Index: head/sys/vm/vm_reserv.c =================================================================== --- head/sys/vm/vm_reserv.c (revision 348317) +++ head/sys/vm/vm_reserv.c (revision 348318) @@ -1,1509 +1,1502 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2006 Rice University * Copyright (c) 2007-2011 Alan L. Cox * All rights reserved. * * This software was developed for the FreeBSD Project by Alan L. Cox, * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Superpage reservation management module * * Any external functions defined by this module are only to be used by the * virtual memory system. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The reservation system supports the speculative allocation of large physical * pages ("superpages"). Speculative allocation enables the fully automatic * utilization of superpages by the virtual memory system. In other words, no * programmatic directives are required to use superpages. */ #if VM_NRESERVLEVEL > 0 #ifndef VM_LEVEL_0_ORDER_MAX #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER #endif /* * The number of small pages that are contained in a level 0 reservation */ #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) /* * The number of bits by which a physical address is shifted to obtain the * reservation number */ #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) /* * The size of a level 0 reservation in bytes */ #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) /* * Computes the index of the small page underlying the given (object, pindex) * within the reservation's array of small pages. */ #define VM_RESERV_INDEX(object, pindex) \ (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) /* * The size of a population map entry */ typedef u_long popmap_t; /* * The number of bits in a population map entry */ #define NBPOPMAP (NBBY * sizeof(popmap_t)) /* * The number of population map entries in a reservation */ #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) #define NPOPMAP_MAX howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP) /* * Number of elapsed ticks before we update the LRU queue position. Used * to reduce contention and churn on the list. */ #define PARTPOPSLOP 1 /* * Clear a bit in the population map. */ static __inline void popmap_clear(popmap_t popmap[], int i) { popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); } /* * Set a bit in the population map. */ static __inline void popmap_set(popmap_t popmap[], int i) { popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); } /* * Is a bit in the population map clear? */ static __inline boolean_t popmap_is_clear(popmap_t popmap[], int i) { return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); } /* * Is a bit in the population map set? */ static __inline boolean_t popmap_is_set(popmap_t popmap[], int i) { return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); } /* * The reservation structure * * A reservation structure is constructed whenever a large physical page is * speculatively allocated to an object. The reservation provides the small * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets * within that object. The reservation's "popcnt" tracks the number of these * small physical pages that are in use at any given time. When and if the * reservation is not fully utilized, it appears in the queue of partially * populated reservations. The reservation always appears on the containing * object's list of reservations. * * A partially populated reservation can be broken and reclaimed at any time. * * r - vm_reserv_lock * d - vm_reserv_domain_lock * o - vm_reserv_object_lock * c - constant after boot */ struct vm_reserv { struct mtx lock; /* reservation lock. */ TAILQ_ENTRY(vm_reserv) partpopq; /* (d) per-domain queue. */ LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ vm_object_t object; /* (o, r) containing object */ vm_pindex_t pindex; /* (o, r) offset in object */ vm_page_t pages; /* (c) first page */ uint16_t domain; /* (c) NUMA domain. */ uint16_t popcnt; /* (r) # of pages in use */ int lasttick; /* (r) last pop update tick. */ char inpartpopq; /* (d) */ popmap_t popmap[NPOPMAP_MAX]; /* (r) bit vector, used pages */ }; #define vm_reserv_lockptr(rv) (&(rv)->lock) #define vm_reserv_assert_locked(rv) \ mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM]; #define vm_reserv_domain_lockptr(d) &vm_reserv_domain_locks[(d)] #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) /* * The reservation array * * This array is analoguous in function to vm_page_array. It differs in the * respect that it may contain a greater number of useful reservation * structures than there are (physical) superpages. These "invalid" * reservation structures exist to trade-off space for time in the * implementation of vm_reserv_from_page(). Invalid reservation structures are * distinguishable from "valid" reservation structures by inspecting the * reservation's "pages" field. Invalid reservation structures have a NULL * "pages" field. * * vm_reserv_from_page() maps a small (physical) page to an element of this * array by computing a physical reservation number from the page's physical * address. The physical reservation number is used as the array index. * * An "active" reservation is a valid reservation structure that has a non-NULL * "object" field and a non-zero "popcnt" field. In other words, every active * reservation belongs to a particular object. Moreover, every active * reservation has an entry in the containing object's list of reservations. */ static vm_reserv_t vm_reserv_array; /* * The partially populated reservation queue * * This queue enables the fast recovery of an unused free small page from a * partially populated reservation. The reservation at the head of this queue * is the least recently changed, partially populated reservation. * * Access to this queue is synchronized by the free page queue lock. */ static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM]; static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); static counter_u64_t vm_reserv_broken = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, &vm_reserv_broken, "Cumulative number of broken reservations"); static counter_u64_t vm_reserv_freed = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, &vm_reserv_freed, "Cumulative number of freed reservations"); static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); /* * The object lock pool is used to synchronize the rvq. We can not use a * pool mutex because it is required before malloc works. * * The "hash" function could be made faster without divide and modulo. */ #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; #define vm_reserv_object_lock_idx(object) \ (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) #define vm_reserv_object_lock_ptr(object) \ &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] #define vm_reserv_object_lock(object) \ mtx_lock(vm_reserv_object_lock_ptr((object))) #define vm_reserv_object_unlock(object) \ mtx_unlock(vm_reserv_object_lock_ptr((object))) static void vm_reserv_break(vm_reserv_t rv); static void vm_reserv_depopulate(vm_reserv_t rv, int index); static vm_reserv_t vm_reserv_from_page(vm_page_t m); static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex); static void vm_reserv_populate(vm_reserv_t rv, int index); static void vm_reserv_reclaim(vm_reserv_t rv); /* * Returns the current number of full reservations. * * Since the number of full reservations is computed without acquiring the * free page queue lock, the returned value may be inexact. */ static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) { vm_paddr_t paddr; struct vm_phys_seg *seg; vm_reserv_t rv; int fullpop, segind; fullpop = 0; for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); while (paddr + VM_LEVEL_0_SIZE <= seg->end) { rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; paddr += VM_LEVEL_0_SIZE; } } return (sysctl_handle_int(oidp, &fullpop, 0, req)); } /* * Describes the current state of the partially populated reservation queue. */ static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; vm_reserv_t rv; int counter, error, domain, level, unused_pages; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); for (domain = 0; domain < vm_ndomains; domain++) { for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { counter = 0; unused_pages = 0; vm_reserv_domain_lock(domain); TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) { counter++; unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; } vm_reserv_domain_unlock(domain); sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", domain, level, unused_pages * ((int)PAGE_SIZE / 1024), counter); } } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } /* * Remove a reservation from the object's objq. */ static void vm_reserv_remove(vm_reserv_t rv) { vm_object_t object; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_remove: reserv %p is free", rv)); KASSERT(!rv->inpartpopq, ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); object = rv->object; vm_reserv_object_lock(object); LIST_REMOVE(rv, objq); rv->object = NULL; vm_reserv_object_unlock(object); } /* * Insert a new reservation into the object's objq. */ static void vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) { int i; vm_reserv_assert_locked(rv); CTR6(KTR_VM, "%s: rv %p(%p) object %p new %p popcnt %d", __FUNCTION__, rv, rv->pages, rv->object, object, rv->popcnt); KASSERT(rv->object == NULL, ("vm_reserv_insert: reserv %p isn't free", rv)); KASSERT(rv->popcnt == 0, ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); KASSERT(!rv->inpartpopq, ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); for (i = 0; i < NPOPMAP; i++) KASSERT(rv->popmap[i] == 0, ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); vm_reserv_object_lock(object); rv->pindex = pindex; rv->object = object; rv->lasttick = ticks; LIST_INSERT_HEAD(&object->rvq, rv, objq); vm_reserv_object_unlock(object); } /* * Reduces the given reservation's population count. If the population count * becomes zero, the reservation is destroyed. Additionally, moves the * reservation to the tail of the partially populated reservation queue if the * population count is non-zero. */ static void vm_reserv_depopulate(vm_reserv_t rv, int index) { struct vm_domain *vmd; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_depopulate: reserv %p is free", rv)); KASSERT(popmap_is_set(rv->popmap, index), ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, index)); KASSERT(rv->popcnt > 0, ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", rv, rv->domain)); if (rv->popcnt == VM_LEVEL_0_NPAGES) { KASSERT(rv->pages->psind == 1, ("vm_reserv_depopulate: reserv %p is already demoted", rv)); rv->pages->psind = 0; } popmap_clear(rv->popmap, index); rv->popcnt--; if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || rv->popcnt == 0) { vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } if (rv->popcnt != 0) { rv->inpartpopq = TRUE; TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); } vm_reserv_domain_unlock(rv->domain); rv->lasttick = ticks; } vmd = VM_DOMAIN(rv->domain); if (rv->popcnt == 0) { vm_reserv_remove(rv); vm_domain_free_lock(vmd); vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); vm_domain_free_unlock(vmd); counter_u64_add(vm_reserv_freed, 1); } vm_domain_freecnt_inc(vmd, 1); } /* * Returns the reservation to which the given page might belong. */ static __inline vm_reserv_t vm_reserv_from_page(vm_page_t m) { return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); } /* * Returns an existing reservation or NULL and initialized successor pointer. */ static vm_reserv_t vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred, vm_page_t *msuccp) { vm_reserv_t rv; vm_page_t msucc; msucc = NULL; if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_reserv_from_object: object doesn't contain mpred")); KASSERT(mpred->pindex < pindex, ("vm_reserv_from_object: mpred doesn't precede pindex")); rv = vm_reserv_from_page(mpred); if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) goto found; msucc = TAILQ_NEXT(mpred, listq); } else msucc = TAILQ_FIRST(&object->memq); if (msucc != NULL) { KASSERT(msucc->pindex > pindex, ("vm_reserv_from_object: msucc doesn't succeed pindex")); rv = vm_reserv_from_page(msucc); if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) goto found; } rv = NULL; found: *msuccp = msucc; return (rv); } /* * Returns TRUE if the given reservation contains the given page index and * FALSE otherwise. */ static __inline boolean_t vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) { return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); } /* * Increases the given reservation's population count. Moves the reservation * to the tail of the partially populated reservation queue. * * The free page queue must be locked. */ static void vm_reserv_populate(vm_reserv_t rv, int index) { vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_populate: reserv %p is free", rv)); KASSERT(popmap_is_clear(rv->popmap, index), ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, index)); KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, ("vm_reserv_populate: reserv %p is already full", rv)); KASSERT(rv->pages->psind == 0, ("vm_reserv_populate: reserv %p is already promoted", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_populate: reserv %p's domain is corrupted %d", rv, rv->domain)); popmap_set(rv->popmap, index); rv->popcnt++; if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) return; rv->lasttick = ticks; vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } if (rv->popcnt < VM_LEVEL_0_NPAGES) { rv->inpartpopq = TRUE; TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); } else { KASSERT(rv->pages->psind == 0, ("vm_reserv_populate: reserv %p is already promoted", rv)); rv->pages->psind = 1; } vm_reserv_domain_unlock(rv->domain); } /* * Attempts to allocate a contiguous set of physical pages from existing * reservations. See vm_reserv_alloc_contig() for a description of the * function's parameters. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object must be locked. */ vm_page_t vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_page_t mpred) { struct vm_domain *vmd; vm_paddr_t pa, size; vm_page_t m, msucc; vm_reserv_t rv; int i, index; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex + npages > object->size || object->resident_page_count == 0) return (NULL); /* * All reservations of a particular size have the same alignment. * Assuming that the first page is allocated from a reservation, the * least significant bits of its physical address can be determined * from its offset from the beginning of the reservation and the size * of the reservation. * * Could the specified index within a reservation of the smallest * possible size satisfy the alignment and boundary requirements? */ pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; if ((pa & (alignment - 1)) != 0) return (NULL); size = npages << PAGE_SHIFT; if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) return (NULL); /* * Look for an existing reservation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv == NULL) return (NULL); KASSERT(object != kernel_object || rv->domain == domain, ("vm_reserv_extend_contig: Domain mismatch from reservation.")); index = VM_RESERV_INDEX(object, pindex); /* Does the allocation fit within the reservation? */ if (index + npages > VM_LEVEL_0_NPAGES) return (NULL); domain = rv->domain; vmd = VM_DOMAIN(domain); vm_reserv_lock(rv); if (rv->object != object) goto out; m = &rv->pages[index]; pa = VM_PAGE_TO_PHYS(m); if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) goto out; /* Handle vm_page_rename(m, new_object, ...). */ for (i = 0; i < npages; i++) { if (popmap_is_set(rv->popmap, index + i)) goto out; } if (!vm_domain_allocate(vmd, req, npages)) goto out; for (i = 0; i < npages; i++) vm_reserv_populate(rv, index + i); vm_reserv_unlock(rv); return (m); out: vm_reserv_unlock(rv); return (NULL); } /* * Allocates a contiguous set of physical pages of the given size "npages" * from newly created reservations. All of the physical pages * must be at or above the given physical address "low" and below the given * physical address "high". The given value "alignment" determines the * alignment of the first physical page in the set. If the given value * "boundary" is non-zero, then the set of physical pages cannot cross any * physical address boundary that is a multiple of that value. Both * "alignment" and "boundary" must be a power of two. * * Callers should first invoke vm_reserv_extend_contig() to attempt an * allocation from existing reservations. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object and free page queue must be locked. */ vm_page_t vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_page_t mpred) { struct vm_domain *vmd; vm_paddr_t pa, size; vm_page_t m, m_ret, msucc; vm_pindex_t first, leftcap, rightcap; vm_reserv_t rv; u_long allocpages, maxpages, minpages; int i, index, n; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex + npages > object->size) return (NULL); /* * All reservations of a particular size have the same alignment. * Assuming that the first page is allocated from a reservation, the * least significant bits of its physical address can be determined * from its offset from the beginning of the reservation and the size * of the reservation. * * Could the specified index within a reservation of the smallest * possible size satisfy the alignment and boundary requirements? */ pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; if ((pa & (alignment - 1)) != 0) return (NULL); size = npages << PAGE_SHIFT; if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) return (NULL); /* * Callers should've extended an existing reservation prior to * calling this function. If a reservation exists it is * incompatible with the allocation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv != NULL) return (NULL); /* * Could at least one reservation fit between the first index to the * left that can be used ("leftcap") and the first index to the right * that cannot be used ("rightcap")? * * We must synchronize with the reserv object lock to protect the * pindex/object of the resulting reservations against rename while * we are inspecting. */ first = pindex - VM_RESERV_INDEX(object, pindex); minpages = VM_RESERV_INDEX(object, pindex) + npages; maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); allocpages = maxpages; vm_reserv_object_lock(object); if (mpred != NULL) { if ((rv = vm_reserv_from_page(mpred))->object != object) leftcap = mpred->pindex + 1; else leftcap = rv->pindex + VM_LEVEL_0_NPAGES; if (leftcap > first) { vm_reserv_object_unlock(object); return (NULL); } } if (msucc != NULL) { if ((rv = vm_reserv_from_page(msucc))->object != object) rightcap = msucc->pindex; else rightcap = rv->pindex; if (first + maxpages > rightcap) { if (maxpages == VM_LEVEL_0_NPAGES) { vm_reserv_object_unlock(object); return (NULL); } /* * At least one reservation will fit between "leftcap" * and "rightcap". However, a reservation for the * last of the requested pages will not fit. Reduce * the size of the upcoming allocation accordingly. */ allocpages = minpages; } } vm_reserv_object_unlock(object); /* * Would the last new reservation extend past the end of the object? */ if (first + maxpages > object->size) { /* * Don't allocate the last new reservation if the object is a * vnode or backed by another object that is a vnode. */ if (object->type == OBJT_VNODE || (object->backing_object != NULL && object->backing_object->type == OBJT_VNODE)) { if (maxpages == VM_LEVEL_0_NPAGES) return (NULL); allocpages = minpages; } /* Speculate that the object may grow. */ } /* * Allocate the physical pages. The alignment and boundary specified * for this allocation may be different from the alignment and * boundary specified for the requested pages. For instance, the * specified index may not be the first page within the first new * reservation. */ m = NULL; vmd = VM_DOMAIN(domain); if (vm_domain_allocate(vmd, req, npages)) { vm_domain_free_lock(vmd); m = vm_phys_alloc_contig(domain, allocpages, low, high, ulmax(alignment, VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); vm_domain_free_unlock(vmd); if (m == NULL) { vm_domain_freecnt_inc(vmd, npages); return (NULL); } } else return (NULL); KASSERT(vm_phys_domain(m) == domain, ("vm_reserv_alloc_contig: Page domain does not match requested.")); /* * The allocated physical pages always begin at a reservation * boundary, but they do not always end at a reservation boundary. * Initialize every reservation that is completely covered by the * allocated physical pages. */ m_ret = NULL; index = VM_RESERV_INDEX(object, pindex); do { rv = vm_reserv_from_page(m); KASSERT(rv->pages == m, ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", rv)); vm_reserv_lock(rv); vm_reserv_insert(rv, object, first); n = ulmin(VM_LEVEL_0_NPAGES - index, npages); for (i = 0; i < n; i++) vm_reserv_populate(rv, index + i); npages -= n; if (m_ret == NULL) { m_ret = &rv->pages[index]; index = 0; } vm_reserv_unlock(rv); m += VM_LEVEL_0_NPAGES; first += VM_LEVEL_0_NPAGES; allocpages -= VM_LEVEL_0_NPAGES; } while (allocpages >= VM_LEVEL_0_NPAGES); return (m_ret); } /* * Attempts to extend an existing reservation and allocate the page to the * object. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object must be locked. */ vm_page_t vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain, vm_page_t mpred) { struct vm_domain *vmd; vm_page_t m, msucc; vm_reserv_t rv; int index; VM_OBJECT_ASSERT_WLOCKED(object); /* * Could a reservation currently exist? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex >= object->size || object->resident_page_count == 0) return (NULL); /* * Look for an existing reservation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv == NULL) return (NULL); KASSERT(object != kernel_object || rv->domain == domain, ("vm_reserv_extend: Domain mismatch from reservation.")); domain = rv->domain; vmd = VM_DOMAIN(domain); index = VM_RESERV_INDEX(object, pindex); m = &rv->pages[index]; vm_reserv_lock(rv); /* Handle reclaim race. */ if (rv->object != object || /* Handle vm_page_rename(m, new_object, ...). */ popmap_is_set(rv->popmap, index)) { m = NULL; goto out; } if (vm_domain_allocate(vmd, req, 1) == 0) m = NULL; else vm_reserv_populate(rv, index); out: vm_reserv_unlock(rv); return (m); } /* * Attempts to allocate a new reservation for the object, and allocates a * page from that reservation. Callers should first invoke vm_reserv_extend() * to attempt an allocation from an existing reservation. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object and free page queue must be locked. */ vm_page_t vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain, vm_page_t mpred) { struct vm_domain *vmd; vm_page_t m, msucc; vm_pindex_t first, leftcap, rightcap; vm_reserv_t rv; int index; VM_OBJECT_ASSERT_WLOCKED(object); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex >= object->size) return (NULL); /* * Callers should've extended an existing reservation prior to * calling this function. If a reservation exists it is * incompatible with the allocation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv != NULL) return (NULL); /* * Could a reservation fit between the first index to the left that * can be used and the first index to the right that cannot be used? * * We must synchronize with the reserv object lock to protect the * pindex/object of the resulting reservations against rename while * we are inspecting. */ first = pindex - VM_RESERV_INDEX(object, pindex); vm_reserv_object_lock(object); if (mpred != NULL) { if ((rv = vm_reserv_from_page(mpred))->object != object) leftcap = mpred->pindex + 1; else leftcap = rv->pindex + VM_LEVEL_0_NPAGES; if (leftcap > first) { vm_reserv_object_unlock(object); return (NULL); } } if (msucc != NULL) { if ((rv = vm_reserv_from_page(msucc))->object != object) rightcap = msucc->pindex; else rightcap = rv->pindex; if (first + VM_LEVEL_0_NPAGES > rightcap) { vm_reserv_object_unlock(object); return (NULL); } } vm_reserv_object_unlock(object); /* * Would a new reservation extend past the end of the object? */ if (first + VM_LEVEL_0_NPAGES > object->size) { /* * Don't allocate a new reservation if the object is a vnode or * backed by another object that is a vnode. */ if (object->type == OBJT_VNODE || (object->backing_object != NULL && object->backing_object->type == OBJT_VNODE)) return (NULL); /* Speculate that the object may grow. */ } /* * Allocate and populate the new reservation. */ m = NULL; vmd = VM_DOMAIN(domain); if (vm_domain_allocate(vmd, req, 1)) { vm_domain_free_lock(vmd); m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); vm_domain_free_unlock(vmd); if (m == NULL) { vm_domain_freecnt_inc(vmd, 1); return (NULL); } } else return (NULL); rv = vm_reserv_from_page(m); vm_reserv_lock(rv); KASSERT(rv->pages == m, ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); vm_reserv_insert(rv, object, first); index = VM_RESERV_INDEX(object, pindex); vm_reserv_populate(rv, index); vm_reserv_unlock(rv); return (&rv->pages[index]); } /* * Breaks the given reservation. All free pages in the reservation * are returned to the physical memory allocator. The reservation's * population count and map are reset to their initial state. * * The given reservation must not be in the partially populated reservation * queue. The free page queue lock must be held. */ static void vm_reserv_break(vm_reserv_t rv) { - int begin_zeroes, hi, i, lo; + u_long changes; + int bitpos, hi, i, lo; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); vm_reserv_remove(rv); rv->pages->psind = 0; - i = hi = 0; - do { - /* Find the next 0 bit. Any previous 0 bits are < "hi". */ - lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); - if (lo == 0) { - /* Redundantly clears bits < "hi". */ + hi = lo = -1; + for (i = 0; i <= NPOPMAP; i++) { + /* + * "changes" is a bitmask that marks where a new sequence of + * 0s or 1s begins in popmap[i], with last bit in popmap[i-1] + * considered to be 1 if and only if lo == hi. The bits of + * popmap[-1] and popmap[NPOPMAP] are considered all 1s. + */ + if (i == NPOPMAP) + changes = lo != hi; + else { + changes = rv->popmap[i]; + changes ^= (changes << 1) | (lo == hi); rv->popmap[i] = 0; - rv->popcnt -= NBPOPMAP - hi; - while (++i < NPOPMAP) { - lo = ffsl(~rv->popmap[i]); - if (lo == 0) { - rv->popmap[i] = 0; - rv->popcnt -= NBPOPMAP; - } else - break; + } + while (changes != 0) { + /* + * If the next change marked begins a run of 0s, set + * lo to mark that position. Otherwise set hi and + * free pages from lo up to hi. + */ + bitpos = ffsl(changes) - 1; + changes ^= 1UL << bitpos; + if (lo == hi) + lo = NBPOPMAP * i + bitpos; + else { + hi = NBPOPMAP * i + bitpos; + vm_domain_free_lock(VM_DOMAIN(rv->domain)); + vm_phys_free_contig(&rv->pages[lo], hi - lo); + vm_domain_free_unlock(VM_DOMAIN(rv->domain)); + lo = hi; } - if (i == NPOPMAP) - break; - hi = 0; } - KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); - /* Convert from ffsl() to ordinary bit numbering. */ - lo--; - if (lo > 0) { - /* Redundantly clears bits < "hi". */ - rv->popmap[i] &= ~((1UL << lo) - 1); - rv->popcnt -= lo - hi; - } - begin_zeroes = NBPOPMAP * i + lo; - /* Find the next 1 bit. */ - do - hi = ffsl(rv->popmap[i]); - while (hi == 0 && ++i < NPOPMAP); - if (i != NPOPMAP) - /* Convert from ffsl() to ordinary bit numbering. */ - hi--; - vm_domain_free_lock(VM_DOMAIN(rv->domain)); - vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + - hi - begin_zeroes); - vm_domain_free_unlock(VM_DOMAIN(rv->domain)); - } while (i < NPOPMAP); - KASSERT(rv->popcnt == 0, - ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); + } + rv->popcnt = 0; counter_u64_add(vm_reserv_broken, 1); } /* * Breaks all reservations belonging to the given object. */ void vm_reserv_break_all(vm_object_t object) { vm_reserv_t rv; /* * This