Index: head/contrib/one-true-awk/b.c =================================================================== --- head/contrib/one-true-awk/b.c (revision 348512) +++ head/contrib/one-true-awk/b.c (revision 348513) @@ -1,1227 +1,1227 @@ /**************************************************************** Copyright (C) Lucent Technologies 1997 All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name Lucent Technologies or any of its entities not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ****************************************************************/ /* lasciate ogne speranza, voi ch'intrate. */ #include __FBSDID("$FreeBSD$"); #define DEBUG #include #include #include #include #include #include "awk.h" #include "ytab.h" #define HAT (NCHARS+2) /* matches ^ in regular expr */ /* NCHARS is 2**n */ #define MAXLIN 22 #define type(v) (v)->nobj /* badly overloaded here */ #define info(v) (v)->ntype /* badly overloaded here */ #define left(v) (v)->narg[0] #define right(v) (v)->narg[1] #define parent(v) (v)->nnext #define LEAF case CCL: case NCCL: case CHAR: case DOT: case FINAL: case ALL: #define ELEAF case EMPTYRE: /* empty string in regexp */ #define UNARY case STAR: case PLUS: case QUEST: /* encoding in tree Nodes: leaf (CCL, NCCL, CHAR, DOT, FINAL, ALL, EMPTYRE): left is index, right contains value or pointer to value unary (STAR, PLUS, QUEST): left is child, right is null binary (CAT, OR): left and right are children parent contains pointer to parent */ int *setvec; int *tmpset; int maxsetvec = 0; int rtok; /* next token in current re */ int rlxval; static uschar *rlxstr; static uschar *prestr; /* current position in current re */ static uschar *lastre; /* origin of last re */ static uschar *lastatom; /* origin of last Atom */ static uschar *starttok; static uschar *basestr; /* starts with original, replaced during repetition processing */ static uschar *firstbasestr; static int setcnt; static int poscnt; char *patbeg; int patlen; #define NFA 20 /* cache this many dynamic fa's */ fa *fatab[NFA]; int nfatab = 0; /* entries in fatab */ fa *makedfa(const char *s, int anchor) /* returns dfa for reg expr s */ { int i, use, nuse; fa *pfa; static int now = 1; if (setvec == NULL) { /* first time through any RE */ maxsetvec = MAXLIN; setvec = (int *) malloc(maxsetvec * sizeof(int)); tmpset = (int *) malloc(maxsetvec * sizeof(int)); if (setvec == NULL || tmpset == NULL) overflo("out of space initializing makedfa"); } if (compile_time) /* a constant for sure */ return mkdfa(s, anchor); for (i = 0; i < nfatab; i++) /* is it there already? */ if (fatab[i]->anchor == anchor && strcmp((const char *) fatab[i]->restr, s) == 0) { fatab[i]->use = now++; return fatab[i]; } pfa = mkdfa(s, anchor); if (nfatab < NFA) { /* room for another */ fatab[nfatab] = pfa; fatab[nfatab]->use = now++; nfatab++; return pfa; } use = fatab[0]->use; /* replace least-recently used */ nuse = 0; for (i = 1; i < nfatab; i++) if (fatab[i]->use < use) { use = fatab[i]->use; nuse = i; } freefa(fatab[nuse]); fatab[nuse] = pfa; pfa->use = now++; return pfa; } fa *mkdfa(const char *s, int anchor) /* does the real work of making a dfa */ /* anchor = 1 for anchored matches, else 0 */ { Node *p, *p1; fa *f; firstbasestr = (uschar *) s; basestr = firstbasestr; p = reparse(s); p1 = op2(CAT, op2(STAR, op2(ALL, NIL, NIL), NIL), p); /* put ALL STAR in front of reg. exp. */ p1 = op2(CAT, p1, op2(FINAL, NIL, NIL)); /* put