Index: head/UPDATING =================================================================== --- head/UPDATING (revision 348807) +++ head/UPDATING (revision 348808) @@ -1,2055 +1,2060 @@ Updating Information for FreeBSD current users. This file is maintained and copyrighted by M. Warner Losh . See end of file for further details. For commonly done items, please see the COMMON ITEMS: section later in the file. These instructions assume that you basically know what you are doing. If not, then please consult the FreeBSD handbook: https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html Items affecting the ports and packages system can be found in /usr/ports/UPDATING. Please read that file before running portupgrade. NOTE: FreeBSD has switched from gcc to clang. If you have trouble bootstrapping from older versions of FreeBSD, try WITHOUT_CLANG and WITH_GCC to bootstrap to the tip of head, and then rebuild without this option. The bootstrap process from older version of current across the gcc/clang cutover is a bit fragile. NOTE TO PEOPLE WHO THINK THAT FreeBSD 13.x IS SLOW: FreeBSD 13.x has many debugging features turned on, in both the kernel and userland. These features attempt to detect incorrect use of system primitives, and encourage loud failure through extra sanity checking and fail stop semantics. They also substantially impact system performance. If you want to do performance measurement, benchmarking, and optimization, you'll want to turn them off. This includes various WITNESS- related kernel options, INVARIANTS, malloc debugging flags in userland, and various verbose features in the kernel. Many developers choose to disable these features on build machines to maximize performance. (To completely disable malloc debugging, define MALLOC_PRODUCTION in /etc/make.conf, or to merely disable the most expensive debugging functionality run "ln -s 'abort:false,junk:false' /etc/malloc.conf".) +20190608: + A fix was applied to i386 kernel modules to avoid panics with + dpcpu or vnet. Users need to recompile i386 kernel modules + having pcpu or vnet sections or they will refuse to load. + 20190513: User-wired pages now have their own counter, vm.stats.vm.v_user_wire_count. The vm.max_wired sysctl was renamed to vm.max_user_wired and changed from an unsigned int to an unsigned long. bhyve VMs wired with the -S are now subject to the user wiring limit; the vm.max_user_wired sysctl may need to be tuned to avoid running into the limit. 20190507: The IPSEC option has been removed from GENERIC. Users requiring ipsec(4) must now load the ipsec(4) kernel module. 20190507: The tap(4) driver has been folded into tun(4), and the module has been renamed to tuntap. You should update any kld_load="if_tap" or kld_load="if_tun" entries in /etc/rc.conf, if_tap_load="YES" or if_tun_load="YES" entries in /boot/loader.conf to load the if_tuntap module instead, and "device tap" or "device tun" entries in kernel config files to select the tuntap device instead. 20190418: The following knobs have been added related to tradeoffs between safe use of the random device and availability in the absence of entropy: kern.random.initial_seeding.bypass_before_seeding: tunable; set non-zero to bypass the random device prior to seeding, or zero to block random requests until the random device is initially seeded. For now, set to 1 (unsafe) by default to restore pre-r346250 boot availability properties. kern.random.initial_seeding.read_random_bypassed_before_seeding: read-only diagnostic sysctl that is set when bypass is enabled and read_random(9) is bypassed, to enable programmatic handling of this initial condition, if desired. kern.random.initial_seeding.arc4random_bypassed_before_seeding: Similar to the above, but for for arc4random(9) initial seeding. kern.random.initial_seeding.disable_bypass_warnings: tunable; set non-zero to disable warnings in dmesg when the same conditions are met as for the diagnostic sysctls above. Defaults to zero, i.e., produce warnings in dmesg when the conditions are met. 20190416: The loadable random module KPI has changed; the random_infra_init() routine now requires a 3rd function pointer for a bool (*)(void) method that returns true if the random device is seeded (and therefore unblocked). 20190404: r345895 reverts r320698. This implies that an nfsuserd(8) daemon built from head sources between r320757 (July 6, 2017) and r338192 (Aug. 22, 2018) will not work unless the "-use-udpsock" is added to the command line. nfsuserd daemons built from head sources that are post-r338192 are not affected and should continue to work. 20190320: The fuse(4) module has been renamed to fusefs(4) for consistency with other filesystems. You should update any kld_load="fuse" entries in /etc/rc.conf, fuse_load="YES" entries in /boot/loader.conf, and "options FUSE" entries in kernel config files. 20190304: Clang, llvm, lld, lldb, compiler-rt and libc++ have been upgraded to 8.0.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20190226: geom_uzip(4) depends on the new module xz. If geom_uzip is statically compiled into your custom kernel, add 'device xz' statement to the kernel config. 20190219: drm and drm2 have been removed from the tree. Please see https://wiki.freebsd.org/Graphics for the latest information on migrating to the drm ports. 20190131: Iflib is no longer unconditionally compiled into the kernel. Drivers using iflib and statically compiled into the kernel, now require the 'device iflib' config option. For the same drivers loaded as modules on kernels not having 'device iflib', the iflib.ko module is loaded automatically. 20190125: The IEEE80211_AMPDU_AGE and AH_SUPPORT_AR5416 kernel configuration options no longer exist since r343219 and r343427 respectively; nothing uses them, so they should be just removed from custom kernel config files. 20181230: r342635 changes the way efibootmgr(8) works by requiring users to add the -b (bootnum) parameter for commands where the bootnum was previously specified with each option. For example 'efibootmgr -B 0001' is now 'efibootmgr -B -b 0001'. 20181220: r342286 modifies the NFSv4 server so that it obeys vfs.nfsd.nfs_privport in the same as it is applied to NFSv2 and 3. This implies that NFSv4 servers that have vfs.nfsd.nfs_privport set will only allow mounts from clients using a reserved port#. Since both the FreeBSD and Linux NFSv4 clients use reserved port#s by default, this should not affect most NFSv4 mounts. 20181219: The XLP config has been removed. We can't support 64-bit atomics in this kernel because it is running in 32-bit mode. XLP users must transition to running a 64-bit kernel (XLP64 or XLPN32). The mips GXEMUL support has been removed from FreeBSD. MALTA* + qemu is the preferred emulator today and we don't need two different ones. The old sibyte / swarm / Broadcom BCM1250 support has been removed from the mips port. 20181211: Clang, llvm, lld, lldb, compiler-rt and libc++ have been upgraded to 7.0.1. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20181211: Remove the timed and netdate programs from the base tree. Setting the time with these daemons has been obsolete for over a decade. 20181126: On amd64, arm64 and armv7 (architectures that install LLVM's ld.lld linker as /usr/bin/ld) GNU ld is no longer installed as ld.bfd, as it produces broken binaries when ifuncs are in use. Users needing GNU ld should install the binutils port or package. 20181123: The BSD crtbegin and crtend code has been enabled by default. It has had extensive testing on amd64, arm64, and i386. It can be disabled by building a world with -DWITHOUT_BSD_CRTBEGIN. 20181115: The set of CTM commands (ctm, ctm_smail, ctm_rmail, ctm_dequeue) has been converted to a port (misc/ctm) and will be removed from FreeBSD-13. It is available as a package (ctm) for all supported FreeBSD versions. 20181110: The default newsyslog.conf(5) file has been changed to only include files in /etc/newsyslog.conf.d/ and /usr/local/etc/newsyslog.conf.d/ if the filenames end in '.conf' and do not begin with a '.'. You should check the configuration files in these two directories match this naming convention. You can verify which configuration files are being included using the command: $ newsyslog -Nrv 20181015: Ports for the DRM modules have been simplified. Now, amd64 users should just install the drm-kmod port. All others should install drm-legacy-kmod. Graphics hardware that's newer than about 2010 usually works with drm-kmod. For hardware older than 2013, however, some users will need to use drm-legacy-kmod if drm-kmod doesn't work for them. Hardware older than 2008 usually only works in drm-legacy-kmod. The graphics team can only commit to hardware made since 2013 due to the complexity of the market and difficulty to test all the older cards effectively. If you have hardware supported by drm-kmod, you are strongly encouraged to use that as you will get better support. Other than KPI chasing, drm-legacy-kmod will not be updated. As outlined elsewhere, the drm and drm2 modules will be eliminated from the src base soon (with a limited exception for arm). Please update to the package asap and report any issues to x11@freebsd.org. Generally, anybody using the drm*-kmod packages should add WITHOUT_DRM_MODULE=t and WITHOUT_DRM2_MODULE=t to avoid nasty cross-threading surprises, especially with automatic driver loading from X11 startup. These will become the defaults in 13-current shortly. 20181012: The ixlv(4) driver has been renamed to iavf(4). As a consequence, custom kernel and module loading configuration files must be updated accordingly. Moreover, interfaces previous presented as ixlvN to the system are now exposed as iavfN and network configuration files must be adjusted as necessary. 20181009: OpenSSL has been updated to version 1.1.1. This update included additional various API changes throughout the base system. It is important to rebuild third-party software after upgrading. The value of __FreeBSD_version has been bumped accordingly. 20181006: The legacy DRM modules and drivers have now been added to the loader's module blacklist, in favor of loading them with kld_list in rc.conf(5). The module blacklist may be overridden with the loader.conf(5) 'module_blacklist' variable, but loading them via rc.conf(5) is strongly encouraged. 20181002: The cam(4) based nda(4) driver will be used over nvd(4) by default on powerpc64. You may set 'options NVME_USE_NVD=1' in your kernel conf or loader tunable 'hw.nvme.use_nvd=1' if you wish to use the existing driver. Make sure to edit /boot/etc/kboot.conf and fstab to use the nda device name. 20180913: Reproducible build mode is now on by default, in preparation for FreeBSD 12.0. This eliminates build metadata such as the user, host, and time from the kernel (and uname), unless the working tree corresponds to a modified checkout from a version control system. The previous behavior can be obtained by setting the /etc/src.conf knob WITHOUT_REPRODUCIBLE_BUILD. 20180826: The Yarrow CSPRNG has been removed from the kernel as it has not been supported by its designers since at least 2003. Fortuna has been the default since FreeBSD-11. 20180822: devctl freeze/thaw have gone into the tree, the rc scripts have been updated to use them and devmatch has been changed. You should update kernel, userland and rc scripts all at the same time. 20180818: The default interpreter has been switched from 4th to Lua. LOADER_DEFAULT_INTERP, documented in build(7), will override the default interpreter. If you have custom FORTH code you will need to set LOADER_DEFAULT_INTERP=4th (valid values are 4th, lua or simp) in src.conf for the build. This will create default hard links between loader and loader_4th instead of loader and loader_lua, the new default. If you are using UEFI it will create the proper hard link to loader.efi. bhyve uses userboot.so. It remains 4th-only until some issues are solved regarding coexisting with multiple versions of FreeBSD are resolved. 20180815: ls(1) now respects the COLORTERM environment variable used in other systems and software to indicate that a colored terminal is both supported and desired. If ls(1) is suddenly emitting colors, they may be disabled again by either removing the unwanted COLORTERM from your environment, or using `ls --color=never`. The ls(1) specific CLICOLOR may not be observed in a future release. 20180808: The default pager for most commands has been changed to "less". To restore the old behavior, set PAGER="more" and MANPAGER="more -s" in your environment. 20180731: The jedec_ts(4) driver has been removed. A superset of its functionality is available in the jedec_dimm(4) driver, and the manpage for that driver includes migration instructions. If you have "device jedec_ts" in your kernel configuration file, it must be removed. 20180730: amd64/GENERIC now has EFI runtime services, EFIRT, enabled by default. This should have no effect if the kernel is booted via BIOS/legacy boot. EFIRT may be disabled via a loader tunable, efi.rt.disabled, if a system has a buggy firmware that prevents a successful boot due to use of runtime services. 20180727: Atmel AT91RM9200 and AT91SAM9, Cavium CNS 11xx and XScale support has been removed from the tree. These ports were obsolete and/or known to be broken for many years. 20180723: loader.efi has been augmented to participate more fully in the UEFI boot manager protocol. loader.efi will now look at the BootXXXX environment variable to determine if a specific kernel or root partition was specified. XXXX is derived from BootCurrent. efibootmgr(8) manages these standard UEFI variables. 20180720: zfsloader's functionality has now been folded into loader. zfsloader is no longer necessary once you've updated your boot blocks. For a transition period, we will install a hardlink for zfsloader to loader to allow a smooth transition until the boot blocks can be updated (hard link because old zfs boot blocks don't understand symlinks). 20180719: ARM64 now have efifb support, if you want to have serial console on your arm64 board when an screen is connected and the bootloader setup a frame buffer for us to use, just add : boot_serial=YES boot_multicons=YES in /boot/loader.conf For Raspberry Pi 3 (RPI) users, this is needed even if you don't have an screen connected as the firmware will setup a frame buffer are that u-boot will expose as an EFI frame buffer. 20180719: New uid:gid added, ntpd:ntpd (123:123). Be sure to run mergemaster or take steps to update /etc/passwd before doing installworld on existing systems. Do not skip the "mergemaster -Fp" step before installworld, as described in the update procedures near the bottom of this document. Also, rc.d/ntpd now starts ntpd(8) as user ntpd if the new mac_ntpd(4) policy is available, unless ntpd_flags or the ntp config file contain options that change file/dir locations. When such options (e.g., "statsdir" or "crypto") are used, ntpd can still be run as non-root by setting ntpd_user=ntpd in rc.conf, after taking steps to ensure that all required files/dirs are accessible by the ntpd user. 20180717: Big endian arm support has been removed. 20180711: The static environment setup in kernel configs is no longer mutually exclusive with the loader(8) environment by default. In order to restore the previous default behavior of disabling the loader(8) environment if a static environment is present, you must specify loader_env.disabled=1 in the static environment. 20180705: The ABI of syscalls used by management tools like sockstat and netstat has been broken to allow 32-bit binaries to work on 64-bit kernels without modification. These programs will need to match the kernel in order to function. External programs may require minor modifications to accommodate a change of type in structures from pointers to 64-bit virtual addresses. 20180702: On i386 and amd64 atomics are now inlined. Out of tree modules using atomics will need to be rebuilt. 20180701: The '%I' format in the kern.corefile sysctl limits the number of core files that a process can generate to the number stored in the debug.ncores sysctl. The '%I' format is replaced by the single digit index. Previously, if all indexes were taken the kernel would overwrite only a core file with the highest index in a filename. Currently the system will create a new core file if there is a free index or if all slots are taken it will overwrite the oldest one. 20180630: Clang, llvm, lld, lldb, compiler-rt and libc++ have been upgraded to 6.0.1. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20180628: r335753 introduced a new quoting method. However, etc/devd/devmatch.conf needed to be changed to work with it. This change was made with r335763 and requires a mergemaster / etcupdate / etc to update the installed file. 20180612: r334930 changed the interface between the NFS modules, so they all need to be rebuilt. r335018 did a __FreeBSD_version bump for this. 20180530: As of r334391 lld is the default amd64 system linker; it is installed as /usr/bin/ld. Kernel build workarounds (see 20180510 entry) are no longer necessary. 20180530: The kernel / userland interface for devinfo changed, so you'll need a new kernel and userland as a pair for it to work (rebuilding lib/libdevinfo is all that's required). devinfo and devmatch will not work, but everything else will when there's a mismatch. 20180523: The on-disk format for hwpmc callchain records has changed to include threadid corresponding to a given record. This changes the field offsets and thus requires that libpmcstat be rebuilt before using a kernel later than r334108. 20180517: The vxge(4) driver has been removed. This driver was introduced into HEAD one week before the Exar left the Ethernet market and is not known to be used. If you have device vxge in your kernel config file it must be removed. 20180510: The amd64 kernel now requires a ld that supports ifunc to produce a working kernel, either lld or a newer binutils. lld is built by default on amd64, and the 'buildkernel' target uses it automatically. However, it is not the default linker, so building the kernel the traditional way requires LD=ld.lld on the command line (or LD=/usr/local/bin/ld for binutils port/package). lld will soon be default, and this requirement will go away. NOTE: As of r334391 lld is the default system linker on amd64, and no workaround is necessary. 20180508: The nxge(4) driver has been removed. This driver was for PCI-X 10g cards made by s2io/Neterion. The company was acquired by Exar and no longer sells or supports Ethernet products. If you have device nxge in your kernel config file it must be removed. 20180504: The tz database (tzdb) has been updated to 2018e. This version more correctly models time stamps in time zones with negative DST such as Europe/Dublin (from 1971 on), Europe/Prague (1946/7), and Africa/Windhoek (1994/2017). This does not affect the UT offsets, only time zone abbreviations and the tm_isdst flag. 20180502: The ixgb(4) driver has been removed. This driver was for an early and uncommon legacy PCI 10GbE for a single ASIC, Intel 82597EX. Intel quickly shifted to the long lived ixgbe family. If you have device ixgb in your kernel config file it must be removed. 20180501: The lmc(4) driver has been removed. This was a WAN interface card that was already reportedly rare in 2003, and had an ambiguous license. If you have device lmc in your kernel config file it must be removed. 20180413: Support for Arcnet networks has been removed. If you have device arcnet or device cm in your kernel config file they must be removed. 20180411: Support for FDDI networks has been removed. If you have device fddi or device fpa in your kernel config file they must be removed. 20180406: In addition to supporting RFC 3164 formatted messages, the syslogd(8) service is now capable of parsing RFC 5424 formatted log messages. The main benefit of using RFC 5424 is that clients may now send log messages with timestamps containing year numbers, microseconds and time zone offsets. Similarly, the syslog(3) C library function has been altered to send RFC 5424 formatted messages to the local system logging daemon. On systems using syslogd(8), this change should have no negative impact, as long as syslogd(8) and the C library are updated at the same time. On systems using a different system logging daemon, it may be necessary to make configuration adjustments, depending on the software used. When using syslog-ng, add the 'syslog-protocol' flag to local input sources to enable parsing of RFC 5424 formatted messages: source src { unix-dgram("/var/run/log" flags(syslog-protocol)); } When using rsyslog, disable the 'SysSock.UseSpecialParser' option of the 'imuxsock' module to let messages be processed by the regular RFC 3164/5424 parsing pipeline: module(load="imuxsock" SysSock.UseSpecialParser="off") Do note that these changes only affect communication between local applications and syslogd(8). The format that syslogd(8) uses to store messages on disk or forward messages to other systems remains unchanged. syslogd(8) still uses RFC 3164 for these purposes. Options to customize this behaviour will be added in the future. Utilities that process log files stored in /var/log are thus expected to continue to function as before. __FreeBSD_version has been incremented to 1200061 to denote this change. 20180328: Support for token ring networks has been removed. If you have "device token" in your kernel config you should remove it. No device drivers supported token ring. 20180323: makefs was modified to be able to tag ISO9660 El Torito boot catalog entries as EFI instead of overloading the i386 tag as done previously. The amd64 mkisoimages.sh script used to build amd64 ISO images for release was updated to use this. This may mean that makefs must be updated before "make cdrom" can be run in the release directory. This should be as simple as: $ cd $SRCDIR/usr.sbin/makefs $ make depend all install 20180212: FreeBSD boot loader enhanced with Lua scripting. It's purely opt-in for now by building WITH_LOADER_LUA and WITHOUT_FORTH in /etc/src.conf. Co-existence for the transition period will come shortly. Booting is a complex environment and test coverage for Lua-enabled loaders has been thin, so it would be prudent to assume it might not work and make provisions for backup boot methods. 20180211: devmatch functionality has been turned on in devd. It will automatically load drivers for unattached devices. This may cause unexpected drivers to be loaded. Please report any problems to current@ and imp@freebsd.org. 20180114: Clang, llvm, lld, lldb, compiler-rt and libc++ have been upgraded to 6.0.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20180110: LLVM's lld linker is now used as the FreeBSD/amd64 bootstrap linker. This means it is used to link the kernel and userland libraries and executables, but is not yet installed as /usr/bin/ld by default. To revert to ld.bfd as the bootstrap linker, in /etc/src.conf set WITHOUT_LLD_BOOTSTRAP=yes 20180110: On i386, pmtimer has been removed. Its functionality has been folded into apm. It was a no-op on ACPI in current for a while now (but was still needed on i386 in FreeBSD 11 and earlier). Users may need to remove it from kernel config files. 20180104: The use of RSS hash from the network card aka flowid has been disabled by default for lagg(4) as it's currently incompatible with the lacp and loadbalance protocols. This can be re-enabled by setting the following in loader.conf: net.link.lagg.default_use_flowid="1" 20180102: The SW_WATCHDOG option is no longer necessary to enable the hardclock-based software watchdog if no hardware watchdog is configured. As before, SW_WATCHDOG will cause the software watchdog to be enabled even if a hardware watchdog is configured. 