Index: vendor/lld/dist-release_80/ELF/Arch/PPC64.cpp =================================================================== --- vendor/lld/dist-release_80/ELF/Arch/PPC64.cpp (revision 349784) +++ vendor/lld/dist-release_80/ELF/Arch/PPC64.cpp (revision 349785) @@ -1,940 +1,943 @@ //===- PPC64.cpp ----------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; static uint64_t PPC64TocOffset = 0x8000; static uint64_t DynamicThreadPointerOffset = 0x8000; // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform // instructions that can be used as part of the initial exec TLS sequence. enum XFormOpcd { LBZX = 87, LHZX = 279, LWZX = 23, LDX = 21, STBX = 215, STHX = 407, STWX = 151, STDX = 149, ADD = 266, }; enum DFormOpcd { LBZ = 34, LBZU = 35, LHZ = 40, LHZU = 41, LHAU = 43, LWZ = 32, LWZU = 33, LFSU = 49, LD = 58, LFDU = 51, STB = 38, STBU = 39, STH = 44, STHU = 45, STW = 36, STWU = 37, STFSU = 53, STFDU = 55, STD = 62, ADDI = 14 }; uint64_t elf::getPPC64TocBase() { // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The // TOC starts where the first of these sections starts. We always create a // .got when we see a relocation that uses it, so for us the start is always // the .got. uint64_t TocVA = In.Got->getVA(); // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Note that the glibc startup // code (crt1.o) assumes that you can get from the TOC base to the // start of the .toc section with only a single (signed) 16-bit relocation. return TocVA + PPC64TocOffset; } unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t StOther) { // The offset is encoded into the 3 most significant bits of the st_other // field, with some special values described in section 3.4.1 of the ABI: // 0 --> Zero offset between the GEP and LEP, and the function does NOT use // the TOC pointer (r2). r2 will hold the same value on returning from // the function as it did on entering the function. // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a // caller-saved register for all callers. // 2-6 --> The binary logarithm of the offset eg: // 2 --> 2^2 = 4 bytes --> 1 instruction. // 6 --> 2^6 = 64 bytes --> 16 instructions. // 7 --> Reserved. uint8_t GepToLep = (StOther >> 5) & 7; if (GepToLep < 2) return 0; // The value encoded in the st_other bits is the // log-base-2(offset). if (GepToLep < 7) return 1 << GepToLep; error("reserved value of 7 in the 3 most-significant-bits of st_other"); return 0; } namespace { class PPC64 final : public TargetInfo { public: PPC64(); uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override; void writeGotHeader(uint8_t *Buf) const override; bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File, uint64_t BranchAddr, const Symbol &S) const override; uint32_t getThunkSectionSpacing() const override; bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override; RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data, RelExpr Expr) const override; void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; bool adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End, uint8_t StOther) const override; }; } // namespace // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static uint16_t lo(uint64_t V) { return V; } static uint16_t hi(uint64_t V) { return V >> 16; } static uint16_t ha(uint64_t V) { return (V + 0x8000) >> 16; } static uint16_t higher(uint64_t V) { return V >> 32; } static uint16_t highera(uint64_t V) { return (V + 0x8000) >> 32; } static uint16_t highest(uint64_t V) { return V >> 48; } static uint16_t highesta(uint64_t V) { return (V + 0x8000) >> 48; } // Extracts the 'PO' field of an instruction encoding. static uint8_t