FINAL after reg. exp. */ poscnt = 0; penter(p1); /* enter parent pointers and leaf indices */ if ((f = (fa *) calloc(1, sizeof(fa) + poscnt*sizeof(rrow))) == NULL) overflo("out of space for fa"); f->accept = poscnt-1; /* penter has computed number of positions in re */ cfoll(f, p1); /* set up follow sets */ freetr(p1); - if ((f->posns[0] = (int *) calloc(1, *(f->re[0].lfollow)*sizeof(int))) == NULL) + if ((f->posns[0] = (int *) calloc(*(f->re[0].lfollow), sizeof(int))) == NULL) overflo("out of space in makedfa"); if ((f->posns[1] = (int *) calloc(1, sizeof(int))) == NULL) overflo("out of space in makedfa"); *f->posns[1] = 0; f->initstat = makeinit(f, anchor); f->anchor = anchor; f->restr = (uschar *) tostring(s); if (firstbasestr != basestr) { if (basestr) xfree(basestr); } return f; } int makeinit(fa *f, int anchor) { int i, k; f->curstat = 2; f->out[2] = 0; f->reset = 0; k = *(f->re[0].lfollow); xfree(f->posns[2]); - if ((f->posns[2] = (int *) calloc(1, (k+1)*sizeof(int))) == NULL) + if ((f->posns[2] = (int *) calloc(k+1, sizeof(int))) == NULL) overflo("out of space in makeinit"); for (i=0; i <= k; i++) { (f->posns[2])[i] = (f->re[0].lfollow)[i]; } if ((f->posns[2])[1] == f->accept) f->out[2] = 1; for (i=0; i < NCHARS; i++) f->gototab[2][i] = 0; f->curstat = cgoto(f, 2, HAT); if (anchor) { *f->posns[2] = k-1; /* leave out position 0 */ for (i=0; i < k; i++) { (f->posns[0])[i] = (f->posns[2])[i]; } f->out[0] = f->out[2]; if (f->curstat != 2) --(*f->posns[f->curstat]); } return f->curstat; } void penter(Node *p) /* set up parent pointers and leaf indices */ { switch (type(p)) { ELEAF LEAF info(p) = poscnt; poscnt++; break; UNARY penter(left(p)); parent(left(p)) = p; break; case CAT: case OR: penter(left(p)); penter(right(p)); parent(left(p)) = p; parent(right(p)) = p; break; default: /* can't happen */ FATAL("can't happen: unknown type %d in penter", type(p)); break; } } void freetr(Node *p) /* free parse tree */ { switch (type(p)) { ELEAF LEAF xfree(p); break; UNARY freetr(left(p)); xfree(p); break; case CAT: case OR: freetr(left(p)); freetr(right(p)); xfree(p); break; default: /* can't happen */ FATAL("can't happen: unknown type %d in freetr", type(p)); break; } } /* in the parsing of regular expressions, metacharacters like . have */ /* to be seen literally; \056 is not a metacharacter. */ int hexstr(uschar **pp) /* find and eval hex string at pp, return new p */ { /* only pick up one 8-bit byte (2 chars) */ uschar *p; int n = 0; int i; for (i = 0, p = (uschar *) *pp; i < 2 && isxdigit(*p); i++, p++) { if (isdigit(*p)) n = 16 * n + *p - '0'; else if (*p >= 'a' && *p <= 'f') n = 16 * n + *p - 'a' + 10; else if (*p >= 'A' && *p <= 'F') n = 16 * n + *p - 'A' + 10; } *pp = (uschar *) p; return n; } #define isoctdigit(c) ((c) >= '0' && (c) <= '7') /* multiple use of arg */ int quoted(uschar **pp) /* pick up next thing after a \\ */ /* and increment *pp */ { uschar *p = *pp; int c; if ((c = *p++) == 't') c = '\t'; else if (c == 'n') c = '\n'; else if (c == 'f') c = '\f'; else if (c == 'r') c = '\r'; else if (c == 'b') c = '\b'; else if (c == '\\') c = '\\'; else if (c == 'x') { /* hexadecimal goo follows */ c = hexstr(&p); /* this adds a null if number is invalid */ } else if (isoctdigit(c)) { /* \d \dd \ddd */ int n = c - '0'; if (isoctdigit(*p)) { n = 8 * n + *p++ - '0'; if (isoctdigit(*p)) n = 8 * n + *p++ - '0'; } c = n; } /* else */ /* c = c; */ *pp = p; return