20171215: r326887 fixes the issue described in the 20171214 UPDATING entry. r326888 flips the switch back to building GELI support always. 20171214: r362593 broke ZFS + GELI support for reasons unknown. However, it also broke ZFS support generally, so GELI has been turned off by default as the lesser evil in r326857. If you boot off ZFS and/or GELI, it might not be a good time to update. 20171125: PowerPC users must update loader(8) by rebuilding world before installing a new kernel, as the protocol connecting them has changed. Without the update, loader metadata will not be passed successfully to the kernel and users will have to enter their root partition at the kernel mountroot prompt to continue booting. Newer versions of loader can boot old kernels without issue. 20171110: The LOADER_FIREWIRE_SUPPORT build variable as been renamed to WITH/OUT_LOADER_FIREWIRE. LOADER_{NO_,}GELI_SUPPORT has been renamed to WITH/OUT_LOADER_GELI. 20171106: The naive and non-compliant support of posix_fallocate(2) in ZFS has been removed as of r325320. The system call now returns EINVAL when used on a ZFS file. Although the new behavior complies with the standard, some consumers are not prepared to cope with it. One known victim is lld prior to r325420. 20171102: Building in a FreeBSD src checkout will automatically create object directories now rather than store files in the current directory if 'make obj' was not ran. Calling 'make obj' is no longer necessary. This feature can be disabled by setting WITHOUT_AUTO_OBJ=yes in /etc/src-env.conf (not /etc/src.conf), or passing the option in the environment. 20171101: The default MAKEOBJDIR has changed from /usr/obj/ for native builds, and /usr/obj// for cross-builds, to a unified /usr/obj//. This behavior can be changed to the old format by setting WITHOUT_UNIFIED_OBJDIR=yes in /etc/src-env.conf, the environment, or with -DWITHOUT_UNIFIED_OBJDIR when building. The UNIFIED_OBJDIR option is a transitional feature that will be removed for 12.0 release; please migrate to the new format for any tools by looking up the OBJDIR used by 'make -V .OBJDIR' means rather than hardcoding paths. 20171028: The native-xtools target no longer installs the files by default to the OBJDIR. Use the native-xtools-install target with a DESTDIR to install to ${DESTDIR}/${NXTP} where NXTP defaults to /nxb-bin. 20171021: As part of the boot loader infrastructure cleanup, LOADER_*_SUPPORT options are changing from controlling the build if defined / undefined to controlling the build with explicit 'yes' or 'no' values. They will shift to WITH/WITHOUT options to match other options in the system. 20171010: libstand has turned into a private library for sys/boot use only. It is no longer supported as a public interface outside of sys/boot. 20171005: The arm port has split armv6 into armv6 and armv7. armv7 is now a valid TARGET_ARCH/MACHINE_ARCH setting. If you have an armv7 system and are running a kernel from before r324363, you will need to add MACHINE_ARCH=armv7 to 'make buildworld' to do a native build. 20171003: When building multiple kernels using KERNCONF, non-existent KERNCONF files will produce an error and buildkernel will fail. Previously missing KERNCONF files silently failed giving no indication as to why, only to subsequently discover during installkernel that the desired kernel was never built in the first place. 20170912: The default serial number format for CTL LUNs has changed. This will affect users who use /dev/diskid/* device nodes, or whose FibreChannel or iSCSI clients care about their LUNs' serial numbers. Users who require serial number stability should hardcode serial numbers in /etc/ctl.conf . 20170912: For 32-bit arm compiled for hard-float support, soft-floating point binaries now always get their shared libraries from LD_SOFT_LIBRARY_PATH (in the past, this was only used if /usr/libsoft also existed). Only users with a hard-float ld.so, but soft-float everything else should be affected. 20170826: The geli password typed at boot is now hidden. To restore the previous behavior, see geli(8) for configuration options. 20170825: Move PMTUD blackhole counters to TCPSTATS and remove them from bare sysctl values. Minor nit, but requires a rebuild of both world/kernel to complete. 20170814: "make check" behavior (made in ^/head@r295380) has been changed to execute from a limited sandbox, as opposed to executing from ${TESTSDIR}. Behavioral changes: - The "beforecheck" and "aftercheck" targets are now specified. - ${CHECKDIR} (added in commit noted above) has been removed. - Legacy behavior can be enabled by setting WITHOUT_MAKE_CHECK_USE_SANDBOX in src.conf(5) or the environment. If the limited sandbox mode is enabled, "make check" will execute "make distribution", then install, execute the tests, and clean up the sandbox if successful. The "make distribution" and "make install" targets are typically run as root to set appropriate permissions and ownership at installation time. The end-user should set "WITH_INSTALL_AS_USER" in src.conf(5) or the environment if executing "make check" with limited sandbox mode using an unprivileged user. 20170808: Since the switch to GPT disk labels, fsck for UFS/FFS has been unable to automatically find alternate superblocks. As of r322297, the information needed to find alternate superblocks has been moved to the end of the area reserved for the boot block. Filesystems created with a newfs of this vintage or later will create the recovery information. If you have a filesystem created prior to this change and wish to have a recovery block created for your filesystem, you can do so by running fsck in foreground mode (i.e., do not use the -p or -y options). As it starts, fsck will ask ``SAVE DATA TO FIND ALTERNATE SUPERBLOCKS'' to which you should answer yes. 20170728: As of r321665, an NFSv4 server configuration that services Kerberos mounts or clients that do not support the uid/gid in owner/owner_group string capability, must explicitly enable the nfsuserd daemon by adding nfsuserd_enable="YES" to the machine's /etc/rc.conf file. 20170722: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 5.0.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20170701: WITHOUT_RCMDS is now the default. Set WITH_RCMDS if you need the r-commands (rlogin, rsh, etc.) to be built with the base system. 20170625: The FreeBSD/powerpc platform now uses a 64-bit type for time_t. This is a very major ABI incompatible change, so users of FreeBSD/powerpc must be careful when performing source upgrades. It is best to run 'make installworld' from an alternate root system, either a live CD/memory stick, or a temporary root partition. Additionally, all ports must be recompiled. powerpc64 is largely unaffected, except in the case of 32-bit compatibility. All 32-bit binaries will be affected. 20170623: Forward compatibility for the "ino64" project have been committed. This will allow most new binaries to run on older kernels in a limited fashion. This prevents many of the common foot-shooting actions in the upgrade as well as the limited ability to roll back the kernel across the ino64 upgrade. Complicated use cases may not work properly, though enough simpler ones work to allow recovery in most situations. 20170620: Switch back to the BSDL dtc (Device Tree Compiler). Set WITH_GPL_DTC if you require the GPL compiler. 20170618: The internal ABI used for communication between the NFS kernel modules was changed by r320085, so __FreeBSD_version was bumped to ensure all the NFS related modules are updated together. 20170617: The ABI of struct event was changed by extending the data member to 64bit and adding ext fields. For upgrade, same precautions as for the entry 20170523 "ino64" must be followed. 20170531: The GNU roff toolchain has been removed from base. To render manpages which are not supported by mandoc(1), man(1) can fallback on GNU roff from ports (and recommends to install it). To render roff(7) documents, consider using GNU roff from ports or the heirloom doctools roff toolchain from ports via pkg install groff or via pkg install heirloom-doctools. 20170524: The ath(4) and ath_hal(4) modules now build piecemeal to allow for smaller runtime footprint builds. This is useful for embedded systems which only require one chipset support. If you load it as a module, make sure this is in /boot/loader.conf: if_ath_load="YES" This will load the HAL, all chip/RF backends and if_ath_pci. If you have if_ath_pci in /boot/loader.conf, ensure it is after if_ath or it will not load any HAL chipset support. If you want to selectively load things (eg on ye cheape ARM/MIPS platforms where RAM is at a premium) you should: * load ath_hal * load the chip modules in question * load ath_rate, ath_dfs * load ath_main * load if_ath_pci and/or if_ath_ahb depending upon your particular bus bind type - this is where probe/attach is done. For further comments/feedback, poke adrian@ . 20170523: The "ino64" 64-bit inode project has been committed, which extends a number of types to 64 bits. Upgrading in place requires care and adherence to the documented upgrade procedure. If using a custom kernel configuration ensure that the COMPAT_FREEBSD11 option is included (as during the upgrade the system will be running the ino64 kernel with the existing world). For the safest in-place upgrade begin by removing previous build artifacts via "rm -rf /usr/obj/*". Then, carefully follow the full procedure documented below under the heading "To rebuild everything and install it on the current system." Specifically, a reboot is required after installing the new kernel before installing world. While an installworld normally works by accident from multiuser after rebooting the proper kernel, there are many cases where this will fail across this upgrade and installworld from single user is required. 20170424: The NATM framework including the en(4), fatm(4), hatm(4), and patm(4) devices has been removed. Consumers should plan a migration before the end-of-life date for FreeBSD 11. 20170420: GNU diff has been replaced by a BSD licensed diff. Some features of GNU diff has not been implemented, if those are needed a newer version of GNU diff is available via the diffutils package under the gdiff name. 20170413: As of r316810 for ipfilter, keep frags is no longer assumed when keep state is specified in a rule. r316810 aligns ipfilter with documentation in man pages separating keep frags from keep state. This allows keep state to be specified without forcing keep frags and allows keep frags to be specified independently of keep state. To maintain previous behaviour, also specify keep frags with keep state (as documented in ipf.conf.5). 20170407: arm64 builds now use the base system LLD 4.0.0 linker by default, instead of requiring that the aarch64-binutils port or package be installed. To continue using aarch64-binutils, set CROSS_BINUTILS_PREFIX=/usr/local/aarch64-freebsd/bin . 20170405: The UDP optimization in entry 20160818 that added the sysctl net.inet.udp.require_l2_bcast has been reverted. L2 broadcast packets will no longer be treated as L3 broadcast packets. 20170331: Binds and sends to the loopback addresses, IPv6 and IPv4, will now use any explicitly assigned loopback address available in the jail instead of using the first assigned address of the jail. 20170329: The ctl.ko module no longer implements the iSCSI target frontend: cfiscsi.ko does instead. If building cfiscsi.ko as a kernel module, the module can be loaded via one of the following methods: - `cfiscsi_load="YES"` in loader.conf(5). - Add `cfiscsi` to `$kld_list` in rc.conf(5). - ctladm(8)/ctld(8), when compiled with iSCSI support (`WITH_ISCSI=yes` in src.conf(5)) Please see cfiscsi(4) for more details. 20170316: The mmcsd.ko module now additionally depends on geom_flashmap.ko. Also, mmc.ko and mmcsd.ko need to be a matching pair built from the same source (previously, the dependency of mmcsd.ko on mmc.ko was missing, but mmcsd.ko now will refuse to load if it is incompatible with mmc.ko). 20170315: The syntax of ipfw(8) named states was changed to avoid ambiguity. If you have used named states in the firewall rules, you need to modify them after installworld and before rebooting. Now named states must be prefixed with colon. 20170311: The old drm (sys/dev/drm/) drivers for i915 and radeon have been removed as the userland we provide cannot use them. The KMS version (sys/dev/drm2) supports the same hardware. 20170302: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 4.0.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20170221: The code that provides support for ZFS .zfs/ directory functionality has been reimplemented. It's not possible now to create a snapshot by mkdir under .zfs/snapshot/. That should be the only user visible change. 20170216: EISA bus support has been removed. The WITH_EISA option is no longer valid. 20170215: MCA bus support has been removed. 20170127: The WITH_LLD_AS_LD / WITHOUT_LLD_AS_LD build knobs have been renamed WITH_LLD_IS_LD / WITHOUT_LLD_IS_LD, for consistency with CLANG_IS_CC. 20170112: The EM_MULTIQUEUE kernel configuration option is deprecated now that the em(4) driver conforms to iflib specifications. 20170109: The igb(4), em(4) and lem(4) ethernet drivers are now implemented via IFLIB. If you have a custom kernel configuration that excludes em(4) but you use igb(4), you need to re-add em(4) to your custom configuration. 20161217: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 3.9.1. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20161124: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 3.9.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20161119: The layout of the pmap structure has changed for powerpc to put the pmap statistics at the front for all CPU variations. libkvm(3) and all tools that link against it need to be recompiled. 20161030: isl(4) and cyapa(4) drivers now require a new driver, chromebook_platform(4), to work properly on Chromebook-class hardware. On other types of hardware the drivers may need to be configured using device hints. Please see the corresponding manual pages for details. 20161017: The urtwn(4) driver was merged into rtwn(4) and now consists of rtwn(4) main module + rtwn_usb(4) and rtwn_pci(4) bus-specific parts. Also, firmware for RTL8188CE was renamed due to possible name conflict (rtwnrtl8192cU(B) -> rtwnrtl8192cE(B)) 20161015: GNU rcs has been removed from base. It is available as packages: - rcs: Latest GPLv3 GNU rcs version. - rcs57: Copy of the latest version of GNU rcs (GPLv2) before it was removed from base. 20161008: Use of the cc_cdg, cc_chd, cc_hd, or cc_vegas congestion control modules now requires that the kernel configuration contain the TCP_HHOOK option. (This option is included in the GENERIC kernel.) 20161003: The WITHOUT_ELFCOPY_AS_OBJCOPY src.conf(5) knob has been retired. ELF Tool Chain's elfcopy is always installed as /usr/bin/objcopy. 20160924: Relocatable object files with the extension of .So have been renamed to use an extension of .pico instead. The purpose of this change is to avoid a name clash with shared libraries on case-insensitive file systems. On those file systems, foo.So is the same file as foo.so. 20160918: GNU rcs has been turned off by default. It can (temporarily) be built again by adding WITH_RCS knob in src.conf. Otherwise, GNU rcs is available from packages: - rcs: Latest GPLv3 GNU rcs version. - rcs57: Copy of the latest version of GNU rcs (GPLv2) from base. 20160918: The backup_uses_rcs functionality has been removed from rc.subr. 20160908: The queue(3) debugging macro, QUEUE_MACRO_DEBUG, has been split into two separate components, QUEUE_MACRO_DEBUG_TRACE and QUEUE_MACRO_DEBUG_TRASH. Define both for the original QUEUE_MACRO_DEBUG behavior. 20160824: r304787 changed some ioctl interfaces between the iSCSI userspace programs and the kernel. ctladm, ctld, iscsictl, and iscsid must be rebuilt to work with new kernels. __FreeBSD_version has been bumped to 1200005. 20160818: The UDP receive code has been updated to only treat incoming UDP packets that were addressed to an L2 broadcast address as L3 broadcast packets. It is not expected that this will affect any standards-conforming UDP application. The new behaviour can be disabled by setting the sysctl net.inet.udp.require_l2_bcast to 0. 20160818: Remove the openbsd_poll system call. __FreeBSD_version has been bumped because of this. 20160708: The stable/11 branch has been created from head@r302406. 20160622: The libc stub for the pipe(2) system call has been replaced with a wrapper that calls the pipe2(2) system call and the pipe(2) system call is now only implemented by the kernels that include "options COMPAT_FREEBSD10" in their config file (this is the default). Users should ensure that this option is enabled in their kernel or upgrade userspace to r302092 before upgrading their kernel. 20160527: CAM will now strip leading spaces from SCSI disks' serial numbers. This will affect users who create UFS filesystems on SCSI disks using those disk's diskid device nodes. For example, if /etc/fstab previously contained a line like "/dev/diskid/DISK-%20%20%20%20%20%20%20ABCDEFG0123456", you should change it to "/dev/diskid/DISK-ABCDEFG0123456". Users of geom transforms like gmirror may also be affected. ZFS users should generally be fine. 20160523: The bitstring(3) API has been updated with new functionality and improved performance. But it is binary-incompatible with the old API. Objects built with the new headers may not be linked against objects built with the old headers. 20160520: The brk and sbrk functions have been removed from libc on arm64. Binutils from ports has been updated to not link to these functions and should be updated to the latest version before installing a new libc. 20160517: The armv6 port now defaults to hard float ABI. Limited support for running both hardfloat and soft float on the same system is available using the libraries installed with -DWITH_LIBSOFT. This has only been tested as an upgrade path for installworld and packages may fail or need manual intervention to run. New packages will be needed. To update an existing self-hosted armv6hf system, you must add TARGET_ARCH=armv6 on the make command line for both the build and the install steps. 20160510: Kernel modules compiled outside of a kernel build now default to installing to /boot/modules instead of /boot/kernel. Many kernel modules built this way (such as those in ports) already overrode KMODDIR explicitly to install into /boot/modules. However, manually building and installing a module from /sys/modules will now install to /boot/modules instead of /boot/kernel. 20160414: The CAM I/O scheduler has been committed to the kernel. There should be no user visible impact. This does enable NCQ Trim on ada SSDs. While the list of known rogues that claim support for this but actually corrupt data is believed to be complete, be on the lookout for data corruption. The known rogue list is believed to be complete: o Crucial MX100, M550 drives with MU01 firmware. o Micron M510 and M550 drives with MU01 firmware. o Micron M500 prior to MU07 firmware o Samsung 830, 840, and 850 all firmwares o FCCT M500 all firmwares Crucial has firmware http://www.crucial.com/usa/en/support-ssd-firmware with working NCQ TRIM. For Micron branded drives, see your sales rep for updated firmware. Black listed drives will work correctly because these drives work correctly so long as no NCQ TRIMs are sent to them. Given this list is the same as found in Linux, it's believed there are no other rogues in the market place. All other models from the above vendors work. To be safe, if you are at all concerned, you can quirk each of your drives to prevent NCQ from being sent by setting: kern.cam.ada.X.quirks="0x2" in loader.conf. If the drive requires the 4k sector quirk, set the quirks entry to 0x3. 20160330: The FAST_DEPEND build option has been removed and its functionality is now the one true way. The old mkdep(1) style of 'make depend' has been removed. See 20160311 for further details. 20160317: Resource range types have grown from unsigned long to uintmax_t. All drivers, and anything using libdevinfo, need to be recompiled. 20160311: WITH_FAST_DEPEND is now enabled by default for in-tree and out-of-tree builds. It no longer runs mkdep(1) during 'make depend', and the 'make depend' stage can safely be skipped now as it is auto ran when building 'make all' and will generate all SRCS and DPSRCS before building anything else. Dependencies are gathered at compile time with -MF flags kept in separate .depend files per object file. Users should run 'make cleandepend' once if using -DNO_CLEAN to clean out older stale .depend files. 20160306: On amd64, clang 3.8.0 can now insert sections of type AMD64_UNWIND into kernel modules. Therefore, if you load any kernel modules at boot time, please install the boot loaders after you install the kernel, but before rebooting, e.g.: make buildworld make buildkernel KERNCONF=YOUR_KERNEL_HERE make installkernel KERNCONF=YOUR_KERNEL_HERE make -C sys/boot install Then follow the usual steps, described in the General Notes section, below. 20160305: Clang, llvm, lldb and compiler-rt have been upgraded to 3.8.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20160301: The AIO subsystem is now a standard part of the kernel. The VFS_AIO kernel option and aio.ko kernel module have been removed. Due to stability concerns, asynchronous I/O requests are only permitted on sockets and raw disks by default. To enable asynchronous I/O requests on all file types, set the vfs.aio.enable_unsafe sysctl to a non-zero value. 20160226: The ELF object manipulation tool objcopy is now provided by the ELF Tool Chain project rather than by GNU binutils. It should be a drop-in replacement, with the addition of arm64 support. The (temporary) src.conf knob WITHOUT_ELFCOPY_AS_OBJCOPY knob may be set to obtain the GNU version if necessary. 20160129: Building ZFS pools on top of zvols is prohibited by default. That feature has never worked safely; it's always been prone to deadlocks. Using a zvol as the backing store for a VM guest's virtual disk will still work, even if the guest is using ZFS. Legacy behavior can be restored by setting vfs.zfs.vol.recursive=1. 20160119: The NONE and HPN patches has been removed from OpenSSH. They are still available in the security/openssh-portable port. 20160113: With the addition of ypldap(8), a new _ypldap user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20151216: The tftp loader (pxeboot) now uses the option root-path directive. As a consequence it no longer looks for a pxeboot.4th file on the tftp server. Instead it uses the regular /boot infrastructure as with the other loaders. 20151211: The code to start recording plug and play data into the modules has been committed. While the old tools will properly build a new kernel, a number of warnings about "unknown metadata record 4" will be produced for an older kldxref. To avoid such warnings, make sure to rebuild the kernel toolchain (or world). Make sure that you have r292078 or later when trying to build 292077 or later before rebuilding. 