access of object->rvq is unsynchronized so that the * object rvq lock can nest after the domain_free lock. We * must check for races in the results. However, the object * lock prevents new additions, so we are guaranteed that when * it returns NULL the object is properly empty. */ while ((rv = LIST_FIRST(&object->rvq)) != NULL) { vm_reserv_lock(rv); /* Reclaim race. */ if (rv->object != object) { vm_reserv_unlock(rv); continue; } vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } vm_reserv_domain_unlock(rv->domain); vm_reserv_break(rv); vm_reserv_unlock(rv); } } /* * Frees the given page if it belongs to a reservation. Returns TRUE if the * page is freed and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_free_page(vm_page_t m) { vm_reserv_t rv; boolean_t ret; rv = vm_reserv_from_page(m); if (rv->object == NULL) return (FALSE); vm_reserv_lock(rv); /* Re-validate after lock. */ if (rv->object != NULL) { vm_reserv_depopulate(rv, m - rv->pages); ret = TRUE; } else ret = FALSE; vm_reserv_unlock(rv); return (ret); } /* * Initializes the reservation management system. Specifically, initializes * the reservation array. * * Requires that vm_page_array and first_page are initialized! */ void vm_reserv_init(void) { vm_paddr_t paddr; struct vm_phys_seg *seg; struct vm_reserv *rv; int i, segind; /* * Initialize the reservation array. Specifically, initialize the * "pages" field for every element that has an underlying superpage. */ for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); while (paddr + VM_LEVEL_0_SIZE <= seg->end) { rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; rv->pages = PHYS_TO_VM_PAGE(paddr); rv->domain = seg->domain; mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); paddr += VM_LEVEL_0_SIZE; } } for (i = 0; i < MAXMEMDOM; i++) { mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL, MTX_DEF); TAILQ_INIT(&vm_rvq_partpop[i]); } for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, MTX_DEF); } /* * Returns true if the given page belongs to a reservation and that page is * free. Otherwise, returns false. */ bool vm_reserv_is_page_free(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); if (rv->object == NULL) return (false); return (popmap_is_clear(rv->popmap, m - rv->pages)); } /* * If the given page belongs to a reservation, returns the level of that * reservation. Otherwise, returns -1. */ int vm_reserv_level(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); return (rv->object != NULL ? 0 : -1); } /* * Returns a reservation level if the given page belongs to a fully populated * reservation and -1 otherwise. */ int vm_reserv_level_iffullpop(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); } /* * Breaks the given partially populated reservation, releasing its free pages * to the physical memory allocator. * * The free page queue lock must be held. */ static void vm_reserv_reclaim(vm_reserv_t rv) { vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); vm_reserv_domain_lock(rv->domain); KASSERT(rv->inpartpopq, ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_reclaim: reserv %p's domain is corrupted %d", rv, rv->domain)); TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; vm_reserv_domain_unlock(rv->domain); vm_reserv_break(rv); counter_u64_add(vm_reserv_reclaimed, 1); } /* * Breaks the reservation at the head of the partially populated reservation * queue, releasing its free pages to the physical memory allocator. Returns * TRUE if a reservation is broken and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_reclaim_inactive(int domain) { vm_reserv_t rv; while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) { vm_reserv_lock(rv); if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) { vm_reserv_unlock(rv); continue; } vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } return (FALSE); } /* * Searches the partially populated reservation queue for the least recently * changed reservation with free pages that satisfy the given request for * contiguous physical memory. If a satisfactory reservation is found, it is * broken. Returns TRUE if a reservation is broken and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { vm_paddr_t pa, size; vm_reserv_t rv, rvn; int hi, i, lo, low_index, next_free; if (npages > VM_LEVEL_0_NPAGES - 1) return (FALSE); size = npages << PAGE_SHIFT; vm_reserv_domain_lock(domain); again: for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) { rvn = TAILQ_NEXT(rv, partpopq); pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); if (pa + PAGE_SIZE - size < low) { /* This entire reservation is too low; go to next. */ continue; } pa = VM_PAGE_TO_PHYS(&rv->pages[0]); if (pa + size > high) { /* This entire reservation is too high; go to next. */ continue; } if (vm_reserv_trylock(rv) == 0) { vm_reserv_domain_unlock(domain); vm_reserv_lock(rv); if (!rv->inpartpopq) { vm_reserv_domain_lock(domain); if (!rvn->inpartpopq) goto again; continue; } } else vm_reserv_domain_unlock(domain); if (pa < low) { /* Start the search for free pages at "low". */ low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; i = low_index / NBPOPMAP; hi = low_index % NBPOPMAP; } else i = hi = 0; do { /* Find the next free page. */ lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); while (lo == 0 && ++i < NPOPMAP) lo = ffsl(~rv->popmap[i]); if (i == NPOPMAP) break; /* Convert from ffsl() to ordinary bit numbering. */ lo--; next_free = NBPOPMAP * i + lo; pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); KASSERT(pa >= low, ("vm_reserv_reclaim_contig: pa is too low")); if (pa + size > high) { /* The rest of this reservation is too high. */ break; } else if ((pa & (alignment - 1)) != 0 || ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { /* * The current page doesn't meet the alignment * and/or boundary requirements. Continue * searching this reservation until the rest * of its free pages are either excluded or * exhausted. */ hi = lo + 1; if (hi >= NBPOPMAP) { hi = 0; i++; } continue; } /* Find the next used page. */ hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); while (hi == 0 && ++i < NPOPMAP) { if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= size) { vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } hi = ffsl(rv->popmap[i]); } /* Convert from ffsl() to ordinary bit numbering. */ if (i != NPOPMAP) hi--; if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= size) { vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } } while (i < NPOPMAP); vm_reserv_unlock(rv); vm_reserv_domain_lock(domain); if (rvn != NULL && !rvn->inpartpopq) goto again; } vm_reserv_domain_unlock(domain); return (FALSE); } /* * Transfers the reservation underlying the given page to a new object. * * The object must be locked. */ void vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, vm_pindex_t old_object_offset) { vm_reserv_t rv; VM_OBJECT_ASSERT_WLOCKED(new_object); rv = vm_reserv_from_page(m); if (rv->object == old_object) { vm_reserv_lock(rv); CTR6(KTR_VM, "%s: rv %p object %p new %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, new_object, rv->popcnt, rv->inpartpopq); if (rv->object == old_object) { vm_reserv_object_lock(old_object); rv->object = NULL; LIST_REMOVE(rv, objq); vm_reserv_object_unlock(old_object); vm_reserv_object_lock(new_object); rv->object = new_object; rv->pindex -= old_object_offset; LIST_INSERT_HEAD(&new_object->rvq, rv, objq); vm_reserv_object_unlock(new_object); } vm_reserv_unlock(rv); } } /* * Returns the size (in bytes) of a reservation of the specified level. */ int vm_reserv_size(int level) { switch (level) { case 0: return (VM_LEVEL_0_SIZE); case -1: return (PAGE_SIZE); default: return (0); } } /* * Allocates the virtual and physical memory required by the reservation * management system's data structures, in particular, the reservation array. */ vm_paddr_t vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) { vm_paddr_t new_end; size_t size; /* * Calculate the size (in bytes) of the reservation array. Round up * from "high_water" because every small page is mapped to an element * in the reservation array based on its physical address. Thus, the * number of elements in the reservation array can be greater than the * number of superpages. */ size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); /* * Allocate and map the physical memory for the reservation array. The * next available virtual address is returned by reference. */ new_end = end - round_page(size); vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); bzero(vm_reserv_array, size); /* * Return the next available physical address. */ return (new_end); } /* * Initializes the reservation management system. Specifically, initializes * the reservation counters. */ static void vm_reserv_counter_init(void *unused) { vm_reserv_freed = counter_u64_alloc(M_WAITOK); vm_reserv_broken = counter_u64_alloc(M_WAITOK); vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); } SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY, vm_reserv_counter_init, NULL); /* * Returns the superpage containing the given page. */ vm_page_t vm_reserv_to_superpage(vm_page_t m) { vm_reserv_t rv; VM_OBJECT_ASSERT_LOCKED(m->object); rv = vm_reserv_from_page(m); if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES) m = rv->pages; else m = NULL; return (m); } #endif /* VM_NRESERVLEVEL > 0 */