c; } static int collate_range_cmp(int a, int b) { static char s[2][2]; if ((uschar)a == (uschar)b) return 0; s[0][0] = a; s[1][0] = b; return (strcoll(s[0], s[1])); } char *cclenter(const char *argp) /* add a character class */ { int i, c, c2; int j; uschar *p = (uschar *) argp; uschar *op, *bp; static uschar *buf = NULL; static int bufsz = 100; op = p; if (buf == NULL && (buf = (uschar *) malloc(bufsz)) == NULL) FATAL("out of space for character class [%.10s...] 1", p); bp = buf; for (i = 0; (c = *p++) != 0; ) { if (c == '\\') { c = quoted(&p); } else if (c == '-' && i > 0 && bp[-1] != 0) { if (*p != 0) { c = bp[-1]; c2 = *p++; if (c2 == '\\') c2 = quoted(&p); if (collate_range_cmp(c, c2) > 0) { bp--; i--; continue; } for (j = 0; j < NCHARS; j++) { if ((collate_range_cmp(c, j) > 0) || collate_range_cmp(j, c2) > 0) continue; if (!adjbuf((char **) &buf, &bufsz, bp-buf+2, 100, (char **) &bp, "cclenter1")) FATAL("out of space for character class [%.10s...] 2", p); *bp++ = j; i++; } continue; } } if (!adjbuf((char **) &buf, &bufsz, bp-buf+2, 100, (char **) &bp, "cclenter2")) FATAL("out of space for character class [%.10s...] 3", p); *bp++ = c; i++; } *bp = 0; dprintf( ("cclenter: in = |%s|, out = |%s|\n", op, buf) ); xfree(op); return (char *) tostring((char *) buf); } void overflo(const char *s) { FATAL("regular expression too big: %.30s...", s); } void cfoll(fa *f, Node *v) /* enter follow set of each leaf of vertex v into lfollow[leaf] */ { int i; int *p; switch (type(v)) { ELEAF LEAF f->re[info(v)].ltype = type(v); f->re[info(v)].lval.np = right(v); while (f->accept >= maxsetvec) { /* guessing here! */ maxsetvec *= 4; setvec = (int *) realloc(setvec, maxsetvec * sizeof(int)); tmpset = (int *) realloc(tmpset, maxsetvec * sizeof(int)); if (setvec == NULL || tmpset == NULL) overflo("out of space in cfoll()"); } for (i = 0; i <= f->accept; i++) setvec[i] = 0; setcnt = 0; follow(v); /* computes setvec and setcnt */ - if ((p = (int *) calloc(1, (setcnt+1)*sizeof(int))) == NULL) + if ((p = (int *) calloc(setcnt+1, sizeof(int))) == NULL) overflo("out of space building follow set"); f->re[info(v)].lfollow = p; *p = setcnt; for (i = f->accept; i >= 0; i--) if (setvec[i] == 1) *++p = i; break; UNARY cfoll(f,left(v)); break; case CAT: case OR: cfoll(f,left(v)); cfoll(f,right(v)); break; default: /* can't happen */ FATAL("can't happen: unknown type %d in cfoll", type(v)); } } int first(Node *p) /* collects initially active leaves of p into setvec */ /* returns 0 if p matches empty string */ { int b, lp; switch (type(p)) { ELEAF LEAF lp = info(p); /* look for high-water mark of subscripts */ while (setcnt >= maxsetvec || lp >= maxsetvec) { /* guessing here! */ maxsetvec *= 4; setvec = (int *) realloc(setvec, maxsetvec * sizeof(int)); tmpset = (int *) realloc(tmpset, maxsetvec * sizeof(int)); if (setvec == NULL || tmpset == NULL) overflo("out of space in first()"); } if (type(p) == EMPTYRE) { setvec[lp] = 0; return(0); } if (setvec[lp] != 1) { setvec[lp] = 1; setcnt++; } if (type(p) == CCL && (*(char *) right(p)) == '\0') return(0); /* empty CCL */ else return(1); case PLUS: if (first(left(p)) == 0) return(0); return(1); case STAR: case QUEST: first(left(p)); return(0); case CAT: if (first(left(p)) == 0 && first(right(p)) == 0) return(0); return(1); case OR: b = first(right(p)); if (first(left(p)) == 0 || b == 0) return(0); return(1); } FATAL("can't happen: unknown type %d in