20151207: Debug data files are now built by default with 'make buildworld' and installed with 'make installworld'. This facilitates debugging but requires more disk space both during the build and for the installed world. Debug files may be disabled by setting WITHOUT_DEBUG_FILES=yes in src.conf(5). 20151130: r291527 changed the internal interface between the nfsd.ko and nfscommon.ko modules. As such, they must both be upgraded to-gether. __FreeBSD_version has been bumped because of this. 20151108: Add support for unicode collation strings leads to a change of order of files listed by ls(1) for example. To get back to the old behaviour, set LC_COLLATE environment variable to "C". Databases administrators will need to reindex their databases given collation results will be different. Due to a bug in install(1) it is recommended to remove the ancient locales before running make installworld. rm -rf /usr/share/locale/* 20151030: The OpenSSL has been upgraded to 1.0.2d. Any binaries requiring libcrypto.so.7 or libssl.so.7 must be recompiled. 20151020: Qlogic 24xx/25xx firmware images were updated from 5.5.0 to 7.3.0. Kernel modules isp_2400_multi and isp_2500_multi were removed and should be replaced with isp_2400 and isp_2500 modules respectively. 20151017: The build previously allowed using 'make -n' to not recurse into sub-directories while showing what commands would be executed, and 'make -n -n' to recursively show commands. Now 'make -n' will recurse and 'make -N' will not. 20151012: If you specify SENDMAIL_MC or SENDMAIL_CF in make.conf, mergemaster and etcupdate will now use this file. A custom sendmail.cf is now updated via this mechanism rather than via installworld. If you had excluded sendmail.cf in mergemaster.rc or etcupdate.conf, you may want to remove the exclusion or change it to "always install". /etc/mail/sendmail.cf is now managed the same way regardless of whether SENDMAIL_MC/SENDMAIL_CF is used. If you are not using SENDMAIL_MC/SENDMAIL_CF there should be no change in behavior. 20151011: Compatibility shims for legacy ATA device names have been removed. It includes ATA_STATIC_ID kernel option, kern.cam.ada.legacy_aliases and kern.geom.raid.legacy_aliases loader tunables, kern.devalias.* environment variables, /dev/ad* and /dev/ar* symbolic links. 20151006: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 3.7.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20150924: Kernel debug files have been moved to /usr/lib/debug/boot/kernel/, and renamed from .symbols to .debug. This reduces the size requirements on the boot partition or file system and provides consistency with userland debug files. When using the supported kernel installation method the /usr/lib/debug/boot/kernel directory will be renamed (to kernel.old) as is done with /boot/kernel. Developers wishing to maintain the historical behavior of installing debug files in /boot/kernel/ can set KERN_DEBUGDIR="" in src.conf(5). 20150827: The wireless drivers had undergone changes that remove the 'parent interface' from the ifconfig -l output. The rc.d network scripts used to check presence of a parent interface in the list, so old scripts would fail to start wireless networking. Thus, etcupdate(3) or mergemaster(8) run is required after kernel update, to update your rc.d scripts in /etc. 20150827: pf no longer supports 'scrub fragment crop' or 'scrub fragment drop-ovl' These configurations are now automatically interpreted as 'scrub fragment reassemble'. 20150817: Kernel-loadable modules for the random(4) device are back. To use them, the kernel must have device random options RANDOM_LOADABLE kldload(8) can then be used to load random_fortuna.ko or random_yarrow.ko. Please note that due to the indirect function calls that the loadable modules need to provide, the build-in variants will be slightly more efficient. The random(4) kernel option RANDOM_DUMMY has been retired due to unpopularity. It was not all that useful anyway. 20150813: The WITHOUT_ELFTOOLCHAIN_TOOLS src.conf(5) knob has been retired. Control over building the ELF Tool Chain tools is now provided by the WITHOUT_TOOLCHAIN knob. 20150810: The polarity of Pulse Per Second (PPS) capture events with the uart(4) driver has been corrected. Prior to this change the PPS "assert" event corresponded to the trailing edge of a positive PPS pulse and the "clear" event was the leading edge of the next pulse. As the width of a PPS pulse in a typical GPS receiver is on the order of 1 millisecond, most users will not notice any significant difference with this change. Anyone who has compensated for the historical polarity reversal by configuring a negative offset equal to the pulse width will need to remove that workaround. 20150809: The default group assigned to /dev/dri entries has been changed from 'wheel' to 'video' with the id of '44'. If you want to have access to the dri devices please add yourself to the video group with: # pw groupmod video -m $USER 20150806: The menu.rc and loader.rc files will now be replaced during upgrades. Please migrate local changes to menu.rc.local and loader.rc.local instead. 20150805: GNU Binutils versions of addr2line, c++filt, nm, readelf, size, strings and strip have been removed. The src.conf(5) knob WITHOUT_ELFTOOLCHAIN_TOOLS no longer provides the binutils tools. 20150728: As ZFS requires more kernel stack pages than is the default on some architectures e.g. i386, it now warns if KSTACK_PAGES is less than ZFS_MIN_KSTACK_PAGES (which is 4 at the time of writing). Please consider using 'options KSTACK_PAGES=X' where X is greater than or equal to ZFS_MIN_KSTACK_PAGES i.e. 4 in such configurations. 20150706: sendmail has been updated to 8.15.2. Starting with FreeBSD 11.0 and sendmail 8.15, sendmail uses uncompressed IPv6 addresses by default, i.e., they will not contain "::". For example, instead of ::1, it will be 0:0:0:0:0:0:0:1. This permits a zero subnet to have a more specific match, such as different map entries for IPv6:0:0 vs IPv6:0. This change requires that configuration data (including maps, files, classes, custom ruleset, etc.) must use the same format, so make certain such configuration data is upgrading. As a very simple check search for patterns like 'IPv6:[0-9a-fA-F:]*::' and 'IPv6::'. To return to the old behavior, set the m4 option confUSE_COMPRESSED_IPV6_ADDRESSES or the cf option UseCompressedIPv6Addresses. 20150630: The default kernel entropy-processing algorithm is now Fortuna, replacing Yarrow. Assuming you have 'device random' in your kernel config file, the configurations allow a kernel option to override this default. You may choose *ONE* of: options RANDOM_YARROW # Legacy /dev/random algorithm. options RANDOM_DUMMY # Blocking-only driver. If you have neither, you get Fortuna. For most people, read no further, Fortuna will give a /dev/random that works like it always used to, and the difference will be irrelevant. If you remove 'device random', you get *NO* kernel-processed entropy at all. This may be acceptable to folks building embedded systems, but has complications. Carry on reading, and it is assumed you know what you need. *PLEASE* read random(4) and random(9) if you are in the habit of tweaking kernel configs, and/or if you are a member of the embedded community, wanting specific and not-usual behaviour from your security subsystems. NOTE!! If you use RANDOM_DUMMY and/or have no 'device random', you will NOT have a functioning /dev/random, and many cryptographic features will not work, including SSH. You may also find strange behaviour from the random(3) set of library functions, in particular sranddev(3), srandomdev(3) and arc4random(3). The reason for this is that the KERN_ARND sysctl only returns entropy if it thinks it has some to share, and with RANDOM_DUMMY or no 'device random' this will never happen. 20150623: An additional fix for the issue described in the 20150614 sendmail entry below has been committed in revision 284717. 20150616: FreeBSD's old make (fmake) has been removed from the system. It is available as the devel/fmake port or via pkg install fmake. 20150615: The fix for the issue described in the 20150614 sendmail entry below has been committed in revision 284436. The work around described in that entry is no longer needed unless the default setting is overridden by a confDH_PARAMETERS configuration setting of '5' or pointing to a 512 bit DH parameter file. 20150614: ALLOW_DEPRECATED_ATF_TOOLS/ATFFILE support has been removed from atf.test.mk (included from bsd.test.mk). Please upgrade devel/atf and devel/kyua to version 0.20+ and adjust any calling code to work with Kyuafile and kyua. 20150614: The import of openssl to address the FreeBSD-SA-15:10.openssl security advisory includes a change which rejects handshakes with DH parameters below 768 bits. sendmail releases prior to 8.15.2 (not yet released), defaulted to a 512 bit DH parameter setting for client connections. To work around this interoperability, sendmail can be configured to use a 2048 bit DH parameter by: 1. Edit /etc/mail/`hostname`.mc 2. If a setting for confDH_PARAMETERS does not exist or exists and is set to a string beginning with '5', replace it with '2'. 3. If a setting for confDH_PARAMETERS exists and is set to a file path, create a new file with: openssl dhparam -out /path/to/file 2048 4. Rebuild the .cf file: cd /etc/mail/; make; make install 5. Restart sendmail: cd /etc/mail/; make restart A sendmail patch is coming, at which time this file will be updated. 20150604: Generation of legacy formatted entries have been disabled by default in pwd_mkdb(8), as all base system consumers of the legacy formatted entries were converted to use the new format by default when the new, machine independent format have been added and supported since FreeBSD 5.x. Please see the pwd_mkdb(8) manual page for further details. 20150525: Clang and llvm have been upgraded to 3.6.1 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150521: TI platform code switched to using vendor DTS files and this update may break existing systems running on Beaglebone, Beaglebone Black, and Pandaboard: - dtb files should be regenerated/reinstalled. Filenames are the same but content is different now - GPIO addressing was changed, now each GPIO bank (32 pins per bank) has its own /dev/gpiocX device, e.g. pin 121 on /dev/gpioc0 in old addressing scheme is now pin 25 on /dev/gpioc3. - Pandaboard: /etc/ttys should be updated, serial console device is now /dev/ttyu2, not /dev/ttyu0 20150501: soelim(1) from gnu/usr.bin/groff has been replaced by usr.bin/soelim. If you need the GNU extension from groff soelim(1), install groff from package: pkg install groff, or via ports: textproc/groff. 20150423: chmod, chflags, chown and chgrp now affect symlinks in -R mode as defined in symlink(7); previously symlinks were silently ignored. 20150415: The const qualifier has been removed from iconv(3) to comply with POSIX. The ports tree is aware of this from r384038 onwards. 20150416: Libraries specified by LIBADD in Makefiles must have a corresponding DPADD_ variable to ensure correct dependencies. This is now enforced in src.libnames.mk. 20150324: From legacy ata(4) driver was removed support for SATA controllers supported by more functional drivers ahci(4), siis(4) and mvs(4). Kernel modules ataahci and ataadaptec were removed completely, replaced by ahci and mvs modules respectively. 20150315: Clang, llvm and lldb have been upgraded to 3.6.0 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150307: The 32-bit PowerPC kernel has been changed to a position-independent executable. This can only be booted with a version of loader(8) newer than January 31, 2015, so make sure to update both world and kernel before rebooting. 20150217: If you are running a -CURRENT kernel since r273872 (Oct 30th, 2014), but before r278950, the RNG was not seeded properly. Immediately upgrade the kernel to r278950 or later and regenerate any keys (e.g. ssh keys or openssl keys) that were generated w/ a kernel from that range. This does not affect programs that directly used /dev/random or /dev/urandom. All userland uses of arc4random(3) are affected. 20150210: The autofs(4) ABI was changed in order to restore binary compatibility with 10.1-RELEASE. The automountd(8) daemon needs to be rebuilt to work with the new kernel. 20150131: The powerpc64 kernel has been changed to a position-independent executable. This can only be booted with a new version of loader(8), so make sure to update both world and kernel before rebooting. 20150118: Clang and llvm have been upgraded to 3.5.1 release. This is a bugfix only release, no new features have been added. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0. 20150107: ELF tools addr2line, elfcopy (strip), nm, size, and strings are now taken from the ELF Tool Chain project rather than GNU binutils. They should be drop-in replacements, with the addition of arm64 support. The WITHOUT_ELFTOOLCHAIN_TOOLS= knob may be used to obtain the binutils tools, if necessary. See 20150805 for updated information. 20150105: The default Unbound configuration now enables remote control using a local socket. Users who have already enabled the local_unbound service should regenerate their configuration by running "service local_unbound setup" as root. 20150102: The GNU texinfo and GNU info pages have been removed. To be able to view GNU info pages please install texinfo from ports. 20141231: Clang, llvm and lldb have been upgraded to 3.5.0 release. As of this release, a prerequisite for building clang, llvm and lldb is a C++11 capable compiler and C++11 standard library. This means that to be able to successfully build the cross-tools stage of buildworld, with clang as the bootstrap compiler, your system compiler or cross compiler should either be clang 3.3 or later, or gcc 4.8 or later, and your system C++ library should be libc++, or libdstdc++ from gcc 4.8 or later. On any standard FreeBSD 10.x or 11.x installation, where clang and libc++ are on by default (that is, on x86 or arm), this should work out of the box. On 9.x installations where clang is enabled by default, e.g. on x86 and powerpc, libc++ will not be enabled by default, so libc++ should be built (with clang) and installed first. If both clang and libc++ are missing, build clang first, then use it to build libc++. On 8.x and earlier installations, upgrade to 9.x first, and then follow the instructions for 9.x above. Sparc64 and mips users are unaffected, as they still use gcc 4.2.1 by default, and do not build clang. Many embedded systems are resource constrained, and will not be able to build clang in a reasonable time, or in some cases at all. In those cases, cross building bootable systems on amd64 is a workaround. This new version of clang introduces a number of new warnings, of which the following are most likely to appear: -Wabsolute-value This warns in two cases, for both C and C++: * When the code is trying to take the absolute value of an unsigned quantity, which is effectively a no-op, and almost never what was intended. The code should be fixed, if at all possible. If you are sure that the unsigned quantity can be safely cast to signed, without loss of information or undefined behavior, you can add an explicit cast, or disable the warning. * When the code is trying to take an absolute value, but the called abs() variant is for the wrong type, which can lead to truncation. If you want to disable the warning instead of fixing the code, please make sure that truncation will not occur, or it might lead to unwanted side-effects. -Wtautological-undefined-compare and -Wundefined-bool-conversion These warn when C++ code is trying to compare 'this' against NULL, while 'this' should never be NULL in well-defined C++ code. However, there is some legacy (pre C++11) code out there, which actively abuses this feature, which was less strictly defined in previous C++ versions. Squid and openjdk do this, for example. The warning can be turned off for C++98 and earlier, but compiling the code in C++11 mode might result in unexpected behavior; for example, the parts of the program that are unreachable could be optimized away. 20141222: The old NFS client and server (kernel options NFSCLIENT, NFSSERVER) kernel sources have been removed. The .h files remain, since some utilities include them. This will need to be fixed later. If "mount -t oldnfs ..." is attempted, it will fail. If the "-o" option on mountd(8), nfsd(8) or nfsstat(1) is used, the utilities will report errors. 20141121: The handling of LOCAL_LIB_DIRS has been altered to skip addition of directories to top level SUBDIR variable when their parent directory is included in LOCAL_DIRS. Users with build systems with such hierarchies and without SUBDIR entries in the parent directory Makefiles should add them or add the directories to LOCAL_DIRS. 20141109: faith(4) and faithd(8) have been removed from the base system. Faith has been obsolete for a very long time. 20141104: vt(4), the new console driver, is enabled by default. It brings support for Unicode and double-width characters, as well as support for UEFI and integration with the KMS kernel video drivers. You may need to update your console settings in /etc/rc.conf, most probably the keymap. During boot, /etc/rc.d/syscons will indicate what you need to do. vt(4) still has issues and lacks some features compared to syscons(4). See the wiki for up-to-date information: https://wiki.freebsd.org/Newcons If you want to keep using syscons(4), you can do so by adding the following line to /boot/loader.conf: kern.vty=sc 20141102: pjdfstest has been integrated into kyua as an opt-in test suite. Please see share/doc/pjdfstest/README for more details on how to execute it. 20141009: gperf has been removed from the base system for architectures that use clang. Ports that require gperf will obtain it from the devel/gperf port. 20140923: pjdfstest has been moved from tools/regression/pjdfstest to contrib/pjdfstest . 20140922: At svn r271982, The default linux compat kernel ABI has been adjusted to 2.6.18 in support of the linux-c6 compat ports infrastructure update. If you wish to continue using the linux-f10 compat ports, add compat.linux.osrelease=2.6.16 to your local sysctl.conf. Users are encouraged to update their linux-compat packages to linux-c6 during their next update cycle. 20140729: The ofwfb driver, used to provide a graphics console on PowerPC when using vt(4), no longer allows mmap() of all physical memory. This will prevent Xorg on PowerPC with some ATI graphics cards from initializing properly unless x11-servers/xorg-server is updated to 1.12.4_8 or newer. 20140723: The xdev targets have been converted to using TARGET and TARGET_ARCH instead of XDEV and XDEV_ARCH. 20140719: The default unbound configuration has been modified to address issues with reverse lookups on networks that use private address ranges. If you use the local_unbound service, run "service local_unbound setup" as root to regenerate your configuration, then "service local_unbound reload" to load the new configuration. 20140709: The GNU texinfo and GNU info pages are not built and installed anymore, WITH_INFO knob has been added to allow to built and install them again. UPDATE: see 20150102 entry on texinfo's removal 20140708: The GNU readline library is now an INTERNALLIB - that is, it is statically linked into consumers (GDB and variants) in the base system, and the shared library is no longer installed. The devel/readline port is available for third party software that requires readline. 20140702: The Itanium architecture (ia64) has been removed from the list of known architectures. This is the first step in the removal of the architecture. 20140701: Commit r268115 has added NFSv4.1 server support, merged from projects/nfsv4.1-server. Since this includes changes to the internal interfaces between the NFS related modules, a full build of the kernel and modules will be necessary. __FreeBSD_version has been bumped. 20140629: The WITHOUT_VT_SUPPORT kernel config knob has been renamed WITHOUT_VT. (The other _SUPPORT knobs have a consistent meaning which differs from the behaviour controlled by this knob.) 20140619: Maximal length of the serial number in CTL was increased from 16 to 64 chars, that breaks ABI. All CTL-related tools, such as ctladm and ctld, need to be rebuilt to work with a new kernel. 20140606: The libatf-c and libatf-c++ major versions were downgraded to 0 and 1 respectively to match the upstream numbers. They were out of sync because, when they were originally added to FreeBSD, the upstream versions were not respected. These libraries are private and not yet built by default, so renumbering them should be a non-issue. However, unclean source trees will yield broken test programs once the operator executes "make delete-old-libs" after a "make installworld". Additionally, the atf-sh binary was made private by moving it into /usr/libexec/. Already-built shell test programs will keep the path to the old binary so they will break after "make delete-old" is run. If you are using WITH_TESTS=yes (not the default), wipe the object tree and rebuild from scratch to prevent spurious test failures. This is only needed once: the misnumbered libraries and misplaced binaries have been added to OptionalObsoleteFiles.inc so they will be removed during a clean upgrade. 20140512: Clang and llvm have been upgraded to 3.4.1 release. 20140508: We bogusly installed src.opts.mk in /usr/share/mk. This file should be removed to avoid issues in the future (and has been added to ObsoleteFiles.inc). 20140505: /etc/src.conf now affects only builds of the FreeBSD src tree. In the past, it affected all builds that used the bsd.*.mk files. The old behavior was a bug, but people may have relied upon it. To get this behavior back, you can .include /etc/src.conf from /etc/make.conf (which is still global and isn't changed). This also changes the behavior of incremental builds inside the tree of individual directories. Set MAKESYSPATH to ".../share/mk" to do that. Although this has survived make universe and some upgrade scenarios, other upgrade scenarios may have broken. At least one form of temporary breakage was fixed with MAKESYSPATH settings for buildworld as well... In cases where MAKESYSPATH isn't working with this setting, you'll need to set it to the full path to your tree. One side effect of all this cleaning up is that bsd.compiler.mk is no longer implicitly included by bsd.own.mk. If you wish to use COMPILER_TYPE, you must now explicitly include bsd.compiler.mk as well. 20140430: The lindev device has been removed since /dev/full has been made a standard device. __FreeBSD_version has been bumped. 20140424: The knob WITHOUT_VI was added to the base system, which controls building ex(1), vi(1), etc. Older releases of FreeBSD required ex(1) in order to reorder files share/termcap and didn't build ex(1) as a build tool, so building/installing with WITH_VI is highly advised for build hosts for older releases. This issue has been fixed in stable/9 and stable/10 in r277022 and r276991, respectively. 20140418: The YES_HESIOD knob has been removed. It has been obsolete for a decade. Please move to using WITH_HESIOD instead or your builds will silently lack HESIOD. 