextSanity()); return AccessSpecifier(Access); } /// Retrieve the access specifier for this declaration, even though /// it may not yet have been properly set. AccessSpecifier getAccessUnsafe() const { return AccessSpecifier(Access); } bool hasAttrs() const { return HasAttrs; } void setAttrs(const AttrVec& Attrs) { return setAttrsImpl(Attrs, getASTContext()); } AttrVec &getAttrs() { return const_cast(const_cast(this)->getAttrs()); } const AttrVec &getAttrs() const; void dropAttrs(); void addAttr(Attr *A); using attr_iterator = AttrVec::const_iterator; using attr_range = llvm::iterator_range; attr_range attrs() const { return attr_range(attr_begin(), attr_end()); } attr_iterator attr_begin() const { return hasAttrs() ? getAttrs().begin() : nullptr; } attr_iterator attr_end() const { return hasAttrs() ? getAttrs().end() : nullptr; } template void dropAttr() { if (!HasAttrs) return; AttrVec &Vec = getAttrs(); Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa), Vec.end()); if (Vec.empty()) HasAttrs = false; } template llvm::iterator_range> specific_attrs() const { return llvm::make_range(specific_attr_begin(), specific_attr_end()); } template specific_attr_iterator specific_attr_begin() const { return specific_attr_iterator(attr_begin()); } template specific_attr_iterator specific_attr_end() const { return specific_attr_iterator(attr_end()); } template T *getAttr() const { return hasAttrs() ? getSpecificAttr(getAttrs()) : nullptr; } template bool hasAttr() const { return hasAttrs() && hasSpecificAttr(getAttrs()); } /// getMaxAlignment - return the maximum alignment specified by attributes /// on this decl, 0 if there are none. unsigned getMaxAlignment() const; /// setInvalidDecl - Indicates the Decl had a semantic error. This /// allows for graceful error recovery. void setInvalidDecl(bool Invalid = true); bool isInvalidDecl() const { return (bool) InvalidDecl; } /// isImplicit - Indicates whether the declaration was implicitly /// generated by the implementation. If false, this declaration /// was written explicitly in the source code. bool isImplicit() const { return Implicit; } void setImplicit(bool I = true) { Implicit = I; } /// Whether *any* (re-)declaration of the entity was used, meaning that /// a definition is required. /// /// \param CheckUsedAttr When true, also consider the "used" attribute /// (in addition to the "used" bit set by \c setUsed()) when determining /// whether the function is used. bool isUsed(bool CheckUsedAttr = true) const; /// Set whether the declaration is used, in the sense of odr-use. /// /// This should only be used immediately after creating a declaration. /// It intentionally doesn't notify any listeners. void setIsUsed() { getCanonicalDecl()->Used = true; } /// Mark the declaration used, in the sense of odr-use. /// /// This notifies any mutation listeners in addition to setting a bit /// indicating the declaration is used. void markUsed(ASTContext &C); /// Whether any declaration of this entity was referenced. bool isReferenced() const; /// Whether this declaration was referenced. This should not be relied /// upon for anything other than debugging. bool isThisDeclarationReferenced() const { return Referenced; } void setReferenced(bool R = true) { Referenced = R; } /// Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. bool isTopLevelDeclInObjCContainer() const { return TopLevelDeclInObjCContainer; } void setTopLevelDeclInObjCContainer(bool V = true) { TopLevelDeclInObjCContainer = V; } /// Looks on this and related declarations for an applicable /// external source symbol attribute. ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const; /// Whether this declaration was marked as being private to the /// module in which it was defined. bool isModulePrivate() const { return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate; } /// Whether this declaration is exported (by virtue of being lexically /// within an ExportDecl or by being a NamespaceDecl). bool isExported() const; /// Return true if this declaration has an attribute which acts as /// definition of the entity, such as 'alias' or 'ifunc'. bool hasDefiningAttr() const; /// Return this declaration's defining attribute if it has one. const Attr *getDefiningAttr() const; protected: /// Specify that this declaration was marked as being private /// to the module in which it was defined. void setModulePrivate() { // The module-private specifier has no effect on unowned declarations. // FIXME: We should track this in some way for source fidelity. if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned) return; setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate); } /// Set the owning module ID. void setOwningModuleID(unsigned ID) { assert(isFromASTFile() && "Only works on a deserialized declaration"); *((unsigned*)this - 2) = ID; } public: /// Determine the availability of the given declaration. /// /// This routine will determine the most restrictive availability of /// the given declaration (e.g., preferring 'unavailable' to /// 'deprecated'). /// /// \param Message If non-NULL and the result is not \c /// AR_Available, will be set to a (possibly empty) message /// describing why the declaration has not been introduced, is /// deprecated, or is unavailable. /// /// \param EnclosingVersion The version to compare with. If empty, assume the /// deployment target version. /// /// \param RealizedPlatform If non-NULL and the availability result is found /// in an available attribute it will set to the platform which is written in /// the available attribute. AvailabilityResult getAvailability(std::string *Message = nullptr, VersionTuple EnclosingVersion = VersionTuple(), StringRef *RealizedPlatform = nullptr) const; /// Retrieve the version of the target platform in which this /// declaration was introduced. /// /// \returns An empty version tuple if this declaration has no 'introduced' /// availability attributes, or the version tuple that's specified in the /// attribute otherwise. VersionTuple getVersionIntroduced() const; /// Determine whether this declaration is marked 'deprecated'. /// /// \param Message If non-NULL and the declaration is deprecated, /// this will be set to the message describing why the declaration /// was deprecated (which may be empty). bool isDeprecated(std::string *Message = nullptr) const { return getAvailability(Message) == AR_Deprecated; } /// Determine whether this declaration is marked 'unavailable'. /// /// \param Message If non-NULL and the declaration is unavailable, /// this will be set to the message describing why the declaration /// was made unavailable (which may be empty). bool isUnavailable(std::string *Message = nullptr) const { return getAvailability(Message) == AR_Unavailable; } /// Determine whether this is a weak-imported symbol. /// /// Weak-imported symbols are typically marked with the /// 'weak_import' attribute, but may also be marked with an /// 'availability' attribute where we're targing a platform prior to /// the introduction of this feature. bool isWeakImported() const; /// Determines whether this symbol can be weak-imported, /// e.g., whether it would be well-formed to add the weak_import /// attribute. /// /// \param IsDefinition Set to \c true to indicate that this /// declaration cannot be weak-imported because it has a definition. bool canBeWeakImported(bool &IsDefinition) const; /// Determine whether this declaration came from an AST file (such as /// a precompiled header or module) rather than having been parsed. bool isFromASTFile() const { return FromASTFile; } /// Retrieve the global declaration ID associated with this /// declaration, which specifies where this Decl was loaded from. unsigned getGlobalID() const { if (isFromASTFile()) return *((const unsigned*)this - 1); return 0; } /// Retrieve the global ID of the module that owns this particular /// declaration. unsigned getOwningModuleID() const { if (isFromASTFile()) return *((const unsigned*)this - 2); return 0; } private: Module *getOwningModuleSlow() const; protected: bool hasLocalOwningModuleStorage() const; public: /// Get the imported owning module, if this decl is from an imported /// (non-local) module. Module *getImportedOwningModule() const { if (!isFromASTFile() || !hasOwningModule()) return nullptr; return getOwningModuleSlow(); } /// Get the local owning module, if known. Returns nullptr if owner is /// not yet known or declaration is not from a module. Module *getLocalOwningModule() const { if (isFromASTFile() || !hasOwningModule()) return nullptr; assert(hasLocalOwningModuleStorage() && "owned local decl but no local module storage"); return reinterpret_cast(this)[-1]; } void setLocalOwningModule(Module *M) { assert(!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && "should not have a cached owning module"); reinterpret_cast(this)[-1] = M; } /// Is this declaration owned by some module? bool hasOwningModule() const { return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned; } /// Get the module that owns this declaration (for visibility purposes). Module *getOwningModule() const { return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule(); } /// Get the module that owns this declaration for linkage purposes. /// There only ever is such a module under the C++ Modules TS. /// /// \param IgnoreLinkage Ignore the linkage of the entity; assume that /// all declarations in a global module fragment are unowned. Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const; /// Determine whether this declaration might be hidden from name /// lookup. Note that the declaration might be visible even if this returns /// \c false, if the owning module is visible within the query context. // FIXME: Rename this to make it clearer what it does. bool isHidden() const { return (int)getModuleOwnershipKind() > (int)ModuleOwnershipKind::Visible; } /// Set that this declaration is globally visible, even if it came from a /// module that is not visible. void setVisibleDespiteOwningModule() { if (isHidden()) setModuleOwnershipKind(ModuleOwnershipKind::Visible); } /// Get the kind of module ownership for this declaration. ModuleOwnershipKind getModuleOwnershipKind() const { return NextInContextAndBits.getInt(); } /// Set whether this declaration is hidden from name lookup. void setModuleOwnershipKind(ModuleOwnershipKind MOK) { assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"); NextInContextAndBits.setInt(MOK); } unsigned getIdentifierNamespace() const { return IdentifierNamespace; } bool isInIdentifierNamespace(unsigned NS) const { return getIdentifierNamespace() & NS; } static unsigned getIdentifierNamespaceForKind(Kind DK); bool hasTagIdentifierNamespace() const { return isTagIdentifierNamespace(getIdentifierNamespace()); } static bool isTagIdentifierNamespace(unsigned NS) { // TagDecls have Tag and Type set and may also have TagFriend. return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type); } /// getLexicalDeclContext - The declaration context where this Decl was /// lexically declared (LexicalDC). May be different from /// getDeclContext() (SemanticDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace DeclContext *getLexicalDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->LexicalDC; } const DeclContext *getLexicalDeclContext() const { return const_cast(this)->getLexicalDeclContext(); } /// Determine whether this declaration is declared out of line (outside its /// semantic context). virtual bool isOutOfLine() const; /// setDeclContext - Set both the semantic and lexical DeclContext /// to DC. void setDeclContext(DeclContext *DC); void setLexicalDeclContext(DeclContext *DC); /// Determine whether this declaration is a templated entity (whether it is // within the scope of a template parameter). bool isTemplated() const; /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this /// scoped decl is defined outside the current function or method. This is /// roughly global variables and functions, but also handles enums (which /// could be defined inside or outside a function etc). bool isDefinedOutsideFunctionOrMethod() const { return getParentFunctionOrMethod() == nullptr; } /// Returns true if this declaration lexically is inside a function. /// It recognizes non-defining declarations as well as members of local /// classes: /// \code /// void foo() { void bar(); } /// void foo2() { class ABC { void bar(); }; } /// \endcode bool isLexicallyWithinFunctionOrMethod() const; /// If this decl is defined inside a function/method/block it returns /// the corresponding DeclContext, otherwise it returns null. const DeclContext *getParentFunctionOrMethod() const; DeclContext *getParentFunctionOrMethod() { return const_cast( const_cast(this)->getParentFunctionOrMethod()); } /// Retrieves the "canonical" declaration of the given declaration. virtual Decl *getCanonicalDecl() { return this; } const Decl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } /// Whether this particular Decl is a canonical one. bool isCanonicalDecl() const { return getCanonicalDecl() == this; } protected: /// Returns the next redeclaration or itself if this is the only decl. /// /// Decl subclasses that can be redeclared should override this method so that /// Decl::redecl_iterator can iterate over them. virtual Decl *getNextRedeclarationImpl() { return this; } /// Implementation of getPreviousDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getPreviousDeclImpl() { return nullptr; } /// Implementation of getMostRecentDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getMostRecentDeclImpl() { return this; } public: /// Iterates through all the redeclarations of the same decl. class redecl_iterator { /// Current - The current declaration. Decl *Current = nullptr; Decl *Starter; public: using value_type = Decl *; using reference = const value_type &; using pointer = const value_type *; using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; redecl_iterator() = default; explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {} reference operator*() const { return Current; } value_type operator->() const { return Current; } redecl_iterator& operator++() { assert(Current && "Advancing while iterator has reached end"); // Get either previous decl or latest decl. Decl *Next = Current->getNextRedeclarationImpl(); assert(Next && "Should return next redeclaration or itself, never null!"); Current = (Next != Starter) ? Next : nullptr; return *this; } redecl_iterator operator++(int) { redecl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(redecl_iterator x, redecl_iterator y) { return x.Current == y.Current; } friend bool operator!=(redecl_iterator x, redecl_iterator y) { return x.Current != y.Current; } }; using redecl_range = llvm::iterator_range; /// Returns an iterator range for all the redeclarations of the same /// decl. It will iterate at least once (when this decl is the only one). redecl_range redecls() const { return redecl_range(redecls_begin(), redecls_end()); } redecl_iterator redecls_begin() const { return redecl_iterator(const_cast(this)); } redecl_iterator redecls_end() const { return redecl_iterator(); } /// Retrieve the previous declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. Decl *getPreviousDecl() { return getPreviousDeclImpl(); } /// Retrieve the most recent declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. const Decl *getPreviousDecl() const { return const_cast(this)->getPreviousDeclImpl(); } /// True if this is the first declaration in its redeclaration chain. bool isFirstDecl() const { return getPreviousDecl() == nullptr; } /// Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); } /// Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). const Decl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDeclImpl(); } /// getBody - If this Decl represents a declaration for a body of code, /// such as a function or method definition, this method returns the /// top-level Stmt* of that body. Otherwise this method returns null. virtual Stmt* getBody() const { return nullptr; } /// Returns true if this \c Decl represents a declaration for a body of /// code, such as a function or method definition. /// Note that \c hasBody can also return true if any redeclaration of this /// \c Decl represents a declaration for a body of code. virtual bool hasBody() const { return getBody() != nullptr; } /// getBodyRBrace - Gets the right brace of the body, if a body exists. /// This works whether the body is a CompoundStmt or a CXXTryStmt. SourceLocation getBodyRBrace() const; // global temp stats (until we have a per-module visitor) static void add(Kind k); static void EnableStatistics(); static void PrintStats(); /// isTemplateParameter - Determines whether this declaration is a /// template parameter. bool isTemplateParameter() const; /// isTemplateParameter - Determines whether this declaration is a /// template parameter pack. bool isTemplateParameterPack() const; /// Whether this declaration is a parameter pack. bool isParameterPack() const; /// returns true if this declaration is a template bool isTemplateDecl() const; /// Whether this declaration is a function or function template. bool isFunctionOrFunctionTemplate() const { return (DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction) || DeclKind == FunctionTemplate; } /// If this is a declaration that describes some template, this /// method returns that template declaration. TemplateDecl *getDescribedTemplate() const; /// Returns the function itself, or the templated function if this is a /// function template. FunctionDecl *getAsFunction() LLVM_READONLY; const FunctionDecl *getAsFunction() const { return const_cast(this)->getAsFunction(); } /// Changes the namespace of this declaration to reflect that it's /// a function-local extern declaration. /// /// These declarations appear in the lexical context of the extern /// declaration, but in the semantic context of the enclosing namespace /// scope. void setLocalExternDecl() { Decl *Prev = getPreviousDecl(); IdentifierNamespace &= ~IDNS_Ordinary; // It's OK for the declaration to still have the "invisible friend" flag or // the "conflicts with tag declarations in this scope" flag for the outer // scope. assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && "namespace is not ordinary"); IdentifierNamespace |= IDNS_LocalExtern; if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary) IdentifierNamespace |= IDNS_Ordinary; } /// Determine whether this is a block-scope declaration with linkage. /// This will either be a local variable declaration declared 'extern', or a /// local function declaration. bool isLocalExternDecl() { return IdentifierNamespace & IDNS_LocalExtern; } /// Changes the namespace of this declaration to reflect that it's /// the object of a friend declaration. /// /// These declarations appear in the lexical context of the friending /// class, but in the semantic context of the actual entity. This property /// applies only to a specific decl object; other redeclarations of the /// same entity may not (and probably don't) share this property. void setObjectOfFriendDecl(bool PerformFriendInjection = false) { unsigned OldNS = IdentifierNamespace; assert((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"); assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes other than ordinary or tag"); Decl *Prev = getPreviousDecl(); IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type); if (OldNS & (IDNS_Tag | IDNS_TagFriend)) { IdentifierNamespace |= IDNS_TagFriend; if (PerformFriendInjection || (Prev && Prev->getIdentifierNamespace() & IDNS_Tag)) IdentifierNamespace |= IDNS_Tag | IDNS_Type; } if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) { IdentifierNamespace |= IDNS_OrdinaryFriend; if (PerformFriendInjection || (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)) IdentifierNamespace |= IDNS_Ordinary; } } enum FriendObjectKind { FOK_None, ///< Not a friend object. FOK_Declared, ///< A friend of a previously-declared entity. FOK_Undeclared ///< A friend of a previously-undeclared entity. }; /// Determines whether this declaration is the object of a /// friend declaration and, if so, what kind. /// /// There is currently no direct way to find the associated FriendDecl. FriendObjectKind getFriendObjectKind() const { unsigned mask = (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend)); if (!mask) return FOK_None; return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared : FOK_Undeclared); } /// Specifies that this declaration is a C++ overloaded non-member. void setNonMemberOperator() { assert(getKind() == Function || getKind() == FunctionTemplate); assert((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"); IdentifierNamespace |= IDNS_NonMemberOperator; } static bool classofKind(Kind K) { return true; } static DeclContext *castToDeclContext(const Decl *); static Decl *castFromDeclContext(const DeclContext *); void print(raw_ostream &Out, unsigned Indentation = 0, bool PrintInstantiation = false) const; void print(raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0, bool PrintInstantiation = false) const; static void printGroup(Decl** Begin, unsigned NumDecls, raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0); // Debuggers don't usually respect default arguments. void dump() const; // Same as dump(), but forces color printing. void dumpColor() const; void dump(raw_ostream &Out, bool Deserialize = false) const; /// \return Unique reproducible object identifier int64_t getID() const; /// Looks through the Decl's underlying type to extract a FunctionType /// when possible. Will return null if the type underlying the Decl does not /// have a FunctionType. const FunctionType *getFunctionType(bool BlocksToo = true) const; private: void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx); void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC, ASTContext &Ctx); protected: ASTMutationListener *getASTMutationListener() const; }; /// Determine whether two declarations declare the same entity. inline bool declaresSameEntity(const Decl *D1, const Decl *D2) { if (!D1 || !D2) return false; if (D1 == D2) return true; return D1->getCanonicalDecl() == D2->getCanonicalDecl(); } /// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when /// doing something to a specific decl. class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry { const Decl *TheDecl; SourceLocation Loc; SourceManager &SM; const char *Message; public: PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L, SourceManager &sm, const char *Msg) : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {} void print(raw_ostream &OS) const override; }; /// The results of name lookup within a DeclContext. This is either a /// single result (with no stable storage) or a collection of results (with /// stable storage provided by the lookup table). class DeclContextLookupResult { using ResultTy = ArrayRef; ResultTy Result; // If there is only one lookup result, it would be invalidated by // reallocations of the name table, so store it separately. NamedDecl *Single = nullptr; static NamedDecl *const SingleElementDummyList; public: DeclContextLookupResult() = default; DeclContextLookupResult(ArrayRef Result) : Result(Result) {} DeclContextLookupResult(NamedDecl *Single) : Result(SingleElementDummyList), Single(Single) {} class iterator; using IteratorBase = llvm::iterator_adaptor_base; class iterator : public IteratorBase { value_type SingleElement; public: explicit iterator(pointer Pos, value_type Single = nullptr) : IteratorBase(Pos), SingleElement(Single) {} reference operator*() const { return SingleElement ? SingleElement : IteratorBase::operator*(); } }; using const_iterator = iterator; using pointer = iterator::pointer; using reference = iterator::reference; iterator begin() const { return iterator(Result.begin(), Single); } iterator end() const { return iterator(Result.end(), Single); } bool empty() const { return Result.empty(); } pointer data() const { return Single ? &Single : Result.data(); } size_t size() const { return Single ? 1 : Result.size(); } reference front() const { return Single ? Single : Result.front(); } reference back() const { return Single ? Single : Result.back(); } reference operator[](size_t N) const { return Single ? Single : Result[N]; } // FIXME: Remove this from the interface DeclContextLookupResult slice(size_t N) const { DeclContextLookupResult Sliced = Result.slice(N); Sliced.Single = Single; return Sliced; } }; /// DeclContext - This is used only as base class of specific decl types that /// can act as declaration contexts. These decls are (only the top classes /// that directly derive from DeclContext are mentioned, not their subclasses): /// /// TranslationUnitDecl /// ExternCContext /// NamespaceDecl /// TagDecl /// OMPDeclareReductionDecl /// FunctionDecl /// ObjCMethodDecl /// ObjCContainerDecl /// LinkageSpecDecl /// ExportDecl /// BlockDecl /// CapturedDecl class DeclContext { /// For makeDeclVisibleInContextImpl friend class ASTDeclReader; /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap, /// hasNeedToReconcileExternalVisibleStorage friend class ExternalASTSource; /// For CreateStoredDeclsMap friend class DependentDiagnostic; /// For hasNeedToReconcileExternalVisibleStorage, /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups friend class ASTWriter; // We use uint64_t in the bit-fields below since some bit-fields // cross the unsigned boundary and this breaks the packing. /// Stores the bits used by DeclContext. /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor /// methods in DeclContext should be updated appropriately. class DeclContextBitfields { friend class DeclContext; /// DeclKind - This indicates which class this is. uint64_t DeclKind : 7; /// Whether this declaration context also has some external /// storage that contains additional declarations that are lexically /// part of this context. mutable uint64_t ExternalLexicalStorage : 1; /// Whether this declaration context also has some external /// storage that contains additional declarations that are visible /// in this context. mutable uint64_t ExternalVisibleStorage : 1; /// Whether this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. mutable uint64_t NeedToReconcileExternalVisibleStorage : 1; /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. mutable uint64_t HasLazyLocalLexicalLookups : 1; /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. mutable uint64_t HasLazyExternalLexicalLookups : 1; /// If \c true, lookups should only return identifier from /// DeclContext scope (for example TranslationUnit). Used in /// LookupQualifiedName() mutable uint64_t UseQualifiedLookup : 1; }; /// Number of bits in DeclContextBitfields. enum { NumDeclContextBits = 13 }; /// Stores the bits used by TagDecl. /// If modified NumTagDeclBits and the accessor /// methods in TagDecl should be updated appropriately. class TagDeclBitfields { friend class TagDecl; /// For the bits in DeclContextBitfields uint64_t : NumDeclContextBits; /// The TagKind enum. uint64_t TagDeclKind : 3; /// True if this is a definition ("struct foo {};"), false if it is a /// declaration ("struct foo;"). It is not considered a definition /// until the definition has been fully processed. uint64_t IsCompleteDefinition : 1; /// True if this is currently being defined. uint64_t IsBeingDefined : 1; /// True if this tag declaration is "embedded" (i.e., defined or declared /// for the very first time) in the syntax of a declarator. uint64_t IsEmbeddedInDeclarator : 1; /// True if this tag is free standing, e.g. "struct foo;". uint64_t IsFreeStanding : 1; /// Indicates whether it is possible for declarations of this kind /// to have an out-of-date definition. /// /// This option is only enabled when modules are enabled. uint64_t MayHaveOutOfDateDef : 1; /// Has the full definition of this type been required by a use somewhere in /// the TU. uint64_t IsCompleteDefinitionRequired : 1; }; /// Number of non-inherited bits in TagDeclBitfields. enum { NumTagDeclBits = 9 }; /// Stores the bits used by EnumDecl. /// If modified NumEnumDeclBit and the accessor /// methods in EnumDecl should be updated appropriately. class EnumDeclBitfields { friend class EnumDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in TagDeclBitfields. uint64_t : NumTagDeclBits; /// Width in bits required to store all the non-negative /// enumerators of this enum. uint64_t NumPositiveBits : 8; /// Width in bits required to store all the negative /// enumerators of this enum. uint64_t NumNegativeBits : 8; /// True if this tag declaration is a scoped enumeration. Only /// possible in C++11 mode. uint64_t IsScoped : 1; /// If this tag declaration is a scoped enum, /// then this is true if the scoped enum was declared using the class /// tag, false if it was declared with the struct tag. No meaning is /// associated if this tag declaration is not a scoped enum. uint64_t IsScopedUsingClassTag : 1; /// True if this is an enumeration with fixed underlying type. Only /// possible in C++11, Microsoft extensions, or Objective C mode. uint64_t IsFixed : 1; /// True if a valid hash is stored in ODRHash. uint64_t HasODRHash : 1; }; /// Number of non-inherited bits in EnumDeclBitfields. enum { NumEnumDeclBits = 20 }; /// Stores the bits used by RecordDecl. /// If modified NumRecordDeclBits and the accessor /// methods in RecordDecl should be updated appropriately. class RecordDeclBitfields { friend class RecordDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in TagDeclBitfields. uint64_t : NumTagDeclBits; /// This is true if this struct ends with a flexible /// array member (e.g. int X[]) or if this union contains a struct that does. /// If so, this cannot be contained in arrays or other structs as a member. uint64_t HasFlexibleArrayMember : 1; /// Whether this is the type of an anonymous struct or union. uint64_t AnonymousStructOrUnion : 1; /// This is true if this struct has at least one member /// containing an Objective-C object pointer type. uint64_t HasObjectMember : 1; /// This is true if struct has at least one member of /// 'volatile' type. uint64_t HasVolatileMember : 1; /// Whether the field declarations of this record have been loaded /// from external storage. To avoid unnecessary deserialization of /// methods/nested types we allow deserialization of just the fields /// when needed. mutable uint64_t LoadedFieldsFromExternalStorage : 1; /// Basic properties of non-trivial C structs. uint64_t NonTrivialToPrimitiveDefaultInitialize : 1; uint64_t NonTrivialToPrimitiveCopy : 1; uint64_t NonTrivialToPrimitiveDestroy : 1; /// Indicates whether this struct is destroyed in the callee. uint64_t ParamDestroyedInCallee : 1; /// Represents the way this type is passed to a function. uint64_t ArgPassingRestrictions : 2; }; /// Number of non-inherited bits in RecordDeclBitfields. enum { NumRecordDeclBits = 11 }; /// Stores the bits used by OMPDeclareReductionDecl. /// If modified NumOMPDeclareReductionDeclBits and the accessor /// methods in OMPDeclareReductionDecl should be updated appropriately. class OMPDeclareReductionDeclBitfields { friend class OMPDeclareReductionDecl; /// For the bits in DeclContextBitfields uint64_t : NumDeclContextBits; /// Kind of initializer, /// function call or omp_priv initializtion. uint64_t InitializerKind : 2; }; /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields. enum { NumOMPDeclareReductionDeclBits = 2 }; /// Stores the bits used by FunctionDecl. /// If modified NumFunctionDeclBits and the accessor /// methods in FunctionDecl and CXXDeductionGuideDecl /// (for IsCopyDeductionCandidate) should be updated appropriately. class FunctionDeclBitfields { friend class FunctionDecl; /// For IsCopyDeductionCandidate friend class CXXDeductionGuideDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; uint64_t SClass : 3; uint64_t IsInline : 1; uint64_t IsInlineSpecified : 1; /// This is shared by CXXConstructorDecl, /// CXXConversionDecl, and CXXDeductionGuideDecl. uint64_t IsExplicitSpecified : 1; uint64_t IsVirtualAsWritten : 1; uint64_t IsPure : 1; uint64_t HasInheritedPrototype : 1; uint64_t HasWrittenPrototype : 1; uint64_t IsDeleted : 1; /// Used by CXXMethodDecl uint64_t IsTrivial : 1; /// This flag indicates whether this function is trivial for the purpose of /// calls. This is meaningful only when this function is a copy/move /// constructor or a destructor. uint64_t IsTrivialForCall : 1; /// Used by CXXMethodDecl uint64_t IsDefaulted : 1; /// Used by CXXMethodDecl uint64_t IsExplicitlyDefaulted : 1; uint64_t HasImplicitReturnZero : 1; uint64_t IsLateTemplateParsed : 1; uint64_t IsConstexpr : 1; uint64_t InstantiationIsPending : 1; /// Indicates if the function uses __try. uint64_t UsesSEHTry : 1; /// Indicates if the function was a definition /// but its body was skipped. uint64_t HasSkippedBody : 1; /// Indicates if the function declaration will /// have a body, once we're done parsing it. uint64_t WillHaveBody : 1; /// Indicates that this function is a multiversioned /// function using attribute 'target'. uint64_t IsMultiVersion : 1; /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that /// the Deduction Guide is the implicitly generated 'copy /// deduction candidate' (is used during overload resolution). uint64_t IsCopyDeductionCandidate : 1; /// Store the ODRHash after first calculation. uint64_t HasODRHash : 1; }; /// Number of non-inherited bits in FunctionDeclBitfields. enum { NumFunctionDeclBits = 25 }; /// Stores the bits used by CXXConstructorDecl. If modified /// NumCXXConstructorDeclBits and the accessor /// methods in CXXConstructorDecl should be updated appropriately. class CXXConstructorDeclBitfields { friend class CXXConstructorDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in FunctionDeclBitfields. uint64_t : NumFunctionDeclBits; /// 25 bits to fit in the remaining availible space. /// Note that this makes CXXConstructorDeclBitfields take /// exactly 64 bits and thus the width of NumCtorInitializers /// will need to be shrunk if some bit is added to NumDeclContextBitfields, /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields. uint64_t NumCtorInitializers : 25; uint64_t IsInheritingConstructor : 1; }; /// Number of non-inherited bits in CXXConstructorDeclBitfields. enum { NumCXXConstructorDeclBits = 26 }; /// Stores the bits used by ObjCMethodDecl. /// If modified NumObjCMethodDeclBits and the accessor /// methods in ObjCMethodDecl should be updated appropriately. class ObjCMethodDeclBitfields { friend class ObjCMethodDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// The conventional meaning of this method; an ObjCMethodFamily. /// This is not serialized; instead, it is computed on demand and /// cached. mutable uint64_t Family : ObjCMethodFamilyBitWidth; /// instance (true) or class (false) method. uint64_t IsInstance : 1; uint64_t IsVariadic : 1; /// True if this method is the getter or setter for an explicit property. uint64_t IsPropertyAccessor : 1; /// Method has a definition. uint64_t IsDefined : 1; /// Method redeclaration in the same interface. uint64_t IsRedeclaration : 1; /// Is redeclared in the same interface. mutable uint64_t HasRedeclaration : 1; /// \@required/\@optional uint64_t DeclImplementation : 2; /// in, inout, etc. uint64_t objcDeclQualifier : 7; /// Indicates whether this method has a related result type. uint64_t RelatedResultType : 1; /// Whether the locations of the selector identifiers are in a /// "standard" position, a enum SelectorLocationsKind. uint64_t SelLocsKind : 2; /// Whether this method overrides any other in the class hierarchy. /// /// A method is said to override any method in the class's /// base classes, its protocols, or its categories' protocols, that has /// the same selector and is of the same kind (class or instance). /// A method in an implementation is not considered as overriding the same /// method in the interface or its categories. uint64_t IsOverriding : 1; /// Indicates if the method was a definition but its body was skipped. uint64_t HasSkippedBody : 1; }; /// Number of non-inherited bits in ObjCMethodDeclBitfields. enum { NumObjCMethodDeclBits = 24 }; /// Stores the bits used by ObjCContainerDecl. /// If modified NumObjCContainerDeclBits and the accessor /// methods in ObjCContainerDecl should be updated appropriately. class ObjCContainerDeclBitfields { friend class ObjCContainerDecl; /// For the bits in DeclContextBitfields uint32_t : NumDeclContextBits; // Not a bitfield but this saves space. // Note that ObjCContainerDeclBitfields is full. SourceLocation AtStart; }; /// Number of non-inherited bits in ObjCContainerDeclBitfields. /// Note that here we rely on the fact that SourceLocation is 32 bits /// wide. We check this with the static_assert in the ctor of DeclContext. enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits }; /// Stores the bits used by LinkageSpecDecl. /// If modified NumLinkageSpecDeclBits and the accessor /// methods in LinkageSpecDecl should be updated appropriately. class LinkageSpecDeclBitfields { friend class LinkageSpecDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// The language for this linkage specification with values /// in the enum LinkageSpecDecl::LanguageIDs. uint64_t Language : 3; /// True if this linkage spec has braces. /// This is needed so that hasBraces() returns the correct result while the /// linkage spec body is being parsed. Once RBraceLoc has been set this is /// not used, so it doesn't need to be serialized. uint64_t HasBraces : 1; }; /// Number of non-inherited bits in LinkageSpecDeclBitfields. enum { NumLinkageSpecDeclBits = 4 }; /// Stores the bits used by BlockDecl. /// If modified NumBlockDeclBits and the accessor /// methods in BlockDecl should be updated appropriately. class BlockDeclBitfields { friend class BlockDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; uint64_t IsVariadic : 1; uint64_t CapturesCXXThis : 1; uint64_t BlockMissingReturnType : 1; uint64_t IsConversionFromLambda : 1; /// A bit that indicates this block is passed directly to a function as a /// non-escaping parameter. uint64_t DoesNotEscape : 1; }; /// Number of non-inherited bits in BlockDeclBitfields. enum { NumBlockDeclBits = 5 }; /// Pointer to the data structure used to lookup declarations /// within this context (or a DependentStoredDeclsMap if this is a /// dependent context). We maintain the invariant that, if the map /// contains an entry for a DeclarationName (and we haven't lazily /// omitted anything), then it contains all relevant entries for that /// name (modulo the hasExternalDecls() flag). mutable StoredDeclsMap *LookupPtr = nullptr; protected: /// This anonymous union stores the bits belonging to DeclContext and classes /// deriving from it. The goal is to use otherwise wasted /// space in DeclContext to store data belonging to derived classes. /// The space saved is especially significient when pointers are aligned /// to 8 bytes. In this