first", type(p)); /* can't happen */ return(-1); } void follow(Node *v) /* collects leaves that can follow v into setvec */ { Node *p; if (type(v) == FINAL) return; p = parent(v); switch (type(p)) { case STAR: case PLUS: first(v); follow(p); return; case OR: case QUEST: follow(p); return; case CAT: if (v == left(p)) { /* v is left child of p */ if (first(right(p)) == 0) { follow(p); return; } } else /* v is right child */ follow(p); return; } } int member(int c, const char *sarg) /* is c in s? */ { uschar *s = (uschar *) sarg; while (*s) if (c == *s++) return(1); return(0); } int match(fa *f, const char *p0) /* shortest match ? */ { int s, ns; uschar *p = (uschar *) p0; s = f->reset ? makeinit(f,0) : f->initstat; if (f->out[s]) return(1); do { /* assert(*p < NCHARS); */ if ((ns = f->gototab[s][*p]) != 0) s = ns; else s = cgoto(f, s, *p); if (f->out[s]) return(1); } while (*p++ != 0); return(0); } int pmatch(fa *f, const char *p0) /* longest match, for sub */ { int s, ns; uschar *p = (uschar *) p0; uschar *q; int i, k; /* s = f->reset ? makeinit(f,1) : f->initstat; */ if (f->reset) { f->initstat = s = makeinit(f,1); } else { s = f->initstat; } patbeg = (char *) p; patlen = -1; do { q = p; do { if (f->out[s]) /* final state */ patlen = q-p; /* assert(*q < NCHARS); */ if ((ns = f->gototab[s][*q]) != 0) s = ns; else s = cgoto(f, s, *q); if (s == 1) { /* no transition */ if (patlen >= 0) { patbeg = (char *) p; return(1); } else goto nextin; /* no match */ } } while (*q++ != 0); if (f->out[s]) patlen = q-p-1; /* don't count $ */ if (patlen >= 0) { patbeg = (char *) p; return(1); } nextin: s = 2; if (f->reset) { for (i = 2; i <= f->curstat; i++) xfree(f->posns[i]); k = *f->posns[0]; - if ((f->posns[2] = (int *) calloc(1, (k+1)*sizeof(int))) == NULL) + if ((f->posns[2] = (int *) calloc(k+1, sizeof(int))) == NULL) overflo("out of space in pmatch"); for (i = 0; i <= k; i++) (f->posns[2])[i] = (f->posns[0])[i]; f->initstat = f->curstat = 2; f->out[2] = f->out[0]; for (i = 0; i < NCHARS; i++) f->gototab[2][i] = 0; } } while (*p++ != 0); return (0); } int nematch(fa *f, const char *p0) /* non-empty match, for sub */ { int s, ns; uschar *p = (uschar *) p0; uschar *q; int i, k; /* s = f->reset ? makeinit(f,1) : f->initstat; */ if (f->reset) { f->initstat = s = makeinit(f,1); } else { s = f->initstat; } patlen = -1; while (*p) { q = p; do { if (f->out[s]) /* final state */ patlen = q-p; /* assert(*q < NCHARS); */ if ((ns = f->gototab[s][*q]) != 0) s = ns; else s = cgoto(f, s, *q); if (s == 1) { /* no transition */ if (patlen > 0) { patbeg = (char *) p; return(1); } else goto nnextin; /* no nonempty match */ } } while (*q++ != 0); if (f->out[s]) patlen = q-p-1; /* don't count $ */ if (patlen > 0 ) { patbeg = (char *) p; return(1); } nnextin: s = 2; if (f->reset) { for (i = 2; i <= f->curstat; i++) xfree(f->posns[i]); k = *f->posns[0]; - if ((f->posns[2] = (int *) calloc(1, (k+1)*sizeof(int))) == NULL) + if ((f->posns[2] = (int *) calloc(k+1, sizeof(int))) == NULL) overflo("out of state space"); for (i = 0; i <= k; i++) (f->posns[2])[i] = (f->posns[0])[i]; f->initstat = f->curstat = 2; f->out[2] = f->out[0]; for (i = 0; i < NCHARS; i++) f->gototab[2][i] = 0; } p++; } return (0); } Node *reparse(const char *p) /* parses regular expression pointed to by p */ { /* uses relex() to scan regular expression */ Node *np; dprintf( ("reparse <%s>\n", p) ); lastre = prestr = (uschar *) p; /* prestr