20140405: The uart(4) driver has been changed with respect to its handling of the low-level console. Previously the uart(4) driver prevented any process from changing the baudrate or the CLOCAL and HUPCL control flags. By removing the restrictions, operators can make changes to the serial console port without having to reboot. However, when getty(8) is started on the serial device that is associated with the low-level console, a misconfigured terminal line in /etc/ttys will now have a real impact. Before upgrading the kernel, make sure that /etc/ttys has the serial console device configured as 3wire without baudrate to preserve the previous behaviour. E.g: ttyu0 "/usr/libexec/getty 3wire" vt100 on secure 20140306: Support for libwrap (TCP wrappers) in rpcbind was disabled by default to improve performance. To re-enable it, if needed, run rpcbind with command line option -W. 20140226: Switched back to the GPL dtc compiler due to updates in the upstream dts files not being supported by the BSDL dtc compiler. You will need to rebuild your kernel toolchain to pick up the new compiler. Core dumps may result while building dtb files during a kernel build if you fail to do so. Set WITHOUT_GPL_DTC if you require the BSDL compiler. 20140216: Clang and llvm have been upgraded to 3.4 release. 20140216: The nve(4) driver has been removed. Please use the nfe(4) driver for NVIDIA nForce MCP Ethernet adapters instead. 20140212: An ABI incompatibility crept into the libc++ 3.4 import in r261283. This could cause certain C++ applications using shared libraries built against the previous version of libc++ to crash. The incompatibility has now been fixed, but any C++ applications or shared libraries built between r261283 and r261801 should be recompiled. 20140204: OpenSSH will now ignore errors caused by kernel lacking of Capsicum capability mode support. Please note that enabling the feature in kernel is still highly recommended. 20140131: OpenSSH is now built with sandbox support, and will use sandbox as the default privilege separation method. This requires Capsicum capability mode support in kernel. 20140128: The libelf and libdwarf libraries have been updated to newer versions from upstream. Shared library version numbers for these two libraries were bumped. Any ports or binaries requiring these two libraries should be recompiled. __FreeBSD_version is bumped to 1100006. 20140110: If a Makefile in a tests/ directory was auto-generating a Kyuafile instead of providing an explicit one, this would prevent such Makefile from providing its own Kyuafile in the future during NO_CLEAN builds. This has been fixed in the Makefiles but manual intervention is needed to clean an objdir if you use NO_CLEAN: # find /usr/obj -name Kyuafile | xargs rm -f 20131213: The behavior of gss_pseudo_random() for the krb5 mechanism has changed, for applications requesting a longer random string than produced by the underlying enctype's pseudo-random() function. In particular, the random string produced from a session key of enctype aes256-cts-hmac-sha1-96 or aes256-cts-hmac-sha1-96 will be different at the 17th octet and later, after this change. The counter used in the PRF+ construction is now encoded as a big-endian integer in accordance with RFC 4402. __FreeBSD_version is bumped to 1100004. 20131108: The WITHOUT_ATF build knob has been removed and its functionality has been subsumed into the more generic WITHOUT_TESTS. If you were using the former to disable the build of the ATF libraries, you should change your settings to use the latter. 20131025: The default version of mtree is nmtree which is obtained from NetBSD. The output is generally the same, but may vary slightly. If you found you need identical output adding "-F freebsd9" to the command line should do the trick. For the time being, the old mtree is available as fmtree. 20131014: libbsdyml has been renamed to libyaml and moved to /usr/lib/private. This will break ports-mgmt/pkg. Rebuild the port, or upgrade to pkg 1.1.4_8 and verify bsdyml not linked in, before running "make delete-old-libs": # make -C /usr/ports/ports-mgmt/pkg build deinstall install clean or # pkg install pkg; ldd /usr/local/sbin/pkg | grep bsdyml 20131010: The stable/10 branch has been created in subversion from head revision r256279. COMMON ITEMS: General Notes ------------- Avoid using make -j when upgrading. While generally safe, there are sometimes problems using -j to upgrade. If your upgrade fails with -j, please try again without -j. From time to time in the past there have been problems using -j with buildworld and/or installworld. This is especially true when upgrading between "distant" versions (eg one that cross a major release boundary or several minor releases, or when several months have passed on the -current branch). Sometimes, obscure build problems are the result of environment poisoning. This can happen because the make utility reads its environment when searching for values for global variables. To run your build attempts in an "environmental clean room", prefix all make commands with 'env -i '. See the env(1) manual page for more details. When upgrading from one major version to another it is generally best to upgrade to the latest code in the currently installed branch first, then do an upgrade to the new branch. This is the best-tested upgrade path, and has the highest probability of being successful. Please try this approach if you encounter problems with a major version upgrade. Since the stable 4.x branch point, one has generally been able to upgrade from anywhere in the most recent stable branch to head / current (or even the last couple of stable branches). See the top of this file when there's an exception. When upgrading a live system, having a root shell around before installing anything can help undo problems. Not having a root shell around can lead to problems if pam has changed too much from your starting point to allow continued authentication after the upgrade. This file should be read as a log of events. When a later event changes information of a prior event, the prior event should not be deleted. Instead, a pointer to the entry with the new information should be placed in the old entry. Readers of this file should also sanity check older entries before relying on them blindly. Authors of new entries should write them with this in mind. ZFS notes --------- When upgrading the boot ZFS pool to a new version, always follow these two steps: 1.) recompile and reinstall the ZFS boot loader and boot block (this is part of "make buildworld" and "make installworld") 2.) update the ZFS boot block on your boot drive The following example updates the ZFS boot block on the first partition (freebsd-boot) of a GPT partitioned drive ada0: "gpart bootcode -p /boot/gptzfsboot -i 1 ada0" Non-boot pools do not need these updates. To build a kernel ----------------- If you are updating from a prior version of FreeBSD (even one just a few days old), you should follow this procedure. It is the most failsafe as it uses a /usr/obj tree with a fresh mini-buildworld, make kernel-toolchain make -DALWAYS_CHECK_MAKE buildkernel KERNCONF=YOUR_KERNEL_HERE make -DALWAYS_CHECK_MAKE installkernel KERNCONF=YOUR_KERNEL_HERE To test a kernel once --------------------- If you just want to boot a kernel once (because you are not sure if it works, or if you want to boot a known bad kernel to provide debugging information) run make installkernel KERNCONF=YOUR_KERNEL_HERE KODIR=/boot/testkernel nextboot -k testkernel To rebuild everything and install it on the current system. ----------------------------------------------------------- # Note: sometimes if you are running current you gotta do more than # is listed here if you are upgrading from a really old current. make buildworld make buildkernel KERNCONF=YOUR_KERNEL_HERE make installkernel KERNCONF=YOUR_KERNEL_HERE [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] To cross-install current onto a separate partition -------------------------------------------------- # In this approach we use a separate partition to hold # current's root, 'usr', and 'var' directories. A partition # holding "/", "/usr" and "/var" should be about 2GB in # size. make buildworld make buildkernel KERNCONF=YOUR_KERNEL_HERE make installworld DESTDIR=${CURRENT_ROOT} -DDB_FROM_SRC make distribution DESTDIR=${CURRENT_ROOT} # if newfs'd make installkernel KERNCONF=YOUR_KERNEL_HERE DESTDIR=${CURRENT_ROOT} cp /etc/fstab ${CURRENT_ROOT}/etc/fstab # if newfs'd To upgrade in-place from stable to current ---------------------------------------------- make buildworld [9] make buildkernel KERNCONF=YOUR_KERNEL_HERE [8] make installkernel KERNCONF=YOUR_KERNEL_HERE [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] Make sure that you've read the UPDATING file to understand the tweaks to various things you need. At this point in the life cycle of current, things change often and you are on your own to cope. The defaults can also change, so please read ALL of the UPDATING entries. Also, if you are tracking -current, you must be subscribed to freebsd-current@freebsd.org. Make sure that before you update your sources that you have read and understood all the recent messages there. If in doubt, please track -stable which has much fewer pitfalls. [1] If you have third party modules, such as vmware, you should disable them at this point so they don't crash your system on reboot. [3] From the bootblocks, boot -s, and then do fsck -p mount -u / mount -a sh /etc/rc.d/zfs start # mount zfs filesystem, if needed cd src # full path to source adjkerntz -i # if CMOS is wall time Also, when doing a major release upgrade, it is required that you boot into single user mode to do the installworld. [4] Note: This step is non-optional. Failure to do this step can result in a significant reduction in the functionality of the system. Attempting to do it by hand is not recommended and those that pursue this avenue should read this file carefully, as well as the archives of freebsd-current and freebsd-hackers mailing lists for potential gotchas. The -U option is also useful to consider. See mergemaster(8) for more information. [5] Usually this step is a no-op. However, from time to time you may need to do this if you get unknown user in the following step. It never hurts to do it all the time. You may need to install a new mergemaster (cd src/usr.sbin/mergemaster && make install) after the buildworld before this step if you last updated from current before 20130425 or from -stable before 20130430. [6] This only deletes old files and directories. Old libraries can be deleted by "make delete-old-libs", but you have to make sure that no program is using those libraries anymore. [8] The new kernel must be able to run existing binaries used by an installworld. When upgrading across major versions, the new kernel's configuration must include the correct COMPAT_FREEBSD option for existing binaries (e.g. COMPAT_FREEBSD11 to run 11.x binaries). Failure to do so may leave you with a system that is hard to boot to recover. A GENERIC kernel will include suitable compatibility options to run binaries from older branches. Note that the ability to run binaries from unsupported branches is not guaranteed. Make sure that you merge any new devices from GENERIC since the last time you updated your kernel config file. Options also change over time, so you may need to adjust your custom kernels for these as well. [9] If CPUTYPE is defined in your /etc/make.conf, make sure to use the "?=" instead of the "=" assignment operator, so that buildworld can override the CPUTYPE if it needs to. MAKEOBJDIRPREFIX must be defined in an environment variable, and not on the command line, or in /etc/make.conf. buildworld will warn if it is improperly defined. FORMAT: This file contains a list, in reverse chronological order, of major breakages in tracking -current. It is not guaranteed to be a complete list of such breakages, and only contains entries since September 23, 2011. If you need to see UPDATING entries from before that date, you will need to fetch an UPDATING file from an older FreeBSD release. Copyright information: Copyright 1998-2009 M. Warner Losh. Redistribution, publication, translation and use, with or without modification, in full or in part, in any form or format of this document are permitted without further permission from the author. THIS DOCUMENT IS PROVIDED BY WARNER LOSH ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WARNER LOSH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Contact Warner Losh if you have any questions about your use of this document. $FreeBSD$ Index: head/sys/conf/kmod.mk =================================================================== --- head/sys/conf/kmod.mk (revision 348807) +++ head/sys/conf/kmod.mk (revision 348808) @@ -1,536 +1,542 @@ # From: @(#)bsd.prog.mk 5.26 (Berkeley) 6/25/91 # $FreeBSD$ # # The include file handles building and installing loadable # kernel modules. # # # +++ variables +++ # # CLEANFILES Additional files to remove for the clean and cleandir targets. # # EXPORT_SYMS A list of symbols that should be exported from the module, # or the name of a file containing a list of symbols, or YES # to export all symbols. If not defined, no symbols are # exported. # # KMOD The name of the kernel module to build. # # KMODDIR Base path for kernel modules (see kld(4)). [/boot/kernel] # # KMODOWN Module file owner. [${BINOWN}] # # KMODGRP Module file group. [${BINGRP}] # # KMODMODE Module file mode. [${BINMODE}] # # KMODLOAD Command to load a kernel module [/sbin/kldload] # # KMODUNLOAD Command to unload a kernel module [/sbin/kldunload] # # KMODISLOADED Command to check whether a kernel module is # loaded [/sbin/kldstat -q -n] # # PROG The name of the kernel module to build. # If not supplied, ${KMOD}.ko is used. # # SRCS List of source files. # # FIRMWS List of firmware images in format filename:shortname:version # # FIRMWARE_LICENSE # Set to the name of the license the user has to agree on in # order to use this firmware. See /usr/share/doc/legal # # DESTDIR The tree where the module gets installed. [not set] # # KERNBUILDDIR # Set to the location of the kernel build directory where # the opt_*.h files, .o's and kernel winds up. # # +++ targets +++ # # install: # install the kernel module; if the Makefile # does not itself define the target install, the targets # beforeinstall and afterinstall may also be used to cause # actions immediately before and after the install target # is executed. # # load: # Load a module. # # unload: # Unload a module. # # reload: # Unload if loaded, then load. # AWK?= awk KMODLOAD?= /sbin/kldload KMODUNLOAD?= /sbin/kldunload KMODISLOADED?= /sbin/kldstat -q -n OBJCOPY?= objcopy .include # Grab all the options for a kernel build. For backwards compat, we need to # do this after bsd.own.mk. .include "kern.opts.mk" .include .include "config.mk" # Search for kernel source tree in standard places. .if empty(KERNBUILDDIR) .if !defined(SYSDIR) .for _dir in ${SRCTOP:D${SRCTOP}/sys} \ ${.CURDIR}/../.. ${.CURDIR}/../../.. /sys /usr/src/sys .if !defined(SYSDIR) && exists(${_dir}/kern/) SYSDIR= ${_dir:tA} .endif .endfor .endif .if !defined(SYSDIR) || !exists(${SYSDIR}/kern/) .error "can't find kernel source tree" .endif .endif .SUFFIXES: .out .o .c .cc .cxx .C .y .l .s .S .m # amd64 and mips use direct linking for kmod, all others use shared binaries .if ${MACHINE_CPUARCH} != amd64 && ${MACHINE_CPUARCH} != mips __KLD_SHARED=yes .else __KLD_SHARED=no .endif .if !empty(CFLAGS:M-O[23s]) && empty(CFLAGS:M-fno-strict-aliasing) CFLAGS+= -fno-strict-aliasing .endif WERROR?= -Werror CFLAGS+= ${WERROR} CFLAGS+= -D_KERNEL CFLAGS+= -DKLD_MODULE .if defined(MODULE_TIED) CFLAGS+= -DKLD_TIED .endif # Don't use any standard or source-relative include directories. NOSTDINC= -nostdinc CFLAGS:= ${CFLAGS:N-I*} ${NOSTDINC} ${INCLMAGIC} ${CFLAGS:M-I*} .if defined(KERNBUILDDIR) CFLAGS+= -DHAVE_KERNEL_OPTION_HEADERS -include ${KERNBUILDDIR}/opt_global.h .endif # Add -I paths for system headers. Individual module makefiles don't # need any -I paths for this. Similar defaults for .PATH can't be # set because there are no standard paths for non-headers. CFLAGS+= -I. -I${SYSDIR} -I${SYSDIR}/contrib/ck/include CFLAGS.gcc+= -finline-limit=${INLINE_LIMIT} CFLAGS.gcc+= -fms-extensions CFLAGS.gcc+= --param inline-unit-growth=100 CFLAGS.gcc+= --param large-function-growth=1000 # Disallow common variables, and if we end up with commons from # somewhere unexpected, allocate storage for them in the module itself. CFLAGS+= -fno-common LDFLAGS+= -d -warn-common .if defined(LINKER_FEATURES) && ${LINKER_FEATURES:Mbuild-id} LDFLAGS+= --build-id=sha1 .endif CFLAGS+= ${DEBUG_FLAGS} .if ${MACHINE_CPUARCH} == amd64 CFLAGS+= -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer .endif .if ${MACHINE_CPUARCH} == "aarch64" || ${MACHINE_CPUARCH} == "riscv" CFLAGS+= -fPIC .endif # Temporary workaround for PR 196407, which contains the fascinating details. # Don't allow clang to use fpu instructions or registers in kernel modules. .if ${MACHINE_CPUARCH} == arm .if ${COMPILER_VERSION} < 30800 CFLAGS.clang+= -mllvm -arm-use-movt=0 .else CFLAGS.clang+= -mno-movt .endif CFLAGS.clang+= -mfpu=none CFLAGS+= -funwind-tables .endif .if ${MACHINE_CPUARCH} == powerpc CFLAGS+= -mlongcall -fno-omit-frame-pointer .endif .if ${MACHINE_CPUARCH} == mips CFLAGS+= -G0 -fno-pic -mno-abicalls -mlong-calls .endif .if defined(DEBUG) || defined(DEBUG_FLAGS) CTFFLAGS+= -g .endif .if defined(FIRMWS) ${KMOD:S/$/.c/}: ${SYSDIR}/tools/fw_stub.awk ${AWK} -f ${SYSDIR}/tools/fw_stub.awk ${FIRMWS} -m${KMOD} -c${KMOD:S/$/.c/g} \ ${FIRMWARE_LICENSE:C/.+/-l/}${FIRMWARE_LICENSE} SRCS+= ${KMOD:S/$/.c/} CLEANFILES+= ${KMOD:S/$/.c/} .for _firmw in ${FIRMWS} ${_firmw:C/\:.*$/.fwo/:T}: ${_firmw:C/\:.*$//} @${ECHO} ${_firmw:C/\:.*$//} ${.ALLSRC:M*${_firmw:C/\:.*$//}} @if [ -e ${_firmw:C/\:.*$//} ]; then \ ${LD} -b binary --no-warn-mismatch ${_LDFLAGS} \ -m ${LD_EMULATION} -r -d \ -o ${.TARGET} ${_firmw:C/\:.*$//}; \ else \ ln -s ${.ALLSRC:M*${_firmw:C/\:.*$//}} ${_firmw:C/\:.*$//}; \ ${LD} -b binary --no-warn-mismatch ${_LDFLAGS} \ -m ${LD_EMULATION} -r -d \ -o ${.TARGET} ${_firmw:C/\:.*$//}; \ rm ${_firmw:C/\:.*$//}; \ fi OBJS+= ${_firmw:C/\:.*$/.fwo/:T} .endfor .endif # Conditionally include SRCS based on kernel config options. .for _o in ${KERN_OPTS} SRCS+=${SRCS.${_o}} .endfor OBJS+= ${SRCS:N*.h:R:S/$/.o/g} .if !defined(PROG) PROG= ${KMOD}.ko .endif .if !defined(DEBUG_FLAGS) FULLPROG= ${PROG} .else FULLPROG= ${PROG}.full ${PROG}: ${FULLPROG} ${PROG}.debug ${OBJCOPY} --strip-debug --add-gnu-debuglink=${PROG}.debug \ ${FULLPROG} ${.TARGET} ${PROG}.debug: ${FULLPROG} ${OBJCOPY} --only-keep-debug ${FULLPROG} ${.TARGET} .endif .if ${__KLD_SHARED} == yes ${FULLPROG}: ${KMOD}.kld ${LD} -m ${LD_EMULATION} -Bshareable -znotext ${_LDFLAGS} \ -o ${.TARGET} ${KMOD}.kld .if !defined(DEBUG_FLAGS) ${OBJCOPY} --strip-debug ${.TARGET} .endif .endif EXPORT_SYMS?= NO .if ${EXPORT_SYMS} != YES CLEANFILES+= export_syms .endif .if ${__KLD_SHARED} == yes ${KMOD}.kld: ${OBJS} .else ${FULLPROG}: ${OBJS} .endif +.if !defined(FIRMWS) && (${MACHINE_CPUARCH} == "i386") + ${LD} -m ${LD_EMULATION} ${_LDFLAGS} -r \ + -T ${SYSDIR}/conf/ldscript.set_padding \ + -d -o ${.TARGET} ${OBJS} +.else ${LD} -m ${LD_EMULATION} ${_LDFLAGS} -r -d -o ${.TARGET} ${OBJS} +.endif .if ${MK_CTF} != "no" ${CTFMERGE} ${CTFFLAGS} -o ${.TARGET} ${OBJS} .endif .if defined(EXPORT_SYMS) .if ${EXPORT_SYMS} != YES .if ${EXPORT_SYMS} == NO :> export_syms .elif !exists(${.CURDIR}/${EXPORT_SYMS}) echo -n "${EXPORT_SYMS:@s@$s${.newline}@}" > export_syms .else grep -v '^#' < ${EXPORT_SYMS} > export_syms .endif ${AWK} -f ${SYSDIR}/conf/kmod_syms.awk ${.TARGET} \ export_syms | xargs -J% ${OBJCOPY} % ${.TARGET} .endif .endif # defined(EXPORT_SYMS) .if defined(PREFIX_SYMS) ${AWK} -v prefix=${PREFIX_SYMS} -f ${SYSDIR}/conf/kmod_syms_prefix.awk \ ${.TARGET} /dev/null | xargs -J% ${OBJCOPY} % ${.TARGET} .endif .if !defined(DEBUG_FLAGS) && ${__KLD_SHARED} == no ${OBJCOPY} --strip-debug ${.TARGET} .endif .if ${COMPILER_TYPE} == "clang" || \ (${COMPILER_TYPE} == "gcc" && ${COMPILER_VERSION} >= 60000) _MAP_DEBUG_PREFIX= yes .endif _ILINKS=machine .if ${MACHINE} != ${MACHINE_CPUARCH} && ${MACHINE} != "arm64" _ILINKS+=${MACHINE_CPUARCH} .endif .if ${MACHINE_CPUARCH} == "i386" || ${MACHINE_CPUARCH} == "amd64" _ILINKS+=x86 .endif CLEANFILES+=${_ILINKS} all: ${PROG} beforedepend: ${_ILINKS} beforebuild: ${_ILINKS} # Ensure that the links exist without depending on it when it exists which # causes all the modules to be rebuilt when the directory pointed to changes. # Ensure that debug info references the path in the source tree. .for _link in ${_ILINKS} .if !exists(${.OBJDIR}/${_link}) OBJS_DEPEND_GUESS+= ${_link} .endif .if defined(_MAP_DEBUG_PREFIX) .if ${_link} == "machine" CFLAGS+= -fdebug-prefix-map=./machine=${SYSDIR}/${MACHINE}/include .else CFLAGS+= -fdebug-prefix-map=./${_link}=${SYSDIR}/${_link}/include .endif .endif .endfor .NOPATH: ${_ILINKS} ${_ILINKS}: @case ${.TARGET} in \ machine) \ path=${SYSDIR}/${MACHINE}/include ;; \ *) \ path=${SYSDIR}/${.TARGET:T}/include ;; \ esac ; \ path=`(cd $$path && /bin/pwd)` ; \ ${ECHO} ${.TARGET:T} "->" $$path ; \ ln -fns $$path ${.TARGET:T} CLEANFILES+= ${PROG} ${KMOD}.kld ${OBJS} .if defined(DEBUG_FLAGS) CLEANFILES+= ${FULLPROG} ${PROG}.debug .endif .if !target(install) _INSTALLFLAGS:= ${INSTALLFLAGS} .for ie in ${INSTALLFLAGS_EDIT} _INSTALLFLAGS:= ${_INSTALLFLAGS${ie}} .endfor .if !target(realinstall) KERN_DEBUGDIR?= ${DEBUGDIR} realinstall: _kmodinstall .ORDER: beforeinstall _kmodinstall _kmodinstall: .PHONY ${INSTALL} -T release -o ${KMODOWN} -g ${KMODGRP} -m ${KMODMODE} \ ${_INSTALLFLAGS} ${PROG} ${DESTDIR}${KMODDIR}/ .if defined(DEBUG_FLAGS) && !defined(INSTALL_NODEBUG) && ${MK_KERNEL_SYMBOLS} != "no" ${INSTALL} -T debug -o ${KMODOWN} -g ${KMODGRP} -m ${KMODMODE} \ ${_INSTALLFLAGS} ${PROG}.debug ${DESTDIR}${KERN_DEBUGDIR}${KMODDIR}/ .endif .include .if !defined(NO_XREF) afterinstall: _kldxref .ORDER: realinstall _kldxref .ORDER: _installlinks _kldxref _kldxref: .PHONY @if type kldxref >/dev/null 2>&1; then \ ${ECHO} ${KLDXREF_CMD} ${DESTDIR}${KMODDIR}; \ ${KLDXREF_CMD} ${DESTDIR}${KMODDIR}; \ fi .endif .endif # !target(realinstall) .endif # !target(install) .if !target(load) load: ${PROG} .PHONY ${KMODLOAD} -v ${.OBJDIR}/${PROG} .endif .if !target(unload) unload: .PHONY if ${KMODISLOADED} ${PROG} ; then ${KMODUNLOAD} -v ${PROG} ; fi .endif .if !target(reload) reload: unload load .PHONY .endif .if defined(KERNBUILDDIR) .PATH: ${KERNBUILDDIR} CFLAGS+= -I${KERNBUILDDIR} .for _src in ${SRCS:Mopt_*.h} CLEANFILES+= ${_src} .if !target(${_src}) ${_src}: ln -sf ${KERNBUILDDIR}/${_src} ${.TARGET} .endif .endfor .else .for _src in ${SRCS:Mopt_*.h} CLEANFILES+= ${_src} .if !target(${_src}) ${_src}: :> ${.TARGET} .endif .endfor .endif # Add the sanitizer C flags CFLAGS+= ${SAN_CFLAGS} # Add the gcov flags CFLAGS+= ${GCOV_CFLAGS} # Respect configuration-specific C flags. CFLAGS+= ${ARCH_FLAGS} ${CONF_CFLAGS} .if !empty(SRCS:Mvnode_if.c) CLEANFILES+= vnode_if.c vnode_if.c: ${SYSDIR}/tools/vnode_if.awk ${SYSDIR}/kern/vnode_if.src ${AWK} -f ${SYSDIR}/tools/vnode_if.awk ${SYSDIR}/kern/vnode_if.src -c .endif .if !empty(SRCS:Mvnode_if.h) CLEANFILES+= vnode_if.h vnode_if_newproto.h vnode_if_typedef.h vnode_if.h vnode_if_newproto.h vnode_if_typedef.h: ${SYSDIR}/tools/vnode_if.awk \ ${SYSDIR}/kern/vnode_if.src vnode_if.h: vnode_if_newproto.h vnode_if_typedef.h ${AWK} -f ${SYSDIR}/tools/vnode_if.awk ${SYSDIR}/kern/vnode_if.src -h vnode_if_newproto.h: ${AWK} -f ${SYSDIR}/tools/vnode_if.awk ${SYSDIR}/kern/vnode_if.src -p vnode_if_typedef.h: ${AWK} -f ${SYSDIR}/tools/vnode_if.awk ${SYSDIR}/kern/vnode_if.src -q .endif # Build _if.[ch] from _if.m, and clean them when we're done. # __MPATH defined in config.mk _MFILES=${__MPATH:T:O} _MPATH=${__MPATH:H:O:u} .PATH.m: ${_MPATH} .for _i in ${SRCS:M*_if.