case due to alignment requirements we have a /// little less than 8 bytes free in DeclContext which we can use. /// We check that none of the classes in this union is larger than /// 8 bytes with static_asserts in the ctor of DeclContext. union { DeclContextBitfields DeclContextBits; TagDeclBitfields TagDeclBits; EnumDeclBitfields EnumDeclBits; RecordDeclBitfields RecordDeclBits; OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits; FunctionDeclBitfields FunctionDeclBits; CXXConstructorDeclBitfields CXXConstructorDeclBits; ObjCMethodDeclBitfields ObjCMethodDeclBits; ObjCContainerDeclBitfields ObjCContainerDeclBits; LinkageSpecDeclBitfields LinkageSpecDeclBits; BlockDeclBitfields BlockDeclBits; - - static_assert(sizeof(DeclContextBitfields) <= 8, - "DeclContextBitfields is larger than 8 bytes!"); - static_assert(sizeof(TagDeclBitfields) <= 8, - "TagDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(EnumDeclBitfields) <= 8, - "EnumDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(RecordDeclBitfields) <= 8, - "RecordDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8, - "OMPDeclareReductionDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(FunctionDeclBitfields) <= 8, - "FunctionDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(CXXConstructorDeclBitfields) <= 8, - "CXXConstructorDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(ObjCMethodDeclBitfields) <= 8, - "ObjCMethodDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(ObjCContainerDeclBitfields) <= 8, - "ObjCContainerDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(LinkageSpecDeclBitfields) <= 8, - "LinkageSpecDeclBitfields is larger than 8 bytes!"); - static_assert(sizeof(BlockDeclBitfields) <= 8, - "BlockDeclBitfields is larger than 8 bytes!"); }; + + static_assert(sizeof(DeclContextBitfields) <= 8, + "DeclContextBitfields is larger than 8 bytes!"); + static_assert(sizeof(TagDeclBitfields) <= 8, + "TagDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(EnumDeclBitfields) <= 8, + "EnumDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(RecordDeclBitfields) <= 8, + "RecordDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8, + "OMPDeclareReductionDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(FunctionDeclBitfields) <= 8, + "FunctionDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(CXXConstructorDeclBitfields) <= 8, + "CXXConstructorDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(ObjCMethodDeclBitfields) <= 8, + "ObjCMethodDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(ObjCContainerDeclBitfields) <= 8, + "ObjCContainerDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(LinkageSpecDeclBitfields) <= 8, + "LinkageSpecDeclBitfields is larger than 8 bytes!"); + static_assert(sizeof(BlockDeclBitfields) <= 8, + "BlockDeclBitfields is larger than 8 bytes!"); /// FirstDecl - The first declaration stored within this declaration /// context. mutable Decl *FirstDecl = nullptr; /// LastDecl - The last declaration stored within this declaration /// context. FIXME: We could probably cache this value somewhere /// outside of the DeclContext, to reduce the size of DeclContext by /// another pointer. mutable Decl *LastDecl = nullptr; /// Build up a chain of declarations. /// /// \returns the first/last pair of declarations. static std::pair BuildDeclChain(ArrayRef Decls, bool FieldsAlreadyLoaded); DeclContext(Decl::Kind K); public: ~DeclContext(); Decl::Kind getDeclKind() const { return static_cast(DeclContextBits.DeclKind); } const char *getDeclKindName() const; /// getParent - Returns the containing DeclContext. DeclContext *getParent() { return cast(this)->getDeclContext(); } const DeclContext *getParent() const { return const_cast(this)->getParent(); } /// getLexicalParent - Returns the containing lexical DeclContext. May be /// different from getParent, e.g.: /// /// namespace A { /// struct S; /// } /// struct A::S {}; // getParent() == namespace 'A' /// // getLexicalParent() == translation unit /// DeclContext *getLexicalParent() { return cast(this)->getLexicalDeclContext(); } const DeclContext *getLexicalParent() const { return const_cast(this)->getLexicalParent(); } DeclContext *getLookupParent(); const DeclContext *getLookupParent() const { return const_cast(this)->getLookupParent(); } ASTContext &getParentASTContext() const { return cast(this)->getASTContext(); } bool isClosure() const { return getDeclKind() == Decl::Block; } bool isObjCContainer() const { switch (getDeclKind()) { case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCProtocol: return true; default: return false; } } bool isFunctionOrMethod() const { switch (getDeclKind()) { case Decl::Block: case Decl::Captured: case Decl::ObjCMethod: return true; default: return getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction; } } /// Test whether the context supports looking up names. bool isLookupContext() const { return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export; } bool isFileContext() const { return getDeclKind() == Decl::TranslationUnit || getDeclKind() == Decl::Namespace; } bool isTranslationUnit() const { return getDeclKind() == Decl::TranslationUnit; } bool isRecord() const { return getDeclKind() >= Decl::firstRecord && getDeclKind() <= Decl::lastRecord; } bool isNamespace() const { return getDeclKind() == Decl::Namespace; } bool isStdNamespace() const; bool isInlineNamespace() const; /// Determines whether this context is dependent on a /// template parameter. bool isDependentContext() const; /// isTransparentContext - Determines whether this context is a /// "transparent" context, meaning that the members declared in this /// context are semantically declared in the nearest enclosing /// non-transparent (opaque) context but are lexically declared in /// this context. For example, consider the enumerators of an /// enumeration type: /// @code /// enum E { /// Val1 /// }; /// @endcode /// Here, E is a transparent context, so its enumerator (Val1) will /// appear (semantically) that it is in the same context of E. /// Examples of transparent contexts include: enumerations (except for /// C++0x scoped enums), and C++ linkage specifications. bool isTransparentContext() const; /// Determines whether this context or some of its ancestors is a /// linkage specification context that specifies C linkage. bool isExternCContext() const; /// Retrieve the nearest enclosing C linkage specification context. const LinkageSpecDecl *getExternCContext() const; /// Determines whether this context or some of its ancestors is a /// linkage specification context that specifies C++ linkage. bool isExternCXXContext() const; /// Determine whether this declaration context is equivalent /// to the declaration context DC. bool Equals(const DeclContext *DC) const { return DC && this->getPrimaryContext() == DC->getPrimaryContext(); } /// Determine whether this declaration context encloses the /// declaration context DC. bool Encloses(const DeclContext *DC) const; /// Find the nearest non-closure ancestor of this context, /// i.e. the innermost semantic parent of this context which is not /// a closure. A context may be its own non-closure ancestor. Decl *getNonClosureAncestor(); const Decl *getNonClosureAncestor() const { return const_cast(this)->getNonClosureAncestor(); } /// getPrimaryContext - There may be many different /// declarations of the same entity (including forward declarations /// of classes, multiple definitions of namespaces, etc.), each with /// a different set of declarations. This routine returns the /// "primary" DeclContext structure, which will contain the /// information needed to perform name lookup into this context. DeclContext *getPrimaryContext(); const DeclContext *getPrimaryContext() const { return const_cast(this)->getPrimaryContext(); } /// getRedeclContext - Retrieve the context in which an entity conflicts with /// other entities of the same name, or where it is a redeclaration if the /// two entities are compatible. This skips through transparent contexts. DeclContext *getRedeclContext(); const DeclContext *getRedeclContext() const { return const_cast(this)->getRedeclContext(); } /// Retrieve the nearest enclosing namespace context. DeclContext *getEnclosingNamespaceContext(); const DeclContext *getEnclosingNamespaceContext() const { return const_cast(this)->getEnclosingNamespaceContext(); } /// Retrieve the outermost lexically enclosing record context. RecordDecl *getOuterLexicalRecordContext(); const RecordDecl *getOuterLexicalRecordContext() const { return const_cast(this)->getOuterLexicalRecordContext(); } /// Test if this context is part of the enclosing namespace set of /// the context NS, as defined in C++0x [namespace.def]p9. If either context /// isn't a namespace, this is equivalent to Equals(). /// /// The enclosing namespace set of a namespace is the namespace and, if it is /// inline, its enclosing namespace, recursively. bool InEnclosingNamespaceSetOf(const DeclContext *NS) const; /// Collects all of the declaration contexts that are semantically /// connected to this declaration context. /// /// For declaration contexts that have multiple semantically connected but /// syntactically distinct contexts, such as C++ namespaces, this routine /// retrieves the complete set of such declaration contexts in source order. /// For example, given: /// /// \code /// namespace N { /// int x; /// } /// namespace N { /// int y; /// } /// \endcode /// /// The \c Contexts parameter will contain both definitions of N. /// /// \param Contexts Will be cleared and set to the set of declaration /// contexts that are semanticaly connected to this declaration context, /// in source order, including this context (which may be the only result, /// for non-namespace contexts). void collectAllContexts(SmallVectorImpl &Contexts); /// decl_iterator - Iterates through the declarations stored /// within this context. class decl_iterator { /// Current - The current declaration. Decl *Current = nullptr; public: using value_type = Decl *; using reference = const value_type &; using pointer = const value_type *; using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; decl_iterator() = default; explicit decl_iterator(Decl *C) : Current(C) {} reference operator*() const { return Current; } // This doesn't meet the iterator requirements, but it's convenient value_type operator->() const { return Current; } decl_iterator& operator++() { Current = Current->getNextDeclInContext(); return *this; } decl_iterator operator++(int) { decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(decl_iterator x, decl_iterator y) { return x.Current == y.Current; } friend bool operator!=(decl_iterator x, decl_iterator y) { return x.Current != y.Current; } }; using decl_range = llvm::iterator_range; /// decls_begin/decls_end - Iterate over the declarations stored in /// this context. decl_range decls() const { return decl_range(decls_begin(), decls_end()); } decl_iterator decls_begin() const; decl_iterator decls_end() const { return decl_iterator(); } bool decls_empty() const; /// noload_decls_begin/end - Iterate over the declarations stored in this /// context that are currently loaded; don't attempt to retrieve anything /// from an external source. decl_range noload_decls() const { return decl_range(noload_decls_begin(), noload_decls_end()); } decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); } decl_iterator noload_decls_end() const { return decl_iterator(); } /// specific_decl_iterator - Iterates over a subrange of /// declarations stored in a DeclContext, providing only those that /// are of type SpecificDecl (or a class derived from it). This /// iterator is used, for example, to provide iteration over just /// the fields within a RecordDecl (with SpecificDecl = FieldDecl). template class specific_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && !isa(*Current)) ++Current; } public: using value_type = SpecificDecl *; // TODO: Add reference and pointer types (with some appropriate proxy type) // if we ever have a need for them. using reference = void; using pointer = void; using difference_type = std::iterator_traits::difference_type; using iterator_category = std::forward_iterator_tag; specific_decl_iterator() = default; /// specific_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } value_type operator*() const { return cast(*Current); } // This doesn't meet the iterator requirements, but it's convenient value_type operator->() const { return **this; } specific_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } specific_decl_iterator operator++(int) { specific_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current != y.Current; } }; /// Iterates over a filtered subrange of declarations stored /// in a DeclContext. /// /// This iterator visits only those declarations that are of type /// SpecificDecl (or a class derived from it) and that meet some /// additional run-time criteria. This iterator is used, for /// example, to provide access to the instance methods within an /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and /// Acceptable = ObjCMethodDecl::isInstanceMethod). template class filtered_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && (!isa(*Current) || (Acceptable && !(cast(*Current)->*Acceptable)()))) ++Current; } public: using value_type = SpecificDecl *; // TODO: Add reference and pointer types (with some appropriate proxy type) // if we ever have a need for them. using reference = void; using pointer = void; using difference_type = std::iterator_traits::difference_type; using iterator_category = std::forward_iterator_tag; filtered_decl_iterator() = default; /// filtered_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } value_type operator*() const { return cast(*Current); } value_type operator->() const { return cast(*Current); } filtered_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } filtered_decl_iterator operator++(int) { filtered_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current != y.Current; } }; /// Add the declaration D into this context. /// /// This routine should be invoked when the declaration D has first /// been declared, to place D into the context where it was /// (lexically) defined. Every declaration must be added to one /// (and only one!) context, where it can be visited via /// [decls_begin(), decls_end()). Once a declaration has been added /// to its lexical context, the corresponding DeclContext owns the /// declaration. /// /// If D is also a NamedDecl, it will be made visible within its /// semantic context via makeDeclVisibleInContext. void addDecl(Decl *D); /// Add the declaration D into this context, but suppress /// searches for external declarations with the same name. /// /// Although analogous in function to addDecl, this removes an /// important check. This is only useful if the Decl is being /// added in response to an external search; in all other cases, /// addDecl() is the right function to use. /// See the ASTImporter for use cases. void addDeclInternal(Decl *D); /// Add the declaration D to this context without modifying /// any lookup tables. /// /// This is useful for some operations in dependent contexts where /// the semantic context might not be dependent; this basically /// only happens with friends. void addHiddenDecl(Decl *D); /// Removes a declaration from this context. void removeDecl(Decl *D); /// Checks whether a declaration is in this context. bool containsDecl(Decl *D) const; /// Checks whether a declaration is in this context. /// This also loads the Decls from the external source before the check. bool containsDeclAndLoad(Decl *D) const; using lookup_result = DeclContextLookupResult; using lookup_iterator = lookup_result::iterator; /// lookup - Find the declarations (if any) with the given Name in /// this context. Returns a range of iterators that contains all of /// the declarations with this name, with object, function, member, /// and enumerator names preceding any tag name. Note that this /// routine will not look into parent contexts. lookup_result lookup(DeclarationName Name) const; /// Find the declarations with the given name that are visible /// within this context; don't attempt to retrieve anything from an /// external source. lookup_result noload_lookup(DeclarationName Name); /// A simplistic name lookup mechanism that performs name lookup /// into this declaration context without consulting the external source. /// /// This function should almost never be used, because it subverts the /// usual relationship between a DeclContext and the external source. /// See the ASTImporter for the (few, but important) use cases. /// /// FIXME: This is very inefficient; replace uses of it with uses of /// noload_lookup. void localUncachedLookup(DeclarationName Name, SmallVectorImpl &Results); /// Makes a declaration visible within this context. /// /// This routine makes the declaration D visible to name lookup /// within this context and, if this is a transparent context, /// within its parent contexts up to the first enclosing /// non-transparent context. Making a declaration visible within a /// context does not transfer ownership of a declaration, and a /// declaration can be visible in many contexts that aren't its /// lexical context. /// /// If D is a redeclaration of an existing declaration that is /// visible from this context, as determined by /// NamedDecl::declarationReplaces, the previous declaration will be /// replaced with D. void makeDeclVisibleInContext(NamedDecl *D); /// all_lookups_iterator - An iterator that provides a view over the results /// of looking up every possible name. class all_lookups_iterator; using lookups_range = llvm::iterator_range; lookups_range lookups() const; // Like lookups(), but avoids loading external declarations. // If PreserveInternalState, avoids building lookup data structures too. lookups_range noload_lookups(bool PreserveInternalState) const; /// Iterators over all possible lookups within this context. all_lookups_iterator lookups_begin() const; all_lookups_iterator lookups_end() const; /// Iterators over all possible lookups within this context that are /// currently loaded; don't attempt to retrieve anything from an external /// source. all_lookups_iterator noload_lookups_begin() const; all_lookups_iterator noload_lookups_end() const; struct udir_iterator; using udir_iterator_base = llvm::iterator_adaptor_base; struct udir_iterator : udir_iterator_base { udir_iterator(lookup_iterator I) : udir_iterator_base(I) {} UsingDirectiveDecl *operator*() const; }; using udir_range = llvm::iterator_range; udir_range using_directives() const; // These are all defined in DependentDiagnostic.h. class ddiag_iterator; using ddiag_range = llvm::iterator_range; inline ddiag_range ddiags() const; // Low-level accessors /// Mark that there are external lexical declarations that we need /// to include in our lookup table (and that are not available as external /// visible lookups). These extra lookup results will be found by walking /// the lexical declarations of this context. This should be used only if /// setHasExternalLexicalStorage() has been called on any decl context for /// which this is the primary context. void setMustBuildLookupTable() { assert(this == getPrimaryContext() && "should only be called on primary context"); DeclContextBits.HasLazyExternalLexicalLookups = true; } /// Retrieve the internal representation of the lookup structure. /// This may omit some names if we are lazily building the structure. StoredDeclsMap *getLookupPtr() const { return LookupPtr; } /// Ensure the lookup structure is fully-built and return it. StoredDeclsMap *buildLookup(); /// Whether this DeclContext has external storage containing /// additional declarations that are lexically in this context. bool hasExternalLexicalStorage() const { return DeclContextBits.ExternalLexicalStorage; } /// State whether this DeclContext has external storage for /// declarations lexically in this context. void setHasExternalLexicalStorage(bool ES = true) const { DeclContextBits.ExternalLexicalStorage = ES; } /// Whether this DeclContext has external storage containing /// additional declarations that are visible in this context. bool hasExternalVisibleStorage() const { return DeclContextBits.ExternalVisibleStorage; } /// State whether this DeclContext has external storage for /// declarations visible in this context. void setHasExternalVisibleStorage(bool ES = true) const { DeclContextBits.ExternalVisibleStorage = ES; if (ES && LookupPtr) DeclContextBits.NeedToReconcileExternalVisibleStorage = true; } /// Determine whether the given declaration is stored in the list of /// declarations lexically within this context. bool isDeclInLexicalTraversal(const Decl *D) const { return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl || D == LastDecl); } bool setUseQualifiedLookup(bool use = true) const { bool old_value = DeclContextBits.UseQualifiedLookup; DeclContextBits.UseQualifiedLookup = use; return old_value; } bool shouldUseQualifiedLookup() const { return DeclContextBits.UseQualifiedLookup; } static bool classof(const Decl *D); static bool classof(const DeclContext *D) { return true; } void dumpDeclContext() const; void dumpLookups() const; void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false, bool Deserialize = false) const; private: /// Whether this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. bool hasNeedToReconcileExternalVisibleStorage() const { return DeclContextBits.NeedToReconcileExternalVisibleStorage; } /// State that this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. void setNeedToReconcileExternalVisibleStorage(bool Need = true) const { DeclContextBits.NeedToReconcileExternalVisibleStorage = Need; } /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. bool hasLazyLocalLexicalLookups() const { return DeclContextBits.HasLazyLocalLexicalLookups; } /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const { DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL; } /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. bool hasLazyExternalLexicalLookups() const { return DeclContextBits.HasLazyExternalLexicalLookups; } /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. void setHasLazyExternalLexicalLookups(bool HasLELL = true) const { DeclContextBits.HasLazyExternalLexicalLookups = HasLELL; } void reconcileExternalVisibleStorage() const; bool LoadLexicalDeclsFromExternalStorage() const; /// Makes a declaration visible within this context, but /// suppresses searches for external declarations with the same /// name. /// /// Analogous to makeDeclVisibleInContext, but for the exclusive /// use of addDeclInternal(). void makeDeclVisibleInContextInternal(NamedDecl *D); StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const; void loadLazyLocalLexicalLookups(); void buildLookupImpl(DeclContext *DCtx, bool Internal); void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal, bool Rediscoverable); void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal); }; inline bool Decl::isTemplateParameter() const { return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm || getKind() == TemplateTemplateParm; } // Specialization selected when ToTy is not a known subclass of DeclContext. template ::value> struct cast_convert_decl_context { static const ToTy *doit(const DeclContext *Val) { return static_cast(Decl::castFromDeclContext(Val)); } static ToTy *doit(DeclContext *Val) { return static_cast(Decl::castFromDeclContext(Val)); } }; // Specialization selected when ToTy is a known subclass of DeclContext. template struct cast_convert_decl_context { static const ToTy *doit(const DeclContext *Val) { return static_cast(Val); } static ToTy *doit(DeclContext *Val) { return static_cast(Val); } }; } // namespace clang namespace llvm { /// isa(DeclContext*) template struct isa_impl { static bool doit(const ::clang::DeclContext &Val) { return To::classofKind(Val.getDeclKind()); } }; /// cast(DeclContext*) template struct cast_convert_val { static const ToTy &doit(const ::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context::doit(&Val); } }; template struct cast_convert_val { static ToTy &doit(::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context::doit(&Val); } }; template struct cast_convert_val { static const ToTy *doit(const ::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context::doit(Val); } }; template struct cast_convert_val { static ToTy *doit(::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context::doit(Val); } }; /// Implement cast_convert_val for Decl -> DeclContext conversions. template struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> { static ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> { static ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; template struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> { static const ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> { static const ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; } // namespace llvm #endif // LLVM_CLANG_AST_DECLBASE_H Index: head/contrib/llvm/tools/clang/include/clang/AST/Type.h =================================================================== --- head/contrib/llvm/tools/clang/include/clang/AST/Type.h (revision 349875) +++ head/contrib/llvm/tools/clang/include/clang/AST/Type.h (revision 349876) @@ -1,6849 +1,6849 @@ //===- Type.h - C Language Family Type Representation -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// C Language Family Type Representation /// /// This file defines the clang::Type interface and subclasses, used to /// represent types for languages in the C family. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_TYPE_H #define LLVM_CLANG_AST_TYPE_H #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/TemplateName.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/AttrKinds.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Linkage.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/Visibility.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/PointerLikeTypeTraits.h" #include "llvm/Support/type_traits.h" #include "llvm/Support/TrailingObjects.h" #include #include #include #include #include #include #include namespace clang { class ExtQuals; class QualType; class TagDecl; class Type; enum { TypeAlignmentInBits = 4, TypeAlignment = 1 << TypeAlignmentInBits }; } // namespace clang namespace llvm { template struct PointerLikeTypeTraits; template<> struct PointerLikeTypeTraits< ::clang::Type*> { static inline void *getAsVoidPointer(::clang::Type *P) { return P; } static inline ::clang::Type *getFromVoidPointer(void *P) { return static_cast< ::clang::Type*>(P); } enum { NumLowBitsAvailable = clang::TypeAlignmentInBits }; }; template<> struct PointerLikeTypeTraits< ::clang::ExtQuals*> { static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; } static inline ::clang::ExtQuals *getFromVoidPointer(void *P) { return static_cast< ::clang::ExtQuals*>(P); } enum { NumLowBitsAvailable = clang::TypeAlignmentInBits }; }; template <> struct isPodLike { static const bool value = true; }; } // namespace llvm namespace clang { class ASTContext; template class CanQual; class CXXRecordDecl; class DeclContext; class EnumDecl; class Expr; class ExtQualsTypeCommonBase; class FunctionDecl; class IdentifierInfo; class NamedDecl; class ObjCInterfaceDecl; class ObjCProtocolDecl; class ObjCTypeParamDecl; struct PrintingPolicy; class RecordDecl; class Stmt; class TagDecl; class TemplateArgument; class TemplateArgumentListInfo; class TemplateArgumentLoc; class TemplateTypeParmDecl; class TypedefNameDecl; class UnresolvedUsingTypenameDecl; using CanQualType = CanQual; // Provide forward declarations for all of the *Type classes. #define TYPE(Class, Base) class Class##Type; #include "clang/AST/TypeNodes.def" /// The collection of all-type qualifiers we support. /// Clang supports five independent qualifiers: /// * C99: const, volatile, and restrict /// * MS: __unaligned /// * Embedded C (TR18037): address spaces /// * Objective C: the GC attributes (none, weak, or strong) class Qualifiers { public: enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ. Const = 0x1, Restrict = 0x2, Volatile = 0x4, CVRMask = Const | Volatile | Restrict }; enum GC { GCNone = 0, Weak, Strong }; enum ObjCLifetime { /// There is no lifetime qualification on this type. OCL_None, /// This object can be modified without requiring retains or /// releases. OCL_ExplicitNone, /// Assigning into this object requires the old value to be /// released and the new value to be retained. The timing of the /// release of the old value is inexact: it may be moved to /// immediately after the last known point where the value is /// live. OCL_Strong, /// Reading or writing from this object requires a barrier call. OCL_Weak, /// Assigning into this object requires a lifetime extension. OCL_Autoreleasing }; enum { /// The maximum supported address space number. /// 23 bits should be enough for anyone. MaxAddressSpace = 0x7fffffu, /// The width of the "fast" qualifier mask. FastWidth = 3, /// The fast qualifier mask. FastMask = (1 << FastWidth) - 1 }; /// Returns the common set of qualifiers while removing them from /// the given sets. static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) { // If both are only CVR-qualified, bit operations are sufficient. if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) { Qualifiers Q; Q.Mask = L.Mask & R.Mask; L.Mask &= ~Q.Mask; R.Mask &= ~Q.Mask; return Q; } Qualifiers Q; unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers(); Q.addCVRQualifiers(CommonCRV); L.removeCVRQualifiers(CommonCRV); R.removeCVRQualifiers(CommonCRV); if (L.getObjCGCAttr() == R.getObjCGCAttr()) { Q.setObjCGCAttr(L.getObjCGCAttr()); L.removeObjCGCAttr(); R.removeObjCGCAttr(); } if (L.getObjCLifetime() == R.getObjCLifetime()) { Q.setObjCLifetime(L.getObjCLifetime()); L.removeObjCLifetime(); R.removeObjCLifetime(); } if (L.getAddressSpace() == R.getAddressSpace()) { Q.setAddressSpace(L.getAddressSpace()); L.removeAddressSpace(); R.removeAddressSpace(); } return Q; } static Qualifiers fromFastMask(unsigned Mask) { Qualifiers Qs; Qs.addFastQualifiers(Mask); return Qs; } static Qualifiers fromCVRMask(unsigned CVR) { Qualifiers Qs; Qs.addCVRQualifiers(CVR); return Qs; } static Qualifiers fromCVRUMask(unsigned CVRU) { Qualifiers Qs; Qs.addCVRUQualifiers(CVRU); return Qs; } // Deserialize qualifiers from an opaque representation. static Qualifiers fromOpaqueValue(unsigned opaque) { Qualifiers Qs; Qs.Mask = opaque; return Qs; } // Serialize these qualifiers into an opaque representation. unsigned getAsOpaqueValue() const { return Mask; } bool hasConst() const { return Mask & Const; } bool hasOnlyConst() const { return Mask == Const; } void removeConst() { Mask &= ~Const; } void addConst() { Mask |= Const; } bool hasVolatile() const { return Mask & Volatile; } bool hasOnlyVolatile() const { return Mask == Volatile; } void removeVolatile() { Mask &= ~Volatile; } void addVolatile() { Mask |= Volatile; } bool hasRestrict() const { return Mask & Restrict; } bool hasOnlyRestrict() const { return Mask == Restrict; } void removeRestrict() { Mask &= ~Restrict; } void addRestrict() { Mask |= Restrict; } bool hasCVRQualifiers() const { return getCVRQualifiers(); } unsigned getCVRQualifiers() const { return Mask & CVRMask; } unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); } void setCVRQualifiers(unsigned mask) { assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits"); Mask = (Mask & ~CVRMask) | mask; } void removeCVRQualifiers(unsigned mask) { assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits"); Mask &= ~mask; } void removeCVRQualifiers() { removeCVRQualifiers(CVRMask); } void addCVRQualifiers(unsigned mask) { assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits"); Mask |= mask; } void addCVRUQualifiers(unsigned mask) { assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"); Mask |= mask; } bool hasUnaligned() const { return Mask & UMask; } void setUnaligned(bool flag) { Mask = (Mask & ~UMask) | (flag ? UMask : 0); } void removeUnaligned() { Mask &= ~UMask; } void addUnaligned() { Mask |= UMask; } bool hasObjCGCAttr() const { return Mask & GCAttrMask; } GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); } void setObjCGCAttr(GC type) { Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift); } void removeObjCGCAttr() { setObjCGCAttr(GCNone); } void addObjCGCAttr(GC type) { assert(type); setObjCGCAttr(type); } Qualifiers withoutObjCGCAttr() const { Qualifiers qs = *this; qs.removeObjCGCAttr(); return qs; } Qualifiers withoutObjCLifetime() const { Qualifiers qs = *this; qs.removeObjCLifetime(); return qs; } bool hasObjCLifetime() const { return Mask & LifetimeMask; } ObjCLifetime getObjCLifetime() const { return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift); } void setObjCLifetime(ObjCLifetime type) { Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift); } void removeObjCLifetime() { setObjCLifetime(OCL_None); } void addObjCLifetime(ObjCLifetime type) { assert(type); assert(!hasObjCLifetime()); Mask |= (type << LifetimeShift); } /// True if the lifetime is neither None or ExplicitNone. bool hasNonTrivialObjCLifetime() const { ObjCLifetime lifetime = getObjCLifetime(); return (lifetime > OCL_ExplicitNone); } /// True if the lifetime is either strong or weak. bool hasStrongOrWeakObjCLifetime() const { ObjCLifetime lifetime = getObjCLifetime(); return (lifetime == OCL_Strong || lifetime == OCL_Weak); } bool hasAddressSpace() const { return Mask & AddressSpaceMask; } LangAS getAddressSpace() const { return static_cast(Mask >> AddressSpaceShift); } bool hasTargetSpecificAddressSpace() const { return isTargetAddressSpace(getAddressSpace()); } /// Get the address space attribute value to be printed by diagnostics. unsigned getAddressSpaceAttributePrintValue() const { auto Addr = getAddressSpace(); // This function is not supposed to be used with language specific // address spaces. If that happens, the diagnostic message should consider // printing the QualType instead of the address space value. assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace()); if (Addr != LangAS::Default) return toTargetAddressSpace(Addr); // TODO: The diagnostic messages where Addr may be 0 should be fixed // since it cannot differentiate the situation where 0 denotes the default // address space or user specified __attribute__((address_space(0))). return 0; } void setAddressSpace(LangAS space) { assert((unsigned)space <= MaxAddressSpace); Mask = (Mask & ~AddressSpaceMask) | (((uint32_t) space) << AddressSpaceShift); } void removeAddressSpace() { setAddressSpace(LangAS::Default); } void addAddressSpace(LangAS space) { assert(space != LangAS::Default); setAddressSpace(space); } // Fast qualifiers are those that can be allocated directly // on a QualType object. bool hasFastQualifiers() const { return getFastQualifiers(); } unsigned getFastQualifiers() const { return Mask & FastMask; } void setFastQualifiers(unsigned mask) { assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"); Mask = (Mask & ~FastMask) | mask; } void removeFastQualifiers(unsigned mask) { assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"); Mask &= ~mask; } void removeFastQualifiers() { removeFastQualifiers(FastMask); } void addFastQualifiers(unsigned mask) { assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"); Mask |= mask; } /// Return true if the set contains any qualifiers which require an ExtQuals /// node to be allocated. bool hasNonFastQualifiers() const { return Mask & ~FastMask; } Qualifiers getNonFastQualifiers() const { Qualifiers Quals = *this; Quals.setFastQualifiers(0); return Quals; } /// Return true if the set contains any qualifiers. bool hasQualifiers() const { return Mask; } bool empty() const { return !Mask; } /// Add the qualifiers from the given set to this set. void addQualifiers(Qualifiers Q) { // If the other set doesn't have any non-boolean qualifiers, just // bit-or it in. if (!(Q.Mask & ~CVRMask)) Mask |= Q.Mask; else { Mask |= (Q.Mask & CVRMask); if (Q.hasAddressSpace()) addAddressSpace(Q.getAddressSpace()); if (Q.hasObjCGCAttr()) addObjCGCAttr(Q.getObjCGCAttr()); if (Q.hasObjCLifetime()) addObjCLifetime(Q.getObjCLifetime()); } } /// Remove the qualifiers from the given set from this set. void removeQualifiers(Qualifiers Q) { // If the other set doesn't have any non-boolean qualifiers, just // bit-and the inverse in. if (!