points to string to be parsed */ rtok = relex(); /* GNU compatibility: an empty regexp matches anything */ if (rtok == '\0') { /* FATAL("empty regular expression"); previous */ return(op2(EMPTYRE, NIL, NIL)); } np = regexp(); if (rtok != '\0') FATAL("syntax error in regular expression %s at %s", lastre, prestr); return(np); } Node *regexp(void) /* top-level parse of reg expr */ { return (alt(concat(primary()))); } Node *primary(void) { Node *np; int savelastatom; switch (rtok) { case CHAR: lastatom = starttok; np = op2(CHAR, NIL, itonp(rlxval)); rtok = relex(); return (unary(np)); case ALL: rtok = relex(); return (unary(op2(ALL, NIL, NIL))); case EMPTYRE: rtok = relex(); return (unary(op2(EMPTYRE, NIL, NIL))); case DOT: lastatom = starttok; rtok = relex(); return (unary(op2(DOT, NIL, NIL))); case CCL: np = op2(CCL, NIL, (Node*) cclenter((char *) rlxstr)); lastatom = starttok; rtok = relex(); return (unary(np)); case NCCL: np = op2(NCCL, NIL, (Node *) cclenter((char *) rlxstr)); lastatom = starttok; rtok = relex(); return (unary(np)); case '^': rtok = relex(); return (unary(op2(CHAR, NIL, itonp(HAT)))); case '$': rtok = relex(); return (unary(op2(CHAR, NIL, NIL))); case '(': lastatom = starttok; savelastatom = starttok - basestr; /* Retain over recursion */ rtok = relex(); if (rtok == ')') { /* special pleading for () */ rtok = relex(); return unary(op2(CCL, NIL, (Node *) tostring(""))); } np = regexp(); if (rtok == ')') { lastatom = basestr + savelastatom; /* Restore */ rtok = relex(); return (unary(np)); } else FATAL("syntax error in regular expression %s at %s", lastre, prestr); default: FATAL("illegal primary in regular expression %s at %s", lastre, prestr); } return 0; /*NOTREACHED*/ } Node *concat(Node *np) { switch (rtok) { case CHAR: case DOT: case ALL: case CCL: case NCCL: case '$': case '(': return (concat(op2(CAT, np, primary()))); case EMPTYRE: rtok = relex(); return (concat(op2(CAT, op2(CCL, NIL, (Node *) tostring("")), primary()))); } return (np); } Node *alt(Node *np) { if (rtok == OR) { rtok = relex(); return (alt(op2(OR, np, concat(primary())))); } return (np); } Node *unary(Node *np) { switch (rtok) { case STAR: rtok = relex(); return (unary(op2(STAR, np, NIL))); case PLUS: rtok = relex(); return (unary(op2(PLUS, np, NIL))); case QUEST: rtok = relex(); return (unary(op2(QUEST, np, NIL))); default: return (np); } } /* * Character class definitions conformant to the POSIX locale as * defined in IEEE P1003.1 draft 7 of June 2001, assuming the source * and operating character sets are both ASCII (ISO646) or supersets * thereof. * * Note that to avoid overflowing the temporary buffer used in * relex(), the expanded character class (prior to range expansion) * must be less than twice the size of their full name. */ /* Because isblank doesn't show up in any of the header files on any * system i use, it's defined here. if some other locale has a richer * definition of "blank", define HAS_ISBLANK and provide your own * version. * the parentheses here are an attempt to find a path through the maze * of macro definition and/or function and/or version provided. thanks * to nelson beebe for the suggestion; let's see if it works everywhere. */ /* #define HAS_ISBLANK */ #ifndef HAS_ISBLANK int (xisblank)(int c) { return c==' ' || c=='\t'; } #endif struct charclass { const char *cc_name; int cc_namelen; int (*cc_func)(int); } charclasses[] = { { "alnum", 5, isalnum }, { "alpha", 5, isalpha }, #ifndef HAS_ISBLANK { "blank", 5, xisblank }, #else { "blank", 5, isblank }, #endif { "cntrl", 5, iscntrl }, { "digit", 5, isdigit }, { "graph", 5, isgraph }, { "lower", 5, islower }, { "print", 5, isprint }, { "punct", 5, ispunct }, { "space", 5, isspace }, { "upper", 5, isupper }, { "xdigit", 6, isxdigit }, { NULL, 0, NULL }, }; #define REPEAT_SIMPLE 0 #define REPEAT_PLUS_APPENDED 1 #define REPEAT_WITH_Q 2 #define REPEAT_ZERO 3 static int replace_repeat(const uschar *reptok, int reptoklen, const uschar *atom, int atomlen, int firstnum, int secondnum, int special_case) { int i, j; uschar *buf = 0; int ret = 1; int init_q = (firstnum==0); /* first added char will be ? */ int n_q_reps = secondnum-firstnum; /* m>n, so reduce until {1,m-n} left */ int prefix_length = reptok - basestr; /* prefix includes first rep */ int suffix_length = strlen((char *) reptok) - reptoklen; /* string after rep specifier */ int size = prefix_length + suffix_length; if (firstnum > 1) { /* add room for reps 2 through firstnum */ size += atomlen*(firstnum-1); } /* Adjust size of buffer for special cases */ if (special_case == REPEAT_PLUS_APPENDED) { size++; /* for the final + */ } else if (special_case == REPEAT_WITH_Q) { size += init_q + (atomlen+1)* n_q_reps; } else if (special_case == REPEAT_ZERO) { size += 2; /* just a null ERE: () */ } if ((buf = (uschar *) malloc(size+1)) == NULL) FATAL("out of space in reg expr %.10s..", lastre); memcpy(buf, basestr, prefix_length); /* copy prefix */ j = prefix_length; if (special_case == REPEAT_ZERO) { j -= atomlen; buf[j++] = '('; buf[j++] = ')'; } for (i=1; i < firstnum; i++) { /* copy x reps */ memcpy(&buf[j], atom, atomlen); j += atomlen; } if (special_case == REPEAT_PLUS_APPENDED) { buf[j++] = '+'; } else if (special_case == REPEAT_WITH_Q) { if (init_q) buf[j++] = '?'; for (i=0; i < n_q_reps; i++) { /* copy x? reps */ memcpy(&buf[j], atom, atomlen); j += atomlen; buf[j++] = '?'; } } memcpy(&buf[j], reptok+reptoklen, suffix_length); if (special_case == REPEAT_ZERO) { buf[j+suffix_length] = '\0'; } else { buf[size] = '\0'; } /* free old basestr */ if (firstbasestr != basestr) { if (basestr) xfree(basestr); } basestr = buf; prestr = buf + prefix_length; if (special_case == REPEAT_ZERO) { prestr -= atomlen; ret++; } return ret; } static int repeat(const uschar *reptok, int reptoklen, const uschar *atom, int atomlen, int firstnum, int secondnum) { /* In general, the repetition specifier or "bound" is replaced here by an equivalent ERE string, repeating the immediately previous atom and appending ? and + as needed. Note that the first copy of the atom is left in place, except in the special_case of a zero-repeat (i.e., {0}). */ if (secondnum < 0) { /* means {n,} -> repeat n-1 times followed by PLUS */ if (firstnum < 2) { /* 0 or 1: should be handled before you get here */ FATAL("internal error"); } else { return replace_repeat(reptok, reptoklen, atom, atomlen, firstnum, secondnum, REPEAT_PLUS_APPENDED); } } else if (firstnum == secondnum) { /* {n} or {n,n} -> simply repeat n-1 times */ if (firstnum == 0) { /* {0} or {0,0} */ /* This case is unusual because the resulting replacement string might actually be SMALLER than the original ERE */ return replace_repeat(reptok, reptoklen, atom, atomlen, firstnum, secondnum, REPEAT_ZERO); } else { /* (firstnum >= 1) */ return