[ch]} _MATCH=M${_i:R:S/$/.m/} _MATCHES=${_MFILES:${_MATCH}} .if !empty(_MATCHES) CLEANFILES+= ${_i} .endif .endfor # _i .m.c: ${SYSDIR}/tools/makeobjops.awk ${AWK} -f ${SYSDIR}/tools/makeobjops.awk ${.IMPSRC} -c .m.h: ${SYSDIR}/tools/makeobjops.awk ${AWK} -f ${SYSDIR}/tools/makeobjops.awk ${.IMPSRC} -h .for _i in mii pccard .if !empty(SRCS:M${_i}devs.h) CLEANFILES+= ${_i}devs.h ${_i}devs.h: ${SYSDIR}/tools/${_i}devs2h.awk ${SYSDIR}/dev/${_i}/${_i}devs ${AWK} -f ${SYSDIR}/tools/${_i}devs2h.awk ${SYSDIR}/dev/${_i}/${_i}devs .endif .endfor # _i .if !empty(SRCS:Mbhnd_nvram_map.h) CLEANFILES+= bhnd_nvram_map.h bhnd_nvram_map.h: ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.awk \ ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.sh \ ${SYSDIR}/dev/bhnd/nvram/nvram_map bhnd_nvram_map.h: sh ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.sh \ ${SYSDIR}/dev/bhnd/nvram/nvram_map -h .endif .if !empty(SRCS:Mbhnd_nvram_map_data.h) CLEANFILES+= bhnd_nvram_map_data.h bhnd_nvram_map_data.h: ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.awk \ ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.sh \ ${SYSDIR}/dev/bhnd/nvram/nvram_map bhnd_nvram_map_data.h: sh ${SYSDIR}/dev/bhnd/tools/nvram_map_gen.sh \ ${SYSDIR}/dev/bhnd/nvram/nvram_map -d .endif .if !empty(SRCS:Musbdevs.h) CLEANFILES+= usbdevs.h usbdevs.h: ${SYSDIR}/tools/usbdevs2h.awk ${SYSDIR}/dev/usb/usbdevs ${AWK} -f ${SYSDIR}/tools/usbdevs2h.awk ${SYSDIR}/dev/usb/usbdevs -h .endif .if !empty(SRCS:Musbdevs_data.h) CLEANFILES+= usbdevs_data.h usbdevs_data.h: ${SYSDIR}/tools/usbdevs2h.awk ${SYSDIR}/dev/usb/usbdevs ${AWK} -f ${SYSDIR}/tools/usbdevs2h.awk ${SYSDIR}/dev/usb/usbdevs -d .endif .if !empty(SRCS:Msdiodevs.h) CLEANFILES+= sdiodevs.h sdiodevs.h: ${SYSDIR}/tools/sdiodevs2h.awk ${SYSDIR}/dev/sdio/sdiodevs ${AWK} -f ${SYSDIR}/tools/sdiodevs2h.awk ${SYSDIR}/dev/sdio/sdiodevs -h .endif .if !empty(SRCS:Msdiodevs_data.h) CLEANFILES+= sdiodevs_data.h sdiodevs_data.h: ${SYSDIR}/tools/sdiodevs2h.awk ${SYSDIR}/dev/sdio/sdiodevs ${AWK} -f ${SYSDIR}/tools/sdiodevs2h.awk ${SYSDIR}/dev/sdio/sdiodevs -d .endif .if !empty(SRCS:Macpi_quirks.h) CLEANFILES+= acpi_quirks.h acpi_quirks.h: ${SYSDIR}/tools/acpi_quirks2h.awk ${SYSDIR}/dev/acpica/acpi_quirks ${AWK} -f ${SYSDIR}/tools/acpi_quirks2h.awk ${SYSDIR}/dev/acpica/acpi_quirks .endif .if !empty(SRCS:Massym.inc) || !empty(DPSRCS:Massym.inc) CLEANFILES+= assym.inc DEPENDOBJS+= genassym.o DPSRCS+= offset.inc .endif .if defined(MODULE_TIED) DPSRCS+= offset.inc .endif .if !empty(SRCS:Moffset.inc) || !empty(DPSRCS:Moffset.inc) CLEANFILES+= offset.inc genoffset.o DEPENDOBJS+= genoffset.o .endif assym.inc: genassym.o offset.inc: genoffset.o assym.inc: ${SYSDIR}/kern/genassym.sh sh ${SYSDIR}/kern/genassym.sh genassym.o > ${.TARGET} genassym.o: ${SYSDIR}/${MACHINE}/${MACHINE}/genassym.c offset.inc genassym.o: ${SRCS:Mopt_*.h} ${CC} -c ${CFLAGS:N-flto:N-fno-common} \ ${SYSDIR}/${MACHINE}/${MACHINE}/genassym.c offset.inc: ${SYSDIR}/kern/genoffset.sh genoffset.o sh ${SYSDIR}/kern/genoffset.sh genoffset.o > ${.TARGET} genoffset.o: ${SYSDIR}/kern/genoffset.c genoffset.o: ${SRCS:Mopt_*.h} ${CC} -c ${CFLAGS:N-flto:N-fno-common} \ ${SYSDIR}/kern/genoffset.c CLEANDEPENDFILES+= ${_ILINKS} # .depend needs include links so we remove them only together. cleanilinks: rm -f ${_ILINKS} OBJS_DEPEND_GUESS+= ${SRCS:M*.h} .if defined(KERNBUILDDIR) OBJS_DEPEND_GUESS+= opt_global.h .endif .include .include .include .include "kern.mk" Index: head/sys/conf/ldscript.set_padding =================================================================== --- head/sys/conf/ldscript.set_padding (nonexistent) +++ head/sys/conf/ldscript.set_padding (revision 348808) @@ -0,0 +1,46 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause + * + * Copyright (c) 2018 Bjoern A. Zeeb + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD$ + */ +SECTIONS +{ + set_pcpu : + { + *(set_pcpu) + LONG(0x90909090) ; + } +} + +SECTIONS +{ + set_vnet : + { + *(set_vnet) + LONG(0x90909090) ; + } +} +/* end */ Property changes on: head/sys/conf/ldscript.set_padding ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: head/sys/kern/link_elf.c =================================================================== --- head/sys/kern/link_elf.c (revision 348807) +++ head/sys/kern/link_elf.c (revision 348808) @@ -1,1709 +1,1757 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1998-2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_gdb.h" #include #include #ifdef GPROF #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SPARSE_MAPPING #include #include #include #endif #include #include #include #ifdef DDB_CTF #include #endif #include "linker_if.h" #define MAXSEGS 4 typedef struct elf_file { struct linker_file lf; /* Common fields */ int preloaded; /* Was file pre-loaded */ caddr_t address; /* Relocation address */ #ifdef SPARSE_MAPPING vm_object_t object; /* VM object to hold file pages */ #endif Elf_Dyn *dynamic; /* Symbol table etc. */ Elf_Hashelt nbuckets; /* DT_HASH info */ Elf_Hashelt nchains; const Elf_Hashelt *buckets; const Elf_Hashelt *chains; caddr_t hash; caddr_t strtab; /* DT_STRTAB */ int strsz; /* DT_STRSZ */ const Elf_Sym *symtab; /* DT_SYMTAB */ Elf_Addr *got; /* DT_PLTGOT */ const Elf_Rel *pltrel; /* DT_JMPREL */ int pltrelsize; /* DT_PLTRELSZ */ const Elf_Rela *pltrela; /* DT_JMPREL */ int pltrelasize; /* DT_PLTRELSZ */ const Elf_Rel *rel; /* DT_REL */ int relsize; /* DT_RELSZ */ const Elf_Rela *rela; /* DT_RELA */ int relasize; /* DT_RELASZ */ caddr_t modptr; const Elf_Sym *ddbsymtab; /* The symbol table we are using */ long ddbsymcnt; /* Number of symbols */ caddr_t ddbstrtab; /* String table */ long ddbstrcnt; /* number of bytes in string table */ caddr_t symbase; /* malloc'ed symbold base */ caddr_t strbase; /* malloc'ed string base */ caddr_t ctftab; /* CTF table */ long ctfcnt; /* number of bytes in CTF table */ caddr_t ctfoff; /* CTF offset table */ caddr_t typoff; /* Type offset table */ long typlen; /* Number of type entries. */ Elf_Addr pcpu_start; /* Pre-relocation pcpu set start. */ Elf_Addr pcpu_stop; /* Pre-relocation pcpu set stop. */ Elf_Addr pcpu_base; /* Relocated pcpu set address. */ #ifdef VIMAGE Elf_Addr vnet_start; /* Pre-relocation vnet set start. */ Elf_Addr vnet_stop; /* Pre-relocation vnet set stop. */ Elf_Addr vnet_base; /* Relocated vnet set address. */ #endif #ifdef GDB struct link_map gdb; /* hooks for gdb */ #endif } *elf_file_t; struct elf_set { Elf_Addr es_start; Elf_Addr es_stop; Elf_Addr es_base; TAILQ_ENTRY(elf_set) es_link; }; TAILQ_HEAD(elf_set_head, elf_set); #include static int link_elf_link_common_finish(linker_file_t); static int link_elf_link_preload(linker_class_t cls, const char *, linker_file_t *); static int link_elf_link_preload_finish(linker_file_t); static int link_elf_load_file(linker_class_t, const char *, linker_file_t *); static int link_elf_lookup_symbol(linker_file_t, const char *, c_linker_sym_t *); static int link_elf_symbol_values(linker_file_t, c_linker_sym_t, linker_symval_t *); static int link_elf_search_symbol(linker_file_t, caddr_t, c_linker_sym_t *, long *); static void link_elf_unload_file(linker_file_t); static void link_elf_unload_preload(linker_file_t); static int link_elf_lookup_set(linker_file_t, const char *, void ***, void ***, int *); static int link_elf_each_function_name(linker_file_t, int (*)(const char *, void *), void *); static int link_elf_each_function_nameval(linker_file_t, linker_function_nameval_callback_t, void *); static void link_elf_reloc_local(linker_file_t); static long link_elf_symtab_get(linker_file_t, const Elf_Sym **); static long link_elf_strtab_get(linker_file_t, caddr_t *); static int elf_lookup(linker_file_t, Elf_Size, int, Elf_Addr *); static kobj_method_t link_elf_methods[] = { KOBJMETHOD(linker_lookup_symbol, link_elf_lookup_symbol), KOBJMETHOD(linker_symbol_values, link_elf_symbol_values), KOBJMETHOD(linker_search_symbol, link_elf_search_symbol), KOBJMETHOD(linker_unload, link_elf_unload_file), KOBJMETHOD(linker_load_file, link_elf_load_file), KOBJMETHOD(linker_link_preload, link_elf_link_preload), KOBJMETHOD(linker_link_preload_finish, link_elf_link_preload_finish), KOBJMETHOD(linker_lookup_set, link_elf_lookup_set), KOBJMETHOD(linker_each_function_name, link_elf_each_function_name), KOBJMETHOD(linker_each_function_nameval, link_elf_each_function_nameval), KOBJMETHOD(linker_ctf_get, link_elf_ctf_get), KOBJMETHOD(linker_symtab_get, link_elf_symtab_get), KOBJMETHOD(linker_strtab_get, link_elf_strtab_get), { 0, 0 } }; static struct linker_class link_elf_class = { #if ELF_TARG_CLASS == ELFCLASS32 "elf32", #else "elf64", #endif link_elf_methods, sizeof(struct elf_file) }; typedef int (*elf_reloc_fn)(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup); static int parse_dynamic(elf_file_t); static int relocate_file(elf_file_t); static int relocate_file1(elf_file_t ef, elf_lookup_fn lookup, elf_reloc_fn reloc, bool ifuncs); static int link_elf_preload_parse_symbols(elf_file_t); static struct elf_set_head set_pcpu_list; #ifdef VIMAGE static struct elf_set_head set_vnet_list; #endif static void elf_set_add(struct elf_set_head *list, Elf_Addr start, Elf_Addr stop, Elf_Addr base) { struct elf_set *set, *iter; set = malloc(sizeof(*set), M_LINKER, M_WAITOK); set->es_start = start; set->es_stop = stop; set->es_base = base; TAILQ_FOREACH(iter, list, es_link) { KASSERT((set->es_start < iter->es_start && set->es_stop < iter->es_stop) || (set->es_start > iter->es_start && set->es_stop > iter->es_stop), ("linker sets intersection: to insert: 0x%jx-0x%jx; inserted: 0x%jx-0x%jx", (uintmax_t)set->es_start, (uintmax_t)set->es_stop, (uintmax_t)iter->es_start, (uintmax_t)iter->es_stop)); if (iter->es_start > set->es_start) { TAILQ_INSERT_BEFORE(iter, set, es_link); break; } } if (iter == NULL) TAILQ_INSERT_TAIL(list, set, es_link); } static int elf_set_find(struct elf_set_head *list, Elf_Addr addr, Elf_Addr *start, Elf_Addr *base) { struct elf_set *set; TAILQ_FOREACH(set, list, es_link) { if (addr < set->es_start) return (0); if (addr < set->es_stop) { *start = set->es_start; *base = set->es_base; return (1); } } return (0); } static void elf_set_delete(struct elf_set_head *list, Elf_Addr start) { struct elf_set *set; TAILQ_FOREACH(set, list, es_link) { if (start < set->es_start) break; if (start == set->es_start) { TAILQ_REMOVE(list, set, es_link); free(set, M_LINKER); return; } } KASSERT(0, ("deleting unknown linker set (start = 0x%jx)", (uintmax_t)start)); } #ifdef GDB static void r_debug_state(struct r_debug *, struct link_map *); /* * A list of loaded modules for GDB to use for loading symbols. */ struct r_debug r_debug; #define GDB_STATE(s) do { \ r_debug.r_state = s; r_debug_state(NULL, NULL); \ } while (0) /* * Function for the debugger to set a breakpoint on to gain control. */ static void r_debug_state(struct r_debug *dummy_one __unused, struct link_map *dummy_two __unused) { } static void link_elf_add_gdb(struct link_map *l) { struct link_map *prev; l->l_next = NULL; if (r_debug.r_map == NULL) { /* Add first. */ l->l_prev = NULL; r_debug.r_map = l; } else { /* Append to list. */ for (prev = r_debug.r_map; prev->l_next != NULL; prev = prev->l_next) ; l->l_prev = prev; prev->l_next = l; } } static void link_elf_delete_gdb(struct link_map *l) { if (l->l_prev == NULL) { /* Remove first. */ if ((r_debug.r_map = l->l_next) != NULL) l->l_next->l_prev = NULL; } else { /* Remove any but first. */ if ((l->l_prev->l_next = l->l_next) != NULL) l->l_next->l_prev = l->l_prev; } } #endif /* GDB */ /* * The kernel symbol table starts here. */ extern struct _dynamic _DYNAMIC; static void link_elf_error(const char *filename, const char *s) { if (filename == NULL) printf("kldload: %s\n", s); else printf("kldload: %s: %s\n", filename, s); } static void link_elf_invoke_ctors(caddr_t addr, size_t size) { void (**ctor)(void); size_t i, cnt; if (addr == NULL || size == 0) return; cnt = size / sizeof(*ctor); ctor = (void *)addr; for (i = 0; i < cnt; i++) { if (ctor[i] != NULL) (*ctor[i])(); } } /* * Actions performed after linking/loading both the preloaded kernel and any * modules; whether preloaded or dynamicly loaded. */ static int link_elf_link_common_finish(linker_file_t lf) { #ifdef GDB elf_file_t ef = (elf_file_t)lf; char *newfilename; #endif int error; /* Notify MD code that a module is being loaded. */ error = elf_cpu_load_file(lf); if (error != 0) return (error); #ifdef GDB GDB_STATE(RT_ADD); ef->gdb.l_addr = lf->address; newfilename = malloc(strlen(lf->filename) + 1, M_LINKER, M_WAITOK); strcpy(newfilename, lf->filename); ef->gdb.l_name = newfilename; ef->gdb.l_ld = ef->dynamic; link_elf_add_gdb(&ef->gdb); GDB_STATE(RT_CONSISTENT); #endif /* Invoke .ctors */ link_elf_invoke_ctors(lf->ctors_addr, lf->ctors_size); return (0); } extern vm_offset_t __startkernel, __endkernel; static void link_elf_init(void* arg) { Elf_Dyn *dp; Elf_Addr *ctors_addrp; Elf_Size *ctors_sizep; caddr_t modptr, baseptr, sizeptr; elf_file_t ef; char *modname; linker_add_class(&link_elf_class); dp = (Elf_Dyn *)&_DYNAMIC; modname = NULL; modptr = preload_search_by_type("elf" __XSTRING(__ELF_WORD_SIZE) " kernel"); if (modptr == NULL) modptr = preload_search_by_type("elf kernel"); modname = (char *)preload_search_info(modptr, MODINFO_NAME); if (modname == NULL) modname = "kernel"; linker_kernel_file = linker_make_file(modname, &link_elf_class); if (linker_kernel_file == NULL) panic("%s: Can't create linker structures for kernel", __func__); ef = (elf_file_t) linker_kernel_file; ef->preloaded = 1; #ifdef __powerpc__ ef->address = (caddr_t) (__startkernel - KERNBASE); #else ef->address = 0; #endif #ifdef SPARSE_MAPPING ef->object = 0; #endif ef->dynamic = dp; if (dp != NULL) parse_dynamic(ef); #ifdef __powerpc__ linker_kernel_file->address = (caddr_t)__startkernel; linker_kernel_file->size = (intptr_t)(__endkernel - __startkernel); #else linker_kernel_file->address += KERNBASE; linker_kernel_file->size = -(intptr_t)linker_kernel_file->address; #endif if (modptr != NULL) { ef->modptr = modptr; baseptr = preload_search_info(modptr, MODINFO_ADDR); if (baseptr != NULL) linker_kernel_file->address = *(caddr_t *)baseptr; sizeptr = preload_search_info(modptr, MODINFO_SIZE); if (sizeptr != NULL) linker_kernel_file->size = *(size_t *)sizeptr; ctors_addrp = (Elf_Addr *)preload_search_info(modptr, MODINFO_METADATA | MODINFOMD_CTORS_ADDR); ctors_sizep = (Elf_Size *)preload_search_info(modptr, MODINFO_METADATA | MODINFOMD_CTORS_SIZE); if (ctors_addrp != NULL && ctors_sizep != NULL) { linker_kernel_file->ctors_addr = ef->address + *ctors_addrp; linker_kernel_file->ctors_size = *ctors_sizep; } } (void)link_elf_preload_parse_symbols(ef); #ifdef GDB r_debug.r_map = NULL; r_debug.r_brk = r_debug_state; r_debug.r_state = RT_CONSISTENT; #endif (void)link_elf_link_common_finish(linker_kernel_file); linker_kernel_file->flags |= LINKER_FILE_LINKED; TAILQ_INIT(&set_pcpu_list); #ifdef VIMAGE TAILQ_INIT(&set_vnet_list); #endif } SYSINIT(link_elf, SI_SUB_KLD, SI_ORDER_THIRD, link_elf_init, NULL); static int link_elf_preload_parse_symbols(elf_file_t ef) { caddr_t pointer; caddr_t ssym, esym, base; caddr_t strtab; int strcnt; Elf_Sym *symtab; int symcnt; if (ef->modptr == NULL) return (0); pointer = preload_search_info(ef->modptr, MODINFO_METADATA | MODINFOMD_SSYM); if (pointer == NULL) return (0); ssym = *(caddr_t *)pointer; pointer = preload_search_info(ef->modptr, MODINFO_METADATA | MODINFOMD_ESYM); if (pointer == NULL) return (0); esym = *(caddr_t *)pointer; base = ssym; symcnt = *(long *)base; base += sizeof(long); symtab = (Elf_Sym *)base; base += roundup(symcnt, sizeof(long)); if (base > esym || base < ssym) { printf("Symbols are corrupt!\n"); return (EINVAL); } strcnt = *(long *)base; base += sizeof(long); strtab = base; base += roundup(strcnt, sizeof(long)); if (base > esym || base < ssym) { printf("Symbols are corrupt!\n"); return (EINVAL); } ef->ddbsymtab = symtab; ef->ddbsymcnt = symcnt / sizeof(Elf_Sym); ef->ddbstrtab = strtab; ef->ddbstrcnt = strcnt; return (0); } static int parse_dynamic(elf_file_t ef) { Elf_Dyn *dp; int plttype = DT_REL; for (dp = ef->dynamic; dp->d_tag != DT_NULL; dp++) { switch (dp->d_tag) { case DT_HASH: { /* From src/libexec/rtld-elf/rtld.c */ const Elf_Hashelt *hashtab = (const Elf_Hashelt *) (ef->address + dp->d_un.d_ptr); ef->nbuckets = hashtab[0]; ef->nchains = hashtab[1]; ef->buckets = hashtab + 2; ef->chains = ef->buckets + ef->nbuckets; break; } case DT_STRTAB: ef->strtab = (caddr_t) (ef->address + dp->d_un.d_ptr); break; case DT_STRSZ: ef->strsz = dp->d_un.d_val; break; case DT_SYMTAB: ef->symtab = (Elf_Sym*) (ef->address + dp->d_un.d_ptr); break; case DT_SYMENT: if (dp->d_un.d_val != sizeof(Elf_Sym)) return (ENOEXEC); break; case DT_PLTGOT: ef->got = (Elf_Addr *) (ef->address + dp->d_un.d_ptr); break; case DT_REL: ef->rel = (const Elf_Rel *) (ef->address + dp->d_un.d_ptr); break; case DT_RELSZ: ef->relsize = dp->d_un.d_val; break; case DT_RELENT: if (dp->d_un.d_val != sizeof(Elf_Rel)) return (ENOEXEC); break; case DT_JMPREL: ef->pltrel = (const Elf_Rel *) (ef->address + dp->d_un.d_ptr); break; case DT_PLTRELSZ: ef->pltrelsize = dp->d_un.d_val; break; case DT_RELA: ef->rela = (const Elf_Rela *) (ef->address + dp->d_un.d_ptr); break; case DT_RELASZ: ef->relasize = dp->d_un.d_val; break; case DT_RELAENT: if (dp->d_un.d_val != sizeof(Elf_Rela)) return (ENOEXEC); break; case DT_PLTREL: plttype = dp->d_un.d_val; if (plttype != DT_REL && plttype != DT_RELA) return (ENOEXEC); break; #ifdef GDB case DT_DEBUG: dp->d_un.d_ptr = (Elf_Addr)&r_debug; break; #endif } } if (plttype == DT_RELA) { ef->pltrela = (const Elf_Rela *)ef->pltrel; ef->pltrel = NULL; ef->pltrelasize = ef->pltrelsize; ef->pltrelsize = 0; } ef->ddbsymtab = ef->symtab; ef->ddbsymcnt = ef->nchains; ef->ddbstrtab = ef->strtab; ef->ddbstrcnt = ef->strsz; return (0); } +#define LS_PADDING 0x90909090 static int parse_dpcpu(elf_file_t ef) { int error, size; +#if defined(__i386__) + uint32_t pad; +#endif ef->pcpu_start = 0; ef->pcpu_stop = 0; error = link_elf_lookup_set(&ef->lf, "pcpu", (void ***)&ef->pcpu_start, (void ***)&ef->pcpu_stop, NULL); /* Error just means there is no pcpu set to relocate. */ if (error != 0) return (0); size = (uintptr_t)ef->pcpu_stop - (uintptr_t)ef->pcpu_start; /* Empty set? */ if (size < 1) return (0); +#if defined(__i386__) + /* In case we do find __start/stop_set_ symbols double-check. */ + if (size < 4) { + uprintf("Kernel module '%s' must be recompiled with " + "linker script\n", ef->lf.pathname); + return (ENOEXEC); + } + + /* Padding from linker-script correct? */ + pad = *(uint32_t *)((uintptr_t)ef->pcpu_stop - sizeof(pad)); + if (pad != LS_PADDING) { + uprintf("Kernel module '%s' must be recompiled with " + "linker script, invalid padding %#04x (%#04x)\n", + ef->lf.pathname, pad, LS_PADDING); + return (ENOEXEC); + } + /* If we only have valid padding, nothing to do. */ + if (size == 4) + return (0); +#endif /* * Allocate space in the primary pcpu area. Copy in our * initialization from the data section and then initialize * all per-cpu storage from that. */ ef->pcpu_base = (Elf_Addr)(uintptr_t)dpcpu_alloc(size); if (ef->pcpu_base == 0) { printf("%s: pcpu module space is out of space; " "cannot allocate %d for %s\n", __func__, size, ef->lf.pathname); return (ENOSPC); } memcpy((void *)ef->pcpu_base, (void *)ef->pcpu_start, size); dpcpu_copy((void *)ef->pcpu_base, size); elf_set_add(&set_pcpu_list, ef->pcpu_start, ef->pcpu_stop, ef->pcpu_base); return (0); } #ifdef VIMAGE static int parse_vnet(elf_file_t ef) { int error, size; +#if defined(__i386__) + uint32_t pad; +#endif ef->vnet_start = 0; ef->vnet_stop = 0; error = link_elf_lookup_set(&ef->lf, "vnet", (void ***)&ef->vnet_start, (void ***)&ef->vnet_stop, NULL); /* Error just means there is no vnet data set to relocate. */ if (error != 0) return (0); size = (uintptr_t)ef->vnet_stop - (uintptr_t)ef->vnet_start; /* Empty set? */ if (size < 1) return (0); +#if defined(__i386__) + /* In case we do find __start/stop_set_ symbols double-check. */ + if (size < 4) { + uprintf("Kernel module '%s' must be recompiled with " + "linker script\n", ef->lf.pathname); + return (ENOEXEC); + } + + /* Padding from linker-script correct? */ + pad = *(uint32_t *)((uintptr_t)ef->vnet_stop - sizeof(pad)); + if (pad != LS_PADDING) { + uprintf("Kernel module '%s' must be recompiled with " + "linker script, invalid padding %#04x (%#04x)\n", + ef->lf.pathname, pad, LS_PADDING); + return (ENOEXEC); + } + /* If we only have valid padding, nothing to do. */ + if (size == 4) + return (0); +#endif /* * Allocate space in the primary vnet area. Copy in our * initialization from the data section and then initialize * all per-vnet storage from that. */ ef->vnet_base = (Elf_Addr)(uintptr_t)vnet_data_alloc(size); if (ef->vnet_base == 0) { printf("%s: vnet module space is out of space; " "cannot allocate %d for %s\n", __func__, size, ef->lf.pathname); return (ENOSPC); } memcpy((void *)ef->vnet_base, (void *)ef->vnet_start, size); vnet_data_copy((void *)ef->vnet_base, size); elf_set_add(&set_vnet_list, ef->vnet_start, ef->vnet_stop, ef->vnet_base); return (0); } #endif +#undef LS_PADDING static int link_elf_link_preload(linker_class_t cls, const char* filename, linker_file_t *result) { Elf_Addr *ctors_addrp; Elf_Size *ctors_sizep; caddr_t modptr, baseptr, sizeptr, dynptr; char *type; elf_file_t ef; linker_file_t lf; int error; vm_offset_t dp; /* Look to see if we have the file preloaded */ modptr = preload_search_by_name(filename); if (modptr == NULL) return (ENOENT); type = (char *)preload_search_info(modptr, MODINFO_TYPE); baseptr = preload_search_info(modptr, MODINFO_ADDR); sizeptr = preload_search_info(modptr, MODINFO_SIZE); dynptr = preload_search_info(modptr, MODINFO_METADATA | MODINFOMD_DYNAMIC); if (type == NULL || (strcmp(type, "elf" __XSTRING(__ELF_WORD_SIZE) " module") != 0 && strcmp(type, "elf module") != 0)) return (EFTYPE); if (baseptr == NULL || sizeptr == NULL || dynptr == NULL) return (EINVAL); lf = linker_make_file(filename, &link_elf_class); if (lf == NULL) return (ENOMEM); ef = (elf_file_t) lf; ef->preloaded = 1; ef->modptr = modptr; ef->address = *(caddr_t *)baseptr; #ifdef SPARSE_MAPPING ef->object = 0; #endif dp = (vm_offset_t)ef->address + *(vm_offset_t *)dynptr; ef->dynamic = (Elf_Dyn *)dp; lf->address = ef->address; lf->size = *(size_t *)sizeptr; ctors_addrp = (Elf_Addr *)preload_search_info(modptr, MODINFO_METADATA | MODINFOMD_CTORS_ADDR); ctors_sizep = (Elf_Size *)preload_search_info(modptr, MODINFO_METADATA | MODINFOMD_CTORS_SIZE); if (ctors_addrp != NULL && ctors_sizep != NULL) { lf->ctors_addr = ef->address + *ctors_addrp; lf->ctors_size = *ctors_sizep; } error = parse_dynamic(ef); if (error == 0) error = parse_dpcpu(ef); #ifdef VIMAGE if (error == 0) error = parse_vnet(ef); #endif if (error != 0) { linker_file_unload(lf, LINKER_UNLOAD_FORCE); return (error); } link_elf_reloc_local(lf); *result = lf; return (0); } static int link_elf_link_preload_finish(linker_file_t lf) { elf_file_t ef; int error; ef = (elf_file_t) lf; error = relocate_file(ef); if (error != 0) return (error); (void)link_elf_preload_parse_symbols(ef); return (link_elf_link_common_finish(lf)); } static int link_elf_load_file(linker_class_t cls, const char* filename, linker_file_t* result) { struct nameidata nd; struct thread* td = curthread; /* XXX */ Elf_Ehdr *hdr; caddr_t firstpage; int nbytes, i; Elf_Phdr *phdr; Elf_Phdr *phlimit; Elf_Phdr *segs[MAXSEGS]; int nsegs; Elf_Phdr *phdyn; caddr_t mapbase; size_t mapsize; Elf_Addr base_vaddr; Elf_Addr base_vlimit; int error = 0; ssize_t resid; int flags; elf_file_t ef; linker_file_t lf; Elf_Shdr *shdr; int symtabindex; int symstrindex; int shstrindex; int symcnt; int strcnt; char *shstrs; shdr = NULL; lf = NULL; shstrs = NULL; NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename, td); flags = FREAD; error = vn_open(&nd, &flags, 0, NULL); if (error != 0) return (error); NDFREE(&nd, NDF_ONLY_PNBUF); if (nd.ni_vp->v_type != VREG) { error = ENOEXEC; firstpage = NULL; goto out; } #ifdef MAC error = mac_kld_check_load(curthread->td_ucred, nd.ni_vp); if (error != 0) { firstpage = NULL; goto out; } #endif /* * Read the elf header from the file. */ firstpage = malloc(PAGE_SIZE, M_LINKER, M_WAITOK); hdr = (Elf_Ehdr *)firstpage; error = vn_rdwr(UIO_READ, nd.ni_vp, firstpage, PAGE_SIZE, 0, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); nbytes = PAGE_SIZE - resid; if (error != 0) goto out; if (!IS_ELF(*hdr)) { error = ENOEXEC; goto out; } if (hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || hdr->e_ident[EI_DATA] != ELF_TARG_DATA) { link_elf_error(filename, "Unsupported file layout"); error = ENOEXEC; goto out; } if (hdr->e_ident[EI_VERSION] != EV_CURRENT || hdr->e_version != EV_CURRENT) { link_elf_error(filename, "Unsupported file version"); error = ENOEXEC; goto out; } if (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN) { error = ENOSYS; goto out; } if (hdr->e_machine != ELF_TARG_MACH) { link_elf_error(filename, "Unsupported machine"); error = ENOEXEC; goto out; } /* * We rely on the program header being in the first page. * This is not strictly required by the ABI specification, but * it seems to always true in practice. And, it simplifies * things considerably. */ if (!