(Q.Mask & ~CVRMask)) Mask &= ~Q.Mask; else { Mask &= ~(Q.Mask & CVRMask); if (getObjCGCAttr() == Q.getObjCGCAttr()) removeObjCGCAttr(); if (getObjCLifetime() == Q.getObjCLifetime()) removeObjCLifetime(); if (getAddressSpace() == Q.getAddressSpace()) removeAddressSpace(); } } /// Add the qualifiers from the given set to this set, given that /// they don't conflict. void addConsistentQualifiers(Qualifiers qs) { assert(getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()); assert(getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()); assert(getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()); Mask |= qs.Mask; } /// Returns true if this address space is a superset of the other one. /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of /// overlapping address spaces. /// CL1.1 or CL1.2: /// every address space is a superset of itself. /// CL2.0 adds: /// __generic is a superset of any address space except for __constant. bool isAddressSpaceSupersetOf(Qualifiers other) const { return // Address spaces must match exactly. getAddressSpace() == other.getAddressSpace() || // Otherwise in OpenCLC v2.0 s6.5.5: every address space except // for __constant can be used as __generic. (getAddressSpace() == LangAS::opencl_generic && other.getAddressSpace() != LangAS::opencl_constant); } /// Determines if these qualifiers compatibly include another set. /// Generally this answers the question of whether an object with the other /// qualifiers can be safely used as an object with these qualifiers. bool compatiblyIncludes(Qualifiers other) const { return isAddressSpaceSupersetOf(other) && // ObjC GC qualifiers can match, be added, or be removed, but can't // be changed. (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() || !other.hasObjCGCAttr()) && // ObjC lifetime qualifiers must match exactly. getObjCLifetime() == other.getObjCLifetime() && // CVR qualifiers may subset. (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) && // U qualifier may superset. (!other.hasUnaligned() || hasUnaligned()); } /// Determines if these qualifiers compatibly include another set of /// qualifiers from the narrow perspective of Objective-C ARC lifetime. /// /// One set of Objective-C lifetime qualifiers compatibly includes the other /// if the lifetime qualifiers match, or if both are non-__weak and the /// including set also contains the 'const' qualifier, or both are non-__weak /// and one is None (which can only happen in non-ARC modes). bool compatiblyIncludesObjCLifetime(Qualifiers other) const { if (getObjCLifetime() == other.getObjCLifetime()) return true; if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak) return false; if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None) return true; return hasConst(); } /// Determine whether this set of qualifiers is a strict superset of /// another set of qualifiers, not considering qualifier compatibility. bool isStrictSupersetOf(Qualifiers Other) const; bool operator==(Qualifiers Other) const { return Mask == Other.Mask; } bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; } explicit operator bool() const { return hasQualifiers(); } Qualifiers &operator+=(Qualifiers R) { addQualifiers(R); return *this; } // Union two qualifier sets. If an enumerated qualifier appears // in both sets, use the one from the right. friend Qualifiers operator+(Qualifiers L, Qualifiers R) { L += R; return L; } Qualifiers &operator-=(Qualifiers R) { removeQualifiers(R); return *this; } /// Compute the difference between two qualifier sets. friend Qualifiers operator-(Qualifiers L, Qualifiers R) { L -= R; return L; } std::string getAsString() const; std::string getAsString(const PrintingPolicy &Policy) const; bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const; void print(raw_ostream &OS, const PrintingPolicy &Policy, bool appendSpaceIfNonEmpty = false) const; void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Mask); } private: // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31| // |C R V|U|GCAttr|Lifetime|AddressSpace| uint32_t Mask = 0; static const uint32_t UMask = 0x8; static const uint32_t UShift = 3; static const uint32_t GCAttrMask = 0x30; static const uint32_t GCAttrShift = 4; static const uint32_t LifetimeMask = 0x1C0; static const uint32_t LifetimeShift = 6; static const uint32_t AddressSpaceMask = ~(CVRMask | UMask | GCAttrMask | LifetimeMask); static const uint32_t AddressSpaceShift = 9; }; /// A std::pair-like structure for storing a qualified type split /// into its local qualifiers and its locally-unqualified type. struct SplitQualType { /// The locally-unqualified type. const Type *Ty = nullptr; /// The local qualifiers. Qualifiers Quals; SplitQualType() = default; SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {} SplitQualType getSingleStepDesugaredType() const; // end of this file // Make std::tie work. std::pair asPair() const { return std::pair(Ty, Quals); } friend bool operator==(SplitQualType a, SplitQualType b) { return a.Ty == b.Ty && a.Quals == b.Quals; } friend bool operator!=(SplitQualType a, SplitQualType b) { return a.Ty != b.Ty || a.Quals != b.Quals; } }; /// The kind of type we are substituting Objective-C type arguments into. /// /// The kind of substitution affects the replacement of type parameters when /// no concrete type information is provided, e.g., when dealing with an /// unspecialized type. enum class ObjCSubstitutionContext { /// An ordinary type. Ordinary, /// The result type of a method or function. Result, /// The parameter type of a method or function. Parameter, /// The type of a property. Property, /// The superclass of a type. Superclass, }; /// A (possibly-)qualified type. /// /// For efficiency, we don't store CV-qualified types as nodes on their /// own: instead each reference to a type stores the qualifiers. This /// greatly reduces the number of nodes we need to allocate for types (for /// example we only need one for 'int', 'const int', 'volatile int', /// 'const volatile int', etc). /// /// As an added efficiency bonus, instead of making this a pair, we /// just store the two bits we care about in the low bits of the /// pointer. To handle the packing/unpacking, we make QualType be a /// simple wrapper class that acts like a smart pointer. A third bit /// indicates whether there are extended qualifiers present, in which /// case the pointer points to a special structure. class QualType { friend class QualifierCollector; // Thankfully, these are efficiently composable. llvm::PointerIntPair, Qualifiers::FastWidth> Value; const ExtQuals *getExtQualsUnsafe() const { return Value.getPointer().get(); } const Type *getTypePtrUnsafe() const { return Value.getPointer().get(); } const ExtQualsTypeCommonBase *getCommonPtr() const { assert(!isNull() && "Cannot retrieve a NULL type pointer"); auto CommonPtrVal = reinterpret_cast(Value.getOpaqueValue()); CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1); return reinterpret_cast(CommonPtrVal); } public: QualType() = default; QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {} QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {} unsigned getLocalFastQualifiers() const { return Value.getInt(); } void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); } /// Retrieves a pointer to the underlying (unqualified) type. /// /// This function requires that the type not be NULL. If the type might be /// NULL, use the (slightly less efficient) \c getTypePtrOrNull(). const Type *getTypePtr() const; const Type *getTypePtrOrNull() const; /// Retrieves a pointer to the name of the base type. const IdentifierInfo *getBaseTypeIdentifier() const; /// Divides a QualType into its unqualified type and a set of local /// qualifiers. SplitQualType split() const; void *getAsOpaquePtr() const { return Value.getOpaqueValue(); } static QualType getFromOpaquePtr(const void *Ptr) { QualType T; T.Value.setFromOpaqueValue(const_cast(Ptr)); return T; } const Type &operator*() const { return *getTypePtr(); } const Type *operator->() const { return getTypePtr(); } bool isCanonical() const; bool isCanonicalAsParam() const; /// Return true if this QualType doesn't point to a type yet. bool isNull() const { return Value.getPointer().isNull(); } /// Determine whether this particular QualType instance has the /// "const" qualifier set, without looking through typedefs that may have /// added "const" at a different level. bool isLocalConstQualified() const { return (getLocalFastQualifiers() & Qualifiers::Const); } /// Determine whether this type is const-qualified. bool isConstQualified() const; /// Determine whether this particular QualType instance has the /// "restrict" qualifier set, without looking through typedefs that may have /// added "restrict" at a different level. bool isLocalRestrictQualified() const { return (getLocalFastQualifiers() & Qualifiers::Restrict); } /// Determine whether this type is restrict-qualified. bool isRestrictQualified() const; /// Determine whether this particular QualType instance has the /// "volatile" qualifier set, without looking through typedefs that may have /// added "volatile" at a different level. bool isLocalVolatileQualified() const { return (getLocalFastQualifiers() & Qualifiers::Volatile); } /// Determine whether this type is volatile-qualified. bool isVolatileQualified() const; /// Determine whether this particular QualType instance has any /// qualifiers, without looking through any typedefs that might add /// qualifiers at a different level. bool hasLocalQualifiers() const { return getLocalFastQualifiers() || hasLocalNonFastQualifiers(); } /// Determine whether this type has any qualifiers. bool hasQualifiers() const; /// Determine whether this particular QualType instance has any /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType /// instance. bool hasLocalNonFastQualifiers() const { return Value.getPointer().is(); } /// Retrieve the set of qualifiers local to this particular QualType /// instance, not including any qualifiers acquired through typedefs or /// other sugar. Qualifiers getLocalQualifiers() const; /// Retrieve the set of qualifiers applied to this type. Qualifiers getQualifiers() const; /// Retrieve the set of CVR (const-volatile-restrict) qualifiers /// local to this particular QualType instance, not including any qualifiers /// acquired through typedefs or other sugar. unsigned getLocalCVRQualifiers() const { return getLocalFastQualifiers(); } /// Retrieve the set of CVR (const-volatile-restrict) qualifiers /// applied to this type. unsigned getCVRQualifiers() const; bool isConstant(const ASTContext& Ctx) const { return QualType::isConstant(*this, Ctx); } /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10). bool isPODType(const ASTContext &Context) const; /// Return true if this is a POD type according to the rules of the C++98 /// standard, regardless of the current compilation's language. bool isCXX98PODType(const ASTContext &Context) const; /// Return true if this is a POD type according to the more relaxed rules /// of the C++11 standard, regardless of the current compilation's language. /// (C++0x [basic.types]p9). Note that, unlike /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account. bool isCXX11PODType(const ASTContext &Context) const; /// Return true if this is a trivial type per (C++0x [basic.types]p9) bool isTrivialType(const ASTContext &Context) const; /// Return true if this is a trivially copyable type (C++0x [basic.types]p9) bool isTriviallyCopyableType(const ASTContext &Context) const; /// Returns true if it is a class and it might be dynamic. bool mayBeDynamicClass() const; /// Returns true if it is not a class or if the class might not be dynamic. bool mayBeNotDynamicClass() const; // Don't promise in the API that anything besides 'const' can be // easily added. /// Add the `const` type qualifier to this QualType. void addConst() { addFastQualifiers(Qualifiers::Const); } QualType withConst() const { return withFastQualifiers(Qualifiers::Const); } /// Add the `volatile` type qualifier to this QualType. void addVolatile() { addFastQualifiers(Qualifiers::Volatile); } QualType withVolatile() const { return withFastQualifiers(Qualifiers::Volatile); } /// Add the `restrict` qualifier to this QualType. void addRestrict() { addFastQualifiers(Qualifiers::Restrict); } QualType withRestrict() const { return withFastQualifiers(Qualifiers::Restrict); } QualType withCVRQualifiers(unsigned CVR) const { return withFastQualifiers(CVR); } void addFastQualifiers(unsigned TQs) { assert(!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"); Value.setInt(Value.getInt() | TQs); } void removeLocalConst(); void removeLocalVolatile(); void removeLocalRestrict(); void removeLocalCVRQualifiers(unsigned Mask); void removeLocalFastQualifiers() { Value.setInt(0); } void removeLocalFastQualifiers(unsigned Mask) { assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"); Value.setInt(Value.getInt() & ~Mask); } // Creates a type with the given qualifiers in addition to any // qualifiers already on this type. QualType withFastQualifiers(unsigned TQs) const { QualType T = *this; T.addFastQualifiers(TQs); return T; } // Creates a type with exactly the given fast qualifiers, removing // any existing fast qualifiers. QualType withExactLocalFastQualifiers(unsigned TQs) const { return withoutLocalFastQualifiers().withFastQualifiers(TQs); } // Removes fast qualifiers, but leaves any extended qualifiers in place. QualType withoutLocalFastQualifiers() const { QualType T = *this; T.removeLocalFastQualifiers(); return T; } QualType getCanonicalType() const; /// Return this type with all of the instance-specific qualifiers /// removed, but without removing any qualifiers that may have been applied /// through typedefs. QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); } /// Retrieve the unqualified variant of the given type, /// removing as little sugar as possible. /// /// This routine looks through various kinds of sugar to find the /// least-desugared type that is unqualified. For example, given: /// /// \code /// typedef int Integer; /// typedef const Integer CInteger; /// typedef CInteger DifferenceType; /// \endcode /// /// Executing \c getUnqualifiedType() on the type \c DifferenceType will /// desugar until we hit the type \c Integer, which has no qualifiers on it. /// /// The resulting type might still be qualified if it's sugar for an array /// type. To strip qualifiers even from within a sugared array type, use /// ASTContext::getUnqualifiedArrayType. inline QualType getUnqualifiedType() const; /// Retrieve the unqualified variant of the given type, removing as little /// sugar as possible. /// /// Like getUnqualifiedType(), but also returns the set of /// qualifiers that were built up. /// /// The resulting type might still be qualified if it's sugar for an array /// type. To strip qualifiers even from within a sugared array type, use /// ASTContext::getUnqualifiedArrayType. inline SplitQualType getSplitUnqualifiedType() const; /// Determine whether this type is more qualified than the other /// given type, requiring exact equality for non-CVR qualifiers. bool isMoreQualifiedThan(QualType Other) const; /// Determine whether this type is at least as qualified as the other /// given type, requiring exact equality for non-CVR qualifiers. bool isAtLeastAsQualifiedAs(QualType Other) const; QualType getNonReferenceType() const; /// Determine the type of a (typically non-lvalue) expression with the /// specified result type. /// /// This routine should be used for expressions for which the return type is /// explicitly specified (e.g., in a cast or call) and isn't necessarily /// an lvalue. It removes a top-level reference (since there are no /// expressions of reference type) and deletes top-level cvr-qualifiers /// from non-class types (in C++) or all types (in C). QualType getNonLValueExprType(const ASTContext &Context) const; /// Return the specified type with any "sugar" removed from /// the type. This takes off typedefs, typeof's etc. If the outer level of /// the type is already concrete, it returns it unmodified. This is similar /// to getting the canonical type, but it doesn't remove *all* typedefs. For /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is /// concrete. /// /// Qualifiers are left in place. QualType getDesugaredType(const ASTContext &Context) const { return getDesugaredType(*this, Context); } SplitQualType getSplitDesugaredType() const { return getSplitDesugaredType(*this); } /// Return the specified type with one level of "sugar" removed from /// the type. /// /// This routine takes off the first typedef, typeof, etc. If the outer level /// of the type is already concrete, it returns it unmodified. QualType getSingleStepDesugaredType(const ASTContext &Context) const { return getSingleStepDesugaredTypeImpl(*this, Context); } /// Returns the specified type after dropping any /// outer-level parentheses. QualType IgnoreParens() const { if (isa(*this)) return QualType::IgnoreParens(*this); return *this; } /// Indicate whether the specified types and qualifiers are identical. friend bool operator==(const QualType &LHS, const QualType &RHS) { return LHS.Value == RHS.Value; } friend bool operator!=(const QualType &LHS, const QualType &RHS) { return LHS.Value != RHS.Value; } static std::string getAsString(SplitQualType split, const PrintingPolicy &Policy) { return getAsString(split.Ty, split.Quals, Policy); } static std::string getAsString(const Type *ty, Qualifiers qs, const PrintingPolicy &Policy); std::string getAsString() const; std::string getAsString(const PrintingPolicy &Policy) const; void print(raw_ostream &OS, const PrintingPolicy &Policy, const Twine &PlaceHolder = Twine(), unsigned Indentation = 0) const; static void print(SplitQualType split, raw_ostream &OS, const PrintingPolicy &policy, const Twine &PlaceHolder, unsigned Indentation = 0) { return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation); } static void print(const Type *ty, Qualifiers qs, raw_ostream &OS, const PrintingPolicy &policy, const Twine &PlaceHolder, unsigned Indentation = 0); void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const; static void getAsStringInternal(SplitQualType split, std::string &out, const PrintingPolicy &policy) { return getAsStringInternal(split.Ty, split.Quals, out, policy); } static void getAsStringInternal(const Type *ty, Qualifiers qs, std::string &out, const PrintingPolicy &policy); class StreamedQualTypeHelper { const QualType &T; const PrintingPolicy &Policy; const Twine &PlaceHolder; unsigned Indentation; public: StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy, const Twine &PlaceHolder, unsigned Indentation) : T(T), Policy(Policy), PlaceHolder(PlaceHolder), Indentation(Indentation) {} friend raw_ostream &operator<<(raw_ostream &OS, const StreamedQualTypeHelper &SQT) { SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation); return OS; } }; StreamedQualTypeHelper stream(const PrintingPolicy &Policy, const Twine &PlaceHolder = Twine(), unsigned Indentation = 0) const { return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation); } void dump(const char *s) const; void dump() const; void dump(llvm::raw_ostream &OS) const; void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddPointer(getAsOpaquePtr()); } /// Return the address space of this type. inline LangAS getAddressSpace() const; /// Returns gc attribute of this type. inline Qualifiers::GC getObjCGCAttr() const; /// true when Type is objc's weak. bool isObjCGCWeak() const { return getObjCGCAttr() == Qualifiers::Weak; } /// true when Type is objc's strong. bool isObjCGCStrong() const { return getObjCGCAttr() == Qualifiers::Strong; } /// Returns lifetime attribute of this type. Qualifiers::ObjCLifetime getObjCLifetime() const { return getQualifiers().getObjCLifetime(); } bool hasNonTrivialObjCLifetime() const { return getQualifiers().hasNonTrivialObjCLifetime(); } bool hasStrongOrWeakObjCLifetime() const { return getQualifiers().hasStrongOrWeakObjCLifetime(); } // true when Type is objc's weak and weak is enabled but ARC isn't. bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const; enum PrimitiveDefaultInitializeKind { /// The type does not fall into any of the following categories. Note that /// this case is zero-valued so that values of this enum can be used as a /// boolean condition for non-triviality. PDIK_Trivial, /// The type is an Objective-C retainable pointer type that is qualified /// with the ARC __strong qualifier. PDIK_ARCStrong, /// The type is an Objective-C retainable pointer type that is qualified /// with the ARC __weak qualifier. PDIK_ARCWeak, /// The type is a struct containing a field whose type is not PCK_Trivial. PDIK_Struct }; /// Functions to query basic properties of non-trivial C struct types. /// Check if this is a non-trivial type that would cause a C struct /// transitively containing this type to be non-trivial to default initialize /// and return the kind. PrimitiveDefaultInitializeKind isNonTrivialToPrimitiveDefaultInitialize() const; enum PrimitiveCopyKind { /// The type does not fall into any of the following categories. Note that /// this case is zero-valued so that values of this enum can be used as a /// boolean condition for non-triviality. PCK_Trivial, /// The type would be trivial except that it is volatile-qualified. Types /// that fall into one of the other non-trivial cases may additionally be /// volatile-qualified. PCK_VolatileTrivial, /// The type is an Objective-C retainable pointer type that is qualified /// with the ARC __strong qualifier. PCK_ARCStrong, /// The type is an Objective-C retainable pointer type that is qualified /// with the ARC __weak qualifier. PCK_ARCWeak, /// The type is a struct containing a field whose type is neither /// PCK_Trivial nor PCK_VolatileTrivial. /// Note that a C++ struct type does not necessarily match this; C++ copying /// semantics are too complex to express here, in part because they depend /// on the exact constructor or assignment operator that is chosen by /// overload resolution to do the copy. PCK_Struct }; /// Check if this is a non-trivial type that would cause a C struct /// transitively containing this type to be non-trivial to copy and return the /// kind. PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const; /// Check if this is a non-trivial type that would cause a C struct /// transitively containing this type to be non-trivial to destructively /// move and return the kind. Destructive move in this context is a C++-style /// move in which the source object is placed in a valid but unspecified state /// after it is moved, as opposed to a truly destructive move in which the /// source object is placed in an uninitialized state. PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const; enum DestructionKind { DK_none, DK_cxx_destructor, DK_objc_strong_lifetime, DK_objc_weak_lifetime, DK_nontrivial_c_struct }; /// Returns a nonzero value if objects of this type require /// non-trivial work to clean up after. Non-zero because it's /// conceivable that qualifiers (objc_gc(weak)?) could make /// something require destruction. DestructionKind isDestructedType() const { return isDestructedTypeImpl(*this); } /// Determine whether expressions of the given type are forbidden /// from being lvalues in C. /// /// The expression types that are forbidden to be lvalues are: /// - 'void', but not qualified void /// - function types /// /// The exact rule here is C99 6.3.2.1: /// An lvalue is an expression with an object type or an incomplete /// type other than void. bool isCForbiddenLValueType() const; /// Substitute type arguments for the Objective-C type parameters used in the /// subject type. /// /// \param ctx ASTContext in which the type exists. /// /// \param typeArgs The type arguments that will be substituted for the /// Objective-C type parameters in the subject type, which are generally /// computed via \c Type::getObjCSubstitutions. If empty, the type /// parameters will be replaced with their bounds or id/Class, as appropriate /// for the context. /// /// \param context The context in which the subject type was written. /// /// \returns the resulting type. QualType substObjCTypeArgs(ASTContext &ctx, ArrayRef typeArgs, ObjCSubstitutionContext context) const; /// Substitute type arguments from an object type for the Objective-C type /// parameters used in the subject type. /// /// This operation combines the computation of type arguments for /// substitution (\c Type::getObjCSubstitutions) with the actual process of /// substitution (\c QualType::substObjCTypeArgs) for the convenience of /// callers that need to perform a single substitution in isolation. /// /// \param objectType The type of the object whose member type we're /// substituting into. For example, this might be the receiver of a message /// or the base of a property access. /// /// \param dc The declaration context from which the subject type was /// retrieved, which indicates (for example) which type parameters should /// be substituted. /// /// \param context The context in which the subject type was written. /// /// \returns the subject type after replacing all of the Objective-C type /// parameters with their corresponding arguments. QualType substObjCMemberType(QualType objectType, const DeclContext *dc, ObjCSubstitutionContext context) const; /// Strip Objective-C "__kindof" types from the given type. QualType stripObjCKindOfType(const ASTContext &ctx) const; /// Remove all qualifiers including _Atomic. QualType getAtomicUnqualifiedType() const; private: // These methods are implemented in a separate translation unit; // "static"-ize them to avoid creating temporary QualTypes in the // caller. static bool isConstant(QualType T, const ASTContext& Ctx); static QualType getDesugaredType(QualType T, const ASTContext &Context); static SplitQualType getSplitDesugaredType(QualType T); static SplitQualType getSplitUnqualifiedTypeImpl(QualType type); static QualType getSingleStepDesugaredTypeImpl(QualType type, const ASTContext &C); static QualType IgnoreParens(QualType T); static DestructionKind isDestructedTypeImpl(QualType type); }; } // namespace clang namespace llvm { /// Implement simplify_type for QualType, so that we can dyn_cast from QualType /// to a specific Type class. template<> struct simplify_type< ::clang::QualType> { using SimpleType = const ::clang::Type *; static SimpleType getSimplifiedValue(::clang::QualType Val) { return Val.getTypePtr(); } }; // Teach SmallPtrSet that QualType is "basically a pointer". template<> struct PointerLikeTypeTraits { static inline void *getAsVoidPointer(clang::QualType P) { return P.getAsOpaquePtr(); } static inline clang::QualType getFromVoidPointer(void *P) { return clang::QualType::getFromOpaquePtr(P); } // Various qualifiers go in low bits. enum { NumLowBitsAvailable = 0 }; }; } // namespace llvm namespace clang { /// Base class that is common to both the \c ExtQuals and \c Type /// classes, which allows \c QualType to access the common fields between the /// two. class ExtQualsTypeCommonBase { friend class ExtQuals; friend class QualType; friend class Type; /// The "base" type of an extended qualifiers type (\c ExtQuals) or /// a self-referential pointer (for \c Type). /// /// This pointer allows an efficient mapping from a QualType to its /// underlying type pointer. const Type *const BaseType; /// The canonical type of this type. A QualType. QualType CanonicalType; ExtQualsTypeCommonBase(const Type *baseType, QualType canon) : BaseType(baseType), CanonicalType(canon) {} }; /// We can encode up to four bits in the low bits of a /// type pointer, but there are many more type qualifiers that we want /// to be able to apply to an arbitrary type. Therefore we have this /// struct, intended to be heap-allocated and used by QualType to /// store qualifiers. /// /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers /// in three low bits on the QualType pointer; a fourth bit records whether /// the pointer is an ExtQuals node. The extended qualifiers (address spaces, /// Objective-C GC attributes) are much more rare. class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode { // NOTE: changing the fast qualifiers should be straightforward as // long as you don't make 'const' non-fast. // 1. Qualifiers: // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ). // Fast qualifiers must occupy the low-order bits. // b) Update Qualifiers::FastWidth and FastMask. // 2. QualType: // a) Update is{Volatile,Restrict}Qualified(), defined inline. // b) Update remove{Volatile,Restrict}, defined near the end of // this header. // 3. ASTContext: // a) Update get{Volatile,Restrict}Type. /// The immutable set of qualifiers applied by this node. Always contains /// extended qualifiers. Qualifiers Quals; ExtQuals *this_() { return this; } public: ExtQuals(const Type *baseType, QualType canon, Qualifiers quals) : ExtQualsTypeCommonBase(baseType, canon.isNull() ? QualType(this_(), 0) : canon), Quals(quals) { assert(Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"); assert(!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"); } Qualifiers getQualifiers() const { return Quals; } bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); } Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); } bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } bool hasAddressSpace() const { return Quals.hasAddressSpace(); } LangAS getAddressSpace() const { return Quals.getAddressSpace(); } const Type *getBaseType() const { return BaseType; } public: void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, getBaseType(), Quals); } static void Profile(llvm::FoldingSetNodeID &ID, const Type *BaseType, Qualifiers Quals) { assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"); ID.AddPointer(BaseType); Quals.Profile(ID); } }; /// The kind of C++11 ref-qualifier associated with a function type. /// This determines whether a member function's "this" object can be an /// lvalue, rvalue, or neither. enum RefQualifierKind { /// No ref-qualifier was provided. RQ_None = 0, /// An lvalue ref-qualifier was provided (\c &). RQ_LValue, /// An rvalue ref-qualifier was provided (\c &&). RQ_RValue }; /// Which keyword(s) were used to create an AutoType. enum class AutoTypeKeyword { /// auto Auto, /// decltype(auto) DecltypeAuto, /// __auto_type (GNU extension) GNUAutoType }; /// The base class of the type hierarchy. /// /// A central concept with types is that each type always has a canonical /// type. A canonical type is the type with any typedef names stripped out /// of it or the types it references. For example, consider: /// /// typedef int foo; /// typedef foo* bar; /// 'int *' 'foo *' 'bar' /// /// There will be a Type object created for 'int'. Since int is canonical, its /// CanonicalType pointer points to itself. There is also a Type for 'foo' (a /// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next /// there is a PointerType that represents 'int*', which, like 'int', is /// canonical. Finally, there is a PointerType type for 'foo*' whose canonical /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type /// is also 'int*'. /// /// Non-canonical types are useful for emitting diagnostics, without losing /// information about typedefs being used. Canonical types are useful for type /// comparisons (they allow by-pointer equality tests) and useful for reasoning /// about whether something has a particular form (e.g. is a function type), /// because they implicitly, recursively, strip all typedefs out of a type. /// /// Types, once created, are immutable. /// class Type : public ExtQualsTypeCommonBase { public: enum TypeClass { #define TYPE(Class, Base) Class, #define LAST_TYPE(Class) TypeLast = Class, #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" TagFirst = Record, TagLast = Enum }; private: /// Bitfields required by the Type class. class TypeBitfields { friend class Type; template friend class TypePropertyCache; /// TypeClass bitfield - Enum that specifies what subclass this belongs to. unsigned TC : 8; /// Whether this type is a dependent type (C++ [temp.dep.type]). unsigned Dependent : 1; /// Whether this type somehow involves a template parameter, even /// if the resolution of the type does not depend on a template parameter. unsigned InstantiationDependent : 1; /// Whether this type is a variably-modified type (C99 6.7.5). unsigned VariablyModified : 1; /// Whether this type contains an unexpanded parameter pack /// (for C++11 variadic templates). unsigned ContainsUnexpandedParameterPack : 1; /// True if the cache (i.e. the bitfields here starting with /// 'Cache') is valid. mutable unsigned CacheValid : 1; /// Linkage of this type. mutable unsigned CachedLinkage : 3; /// Whether this type involves and local or unnamed types. mutable unsigned CachedLocalOrUnnamed : 1; /// Whether this type comes from an AST file. mutable unsigned FromAST : 1; bool isCacheValid() const { return CacheValid; } Linkage getLinkage() const { assert(isCacheValid() && "getting linkage from invalid cache"); return static_cast(CachedLinkage); } bool hasLocalOrUnnamedType() const { assert(isCacheValid() && "getting linkage from invalid cache"); return CachedLocalOrUnnamed; } }; enum { NumTypeBits = 18 }; protected: // These classes allow subclasses to somewhat cleanly pack bitfields // into Type. class ArrayTypeBitfields { friend class ArrayType; unsigned : NumTypeBits; /// CVR qualifiers from declarations like /// 'int X[static restrict 4]'. For function parameters only. unsigned IndexTypeQuals : 3; /// Storage class qualifiers from declarations like /// 'int X[static restrict 4]'. For function parameters only. /// Actually an ArrayType::ArraySizeModifier. unsigned SizeModifier : 3; }; class BuiltinTypeBitfields { friend class BuiltinType; unsigned : NumTypeBits; /// The kind (BuiltinType::Kind) of builtin type this is. unsigned Kind : 8; }; /// FunctionTypeBitfields store various bits belonging to FunctionProtoType. /// Only common bits are stored here. Additional uncommon bits are stored /// in a trailing object after FunctionProtoType. class FunctionTypeBitfields { friend class FunctionProtoType; friend class FunctionType; unsigned : NumTypeBits; /// Extra information which affects how the function is called, like /// regparm and the calling convention. unsigned ExtInfo : 12; /// The ref-qualifier associated with a \c FunctionProtoType. /// /// This is a value of type \c RefQualifierKind. unsigned RefQualifier : 2; /// Used only by FunctionProtoType, put here to pack with the /// other bitfields. /// The qualifiers are part of FunctionProtoType because... /// /// C++ 8.3.5p4: The return type, the parameter type list and the /// cv-qualifier-seq, [...], are part of the function type. unsigned FastTypeQuals : Qualifiers::FastWidth; /// Whether this function has extended Qualifiers. unsigned HasExtQuals : 1; /// The number of parameters this function has, not counting '...'. /// According to [implimits] 8 bits should be enough here but this is /// somewhat easy to exceed with metaprogramming and so we would like to /// keep NumParams as wide as reasonably possible. unsigned NumParams : 16; /// The type of exception specification this function has. unsigned ExceptionSpecType : 4; /// Whether this function has extended parameter information. unsigned HasExtParameterInfos : 1; /// Whether the function is variadic. unsigned Variadic : 1; /// Whether this function has a trailing return type. unsigned HasTrailingReturn : 1; }; class ObjCObjectTypeBitfields { friend class ObjCObjectType; unsigned : NumTypeBits; /// The number of type arguments stored directly on this object type. unsigned NumTypeArgs : 7; /// The number of protocols stored directly on this object type. unsigned NumProtocols : 6; /// Whether this is a "kindof" type. unsigned IsKindOf : 1; }; class ReferenceTypeBitfields { friend class ReferenceType; unsigned : NumTypeBits; /// True if the type was originally spelled with an lvalue sigil. /// This is never true of rvalue references but can also be false /// on lvalue references because of C++0x [dcl.typedef]p9, /// as follows: /// /// typedef int &ref; // lvalue, spelled lvalue /// typedef int &&rvref; // rvalue /// ref &a; // lvalue, inner ref, spelled lvalue /// ref &&a; // lvalue, inner ref /// rvref &a; // lvalue, inner ref, spelled lvalue /// rvref &&a; // rvalue, inner ref unsigned SpelledAsLValue : 1; /// True if the inner type is a reference type. This only happens /// in non-canonical forms. unsigned InnerRef : 1; }; class TypeWithKeywordBitfields { friend class TypeWithKeyword; unsigned : NumTypeBits; /// An ElaboratedTypeKeyword. 