getPrimaryOpCode(uint32_t Encoding) { return (Encoding >> 26); } static bool isDQFormInstruction(uint32_t Encoding) { switch (getPrimaryOpCode(Encoding)) { default: return false; case 56: // The only instruction with a primary opcode of 56 is `lq`. return true; case 61: // There are both DS and DQ instruction forms with this primary opcode. // Namely `lxv` and `stxv` are the DQ-forms that use it. // The DS 'XO' bits being set to 01 is restricted to DQ form. return (Encoding & 3) == 0x1; } } static bool isInstructionUpdateForm(uint32_t Encoding) { switch (getPrimaryOpCode(Encoding)) { default: return false; case LBZU: case LHAU: case LHZU: case LWZU: case LFSU: case LFDU: case STBU: case STHU: case STWU: case STFSU: case STFDU: return true; // LWA has the same opcode as LD, and the DS bits is what differentiates // between LD/LDU/LWA case LD: case STD: return (Encoding & 3) == 1; } } // There are a number of places when we either want to read or write an // instruction when handling a half16 relocation type. On big-endian the buffer // pointer is pointing into the middle of the word we want to extract, and on // little-endian it is pointing to the start of the word. These 2 helpers are to // simplify reading and writing in that context. static void writeInstrFromHalf16(uint8_t *Loc, uint32_t Instr) { write32(Loc - (Config->EKind == ELF64BEKind ? 2 : 0), Instr); } static uint32_t readInstrFromHalf16(const uint8_t *Loc) { return read32(Loc - (Config->EKind == ELF64BEKind ? 2 : 0)); } PPC64::PPC64() { GotRel = R_PPC64_GLOB_DAT; NoneRel = R_PPC64_NONE; PltRel = R_PPC64_JMP_SLOT; RelativeRel = R_PPC64_RELATIVE; IRelativeRel = R_PPC64_IRELATIVE; GotEntrySize = 8; PltEntrySize = 4; GotPltEntrySize = 8; GotBaseSymInGotPlt = false; GotBaseSymOff = 0x8000; GotHeaderEntriesNum = 1; GotPltHeaderEntriesNum = 2; PltHeaderSize = 60; NeedsThunks = true; TlsModuleIndexRel = R_PPC64_DTPMOD64; TlsOffsetRel = R_PPC64_DTPREL64; TlsGotRel = R_PPC64_TPREL64; NeedsMoreStackNonSplit = false; // We need 64K pages (at least under glibc/Linux, the loader won't // set different permissions on a finer granularity than that). DefaultMaxPageSize = 65536; // The PPC64 ELF ABI v1 spec, says: // // It is normally desirable to put segments with different characteristics // in separate 256 Mbyte portions of the address space, to give the // operating system full paging flexibility in the 64-bit address space. // // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers // use 0x10000000 as the starting address. DefaultImageBase = 0x10000000; write32(TrapInstr.data(), 0x7fe00008); } static uint32_t getEFlags(InputFile *File) { if (Config->EKind == ELF64BEKind) return cast>(File)->getObj().getHeader()->e_flags; return cast>(File)->getObj().getHeader()->e_flags; } // This file implements v2 ABI. This function makes sure that all // object files have v2 or an unspecified version as an ABI version. uint32_t PPC64::calcEFlags() const { for (InputFile *F : ObjectFiles) { uint32_t Flag = getEFlags(F); if (Flag == 1) error(toString(F) + ": ABI version 1 is not supported"); else if (Flag > 2) error(toString(F) + ": unrecognized e_flags: " + Twine(Flag)); } return 2; } void PPC64::relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. // The general dynamic code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x // R_PPC64_REL24 __tls_get_addr // nop None None // Relaxing to local exec entails converting: // addis r3, r2, x@got@tlsgd@ha into nop // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha // bl __tls_get_addr(x@tlsgd) into nop // nop into addi r3, r3, x@tprel@l switch (Type) { case R_PPC64_GOT_TLSGD16_HA: writeInstrFromHalf16(Loc, 0x60000000); // nop break; case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_LO: writeInstrFromHalf16(Loc, 0x3c6d0000); // addis r3, r13 relocateOne(Loc, R_PPC64_TPREL16_HA, Val); break; case R_PPC64_TLSGD: write32(Loc, 0x60000000); // nop write32(Loc + 4, 0x38630000); // addi r3, r3 // Since we are relocating a half16 type relocation and Loc + 4 points to // the start of an instruction we need to advance the buffer by an extra // 2 bytes on BE. relocateOne(Loc + 4 + (Config->EKind == ELF64BEKind ? 2 : 0), R_PPC64_TPREL16_LO, Val); break; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void PPC64::relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. // The local dynamic code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x // R_PPC64_REL24 __tls_get_addr // nop None None // Relaxing to local exec entails converting: // addis r3, r2, x@got@tlsld@ha into nop // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 // bl __tls_get_addr(x@tlsgd) into nop // nop into addi r3, r3, 4096 switch (Type) { case R_PPC64_GOT_TLSLD16_HA: writeInstrFromHalf16(Loc, 0x60000000); // nop break; case R_PPC64_GOT_TLSLD16_LO: writeInstrFromHalf16(Loc, 0x3c6d0000); // addis r3, r13, 0 break; case R_PPC64_TLSLD: write32(Loc, 0x60000000); // nop write32(Loc + 4, 0x38631000); // addi r3, r3, 4096 break; case R_PPC64_DTPREL16: case R_PPC64_DTPREL16_HA: case R_PPC64_DTPREL16_HI: case R_PPC64_DTPREL16_DS: case R_PPC64_DTPREL16_LO: case R_PPC64_DTPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_HA: case R_PPC64_GOT_DTPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_DS: case R_PPC64_GOT_DTPREL16_HI: relocateOne(Loc, Type, Val); break; default: llvm_unreachable("unsupported relocation for TLS LD to LE relaxation"); } } static unsigned getDFormOp(unsigned SecondaryOp) { switch (SecondaryOp) { case LBZX: return LBZ; case LHZX: return LHZ; case LWZX: return LWZ; case LDX: return LD; case STBX: return STB; case STHX: return STH; case STWX: return STW; case STDX: return STD; case ADD: return ADDI; default: error("unrecognized instruction for IE to LE R_PPC64_TLS"); return 0; } } void PPC64::relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { // The initial exec code sequence for a global `x` will look like: // Instruction Relocation Symbol // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x // add r9, r9, x@tls R_PPC64_TLS x // Relaxing to local exec entails converting: // addis r9, r2, x@got@tprel@ha into nop // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha // add r9, r9, x@tls into addi r9, r9, x@tprel@l // x@tls R_PPC64_TLS is a relocation which does not compute anything, // it is replaced with r13 (thread pointer). // The add instruction in the initial exec sequence has multiple variations // that need to be handled. If we are building an address it will use an add // instruction, if we are accessing memory it will use any of the X-form // indexed load or store instructions. unsigned Offset = (Config->EKind == ELF64BEKind) ? 2 : 0; switch (Type) { case R_PPC64_GOT_TPREL16_HA: write32(Loc - Offset, 0x60000000); // nop break; case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_TPREL16_DS: { uint32_t RegNo = read32(Loc - Offset) & 0x03E00000; // bits 6-10 write32(Loc - Offset, 0x3C0D0000 | RegNo); // addis RegNo, r13 relocateOne(Loc, R_PPC64_TPREL16_HA, Val); break; } case R_PPC64_TLS: { uint32_t PrimaryOp = getPrimaryOpCode(read32(Loc)); if (PrimaryOp != 31) error("unrecognized instruction for IE to LE R_PPC64_TLS"); uint32_t SecondaryOp = (read32(Loc) & 0x000007FE) >> 1; // bits 21-30 uint32_t DFormOp = getDFormOp(SecondaryOp); write32(Loc, ((DFormOp << 26) | (read32(Loc) & 0x03FFFFFF))); relocateOne(Loc + Offset, R_PPC64_TPREL16_LO, Val); break; } default: llvm_unreachable("unknown relocation for IE to LE"); break; } } RelExpr PPC64::getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const { switch (Type) { case R_PPC64_GOT16: case R_PPC64_GOT16_DS: case R_PPC64_GOT16_HA: case R_PPC64_GOT16_HI: case R_PPC64_GOT16_LO: case R_PPC64_GOT16_LO_DS: return R_GOT_OFF; case R_PPC64_TOC16: case R_PPC64_TOC16_DS: case R_PPC64_TOC16_HA: case R_PPC64_TOC16_HI: case R_PPC64_TOC16_LO: case R_PPC64_TOC16_LO_DS: return R_GOTREL; case R_PPC64_TOC: return R_PPC_TOC; case R_PPC64_REL14: case R_PPC64_REL24: return R_PPC_CALL_PLT; case R_PPC64_REL16_LO: case R_PPC64_REL16_HA: case R_PPC64_REL32: case R_PPC64_REL64: return R_PC; case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSGD16_HA: case R_PPC64_GOT_TLSGD16_HI: case R_PPC64_GOT_TLSGD16_LO: return R_TLSGD_GOT; case R_PPC64_GOT_TLSLD16: case R_PPC64_GOT_TLSLD16_HA: case R_PPC64_GOT_TLSLD16_HI: case R_PPC64_GOT_TLSLD16_LO: return R_TLSLD_GOT; case R_PPC64_GOT_TPREL16_HA: case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_TPREL16_DS: case R_PPC64_GOT_TPREL16_HI: return R_GOT_OFF; case R_PPC64_GOT_DTPREL16_HA: case R_PPC64_GOT_DTPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_DS: case R_PPC64_GOT_DTPREL16_HI: return R_TLSLD_GOT_OFF; case R_PPC64_TPREL16: case R_PPC64_TPREL16_HA: case R_PPC64_TPREL16_LO: case R_PPC64_TPREL16_HI: case R_PPC64_TPREL16_DS: case R_PPC64_TPREL16_LO_DS: case R_PPC64_TPREL16_HIGHER: case R_PPC64_TPREL16_HIGHERA: case R_PPC64_TPREL16_HIGHEST: case R_PPC64_TPREL16_HIGHESTA: return R_TLS; case R_PPC64_DTPREL16: case R_PPC64_DTPREL16_DS: case R_PPC64_DTPREL16_HA: case R_PPC64_DTPREL16_HI: case R_PPC64_DTPREL16_HIGHER: case R_PPC64_DTPREL16_HIGHERA: case R_PPC64_DTPREL16_HIGHEST: case R_PPC64_DTPREL16_HIGHESTA: case R_PPC64_DTPREL16_LO: case R_PPC64_DTPREL16_LO_DS: case R_PPC64_DTPREL64: return R_ABS; case R_PPC64_TLSGD: return R_TLSDESC_CALL; case R_PPC64_TLSLD: return R_TLSLD_HINT; case R_PPC64_TLS: return R_TLSIE_HINT; default: return R_ABS; } } void PPC64::writeGotHeader(uint8_t *Buf) const { write64(Buf, getPPC64TocBase()); } void PPC64::writePltHeader(uint8_t *Buf) const { // The generic resolver stub goes first. write32(Buf + 0, 0x7c0802a6); // mflr r0 write32(Buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> write32(Buf + 8, 0x7d6802a6); // mflr r11 write32(Buf + 12, 0x7c0803a6); // mtlr r0 write32(Buf + 16, 0x7d8b6050); // subf r12, r11, r12 write32(Buf + 20, 0x380cffcc); // subi r0,r12,52 write32(Buf + 24, 0x7800f082); // srdi r0,r0,62,2 write32(Buf + 28, 0xe98b002c); // ld r12,44(r11) write32(Buf + 32, 0x7d6c5a14); // add r11,r12,r11 write32(Buf + 36, 0xe98b0000); // ld r12,0(r11) write32(Buf + 40, 0xe96b0008); // ld r11,8(r11) write32(Buf + 44, 0x7d8903a6); // mtctr r12 write32(Buf + 48, 0x4e800420); // bctr // The 'bcl' instruction will set the link register to the address of the // following instruction ('mflr r11'). Here we store the offset from that // instruction to the first entry in the GotPlt section. int64_t GotPltOffset = In.GotPlt->getVA() - (In.Plt->getVA() + 8); write64(Buf + 52, GotPltOffset); } void PPC64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { int32_t Offset = PltHeaderSize + Index * PltEntrySize; // bl __glink_PLTresolve write32(Buf, 0x48000000 | ((-Offset) & 0x03FFFFFc)); } static std::pair toAddr16Rel(RelType Type, uint64_t Val) { // Relocations relative to the toc-base need to be adjusted by the Toc offset. uint64_t TocBiasedVal = Val - PPC64TocOffset; // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. uint64_t DTPBiasedVal = Val - DynamicThreadPointerOffset; switch (Type) { // TOC biased relocation. case R_PPC64_GOT16: case R_PPC64_GOT_TLSGD16: case R_PPC64_GOT_TLSLD16: case R_PPC64_TOC16: return {R_PPC64_ADDR16, TocBiasedVal}; case R_PPC64_GOT16_DS: case R_PPC64_TOC16_DS: case R_PPC64_GOT_TPREL16_DS: case R_PPC64_GOT_DTPREL16_DS: return {R_PPC64_ADDR16_DS, TocBiasedVal}; case R_PPC64_GOT16_HA: case R_PPC64_GOT_TLSGD16_HA: case R_PPC64_GOT_TLSLD16_HA: case R_PPC64_GOT_TPREL16_HA: case R_PPC64_GOT_DTPREL16_HA: case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, TocBiasedVal}; case R_PPC64_GOT16_HI: case R_PPC64_GOT_TLSGD16_HI: case R_PPC64_GOT_TLSLD16_HI: case R_PPC64_GOT_TPREL16_HI: case R_PPC64_GOT_DTPREL16_HI: case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, TocBiasedVal}; case R_PPC64_GOT16_LO: case R_PPC64_GOT_TLSGD16_LO: case R_PPC64_GOT_TLSLD16_LO: case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, TocBiasedVal}; case R_PPC64_GOT16_LO_DS: case R_PPC64_TOC16_LO_DS: case R_PPC64_GOT_TPREL16_LO_DS: case R_PPC64_GOT_DTPREL16_LO_DS: return {R_PPC64_ADDR16_LO_DS, TocBiasedVal}; // Dynamic Thread pointer biased relocation types. case R_PPC64_DTPREL16: return {R_PPC64_ADDR16, DTPBiasedVal}; case R_PPC64_DTPREL16_DS: return {R_PPC64_ADDR16_DS, DTPBiasedVal}; case R_PPC64_DTPREL16_HA: return {R_PPC64_ADDR16_HA, DTPBiasedVal}; case R_PPC64_DTPREL16_HI: return {R_PPC64_ADDR16_HI, DTPBiasedVal}; case R_PPC64_DTPREL16_HIGHER: return {R_PPC64_ADDR16_HIGHER, DTPBiasedVal}; case R_PPC64_DTPREL16_HIGHERA: return {R_PPC64_ADDR16_HIGHERA, DTPBiasedVal}; case R_PPC64_DTPREL16_HIGHEST: return {R_PPC64_ADDR16_HIGHEST, DTPBiasedVal}; case R_PPC64_DTPREL16_HIGHESTA: return {R_PPC64_ADDR16_HIGHESTA, DTPBiasedVal}; case R_PPC64_DTPREL16_LO: return {R_PPC64_ADDR16_LO, DTPBiasedVal}; case R_PPC64_DTPREL16_LO_DS: return {R_PPC64_ADDR16_LO_DS, DTPBiasedVal}; case R_PPC64_DTPREL64: return {R_PPC64_ADDR64, DTPBiasedVal}; default: return {Type, Val}; } } static bool isTocOptType(RelType Type) { switch (Type) { case R_PPC64_GOT16_HA: case R_PPC64_GOT16_LO_DS: case R_PPC64_TOC16_HA: case R_PPC64_TOC16_LO_DS: case R_PPC64_TOC16_LO: return true; default: return false; } } void PPC64::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const { // We need to save the original relocation type to use in diagnostics, and // use the original type to determine if we should toc-optimize the // instructions being relocated. RelType OriginalType = Type; bool ShouldTocOptimize = isTocOptType(Type); // For dynamic thread pointer relative, toc-relative, and got-indirect // relocations, proceed in terms of the corresponding ADDR16 relocation type. std::tie(Type, Val) = toAddr16Rel(Type, Val); switch (Type) { case R_PPC64_ADDR14: { checkAlignment(Loc, Val, 4, Type); // Preserve the AA/LK bits in the branch instruction uint8_t AALK = Loc[3]; write16(Loc + 2, (AALK & 3) | (Val & 0xfffc)); break; } case R_PPC64_ADDR16: case R_PPC64_TPREL16: checkInt(Loc, Val, 16, OriginalType); write16(Loc, Val); break; case R_PPC64_ADDR16_DS: case R_PPC64_TPREL16_DS: { checkInt(Loc, Val, 16, OriginalType); // DQ-form instructions use bits 28-31 as part of the instruction encoding // DS-form instructions only use bits 30-31. uint16_t Mask = isDQFormInstruction(readInstrFromHalf16(Loc)) ? 0xF : 0x3; checkAlignment(Loc, lo(Val), Mask + 1, OriginalType); write16(Loc, (read16(Loc) & Mask) | lo(Val)); } break; case R_PPC64_ADDR16_HA: case R_PPC64_REL16_HA: case R_PPC64_TPREL16_HA: if (Config->TocOptimize && ShouldTocOptimize && ha(Val) == 0) writeInstrFromHalf16(Loc, 0x60000000); else write16(Loc, ha(Val)); break; case R_PPC64_ADDR16_HI: case R_PPC64_REL16_HI: case R_PPC64_TPREL16_HI: write16(Loc, hi(Val)); break; case R_PPC64_ADDR16_HIGHER: case R_PPC64_TPREL16_HIGHER: write16(Loc, higher(Val)); break; case R_PPC64_ADDR16_HIGHERA: case R_PPC64_TPREL16_HIGHERA: write16(Loc, highera(Val)); break; case R_PPC64_ADDR16_HIGHEST: case R_PPC64_TPREL16_HIGHEST: write16(Loc, highest(Val)); break; case R_PPC64_ADDR16_HIGHESTA: case R_PPC64_TPREL16_HIGHESTA: write16(Loc, highesta(Val)); break; case R_PPC64_ADDR16_LO: case R_PPC64_REL16_LO: case R_PPC64_TPREL16_LO: // When the high-adjusted part of a toc relocation evalutes to 0, it is // changed into a nop. The lo part then needs to be updated to use the // toc-pointer register r2, as the base register. if (Config->TocOptimize && ShouldTocOptimize && ha(Val) == 0) { uint32_t Instr = readInstrFromHalf16(Loc); if (isInstructionUpdateForm(Instr)) error(getErrorLocation(Loc) + "can't toc-optimize an update instruction: 0x" + utohexstr(Instr)); Instr = (Instr & 0xFFE00000) | 0x00020000; writeInstrFromHalf16(Loc, Instr); } write16(Loc, lo(Val)); break; case R_PPC64_ADDR16_LO_DS: case R_PPC64_TPREL16_LO_DS: { // DQ-form instructions use bits 28-31 as part of the instruction encoding // DS-form instructions only use bits 30-31. uint32_t Inst = readInstrFromHalf16(Loc); uint16_t Mask = isDQFormInstruction(Inst) ? 0xF : 0x3; checkAlignment(Loc, lo(Val), Mask + 1, OriginalType); if (Config->TocOptimize && ShouldTocOptimize && ha(Val) == 0) { // When the high-adjusted part of a toc relocation evalutes to 0, it is // changed into a nop. The lo part then needs to be updated to use the toc // pointer register r2, as the base register. if (isInstructionUpdateForm(Inst)) error(getErrorLocation(Loc) + "Can't toc-optimize an update instruction: 0x" + Twine::utohexstr(Inst)); Inst = (Inst & 0xFFE0000F) | 0x00020000; writeInstrFromHalf16(Loc, Inst); } write16(Loc, (read16(Loc) & Mask) | lo(Val)); } break; case R_PPC64_ADDR32: case R_PPC64_REL32: checkInt(Loc, Val, 32, Type); write32(Loc, Val); break; case R_PPC64_ADDR64: case R_PPC64_REL64: case R_PPC64_TOC: write64(Loc, Val); break; case R_PPC64_REL14: { uint32_t Mask = 0x0000FFFC; checkInt(Loc, Val, 16, Type); checkAlignment(Loc, Val, 4, Type); write32(Loc, (read32(Loc) & ~Mask) | (Val & Mask)); break; } case R_PPC64_REL24: { uint32_t Mask = 0x03FFFFFC; checkInt(Loc, Val, 26, Type); checkAlignment(Loc, Val, 4, Type); write32(Loc, (read32(Loc) & ~Mask) | (Val & Mask)); break; } case R_PPC64_DTPREL64: write64(Loc, Val - DynamicThreadPointerOffset); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } bool PPC64::needsThunk(RelExpr Expr, RelType Type, const InputFile *File, uint64_t BranchAddr, const Symbol &S) const { if (Type != R_PPC64_REL14 && Type != R_PPC64_REL24) return false; // If a function is in the Plt it needs to be called with a call-stub. if (S.isInPlt()) return true; // If a symbol is a weak undefined and we are compiling an executable // it doesn't need a range-extending thunk since it can't be called. if (S.isUndefWeak() && !Config->Shared) return false; // If the offset exceeds the range of the branch type then it will need // a range-extending thunk. - return !inBranchRange(Type, BranchAddr, S.getVA()); + // See the comment in getRelocTargetVA() about R_PPC64_CALL. + return !inBranchRange(Type, BranchAddr, + S.getVA() + + getPPC64GlobalEntryToLocalEntryOffset(S.StOther)); } uint32_t PPC64::getThunkSectionSpacing() const { // See comment in Arch/ARM.cpp for a more detailed explanation of // getThunkSectionSpacing(). For PPC64 we pick the constant here based on // R_PPC64_REL24, which is used by unconditional branch instructions. // 0x2000000 = (1 << 24-1) * 4 return 0x2000000; } bool PPC64::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const { int64_t Offset = Dst - Src; if (Type == R_PPC64_REL14) return isInt<16>(Offset); if (Type == R_PPC64_REL24) return isInt<26>(Offset); llvm_unreachable("unsupported relocation type used in branch"); } RelExpr PPC64::adjustRelaxExpr(RelType Type, const uint8_t *Data, RelExpr Expr) const { if (Expr == R_RELAX_TLS_GD_TO_IE) return R_RELAX_TLS_GD_TO_IE_GOT_OFF; if (Expr == R_RELAX_TLS_LD_TO_LE) return R_RELAX_TLS_LD_TO_LE_ABS; return Expr; } // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. // The general dynamic code sequence for a global `x` uses 4 instructions. // Instruction Relocation Symbol // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x // R_PPC64_REL24 __tls_get_addr // nop None None // // Relaxing to initial-exec entails: // 1) Convert the addis/addi pair that builds the address of the tls_index // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. // 2) Convert the call to __tls_get_addr to a nop. // 3) Convert the nop following the call to an add of the loaded offset to the // thread pointer. // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is // used as the relaxation hint for both steps 2 and 3. void PPC64::relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const { switch (Type) { case R_PPC64_GOT_TLSGD16_HA: // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to // addis rT, r2, sym@got@tprel@ha. relocateOne(Loc, R_PPC64_GOT_TPREL16_HA, Val); return; case R_PPC64_GOT_TLSGD16_LO: { // Relax from addi r3, rA, sym@got@tlsgd@l to // ld r3, sym@got@tprel@l(rA) uint32_t InputRegister = (readInstrFromHalf16(Loc) & (0x1f << 16)); writeInstrFromHalf16(Loc, 0xE8600000 | InputRegister); relocateOne(Loc, R_PPC64_GOT_TPREL16_LO_DS, Val); return; } case R_PPC64_TLSGD: write32(Loc, 0x60000000); // bl __tls_get_addr(sym@tlsgd) --> nop write32(Loc + 4, 0x7c636A14); // nop --> add r3, r3, r13 return; default: llvm_unreachable("unsupported relocation for TLS GD to IE relaxation"); } } // The prologue for a split-stack function is expected to look roughly // like this: // .Lglobal_entry_point: // # TOC pointer initalization. // ... // .Llocal_entry_point: // # load the __private_ss member of the threads tcbhead. // ld r0,-0x7000-64(r13) // # subtract the functions stack size from the stack pointer. // addis r12, r1, ha(-stack-frame size) // addi r12, r12, l(-stack-frame size) // # compare needed to actual and branch to allocate_more_stack if more // # space is needed, otherwise fallthrough to 'normal' function body. // cmpld cr7,r12,r0 // blt- cr7, .Lallocate_more_stack // // -) The allocate_more_stack block might be placed after the split-stack // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` // instead. // -) If either the addis or addi is not needed due to the stack size being // smaller then 32K or a multiple of 64K they will be replaced with a nop, // but there will always be 2 instructions the linker can overwrite for the // adjusted stack size. // // The linkers job here is to increase the stack size used in the addis/addi // pair by split-stack-size-adjust. // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End, uint8_t StOther) const { // If the caller has a global entry point adjust the buffer past it. The start // of the split-stack prologue will be at the local entry point. Loc += getPPC64GlobalEntryToLocalEntryOffset(StOther); // At the very least we expect to see a load of some split-stack data from the // tcb, and 2 instructions that calculate the ending stack address this // function will require. If there is not enough room for at least 3 // instructions it can't be a split-stack prologue. if (Loc + 12 >= End) return false; // First instruction must be `ld r0, -0x7000-64(r13)` if (read32(Loc) != 0xe80d8fc0) return false; int16_t HiImm = 0; int16_t LoImm = 0; // First instruction can be either an addis if the frame size is larger then // 32K, or an addi if the size is less then 32K. int32_t FirstInstr = read32(Loc + 4); if (getPrimaryOpCode(FirstInstr) == 15) { HiImm = FirstInstr & 0xFFFF; } else if (getPrimaryOpCode(FirstInstr) == 14) { LoImm = FirstInstr & 0xFFFF; } else { return false; } // Second instruction is either an addi or a nop. If the first instruction was // an addi then LoImm is set and the second instruction must be a nop. uint32_t SecondInstr = read32(Loc + 8); if (!LoImm && getPrimaryOpCode(SecondInstr) == 14) { LoImm = SecondInstr & 0xFFFF; } else if (SecondInstr != 0x60000000) { return false; } // The register operands of the first instruction should be the stack-pointer // (r1) as the input (RA) and r12 as the output (RT). If the second // instruction is not a nop, then it should use r12 as both input and output. auto CheckRegOperands = [](uint32_t Instr, uint8_t ExpectedRT, uint8_t ExpectedRA) { return ((Instr & 0x3E00000) >> 21 == ExpectedRT) && ((Instr & 0x1F0000) >> 16 == ExpectedRA); }; if (!CheckRegOperands(FirstInstr, 12, 1)) return false; if (SecondInstr != 0x60000000 && !CheckRegOperands(SecondInstr, 12, 12)) return false; int32_t StackFrameSize = (HiImm * 65536) + LoImm; // Check that the adjusted size doesn't overflow what we can represent with 2 // instructions. if (StackFrameSize < Config->SplitStackAdjustSize + INT32_MIN) { error(getErrorLocation(Loc) + "split-stack prologue adjustment overflows"); return false; } int32_t AdjustedStackFrameSize = StackFrameSize - Config->SplitStackAdjustSize; LoImm = AdjustedStackFrameSize & 0xFFFF; HiImm = (AdjustedStackFrameSize + 0x8000) >> 16; if (HiImm) { write32(Loc + 4, 0x3D810000 | (uint16_t)HiImm); // If the low immediate is zero the second instruction will be a nop. SecondInstr = LoImm ? 0x398C0000 | (uint16_t)LoImm : 0x60000000; write32(Loc + 8, SecondInstr); } else { // addi r12, r1, imm write32(Loc + 4, (0x39810000) | (uint16_t)LoImm); write32(Loc + 8, 0x60000000); } return true; } TargetInfo *elf::getPPC64TargetInfo() { static PPC64 Target; return &Target; } Index: vendor/lld/dist-release_80/test/ELF/ppc64-long-branch-localentry-offset.s =================================================================== --- vendor/lld/dist-release_80/test/ELF/ppc64-long-branch-localentry-offset.s (nonexistent) +++ vendor/lld/dist-release_80/test/ELF/ppc64-long-branch-localentry-offset.s (revision 349785) @@ -0,0 +1,30 @@ +# REQUIRES: ppc + +# RUN: llvm-mc -filetype=obj -triple=ppc64le %s -o %t.o +# RUN: ld.lld %t.o -o %t +# RUN: llvm-nm %t | FileCheck %s + +# CHECK-DAG: 0000000010010000 t __long_branch_callee +# CHECK-DAG: 0000000010010010 T _start +# CHECK-DAG: 0000000012010008 T callee + +# The bl instruction jumps to the local entry. The distance requires a long branch stub: +# localentry(callee) - _start = 0x12010008+8 - 0x10010010 = 0x2000000 + +# We used to compute globalentry(callee) - _start and caused a "R_PPC64_REL24 +# out of range" error because we didn't create the stub. + +.globl _start +_start: + bl callee + +.space 0x1fffff4 + +.globl callee +callee: +.Lgep0: + addis 2, 12, .TOC.-.Lgep0@ha + addi 2, 2, .TOC.-.Lgep0@l +.Llep0: + .localentry callee, .Llep0-.Lgep0 + blr