((hdr->e_phentsize == sizeof(Elf_Phdr)) && (hdr->e_phoff + hdr->e_phnum*sizeof(Elf_Phdr) <= PAGE_SIZE) && (hdr->e_phoff + hdr->e_phnum*sizeof(Elf_Phdr) <= nbytes))) link_elf_error(filename, "Unreadable program headers"); /* * Scan the program header entries, and save key information. * * We rely on there being exactly two load segments, text and data, * in that order. */ phdr = (Elf_Phdr *) (firstpage + hdr->e_phoff); phlimit = phdr + hdr->e_phnum; nsegs = 0; phdyn = NULL; while (phdr < phlimit) { switch (phdr->p_type) { case PT_LOAD: if (nsegs == MAXSEGS) { link_elf_error(filename, "Too many sections"); error = ENOEXEC; goto out; } /* * XXX: We just trust they come in right order ?? */ segs[nsegs] = phdr; ++nsegs; break; case PT_DYNAMIC: phdyn = phdr; break; case PT_INTERP: error = ENOSYS; goto out; } ++phdr; } if (phdyn == NULL) { link_elf_error(filename, "Object is not dynamically-linked"); error = ENOEXEC; goto out; } if (nsegs == 0) { link_elf_error(filename, "No sections"); error = ENOEXEC; goto out; } /* * Allocate the entire address space of the object, to stake * out our contiguous region, and to establish the base * address for relocation. */ base_vaddr = trunc_page(segs[0]->p_vaddr); base_vlimit = round_page(segs[nsegs - 1]->p_vaddr + segs[nsegs - 1]->p_memsz); mapsize = base_vlimit - base_vaddr; lf = linker_make_file(filename, &link_elf_class); if (lf == NULL) { error = ENOMEM; goto out; } ef = (elf_file_t) lf; #ifdef SPARSE_MAPPING ef->object = vm_object_allocate(OBJT_DEFAULT, mapsize >> PAGE_SHIFT); if (ef->object == NULL) { error = ENOMEM; goto out; } ef->address = (caddr_t) vm_map_min(kernel_map); error = vm_map_find(kernel_map, ef->object, 0, (vm_offset_t *) &ef->address, mapsize, 0, VMFS_OPTIMAL_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error != 0) { vm_object_deallocate(ef->object); ef->object = 0; goto out; } #else ef->address = malloc(mapsize, M_LINKER, M_EXEC | M_WAITOK); #endif mapbase = ef->address; /* * Read the text and data sections and zero the bss. */ for (i = 0; i < nsegs; i++) { caddr_t segbase = mapbase + segs[i]->p_vaddr - base_vaddr; error = vn_rdwr(UIO_READ, nd.ni_vp, segbase, segs[i]->p_filesz, segs[i]->p_offset, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); if (error != 0) goto out; bzero(segbase + segs[i]->p_filesz, segs[i]->p_memsz - segs[i]->p_filesz); #ifdef SPARSE_MAPPING /* * Wire down the pages */ error = vm_map_wire(kernel_map, (vm_offset_t) segbase, (vm_offset_t) segbase + segs[i]->p_memsz, VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); if (error != KERN_SUCCESS) { error = ENOMEM; goto out; } #endif } #ifdef GPROF /* Update profiling information with the new text segment. */ mtx_lock(&Giant); kmupetext((uintfptr_t)(mapbase + segs[0]->p_vaddr - base_vaddr + segs[0]->p_memsz)); mtx_unlock(&Giant); #endif ef->dynamic = (Elf_Dyn *) (mapbase + phdyn->p_vaddr - base_vaddr); lf->address = ef->address; lf->size = mapsize; error = parse_dynamic(ef); if (error != 0) goto out; error = parse_dpcpu(ef); if (error != 0) goto out; #ifdef VIMAGE error = parse_vnet(ef); if (error != 0) goto out; #endif link_elf_reloc_local(lf); VOP_UNLOCK(nd.ni_vp, 0); error = linker_load_dependencies(lf); vn_lock(nd.ni_vp, LK_EXCLUSIVE | LK_RETRY); if (error != 0) goto out; error = relocate_file(ef); if (error != 0) goto out; /* * Try and load the symbol table if it's present. (you can * strip it!) */ nbytes = hdr->e_shnum * hdr->e_shentsize; if (nbytes == 0 || hdr->e_shoff == 0) goto nosyms; shdr = malloc(nbytes, M_LINKER, M_WAITOK | M_ZERO); error = vn_rdwr(UIO_READ, nd.ni_vp, (caddr_t)shdr, nbytes, hdr->e_shoff, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); if (error != 0) goto out; /* Read section string table */ shstrindex = hdr->e_shstrndx; if (shstrindex != 0 && shdr[shstrindex].sh_type == SHT_STRTAB && shdr[shstrindex].sh_size != 0) { nbytes = shdr[shstrindex].sh_size; shstrs = malloc(nbytes, M_LINKER, M_WAITOK | M_ZERO); error = vn_rdwr(UIO_READ, nd.ni_vp, (caddr_t)shstrs, nbytes, shdr[shstrindex].sh_offset, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); if (error) goto out; } symtabindex = -1; symstrindex = -1; for (i = 0; i < hdr->e_shnum; i++) { if (shdr[i].sh_type == SHT_SYMTAB) { symtabindex = i; symstrindex = shdr[i].sh_link; } else if (shstrs != NULL && shdr[i].sh_name != 0 && strcmp(shstrs + shdr[i].sh_name, ".ctors") == 0) { /* Record relocated address and size of .ctors. */ lf->ctors_addr = mapbase + shdr[i].sh_addr - base_vaddr; lf->ctors_size = shdr[i].sh_size; } } if (symtabindex < 0 || symstrindex < 0) goto nosyms; symcnt = shdr[symtabindex].sh_size; ef->symbase = malloc(symcnt, M_LINKER, M_WAITOK); strcnt = shdr[symstrindex].sh_size; ef->strbase = malloc(strcnt, M_LINKER, M_WAITOK); error = vn_rdwr(UIO_READ, nd.ni_vp, ef->symbase, symcnt, shdr[symtabindex].sh_offset, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); if (error != 0) goto out; error = vn_rdwr(UIO_READ, nd.ni_vp, ef->strbase, strcnt, shdr[symstrindex].sh_offset, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, &resid, td); if (error != 0) goto out; ef->ddbsymcnt = symcnt / sizeof(Elf_Sym); ef->ddbsymtab = (const Elf_Sym *)ef->symbase; ef->ddbstrcnt = strcnt; ef->ddbstrtab = ef->strbase; nosyms: error = link_elf_link_common_finish(lf); if (error != 0) goto out; *result = lf; out: VOP_UNLOCK(nd.ni_vp, 0); vn_close(nd.ni_vp, FREAD, td->td_ucred, td); if (error != 0 && lf != NULL) linker_file_unload(lf, LINKER_UNLOAD_FORCE); free(shdr, M_LINKER); free(firstpage, M_LINKER); free(shstrs, M_LINKER); return (error); } Elf_Addr elf_relocaddr(linker_file_t lf, Elf_Addr x) { elf_file_t ef; ef = (elf_file_t)lf; if (x >= ef->pcpu_start && x < ef->pcpu_stop) return ((x - ef->pcpu_start) + ef->pcpu_base); #ifdef VIMAGE if (x >= ef->vnet_start && x < ef->vnet_stop) return ((x - ef->vnet_start) + ef->vnet_base); #endif return (x); } static void link_elf_unload_file(linker_file_t file) { elf_file_t ef = (elf_file_t) file; if (ef->pcpu_base != 0) { dpcpu_free((void *)ef->pcpu_base, ef->pcpu_stop - ef->pcpu_start); elf_set_delete(&set_pcpu_list, ef->pcpu_start); } #ifdef VIMAGE if (ef->vnet_base != 0) { vnet_data_free((void *)ef->vnet_base, ef->vnet_stop - ef->vnet_start); elf_set_delete(&set_vnet_list, ef->vnet_start); } #endif #ifdef GDB if (ef->gdb.l_ld != NULL) { GDB_STATE(RT_DELETE); free((void *)(uintptr_t)ef->gdb.l_name, M_LINKER); link_elf_delete_gdb(&ef->gdb); GDB_STATE(RT_CONSISTENT); } #endif /* Notify MD code that a module is being unloaded. */ elf_cpu_unload_file(file); if (ef->preloaded) { link_elf_unload_preload(file); return; } #ifdef SPARSE_MAPPING if (ef->object != NULL) { vm_map_remove(kernel_map, (vm_offset_t) ef->address, (vm_offset_t) ef->address + (ef->object->size << PAGE_SHIFT)); } #else free(ef->address, M_LINKER); #endif free(ef->symbase, M_LINKER); free(ef->strbase, M_LINKER); free(ef->ctftab, M_LINKER); free(ef->ctfoff, M_LINKER); free(ef->typoff, M_LINKER); } static void link_elf_unload_preload(linker_file_t file) { if (file->pathname != NULL) preload_delete_name(file->pathname); } static const char * symbol_name(elf_file_t ef, Elf_Size r_info) { const Elf_Sym *ref; if (ELF_R_SYM(r_info)) { ref = ef->symtab + ELF_R_SYM(r_info); return (ef->strtab + ref->st_name); } return (NULL); } static int symbol_type(elf_file_t ef, Elf_Size r_info) { const Elf_Sym *ref; if (ELF_R_SYM(r_info)) { ref = ef->symtab + ELF_R_SYM(r_info); return (ELF_ST_TYPE(ref->st_info)); } return (STT_NOTYPE); } static int relocate_file1(elf_file_t ef, elf_lookup_fn lookup, elf_reloc_fn reloc, bool ifuncs) { const Elf_Rel *rel; const Elf_Rela *rela; const char *symname; #define APPLY_RELOCS(iter, tbl, tblsize, type) do { \ for ((iter) = (tbl); (iter) != NULL && \ (iter) < (tbl) + (tblsize) / sizeof(*(iter)); (iter)++) { \ if ((symbol_type(ef, (iter)->r_info) == \ STT_GNU_IFUNC || \ elf_is_ifunc_reloc((iter)->r_info)) != ifuncs) \ continue; \ if (reloc(&ef->lf, (Elf_Addr)ef->address, \ (iter), (type), lookup)) { \ symname = symbol_name(ef, (iter)->r_info); \ printf("link_elf: symbol %s undefined\n", \ symname); \ return (ENOENT); \ } \ } \ } while (0) APPLY_RELOCS(rel, ef->rel, ef->relsize, ELF_RELOC_REL); APPLY_RELOCS(rela, ef->rela, ef->relasize, ELF_RELOC_RELA); APPLY_RELOCS(rel, ef->pltrel, ef->pltrelsize, ELF_RELOC_REL); APPLY_RELOCS(rela, ef->pltrela, ef->pltrelasize, ELF_RELOC_RELA); #undef APPLY_RELOCS return (0); } static int relocate_file(elf_file_t ef) { int error; error = relocate_file1(ef, elf_lookup, elf_reloc, false); if (error == 0) error = relocate_file1(ef, elf_lookup, elf_reloc, true); return (error); } /* * Hash function for symbol table lookup. Don't even think about changing * this. It is specified by the System V ABI. */ static unsigned long elf_hash(const char *name) { const unsigned char *p = (const unsigned char *) name; unsigned long h = 0; unsigned long g; while (*p != '\0') { h = (h << 4) + *p++; if ((g = h & 0xf0000000) != 0) h ^= g >> 24; h &= ~g; } return (h); } static int link_elf_lookup_symbol(linker_file_t lf, const char *name, c_linker_sym_t *sym) { elf_file_t ef = (elf_file_t) lf; unsigned long symnum; const Elf_Sym* symp; const char *strp; unsigned long hash; int i; /* If we don't have a hash, bail. */ if (ef->buckets == NULL || ef->nbuckets == 0) { printf("link_elf_lookup_symbol: missing symbol hash table\n"); return (ENOENT); } /* First, search hashed global symbols */ hash = elf_hash(name); symnum = ef->buckets[hash % ef->nbuckets]; while (symnum != STN_UNDEF) { if (symnum >= ef->nchains) { printf("%s: corrupt symbol table\n", __func__); return (ENOENT); } symp = ef->symtab + symnum; if (symp->st_name == 0) { printf("%s: corrupt symbol table\n", __func__); return (ENOENT); } strp = ef->strtab + symp->st_name; if (strcmp(name, strp) == 0) { if (symp->st_shndx != SHN_UNDEF || (symp->st_value != 0 && (ELF_ST_TYPE(symp->st_info) == STT_FUNC || ELF_ST_TYPE(symp->st_info) == STT_GNU_IFUNC))) { *sym = (c_linker_sym_t) symp; return (0); } return (ENOENT); } symnum = ef->chains[symnum]; } /* If we have not found it, look at the full table (if loaded) */ if (ef->symtab == ef->ddbsymtab) return (ENOENT); /* Exhaustive search */ for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) { strp = ef->ddbstrtab + symp->st_name; if (strcmp(name, strp) == 0) { if (symp->st_shndx != SHN_UNDEF || (symp->st_value != 0 && (ELF_ST_TYPE(symp->st_info) == STT_FUNC || ELF_ST_TYPE(symp->st_info) == STT_GNU_IFUNC))) { *sym = (c_linker_sym_t) symp; return (0); } return (ENOENT); } } return (ENOENT); } static int link_elf_symbol_values(linker_file_t lf, c_linker_sym_t sym, linker_symval_t *symval) { elf_file_t ef; const Elf_Sym *es; caddr_t val; ef = (elf_file_t)lf; es = (const Elf_Sym *)sym; if (es >= ef->symtab && es < (ef->symtab + ef->nchains)) { symval->name = ef->strtab + es->st_name; val = (caddr_t)ef->address + es->st_value; if (ELF_ST_TYPE(es->st_info) == STT_GNU_IFUNC) val = ((caddr_t (*)(void))val)(); symval->value = val; symval->size = es->st_size; return (0); } if (ef->symtab == ef->ddbsymtab) return (ENOENT); if (es >= ef->ddbsymtab && es < (ef->ddbsymtab + ef->ddbsymcnt)) { symval->name = ef->ddbstrtab + es->st_name; val = (caddr_t)ef->address + es->st_value; if (ELF_ST_TYPE(es->st_info) == STT_GNU_IFUNC) val = ((caddr_t (*)(void))val)(); symval->value = val; symval->size = es->st_size; return (0); } return (ENOENT); } static int link_elf_search_symbol(linker_file_t lf, caddr_t value, c_linker_sym_t *sym, long *diffp) { elf_file_t ef = (elf_file_t) lf; u_long off = (uintptr_t) (void *) value; u_long diff = off; u_long st_value; const Elf_Sym* es; const Elf_Sym* best = NULL; int i; for (i = 0, es = ef->ddbsymtab; i < ef->ddbsymcnt; i++, es++) { if (es->st_name == 0) continue; st_value = es->st_value + (uintptr_t) (void *) ef->address; if (off >= st_value) { if (off - st_value < diff) { diff = off - st_value; best = es; if (diff == 0) break; } else if (off - st_value == diff) { best = es; } } } if (best == NULL) *diffp = off; else *diffp = diff; *sym = (c_linker_sym_t) best; return (0); } /* * Look up a linker set on an ELF system. */ static int link_elf_lookup_set(linker_file_t lf, const char *name, void ***startp, void ***stopp, int *countp) { c_linker_sym_t sym; linker_symval_t symval; char *setsym; void **start, **stop; int len, error = 0, count; len = strlen(name) + sizeof("__start_set_"); /* sizeof includes \0 */ setsym = malloc(len, M_LINKER, M_WAITOK); /* get address of first entry */ snprintf(setsym, len, "%s%s", "__start_set_", name); error = link_elf_lookup_symbol(lf, setsym, &sym); if (error != 0) goto out; link_elf_symbol_values(lf, sym, &symval); if (symval.value == 0) { error = ESRCH; goto out; } start = (void **)symval.value; /* get address of last entry */ snprintf(setsym, len, "%s%s", "__stop_set_", name); error = link_elf_lookup_symbol(lf, setsym, &sym); if (error != 0) goto out; link_elf_symbol_values(lf, sym, &symval); if (symval.value == 0) { error = ESRCH; goto out; } stop = (void **)symval.value; /* and the number of entries */ count = stop - start; /* and copy out */ if (startp != NULL) *startp = start; if (stopp != NULL) *stopp = stop; if (countp != NULL) *countp = count; out: free(setsym, M_LINKER); return (error); } static int link_elf_each_function_name(linker_file_t file, int (*callback)(const char *, void *), void *opaque) { elf_file_t ef = (elf_file_t)file; const Elf_Sym *symp; int i, error; /* Exhaustive search */ for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) { if (symp->st_value != 0 && (ELF_ST_TYPE(symp->st_info) == STT_FUNC || ELF_ST_TYPE(symp->st_info) == STT_GNU_IFUNC)) { error = callback(ef->ddbstrtab + symp->st_name, opaque); if (error != 0) return (error); } } return (0); } static int link_elf_each_function_nameval(linker_file_t file, linker_function_nameval_callback_t callback, void *opaque) { linker_symval_t symval; elf_file_t ef = (elf_file_t)file; const Elf_Sym* symp; int i, error; /* Exhaustive search */ for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) { if (symp->st_value != 0 && (ELF_ST_TYPE(symp->st_info) == STT_FUNC || ELF_ST_TYPE(symp->st_info) == STT_GNU_IFUNC)) { error = link_elf_symbol_values(file, (c_linker_sym_t) symp, &symval); if (error != 0) return (error); error = callback(file, i, &symval, opaque); if (error != 0) return (error); } } return (0); } const Elf_Sym * elf_get_sym(linker_file_t lf, Elf_Size symidx) { elf_file_t ef = (elf_file_t)lf; if (symidx >= ef->nchains) return (NULL); return (ef->symtab + symidx); } const char * elf_get_symname(linker_file_t lf, Elf_Size symidx) { elf_file_t ef = (elf_file_t)lf; const Elf_Sym *sym; if (symidx >= ef->nchains) return (NULL); sym = ef->symtab + symidx; return (ef->strtab + sym->st_name); } /* * Symbol lookup function that can be used when the symbol index is known (ie * in relocations). It uses the symbol index instead of doing a fully fledged * hash table based lookup when such is valid. For example for local symbols. * This is not only more efficient, it's also more correct. It's not always * the case that the symbol can be found through the hash table. */ static int elf_lookup(linker_file_t lf, Elf_Size symidx, int deps, Elf_Addr *res) { elf_file_t ef = (elf_file_t)lf; const Elf_Sym *sym; const char *symbol; Elf_Addr addr, start, base; /* Don't even try to lookup the symbol if the index is bogus. */ if (symidx >= ef->nchains) { *res = 0; return (EINVAL); } sym = ef->symtab + symidx; /* * Don't do a full lookup when the symbol is local. It may even * fail because it may not be found through the hash table. */ if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) { /* Force lookup failure when we have an insanity. */ if (sym->st_shndx == SHN_UNDEF || sym->st_value == 0) { *res = 0; return (EINVAL); } *res = ((Elf_Addr)ef->address + sym->st_value); return (0); } /* * XXX we can avoid doing a hash table based lookup for global * symbols as well. This however is not always valid, so we'll * just do it the hard way for now. Performance tweaks can * always be added. */ symbol = ef->strtab + sym->st_name; /* Force a lookup failure if the symbol name is bogus. */ if (*symbol == 0) { *res = 0; return (EINVAL); } addr = ((Elf_Addr)linker_file_lookup_symbol(lf, symbol, deps)); if (addr == 0 && ELF_ST_BIND(sym->st_info) != STB_WEAK) { *res = 0; return (EINVAL); } if (elf_set_find(&set_pcpu_list, addr, &start, &base)) addr = addr - start + base; #ifdef VIMAGE else if (elf_set_find(&set_vnet_list, addr, &start, &base)) addr = addr - start + base; #endif *res = addr; return (0); } static void link_elf_reloc_local(linker_file_t lf) { const Elf_Rel *rellim; const Elf_Rel *rel; const Elf_Rela *relalim; const Elf_Rela *rela; elf_file_t ef = (elf_file_t)lf; /* Perform relocations without addend if there are any: */ if ((rel = ef->rel) != NULL) { rellim = (const Elf_Rel *)((const char *)ef->rel + ef->relsize); while (rel < rellim) { elf_reloc_local(lf, (Elf_Addr)ef->address, rel, ELF_RELOC_REL, elf_lookup); rel++; } } /* Perform relocations with addend if there are any: */ if ((rela = ef->rela) != NULL) { relalim = (const Elf_Rela *) ((const char *)ef->rela + ef->relasize); while (rela < relalim) { elf_reloc_local(lf, (Elf_Addr)ef->address, rela, ELF_RELOC_RELA, elf_lookup); rela++; } } } static long link_elf_symtab_get(linker_file_t lf, const Elf_Sym **symtab) { elf_file_t ef = (elf_file_t)lf; *symtab = ef->ddbsymtab; if (*symtab == NULL) return (0); return (ef->ddbsymcnt); } static long link_elf_strtab_get(linker_file_t lf, caddr_t *strtab) { elf_file_t ef = (elf_file_t)lf; *strtab = ef->ddbstrtab; if (*strtab == NULL) return (0); return (ef->ddbstrcnt); } #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) /* * Use this lookup routine when performing relocations early during boot. * The generic lookup routine depends on kobj, which is not initialized * at that point. */ static int elf_lookup_ifunc(linker_file_t lf, Elf_Size symidx, int deps __unused, Elf_Addr *res) { elf_file_t ef; const Elf_Sym *symp; caddr_t val; ef = (elf_file_t)lf; symp = ef->symtab + symidx; if (ELF_ST_TYPE(symp->st_info) == STT_GNU_IFUNC) { val = (caddr_t)ef->address + symp->st_value; *res = ((Elf_Addr (*)(void))val)(); return (0); } return (ENOENT); } void link_elf_ireloc(caddr_t kmdp) { struct elf_file eff; elf_file_t ef; ef = &eff; bzero_early(ef, sizeof(*ef)); ef->modptr = kmdp; ef->dynamic = (Elf_Dyn *)&_DYNAMIC; parse_dynamic(ef); ef->address = 0; link_elf_preload_parse_symbols(ef); relocate_file1(ef, elf_lookup_ifunc, elf_reloc, true); } #endif Index: head/sys/netinet/ip_carp.c =================================================================== --- head/sys/netinet/ip_carp.c (revision 348807) +++ head/sys/netinet/ip_carp.c (revision 348808) @@ -1,2318 +1,2303 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Michael Shalayeff. * Copyright (c) 2003 Ryan McBride. * Copyright (c) 2011 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bpf.