replace_repeat(reptok, reptoklen, atom, atomlen, firstnum, secondnum, REPEAT_SIMPLE); } } else if (firstnum < secondnum) { /* {n,m} -> repeat n-1 times then alternate */ /* x{n,m} => xx...x{1, m-n+1} => xx...x?x?x?..x? */ return replace_repeat(reptok, reptoklen, atom, atomlen, firstnum, secondnum, REPEAT_WITH_Q); } else { /* Error - shouldn't be here (n>m) */ FATAL("internal error"); } return 0; } int relex(void) /* lexical analyzer for reparse */ { int c, n; int cflag; static uschar *buf = NULL; static int bufsz = 100; uschar *bp; struct charclass *cc; int i; int num, m, commafound, digitfound; const uschar *startreptok; rescan: starttok = prestr; switch (c = *prestr++) { case '|': return OR; case '*': return STAR; case '+': return PLUS; case '?': return QUEST; case '.': return DOT; case '\0': prestr--; return '\0'; case '^': case '$': case '(': case ')': return c; case '\\': rlxval = quoted(&prestr); return CHAR; default: rlxval = c; return CHAR; case '[': if (buf == NULL && (buf = (uschar *) malloc(bufsz)) == NULL) FATAL("out of space in reg expr %.10s..", lastre); bp = buf; if (*prestr == '^') { cflag = 1; prestr++; } else cflag = 0; n = 2 * strlen((const char *) prestr)+1; if (!adjbuf((char **) &buf, &bufsz, n, n, (char **) &bp, "relex1")) FATAL("out of space for reg expr %.10s...", lastre); for (; ; ) { if ((c = *prestr++) == '\\') { *bp++ = '\\'; if ((c = *prestr++) == '\0') FATAL("nonterminated character class %.20s...", lastre); *bp++ = c; /* } else if (c == '\n') { */ /* FATAL("newline in character class %.20s...", lastre); */ } else if (c == '[' && *prestr == ':') { /* POSIX char class names, Dag-Erling Smorgrav, des@ofug.org */ for (cc = charclasses; cc->cc_name; cc++) if (strncmp((const char *) prestr + 1, (const char *) cc->cc_name, cc->cc_namelen) == 0) break; if (cc->cc_name != NULL && prestr[1 + cc->cc_namelen] == ':' && prestr[2 + cc->cc_namelen] == ']') { prestr += cc->cc_namelen + 3; /* * BUG: We begin at 1, instead of 0, since we * would otherwise prematurely terminate the * string for classes like [[:cntrl:]]. This * means that we can't match the NUL character, * not without first adapting the entire * program to track each string's length. */ for (i = 1; i <= UCHAR_MAX; i++) { if (!adjbuf((char **) &buf, &bufsz, bp-buf+1, 100, (char **) &bp, "relex2")) FATAL("out of space for reg expr %.10s...", lastre); if (cc->cc_func(i)) { *bp++ = i; n++; } } } else *bp++ = c; } else if (c == '[' && *prestr == '.') { char collate_char; prestr++; collate_char = *prestr++; if (*prestr == '.' && prestr[1] == ']') { prestr += 2; /* Found it: map via locale TBD: for now, simply return this char. This is sufficient to pass conformance test awk.ex 156 */ if (*prestr == ']') { prestr++; rlxval = collate_char; return CHAR; } } } else if (c == '[' && *prestr == '=') { char equiv_char; prestr++; equiv_char = *prestr++; if (*prestr == '=' && prestr[1] == ']') { prestr += 2; /* Found it: map via locale TBD: for now simply return this char. This is sufficient to pass conformance test awk.ex 156 */ if (*prestr == ']') { prestr++; rlxval = equiv_char; return CHAR; } } } else if (c == '\0') { FATAL("nonterminated character class %.20s", lastre); } else if (bp == buf) { /* 1st char is special */ *bp++ = c; } else if (c == ']') { *bp++ = 0; rlxstr = (uschar *) tostring((char *) buf); if (cflag == 0) return CCL; else return NCCL; } else *bp++ = c; } break; case '{': if (isdigit(*(prestr))) { num = 0; /* Process as a repetition */ n = -1; m = -1; commafound = 0; digitfound = 0; startreptok = prestr-1; /* Remember start of previous atom here ? */ } else { /* just a { char, not a repetition */ rlxval = c; return CHAR; } for (; ; ) { if ((c = *prestr++) == '}') { if (commafound) { if (digitfound) { /* {n,m} */ m = num; if (m 0) { if ((n==0) && (m==0)) { return EMPTYRE; } /* must rescan input for next token */ goto rescan; } /* Failed to replace: eat up {...} characters and treat like just PLUS */ return PLUS; } else if (c == '\0') { FATAL("nonterminated character class %.20s", lastre); } else if (isdigit(c)) { num = 10 * num + c - '0'; digitfound = 1; } else if (c == ',') { if (commafound) FATAL("illegal repetition expression: class %.20s", lastre); /* looking for {n,} or {n,m} */ commafound = 1; n = num; digitfound = 0; /* reset */ num = 0; } else { FATAL("illegal repetition expression: class %.20s", lastre); } } break; } } int cgoto(fa *f, int s, int c) { int i, j, k; int *p, *q; assert(c == HAT || c < NCHARS); while (f->accept >= maxsetvec) { /* guessing here! */ maxsetvec *= 4; setvec = (int *) realloc(setvec, maxsetvec * sizeof(int)); tmpset = (int *) realloc(tmpset, maxsetvec * sizeof(int)); if (setvec == NULL || tmpset == NULL) overflo("out of space in cgoto()"); } for (i = 0; i <= f->accept; i++) setvec[i] = 0; setcnt = 0; /* compute positions of gototab[s,c] into setvec */ p = f->posns[s]; for (i = 1; i <= *p; i++) { if ((k = f->re[p[i]].ltype) != FINAL) { if ((k == CHAR && c == ptoi(f->re[p[i]].lval.np)) || (k == DOT && c != 0 && c != HAT) || (k == ALL && c != 0) || (k == EMPTYRE && c != 0) || (k == CCL && member(c, (char *) f->re[p[i]].lval.up)) || (k == NCCL && !member(c, (char *) f->re[p[i]].lval.up) && c != 0 && c != HAT)) { q = f->re[p[i]].lfollow; for (j = 1; j <= *q; j++) { if (q[j] >= maxsetvec) { maxsetvec *= 4; setvec = (int *) realloc(setvec, maxsetvec * sizeof(int)); tmpset = (int *) realloc(tmpset, maxsetvec * sizeof(int)); if (setvec == NULL || tmpset == NULL) overflo("cgoto overflow"); } if (setvec[q[j]] == 0) { setcnt++; setvec[q[j]] = 1; } } } } } /* determine if setvec is a previous state */ tmpset[0] = setcnt; j = 1; for (i = f->accept; i >= 0; i--) if (setvec[i]) { tmpset[j++] = i; } /* tmpset == previous state? */ for (i = 1; i <= f->curstat; i++) { p = f->posns[i]; if ((k = tmpset[0]) != p[0]) goto different; for (j = 1; j <= k; j++) if (tmpset[j] != p[j]) goto different; /* setvec is state i */ f->gototab[s][c] = i; return i; different:; } /* add tmpset to current set of states */ if (f->curstat >= NSTATES-1) { f->curstat = 2; f->reset = 1; for (i = 2; i < NSTATES; i++) xfree(f->posns[i]); } else ++(f->curstat); for (i = 0; i < NCHARS; i++) f->gototab[f->curstat][i] = 0; xfree(f->posns[f->curstat]); - if ((p = (int *) calloc(1, (setcnt+1)*sizeof(int))) == NULL) + if ((p = (int *) calloc(setcnt+1, sizeof(int))) == NULL) overflo("out of space in cgoto"); f->posns[f->curstat] = p; f->gototab[s][c] = f->curstat; for (i = 0; i <= setcnt; i++) p[i] = tmpset[i]; if (setvec[f->accept]) f->out[f->curstat] = 1; else f->out[f->curstat] = 0; return f->curstat; } void freefa(fa *f) /* free a finite automaton */ { int i; if (f == NULL) return; for (i = 0; i <= f->curstat; i++) xfree(f->posns[i]); for (i = 0; i <= f->accept; i++) { xfree(f->re[i].lfollow); if (f->re[i].ltype == CCL || f->re[i].ltype == NCCL) xfree((f->re[i].lval.np)); } xfree(f->restr); xfree(f); }