8 bits for efficient access. unsigned Keyword : 8; }; enum { NumTypeWithKeywordBits = 8 }; class ElaboratedTypeBitfields { friend class ElaboratedType; unsigned : NumTypeBits; unsigned : NumTypeWithKeywordBits; /// Whether the ElaboratedType has a trailing OwnedTagDecl. unsigned HasOwnedTagDecl : 1; }; class VectorTypeBitfields { friend class VectorType; friend class DependentVectorType; unsigned : NumTypeBits; /// The kind of vector, either a generic vector type or some /// target-specific vector type such as for AltiVec or Neon. unsigned VecKind : 3; /// The number of elements in the vector. unsigned NumElements : 29 - NumTypeBits; enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 }; }; class AttributedTypeBitfields { friend class AttributedType; unsigned : NumTypeBits; /// An AttributedType::Kind unsigned AttrKind : 32 - NumTypeBits; }; class AutoTypeBitfields { friend class AutoType; unsigned : NumTypeBits; /// Was this placeholder type spelled as 'auto', 'decltype(auto)', /// or '__auto_type'? AutoTypeKeyword value. unsigned Keyword : 2; }; class SubstTemplateTypeParmPackTypeBitfields { friend class SubstTemplateTypeParmPackType; unsigned : NumTypeBits; /// The number of template arguments in \c Arguments, which is /// expected to be able to hold at least 1024 according to [implimits]. /// However as this limit is somewhat easy to hit with template /// metaprogramming we'd prefer to keep it as large as possible. /// At the moment it has been left as a non-bitfield since this type /// safely fits in 64 bits as an unsigned, so there is no reason to /// introduce the performance impact of a bitfield. unsigned NumArgs; }; class TemplateSpecializationTypeBitfields { friend class TemplateSpecializationType; unsigned : NumTypeBits; /// Whether this template specialization type is a substituted type alias. unsigned TypeAlias : 1; /// The number of template arguments named in this class template /// specialization, which is expected to be able to hold at least 1024 /// according to [implimits]. However, as this limit is somewhat easy to /// hit with template metaprogramming we'd prefer to keep it as large /// as possible. At the moment it has been left as a non-bitfield since /// this type safely fits in 64 bits as an unsigned, so there is no reason /// to introduce the performance impact of a bitfield. unsigned NumArgs; }; class DependentTemplateSpecializationTypeBitfields { friend class DependentTemplateSpecializationType; unsigned : NumTypeBits; unsigned : NumTypeWithKeywordBits; /// The number of template arguments named in this class template /// specialization, which is expected to be able to hold at least 1024 /// according to [implimits]. However, as this limit is somewhat easy to /// hit with template metaprogramming we'd prefer to keep it as large /// as possible. At the moment it has been left as a non-bitfield since /// this type safely fits in 64 bits as an unsigned, so there is no reason /// to introduce the performance impact of a bitfield. unsigned NumArgs; }; class PackExpansionTypeBitfields { friend class PackExpansionType; unsigned : NumTypeBits; /// The number of expansions that this pack expansion will /// generate when substituted (+1), which is expected to be able to /// hold at least 1024 according to [implimits]. However, as this limit /// is somewhat easy to hit with template metaprogramming we'd prefer to /// keep it as large as possible. At the moment it has been left as a /// non-bitfield since this type safely fits in 64 bits as an unsigned, so /// there is no reason to introduce the performance impact of a bitfield. /// /// This field will only have a non-zero value when some of the parameter /// packs that occur within the pattern have been substituted but others /// have not. unsigned NumExpansions; }; union { TypeBitfields TypeBits; ArrayTypeBitfields ArrayTypeBits; AttributedTypeBitfields AttributedTypeBits; AutoTypeBitfields AutoTypeBits; BuiltinTypeBitfields BuiltinTypeBits; FunctionTypeBitfields FunctionTypeBits; ObjCObjectTypeBitfields ObjCObjectTypeBits; ReferenceTypeBitfields ReferenceTypeBits; TypeWithKeywordBitfields TypeWithKeywordBits; ElaboratedTypeBitfields ElaboratedTypeBits; VectorTypeBitfields VectorTypeBits; SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits; TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits; DependentTemplateSpecializationTypeBitfields DependentTemplateSpecializationTypeBits; PackExpansionTypeBitfields PackExpansionTypeBits; - - static_assert(sizeof(TypeBitfields) <= 8, - "TypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(ArrayTypeBitfields) <= 8, - "ArrayTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(AttributedTypeBitfields) <= 8, - "AttributedTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(AutoTypeBitfields) <= 8, - "AutoTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(BuiltinTypeBitfields) <= 8, - "BuiltinTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(FunctionTypeBitfields) <= 8, - "FunctionTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(ObjCObjectTypeBitfields) <= 8, - "ObjCObjectTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(ReferenceTypeBitfields) <= 8, - "ReferenceTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(TypeWithKeywordBitfields) <= 8, - "TypeWithKeywordBitfields is larger than 8 bytes!"); - static_assert(sizeof(ElaboratedTypeBitfields) <= 8, - "ElaboratedTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(VectorTypeBitfields) <= 8, - "VectorTypeBitfields is larger than 8 bytes!"); - static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8, - "SubstTemplateTypeParmPackTypeBitfields is larger" - " than 8 bytes!"); - static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8, - "TemplateSpecializationTypeBitfields is larger" - " than 8 bytes!"); - static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8, - "DependentTemplateSpecializationTypeBitfields is larger" - " than 8 bytes!"); - static_assert(sizeof(PackExpansionTypeBitfields) <= 8, - "PackExpansionTypeBitfields is larger than 8 bytes"); }; + + static_assert(sizeof(TypeBitfields) <= 8, + "TypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(ArrayTypeBitfields) <= 8, + "ArrayTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(AttributedTypeBitfields) <= 8, + "AttributedTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(AutoTypeBitfields) <= 8, + "AutoTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(BuiltinTypeBitfields) <= 8, + "BuiltinTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(FunctionTypeBitfields) <= 8, + "FunctionTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(ObjCObjectTypeBitfields) <= 8, + "ObjCObjectTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(ReferenceTypeBitfields) <= 8, + "ReferenceTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(TypeWithKeywordBitfields) <= 8, + "TypeWithKeywordBitfields is larger than 8 bytes!"); + static_assert(sizeof(ElaboratedTypeBitfields) <= 8, + "ElaboratedTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(VectorTypeBitfields) <= 8, + "VectorTypeBitfields is larger than 8 bytes!"); + static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8, + "SubstTemplateTypeParmPackTypeBitfields is larger" + " than 8 bytes!"); + static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8, + "TemplateSpecializationTypeBitfields is larger" + " than 8 bytes!"); + static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8, + "DependentTemplateSpecializationTypeBitfields is larger" + " than 8 bytes!"); + static_assert(sizeof(PackExpansionTypeBitfields) <= 8, + "PackExpansionTypeBitfields is larger than 8 bytes"); private: template friend class TypePropertyCache; /// Set whether this type comes from an AST file. void setFromAST(bool V = true) const { TypeBits.FromAST = V; } protected: friend class ASTContext; Type(TypeClass tc, QualType canon, bool Dependent, bool InstantiationDependent, bool VariablyModified, bool ContainsUnexpandedParameterPack) : ExtQualsTypeCommonBase(this, canon.isNull() ? QualType(this_(), 0) : canon) { TypeBits.TC = tc; TypeBits.Dependent = Dependent; TypeBits.InstantiationDependent = Dependent || InstantiationDependent; TypeBits.VariablyModified = VariablyModified; TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack; TypeBits.CacheValid = false; TypeBits.CachedLocalOrUnnamed = false; TypeBits.CachedLinkage = NoLinkage; TypeBits.FromAST = false; } // silence VC++ warning C4355: 'this' : used in base member initializer list Type *this_() { return this; } void setDependent(bool D = true) { TypeBits.Dependent = D; if (D) TypeBits.InstantiationDependent = true; } void setInstantiationDependent(bool D = true) { TypeBits.InstantiationDependent = D; } void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; } void setContainsUnexpandedParameterPack(bool PP = true) { TypeBits.ContainsUnexpandedParameterPack = PP; } public: friend class ASTReader; friend class ASTWriter; Type(const Type &) = delete; Type &operator=(const Type &) = delete; TypeClass getTypeClass() const { return static_cast(TypeBits.TC); } /// Whether this type comes from an AST file. bool isFromAST() const { return TypeBits.FromAST; } /// Whether this type is or contains an unexpanded parameter /// pack, used to support C++0x variadic templates. /// /// A type that contains a parameter pack shall be expanded by the /// ellipsis operator at some point. For example, the typedef in the /// following example contains an unexpanded parameter pack 'T': /// /// \code /// template /// struct X { /// typedef T* pointer_types; // ill-formed; T is a parameter pack. /// }; /// \endcode /// /// Note that this routine does not specify which bool containsUnexpandedParameterPack() const { return TypeBits.ContainsUnexpandedParameterPack; } /// Determines if this type would be canonical if it had no further /// qualification. bool isCanonicalUnqualified() const { return CanonicalType == QualType(this, 0); } /// Pull a single level of sugar off of this locally-unqualified type. /// Users should generally prefer SplitQualType::getSingleStepDesugaredType() /// or QualType::getSingleStepDesugaredType(const ASTContext&). QualType getLocallyUnqualifiedSingleStepDesugaredType() const; /// Types are partitioned into 3 broad categories (C99 6.2.5p1): /// object types, function types, and incomplete types. /// Return true if this is an incomplete type. /// A type that can describe objects, but which lacks information needed to /// determine its size (e.g. void, or a fwd declared struct). Clients of this /// routine will need to determine if the size is actually required. /// /// Def If non-null, and the type refers to some kind of declaration /// that can be completed (such as a C struct, C++ class, or Objective-C /// class), will be set to the declaration. bool isIncompleteType(NamedDecl **Def = nullptr) const; /// Return true if this is an incomplete or object /// type, in other words, not a function type. bool isIncompleteOrObjectType() const { return !isFunctionType(); } /// Determine whether this type is an object type. bool isObjectType() const { // C++ [basic.types]p8: // An object type is a (possibly cv-qualified) type that is not a // function type, not a reference type, and not a void type. return !isReferenceType() && !isFunctionType() && !isVoidType(); } /// Return true if this is a literal type /// (C++11 [basic.types]p10) bool isLiteralType(const ASTContext &Ctx) const; /// Test if this type is a standard-layout type. /// (C++0x [basic.type]p9) bool isStandardLayoutType() const; /// Helper methods to distinguish type categories. All type predicates /// operate on the canonical type, ignoring typedefs and qualifiers. /// Returns true if the type is a builtin type. bool isBuiltinType() const; /// Test for a particular builtin type. bool isSpecificBuiltinType(unsigned K) const; /// Test for a type which does not represent an actual type-system type but /// is instead used as a placeholder for various convenient purposes within /// Clang. All such types are BuiltinTypes. bool isPlaceholderType() const; const BuiltinType *getAsPlaceholderType() const; /// Test for a specific placeholder type. bool isSpecificPlaceholderType(unsigned K) const; /// Test for a placeholder type other than Overload; see /// BuiltinType::isNonOverloadPlaceholderType. bool isNonOverloadPlaceholderType() const; /// isIntegerType() does *not* include complex integers (a GCC extension). /// isComplexIntegerType() can be used to test for complex integers. bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum) bool isEnumeralType() const; /// Determine whether this type is a scoped enumeration type. bool isScopedEnumeralType() const; bool isBooleanType() const; bool isCharType() const; bool isWideCharType() const; bool isChar8Type() const; bool isChar16Type() const; bool isChar32Type() const; bool isAnyCharacterType() const; bool isIntegralType(const ASTContext &Ctx) const; /// Determine whether this type is an integral or enumeration type. bool isIntegralOrEnumerationType() const; /// Determine whether this type is an integral or unscoped enumeration type. bool isIntegralOrUnscopedEnumerationType() const; /// Floating point categories. bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double) /// isComplexType() does *not* include complex integers (a GCC extension). /// isComplexIntegerType() can be used to test for complex integers. bool isComplexType() const; // C99 6.2.5p11 (complex) bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int. bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex) bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half) bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661 bool isFloat128Type() const; bool isRealType() const; // C99 6.2.5p17 (real floating + integer) bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating) bool isVoidType() const; // C99 6.2.5p19 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers) bool isAggregateType() const; bool isFundamentalType() const; bool isCompoundType() const; // Type Predicates: Check to see if this type is structurally the specified // type, ignoring typedefs and qualifiers. bool isFunctionType() const; bool isFunctionNoProtoType() const { return getAs(); } bool isFunctionProtoType() const { return getAs(); } bool isPointerType() const; bool isAnyPointerType() const; // Any C pointer or ObjC object pointer bool isBlockPointerType() const; bool isVoidPointerType() const; bool isReferenceType() const; bool isLValueReferenceType() const; bool isRValueReferenceType() const; bool isFunctionPointerType() const; bool isMemberPointerType() const; bool isMemberFunctionPointerType() const; bool isMemberDataPointerType() const; bool isArrayType() const; bool isConstantArrayType() const; bool isIncompleteArrayType() const; bool isVariableArrayType() const; bool isDependentSizedArrayType() const; bool isRecordType() const; bool isClassType() const; bool isStructureType() const; bool isObjCBoxableRecordType() const; bool isInterfaceType() const; bool isStructureOrClassType() const; bool isUnionType() const; bool isComplexIntegerType() const; // GCC _Complex integer type. bool isVectorType() const; // GCC vector type. bool isExtVectorType() const; // Extended vector type. bool isDependentAddressSpaceType() const; // value-dependent address space qualifier bool isObjCObjectPointerType() const; // pointer to ObjC object bool isObjCRetainableType() const; // ObjC object or block pointer bool isObjCLifetimeType() const; // (array of)* retainable type bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type bool isObjCNSObjectType() const; // __attribute__((NSObject)) bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class)) // FIXME: change this to 'raw' interface type, so we can used 'interface' type // for the common case. bool isObjCObjectType() const; // NSString or typeof(*(id)0) bool isObjCQualifiedInterfaceType() const; // NSString bool isObjCQualifiedIdType() const; // id bool isObjCQualifiedClassType() const; // Class bool isObjCObjectOrInterfaceType() const; bool isObjCIdType() const; // id /// Was this type written with the special inert-in-ARC __unsafe_unretained /// qualifier? /// /// This approximates the answer to the following question: if this /// translation unit were compiled in ARC, would this type be qualified /// with __unsafe_unretained? bool isObjCInertUnsafeUnretainedType() const { return hasAttr(attr::ObjCInertUnsafeUnretained); } /// Whether the type is Objective-C 'id' or a __kindof type of an /// object type, e.g., __kindof NSView * or __kindof id /// . /// /// \param bound Will be set to the bound on non-id subtype types, /// which will be (possibly specialized) Objective-C class type, or /// null for 'id. bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, const ObjCObjectType *&bound) const; bool isObjCClassType() const; // Class /// Whether the type is Objective-C 'Class' or a __kindof type of an /// Class type, e.g., __kindof Class . /// /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound /// here because Objective-C's type system cannot express "a class /// object for a subclass of NSFoo". bool isObjCClassOrClassKindOfType() const; bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const; bool isObjCSelType() const; // Class bool isObjCBuiltinType() const; // 'id' or 'Class' bool isObjCARCBridgableType() const; bool isCARCBridgableType() const; bool isTemplateTypeParmType() const; // C++ template type parameter bool isNullPtrType() const; // C++11 std::nullptr_t bool isAlignValT() const; // C++17 std::align_val_t bool isStdByteType() const; // C++17 std::byte bool isAtomicType() const; // C11 _Atomic() #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ bool is##Id##Type() const; #include "clang/Basic/OpenCLImageTypes.def" bool isImageType() const; // Any OpenCL image type bool isSamplerT() const; // OpenCL sampler_t bool isEventT() const; // OpenCL event_t bool isClkEventT() const; // OpenCL clk_event_t bool isQueueT() const; // OpenCL queue_t bool isReserveIDT() const; // OpenCL reserve_id_t #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ bool is##Id##Type() const; #include "clang/Basic/OpenCLExtensionTypes.def" // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension bool isOCLIntelSubgroupAVCType() const; bool isOCLExtOpaqueType() const; // Any OpenCL extension type bool isPipeType() const; // OpenCL pipe type bool isOpenCLSpecificType() const; // Any OpenCL specific type /// Determines if this type, which must satisfy /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather /// than implicitly __strong. bool isObjCARCImplicitlyUnretainedType() const; /// Return the implicit lifetime for this type, which must not be dependent. Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const; enum ScalarTypeKind { STK_CPointer, STK_BlockPointer, STK_ObjCObjectPointer, STK_MemberPointer, STK_Bool, STK_Integral, STK_Floating, STK_IntegralComplex, STK_FloatingComplex, STK_FixedPoint }; /// Given that this is a scalar type, classify it. ScalarTypeKind getScalarTypeKind() const; /// Whether this type is a dependent type, meaning that its definition /// somehow depends on a template parameter (C++ [temp.dep.type]). bool isDependentType() const { return TypeBits.Dependent; } /// Determine whether this type is an instantiation-dependent type, /// meaning that the type involves a template parameter (even if the /// definition does not actually depend on the type substituted for that /// template parameter). bool isInstantiationDependentType() const { return TypeBits.InstantiationDependent; } /// Determine whether this type is an undeduced type, meaning that /// it somehow involves a C++11 'auto' type or similar which has not yet been /// deduced. bool isUndeducedType() const; /// Whether this type is a variably-modified type (C99 6.7.5). bool isVariablyModifiedType() const { return TypeBits.VariablyModified; } /// Whether this type involves a variable-length array type /// with a definite size. bool hasSizedVLAType() const; /// Whether this type is or contains a local or unnamed type. bool hasUnnamedOrLocalType() const; bool isOverloadableType() const; /// Determine wither this type is a C++ elaborated-type-specifier. bool isElaboratedTypeSpecifier() const; bool canDecayToPointerType() const; /// Whether this type is represented natively as a pointer. This includes /// pointers, references, block pointers, and Objective-C interface, /// qualified id, and qualified interface types, as well as nullptr_t. bool hasPointerRepresentation() const; /// Whether this type can represent an objective pointer type for the /// purpose of GC'ability bool hasObjCPointerRepresentation() const; /// Determine whether this type has an integer representation /// of some sort, e.g., it is an integer type or a vector. bool hasIntegerRepresentation() const; /// Determine whether this type has an signed integer representation /// of some sort, e.g., it is an signed integer type or a vector. bool hasSignedIntegerRepresentation() const; /// Determine whether this type has an unsigned integer representation /// of some sort, e.g., it is an unsigned integer type or a vector. bool hasUnsignedIntegerRepresentation() const; /// Determine whether this type has a floating-point representation /// of some sort, e.g., it is a floating-point type or a vector thereof. bool hasFloatingRepresentation() const; // Type Checking Functions: Check to see if this type is structurally the // specified type, ignoring typedefs and qualifiers, and return a pointer to // the best type we can. const RecordType *getAsStructureType() const; /// NOTE: getAs*ArrayType are methods on ASTContext. const RecordType *getAsUnionType() const; const ComplexType *getAsComplexIntegerType() const; // GCC complex int type. const ObjCObjectType *getAsObjCInterfaceType() const; // The following is a convenience method that returns an ObjCObjectPointerType // for object declared using an interface. const ObjCObjectPointerType *getAsObjCInterfacePointerType() const; const ObjCObjectPointerType *getAsObjCQualifiedIdType() const; const ObjCObjectPointerType *getAsObjCQualifiedClassType() const; const ObjCObjectType *getAsObjCQualifiedInterfaceType() const; /// Retrieves the CXXRecordDecl that this type refers to, either /// because the type is a RecordType or because it is the injected-class-name /// type of a class template or class template partial specialization. CXXRecordDecl *getAsCXXRecordDecl() const; /// Retrieves the RecordDecl this type refers to. RecordDecl *getAsRecordDecl() const; /// Retrieves the TagDecl that this type refers to, either /// because the type is a TagType or because it is the injected-class-name /// type of a class template or class template partial specialization. TagDecl *getAsTagDecl() const; /// If this is a pointer or reference to a RecordType, return the /// CXXRecordDecl that the type refers to. /// /// If this is not a pointer or reference, or the type being pointed to does /// not refer to a CXXRecordDecl, returns NULL. const CXXRecordDecl *getPointeeCXXRecordDecl() const; /// Get the DeducedType whose type will be deduced for a variable with /// an initializer of this type. This looks through declarators like pointer /// types, but not through decltype or typedefs. DeducedType *getContainedDeducedType() const; /// Get the AutoType whose type will be deduced for a variable with /// an initializer of this type. This looks through declarators like pointer /// types, but not through decltype or typedefs. AutoType *getContainedAutoType() const { return dyn_cast_or_null(getContainedDeducedType()); } /// Determine whether this type was written with a leading 'auto' /// corresponding to a trailing return type (possibly for a nested /// function type within a pointer to function type or similar). bool hasAutoForTrailingReturnType() const; /// Member-template getAs'. Look through sugar for /// an instance of \. This scheme will eventually /// replace the specific getAsXXXX methods above. /// /// There are some specializations of this member template listed /// immediately following this class. template const T *getAs() const; /// Member-template getAsAdjusted. Look through specific kinds /// of sugar (parens, attributes, etc) for an instance of \. /// This is used when you need to walk over sugar nodes that represent some /// kind of type adjustment from a type that was written as a \ /// to another type that is still canonically a \. template const T *getAsAdjusted() const; /// A variant of getAs<> for array types which silently discards /// qualifiers from the outermost type. const ArrayType *getAsArrayTypeUnsafe() const; /// Member-template castAs. Look through sugar for /// the underlying instance of \. /// /// This method has the same relationship to getAs as cast has /// to dyn_cast; which is to say, the underlying type *must* /// have the intended type, and this method will never return null. template const T *castAs() const; /// A variant of castAs<> for array type which silently discards /// qualifiers from the outermost type. const ArrayType *castAsArrayTypeUnsafe() const; /// Determine whether this type had the specified attribute applied to it /// (looking through top-level type sugar). bool hasAttr(attr::Kind AK) const; /// Get the base element type of this type, potentially discarding type /// qualifiers. This should never be used when type qualifiers /// are meaningful. const Type *getBaseElementTypeUnsafe() const; /// If this is an array type, return the element type of the array, /// potentially with type qualifiers missing. /// This should never be used when type qualifiers are meaningful. const Type *getArrayElementTypeNoTypeQual() const; /// If this is a pointer type, return the pointee type. /// If this is an array type, return the array element type. /// This should never be used when type qualifiers are meaningful. const Type *getPointeeOrArrayElementType() const; /// If this is a pointer, ObjC object pointer, or block /// pointer, this returns the respective pointee. QualType getPointeeType() const; /// Return the specified type with any "sugar" removed from the type, /// removing any typedefs, typeofs, etc., as well as any qualifiers. const Type *getUnqualifiedDesugaredType() const; /// More type predicates useful for type checking/promotion bool isPromotableIntegerType() const; // C99 6.3.1.1p2 /// Return true if this is an integer type that is /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], /// or an enum decl which has a signed representation. bool isSignedIntegerType() const; /// Return true if this is an integer type that is /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], /// or an enum decl which has an unsigned representation. bool isUnsignedIntegerType() const; /// Determines whether this is an integer type that is signed or an /// enumeration types whose underlying type is a signed integer type. bool isSignedIntegerOrEnumerationType() const; /// Determines whether this is an integer type that is unsigned or an /// enumeration types whose underlying type is a unsigned integer type. bool isUnsignedIntegerOrEnumerationType() const; /// Return true if this is a fixed point type according to /// ISO/IEC JTC1 SC22 WG14 N1169. bool isFixedPointType() const; /// Return true if this is a saturated fixed point type according to /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. bool isSaturatedFixedPointType() const; /// Return true if this is a saturated fixed point type according to /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. bool isUnsaturatedFixedPointType() const; /// Return true if this is a fixed point type that is signed according /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. bool isSignedFixedPointType() const; /// Return true if this is a fixed point type that is unsigned according /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. bool isUnsignedFixedPointType() const; /// Return true if this is not a variable sized type, /// according to the rules of C99 6.7.5p3. It is not legal to call this on /// incomplete types. bool isConstantSizeType() const; /// Returns true if this type can be represented by some /// set of type specifiers. bool isSpecifierType() const; /// Determine the linkage of this type. Linkage getLinkage() const; /// Determine the visibility of this type. Visibility getVisibility() const { return getLinkageAndVisibility().getVisibility(); } /// Return true if the visibility was explicitly set is the code. bool isVisibilityExplicit() const { return getLinkageAndVisibility().isVisibilityExplicit(); } /// Determine the linkage and visibility of this type. LinkageInfo getLinkageAndVisibility() const; /// True if the computed linkage is valid. Used for consistency /// checking. Should always return true. bool isLinkageValid() const; /// Determine the nullability of the given type. /// /// Note that nullability is only captured as sugar within the type /// system, not as part of the canonical type, so nullability will /// be lost by canonicalization and desugaring. Optional getNullability(const ASTContext &context) const; /// Determine whether the given type can have a nullability /// specifier applied to it, i.e., if it is any kind of pointer type. /// /// \param ResultIfUnknown The value to return if we don't yet know whether /// this type can have nullability because it is dependent. bool canHaveNullability(bool ResultIfUnknown = true) const; /// Retrieve the set of substitutions required when accessing a member /// of the Objective-C receiver type that is declared in the given context. /// /// \c *this is the type of the object we're operating on, e.g., the /// receiver for a message send or the base of a property access, and is /// expected to be of some object or object pointer type. /// /// \param dc The declaration context for which we are building up a /// substitution mapping, which should be an Objective-C class, extension, /// category, or method within. /// /// \returns an array of type arguments that can be substituted for /// the type parameters of the given declaration context in any type described /// within that context, or an empty optional to indicate that no /// substitution is required. Optional> getObjCSubstitutions(const DeclContext *dc) const; /// Determines if this is an ObjC interface type that may accept type /// parameters. bool acceptsObjCTypeParams() const; const char *getTypeClassName() const; QualType getCanonicalTypeInternal() const { return CanonicalType; } CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h void dump() const; void dump(llvm::raw_ostream &OS) const; }; /// This will check for a TypedefType by removing any existing sugar /// until it reaches a TypedefType or a non-sugared type. template <> const TypedefType *Type::getAs() const; /// This will check for a TemplateSpecializationType by removing any /// existing sugar until it reaches a TemplateSpecializationType or a /// non-sugared type. template <> const TemplateSpecializationType *Type::getAs() const; /// This will check for an AttributedType by removing any existing sugar /// until it reaches an AttributedType or a non-sugared type. template <> const AttributedType *Type::getAs() const; // We can do canonical leaf types faster, because we don't have to // worry about preserving child type decoration. #define TYPE(Class, Base) #define LEAF_TYPE(Class) \ template <> inline const Class##Type *Type::getAs() const { \ return dyn_cast(CanonicalType); \ } \ template <> inline const Class##Type *Type::castAs() const { \ return cast(CanonicalType); \ } #include "clang/AST/TypeNodes.def" /// This class is used for builtin types like 'int'. Builtin /// types are always canonical and have a literal name field. class BuiltinType : public Type { public: enum Kind { // OpenCL image types #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id, #include "clang/Basic/OpenCLImageTypes.def" // OpenCL extension types #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id, #include "clang/Basic/OpenCLExtensionTypes.def" // All other builtin types #define BUILTIN_TYPE(Id, SingletonId) Id, #define LAST_BUILTIN_TYPE(Id) LastKind = Id #include "clang/AST/BuiltinTypes.def" }; private: friend class ASTContext; // ASTContext creates these. BuiltinType(Kind K) : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent), /*InstantiationDependent=*/(K == Dependent), /*VariablyModified=*/false, /*Unexpanded parameter pack=*/false) { BuiltinTypeBits.Kind = K; } public: Kind getKind() const { return static_cast(BuiltinTypeBits.Kind); } StringRef getName(const PrintingPolicy &Policy) const; const char *getNameAsCString(const PrintingPolicy &Policy) const { // The StringRef is null-terminated. StringRef str = getName(Policy); assert(!str.empty() && str.data()[str.size()] == '\0'); return str.data(); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } bool isInteger() const { return getKind() >= Bool && getKind() <= Int128; } bool isSignedInteger() const { return getKind() >= Char_S && getKind() <= Int128; } bool isUnsignedInteger() const { return getKind() >= Bool && getKind() <= UInt128; } bool isFloatingPoint() const { return getKind() >= Half && getKind() <= Float128; } /// Determines whether the given kind corresponds to a placeholder type. static bool isPlaceholderTypeKind(Kind K) { return K >= Overload; } /// Determines whether this type is a placeholder type, i.e. a type /// which cannot appear in arbitrary positions in a fully-formed /// expression. bool isPlaceholderType() const { return isPlaceholderTypeKind(getKind()); } /// Determines whether this type is a placeholder type other than /// Overload. Most placeholder types require only syntactic /// information about their context in order to be resolved (e.g. /// whether it is a call expression), which means they can (and /// should) be resolved in an earlier "phase" of analysis. /// Overload expressions sometimes pick up further information /// from their context, like whether the context expects a /// specific function-pointer type, and so frequently need /// special treatment. bool isNonOverloadPlaceholderType() const { return getKind() > Overload; } static bool classof(const Type *T) { return T->getTypeClass() == Builtin; } }; /// Complex values, per C99 6.2.5p11. This supports the C99 complex /// types (_Complex float etc) as well as the GCC integer complex extensions. class ComplexType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType ElementType; ComplexType(QualType Element, QualType CanonicalPtr) : Type(Complex, CanonicalPtr, Element->isDependentType(), Element->isInstantiationDependentType(), Element->isVariablyModifiedType(), Element->containsUnexpandedParameterPack()), ElementType(Element) {} public: QualType getElementType() const { return ElementType; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getElementType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) { ID.AddPointer(Element.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == Complex; } }; /// Sugar for parentheses used when specifying types. class ParenType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType Inner; ParenType(QualType InnerType, QualType CanonType) : Type(Paren, CanonType, InnerType->isDependentType(), InnerType->isInstantiationDependentType(), InnerType->isVariablyModifiedType(), InnerType->containsUnexpandedParameterPack()), Inner(InnerType) {} public: QualType getInnerType() const { return Inner; } bool isSugared() const { return true; } QualType desugar() const { return getInnerType(); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getInnerType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) { Inner.Profile(ID); } static bool classof(const Type *T) { return T->getTypeClass() == Paren; } }; /// PointerType - C99 6.7.5.1 - Pointer Declarators. class PointerType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType PointeeType; PointerType(QualType Pointee, QualType CanonicalPtr) : Type(Pointer, CanonicalPtr, Pointee->isDependentType(), Pointee->isInstantiationDependentType(), Pointee->isVariablyModifiedType(), Pointee->containsUnexpandedParameterPack()), PointeeType(Pointee) {} public: QualType getPointeeType() const { return PointeeType; } /// Returns true if address spaces of pointers overlap. /// OpenCL v2.0 defines conversion rules for pointers to different /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping /// address spaces. /// CL1.1 or CL1.2: /// address spaces overlap iff they are they same. /// CL2.0 adds: /// __generic overlaps with any address space except for __constant. bool isAddressSpaceOverlapping(const PointerType &other) const { Qualifiers thisQuals = PointeeType.getQualifiers(); Qualifiers otherQuals = other.getPointeeType().getQualifiers(); // Address spaces overlap if at least one of them is a superset of another return thisQuals.isAddressSpaceSupersetOf(otherQuals) || otherQuals.isAddressSpaceSupersetOf(thisQuals); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getPointeeType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { ID.AddPointer(Pointee.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == Pointer; } }; /// Represents a type which was implicitly adjusted by the semantic /// engine for arbitrary reasons. For example, array and function types can /// decay, and function types can have their calling conventions adjusted. class AdjustedType : public Type, public llvm::FoldingSetNode { QualType OriginalTy; QualType AdjustedTy; protected: friend class ASTContext; // ASTContext creates these. AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy, QualType CanonicalPtr) : Type(TC, CanonicalPtr, OriginalTy->isDependentType(), OriginalTy->isInstantiationDependentType(), OriginalTy->isVariablyModifiedType(), OriginalTy->containsUnexpandedParameterPack()), OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {} public: QualType getOriginalType() const { return OriginalTy; } QualType getAdjustedType() const { return AdjustedTy; } bool isSugared() const { return true; } QualType desugar() const { return AdjustedTy; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, OriginalTy, AdjustedTy); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) { ID.AddPointer(Orig.getAsOpaquePtr()); ID.AddPointer(New.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed; } }; /// Represents a pointer type decayed from an array or function type. class DecayedType : public AdjustedType { friend class ASTContext; // ASTContext creates these. inline DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical); public: QualType getDecayedType() const { return getAdjustedType(); } inline QualType getPointeeType() const; static bool classof(const Type *T) { return T->getTypeClass() == Decayed; } }; /// Pointer to a block type. /// This type is to represent types syntactically represented as /// "void (^)(int)", etc. Pointee is required to always be a function type. class BlockPointerType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. // Block is some kind of pointer type QualType PointeeType; BlockPointerType(QualType Pointee, QualType CanonicalCls) : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(), Pointee->isInstantiationDependentType(), Pointee->isVariablyModifiedType(), Pointee->containsUnexpandedParameterPack()), PointeeType(Pointee) {} public: // Get the pointee type. Pointee is required to always be a function type. QualType getPointeeType() const { return PointeeType; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getPointeeType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { ID.AddPointer(Pointee.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == BlockPointer; } }; /// Base for LValueReferenceType and RValueReferenceType class ReferenceType : public Type, public llvm::FoldingSetNode { QualType PointeeType; protected: ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef, bool SpelledAsLValue) : Type(tc, CanonicalRef, Referencee->isDependentType(), Referencee->isInstantiationDependentType(), Referencee->isVariablyModifiedType(), Referencee->containsUnexpandedParameterPack()), PointeeType(Referencee) { ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue; ReferenceTypeBits.InnerRef = Referencee->isReferenceType(); } public: bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; } bool isInnerRef() const { return ReferenceTypeBits.InnerRef; } QualType getPointeeTypeAsWritten() const { return PointeeType; } QualType getPointeeType() const { // FIXME: this might strip inner qualifiers; okay? const ReferenceType *T = this; while (T->isInnerRef()) T = T->PointeeType->castAs(); return T->PointeeType; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PointeeType, isSpelledAsLValue()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee, bool SpelledAsLValue) { ID.AddPointer(Referencee.getAsOpaquePtr()); ID.AddBoolean(SpelledAsLValue); } static bool classof(const Type *T) { return T->getTypeClass() == LValueReference || T->getTypeClass() == RValueReference; } }; /// An lvalue reference type, per C++11 [dcl.ref]. class LValueReferenceType : public ReferenceType { friend class ASTContext; // ASTContext creates these LValueReferenceType(QualType Referencee, QualType CanonicalRef, bool SpelledAsLValue) : ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue) {} public: bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == LValueReference; } }; /// An rvalue reference type, per C++11 [dcl.ref]. class RValueReferenceType : public ReferenceType { friend class ASTContext; // ASTContext creates these RValueReferenceType(QualType Referencee, QualType CanonicalRef) : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {} public: bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == RValueReference; } }; /// A pointer to member type per C++ 8.3.3 - Pointers to members. /// /// This includes both pointers to data members and pointer to member functions. class MemberPointerType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType PointeeType; /// The class of which the pointee is a member. Must ultimately be a /// RecordType, but could be a typedef or a template parameter too. const Type *Class; MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) : Type(MemberPointer, CanonicalPtr, Cls->isDependentType() || Pointee->isDependentType(), (Cls->isInstantiationDependentType() || Pointee->isInstantiationDependentType()), Pointee->isVariablyModifiedType(), (Cls->containsUnexpandedParameterPack() || Pointee->containsUnexpandedParameterPack())), PointeeType(Pointee), Class(Cls) {} public: QualType getPointeeType() const { return PointeeType; } /// Returns true if the member type (i.e. the pointee type) is a /// function type rather than a data-member type. bool isMemberFunctionPointer() const { return PointeeType->isFunctionProtoType(); } /// Returns true if the member type (i.e. the pointee type) is a /// data type rather than a function type. bool isMemberDataPointer() const { return !PointeeType->isFunctionProtoType(); } const Type *getClass() const { return Class; } CXXRecordDecl *getMostRecentCXXRecordDecl() const; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getPointeeType(), getClass()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, const Type *Class) { ID.AddPointer(Pointee.getAsOpaquePtr()); ID.AddPointer(Class); } static bool classof(const Type *T) { return T->getTypeClass() == MemberPointer; } }; /// Represents an array type, per C99 6.7.5.2 - Array Declarators. class ArrayType : public Type, public llvm::FoldingSetNode { public: /// Capture whether this is a normal array (e.g. int X[4]) /// an array with a static size (e.g. int X[static 4]), or an array /// with a star size (e.g. int X[*]). /// 'static' is only allowed on function parameters. enum ArraySizeModifier { Normal, Static, Star }; private: /// The element type of the array. QualType ElementType; protected: friend class ASTContext; // ASTContext creates these. // C++ [temp.dep.type]p1: // A type is dependent if it is... // - an array type constructed from any dependent type or whose // size is specified by a constant expression that is // value-dependent, ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm, unsigned tq, bool ContainsUnexpandedParameterPack) : Type(tc, can, et->isDependentType() || tc == DependentSizedArray, et->isInstantiationDependentType() || tc == DependentSizedArray, (tc == VariableArray || et->isVariablyModifiedType()), ContainsUnexpandedParameterPack), ElementType(et) { ArrayTypeBits.IndexTypeQuals = tq; ArrayTypeBits.SizeModifier = sm; } public: QualType getElementType() const { return ElementType; } ArraySizeModifier getSizeModifier() const { return ArraySizeModifier(ArrayTypeBits.SizeModifier); } Qualifiers getIndexTypeQualifiers() const { return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers()); } unsigned getIndexTypeCVRQualifiers() const { return ArrayTypeBits.IndexTypeQuals; } static bool classof(const Type *T) { return T->getTypeClass() == ConstantArray || T->getTypeClass() == VariableArray || T->getTypeClass() == IncompleteArray || T->getTypeClass() == DependentSizedArray; } }; /// Represents the canonical version of C arrays with a specified constant size. /// For example, the canonical type for 'int A[4 + 4*100]' is a /// ConstantArrayType where the element type is 'int' and the size is 404. class ConstantArrayType : public ArrayType { llvm::APInt Size; // Allows us to unique the type. ConstantArrayType(QualType et, QualType can, const llvm::APInt &size, ArraySizeModifier sm, unsigned tq) : ArrayType(ConstantArray, et, can, sm, tq, et->containsUnexpandedParameterPack()), Size(size) {} protected: friend class ASTContext; // ASTContext creates these. ConstantArrayType(TypeClass tc, QualType et, QualType can, const llvm::APInt &size, ArraySizeModifier sm, unsigned tq) : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()), Size(size) {} public: const llvm::APInt &getSize() const { return Size; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } /// Determine the number of bits required to address a member of // an array with the given element type and number of elements. static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements); /// Determine the maximum number of active bits that an array's size /// can require, which limits the maximum size of the array. static unsigned getMaxSizeBits(const ASTContext &Context); void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getElementType(), getSize(), getSizeModifier(), getIndexTypeCVRQualifiers()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType ET, const llvm::APInt &ArraySize, ArraySizeModifier SizeMod, unsigned TypeQuals) { ID.AddPointer(ET.getAsOpaquePtr()); ID.AddInteger(ArraySize.getZExtValue()); ID.AddInteger(SizeMod); ID.AddInteger(TypeQuals); } static bool classof(const Type *T) { return T->getTypeClass() == ConstantArray; } }; /// Represents a C array with an unspecified size. For example 'int A[]' has /// an IncompleteArrayType where the element type is 'int' and the size is /// unspecified. class IncompleteArrayType : public ArrayType { friend class ASTContext; // ASTContext creates these. IncompleteArrayType(QualType et, QualType can, ArraySizeModifier sm, unsigned tq) : ArrayType(IncompleteArray, et, can, sm, tq, et->containsUnexpandedParameterPack()) {} public: friend class StmtIteratorBase; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == IncompleteArray; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getElementType(), getSizeModifier(), getIndexTypeCVRQualifiers()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType ET, ArraySizeModifier SizeMod, unsigned TypeQuals) { ID.AddPointer(ET.getAsOpaquePtr()); ID.AddInteger(SizeMod); ID.AddInteger(TypeQuals); } }; /// Represents a C array with a specified size that is not an /// integer-constant-expression. For example, 'int s[x+foo()]'. /// Since the size expression is an arbitrary expression, we store it as such. /// /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and /// should not be: two lexically equivalent variable array types could mean /// different things, for example, these variables do not have the same type /// dynamically: /// /// void foo(int x) { /// int Y[x]; /// ++x; /// int Z[x]; /// } class VariableArrayType : public ArrayType { friend class ASTContext; // ASTContext creates these. /// An assignment-expression. VLA's are only permitted within /// a function block. Stmt *SizeExpr; /// The range spanned by the left and right array brackets. SourceRange Brackets; VariableArrayType(QualType et, QualType can, Expr *e, ArraySizeModifier sm, unsigned tq, SourceRange brackets) : ArrayType(VariableArray, et, can, sm, tq, et->containsUnexpandedParameterPack()), SizeExpr((Stmt*) e), Brackets(brackets) {} public: friend class StmtIteratorBase; Expr *getSizeExpr() const { // We use C-style casts instead of cast<> here because we do not wish // to have a dependency of Type.h on Stmt.h/Expr.h. return (Expr*) SizeExpr; } SourceRange getBracketsRange() const { return Brackets; } SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == VariableArray; } void Profile(llvm::FoldingSetNodeID &ID) { llvm_unreachable("Cannot unique VariableArrayTypes."); } }; /// Represents an array type in C++ whose size is a value-dependent expression. /// /// For example: /// \code /// template /// class array { /// T data[Size]; /// }; /// \endcode /// /// For these types, we won't actually know what the array bound is /// until template instantiation occurs, at which point this will /// become either a ConstantArrayType or a VariableArrayType. class DependentSizedArrayType : public ArrayType { friend class ASTContext; // ASTContext creates these. const ASTContext &Context; /// An assignment expression that will instantiate to the /// size of the array. /// /// The expression itself might be null, in which case the array /// type will have its size deduced from an initializer. Stmt *SizeExpr; /// The range spanned by the left and right array brackets. SourceRange Brackets; DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can, Expr *e, ArraySizeModifier sm, unsigned tq, SourceRange brackets); public: friend class StmtIteratorBase; Expr *getSizeExpr() const { // We use C-style casts instead of cast<> here because we do not wish // to have a dependency of Type.h on Stmt.h/Expr.h. return (Expr*) SizeExpr; } SourceRange getBracketsRange() const { return Brackets; } SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == DependentSizedArray; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getElementType(), getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType ET, ArraySizeModifier SizeMod, unsigned TypeQuals, Expr *E); }; /// Represents an extended address space qualifier where the input address space /// value is dependent. Non-dependent address spaces are not represented with a /// special Type subclass; they are stored on an ExtQuals node as part of a QualType. /// /// For example: /// \code /// template /// class AddressSpace { /// typedef T __attribute__((address_space(AddrSpace))) type; /// } /// \endcode class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode { friend class ASTContext; const ASTContext &Context; Expr *AddrSpaceExpr; QualType PointeeType; SourceLocation loc; DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType, QualType can, Expr *AddrSpaceExpr, SourceLocation loc); public: Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; } QualType getPointeeType() const { return PointeeType; } SourceLocation getAttributeLoc() const { return loc; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == DependentAddressSpace; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getPointeeType(), getAddrSpaceExpr()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType PointeeType, Expr *AddrSpaceExpr); }; /// Represents an extended vector type where either the type or size is /// dependent. /// /// For example: /// \code /// template /// class vector { /// typedef T __attribute__((ext_vector_type(Size))) type; /// } /// \endcode class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode { friend class ASTContext; const ASTContext &Context; Expr *SizeExpr; /// The element type of the array. QualType ElementType; SourceLocation loc; DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType, QualType can, Expr *SizeExpr, SourceLocation loc); public: Expr *getSizeExpr() const { return SizeExpr; } QualType getElementType() const { return ElementType; } SourceLocation getAttributeLoc() const { return loc; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == DependentSizedExtVector; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getElementType(), getSizeExpr()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType ElementType, Expr *SizeExpr); }; /// Represents a GCC generic vector type. This type is created using /// __attribute__((vector_size(n)), where "n" specifies the vector size in /// bytes; or from an Altivec __vector or vector declaration. /// Since the constructor takes the number of vector elements, the /// client is responsible for converting the size into the number of elements. class VectorType : public Type, public llvm::FoldingSetNode { public: enum VectorKind { /// not a target-specific vector type GenericVector, /// is AltiVec vector AltiVecVector, /// is AltiVec 'vector Pixel' AltiVecPixel, /// is AltiVec 'vector bool ...' AltiVecBool, /// is ARM Neon vector NeonVector, /// is ARM Neon polynomial vector NeonPolyVector }; protected: friend class ASTContext; // ASTContext creates these. /// The element type of the vector. QualType ElementType; VectorType(QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind); VectorType(TypeClass tc, QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind); public: QualType getElementType() const { return ElementType; } unsigned getNumElements() const { return VectorTypeBits.NumElements; } static bool isVectorSizeTooLarge(unsigned NumElements) { return NumElements > VectorTypeBitfields::MaxNumElements; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } VectorKind getVectorKind() const { return VectorKind(VectorTypeBits.VecKind); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getElementType(), getNumElements(), getTypeClass(), getVectorKind()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, unsigned NumElements, TypeClass TypeClass, VectorKind VecKind) { ID.AddPointer(ElementType.getAsOpaquePtr()); ID.AddInteger(NumElements); ID.AddInteger(TypeClass); ID.AddInteger(VecKind); } static bool classof(const Type *T) { return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector; } }; /// Represents a vector type where either the type or size is dependent. //// /// For example: /// \code /// template /// class vector { /// typedef T __attribute__((vector_size(Size))) type; /// } /// \endcode class DependentVectorType : public Type, public llvm::FoldingSetNode { friend class ASTContext; const ASTContext &Context; QualType ElementType; Expr *SizeExpr; SourceLocation Loc; DependentVectorType(const ASTContext &Context, QualType ElementType, QualType CanonType, Expr *SizeExpr, SourceLocation Loc, VectorType::VectorKind vecKind); public: Expr *getSizeExpr() const { return SizeExpr; } QualType getElementType() const { return ElementType; } SourceLocation getAttributeLoc() const { return Loc; } VectorType::VectorKind getVectorKind() const { return VectorType::VectorKind(VectorTypeBits.VecKind); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == DependentVector; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType ElementType, const Expr *SizeExpr, VectorType::VectorKind VecKind); }; /// ExtVectorType - Extended vector type. This type is created using /// __attribute__((ext_vector_type(n)), where "n" is the number of elements. /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This /// class enables syntactic extensions, like Vector Components for accessing /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL /// Shading Language). class ExtVectorType : public VectorType { friend class ASTContext; // ASTContext creates these. ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {} public: static int getPointAccessorIdx(char c) { switch (c) { default: return -1; case 'x': case 'r': return 0; case 'y': case 'g': return 1; case 'z': case 'b': return 2; case 'w': case 'a': return 3; } } static int getNumericAccessorIdx(char c) { switch (c) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'A': case 'a': return 10; case 'B': case 'b': return 11; case 'C': case 'c': return 12; case 'D': case 'd': return 13; case 'E': case 'e': return 14; case 'F': case 'f': return 15; } } static int getAccessorIdx(char c, bool isNumericAccessor) { if (isNumericAccessor) return getNumericAccessorIdx(c); else return getPointAccessorIdx(c); } bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const { if (int idx = getAccessorIdx(c, isNumericAccessor)+1) return unsigned(idx-1) < getNumElements(); return false; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == ExtVector; } }; /// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base /// class of FunctionNoProtoType and FunctionProtoType. class FunctionType : public Type { // The type returned by the function. QualType ResultType; public: /// Interesting information about a specific parameter that can't simply /// be reflected in parameter's type. This is only used by FunctionProtoType /// but is in FunctionType to make this class available during the /// specification of the bases of FunctionProtoType. /// /// It makes sense to model language features this way when there's some /// sort of parameter-specific override (such as an attribute) that /// affects how the function is called. For example, the ARC ns_consumed /// attribute changes whether a parameter is passed at +0 (the default) /// or +1 (ns_consumed). This must be reflected in the function type, /// but isn't really a change to the parameter type. /// /// One serious disadvantage of modelling language features this way is /// that they generally do not work with language features that attempt /// to destructure types. For example, template argument deduction will /// not be able to match a parameter declared as /// T (*)(U) /// against an argument of type /// void (*)(__attribute__((ns_consumed)) id) /// because the substitution of T=void, U=id into the former will /// not produce the latter. class ExtParameterInfo { enum { ABIMask = 0x0F, IsConsumed = 0x10, HasPassObjSize = 0x20, IsNoEscape = 0x40, }; unsigned char Data = 0; public: ExtParameterInfo() = default; /// Return the ABI treatment of this parameter. ParameterABI getABI() const { return ParameterABI(Data & ABIMask); } ExtParameterInfo withABI(ParameterABI kind) const { ExtParameterInfo copy = *this; copy.Data = (copy.Data & ~ABIMask) | unsigned(kind); return copy; } /// Is this parameter considered "consumed" by Objective-C ARC? /// Consumed parameters must have retainable object type. bool isConsumed() const { return (Data & IsConsumed); } ExtParameterInfo withIsConsumed(bool consumed) const { ExtParameterInfo copy = *this; if (consumed) copy.Data |= IsConsumed; else copy.Data &= ~IsConsumed; return copy; } bool hasPassObjectSize() const { return Data & HasPassObjSize; } ExtParameterInfo withHasPassObjectSize() const { ExtParameterInfo Copy = *this; Copy.Data |= HasPassObjSize; return Copy; } bool isNoEscape() const { return Data & IsNoEscape; } ExtParameterInfo withIsNoEscape(bool NoEscape) const { ExtParameterInfo Copy = *this; if (NoEscape) Copy.Data |= IsNoEscape; else Copy.Data &= ~IsNoEscape; return Copy; } unsigned char getOpaqueValue() const { return Data; } static ExtParameterInfo getFromOpaqueValue(unsigned char data) { ExtParameterInfo result; result.Data = data; return result; } friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) { return lhs.Data == rhs.Data; } friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) { return lhs.Data != rhs.Data; } }; /// A class which abstracts out some details necessary for /// making a call. /// /// It is not actually used directly for storing this information in /// a FunctionType, although FunctionType does currently use the /// same bit-pattern. /// // If you add a field (say Foo), other than the obvious places (both, // constructors, compile failures), what you need to update is // * Operator== // * getFoo // * withFoo // * functionType. Add Foo, getFoo. // * ASTContext::getFooType // * ASTContext::mergeFunctionTypes // * FunctionNoProtoType::Profile // * FunctionProtoType::Profile // * TypePrinter::PrintFunctionProto // * AST read and write // * Codegen class ExtInfo { friend class FunctionType; // Feel free to rearrange or add bits, but if you go over 12, // you'll need to adjust both the Bits field below and // Type::FunctionTypeBitfields. // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck| // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | // // regparm is either 0 (no regparm attribute) or the regparm value+1. enum { CallConvMask = 0x1F }; enum { NoReturnMask = 0x20 }; enum { ProducesResultMask = 0x40 }; enum { NoCallerSavedRegsMask = 0x80 }; enum { NoCfCheckMask = 0x800 }; enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask | NoCallerSavedRegsMask | NoCfCheckMask), RegParmOffset = 8 }; // Assumed to be the last field uint16_t Bits = CC_C; ExtInfo(unsigned Bits) : Bits(static_cast(Bits)) {} public: // Constructor with no defaults. Use this when you know that you // have all the elements (when reading an AST file for example). ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc, bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) { assert((!hasRegParm || regParm < 7) && "Invalid regparm value"); Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) | (producesResult ? ProducesResultMask : 0) | (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) | (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) | (NoCfCheck ? NoCfCheckMask : 0); } // Constructor with all defaults. Use when for example creating a // function known to use defaults. ExtInfo() = default; // Constructor with just the calling convention, which is an important part // of the canonical type. ExtInfo(CallingConv CC) : Bits(CC) {} bool getNoReturn() const { return Bits & NoReturnMask; } bool getProducesResult() const { return Bits & ProducesResultMask; } bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; } bool getNoCfCheck() const { return Bits & NoCfCheckMask; } bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; } unsigned getRegParm() const { unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset; if (RegParm > 0) --RegParm; return RegParm; } CallingConv getCC() const { return CallingConv(Bits & CallConvMask); } bool operator==(ExtInfo Other) const { return Bits == Other.Bits; } bool operator!=(ExtInfo Other) const { return Bits != Other.Bits; } // Note that we don't have setters. That is by design, use // the following with methods instead of mutating these objects. ExtInfo withNoReturn(bool noReturn) const { if (noReturn) return ExtInfo(Bits | NoReturnMask); else return ExtInfo(Bits & ~NoReturnMask); } ExtInfo withProducesResult(bool producesResult) const { if (producesResult) return ExtInfo(Bits | ProducesResultMask); else return ExtInfo(Bits & ~ProducesResultMask); } ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const { if (noCallerSavedRegs) return ExtInfo(Bits | NoCallerSavedRegsMask); else return ExtInfo(Bits & ~NoCallerSavedRegsMask); } ExtInfo withNoCfCheck(bool noCfCheck) const { if (noCfCheck) return ExtInfo(Bits | NoCfCheckMask); else return ExtInfo(Bits & ~NoCfCheckMask); } ExtInfo withRegParm(unsigned RegParm) const { assert(RegParm < 7 && "Invalid regparm value"); return ExtInfo((Bits & ~RegParmMask) | ((RegParm + 1) << RegParmOffset)); } ExtInfo withCallingConv(CallingConv cc) const { return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Bits); } }; /// A simple holder for a QualType representing a type in an /// exception specification. Unfortunately needed by FunctionProtoType /// because TrailingObjects cannot handle repeated types. struct ExceptionType { QualType Type; }; /// A simple holder for various uncommon bits which do not fit in /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the /// alignment of subsequent objects in TrailingObjects. You must update /// hasExtraBitfields in FunctionProtoType after adding extra data here. struct alignas(void *) FunctionTypeExtraBitfields { /// The number of types in the exception specification. /// A whole unsigned is not needed here and according to /// [implimits] 8 bits would be enough here. unsigned NumExceptionType; }; protected: FunctionType(TypeClass tc, QualType res, QualType Canonical, bool Dependent, bool InstantiationDependent, bool VariablyModified, bool ContainsUnexpandedParameterPack, ExtInfo Info) : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified, ContainsUnexpandedParameterPack), ResultType(res) { FunctionTypeBits.ExtInfo = Info.Bits; } Qualifiers getFastTypeQuals() const { return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals); } public: QualType getReturnType() const { return ResultType; } bool getHasRegParm() const { return getExtInfo().getHasRegParm(); } unsigned getRegParmType() const { return getExtInfo().getRegParm(); } /// Determine whether this function type includes the GNU noreturn /// attribute. The C++11 [[noreturn]] attribute does not affect the function /// type. bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); } CallingConv getCallConv() const { return getExtInfo().getCC(); } ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); } static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0, "Const, volatile and restrict are assumed to be a subset of " "the fast qualifiers."); bool isConst() const { return getFastTypeQuals().hasConst(); } bool isVolatile() const { return getFastTypeQuals().hasVolatile(); } bool isRestrict() const { return getFastTypeQuals().hasRestrict(); } /// Determine the type of an expression that calls a function of /// this type. QualType getCallResultType(const ASTContext &Context) const { return getReturnType().getNonLValueExprType(Context); } static StringRef getNameForCallConv(CallingConv CC); static bool classof(const Type *T) { return T->getTypeClass() == FunctionNoProto || T->getTypeClass() == FunctionProto; } }; /// Represents a K&R-style 'int foo()' function, which has /// no information available about its arguments. class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info) : FunctionType(FunctionNoProto, Result, Canonical, /*Dependent=*/false, /*InstantiationDependent=*/false, Result->isVariablyModifiedType(), /*ContainsUnexpandedParameterPack=*/false, Info) {} public: // No additional state past what FunctionType provides. bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getReturnType(), getExtInfo()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType, ExtInfo Info) { Info.Profile(ID); ID.AddPointer(ResultType.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == FunctionNoProto; } }; /// Represents a prototype with parameter type info, e.g. /// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no /// parameters, not as having a single void parameter. Such a type can have /// an exception specification, but this specification is not part of the /// canonical type. FunctionProtoType has several trailing objects, some of /// which optional. For more information about the trailing objects see /// the first comment inside FunctionProtoType. class FunctionProtoType final : public FunctionType, public llvm::FoldingSetNode, private llvm::TrailingObjects< FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType, Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> { friend class ASTContext; // ASTContext creates these. friend TrailingObjects; // FunctionProtoType is followed by several trailing objects, some of // which optional. They are in order: // // * An array of getNumParams() QualType holding the parameter types. // Always present. Note that for the vast majority of FunctionProtoType, // these will be the only trailing objects. // // * Optionally if some extra data is stored in FunctionTypeExtraBitfields // (see FunctionTypeExtraBitfields and FunctionTypeBitfields): // a single FunctionTypeExtraBitfields. Present if and only if // hasExtraBitfields() is true. // // * Optionally exactly one of: // * an array of getNumExceptions() ExceptionType, // * a single Expr *, // * a pair of FunctionDecl *, // * a single FunctionDecl * // used to store information about the various types of exception // specification. See getExceptionSpecSize for the details. // // * Optionally an array of getNumParams() ExtParameterInfo holding // an ExtParameterInfo for each of the parameters. Present if and // only if hasExtParameterInfos() is true. // // * Optionally a Qualifiers object to represent extra qualifiers that can't // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only // if hasExtQualifiers() is true. // // The optional FunctionTypeExtraBitfields has to be before the data // related to the exception specification since it contains the number // of exception types. // // We put the ExtParameterInfos last. If all were equal, it would make // more sense to put these before the exception specification, because // it's much easier to skip past them compared to the elaborate switch // required to skip the exception specification. However, all is not // equal; ExtParameterInfos are used to model very uncommon features, // and it's better not to burden the more common paths. public: /// Holds information about the various types of exception specification. /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is /// used to group together the various bits of information about the /// exception specification. struct ExceptionSpecInfo { /// The kind of exception specification this is. ExceptionSpecificationType Type = EST_None; /// Explicitly-specified list of exception types. ArrayRef Exceptions; /// Noexcept expression, if this is a computed noexcept specification. Expr *NoexceptExpr = nullptr; /// The function whose exception specification this is, for /// EST_Unevaluated and EST_Uninstantiated. FunctionDecl *SourceDecl = nullptr; /// The function template whose exception specification this is instantiated /// from, for EST_Uninstantiated. FunctionDecl *SourceTemplate = nullptr; ExceptionSpecInfo() = default; ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {} }; /// Extra information about a function prototype. ExtProtoInfo is not /// stored as such in FunctionProtoType but is used to group together /// the various bits of extra information about a function prototype. struct ExtProtoInfo { FunctionType::ExtInfo ExtInfo; bool Variadic : 1; bool HasTrailingReturn : 1; Qualifiers TypeQuals; RefQualifierKind RefQualifier = RQ_None; ExceptionSpecInfo ExceptionSpec; const ExtParameterInfo *ExtParameterInfos = nullptr; ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {} ExtProtoInfo(CallingConv CC) : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {} ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) { ExtProtoInfo Result(*this); Result.ExceptionSpec = ESI; return Result; } }; private: unsigned numTrailingObjects(OverloadToken) const { return getNumParams(); } unsigned numTrailingObjects(OverloadToken) const { return hasExtraBitfields(); } unsigned numTrailingObjects(OverloadToken) const { return getExceptionSpecSize().NumExceptionType; } unsigned numTrailingObjects(OverloadToken) const { return getExceptionSpecSize().NumExprPtr; } unsigned numTrailingObjects(OverloadToken) const { return getExceptionSpecSize().NumFunctionDeclPtr; } unsigned numTrailingObjects(OverloadToken) const { return hasExtParameterInfos() ? getNumParams() : 0; } /// Determine whether there are any argument types that /// contain an unexpanded parameter pack. static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray, unsigned numArgs) { for (unsigned Idx = 0; Idx < numArgs; ++Idx) if (ArgArray[Idx]->containsUnexpandedParameterPack()) return true; return false; } FunctionProtoType(QualType result, ArrayRef params, QualType canonical, const ExtProtoInfo &epi); /// This struct is returned by getExceptionSpecSize and is used to /// translate an ExceptionSpecificationType to the number and kind /// of trailing objects related to the exception specification. struct ExceptionSpecSizeHolder { unsigned NumExceptionType; unsigned NumExprPtr; unsigned NumFunctionDeclPtr; }; /// Return the number and kind of trailing objects /// related to the exception specification. static ExceptionSpecSizeHolder getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) { switch (EST) { case EST_None: case EST_DynamicNone: case EST_MSAny: case EST_BasicNoexcept: case EST_Unparsed: return {0, 0, 0}; case EST_Dynamic: return {NumExceptions, 0, 0}; case EST_DependentNoexcept: case EST_NoexceptFalse: case EST_NoexceptTrue: return {0, 1, 0}; case EST_Uninstantiated: return {0, 0, 2}; case EST_Unevaluated: return {0, 0, 1}; } llvm_unreachable("bad exception specification kind"); } /// Return the number and kind of trailing objects /// related to the exception specification. ExceptionSpecSizeHolder getExceptionSpecSize() const { return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions()); } /// Whether the trailing FunctionTypeExtraBitfields is present. static bool hasExtraBitfields(ExceptionSpecificationType EST) { // If the exception spec type is EST_Dynamic then we have > 0 exception // types and the exact number is stored in FunctionTypeExtraBitfields. return EST == EST_Dynamic; } /// Whether the trailing FunctionTypeExtraBitfields is present. bool hasExtraBitfields() const { return hasExtraBitfields(getExceptionSpecType()); } bool hasExtQualifiers() const { return FunctionTypeBits.HasExtQuals; } public: unsigned getNumParams() const { return FunctionTypeBits.NumParams; } QualType getParamType(unsigned i) const { assert(i < getNumParams() && "invalid parameter index"); return param_type_begin()[i]; } ArrayRef getParamTypes() const { return llvm::makeArrayRef(param_type_begin(), param_type_end()); } ExtProtoInfo getExtProtoInfo() const { ExtProtoInfo EPI; EPI.ExtInfo = getExtInfo(); EPI.Variadic = isVariadic(); EPI.HasTrailingReturn = hasTrailingReturn(); EPI.ExceptionSpec.Type = getExceptionSpecType(); EPI.TypeQuals = getTypeQuals(); EPI.RefQualifier = getRefQualifier(); if (EPI.ExceptionSpec.Type == EST_Dynamic) { EPI.ExceptionSpec.Exceptions = exceptions(); } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) { EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr(); } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) { EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl(); EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate(); } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) { EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl(); } EPI.ExtParameterInfos = getExtParameterInfosOrNull(); return EPI; } /// Get the kind of exception specification on this function. ExceptionSpecificationType getExceptionSpecType() const { return static_cast( FunctionTypeBits.ExceptionSpecType); } /// Return whether this function has any kind of exception spec. bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; } /// Return whether this function has a dynamic (throw) exception spec. bool hasDynamicExceptionSpec() const { return isDynamicExceptionSpec(getExceptionSpecType()); } /// Return whether this function has a noexcept exception spec. bool hasNoexceptExceptionSpec() const { return isNoexceptExceptionSpec(getExceptionSpecType()); } /// Return whether this function has a dependent exception spec. bool hasDependentExceptionSpec() const; /// Return whether this function has an instantiation-dependent exception /// spec. bool hasInstantiationDependentExceptionSpec() const; /// Return the number of types in the exception specification. unsigned getNumExceptions() const { return getExceptionSpecType() == EST_Dynamic ? getTrailingObjects() ->NumExceptionType : 0; } /// Return the ith exception type, where 0 <= i < getNumExceptions(). QualType getExceptionType(unsigned i) const { assert(i < getNumExceptions() && "Invalid exception number!"); return exception_begin()[i]; } /// Return the expression inside noexcept(expression), or a null pointer /// if there is none (because the exception spec is not of this form). Expr *getNoexceptExpr() const { if (!isComputedNoexcept(getExceptionSpecType())) return nullptr; return *getTrailingObjects(); } /// If this function type has an exception specification which hasn't /// been determined yet (either because it has not been evaluated or because /// it has not been instantiated), this is the function whose exception /// specification is represented by this type. FunctionDecl *getExceptionSpecDecl() const { if (getExceptionSpecType() != EST_Uninstantiated && getExceptionSpecType() != EST_Unevaluated) return nullptr; return getTrailingObjects()[0]; } /// If this function type has an uninstantiated exception /// specification, this is the function whose exception specification /// should be instantiated to find the exception specification for /// this type. FunctionDecl *getExceptionSpecTemplate() const { if (getExceptionSpecType() != EST_Uninstantiated) return nullptr; return getTrailingObjects()[1]; } /// Determine whether this function type has a non-throwing exception /// specification. CanThrowResult canThrow() const; /// Determine whether this function type has a non-throwing exception /// specification. If this depends on template arguments, returns /// \c ResultIfDependent. bool isNothrow(bool ResultIfDependent = false) const { return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot; } /// Whether this function prototype is variadic. bool isVariadic() const { return FunctionTypeBits.Variadic; } /// Determines whether this function prototype contains a /// parameter pack at the end. /// /// A function template whose last parameter is a parameter pack can be /// called with an arbitrary number of arguments, much like a variadic /// function. bool isTemplateVariadic() const; /// Whether this function prototype has a trailing return type. bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; } Qualifiers getTypeQuals() const { if (hasExtQualifiers()) return *getTrailingObjects(); else return getFastTypeQuals(); } /// Retrieve the ref-qualifier associated with this function type. RefQualifierKind getRefQualifier() const { return static_cast(FunctionTypeBits.RefQualifier); } using param_type_iterator = const QualType *; using param_type_range = llvm::iterator_range; param_type_range param_types() const { return param_type_range(param_type_begin(), param_type_end()); } param_type_iterator param_type_begin() const { return getTrailingObjects(); } param_type_iterator param_type_end() const { return param_type_begin() + getNumParams(); } using exception_iterator = const QualType *; ArrayRef exceptions() const { return llvm::makeArrayRef(exception_begin(), exception_end()); } exception_iterator exception_begin() const { return reinterpret_cast( getTrailingObjects()); } exception_iterator exception_end() const { return exception_begin() + getNumExceptions(); } /// Is there any interesting extra information for any of the parameters /// of this function type? bool hasExtParameterInfos() const { return FunctionTypeBits.HasExtParameterInfos; } ArrayRef getExtParameterInfos() const { assert(hasExtParameterInfos()); return ArrayRef(getTrailingObjects(), getNumParams()); } /// Return a pointer to the beginning of the array of extra parameter /// information, if present, or else null if none of the parameters /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos. const ExtParameterInfo *getExtParameterInfosOrNull() const { if (!hasExtParameterInfos()) return nullptr; return getTrailingObjects(); } ExtParameterInfo getExtParameterInfo(unsigned I) const { assert(I < getNumParams() && "parameter index out of range"); if (hasExtParameterInfos()) return getTrailingObjects()[I]; return ExtParameterInfo(); } ParameterABI getParameterABI(unsigned I) const { assert(I < getNumParams() && "parameter index out of range"); if (hasExtParameterInfos()) return getTrailingObjects()[I].getABI(); return ParameterABI::Ordinary; } bool isParamConsumed(unsigned I) const { assert(I < getNumParams() && "parameter index out of range"); if (hasExtParameterInfos()) return getTrailingObjects()[I].isConsumed(); return false; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void printExceptionSpecification(raw_ostream &OS, const PrintingPolicy &Policy) const; static bool classof(const Type *T) { return T->getTypeClass() == FunctionProto; } void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx); static void Profile(llvm::FoldingSetNodeID &ID, QualType Result, param_type_iterator ArgTys, unsigned NumArgs, const ExtProtoInfo &EPI, const ASTContext &Context, bool Canonical); }; /// Represents the dependent type named by a dependently-scoped /// typename using declaration, e.g. /// using typename Base::foo; /// /// Template instantiation turns these into the underlying type. class UnresolvedUsingType : public Type { friend class ASTContext; // ASTContext creates these. UnresolvedUsingTypenameDecl *Decl; UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D) : Type(UnresolvedUsing, QualType(), true, true, false, /*ContainsUnexpandedParameterPack=*/false), Decl(const_cast(D)) {} public: UnresolvedUsingTypenameDecl *getDecl() const { return Decl; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == UnresolvedUsing; } void Profile(llvm::FoldingSetNodeID &ID) { return Profile(ID, Decl); } static void Profile(llvm::FoldingSetNodeID &ID, UnresolvedUsingTypenameDecl *D) { ID.AddPointer(D); } }; class TypedefType : public Type { TypedefNameDecl *Decl; protected: friend class ASTContext; // ASTContext creates these. TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can) : Type(tc, can, can->isDependentType(), can->isInstantiationDependentType(), can->isVariablyModifiedType(), /*ContainsUnexpandedParameterPack=*/false), Decl(const_cast(D)) { assert(!isa(can) && "Invalid canonical type"); } public: TypedefNameDecl *getDecl() const { return Decl; } bool isSugared() const { return true; } QualType desugar() const; static bool classof(const Type *T) { return T->getTypeClass() == Typedef; } }; /// Represents a `typeof` (or __typeof__) expression (a GCC extension). class TypeOfExprType : public Type { Expr *TOExpr; protected: friend class ASTContext; // ASTContext creates these. TypeOfExprType(Expr *E, QualType can = QualType()); public: Expr *getUnderlyingExpr() const { return TOExpr; } /// Remove a single level of sugar. QualType desugar() const; /// Returns whether this type directly provides sugar. bool isSugared() const; static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; } }; /// Internal representation of canonical, dependent /// `typeof(expr)` types. /// /// This class is used internally by the ASTContext to manage /// canonical, dependent types, only. Clients will only see instances /// of this class via TypeOfExprType nodes. class DependentTypeOfExprType : public TypeOfExprType, public llvm::FoldingSetNode { const ASTContext &Context; public: DependentTypeOfExprType(const ASTContext &Context, Expr *E) : TypeOfExprType(E), Context(Context) {} void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getUnderlyingExpr()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, Expr *E); }; /// Represents `typeof(type)`, a GCC extension. class TypeOfType : public Type { friend class ASTContext; // ASTContext creates these. QualType TOType; TypeOfType(QualType T, QualType can) : Type(TypeOf, can, T->isDependentType(), T->isInstantiationDependentType(), T->isVariablyModifiedType(), T->containsUnexpandedParameterPack()), TOType(T) { assert(!isa(can) && "Invalid canonical type"); } public: QualType getUnderlyingType() const { return TOType; } /// Remove a single level of sugar. QualType desugar() const { return getUnderlyingType(); } /// Returns whether this type directly provides sugar. bool isSugared() const { return true; } static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; } }; /// Represents the type `decltype(expr)` (C++11). class DecltypeType : public Type { Expr *E; QualType UnderlyingType; protected: friend class ASTContext; // ASTContext creates these. DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType()); public: Expr *getUnderlyingExpr() const { return E; } QualType getUnderlyingType() const { return UnderlyingType; } /// Remove a single level of sugar. QualType desugar() const; /// Returns whether this type directly provides sugar. bool isSugared() const; static bool classof(const Type *T) { return T->getTypeClass() == Decltype; } }; /// Internal representation of canonical, dependent /// decltype(expr) types. /// /// This class is used internally by the ASTContext to manage /// canonical, dependent types, only. Clients will only see instances /// of this class via DecltypeType nodes. class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode { const ASTContext &Context; public: DependentDecltypeType(const ASTContext &Context, Expr *E); void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Context, getUnderlyingExpr()); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, Expr *E); }; /// A unary type transform, which is a type constructed from another. class UnaryTransformType : public Type { public: enum UTTKind { EnumUnderlyingType }; private: /// The untransformed type. QualType BaseType; /// The transformed type if not dependent, otherwise the same as BaseType. QualType UnderlyingType; UTTKind UKind; protected: friend class ASTContext; UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, QualType CanonicalTy); public: bool isSugared() const { return !isDependentType(); } QualType desugar() const { return UnderlyingType; } QualType getUnderlyingType() const { return UnderlyingType; } QualType getBaseType() const { return BaseType; } UTTKind getUTTKind() const { return UKind; } static bool classof(const Type *T) { return T->getTypeClass() == UnaryTransform; } }; /// Internal representation of canonical, dependent /// __underlying_type(type) types. /// /// This class is used internally by the ASTContext to manage /// canonical, dependent types, only. Clients will only see instances /// of this class via UnaryTransformType nodes. class DependentUnaryTransformType : public UnaryTransformType, public llvm::FoldingSetNode { public: DependentUnaryTransformType(const ASTContext &C, QualType BaseType, UTTKind UKind); void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getBaseType(), getUTTKind()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, UTTKind UKind) { ID.AddPointer(BaseType.getAsOpaquePtr()); ID.AddInteger((unsigned)UKind); } }; class TagType : public Type { friend class ASTReader; /// Stores the TagDecl associated with this type. The decl may point to any /// TagDecl that declares the entity. TagDecl *decl; protected: TagType(TypeClass TC, const TagDecl *D, QualType can); public: TagDecl *getDecl() const; /// Determines whether this type is in the process of being defined. bool isBeingDefined() const; static bool classof(const Type *T) { return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast; } }; /// A helper class that allows the use of isa/cast/dyncast /// to detect TagType objects of structs/unions/classes. class RecordType : public TagType { protected: friend class ASTContext; // ASTContext creates these. explicit RecordType(const RecordDecl *D) : TagType(Record, reinterpret_cast(D), QualType()) {} explicit RecordType(TypeClass TC, RecordDecl *D) : TagType(TC, reinterpret_cast(D), QualType()) {} public: RecordDecl *getDecl() const { return reinterpret_cast(TagType::getDecl()); } /// Recursively check all fields in the record for const-ness. If any field /// is declared const, return true. Otherwise, return false. bool hasConstFields() const; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == Record; } }; /// A helper class that allows the use of isa/cast/dyncast /// to detect TagType objects of enums. class EnumType : public TagType { friend class ASTContext; // ASTContext creates these. explicit EnumType(const EnumDecl *D) : TagType(Enum, reinterpret_cast(D), QualType()) {} public: EnumDecl *getDecl() const { return reinterpret_cast(TagType::getDecl()); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == Enum; } }; /// An attributed type is a type to which a type attribute has been applied. /// /// The "modified type" is the fully-sugared type to which the attributed /// type was applied; generally it is not canonically equivalent to the /// attributed type. The "equivalent type" is the minimally-desugared type /// which the type is canonically equivalent to. /// /// For example, in the following attributed type: /// int32_t __attribute__((vector_size(16))) /// - the modified type is the TypedefType for int32_t /// - the equivalent type is VectorType(16, int32_t) /// - the canonical type is VectorType(16, int) class AttributedType : public Type, public llvm::FoldingSetNode { public: using Kind = attr::Kind; private: friend class ASTContext; // ASTContext creates these QualType ModifiedType; QualType EquivalentType; AttributedType(QualType canon, attr::Kind attrKind, QualType modified, QualType equivalent) : Type(Attributed, canon, equivalent->isDependentType(), equivalent->isInstantiationDependentType(), equivalent->isVariablyModifiedType(), equivalent->containsUnexpandedParameterPack()), ModifiedType(modified), EquivalentType(equivalent) { AttributedTypeBits.AttrKind = attrKind; } public: Kind getAttrKind() const { return static_cast(AttributedTypeBits.AttrKind); } QualType getModifiedType() const { return ModifiedType; } QualType getEquivalentType() const { return EquivalentType; } bool isSugared() const { return true; } QualType desugar() const { return getEquivalentType(); } /// Does this attribute behave like a type qualifier? /// /// A type qualifier adjusts a type to provide specialized rules for /// a specific object, like the standard const and volatile qualifiers. /// This includes attributes controlling things like nullability, /// address spaces, and ARC ownership. The value of the object is still /// largely described by the modified type. /// /// In contrast, many type attributes "rewrite" their modified type to /// produce a fundamentally different type, not necessarily related in any /// formalizable way to the original type. For example, calling convention /// and vector attributes are not simple type qualifiers. /// /// Type qualifiers are often, but not always, reflected in the canonical /// type. bool isQualifier() const; bool isMSTypeSpec() const; bool isCallingConv() const; llvm::Optional getImmediateNullability() const; /// Retrieve the attribute kind corresponding to the given /// nullability kind. static Kind getNullabilityAttrKind(NullabilityKind kind) { switch (kind) { case NullabilityKind::NonNull: return attr::TypeNonNull; case NullabilityKind::Nullable: return attr::TypeNullable; case NullabilityKind::Unspecified: return attr::TypeNullUnspecified; } llvm_unreachable("Unknown nullability kind."); } /// Strip off the top-level nullability annotation on the given /// type, if it's there. /// /// \param T The type to strip. If the type is exactly an /// AttributedType specifying nullability (without looking through /// type sugar), the nullability is returned and this type changed /// to the underlying modified type. /// /// \returns the top-level nullability, if present. static Optional stripOuterNullability(QualType &T); void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getAttrKind(), ModifiedType, EquivalentType); } static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind, QualType modified, QualType equivalent) { ID.AddInteger(attrKind); ID.AddPointer(modified.getAsOpaquePtr()); ID.AddPointer(equivalent.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == Attributed; } }; class TemplateTypeParmType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these // Helper data collector for canonical types. struct CanonicalTTPTInfo { unsigned Depth : 15; unsigned ParameterPack : 1; unsigned Index : 16; }; union { // Info for the canonical type. CanonicalTTPTInfo CanTTPTInfo; // Info for the non-canonical type. TemplateTypeParmDecl *TTPDecl; }; /// Build a non-canonical type. TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon) : Type(TemplateTypeParm, Canon, /*Dependent=*/true, /*InstantiationDependent=*/true, /*VariablyModified=*/false, Canon->containsUnexpandedParameterPack()), TTPDecl(TTPDecl) {} /// Build the canonical type. TemplateTypeParmType(unsigned D, unsigned I, bool PP) : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true, /*InstantiationDependent=*/true, /*VariablyModified=*/false, PP) { CanTTPTInfo.Depth = D; CanTTPTInfo.Index = I; CanTTPTInfo.ParameterPack = PP; } const CanonicalTTPTInfo& getCanTTPTInfo() const { QualType Can = getCanonicalTypeInternal(); return Can->castAs()->CanTTPTInfo; } public: unsigned getDepth() const { return getCanTTPTInfo().Depth; } unsigned getIndex() const { return getCanTTPTInfo().Index; } bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; } TemplateTypeParmDecl *getDecl() const { return isCanonicalUnqualified() ? nullptr : TTPDecl; } IdentifierInfo *getIdentifier() const; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl()); } static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth, unsigned Index, bool ParameterPack, TemplateTypeParmDecl *TTPDecl) { ID.AddInteger(Depth); ID.AddInteger(Index); ID.AddBoolean(ParameterPack); ID.AddPointer(TTPDecl); } static bool classof(const Type *T) { return T->getTypeClass() == TemplateTypeParm; } }; /// Represents the result of substituting a type for a template /// type parameter. /// /// Within an instantiated template, all template type parameters have /// been replaced with these. They are used solely to record that a /// type was originally written as a template type parameter; /// therefore they are never canonical. class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // The original type parameter. const TemplateTypeParmType *Replaced; SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon) : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(), Canon->isInstantiationDependentType(), Canon->isVariablyModifiedType(), Canon->containsUnexpandedParameterPack()), Replaced(Param) {} public: /// Gets the template parameter that was substituted for. const TemplateTypeParmType *getReplacedParameter() const { return Replaced; } /// Gets the type that was substituted for the template /// parameter. QualType getReplacementType() const { return getCanonicalTypeInternal(); } bool isSugared() const { return true; } QualType desugar() const { return getReplacementType(); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getReplacedParameter(), getReplacementType()); } static void Profile(llvm::FoldingSetNodeID &ID, const TemplateTypeParmType *Replaced, QualType Replacement) { ID.AddPointer(Replaced); ID.AddPointer(Replacement.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == SubstTemplateTypeParm; } }; /// Represents the result of substituting a set of types for a template /// type parameter pack. /// /// When a pack expansion in the source code contains multiple parameter packs /// and those parameter packs correspond to different levels of template /// parameter lists, this type node is used to represent a template type /// parameter pack from an outer level, which has already had its argument pack /// substituted but that still lives within a pack expansion that itself /// could not be instantiated. When actually performing a substitution into /// that pack expansion (e.g., when all template parameters have corresponding /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType /// at the current pack substitution index. class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode { friend class ASTContext; /// The original type parameter. const TemplateTypeParmType *Replaced; /// A pointer to the set of template arguments that this /// parameter pack is instantiated with. const TemplateArgument *Arguments; SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, QualType Canon, const TemplateArgument &ArgPack); public: IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); } /// Gets the template parameter that was substituted for. const TemplateTypeParmType *getReplacedParameter() const { return Replaced; } unsigned getNumArgs() const { return SubstTemplateTypeParmPackTypeBits.NumArgs; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } TemplateArgument getArgumentPack() const; void Profile(llvm::FoldingSetNodeID &ID); static void Profile(llvm::FoldingSetNodeID &ID, const TemplateTypeParmType *Replaced, const TemplateArgument &ArgPack); static bool classof(const Type *T) { return T->getTypeClass() == SubstTemplateTypeParmPack; } }; /// Common base class for placeholders for types that get replaced by /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced /// class template types, and (eventually) constrained type names from the C++ /// Concepts TS. /// /// These types are usually a placeholder for a deduced type. However, before /// the initializer is attached, or (usually) if the initializer is /// type-dependent, there is no deduced type and the type is canonical. In /// the latter case, it is also a dependent type. class DeducedType : public Type { protected: DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent, bool IsInstantiationDependent, bool ContainsParameterPack) : Type(TC, // FIXME: Retain the sugared deduced type? DeducedAsType.isNull() ? QualType(this, 0) : DeducedAsType.getCanonicalType(), IsDependent, IsInstantiationDependent, /*VariablyModified=*/false, ContainsParameterPack) { if (!DeducedAsType.isNull()) { if (DeducedAsType->isDependentType()) setDependent(); if (DeducedAsType->isInstantiationDependentType()) setInstantiationDependent(); if (DeducedAsType->containsUnexpandedParameterPack()) setContainsUnexpandedParameterPack(); } } public: bool isSugared() const { return !isCanonicalUnqualified(); } QualType desugar() const { return getCanonicalTypeInternal(); } /// Get the type deduced for this placeholder type, or null if it's /// either not been deduced or was deduced to a dependent type. QualType getDeducedType() const { return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType(); } bool isDeduced() const { return !isCanonicalUnqualified() || isDependentType(); } static bool classof(const Type *T) { return T->getTypeClass() == Auto || T->getTypeClass() == DeducedTemplateSpecialization; } }; /// Represents a C++11 auto or C++14 decltype(auto) type. class AutoType : public DeducedType, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, bool IsDeducedAsDependent) : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent, IsDeducedAsDependent, /*ContainsPack=*/false) { AutoTypeBits.Keyword = (unsigned)Keyword; } public: bool isDecltypeAuto() const { return getKeyword() == AutoTypeKeyword::DecltypeAuto; } AutoTypeKeyword getKeyword() const { return (AutoTypeKeyword)AutoTypeBits.Keyword; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getDeducedType(), getKeyword(), isDependentType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced, AutoTypeKeyword Keyword, bool IsDependent) { ID.AddPointer(Deduced.getAsOpaquePtr()); ID.AddInteger((unsigned)Keyword); ID.AddBoolean(IsDependent); } static bool classof(const Type *T) { return T->getTypeClass() == Auto; } }; /// Represents a C++17 deduced template specialization type. class DeducedTemplateSpecializationType : public DeducedType, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these /// The name of the template whose arguments will be deduced. TemplateName Template; DeducedTemplateSpecializationType(TemplateName Template, QualType DeducedAsType, bool IsDeducedAsDependent) : DeducedType(DeducedTemplateSpecialization, DeducedAsType, IsDeducedAsDependent || Template.isDependent(), IsDeducedAsDependent || Template.isInstantiationDependent(), Template.containsUnexpandedParameterPack()), Template(Template) {} public: /// Retrieve the name of the template that we are deducing. TemplateName getTemplateName() const { return Template;} void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getTemplateName(), getDeducedType(), isDependentType()); } static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template, QualType Deduced, bool IsDependent) { Template.Profile(ID); ID.AddPointer(Deduced.getAsOpaquePtr()); ID.AddBoolean(IsDependent); } static bool classof(const Type *T) { return T->getTypeClass() == DeducedTemplateSpecialization; } }; /// Represents a type template specialization; the template /// must be a class template, a type alias template, or a template /// template parameter. A template which cannot be resolved to one of /// these, e.g. because it is written with a dependent scope /// specifier, is instead represented as a /// @c DependentTemplateSpecializationType. /// /// A non-dependent template specialization type is always "sugar", /// typically for a \c RecordType. For example, a class template /// specialization type of \c vector will refer to a tag type for /// the instantiation \c std::vector> /// /// Template specializations are dependent if either the template or /// any of the template arguments are dependent, in which case the /// type may also be canonical. /// /// Instances of this type are allocated with a trailing array of /// TemplateArguments, followed by a QualType representing the /// non-canonical aliased type when the template is a type alias /// template. class alignas(8) TemplateSpecializationType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these /// The name of the template being specialized. This is /// either a TemplateName::Template (in which case it is a /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a /// TypeAliasTemplateDecl*), a /// TemplateName::SubstTemplateTemplateParmPack, or a /// TemplateName::SubstTemplateTemplateParm (in which case the /// replacement must, recursively, be one of these). TemplateName Template; TemplateSpecializationType(TemplateName T, ArrayRef Args, QualType Canon, QualType Aliased); public: /// Determine whether any of the given template arguments are dependent. static bool anyDependentTemplateArguments(ArrayRef Args, bool &InstantiationDependent); static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &, bool &InstantiationDependent); /// True if this template specialization type matches a current /// instantiation in the context in which it is found. bool isCurrentInstantiation() const { return isa(getCanonicalTypeInternal()); } /// Determine if this template specialization type is for a type alias /// template that has been substituted. /// /// Nearly every template specialization type whose template is an alias /// template will be substituted. However, this is not the case when /// the specialization contains a pack expansion but the template alias /// does not have a corresponding parameter pack, e.g., /// /// \code /// template struct S; /// template using A = S; /// template struct X { /// typedef A type; // not a type alias /// }; /// \endcode bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; } /// Get the aliased type, if this is a specialization of a type alias /// template. QualType getAliasedType() const { assert(isTypeAlias() && "not a type alias template specialization"); return *reinterpret_cast(end()); } using iterator = const TemplateArgument *; iterator begin() const { return getArgs(); } iterator end() const; // defined inline in TemplateBase.h /// Retrieve the name of the template that we are specializing. TemplateName getTemplateName() const { return Template; } /// Retrieve the template arguments. const TemplateArgument *getArgs() const { return reinterpret_cast(this + 1); } /// Retrieve the number of template arguments. unsigned getNumArgs() const { return TemplateSpecializationTypeBits.NumArgs; } /// Retrieve a specific template argument as a type. /// \pre \c isArgType(Arg) const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h ArrayRef template_arguments() const { return {getArgs(), getNumArgs()}; } bool isSugared() const { return !isDependentType() || isCurrentInstantiation() || isTypeAlias(); } QualType desugar() const { return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal(); } void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { Profile(ID, Template, template_arguments(), Ctx); if (isTypeAlias()) getAliasedType().Profile(ID); } static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T, ArrayRef Args, const ASTContext &Context); static bool classof(const Type *T) { return T->getTypeClass() == TemplateSpecialization; } }; /// Print a template argument list, including the '<' and '>' /// enclosing the template arguments. void printTemplateArgumentList(raw_ostream &OS, ArrayRef Args, const PrintingPolicy &Policy); void printTemplateArgumentList(raw_ostream &OS, ArrayRef Args, const PrintingPolicy &Policy); void printTemplateArgumentList(raw_ostream &OS, const TemplateArgumentListInfo &Args, const PrintingPolicy &Policy); /// The injected class name of a C++ class template or class /// template partial specialization. Used to record that a type was /// spelled with a bare identifier rather than as a template-id; the /// equivalent for non-templated classes is just RecordType. /// /// Injected class name types are always dependent. Template /// instantiation turns these into RecordTypes. /// /// Injected class name types are always canonical. This works /// because it is impossible to compare an injected class name type /// with the corresponding non-injected template type, for the same /// reason that it is impossible to directly compare template /// parameters from different dependent contexts: injected class name /// types can only occur within the scope of a particular templated /// declaration, and within that scope every template specialization /// will canonicalize to the injected class name (when appropriate /// according to the rules of the language). class InjectedClassNameType : public Type { friend class ASTContext; // ASTContext creates these. friend class ASTNodeImporter; friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not // currently suitable for AST reading, too much // interdependencies. CXXRecordDecl *Decl; /// The template specialization which this type represents. /// For example, in /// template class A { ... }; /// this is A, whereas in /// template class A > { ... }; /// this is A >. /// /// It is always unqualified, always a template specialization type, /// and always dependent. QualType InjectedType; InjectedClassNameType(CXXRecordDecl *D, QualType TST) : Type(InjectedClassName, QualType(), /*Dependent=*/true, /*InstantiationDependent=*/true, /*VariablyModified=*/false, /*ContainsUnexpandedParameterPack=*/false), Decl(D), InjectedType(TST) { assert(isa(TST)); assert(!TST.hasQualifiers()); assert(TST->isDependentType()); } public: QualType getInjectedSpecializationType() const { return InjectedType; } const TemplateSpecializationType *getInjectedTST() const { return cast(InjectedType.getTypePtr()); } TemplateName getTemplateName() const { return getInjectedTST()->getTemplateName(); } CXXRecordDecl *getDecl() const; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == InjectedClassName; } }; /// The kind of a tag type. enum TagTypeKind { /// The "struct" keyword. TTK_Struct, /// The "__interface" keyword. TTK_Interface, /// The "union" keyword. TTK_Union, /// The "class" keyword. TTK_Class, /// The "enum" keyword. TTK_Enum }; /// The elaboration keyword that precedes a qualified type name or /// introduces an elaborated-type-specifier. enum ElaboratedTypeKeyword { /// The "struct" keyword introduces the elaborated-type-specifier. ETK_Struct, /// The "__interface" keyword introduces the elaborated-type-specifier. ETK_Interface, /// The "union" keyword introduces the elaborated-type-specifier. ETK_Union, /// The "class" keyword introduces the elaborated-type-specifier. ETK_Class, /// The "enum" keyword introduces the elaborated-type-specifier. ETK_Enum, /// The "typename" keyword precedes the qualified type name, e.g., /// \c typename T::type. ETK_Typename, /// No keyword precedes the qualified type name. ETK_None }; /// A helper class for Type nodes having an ElaboratedTypeKeyword. /// The keyword in stored in the free bits of the base class. /// Also provides a few static helpers for converting and printing /// elaborated type keyword and tag type kind enumerations. class TypeWithKeyword : public Type { protected: TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc, QualType Canonical, bool Dependent, bool InstantiationDependent, bool VariablyModified, bool ContainsUnexpandedParameterPack) : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified, ContainsUnexpandedParameterPack) { TypeWithKeywordBits.Keyword = Keyword; } public: ElaboratedTypeKeyword getKeyword() const { return static_cast(TypeWithKeywordBits.Keyword); } /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword. static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec); /// Converts a type specifier (DeclSpec::TST) into a tag type kind. /// It is an error to provide a type specifier which *isn't* a tag kind here. static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec); /// Converts a TagTypeKind into an elaborated type keyword. static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag); /// Converts an elaborated type keyword into a TagTypeKind. /// It is an error to provide an elaborated type keyword /// which *isn't* a tag kind here. static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword); static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword); static StringRef getKeywordName(ElaboratedTypeKeyword Keyword); static StringRef getTagTypeKindName(TagTypeKind Kind) { return getKeywordName(getKeywordForTagTypeKind(Kind)); } class CannotCastToThisType {}; static CannotCastToThisType classof(const Type *); }; /// Represents a type that was referred to using an elaborated type /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, /// or both. /// /// This type is used to keep track of a type name as written in the /// source code, including tag keywords and any nested-name-specifiers. /// The type itself is always "sugar", used to express what was written /// in the source code but containing no additional semantic information. class ElaboratedType final : public TypeWithKeyword, public llvm::FoldingSetNode, private llvm::TrailingObjects { friend class ASTContext; // ASTContext creates these friend TrailingObjects; /// The nested name specifier containing the qualifier. NestedNameSpecifier *NNS; /// The type that this qualified name refers to. QualType NamedType; /// The (re)declaration of this tag type owned by this occurrence is stored /// as a trailing object if there is one. Use getOwnedTagDecl to obtain /// it, or obtain a null pointer if there is none. ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl) : TypeWithKeyword(Keyword, Elaborated, CanonType, NamedType->isDependentType(), NamedType->isInstantiationDependentType(), NamedType->isVariablyModifiedType(), NamedType->containsUnexpandedParameterPack()), NNS(NNS), NamedType(NamedType) { ElaboratedTypeBits.HasOwnedTagDecl = false; if (OwnedTagDecl) { ElaboratedTypeBits.HasOwnedTagDecl = true; *getTrailingObjects() = OwnedTagDecl; } assert(!(Keyword == ETK_None && NNS == nullptr) && "ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."); } public: /// Retrieve the qualification on this type. NestedNameSpecifier *getQualifier() const { return NNS; } /// Retrieve the type named by the qualified-id. QualType getNamedType() const { return NamedType; } /// Remove a single level of sugar. QualType desugar() const { return getNamedType(); } /// Returns whether this type directly provides sugar. bool isSugared() const { return true; } /// Return the (re)declaration of this type owned by this occurrence of this /// type, or nullptr if there is none. TagDecl *getOwnedTagDecl() const { return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects() : nullptr; } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl()); } static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, QualType NamedType, TagDecl *OwnedTagDecl) { ID.AddInteger(Keyword); ID.AddPointer(NNS); NamedType.Profile(ID); ID.AddPointer(OwnedTagDecl); } static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; } }; /// Represents a qualified type name for which the type name is /// dependent. /// /// DependentNameType represents a class of dependent types that involve a /// possibly dependent nested-name-specifier (e.g., "T::") followed by a /// name of a type. The DependentNameType may start with a "typename" (for a /// typename-specifier), "class", "struct", "union", or "enum" (for a /// dependent elaborated-type-specifier), or nothing (in contexts where we /// know that we must be referring to a type, e.g., in a base class specifier). /// Typically the nested-name-specifier is dependent, but in MSVC compatibility /// mode, this type is used with non-dependent names to delay name lookup until /// instantiation. class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these /// The nested name specifier containing the qualifier. NestedNameSpecifier *NNS; /// The type that this typename specifier refers to. const IdentifierInfo *Name; DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType CanonType) : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true, /*InstantiationDependent=*/true, /*VariablyModified=*/false, NNS->containsUnexpandedParameterPack()), NNS(NNS), Name(Name) {} public: /// Retrieve the qualification on this type. NestedNameSpecifier *getQualifier() const { return NNS; } /// Retrieve the type named by the typename specifier as an identifier. /// /// This routine will return a non-NULL identifier pointer when the /// form of the original typename was terminated by an identifier, /// e.g., "typename T::type". const IdentifierInfo *getIdentifier() const { return Name; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getKeyword(), NNS, Name); } static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name) { ID.AddInteger(Keyword); ID.AddPointer(NNS); ID.AddPointer(Name); } static bool classof(const Type *T) { return T->getTypeClass() == DependentName; } }; /// Represents a template specialization type whose template cannot be /// resolved, e.g. /// A::template B class alignas(8) DependentTemplateSpecializationType : public TypeWithKeyword, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these /// The nested name specifier containing the qualifier. NestedNameSpecifier *NNS; /// The identifier of the template. const IdentifierInfo *Name; DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, ArrayRef Args, QualType Canon); const TemplateArgument *getArgBuffer() const { return reinterpret_cast(this+1); } TemplateArgument *getArgBuffer() { return reinterpret_cast(this+1); } public: NestedNameSpecifier *getQualifier() const { return NNS; } const IdentifierInfo *getIdentifier() const { return Name; } /// Retrieve the template arguments. const TemplateArgument *getArgs() const { return getArgBuffer(); } /// Retrieve the number of template arguments. unsigned getNumArgs() const { return DependentTemplateSpecializationTypeBits.NumArgs; } const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h ArrayRef template_arguments() const { return {getArgs(), getNumArgs()}; } using iterator = const TemplateArgument *; iterator begin() const { return getArgs(); } iterator end() const; // inline in TemplateBase.h bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()}); } static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, ElaboratedTypeKeyword Keyword, NestedNameSpecifier *Qualifier, const IdentifierInfo *Name, ArrayRef Args); static bool classof(const Type *T) { return T->getTypeClass() == DependentTemplateSpecialization; } }; /// Represents a pack expansion of types. /// /// Pack expansions are part of C++11 variadic templates. A pack /// expansion contains a pattern, which itself contains one or more /// "unexpanded" parameter packs. When instantiated, a pack expansion /// produces a series of types, each instantiated from the pattern of /// the expansion, where the Ith instantiation of the pattern uses the /// Ith arguments bound to each of the unexpanded parameter packs. The /// pack expansion is considered to "expand" these unexpanded /// parameter packs. /// /// \code /// template struct tuple; /// /// template /// struct tuple_of_references { /// typedef tuple type; /// }; /// \endcode /// /// Here, the pack expansion \c Types&... is represented via a /// PackExpansionType whose pattern is Types&. class PackExpansionType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these /// The pattern of the pack expansion. QualType Pattern; PackExpansionType(QualType Pattern, QualType Canon, Optional NumExpansions) : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(), /*InstantiationDependent=*/true, /*VariablyModified=*/Pattern->isVariablyModifiedType(), /*ContainsUnexpandedParameterPack=*/false), Pattern(Pattern) { PackExpansionTypeBits.NumExpansions = NumExpansions ? *NumExpansions + 1 : 0; } public: /// Retrieve the pattern of this pack expansion, which is the /// type that will be repeatedly instantiated when instantiating the /// pack expansion itself. QualType getPattern() const { return Pattern; } /// Retrieve the number of expansions that this pack expansion will /// generate, if known. Optional getNumExpansions() const { if (PackExpansionTypeBits.NumExpansions) return PackExpansionTypeBits.NumExpansions - 1; return None; } bool isSugared() const { return !Pattern->isDependentType(); } QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getPattern(), getNumExpansions()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern, Optional NumExpansions) { ID.AddPointer(Pattern.getAsOpaquePtr()); ID.AddBoolean(NumExpansions.hasValue()); if (NumExpansions) ID.AddInteger(*NumExpansions); } static bool classof(const Type *T) { return T->getTypeClass() == PackExpansion; } }; /// This class wraps the list of protocol qualifiers. For types that can /// take ObjC protocol qualifers, they can subclass this class. template class ObjCProtocolQualifiers { protected: ObjCProtocolQualifiers() = default; ObjCProtocolDecl * const *getProtocolStorage() const { return const_cast(this)->getProtocolStorage(); } ObjCProtocolDecl **getProtocolStorage() { return static_cast(this)->getProtocolStorageImpl(); } void setNumProtocols(unsigned N) { static_cast(this)->setNumProtocolsImpl(N); } void initialize(ArrayRef protocols) { setNumProtocols(protocols.size()); assert(getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"); if (!protocols.empty()) memcpy(getProtocolStorage(), protocols.data(), protocols.size() * sizeof(ObjCProtocolDecl*)); } public: using qual_iterator = ObjCProtocolDecl * const *; using qual_range = llvm::iterator_range; qual_range quals() const { return qual_range(qual_begin(), qual_end()); } qual_iterator qual_begin() const { return getProtocolStorage(); } qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); } bool qual_empty() const { return getNumProtocols() == 0; } /// Return the number of qualifying protocols in this type, or 0 if /// there are none. unsigned getNumProtocols() const { return static_cast(this)->getNumProtocolsImpl(); } /// Fetch a protocol by index. ObjCProtocolDecl *getProtocol(unsigned I) const { assert(I < getNumProtocols() && "Out-of-range protocol access"); return qual_begin()[I]; } /// Retrieve all of the protocol qualifiers. ArrayRef getProtocols() const { return ArrayRef(qual_begin(), getNumProtocols()); } }; /// Represents a type parameter type in Objective C. It can take /// a list of protocols. class ObjCTypeParamType : public Type, public ObjCProtocolQualifiers, public llvm::FoldingSetNode { friend class ASTContext; friend class ObjCProtocolQualifiers; /// The number of protocols stored on this type. unsigned NumProtocols : 6; ObjCTypeParamDecl *OTPDecl; /// The protocols are stored after the ObjCTypeParamType node. In the /// canonical type, the list of protocols are sorted alphabetically /// and uniqued. ObjCProtocolDecl **getProtocolStorageImpl(); /// Return the number of qualifying protocols in this interface type, /// or 0 if there are none. unsigned getNumProtocolsImpl() const { return NumProtocols; } void setNumProtocolsImpl(unsigned N) { NumProtocols = N; } ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can, ArrayRef protocols); public: bool isSugared() const { return true; } QualType desugar() const { return getCanonicalTypeInternal(); } static bool classof(const Type *T) { return T->getTypeClass() == ObjCTypeParam; } void Profile(llvm::FoldingSetNodeID &ID); static void Profile(llvm::FoldingSetNodeID &ID, const ObjCTypeParamDecl *OTPDecl, ArrayRef protocols); ObjCTypeParamDecl *getDecl() const { return OTPDecl; } }; /// Represents a class type in Objective C. /// /// Every Objective C type is a combination of a base type, a set of /// type arguments (optional, for parameterized classes) and a list of /// protocols. /// /// Given the following declarations: /// \code /// \@class C; /// \@protocol P; /// \endcode /// /// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType /// with base C and no protocols. /// /// 'C

' is an unspecialized ObjCObjectType with base C and protocol list [P]. /// 'C' is a specialized ObjCObjectType with type arguments 'C*' and no /// protocol list. /// 'C

' is a specialized ObjCObjectType with base C, type arguments 'C*', /// and protocol list [P]. /// /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType /// and no protocols. /// /// 'id

' is an ObjCObjectPointerType whose pointee is an ObjCObjectType /// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually /// this should get its own sugar class to better represent the source. class ObjCObjectType : public Type, public ObjCProtocolQualifiers { friend class ObjCProtocolQualifiers; // ObjCObjectType.NumTypeArgs - the number of type arguments stored // after the ObjCObjectPointerType node. // ObjCObjectType.NumProtocols - the number of protocols stored // after the type arguments of ObjCObjectPointerType node. // // These protocols are those written directly on the type. If // protocol qualifiers ever become additive, the iterators will need // to get kindof complicated. // // In the canonical object type, these are sorted alphabetically // and uniqued. /// Either a BuiltinType or an InterfaceType or sugar for either. QualType BaseType; /// Cached superclass type. mutable llvm::PointerIntPair CachedSuperClassType; QualType *getTypeArgStorage(); const QualType *getTypeArgStorage() const { return const_cast(this)->getTypeArgStorage(); } ObjCProtocolDecl **getProtocolStorageImpl(); /// Return the number of qualifying protocols in this interface type, /// or 0 if there are none. unsigned getNumProtocolsImpl() const { return ObjCObjectTypeBits.NumProtocols; } void setNumProtocolsImpl(unsigned N) { ObjCObjectTypeBits.NumProtocols = N; } protected: enum Nonce_ObjCInterface { Nonce_ObjCInterface }; ObjCObjectType(QualType Canonical, QualType Base, ArrayRef typeArgs, ArrayRef protocols, bool isKindOf); ObjCObjectType(enum Nonce_ObjCInterface) : Type(ObjCInterface, QualType(), false, false, false, false), BaseType(QualType(this_(), 0)) { ObjCObjectTypeBits.NumProtocols = 0; ObjCObjectTypeBits.NumTypeArgs = 0; ObjCObjectTypeBits.IsKindOf = 0; } void computeSuperClassTypeSlow() const; public: /// Gets the base type of this object type. This is always (possibly /// sugar for) one of: /// - the 'id' builtin type (as opposed to the 'id' type visible to the /// user, which is a typedef for an ObjCObjectPointerType) /// - the 'Class' builtin type (same caveat) /// - an ObjCObjectType (currently always an ObjCInterfaceType) QualType getBaseType() const { return BaseType; } bool isObjCId() const { return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId); } bool isObjCClass() const { return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass); } bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); } bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); } bool isObjCUnqualifiedIdOrClass() const { if (!qual_empty()) return false; if (const BuiltinType *T = getBaseType()->getAs()) return T->getKind() == BuiltinType::ObjCId || T->getKind() == BuiltinType::ObjCClass; return false; } bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); } bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); } /// Gets the interface declaration for this object type, if the base type /// really is an interface. ObjCInterfaceDecl *getInterface() const; /// Determine whether this object type is "specialized", meaning /// that it has type arguments. bool isSpecialized() const; /// Determine whether this object type was written with type arguments. bool isSpecializedAsWritten() const { return ObjCObjectTypeBits.NumTypeArgs > 0; } /// Determine whether this object type is "unspecialized", meaning /// that it has no type arguments. bool isUnspecialized() const { return !isSpecialized(); } /// Determine whether this object type is "unspecialized" as /// written, meaning that it has no type arguments. bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } /// Retrieve the type arguments of this object type (semantically). ArrayRef getTypeArgs() const; /// Retrieve the type arguments of this object type as they were /// written. ArrayRef getTypeArgsAsWritten() const { return llvm::makeArrayRef(getTypeArgStorage(), ObjCObjectTypeBits.NumTypeArgs); } /// Whether this is a "__kindof" type as written. bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; } /// Whether this ia a "__kindof" type (semantically). bool isKindOfType() const; /// Retrieve the type of the superclass of this object type. /// /// This operation substitutes any type arguments into the /// superclass of the current class type, potentially producing a /// specialization of the superclass type. Produces a null type if /// there is no superclass. QualType getSuperClassType() const { if (!CachedSuperClassType.getInt()) computeSuperClassTypeSlow(); assert(CachedSuperClassType.getInt() && "Superclass not set?"); return QualType(CachedSuperClassType.getPointer(), 0); } /// Strip off the Objective-C "kindof" type and (with it) any /// protocol qualifiers. QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const; bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == ObjCObject || T->getTypeClass() == ObjCInterface; } }; /// A class providing a concrete implementation /// of ObjCObjectType, so as to not increase the footprint of /// ObjCInterfaceType. Code outside of ASTContext and the core type /// system should not reference this type. class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode { friend class ASTContext; // If anyone adds fields here, ObjCObjectType::getProtocolStorage() // will need to be modified. ObjCObjectTypeImpl(QualType Canonical, QualType Base, ArrayRef typeArgs, ArrayRef protocols, bool isKindOf) : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {} public: void Profile(llvm::FoldingSetNodeID &ID); static void Profile(llvm::FoldingSetNodeID &ID, QualType Base, ArrayRef typeArgs, ArrayRef protocols, bool isKindOf); }; inline QualType *ObjCObjectType::getTypeArgStorage() { return reinterpret_cast(static_cast(this)+1); } inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() { return reinterpret_cast( getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs); } inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() { return reinterpret_cast( static_cast(this)+1); } /// Interfaces are the core concept in Objective-C for object oriented design. /// They basically correspond to C++ classes. There are two kinds of interface /// types: normal interfaces like `NSString`, and qualified interfaces, which /// are qualified with a protocol list like `NSString`. /// /// ObjCInterfaceType guarantees the following properties when considered /// as a subtype of its superclass, ObjCObjectType: /// - There are no protocol qualifiers. To reinforce this, code which /// tries to invoke the protocol methods via an ObjCInterfaceType will /// fail to compile. /// - It is its own base type. That is, if T is an ObjCInterfaceType*, /// T->getBaseType() == QualType(T, 0). class ObjCInterfaceType : public ObjCObjectType { friend class ASTContext; // ASTContext creates these. friend class ASTReader; friend class ObjCInterfaceDecl; mutable ObjCInterfaceDecl *Decl; ObjCInterfaceType(const ObjCInterfaceDecl *D) : ObjCObjectType(Nonce_ObjCInterface), Decl(const_cast(D)) {} public: /// Get the declaration of this interface. ObjCInterfaceDecl *getDecl() const { return Decl; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } static bool classof(const Type *T) { return T->getTypeClass() == ObjCInterface; } // Nonsense to "hide" certain members of ObjCObjectType within this // class. People asking for protocols on an ObjCInterfaceType are // not going to get what they want: ObjCInterfaceTypes are // guaranteed to have no protocols. enum { qual_iterator, qual_begin, qual_end, getNumProtocols, getProtocol }; }; inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const { QualType baseType = getBaseType(); while (const auto *ObjT = baseType->getAs()) { if (const auto *T = dyn_cast(ObjT)) return T->getDecl(); baseType = ObjT->getBaseType(); } return nullptr; } /// Represents a pointer to an Objective C object. /// /// These are constructed from pointer declarators when the pointee type is /// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class' /// types are typedefs for these, and the protocol-qualified types 'id

' /// and 'Class

' are translated into these. /// /// Pointers to pointers to Objective C objects are still PointerTypes; /// only the first level of pointer gets it own type implementation. class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType PointeeType; ObjCObjectPointerType(QualType Canonical, QualType Pointee) : Type(ObjCObjectPointer, Canonical, Pointee->isDependentType(), Pointee->isInstantiationDependentType(), Pointee->isVariablyModifiedType(), Pointee->containsUnexpandedParameterPack()), PointeeType(Pointee) {} public: /// Gets the type pointed to by this ObjC pointer. /// The result will always be an ObjCObjectType or sugar thereof. QualType getPointeeType() const { return PointeeType; } /// Gets the type pointed to by this ObjC pointer. Always returns non-null. /// /// This method is equivalent to getPointeeType() except that /// it discards any typedefs (or other sugar) between this /// type and the "outermost" object type. So for: /// \code /// \@class A; \@protocol P; \@protocol Q; /// typedef A

AP; /// typedef A A1; /// typedef A1

A1P; /// typedef A1P A1PQ; /// \endcode /// For 'A*', getObjectType() will return 'A'. /// For 'A

*', getObjectType() will return 'A

'. /// For 'AP*', getObjectType() will return 'A

'. /// For 'A1*', getObjectType() will return 'A'. /// For 'A1

*', getObjectType() will return 'A1

'. /// For 'A1P*', getObjectType() will return 'A1

'. /// For 'A1PQ*', getObjectType() will return 'A1', because /// adding protocols to a protocol-qualified base discards the /// old qualifiers (for now). But if it didn't, getObjectType() /// would return 'A1P' (and we'd have to make iterating over /// qualifiers more complicated). const ObjCObjectType *getObjectType() const { return PointeeType->castAs(); } /// If this pointer points to an Objective C /// \@interface type, gets the type for that interface. Any protocol /// qualifiers on the interface are ignored. /// /// \return null if the base type for this pointer is 'id' or 'Class' const ObjCInterfaceType *getInterfaceType() const; /// If this pointer points to an Objective \@interface /// type, gets the declaration for that interface. /// /// \return null if the base type for this pointer is 'id' or 'Class' ObjCInterfaceDecl *getInterfaceDecl() const { return getObjectType()->getInterface(); } /// True if this is equivalent to the 'id' type, i.e. if /// its object type is the primitive 'id' type with no protocols. bool isObjCIdType() const { return getObjectType()->isObjCUnqualifiedId(); } /// True if this is equivalent to the 'Class' type, /// i.e. if its object tive is the primitive 'Class' type with no protocols. bool isObjCClassType() const { return getObjectType()->isObjCUnqualifiedClass(); } /// True if this is equivalent to the 'id' or 'Class' type, bool isObjCIdOrClassType() const { return getObjectType()->isObjCUnqualifiedIdOrClass(); } /// True if this is equivalent to 'id

' for some non-empty set of /// protocols. bool isObjCQualifiedIdType() const { return getObjectType()->isObjCQualifiedId(); } /// True if this is equivalent to 'Class

' for some non-empty set of /// protocols. bool isObjCQualifiedClassType() const { return getObjectType()->isObjCQualifiedClass(); } /// Whether this is a "__kindof" type. bool isKindOfType() const { return getObjectType()->isKindOfType(); } /// Whether this type is specialized, meaning that it has type arguments. bool isSpecialized() const { return getObjectType()->isSpecialized(); } /// Whether this type is specialized, meaning that it has type arguments. bool isSpecializedAsWritten() const { return getObjectType()->isSpecializedAsWritten(); } /// Whether this type is unspecialized, meaning that is has no type arguments. bool isUnspecialized() const { return getObjectType()->isUnspecialized(); } /// Determine whether this object type is "unspecialized" as /// written, meaning that it has no type arguments. bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } /// Retrieve the type arguments for this type. ArrayRef getTypeArgs() const { return getObjectType()->getTypeArgs(); } /// Retrieve the type arguments for this type. ArrayRef getTypeArgsAsWritten() const { return getObjectType()->getTypeArgsAsWritten(); } /// An iterator over the qualifiers on the object type. Provided /// for convenience. This will always iterate over the full set of /// protocols on a type, not just those provided directly. using qual_iterator = ObjCObjectType::qual_iterator; using qual_range = llvm::iterator_range; qual_range quals() const { return qual_range(qual_begin(), qual_end()); } qual_iterator qual_begin() const { return getObjectType()->qual_begin(); } qual_iterator qual_end() const { return getObjectType()->qual_end(); } bool qual_empty() const { return getObjectType()->qual_empty(); } /// Return the number of qualifying protocols on the object type. unsigned getNumProtocols() const { return getObjectType()->getNumProtocols(); } /// Retrieve a qualifying protocol by index on the object type. ObjCProtocolDecl *getProtocol(unsigned I) const { return getObjectType()->getProtocol(I); } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } /// Retrieve the type of the superclass of this object pointer type. /// /// This operation substitutes any type arguments into the /// superclass of the current class type, potentially producing a /// pointer to a specialization of the superclass type. Produces a /// null type if there is no superclass. QualType getSuperClassType() const; /// Strip off the Objective-C "kindof" type and (with it) any /// protocol qualifiers. const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals( const ASTContext &ctx) const; void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getPointeeType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { ID.AddPointer(T.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == ObjCObjectPointer; } }; class AtomicType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType ValueType; AtomicType(QualType ValTy, QualType Canonical) : Type(Atomic, Canonical, ValTy->isDependentType(), ValTy->isInstantiationDependentType(), ValTy->isVariablyModifiedType(), ValTy->containsUnexpandedParameterPack()), ValueType(ValTy) {} public: /// Gets the type contained by this atomic type, i.e. /// the type returned by performing an atomic load of this atomic type. QualType getValueType() const { return ValueType; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getValueType()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { ID.AddPointer(T.getAsOpaquePtr()); } static bool classof(const Type *T) { return T->getTypeClass() == Atomic; } }; /// PipeType - OpenCL20. class PipeType : public Type, public llvm::FoldingSetNode { friend class ASTContext; // ASTContext creates these. QualType ElementType; bool isRead; PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) : Type(Pipe, CanonicalPtr, elemType->isDependentType(), elemType->isInstantiationDependentType(), elemType->isVariablyModifiedType(), elemType->containsUnexpandedParameterPack()), ElementType(elemType), isRead(isRead) {} public: QualType getElementType() const { return ElementType; } bool isSugared() const { return false; } QualType desugar() const { return QualType(this, 0); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getElementType(), isReadOnly()); } static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) { ID.AddPointer(T.getAsOpaquePtr()); ID.AddBoolean(isRead); } static bool classof(const Type *T) { return T->getTypeClass() == Pipe; } bool isReadOnly() const { return isRead; } }; /// A qualifier set is used to build a set of qualifiers. class QualifierCollector : public Qualifiers { public: QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {} /// Collect any qualifiers on the given type and return an /// unqualified type. The qualifiers are assumed to be consistent /// with those already in the type. const Type *strip(QualType type) { addFastQualifiers(type.getLocalFastQualifiers()); if (!type.hasLocalNonFastQualifiers()) return type.getTypePtrUnsafe(); const ExtQuals *extQuals = type.getExtQualsUnsafe(); addConsistentQualifiers(extQuals->getQualifiers()); return extQuals->getBaseType(); } /// Apply the collected qualifiers to the given type. QualType apply(const ASTContext &Context, QualType QT) const; /// Apply the collected qualifiers to the given type. QualType apply(const ASTContext &Context, const Type* T) const; }; // Inline function definitions. inline SplitQualType SplitQualType::getSingleStepDesugaredType() const { SplitQualType desugar = Ty->getLocallyUnqualifiedSingleStepDesugaredType().split(); desugar.Quals.addConsistentQualifiers(Quals); return desugar; } inline const Type *QualType::getTypePtr() const { return getCommonPtr()->BaseType; } inline const Type *QualType::getTypePtrOrNull() const { return (isNull() ? nullptr : getCommonPtr()->BaseType); } inline SplitQualType QualType::split() const { if (!hasLocalNonFastQualifiers()) return SplitQualType(getTypePtrUnsafe(), Qualifiers::fromFastMask(getLocalFastQualifiers())); const ExtQuals *eq = getExtQualsUnsafe(); Qualifiers qs = eq->getQualifiers(); qs.addFastQualifiers(getLocalFastQualifiers()); return SplitQualType(eq->getBaseType(), qs); } inline Qualifiers QualType::getLocalQualifiers() const { Qualifiers Quals; if (hasLocalNonFastQualifiers()) Quals = getExtQualsUnsafe()->getQualifiers(); Quals.addFastQualifiers(getLocalFastQualifiers()); return Quals; } inline Qualifiers QualType::getQualifiers() const { Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers(); quals.addFastQualifiers(getLocalFastQualifiers()); return quals; } inline unsigned QualType::getCVRQualifiers() const { unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers(); cvr |= getLocalCVRQualifiers(); return cvr; } inline QualType QualType::getCanonicalType() const { QualType canon = getCommonPtr()->CanonicalType; return canon.withFastQualifiers(getLocalFastQualifiers()); } inline bool QualType::isCanonical() const { return getTypePtr()->isCanonicalUnqualified(); } inline bool QualType::isCanonicalAsParam() const { if (!isCanonical()) return false; if (hasLocalQualifiers()) return false; const Type *T = getTypePtr(); if (T->isVariablyModifiedType() && T->hasSizedVLAType()) return false; return !isa(T) && !isa(T); } inline bool QualType::isConstQualified() const { return isLocalConstQualified() || getCommonPtr()->CanonicalType.isLocalConstQualified(); } inline bool QualType::isRestrictQualified() const { return isLocalRestrictQualified() || getCommonPtr()->CanonicalType.isLocalRestrictQualified(); } inline bool QualType::isVolatileQualified() const { return isLocalVolatileQualified() || getCommonPtr()->CanonicalType.isLocalVolatileQualified(); } inline bool QualType::hasQualifiers() const { return hasLocalQualifiers() || getCommonPtr()->CanonicalType.hasLocalQualifiers(); } inline QualType QualType::getUnqualifiedType() const { if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) return QualType(getTypePtr(), 0); return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0); } inline SplitQualType QualType::getSplitUnqualifiedType() const { if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) return split(); return getSplitUnqualifiedTypeImpl(*this); } inline void QualType::removeLocalConst() { removeLocalFastQualifiers(Qualifiers::Const); } inline void QualType::removeLocalRestrict() { removeLocalFastQualifiers(Qualifiers::Restrict); } inline void QualType::removeLocalVolatile() { removeLocalFastQualifiers(Qualifiers::Volatile); } inline void QualType::removeLocalCVRQualifiers(unsigned Mask) { assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"); static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask, "Fast bits differ from CVR bits!"); // Fast path: we don't need to touch the slow qualifiers. removeLocalFastQualifiers(Mask); } /// Return the address space of this type. inline LangAS QualType::getAddressSpace() const { return getQualifiers().getAddressSpace(); } /// Return the gc attribute of this type. inline Qualifiers::GC QualType::getObjCGCAttr() const { return getQualifiers().getObjCGCAttr(); } inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) { if (const auto *PT = t.getAs()) { if (const auto *FT = PT->getPointeeType()->getAs()) return FT->getExtInfo(); } else if (const auto *FT = t.getAs()) return FT->getExtInfo(); return FunctionType::ExtInfo(); } inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) { return getFunctionExtInfo(*t); } /// Determine whether this type is more /// qualified than the Other type. For example, "const volatile int" /// is more qualified than "const int", "volatile int", and /// "int". However, it is not more qualified than "const volatile /// int". inline bool QualType::isMoreQualifiedThan(QualType other) const { Qualifiers MyQuals = getQualifiers(); Qualifiers OtherQuals = other.getQualifiers(); return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals)); } /// Determine whether this type is at last /// as qualified as the Other type. For example, "const volatile /// int" is at least as qualified as "const int", "volatile int", /// "int", and "const volatile int". inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const { Qualifiers OtherQuals = other.getQualifiers(); // Ignore __unaligned qualifier if this type is a void. if (getUnqualifiedType()->isVoidType()) OtherQuals.removeUnaligned(); return getQualifiers().compatiblyIncludes(OtherQuals); } /// If Type is a reference type (e.g., const /// int&), returns the type that the reference refers to ("const /// int"). Otherwise, returns the type itself. This routine is used /// throughout Sema to implement C++ 5p6: /// /// If an expression initially has the type "reference to T" (8.3.2, /// 8.5.3), the type is adjusted to "T" prior to any further /// analysis, the expression designates the object or function /// denoted by the reference, and the expression is an lvalue. inline QualType QualType::getNonReferenceType() const { if (const auto *RefType = (*this)->getAs()) return RefType->getPointeeType(); else return *this; } inline bool QualType::isCForbiddenLValueType() const { return ((getTypePtr()->isVoidType() && !hasQualifiers()) || getTypePtr()->isFunctionType()); } /// Tests whether the type is categorized as a fundamental type. /// /// \returns True for types specified in C++0x [basic.fundamental]. inline bool Type::isFundamentalType() const { return isVoidType() || // FIXME: It's really annoying that we don't have an // 'isArithmeticType()' which agrees with the standard definition. (isArithmeticType() && !isEnumeralType()); } /// Tests whether the type is categorized as a compound type. /// /// \returns True for types specified in C++0x [basic.compound]. inline bool Type::isCompoundType() const { // C++0x [basic.compound]p1: // Compound types can be constructed in the following ways: // -- arrays of objects of a given type [...]; return isArrayType() || // -- functions, which have parameters of given types [...]; isFunctionType() || // -- pointers to void or objects or functions [...]; isPointerType() || // -- references to objects or functions of a given type. [...] isReferenceType() || // -- classes containing a sequence of objects of various types, [...]; isRecordType() || // -- unions, which are classes capable of containing objects of different // types at different times; isUnionType() || // -- enumerations, which comprise a set of named constant values. [...]; isEnumeralType() || // -- pointers to non-static class members, [...]. isMemberPointerType(); } inline bool Type::isFunctionType() const { return isa(CanonicalType); } inline bool Type::isPointerType() const { return isa(CanonicalType); } inline bool Type::isAnyPointerType() const { return isPointerType() || isObjCObjectPointerType(); } inline bool Type::isBlockPointerType() const { return isa(CanonicalType); } inline bool Type::isReferenceType() const { return isa(CanonicalType); } inline bool Type::isLValueReferenceType() const { return isa(CanonicalType); } inline bool Type::isRValueReferenceType() const { return isa(CanonicalType); } inline bool Type::isFunctionPointerType() const { if (const auto *T = getAs()) return T->getPointeeType()->isFunctionType(); else return false; } inline bool Type::isMemberPointerType() const { return isa(CanonicalType); } inline bool Type::isMemberFunctionPointerType() const { if (const auto *T = getAs()) return T->isMemberFunctionPointer(); else return false; } inline bool Type::isMemberDataPointerType() const { if (const auto *T = getAs()) return T->isMemberDataPointer(); else return false; } inline bool Type::isArrayType() const { return isa(CanonicalType); } inline bool Type::isConstantArrayType() const { return isa(CanonicalType); } inline bool Type::isIncompleteArrayType() const { return isa(CanonicalType); } inline bool Type::isVariableArrayType() const { return isa(CanonicalType); } inline bool Type::isDependentSizedArrayType() const { return isa(CanonicalType); } inline bool Type::isBuiltinType() const { return isa(CanonicalType); } inline bool Type::isRecordType() const { return isa(CanonicalType); } inline bool Type::isEnumeralType() const { return isa(CanonicalType); } inline bool Type::isAnyComplexType() const { return isa(CanonicalType); } inline bool Type::isVectorType() const { return isa(CanonicalType); } inline bool Type::isExtVectorType() const { return isa(CanonicalType); } inline bool Type::isDependentAddressSpaceType() const { return isa(CanonicalType); } inline bool Type::isObjCObjectPointerType() const { return isa(CanonicalType); } inline bool Type::isObjCObjectType() const { return isa(CanonicalType); } inline bool Type::isObjCObjectOrInterfaceType() const { return isa(CanonicalType) || isa(CanonicalType); } inline bool Type::isAtomicType() const { return isa(CanonicalType); } inline bool Type::isObjCQualifiedIdType() const { if (const auto *OPT = getAs()) return OPT->isObjCQualifiedIdType(); return false; } inline bool Type::isObjCQualifiedClassType() const { if (const auto *OPT = getAs()) return OPT->isObjCQualifiedClassType(); return false; } inline bool Type::isObjCIdType() const { if (const auto *OPT = getAs()) return OPT->isObjCIdType(); return false; } inline bool Type::isObjCClassType() const { if (const auto *OPT = getAs()) return OPT->isObjCClassType(); return false; } inline bool Type::isObjCSelType() const { if (const auto *OPT = getAs()) return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel); return false; } inline bool Type::isObjCBuiltinType() const { return isObjCIdType() || isObjCClassType() || isObjCSelType(); } #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ inline bool Type::is##Id##Type() const { \ return isSpecificBuiltinType(BuiltinType::Id); \ } #include "clang/Basic/OpenCLImageTypes.def" inline bool Type::isSamplerT() const { return isSpecificBuiltinType(BuiltinType::OCLSampler); } inline bool Type::isEventT() const { return isSpecificBuiltinType(BuiltinType::OCLEvent); } inline bool Type::isClkEventT() const { return isSpecificBuiltinType(BuiltinType::OCLClkEvent); } inline bool Type::isQueueT() const { return isSpecificBuiltinType(BuiltinType::OCLQueue); } inline bool Type::isReserveIDT() const { return isSpecificBuiltinType(BuiltinType::OCLReserveID); } inline bool Type::isImageType() const { #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() || return #include "clang/Basic/OpenCLImageTypes.def" false; // end boolean or operation } inline bool Type::isPipeType() const { return isa(CanonicalType); } #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ inline bool Type::is##Id##Type() const { \ return isSpecificBuiltinType(BuiltinType::Id); \ } #include "clang/Basic/OpenCLExtensionTypes.def" inline bool Type::isOCLIntelSubgroupAVCType() const { #define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \ isOCLIntelSubgroupAVC##Id##Type() || return #include "clang/Basic/OpenCLExtensionTypes.def" false; // end of boolean or operation } inline bool Type::isOCLExtOpaqueType() const { #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() || return #include "clang/Basic/OpenCLExtensionTypes.def" false; // end of boolean or operation } inline bool Type::isOpenCLSpecificType() const { return isSamplerT() || isEventT() || isImageType() || isClkEventT() || isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType(); } inline bool Type::isTemplateTypeParmType() const { return isa(CanonicalType); } inline bool Type::isSpecificBuiltinType(unsigned K) const { if (const BuiltinType *BT = getAs()) if (BT->getKind() == (BuiltinType::Kind) K) return true; return false; } inline bool Type::isPlaceholderType() const { if (const auto *BT = dyn_cast(this)) return BT->isPlaceholderType(); return false; } inline const BuiltinType *Type::getAsPlaceholderType() const { if (const auto *BT = dyn_cast(this)) if (BT->isPlaceholderType()) return BT; return nullptr; } inline bool Type::isSpecificPlaceholderType(unsigned K) const { assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)); if (const auto *BT = dyn_cast(this)) return (BT->getKind() == (BuiltinType::Kind) K); return false; } inline bool Type::isNonOverloadPlaceholderType() const { if (const auto *BT = dyn_cast(this)) return BT->isNonOverloadPlaceholderType(); return false; } inline bool Type::isVoidType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() == BuiltinType::Void; return false; } inline bool Type::isHalfType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() == BuiltinType::Half; // FIXME: Should we allow complex __fp16? Probably not. return false; } inline bool Type::isFloat16Type() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() == BuiltinType::Float16; return false; } inline bool Type::isFloat128Type() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() == BuiltinType::Float128; return false; } inline bool Type::isNullPtrType() const { if (const auto *BT = getAs()) return BT->getKind() == BuiltinType::NullPtr; return false; } bool IsEnumDeclComplete(EnumDecl *); bool IsEnumDeclScoped(EnumDecl *); inline bool Type::isIntegerType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::Int128; if (const EnumType *ET = dyn_cast(CanonicalType)) { // Incomplete enum types are not treated as integer types. // FIXME: In C++, enum types are never integer types. return IsEnumDeclComplete(ET->getDecl()) && !IsEnumDeclScoped(ET->getDecl()); } return false; } inline bool Type::isFixedPointType() const { if (const auto *BT = dyn_cast(CanonicalType)) { return BT->getKind() >= BuiltinType::ShortAccum && BT->getKind() <= BuiltinType::SatULongFract; } return false; } inline bool Type::isSaturatedFixedPointType() const { if (const auto *BT = dyn_cast(CanonicalType)) { return BT->getKind() >= BuiltinType::SatShortAccum && BT->getKind() <= BuiltinType::SatULongFract; } return false; } inline bool Type::isUnsaturatedFixedPointType() const { return isFixedPointType() && !isSaturatedFixedPointType(); } inline bool Type::isSignedFixedPointType() const { if (const auto *BT = dyn_cast(CanonicalType)) { return ((BT->getKind() >= BuiltinType::ShortAccum && BT->getKind() <= BuiltinType::LongAccum) || (BT->getKind() >= BuiltinType::ShortFract && BT->getKind() <= BuiltinType::LongFract) || (BT->getKind() >= BuiltinType::SatShortAccum && BT->getKind() <= BuiltinType::SatLongAccum) || (BT->getKind() >= BuiltinType::SatShortFract && BT->getKind() <= BuiltinType::SatLongFract)); } return false; } inline bool Type::isUnsignedFixedPointType() const { return isFixedPointType() && !isSignedFixedPointType(); } inline bool Type::isScalarType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() > BuiltinType::Void && BT->getKind() <= BuiltinType::NullPtr; if (const EnumType *ET = dyn_cast(CanonicalType)) // Enums are scalar types, but only if they are defined. Incomplete enums // are not treated as scalar types. return IsEnumDeclComplete(ET->getDecl()); return isa(CanonicalType) || isa(CanonicalType) || isa(CanonicalType) || isa(CanonicalType) || isa(CanonicalType); } inline bool Type::isIntegralOrEnumerationType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::Int128; // Check for a complete enum type; incomplete enum types are not properly an // enumeration type in the sense required here. if (const auto *ET = dyn_cast(CanonicalType)) return IsEnumDeclComplete(ET->getDecl()); return false; } inline bool Type::isBooleanType() const { if (const auto *BT = dyn_cast(CanonicalType)) return BT->getKind() == BuiltinType::Bool; return false; } inline bool Type::isUndeducedType() const { auto *DT = getContainedDeducedType(); return DT && !DT->isDeduced(); } /// Determines whether this is a type for which one can define /// an overloaded operator. inline bool Type::isOverloadableType() const { return isDependentType() || isRecordType() || isEnumeralType(); } /// Determines whether this type can decay to a pointer type. inline bool Type::canDecayToPointerType() const { return isFunctionType() || isArrayType(); } inline bool Type::hasPointerRepresentation() const { return (isPointerType() || isReferenceType() || isBlockPointerType() || isObjCObjectPointerType() || isNullPtrType()); } inline bool Type::hasObjCPointerRepresentation() const { return isObjCObjectPointerType(); } inline const Type *Type::getBaseElementTypeUnsafe() const { const Type *type = this; while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe()) type = arrayType->getElementType().getTypePtr(); return type; } inline const Type *Type::getPointeeOrArrayElementType() const { const Type *type = this; if (type->isAnyPointerType()) return type->getPointeeType().getTypePtr(); else if (type->isArrayType()) return type->getBaseElementTypeUnsafe(); return type; } /// Insertion operator for diagnostics. This allows sending Qualifiers into a /// diagnostic with <<. inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, Qualifiers Q) { DB.AddTaggedVal(Q.getAsOpaqueValue(), DiagnosticsEngine::ArgumentKind::ak_qual); return DB; } /// Insertion operator for partial diagnostics. This allows sending Qualifiers /// into a diagnostic with <<. inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD, Qualifiers Q) { PD.AddTaggedVal(Q.getAsOpaqueValue(), DiagnosticsEngine::ArgumentKind::ak_qual); return PD; } /// Insertion operator for diagnostics. This allows sending QualType's into a /// diagnostic with <<. inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, QualType T) { DB.AddTaggedVal(reinterpret_cast(T.getAsOpaquePtr()), DiagnosticsEngine::ak_qualtype); return DB; } /// Insertion operator for partial diagnostics. This allows sending QualType's /// into a diagnostic with <<. inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD, QualType T) { PD.AddTaggedVal(reinterpret_cast(T.getAsOpaquePtr()), DiagnosticsEngine::ak_qualtype); return PD; } // Helper class template that is used by Type::getAs to ensure that one does // not try to look through a qualified type to get to an array type. template using TypeIsArrayType = std::integral_constant::value || std::is_base_of::value>; // Member-template getAs'. template const T *Type::getAs() const { static_assert(!TypeIsArrayType::value, "ArrayType cannot be used with getAs!"); // If this is directly a T type, return it. if (const auto *Ty = dyn_cast(this)) return Ty; // If the canonical form of this type isn't the right kind, reject it. if (!isa(CanonicalType)) return nullptr; // If this is a typedef for the type, strip the typedef off without // losing all typedef information. return cast(getUnqualifiedDesugaredType()); } template const T *Type::getAsAdjusted() const { static_assert(!TypeIsArrayType::value, "ArrayType cannot be used with getAsAdjusted!"); // If this is directly a T type, return it. if (const auto *Ty = dyn_cast(this)) return Ty; // If the canonical form of this type isn't the right kind, reject it. if (!isa(CanonicalType)) return nullptr; // Strip off type adjustments that do not modify the underlying nature of the // type. const Type *Ty = this; while (Ty) { if (const auto *A = dyn_cast(Ty)) Ty = A->getModifiedType().getTypePtr(); else if (const auto *E = dyn_cast(Ty)) Ty = E->desugar().getTypePtr(); else if (const auto *P = dyn_cast(Ty)) Ty = P->desugar().getTypePtr(); else if (const auto *A = dyn_cast(Ty)) Ty = A->desugar().getTypePtr(); else break; } // Just because the canonical type is correct does not mean we can use cast<>, // since we may not have stripped off all the sugar down to the base type. return dyn_cast(Ty); } inline const ArrayType *Type::getAsArrayTypeUnsafe() const { // If this is directly an array type, return it. if (const auto *arr = dyn_cast(this)) return arr; // If the canonical form of this type isn't the right kind, reject it. if (!isa(CanonicalType)) return nullptr; // If this is a typedef for the type, strip the typedef off without // losing all typedef information. return cast(getUnqualifiedDesugaredType()); } template const T *Type::castAs() const { static_assert(!TypeIsArrayType::value, "ArrayType cannot be used with castAs!"); if (const auto *ty = dyn_cast(this)) return ty; assert(isa(CanonicalType)); return cast(getUnqualifiedDesugaredType()); } inline const ArrayType *Type::castAsArrayTypeUnsafe() const { assert(isa(CanonicalType)); if (const auto *arr = dyn_cast(this)) return arr; return cast(getUnqualifiedDesugaredType()); } DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr) : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) { #ifndef NDEBUG QualType Adjusted = getAdjustedType(); (void)AttributedType::stripOuterNullability(Adjusted); assert(isa(Adjusted)); #endif } QualType DecayedType::getPointeeType() const { QualType Decayed = getDecayedType(); (void)AttributedType::stripOuterNullability(Decayed); return cast(Decayed)->getPointeeType(); } // Get the decimal string representation of a fixed point type, represented // as a scaled integer. void FixedPointValueToString(SmallVectorImpl &Str, llvm::APSInt Val, unsigned Scale); } // namespace clang #endif // LLVM_CLANG_AST_TYPE_H