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #include #include #include #endif #include static MALLOC_DEFINE(M_CARP, "CARP", "CARP addresses"); struct carp_softc { struct ifnet *sc_carpdev; /* Pointer to parent ifnet. */ struct ifaddr **sc_ifas; /* Our ifaddrs. */ struct sockaddr_dl sc_addr; /* Our link level address. */ struct callout sc_ad_tmo; /* Advertising timeout. */ #ifdef INET struct callout sc_md_tmo; /* Master down timeout. */ #endif #ifdef INET6 struct callout sc_md6_tmo; /* XXX: Master down timeout. */ #endif struct mtx sc_mtx; int sc_vhid; int sc_advskew; int sc_advbase; int sc_naddrs; int sc_naddrs6; int sc_ifasiz; enum { INIT = 0, BACKUP, MASTER } sc_state; int sc_suppress; int sc_sendad_errors; #define CARP_SENDAD_MAX_ERRORS 3 int sc_sendad_success; #define CARP_SENDAD_MIN_SUCCESS 3 int sc_init_counter; uint64_t sc_counter; /* authentication */ #define CARP_HMAC_PAD 64 unsigned char sc_key[CARP_KEY_LEN]; unsigned char sc_pad[CARP_HMAC_PAD]; SHA1_CTX sc_sha1; TAILQ_ENTRY(carp_softc) sc_list; /* On the carp_if list. */ LIST_ENTRY(carp_softc) sc_next; /* On the global list. */ }; struct carp_if { #ifdef INET int cif_naddrs; #endif #ifdef INET6 int cif_naddrs6; #endif TAILQ_HEAD(, carp_softc) cif_vrs; #ifdef INET struct ip_moptions cif_imo; #endif #ifdef INET6 struct ip6_moptions cif_im6o; #endif struct ifnet *cif_ifp; struct mtx cif_mtx; uint32_t cif_flags; #define CIF_PROMISC 0x00000001 }; #define CARP_INET 0 #define CARP_INET6 1 static int proto_reg[] = {-1, -1}; /* * Brief design of carp(4). * * Any carp-capable ifnet may have a list of carp softcs hanging off * its ifp->if_carp pointer. Each softc represents one unique virtual * host id, or vhid. The softc has a back pointer to the ifnet. All * softcs are joined in a global list, which has quite limited use. * * Any interface address that takes part in CARP negotiation has a * pointer to the softc of its vhid, ifa->ifa_carp. That could be either * AF_INET or AF_INET6 address. * * Although, one can get the softc's backpointer to ifnet and traverse * through its ifp->if_addrhead queue to find all interface addresses * involved in CARP, we keep a growable array of ifaddr pointers. This * allows us to avoid grabbing the IF_ADDR_LOCK() in many traversals that * do calls into the network stack, thus avoiding LORs. * * Locking: * * Each softc has a lock sc_mtx. It is used to synchronise carp_input_c(), * callout-driven events and ioctl()s. * * To traverse the list of softcs on an ifnet we use CIF_LOCK() or carp_sx. * To traverse the global list we use the mutex carp_mtx. * * Known issues with locking: * * - Sending ad, we put the pointer to the softc in an mtag, and no reference * counting is done on the softc. * - On module unload we may race (?) with packet processing thread * dereferencing our function pointers. */ /* Accept incoming CARP packets. */ VNET_DEFINE_STATIC(int, carp_allow) = 1; #define V_carp_allow VNET(carp_allow) /* Set DSCP in outgoing CARP packets. */ VNET_DEFINE_STATIC(int, carp_dscp) = 56; #define V_carp_dscp VNET(carp_dscp) /* Preempt slower nodes. */ VNET_DEFINE_STATIC(int, carp_preempt) = 0; #define V_carp_preempt VNET(carp_preempt) /* Log level. */ VNET_DEFINE_STATIC(int, carp_log) = 1; #define V_carp_log VNET(carp_log) /* Global advskew demotion. */ VNET_DEFINE_STATIC(int, carp_demotion) = 0; #define V_carp_demotion VNET(carp_demotion) /* Send error demotion factor. */ VNET_DEFINE_STATIC(int, carp_senderr_adj) = CARP_MAXSKEW; #define V_carp_senderr_adj VNET(carp_senderr_adj) /* Iface down demotion factor. */ VNET_DEFINE_STATIC(int, carp_ifdown_adj) = CARP_MAXSKEW; #define V_carp_ifdown_adj VNET(carp_ifdown_adj) static int carp_allow_sysctl(SYSCTL_HANDLER_ARGS); static int carp_dscp_sysctl(SYSCTL_HANDLER_ARGS); static int carp_demote_adj_sysctl(SYSCTL_HANDLER_ARGS); SYSCTL_NODE(_net_inet, IPPROTO_CARP, carp, CTLFLAG_RW, 0, "CARP"); SYSCTL_PROC(_net_inet_carp, OID_AUTO, allow, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 0, 0, carp_allow_sysctl, "I", "Accept incoming CARP packets"); SYSCTL_PROC(_net_inet_carp, OID_AUTO, dscp, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 0, 0, carp_dscp_sysctl, "I", "DSCP value for carp packets"); SYSCTL_INT(_net_inet_carp, OID_AUTO, preempt, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_preempt), 0, "High-priority backup preemption mode"); SYSCTL_INT(_net_inet_carp, OID_AUTO, log, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_log), 0, "CARP log level"); SYSCTL_PROC(_net_inet_carp, OID_AUTO, demotion, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 0, 0, carp_demote_adj_sysctl, "I", "Adjust demotion factor (skew of advskew)"); SYSCTL_INT(_net_inet_carp, OID_AUTO, senderr_demotion_factor, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_senderr_adj), 0, "Send error demotion factor adjustment"); SYSCTL_INT(_net_inet_carp, OID_AUTO, ifdown_demotion_factor, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_ifdown_adj), 0, "Interface down demotion factor adjustment"); VNET_PCPUSTAT_DEFINE(struct carpstats, carpstats); VNET_PCPUSTAT_SYSINIT(carpstats); VNET_PCPUSTAT_SYSUNINIT(carpstats); #define CARPSTATS_ADD(name, val) \ counter_u64_add(VNET(carpstats)[offsetof(struct carpstats, name) / \ sizeof(uint64_t)], (val)) #define CARPSTATS_INC(name) CARPSTATS_ADD(name, 1) SYSCTL_VNET_PCPUSTAT(_net_inet_carp, OID_AUTO, stats, struct carpstats, carpstats, "CARP statistics (struct carpstats, netinet/ip_carp.h)"); #define CARP_LOCK_INIT(sc) mtx_init(&(sc)->sc_mtx, "carp_softc", \ NULL, MTX_DEF) #define CARP_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) #define CARP_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) #define CARP_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define CARP_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define CIF_LOCK_INIT(cif) mtx_init(&(cif)->cif_mtx, "carp_if", \ NULL, MTX_DEF) #define CIF_LOCK_DESTROY(cif) mtx_destroy(&(cif)->cif_mtx) #define CIF_LOCK_ASSERT(cif) mtx_assert(&(cif)->cif_mtx, MA_OWNED) #define CIF_LOCK(cif) mtx_lock(&(cif)->cif_mtx) #define CIF_UNLOCK(cif) mtx_unlock(&(cif)->cif_mtx) #define CIF_FREE(cif) do { \ CIF_LOCK(cif); \ if (TAILQ_EMPTY(&(cif)->cif_vrs)) \ carp_free_if(cif); \ else \ CIF_UNLOCK(cif); \ } while (0) #define CARP_LOG(...) do { \ if (V_carp_log > 0) \ log(LOG_INFO, "carp: " __VA_ARGS__); \ } while (0) #define CARP_DEBUG(...) do { \ if (V_carp_log > 1) \ log(LOG_DEBUG, __VA_ARGS__); \ } while (0) #define IFNET_FOREACH_IFA(ifp, ifa) \ CK_STAILQ_FOREACH((ifa), &(ifp)->if_addrhead, ifa_link) \ if ((ifa)->ifa_carp != NULL) #define CARP_FOREACH_IFA(sc, ifa) \ CARP_LOCK_ASSERT(sc); \ for (int _i = 0; \ _i < (sc)->sc_naddrs + (sc)->sc_naddrs6 && \ ((ifa) = sc->sc_ifas[_i]) != NULL; \ ++_i) #define IFNET_FOREACH_CARP(ifp, sc) \ KASSERT(mtx_owned(&ifp->if_carp->cif_mtx) || \ sx_xlocked(&carp_sx), ("cif_vrs not locked")); \ TAILQ_FOREACH((sc), &(ifp)->if_carp->cif_vrs, sc_list) #define DEMOTE_ADVSKEW(sc) \ (((sc)->sc_advskew + V_carp_demotion > CARP_MAXSKEW) ? \ CARP_MAXSKEW : ((sc)->sc_advskew + V_carp_demotion)) static void carp_input_c(struct mbuf *, struct carp_header *, sa_family_t); static struct carp_softc *carp_alloc(struct ifnet *); static void carp_destroy(struct carp_softc *); static struct carp_if *carp_alloc_if(struct ifnet *); static void carp_free_if(struct carp_if *); static void carp_set_state(struct carp_softc *, int, const char* reason); static void carp_sc_state(struct carp_softc *); static void carp_setrun(struct carp_softc *, sa_family_t); static void carp_master_down(void *); static void carp_master_down_locked(struct carp_softc *, const char* reason); static void carp_send_ad(void *); static void carp_send_ad_locked(struct carp_softc *); static void carp_addroute(struct carp_softc *); static void carp_ifa_addroute(struct ifaddr *); static void carp_delroute(struct carp_softc *); static void carp_ifa_delroute(struct ifaddr *); static void carp_send_ad_all(void *, int); static void carp_demote_adj(int, char *); static LIST_HEAD(, carp_softc) carp_list; static struct mtx carp_mtx; static struct sx carp_sx; static struct task carp_sendall_task = TASK_INITIALIZER(0, carp_send_ad_all, NULL); static void carp_hmac_prepare(struct carp_softc *sc) { uint8_t version = CARP_VERSION, type = CARP_ADVERTISEMENT; uint8_t vhid = sc->sc_vhid & 0xff; struct ifaddr *ifa; int i, found; #ifdef INET struct in_addr last, cur, in; #endif #ifdef INET6 struct in6_addr last6, cur6, in6; #endif CARP_LOCK_ASSERT(sc); /* Compute ipad from key. */ bzero(sc->sc_pad, sizeof(sc->sc_pad)); bcopy(sc->sc_key, sc->sc_pad, sizeof(sc->sc_key)); for (i = 0; i < sizeof(sc->sc_pad); i++) sc->sc_pad[i] ^= 0x36; /* Precompute first part of inner hash. */ SHA1Init(&sc->sc_sha1); SHA1Update(&sc->sc_sha1, sc->sc_pad, sizeof(sc->sc_pad)); SHA1Update(&sc->sc_sha1, (void *)&version, sizeof(version)); SHA1Update(&sc->sc_sha1, (void *)&type, sizeof(type)); SHA1Update(&sc->sc_sha1, (void *)&vhid, sizeof(vhid)); #ifdef INET cur.s_addr = 0; do { found = 0; last = cur; cur.s_addr = 0xffffffff; CARP_FOREACH_IFA(sc, ifa) { in.s_addr = ifatoia(ifa)->ia_addr.sin_addr.s_addr; if (ifa->ifa_addr->sa_family == AF_INET && ntohl(in.s_addr) > ntohl(last.s_addr) && ntohl(in.s_addr) < ntohl(cur.s_addr)) { cur.s_addr = in.s_addr; found++; } } if (found) SHA1Update(&sc->sc_sha1, (void *)&cur, sizeof(cur)); } while (found); #endif /* INET */ #ifdef INET6 memset(&cur6, 0, sizeof(cur6)); do { found = 0; last6 = cur6; memset(&cur6, 0xff, sizeof(cur6)); CARP_FOREACH_IFA(sc, ifa) { in6 = ifatoia6(ifa)->ia_addr.sin6_addr; if (IN6_IS_SCOPE_EMBED(&in6)) in6.s6_addr16[1] = 0; if (ifa->ifa_addr->sa_family == AF_INET6 && memcmp(&in6, &last6, sizeof(in6)) > 0 && memcmp(&in6, &cur6, sizeof(in6)) < 0) { cur6 = in6; found++; } } if (found) SHA1Update(&sc->sc_sha1, (void *)&cur6, sizeof(cur6)); } while (found); #endif /* INET6 */ /* convert ipad to opad */ for (i = 0; i < sizeof(sc->sc_pad); i++) sc->sc_pad[i] ^= 0x36 ^ 0x5c; } static void carp_hmac_generate(struct carp_softc *sc, uint32_t counter[2], unsigned char md[20]) { SHA1_CTX sha1ctx; CARP_LOCK_ASSERT(sc); /* fetch first half of inner hash */ bcopy(&sc->sc_sha1, &sha1ctx, sizeof(sha1ctx)); SHA1Update(&sha1ctx, (void *)counter, sizeof(sc->sc_counter)); SHA1Final(md, &sha1ctx); /* outer hash */ SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, sc->sc_pad, sizeof(sc->sc_pad)); SHA1Update(&sha1ctx, md, 20); SHA1Final(md, &sha1ctx); } static int carp_hmac_verify(struct carp_softc *sc, uint32_t counter[2], unsigned char md[20]) { unsigned char md2[20]; CARP_LOCK_ASSERT(sc); carp_hmac_generate(sc, counter, md2); return (bcmp(md, md2, sizeof(md2))); } /* * process input packet. * we have rearranged checks order compared to the rfc, * but it seems more efficient this way or not possible otherwise. */ #ifdef INET int carp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct carp_header *ch; int iplen, len; iplen = *offp; *mp = NULL; CARPSTATS_INC(carps_ipackets); if (!V_carp_allow) { m_freem(m); return (IPPROTO_DONE); } /* verify that the IP TTL is 255. */ if (ip->ip_ttl != CARP_DFLTTL) { CARPSTATS_INC(carps_badttl); CARP_DEBUG("%s: received ttl %d != 255 on %s\n", __func__, ip->ip_ttl, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } iplen = ip->ip_hl << 2; if (m->m_pkthdr.len < iplen + sizeof(*ch)) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: received len %zd < sizeof(struct carp_header) " "on %s\n", __func__, m->m_len - sizeof(struct ip), m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } if (iplen + sizeof(*ch) < m->m_len) { if ((m = m_pullup(m, iplen + sizeof(*ch))) == NULL) { CARPSTATS_INC(carps_hdrops); CARP_DEBUG("%s: pullup failed\n", __func__); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); } ch = (struct carp_header *)((char *)ip + iplen); /* * verify that the received packet length is * equal to the CARP header */ len = iplen + sizeof(*ch); if (len > m->m_pkthdr.len) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: packet too short %d on %s\n", __func__, m->m_pkthdr.len, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } if ((m = m_pullup(m, len)) == NULL) { CARPSTATS_INC(carps_hdrops); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); ch = (struct carp_header *)((char *)ip + iplen); /* verify the CARP checksum */ m->m_data += iplen; if (in_cksum(m, len - iplen)) { CARPSTATS_INC(carps_badsum); CARP_DEBUG("%s: checksum failed on %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } m->m_data -= iplen; carp_input_c(m, ch, AF_INET); return (IPPROTO_DONE); } #endif #ifdef INET6 int carp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct carp_header *ch; u_int len; CARPSTATS_INC(carps_ipackets6); if (!V_carp_allow) { m_freem(m); return (IPPROTO_DONE); } /* check if received on a valid carp interface */ if (m->m_pkthdr.rcvif->if_carp == NULL) { CARPSTATS_INC(carps_badif); CARP_DEBUG("%s: packet received on non-carp interface: %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } /* verify that the IP TTL is 255 */ if (ip6->ip6_hlim != CARP_DFLTTL) { CARPSTATS_INC(carps_badttl); CARP_DEBUG("%s: received ttl %d != 255 on %s\n", __func__, ip6->ip6_hlim, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } /* verify that we have a complete carp packet */ len = m->m_len; IP6_EXTHDR_GET(ch, struct carp_header *, m, *offp, sizeof(*ch)); if (ch == NULL) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: packet size %u too small\n", __func__, len); return (IPPROTO_DONE); } /* verify the CARP checksum */ m->m_data += *offp; if (in_cksum(m, sizeof(*ch))) { CARPSTATS_INC(carps_badsum); CARP_DEBUG("%s: checksum failed, on %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } m->m_data -= *offp; carp_input_c(m, ch, AF_INET6); return (IPPROTO_DONE); } #endif /* INET6 */ /* * This routine should not be necessary at all, but some switches * (VMWare ESX vswitches) can echo our own packets back at us, * and we must ignore them or they will cause us to drop out of * MASTER mode. * * We cannot catch all cases of network loops. Instead, what we * do here is catch any packet that arrives with a carp header * with a VHID of 0, that comes from an address that is our own. * These packets are by definition "from us" (even if they are from * a misconfigured host that is pretending to be us). * * The VHID test is outside this mini-function. */ static int carp_source_is_self(struct mbuf *m, struct ifaddr *ifa, sa_family_t af) { #ifdef INET struct ip *ip4; struct in_addr in4; #endif #ifdef INET6 struct ip6_hdr *ip6; struct in6_addr in6; #endif switch (af) { #ifdef INET case AF_INET: ip4 = mtod(m, struct ip *); in4 = ifatoia(ifa)->ia_addr.sin_addr; return (in4.s_addr == ip4->ip_src.s_addr); #endif #ifdef INET6 case AF_INET6: ip6 = mtod(m, struct ip6_hdr *); in6 = ifatoia6(ifa)->ia_addr.sin6_addr; return (memcmp(&in6, &ip6->ip6_src, sizeof(in6)) == 0); #endif default: break; } return (0); } static void carp_input_c(struct mbuf *m, struct carp_header *ch, sa_family_t af) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ifaddr *ifa, *match; struct carp_softc *sc; uint64_t tmp_counter; struct timeval sc_tv, ch_tv; struct epoch_tracker et; int error; /* * Verify that the VHID is valid on the receiving interface. * * There should be just one match. If there are none * the VHID is not valid and we drop the packet. If * there are multiple VHID matches, take just the first * one, for compatibility with previous code. While we're * scanning, check for obvious loops in the network topology * (these should never happen, and as noted above, we may * miss real loops; this is just a double-check). */ NET_EPOCH_ENTER(et); error = 0; match = NULL; IFNET_FOREACH_IFA(ifp, ifa) { if (match == NULL && ifa->ifa_carp != NULL && ifa->ifa_addr->sa_family == af && ifa->ifa_carp->sc_vhid == ch->carp_vhid) match = ifa; if (ch->carp_vhid == 0 && carp_source_is_self(m, ifa, af)) error = ELOOP; } ifa = error ? NULL : match; if (ifa != NULL) ifa_ref(ifa); NET_EPOCH_EXIT(et); if (ifa == NULL) { if (error == ELOOP) { CARP_DEBUG("dropping looped packet on interface %s\n", ifp->if_xname); CARPSTATS_INC(carps_badif); /* ??? */ } else { CARPSTATS_INC(carps_badvhid); } m_freem(m); return; } /* verify the CARP version. */ if (ch->carp_version != CARP_VERSION) { CARPSTATS_INC(carps_badver); CARP_DEBUG("%s: invalid version %d\n", ifp->if_xname, ch->carp_version); ifa_free(ifa); m_freem(m); return; } sc = ifa->ifa_carp; CARP_LOCK(sc); ifa_free(ifa); if (carp_hmac_verify(sc, ch->carp_counter, ch->carp_md)) { CARPSTATS_INC(carps_badauth); CARP_DEBUG("%s: incorrect hash for VHID %u@%s\n", __func__, sc->sc_vhid, ifp->if_xname); goto out; } tmp_counter = ntohl(ch->carp_counter[0]); tmp_counter = tmp_counter<<32; tmp_counter += ntohl(ch->carp_counter[1]); /* XXX Replay protection goes here */ sc->sc_init_counter = 0; sc->sc_counter = tmp_counter; sc_tv.tv_sec = sc->sc_advbase; sc_tv.tv_usec = DEMOTE_ADVSKEW(sc) * 1000000 / 256; ch_tv.tv_sec = ch->carp_advbase; ch_tv.tv_usec = ch->carp_advskew * 1000000 / 256; switch (sc->sc_state) { case INIT: break; case MASTER: /* * If we receive an advertisement from a master who's going to * be more frequent than us, go into BACKUP state. */ if (timevalcmp(&sc_tv, &ch_tv, >) || timevalcmp(&sc_tv, &ch_tv, ==)) { callout_stop(&sc->sc_ad_tmo); carp_set_state(sc, BACKUP, "more frequent advertisement received"); carp_setrun(sc, 0); carp_delroute(sc); } break; case BACKUP: /* * If we're pre-empting masters who advertise slower than us, * and this one claims to be slower, treat him as down. */ if (V_carp_preempt && timevalcmp(&sc_tv, &ch_tv, <)) { carp_master_down_locked(sc, "preempting a slower master"); break; } /* * If the master is going to advertise at such a low frequency * that he's guaranteed to time out, we'd might as well just * treat him as timed out now. */ sc_tv.tv_sec = sc->sc_advbase * 3; if (timevalcmp(&sc_tv, &ch_tv, <)) { carp_master_down_locked(sc, "master will time out"); break; } /* * Otherwise, we reset the counter and wait for the next * advertisement. */ carp_setrun(sc, af); break; } out: CARP_UNLOCK(sc); m_freem(m); } static int carp_prepare_ad(struct mbuf *m, struct carp_softc *sc, struct carp_header *ch) { struct m_tag *mtag; if (sc->sc_init_counter) { /* this could also be seconds since unix epoch */ sc->sc_counter = arc4random(); sc->sc_counter = sc->sc_counter << 32; sc->sc_counter += arc4random(); } else sc->sc_counter++; ch->carp_counter[0] = htonl((sc->sc_counter>>32)&0xffffffff); ch->carp_counter[1] = htonl(sc->sc_counter&0xffffffff); carp_hmac_generate(sc, ch->carp_counter, ch->carp_md); /* Tag packet for carp_output */ if ((mtag = m_tag_get(PACKET_TAG_CARP, sizeof(struct carp_softc *), M_NOWAIT)) == NULL) { m_freem(m); CARPSTATS_INC(carps_onomem); return (ENOMEM); } bcopy(&sc, mtag + 1, sizeof(sc)); m_tag_prepend(m, mtag); return (0); } /* * To avoid LORs and possible recursions this function shouldn't * be called directly, but scheduled via taskqueue. */ static void carp_send_ad_all(void *ctx __unused, int pending __unused) { struct carp_softc *sc; mtx_lock(&carp_mtx); LIST_FOREACH(sc, &carp_list, sc_next) if (sc->sc_state == MASTER) { CARP_LOCK(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); carp_send_ad_locked(sc); CURVNET_RESTORE(); CARP_UNLOCK(sc); } mtx_unlock(&carp_mtx); } /* Send a periodic advertisement, executed in callout context. */ static void carp_send_ad(void *v) { struct carp_softc *sc = v; CARP_LOCK_ASSERT(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); carp_send_ad_locked(sc); CURVNET_RESTORE(); CARP_UNLOCK(sc); } static void carp_send_ad_error(struct carp_softc *sc, int error) { if (error) { if (sc->sc_sendad_errors < INT_MAX) sc->sc_sendad_errors++; if (sc->sc_sendad_errors == CARP_SENDAD_MAX_ERRORS) { static const char fmt[] = "send error %d on %s"; char msg[sizeof(fmt) + IFNAMSIZ]; sprintf(msg, fmt, error, sc->sc_carpdev->if_xname); carp_demote_adj(V_carp_senderr_adj, msg); } sc->sc_sendad_success = 0; } else { if (sc->sc_sendad_errors >= CARP_SENDAD_MAX_ERRORS && ++sc->sc_sendad_success >= CARP_SENDAD_MIN_SUCCESS) { static const char fmt[] = "send ok on %s"; char msg[sizeof(fmt) + IFNAMSIZ]; sprintf(msg, fmt, sc->sc_carpdev->if_xname); carp_demote_adj(-V_carp_senderr_adj, msg); sc->sc_sendad_errors = 0; } else sc->sc_sendad_errors = 0; } } /* * Pick the best ifaddr on the given ifp for sending CARP * advertisements. * * "Best" here is defined by ifa_preferred(). This function is much * much like ifaof_ifpforaddr() except that we just use ifa_preferred(). * * (This could be simplified to return the actual address, except that * it has a different format in AF_INET and AF_INET6.) */ static struct ifaddr * carp_best_ifa(int af, struct ifnet *ifp) { struct epoch_tracker et; struct ifaddr *ifa, *best; if (af >= AF_MAX) return (NULL); best = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == af && (best == NULL || ifa_preferred(best, ifa))) best = ifa; } NET_EPOCH_EXIT(et); if (best != NULL) ifa_ref(best); return (best); } static void carp_send_ad_locked(struct carp_softc *sc) { struct carp_header ch; struct timeval tv; struct ifaddr *ifa; struct carp_header *ch_ptr; struct mbuf *m; int len, advskew; CARP_LOCK_ASSERT(sc); advskew = DEMOTE_ADVSKEW(sc); tv.tv_sec = sc->sc_advbase; tv.tv_usec = advskew * 1000000 / 256; ch.carp_version = CARP_VERSION; ch.carp_type = CARP_ADVERTISEMENT; ch.carp_vhid = sc->sc_vhid; ch.carp_advbase = sc->sc_advbase; ch.carp_advskew = advskew; ch.carp_authlen = 7; /* XXX DEFINE */ ch.carp_pad1 = 0; /* must be zero */ ch.carp_cksum = 0; /* XXXGL: OpenBSD picks first ifaddr with needed family. */ #ifdef INET if (sc->sc_naddrs) { struct ip *ip; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { CARPSTATS_INC(carps_onomem); goto resched; } len = sizeof(*ip) + sizeof(ch); m->m_pkthdr.len = len; m->m_pkthdr.rcvif = NULL; m->m_len = len; M_ALIGN(m, m->m_len); m->m_flags |= M_MCAST; ip = mtod(m, struct ip *); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(*ip) >> 2; ip->ip_tos = V_carp_dscp << IPTOS_DSCP_OFFSET; ip->ip_len = htons(len); ip->ip_off = htons(IP_DF); ip->ip_ttl = CARP_DFLTTL; ip->ip_p = IPPROTO_CARP; ip->ip_sum = 0; ip_fillid(ip); ifa = carp_best_ifa(AF_INET, sc->sc_carpdev); if (ifa != NULL) { ip->ip_src.s_addr = ifatoia(ifa)->ia_addr.sin_addr.s_addr; ifa_free(ifa); } else ip->ip_src.s_addr = 0; ip->ip_dst.s_addr = htonl(INADDR_CARP_GROUP); ch_ptr = (struct carp_header *)(&ip[1]); bcopy(&ch, ch_ptr, sizeof(ch)); if (carp_prepare_ad(m, sc, ch_ptr)) goto resched; m->m_data += sizeof(*ip); ch_ptr->carp_cksum = in_cksum(m, len - sizeof(*ip)); m->m_data -= sizeof(*ip); CARPSTATS_INC(carps_opackets); carp_send_ad_error(sc, ip_output(m, NULL, NULL, IP_RAWOUTPUT, &sc->sc_carpdev->if_carp->cif_imo, NULL)); } #endif /* INET */ #ifdef INET6 if (sc->sc_naddrs6) { struct ip6_hdr *ip6; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { CARPSTATS_INC(carps_onomem); goto resched; } len = sizeof(*ip6) + sizeof(ch); m->m_pkthdr.len = len; m->m_pkthdr.rcvif = NULL; m->m_len = len; M_ALIGN(m, m->m_len); m->m_flags |= M_MCAST; ip6 = mtod(m, struct ip6_hdr *); bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc |= IPV6_VERSION; /* Traffic class isn't defined in ip6 struct instead * it gets offset into flowid field */ ip6->ip6_flow |= htonl(V_carp_dscp << (IPV6_FLOWLABEL_LEN + IPTOS_DSCP_OFFSET)); ip6->ip6_hlim = CARP_DFLTTL; ip6->ip6_nxt = IPPROTO_CARP; /* set the source address */ ifa = carp_best_ifa(AF_INET6, sc->sc_carpdev); if (ifa != NULL) { bcopy(IFA_IN6(ifa), &ip6->ip6_src, sizeof(struct in6_addr)); ifa_free(ifa); } else /* This should never happen with IPv6. */ bzero(&ip6->ip6_src, sizeof(struct in6_addr)); /* Set the multicast destination. */ ip6->ip6_dst.s6_addr16[0] = htons(0xff02); ip6->ip6_dst.s6_addr8[15] = 0x12; if (in6_setscope(&ip6->ip6_dst, sc->sc_carpdev, NULL) != 0) { m_freem(m); CARP_DEBUG("%s: in6_setscope failed\n", __func__); goto resched; } ch_ptr = (struct carp_header *)(&ip6[1]); bcopy(&ch, ch_ptr, sizeof(ch)); if (carp_prepare_ad(m, sc, ch_ptr)) goto resched; m->m_data += sizeof(*ip6); ch_ptr->carp_cksum = in_cksum(m, len - sizeof(*ip6)); m->m_data -= sizeof(*ip6); CARPSTATS_INC(carps_opackets6); carp_send_ad_error(sc, ip6_output(m, NULL, NULL, 0, &sc->sc_carpdev->if_carp->cif_im6o, NULL, NULL)); } #endif /* INET6 */ resched: callout_reset(&sc->sc_ad_tmo, tvtohz(&tv), carp_send_ad, sc); } static void carp_addroute(struct carp_softc *sc) { struct ifaddr *ifa; CARP_FOREACH_IFA(sc, ifa) carp_ifa_addroute(ifa); } static void carp_ifa_addroute(struct ifaddr *ifa) { switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: in_addprefix(ifatoia(ifa), RTF_UP); ifa_add_loopback_route(ifa, (struct sockaddr *)&ifatoia(ifa)->ia_addr); break; #endif #ifdef INET6 case AF_INET6: ifa_add_loopback_route(ifa, (struct sockaddr *)&ifatoia6(ifa)->ia_addr); nd6_add_ifa_lle(ifatoia6(ifa)); break; #endif } } static void carp_delroute(struct carp_softc *sc) { struct ifaddr *ifa; CARP_FOREACH_IFA(sc, ifa) carp_ifa_delroute(ifa); } static void carp_ifa_delroute(struct ifaddr *ifa) { switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifa_del_loopback_route(ifa, (struct sockaddr *)&ifatoia(ifa)->ia_addr); in_scrubprefix(ifatoia(ifa), LLE_STATIC); break; #endif #ifdef INET6 case AF_INET6: ifa_del_loopback_route(ifa, (struct sockaddr *)&ifatoia6(ifa)->ia_addr); nd6_rem_ifa_lle(ifatoia6(ifa), 1); break; #endif } } int carp_master(struct ifaddr *ifa) { struct carp_softc *sc = ifa->ifa_carp; return (sc->sc_state == MASTER); } #ifdef INET /* * Broadcast a gratuitous ARP request containing * the virtual router MAC address for each IP address * associated with the virtual router. */ static void carp_send_arp(struct carp_softc *sc) { struct ifaddr *ifa; struct in_addr addr; CARP_FOREACH_IFA(sc, ifa) { if (ifa->ifa_addr->sa_family != AF_INET) continue; addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr; arp_announce_ifaddr(sc->sc_carpdev, addr, LLADDR(&sc->sc_addr)); } } int carp_iamatch(struct ifaddr *ifa, uint8_t **enaddr) { struct carp_softc *sc = ifa->ifa_carp; if (sc->sc_state == MASTER) { *enaddr = LLADDR(&sc->sc_addr); return (1); } return (0); } #endif #ifdef INET6 static void carp_send_na(struct carp_softc *sc) { static struct in6_addr mcast = IN6ADDR_LINKLOCAL_ALLNODES_INIT; struct ifaddr *ifa; struct in6_addr *in6; CARP_FOREACH_IFA(sc, ifa) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6 = IFA_IN6(ifa); nd6_na_output(sc->sc_carpdev, &mcast, in6, ND_NA_FLAG_OVERRIDE, 1, NULL); DELAY(1000); /* XXX */ } } /* * Returns ifa in case it's a carp address and it is MASTER, or if the address * matches and is not a carp address. Returns NULL otherwise. */ struct ifaddr * carp_iamatch6(struct ifnet *ifp, struct in6_addr *taddr) { struct epoch_tracker et; struct ifaddr *ifa; ifa = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (!IN6_ARE_ADDR_EQUAL(taddr, IFA_IN6(ifa))) continue; if (ifa->ifa_carp && ifa->ifa_carp->sc_state != MASTER) ifa = NULL; else ifa_ref(ifa); break; } NET_EPOCH_EXIT(et); return (ifa); } caddr_t carp_macmatch6(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr) { struct epoch_tracker et; struct ifaddr *ifa; NET_EPOCH_ENTER(et); IFNET_FOREACH_IFA(ifp, ifa) if (ifa->ifa_addr->sa_family == AF_INET6 && IN6_ARE_ADDR_EQUAL(taddr, IFA_IN6(ifa))) { struct carp_softc *sc = ifa->ifa_carp; struct m_tag *mtag; NET_EPOCH_EXIT(et); mtag = m_tag_get(PACKET_TAG_CARP, sizeof(struct carp_softc *), M_NOWAIT); if (mtag == NULL) /* Better a bit than nothing. */ return (LLADDR(&sc->sc_addr)); bcopy(&sc, mtag + 1, sizeof(sc)); m_tag_prepend(m, mtag); return (LLADDR(&sc->sc_addr)); } NET_EPOCH_EXIT(et); return (NULL); } #endif /* INET6 */ int carp_forus(struct ifnet *ifp, u_char *dhost) { struct carp_softc *sc; uint8_t *ena = dhost; if (ena[0] || ena[1] || ena[2] != 0x5e || ena[3] || ena[4] != 1) return (0); CIF_LOCK(ifp->if_carp); IFNET_FOREACH_CARP(ifp, sc) { CARP_LOCK(sc); if (sc->sc_state == MASTER && !bcmp(dhost, LLADDR(&sc->sc_addr), ETHER_ADDR_LEN)) { CARP_UNLOCK(sc); CIF_UNLOCK(ifp->if_carp); return (1); } CARP_UNLOCK(sc); } CIF_UNLOCK(ifp->if_carp); return (0); } /* Master down timeout event, executed in callout context. */ static void carp_master_down(void *v) { struct carp_softc *sc = v; CARP_LOCK_ASSERT(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); if (sc->sc_state == BACKUP) { carp_master_down_locked(sc, "master timed out"); } CURVNET_RESTORE(); CARP_UNLOCK(sc); } static void carp_master_down_locked(struct carp_softc *sc, const char *reason) { CARP_LOCK_ASSERT(sc); switch (sc->sc_state) { case BACKUP: carp_set_state(sc, MASTER, reason); carp_send_ad_locked(sc); #ifdef INET carp_send_arp(sc); #endif #ifdef INET6 carp_send_na(sc); #endif carp_setrun(sc, 0); carp_addroute(sc); break; case INIT: case MASTER: #ifdef INVARIANTS panic("carp: VHID %u@%s: master_down event in %s state\n", sc->sc_vhid, sc->sc_carpdev->if_xname, sc->sc_state ? "MASTER" : "INIT"); #endif break; } } /* * When in backup state, af indicates whether to reset the master down timer * for v4 or v6. If it's set to zero, reset the ones which are already pending. */ static void carp_setrun(struct carp_softc *sc, sa_family_t af) { struct timeval tv; CARP_LOCK_ASSERT(sc); if ((sc->sc_carpdev->if_flags & IFF_UP) == 0 || sc->sc_carpdev->if_link_state != LINK_STATE_UP || (sc->sc_naddrs == 0 && sc->sc_naddrs6 == 0) || !V_carp_allow) return; switch (sc->sc_state) { case INIT: carp_set_state(sc, BACKUP, "initialization complete"); carp_setrun(sc, 0); break; case BACKUP: callout_stop(&sc->sc_ad_tmo); tv.tv_sec = 3 * sc->sc_advbase; tv.tv_usec = sc->sc_advskew * 1000000 / 256; switch (af) { #ifdef INET case AF_INET: callout_reset(&sc->sc_md_tmo, tvtohz(&tv), carp_master_down, sc); break; #endif #ifdef INET6 case AF_INET6: callout_reset(&sc->sc_md6_tmo, tvtohz(&tv), carp_master_down, sc); break; #endif default: #ifdef INET if (sc->sc_naddrs) callout_reset(&sc->sc_md_tmo, tvtohz(&tv), carp_master_down, sc); #endif #ifdef INET6 if (sc->sc_naddrs6) callout_reset(&sc->sc_md6_tmo, tvtohz(&tv), carp_master_down, sc); #endif break; } break; case MASTER: tv.tv_sec = sc->sc_advbase; tv.tv_usec = sc->sc_advskew * 1000000 / 256; callout_reset(&sc->sc_ad_tmo, tvtohz(&tv), carp_send_ad, sc); break; } } /* * Setup multicast structures. */ static int carp_multicast_setup(struct carp_if *cif, sa_family_t sa) { struct ifnet *ifp = cif->cif_ifp; int error = 0; switch (sa) { #ifdef INET case AF_INET: { struct ip_moptions *imo = &cif->cif_imo; struct in_addr addr; if (imo->imo_membership) return (0); imo->imo_membership = (struct in_multi **)malloc( (sizeof(struct in_multi *) * IP_MIN_MEMBERSHIPS), M_CARP, M_WAITOK); imo->imo_mfilters = NULL; imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; imo->imo_multicast_vif = -1; addr.s_addr = htonl(INADDR_CARP_GROUP); if ((error = in_joingroup(ifp, &addr, NULL, &imo->imo_membership[0])) != 0) { free(imo->imo_membership, M_CARP); break; } imo->imo_num_memberships++; imo->imo_multicast_ifp = ifp; imo->imo_multicast_ttl = CARP_DFLTTL; imo->imo_multicast_loop = 0; break; } #endif #ifdef INET6 case AF_INET6: { struct ip6_moptions *im6o = &cif->cif_im6o; struct in6_addr in6; struct in6_multi *in6m; if (im6o->im6o_membership) return (0); im6o->im6o_membership = (struct in6_multi **)malloc( (sizeof(struct in6_multi *) * IPV6_MIN_MEMBERSHIPS), M_CARP, M_ZERO | M_WAITOK); im6o->im6o_mfilters = NULL; im6o->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; im6o->im6o_multicast_hlim = CARP_DFLTTL; im6o->im6o_multicast_ifp = ifp; /* Join IPv6 CARP multicast group. */ bzero(&in6, sizeof(in6)); in6.s6_addr16[0] = htons(0xff02); in6.s6_addr8[15] = 0x12; if ((error = in6_setscope(&in6, ifp, NULL)) != 0) { free(im6o->im6o_membership, M_CARP); break; } in6m = NULL; if ((error = in6_joingroup(ifp, &in6, NULL, &in6m, 0)) != 0) { free(im6o->im6o_membership, M_CARP); break; } in6m_acquire(in6m); im6o->im6o_membership[0] = in6m; im6o->im6o_num_memberships++; /* Join solicited multicast address. */ bzero(&in6, sizeof(in6)); in6.s6_addr16[0] = htons(0xff02); in6.s6_addr32[1] = 0; in6.s6_addr32[2] = htonl(1); in6.s6_addr32[3] = 0; in6.s6_addr8[12] = 0xff; if ((error = in6_setscope(&in6, ifp, NULL)) != 0) { in6_leavegroup(im6o->im6o_membership[0], NULL); free(im6o->im6o_membership, M_CARP); break; } in6m = NULL; if ((error = in6_joingroup(ifp, &in6, NULL, &in6m, 0)) != 0) { in6_leavegroup(im6o->im6o_membership[0], NULL); free(im6o->im6o_membership, M_CARP); break; } in6m_acquire(in6m); im6o->im6o_membership[1] = in6m; im6o->im6o_num_memberships++; break; } #endif } return (error); } /* * Free multicast structures. */ static void carp_multicast_cleanup(struct carp_if *cif, sa_family_t sa) { sx_assert(&carp_sx, SA_XLOCKED); switch (sa) { #ifdef INET case AF_INET: if (cif->cif_naddrs == 0) { struct ip_moptions *imo = &cif->cif_imo; in_leavegroup(imo->imo_membership[0], NULL); KASSERT(imo->imo_mfilters == NULL, ("%s: imo_mfilters != NULL", __func__)); free(imo->imo_membership, M_CARP); imo->imo_membership = NULL; } break; #endif #ifdef INET6 case AF_INET6: if (cif->cif_naddrs6 == 0) { struct ip6_moptions *im6o = &cif->cif_im6o; in6_leavegroup(im6o->im6o_membership[0], NULL); in6_leavegroup(im6o->im6o_membership[1], NULL); KASSERT(im6o->im6o_mfilters == NULL, ("%s: im6o_mfilters != NULL", __func__)); free(im6o->im6o_membership, M_CARP); im6o->im6o_membership = NULL; } break; #endif } } int carp_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa) { struct m_tag *mtag; struct carp_softc *sc; if (!sa) return (0); switch (sa->sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: return (0); } mtag = m_tag_find(m, PACKET_TAG_CARP, NULL); if (mtag == NULL) return (0); bcopy(mtag + 1, &sc, sizeof(sc)); /* Set the source MAC address to the Virtual Router MAC Address. */ switch (ifp->if_type) { case IFT_ETHER: case IFT_BRIDGE: case IFT_L2VLAN: { struct ether_header *eh; eh = mtod(m, struct ether_header *); eh->ether_shost[0] = 0; eh->ether_shost[1] = 0; eh->ether_shost[2] = 0x5e; eh->ether_shost[3] = 0; eh->ether_shost[4] = 1; eh->ether_shost[5] = sc->sc_vhid; } break; default: printf("%s: carp is not supported for the %d interface type\n", ifp->if_xname, ifp->if_type); return (EOPNOTSUPP); } return (0); } static struct carp_softc* carp_alloc(struct ifnet *ifp) { struct carp_softc *sc; struct carp_if *cif; sx_assert(&carp_sx, SA_XLOCKED); if ((cif = ifp->if_carp) == NULL) cif = carp_alloc_if(ifp); sc = malloc(sizeof(*sc), M_CARP, M_WAITOK|M_ZERO); sc->sc_advbase = CARP_DFLTINTV; sc->sc_vhid = -1; /* required setting */ sc->sc_init_counter = 1; sc->sc_state = INIT; sc->sc_ifasiz = sizeof(struct ifaddr *); sc->sc_ifas = malloc(sc->sc_ifasiz, M_CARP, M_WAITOK|M_ZERO); sc->sc_carpdev = ifp; CARP_LOCK_INIT(sc); #ifdef INET callout_init_mtx(&sc->sc_md_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); #endif #ifdef INET6 callout_init_mtx(&sc->sc_md6_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); #endif callout_init_mtx(&sc->sc_ad_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); CIF_LOCK(cif); TAILQ_INSERT_TAIL(&cif->cif_vrs, sc, sc_list); CIF_UNLOCK(cif); mtx_lock(&carp_mtx); LIST_INSERT_HEAD(&carp_list, sc, sc_next); mtx_unlock(&carp_mtx); return (sc); } static void carp_grow_ifas(struct carp_softc *sc) { struct ifaddr **new; new = malloc(sc->sc_ifasiz * 2, M_CARP, M_WAITOK | M_ZERO); CARP_LOCK(sc); bcopy(sc->sc_ifas, new, sc->sc_ifasiz); free(sc->sc_ifas, M_CARP); sc->sc_ifas = new; sc->sc_ifasiz *= 2; CARP_UNLOCK(sc); } static void carp_destroy(struct carp_softc *sc) { struct ifnet *ifp = sc->sc_carpdev; struct carp_if *cif = ifp->if_carp; sx_assert(&carp_sx, SA_XLOCKED); if (sc->sc_suppress) carp_demote_adj(-V_carp_ifdown_adj, "vhid removed"); CARP_UNLOCK(sc); CIF_LOCK(cif); TAILQ_REMOVE(&cif->cif_vrs, sc, sc_list); CIF_UNLOCK(cif); mtx_lock(&carp_mtx); LIST_REMOVE(sc, sc_next); mtx_unlock(&carp_mtx); callout_drain(&sc->sc_ad_tmo); #ifdef INET callout_drain(&sc->sc_md_tmo); #endif #ifdef INET6 callout_drain(&sc->sc_md6_tmo); #endif CARP_LOCK_DESTROY(sc); free(sc->sc_ifas, M_CARP); free(sc, M_CARP); } static struct carp_if* carp_alloc_if(struct ifnet *ifp) { struct carp_if *cif; int error; cif = malloc(sizeof(*cif), M_CARP, M_WAITOK|M_ZERO); if ((error = ifpromisc(ifp, 1)) != 0) printf("%s: ifpromisc(%s) failed: %d\n", __func__, ifp->if_xname, error); else cif->cif_flags |= CIF_PROMISC; CIF_LOCK_INIT(cif); cif->cif_ifp = ifp; TAILQ_INIT(&cif->cif_vrs); IF_ADDR_WLOCK(ifp); ifp->if_carp = cif; if_ref(ifp); IF_ADDR_WUNLOCK(ifp); return (cif); } static void carp_free_if(struct carp_if *cif) { struct ifnet *ifp = cif->cif_ifp; CIF_LOCK_ASSERT(cif); KASSERT(TAILQ_EMPTY(&cif->cif_vrs), ("%s: softc list not empty", __func__)); IF_ADDR_WLOCK(ifp); ifp->if_carp = NULL; IF_ADDR_WUNLOCK(ifp); CIF_LOCK_DESTROY(cif); if (cif->cif_flags & CIF_PROMISC) ifpromisc(ifp, 0); if_rele(ifp); free(cif, M_CARP); } static void carp_carprcp(struct carpreq *carpr, struct carp_softc *sc, int priv) { CARP_LOCK(sc); carpr->carpr_state = sc->sc_state; carpr->carpr_vhid = sc->sc_vhid; carpr->carpr_advbase = sc->sc_advbase; carpr->carpr_advskew = sc->sc_advskew; if (priv) bcopy(sc->sc_key, carpr->carpr_key, sizeof(carpr->carpr_key)); else bzero(carpr->carpr_key, sizeof(carpr->carpr_key)); CARP_UNLOCK(sc); } int carp_ioctl(struct ifreq *ifr, u_long cmd, struct thread *td) { struct carpreq carpr; struct ifnet *ifp; struct carp_softc *sc = NULL; int error = 0, locked = 0; if ((error = copyin(ifr_data_get_ptr(ifr), &carpr, sizeof carpr))) return (error); ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) return (ENXIO); switch (ifp->if_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: break; default: error = EOPNOTSUPP; goto out; } if ((ifp->if_flags & IFF_MULTICAST) == 0) { error = EADDRNOTAVAIL; goto out; } sx_xlock(&carp_sx); switch (cmd) { case SIOCSVH: if ((error = priv_check(td, PRIV_NETINET_CARP))) break; if (carpr.carpr_vhid <= 0 || carpr.carpr_vhid > CARP_MAXVHID || carpr.carpr_advbase < 0 || carpr.carpr_advskew < 0) { error = EINVAL; break; } if (ifp->if_carp) { IFNET_FOREACH_CARP(ifp, sc) if (sc->sc_vhid == carpr.carpr_vhid) break; } if (sc == NULL) { sc = carp_alloc(ifp); CARP_LOCK(sc); sc->sc_vhid = carpr.carpr_vhid; LLADDR(&sc->sc_addr)[0] = 0; LLADDR(&sc->sc_addr)[1] = 0; LLADDR(&sc->sc_addr)[2] = 0x5e; LLADDR(&sc->sc_addr)[3] = 0; LLADDR(&sc->sc_addr)[4] = 1; LLADDR(&sc->sc_addr)[5] = sc->sc_vhid; } else CARP_LOCK(sc); locked = 1; if (carpr.carpr_advbase > 0) { if (carpr.carpr_advbase > 255 || carpr.carpr_advbase < CARP_DFLTINTV) { error = EINVAL; break; } sc->sc_advbase = carpr.carpr_advbase; } if (carpr.carpr_advskew >= 255) { error = EINVAL; break; } sc->sc_advskew = carpr.carpr_advskew; if (carpr.carpr_key[0] != '\0') { bcopy(carpr.carpr_key, sc->sc_key, sizeof(sc->sc_key)); carp_hmac_prepare(sc); } if (sc->sc_state != INIT && carpr.carpr_state != sc->sc_state) { switch (carpr.carpr_state) { case BACKUP: callout_stop(&sc->sc_ad_tmo); carp_set_state(sc, BACKUP, "user requested via ifconfig"); carp_setrun(sc, 0); carp_delroute(sc); break; case MASTER: carp_master_down_locked(sc, "user requested via ifconfig"); break; default: break; } } break; case SIOCGVH: { int priveleged; if (carpr.carpr_vhid < 0 || carpr.carpr_vhid > CARP_MAXVHID) { error = EINVAL; break; } if (carpr.carpr_count < 1) { error = EMSGSIZE; break; } if (ifp->if_carp == NULL) { error = ENOENT; break; } priveleged = (priv_check(td, PRIV_NETINET_CARP) == 0); if (carpr.carpr_vhid != 0) { IFNET_FOREACH_CARP(ifp, sc) if (sc->sc_vhid == carpr.carpr_vhid) break; if (sc == NULL) { error = ENOENT; break; } carp_carprcp(&carpr, sc, priveleged); error = copyout(&carpr, ifr_data_get_ptr(ifr), sizeof(carpr)); } else { int i, count; count = 0; IFNET_FOREACH_CARP(ifp, sc) count++; if (count > carpr.carpr_count) { CIF_UNLOCK(ifp->if_carp); error = EMSGSIZE; break; } i = 0; IFNET_FOREACH_CARP(ifp, sc) { carp_carprcp(&carpr, sc, priveleged); carpr.carpr_count = count; error = copyout(&carpr, (caddr_t)ifr_data_get_ptr(ifr) + (i * sizeof(carpr)), sizeof(carpr)); if (error) { CIF_UNLOCK(ifp->if_carp); break; } i++; } } break; } default: error = EINVAL; } sx_xunlock(&carp_sx); out: if (locked) CARP_UNLOCK(sc); if_rele(ifp); return (error); } static int carp_get_vhid(struct ifaddr *ifa) { if (ifa == NULL || ifa->ifa_carp == NULL) return (0); return (ifa->ifa_carp->sc_vhid); } int carp_attach(struct ifaddr *ifa, int vhid) { struct ifnet *ifp = ifa->ifa_ifp; struct carp_if *cif = ifp->if_carp; struct carp_softc *sc; int index, error; KASSERT(ifa->ifa_carp == NULL, ("%s: ifa %p attached", __func__, ifa)); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: #endif #ifdef INET6 case AF_INET6: #endif break; default: return (EPROTOTYPE); } sx_xlock(&carp_sx); if (ifp->if_carp == NULL) { sx_xunlock(&carp_sx); return (ENOPROTOOPT); } IFNET_FOREACH_CARP(ifp, sc) if (sc->sc_vhid == vhid) break; if (sc == NULL) { sx_xunlock(&carp_sx); return (ENOENT); } error = carp_multicast_setup(cif, ifa->ifa_addr->sa_family); if (error) { CIF_FREE(cif); sx_xunlock(&carp_sx); return (error); } index = sc->sc_naddrs + sc->sc_naddrs6 + 1; if (index > sc->sc_ifasiz / sizeof(struct ifaddr *)) carp_grow_ifas(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: cif->cif_naddrs++; sc->sc_naddrs++; break; #endif #ifdef INET6 case AF_INET6: cif->cif_naddrs6++; sc->sc_naddrs6++; break; #endif } ifa_ref(ifa); CARP_LOCK(sc); sc->sc_ifas[index - 1] = ifa; ifa->ifa_carp = sc; carp_hmac_prepare(sc); carp_sc_state(sc); CARP_UNLOCK(sc); sx_xunlock(&carp_sx); return (0); } void carp_detach(struct ifaddr *ifa, bool keep_cif) { struct ifnet *ifp = ifa->ifa_ifp; struct carp_if *cif = ifp->if_carp; struct carp_softc *sc = ifa->ifa_carp; int i, index; KASSERT(sc != NULL, ("%s: %p not attached", __func__, ifa)); sx_xlock(&carp_sx); CARP_LOCK(sc); /* Shift array. */ index = sc->sc_naddrs + sc->sc_naddrs6; for (i = 0; i < index; i++) if (sc->sc_ifas[i] == ifa) break; KASSERT(i < index, ("%s: %p no backref", __func__, ifa)); for (; i < index - 1; i++) sc->sc_ifas[i] = sc->sc_ifas[i+1]; sc->sc_ifas[index - 1] = NULL; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: cif->cif_naddrs--; sc->sc_naddrs--; break; #endif #ifdef INET6 case AF_INET6: cif->cif_naddrs6--; sc->sc_naddrs6--; break; #endif } carp_ifa_delroute(ifa); carp_multicast_cleanup(cif, ifa->ifa_addr->sa_family); ifa->ifa_carp = NULL; ifa_free(ifa); carp_hmac_prepare(sc); carp_sc_state(sc); if (!keep_cif && sc->sc_naddrs == 0 && sc->sc_naddrs6 == 0) carp_destroy(sc); else CARP_UNLOCK(sc); if (!keep_cif) CIF_FREE(cif); sx_xunlock(&carp_sx); } static void carp_set_state(struct carp_softc *sc, int state, const char *reason) { CARP_LOCK_ASSERT(sc); if (sc->sc_state != state) { const char *carp_states[] = { CARP_STATES }; char subsys[IFNAMSIZ+5]; snprintf(subsys, IFNAMSIZ+5, "%u@%s", sc->sc_vhid, sc->sc_carpdev->if_xname); CARP_LOG("%s: %s -> %s (%s)\n", subsys, carp_states[sc->sc_state], carp_states[state], reason); sc->sc_state = state; devctl_notify("CARP", subsys, carp_states[state], NULL); } } static void carp_linkstate(struct ifnet *ifp) { struct carp_softc *sc; CIF_LOCK(ifp->if_carp); IFNET_FOREACH_CARP(ifp, sc) { CARP_LOCK(sc); carp_sc_state(sc); CARP_UNLOCK(sc); } CIF_UNLOCK(ifp->if_carp); } static void carp_sc_state(struct carp_softc *sc) { CARP_LOCK_ASSERT(sc); if (sc->sc_carpdev->if_link_state != LINK_STATE_UP || !(sc->sc_carpdev->if_flags & IFF_UP) || !V_carp_allow) { callout_stop(&sc->sc_ad_tmo); #ifdef INET callout_stop(&sc->sc_md_tmo); #endif #ifdef INET6 callout_stop(&sc->sc_md6_tmo); #endif carp_set_state(sc, INIT, "hardware interface down"); carp_setrun(sc, 0); if (!sc->sc_suppress) carp_demote_adj(V_carp_ifdown_adj, "interface down"); sc->sc_suppress = 1; } else { carp_set_state(sc, INIT, "hardware interface up"); carp_setrun(sc, 0); if (sc->sc_suppress) carp_demote_adj(-V_carp_ifdown_adj, "interface up"); sc->sc_suppress = 0; } } static void carp_demote_adj(int adj, char *reason) { atomic_add_int(&V_carp_demotion, adj); CARP_LOG("demoted by %d to %d (%s)\n", adj, V_carp_demotion, reason); taskqueue_enqueue(taskqueue_swi, &carp_sendall_task); } static int carp_allow_sysctl(SYSCTL_HANDLER_ARGS) { int new, error; struct carp_softc *sc; new = V_carp_allow; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) return (error); if (V_carp_allow != new) { V_carp_allow = new; mtx_lock(&carp_mtx); LIST_FOREACH(sc, &carp_list, sc_next) { CARP_LOCK(sc); if (curvnet == sc->sc_carpdev->if_vnet) carp_sc_state(sc); CARP_UNLOCK(sc); } mtx_unlock(&carp_mtx); } return (0); } static int carp_dscp_sysctl(SYSCTL_HANDLER_ARGS) { int new, error; new = V_carp_dscp; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) return (error); if (new < 0 || new > 63) return (EINVAL); V_carp_dscp = new; return (0); } static int carp_demote_adj_sysctl(SYSCTL_HANDLER_ARGS) { int new, error; new = V_carp_demotion; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) return (error); carp_demote_adj(new, "sysctl"); return (0); } #ifdef INET extern struct domain inetdomain; static struct protosw in_carp_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inetdomain, .pr_protocol = IPPROTO_CARP, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = carp_input, .pr_output = rip_output, .pr_ctloutput = rip_ctloutput, .pr_usrreqs = &rip_usrreqs }; #endif #ifdef INET6 extern struct domain inet6domain; static struct protosw in6_carp_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inet6domain, .pr_protocol = IPPROTO_CARP, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = carp6_input, .pr_output = rip6_output, .pr_ctloutput = rip6_ctloutput, .pr_usrreqs = &rip6_usrreqs }; #endif -#ifdef VIMAGE -#if defined(__i386__) -/* - * XXX This is a hack to work around an absolute relocation outside - * set_vnet by one (on the stop symbol) for carpstats. Add a dummy variable - * to the end of the file in the hope that the linker will just keep the - * order (as it seems to do at the moment). It is understood to be fragile. - * See PR 230857 for a longer discussion of the problem and the referenced - * review for possible alternate solutions. Each is a hack; we just need - * the least intrusive one for the next release. - */ -VNET_DEFINE(char, carp_zzz) = 0xde; -#endif -#endif - static void carp_mod_cleanup(void) { #ifdef INET if (proto_reg[CARP_INET] == 0) { (void)ipproto_unregister(IPPROTO_CARP); pf_proto_unregister(PF_INET, IPPROTO_CARP, SOCK_RAW); proto_reg[CARP_INET] = -1; } carp_iamatch_p = NULL; #endif #ifdef INET6 if (proto_reg[CARP_INET6] == 0) { (void)ip6proto_unregister(IPPROTO_CARP); pf_proto_unregister(PF_INET6, IPPROTO_CARP, SOCK_RAW); proto_reg[CARP_INET6] = -1; } carp_iamatch6_p = NULL; carp_macmatch6_p = NULL; #endif carp_ioctl_p = NULL; carp_attach_p = NULL; carp_detach_p = NULL; carp_get_vhid_p = NULL; carp_linkstate_p = NULL; carp_forus_p = NULL; carp_output_p = NULL; carp_demote_adj_p = NULL; carp_master_p = NULL; mtx_unlock(&carp_mtx); taskqueue_drain(taskqueue_swi, &carp_sendall_task); mtx_destroy(&carp_mtx); sx_destroy(&carp_sx); } static int carp_mod_load(void) { int err; mtx_init(&carp_mtx, "carp_mtx", NULL, MTX_DEF); sx_init(&carp_sx, "carp_sx"); LIST_INIT(&carp_list); carp_get_vhid_p = carp_get_vhid; carp_forus_p = carp_forus; carp_output_p = carp_output; carp_linkstate_p = carp_linkstate; carp_ioctl_p = carp_ioctl; carp_attach_p = carp_attach; carp_detach_p = carp_detach; carp_demote_adj_p = carp_demote_adj; carp_master_p = carp_master; #ifdef INET6 carp_iamatch6_p = carp_iamatch6; carp_macmatch6_p = carp_macmatch6; proto_reg[CARP_INET6] = pf_proto_register(PF_INET6, (struct protosw *)&in6_carp_protosw); if (proto_reg[CARP_INET6]) { printf("carp: error %d attaching to PF_INET6\n", proto_reg[CARP_INET6]); carp_mod_cleanup(); return (proto_reg[CARP_INET6]); } err = ip6proto_register(IPPROTO_CARP); if (err) { printf("carp: error %d registering with INET6\n", err); carp_mod_cleanup(); return (err); } #endif #ifdef INET carp_iamatch_p = carp_iamatch; proto_reg[CARP_INET] = pf_proto_register(PF_INET, &in_carp_protosw); if (proto_reg[CARP_INET]) { printf("carp: error %d attaching to PF_INET\n", proto_reg[CARP_INET]); carp_mod_cleanup(); return (proto_reg[CARP_INET]); } err = ipproto_register(IPPROTO_CARP); if (err) { printf("carp: error %d registering with INET\n", err); carp_mod_cleanup(); return (err); } #endif return (0); } static int carp_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: return carp_mod_load(); /* NOTREACHED */ case MOD_UNLOAD: mtx_lock(&carp_mtx); if (LIST_EMPTY(&carp_list)) carp_mod_cleanup(); else { mtx_unlock(&carp_mtx); return (EBUSY); } break; default: return (EINVAL); } return (0); } static moduledata_t carp_mod = { "carp", carp_modevent, 0 }; DECLARE_MODULE(carp, carp_mod, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); Index: head/sys/sys/param.h =================================================================== --- head/sys/sys/param.h (revision 348807) +++ head/sys/sys/param.h (revision 348808) @@ -1,367 +1,367 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * head/en_US.ISO8859-1/books/porters-handbook/versions/chapter.xml * * scheme is: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * X.0-CURRENT before releng/X.0 is created, otherwise 'R' is * in the range 5 to 9. */ #undef __FreeBSD_version -#define __FreeBSD_version 1300030 /* Master, propagated to newvers */ +#define __FreeBSD_version 1300031 /* Master, propagated to newvers */ /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #if defined(_KERNEL) || defined(IN_RTLD) #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAP_FSTRICT 1100036 #define P_OSREL_SHUTDOWN_ENOTCONN 1100077 #define P_OSREL_MAP_GUARD 1200035 #define P_OSREL_WRFSBASE 1200041 #define P_OSREL_CK_CYLGRP 1200046 #define P_OSREL_VMTOTAL64 1200054 #define P_OSREL_CK_SUPERBLOCK 1300000 #define P_OSREL_CK_INODE 1300005 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 255 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL /* Signals. */ #include #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) ((x)&(~((y)-1))) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */