Index: head/sys/dev/aac/aac_pci.c
===================================================================
--- head/sys/dev/aac/aac_pci.c	(revision 347889)
+++ head/sys/dev/aac/aac_pci.c	(revision 347890)
@@ -1,523 +1,524 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2000 Michael Smith
  * Copyright (c) 2001 Scott Long
  * Copyright (c) 2000 BSDi
  * Copyright (c) 2001 Adaptec, Inc.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 /*
  * PCI bus interface and resource allocation.
  */
 
 #include "opt_aac.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 
 #include <sys/bio.h>
 #include <sys/bus.h>
 #include <sys/conf.h>
 #include <sys/disk.h>
 
 #include <machine/bus.h>
 #include <machine/resource.h>
 #include <sys/rman.h>
 
 #include <dev/pci/pcireg.h>
 #include <dev/pci/pcivar.h>
 
 #include <dev/aac/aacreg.h>
 #include <sys/aac_ioctl.h>
 #include <dev/aac/aacvar.h>
 
 static int	aac_pci_probe(device_t dev);
 static int	aac_pci_attach(device_t dev);
 
 static int aac_enable_msi = 1;
 SYSCTL_INT(_hw_aac, OID_AUTO, enable_msi, CTLFLAG_RDTUN, &aac_enable_msi, 0,
     "Enable MSI interrupts");
 
 static device_method_t aac_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		aac_pci_probe),
 	DEVMETHOD(device_attach,	aac_pci_attach),
 	DEVMETHOD(device_detach,	aac_detach),
 	DEVMETHOD(device_suspend,	aac_suspend),
 	DEVMETHOD(device_resume,	aac_resume),
 
 	DEVMETHOD_END
 };
 
 static driver_t aac_pci_driver = {
 	"aac",
 	aac_methods,
 	sizeof(struct aac_softc)
 };
 
 static devclass_t	aac_devclass;
 
 DRIVER_MODULE(aac, pci, aac_pci_driver, aac_devclass, NULL, NULL);
 MODULE_DEPEND(aac, pci, 1, 1, 1);
 
 static const struct aac_ident
 {
 	u_int16_t		vendor;
 	u_int16_t		device;
 	u_int16_t		subvendor;
 	u_int16_t		subdevice;
 	int			hwif;
 	int			quirks;
 	const char		*desc;
 } aac_identifiers[] = {
 	{0x1028, 0x0001, 0x1028, 0x0001, AAC_HWIF_I960RX, 0,
 	"Dell PERC 2/Si"},
 	{0x1028, 0x0002, 0x1028, 0x0002, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1028, 0x0003, 0x1028, 0x0003, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Si"},
 	{0x1028, 0x0004, 0x1028, 0x00d0, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Si"},
 	{0x1028, 0x0002, 0x1028, 0x00d1, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1028, 0x0002, 0x1028, 0x00d9, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1028, 0x000a, 0x1028, 0x0106, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1028, 0x000a, 0x1028, 0x011b, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1028, 0x000a, 0x1028, 0x0121, AAC_HWIF_I960RX, 0,
 	"Dell PERC 3/Di"},
 	{0x1011, 0x0046, 0x9005, 0x0364, AAC_HWIF_STRONGARM, 0,
 	"Adaptec AAC-364"},
 	{0x1011, 0x0046, 0x9005, 0x0365, AAC_HWIF_STRONGARM,
 	 AAC_FLAGS_BROKEN_MEMMAP, "Adaptec SCSI RAID 5400S"},
 	{0x1011, 0x0046, 0x9005, 0x1364, AAC_HWIF_STRONGARM, AAC_FLAGS_PERC2QC,
 	 "Dell PERC 2/QC"},
 	{0x1011, 0x0046, 0x103c, 0x10c2, AAC_HWIF_STRONGARM, 0,
 	 "HP NetRaid-4M"},
 	{0x9005, 0x0285, 0x9005, 0x0285, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Adaptec SCSI RAID 2200S"},
 	{0x9005, 0x0285, 0x1028, 0x0287, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Dell PERC 320/DC"},
 	{0x9005, 0x0285, 0x9005, 0x0286, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Adaptec SCSI RAID 2120S"},
 	{0x9005, 0x0285, 0x9005, 0x0290, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB,
 	 "Adaptec SATA RAID 2410SA"},
 	{0x9005, 0x0285, 0x1028, 0x0291, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB,
 	 "Dell CERC SATA RAID 2"},
 	{0x9005, 0x0285, 0x9005, 0x0292, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB,
 	 "Adaptec SATA RAID 2810SA"},
 	{0x9005, 0x0285, 0x9005, 0x0293, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB,
 	 "Adaptec SATA RAID 21610SA"},
 	{0x9005, 0x0285, 0x103c, 0x3227, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB,
 	 "HP ML110 G2 (Adaptec 2610SA)"},
 	{0x9005, 0x0286, 0x9005, 0x028c, AAC_HWIF_RKT, AAC_FLAGS_NOMSI,
 	 "Adaptec SCSI RAID 2230S"},
 	{0x9005, 0x0286, 0x9005, 0x028d, AAC_HWIF_RKT, 0,
 	 "Adaptec SCSI RAID 2130S"},
 	{0x9005, 0x0285, 0x9005, 0x0287, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Adaptec SCSI RAID 2200S"},
 	{0x9005, 0x0285, 0x17aa, 0x0286, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Legend S220"},
 	{0x9005, 0x0285, 0x17aa, 0x0287, AAC_HWIF_I960RX, AAC_FLAGS_NO4GB |
 	 AAC_FLAGS_256FIBS, "Legend S230"},
 	{0x9005, 0x0285, 0x9005, 0x0288, AAC_HWIF_I960RX, 0,
 	 "Adaptec SCSI RAID 3230S"},
 	{0x9005, 0x0285, 0x9005, 0x0289, AAC_HWIF_I960RX, 0,
 	 "Adaptec SCSI RAID 3240S"},
 	{0x9005, 0x0285, 0x9005, 0x028a, AAC_HWIF_I960RX, 0,
 	 "Adaptec SCSI RAID 2020ZCR"},
 	{0x9005, 0x0285, 0x9005, 0x028b, AAC_HWIF_I960RX, 0,
 	 "Adaptec SCSI RAID 2025ZCR"},
 	{0x9005, 0x0286, 0x9005, 0x029b, AAC_HWIF_RKT, AAC_FLAGS_NOMSI,
 	 "Adaptec SATA RAID 2820SA"},
 	{0x9005, 0x0286, 0x9005, 0x029c, AAC_HWIF_RKT, 0,
 	 "Adaptec SATA RAID 2620SA"},
 	{0x9005, 0x0286, 0x9005, 0x029d, AAC_HWIF_RKT, 0,
 	 "Adaptec SATA RAID 2420SA"},
 	{0x9005, 0x0286, 0x9005, 0x029e, AAC_HWIF_RKT, 0,
 	 "ICP ICP9024RO SCSI RAID"},
 	{0x9005, 0x0286, 0x9005, 0x029f, AAC_HWIF_RKT, 0,
 	 "ICP ICP9014RO SCSI RAID"},
 	{0x9005, 0x0285, 0x9005, 0x0294, AAC_HWIF_I960RX, 0,
 	 "Adaptec SATA RAID 2026ZCR"},
 	{0x9005, 0x0285, 0x9005, 0x0296, AAC_HWIF_I960RX, 0,
 	 "Adaptec SCSI RAID 2240S"},
 	{0x9005, 0x0285, 0x9005, 0x0297, AAC_HWIF_I960RX, 0,
 	 "Adaptec SAS RAID 4005SAS"},
 	{0x9005, 0x0285, 0x1014, 0x02f2, AAC_HWIF_I960RX, 0,
 	 "IBM ServeRAID 8i"},
 	{0x9005, 0x0285, 0x1014, 0x0312, AAC_HWIF_I960RX, 0,
 	 "IBM ServeRAID 8i"},
 	{0x9005, 0x0285, 0x9005, 0x0298, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 4000"},
 	{0x9005, 0x0285, 0x9005, 0x0299, AAC_HWIF_I960RX, 0,
 	 "Adaptec SAS RAID 4800SAS"},
 	{0x9005, 0x0285, 0x9005, 0x029a, AAC_HWIF_I960RX, 0,
 	 "Adaptec SAS RAID 4805SAS"},
 	{0x9005, 0x0285, 0x9005, 0x028e, AAC_HWIF_I960RX, 0,
 	 "Adaptec SATA RAID 2020SA ZCR"},
 	{0x9005, 0x0285, 0x9005, 0x028f, AAC_HWIF_I960RX, 0,
 	 "Adaptec SATA RAID 2025SA ZCR"},
 	{0x9005, 0x0285, 0x9005, 0x02a4, AAC_HWIF_I960RX, 0,
 	 "ICP ICP9085LI SAS RAID"},
 	{0x9005, 0x0285, 0x9005, 0x02a5, AAC_HWIF_I960RX, 0,
 	 "ICP ICP5085BR SAS RAID"},
 	{0x9005, 0x0286, 0x9005, 0x02a0, AAC_HWIF_RKT, 0,
 	 "ICP ICP9047MA SATA RAID"},
 	{0x9005, 0x0286, 0x9005, 0x02a1, AAC_HWIF_RKT, 0,
 	 "ICP ICP9087MA SATA RAID"},
 	{0x9005, 0x0286, 0x9005, 0x02a6, AAC_HWIF_RKT, 0,
 	 "ICP9067MA SATA RAID"},
 	{0x9005, 0x0285, 0x9005, 0x02b5, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 5445"},
 	{0x9005, 0x0285, 0x9005, 0x02b6, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 5805"},
 	{0x9005, 0x0285, 0x9005, 0x02b7, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 5085"},
 	{0x9005, 0x0285, 0x9005, 0x02b8, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5445SL"},
 	{0x9005, 0x0285, 0x9005, 0x02b9, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5085SL"},
 	{0x9005, 0x0285, 0x9005, 0x02ba, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5805SL"},
 	{0x9005, 0x0285, 0x9005, 0x02bb, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 3405"},
 	{0x9005, 0x0285, 0x9005, 0x02bc, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 3805"},
 	{0x9005, 0x0285, 0x9005, 0x02bd, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 31205"},
 	{0x9005, 0x0285, 0x9005, 0x02be, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 31605"},
 	{0x9005, 0x0285, 0x9005, 0x02bf, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5045BL"},
 	{0x9005, 0x0285, 0x9005, 0x02c0, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5085BL"},
 	{0x9005, 0x0285, 0x9005, 0x02c1, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5125BR"},
 	{0x9005, 0x0285, 0x9005, 0x02c2, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5165BR"},
 	{0x9005, 0x0285, 0x9005, 0x02c3, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 51205"},
 	{0x9005, 0x0285, 0x9005, 0x02c4, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 51605"},
 	{0x9005, 0x0285, 0x9005, 0x02c5, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5125SL"},
 	{0x9005, 0x0285, 0x9005, 0x02c6, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5165SL"},
 	{0x9005, 0x0285, 0x9005, 0x02c7, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 3085"},
 	{0x9005, 0x0285, 0x9005, 0x02c8, AAC_HWIF_I960RX, 0,
 	 "ICP RAID ICP5805BL"},
 	{0x9005, 0x0285, 0x9005, 0x02ce, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 51245"},
 	{0x9005, 0x0285, 0x9005, 0x02cf, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 51645"},
 	{0x9005, 0x0285, 0x9005, 0x02d0, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 52445"},
 	{0x9005, 0x0285, 0x9005, 0x02d1, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 5405"},
 	{0x9005, 0x0285, 0x9005, 0x02d4, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 2045"},
 	{0x9005, 0x0285, 0x9005, 0x02d5, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 2405"},
 	{0x9005, 0x0285, 0x9005, 0x02d6, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 2445"},
 	{0x9005, 0x0285, 0x9005, 0x02d7, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID 2805"},
 	{0x9005, 0x0286, 0x1014, 0x9580, AAC_HWIF_RKT, 0,
 	 "IBM ServeRAID-8k"},
 	{0x9005, 0x0285, 0x1014, 0x034d, AAC_HWIF_I960RX, 0,
 	 "IBM ServeRAID 8s"},
 	{0x9005, 0x0285, 0x108e, 0x7aac, AAC_HWIF_I960RX, 0,
 	 "Sun STK RAID REM"},
 	{0x9005, 0x0285, 0x108e, 0x7aae, AAC_HWIF_I960RX, 0,
 	 "Sun STK RAID EM"},
 	{0x9005, 0x0285, 0x108e, 0x286, AAC_HWIF_I960RX, 0,
 	 "SG-XPCIESAS-R-IN"},
 	{0x9005, 0x0285, 0x108e, 0x287, AAC_HWIF_I960RX, 0,
 	 "SG-XPCIESAS-R-EX"},
 	{0x9005, 0x0285, 0x15d9, 0x2b5, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S4i"},
 	{0x9005, 0x0285, 0x15d9, 0x2b6, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S8i"},
 	{0x9005, 0x0285, 0x15d9, 0x2c9, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S4iR"},
 	{0x9005, 0x0285, 0x15d9, 0x2ca, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S8iR"},
 	{0x9005, 0x0285, 0x15d9, 0x2d2, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S8i-LP"},
 	{0x9005, 0x0285, 0x15d9, 0x2d3, AAC_HWIF_I960RX, 0,
 	 "AOC-USAS-S8iR-LP"},
 	{0, 0, 0, 0, 0, 0, 0}
 };
 
 static const struct aac_ident
 aac_family_identifiers[] = {
 	{0x9005, 0x0285, 0, 0, AAC_HWIF_I960RX, 0,
 	 "Adaptec RAID Controller"},
 	{0x9005, 0x0286, 0, 0, AAC_HWIF_RKT, 0,
 	 "Adaptec RAID Controller"},
 	{0, 0, 0, 0, 0, 0, 0}
 };
 
 static const struct aac_ident *
 aac_find_ident(device_t dev)
 {
 	const struct aac_ident *m;
 	u_int16_t vendid, devid, sub_vendid, sub_devid;
 
 	vendid = pci_get_vendor(dev);
 	devid = pci_get_device(dev);
 	sub_vendid = pci_get_subvendor(dev);
 	sub_devid = pci_get_subdevice(dev);
 
 	for (m = aac_identifiers; m->vendor != 0; m++) {
 		if ((m->vendor == vendid) && (m->device == devid) &&
 		    (m->subvendor == sub_vendid) &&
 		    (m->subdevice == sub_devid))
 			return (m);
 	}
 
 	for (m = aac_family_identifiers; m->vendor != 0; m++) {
 		if ((m->vendor == vendid) && (m->device == devid))
 			return (m);
 	}
 	return (NULL);
 }
 
 /*
  * Determine whether this is one of our supported adapters.
  */
 static int
 aac_pci_probe(device_t dev)
 {
 	const struct aac_ident *id;
 
 	fwprintf(NULL, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
 
 	if ((id = aac_find_ident(dev)) != NULL) {
 		device_set_desc(dev, id->desc);
 		return(BUS_PROBE_DEFAULT);
 	}
 	return(ENXIO);
 }
 
 /*
  * Allocate resources for our device, set up the bus interface.
  */
 static int
 aac_pci_attach(device_t dev)
 {
 	struct aac_softc *sc;
 	const struct aac_ident *id;
 	int count, error, rid;
 
 	fwprintf(NULL, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
 
 	/*
 	 * Initialise softc.
 	 */
 	sc = device_get_softc(dev);
 	sc->aac_dev = dev;
 
 	/* assume failure is 'not configured' */
 	error = ENXIO;
 
 	/*
 	 * Verify that the adapter is correctly set up in PCI space.
 	 */
 	pci_enable_busmaster(dev);
 	if (!(pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_BUSMASTEREN)) {
 		device_printf(dev, "can't enable bus-master feature\n");
 		goto out;
 	}
 
 	/*
 	 * Detect the hardware interface version, set up the bus interface
 	 * indirection.
 	 */
 	id = aac_find_ident(dev);
 	sc->aac_hwif = id->hwif;
 	switch(sc->aac_hwif) {
 	case AAC_HWIF_I960RX:
 	case AAC_HWIF_NARK:
 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B,
 		    "set hardware up for i960Rx/NARK");
 		sc->aac_if = &aac_rx_interface;
 		break;
 	case AAC_HWIF_STRONGARM:
 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B,
 		    "set hardware up for StrongARM");
 		sc->aac_if = &aac_sa_interface;
 		break;
 	case AAC_HWIF_RKT:
 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B,
 		    "set hardware up for Rocket/MIPS");
 		sc->aac_if = &aac_rkt_interface;
 		break;
 	default:
 		sc->aac_hwif = AAC_HWIF_UNKNOWN;
 		device_printf(dev, "unknown hardware type\n");
 		goto out;
 	}
 
 	/* Set up quirks */
 	sc->flags = id->quirks;
 
 	/*
 	 * Allocate the PCI register window(s).
 	 */
 	rid = PCIR_BAR(0);
 	if ((sc->aac_regs_res0 = bus_alloc_resource_any(dev,
 	    SYS_RES_MEMORY, &rid, RF_ACTIVE)) == NULL) {
 		device_printf(dev, "can't allocate register window 0\n");
 		goto out;
 	}
 	sc->aac_btag0 = rman_get_bustag(sc->aac_regs_res0);
 	sc->aac_bhandle0 = rman_get_bushandle(sc->aac_regs_res0);
 
 	if (sc->aac_hwif == AAC_HWIF_NARK) {
 		rid = PCIR_BAR(1);
 		if ((sc->aac_regs_res1 = bus_alloc_resource_any(dev,
 		    SYS_RES_MEMORY, &rid, RF_ACTIVE)) == NULL) {
 			device_printf(dev,
 			    "can't allocate register window 1\n");
 			goto out;
 		}
 		sc->aac_btag1 = rman_get_bustag(sc->aac_regs_res1);
 		sc->aac_bhandle1 = rman_get_bushandle(sc->aac_regs_res1);
 	} else {
 		sc->aac_regs_res1 = sc->aac_regs_res0;
 		sc->aac_btag1 = sc->aac_btag0;
 		sc->aac_bhandle1 = sc->aac_bhandle0;
 	}
 
 	/*
 	 * Allocate the interrupt.
 	 */
 	rid = 0;
 	if (aac_enable_msi != 0 && (sc->flags & AAC_FLAGS_NOMSI) == 0) {
 		count = 1;
 		if (pci_alloc_msi(dev, &count) == 0)
 			rid = 1;
 	}
 	if ((sc->aac_irq = bus_alloc_resource_any(sc->aac_dev, SYS_RES_IRQ,
 	    &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE))) == NULL) {
 		device_printf(dev, "can't allocate interrupt\n");
 		goto out;
 	}
 
 	/*
 	 * Allocate the parent bus DMA tag appropriate for our PCI interface.
 	 *
 	 * Note that some of these controllers are 64-bit capable.
 	 */
 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
-			       PAGE_SIZE, 0,		/* algnmnt, boundary */
+			       PAGE_SIZE,		/* algnmnt */
+			       ((bus_size_t)((uint64_t)1 << 32)), /* boundary*/
 			       BUS_SPACE_MAXADDR,	/* lowaddr */
 			       BUS_SPACE_MAXADDR, 	/* highaddr */
 			       NULL, NULL, 		/* filter, filterarg */
 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
 			       0,			/* flags */
 			       NULL, NULL,		/* No locking needed */
 			       &sc->aac_parent_dmat)) {
 		device_printf(dev, "can't allocate parent DMA tag\n");
 		goto out;
 	}
 
 	/*
 	 * Do bus-independent initialisation.
 	 */
 	error = aac_attach(sc);
 
 out:
 	if (error)
 		aac_free(sc);
 	return(error);
 }
 
 /*
  * Do nothing driver that will attach to the SCSI channels of a Dell PERC
  * controller.  This is needed to keep the power management subsystem from
  * trying to power down these devices.
  */
 static int aacch_probe(device_t dev);
 static int aacch_attach(device_t dev);
 static int aacch_detach(device_t dev);
 
 static device_method_t aacch_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		aacch_probe),
 	DEVMETHOD(device_attach,	aacch_attach),
 	DEVMETHOD(device_detach,	aacch_detach),
 	DEVMETHOD_END
 };
 
 static driver_t aacch_driver = {
 	"aacch",
 	aacch_methods,
 	1	/* no softc */
 };
 
 static devclass_t	aacch_devclass;
 DRIVER_MODULE(aacch, pci, aacch_driver, aacch_devclass, NULL, NULL);
 MODULE_PNP_INFO("U16:vendor;U16:device;", pci, aac,
     aac_identifiers, nitems(aac_identifiers) - 1);
 
 static int
 aacch_probe(device_t dev)
 {
 
 	if ((pci_get_vendor(dev) != 0x9005) ||
 	    (pci_get_device(dev) != 0x00c5))
 		return (ENXIO);
 
 	device_set_desc(dev, "AAC RAID Channel");
 	return (-10);
 }
 
 static int
 aacch_attach(device_t dev __unused)
 {
 
 	return (0);
 }
 
 static int
 aacch_detach(device_t dev __unused)
 {
 
 	return (0);
 }
Index: head/sys/dev/bge/if_bge.c
===================================================================
--- head/sys/dev/bge/if_bge.c	(revision 347889)
+++ head/sys/dev/bge/if_bge.c	(revision 347890)
@@ -1,6891 +1,6916 @@
 /*-
  * SPDX-License-Identifier: BSD-4-Clause
  *
  * Copyright (c) 2001 Wind River Systems
  * Copyright (c) 1997, 1998, 1999, 2001
  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by Bill Paul.
  * 4. Neither the name of the author nor the names of any co-contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  * THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 /*
  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
  *
  * The Broadcom BCM5700 is based on technology originally developed by
  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
  * frames, highly configurable RX filtering, and 16 RX and TX queues
  * (which, along with RX filter rules, can be used for QOS applications).
  * Other features, such as TCP segmentation, may be available as part
  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
  * firmware images can be stored in hardware and need not be compiled
  * into the driver.
  *
  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
  *
  * The BCM5701 is a single-chip solution incorporating both the BCM5700
  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
  * does not support external SSRAM.
  *
  * Broadcom also produces a variation of the BCM5700 under the "Altima"
  * brand name, which is functionally similar but lacks PCI-X support.
  *
  * Without external SSRAM, you can only have at most 4 TX rings,
  * and the use of the mini RX ring is disabled. This seems to imply
  * that these features are simply not available on the BCM5701. As a
  * result, this driver does not implement any support for the mini RX
  * ring.
  */
 
 #ifdef HAVE_KERNEL_OPTION_HEADERS
 #include "opt_device_polling.h"
 #endif
 
 #include <sys/param.h>
 #include <sys/endian.h>
 #include <sys/systm.h>
 #include <sys/sockio.h>
 #include <sys/mbuf.h>
 #include <sys/malloc.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/socket.h>
 #include <sys/sysctl.h>
 #include <sys/taskqueue.h>
 
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_arp.h>
 #include <net/ethernet.h>
 #include <net/if_dl.h>
 #include <net/if_media.h>
 
 #include <net/bpf.h>
 
 #include <net/if_types.h>
 #include <net/if_vlan_var.h>
 
 #include <netinet/in_systm.h>
 #include <netinet/in.h>
 #include <netinet/ip.h>
 #include <netinet/tcp.h>
 #include <netinet/netdump/netdump.h>
 
 #include <machine/bus.h>
 #include <machine/resource.h>
 #include <sys/bus.h>
 #include <sys/rman.h>
 
 #include <dev/mii/mii.h>
 #include <dev/mii/miivar.h>
 #include "miidevs.h"
 #include <dev/mii/brgphyreg.h>
 
 #ifdef __sparc64__
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/openfirm.h>
 #include <machine/ofw_machdep.h>
 #include <machine/ver.h>
 #endif
 
 #include <dev/pci/pcireg.h>
 #include <dev/pci/pcivar.h>
 
 #include <dev/bge/if_bgereg.h>
 
 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
 
 MODULE_DEPEND(bge, pci, 1, 1, 1);
 MODULE_DEPEND(bge, ether, 1, 1, 1);
 MODULE_DEPEND(bge, miibus, 1, 1, 1);
 
 /* "device miibus" required.  See GENERIC if you get errors here. */
 #include "miibus_if.h"
 
 /*
  * Various supported device vendors/types and their names. Note: the
  * spec seems to indicate that the hardware still has Alteon's vendor
  * ID burned into it, though it will always be overriden by the vendor
  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  */
 static const struct bge_type {
 	uint16_t	bge_vid;
 	uint16_t	bge_did;
 } bge_devs[] = {
 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
 
 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
 
 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
 
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
 
 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
 
 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
 
 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
 
 	{ 0, 0 }
 };
 
 static const struct bge_vendor {
 	uint16_t	v_id;
 	const char	*v_name;
 } bge_vendors[] = {
 	{ ALTEON_VENDORID,	"Alteon" },
 	{ ALTIMA_VENDORID,	"Altima" },
 	{ APPLE_VENDORID,	"Apple" },
 	{ BCOM_VENDORID,	"Broadcom" },
 	{ SK_VENDORID,		"SysKonnect" },
 	{ TC_VENDORID,		"3Com" },
 	{ FJTSU_VENDORID,	"Fujitsu" },
 
 	{ 0, NULL }
 };
 
 static const struct bge_revision {
 	uint32_t	br_chipid;
 	const char	*br_name;
 } bge_revisions[] = {
 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
 	/* 5754 and 5787 share the same ASIC ID */
 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
 
 	{ 0, NULL }
 };
 
 /*
  * Some defaults for major revisions, so that newer steppings
  * that we don't know about have a shot at working.
  */
 static const struct bge_revision bge_majorrevs[] = {
 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
 	/* 5754 and 5787 share the same ASIC ID */
 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
 
 	{ 0, NULL }
 };
 
 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
 
 static uint32_t bge_chipid(device_t);
 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
 static const struct bge_revision * bge_lookup_rev(uint32_t);
 
 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
 
 static int bge_probe(device_t);
 static int bge_attach(device_t);
 static int bge_detach(device_t);
 static int bge_suspend(device_t);
 static int bge_resume(device_t);
 static void bge_release_resources(struct bge_softc *);
 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
 static int bge_dma_alloc(struct bge_softc *);
 static void bge_dma_free(struct bge_softc *);
 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
 
 static void bge_devinfo(struct bge_softc *);
 static int bge_mbox_reorder(struct bge_softc *);
 
 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
 
 static void bge_txeof(struct bge_softc *, uint16_t);
 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
 static int bge_rxeof(struct bge_softc *, uint16_t, int);
 
 static void bge_asf_driver_up (struct bge_softc *);
 static void bge_tick(void *);
 static void bge_stats_clear_regs(struct bge_softc *);
 static void bge_stats_update(struct bge_softc *);
 static void bge_stats_update_regs(struct bge_softc *);
 static struct mbuf *bge_check_short_dma(struct mbuf *);
 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
     uint16_t *, uint16_t *);
 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
 
 static void bge_intr(void *);
 static int bge_msi_intr(void *);
 static void bge_intr_task(void *, int);
 static void bge_start(if_t);
 static void bge_start_locked(if_t);
 static void bge_start_tx(struct bge_softc *, uint32_t);
 static int bge_ioctl(if_t, u_long, caddr_t);
 static void bge_init_locked(struct bge_softc *);
 static void bge_init(void *);
 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
 static void bge_stop(struct bge_softc *);
 static void bge_watchdog(struct bge_softc *);
 static int bge_shutdown(device_t);
 static int bge_ifmedia_upd_locked(if_t);
 static int bge_ifmedia_upd(if_t);
 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
 static uint64_t bge_get_counter(if_t, ift_counter);
 
 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
 
 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
 
 static void bge_setpromisc(struct bge_softc *);
 static void bge_setmulti(struct bge_softc *);
 static void bge_setvlan(struct bge_softc *);
 
 static __inline void bge_rxreuse_std(struct bge_softc *, int);
 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
 static int bge_newbuf_std(struct bge_softc *, int);
 static int bge_newbuf_jumbo(struct bge_softc *, int);
 static int bge_init_rx_ring_std(struct bge_softc *);
 static void bge_free_rx_ring_std(struct bge_softc *);
 static int bge_init_rx_ring_jumbo(struct bge_softc *);
 static void bge_free_rx_ring_jumbo(struct bge_softc *);
 static void bge_free_tx_ring(struct bge_softc *);
 static int bge_init_tx_ring(struct bge_softc *);
 
 static int bge_chipinit(struct bge_softc *);
 static int bge_blockinit(struct bge_softc *);
 static uint32_t bge_dma_swap_options(struct bge_softc *);
 
 static int bge_has_eaddr(struct bge_softc *);
 static uint32_t bge_readmem_ind(struct bge_softc *, int);
 static void bge_writemem_ind(struct bge_softc *, int, int);
 static void bge_writembx(struct bge_softc *, int, int);
 #ifdef notdef
 static uint32_t bge_readreg_ind(struct bge_softc *, int);
 #endif
 static void bge_writemem_direct(struct bge_softc *, int, int);
 static void bge_writereg_ind(struct bge_softc *, int, int);
 
 static int bge_miibus_readreg(device_t, int, int);
 static int bge_miibus_writereg(device_t, int, int, int);
 static void bge_miibus_statchg(device_t);
 #ifdef DEVICE_POLLING
 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
 #endif
 
 #define	BGE_RESET_SHUTDOWN	0
 #define	BGE_RESET_START		1
 #define	BGE_RESET_SUSPEND	2
 static void bge_sig_post_reset(struct bge_softc *, int);
 static void bge_sig_legacy(struct bge_softc *, int);
 static void bge_sig_pre_reset(struct bge_softc *, int);
 static void bge_stop_fw(struct bge_softc *);
 static int bge_reset(struct bge_softc *);
 static void bge_link_upd(struct bge_softc *);
 
 static void bge_ape_lock_init(struct bge_softc *);
 static void bge_ape_read_fw_ver(struct bge_softc *);
 static int bge_ape_lock(struct bge_softc *, int);
 static void bge_ape_unlock(struct bge_softc *, int);
 static void bge_ape_send_event(struct bge_softc *, uint32_t);
 static void bge_ape_driver_state_change(struct bge_softc *, int);
 
 /*
  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  * leak information to untrusted users.  It is also known to cause alignment
  * traps on certain architectures.
  */
 #ifdef BGE_REGISTER_DEBUG
 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
 #endif
 static void bge_add_sysctls(struct bge_softc *);
 static void bge_add_sysctl_stats_regs(struct bge_softc *,
     struct sysctl_ctx_list *, struct sysctl_oid_list *);
 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
     struct sysctl_oid_list *);
 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
 
 NETDUMP_DEFINE(bge);
 
 static device_method_t bge_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		bge_probe),
 	DEVMETHOD(device_attach,	bge_attach),
 	DEVMETHOD(device_detach,	bge_detach),
 	DEVMETHOD(device_shutdown,	bge_shutdown),
 	DEVMETHOD(device_suspend,	bge_suspend),
 	DEVMETHOD(device_resume,	bge_resume),
 
 	/* MII interface */
 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
 
 	DEVMETHOD_END
 };
 
 static driver_t bge_driver = {
 	"bge",
 	bge_methods,
 	sizeof(struct bge_softc)
 };
 
 static devclass_t bge_devclass;
 
 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
     nitems(bge_devs) - 1);
 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
 
 static int bge_allow_asf = 1;
 
 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
 	"Allow ASF mode if available");
 
 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
 
 static int
 bge_has_eaddr(struct bge_softc *sc)
 {
 #ifdef __sparc64__
 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
 	device_t dev;
 	uint32_t subvendor;
 
 	dev = sc->bge_dev;
 
 	/*
 	 * The on-board BGEs found in sun4u machines aren't fitted with
 	 * an EEPROM which means that we have to obtain the MAC address
 	 * via OFW and that some tests will always fail.  We distinguish
 	 * such BGEs by the subvendor ID, which also has to be obtained
 	 * from OFW instead of the PCI configuration space as the latter
 	 * indicates Broadcom as the subvendor of the netboot interface.
 	 * For early Blade 1500 and 2500 we even have to check the OFW
 	 * device path as the subvendor ID always defaults to Broadcom
 	 * there.
 	 */
 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
 		return (0);
 	memset(buf, 0, sizeof(buf));
 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
 			return (0);
 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
 			return (0);
 	}
 #endif
 	return (1);
 }
 
 static uint32_t
 bge_readmem_ind(struct bge_softc *sc, int off)
 {
 	device_t dev;
 	uint32_t val;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
 		return (0);
 
 	dev = sc->bge_dev;
 
 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
 	return (val);
 }
 
 static void
 bge_writemem_ind(struct bge_softc *sc, int off, int val)
 {
 	device_t dev;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
 		return;
 
 	dev = sc->bge_dev;
 
 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
 }
 
 #ifdef notdef
 static uint32_t
 bge_readreg_ind(struct bge_softc *sc, int off)
 {
 	device_t dev;
 
 	dev = sc->bge_dev;
 
 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
 }
 #endif
 
 static void
 bge_writereg_ind(struct bge_softc *sc, int off, int val)
 {
 	device_t dev;
 
 	dev = sc->bge_dev;
 
 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
 }
 
 static void
 bge_writemem_direct(struct bge_softc *sc, int off, int val)
 {
 	CSR_WRITE_4(sc, off, val);
 }
 
 static void
 bge_writembx(struct bge_softc *sc, int off, int val)
 {
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
 
 	CSR_WRITE_4(sc, off, val);
 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
 		CSR_READ_4(sc, off);
 }
 
 /*
  * Clear all stale locks and select the lock for this driver instance.
  */
 static void
 bge_ape_lock_init(struct bge_softc *sc)
 {
 	uint32_t bit, regbase;
 	int i;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 		regbase = BGE_APE_LOCK_GRANT;
 	else
 		regbase = BGE_APE_PER_LOCK_GRANT;
 
 	/* Clear any stale locks. */
 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
 		switch (i) {
 		case BGE_APE_LOCK_PHY0:
 		case BGE_APE_LOCK_PHY1:
 		case BGE_APE_LOCK_PHY2:
 		case BGE_APE_LOCK_PHY3:
 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
 			break;
 		default:
 			if (sc->bge_func_addr == 0)
 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
 			else
 				bit = (1 << sc->bge_func_addr);
 		}
 		APE_WRITE_4(sc, regbase + 4 * i, bit);
 	}
 
 	/* Select the PHY lock based on the device's function number. */
 	switch (sc->bge_func_addr) {
 	case 0:
 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
 		break;
 	case 1:
 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
 		break;
 	case 2:
 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
 		break;
 	case 3:
 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
 		break;
 	default:
 		device_printf(sc->bge_dev,
 		    "PHY lock not supported on this function\n");
 	}
 }
 
 /*
  * Check for APE firmware, set flags, and print version info.
  */
 static void
 bge_ape_read_fw_ver(struct bge_softc *sc)
 {
 	const char *fwtype;
 	uint32_t apedata, features;
 
 	/* Check for a valid APE signature in shared memory. */
 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
 		return;
 	}
 
 	/* Check if APE firmware is running. */
 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
 		device_printf(sc->bge_dev, "APE signature found "
 		    "but FW status not ready! 0x%08x\n", apedata);
 		return;
 	}
 
 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
 
 	/* Fetch the APE firwmare type and version. */
 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
 		fwtype = "NCSI";
 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
 		fwtype = "DASH";
 	} else
 		fwtype = "UNKN";
 
 	/* Print the APE firmware version. */
 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
 	    fwtype,
 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
 }
 
 static int
 bge_ape_lock(struct bge_softc *sc, int locknum)
 {
 	uint32_t bit, gnt, req, status;
 	int i, off;
 
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
 		return (0);
 
 	/* Lock request/grant registers have different bases. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
 		req = BGE_APE_LOCK_REQ;
 		gnt = BGE_APE_LOCK_GRANT;
 	} else {
 		req = BGE_APE_PER_LOCK_REQ;
 		gnt = BGE_APE_PER_LOCK_GRANT;
 	}
 
 	off = 4 * locknum;
 
 	switch (locknum) {
 	case BGE_APE_LOCK_GPIO:
 		/* Lock required when using GPIO. */
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 			return (0);
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_REQ_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_GRC:
 		/* Lock required to reset the device. */
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_REQ_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_MEM:
 		/* Lock required when accessing certain APE memory. */
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_REQ_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_PHY0:
 	case BGE_APE_LOCK_PHY1:
 	case BGE_APE_LOCK_PHY2:
 	case BGE_APE_LOCK_PHY3:
 		/* Lock required when accessing PHYs. */
 		bit = BGE_APE_LOCK_REQ_DRIVER0;
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	/* Request a lock. */
 	APE_WRITE_4(sc, req + off, bit);
 
 	/* Wait up to 1 second to acquire lock. */
 	for (i = 0; i < 20000; i++) {
 		status = APE_READ_4(sc, gnt + off);
 		if (status == bit)
 			break;
 		DELAY(50);
 	}
 
 	/* Handle any errors. */
 	if (status != bit) {
 		device_printf(sc->bge_dev, "APE lock %d request failed! "
 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
 		    locknum, req + off, bit & 0xFFFF, gnt + off,
 		    status & 0xFFFF);
 		/* Revoke the lock request. */
 		APE_WRITE_4(sc, gnt + off, bit);
 		return (EBUSY);
 	}
 
 	return (0);
 }
 
 static void
 bge_ape_unlock(struct bge_softc *sc, int locknum)
 {
 	uint32_t bit, gnt;
 	int off;
 
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
 		return;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 		gnt = BGE_APE_LOCK_GRANT;
 	else
 		gnt = BGE_APE_PER_LOCK_GRANT;
 
 	off = 4 * locknum;
 
 	switch (locknum) {
 	case BGE_APE_LOCK_GPIO:
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 			return;
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_GRC:
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_MEM:
 		if (sc->bge_func_addr == 0)
 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
 		else
 			bit = (1 << sc->bge_func_addr);
 		break;
 	case BGE_APE_LOCK_PHY0:
 	case BGE_APE_LOCK_PHY1:
 	case BGE_APE_LOCK_PHY2:
 	case BGE_APE_LOCK_PHY3:
 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
 		break;
 	default:
 		return;
 	}
 
 	APE_WRITE_4(sc, gnt + off, bit);
 }
 
 /*
  * Send an event to the APE firmware.
  */
 static void
 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
 {
 	uint32_t apedata;
 	int i;
 
 	/* NCSI does not support APE events. */
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
 		return;
 
 	/* Wait up to 1ms for APE to service previous event. */
 	for (i = 10; i > 0; i--) {
 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
 			break;
 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
 			break;
 		}
 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
 		DELAY(100);
 	}
 	if (i == 0)
 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
 		    event);
 }
 
 static void
 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
 {
 	uint32_t apedata, event;
 
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
 		return;
 
 	switch (kind) {
 	case BGE_RESET_START:
 		/* If this is the first load, clear the load counter. */
 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
 		else {
 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
 		}
 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
 		    BGE_APE_HOST_SEG_SIG_MAGIC);
 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
 		    BGE_APE_HOST_SEG_LEN_MAGIC);
 
 		/* Add some version info if bge(4) supports it. */
 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
 		    BGE_APE_HOST_DRVR_STATE_START);
 		event = BGE_APE_EVENT_STATUS_STATE_START;
 		break;
 	case BGE_RESET_SHUTDOWN:
 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
 		break;
 	case BGE_RESET_SUSPEND:
 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
 		break;
 	default:
 		return;
 	}
 
 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
 }
 
 /*
  * Map a single buffer address.
  */
 
 static void
 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 {
 	struct bge_dmamap_arg *ctx;
 
 	if (error)
 		return;
 
 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
 
 	ctx = arg;
 	ctx->bge_busaddr = segs->ds_addr;
 }
 
 static uint8_t
 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
 {
 	uint32_t access, byte = 0;
 	int i;
 
 	/* Lock. */
 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
 	for (i = 0; i < 8000; i++) {
 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
 			break;
 		DELAY(20);
 	}
 	if (i == 8000)
 		return (1);
 
 	/* Enable access. */
 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
 
 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
 		DELAY(10);
 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
 			DELAY(10);
 			break;
 		}
 	}
 
 	if (i == BGE_TIMEOUT * 10) {
 		if_printf(sc->bge_ifp, "nvram read timed out\n");
 		return (1);
 	}
 
 	/* Get result. */
 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
 
 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
 
 	/* Disable access. */
 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
 
 	/* Unlock. */
 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
 
 	return (0);
 }
 
 /*
  * Read a sequence of bytes from NVRAM.
  */
 static int
 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 {
 	int err = 0, i;
 	uint8_t byte = 0;
 
 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 		return (1);
 
 	for (i = 0; i < cnt; i++) {
 		err = bge_nvram_getbyte(sc, off + i, &byte);
 		if (err)
 			break;
 		*(dest + i) = byte;
 	}
 
 	return (err ? 1 : 0);
 }
 
 /*
  * Read a byte of data stored in the EEPROM at address 'addr.' The
  * BCM570x supports both the traditional bitbang interface and an
  * auto access interface for reading the EEPROM. We use the auto
  * access method.
  */
 static uint8_t
 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
 {
 	int i;
 	uint32_t byte = 0;
 
 	/*
 	 * Enable use of auto EEPROM access so we can avoid
 	 * having to use the bitbang method.
 	 */
 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
 
 	/* Reset the EEPROM, load the clock period. */
 	CSR_WRITE_4(sc, BGE_EE_ADDR,
 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
 	DELAY(20);
 
 	/* Issue the read EEPROM command. */
 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
 
 	/* Wait for completion */
 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
 		DELAY(10);
 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
 			break;
 	}
 
 	if (i == BGE_TIMEOUT * 10) {
 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
 		return (1);
 	}
 
 	/* Get result. */
 	byte = CSR_READ_4(sc, BGE_EE_DATA);
 
 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
 
 	return (0);
 }
 
 /*
  * Read a sequence of bytes from the EEPROM.
  */
 static int
 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 {
 	int i, error = 0;
 	uint8_t byte = 0;
 
 	for (i = 0; i < cnt; i++) {
 		error = bge_eeprom_getbyte(sc, off + i, &byte);
 		if (error)
 			break;
 		*(dest + i) = byte;
 	}
 
 	return (error ? 1 : 0);
 }
 
 static int
 bge_miibus_readreg(device_t dev, int phy, int reg)
 {
 	struct bge_softc *sc;
 	uint32_t val;
 	int i;
 
 	sc = device_get_softc(dev);
 
 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 		return (0);
 
 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 		CSR_WRITE_4(sc, BGE_MI_MODE,
 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 		DELAY(80);
 	}
 
 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
 
 	/* Poll for the PHY register access to complete. */
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		DELAY(10);
 		val = CSR_READ_4(sc, BGE_MI_COMM);
 		if ((val & BGE_MICOMM_BUSY) == 0) {
 			DELAY(5);
 			val = CSR_READ_4(sc, BGE_MI_COMM);
 			break;
 		}
 	}
 
 	if (i == BGE_TIMEOUT) {
 		device_printf(sc->bge_dev,
 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
 		    phy, reg, val);
 		val = 0;
 	}
 
 	/* Restore the autopoll bit if necessary. */
 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 		DELAY(80);
 	}
 
 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 
 	if (val & BGE_MICOMM_READFAIL)
 		return (0);
 
 	return (val & 0xFFFF);
 }
 
 static int
 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
 {
 	struct bge_softc *sc;
 	int i;
 
 	sc = device_get_softc(dev);
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
 		return (0);
 
 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 		return (0);
 
 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 		CSR_WRITE_4(sc, BGE_MI_MODE,
 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 		DELAY(80);
 	}
 
 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
 
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		DELAY(10);
 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
 			DELAY(5);
 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
 			break;
 		}
 	}
 
 	/* Restore the autopoll bit if necessary. */
 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 		DELAY(80);
 	}
 
 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 
 	if (i == BGE_TIMEOUT)
 		device_printf(sc->bge_dev,
 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
 		    phy, reg, val);
 
 	return (0);
 }
 
 static void
 bge_miibus_statchg(device_t dev)
 {
 	struct bge_softc *sc;
 	struct mii_data *mii;
 	uint32_t mac_mode, rx_mode, tx_mode;
 
 	sc = device_get_softc(dev);
 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
 		return;
 	mii = device_get_softc(sc->bge_miibus);
 
 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 	    (IFM_ACTIVE | IFM_AVALID)) {
 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
 		case IFM_10_T:
 		case IFM_100_TX:
 			sc->bge_link = 1;
 			break;
 		case IFM_1000_T:
 		case IFM_1000_SX:
 		case IFM_2500_SX:
 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 				sc->bge_link = 1;
 			else
 				sc->bge_link = 0;
 			break;
 		default:
 			sc->bge_link = 0;
 			break;
 		}
 	} else
 		sc->bge_link = 0;
 	if (sc->bge_link == 0)
 		return;
 
 	/*
 	 * APE firmware touches these registers to keep the MAC
 	 * connected to the outside world.  Try to keep the
 	 * accesses atomic.
 	 */
 
 	/* Set the port mode (MII/GMII) to match the link speed. */
 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
 
 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
 		mac_mode |= BGE_PORTMODE_GMII;
 	else
 		mac_mode |= BGE_PORTMODE_MII;
 
 	/* Set MAC flow control behavior to match link flow control settings. */
 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
 	} else
 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
 
 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
 	DELAY(40);
 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
 }
 
 /*
  * Intialize a standard receive ring descriptor.
  */
 static int
 bge_newbuf_std(struct bge_softc *sc, int i)
 {
 	struct mbuf *m;
 	struct bge_rx_bd *r;
 	bus_dma_segment_t segs[1];
 	bus_dmamap_t map;
 	int error, nsegs;
 
 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
 		if (m == NULL)
 			return (ENOBUFS);
 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 	} else {
 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 		if (m == NULL)
 			return (ENOBUFS);
 		m->m_len = m->m_pkthdr.len = MCLBYTES;
 	}
 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 		m_adj(m, ETHER_ALIGN);
 
 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
 	if (error != 0) {
 		m_freem(m);
 		return (error);
 	}
 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
 	}
 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
 	sc->bge_cdata.bge_rx_std_sparemap = map;
 	sc->bge_cdata.bge_rx_std_chain[i] = m;
 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 	r->bge_flags = BGE_RXBDFLAG_END;
 	r->bge_len = segs[0].ds_len;
 	r->bge_idx = i;
 
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
 
 	return (0);
 }
 
 /*
  * Initialize a jumbo receive ring descriptor. This allocates
  * a jumbo buffer from the pool managed internally by the driver.
  */
 static int
 bge_newbuf_jumbo(struct bge_softc *sc, int i)
 {
 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
 	bus_dmamap_t map;
 	struct bge_extrx_bd *r;
 	struct mbuf *m;
 	int error, nsegs;
 
 	MGETHDR(m, M_NOWAIT, MT_DATA);
 	if (m == NULL)
 		return (ENOBUFS);
 
 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
 		m_freem(m);
 		return (ENOBUFS);
 	}
 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 		m_adj(m, ETHER_ALIGN);
 
 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
 	if (error != 0) {
 		m_freem(m);
 		return (error);
 	}
 
 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 	}
 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
 
 	/*
 	 * Fill in the extended RX buffer descriptor.
 	 */
 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 	r->bge_idx = i;
 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
 	switch (nsegs) {
 	case 4:
 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
 		r->bge_len3 = segs[3].ds_len;
 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
 	case 3:
 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
 		r->bge_len2 = segs[2].ds_len;
 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
 	case 2:
 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
 		r->bge_len1 = segs[1].ds_len;
 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
 	case 1:
 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 		r->bge_len0 = segs[0].ds_len;
 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
 		break;
 	default:
 		panic("%s: %d segments\n", __func__, nsegs);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
 
 	return (0);
 }
 
 static int
 bge_init_rx_ring_std(struct bge_softc *sc)
 {
 	int error, i;
 
 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 	sc->bge_std = 0;
 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 		if ((error = bge_newbuf_std(sc, i)) != 0)
 			return (error);
 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 
 	sc->bge_std = 0;
 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
 
 	return (0);
 }
 
 static void
 bge_free_rx_ring_std(struct bge_softc *sc)
 {
 	int i;
 
 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 			    sc->bge_cdata.bge_rx_std_dmamap[i],
 			    BUS_DMASYNC_POSTREAD);
 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
 		}
 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
 		    sizeof(struct bge_rx_bd));
 	}
 }
 
 static int
 bge_init_rx_ring_jumbo(struct bge_softc *sc)
 {
 	struct bge_rcb *rcb;
 	int error, i;
 
 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
 	sc->bge_jumbo = 0;
 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
 			return (error);
 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 
 	sc->bge_jumbo = 0;
 
 	/* Enable the jumbo receive producer ring. */
 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 	rcb->bge_maxlen_flags =
 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 
 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
 
 	return (0);
 }
 
 static void
 bge_free_rx_ring_jumbo(struct bge_softc *sc)
 {
 	int i;
 
 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 			    BUS_DMASYNC_POSTREAD);
 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
 		}
 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
 		    sizeof(struct bge_extrx_bd));
 	}
 }
 
 static void
 bge_free_tx_ring(struct bge_softc *sc)
 {
 	int i;
 
 	if (sc->bge_ldata.bge_tx_ring == NULL)
 		return;
 
 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 			    sc->bge_cdata.bge_tx_dmamap[i],
 			    BUS_DMASYNC_POSTWRITE);
 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 			    sc->bge_cdata.bge_tx_dmamap[i]);
 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
 			sc->bge_cdata.bge_tx_chain[i] = NULL;
 		}
 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
 		    sizeof(struct bge_tx_bd));
 	}
 }
 
 static int
 bge_init_tx_ring(struct bge_softc *sc)
 {
 	sc->bge_txcnt = 0;
 	sc->bge_tx_saved_considx = 0;
 
 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 
 	/* Initialize transmit producer index for host-memory send ring. */
 	sc->bge_tx_prodidx = 0;
 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 
 	/* 5700 b2 errata */
 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 
 	/* NIC-memory send ring not used; initialize to zero. */
 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 	/* 5700 b2 errata */
 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 
 	return (0);
 }
 
 static void
 bge_setpromisc(struct bge_softc *sc)
 {
 	if_t ifp;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifp = sc->bge_ifp;
 
 	/* Enable or disable promiscuous mode as needed. */
 	if (if_getflags(ifp) & IFF_PROMISC)
 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 	else
 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 }
 
 static void
 bge_setmulti(struct bge_softc *sc)
 {
 	if_t ifp;
 	int mc_count = 0;
 	uint32_t hashes[4] = { 0, 0, 0, 0 };
 	int h, i, mcnt;
 	unsigned char *mta;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifp = sc->bge_ifp;
 
 	mc_count = if_multiaddr_count(ifp, -1);
 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
 	    mc_count, M_DEVBUF, M_NOWAIT);
 
 	if(mta == NULL) {
 		device_printf(sc->bge_dev, 
 		    "Failed to allocated temp mcast list\n");
 		return;
 	}
 
 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
 		for (i = 0; i < 4; i++)
 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 		free(mta, M_DEVBUF);
 		return;
 	}
 
 	/* First, zot all the existing filters. */
 	for (i = 0; i < 4; i++)
 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 
 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
 	for(i = 0; i < mcnt; i++) {
 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
 		    ETHER_ADDR_LEN) & 0x7F;
 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 	}
 
 	for (i = 0; i < 4; i++)
 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 
 	free(mta, M_DEVBUF);
 }
 
 static void
 bge_setvlan(struct bge_softc *sc)
 {
 	if_t ifp;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifp = sc->bge_ifp;
 
 	/* Enable or disable VLAN tag stripping as needed. */
 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 	else
 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 }
 
 static void
 bge_sig_pre_reset(struct bge_softc *sc, int type)
 {
 
 	/*
 	 * Some chips don't like this so only do this if ASF is enabled
 	 */
 	if (sc->bge_asf_mode)
 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 
 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 		switch (type) {
 		case BGE_RESET_START:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_START);
 			break;
 		case BGE_RESET_SHUTDOWN:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_UNLOAD);
 			break;
 		case BGE_RESET_SUSPEND:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_SUSPEND);
 			break;
 		}
 	}
 
 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
 		bge_ape_driver_state_change(sc, type);
 }
 
 static void
 bge_sig_post_reset(struct bge_softc *sc, int type)
 {
 
 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 		switch (type) {
 		case BGE_RESET_START:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_START_DONE);
 			/* START DONE */
 			break;
 		case BGE_RESET_SHUTDOWN:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
 			break;
 		}
 	}
 	if (type == BGE_RESET_SHUTDOWN)
 		bge_ape_driver_state_change(sc, type);
 }
 
 static void
 bge_sig_legacy(struct bge_softc *sc, int type)
 {
 
 	if (sc->bge_asf_mode) {
 		switch (type) {
 		case BGE_RESET_START:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_START);
 			break;
 		case BGE_RESET_SHUTDOWN:
 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 			    BGE_FW_DRV_STATE_UNLOAD);
 			break;
 		}
 	}
 }
 
 static void
 bge_stop_fw(struct bge_softc *sc)
 {
 	int i;
 
 	if (sc->bge_asf_mode) {
 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
 
 		for (i = 0; i < 100; i++ ) {
 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
 			    BGE_RX_CPU_DRV_EVENT))
 				break;
 			DELAY(10);
 		}
 	}
 }
 
 static uint32_t
 bge_dma_swap_options(struct bge_softc *sc)
 {
 	uint32_t dma_options;
 
 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
 #if BYTE_ORDER == BIG_ENDIAN
 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
 #endif
 	return (dma_options);
 }
 
 /*
  * Do endian, PCI and DMA initialization.
  */
 static int
 bge_chipinit(struct bge_softc *sc)
 {
 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
 	uint16_t val;
 	int i;
 
 	/* Set endianness before we access any non-PCI registers. */
 	misc_ctl = BGE_INIT;
 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
 
 	/*
 	 * Clear the MAC statistics block in the NIC's
 	 * internal memory.
 	 */
 	for (i = BGE_STATS_BLOCK;
 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 		BGE_MEMWIN_WRITE(sc, i, 0);
 
 	for (i = BGE_STATUS_BLOCK;
 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 		BGE_MEMWIN_WRITE(sc, i, 0);
 
 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
 		/*
 		 *  Fix data corruption caused by non-qword write with WB.
 		 *  Fix master abort in PCI mode.
 		 *  Fix PCI latency timer.
 		 */
 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
 		val |= (1 << 10) | (1 << 12) | (1 << 13);
 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
 		/*
 		 * For the 57766 and non Ax versions of 57765, bootcode
 		 * needs to setup the PCIE Fast Training Sequence (FTS)
 		 * value to prevent transmit hangs.
 		 */
 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
 			    BGE_CPMU_PADRNG_CTL_RDIV2);
 		}
 	}
 
 	/*
 	 * Set up the PCI DMA control register.
 	 */
 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
 	if (sc->bge_flags & BGE_FLAG_PCIE) {
 		if (sc->bge_mps >= 256)
 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 		else
 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
 		if (BGE_IS_5714_FAMILY(sc)) {
 			/* 256 bytes for read and write. */
 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 			/*
 			 * In the BCM5703, the DMA read watermark should
 			 * be set to less than or equal to the maximum
 			 * memory read byte count of the PCI-X command
 			 * register.
 			 */
 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 			/* 1536 bytes for read, 384 bytes for write. */
 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 		} else {
 			/* 384 bytes for read and write. */
 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
 			    0x0F;
 		}
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 			uint32_t tmp;
 
 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 			if (tmp == 6 || tmp == 7)
 				dma_rw_ctl |=
 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
 
 			/* Set PCI-X DMA write workaround. */
 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
 		}
 	} else {
 		/* Conventional PCI bus: 256 bytes for read and write. */
 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 
 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
 			dma_rw_ctl |= 0x0F;
 	}
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 	if (BGE_IS_5717_PLUS(sc)) {
 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
 		/*
 		 * Enable HW workaround for controllers that misinterpret
 		 * a status tag update and leave interrupts permanently
 		 * disabled.
 		 */
 		if (!BGE_IS_57765_PLUS(sc) &&
 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
 	}
 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 
 	/*
 	 * Set up general mode register.
 	 */
 	mode_ctl = bge_dma_swap_options(sc);
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 		/* Retain Host-2-BMC settings written by APE firmware. */
 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
 	}
 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
 
 	/*
 	 * BCM5701 B5 have a bug causing data corruption when using
 	 * 64-bit DMA reads, which can be terminated early and then
 	 * completed later as 32-bit accesses, in combination with
 	 * certain bridges.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
 
 	/*
 	 * Tell the firmware the driver is running
 	 */
 	if (sc->bge_asf_mode & ASF_STACKUP)
 		mode_ctl |= BGE_MODECTL_STACKUP;
 
 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
 
 	/*
 	 * Disable memory write invalidate.  Apparently it is not supported
 	 * properly by these devices.
 	 */
 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
 
 	/* Set the timer prescaler (always 66 MHz). */
 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 
 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		DELAY(40);	/* XXX */
 
 		/* Put PHY into ready state */
 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
 		DELAY(40);
 	}
 
 	return (0);
 }
 
 static int
 bge_blockinit(struct bge_softc *sc)
 {
 	struct bge_rcb *rcb;
 	bus_size_t vrcb;
 	bge_hostaddr taddr;
 	uint32_t dmactl, rdmareg, val;
 	int i, limit;
 
 	/*
 	 * Initialize the memory window pointer register so that
 	 * we can access the first 32K of internal NIC RAM. This will
 	 * allow us to set up the TX send ring RCBs and the RX return
 	 * ring RCBs, plus other things which live in NIC memory.
 	 */
 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 
 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
 
 	if (!(BGE_IS_5705_PLUS(sc))) {
 		/* Configure mbuf memory pool */
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 		else
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 
 		/* Configure DMA resource pool */
 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 		    BGE_DMA_DESCRIPTORS);
 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 	}
 
 	/* Configure mbuf pool watermarks */
 	if (BGE_IS_5717_PLUS(sc)) {
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
 		} else {
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
 		}
 	} else if (!BGE_IS_5705_PLUS(sc)) {
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
 	} else {
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 	}
 
 	/* Configure DMA resource watermarks */
 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 
 	/* Enable buffer manager */
 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
 	/*
 	 * Change the arbitration algorithm of TXMBUF read request to
 	 * round-robin instead of priority based for BCM5719.  When
 	 * TXFIFO is almost empty, RDMA will hold its request until
 	 * TXFIFO is not almost empty.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
 
 	/* Poll for buffer manager start indication */
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		DELAY(10);
 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 			break;
 	}
 
 	if (i == BGE_TIMEOUT) {
 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
 		return (ENXIO);
 	}
 
 	/* Enable flow-through queues */
 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 
 	/* Wait until queue initialization is complete */
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		DELAY(10);
 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 			break;
 	}
 
 	if (i == BGE_TIMEOUT) {
 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
 		return (ENXIO);
 	}
 
 	/*
 	 * Summary of rings supported by the controller:
 	 *
 	 * Standard Receive Producer Ring
 	 * - This ring is used to feed receive buffers for "standard"
 	 *   sized frames (typically 1536 bytes) to the controller.
 	 *
 	 * Jumbo Receive Producer Ring
 	 * - This ring is used to feed receive buffers for jumbo sized
 	 *   frames (i.e. anything bigger than the "standard" frames)
 	 *   to the controller.
 	 *
 	 * Mini Receive Producer Ring
 	 * - This ring is used to feed receive buffers for "mini"
 	 *   sized frames to the controller.
 	 * - This feature required external memory for the controller
 	 *   but was never used in a production system.  Should always
 	 *   be disabled.
 	 *
 	 * Receive Return Ring
 	 * - After the controller has placed an incoming frame into a
 	 *   receive buffer that buffer is moved into a receive return
 	 *   ring.  The driver is then responsible to passing the
 	 *   buffer up to the stack.  Many versions of the controller
 	 *   support multiple RR rings.
 	 *
 	 * Send Ring
 	 * - This ring is used for outgoing frames.  Many versions of
 	 *   the controller support multiple send rings.
 	 */
 
 	/* Initialize the standard receive producer ring control block. */
 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 	rcb->bge_hostaddr.bge_addr_lo =
 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 	rcb->bge_hostaddr.bge_addr_hi =
 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 	if (BGE_IS_5717_PLUS(sc)) {
 		/*
 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
 		 * Bits 15-2 : Maximum RX frame size
 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
 		 * Bit 0     : Reserved
 		 */
 		rcb->bge_maxlen_flags =
 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
 	} else if (BGE_IS_5705_PLUS(sc)) {
 		/*
 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
 		 * Bits 15-2 : Reserved (should be 0)
 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 		 * Bit 0     : Reserved
 		 */
 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 	} else {
 		/*
 		 * Ring size is always XXX entries
 		 * Bits 31-16: Maximum RX frame size
 		 * Bits 15-2 : Reserved (should be 0)
 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 		 * Bit 0     : Reserved
 		 */
 		rcb->bge_maxlen_flags =
 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 	}
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
 	else
 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 	/* Write the standard receive producer ring control block. */
 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 
 	/* Reset the standard receive producer ring producer index. */
 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 
 	/*
 	 * Initialize the jumbo RX producer ring control
 	 * block.  We set the 'ring disabled' bit in the
 	 * flags field until we're actually ready to start
 	 * using this ring (i.e. once we set the MTU
 	 * high enough to require it).
 	 */
 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 		/* Get the jumbo receive producer ring RCB parameters. */
 		rcb->bge_hostaddr.bge_addr_lo =
 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 		rcb->bge_hostaddr.bge_addr_hi =
 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
 		    BUS_DMASYNC_PREREAD);
 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
 		else
 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 		    rcb->bge_hostaddr.bge_addr_hi);
 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 		    rcb->bge_hostaddr.bge_addr_lo);
 		/* Program the jumbo receive producer ring RCB parameters. */
 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 		    rcb->bge_maxlen_flags);
 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 		/* Reset the jumbo receive producer ring producer index. */
 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 	}
 
 	/* Disable the mini receive producer ring RCB. */
 	if (BGE_IS_5700_FAMILY(sc)) {
 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 		rcb->bge_maxlen_flags =
 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 		    rcb->bge_maxlen_flags);
 		/* Reset the mini receive producer ring producer index. */
 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 	}
 
 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
 	}
 	/*
 	 * The BD ring replenish thresholds control how often the
 	 * hardware fetches new BD's from the producer rings in host
 	 * memory.  Setting the value too low on a busy system can
 	 * starve the hardware and recue the throughpout.
 	 *
 	 * Set the BD ring replentish thresholds. The recommended
 	 * values are 1/8th the number of descriptors allocated to
 	 * each ring.
 	 * XXX The 5754 requires a lower threshold, so it might be a
 	 * requirement of all 575x family chips.  The Linux driver sets
 	 * the lower threshold for all 5705 family chips as well, but there
 	 * are reports that it might not need to be so strict.
 	 *
 	 * XXX Linux does some extra fiddling here for the 5906 parts as
 	 * well.
 	 */
 	if (BGE_IS_5705_PLUS(sc))
 		val = 8;
 	else
 		val = BGE_STD_RX_RING_CNT / 8;
 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 	if (BGE_IS_JUMBO_CAPABLE(sc))
 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
 		    BGE_JUMBO_RX_RING_CNT/8);
 	if (BGE_IS_5717_PLUS(sc)) {
 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
 	}
 
 	/*
 	 * Disable all send rings by setting the 'ring disabled' bit
 	 * in the flags field of all the TX send ring control blocks,
 	 * located in NIC memory.
 	 */
 	if (!BGE_IS_5705_PLUS(sc))
 		/* 5700 to 5704 had 16 send rings. */
 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
 	else if (BGE_IS_57765_PLUS(sc) ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
 		limit = 2;
 	else if (BGE_IS_5717_PLUS(sc))
 		limit = 4;
 	else
 		limit = 1;
 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 	for (i = 0; i < limit; i++) {
 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 		vrcb += sizeof(struct bge_rcb);
 	}
 
 	/* Configure send ring RCB 0 (we use only the first ring) */
 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
 	else
 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 
 	/*
 	 * Disable all receive return rings by setting the
 	 * 'ring diabled' bit in the flags field of all the receive
 	 * return ring control blocks, located in NIC memory.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 		/* Should be 17, use 16 until we get an SRAM map. */
 		limit = 16;
 	} else if (!BGE_IS_5705_PLUS(sc))
 		limit = BGE_RX_RINGS_MAX;
 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
 	    BGE_IS_57765_PLUS(sc))
 		limit = 4;
 	else
 		limit = 1;
 	/* Disable all receive return rings. */
 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 	for (i = 0; i < limit; i++) {
 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 		    BGE_RCB_FLAG_RING_DISABLED);
 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
 		    (i * (sizeof(uint64_t))), 0);
 		vrcb += sizeof(struct bge_rcb);
 	}
 
 	/*
 	 * Set up receive return ring 0.  Note that the NIC address
 	 * for RX return rings is 0x0.  The return rings live entirely
 	 * within the host, so the nicaddr field in the RCB isn't used.
 	 */
 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
 
 	/* Set random backoff seed for TX */
 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
 	    BGE_TX_BACKOFF_SEED_MASK);
 
 	/* Set inter-packet gap */
 	val = 0x2620;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
 
 	/*
 	 * Specify which ring to use for packets that don't match
 	 * any RX rules.
 	 */
 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 
 	/*
 	 * Configure number of RX lists. One interrupt distribution
 	 * list, sixteen active lists, one bad frames class.
 	 */
 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 
 	/* Inialize RX list placement stats mask. */
 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 
 	/* Disable host coalescing until we get it set up */
 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 
 	/* Poll to make sure it's shut down. */
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		DELAY(10);
 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 			break;
 	}
 
 	if (i == BGE_TIMEOUT) {
 		device_printf(sc->bge_dev,
 		    "host coalescing engine failed to idle\n");
 		return (ENXIO);
 	}
 
 	/* Set up host coalescing defaults */
 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 	if (!(BGE_IS_5705_PLUS(sc))) {
 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 	}
 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 
 	/* Set up address of statistics block */
 	if (!(BGE_IS_5705_PLUS(sc))) {
 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 	}
 
 	/* Set up address of status block */
 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 
 	/* Set up status block size. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
 		val = BGE_STATBLKSZ_FULL;
 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 	} else {
 		val = BGE_STATBLKSZ_32BYTE;
 		bzero(sc->bge_ldata.bge_status_block, 32);
 	}
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	/* Turn on host coalescing state machine */
 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
 
 	/* Turn on RX BD completion state machine and enable attentions */
 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 
 	/* Turn on RX list placement state machine */
 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 
 	/* Turn on RX list selector state machine. */
 	if (!(BGE_IS_5705_PLUS(sc)))
 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 
 	/* Turn on DMA, clear stats. */
 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
 	    BGE_MACMODE_FRMHDR_DMA_ENB;
 
 	if (sc->bge_flags & BGE_FLAG_TBI)
 		val |= BGE_PORTMODE_TBI;
 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
 		val |= BGE_PORTMODE_GMII;
 	else
 		val |= BGE_PORTMODE_MII;
 
 	/* Allow APE to send/receive frames. */
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 
 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 	DELAY(40);
 
 	/* Set misc. local control, enable interrupts on attentions */
 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 
 #ifdef notdef
 	/* Assert GPIO pins for PHY reset */
 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 #endif
 
 	/* Turn on DMA completion state machine */
 	if (!(BGE_IS_5705_PLUS(sc)))
 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 
 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 
 	/* Enable host coalescing bug fix. */
 	if (BGE_IS_5755_PLUS(sc))
 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
 
 	/* Request larger DMA burst size to get better performance. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
 
 	/* Turn on write DMA state machine */
 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 	DELAY(40);
 
 	/* Turn on read DMA state machine */
 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
 	if (sc->bge_flags & BGE_FLAG_PCIE)
 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 		val |= BGE_RDMAMODE_TSO4_ENABLE;
 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
 			val |= BGE_RDMAMODE_TSO6_ENABLE;
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
 			BGE_RDMAMODE_H2BNC_VLAN_DET;
 		/*
 		 * Allow multiple outstanding read requests from
 		 * non-LSO read DMA engine.
 		 */
 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
 		else
 			rdmareg = BGE_RDMA_RSRVCTRL;
 		dmactl = CSR_READ_4(sc, rdmareg);
 		/*
 		 * Adjust tx margin to prevent TX data corruption and
 		 * fix internal FIFO overflow.
 		 */
 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
 		}
 		/*
 		 * Enable fix for read DMA FIFO overruns.
 		 * The fix is to limit the number of RX BDs
 		 * the hardware would fetch at a fime.
 		 */
 		CSR_WRITE_4(sc, rdmareg, dmactl |
 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 		/*
 		 * Allow 4KB burst length reads for non-LSO frames.
 		 * Enable 512B burst length reads for buffer descriptors.
 		 */
 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 	}
 
 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
 	DELAY(40);
 
 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
 			if ((val & 0xFFFF) > BGE_FRAMELEN)
 				break;
 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
 				break;
 		}
 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
 			else
 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
 		}
 	}
 
 	/* Turn on RX data completion state machine */
 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 
 	/* Turn on RX BD initiator state machine */
 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 
 	/* Turn on RX data and RX BD initiator state machine */
 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 
 	/* Turn on Mbuf cluster free state machine */
 	if (!(BGE_IS_5705_PLUS(sc)))
 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 
 	/* Turn on send BD completion state machine */
 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 
 	/* Turn on send data completion state machine */
 	val = BGE_SDCMODE_ENABLE;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 		val |= BGE_SDCMODE_CDELAY;
 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
 
 	/* Turn on send data initiator state machine */
 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
 	else
 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 
 	/* Turn on send BD initiator state machine */
 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 
 	/* Turn on send BD selector state machine */
 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 
 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 
 	/* ack/clear link change events */
 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 	    BGE_MACSTAT_LINK_CHANGED);
 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
 
 	/*
 	 * Enable attention when the link has changed state for
 	 * devices that use auto polling.
 	 */
 	if (sc->bge_flags & BGE_FLAG_TBI) {
 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 	} else {
 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 			DELAY(80);
 		}
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 			    BGE_EVTENB_MI_INTERRUPT);
 	}
 
 	/*
 	 * Clear any pending link state attention.
 	 * Otherwise some link state change events may be lost until attention
 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
 	 * It's not necessary on newer BCM chips - perhaps enabling link
 	 * state change attentions implies clearing pending attention.
 	 */
 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 	    BGE_MACSTAT_LINK_CHANGED);
 
 	/* Enable link state change attentions. */
 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 
 	return (0);
 }
 
 static const struct bge_revision *
 bge_lookup_rev(uint32_t chipid)
 {
 	const struct bge_revision *br;
 
 	for (br = bge_revisions; br->br_name != NULL; br++) {
 		if (br->br_chipid == chipid)
 			return (br);
 	}
 
 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
 		if (br->br_chipid == BGE_ASICREV(chipid))
 			return (br);
 	}
 
 	return (NULL);
 }
 
 static const struct bge_vendor *
 bge_lookup_vendor(uint16_t vid)
 {
 	const struct bge_vendor *v;
 
 	for (v = bge_vendors; v->v_name != NULL; v++)
 		if (v->v_id == vid)
 			return (v);
 
 	return (NULL);
 }
 
 static uint32_t
 bge_chipid(device_t dev)
 {
 	uint32_t id;
 
 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
 		/*
 		 * Find the ASCI revision.  Different chips use different
 		 * registers.
 		 */
 		switch (pci_get_device(dev)) {
 		case BCOM_DEVICEID_BCM5717C:
 			/* 5717 C0 seems to belong to 5720 line. */
 			id = BGE_CHIPID_BCM5720_A0;
 			break;
 		case BCOM_DEVICEID_BCM5717:
 		case BCOM_DEVICEID_BCM5718:
 		case BCOM_DEVICEID_BCM5719:
 		case BCOM_DEVICEID_BCM5720:
 		case BCOM_DEVICEID_BCM5725:
 		case BCOM_DEVICEID_BCM5727:
 		case BCOM_DEVICEID_BCM5762:
 		case BCOM_DEVICEID_BCM57764:
 		case BCOM_DEVICEID_BCM57767:
 		case BCOM_DEVICEID_BCM57787:
 			id = pci_read_config(dev,
 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
 			break;
 		case BCOM_DEVICEID_BCM57761:
 		case BCOM_DEVICEID_BCM57762:
 		case BCOM_DEVICEID_BCM57765:
 		case BCOM_DEVICEID_BCM57766:
 		case BCOM_DEVICEID_BCM57781:
 		case BCOM_DEVICEID_BCM57782:
 		case BCOM_DEVICEID_BCM57785:
 		case BCOM_DEVICEID_BCM57786:
 		case BCOM_DEVICEID_BCM57791:
 		case BCOM_DEVICEID_BCM57795:
 			id = pci_read_config(dev,
 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
 			break;
 		default:
 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
 		}
 	}
 	return (id);
 }
 
 /*
  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
  * against our list and return its name if we find a match.
  *
  * Note that since the Broadcom controller contains VPD support, we
  * try to get the device name string from the controller itself instead
  * of the compiled-in string. It guarantees we'll always announce the
  * right product name. We fall back to the compiled-in string when
  * VPD is unavailable or corrupt.
  */
 static int
 bge_probe(device_t dev)
 {
 	char buf[96];
 	char model[64];
 	const struct bge_revision *br;
 	const char *pname;
 	struct bge_softc *sc;
 	const struct bge_type *t = bge_devs;
 	const struct bge_vendor *v;
 	uint32_t id;
 	uint16_t did, vid;
 
 	sc = device_get_softc(dev);
 	sc->bge_dev = dev;
 	vid = pci_get_vendor(dev);
 	did = pci_get_device(dev);
 	while(t->bge_vid != 0) {
 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
 			id = bge_chipid(dev);
 			br = bge_lookup_rev(id);
 			if (bge_has_eaddr(sc) &&
 			    pci_get_vpd_ident(dev, &pname) == 0)
 				snprintf(model, sizeof(model), "%s", pname);
 			else {
 				v = bge_lookup_vendor(vid);
 				snprintf(model, sizeof(model), "%s %s",
 				    v != NULL ? v->v_name : "Unknown",
 				    br != NULL ? br->br_name :
 				    "NetXtreme/NetLink Ethernet Controller");
 			}
 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
 			    model, br != NULL ? "" : "unknown ", id);
 			device_set_desc_copy(dev, buf);
 			return (BUS_PROBE_DEFAULT);
 		}
 		t++;
 	}
 
 	return (ENXIO);
 }
 
 static void
 bge_dma_free(struct bge_softc *sc)
 {
 	int i;
 
 	/* Destroy DMA maps for RX buffers. */
 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
 	}
 	if (sc->bge_cdata.bge_rx_std_sparemap)
 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 		    sc->bge_cdata.bge_rx_std_sparemap);
 
 	/* Destroy DMA maps for jumbo RX buffers. */
 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 	}
 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
 
 	/* Destroy DMA maps for TX buffers. */
 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
 		if (sc->bge_cdata.bge_tx_dmamap[i])
 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
 			    sc->bge_cdata.bge_tx_dmamap[i]);
 	}
 
 	if (sc->bge_cdata.bge_rx_mtag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
 	if (sc->bge_cdata.bge_mtag_jumbo)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
 	if (sc->bge_cdata.bge_tx_mtag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
 
 	/* Destroy standard RX ring. */
 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 		    sc->bge_cdata.bge_rx_std_ring_map);
 	if (sc->bge_ldata.bge_rx_std_ring)
 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 		    sc->bge_ldata.bge_rx_std_ring,
 		    sc->bge_cdata.bge_rx_std_ring_map);
 
 	if (sc->bge_cdata.bge_rx_std_ring_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 
 	/* Destroy jumbo RX ring. */
 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
 
 	if (sc->bge_ldata.bge_rx_jumbo_ring)
 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    sc->bge_ldata.bge_rx_jumbo_ring,
 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
 
 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 
 	/* Destroy RX return ring. */
 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 		    sc->bge_cdata.bge_rx_return_ring_map);
 
 	if (sc->bge_ldata.bge_rx_return_ring)
 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 		    sc->bge_ldata.bge_rx_return_ring,
 		    sc->bge_cdata.bge_rx_return_ring_map);
 
 	if (sc->bge_cdata.bge_rx_return_ring_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 
 	/* Destroy TX ring. */
 	if (sc->bge_ldata.bge_tx_ring_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 		    sc->bge_cdata.bge_tx_ring_map);
 
 	if (sc->bge_ldata.bge_tx_ring)
 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 		    sc->bge_ldata.bge_tx_ring,
 		    sc->bge_cdata.bge_tx_ring_map);
 
 	if (sc->bge_cdata.bge_tx_ring_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 
 	/* Destroy status block. */
 	if (sc->bge_ldata.bge_status_block_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 		    sc->bge_cdata.bge_status_map);
 
 	if (sc->bge_ldata.bge_status_block)
 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 		    sc->bge_ldata.bge_status_block,
 		    sc->bge_cdata.bge_status_map);
 
 	if (sc->bge_cdata.bge_status_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 
 	/* Destroy statistics block. */
 	if (sc->bge_ldata.bge_stats_paddr)
 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 		    sc->bge_cdata.bge_stats_map);
 
 	if (sc->bge_ldata.bge_stats)
 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 		    sc->bge_ldata.bge_stats,
 		    sc->bge_cdata.bge_stats_map);
 
 	if (sc->bge_cdata.bge_stats_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 
 	if (sc->bge_cdata.bge_buffer_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
 
 	/* Destroy the parent tag. */
 	if (sc->bge_cdata.bge_parent_tag)
 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 }
 
 static int
 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
     bus_addr_t *paddr, const char *msg)
 {
 	struct bge_dmamap_arg ctx;
+	bus_addr_t lowaddr;
+	bus_size_t ring_end;
 	int error;
 
+	lowaddr = BUS_SPACE_MAXADDR;
+again:
 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
-	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
+	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
 	if (error != 0) {
 		device_printf(sc->bge_dev,
 		    "could not create %s dma tag\n", msg);
 		return (ENOMEM);
 	}
 	/* Allocate DMA'able memory for ring. */
 	error = bus_dmamem_alloc(*tag, (void **)ring,
 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
 	if (error != 0) {
 		device_printf(sc->bge_dev,
 		    "could not allocate DMA'able memory for %s\n", msg);
 		return (ENOMEM);
 	}
 	/* Load the address of the ring. */
 	ctx.bge_busaddr = 0;
 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
 	    &ctx, BUS_DMA_NOWAIT);
 	if (error != 0) {
 		device_printf(sc->bge_dev,
 		    "could not load DMA'able memory for %s\n", msg);
 		return (ENOMEM);
 	}
 	*paddr = ctx.bge_busaddr;
+	ring_end = *paddr + maxsize;
+	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
+	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
+		/*
+		 * 4GB boundary crossed.  Limit maximum allowable DMA
+		 * address space to 32bit and try again.
+		 */
+		bus_dmamap_unload(*tag, *map);
+		bus_dmamem_free(*tag, *ring, *map);
+		bus_dma_tag_destroy(*tag);
+		if (bootverbose)
+			device_printf(sc->bge_dev, "4GB boundary crossed, "
+			    "limit DMA address space to 32bit for %s\n", msg);
+		*ring = NULL;
+		*tag = NULL;
+		*map = NULL;
+		lowaddr = BUS_SPACE_MAXADDR_32BIT;
+		goto again;
+	}
 	return (0);
 }
 
 static int
 bge_dma_alloc(struct bge_softc *sc)
 {
 	bus_addr_t lowaddr;
-	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
+	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
 	int i, error;
 
 	lowaddr = BUS_SPACE_MAXADDR;
 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
 		lowaddr = BGE_DMA_MAXADDR;
 	/*
 	 * Allocate the parent bus DMA tag appropriate for PCI.
 	 */
 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
 	if (error != 0) {
 		device_printf(sc->bge_dev,
 		    "could not allocate parent dma tag\n");
 		return (ENOMEM);
 	}
 
 	/* Create tag for standard RX ring. */
 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
 	    &sc->bge_cdata.bge_rx_std_ring_tag,
 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
 	    &sc->bge_cdata.bge_rx_std_ring_map,
 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
 	if (error)
 		return (error);
 
 	/* Create tag for RX return ring. */
 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
 	    &sc->bge_cdata.bge_rx_return_ring_tag,
 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
 	    &sc->bge_cdata.bge_rx_return_ring_map,
 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
 	if (error)
 		return (error);
 
 	/* Create tag for TX ring. */
 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
 	    &sc->bge_cdata.bge_tx_ring_tag,
 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
 	    &sc->bge_cdata.bge_tx_ring_map,
 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
 	if (error)
 		return (error);
 
 	/*
 	 * Create tag for status block.
 	 * Because we only use single Tx/Rx/Rx return ring, use
 	 * minimum status block size except BCM5700 AX/BX which
 	 * seems to want to see full status block size regardless
 	 * of configured number of ring.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 		sbsz = BGE_STATUS_BLK_SZ;
 	else
 		sbsz = 32;
 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
 	    &sc->bge_cdata.bge_status_tag,
 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
 	    &sc->bge_cdata.bge_status_map,
 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
 	if (error)
 		return (error);
 
 	/* Create tag for statistics block. */
 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
 	    &sc->bge_cdata.bge_stats_tag,
 	    (uint8_t **)&sc->bge_ldata.bge_stats,
 	    &sc->bge_cdata.bge_stats_map,
 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
 	if (error)
 		return (error);
 
 	/* Create tag for jumbo RX ring. */
 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
 		if (error)
 			return (error);
 	}
 
 	/* Create parent tag for buffers. */
+	boundary = 0;
 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
+		boundary = BGE_DMA_BNDRY;
 		/*
 		 * XXX
 		 * watchdog timeout issue was observed on BCM5704 which
 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
 		 * Both limiting DMA address space to 32bits and flushing
 		 * mailbox write seem to address the issue.
 		 */
 		if (sc->bge_pcixcap != 0)
 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
 	}
-	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
-	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
-	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
-	    &sc->bge_cdata.bge_buffer_tag);
+	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
+	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
+	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
+	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
 	if (error != 0) {
 		device_printf(sc->bge_dev,
 		    "could not allocate buffer dma tag\n");
 		return (ENOMEM);
 	}
 	/* Create tag for Tx mbufs. */
 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 		txsegsz = BGE_TSOSEG_SZ;
 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
 	} else {
 		txsegsz = MCLBYTES;
 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
 	}
 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
 	    &sc->bge_cdata.bge_tx_mtag);
 
 	if (error) {
 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
 		return (ENOMEM);
 	}
 
 	/* Create tag for Rx mbufs. */
 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
 		rxmaxsegsz = MJUM9BYTES;
 	else
 		rxmaxsegsz = MCLBYTES;
 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
 
 	if (error) {
 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
 		return (ENOMEM);
 	}
 
 	/* Create DMA maps for RX buffers. */
 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 	    &sc->bge_cdata.bge_rx_std_sparemap);
 	if (error) {
 		device_printf(sc->bge_dev,
 		    "can't create spare DMA map for RX\n");
 		return (ENOMEM);
 	}
 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
 		if (error) {
 			device_printf(sc->bge_dev,
 			    "can't create DMA map for RX\n");
 			return (ENOMEM);
 		}
 	}
 
 	/* Create DMA maps for TX buffers. */
 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
 			    &sc->bge_cdata.bge_tx_dmamap[i]);
 		if (error) {
 			device_printf(sc->bge_dev,
 			    "can't create DMA map for TX\n");
 			return (ENOMEM);
 		}
 	}
 
 	/* Create tags for jumbo RX buffers. */
 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 		if (error) {
 			device_printf(sc->bge_dev,
 			    "could not allocate jumbo dma tag\n");
 			return (ENOMEM);
 		}
 		/* Create DMA maps for jumbo RX buffers. */
 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
 		if (error) {
 			device_printf(sc->bge_dev,
 			    "can't create spare DMA map for jumbo RX\n");
 			return (ENOMEM);
 		}
 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 			if (error) {
 				device_printf(sc->bge_dev,
 				    "can't create DMA map for jumbo RX\n");
 				return (ENOMEM);
 			}
 		}
 	}
 
 	return (0);
 }
 
 /*
  * Return true if this device has more than one port.
  */
 static int
 bge_has_multiple_ports(struct bge_softc *sc)
 {
 	device_t dev = sc->bge_dev;
 	u_int b, d, f, fscan, s;
 
 	d = pci_get_domain(dev);
 	b = pci_get_bus(dev);
 	s = pci_get_slot(dev);
 	f = pci_get_function(dev);
 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
 			return (1);
 	return (0);
 }
 
 /*
  * Return true if MSI can be used with this device.
  */
 static int
 bge_can_use_msi(struct bge_softc *sc)
 {
 	int can_use_msi = 0;
 
 	if (sc->bge_msi == 0)
 		return (0);
 
 	/* Disable MSI for polling(4). */
 #ifdef DEVICE_POLLING
 	return (0);
 #endif
 	switch (sc->bge_asicrev) {
 	case BGE_ASICREV_BCM5714_A0:
 	case BGE_ASICREV_BCM5714:
 		/*
 		 * Apparently, MSI doesn't work when these chips are
 		 * configured in single-port mode.
 		 */
 		if (bge_has_multiple_ports(sc))
 			can_use_msi = 1;
 		break;
 	case BGE_ASICREV_BCM5750:
 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 			can_use_msi = 1;
 		break;
 	case BGE_ASICREV_BCM5784:
 		/*
 		 * Prevent infinite "watchdog timeout" errors
 		 * in some MacBook Pro and make it work out-of-the-box.
 		 */
 		if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
 			break;
 		/* FALLTHROUGH */
 	default:
 		if (BGE_IS_575X_PLUS(sc))
 			can_use_msi = 1;
 	}
 	return (can_use_msi);
 }
 
 static int
 bge_mbox_reorder(struct bge_softc *sc)
 {
 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
 	static const struct mbox_reorder {
 		const uint16_t vendor;
 		const uint16_t device;
 		const char *desc;
 	} mbox_reorder_lists[] = {
 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
 	};
 	devclass_t pci, pcib;
 	device_t bus, dev;
 	int i;
 
 	pci = devclass_find("pci");
 	pcib = devclass_find("pcib");
 	dev = sc->bge_dev;
 	bus = device_get_parent(dev);
 	for (;;) {
 		dev = device_get_parent(bus);
 		bus = device_get_parent(dev);
 		if (device_get_devclass(dev) != pcib)
 			break;
 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
 			if (pci_get_vendor(dev) ==
 			    mbox_reorder_lists[i].vendor &&
 			    pci_get_device(dev) ==
 			    mbox_reorder_lists[i].device) {
 				device_printf(sc->bge_dev,
 				    "enabling MBOX workaround for %s\n",
 				    mbox_reorder_lists[i].desc);
 				return (1);
 			}
 		}
 		if (device_get_devclass(bus) != pci)
 			break;
 	}
 	return (0);
 }
 
 static void
 bge_devinfo(struct bge_softc *sc)
 {
 	uint32_t cfg, clk;
 
 	device_printf(sc->bge_dev,
 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
 	if (sc->bge_flags & BGE_FLAG_PCIE)
 		printf("PCI-E\n");
 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
 		printf("PCI-X ");
 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
 			clk = 133;
 		else {
 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 			switch (clk) {
 			case 0:
 				clk = 33;
 				break;
 			case 2:
 				clk = 50;
 				break;
 			case 4:
 				clk = 66;
 				break;
 			case 6:
 				clk = 100;
 				break;
 			case 7:
 				clk = 133;
 				break;
 			}
 		}
 		printf("%u MHz\n", clk);
 	} else {
 		if (sc->bge_pcixcap != 0)
 			printf("PCI on PCI-X ");
 		else
 			printf("PCI ");
 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
 			clk = 66;
 		else
 			clk = 33;
 		if (cfg & BGE_PCISTATE_32BIT_BUS)
 			printf("%u MHz; 32bit\n", clk);
 		else
 			printf("%u MHz; 64bit\n", clk);
 	}
 }
 
 static int
 bge_attach(device_t dev)
 {
 	if_t ifp;
 	struct bge_softc *sc;
 	uint32_t hwcfg = 0, misccfg, pcistate;
 	u_char eaddr[ETHER_ADDR_LEN];
 	int capmask, error, reg, rid, trys;
 
 	sc = device_get_softc(dev);
 	sc->bge_dev = dev;
 
 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 
 	pci_enable_busmaster(dev);
 
 	/*
 	 * Allocate control/status registers.
 	 */
 	rid = PCIR_BAR(0);
 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 	    RF_ACTIVE);
 
 	if (sc->bge_res == NULL) {
 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	/* Save various chip information. */
 	sc->bge_func_addr = pci_get_function(dev);
 	sc->bge_chipid = bge_chipid(dev);
 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 
 	/* Set default PHY address. */
 	sc->bge_phy_addr = 1;
 	 /*
 	  * PHY address mapping for various devices.
 	  *
 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
 	  * ---------+-------+-------+-------+-------+
 	  * BCM57XX  |   1   |   X   |   X   |   X   |
 	  * BCM5704  |   1   |   X   |   1   |   X   |
 	  * BCM5717  |   1   |   8   |   2   |   9   |
 	  * BCM5719  |   1   |   8   |   2   |   9   |
 	  * BCM5720  |   1   |   8   |   2   |   9   |
 	  *
 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
 	  * ---------+-------+-------+-------+-------+
 	  * BCM57XX  |   X   |   X   |   X   |   X   |
 	  * BCM5704  |   X   |   X   |   X   |   X   |
 	  * BCM5717  |   X   |   X   |   X   |   X   |
 	  * BCM5719  |   3   |   10  |   4   |   11  |
 	  * BCM5720  |   X   |   X   |   X   |   X   |
 	  *
 	  * Other addresses may respond but they are not
 	  * IEEE compliant PHYs and should be ignored.
 	  */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
 			    BGE_SGDIGSTS_IS_SERDES)
 				sc->bge_phy_addr = sc->bge_func_addr + 8;
 			else
 				sc->bge_phy_addr = sc->bge_func_addr + 1;
 		} else {
 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
 				sc->bge_phy_addr = sc->bge_func_addr + 8;
 			else
 				sc->bge_phy_addr = sc->bge_func_addr + 1;
 		}
 	}
 
 	if (bge_has_eaddr(sc))
 		sc->bge_flags |= BGE_FLAG_EADDR;
 
 	/* Save chipset family. */
 	switch (sc->bge_asicrev) {
 	case BGE_ASICREV_BCM5762:
 	case BGE_ASICREV_BCM57765:
 	case BGE_ASICREV_BCM57766:
 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
 		/* FALLTHROUGH */
 	case BGE_ASICREV_BCM5717:
 	case BGE_ASICREV_BCM5719:
 	case BGE_ASICREV_BCM5720:
 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
 		    BGE_FLAG_JUMBO_FRAME;
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 			/*
 			 * Enable work around for DMA engine miscalculation
 			 * of TXMBUF available space.
 			 */
 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 				/* Jumbo frame on BCM5719 A0 does not work. */
 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
 			}
 		}
 		break;
 	case BGE_ASICREV_BCM5755:
 	case BGE_ASICREV_BCM5761:
 	case BGE_ASICREV_BCM5784:
 	case BGE_ASICREV_BCM5785:
 	case BGE_ASICREV_BCM5787:
 	case BGE_ASICREV_BCM57780:
 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
 		    BGE_FLAG_5705_PLUS;
 		break;
 	case BGE_ASICREV_BCM5700:
 	case BGE_ASICREV_BCM5701:
 	case BGE_ASICREV_BCM5703:
 	case BGE_ASICREV_BCM5704:
 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 		break;
 	case BGE_ASICREV_BCM5714_A0:
 	case BGE_ASICREV_BCM5780:
 	case BGE_ASICREV_BCM5714:
 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
 		/* FALLTHROUGH */
 	case BGE_ASICREV_BCM5750:
 	case BGE_ASICREV_BCM5752:
 	case BGE_ASICREV_BCM5906:
 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
 		/* FALLTHROUGH */
 	case BGE_ASICREV_BCM5705:
 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
 		break;
 	}
 
 	/* Identify chips with APE processor. */
 	switch (sc->bge_asicrev) {
 	case BGE_ASICREV_BCM5717:
 	case BGE_ASICREV_BCM5719:
 	case BGE_ASICREV_BCM5720:
 	case BGE_ASICREV_BCM5761:
 	case BGE_ASICREV_BCM5762:
 		sc->bge_flags |= BGE_FLAG_APE;
 		break;
 	}
 
 	/* Chips with APE need BAR2 access for APE registers/memory. */
 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
 		rid = PCIR_BAR(2);
 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 		    RF_ACTIVE);
 		if (sc->bge_res2 == NULL) {
 			device_printf (sc->bge_dev,
 			    "couldn't map BAR2 memory\n");
 			error = ENXIO;
 			goto fail;
 		}
 
 		/* Enable APE register/memory access by host driver. */
 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
 
 		bge_ape_lock_init(sc);
 		bge_ape_read_fw_ver(sc);
 	}
 
 	/* Add SYSCTLs, requires the chipset family to be set. */
 	bge_add_sysctls(sc);
 
 	/* Identify the chips that use an CPMU. */
 	if (BGE_IS_5717_PLUS(sc) ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
 	else
 		sc->bge_mi_mode = BGE_MIMODE_BASE;
 	/* Enable auto polling for BCM570[0-5]. */
 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
 
 	/*
 	 * All Broadcom controllers have 4GB boundary DMA bug.
 	 * Whenever an address crosses a multiple of the 4GB boundary
 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
 	 * state machine will lockup and cause the device to hang.
 	 */
 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
 
 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
 
 	/*
 	 * BCM5719 cannot handle DMA requests for DMA segments that
 	 * have larger than 4KB in size.  However the maximum DMA
 	 * segment size created in DMA tag is 4KB for TSO, so we
 	 * wouldn't encounter the issue here.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
 
 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
 			sc->bge_flags |= BGE_FLAG_5788;
 	}
 
 	capmask = BMSR_DEFCAPMASK;
 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 	    pci_get_vendor(dev) == BCOM_VENDORID &&
 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		/* These chips are 10/100 only. */
 		capmask &= ~BMSR_EXTSTAT;
 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 	}
 
 	/*
 	 * Some controllers seem to require a special firmware to use
 	 * TSO. But the firmware is not available to FreeBSD and Linux
 	 * claims that the TSO performed by the firmware is slower than
 	 * hardware based TSO. Moreover the firmware based TSO has one
 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
 	 * header is greater than 80 bytes. A workaround for the TSO
 	 * bug exist but it seems it's too expensive than not using
 	 * TSO at all. Some hardwares also have the TSO bug so limit
 	 * the TSO to the controllers that are not affected TSO issues
 	 * (e.g. 5755 or higher).
 	 */
 	if (BGE_IS_5717_PLUS(sc)) {
 		/* BCM5717 requires different TSO configuration. */
 		sc->bge_flags |= BGE_FLAG_TSO3;
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 			/* TSO on BCM5719 A0 does not work. */
 			sc->bge_flags &= ~BGE_FLAG_TSO3;
 		}
 	} else if (BGE_IS_5755_PLUS(sc)) {
 		/*
 		 * BCM5754 and BCM5787 shares the same ASIC id so
 		 * explicit device id check is required.
 		 * Due to unknown reason TSO does not work on BCM5755M.
 		 */
 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
 			sc->bge_flags |= BGE_FLAG_TSO;
 	}
 
 	/*
 	 * Check if this is a PCI-X or PCI Express device.
 	 */
 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
 		/*
 		 * Found a PCI Express capabilities register, this
 		 * must be a PCI Express device.
 		 */
 		sc->bge_flags |= BGE_FLAG_PCIE;
 		sc->bge_expcap = reg;
 		/* Extract supported maximum payload size. */
 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
 		    PCIER_DEVICE_CAP, 2);
 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
 			sc->bge_expmrq = 2048;
 		else
 			sc->bge_expmrq = 4096;
 		pci_set_max_read_req(dev, sc->bge_expmrq);
 	} else {
 		/*
 		 * Check if the device is in PCI-X Mode.
 		 * (This bit is not valid on PCI Express controllers.)
 		 */
 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
 			sc->bge_pcixcap = reg;
 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
 			sc->bge_flags |= BGE_FLAG_PCIX;
 	}
 
 	/*
 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
 	 * not actually a MAC controller bug but an issue with the embedded
 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
 	 */
 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
 	/*
 	 * Some PCI-X bridges are known to trigger write reordering to
 	 * the mailbox registers. Typical phenomena is watchdog timeouts
 	 * caused by out-of-order TX completions.  Enable workaround for
 	 * PCI-X devices that live behind these bridges.
 	 * Note, PCI-X controllers can run in PCI mode so we can't use
 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
 	 */
 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
 	/*
 	 * Allocate the interrupt, using MSI if possible.  These devices
 	 * support 8 MSI messages, but only the first one is used in
 	 * normal operation.
 	 */
 	rid = 0;
 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
 		sc->bge_msicap = reg;
 		reg = 1;
 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
 			rid = 1;
 			sc->bge_flags |= BGE_FLAG_MSI;
 		}
 	}
 
 	/*
 	 * All controllers except BCM5700 supports tagged status but
 	 * we use tagged status only for MSI case on BCM5717. Otherwise
 	 * MSI on BCM5717 does not work.
 	 */
 #ifndef DEVICE_POLLING
 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
 #endif
 
 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
 
 	if (sc->bge_irq == NULL) {
 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	bge_devinfo(sc);
 
 	sc->bge_asf_mode = 0;
 	/* No ASF if APE present. */
 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
 		    BGE_SRAM_DATA_SIG_MAGIC)) {
 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
 			    BGE_HWCFG_ASF) {
 				sc->bge_asf_mode |= ASF_ENABLE;
 				sc->bge_asf_mode |= ASF_STACKUP;
 				if (BGE_IS_575X_PLUS(sc))
 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 			}
 		}
 	}
 
 	bge_stop_fw(sc);
 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 	if (bge_reset(sc)) {
 		device_printf(sc->bge_dev, "chip reset failed\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 
 	if (bge_chipinit(sc)) {
 		device_printf(sc->bge_dev, "chip initialization failed\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	error = bge_get_eaddr(sc, eaddr);
 	if (error) {
 		device_printf(sc->bge_dev,
 		    "failed to read station address\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	/* 5705 limits RX return ring to 512 entries. */
 	if (BGE_IS_5717_PLUS(sc))
 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 	else if (BGE_IS_5705_PLUS(sc))
 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 	else
 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 
 	if (bge_dma_alloc(sc)) {
 		device_printf(sc->bge_dev,
 		    "failed to allocate DMA resources\n");
 		error = ENXIO;
 		goto fail;
 	}
 
 	/* Set default tuneable values. */
 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 	sc->bge_rx_coal_ticks = 150;
 	sc->bge_tx_coal_ticks = 150;
 	sc->bge_rx_max_coal_bds = 10;
 	sc->bge_tx_max_coal_bds = 10;
 
 	/* Initialize checksum features to use. */
 	sc->bge_csum_features = BGE_CSUM_FEATURES;
 	if (sc->bge_forced_udpcsum != 0)
 		sc->bge_csum_features |= CSUM_UDP;
 
 	/* Set up ifnet structure */
 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 	if (ifp == NULL) {
 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
 		error = ENXIO;
 		goto fail;
 	}
 	if_setsoftc(ifp, sc);
 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
 	if_setioctlfn(ifp, bge_ioctl);
 	if_setstartfn(ifp, bge_start);
 	if_setinitfn(ifp, bge_init);
 	if_setgetcounterfn(ifp, bge_get_counter);
 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
 	if_setsendqready(ifp);
 	if_sethwassist(ifp, sc->bge_csum_features);
 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 	    IFCAP_VLAN_MTU);
 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
 		if_sethwassistbits(ifp, CSUM_TSO, 0);
 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
 	}
 #ifdef IFCAP_VLAN_HWCSUM
 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
 #endif
 	if_setcapenable(ifp, if_getcapabilities(ifp));
 #ifdef DEVICE_POLLING
 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
 #endif
 
 	/*
 	 * 5700 B0 chips do not support checksumming correctly due
 	 * to hardware bugs.
 	 */
 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
 		if_sethwassist(ifp, 0);
 	}
 
 	/*
 	 * Figure out what sort of media we have by checking the
 	 * hardware config word in the first 32k of NIC internal memory,
 	 * or fall back to examining the EEPROM if necessary.
 	 * Note: on some BCM5700 cards, this value appears to be unset.
 	 * If that's the case, we have to rely on identifying the NIC
 	 * by its PCI subsystem ID, as we do below for the SysKonnect
 	 * SK-9D41.
 	 */
 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 		    sizeof(hwcfg))) {
 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
 			error = ENXIO;
 			goto fail;
 		}
 		hwcfg = ntohl(hwcfg);
 	}
 
 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
 		if (BGE_IS_5705_PLUS(sc)) {
 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 		} else
 			sc->bge_flags |= BGE_FLAG_TBI;
 	}
 
 	/* Set various PHY bug flags. */
 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
 	if (pci_get_subvendor(dev) == DELL_VENDORID)
 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
 	if ((BGE_IS_5705_PLUS(sc)) &&
 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
 	    !BGE_IS_5717_PLUS(sc)) {
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
 		} else
 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
 	}
 
 	/*
 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
 	 * 5705 A0 and A1 chips.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 
 	if (sc->bge_flags & BGE_FLAG_TBI) {
 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 		    bge_ifmedia_sts);
 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 		    0, NULL);
 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 	} else {
 		/*
 		 * Do transceiver setup and tell the firmware the
 		 * driver is down so we can try to get access the
 		 * probe if ASF is running.  Retry a couple of times
 		 * if we get a conflict with the ASF firmware accessing
 		 * the PHY.
 		 */
 		trys = 0;
 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 again:
 		bge_asf_driver_up(sc);
 
 		error = mii_attach(dev, &sc->bge_miibus, ifp, 
 		    (ifm_change_cb_t)bge_ifmedia_upd,
 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 
 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
 		if (error != 0) {
 			if (trys++ < 4) {
 				device_printf(sc->bge_dev, "Try again\n");
 				bge_miibus_writereg(sc->bge_dev,
 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
 				goto again;
 			}
 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
 			goto fail;
 		}
 
 		/*
 		 * Now tell the firmware we are going up after probing the PHY
 		 */
 		if (sc->bge_asf_mode & ASF_STACKUP)
 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 	}
 
 	/*
 	 * When using the BCM5701 in PCI-X mode, data corruption has
 	 * been observed in the first few bytes of some received packets.
 	 * Aligning the packet buffer in memory eliminates the corruption.
 	 * Unfortunately, this misaligns the packet payloads.  On platforms
 	 * which do not support unaligned accesses, we will realign the
 	 * payloads by copying the received packets.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 	    sc->bge_flags & BGE_FLAG_PCIX)
                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 
 	/*
 	 * Call MI attach routine.
 	 */
 	ether_ifattach(ifp, eaddr);
 
 	/* Tell upper layer we support long frames. */
 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
 
 	/*
 	 * Hookup IRQ last.
 	 */
 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
 		/* Take advantage of single-shot MSI. */
 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
 		    taskqueue_thread_enqueue, &sc->bge_tq);
 		if (sc->bge_tq == NULL) {
 			device_printf(dev, "could not create taskqueue.\n");
 			ether_ifdetach(ifp);
 			error = ENOMEM;
 			goto fail;
 		}
 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
 		    "%s taskq", device_get_nameunit(sc->bge_dev));
 		if (error != 0) {
 			device_printf(dev, "could not start threads.\n");
 			ether_ifdetach(ifp);
 			goto fail;
 		}
 		error = bus_setup_intr(dev, sc->bge_irq,
 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
 		    &sc->bge_intrhand);
 	} else
 		error = bus_setup_intr(dev, sc->bge_irq,
 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
 		    &sc->bge_intrhand);
 
 	if (error) {
 		ether_ifdetach(ifp);
 		device_printf(sc->bge_dev, "couldn't set up irq\n");
 		goto fail;
 	}
 
 	/* Attach driver netdump methods. */
 	NETDUMP_SET(ifp, bge);
 
 fail:
 	if (error)
 		bge_detach(dev);
 	return (error);
 }
 
 static int
 bge_detach(device_t dev)
 {
 	struct bge_softc *sc;
 	if_t ifp;
 
 	sc = device_get_softc(dev);
 	ifp = sc->bge_ifp;
 
 #ifdef DEVICE_POLLING
 	if (if_getcapenable(ifp) & IFCAP_POLLING)
 		ether_poll_deregister(ifp);
 #endif
 
 	if (device_is_attached(dev)) {
 		ether_ifdetach(ifp);
 		BGE_LOCK(sc);
 		bge_stop(sc);
 		BGE_UNLOCK(sc);
 		callout_drain(&sc->bge_stat_ch);
 	}
 
 	if (sc->bge_tq)
 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
 
 	if (sc->bge_flags & BGE_FLAG_TBI)
 		ifmedia_removeall(&sc->bge_ifmedia);
 	else if (sc->bge_miibus != NULL) {
 		bus_generic_detach(dev);
 		device_delete_child(dev, sc->bge_miibus);
 	}
 
 	bge_release_resources(sc);
 
 	return (0);
 }
 
 static void
 bge_release_resources(struct bge_softc *sc)
 {
 	device_t dev;
 
 	dev = sc->bge_dev;
 
 	if (sc->bge_tq != NULL)
 		taskqueue_free(sc->bge_tq);
 
 	if (sc->bge_intrhand != NULL)
 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 
 	if (sc->bge_irq != NULL) {
 		bus_release_resource(dev, SYS_RES_IRQ,
 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
 		pci_release_msi(dev);
 	}
 
 	if (sc->bge_res != NULL)
 		bus_release_resource(dev, SYS_RES_MEMORY,
 		    rman_get_rid(sc->bge_res), sc->bge_res);
 
 	if (sc->bge_res2 != NULL)
 		bus_release_resource(dev, SYS_RES_MEMORY,
 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
 
 	if (sc->bge_ifp != NULL)
 		if_free(sc->bge_ifp);
 
 	bge_dma_free(sc);
 
 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
 		BGE_LOCK_DESTROY(sc);
 }
 
 static int
 bge_reset(struct bge_softc *sc)
 {
 	device_t dev;
 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
 	void (*write_op)(struct bge_softc *, int, int);
 	uint16_t devctl;
 	int i;
 
 	dev = sc->bge_dev;
 
 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
 
 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 		if (sc->bge_flags & BGE_FLAG_PCIE)
 			write_op = bge_writemem_direct;
 		else
 			write_op = bge_writemem_ind;
 	} else
 		write_op = bge_writereg_ind;
 
 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
 		for (i = 0; i < 8000; i++) {
 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
 			    BGE_NVRAMSWARB_GNT1)
 				break;
 			DELAY(20);
 		}
 		if (i == 8000) {
 			if (bootverbose)
 				device_printf(dev, "NVRAM lock timedout!\n");
 		}
 	}
 	/* Take APE lock when performing reset. */
 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
 
 	/* Save some important PCI state. */
 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
 
 	pci_write_config(dev, BGE_PCI_MISC_CTL,
 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 
 	/* Disable fastboot on controllers that support it. */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 	    BGE_IS_5755_PLUS(sc)) {
 		if (bootverbose)
 			device_printf(dev, "Disabling fastboot\n");
 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 	}
 
 	/*
 	 * Write the magic number to SRAM at offset 0xB50.
 	 * When firmware finishes its initialization it will
 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
 	 */
 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 
 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 
 	/* XXX: Broadcom Linux driver. */
 	if (sc->bge_flags & BGE_FLAG_PCIE) {
 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
 		}
 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 			/* Prevent PCIE link training during global reset */
 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 			reset |= 1 << 29;
 		}
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
 		    val | BGE_VCPU_STATUS_DRV_RESET);
 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
 	}
 
 	/*
 	 * Set GPHY Power Down Override to leave GPHY
 	 * powered up in D0 uninitialized.
 	 */
 	if (BGE_IS_5705_PLUS(sc) &&
 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
 
 	/* Issue global reset */
 	write_op(sc, BGE_MISC_CFG, reset);
 
 	if (sc->bge_flags & BGE_FLAG_PCIE)
 		DELAY(100 * 1000);
 	else
 		DELAY(1000);
 
 	/* XXX: Broadcom Linux driver. */
 	if (sc->bge_flags & BGE_FLAG_PCIE) {
 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 			DELAY(500000); /* wait for link training to complete */
 			val = pci_read_config(dev, 0xC4, 4);
 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
 		}
 		devctl = pci_read_config(dev,
 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
 		/* Clear enable no snoop and disable relaxed ordering. */
 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
 		    PCIEM_CTL_NOSNOOP_ENABLE);
 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
 		    devctl, 2);
 		pci_set_max_read_req(dev, sc->bge_expmrq);
 		/* Clear error status. */
 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
 		    PCIEM_STA_CORRECTABLE_ERROR |
 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
 	}
 
 	/* Reset some of the PCI state that got zapped by reset. */
 	pci_write_config(dev, BGE_PCI_MISC_CTL,
 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
 	/*
 	 * Disable PCI-X relaxed ordering to ensure status block update
 	 * comes first then packet buffer DMA. Otherwise driver may
 	 * read stale status block.
 	 */
 	if (sc->bge_flags & BGE_FLAG_PCIX) {
 		devctl = pci_read_config(dev,
 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
 		devctl &= ~PCIXM_COMMAND_ERO;
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 			devctl &= ~PCIXM_COMMAND_MAX_READ;
 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
 			    PCIXM_COMMAND_MAX_READ);
 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
 		}
 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
 		    devctl, 2);
 	}
 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
 	if (BGE_IS_5714_FAMILY(sc)) {
 		/* This chip disables MSI on reset. */
 		if (sc->bge_flags & BGE_FLAG_MSI) {
 			val = pci_read_config(dev,
 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
 			pci_write_config(dev,
 			    sc->bge_msicap + PCIR_MSI_CTRL,
 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
 			val = CSR_READ_4(sc, BGE_MSI_MODE);
 			CSR_WRITE_4(sc, BGE_MSI_MODE,
 			    val | BGE_MSIMODE_ENABLE);
 		}
 		val = CSR_READ_4(sc, BGE_MARB_MODE);
 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 	} else
 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 
 	/* Fix up byte swapping. */
 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
 
 	val = CSR_READ_4(sc, BGE_MAC_MODE);
 	val = (val & ~mac_mode_mask) | mac_mode;
 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 	DELAY(40);
 
 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 		for (i = 0; i < BGE_TIMEOUT; i++) {
 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 			if (val & BGE_VCPU_STATUS_INIT_DONE)
 				break;
 			DELAY(100);
 		}
 		if (i == BGE_TIMEOUT) {
 			device_printf(dev, "reset timed out\n");
 			return (1);
 		}
 	} else {
 		/*
 		 * Poll until we see the 1's complement of the magic number.
 		 * This indicates that the firmware initialization is complete.
 		 * We expect this to fail if no chip containing the Ethernet
 		 * address is fitted though.
 		 */
 		for (i = 0; i < BGE_TIMEOUT; i++) {
 			DELAY(10);
 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
 				break;
 		}
 
 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
 			device_printf(dev,
 			    "firmware handshake timed out, found 0x%08x\n",
 			    val);
 		/* BCM57765 A0 needs additional time before accessing. */
 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 			DELAY(10 * 1000);	/* XXX */
 	}
 
 	/*
 	 * The 5704 in TBI mode apparently needs some special
 	 * adjustment to insure the SERDES drive level is set
 	 * to 1.2V.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 	    sc->bge_flags & BGE_FLAG_TBI) {
 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
 		val = (val & ~0xFFF) | 0x880;
 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
 	}
 
 	/* XXX: Broadcom Linux driver. */
 	if (sc->bge_flags & BGE_FLAG_PCIE &&
 	    !BGE_IS_5717_PLUS(sc) &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
 		/* Enable Data FIFO protection. */
 		val = CSR_READ_4(sc, 0x7C00);
 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
 
 	return (0);
 }
 
 static __inline void
 bge_rxreuse_std(struct bge_softc *sc, int i)
 {
 	struct bge_rx_bd *r;
 
 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 	r->bge_flags = BGE_RXBDFLAG_END;
 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
 	r->bge_idx = i;
 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 }
 
 static __inline void
 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
 {
 	struct bge_extrx_bd *r;
 
 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
 	r->bge_idx = i;
 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 }
 
 /*
  * Frame reception handling. This is called if there's a frame
  * on the receive return list.
  *
  * Note: we have to be able to handle two possibilities here:
  * 1) the frame is from the jumbo receive ring
  * 2) the frame is from the standard receive ring
  */
 
 static int
 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
 {
 	if_t ifp;
 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
 	uint16_t rx_cons;
 
 	rx_cons = sc->bge_rx_saved_considx;
 
 	/* Nothing to do. */
 	if (rx_cons == rx_prod)
 		return (rx_npkts);
 
 	ifp = sc->bge_ifp;
 
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
 
 	while (rx_cons != rx_prod) {
 		struct bge_rx_bd	*cur_rx;
 		uint32_t		rxidx;
 		struct mbuf		*m = NULL;
 		uint16_t		vlan_tag = 0;
 		int			have_tag = 0;
 
 #ifdef DEVICE_POLLING
 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
 			if (sc->rxcycles <= 0)
 				break;
 			sc->rxcycles--;
 		}
 #endif
 
 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
 
 		rxidx = cur_rx->bge_idx;
 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
 
 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 			have_tag = 1;
 			vlan_tag = cur_rx->bge_vlan_tag;
 		}
 
 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 			jumbocnt++;
 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 				bge_rxreuse_jumbo(sc, rxidx);
 				continue;
 			}
 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
 				bge_rxreuse_jumbo(sc, rxidx);
 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 				continue;
 			}
 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 		} else {
 			stdcnt++;
 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 				bge_rxreuse_std(sc, rxidx);
 				continue;
 			}
 			if (bge_newbuf_std(sc, rxidx) != 0) {
 				bge_rxreuse_std(sc, rxidx);
 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 				continue;
 			}
 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 		}
 
 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 #ifndef __NO_STRICT_ALIGNMENT
 		/*
 		 * For architectures with strict alignment we must make sure
 		 * the payload is aligned.
 		 */
 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 			    cur_rx->bge_len);
 			m->m_data += ETHER_ALIGN;
 		}
 #endif
 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 		m->m_pkthdr.rcvif = ifp;
 
 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
 			bge_rxcsum(sc, cur_rx, m);
 
 		/*
 		 * If we received a packet with a vlan tag,
 		 * attach that information to the packet.
 		 */
 		if (have_tag) {
 			m->m_pkthdr.ether_vtag = vlan_tag;
 			m->m_flags |= M_VLANTAG;
 		}
 
 		if (holdlck != 0) {
 			BGE_UNLOCK(sc);
 			if_input(ifp, m);
 			BGE_LOCK(sc);
 		} else
 			if_input(ifp, m);
 		rx_npkts++;
 
 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
 			return (rx_npkts);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
 	if (stdcnt > 0)
 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 
 	if (jumbocnt > 0)
 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 
 	sc->bge_rx_saved_considx = rx_cons;
 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 	if (stdcnt)
 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
 	if (jumbocnt)
 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
 #ifdef notyet
 	/*
 	 * This register wraps very quickly under heavy packet drops.
 	 * If you need correct statistics, you can enable this check.
 	 */
 	if (BGE_IS_5705_PLUS(sc))
 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
 #endif
 	return (rx_npkts);
 }
 
 static void
 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
 {
 
 	if (BGE_IS_5717_PLUS(sc)) {
 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 				if ((cur_rx->bge_error_flag &
 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 			}
 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
 				m->m_pkthdr.csum_data =
 				    cur_rx->bge_tcp_udp_csum;
 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 				    CSUM_PSEUDO_HDR;
 			}
 		}
 	} else {
 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 		}
 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 			m->m_pkthdr.csum_data =
 			    cur_rx->bge_tcp_udp_csum;
 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 			    CSUM_PSEUDO_HDR;
 		}
 	}
 }
 
 static void
 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
 {
 	struct bge_tx_bd *cur_tx;
 	if_t ifp;
 
 	BGE_LOCK_ASSERT(sc);
 
 	/* Nothing to do. */
 	if (sc->bge_tx_saved_considx == tx_cons)
 		return;
 
 	ifp = sc->bge_ifp;
 
 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
 	/*
 	 * Go through our tx ring and free mbufs for those
 	 * frames that have been sent.
 	 */
 	while (sc->bge_tx_saved_considx != tx_cons) {
 		uint32_t		idx;
 
 		idx = sc->bge_tx_saved_considx;
 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 			    sc->bge_cdata.bge_tx_dmamap[idx],
 			    BUS_DMASYNC_POSTWRITE);
 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 			    sc->bge_cdata.bge_tx_dmamap[idx]);
 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
 		}
 		sc->bge_txcnt--;
 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 	}
 
 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 	if (sc->bge_txcnt == 0)
 		sc->bge_timer = 0;
 }
 
 #ifdef DEVICE_POLLING
 static int
 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
 {
 	struct bge_softc *sc = if_getsoftc(ifp);
 	uint16_t rx_prod, tx_cons;
 	uint32_t statusword;
 	int rx_npkts = 0;
 
 	BGE_LOCK(sc);
 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 		BGE_UNLOCK(sc);
 		return (rx_npkts);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 	/* Fetch updates from the status block. */
 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 
 	statusword = sc->bge_ldata.bge_status_block->bge_status;
 	/* Clear the status so the next pass only sees the changes. */
 	sc->bge_ldata.bge_status_block->bge_status = 0;
 
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 		sc->bge_link_evt++;
 
 	if (cmd == POLL_AND_CHECK_STATUS)
 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 			bge_link_upd(sc);
 
 	sc->rxcycles = count;
 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 		BGE_UNLOCK(sc);
 		return (rx_npkts);
 	}
 	bge_txeof(sc, tx_cons);
 	if (!if_sendq_empty(ifp))
 		bge_start_locked(ifp);
 
 	BGE_UNLOCK(sc);
 	return (rx_npkts);
 }
 #endif /* DEVICE_POLLING */
 
 static int
 bge_msi_intr(void *arg)
 {
 	struct bge_softc *sc;
 
 	sc = (struct bge_softc *)arg;
 	/*
 	 * This interrupt is not shared and controller already
 	 * disabled further interrupt.
 	 */
 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
 	return (FILTER_HANDLED);
 }
 
 static void
 bge_intr_task(void *arg, int pending)
 {
 	struct bge_softc *sc;
 	if_t ifp;
 	uint32_t status, status_tag;
 	uint16_t rx_prod, tx_cons;
 
 	sc = (struct bge_softc *)arg;
 	ifp = sc->bge_ifp;
 
 	BGE_LOCK(sc);
 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
 		BGE_UNLOCK(sc);
 		return;
 	}
 
 	/* Get updated status block. */
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 
 	/* Save producer/consumer indices. */
 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 	status = sc->bge_ldata.bge_status_block->bge_status;
 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
 	/* Dirty the status flag. */
 	sc->bge_ldata.bge_status_block->bge_status = 0;
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
 		status_tag = 0;
 
 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
 		bge_link_upd(sc);
 
 	/* Let controller work. */
 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
 
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
 	    sc->bge_rx_saved_considx != rx_prod) {
 		/* Check RX return ring producer/consumer. */
 		BGE_UNLOCK(sc);
 		bge_rxeof(sc, rx_prod, 0);
 		BGE_LOCK(sc);
 	}
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 		/* Check TX ring producer/consumer. */
 		bge_txeof(sc, tx_cons);
 		if (!if_sendq_empty(ifp))
 			bge_start_locked(ifp);
 	}
 	BGE_UNLOCK(sc);
 }
 
 static void
 bge_intr(void *xsc)
 {
 	struct bge_softc *sc;
 	if_t ifp;
 	uint32_t statusword;
 	uint16_t rx_prod, tx_cons;
 
 	sc = xsc;
 
 	BGE_LOCK(sc);
 
 	ifp = sc->bge_ifp;
 
 #ifdef DEVICE_POLLING
 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
 		BGE_UNLOCK(sc);
 		return;
 	}
 #endif
 
 	/*
 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 	 * disable interrupts by writing nonzero like we used to, since with
 	 * our current organization this just gives complications and
 	 * pessimizations for re-enabling interrupts.  We used to have races
 	 * instead of the necessary complications.  Disabling interrupts
 	 * would just reduce the chance of a status update while we are
 	 * running (by switching to the interrupt-mode coalescence
 	 * parameters), but this chance is already very low so it is more
 	 * efficient to get another interrupt than prevent it.
 	 *
 	 * We do the ack first to ensure another interrupt if there is a
 	 * status update after the ack.  We don't check for the status
 	 * changing later because it is more efficient to get another
 	 * interrupt than prevent it, not quite as above (not checking is
 	 * a smaller optimization than not toggling the interrupt enable,
 	 * since checking doesn't involve PCI accesses and toggling require
 	 * the status check).  So toggling would probably be a pessimization
 	 * even with MSI.  It would only be needed for using a task queue.
 	 */
 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 
 	/*
 	 * Do the mandatory PCI flush as well as get the link status.
 	 */
 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 
 	/* Make sure the descriptor ring indexes are coherent. */
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 	sc->bge_ldata.bge_status_block->bge_status = 0;
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 	    statusword || sc->bge_link_evt)
 		bge_link_upd(sc);
 
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 		/* Check RX return ring producer/consumer. */
 		bge_rxeof(sc, rx_prod, 1);
 	}
 
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 		/* Check TX ring producer/consumer. */
 		bge_txeof(sc, tx_cons);
 	}
 
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
 	    !if_sendq_empty(ifp))
 		bge_start_locked(ifp);
 
 	BGE_UNLOCK(sc);
 }
 
 static void
 bge_asf_driver_up(struct bge_softc *sc)
 {
 	if (sc->bge_asf_mode & ASF_STACKUP) {
 		/* Send ASF heartbeat aprox. every 2s */
 		if (sc->bge_asf_count)
 			sc->bge_asf_count --;
 		else {
 			sc->bge_asf_count = 2;
 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
 			    BGE_FW_CMD_DRV_ALIVE);
 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
 			    BGE_FW_HB_TIMEOUT_SEC);
 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
 			    BGE_RX_CPU_DRV_EVENT);
 		}
 	}
 }
 
 static void
 bge_tick(void *xsc)
 {
 	struct bge_softc *sc = xsc;
 	struct mii_data *mii = NULL;
 
 	BGE_LOCK_ASSERT(sc);
 
 	/* Synchronize with possible callout reset/stop. */
 	if (callout_pending(&sc->bge_stat_ch) ||
 	    !callout_active(&sc->bge_stat_ch))
 		return;
 
 	if (BGE_IS_5705_PLUS(sc))
 		bge_stats_update_regs(sc);
 	else
 		bge_stats_update(sc);
 
 	/* XXX Add APE heartbeat check here? */
 
 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 		mii = device_get_softc(sc->bge_miibus);
 		/*
 		 * Do not touch PHY if we have link up. This could break
 		 * IPMI/ASF mode or produce extra input errors
 		 * (extra errors was reported for bcm5701 & bcm5704).
 		 */
 		if (!sc->bge_link)
 			mii_tick(mii);
 	} else {
 		/*
 		 * Since in TBI mode auto-polling can't be used we should poll
 		 * link status manually. Here we register pending link event
 		 * and trigger interrupt.
 		 */
 #ifdef DEVICE_POLLING
 		/* In polling mode we poll link state in bge_poll(). */
 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
 #endif
 		{
 		sc->bge_link_evt++;
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 		    sc->bge_flags & BGE_FLAG_5788)
 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 		else
 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 		}
 	}
 
 	bge_asf_driver_up(sc);
 	bge_watchdog(sc);
 
 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 }
 
 static void
 bge_stats_update_regs(struct bge_softc *sc)
 {
 	if_t ifp;
 	struct bge_mac_stats *stats;
 	uint32_t val;
 
 	ifp = sc->bge_ifp;
 	stats = &sc->bge_mac_stats;
 
 	stats->ifHCOutOctets +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 	stats->etherStatsCollisions +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 	stats->outXonSent +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 	stats->outXoffSent +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 	stats->dot3StatsInternalMacTransmitErrors +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 	stats->dot3StatsSingleCollisionFrames +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 	stats->dot3StatsMultipleCollisionFrames +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 	stats->dot3StatsDeferredTransmissions +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 	stats->dot3StatsExcessiveCollisions +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 	stats->dot3StatsLateCollisions +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 	stats->ifHCOutUcastPkts +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 	stats->ifHCOutMulticastPkts +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 	stats->ifHCOutBroadcastPkts +=
 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 
 	stats->ifHCInOctets +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 	stats->etherStatsFragments +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 	stats->ifHCInUcastPkts +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 	stats->ifHCInMulticastPkts +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 	stats->ifHCInBroadcastPkts +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 	stats->dot3StatsFCSErrors +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 	stats->dot3StatsAlignmentErrors +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 	stats->xonPauseFramesReceived +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 	stats->xoffPauseFramesReceived +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 	stats->macControlFramesReceived +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 	stats->xoffStateEntered +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 	stats->dot3StatsFramesTooLong +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 	stats->etherStatsJabbers +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 	stats->etherStatsUndersizePkts +=
 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 
 	stats->FramesDroppedDueToFilters +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 	stats->DmaWriteQueueFull +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 	stats->DmaWriteHighPriQueueFull +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 	stats->NoMoreRxBDs +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 	/*
 	 * XXX
 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
 	 * includes number of unwanted multicast frames.  This comes
 	 * from silicon bug and known workaround to get rough(not
 	 * exact) counter is to enable interrupt on MBUF low water
 	 * attention.  This can be accomplished by setting
 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
 	 * However that change would generate more interrupts and
 	 * there are still possibilities of losing multiple frames
 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
 	 * Given that the workaround still would not get correct
 	 * counter I don't think it's worth to implement it.  So
 	 * ignore reading the counter on controllers that have the
 	 * silicon bug.
 	 */
 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
 		stats->InputDiscards +=
 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 	stats->InputErrors +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 	stats->RecvThresholdHit +=
 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 
 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
 		/*
 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
 		 * frames, it's safe to disable workaround for DMA engine's
 		 * miscalculation of TXMBUF space.
 		 */
 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
 			else
 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
 		}
 	}
 }
 
 static void
 bge_stats_clear_regs(struct bge_softc *sc)
 {
 
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 }
 
 static void
 bge_stats_update(struct bge_softc *sc)
 {
 	if_t ifp;
 	bus_size_t stats;
 	uint32_t cnt;	/* current register value */
 
 	ifp = sc->bge_ifp;
 
 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 
 #define	READ_STAT(sc, stats, stat) \
 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 
 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
 	sc->bge_tx_collisions = cnt;
 
 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
 	sc->bge_rx_nobds = cnt;
 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
 	sc->bge_rx_inerrs = cnt;
 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
 	sc->bge_rx_discards = cnt;
 
 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
 	sc->bge_tx_discards = cnt;
 
 #undef	READ_STAT
 }
 
 /*
  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
  * but when such padded frames employ the bge IP/TCP checksum offload,
  * the hardware checksum assist gives incorrect results (possibly
  * from incorporating its own padding into the UDP/TCP checksum; who knows).
  * If we pad such runts with zeros, the onboard checksum comes out correct.
  */
 static __inline int
 bge_cksum_pad(struct mbuf *m)
 {
 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 	struct mbuf *last;
 
 	/* If there's only the packet-header and we can pad there, use it. */
 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 	    M_TRAILINGSPACE(m) >= padlen) {
 		last = m;
 	} else {
 		/*
 		 * Walk packet chain to find last mbuf. We will either
 		 * pad there, or append a new mbuf and pad it.
 		 */
 		for (last = m; last->m_next != NULL; last = last->m_next);
 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 			/* Allocate new empty mbuf, pad it. Compact later. */
 			struct mbuf *n;
 
 			MGET(n, M_NOWAIT, MT_DATA);
 			if (n == NULL)
 				return (ENOBUFS);
 			n->m_len = 0;
 			last->m_next = n;
 			last = n;
 		}
 	}
 
 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 	last->m_len += padlen;
 	m->m_pkthdr.len += padlen;
 
 	return (0);
 }
 
 static struct mbuf *
 bge_check_short_dma(struct mbuf *m)
 {
 	struct mbuf *n;
 	int found;
 
 	/*
 	 * If device receive two back-to-back send BDs with less than
 	 * or equal to 8 total bytes then the device may hang.  The two
 	 * back-to-back send BDs must in the same frame for this failure
 	 * to occur.  Scan mbuf chains and see whether two back-to-back
 	 * send BDs are there. If this is the case, allocate new mbuf
 	 * and copy the frame to workaround the silicon bug.
 	 */
 	for (n = m, found = 0; n != NULL; n = n->m_next) {
 		if (n->m_len < 8) {
 			found++;
 			if (found > 1)
 				break;
 			continue;
 		}
 		found = 0;
 	}
 
 	if (found > 1) {
 		n = m_defrag(m, M_NOWAIT);
 		if (n == NULL)
 			m_freem(m);
 	} else
 		n = m;
 	return (n);
 }
 
 static struct mbuf *
 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
     uint16_t *flags)
 {
 	struct ip *ip;
 	struct tcphdr *tcp;
 	struct mbuf *n;
 	uint16_t hlen;
 	uint32_t poff;
 
 	if (M_WRITABLE(m) == 0) {
 		/* Get a writable copy. */
 		n = m_dup(m, M_NOWAIT);
 		m_freem(m);
 		if (n == NULL)
 			return (NULL);
 		m = n;
 	}
 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
 	if (m == NULL)
 		return (NULL);
 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
 	m = m_pullup(m, poff + sizeof(struct tcphdr));
 	if (m == NULL)
 		return (NULL);
 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 	m = m_pullup(m, poff + (tcp->th_off << 2));
 	if (m == NULL)
 		return (NULL);
 	/*
 	 * It seems controller doesn't modify IP length and TCP pseudo
 	 * checksum. These checksum computed by upper stack should be 0.
 	 */
 	*mss = m->m_pkthdr.tso_segsz;
 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 	ip->ip_sum = 0;
 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
 	/* Clear pseudo checksum computed by TCP stack. */
 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 	tcp->th_sum = 0;
 	/*
 	 * Broadcom controllers uses different descriptor format for
 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
 	 * license issue and lower performance of firmware based TSO
 	 * we only support hardware based TSO.
 	 */
 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
 	if (sc->bge_flags & BGE_FLAG_TSO3) {
 		/*
 		 * For BCM5717 and newer controllers, hardware based TSO
 		 * uses the 14 lower bits of the bge_mss field to store the
 		 * MSS and the upper 2 bits to store the lowest 2 bits of
 		 * the IP/TCP header length.  The upper 6 bits of the header
 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
 		 * frames are supported.
 		 */
 		*mss |= ((hlen & 0x3) << 14);
 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
 	} else {
 		/*
 		 * For BCM5755 and newer controllers, hardware based TSO uses
 		 * the lower 11	bits to store the MSS and the upper 5 bits to
 		 * store the IP/TCP header length. Jumbo frames are not
 		 * supported.
 		 */
 		*mss |= (hlen << 11);
 	}
 	return (m);
 }
 
 /*
  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
  * pointers to descriptors.
  */
 static int
 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 {
 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
 	bus_dmamap_t		map;
 	struct bge_tx_bd	*d;
 	struct mbuf		*m = *m_head;
 	uint32_t		idx = *txidx;
 	uint16_t		csum_flags, mss, vlan_tag;
 	int			nsegs, i, error;
 
 	csum_flags = 0;
 	mss = 0;
 	vlan_tag = 0;
 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
 	    m->m_next != NULL) {
 		*m_head = bge_check_short_dma(m);
 		if (*m_head == NULL)
 			return (ENOBUFS);
 		m = *m_head;
 	}
 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
 		if (*m_head == NULL)
 			return (ENOBUFS);
 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
 		    BGE_TXBDFLAG_CPU_POST_DMA;
 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
 		if (m->m_pkthdr.csum_flags & CSUM_IP)
 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 			    (error = bge_cksum_pad(m)) != 0) {
 				m_freem(m);
 				*m_head = NULL;
 				return (error);
 			}
 		}
 	}
 
 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
 		    m->m_pkthdr.len > ETHER_MAX_LEN)
 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
 		if (sc->bge_forced_collapse > 0 &&
 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
 			/*
 			 * Forcedly collapse mbuf chains to overcome hardware
 			 * limitation which only support a single outstanding
 			 * DMA read operation.
 			 */
 			if (sc->bge_forced_collapse == 1)
 				m = m_defrag(m, M_NOWAIT);
 			else
 				m = m_collapse(m, M_NOWAIT,
 				    sc->bge_forced_collapse);
 			if (m == NULL)
 				m = *m_head;
 			*m_head = m;
 		}
 	}
 
 	map = sc->bge_cdata.bge_tx_dmamap[idx];
 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
 	    &nsegs, BUS_DMA_NOWAIT);
 	if (error == EFBIG) {
 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
 		if (m == NULL) {
 			m_freem(*m_head);
 			*m_head = NULL;
 			return (ENOBUFS);
 		}
 		*m_head = m;
 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
 		if (error) {
 			m_freem(m);
 			*m_head = NULL;
 			return (error);
 		}
 	} else if (error != 0)
 		return (error);
 
 	/* Check if we have enough free send BDs. */
 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
 		return (ENOBUFS);
 	}
 
 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
 
 	if (m->m_flags & M_VLANTAG) {
 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
 		vlan_tag = m->m_pkthdr.ether_vtag;
 	}
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 		/*
 		 * 5725 family of devices corrupts TSO packets when TSO DMA
 		 * buffers cross into regions which are within MSS bytes of
 		 * a 4GB boundary.  If we encounter the condition, drop the
 		 * packet.
 		 */
 		for (i = 0; ; i++) {
 			d = &sc->bge_ldata.bge_tx_ring[idx];
 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 			d->bge_len = segs[i].ds_len;
 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
 			    d->bge_addr.bge_addr_lo)
 				break;
 			d->bge_flags = csum_flags;
 			d->bge_vlan_tag = vlan_tag;
 			d->bge_mss = mss;
 			if (i == nsegs - 1)
 				break;
 			BGE_INC(idx, BGE_TX_RING_CNT);
 		}
 		if (i != nsegs - 1) {
 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
 			    BUS_DMASYNC_POSTWRITE);
 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
 			m_freem(*m_head);
 			*m_head = NULL;
 			return (EIO);
 		}
 	} else {
 		for (i = 0; ; i++) {
 			d = &sc->bge_ldata.bge_tx_ring[idx];
 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 			d->bge_len = segs[i].ds_len;
 			d->bge_flags = csum_flags;
 			d->bge_vlan_tag = vlan_tag;
 			d->bge_mss = mss;
 			if (i == nsegs - 1)
 				break;
 			BGE_INC(idx, BGE_TX_RING_CNT);
 		}
 	}
 
 	/* Mark the last segment as end of packet... */
 	d->bge_flags |= BGE_TXBDFLAG_END;
 
 	/*
 	 * Insure that the map for this transmission
 	 * is placed at the array index of the last descriptor
 	 * in this chain.
 	 */
 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
 	sc->bge_cdata.bge_tx_chain[idx] = m;
 	sc->bge_txcnt += nsegs;
 
 	BGE_INC(idx, BGE_TX_RING_CNT);
 	*txidx = idx;
 
 	return (0);
 }
 
 /*
  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
  * to the mbuf data regions directly in the transmit descriptors.
  */
 static void
 bge_start_locked(if_t ifp)
 {
 	struct bge_softc *sc;
 	struct mbuf *m_head;
 	uint32_t prodidx;
 	int count;
 
 	sc = if_getsoftc(ifp);
 	BGE_LOCK_ASSERT(sc);
 
 	if (!sc->bge_link ||
 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 	    IFF_DRV_RUNNING)
 		return;
 
 	prodidx = sc->bge_tx_prodidx;
 
 	for (count = 0; !if_sendq_empty(ifp);) {
 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 			break;
 		}
 		m_head = if_dequeue(ifp);
 		if (m_head == NULL)
 			break;
 
 		/*
 		 * Pack the data into the transmit ring. If we
 		 * don't have room, set the OACTIVE flag and wait
 		 * for the NIC to drain the ring.
 		 */
 		if (bge_encap(sc, &m_head, &prodidx)) {
 			if (m_head == NULL)
 				break;
 			if_sendq_prepend(ifp, m_head);
 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 			break;
 		}
 		++count;
 
 		/*
 		 * If there's a BPF listener, bounce a copy of this frame
 		 * to him.
 		 */
 		if_bpfmtap(ifp, m_head);
 	}
 
 	if (count > 0)
 		bge_start_tx(sc, prodidx);
 }
 
 static void
 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
 {
 
 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 	/* Transmit. */
 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 	/* 5700 b2 errata */
 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 
 	sc->bge_tx_prodidx = prodidx;
 
 	/* Set a timeout in case the chip goes out to lunch. */
 	sc->bge_timer = BGE_TX_TIMEOUT;
 }
 
 /*
  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
  * to the mbuf data regions directly in the transmit descriptors.
  */
 static void
 bge_start(if_t ifp)
 {
 	struct bge_softc *sc;
 
 	sc = if_getsoftc(ifp);
 	BGE_LOCK(sc);
 	bge_start_locked(ifp);
 	BGE_UNLOCK(sc);
 }
 
 static void
 bge_init_locked(struct bge_softc *sc)
 {
 	if_t ifp;
 	uint16_t *m;
 	uint32_t mode;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifp = sc->bge_ifp;
 
 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 		return;
 
 	/* Cancel pending I/O and flush buffers. */
 	bge_stop(sc);
 
 	bge_stop_fw(sc);
 	bge_sig_pre_reset(sc, BGE_RESET_START);
 	bge_reset(sc);
 	bge_sig_legacy(sc, BGE_RESET_START);
 	bge_sig_post_reset(sc, BGE_RESET_START);
 
 	bge_chipinit(sc);
 
 	/*
 	 * Init the various state machines, ring
 	 * control blocks and firmware.
 	 */
 	if (bge_blockinit(sc)) {
 		device_printf(sc->bge_dev, "initialization failure\n");
 		return;
 	}
 
 	ifp = sc->bge_ifp;
 
 	/* Specify MTU. */
 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
 
 	/* Load our MAC address. */
 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 
 	/* Program promiscuous mode. */
 	bge_setpromisc(sc);
 
 	/* Program multicast filter. */
 	bge_setmulti(sc);
 
 	/* Program VLAN tag stripping. */
 	bge_setvlan(sc);
 
 	/* Override UDP checksum offloading. */
 	if (sc->bge_forced_udpcsum == 0)
 		sc->bge_csum_features &= ~CSUM_UDP;
 	else
 		sc->bge_csum_features |= CSUM_UDP;
 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
 	}
 
 	/* Init RX ring. */
 	if (bge_init_rx_ring_std(sc) != 0) {
 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
 		bge_stop(sc);
 		return;
 	}
 
 	/*
 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 	 * memory to insure that the chip has in fact read the first
 	 * entry of the ring.
 	 */
 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 		uint32_t		v, i;
 		for (i = 0; i < 10; i++) {
 			DELAY(20);
 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 			if (v == (MCLBYTES - ETHER_ALIGN))
 				break;
 		}
 		if (i == 10)
 			device_printf (sc->bge_dev,
 			    "5705 A0 chip failed to load RX ring\n");
 	}
 
 	/* Init jumbo RX ring. */
 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
 		if (bge_init_rx_ring_jumbo(sc) != 0) {
 			device_printf(sc->bge_dev,
 			    "no memory for jumbo Rx buffers.\n");
 			bge_stop(sc);
 			return;
 		}
 	}
 
 	/* Init our RX return ring index. */
 	sc->bge_rx_saved_considx = 0;
 
 	/* Init our RX/TX stat counters. */
 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 
 	/* Init TX ring. */
 	bge_init_tx_ring(sc);
 
 	/* Enable TX MAC state machine lockup fix. */
 	mode = CSR_READ_4(sc, BGE_TX_MODE);
 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 	}
 	/* Turn on transmitter. */
 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
 	DELAY(100);
 
 	/* Turn on receiver. */
 	mode = CSR_READ_4(sc, BGE_RX_MODE);
 	if (BGE_IS_5755_PLUS(sc))
 		mode |= BGE_RXMODE_IPV6_ENABLE;
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
 	DELAY(10);
 
 	/*
 	 * Set the number of good frames to receive after RX MBUF
 	 * Low Watermark has been reached. After the RX MAC receives
 	 * this number of frames, it will drop subsequent incoming
 	 * frames until the MBUF High Watermark is reached.
 	 */
 	if (BGE_IS_57765_PLUS(sc))
 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
 	else
 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
 
 	/* Clear MAC statistics. */
 	if (BGE_IS_5705_PLUS(sc))
 		bge_stats_clear_regs(sc);
 
 	/* Tell firmware we're alive. */
 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 
 #ifdef DEVICE_POLLING
 	/* Disable interrupts if we are polling. */
 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 	} else
 #endif
 
 	/* Enable host interrupts. */
 	{
 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 	}
 
 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 
 	bge_ifmedia_upd_locked(ifp);
 
 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 }
 
 static void
 bge_init(void *xsc)
 {
 	struct bge_softc *sc = xsc;
 
 	BGE_LOCK(sc);
 	bge_init_locked(sc);
 	BGE_UNLOCK(sc);
 }
 
 /*
  * Set media options.
  */
 static int
 bge_ifmedia_upd(if_t ifp)
 {
 	struct bge_softc *sc = if_getsoftc(ifp);
 	int res;
 
 	BGE_LOCK(sc);
 	res = bge_ifmedia_upd_locked(ifp);
 	BGE_UNLOCK(sc);
 
 	return (res);
 }
 
 static int
 bge_ifmedia_upd_locked(if_t ifp)
 {
 	struct bge_softc *sc = if_getsoftc(ifp);
 	struct mii_data *mii;
 	struct mii_softc *miisc;
 	struct ifmedia *ifm;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifm = &sc->bge_ifmedia;
 
 	/* If this is a 1000baseX NIC, enable the TBI port. */
 	if (sc->bge_flags & BGE_FLAG_TBI) {
 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 			return (EINVAL);
 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
 		case IFM_AUTO:
 			/*
 			 * The BCM5704 ASIC appears to have a special
 			 * mechanism for programming the autoneg
 			 * advertisement registers in TBI mode.
 			 */
 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 				uint32_t sgdig;
 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 				if (sgdig & BGE_SGDIGSTS_DONE) {
 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 					sgdig |= BGE_SGDIGCFG_AUTO |
 					    BGE_SGDIGCFG_PAUSE_CAP |
 					    BGE_SGDIGCFG_ASYM_PAUSE;
 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 					    sgdig | BGE_SGDIGCFG_SEND);
 					DELAY(5);
 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 				}
 			}
 			break;
 		case IFM_1000_SX:
 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 				BGE_CLRBIT(sc, BGE_MAC_MODE,
 				    BGE_MACMODE_HALF_DUPLEX);
 			} else {
 				BGE_SETBIT(sc, BGE_MAC_MODE,
 				    BGE_MACMODE_HALF_DUPLEX);
 			}
 			DELAY(40);
 			break;
 		default:
 			return (EINVAL);
 		}
 		return (0);
 	}
 
 	sc->bge_link_evt++;
 	mii = device_get_softc(sc->bge_miibus);
 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 		PHY_RESET(miisc);
 	mii_mediachg(mii);
 
 	/*
 	 * Force an interrupt so that we will call bge_link_upd
 	 * if needed and clear any pending link state attention.
 	 * Without this we are not getting any further interrupts
 	 * for link state changes and thus will not UP the link and
 	 * not be able to send in bge_start_locked. The only
 	 * way to get things working was to receive a packet and
 	 * get an RX intr.
 	 * bge_tick should help for fiber cards and we might not
 	 * need to do this here if BGE_FLAG_TBI is set but as
 	 * we poll for fiber anyway it should not harm.
 	 */
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 	    sc->bge_flags & BGE_FLAG_5788)
 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 	else
 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 
 	return (0);
 }
 
 /*
  * Report current media status.
  */
 static void
 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
 {
 	struct bge_softc *sc = if_getsoftc(ifp);
 	struct mii_data *mii;
 
 	BGE_LOCK(sc);
 
 	if ((if_getflags(ifp) & IFF_UP) == 0) {
 		BGE_UNLOCK(sc);
 		return;
 	}
 	if (sc->bge_flags & BGE_FLAG_TBI) {
 		ifmr->ifm_status = IFM_AVALID;
 		ifmr->ifm_active = IFM_ETHER;
 		if (CSR_READ_4(sc, BGE_MAC_STS) &
 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
 			ifmr->ifm_status |= IFM_ACTIVE;
 		else {
 			ifmr->ifm_active |= IFM_NONE;
 			BGE_UNLOCK(sc);
 			return;
 		}
 		ifmr->ifm_active |= IFM_1000_SX;
 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 			ifmr->ifm_active |= IFM_HDX;
 		else
 			ifmr->ifm_active |= IFM_FDX;
 		BGE_UNLOCK(sc);
 		return;
 	}
 
 	mii = device_get_softc(sc->bge_miibus);
 	mii_pollstat(mii);
 	ifmr->ifm_active = mii->mii_media_active;
 	ifmr->ifm_status = mii->mii_media_status;
 
 	BGE_UNLOCK(sc);
 }
 
 static int
 bge_ioctl(if_t ifp, u_long command, caddr_t data)
 {
 	struct bge_softc *sc = if_getsoftc(ifp);
 	struct ifreq *ifr = (struct ifreq *) data;
 	struct mii_data *mii;
 	int flags, mask, error = 0;
 
 	switch (command) {
 	case SIOCSIFMTU:
 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
 			if (ifr->ifr_mtu < ETHERMIN ||
 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
 				error = EINVAL;
 				break;
 			}
 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
 			error = EINVAL;
 			break;
 		}
 		BGE_LOCK(sc);
 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
 			if_setmtu(ifp, ifr->ifr_mtu);
 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 				bge_init_locked(sc);
 			}
 		}
 		BGE_UNLOCK(sc);
 		break;
 	case SIOCSIFFLAGS:
 		BGE_LOCK(sc);
 		if (if_getflags(ifp) & IFF_UP) {
 			/*
 			 * If only the state of the PROMISC flag changed,
 			 * then just use the 'set promisc mode' command
 			 * instead of reinitializing the entire NIC. Doing
 			 * a full re-init means reloading the firmware and
 			 * waiting for it to start up, which may take a
 			 * second or two.  Similarly for ALLMULTI.
 			 */
 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
 				if (flags & IFF_PROMISC)
 					bge_setpromisc(sc);
 				if (flags & IFF_ALLMULTI)
 					bge_setmulti(sc);
 			} else
 				bge_init_locked(sc);
 		} else {
 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 				bge_stop(sc);
 			}
 		}
 		sc->bge_if_flags = if_getflags(ifp);
 		BGE_UNLOCK(sc);
 		error = 0;
 		break;
 	case SIOCADDMULTI:
 	case SIOCDELMULTI:
 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 			BGE_LOCK(sc);
 			bge_setmulti(sc);
 			BGE_UNLOCK(sc);
 			error = 0;
 		}
 		break;
 	case SIOCSIFMEDIA:
 	case SIOCGIFMEDIA:
 		if (sc->bge_flags & BGE_FLAG_TBI) {
 			error = ifmedia_ioctl(ifp, ifr,
 			    &sc->bge_ifmedia, command);
 		} else {
 			mii = device_get_softc(sc->bge_miibus);
 			error = ifmedia_ioctl(ifp, ifr,
 			    &mii->mii_media, command);
 		}
 		break;
 	case SIOCSIFCAP:
 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
 #ifdef DEVICE_POLLING
 		if (mask & IFCAP_POLLING) {
 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
 				error = ether_poll_register(bge_poll, ifp);
 				if (error)
 					return (error);
 				BGE_LOCK(sc);
 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
 				BGE_UNLOCK(sc);
 			} else {
 				error = ether_poll_deregister(ifp);
 				/* Enable interrupt even in error case */
 				BGE_LOCK(sc);
 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
 				BGE_UNLOCK(sc);
 			}
 		}
 #endif
 		if ((mask & IFCAP_TXCSUM) != 0 &&
 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
 			if_togglecapenable(ifp, IFCAP_TXCSUM);
 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
 				if_sethwassistbits(ifp,
 				    sc->bge_csum_features, 0);
 			else
 				if_sethwassistbits(ifp, 0,
 				    sc->bge_csum_features);
 		}
 
 		if ((mask & IFCAP_RXCSUM) != 0 &&
 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
 			if_togglecapenable(ifp, IFCAP_RXCSUM);
 
 		if ((mask & IFCAP_TSO4) != 0 &&
 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
 			if_togglecapenable(ifp, IFCAP_TSO4);
 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
 				if_sethwassistbits(ifp, CSUM_TSO, 0);
 			else
 				if_sethwassistbits(ifp, 0, CSUM_TSO);
 		}
 
 		if (mask & IFCAP_VLAN_MTU) {
 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 			bge_init(sc);
 		}
 
 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
 			BGE_LOCK(sc);
 			bge_setvlan(sc);
 			BGE_UNLOCK(sc);
 		}
 #ifdef VLAN_CAPABILITIES
 		if_vlancap(ifp);
 #endif
 		break;
 	default:
 		error = ether_ioctl(ifp, command, data);
 		break;
 	}
 
 	return (error);
 }
 
 static void
 bge_watchdog(struct bge_softc *sc)
 {
 	if_t ifp;
 	uint32_t status;
 
 	BGE_LOCK_ASSERT(sc);
 
 	if (sc->bge_timer == 0 || --sc->bge_timer)
 		return;
 
 	/* If pause frames are active then don't reset the hardware. */
 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
 		status = CSR_READ_4(sc, BGE_RX_STS);
 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
 			/*
 			 * If link partner has us in XOFF state then wait for
 			 * the condition to clear.
 			 */
 			CSR_WRITE_4(sc, BGE_RX_STS, status);
 			sc->bge_timer = BGE_TX_TIMEOUT;
 			return;
 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
 			/*
 			 * If link partner has us in XOFF state then wait for
 			 * the condition to clear.
 			 */
 			CSR_WRITE_4(sc, BGE_RX_STS, status);
 			sc->bge_timer = BGE_TX_TIMEOUT;
 			return;
 		}
 		/*
 		 * Any other condition is unexpected and the controller
 		 * should be reset.
 		 */
 	}
 
 	ifp = sc->bge_ifp;
 
 	if_printf(ifp, "watchdog timeout -- resetting\n");
 
 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 	bge_init_locked(sc);
 
 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 }
 
 static void
 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
 {
 	int i;
 
 	BGE_CLRBIT(sc, reg, bit);
 
 	for (i = 0; i < BGE_TIMEOUT; i++) {
 		if ((CSR_READ_4(sc, reg) & bit) == 0)
 			return;
 		DELAY(100);
         }
 }
 
 /*
  * Stop the adapter and free any mbufs allocated to the
  * RX and TX lists.
  */
 static void
 bge_stop(struct bge_softc *sc)
 {
 	if_t ifp;
 
 	BGE_LOCK_ASSERT(sc);
 
 	ifp = sc->bge_ifp;
 
 	callout_stop(&sc->bge_stat_ch);
 
 	/* Disable host interrupts. */
 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 
 	/*
 	 * Tell firmware we're shutting down.
 	 */
 	bge_stop_fw(sc);
 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 
 	/*
 	 * Disable all of the receiver blocks.
 	 */
 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 	if (BGE_IS_5700_FAMILY(sc))
 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 
 	/*
 	 * Disable all of the transmit blocks.
 	 */
 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 	if (BGE_IS_5700_FAMILY(sc))
 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 
 	/*
 	 * Shut down all of the memory managers and related
 	 * state machines.
 	 */
 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 	if (BGE_IS_5700_FAMILY(sc))
 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 
 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 	if (!(BGE_IS_5705_PLUS(sc))) {
 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 	}
 	/* Update MAC statistics. */
 	if (BGE_IS_5705_PLUS(sc))
 		bge_stats_update_regs(sc);
 
 	bge_reset(sc);
 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 
 	/*
 	 * Keep the ASF firmware running if up.
 	 */
 	if (sc->bge_asf_mode & ASF_STACKUP)
 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 	else
 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 
 	/* Free the RX lists. */
 	bge_free_rx_ring_std(sc);
 
 	/* Free jumbo RX list. */
 	if (BGE_IS_JUMBO_CAPABLE(sc))
 		bge_free_rx_ring_jumbo(sc);
 
 	/* Free TX buffers. */
 	bge_free_tx_ring(sc);
 
 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 
 	/* Clear MAC's link state (PHY may still have link UP). */
 	if (bootverbose && sc->bge_link)
 		if_printf(sc->bge_ifp, "link DOWN\n");
 	sc->bge_link = 0;
 
 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
 }
 
 /*
  * Stop all chip I/O so that the kernel's probe routines don't
  * get confused by errant DMAs when rebooting.
  */
 static int
 bge_shutdown(device_t dev)
 {
 	struct bge_softc *sc;
 
 	sc = device_get_softc(dev);
 	BGE_LOCK(sc);
 	bge_stop(sc);
 	BGE_UNLOCK(sc);
 
 	return (0);
 }
 
 static int
 bge_suspend(device_t dev)
 {
 	struct bge_softc *sc;
 
 	sc = device_get_softc(dev);
 	BGE_LOCK(sc);
 	bge_stop(sc);
 	BGE_UNLOCK(sc);
 
 	return (0);
 }
 
 static int
 bge_resume(device_t dev)
 {
 	struct bge_softc *sc;
 	if_t ifp;
 
 	sc = device_get_softc(dev);
 	BGE_LOCK(sc);
 	ifp = sc->bge_ifp;
 	if (if_getflags(ifp) & IFF_UP) {
 		bge_init_locked(sc);
 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 			bge_start_locked(ifp);
 	}
 	BGE_UNLOCK(sc);
 
 	return (0);
 }
 
 static void
 bge_link_upd(struct bge_softc *sc)
 {
 	struct mii_data *mii;
 	uint32_t link, status;
 
 	BGE_LOCK_ASSERT(sc);
 
 	/* Clear 'pending link event' flag. */
 	sc->bge_link_evt = 0;
 
 	/*
 	 * Process link state changes.
 	 * Grrr. The link status word in the status block does
 	 * not work correctly on the BCM5700 rev AX and BX chips,
 	 * according to all available information. Hence, we have
 	 * to enable MII interrupts in order to properly obtain
 	 * async link changes. Unfortunately, this also means that
 	 * we have to read the MAC status register to detect link
 	 * changes, thereby adding an additional register access to
 	 * the interrupt handler.
 	 *
 	 * XXX: perhaps link state detection procedure used for
 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 	 */
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 		status = CSR_READ_4(sc, BGE_MAC_STS);
 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
 			mii = device_get_softc(sc->bge_miibus);
 			mii_pollstat(mii);
 			if (!sc->bge_link &&
 			    mii->mii_media_status & IFM_ACTIVE &&
 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 				sc->bge_link++;
 				if (bootverbose)
 					if_printf(sc->bge_ifp, "link UP\n");
 			} else if (sc->bge_link &&
 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 				sc->bge_link = 0;
 				if (bootverbose)
 					if_printf(sc->bge_ifp, "link DOWN\n");
 			}
 
 			/* Clear the interrupt. */
 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 			    BGE_EVTENB_MI_INTERRUPT);
 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
 			    BRGPHY_MII_ISR);
 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
 		}
 		return;
 	}
 
 	if (sc->bge_flags & BGE_FLAG_TBI) {
 		status = CSR_READ_4(sc, BGE_MAC_STS);
 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 			if (!sc->bge_link) {
 				sc->bge_link++;
 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 					BGE_CLRBIT(sc, BGE_MAC_MODE,
 					    BGE_MACMODE_TBI_SEND_CFGS);
 					DELAY(40);
 				}
 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 				if (bootverbose)
 					if_printf(sc->bge_ifp, "link UP\n");
 				if_link_state_change(sc->bge_ifp,
 				    LINK_STATE_UP);
 			}
 		} else if (sc->bge_link) {
 			sc->bge_link = 0;
 			if (bootverbose)
 				if_printf(sc->bge_ifp, "link DOWN\n");
 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 		}
 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 		/*
 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 		 * in status word always set. Workaround this bug by reading
 		 * PHY link status directly.
 		 */
 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 
 		if (link != sc->bge_link ||
 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 			mii = device_get_softc(sc->bge_miibus);
 			mii_pollstat(mii);
 			if (!sc->bge_link &&
 			    mii->mii_media_status & IFM_ACTIVE &&
 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 				sc->bge_link++;
 				if (bootverbose)
 					if_printf(sc->bge_ifp, "link UP\n");
 			} else if (sc->bge_link &&
 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 				sc->bge_link = 0;
 				if (bootverbose)
 					if_printf(sc->bge_ifp, "link DOWN\n");
 			}
 		}
 	} else {
 		/*
 		 * For controllers that call mii_tick, we have to poll
 		 * link status.
 		 */
 		mii = device_get_softc(sc->bge_miibus);
 		mii_pollstat(mii);
 		bge_miibus_statchg(sc->bge_dev);
 	}
 
 	/* Disable MAC attention when link is up. */
 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 	    BGE_MACSTAT_LINK_CHANGED);
 }
 
 static void
 bge_add_sysctls(struct bge_softc *sc)
 {
 	struct sysctl_ctx_list *ctx;
 	struct sysctl_oid_list *children;
 	int unit;
 
 	ctx = device_get_sysctl_ctx(sc->bge_dev);
 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 
 #ifdef BGE_REGISTER_DEBUG
 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
 	    "Debug Information");
 
 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
 	    "MAC Register Read");
 
 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
 	    "APE Register Read");
 
 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
 	    "Memory Read");
 
 #endif
 
 	unit = device_get_unit(sc->bge_dev);
 	/*
 	 * A common design characteristic for many Broadcom client controllers
 	 * is that they only support a single outstanding DMA read operation
 	 * on the PCIe bus. This means that it will take twice as long to fetch
 	 * a TX frame that is split into header and payload buffers as it does
 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
 	 * these controllers, coalescing buffers to reduce the number of memory
 	 * reads is effective way to get maximum performance(about 940Mbps).
 	 * Without collapsing TX buffers the maximum TCP bulk transfer
 	 * performance is about 850Mbps. However forcing coalescing mbufs
 	 * consumes a lot of CPU cycles, so leave it off by default.
 	 */
 	sc->bge_forced_collapse = 0;
 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
 	    "Number of fragmented TX buffers of a frame allowed before "
 	    "forced collapsing");
 
 	sc->bge_msi = 1;
 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
 
 	/*
 	 * It seems all Broadcom controllers have a bug that can generate UDP
 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
 	 * Even though the probability of generating such UDP datagrams is
 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
 	 * into network so disable UDP checksum offloading by default.  Users
 	 * still override this behavior by setting a sysctl variable,
 	 * dev.bge.0.forced_udpcsum.
 	 */
 	sc->bge_forced_udpcsum = 0;
 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
 	    "Enable UDP checksum offloading even if controller can "
 	    "generate UDP checksum value 0");
 
 	if (BGE_IS_5705_PLUS(sc))
 		bge_add_sysctl_stats_regs(sc, ctx, children);
 	else
 		bge_add_sysctl_stats(sc, ctx, children);
 }
 
 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
 	    desc)
 
 static void
 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
     struct sysctl_oid_list *parent)
 {
 	struct sysctl_oid *tree;
 	struct sysctl_oid_list *children, *schildren;
 
 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
 	    NULL, "BGE Statistics");
 	schildren = children = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
 	    children, COSFramesDroppedDueToFilters,
 	    "FramesDroppedDueToFilters");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
 	    children, ifInDiscards, "InputDiscards");
 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
 	    children, ifInErrors, "InputErrors");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
 	    children, nicRecvThresholdHit, "RecvThresholdHit");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
 	    children, nicRingStatusUpdate, "RingStatusUpdate");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
 	    children, nicInterrupts, "Interrupts");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
 	    children, nicSendThresholdHit, "SendThresholdHit");
 
 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
 	    NULL, "BGE RX Statistics");
 	children = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
 	    children, rxstats.etherStatsFragments, "Fragments");
 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
 	    children, rxstats.xoffPauseFramesReceived,
 	    "xoffPauseFramesReceived");
 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
 	    children, rxstats.macControlFramesReceived,
 	    "ControlFramesReceived");
 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
 	    children, rxstats.etherStatsJabbers, "Jabbers");
 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
 
 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
 	    NULL, "BGE TX Statistics");
 	children = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
 	    children, txstats.etherStatsCollisions, "Collisions");
 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
 	    children, txstats.outXonSent, "XonSent");
 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
 	    children, txstats.outXoffSent, "XoffSent");
 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
 	    children, txstats.flowControlDone, "flowControlDone");
 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
 	    children, txstats.dot3StatsInternalMacTransmitErrors,
 	    "InternalMacTransmitErrors");
 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
 	    children, txstats.dot3StatsSingleCollisionFrames,
 	    "SingleCollisionFrames");
 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
 	    children, txstats.dot3StatsMultipleCollisionFrames,
 	    "MultipleCollisionFrames");
 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
 	    children, txstats.dot3StatsDeferredTransmissions,
 	    "DeferredTransmissions");
 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
 	    children, txstats.dot3StatsExcessiveCollisions,
 	    "ExcessiveCollisions");
 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
 	    children, txstats.dot3StatsLateCollisions,
 	    "LateCollisions");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
 	    children, txstats.dot3StatsCarrierSenseErrors,
 	    "CarrierSenseErrors");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
 	    children, txstats.ifOutDiscards, "Discards");
 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
 	    children, txstats.ifOutErrors, "Errors");
 }
 
 #undef BGE_SYSCTL_STAT
 
 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 
 static void
 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
     struct sysctl_oid_list *parent)
 {
 	struct sysctl_oid *tree;
 	struct sysctl_oid_list *child, *schild;
 	struct bge_mac_stats *stats;
 
 	stats = &sc->bge_mac_stats;
 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
 	    NULL, "BGE Statistics");
 	schild = child = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
 	    &stats->DmaWriteHighPriQueueFull,
 	    "NIC DMA Write High Priority Queue Full");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
 	    &stats->InputDiscards, "Discarded Input Frames");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
 	    &stats->InputErrors, "Input Errors");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
 
 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
 	    NULL, "BGE RX Statistics");
 	child = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
 	    &stats->ifHCInOctets, "Inbound Octets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
 	    &stats->etherStatsFragments, "Fragments");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
 	    &stats->dot3StatsFCSErrors, "FCS Errors");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
 	    &stats->xoffStateEntered, "XOFF State Entered");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
 	    &stats->etherStatsJabbers, "Jabbers");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
 
 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
 	    NULL, "BGE TX Statistics");
 	child = SYSCTL_CHILDREN(tree);
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
 	    &stats->ifHCOutOctets, "Outbound Octets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
 	    &stats->etherStatsCollisions, "TX Collisions");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
 	    &stats->outXonSent, "XON Sent");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
 	    &stats->outXoffSent, "XOFF Sent");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
 	    &stats->dot3StatsInternalMacTransmitErrors,
 	    "Internal MAC TX Errors");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
 	    &stats->dot3StatsMultipleCollisionFrames,
 	    "Multiple Collision Frames");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
 	    &stats->dot3StatsLateCollisions, "Late Collisions");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
 }
 
 #undef	BGE_SYSCTL_STAT_ADD64
 
 static int
 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
 {
 	struct bge_softc *sc;
 	uint32_t result;
 	int offset;
 
 	sc = (struct bge_softc *)arg1;
 	offset = arg2;
 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
 	    offsetof(bge_hostaddr, bge_addr_lo));
 	return (sysctl_handle_int(oidp, &result, 0, req));
 }
 
 #ifdef BGE_REGISTER_DEBUG
 static int
 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 {
 	struct bge_softc *sc;
 	uint16_t *sbdata;
 	int error, result, sbsz;
 	int i, j;
 
 	result = -1;
 	error = sysctl_handle_int(oidp, &result, 0, req);
 	if (error || (req->newptr == NULL))
 		return (error);
 
 	if (result == 1) {
 		sc = (struct bge_softc *)arg1;
 
 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 			sbsz = BGE_STATUS_BLK_SZ;
 		else
 			sbsz = 32;
 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 		printf("Status Block:\n");
 		BGE_LOCK(sc);
 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 		    sc->bge_cdata.bge_status_map,
 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
 			printf("%06x:", i);
 			for (j = 0; j < 8; j++)
 				printf(" %04x", sbdata[i++]);
 			printf("\n");
 		}
 
 		printf("Registers:\n");
 		for (i = 0x800; i < 0xA00; ) {
 			printf("%06x:", i);
 			for (j = 0; j < 8; j++) {
 				printf(" %08x", CSR_READ_4(sc, i));
 				i += 4;
 			}
 			printf("\n");
 		}
 		BGE_UNLOCK(sc);
 
 		printf("Hardware Flags:\n");
 		if (BGE_IS_5717_PLUS(sc))
 			printf(" - 5717 Plus\n");
 		if (BGE_IS_5755_PLUS(sc))
 			printf(" - 5755 Plus\n");
 		if (BGE_IS_575X_PLUS(sc))
 			printf(" - 575X Plus\n");
 		if (BGE_IS_5705_PLUS(sc))
 			printf(" - 5705 Plus\n");
 		if (BGE_IS_5714_FAMILY(sc))
 			printf(" - 5714 Family\n");
 		if (BGE_IS_5700_FAMILY(sc))
 			printf(" - 5700 Family\n");
 		if (sc->bge_flags & BGE_FLAG_JUMBO)
 			printf(" - Supports Jumbo Frames\n");
 		if (sc->bge_flags & BGE_FLAG_PCIX)
 			printf(" - PCI-X Bus\n");
 		if (sc->bge_flags & BGE_FLAG_PCIE)
 			printf(" - PCI Express Bus\n");
 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
 			printf(" - No 3 LEDs\n");
 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 			printf(" - RX Alignment Bug\n");
 	}
 
 	return (error);
 }
 
 static int
 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 {
 	struct bge_softc *sc;
 	int error;
 	uint16_t result;
 	uint32_t val;
 
 	result = -1;
 	error = sysctl_handle_int(oidp, &result, 0, req);
 	if (error || (req->newptr == NULL))
 		return (error);
 
 	if (result < 0x8000) {
 		sc = (struct bge_softc *)arg1;
 		val = CSR_READ_4(sc, result);
 		printf("reg 0x%06X = 0x%08X\n", result, val);
 	}
 
 	return (error);
 }
 
 static int
 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
 {
 	struct bge_softc *sc;
 	int error;
 	uint16_t result;
 	uint32_t val;
 
 	result = -1;
 	error = sysctl_handle_int(oidp, &result, 0, req);
 	if (error || (req->newptr == NULL))
 		return (error);
 
 	if (result < 0x8000) {
 		sc = (struct bge_softc *)arg1;
 		val = APE_READ_4(sc, result);
 		printf("reg 0x%06X = 0x%08X\n", result, val);
 	}
 
 	return (error);
 }
 
 static int
 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 {
 	struct bge_softc *sc;
 	int error;
 	uint16_t result;
 	uint32_t val;
 
 	result = -1;
 	error = sysctl_handle_int(oidp, &result, 0, req);
 	if (error || (req->newptr == NULL))
 		return (error);
 
 	if (result < 0x8000) {
 		sc = (struct bge_softc *)arg1;
 		val = bge_readmem_ind(sc, result);
 		printf("mem 0x%06X = 0x%08X\n", result, val);
 	}
 
 	return (error);
 }
 #endif
 
 static int
 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
 {
 #ifdef __sparc64__
 	if (sc->bge_flags & BGE_FLAG_EADDR)
 		return (1);
 
 	OF_getetheraddr(sc->bge_dev, ether_addr);
 	return (0);
 #else
 	return (1);
 #endif
 }
 
 static int
 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
 {
 	uint32_t mac_addr;
 
 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
 	if ((mac_addr >> 16) == 0x484b) {
 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
 		ether_addr[1] = (uint8_t)mac_addr;
 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
 		ether_addr[5] = (uint8_t)mac_addr;
 		return (0);
 	}
 	return (1);
 }
 
 static int
 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
 {
 	int mac_offset = BGE_EE_MAC_OFFSET;
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 		mac_offset = BGE_EE_MAC_OFFSET_5906;
 
 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
 	    ETHER_ADDR_LEN));
 }
 
 static int
 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
 {
 
 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 		return (1);
 
 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
 	   ETHER_ADDR_LEN));
 }
 
 static int
 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
 {
 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
 		/* NOTE: Order is critical */
 		bge_get_eaddr_fw,
 		bge_get_eaddr_mem,
 		bge_get_eaddr_nvram,
 		bge_get_eaddr_eeprom,
 		NULL
 	};
 	const bge_eaddr_fcn_t *func;
 
 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
 		if ((*func)(sc, eaddr) == 0)
 			break;
 	}
 	return (*func == NULL ? ENXIO : 0);
 }
 
 static uint64_t
 bge_get_counter(if_t ifp, ift_counter cnt)
 {
 	struct bge_softc *sc;
 	struct bge_mac_stats *stats;
 
 	sc = if_getsoftc(ifp);
 	if (!BGE_IS_5705_PLUS(sc))
 		return (if_get_counter_default(ifp, cnt));
 	stats = &sc->bge_mac_stats;
 
 	switch (cnt) {
 	case IFCOUNTER_IERRORS:
 		return (stats->NoMoreRxBDs + stats->InputDiscards +
 		    stats->InputErrors);
 	case IFCOUNTER_COLLISIONS:
 		return (stats->etherStatsCollisions);
 	default:
 		return (if_get_counter_default(ifp, cnt));
 	}
 }
 
 #ifdef NETDUMP
 static void
 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
 {
 	struct bge_softc *sc;
 
 	sc = if_getsoftc(ifp);
 	BGE_LOCK(sc);
 	*nrxr = sc->bge_return_ring_cnt;
 	*ncl = NETDUMP_MAX_IN_FLIGHT;
 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
 		*clsize = MJUM9BYTES;
 	else
 		*clsize = MCLBYTES;
 	BGE_UNLOCK(sc);
 }
 
 static void
 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
 {
 }
 
 static int
 bge_netdump_transmit(if_t ifp, struct mbuf *m)
 {
 	struct bge_softc *sc;
 	uint32_t prodidx;
 	int error;
 
 	sc = if_getsoftc(ifp);
 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 	    IFF_DRV_RUNNING)
 		return (1);
 
 	prodidx = sc->bge_tx_prodidx;
 	error = bge_encap(sc, &m, &prodidx);
 	if (error == 0)
 		bge_start_tx(sc, prodidx);
 	return (error);
 }
 
 static int
 bge_netdump_poll(if_t ifp, int count)
 {
 	struct bge_softc *sc;
 	uint32_t rx_prod, tx_cons;
 
 	sc = if_getsoftc(ifp);
 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 	    IFF_DRV_RUNNING)
 		return (1);
 
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 
 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 
 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 	    sc->bge_cdata.bge_status_map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	(void)bge_rxeof(sc, rx_prod, 0);
 	bge_txeof(sc, tx_cons);
 	return (0);
 }
 #endif /* NETDUMP */
Index: head/sys/dev/bge/if_bgereg.h
===================================================================
--- head/sys/dev/bge/if_bgereg.h	(revision 347889)
+++ head/sys/dev/bge/if_bgereg.h	(revision 347890)
@@ -1,3077 +1,3083 @@
 /*-
  * SPDX-License-Identifier: BSD-4-Clause
  *
  * Copyright (c) 2001 Wind River Systems
  * Copyright (c) 1997, 1998, 1999, 2001
  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by Bill Paul.
  * 4. Neither the name of the author nor the names of any co-contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  * THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 /*
  * BCM570x memory map. The internal memory layout varies somewhat
  * depending on whether or not we have external SSRAM attached.
  * The BCM5700 can have up to 16MB of external memory. The BCM5701
  * is apparently not designed to use external SSRAM. The mappings
  * up to the first 4 send rings are the same for both internal and
  * external memory configurations. Note that mini RX ring space is
  * only available with external SSRAM configurations, which means
  * the mini RX ring is not supported on the BCM5701.
  *
  * The NIC's memory can be accessed by the host in one of 3 ways:
  *
  * 1) Indirect register access. The MEMWIN_BASEADDR and MEMWIN_DATA
  *    registers in PCI config space can be used to read any 32-bit
  *    address within the NIC's memory.
  *
  * 2) Memory window access. The MEMWIN_BASEADDR register in PCI config
  *    space can be used in conjunction with the memory window in the
  *    device register space at offset 0x8000 to read any 32K chunk
  *    of NIC memory.
  *
  * 3) Flat mode. If the 'flat mode' bit in the PCI state register is
  *    set, the device I/O mapping consumes 32MB of host address space,
  *    allowing all of the registers and internal NIC memory to be
  *    accessed directly. NIC memory addresses are offset by 0x01000000.
  *    Flat mode consumes so much host address space that it is not
  *    recommended.
  */
 #define	BGE_PAGE_ZERO			0x00000000
 #define	BGE_PAGE_ZERO_END		0x000000FF
 #define	BGE_SEND_RING_RCB		0x00000100
 #define	BGE_SEND_RING_RCB_END		0x000001FF
 #define	BGE_RX_RETURN_RING_RCB		0x00000200
 #define	BGE_RX_RETURN_RING_RCB_END	0x000002FF
 #define	BGE_STATS_BLOCK			0x00000300
 #define	BGE_STATS_BLOCK_END		0x00000AFF
 #define	BGE_STATUS_BLOCK		0x00000B00
 #define	BGE_STATUS_BLOCK_END		0x00000B4F
 #define	BGE_SRAM_FW_MB			0x00000B50
 #define	BGE_SRAM_DATA_SIG		0x00000B54
 #define	BGE_SRAM_DATA_CFG		0x00000B58
 #define	BGE_SRAM_FW_CMD_MB		0x00000B78
 #define	BGE_SRAM_FW_CMD_LEN_MB		0x00000B7C
 #define	BGE_SRAM_FW_CMD_DATA_MB		0x00000B80
 #define	BGE_SRAM_FW_DRV_STATE_MB	0x00000C04
 #define	BGE_SRAM_MAC_ADDR_HIGH_MB	0x00000C14
 #define	BGE_SRAM_MAC_ADDR_LOW_MB	0x00000C18
 #define	BGE_SOFTWARE_GENCOMM_END	0x00000FFF
 #define	BGE_UNMAPPED			0x00001000
 #define	BGE_UNMAPPED_END		0x00001FFF
 #define	BGE_DMA_DESCRIPTORS		0x00002000
 #define	BGE_DMA_DESCRIPTORS_END		0x00003FFF
 #define	BGE_SEND_RING_5717		0x00004000
 #define	BGE_SEND_RING_1_TO_4		0x00004000
 #define	BGE_SEND_RING_1_TO_4_END	0x00005FFF
 
 /* Firmware interface */
 #define	BGE_SRAM_DATA_SIG_MAGIC		0x4B657654	/* 'KevT' */
 
 #define	BGE_FW_CMD_DRV_ALIVE		0x00000001
 #define	BGE_FW_CMD_PAUSE		0x00000002
 #define	BGE_FW_CMD_IPV4_ADDR_CHANGE	0x00000003
 #define	BGE_FW_CMD_IPV6_ADDR_CHANGE	0x00000004
 #define	BGE_FW_CMD_LINK_UPDATE		0x0000000C
 #define	BGE_FW_CMD_DRV_ALIVE2		0x0000000D
 #define	BGE_FW_CMD_DRV_ALIVE3		0x0000000E
 
 #define	BGE_FW_HB_TIMEOUT_SEC		3
 
 #define	BGE_FW_DRV_STATE_START		0x00000001
 #define	BGE_FW_DRV_STATE_START_DONE	0x80000001
 #define	BGE_FW_DRV_STATE_UNLOAD		0x00000002
 #define	BGE_FW_DRV_STATE_UNLOAD_DONE	0x80000002
 #define	BGE_FW_DRV_STATE_WOL		0x00000003
 #define	BGE_FW_DRV_STATE_SUSPEND	0x00000004
 
 /* Mappings for internal memory configuration */
 #define	BGE_STD_RX_RINGS		0x00006000
 #define	BGE_STD_RX_RINGS_END		0x00006FFF
 #define	BGE_JUMBO_RX_RINGS		0x00007000
 #define	BGE_JUMBO_RX_RINGS_END		0x00007FFF
 #define	BGE_BUFFPOOL_1			0x00008000
 #define	BGE_BUFFPOOL_1_END		0x0000FFFF
 #define	BGE_BUFFPOOL_2			0x00010000 /* or expansion ROM */
 #define	BGE_BUFFPOOL_2_END		0x00017FFF
 #define	BGE_BUFFPOOL_3			0x00018000 /* or expansion ROM */
 #define	BGE_BUFFPOOL_3_END		0x0001FFFF
 #define	BGE_STD_RX_RINGS_5717		0x00040000
 #define	BGE_JUMBO_RX_RINGS_5717		0x00044400
 
 /* Mappings for external SSRAM configurations */
 #define	BGE_SEND_RING_5_TO_6		0x00006000
 #define	BGE_SEND_RING_5_TO_6_END	0x00006FFF
 #define	BGE_SEND_RING_7_TO_8		0x00007000
 #define	BGE_SEND_RING_7_TO_8_END	0x00007FFF
 #define	BGE_SEND_RING_9_TO_16		0x00008000
 #define	BGE_SEND_RING_9_TO_16_END	0x0000BFFF
 #define	BGE_EXT_STD_RX_RINGS		0x0000C000
 #define	BGE_EXT_STD_RX_RINGS_END	0x0000CFFF
 #define	BGE_EXT_JUMBO_RX_RINGS		0x0000D000
 #define	BGE_EXT_JUMBO_RX_RINGS_END	0x0000DFFF
 #define	BGE_MINI_RX_RINGS		0x0000E000
 #define	BGE_MINI_RX_RINGS_END		0x0000FFFF
 #define	BGE_AVAIL_REGION1		0x00010000 /* or expansion ROM */
 #define	BGE_AVAIL_REGION1_END		0x00017FFF
 #define	BGE_AVAIL_REGION2		0x00018000 /* or expansion ROM */
 #define	BGE_AVAIL_REGION2_END		0x0001FFFF
 #define	BGE_EXT_SSRAM			0x00020000
 #define	BGE_EXT_SSRAM_END		0x000FFFFF
 
 
 /*
  * BCM570x register offsets. These are memory mapped registers
  * which can be accessed with the CSR_READ_4()/CSR_WRITE_4() macros.
  * Each register must be accessed using 32 bit operations.
  *
  * All registers are accessed through a 32K shared memory block.
  * The first group of registers are actually copies of the PCI
  * configuration space registers.
  */
 
 /*
  * PCI registers defined in the PCI 2.2 spec.
  */
 #define	BGE_PCI_VID			0x00
 #define	BGE_PCI_DID			0x02
 #define	BGE_PCI_CMD			0x04
 #define	BGE_PCI_STS			0x06
 #define	BGE_PCI_REV			0x08
 #define	BGE_PCI_CLASS			0x09
 #define	BGE_PCI_CACHESZ			0x0C
 #define	BGE_PCI_LATTIMER		0x0D
 #define	BGE_PCI_HDRTYPE			0x0E
 #define	BGE_PCI_BIST			0x0F
 #define	BGE_PCI_BAR0			0x10
 #define	BGE_PCI_BAR1			0x14
 #define	BGE_PCI_SUBSYS			0x2C
 #define	BGE_PCI_SUBVID			0x2E
 #define	BGE_PCI_ROMBASE			0x30
 #define	BGE_PCI_CAPPTR			0x34
 #define	BGE_PCI_INTLINE			0x3C
 #define	BGE_PCI_INTPIN			0x3D
 #define	BGE_PCI_MINGNT			0x3E
 #define	BGE_PCI_MAXLAT			0x3F
 #define	BGE_PCI_PCIXCAP			0x40
 #define	BGE_PCI_NEXTPTR_PM		0x41
 #define	BGE_PCI_PCIX_CMD		0x42
 #define	BGE_PCI_PCIX_STS		0x44
 #define	BGE_PCI_PWRMGMT_CAPID		0x48
 #define	BGE_PCI_NEXTPTR_VPD		0x49
 #define	BGE_PCI_PWRMGMT_CAPS		0x4A
 #define	BGE_PCI_PWRMGMT_CMD		0x4C
 #define	BGE_PCI_PWRMGMT_STS		0x4D
 #define	BGE_PCI_PWRMGMT_DATA		0x4F
 #define	BGE_PCI_VPD_CAPID		0x50
 #define	BGE_PCI_NEXTPTR_MSI		0x51
 #define	BGE_PCI_VPD_ADDR		0x52
 #define	BGE_PCI_VPD_DATA		0x54
 #define	BGE_PCI_MSI_CAPID		0x58
 #define	BGE_PCI_NEXTPTR_NONE		0x59
 #define	BGE_PCI_MSI_CTL			0x5A
 #define	BGE_PCI_MSI_ADDR_HI		0x5C
 #define	BGE_PCI_MSI_ADDR_LO		0x60
 #define	BGE_PCI_MSI_DATA		0x64
 
 /*
  * PCI Express definitions
  * According to
  * PCI Express base specification, REV. 1.0a
  */
 
 /* PCI Express device control, 16bits */
 #define	BGE_PCIE_DEVCTL			0x08
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_MASK	0x7000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_128	0x0000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_256	0x1000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_512	0x2000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_1024	0x3000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_2048	0x4000
 #define	BGE_PCIE_DEVCTL_MAX_READRQ_4096	0x5000
 
 /* PCI MSI. ??? */
 #define	BGE_PCIE_CAPID_REG		0xD0
 #define	BGE_PCIE_CAPID			0x10
 
 /*
  * PCI registers specific to the BCM570x family.
  */
 #define	BGE_PCI_MISC_CTL		0x68
 #define	BGE_PCI_DMA_RW_CTL		0x6C
 #define	BGE_PCI_PCISTATE		0x70
 #define	BGE_PCI_CLKCTL			0x74
 #define	BGE_PCI_REG_BASEADDR		0x78
 #define	BGE_PCI_MEMWIN_BASEADDR		0x7C
 #define	BGE_PCI_REG_DATA		0x80
 #define	BGE_PCI_MEMWIN_DATA		0x84
 #define	BGE_PCI_MODECTL			0x88
 #define	BGE_PCI_MISC_CFG		0x8C
 #define	BGE_PCI_MISC_LOCALCTL		0x90
 #define	BGE_PCI_UNDI_RX_STD_PRODIDX_HI	0x98
 #define	BGE_PCI_UNDI_RX_STD_PRODIDX_LO	0x9C
 #define	BGE_PCI_UNDI_RX_RTN_CONSIDX_HI	0xA0
 #define	BGE_PCI_UNDI_RX_RTN_CONSIDX_LO	0xA4
 #define	BGE_PCI_UNDI_TX_BD_PRODIDX_HI	0xA8
 #define	BGE_PCI_UNDI_TX_BD_PRODIDX_LO	0xAC
 #define	BGE_PCI_ISR_MBX_HI		0xB0
 #define	BGE_PCI_ISR_MBX_LO		0xB4
 #define	BGE_PCI_PRODID_ASICREV		0xBC
 #define	BGE_PCI_GEN2_PRODID_ASICREV	0xF4
 #define	BGE_PCI_GEN15_PRODID_ASICREV	0xFC
 
 /* PCI Misc. Host control register */
 #define	BGE_PCIMISCCTL_CLEAR_INTA	0x00000001
 #define	BGE_PCIMISCCTL_MASK_PCI_INTR	0x00000002
 #define	BGE_PCIMISCCTL_ENDIAN_BYTESWAP	0x00000004
 #define	BGE_PCIMISCCTL_ENDIAN_WORDSWAP	0x00000008
 #define	BGE_PCIMISCCTL_PCISTATE_RW	0x00000010
 #define	BGE_PCIMISCCTL_CLOCKCTL_RW	0x00000020
 #define	BGE_PCIMISCCTL_REG_WORDSWAP	0x00000040
 #define	BGE_PCIMISCCTL_INDIRECT_ACCESS	0x00000080
 #define	BGE_PCIMISCCTL_TAGGED_STATUS	0x00000200
 #define	BGE_PCIMISCCTL_ASICREV		0xFFFF0000
 #define	BGE_PCIMISCCTL_ASICREV_SHIFT	16
 
 #define	BGE_HIF_SWAP_OPTIONS	(BGE_PCIMISCCTL_ENDIAN_WORDSWAP)
 
 #define	BGE_INIT \
 	(BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_CLEAR_INTA| \
 	 BGE_PCIMISCCTL_MASK_PCI_INTR|BGE_PCIMISCCTL_INDIRECT_ACCESS)
 
 #define	BGE_CHIPID_TIGON_I		0x4000
 #define	BGE_CHIPID_TIGON_II		0x6000
 #define	BGE_CHIPID_BCM5700_A0		0x7000
 #define	BGE_CHIPID_BCM5700_A1		0x7001
 #define	BGE_CHIPID_BCM5700_B0		0x7100
 #define	BGE_CHIPID_BCM5700_B1		0x7101
 #define	BGE_CHIPID_BCM5700_B2		0x7102
 #define	BGE_CHIPID_BCM5700_B3		0x7103
 #define	BGE_CHIPID_BCM5700_ALTIMA	0x7104
 #define	BGE_CHIPID_BCM5700_C0		0x7200
 #define	BGE_CHIPID_BCM5701_A0		0x0000	/* grrrr */
 #define	BGE_CHIPID_BCM5701_B0		0x0100
 #define	BGE_CHIPID_BCM5701_B2		0x0102
 #define	BGE_CHIPID_BCM5701_B5		0x0105
 #define	BGE_CHIPID_BCM5703_A0		0x1000
 #define	BGE_CHIPID_BCM5703_A1		0x1001
 #define	BGE_CHIPID_BCM5703_A2		0x1002
 #define	BGE_CHIPID_BCM5703_A3		0x1003
 #define	BGE_CHIPID_BCM5703_B0		0x1100
 #define	BGE_CHIPID_BCM5704_A0		0x2000
 #define	BGE_CHIPID_BCM5704_A1		0x2001
 #define	BGE_CHIPID_BCM5704_A2		0x2002
 #define	BGE_CHIPID_BCM5704_A3		0x2003
 #define	BGE_CHIPID_BCM5704_B0		0x2100
 #define	BGE_CHIPID_BCM5705_A0		0x3000
 #define	BGE_CHIPID_BCM5705_A1		0x3001
 #define	BGE_CHIPID_BCM5705_A2		0x3002
 #define	BGE_CHIPID_BCM5705_A3		0x3003
 #define	BGE_CHIPID_BCM5750_A0		0x4000
 #define	BGE_CHIPID_BCM5750_A1		0x4001
 #define	BGE_CHIPID_BCM5750_A3		0x4000
 #define	BGE_CHIPID_BCM5750_B0		0x4100
 #define	BGE_CHIPID_BCM5750_B1		0x4101
 #define	BGE_CHIPID_BCM5750_C0		0x4200
 #define	BGE_CHIPID_BCM5750_C1		0x4201
 #define	BGE_CHIPID_BCM5750_C2		0x4202
 #define	BGE_CHIPID_BCM5714_A0		0x5000
 #define	BGE_CHIPID_BCM5752_A0		0x6000
 #define	BGE_CHIPID_BCM5752_A1		0x6001
 #define	BGE_CHIPID_BCM5752_A2		0x6002
 #define	BGE_CHIPID_BCM5714_B0		0x8000
 #define	BGE_CHIPID_BCM5714_B3		0x8003
 #define	BGE_CHIPID_BCM5715_A0		0x9000
 #define	BGE_CHIPID_BCM5715_A1		0x9001
 #define	BGE_CHIPID_BCM5715_A3		0x9003
 #define	BGE_CHIPID_BCM5755_A0		0xa000
 #define	BGE_CHIPID_BCM5755_A1		0xa001
 #define	BGE_CHIPID_BCM5755_A2		0xa002
 #define	BGE_CHIPID_BCM5722_A0		0xa200
 #define	BGE_CHIPID_BCM5754_A0		0xb000
 #define	BGE_CHIPID_BCM5754_A1		0xb001
 #define	BGE_CHIPID_BCM5754_A2		0xb002
 #define	BGE_CHIPID_BCM5761_A0		0x5761000
 #define	BGE_CHIPID_BCM5761_A1		0x5761100
 #define	BGE_CHIPID_BCM5784_A0		0x5784000
 #define	BGE_CHIPID_BCM5784_A1		0x5784100
 #define	BGE_CHIPID_BCM5787_A0		0xb000
 #define	BGE_CHIPID_BCM5787_A1		0xb001
 #define	BGE_CHIPID_BCM5787_A2		0xb002
 #define	BGE_CHIPID_BCM5906_A0		0xc000
 #define	BGE_CHIPID_BCM5906_A1		0xc001
 #define	BGE_CHIPID_BCM5906_A2		0xc002
 #define	BGE_CHIPID_BCM57780_A0		0x57780000
 #define	BGE_CHIPID_BCM57780_A1		0x57780001
 #define	BGE_CHIPID_BCM5717_A0		0x05717000
 #define	BGE_CHIPID_BCM5717_B0		0x05717100
 #define	BGE_CHIPID_BCM5717_C0		0x05717200
 #define	BGE_CHIPID_BCM5719_A0		0x05719000
 #define	BGE_CHIPID_BCM5720_A0		0x05720000
 #define	BGE_CHIPID_BCM5762_A0		0x05762000
 #define	BGE_CHIPID_BCM57765_A0		0x57785000
 #define	BGE_CHIPID_BCM57765_B0		0x57785100
 
 /* shorthand one */
 #define	BGE_ASICREV(x)			((x) >> 12)
 #define	BGE_ASICREV_BCM5701		0x00
 #define	BGE_ASICREV_BCM5703		0x01
 #define	BGE_ASICREV_BCM5704		0x02
 #define	BGE_ASICREV_BCM5705		0x03
 #define	BGE_ASICREV_BCM5750		0x04
 #define	BGE_ASICREV_BCM5714_A0		0x05
 #define	BGE_ASICREV_BCM5752		0x06
 #define	BGE_ASICREV_BCM5700		0x07
 #define	BGE_ASICREV_BCM5780		0x08
 #define	BGE_ASICREV_BCM5714		0x09
 #define	BGE_ASICREV_BCM5755		0x0a
 #define	BGE_ASICREV_BCM5754		0x0b
 #define	BGE_ASICREV_BCM5787		0x0b
 #define	BGE_ASICREV_BCM5906		0x0c
 /* Should consult BGE_PCI_PRODID_ASICREV for ChipID */
 #define	BGE_ASICREV_USE_PRODID_REG	0x0f
 /* BGE_PCI_PRODID_ASICREV ASIC rev. identifiers. */
 #define	BGE_ASICREV_BCM5717		0x5717
 #define	BGE_ASICREV_BCM5719		0x5719
 #define	BGE_ASICREV_BCM5720		0x5720
 #define	BGE_ASICREV_BCM5761		0x5761
 #define	BGE_ASICREV_BCM5762		0x5762
 #define	BGE_ASICREV_BCM5784		0x5784
 #define	BGE_ASICREV_BCM5785		0x5785
 #define	BGE_ASICREV_BCM57765		0x57785
 #define	BGE_ASICREV_BCM57766		0x57766
 #define	BGE_ASICREV_BCM57780		0x57780
 
 /* chip revisions */
 #define	BGE_CHIPREV(x)			((x) >> 8)
 #define	BGE_CHIPREV_5700_AX		0x70
 #define	BGE_CHIPREV_5700_BX		0x71
 #define	BGE_CHIPREV_5700_CX		0x72
 #define	BGE_CHIPREV_5701_AX		0x00
 #define	BGE_CHIPREV_5703_AX		0x10
 #define	BGE_CHIPREV_5704_AX		0x20
 #define	BGE_CHIPREV_5704_BX		0x21
 #define	BGE_CHIPREV_5750_AX		0x40
 #define	BGE_CHIPREV_5750_BX		0x41
 /* BGE_PCI_PRODID_ASICREV chip rev. identifiers. */
 #define	BGE_CHIPREV_5717_AX		0x57170
 #define	BGE_CHIPREV_5717_BX		0x57171
 #define	BGE_CHIPREV_5761_AX		0x57611
 #define	BGE_CHIPREV_57765_AX		0x577850
 #define	BGE_CHIPREV_5784_AX		0x57841
 
 /* PCI DMA Read/Write Control register */
 #define	BGE_PCIDMARWCTL_MINDMA		0x000000FF
 #define	BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT	0x00000001
 #define	BGE_PCIDMARWCTL_RDADRR_BNDRY	0x00000700
 #define	BGE_PCIDMARWCTL_WRADDR_BNDRY	0x00003800
 #define	BGE_PCIDMARWCTL_ONEDMA_ATONCE	0x0000C000
 #define	BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL	0x00004000
 #define	BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL	0x00008000
 #define	BGE_PCIDMARWCTL_RD_WAT		0x00070000
 #define	BGE_PCIDMARWCTL_WR_WAT		0x00380000
 #define	BGE_PCIDMARWCTL_USE_MRM		0x00400000
 #define	BGE_PCIDMARWCTL_ASRT_ALL_BE	0x00800000
 #define	BGE_PCIDMARWCTL_DFLT_PCI_RD_CMD	0x0F000000
 #define	BGE_PCIDMARWCTL_DFLT_PCI_WR_CMD	0xF0000000
 
 #define	BGE_PCIDMARWCTL_RD_WAT_SHIFT(x)	((x) << 16)
 #define	BGE_PCIDMARWCTL_WR_WAT_SHIFT(x)	((x) << 19)
 #define	BGE_PCIDMARWCTL_RD_CMD_SHIFT(x)	((x) << 24)
 #define	BGE_PCIDMARWCTL_WR_CMD_SHIFT(x)	((x) << 28)
 
 #define	BGE_PCIDMARWCTL_TAGGED_STATUS_WA	0x00000080
 #define	BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK	0x00000380
 
 #define	BGE_PCI_READ_BNDRY_DISABLE	0x00000000
 #define	BGE_PCI_READ_BNDRY_16BYTES	0x00000100
 #define	BGE_PCI_READ_BNDRY_32BYTES	0x00000200
 #define	BGE_PCI_READ_BNDRY_64BYTES	0x00000300
 #define	BGE_PCI_READ_BNDRY_128BYTES	0x00000400
 #define	BGE_PCI_READ_BNDRY_256BYTES	0x00000500
 #define	BGE_PCI_READ_BNDRY_512BYTES	0x00000600
 #define	BGE_PCI_READ_BNDRY_1024BYTES	0x00000700
 
 #define	BGE_PCI_WRITE_BNDRY_DISABLE	0x00000000
 #define	BGE_PCI_WRITE_BNDRY_16BYTES	0x00000800
 #define	BGE_PCI_WRITE_BNDRY_32BYTES	0x00001000
 #define	BGE_PCI_WRITE_BNDRY_64BYTES	0x00001800
 #define	BGE_PCI_WRITE_BNDRY_128BYTES	0x00002000
 #define	BGE_PCI_WRITE_BNDRY_256BYTES	0x00002800
 #define	BGE_PCI_WRITE_BNDRY_512BYTES	0x00003000
 #define	BGE_PCI_WRITE_BNDRY_1024BYTES	0x00003800
 
 /*
  * PCI state register -- note, this register is read only
  * unless the PCISTATE_WR bit of the PCI Misc. Host Control
  * register is set.
  */
 #define	BGE_PCISTATE_FORCE_RESET	0x00000001
 #define	BGE_PCISTATE_INTR_STATE		0x00000002
 #define	BGE_PCISTATE_PCI_BUSMODE	0x00000004 /* 1 = PCI, 0 = PCI-X */
 #define	BGE_PCISTATE_PCI_BUSSPEED	0x00000008 /* 1 = 66/133, 0 = 33/66 */
 #define	BGE_PCISTATE_32BIT_BUS		0x00000010 /* 1 = 32bit, 0 = 64bit */
 #define	BGE_PCISTATE_ROM_ENABLE		0x00000020
 #define	BGE_PCISTATE_ROM_RETRY_ENABLE	0x00000040
 #define	BGE_PCISTATE_FLATVIEW_MODE	0x00000100
 #define	BGE_PCISTATE_PCI_TGT_RETRY_MAX	0x00000E00
 #define	BGE_PCISTATE_RETRY_SAME_DMA	0x00002000
 #define	BGE_PCISTATE_ALLOW_APE_CTLSPC_WR	0x00010000
 #define	BGE_PCISTATE_ALLOW_APE_SHMEM_WR	0x00020000
 #define	BGE_PCISTATE_ALLOW_APE_PSPACE_WR	0x00040000
 
 /*
  * PCI Clock Control register -- note, this register is read only
  * unless the CLOCKCTL_RW bit of the PCI Misc. Host Control
  * register is set.
  */
 #define	BGE_PCICLOCKCTL_DETECTED_SPEED	0x0000000F
 #define	BGE_PCICLOCKCTL_M66EN		0x00000080
 #define	BGE_PCICLOCKCTL_LOWPWR_CLKMODE	0x00000200
 #define	BGE_PCICLOCKCTL_RXCPU_CLK_DIS	0x00000400
 #define	BGE_PCICLOCKCTL_TXCPU_CLK_DIS	0x00000800
 #define	BGE_PCICLOCKCTL_ALTCLK		0x00001000
 #define	BGE_PCICLOCKCTL_ALTCLK_SRC	0x00002000
 #define	BGE_PCICLOCKCTL_PCIPLL_DISABLE	0x00004000
 #define	BGE_PCICLOCKCTL_SYSPLL_DISABLE	0x00008000
 #define	BGE_PCICLOCKCTL_BIST_ENABLE	0x00010000
 
 
 #ifndef PCIM_CMD_MWIEN
 #define	PCIM_CMD_MWIEN			0x0010
 #endif
 #ifndef PCIM_CMD_INTxDIS
 #define	PCIM_CMD_INTxDIS		0x0400
 #endif
 
 /* BAR0 (MAC) Register Definitions */
 
 /*
  * High priority mailbox registers
  * Each mailbox is 64-bits wide, though we only use the
  * lower 32 bits. To write a 64-bit value, write the upper 32 bits
  * first. The NIC will load the mailbox after the lower 32 bit word
  * has been updated.
  */
 #define	BGE_MBX_IRQ0_HI			0x0200
 #define	BGE_MBX_IRQ0_LO			0x0204
 #define	BGE_MBX_IRQ1_HI			0x0208
 #define	BGE_MBX_IRQ1_LO			0x020C
 #define	BGE_MBX_IRQ2_HI			0x0210
 #define	BGE_MBX_IRQ2_LO			0x0214
 #define	BGE_MBX_IRQ3_HI			0x0218
 #define	BGE_MBX_IRQ3_LO			0x021C
 #define	BGE_MBX_GEN0_HI			0x0220
 #define	BGE_MBX_GEN0_LO			0x0224
 #define	BGE_MBX_GEN1_HI			0x0228
 #define	BGE_MBX_GEN1_LO			0x022C
 #define	BGE_MBX_GEN2_HI			0x0230
 #define	BGE_MBX_GEN2_LO			0x0234
 #define	BGE_MBX_GEN3_HI			0x0228
 #define	BGE_MBX_GEN3_LO			0x022C
 #define	BGE_MBX_GEN4_HI			0x0240
 #define	BGE_MBX_GEN4_LO			0x0244
 #define	BGE_MBX_GEN5_HI			0x0248
 #define	BGE_MBX_GEN5_LO			0x024C
 #define	BGE_MBX_GEN6_HI			0x0250
 #define	BGE_MBX_GEN6_LO			0x0254
 #define	BGE_MBX_GEN7_HI			0x0258
 #define	BGE_MBX_GEN7_LO			0x025C
 #define	BGE_MBX_RELOAD_STATS_HI		0x0260
 #define	BGE_MBX_RELOAD_STATS_LO		0x0264
 #define	BGE_MBX_RX_STD_PROD_HI		0x0268
 #define	BGE_MBX_RX_STD_PROD_LO		0x026C
 #define	BGE_MBX_RX_JUMBO_PROD_HI	0x0270
 #define	BGE_MBX_RX_JUMBO_PROD_LO	0x0274
 #define	BGE_MBX_RX_MINI_PROD_HI		0x0278
 #define	BGE_MBX_RX_MINI_PROD_LO		0x027C
 #define	BGE_MBX_RX_CONS0_HI		0x0280
 #define	BGE_MBX_RX_CONS0_LO		0x0284
 #define	BGE_MBX_RX_CONS1_HI		0x0288
 #define	BGE_MBX_RX_CONS1_LO		0x028C
 #define	BGE_MBX_RX_CONS2_HI		0x0290
 #define	BGE_MBX_RX_CONS2_LO		0x0294
 #define	BGE_MBX_RX_CONS3_HI		0x0298
 #define	BGE_MBX_RX_CONS3_LO		0x029C
 #define	BGE_MBX_RX_CONS4_HI		0x02A0
 #define	BGE_MBX_RX_CONS4_LO		0x02A4
 #define	BGE_MBX_RX_CONS5_HI		0x02A8
 #define	BGE_MBX_RX_CONS5_LO		0x02AC
 #define	BGE_MBX_RX_CONS6_HI		0x02B0
 #define	BGE_MBX_RX_CONS6_LO		0x02B4
 #define	BGE_MBX_RX_CONS7_HI		0x02B8
 #define	BGE_MBX_RX_CONS7_LO		0x02BC
 #define	BGE_MBX_RX_CONS8_HI		0x02C0
 #define	BGE_MBX_RX_CONS8_LO		0x02C4
 #define	BGE_MBX_RX_CONS9_HI		0x02C8
 #define	BGE_MBX_RX_CONS9_LO		0x02CC
 #define	BGE_MBX_RX_CONS10_HI		0x02D0
 #define	BGE_MBX_RX_CONS10_LO		0x02D4
 #define	BGE_MBX_RX_CONS11_HI		0x02D8
 #define	BGE_MBX_RX_CONS11_LO		0x02DC
 #define	BGE_MBX_RX_CONS12_HI		0x02E0
 #define	BGE_MBX_RX_CONS12_LO		0x02E4
 #define	BGE_MBX_RX_CONS13_HI		0x02E8
 #define	BGE_MBX_RX_CONS13_LO		0x02EC
 #define	BGE_MBX_RX_CONS14_HI		0x02F0
 #define	BGE_MBX_RX_CONS14_LO		0x02F4
 #define	BGE_MBX_RX_CONS15_HI		0x02F8
 #define	BGE_MBX_RX_CONS15_LO		0x02FC
 #define	BGE_MBX_TX_HOST_PROD0_HI	0x0300
 #define	BGE_MBX_TX_HOST_PROD0_LO	0x0304
 #define	BGE_MBX_TX_HOST_PROD1_HI	0x0308
 #define	BGE_MBX_TX_HOST_PROD1_LO	0x030C
 #define	BGE_MBX_TX_HOST_PROD2_HI	0x0310
 #define	BGE_MBX_TX_HOST_PROD2_LO	0x0314
 #define	BGE_MBX_TX_HOST_PROD3_HI	0x0318
 #define	BGE_MBX_TX_HOST_PROD3_LO	0x031C
 #define	BGE_MBX_TX_HOST_PROD4_HI	0x0320
 #define	BGE_MBX_TX_HOST_PROD4_LO	0x0324
 #define	BGE_MBX_TX_HOST_PROD5_HI	0x0328
 #define	BGE_MBX_TX_HOST_PROD5_LO	0x032C
 #define	BGE_MBX_TX_HOST_PROD6_HI	0x0330
 #define	BGE_MBX_TX_HOST_PROD6_LO	0x0334
 #define	BGE_MBX_TX_HOST_PROD7_HI	0x0338
 #define	BGE_MBX_TX_HOST_PROD7_LO	0x033C
 #define	BGE_MBX_TX_HOST_PROD8_HI	0x0340
 #define	BGE_MBX_TX_HOST_PROD8_LO	0x0344
 #define	BGE_MBX_TX_HOST_PROD9_HI	0x0348
 #define	BGE_MBX_TX_HOST_PROD9_LO	0x034C
 #define	BGE_MBX_TX_HOST_PROD10_HI	0x0350
 #define	BGE_MBX_TX_HOST_PROD10_LO	0x0354
 #define	BGE_MBX_TX_HOST_PROD11_HI	0x0358
 #define	BGE_MBX_TX_HOST_PROD11_LO	0x035C
 #define	BGE_MBX_TX_HOST_PROD12_HI	0x0360
 #define	BGE_MBX_TX_HOST_PROD12_LO	0x0364
 #define	BGE_MBX_TX_HOST_PROD13_HI	0x0368
 #define	BGE_MBX_TX_HOST_PROD13_LO	0x036C
 #define	BGE_MBX_TX_HOST_PROD14_HI	0x0370
 #define	BGE_MBX_TX_HOST_PROD14_LO	0x0374
 #define	BGE_MBX_TX_HOST_PROD15_HI	0x0378
 #define	BGE_MBX_TX_HOST_PROD15_LO	0x037C
 #define	BGE_MBX_TX_NIC_PROD0_HI		0x0380
 #define	BGE_MBX_TX_NIC_PROD0_LO		0x0384
 #define	BGE_MBX_TX_NIC_PROD1_HI		0x0388
 #define	BGE_MBX_TX_NIC_PROD1_LO		0x038C
 #define	BGE_MBX_TX_NIC_PROD2_HI		0x0390
 #define	BGE_MBX_TX_NIC_PROD2_LO		0x0394
 #define	BGE_MBX_TX_NIC_PROD3_HI		0x0398
 #define	BGE_MBX_TX_NIC_PROD3_LO		0x039C
 #define	BGE_MBX_TX_NIC_PROD4_HI		0x03A0
 #define	BGE_MBX_TX_NIC_PROD4_LO		0x03A4
 #define	BGE_MBX_TX_NIC_PROD5_HI		0x03A8
 #define	BGE_MBX_TX_NIC_PROD5_LO		0x03AC
 #define	BGE_MBX_TX_NIC_PROD6_HI		0x03B0
 #define	BGE_MBX_TX_NIC_PROD6_LO		0x03B4
 #define	BGE_MBX_TX_NIC_PROD7_HI		0x03B8
 #define	BGE_MBX_TX_NIC_PROD7_LO		0x03BC
 #define	BGE_MBX_TX_NIC_PROD8_HI		0x03C0
 #define	BGE_MBX_TX_NIC_PROD8_LO		0x03C4
 #define	BGE_MBX_TX_NIC_PROD9_HI		0x03C8
 #define	BGE_MBX_TX_NIC_PROD9_LO		0x03CC
 #define	BGE_MBX_TX_NIC_PROD10_HI	0x03D0
 #define	BGE_MBX_TX_NIC_PROD10_LO	0x03D4
 #define	BGE_MBX_TX_NIC_PROD11_HI	0x03D8
 #define	BGE_MBX_TX_NIC_PROD11_LO	0x03DC
 #define	BGE_MBX_TX_NIC_PROD12_HI	0x03E0
 #define	BGE_MBX_TX_NIC_PROD12_LO	0x03E4
 #define	BGE_MBX_TX_NIC_PROD13_HI	0x03E8
 #define	BGE_MBX_TX_NIC_PROD13_LO	0x03EC
 #define	BGE_MBX_TX_NIC_PROD14_HI	0x03F0
 #define	BGE_MBX_TX_NIC_PROD14_LO	0x03F4
 #define	BGE_MBX_TX_NIC_PROD15_HI	0x03F8
 #define	BGE_MBX_TX_NIC_PROD15_LO	0x03FC
 
 #define	BGE_TX_RINGS_MAX		4
 #define	BGE_TX_RINGS_EXTSSRAM_MAX	16
 #define	BGE_RX_RINGS_MAX		16
 #define	BGE_RX_RINGS_MAX_5717		17
 
 /* Ethernet MAC control registers */
 #define	BGE_MAC_MODE			0x0400
 #define	BGE_MAC_STS			0x0404
 #define	BGE_MAC_EVT_ENB			0x0408
 #define	BGE_MAC_LED_CTL			0x040C
 #define	BGE_MAC_ADDR1_LO		0x0410
 #define	BGE_MAC_ADDR1_HI		0x0414
 #define	BGE_MAC_ADDR2_LO		0x0418
 #define	BGE_MAC_ADDR2_HI		0x041C
 #define	BGE_MAC_ADDR3_LO		0x0420
 #define	BGE_MAC_ADDR3_HI		0x0424
 #define	BGE_MAC_ADDR4_LO		0x0428
 #define	BGE_MAC_ADDR4_HI		0x042C
 #define	BGE_WOL_PATPTR			0x0430
 #define	BGE_WOL_PATCFG			0x0434
 #define	BGE_TX_RANDOM_BACKOFF		0x0438
 #define	BGE_RX_MTU			0x043C
 #define	BGE_GBIT_PCS_TEST		0x0440
 #define	BGE_TX_TBI_AUTONEG		0x0444
 #define	BGE_RX_TBI_AUTONEG		0x0448
 #define	BGE_MI_COMM			0x044C
 #define	BGE_MI_STS			0x0450
 #define	BGE_MI_MODE			0x0454
 #define	BGE_AUTOPOLL_STS		0x0458
 #define	BGE_TX_MODE			0x045C
 #define	BGE_TX_STS			0x0460
 #define	BGE_TX_LENGTHS			0x0464
 #define	BGE_RX_MODE			0x0468
 #define	BGE_RX_STS			0x046C
 #define	BGE_MAR0			0x0470
 #define	BGE_MAR1			0x0474
 #define	BGE_MAR2			0x0478
 #define	BGE_MAR3			0x047C
 #define	BGE_RX_BD_RULES_CTL0		0x0480
 #define	BGE_RX_BD_RULES_MASKVAL0	0x0484
 #define	BGE_RX_BD_RULES_CTL1		0x0488
 #define	BGE_RX_BD_RULES_MASKVAL1	0x048C
 #define	BGE_RX_BD_RULES_CTL2		0x0490
 #define	BGE_RX_BD_RULES_MASKVAL2	0x0494
 #define	BGE_RX_BD_RULES_CTL3		0x0498
 #define	BGE_RX_BD_RULES_MASKVAL3	0x049C
 #define	BGE_RX_BD_RULES_CTL4		0x04A0
 #define	BGE_RX_BD_RULES_MASKVAL4	0x04A4
 #define	BGE_RX_BD_RULES_CTL5		0x04A8
 #define	BGE_RX_BD_RULES_MASKVAL5	0x04AC
 #define	BGE_RX_BD_RULES_CTL6		0x04B0
 #define	BGE_RX_BD_RULES_MASKVAL6	0x04B4
 #define	BGE_RX_BD_RULES_CTL7		0x04B8
 #define	BGE_RX_BD_RULES_MASKVAL7	0x04BC
 #define	BGE_RX_BD_RULES_CTL8		0x04C0
 #define	BGE_RX_BD_RULES_MASKVAL8	0x04C4
 #define	BGE_RX_BD_RULES_CTL9		0x04C8
 #define	BGE_RX_BD_RULES_MASKVAL9	0x04CC
 #define	BGE_RX_BD_RULES_CTL10		0x04D0
 #define	BGE_RX_BD_RULES_MASKVAL10	0x04D4
 #define	BGE_RX_BD_RULES_CTL11		0x04D8
 #define	BGE_RX_BD_RULES_MASKVAL11	0x04DC
 #define	BGE_RX_BD_RULES_CTL12		0x04E0
 #define	BGE_RX_BD_RULES_MASKVAL12	0x04E4
 #define	BGE_RX_BD_RULES_CTL13		0x04E8
 #define	BGE_RX_BD_RULES_MASKVAL13	0x04EC
 #define	BGE_RX_BD_RULES_CTL14		0x04F0
 #define	BGE_RX_BD_RULES_MASKVAL14	0x04F4
 #define	BGE_RX_BD_RULES_CTL15		0x04F8
 #define	BGE_RX_BD_RULES_MASKVAL15	0x04FC
 #define	BGE_RX_RULES_CFG		0x0500
 #define	BGE_MAX_RX_FRAME_LOWAT		0x0504
 #define	BGE_SERDES_CFG			0x0590
 #define	BGE_SERDES_STS			0x0594
 #define	BGE_SGDIG_CFG			0x05B0
 #define	BGE_SGDIG_STS			0x05B4
 #define	BGE_TX_MAC_STATS_OCTETS		0x0800
 #define	BGE_TX_MAC_STATS_RESERVE_0	0x0804
 #define	BGE_TX_MAC_STATS_COLLS		0x0808
 #define	BGE_TX_MAC_STATS_XON_SENT	0x080C
 #define	BGE_TX_MAC_STATS_XOFF_SENT	0x0810
 #define	BGE_TX_MAC_STATS_RESERVE_1	0x0814
 #define	BGE_TX_MAC_STATS_ERRORS		0x0818
 #define	BGE_TX_MAC_STATS_SINGLE_COLL	0x081C
 #define	BGE_TX_MAC_STATS_MULTI_COLL	0x0820
 #define	BGE_TX_MAC_STATS_DEFERRED	0x0824
 #define	BGE_TX_MAC_STATS_RESERVE_2	0x0828
 #define	BGE_TX_MAC_STATS_EXCESS_COLL	0x082C
 #define	BGE_TX_MAC_STATS_LATE_COLL	0x0830
 #define	BGE_TX_MAC_STATS_RESERVE_3	0x0834
 #define	BGE_TX_MAC_STATS_RESERVE_4	0x0838
 #define	BGE_TX_MAC_STATS_RESERVE_5	0x083C
 #define	BGE_TX_MAC_STATS_RESERVE_6	0x0840
 #define	BGE_TX_MAC_STATS_RESERVE_7	0x0844
 #define	BGE_TX_MAC_STATS_RESERVE_8	0x0848
 #define	BGE_TX_MAC_STATS_RESERVE_9	0x084C
 #define	BGE_TX_MAC_STATS_RESERVE_10	0x0850
 #define	BGE_TX_MAC_STATS_RESERVE_11	0x0854
 #define	BGE_TX_MAC_STATS_RESERVE_12	0x0858
 #define	BGE_TX_MAC_STATS_RESERVE_13	0x085C
 #define	BGE_TX_MAC_STATS_RESERVE_14	0x0860
 #define	BGE_TX_MAC_STATS_RESERVE_15	0x0864
 #define	BGE_TX_MAC_STATS_RESERVE_16	0x0868
 #define	BGE_TX_MAC_STATS_UCAST		0x086C
 #define	BGE_TX_MAC_STATS_MCAST		0x0870
 #define	BGE_TX_MAC_STATS_BCAST		0x0874
 #define	BGE_TX_MAC_STATS_RESERVE_17	0x0878
 #define	BGE_TX_MAC_STATS_RESERVE_18	0x087C
 #define	BGE_RX_MAC_STATS_OCTESTS	0x0880
 #define	BGE_RX_MAC_STATS_RESERVE_0	0x0884
 #define	BGE_RX_MAC_STATS_FRAGMENTS	0x0888
 #define	BGE_RX_MAC_STATS_UCAST		0x088C
 #define	BGE_RX_MAC_STATS_MCAST		0x0890
 #define	BGE_RX_MAC_STATS_BCAST		0x0894
 #define	BGE_RX_MAC_STATS_FCS_ERRORS	0x0898
 #define	BGE_RX_MAC_STATS_ALGIN_ERRORS	0x089C
 #define	BGE_RX_MAC_STATS_XON_RCVD	0x08A0
 #define	BGE_RX_MAC_STATS_XOFF_RCVD	0x08A4
 #define	BGE_RX_MAC_STATS_CTRL_RCVD	0x08A8
 #define	BGE_RX_MAC_STATS_XOFF_ENTERED	0x08AC
 #define	BGE_RX_MAC_STATS_FRAME_TOO_LONG	0x08B0
 #define	BGE_RX_MAC_STATS_JABBERS	0x08B4
 #define	BGE_RX_MAC_STATS_UNDERSIZE	0x08B8
 
 /* Ethernet MAC Mode register */
 #define	BGE_MACMODE_RESET		0x00000001
 #define	BGE_MACMODE_HALF_DUPLEX		0x00000002
 #define	BGE_MACMODE_PORTMODE		0x0000000C
 #define	BGE_MACMODE_LOOPBACK		0x00000010
 #define	BGE_MACMODE_RX_TAGGEDPKT	0x00000080
 #define	BGE_MACMODE_TX_BURST_ENB	0x00000100
 #define	BGE_MACMODE_MAX_DEFER		0x00000200
 #define	BGE_MACMODE_LINK_POLARITY	0x00000400
 #define	BGE_MACMODE_RX_STATS_ENB	0x00000800
 #define	BGE_MACMODE_RX_STATS_CLEAR	0x00001000
 #define	BGE_MACMODE_RX_STATS_FLUSH	0x00002000
 #define	BGE_MACMODE_TX_STATS_ENB	0x00004000
 #define	BGE_MACMODE_TX_STATS_CLEAR	0x00008000
 #define	BGE_MACMODE_TX_STATS_FLUSH	0x00010000
 #define	BGE_MACMODE_TBI_SEND_CFGS	0x00020000
 #define	BGE_MACMODE_MAGIC_PKT_ENB	0x00040000
 #define	BGE_MACMODE_ACPI_PWRON_ENB	0x00080000
 #define	BGE_MACMODE_MIP_ENB		0x00100000
 #define	BGE_MACMODE_TXDMA_ENB		0x00200000
 #define	BGE_MACMODE_RXDMA_ENB		0x00400000
 #define	BGE_MACMODE_FRMHDR_DMA_ENB	0x00800000
 #define	BGE_MACMODE_APE_RX_EN		0x08000000
 #define	BGE_MACMODE_APE_TX_EN		0x10000000
 
 #define	BGE_PORTMODE_NONE		0x00000000
 #define	BGE_PORTMODE_MII		0x00000004
 #define	BGE_PORTMODE_GMII		0x00000008
 #define	BGE_PORTMODE_TBI		0x0000000C
 
 /* MAC Status register */
 #define	BGE_MACSTAT_TBI_PCS_SYNCHED	0x00000001
 #define	BGE_MACSTAT_TBI_SIGNAL_DETECT	0x00000002
 #define	BGE_MACSTAT_RX_CFG		0x00000004
 #define	BGE_MACSTAT_CFG_CHANGED		0x00000008
 #define	BGE_MACSTAT_SYNC_CHANGED	0x00000010
 #define	BGE_MACSTAT_PORT_DECODE_ERROR	0x00000400
 #define	BGE_MACSTAT_LINK_CHANGED	0x00001000
 #define	BGE_MACSTAT_MI_COMPLETE		0x00400000
 #define	BGE_MACSTAT_MI_INTERRUPT	0x00800000
 #define	BGE_MACSTAT_AUTOPOLL_ERROR	0x01000000
 #define	BGE_MACSTAT_ODI_ERROR		0x02000000
 #define	BGE_MACSTAT_RXSTAT_OFLOW	0x04000000
 #define	BGE_MACSTAT_TXSTAT_OFLOW	0x08000000
 
 /* MAC Event Enable Register */
 #define	BGE_EVTENB_PORT_DECODE_ERROR	0x00000400
 #define	BGE_EVTENB_LINK_CHANGED		0x00001000
 #define	BGE_EVTENB_MI_COMPLETE		0x00400000
 #define	BGE_EVTENB_MI_INTERRUPT		0x00800000
 #define	BGE_EVTENB_AUTOPOLL_ERROR	0x01000000
 #define	BGE_EVTENB_ODI_ERROR		0x02000000
 #define	BGE_EVTENB_RXSTAT_OFLOW		0x04000000
 #define	BGE_EVTENB_TXSTAT_OFLOW		0x08000000
 
 /* LED Control Register */
 #define	BGE_LEDCTL_LINKLED_OVERRIDE	0x00000001
 #define	BGE_LEDCTL_1000MBPS_LED		0x00000002
 #define	BGE_LEDCTL_100MBPS_LED		0x00000004
 #define	BGE_LEDCTL_10MBPS_LED		0x00000008
 #define	BGE_LEDCTL_TRAFLED_OVERRIDE	0x00000010
 #define	BGE_LEDCTL_TRAFLED_BLINK	0x00000020
 #define	BGE_LEDCTL_TRAFLED_BLINK_2	0x00000040
 #define	BGE_LEDCTL_1000MBPS_STS		0x00000080
 #define	BGE_LEDCTL_100MBPS_STS		0x00000100
 #define	BGE_LEDCTL_10MBPS_STS		0x00000200
 #define	BGE_LEDCTL_TRAFLED_STS		0x00000400
 #define	BGE_LEDCTL_BLINKPERIOD		0x7FF80000
 #define	BGE_LEDCTL_BLINKPERIOD_OVERRIDE	0x80000000
 
 /* TX backoff seed register */
 #define	BGE_TX_BACKOFF_SEED_MASK	0x3FF
 
 /* Autopoll status register */
 #define	BGE_AUTOPOLLSTS_ERROR		0x00000001
 
 /* Transmit MAC mode register */
 #define	BGE_TXMODE_RESET		0x00000001
 #define	BGE_TXMODE_ENABLE		0x00000002
 #define	BGE_TXMODE_FLOWCTL_ENABLE	0x00000010
 #define	BGE_TXMODE_BIGBACKOFF_ENABLE	0x00000020
 #define	BGE_TXMODE_LONGPAUSE_ENABLE	0x00000040
 #define	BGE_TXMODE_MBUF_LOCKUP_FIX	0x00000100
 #define	BGE_TXMODE_JMB_FRM_LEN		0x00400000
 #define	BGE_TXMODE_CNT_DN_MODE		0x00800000
 
 /* Transmit MAC status register */
 #define	BGE_TXSTAT_RX_XOFFED		0x00000001
 #define	BGE_TXSTAT_SENT_XOFF		0x00000002
 #define	BGE_TXSTAT_SENT_XON		0x00000004
 #define	BGE_TXSTAT_LINK_UP		0x00000008
 #define	BGE_TXSTAT_ODI_UFLOW		0x00000010
 #define	BGE_TXSTAT_ODI_OFLOW		0x00000020
 
 /* Transmit MAC lengths register */
 #define	BGE_TXLEN_SLOTTIME		0x000000FF
 #define	BGE_TXLEN_IPG			0x00000F00
 #define	BGE_TXLEN_CRS			0x00003000
 #define	BGE_TXLEN_JMB_FRM_LEN_MSK	0x00FF0000
 #define	BGE_TXLEN_CNT_DN_VAL_MSK	0xFF000000
 
 /* Receive MAC mode register */
 #define	BGE_RXMODE_RESET		0x00000001
 #define	BGE_RXMODE_ENABLE		0x00000002
 #define	BGE_RXMODE_FLOWCTL_ENABLE	0x00000004
 #define	BGE_RXMODE_RX_GIANTS		0x00000020
 #define	BGE_RXMODE_RX_RUNTS		0x00000040
 #define	BGE_RXMODE_8022_LENCHECK	0x00000080
 #define	BGE_RXMODE_RX_PROMISC		0x00000100
 #define	BGE_RXMODE_RX_NO_CRC_CHECK	0x00000200
 #define	BGE_RXMODE_RX_KEEP_VLAN_DIAG	0x00000400
 #define	BGE_RXMODE_IPV6_ENABLE		0x01000000
 #define	BGE_RXMODE_IPV4_FRAG_FIX	0x02000000
 
 /* Receive MAC status register */
 #define	BGE_RXSTAT_REMOTE_XOFFED	0x00000001
 #define	BGE_RXSTAT_RCVD_XOFF		0x00000002
 #define	BGE_RXSTAT_RCVD_XON		0x00000004
 
 /* Receive Rules Control register */
 #define	BGE_RXRULECTL_OFFSET		0x000000FF
 #define	BGE_RXRULECTL_CLASS		0x00001F00
 #define	BGE_RXRULECTL_HDRTYPE		0x0000E000
 #define	BGE_RXRULECTL_COMPARE_OP	0x00030000
 #define	BGE_RXRULECTL_MAP		0x01000000
 #define	BGE_RXRULECTL_DISCARD		0x02000000
 #define	BGE_RXRULECTL_MASK		0x04000000
 #define	BGE_RXRULECTL_ACTIVATE_PROC3	0x08000000
 #define	BGE_RXRULECTL_ACTIVATE_PROC2	0x10000000
 #define	BGE_RXRULECTL_ACTIVATE_PROC1	0x20000000
 #define	BGE_RXRULECTL_ANDWITHNEXT	0x40000000
 
 /* Receive Rules Mask register */
 #define	BGE_RXRULEMASK_VALUE		0x0000FFFF
 #define	BGE_RXRULEMASK_MASKVAL		0xFFFF0000
 
 /* SERDES configuration register */
 #define	BGE_SERDESCFG_RXR		0x00000007 /* phase interpolator */
 #define	BGE_SERDESCFG_RXG		0x00000018 /* rx gain setting */
 #define	BGE_SERDESCFG_RXEDGESEL		0x00000040 /* rising/falling egde */
 #define	BGE_SERDESCFG_TX_BIAS		0x00000380 /* TXDAC bias setting */
 #define	BGE_SERDESCFG_IBMAX		0x00000400 /* bias current +25% */
 #define	BGE_SERDESCFG_IBMIN		0x00000800 /* bias current -25% */
 #define	BGE_SERDESCFG_TXMODE		0x00001000
 #define	BGE_SERDESCFG_TXEDGESEL		0x00002000 /* rising/falling edge */
 #define	BGE_SERDESCFG_MODE		0x00004000 /* TXCP/TXCN disabled */
 #define	BGE_SERDESCFG_PLLTEST		0x00008000 /* PLL test mode */
 #define	BGE_SERDESCFG_CDET		0x00010000 /* comma detect enable */
 #define	BGE_SERDESCFG_TBILOOP		0x00020000 /* local loopback */
 #define	BGE_SERDESCFG_REMLOOP		0x00040000 /* remote loopback */
 #define	BGE_SERDESCFG_INVPHASE		0x00080000 /* Reverse 125Mhz clock */
 #define	BGE_SERDESCFG_12REGCTL		0x00300000 /* 1.2v regulator ctl */
 #define	BGE_SERDESCFG_REGCTL		0x00C00000 /* regulator ctl (2.5v) */
 
 /* SERDES status register */
 #define	BGE_SERDESSTS_RXSTAT		0x0000000F /* receive status bits */
 #define	BGE_SERDESSTS_CDET		0x00000010 /* comma code detected */
 
 /* SGDIG config (not documented) */
 #define	BGE_SGDIGCFG_PAUSE_CAP		0x00000800
 #define	BGE_SGDIGCFG_ASYM_PAUSE		0x00001000
 #define	BGE_SGDIGCFG_SEND		0x40000000
 #define	BGE_SGDIGCFG_AUTO		0x80000000
 
 /* SGDIG status (not documented) */
 #define	BGE_SGDIGSTS_DONE		0x00000002
 #define	BGE_SGDIGSTS_IS_SERDES		0x00000100
 #define	BGE_SGDIGSTS_PAUSE_CAP		0x00080000
 #define	BGE_SGDIGSTS_ASYM_PAUSE		0x00100000
 
 
 /* MI communication register */
 #define	BGE_MICOMM_DATA			0x0000FFFF
 #define	BGE_MICOMM_REG			0x001F0000
 #define	BGE_MICOMM_PHY			0x03E00000
 #define	BGE_MICOMM_CMD			0x0C000000
 #define	BGE_MICOMM_READFAIL		0x10000000
 #define	BGE_MICOMM_BUSY			0x20000000
 
 #define	BGE_MIREG(x)	((x & 0x1F) << 16)
 #define	BGE_MIPHY(x)	((x & 0x1F) << 21)
 #define	BGE_MICMD_WRITE			0x04000000
 #define	BGE_MICMD_READ			0x08000000
 
 /* MI status register */
 #define	BGE_MISTS_LINK			0x00000001
 #define	BGE_MISTS_10MBPS		0x00000002
 
 #define	BGE_MIMODE_CLK_10MHZ		0x00000001
 #define	BGE_MIMODE_SHORTPREAMBLE	0x00000002
 #define	BGE_MIMODE_AUTOPOLL		0x00000010
 #define	BGE_MIMODE_CLKCNT		0x001F0000
 #define	BGE_MIMODE_500KHZ_CONST		0x00008000
 #define	BGE_MIMODE_BASE			0x000C0000
 
 
 /*
  * Send data initiator control registers.
  */
 #define	BGE_SDI_MODE			0x0C00
 #define	BGE_SDI_STATUS			0x0C04
 #define	BGE_SDI_STATS_CTL		0x0C08
 #define	BGE_SDI_STATS_ENABLE_MASK	0x0C0C
 #define	BGE_SDI_STATS_INCREMENT_MASK	0x0C10
 #define	BGE_ISO_PKT_TX			0x0C20
 #define	BGE_LOCSTATS_COS0		0x0C80
 #define	BGE_LOCSTATS_COS1		0x0C84
 #define	BGE_LOCSTATS_COS2		0x0C88
 #define	BGE_LOCSTATS_COS3		0x0C8C
 #define	BGE_LOCSTATS_COS4		0x0C90
 #define	BGE_LOCSTATS_COS5		0x0C84
 #define	BGE_LOCSTATS_COS6		0x0C98
 #define	BGE_LOCSTATS_COS7		0x0C9C
 #define	BGE_LOCSTATS_COS8		0x0CA0
 #define	BGE_LOCSTATS_COS9		0x0CA4
 #define	BGE_LOCSTATS_COS10		0x0CA8
 #define	BGE_LOCSTATS_COS11		0x0CAC
 #define	BGE_LOCSTATS_COS12		0x0CB0
 #define	BGE_LOCSTATS_COS13		0x0CB4
 #define	BGE_LOCSTATS_COS14		0x0CB8
 #define	BGE_LOCSTATS_COS15		0x0CBC
 #define	BGE_LOCSTATS_DMA_RQ_FULL	0x0CC0
 #define	BGE_LOCSTATS_DMA_HIPRIO_RQ_FULL	0x0CC4
 #define	BGE_LOCSTATS_SDC_QUEUE_FULL	0x0CC8
 #define	BGE_LOCSTATS_NIC_SENDPROD_SET	0x0CCC
 #define	BGE_LOCSTATS_STATS_UPDATED	0x0CD0
 #define	BGE_LOCSTATS_IRQS		0x0CD4
 #define	BGE_LOCSTATS_AVOIDED_IRQS	0x0CD8
 #define	BGE_LOCSTATS_TX_THRESH_HIT	0x0CDC
 
 /* Send Data Initiator mode register */
 #define	BGE_SDIMODE_RESET		0x00000001
 #define	BGE_SDIMODE_ENABLE		0x00000002
 #define	BGE_SDIMODE_STATS_OFLOW_ATTN	0x00000004
 #define	BGE_SDIMODE_HW_LSO_PRE_DMA	0x00000008
 
 /* Send Data Initiator stats register */
 #define	BGE_SDISTAT_STATS_OFLOW_ATTN	0x00000004
 
 /* Send Data Initiator stats control register */
 #define	BGE_SDISTATSCTL_ENABLE		0x00000001
 #define	BGE_SDISTATSCTL_FASTER		0x00000002
 #define	BGE_SDISTATSCTL_CLEAR		0x00000004
 #define	BGE_SDISTATSCTL_FORCEFLUSH	0x00000008
 #define	BGE_SDISTATSCTL_FORCEZERO	0x00000010
 
 /*
  * Send Data Completion Control registers
  */
 #define	BGE_SDC_MODE			0x1000
 #define	BGE_SDC_STATUS			0x1004
 
 /* Send Data completion mode register */
 #define	BGE_SDCMODE_RESET		0x00000001
 #define	BGE_SDCMODE_ENABLE		0x00000002
 #define	BGE_SDCMODE_ATTN		0x00000004
 #define	BGE_SDCMODE_CDELAY		0x00000010
 
 /* Send Data completion status register */
 #define	BGE_SDCSTAT_ATTN		0x00000004
 
 /*
  * Send BD Ring Selector Control registers
  */
 #define	BGE_SRS_MODE			0x1400
 #define	BGE_SRS_STATUS			0x1404
 #define	BGE_SRS_HWDIAG			0x1408
 #define	BGE_SRS_LOC_NIC_CONS0		0x1440
 #define	BGE_SRS_LOC_NIC_CONS1		0x1444
 #define	BGE_SRS_LOC_NIC_CONS2		0x1448
 #define	BGE_SRS_LOC_NIC_CONS3		0x144C
 #define	BGE_SRS_LOC_NIC_CONS4		0x1450
 #define	BGE_SRS_LOC_NIC_CONS5		0x1454
 #define	BGE_SRS_LOC_NIC_CONS6		0x1458
 #define	BGE_SRS_LOC_NIC_CONS7		0x145C
 #define	BGE_SRS_LOC_NIC_CONS8		0x1460
 #define	BGE_SRS_LOC_NIC_CONS9		0x1464
 #define	BGE_SRS_LOC_NIC_CONS10		0x1468
 #define	BGE_SRS_LOC_NIC_CONS11		0x146C
 #define	BGE_SRS_LOC_NIC_CONS12		0x1470
 #define	BGE_SRS_LOC_NIC_CONS13		0x1474
 #define	BGE_SRS_LOC_NIC_CONS14		0x1478
 #define	BGE_SRS_LOC_NIC_CONS15		0x147C
 
 /* Send BD Ring Selector Mode register */
 #define	BGE_SRSMODE_RESET		0x00000001
 #define	BGE_SRSMODE_ENABLE		0x00000002
 #define	BGE_SRSMODE_ATTN		0x00000004
 
 /* Send BD Ring Selector Status register */
 #define	BGE_SRSSTAT_ERROR		0x00000004
 
 /* Send BD Ring Selector HW Diagnostics register */
 #define	BGE_SRSHWDIAG_STATE		0x0000000F
 #define	BGE_SRSHWDIAG_CURRINGNUM	0x000000F0
 #define	BGE_SRSHWDIAG_STAGEDRINGNUM	0x00000F00
 #define	BGE_SRSHWDIAG_RINGNUM_IN_MBX	0x0000F000
 
 /*
  * Send BD Initiator Selector Control registers
  */
 #define	BGE_SBDI_MODE			0x1800
 #define	BGE_SBDI_STATUS			0x1804
 #define	BGE_SBDI_LOC_NIC_PROD0		0x1808
 #define	BGE_SBDI_LOC_NIC_PROD1		0x180C
 #define	BGE_SBDI_LOC_NIC_PROD2		0x1810
 #define	BGE_SBDI_LOC_NIC_PROD3		0x1814
 #define	BGE_SBDI_LOC_NIC_PROD4		0x1818
 #define	BGE_SBDI_LOC_NIC_PROD5		0x181C
 #define	BGE_SBDI_LOC_NIC_PROD6		0x1820
 #define	BGE_SBDI_LOC_NIC_PROD7		0x1824
 #define	BGE_SBDI_LOC_NIC_PROD8		0x1828
 #define	BGE_SBDI_LOC_NIC_PROD9		0x182C
 #define	BGE_SBDI_LOC_NIC_PROD10		0x1830
 #define	BGE_SBDI_LOC_NIC_PROD11		0x1834
 #define	BGE_SBDI_LOC_NIC_PROD12		0x1838
 #define	BGE_SBDI_LOC_NIC_PROD13		0x183C
 #define	BGE_SBDI_LOC_NIC_PROD14		0x1840
 #define	BGE_SBDI_LOC_NIC_PROD15		0x1844
 
 /* Send BD Initiator Mode register */
 #define	BGE_SBDIMODE_RESET		0x00000001
 #define	BGE_SBDIMODE_ENABLE		0x00000002
 #define	BGE_SBDIMODE_ATTN		0x00000004
 
 /* Send BD Initiator Status register */
 #define	BGE_SBDISTAT_ERROR		0x00000004
 
 /*
  * Send BD Completion Control registers
  */
 #define	BGE_SBDC_MODE			0x1C00
 #define	BGE_SBDC_STATUS			0x1C04
 
 /* Send BD Completion Control Mode register */
 #define	BGE_SBDCMODE_RESET		0x00000001
 #define	BGE_SBDCMODE_ENABLE		0x00000002
 #define	BGE_SBDCMODE_ATTN		0x00000004
 
 /* Send BD Completion Control Status register */
 #define	BGE_SBDCSTAT_ATTN		0x00000004
 
 /*
  * Receive List Placement Control registers
  */
 #define	BGE_RXLP_MODE			0x2000
 #define	BGE_RXLP_STATUS			0x2004
 #define	BGE_RXLP_SEL_LIST_LOCK		0x2008
 #define	BGE_RXLP_SEL_NON_EMPTY_BITS	0x200C
 #define	BGE_RXLP_CFG			0x2010
 #define	BGE_RXLP_STATS_CTL		0x2014
 #define	BGE_RXLP_STATS_ENABLE_MASK	0x2018
 #define	BGE_RXLP_STATS_INCREMENT_MASK	0x201C
 #define	BGE_RXLP_HEAD0			0x2100
 #define	BGE_RXLP_TAIL0			0x2104
 #define	BGE_RXLP_COUNT0			0x2108
 #define	BGE_RXLP_HEAD1			0x2110
 #define	BGE_RXLP_TAIL1			0x2114
 #define	BGE_RXLP_COUNT1			0x2118
 #define	BGE_RXLP_HEAD2			0x2120
 #define	BGE_RXLP_TAIL2			0x2124
 #define	BGE_RXLP_COUNT2			0x2128
 #define	BGE_RXLP_HEAD3			0x2130
 #define	BGE_RXLP_TAIL3			0x2134
 #define	BGE_RXLP_COUNT3			0x2138
 #define	BGE_RXLP_HEAD4			0x2140
 #define	BGE_RXLP_TAIL4			0x2144
 #define	BGE_RXLP_COUNT4			0x2148
 #define	BGE_RXLP_HEAD5			0x2150
 #define	BGE_RXLP_TAIL5			0x2154
 #define	BGE_RXLP_COUNT5			0x2158
 #define	BGE_RXLP_HEAD6			0x2160
 #define	BGE_RXLP_TAIL6			0x2164
 #define	BGE_RXLP_COUNT6			0x2168
 #define	BGE_RXLP_HEAD7			0x2170
 #define	BGE_RXLP_TAIL7			0x2174
 #define	BGE_RXLP_COUNT7			0x2178
 #define	BGE_RXLP_HEAD8			0x2180
 #define	BGE_RXLP_TAIL8			0x2184
 #define	BGE_RXLP_COUNT8			0x2188
 #define	BGE_RXLP_HEAD9			0x2190
 #define	BGE_RXLP_TAIL9			0x2194
 #define	BGE_RXLP_COUNT9			0x2198
 #define	BGE_RXLP_HEAD10			0x21A0
 #define	BGE_RXLP_TAIL10			0x21A4
 #define	BGE_RXLP_COUNT10		0x21A8
 #define	BGE_RXLP_HEAD11			0x21B0
 #define	BGE_RXLP_TAIL11			0x21B4
 #define	BGE_RXLP_COUNT11		0x21B8
 #define	BGE_RXLP_HEAD12			0x21C0
 #define	BGE_RXLP_TAIL12			0x21C4
 #define	BGE_RXLP_COUNT12		0x21C8
 #define	BGE_RXLP_HEAD13			0x21D0
 #define	BGE_RXLP_TAIL13			0x21D4
 #define	BGE_RXLP_COUNT13		0x21D8
 #define	BGE_RXLP_HEAD14			0x21E0
 #define	BGE_RXLP_TAIL14			0x21E4
 #define	BGE_RXLP_COUNT14		0x21E8
 #define	BGE_RXLP_HEAD15			0x21F0
 #define	BGE_RXLP_TAIL15			0x21F4
 #define	BGE_RXLP_COUNT15		0x21F8
 #define	BGE_RXLP_LOCSTAT_COS0		0x2200
 #define	BGE_RXLP_LOCSTAT_COS1		0x2204
 #define	BGE_RXLP_LOCSTAT_COS2		0x2208
 #define	BGE_RXLP_LOCSTAT_COS3		0x220C
 #define	BGE_RXLP_LOCSTAT_COS4		0x2210
 #define	BGE_RXLP_LOCSTAT_COS5		0x2214
 #define	BGE_RXLP_LOCSTAT_COS6		0x2218
 #define	BGE_RXLP_LOCSTAT_COS7		0x221C
 #define	BGE_RXLP_LOCSTAT_COS8		0x2220
 #define	BGE_RXLP_LOCSTAT_COS9		0x2224
 #define	BGE_RXLP_LOCSTAT_COS10		0x2228
 #define	BGE_RXLP_LOCSTAT_COS11		0x222C
 #define	BGE_RXLP_LOCSTAT_COS12		0x2230
 #define	BGE_RXLP_LOCSTAT_COS13		0x2234
 #define	BGE_RXLP_LOCSTAT_COS14		0x2238
 #define	BGE_RXLP_LOCSTAT_COS15		0x223C
 #define	BGE_RXLP_LOCSTAT_FILTDROP	0x2240
 #define	BGE_RXLP_LOCSTAT_DMA_WRQ_FULL	0x2244
 #define	BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL	0x2248
 #define	BGE_RXLP_LOCSTAT_OUT_OF_BDS	0x224C
 #define	BGE_RXLP_LOCSTAT_IFIN_DROPS	0x2250
 #define	BGE_RXLP_LOCSTAT_IFIN_ERRORS	0x2254
 #define	BGE_RXLP_LOCSTAT_RXTHRESH_HIT	0x2258
 
 
 /* Receive List Placement mode register */
 #define	BGE_RXLPMODE_RESET		0x00000001
 #define	BGE_RXLPMODE_ENABLE		0x00000002
 #define	BGE_RXLPMODE_CLASS0_ATTN	0x00000004
 #define	BGE_RXLPMODE_MAPOUTRANGE_ATTN	0x00000008
 #define	BGE_RXLPMODE_STATSOFLOW_ATTN	0x00000010
 
 /* Receive List Placement Status register */
 #define	BGE_RXLPSTAT_CLASS0_ATTN	0x00000004
 #define	BGE_RXLPSTAT_MAPOUTRANGE_ATTN	0x00000008
 #define	BGE_RXLPSTAT_STATSOFLOW_ATTN	0x00000010
 
 /*
  * Receive Data and Receive BD Initiator Control Registers
  */
 #define	BGE_RDBDI_MODE			0x2400
 #define	BGE_RDBDI_STATUS		0x2404
 #define	BGE_RX_JUMBO_RCB_HADDR_HI	0x2440
 #define	BGE_RX_JUMBO_RCB_HADDR_LO	0x2444
 #define	BGE_RX_JUMBO_RCB_MAXLEN_FLAGS	0x2448
 #define	BGE_RX_JUMBO_RCB_NICADDR	0x244C
 #define	BGE_RX_STD_RCB_HADDR_HI		0x2450
 #define	BGE_RX_STD_RCB_HADDR_LO		0x2454
 #define	BGE_RX_STD_RCB_MAXLEN_FLAGS	0x2458
 #define	BGE_RX_STD_RCB_NICADDR		0x245C
 #define	BGE_RX_MINI_RCB_HADDR_HI	0x2460
 #define	BGE_RX_MINI_RCB_HADDR_LO	0x2464
 #define	BGE_RX_MINI_RCB_MAXLEN_FLAGS	0x2468
 #define	BGE_RX_MINI_RCB_NICADDR		0x246C
 #define	BGE_RDBDI_JUMBO_RX_CONS		0x2470
 #define	BGE_RDBDI_STD_RX_CONS		0x2474
 #define	BGE_RDBDI_MINI_RX_CONS		0x2478
 #define	BGE_RDBDI_RETURN_PROD0		0x2480
 #define	BGE_RDBDI_RETURN_PROD1		0x2484
 #define	BGE_RDBDI_RETURN_PROD2		0x2488
 #define	BGE_RDBDI_RETURN_PROD3		0x248C
 #define	BGE_RDBDI_RETURN_PROD4		0x2490
 #define	BGE_RDBDI_RETURN_PROD5		0x2494
 #define	BGE_RDBDI_RETURN_PROD6		0x2498
 #define	BGE_RDBDI_RETURN_PROD7		0x249C
 #define	BGE_RDBDI_RETURN_PROD8		0x24A0
 #define	BGE_RDBDI_RETURN_PROD9		0x24A4
 #define	BGE_RDBDI_RETURN_PROD10		0x24A8
 #define	BGE_RDBDI_RETURN_PROD11		0x24AC
 #define	BGE_RDBDI_RETURN_PROD12		0x24B0
 #define	BGE_RDBDI_RETURN_PROD13		0x24B4
 #define	BGE_RDBDI_RETURN_PROD14		0x24B8
 #define	BGE_RDBDI_RETURN_PROD15		0x24BC
 #define	BGE_RDBDI_HWDIAG		0x24C0
 
 
 /* Receive Data and Receive BD Initiator Mode register */
 #define	BGE_RDBDIMODE_RESET		0x00000001
 #define	BGE_RDBDIMODE_ENABLE		0x00000002
 #define	BGE_RDBDIMODE_JUMBO_ATTN	0x00000004
 #define	BGE_RDBDIMODE_GIANT_ATTN	0x00000008
 #define	BGE_RDBDIMODE_BADRINGSZ_ATTN	0x00000010
 
 /* Receive Data and Receive BD Initiator Status register */
 #define	BGE_RDBDISTAT_JUMBO_ATTN	0x00000004
 #define	BGE_RDBDISTAT_GIANT_ATTN	0x00000008
 #define	BGE_RDBDISTAT_BADRINGSZ_ATTN	0x00000010
 
 
 /*
  * Receive Data Completion Control registers
  */
 #define	BGE_RDC_MODE			0x2800
 
 /* Receive Data Completion Mode register */
 #define	BGE_RDCMODE_RESET		0x00000001
 #define	BGE_RDCMODE_ENABLE		0x00000002
 #define	BGE_RDCMODE_ATTN		0x00000004
 
 /*
  * Receive BD Initiator Control registers
  */
 #define	BGE_RBDI_MODE			0x2C00
 #define	BGE_RBDI_STATUS			0x2C04
 #define	BGE_RBDI_NIC_JUMBO_BD_PROD	0x2C08
 #define	BGE_RBDI_NIC_STD_BD_PROD	0x2C0C
 #define	BGE_RBDI_NIC_MINI_BD_PROD	0x2C10
 #define	BGE_RBDI_MINI_REPL_THRESH	0x2C14
 #define	BGE_RBDI_STD_REPL_THRESH	0x2C18
 #define	BGE_RBDI_JUMBO_REPL_THRESH	0x2C1C
 
 #define	BGE_STD_REPLENISH_LWM		0x2D00
 #define	BGE_JMB_REPLENISH_LWM		0x2D04
 
 /* Receive BD Initiator Mode register */
 #define	BGE_RBDIMODE_RESET		0x00000001
 #define	BGE_RBDIMODE_ENABLE		0x00000002
 #define	BGE_RBDIMODE_ATTN		0x00000004
 
 /* Receive BD Initiator Status register */
 #define	BGE_RBDISTAT_ATTN		0x00000004
 
 /*
  * Receive BD Completion Control registers
  */
 #define	BGE_RBDC_MODE			0x3000
 #define	BGE_RBDC_STATUS			0x3004
 #define	BGE_RBDC_JUMBO_BD_PROD		0x3008
 #define	BGE_RBDC_STD_BD_PROD		0x300C
 #define	BGE_RBDC_MINI_BD_PROD		0x3010
 
 /* Receive BD completion mode register */
 #define	BGE_RBDCMODE_RESET		0x00000001
 #define	BGE_RBDCMODE_ENABLE		0x00000002
 #define	BGE_RBDCMODE_ATTN		0x00000004
 
 /* Receive BD completion status register */
 #define	BGE_RBDCSTAT_ERROR		0x00000004
 
 /*
  * Receive List Selector Control registers
  */
 #define	BGE_RXLS_MODE			0x3400
 #define	BGE_RXLS_STATUS			0x3404
 
 /* Receive List Selector Mode register */
 #define	BGE_RXLSMODE_RESET		0x00000001
 #define	BGE_RXLSMODE_ENABLE		0x00000002
 #define	BGE_RXLSMODE_ATTN		0x00000004
 
 /* Receive List Selector Status register */
 #define	BGE_RXLSSTAT_ERROR		0x00000004
 
 #define	BGE_CPMU_CTRL			0x3600
 #define	BGE_CPMU_LSPD_10MB_CLK		0x3604
 #define	BGE_CPMU_LSPD_1000MB_CLK	0x360C
 #define	BGE_CPMU_LNK_AWARE_PWRMD	0x3610
 #define	BGE_CPMU_HST_ACC		0x361C
 #define	BGE_CPMU_CLCK_ORIDE		0x3624
 #define	BGE_CPMU_CLCK_STAT		0x3630
 #define	BGE_CPMU_MUTEX_REQ		0x365C
 #define	BGE_CPMU_MUTEX_GNT		0x3660
 #define	BGE_CPMU_PHY_STRAP		0x3664
 #define	BGE_CPMU_PADRNG_CTL		0x3668
 
 /* Central Power Management Unit (CPMU) register */
 #define	BGE_CPMU_CTRL_LINK_IDLE_MODE	0x00000200
 #define	BGE_CPMU_CTRL_LINK_AWARE_MODE	0x00000400
 #define	BGE_CPMU_CTRL_LINK_SPEED_MODE	0x00004000
 #define	BGE_CPMU_CTRL_GPHY_10MB_RXONLY	0x00010000
 
 /* Link Speed 10MB/No Link Power Mode Clock Policy register */
 #define	BGE_CPMU_LSPD_10MB_MACCLK_MASK	0x001F0000
 #define	BGE_CPMU_LSPD_10MB_MACCLK_6_25	0x00130000
 
 /* Link Speed 1000MB Power Mode Clock Policy register */
 #define	BGE_CPMU_LSPD_1000MB_MACCLK_62_5	0x00000000
 #define	BGE_CPMU_LSPD_1000MB_MACCLK_12_5	0x00110000
 #define	BGE_CPMU_LSPD_1000MB_MACCLK_MASK	0x001F0000
 
 /* Link Aware Power Mode Clock Policy register */
 #define	BGE_CPMU_LNK_AWARE_MACCLK_MASK	0x001F0000
 #define	BGE_CPMU_LNK_AWARE_MACCLK_6_25	0x00130000
 
 #define	BGE_CPMU_HST_ACC_MACCLK_MASK	0x001F0000
 #define	BGE_CPMU_HST_ACC_MACCLK_6_25	0x00130000
 
 /* Clock Speed Override Policy register */
 #define	CPMU_CLCK_ORIDE_MAC_ORIDE_EN	0x80000000
 
 /* CPMU Clock Status register */
 #define	BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK	0x001F0000
 #define	BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5	0x00000000
 #define	BGE_CPMU_CLCK_STAT_MAC_CLCK_12_5	0x00110000
 #define	BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25	0x00130000
 
 /* CPMU Mutex Request register */
 #define	BGE_CPMU_MUTEX_REQ_DRIVER	0x00001000
 #define	BGE_CPMU_MUTEX_GNT_DRIVER	0x00001000
 
 /* CPMU GPHY Strap register */
 #define	BGE_CPMU_PHY_STRAP_IS_SERDES	0x00000020
 
 /* CPMU Padring Control register */
 #define	BGE_CPMU_PADRNG_CTL_RDIV2	0x00040000
 
 /*
  * Mbuf Cluster Free registers (has nothing to do with BSD mbufs)
  */
 #define	BGE_MBCF_MODE			0x3800
 #define	BGE_MBCF_STATUS			0x3804
 
 /* Mbuf Cluster Free mode register */
 #define	BGE_MBCFMODE_RESET		0x00000001
 #define	BGE_MBCFMODE_ENABLE		0x00000002
 #define	BGE_MBCFMODE_ATTN		0x00000004
 
 /* Mbuf Cluster Free status register */
 #define	BGE_MBCFSTAT_ERROR		0x00000004
 
 /*
  * Host Coalescing Control registers
  */
 #define	BGE_HCC_MODE			0x3C00
 #define	BGE_HCC_STATUS			0x3C04
 #define	BGE_HCC_RX_COAL_TICKS		0x3C08
 #define	BGE_HCC_TX_COAL_TICKS		0x3C0C
 #define	BGE_HCC_RX_MAX_COAL_BDS		0x3C10
 #define	BGE_HCC_TX_MAX_COAL_BDS		0x3C14
 #define	BGE_HCC_RX_COAL_TICKS_INT	0x3C18 /* ticks during interrupt */
 #define	BGE_HCC_TX_COAL_TICKS_INT	0x3C1C /* ticks during interrupt */
 #define	BGE_HCC_RX_MAX_COAL_BDS_INT	0x3C20 /* BDs during interrupt */
 #define	BGE_HCC_TX_MAX_COAL_BDS_INT	0x3C24 /* BDs during interrupt */
 #define	BGE_HCC_STATS_TICKS		0x3C28
 #define	BGE_HCC_STATS_ADDR_HI		0x3C30
 #define	BGE_HCC_STATS_ADDR_LO		0x3C34
 #define	BGE_HCC_STATUSBLK_ADDR_HI	0x3C38
 #define	BGE_HCC_STATUSBLK_ADDR_LO	0x3C3C
 #define	BGE_HCC_STATS_BASEADDR		0x3C40 /* address in NIC memory */
 #define	BGE_HCC_STATUSBLK_BASEADDR	0x3C44 /* address in NIC memory */
 #define	BGE_FLOW_ATTN			0x3C48
 #define	BGE_HCC_JUMBO_BD_CONS		0x3C50
 #define	BGE_HCC_STD_BD_CONS		0x3C54
 #define	BGE_HCC_MINI_BD_CONS		0x3C58
 #define	BGE_HCC_RX_RETURN_PROD0		0x3C80
 #define	BGE_HCC_RX_RETURN_PROD1		0x3C84
 #define	BGE_HCC_RX_RETURN_PROD2		0x3C88
 #define	BGE_HCC_RX_RETURN_PROD3		0x3C8C
 #define	BGE_HCC_RX_RETURN_PROD4		0x3C90
 #define	BGE_HCC_RX_RETURN_PROD5		0x3C94
 #define	BGE_HCC_RX_RETURN_PROD6		0x3C98
 #define	BGE_HCC_RX_RETURN_PROD7		0x3C9C
 #define	BGE_HCC_RX_RETURN_PROD8		0x3CA0
 #define	BGE_HCC_RX_RETURN_PROD9		0x3CA4
 #define	BGE_HCC_RX_RETURN_PROD10	0x3CA8
 #define	BGE_HCC_RX_RETURN_PROD11	0x3CAC
 #define	BGE_HCC_RX_RETURN_PROD12	0x3CB0
 #define	BGE_HCC_RX_RETURN_PROD13	0x3CB4
 #define	BGE_HCC_RX_RETURN_PROD14	0x3CB8
 #define	BGE_HCC_RX_RETURN_PROD15	0x3CBC
 #define	BGE_HCC_TX_BD_CONS0		0x3CC0
 #define	BGE_HCC_TX_BD_CONS1		0x3CC4
 #define	BGE_HCC_TX_BD_CONS2		0x3CC8
 #define	BGE_HCC_TX_BD_CONS3		0x3CCC
 #define	BGE_HCC_TX_BD_CONS4		0x3CD0
 #define	BGE_HCC_TX_BD_CONS5		0x3CD4
 #define	BGE_HCC_TX_BD_CONS6		0x3CD8
 #define	BGE_HCC_TX_BD_CONS7		0x3CDC
 #define	BGE_HCC_TX_BD_CONS8		0x3CE0
 #define	BGE_HCC_TX_BD_CONS9		0x3CE4
 #define	BGE_HCC_TX_BD_CONS10		0x3CE8
 #define	BGE_HCC_TX_BD_CONS11		0x3CEC
 #define	BGE_HCC_TX_BD_CONS12		0x3CF0
 #define	BGE_HCC_TX_BD_CONS13		0x3CF4
 #define	BGE_HCC_TX_BD_CONS14		0x3CF8
 #define	BGE_HCC_TX_BD_CONS15		0x3CFC
 
 
 /* Host coalescing mode register */
 #define	BGE_HCCMODE_RESET		0x00000001
 #define	BGE_HCCMODE_ENABLE		0x00000002
 #define	BGE_HCCMODE_ATTN		0x00000004
 #define	BGE_HCCMODE_COAL_NOW		0x00000008
 #define	BGE_HCCMODE_MSI_BITS		0x00000070
 #define	BGE_HCCMODE_STATBLK_SIZE	0x00000180
 
 #define	BGE_STATBLKSZ_FULL		0x00000000
 #define	BGE_STATBLKSZ_64BYTE		0x00000080
 #define	BGE_STATBLKSZ_32BYTE		0x00000100
 
 /* Host coalescing status register */
 #define	BGE_HCCSTAT_ERROR		0x00000004
 
 /* Flow attention register */
 #define	BGE_FLOWATTN_MB_LOWAT		0x00000040
 #define	BGE_FLOWATTN_MEMARB		0x00000080
 #define	BGE_FLOWATTN_HOSTCOAL		0x00008000
 #define	BGE_FLOWATTN_DMADONE_DISCARD	0x00010000
 #define	BGE_FLOWATTN_RCB_INVAL		0x00020000
 #define	BGE_FLOWATTN_RXDATA_CORRUPT	0x00040000
 #define	BGE_FLOWATTN_RDBDI		0x00080000
 #define	BGE_FLOWATTN_RXLS		0x00100000
 #define	BGE_FLOWATTN_RXLP		0x00200000
 #define	BGE_FLOWATTN_RBDC		0x00400000
 #define	BGE_FLOWATTN_RBDI		0x00800000
 #define	BGE_FLOWATTN_SDC		0x08000000
 #define	BGE_FLOWATTN_SDI		0x10000000
 #define	BGE_FLOWATTN_SRS		0x20000000
 #define	BGE_FLOWATTN_SBDC		0x40000000
 #define	BGE_FLOWATTN_SBDI		0x80000000
 
 /*
  * Memory arbiter registers
  */
 #define	BGE_MARB_MODE			0x4000
 #define	BGE_MARB_STATUS			0x4004
 #define	BGE_MARB_TRAPADDR_HI		0x4008
 #define	BGE_MARB_TRAPADDR_LO		0x400C
 
 /* Memory arbiter mode register */
 #define	BGE_MARBMODE_RESET		0x00000001
 #define	BGE_MARBMODE_ENABLE		0x00000002
 #define	BGE_MARBMODE_TX_ADDR_TRAP	0x00000004
 #define	BGE_MARBMODE_RX_ADDR_TRAP	0x00000008
 #define	BGE_MARBMODE_DMAW1_TRAP		0x00000010
 #define	BGE_MARBMODE_DMAR1_TRAP		0x00000020
 #define	BGE_MARBMODE_RXRISC_TRAP	0x00000040
 #define	BGE_MARBMODE_TXRISC_TRAP	0x00000080
 #define	BGE_MARBMODE_PCI_TRAP		0x00000100
 #define	BGE_MARBMODE_DMAR2_TRAP		0x00000200
 #define	BGE_MARBMODE_RXQ_TRAP		0x00000400
 #define	BGE_MARBMODE_RXDI1_TRAP		0x00000800
 #define	BGE_MARBMODE_RXDI2_TRAP		0x00001000
 #define	BGE_MARBMODE_DC_GRPMEM_TRAP	0x00002000
 #define	BGE_MARBMODE_HCOAL_TRAP		0x00004000
 #define	BGE_MARBMODE_MBUF_TRAP		0x00008000
 #define	BGE_MARBMODE_TXDI_TRAP		0x00010000
 #define	BGE_MARBMODE_SDC_DMAC_TRAP	0x00020000
 #define	BGE_MARBMODE_TXBD_TRAP		0x00040000
 #define	BGE_MARBMODE_BUFFMAN_TRAP	0x00080000
 #define	BGE_MARBMODE_DMAW2_TRAP		0x00100000
 #define	BGE_MARBMODE_XTSSRAM_ROFLO_TRAP	0x00200000
 #define	BGE_MARBMODE_XTSSRAM_RUFLO_TRAP 0x00400000
 #define	BGE_MARBMODE_XTSSRAM_WOFLO_TRAP	0x00800000
 #define	BGE_MARBMODE_XTSSRAM_WUFLO_TRAP	0x01000000
 #define	BGE_MARBMODE_XTSSRAM_PERR_TRAP	0x02000000
 
 /* Memory arbiter status register */
 #define	BGE_MARBSTAT_TX_ADDR_TRAP	0x00000004
 #define	BGE_MARBSTAT_RX_ADDR_TRAP	0x00000008
 #define	BGE_MARBSTAT_DMAW1_TRAP		0x00000010
 #define	BGE_MARBSTAT_DMAR1_TRAP		0x00000020
 #define	BGE_MARBSTAT_RXRISC_TRAP	0x00000040
 #define	BGE_MARBSTAT_TXRISC_TRAP	0x00000080
 #define	BGE_MARBSTAT_PCI_TRAP		0x00000100
 #define	BGE_MARBSTAT_DMAR2_TRAP		0x00000200
 #define	BGE_MARBSTAT_RXQ_TRAP		0x00000400
 #define	BGE_MARBSTAT_RXDI1_TRAP		0x00000800
 #define	BGE_MARBSTAT_RXDI2_TRAP		0x00001000
 #define	BGE_MARBSTAT_DC_GRPMEM_TRAP	0x00002000
 #define	BGE_MARBSTAT_HCOAL_TRAP		0x00004000
 #define	BGE_MARBSTAT_MBUF_TRAP		0x00008000
 #define	BGE_MARBSTAT_TXDI_TRAP		0x00010000
 #define	BGE_MARBSTAT_SDC_DMAC_TRAP	0x00020000
 #define	BGE_MARBSTAT_TXBD_TRAP		0x00040000
 #define	BGE_MARBSTAT_BUFFMAN_TRAP	0x00080000
 #define	BGE_MARBSTAT_DMAW2_TRAP		0x00100000
 #define	BGE_MARBSTAT_XTSSRAM_ROFLO_TRAP	0x00200000
 #define	BGE_MARBSTAT_XTSSRAM_RUFLO_TRAP 0x00400000
 #define	BGE_MARBSTAT_XTSSRAM_WOFLO_TRAP	0x00800000
 #define	BGE_MARBSTAT_XTSSRAM_WUFLO_TRAP	0x01000000
 #define	BGE_MARBSTAT_XTSSRAM_PERR_TRAP	0x02000000
 
 /*
  * Buffer manager control registers
  */
 #define	BGE_BMAN_MODE			0x4400
 #define	BGE_BMAN_STATUS			0x4404
 #define	BGE_BMAN_MBUFPOOL_BASEADDR	0x4408
 #define	BGE_BMAN_MBUFPOOL_LEN		0x440C
 #define	BGE_BMAN_MBUFPOOL_READDMA_LOWAT	0x4410
 #define	BGE_BMAN_MBUFPOOL_MACRX_LOWAT	0x4414
 #define	BGE_BMAN_MBUFPOOL_HIWAT		0x4418
 #define	BGE_BMAN_RXCPU_MBALLOC_REQ	0x441C
 #define	BGE_BMAN_RXCPU_MBALLOC_RESP	0x4420
 #define	BGE_BMAN_TXCPU_MBALLOC_REQ	0x4424
 #define	BGE_BMAN_TXCPU_MBALLOC_RESP	0x4428
 #define	BGE_BMAN_DMA_DESCPOOL_BASEADDR	0x442C
 #define	BGE_BMAN_DMA_DESCPOOL_LEN	0x4430
 #define	BGE_BMAN_DMA_DESCPOOL_LOWAT	0x4434
 #define	BGE_BMAN_DMA_DESCPOOL_HIWAT	0x4438
 #define	BGE_BMAN_RXCPU_DMAALLOC_REQ	0x443C
 #define	BGE_BMAN_RXCPU_DMAALLOC_RESP	0x4440
 #define	BGE_BMAN_TXCPU_DMAALLOC_REQ	0x4444
 #define	BGE_BMAN_TXCPU_DMALLLOC_RESP	0x4448
 #define	BGE_BMAN_HWDIAG_1		0x444C
 #define	BGE_BMAN_HWDIAG_2		0x4450
 #define	BGE_BMAN_HWDIAG_3		0x4454
 
 /* Buffer manager mode register */
 #define	BGE_BMANMODE_RESET		0x00000001
 #define	BGE_BMANMODE_ENABLE		0x00000002
 #define	BGE_BMANMODE_ATTN		0x00000004
 #define	BGE_BMANMODE_TESTMODE		0x00000008
 #define	BGE_BMANMODE_LOMBUF_ATTN	0x00000010
 #define	BGE_BMANMODE_NO_TX_UNDERRUN	0x80000000
 
 /* Buffer manager status register */
 #define	BGE_BMANSTAT_ERRO		0x00000004
 #define	BGE_BMANSTAT_LOWMBUF_ERROR	0x00000010
 
 
 /*
  * Read DMA Control registers
  */
 #define	BGE_RDMA_MODE			0x4800
 #define	BGE_RDMA_STATUS			0x4804
 #define	BGE_RDMA_RSRVCTRL_REG2		0x4890
 #define	BGE_RDMA_LSO_CRPTEN_CTRL_REG2	0x48A0
 #define	BGE_RDMA_RSRVCTRL		0x4900
 #define	BGE_RDMA_LSO_CRPTEN_CTRL	0x4910
 
 /* Read DMA mode register */
 #define	BGE_RDMAMODE_RESET		0x00000001
 #define	BGE_RDMAMODE_ENABLE		0x00000002
 #define	BGE_RDMAMODE_PCI_TGT_ABRT_ATTN	0x00000004
 #define	BGE_RDMAMODE_PCI_MSTR_ABRT_ATTN	0x00000008
 #define	BGE_RDMAMODE_PCI_PERR_ATTN	0x00000010
 #define	BGE_RDMAMODE_PCI_ADDROFLOW_ATTN	0x00000020
 #define	BGE_RDMAMODE_PCI_FIFOOFLOW_ATTN	0x00000040
 #define	BGE_RDMAMODE_PCI_FIFOUFLOW_ATTN	0x00000080
 #define	BGE_RDMAMODE_PCI_FIFOOREAD_ATTN	0x00000100
 #define	BGE_RDMAMODE_LOCWRITE_TOOBIG	0x00000200
 #define	BGE_RDMAMODE_ALL_ATTNS		0x000003FC
 #define	BGE_RDMAMODE_BD_SBD_CRPT_ATTN	0x00000800
 #define	BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN	0x00001000
 #define	BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN	0x00002000
 #define	BGE_RDMAMODE_FIFO_SIZE_128	0x00020000
 #define	BGE_RDMAMODE_FIFO_LONG_BURST	0x00030000
 #define	BGE_RDMAMODE_MULT_DMA_RD_DIS	0x01000000
 #define	BGE_RDMAMODE_TSO4_ENABLE	0x08000000
 #define	BGE_RDMAMODE_TSO6_ENABLE	0x10000000
 #define	BGE_RDMAMODE_H2BNC_VLAN_DET	0x20000000
 
 /* Read DMA status register */
 #define	BGE_RDMASTAT_PCI_TGT_ABRT_ATTN	0x00000004
 #define	BGE_RDMASTAT_PCI_MSTR_ABRT_ATTN	0x00000008
 #define	BGE_RDMASTAT_PCI_PERR_ATTN	0x00000010
 #define	BGE_RDMASTAT_PCI_ADDROFLOW_ATTN	0x00000020
 #define	BGE_RDMASTAT_PCI_FIFOOFLOW_ATTN	0x00000040
 #define	BGE_RDMASTAT_PCI_FIFOUFLOW_ATTN	0x00000080
 #define	BGE_RDMASTAT_PCI_FIFOOREAD_ATTN	0x00000100
 #define	BGE_RDMASTAT_LOCWRITE_TOOBIG	0x00000200
 
 /* Read DMA Reserved Control register */
 #define	BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX	0x00000004
 #define	BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K	0x00000C00
 #define	BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K	0x000C0000
 #define	BGE_RDMA_RSRVCTRL_TXMRGN_320B	0x28000000
 #define	BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK	0x00000FF0
 #define	BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK	0x000FF000
 #define	BGE_RDMA_RSRVCTRL_TXMRGN_MASK	0xFFE00000
 
 #define	BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512	0x00020000
 #define	BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K	0x00030000
 #define	BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K	0x000C0000
 #define	BGE_RDMA_TX_LENGTH_WA_5719		0x02000000
 #define	BGE_RDMA_TX_LENGTH_WA_5720		0x00200000
 
 /* BD Read DMA Mode register */
 #define	BGE_RDMA_BD_MODE		0x4A00
 /* BD Read DMA Mode status register */
 #define	BGE_RDMA_BD_STATUS		0x4A04
 
 #define	BGE_RDMA_BD_MODE_RESET		0x00000001
 #define	BGE_RDMA_BD_MODE_ENABLE		0x00000002
 
 /* Non-LSO Read DMA Mode register */
 #define	BGE_RDMA_NON_LSO_MODE		0x4B00
 /* Non-LSO Read DMA Mode status register */
 #define	BGE_RDMA_NON_LSO_STATUS		0x4B04
 
 #define	BGE_RDMA_NON_LSO_MODE_RESET	0x00000001
 #define	BGE_RDMA_NON_LSO_MODE_ENABLE	0x00000002
 
 #define	BGE_RDMA_LENGTH			0x4BE0
 #define	BGE_NUM_RDMA_CHANNELS		4
 
 /*
  * Write DMA control registers
  */
 #define	BGE_WDMA_MODE			0x4C00
 #define	BGE_WDMA_STATUS			0x4C04
 
 /* Write DMA mode register */
 #define	BGE_WDMAMODE_RESET		0x00000001
 #define	BGE_WDMAMODE_ENABLE		0x00000002
 #define	BGE_WDMAMODE_PCI_TGT_ABRT_ATTN	0x00000004
 #define	BGE_WDMAMODE_PCI_MSTR_ABRT_ATTN	0x00000008
 #define	BGE_WDMAMODE_PCI_PERR_ATTN	0x00000010
 #define	BGE_WDMAMODE_PCI_ADDROFLOW_ATTN	0x00000020
 #define	BGE_WDMAMODE_PCI_FIFOOFLOW_ATTN	0x00000040
 #define	BGE_WDMAMODE_PCI_FIFOUFLOW_ATTN	0x00000080
 #define	BGE_WDMAMODE_PCI_FIFOOREAD_ATTN	0x00000100
 #define	BGE_WDMAMODE_LOCREAD_TOOBIG	0x00000200
 #define	BGE_WDMAMODE_ALL_ATTNS		0x000003FC
 #define	BGE_WDMAMODE_STATUS_TAG_FIX	0x20000000
 #define	BGE_WDMAMODE_BURST_ALL_DATA	0xC0000000
 
 /* Write DMA status register */
 #define	BGE_WDMASTAT_PCI_TGT_ABRT_ATTN	0x00000004
 #define	BGE_WDMASTAT_PCI_MSTR_ABRT_ATTN	0x00000008
 #define	BGE_WDMASTAT_PCI_PERR_ATTN	0x00000010
 #define	BGE_WDMASTAT_PCI_ADDROFLOW_ATTN	0x00000020
 #define	BGE_WDMASTAT_PCI_FIFOOFLOW_ATTN	0x00000040
 #define	BGE_WDMASTAT_PCI_FIFOUFLOW_ATTN	0x00000080
 #define	BGE_WDMASTAT_PCI_FIFOOREAD_ATTN	0x00000100
 #define	BGE_WDMASTAT_LOCREAD_TOOBIG	0x00000200
 
 
 /*
  * RX CPU registers
  */
 #define	BGE_RXCPU_MODE			0x5000
 #define	BGE_RXCPU_STATUS		0x5004
 #define	BGE_RXCPU_PC			0x501C
 
 /* RX CPU mode register */
 #define	BGE_RXCPUMODE_RESET		0x00000001
 #define	BGE_RXCPUMODE_SINGLESTEP	0x00000002
 #define	BGE_RXCPUMODE_P0_DATAHLT_ENB	0x00000004
 #define	BGE_RXCPUMODE_P0_INSTRHLT_ENB	0x00000008
 #define	BGE_RXCPUMODE_WR_POSTBUF_ENB	0x00000010
 #define	BGE_RXCPUMODE_DATACACHE_ENB	0x00000020
 #define	BGE_RXCPUMODE_ROMFAIL		0x00000040
 #define	BGE_RXCPUMODE_WATCHDOG_ENB	0x00000080
 #define	BGE_RXCPUMODE_INSTRCACHE_PRF	0x00000100
 #define	BGE_RXCPUMODE_INSTRCACHE_FLUSH	0x00000200
 #define	BGE_RXCPUMODE_HALTCPU		0x00000400
 #define	BGE_RXCPUMODE_INVDATAHLT_ENB	0x00000800
 #define	BGE_RXCPUMODE_MADDRTRAPHLT_ENB	0x00001000
 #define	BGE_RXCPUMODE_RADDRTRAPHLT_ENB	0x00002000
 
 /* RX CPU status register */
 #define	BGE_RXCPUSTAT_HW_BREAKPOINT	0x00000001
 #define	BGE_RXCPUSTAT_HLTINSTR_EXECUTED	0x00000002
 #define	BGE_RXCPUSTAT_INVALID_INSTR	0x00000004
 #define	BGE_RXCPUSTAT_P0_DATAREF	0x00000008
 #define	BGE_RXCPUSTAT_P0_INSTRREF	0x00000010
 #define	BGE_RXCPUSTAT_INVALID_DATAACC	0x00000020
 #define	BGE_RXCPUSTAT_INVALID_INSTRFTCH	0x00000040
 #define	BGE_RXCPUSTAT_BAD_MEMALIGN	0x00000080
 #define	BGE_RXCPUSTAT_MADDR_TRAP	0x00000100
 #define	BGE_RXCPUSTAT_REGADDR_TRAP	0x00000200
 #define	BGE_RXCPUSTAT_DATAACC_STALL	0x00001000
 #define	BGE_RXCPUSTAT_INSTRFETCH_STALL	0x00002000
 #define	BGE_RXCPUSTAT_MA_WR_FIFOOFLOW	0x08000000
 #define	BGE_RXCPUSTAT_MA_RD_FIFOOFLOW	0x10000000
 #define	BGE_RXCPUSTAT_MA_DATAMASK_OFLOW	0x20000000
 #define	BGE_RXCPUSTAT_MA_REQ_FIFOOFLOW	0x40000000
 #define	BGE_RXCPUSTAT_BLOCKING_READ	0x80000000
 
 /*
  * V? CPU registers
  */
 #define	BGE_VCPU_STATUS			0x5100
 #define	BGE_VCPU_EXT_CTRL		0x6890
 
 #define	BGE_VCPU_STATUS_INIT_DONE	0x04000000
 #define	BGE_VCPU_STATUS_DRV_RESET 	0x08000000
 
 #define	BGE_VCPU_EXT_CTRL_HALT_CPU	0x00400000
 #define	BGE_VCPU_EXT_CTRL_DISABLE_WOL	0x20000000
 
 /*
  * TX CPU registers
  */
 #define	BGE_TXCPU_MODE			0x5400
 #define	BGE_TXCPU_STATUS		0x5404
 #define	BGE_TXCPU_PC			0x541C
 
 /* TX CPU mode register */
 #define	BGE_TXCPUMODE_RESET		0x00000001
 #define	BGE_TXCPUMODE_SINGLESTEP	0x00000002
 #define	BGE_TXCPUMODE_P0_DATAHLT_ENB	0x00000004
 #define	BGE_TXCPUMODE_P0_INSTRHLT_ENB	0x00000008
 #define	BGE_TXCPUMODE_WR_POSTBUF_ENB	0x00000010
 #define	BGE_TXCPUMODE_DATACACHE_ENB	0x00000020
 #define	BGE_TXCPUMODE_ROMFAIL		0x00000040
 #define	BGE_TXCPUMODE_WATCHDOG_ENB	0x00000080
 #define	BGE_TXCPUMODE_INSTRCACHE_PRF	0x00000100
 #define	BGE_TXCPUMODE_INSTRCACHE_FLUSH	0x00000200
 #define	BGE_TXCPUMODE_HALTCPU		0x00000400
 #define	BGE_TXCPUMODE_INVDATAHLT_ENB	0x00000800
 #define	BGE_TXCPUMODE_MADDRTRAPHLT_ENB	0x00001000
 
 /* TX CPU status register */
 #define	BGE_TXCPUSTAT_HW_BREAKPOINT	0x00000001
 #define	BGE_TXCPUSTAT_HLTINSTR_EXECUTED	0x00000002
 #define	BGE_TXCPUSTAT_INVALID_INSTR	0x00000004
 #define	BGE_TXCPUSTAT_P0_DATAREF	0x00000008
 #define	BGE_TXCPUSTAT_P0_INSTRREF	0x00000010
 #define	BGE_TXCPUSTAT_INVALID_DATAACC	0x00000020
 #define	BGE_TXCPUSTAT_INVALID_INSTRFTCH	0x00000040
 #define	BGE_TXCPUSTAT_BAD_MEMALIGN	0x00000080
 #define	BGE_TXCPUSTAT_MADDR_TRAP	0x00000100
 #define	BGE_TXCPUSTAT_REGADDR_TRAP	0x00000200
 #define	BGE_TXCPUSTAT_DATAACC_STALL	0x00001000
 #define	BGE_TXCPUSTAT_INSTRFETCH_STALL	0x00002000
 #define	BGE_TXCPUSTAT_MA_WR_FIFOOFLOW	0x08000000
 #define	BGE_TXCPUSTAT_MA_RD_FIFOOFLOW	0x10000000
 #define	BGE_TXCPUSTAT_MA_DATAMASK_OFLOW	0x20000000
 #define	BGE_TXCPUSTAT_MA_REQ_FIFOOFLOW	0x40000000
 #define	BGE_TXCPUSTAT_BLOCKING_READ	0x80000000
 
 
 /*
  * Low priority mailbox registers
  */
 #define	BGE_LPMBX_IRQ0_HI		0x5800
 #define	BGE_LPMBX_IRQ0_LO		0x5804
 #define	BGE_LPMBX_IRQ1_HI		0x5808
 #define	BGE_LPMBX_IRQ1_LO		0x580C
 #define	BGE_LPMBX_IRQ2_HI		0x5810
 #define	BGE_LPMBX_IRQ2_LO		0x5814
 #define	BGE_LPMBX_IRQ3_HI		0x5818
 #define	BGE_LPMBX_IRQ3_LO		0x581C
 #define	BGE_LPMBX_GEN0_HI		0x5820
 #define	BGE_LPMBX_GEN0_LO		0x5824
 #define	BGE_LPMBX_GEN1_HI		0x5828
 #define	BGE_LPMBX_GEN1_LO		0x582C
 #define	BGE_LPMBX_GEN2_HI		0x5830
 #define	BGE_LPMBX_GEN2_LO		0x5834
 #define	BGE_LPMBX_GEN3_HI		0x5828
 #define	BGE_LPMBX_GEN3_LO		0x582C
 #define	BGE_LPMBX_GEN4_HI		0x5840
 #define	BGE_LPMBX_GEN4_LO		0x5844
 #define	BGE_LPMBX_GEN5_HI		0x5848
 #define	BGE_LPMBX_GEN5_LO		0x584C
 #define	BGE_LPMBX_GEN6_HI		0x5850
 #define	BGE_LPMBX_GEN6_LO		0x5854
 #define	BGE_LPMBX_GEN7_HI		0x5858
 #define	BGE_LPMBX_GEN7_LO		0x585C
 #define	BGE_LPMBX_RELOAD_STATS_HI	0x5860
 #define	BGE_LPMBX_RELOAD_STATS_LO	0x5864
 #define	BGE_LPMBX_RX_STD_PROD_HI	0x5868
 #define	BGE_LPMBX_RX_STD_PROD_LO	0x586C
 #define	BGE_LPMBX_RX_JUMBO_PROD_HI	0x5870
 #define	BGE_LPMBX_RX_JUMBO_PROD_LO	0x5874
 #define	BGE_LPMBX_RX_MINI_PROD_HI	0x5878
 #define	BGE_LPMBX_RX_MINI_PROD_LO	0x587C
 #define	BGE_LPMBX_RX_CONS0_HI		0x5880
 #define	BGE_LPMBX_RX_CONS0_LO		0x5884
 #define	BGE_LPMBX_RX_CONS1_HI		0x5888
 #define	BGE_LPMBX_RX_CONS1_LO		0x588C
 #define	BGE_LPMBX_RX_CONS2_HI		0x5890
 #define	BGE_LPMBX_RX_CONS2_LO		0x5894
 #define	BGE_LPMBX_RX_CONS3_HI		0x5898
 #define	BGE_LPMBX_RX_CONS3_LO		0x589C
 #define	BGE_LPMBX_RX_CONS4_HI		0x58A0
 #define	BGE_LPMBX_RX_CONS4_LO		0x58A4
 #define	BGE_LPMBX_RX_CONS5_HI		0x58A8
 #define	BGE_LPMBX_RX_CONS5_LO		0x58AC
 #define	BGE_LPMBX_RX_CONS6_HI		0x58B0
 #define	BGE_LPMBX_RX_CONS6_LO		0x58B4
 #define	BGE_LPMBX_RX_CONS7_HI		0x58B8
 #define	BGE_LPMBX_RX_CONS7_LO		0x58BC
 #define	BGE_LPMBX_RX_CONS8_HI		0x58C0
 #define	BGE_LPMBX_RX_CONS8_LO		0x58C4
 #define	BGE_LPMBX_RX_CONS9_HI		0x58C8
 #define	BGE_LPMBX_RX_CONS9_LO		0x58CC
 #define	BGE_LPMBX_RX_CONS10_HI		0x58D0
 #define	BGE_LPMBX_RX_CONS10_LO		0x58D4
 #define	BGE_LPMBX_RX_CONS11_HI		0x58D8
 #define	BGE_LPMBX_RX_CONS11_LO		0x58DC
 #define	BGE_LPMBX_RX_CONS12_HI		0x58E0
 #define	BGE_LPMBX_RX_CONS12_LO		0x58E4
 #define	BGE_LPMBX_RX_CONS13_HI		0x58E8
 #define	BGE_LPMBX_RX_CONS13_LO		0x58EC
 #define	BGE_LPMBX_RX_CONS14_HI		0x58F0
 #define	BGE_LPMBX_RX_CONS14_LO		0x58F4
 #define	BGE_LPMBX_RX_CONS15_HI		0x58F8
 #define	BGE_LPMBX_RX_CONS15_LO		0x58FC
 #define	BGE_LPMBX_TX_HOST_PROD0_HI	0x5900
 #define	BGE_LPMBX_TX_HOST_PROD0_LO	0x5904
 #define	BGE_LPMBX_TX_HOST_PROD1_HI	0x5908
 #define	BGE_LPMBX_TX_HOST_PROD1_LO	0x590C
 #define	BGE_LPMBX_TX_HOST_PROD2_HI	0x5910
 #define	BGE_LPMBX_TX_HOST_PROD2_LO	0x5914
 #define	BGE_LPMBX_TX_HOST_PROD3_HI	0x5918
 #define	BGE_LPMBX_TX_HOST_PROD3_LO	0x591C
 #define	BGE_LPMBX_TX_HOST_PROD4_HI	0x5920
 #define	BGE_LPMBX_TX_HOST_PROD4_LO	0x5924
 #define	BGE_LPMBX_TX_HOST_PROD5_HI	0x5928
 #define	BGE_LPMBX_TX_HOST_PROD5_LO	0x592C
 #define	BGE_LPMBX_TX_HOST_PROD6_HI	0x5930
 #define	BGE_LPMBX_TX_HOST_PROD6_LO	0x5934
 #define	BGE_LPMBX_TX_HOST_PROD7_HI	0x5938
 #define	BGE_LPMBX_TX_HOST_PROD7_LO	0x593C
 #define	BGE_LPMBX_TX_HOST_PROD8_HI	0x5940
 #define	BGE_LPMBX_TX_HOST_PROD8_LO	0x5944
 #define	BGE_LPMBX_TX_HOST_PROD9_HI	0x5948
 #define	BGE_LPMBX_TX_HOST_PROD9_LO	0x594C
 #define	BGE_LPMBX_TX_HOST_PROD10_HI	0x5950
 #define	BGE_LPMBX_TX_HOST_PROD10_LO	0x5954
 #define	BGE_LPMBX_TX_HOST_PROD11_HI	0x5958
 #define	BGE_LPMBX_TX_HOST_PROD11_LO	0x595C
 #define	BGE_LPMBX_TX_HOST_PROD12_HI	0x5960
 #define	BGE_LPMBX_TX_HOST_PROD12_LO	0x5964
 #define	BGE_LPMBX_TX_HOST_PROD13_HI	0x5968
 #define	BGE_LPMBX_TX_HOST_PROD13_LO	0x596C
 #define	BGE_LPMBX_TX_HOST_PROD14_HI	0x5970
 #define	BGE_LPMBX_TX_HOST_PROD14_LO	0x5974
 #define	BGE_LPMBX_TX_HOST_PROD15_HI	0x5978
 #define	BGE_LPMBX_TX_HOST_PROD15_LO	0x597C
 #define	BGE_LPMBX_TX_NIC_PROD0_HI	0x5980
 #define	BGE_LPMBX_TX_NIC_PROD0_LO	0x5984
 #define	BGE_LPMBX_TX_NIC_PROD1_HI	0x5988
 #define	BGE_LPMBX_TX_NIC_PROD1_LO	0x598C
 #define	BGE_LPMBX_TX_NIC_PROD2_HI	0x5990
 #define	BGE_LPMBX_TX_NIC_PROD2_LO	0x5994
 #define	BGE_LPMBX_TX_NIC_PROD3_HI	0x5998
 #define	BGE_LPMBX_TX_NIC_PROD3_LO	0x599C
 #define	BGE_LPMBX_TX_NIC_PROD4_HI	0x59A0
 #define	BGE_LPMBX_TX_NIC_PROD4_LO	0x59A4
 #define	BGE_LPMBX_TX_NIC_PROD5_HI	0x59A8
 #define	BGE_LPMBX_TX_NIC_PROD5_LO	0x59AC
 #define	BGE_LPMBX_TX_NIC_PROD6_HI	0x59B0
 #define	BGE_LPMBX_TX_NIC_PROD6_LO	0x59B4
 #define	BGE_LPMBX_TX_NIC_PROD7_HI	0x59B8
 #define	BGE_LPMBX_TX_NIC_PROD7_LO	0x59BC
 #define	BGE_LPMBX_TX_NIC_PROD8_HI	0x59C0
 #define	BGE_LPMBX_TX_NIC_PROD8_LO	0x59C4
 #define	BGE_LPMBX_TX_NIC_PROD9_HI	0x59C8
 #define	BGE_LPMBX_TX_NIC_PROD9_LO	0x59CC
 #define	BGE_LPMBX_TX_NIC_PROD10_HI	0x59D0
 #define	BGE_LPMBX_TX_NIC_PROD10_LO	0x59D4
 #define	BGE_LPMBX_TX_NIC_PROD11_HI	0x59D8
 #define	BGE_LPMBX_TX_NIC_PROD11_LO	0x59DC
 #define	BGE_LPMBX_TX_NIC_PROD12_HI	0x59E0
 #define	BGE_LPMBX_TX_NIC_PROD12_LO	0x59E4
 #define	BGE_LPMBX_TX_NIC_PROD13_HI	0x59E8
 #define	BGE_LPMBX_TX_NIC_PROD13_LO	0x59EC
 #define	BGE_LPMBX_TX_NIC_PROD14_HI	0x59F0
 #define	BGE_LPMBX_TX_NIC_PROD14_LO	0x59F4
 #define	BGE_LPMBX_TX_NIC_PROD15_HI	0x59F8
 #define	BGE_LPMBX_TX_NIC_PROD15_LO	0x59FC
 
 /*
  * Flow throw Queue reset register
  */
 #define	BGE_FTQ_RESET			0x5C00
 
 #define	BGE_FTQRESET_DMAREAD		0x00000002
 #define	BGE_FTQRESET_DMAHIPRIO_RD	0x00000004
 #define	BGE_FTQRESET_DMADONE		0x00000010
 #define	BGE_FTQRESET_SBDC		0x00000020
 #define	BGE_FTQRESET_SDI		0x00000040
 #define	BGE_FTQRESET_WDMA		0x00000080
 #define	BGE_FTQRESET_DMAHIPRIO_WR	0x00000100
 #define	BGE_FTQRESET_TYPE1_SOFTWARE	0x00000200
 #define	BGE_FTQRESET_SDC		0x00000400
 #define	BGE_FTQRESET_HCC		0x00000800
 #define	BGE_FTQRESET_TXFIFO		0x00001000
 #define	BGE_FTQRESET_MBC		0x00002000
 #define	BGE_FTQRESET_RBDC		0x00004000
 #define	BGE_FTQRESET_RXLP		0x00008000
 #define	BGE_FTQRESET_RDBDI		0x00010000
 #define	BGE_FTQRESET_RDC		0x00020000
 #define	BGE_FTQRESET_TYPE2_SOFTWARE	0x00040000
 
 /*
  * Message Signaled Interrupt registers
  */
 #define	BGE_MSI_MODE			0x6000
 #define	BGE_MSI_STATUS			0x6004
 #define	BGE_MSI_FIFOACCESS		0x6008
 
 /* MSI mode register */
 #define	BGE_MSIMODE_RESET		0x00000001
 #define	BGE_MSIMODE_ENABLE		0x00000002
 #define	BGE_MSIMODE_ONE_SHOT_DISABLE	0x00000020
 #define	BGE_MSIMODE_MULTIVEC_ENABLE	0x00000080
 
 /* MSI status register */
 #define	BGE_MSISTAT_PCI_TGT_ABRT_ATTN	0x00000004
 #define	BGE_MSISTAT_PCI_MSTR_ABRT_ATTN	0x00000008
 #define	BGE_MSISTAT_PCI_PERR_ATTN	0x00000010
 #define	BGE_MSISTAT_MSI_FIFOUFLOW_ATTN	0x00000020
 #define	BGE_MSISTAT_MSI_FIFOOFLOW_ATTN	0x00000040
 
 
 /*
  * DMA Completion registers
  */
 #define	BGE_DMAC_MODE			0x6400
 
 /* DMA Completion mode register */
 #define	BGE_DMACMODE_RESET		0x00000001
 #define	BGE_DMACMODE_ENABLE		0x00000002
 
 
 /*
  * General control registers.
  */
 #define	BGE_MODE_CTL			0x6800
 #define	BGE_MISC_CFG			0x6804
 #define	BGE_MISC_LOCAL_CTL		0x6808
 #define	BGE_RX_CPU_EVENT		0x6810
 #define	BGE_TX_CPU_EVENT		0x6820
 #define	BGE_EE_ADDR			0x6838
 #define	BGE_EE_DATA			0x683C
 #define	BGE_EE_CTL			0x6840
 #define	BGE_MDI_CTL			0x6844
 #define	BGE_EE_DELAY			0x6848
 #define	BGE_FASTBOOT_PC			0x6894
 
 #define	BGE_RX_CPU_DRV_EVENT		0x00004000
 
 /*
  * NVRAM Control registers
  */
 #define	BGE_NVRAM_CMD			0x7000
 #define	BGE_NVRAM_STAT			0x7004
 #define	BGE_NVRAM_WRDATA		0x7008
 #define	BGE_NVRAM_ADDR			0x700c
 #define	BGE_NVRAM_RDDATA		0x7010
 #define	BGE_NVRAM_CFG1			0x7014
 #define	BGE_NVRAM_CFG2			0x7018
 #define	BGE_NVRAM_CFG3			0x701c
 #define	BGE_NVRAM_SWARB			0x7020
 #define	BGE_NVRAM_ACCESS		0x7024
 #define	BGE_NVRAM_WRITE1		0x7028
 
 #define	BGE_NVRAMCMD_RESET		0x00000001
 #define	BGE_NVRAMCMD_DONE		0x00000008
 #define	BGE_NVRAMCMD_START		0x00000010
 #define	BGE_NVRAMCMD_WR			0x00000020 /* 1 = wr, 0 = rd */
 #define	BGE_NVRAMCMD_ERASE		0x00000040
 #define	BGE_NVRAMCMD_FIRST		0x00000080
 #define	BGE_NVRAMCMD_LAST		0x00000100
 
 #define	BGE_NVRAM_READCMD \
 	(BGE_NVRAMCMD_FIRST|BGE_NVRAMCMD_LAST| \
 	BGE_NVRAMCMD_START|BGE_NVRAMCMD_DONE)
 #define	BGE_NVRAM_WRITECMD \
 	(BGE_NVRAMCMD_FIRST|BGE_NVRAMCMD_LAST| \
 	BGE_NVRAMCMD_START|BGE_NVRAMCMD_DONE|BGE_NVRAMCMD_WR)
 
 #define	BGE_NVRAMSWARB_SET0		0x00000001
 #define	BGE_NVRAMSWARB_SET1		0x00000002
 #define	BGE_NVRAMSWARB_SET2		0x00000003
 #define	BGE_NVRAMSWARB_SET3		0x00000004
 #define	BGE_NVRAMSWARB_CLR0		0x00000010
 #define	BGE_NVRAMSWARB_CLR1		0x00000020
 #define	BGE_NVRAMSWARB_CLR2		0x00000040
 #define	BGE_NVRAMSWARB_CLR3		0x00000080
 #define	BGE_NVRAMSWARB_GNT0		0x00000100
 #define	BGE_NVRAMSWARB_GNT1		0x00000200
 #define	BGE_NVRAMSWARB_GNT2		0x00000400
 #define	BGE_NVRAMSWARB_GNT3		0x00000800
 #define	BGE_NVRAMSWARB_REQ0		0x00001000
 #define	BGE_NVRAMSWARB_REQ1		0x00002000
 #define	BGE_NVRAMSWARB_REQ2		0x00004000
 #define	BGE_NVRAMSWARB_REQ3		0x00008000
 
 #define	BGE_NVRAMACC_ENABLE		0x00000001
 #define	BGE_NVRAMACC_WRENABLE		0x00000002
 
 /* Mode control register */
 #define	BGE_MODECTL_INT_SNDCOAL_ONLY	0x00000001
 #define	BGE_MODECTL_BYTESWAP_NONFRAME	0x00000002
 #define	BGE_MODECTL_WORDSWAP_NONFRAME	0x00000004
 #define	BGE_MODECTL_BYTESWAP_DATA	0x00000010
 #define	BGE_MODECTL_WORDSWAP_DATA	0x00000020
 #define	BGE_MODECTL_BYTESWAP_B2HRX_DATA	0x00000040
 #define	BGE_MODECTL_WORDSWAP_B2HRX_DATA	0x00000080
 #define	BGE_MODECTL_NO_FRAME_CRACKING	0x00000200
 #define	BGE_MODECTL_NO_RX_CRC		0x00000400
 #define	BGE_MODECTL_RX_BADFRAMES	0x00000800
 #define	BGE_MODECTL_NO_TX_INTR		0x00002000
 #define	BGE_MODECTL_NO_RX_INTR		0x00004000
 #define	BGE_MODECTL_FORCE_PCI32		0x00008000
 #define	BGE_MODECTL_B2HRX_ENABLE	0x00008000
 #define	BGE_MODECTL_STACKUP		0x00010000
 #define	BGE_MODECTL_HOST_SEND_BDS	0x00020000
 #define	BGE_MODECTL_HTX2B_ENABLE	0x00040000
 #define	BGE_MODECTL_TX_NO_PHDR_CSUM	0x00100000
 #define	BGE_MODECTL_RX_NO_PHDR_CSUM	0x00800000
 #define	BGE_MODECTL_TX_ATTN_INTR	0x01000000
 #define	BGE_MODECTL_RX_ATTN_INTR	0x02000000
 #define	BGE_MODECTL_MAC_ATTN_INTR	0x04000000
 #define	BGE_MODECTL_DMA_ATTN_INTR	0x08000000
 #define	BGE_MODECTL_FLOWCTL_ATTN_INTR	0x10000000
 #define	BGE_MODECTL_4X_SENDRING_SZ	0x20000000
 #define	BGE_MODECTL_FW_PROCESS_MCASTS	0x40000000
 
 /* Misc. config register */
 #define	BGE_MISCCFG_RESET_CORE_CLOCKS	0x00000001
 #define	BGE_MISCCFG_TIMER_PRESCALER	0x000000FE
 #define	BGE_MISCCFG_BOARD_ID_MASK	0x0001E000
 #define	BGE_MISCCFG_BOARD_ID_5704	0x00000000
 #define	BGE_MISCCFG_BOARD_ID_5704CIOBE	0x00004000
 #define	BGE_MISCCFG_BOARD_ID_5788	0x00010000
 #define	BGE_MISCCFG_BOARD_ID_5788M	0x00018000
 #define	BGE_MISCCFG_EPHY_IDDQ		0x00200000
 #define	BGE_MISCCFG_GPHY_PD_OVERRIDE	0x04000000
 
 #define	BGE_32BITTIME_66MHZ		(0x41 << 1)
 
 /* Misc. Local Control */
 #define	BGE_MLC_INTR_STATE		0x00000001
 #define	BGE_MLC_INTR_CLR		0x00000002
 #define	BGE_MLC_INTR_SET		0x00000004
 #define	BGE_MLC_INTR_ONATTN		0x00000008
 #define	BGE_MLC_MISCIO_IN0		0x00000100
 #define	BGE_MLC_MISCIO_IN1		0x00000200
 #define	BGE_MLC_MISCIO_IN2		0x00000400
 #define	BGE_MLC_MISCIO_OUTEN0		0x00000800
 #define	BGE_MLC_MISCIO_OUTEN1		0x00001000
 #define	BGE_MLC_MISCIO_OUTEN2		0x00002000
 #define	BGE_MLC_MISCIO_OUT0		0x00004000
 #define	BGE_MLC_MISCIO_OUT1		0x00008000
 #define	BGE_MLC_MISCIO_OUT2		0x00010000
 #define	BGE_MLC_EXTRAM_ENB		0x00020000
 #define	BGE_MLC_SRAM_SIZE		0x001C0000
 #define	BGE_MLC_BANK_SEL		0x00200000 /* 0 = 2 banks, 1 == 1 */
 #define	BGE_MLC_SSRAM_TYPE		0x00400000 /* 1 = ZBT, 0 = standard */
 #define	BGE_MLC_SSRAM_CYC_DESEL		0x00800000
 #define	BGE_MLC_AUTO_EEPROM		0x01000000
 
 #define	BGE_SSRAMSIZE_256KB		0x00000000
 #define	BGE_SSRAMSIZE_512KB		0x00040000
 #define	BGE_SSRAMSIZE_1MB		0x00080000
 #define	BGE_SSRAMSIZE_2MB		0x000C0000
 #define	BGE_SSRAMSIZE_4MB		0x00100000
 #define	BGE_SSRAMSIZE_8MB		0x00140000
 #define	BGE_SSRAMSIZE_16M		0x00180000
 
 /* EEPROM address register */
 #define	BGE_EEADDR_ADDRESS		0x0000FFFC
 #define	BGE_EEADDR_HALFCLK		0x01FF0000
 #define	BGE_EEADDR_START		0x02000000
 #define	BGE_EEADDR_DEVID		0x1C000000
 #define	BGE_EEADDR_RESET		0x20000000
 #define	BGE_EEADDR_DONE			0x40000000
 #define	BGE_EEADDR_RW			0x80000000 /* 1 = rd, 0 = wr */
 
 #define	BGE_EEDEVID(x)			((x & 7) << 26)
 #define	BGE_EEHALFCLK(x)		((x & 0x1FF) << 16)
 #define	BGE_HALFCLK_384SCL		0x60
 #define	BGE_EE_READCMD \
 	(BGE_EEHALFCLK(BGE_HALFCLK_384SCL)|BGE_EEDEVID(0)|	\
 	BGE_EEADDR_START|BGE_EEADDR_RW|BGE_EEADDR_DONE)
 #define	BGE_EE_WRCMD \
 	(BGE_EEHALFCLK(BGE_HALFCLK_384SCL)|BGE_EEDEVID(0)|	\
 	BGE_EEADDR_START|BGE_EEADDR_DONE)
 
 /* EEPROM Control register */
 #define	BGE_EECTL_CLKOUT_TRISTATE	0x00000001
 #define	BGE_EECTL_CLKOUT		0x00000002
 #define	BGE_EECTL_CLKIN			0x00000004
 #define	BGE_EECTL_DATAOUT_TRISTATE	0x00000008
 #define	BGE_EECTL_DATAOUT		0x00000010
 #define	BGE_EECTL_DATAIN		0x00000020
 
 /* MDI (MII/GMII) access register */
 #define	BGE_MDI_DATA			0x00000001
 #define	BGE_MDI_DIR			0x00000002
 #define	BGE_MDI_SEL			0x00000004
 #define	BGE_MDI_CLK			0x00000008
 
 #define	BGE_MEMWIN_START		0x00008000
 #define	BGE_MEMWIN_END			0x0000FFFF
 
 /* BAR1 (APE) Register Definitions */
 
 #define	BGE_APE_GPIO_MSG		0x0008
 #define	BGE_APE_EVENT			0x000C
 #define	BGE_APE_LOCK_REQ		0x002C
 #define	BGE_APE_LOCK_GRANT		0x004C
 
 #define	BGE_APE_GPIO_MSG_SHIFT		4
 
 #define	BGE_APE_EVENT_1			0x00000001
 
 #define	BGE_APE_LOCK_REQ_DRIVER0	0x00001000
 
 #define	BGE_APE_LOCK_GRANT_DRIVER0	0x00001000
 
 /* APE Shared Memory block (writable by APE only) */
 #define	BGE_APE_SEG_SIG			0x4000
 #define	BGE_APE_FW_STATUS		0x400C
 #define	BGE_APE_FW_FEATURES		0x4010
 #define	BGE_APE_FW_BEHAVIOR		0x4014
 #define	BGE_APE_FW_VERSION		0x4018
 #define	BGE_APE_FW_HEARTBEAT_INTERVAL	0x4024
 #define	BGE_APE_FW_HEARTBEAT		0x4028
 #define	BGE_APE_FW_ERROR_FLAGS		0x4074
 
 #define	BGE_APE_SEG_SIG_MAGIC		0x41504521
 
 #define	BGE_APE_FW_STATUS_READY		0x00000100
 
 #define	BGE_APE_FW_FEATURE_DASH		0x00000001
 #define	BGE_APE_FW_FEATURE_NCSI		0x00000002
 
 #define	BGE_APE_FW_VERSION_MAJMSK	0xFF000000
 #define	BGE_APE_FW_VERSION_MAJSFT	24
 #define	BGE_APE_FW_VERSION_MINMSK	0x00FF0000
 #define	BGE_APE_FW_VERSION_MINSFT	16
 #define	BGE_APE_FW_VERSION_REVMSK	0x0000FF00
 #define	BGE_APE_FW_VERSION_REVSFT	8
 #define	BGE_APE_FW_VERSION_BLDMSK	0x000000FF
 
 /* Host Shared Memory block (writable by host only) */
 #define	BGE_APE_HOST_SEG_SIG		0x4200
 #define	BGE_APE_HOST_SEG_LEN		0x4204
 #define	BGE_APE_HOST_INIT_COUNT		0x4208
 #define	BGE_APE_HOST_DRIVER_ID		0x420C
 #define	BGE_APE_HOST_BEHAVIOR		0x4210
 #define	BGE_APE_HOST_HEARTBEAT_INT_MS	0x4214
 #define	BGE_APE_HOST_HEARTBEAT_COUNT	0x4218
 #define	BGE_APE_HOST_DRVR_STATE		0x421C
 #define	BGE_APE_HOST_WOL_SPEED		0x4224
 
 #define	BGE_APE_HOST_SEG_SIG_MAGIC	0x484F5354
 
 #define	BGE_APE_HOST_SEG_LEN_MAGIC	0x00000020
 
 #define	BGE_APE_HOST_DRIVER_ID_FBSD	0xF6000000
 #define	BGE_APE_HOST_DRIVER_ID_MAGIC(maj, min)				\
 	(BGE_APE_HOST_DRIVER_ID_FBSD |					\
 	((maj) & 0xffd) << 16 | ((min) & 0xff) << 8)
 
 #define	BGE_APE_HOST_BEHAV_NO_PHYLOCK	0x00000001
 
 #define	BGE_APE_HOST_HEARTBEAT_INT_DISABLE	0
 #define	BGE_APE_HOST_HEARTBEAT_INT_5SEC	5000
 
 #define	BGE_APE_HOST_DRVR_STATE_START	0x00000001
 #define	BGE_APE_HOST_DRVR_STATE_UNLOAD	0x00000002
 #define	BGE_APE_HOST_DRVR_STATE_WOL	0x00000003
 #define	BGE_APE_HOST_DRVR_STATE_SUSPEND	0x00000004
 
 #define	BGE_APE_HOST_WOL_SPEED_AUTO	0x00008000
 
 #define	BGE_APE_EVENT_STATUS		0x4300
 
 #define	BGE_APE_EVENT_STATUS_DRIVER_EVNT	0x00000010
 #define	BGE_APE_EVENT_STATUS_STATE_CHNGE	0x00000500
 #define	BGE_APE_EVENT_STATUS_STATE_START	0x00010000
 #define	BGE_APE_EVENT_STATUS_STATE_UNLOAD	0x00020000
 #define	BGE_APE_EVENT_STATUS_STATE_WOL		0x00030000
 #define	BGE_APE_EVENT_STATUS_STATE_SUSPEND	0x00040000
 #define	BGE_APE_EVENT_STATUS_EVENT_PENDING	0x80000000
 
 #define	BGE_APE_DEBUG_LOG		0x4E00
 #define	BGE_APE_DEBUG_LOG_LEN		0x0100
 
 #define	BGE_APE_PER_LOCK_REQ		0x8400
 #define	BGE_APE_PER_LOCK_GRANT		0x8420
 
 #define	BGE_APE_LOCK_PER_REQ_DRIVER0	0x00001000
 #define	BGE_APE_LOCK_PER_REQ_DRIVER1	0x00000002
 #define	BGE_APE_LOCK_PER_REQ_DRIVER2	0x00000004
 #define	BGE_APE_LOCK_PER_REQ_DRIVER3	0x00000008
 
 #define	BGE_APE_PER_LOCK_GRANT_DRIVER0	0x00001000
 #define	BGE_APE_PER_LOCK_GRANT_DRIVER1	0x00000002
 #define	BGE_APE_PER_LOCK_GRANT_DRIVER2	0x00000004
 #define	BGE_APE_PER_LOCK_GRANT_DRIVER3	0x00000008
 
 /* APE Mutex Resources */
 #define	BGE_APE_LOCK_PHY0		0
 #define	BGE_APE_LOCK_GRC		1
 #define	BGE_APE_LOCK_PHY1		2
 #define	BGE_APE_LOCK_PHY2		3
 #define	BGE_APE_LOCK_MEM		4
 #define	BGE_APE_LOCK_PHY3		5
 #define	BGE_APE_LOCK_GPIO		7
 
 #define	BGE_MEMWIN_READ(sc, x, val)					\
 	do {								\
 		pci_write_config(sc->bge_dev, BGE_PCI_MEMWIN_BASEADDR,	\
 		    (0xFFFF0000 & x), 4);				\
 		val = CSR_READ_4(sc, BGE_MEMWIN_START + (x & 0xFFFF));	\
 	} while(0)
 
 #define	BGE_MEMWIN_WRITE(sc, x, val)					\
 	do {								\
 		pci_write_config(sc->bge_dev, BGE_PCI_MEMWIN_BASEADDR,	\
 		    (0xFFFF0000 & x), 4);				\
 		CSR_WRITE_4(sc, BGE_MEMWIN_START + (x & 0xFFFF), val);	\
 	} while(0)
 
 /*
  * This magic number is written to the firmware mailbox at 0xb50
  * before a software reset is issued.  After the internal firmware
  * has completed its initialization it will write the opposite of
  * this value, ~BGE_SRAM_FW_MB_MAGIC, to the same location,
  * allowing the driver to synchronize with the firmware.
  */
 #define	BGE_SRAM_FW_MB_MAGIC	0x4B657654
 
 typedef struct {
 	uint32_t		bge_addr_hi;
 	uint32_t		bge_addr_lo;
 } bge_hostaddr;
 
 #define	BGE_HOSTADDR(x, y)						\
 	do {								\
 		(x).bge_addr_lo = ((uint64_t) (y) & 0xffffffff);	\
 		(x).bge_addr_hi = ((uint64_t) (y) >> 32);		\
 	} while(0)
 
 #define	BGE_ADDR_LO(y)	\
 	((uint64_t) (y) & 0xFFFFFFFF)
 #define	BGE_ADDR_HI(y)	\
 	((uint64_t) (y) >> 32)
 
 /* Ring control block structure */
 struct bge_rcb {
 	bge_hostaddr		bge_hostaddr;
 	uint32_t		bge_maxlen_flags;
 	uint32_t		bge_nicaddr;
 };
 
 #define	RCB_WRITE_4(sc, rcb, offset, val) \
 	bus_write_4(sc->bge_res, rcb + offsetof(struct bge_rcb, offset), val)
 #define	BGE_RCB_MAXLEN_FLAGS(maxlen, flags)	((maxlen) << 16 | (flags))
 
 #define	BGE_RCB_FLAG_USE_EXT_RX_BD	0x0001
 #define	BGE_RCB_FLAG_RING_DISABLED	0x0002
 
 struct bge_tx_bd {
 	bge_hostaddr		bge_addr;
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_flags;
 	uint16_t		bge_len;
 	uint16_t		bge_vlan_tag;
 	uint16_t		bge_mss;
 #else
 	uint16_t		bge_len;
 	uint16_t		bge_flags;
 	uint16_t		bge_mss;
 	uint16_t		bge_vlan_tag;
 #endif
 };
 
 #define	BGE_TXBDFLAG_TCP_UDP_CSUM	0x0001
 #define	BGE_TXBDFLAG_IP_CSUM		0x0002
 #define	BGE_TXBDFLAG_END		0x0004
 #define	BGE_TXBDFLAG_IP_FRAG		0x0008
 #define	BGE_TXBDFLAG_JUMBO_FRAME	0x0008	/* 5717 */
 #define	BGE_TXBDFLAG_IP_FRAG_END	0x0010
 #define	BGE_TXBDFLAG_HDRLEN_BIT2	0x0010	/* 5717 */
 #define	BGE_TXBDFLAG_SNAP		0x0020	/* 5717 */
 #define	BGE_TXBDFLAG_VLAN_TAG		0x0040
 #define	BGE_TXBDFLAG_COAL_NOW		0x0080
 #define	BGE_TXBDFLAG_CPU_PRE_DMA	0x0100
 #define	BGE_TXBDFLAG_CPU_POST_DMA	0x0200
 #define	BGE_TXBDFLAG_HDRLEN_BIT3	0x0400	/* 5717 */
 #define	BGE_TXBDFLAG_HDRLEN_BIT4	0x0800	/* 5717 */
 #define	BGE_TXBDFLAG_INSERT_SRC_ADDR	0x1000
 #define	BGE_TXBDFLAG_HDRLEN_BIT5	0x1000	/* 5717 */
 #define	BGE_TXBDFLAG_HDRLEN_BIT6	0x2000	/* 5717 */
 #define	BGE_TXBDFLAG_HDRLEN_BIT7	0x4000	/* 5717 */
 #define	BGE_TXBDFLAG_CHOOSE_SRC_ADDR	0x6000
 #define	BGE_TXBDFLAG_NO_CRC		0x8000
 
 #define	BGE_TXBDFLAG_MSS_SIZE_MASK	0x3FFF	/* 5717 */
 /* Bits [1:0] of the MSS header length. */
 #define	BGE_TXBDFLAG_MSS_HDRLEN_MASK	0xC000	/* 5717 */
 
 #define	BGE_NIC_TXRING_ADDR(ringno, size)	\
 	BGE_SEND_RING_1_TO_4 +			\
 	((ringno * sizeof(struct bge_tx_bd) * size) / 4)
 
 struct bge_rx_bd {
 	bge_hostaddr		bge_addr;
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_len;
 	uint16_t		bge_idx;
 	uint16_t		bge_flags;
 	uint16_t		bge_type;
 	uint16_t		bge_tcp_udp_csum;
 	uint16_t		bge_ip_csum;
 	uint16_t		bge_vlan_tag;
 	uint16_t		bge_error_flag;
 #else
 	uint16_t		bge_idx;
 	uint16_t		bge_len;
 	uint16_t		bge_type;
 	uint16_t		bge_flags;
 	uint16_t		bge_ip_csum;
 	uint16_t		bge_tcp_udp_csum;
 	uint16_t		bge_error_flag;
 	uint16_t		bge_vlan_tag;
 #endif
 	uint32_t		bge_rsvd;
 	uint32_t		bge_opaque;
 };
 
 struct bge_extrx_bd {
 	bge_hostaddr		bge_addr1;
 	bge_hostaddr		bge_addr2;
 	bge_hostaddr		bge_addr3;
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_len2;
 	uint16_t		bge_len1;
 	uint16_t		bge_rsvd1;
 	uint16_t		bge_len3;
 #else
 	uint16_t		bge_len1;
 	uint16_t		bge_len2;
 	uint16_t		bge_len3;
 	uint16_t		bge_rsvd1;
 #endif
 	bge_hostaddr		bge_addr0;
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_len0;
 	uint16_t		bge_idx;
 	uint16_t		bge_flags;
 	uint16_t		bge_type;
 	uint16_t		bge_tcp_udp_csum;
 	uint16_t		bge_ip_csum;
 	uint16_t		bge_vlan_tag;
 	uint16_t		bge_error_flag;
 #else
 	uint16_t		bge_idx;
 	uint16_t		bge_len0;
 	uint16_t		bge_type;
 	uint16_t		bge_flags;
 	uint16_t		bge_ip_csum;
 	uint16_t		bge_tcp_udp_csum;
 	uint16_t		bge_error_flag;
 	uint16_t		bge_vlan_tag;
 #endif
 	uint32_t		bge_rsvd0;
 	uint32_t		bge_opaque;
 };
 
 #define	BGE_RXBDFLAG_END		0x0004
 #define	BGE_RXBDFLAG_JUMBO_RING		0x0020
 #define	BGE_RXBDFLAG_VLAN_TAG		0x0040
 #define	BGE_RXBDFLAG_ERROR		0x0400
 #define	BGE_RXBDFLAG_MINI_RING		0x0800
 #define	BGE_RXBDFLAG_IP_CSUM		0x1000
 #define	BGE_RXBDFLAG_TCP_UDP_CSUM	0x2000
 #define	BGE_RXBDFLAG_TCP_UDP_IS_TCP	0x4000
 #define	BGE_RXBDFLAG_IPV6		0x8000
 
 #define	BGE_RXERRFLAG_BAD_CRC		0x0001
 #define	BGE_RXERRFLAG_COLL_DETECT	0x0002
 #define	BGE_RXERRFLAG_LINK_LOST		0x0004
 #define	BGE_RXERRFLAG_PHY_DECODE_ERR	0x0008
 #define	BGE_RXERRFLAG_MAC_ABORT		0x0010
 #define	BGE_RXERRFLAG_RUNT		0x0020
 #define	BGE_RXERRFLAG_TRUNC_NO_RSRCS	0x0040
 #define	BGE_RXERRFLAG_GIANT		0x0080
 #define	BGE_RXERRFLAG_IP_CSUM_NOK	0x1000	/* 5717 */
 
 struct bge_sts_idx {
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_rx_prod_idx;
 	uint16_t		bge_tx_cons_idx;
 #else
 	uint16_t		bge_tx_cons_idx;
 	uint16_t		bge_rx_prod_idx;
 #endif
 };
 
 struct bge_status_block {
 	uint32_t		bge_status;
 	uint32_t		bge_status_tag;
 #if BYTE_ORDER == LITTLE_ENDIAN
 	uint16_t		bge_rx_jumbo_cons_idx;
 	uint16_t		bge_rx_std_cons_idx;
 	uint16_t		bge_rx_mini_cons_idx;
 	uint16_t		bge_rsvd1;
 #else
 	uint16_t		bge_rx_std_cons_idx;
 	uint16_t		bge_rx_jumbo_cons_idx;
 	uint16_t		bge_rsvd1;
 	uint16_t		bge_rx_mini_cons_idx;
 #endif
 	struct bge_sts_idx	bge_idx[16];
 };
 
 #define	BGE_STATFLAG_UPDATED		0x00000001
 #define	BGE_STATFLAG_LINKSTATE_CHANGED	0x00000002
 #define	BGE_STATFLAG_ERROR		0x00000004
 
 
 /*
  * Broadcom Vendor ID
  * (Note: the BCM570x still defaults to the Alteon PCI vendor ID
  * even though they're now manufactured by Broadcom)
  */
 #define	BCOM_VENDORID			0x14E4
 #define	BCOM_DEVICEID_BCM5700		0x1644
 #define	BCOM_DEVICEID_BCM5701		0x1645
 #define	BCOM_DEVICEID_BCM5702		0x1646
 #define	BCOM_DEVICEID_BCM5702X		0x16A6
 #define	BCOM_DEVICEID_BCM5702_ALT	0x16C6
 #define	BCOM_DEVICEID_BCM5703		0x1647
 #define	BCOM_DEVICEID_BCM5703X		0x16A7
 #define	BCOM_DEVICEID_BCM5703_ALT	0x16C7
 #define	BCOM_DEVICEID_BCM5704C		0x1648
 #define	BCOM_DEVICEID_BCM5704S		0x16A8
 #define	BCOM_DEVICEID_BCM5704S_ALT	0x1649
 #define	BCOM_DEVICEID_BCM5705		0x1653
 #define	BCOM_DEVICEID_BCM5705K		0x1654
 #define	BCOM_DEVICEID_BCM5705F		0x166E
 #define	BCOM_DEVICEID_BCM5705M		0x165D
 #define	BCOM_DEVICEID_BCM5705M_ALT	0x165E
 #define	BCOM_DEVICEID_BCM5714C		0x1668
 #define	BCOM_DEVICEID_BCM5714S		0x1669
 #define	BCOM_DEVICEID_BCM5715		0x1678
 #define	BCOM_DEVICEID_BCM5715S		0x1679
 #define	BCOM_DEVICEID_BCM5717		0x1655
 #define	BCOM_DEVICEID_BCM5717C		0x1665
 #define	BCOM_DEVICEID_BCM5718		0x1656
 #define	BCOM_DEVICEID_BCM5719		0x1657
 #define	BCOM_DEVICEID_BCM5720_PP	0x1658	/* Not released to public. */
 #define	BCOM_DEVICEID_BCM5720		0x165F
 #define	BCOM_DEVICEID_BCM5721		0x1659
 #define	BCOM_DEVICEID_BCM5722		0x165A
 #define	BCOM_DEVICEID_BCM5723		0x165B
 #define	BCOM_DEVICEID_BCM5725		0x1643
 #define	BCOM_DEVICEID_BCM5727		0x16F3
 #define	BCOM_DEVICEID_BCM5750		0x1676
 #define	BCOM_DEVICEID_BCM5750M		0x167C
 #define	BCOM_DEVICEID_BCM5751		0x1677
 #define	BCOM_DEVICEID_BCM5751F		0x167E
 #define	BCOM_DEVICEID_BCM5751M		0x167D
 #define	BCOM_DEVICEID_BCM5752		0x1600
 #define	BCOM_DEVICEID_BCM5752M		0x1601
 #define	BCOM_DEVICEID_BCM5753		0x16F7
 #define	BCOM_DEVICEID_BCM5753F		0x16FE
 #define	BCOM_DEVICEID_BCM5753M		0x16FD
 #define	BCOM_DEVICEID_BCM5754		0x167A
 #define	BCOM_DEVICEID_BCM5754M		0x1672
 #define	BCOM_DEVICEID_BCM5755		0x167B
 #define	BCOM_DEVICEID_BCM5755M		0x1673
 #define	BCOM_DEVICEID_BCM5756		0x1674
 #define	BCOM_DEVICEID_BCM5761		0x1681
 #define	BCOM_DEVICEID_BCM5761E		0x1680
 #define	BCOM_DEVICEID_BCM5761S		0x1688
 #define	BCOM_DEVICEID_BCM5761SE		0x1689
 #define	BCOM_DEVICEID_BCM5762		0x1687
 #define	BCOM_DEVICEID_BCM5764		0x1684
 #define	BCOM_DEVICEID_BCM5780		0x166A
 #define	BCOM_DEVICEID_BCM5780S		0x166B
 #define	BCOM_DEVICEID_BCM5781		0x16DD
 #define	BCOM_DEVICEID_BCM5782		0x1696
 #define	BCOM_DEVICEID_BCM5784		0x1698
 #define	BCOM_DEVICEID_BCM5785F		0x16a0
 #define	BCOM_DEVICEID_BCM5785G		0x1699
 #define	BCOM_DEVICEID_BCM5786		0x169A
 #define	BCOM_DEVICEID_BCM5787		0x169B
 #define	BCOM_DEVICEID_BCM5787M		0x1693
 #define	BCOM_DEVICEID_BCM5787F		0x167f
 #define	BCOM_DEVICEID_BCM5788		0x169C
 #define	BCOM_DEVICEID_BCM5789		0x169D
 #define	BCOM_DEVICEID_BCM5901		0x170D
 #define	BCOM_DEVICEID_BCM5901A2		0x170E
 #define	BCOM_DEVICEID_BCM5903M		0x16FF
 #define	BCOM_DEVICEID_BCM5906		0x1712
 #define	BCOM_DEVICEID_BCM5906M		0x1713
 #define	BCOM_DEVICEID_BCM57760		0x1690
 #define	BCOM_DEVICEID_BCM57761		0x16B0
 #define	BCOM_DEVICEID_BCM57762		0x1682
 #define	BCOM_DEVICEID_BCM57764		0x1642
 #define	BCOM_DEVICEID_BCM57765		0x16B4
 #define	BCOM_DEVICEID_BCM57766		0x1686
 #define	BCOM_DEVICEID_BCM57767		0x1683
 #define	BCOM_DEVICEID_BCM57780		0x1692
 #define	BCOM_DEVICEID_BCM57781		0x16B1
 #define	BCOM_DEVICEID_BCM57782		0x16B7
 #define	BCOM_DEVICEID_BCM57785		0x16B5
 #define	BCOM_DEVICEID_BCM57786		0x16B3
 #define	BCOM_DEVICEID_BCM57787		0x1641
 #define	BCOM_DEVICEID_BCM57788		0x1691
 #define	BCOM_DEVICEID_BCM57790		0x1694
 #define	BCOM_DEVICEID_BCM57791		0x16B2
 #define	BCOM_DEVICEID_BCM57795		0x16B6
 
 /*
  * Alteon AceNIC PCI vendor/device ID.
  */
 #define	ALTEON_VENDORID			0x12AE
 #define	ALTEON_DEVICEID_ACENIC		0x0001
 #define	ALTEON_DEVICEID_ACENIC_COPPER	0x0002
 #define	ALTEON_DEVICEID_BCM5700		0x0003
 #define	ALTEON_DEVICEID_BCM5701		0x0004
 
 /*
  * 3Com 3c996 PCI vendor/device ID.
  */
 #define	TC_VENDORID			0x10B7
 #define	TC_DEVICEID_3C996		0x0003
 
 /*
  * SysKonnect PCI vendor ID
  */
 #define	SK_VENDORID			0x1148
 #define	SK_DEVICEID_ALTIMA		0x4400
 #define	SK_SUBSYSID_9D21		0x4421
 #define	SK_SUBSYSID_9D41		0x4441
 
 /*
  * Altima PCI vendor/device ID.
  */
 #define	ALTIMA_VENDORID			0x173b
 #define	ALTIMA_DEVICE_AC1000		0x03e8
 #define	ALTIMA_DEVICE_AC1002		0x03e9
 #define	ALTIMA_DEVICE_AC9100		0x03ea
 
 /*
  * Dell PCI vendor ID
  */
 
 #define	DELL_VENDORID			0x1028
 
 /*
  * Apple PCI vendor ID.
  */
 #define	APPLE_VENDORID			0x106b
 #define	APPLE_DEVICE_BCM5701		0x1645
 
 /*
  * Sun PCI vendor ID
  */
 #define	SUN_VENDORID			0x108e
 
 /*
  * Fujitsu vendor/device IDs
  */
 #define	FJTSU_VENDORID			0x10cf
 #define	FJTSU_DEVICEID_PW008GE5		0x11a1
 #define	FJTSU_DEVICEID_PW008GE4		0x11a2
 #define	FJTSU_DEVICEID_PP250450		0x11cc		/* PRIMEPOWER250/450 LAN */
 
 /*
  * Offset of MAC address inside EEPROM.
  */
 #define	BGE_EE_MAC_OFFSET		0x7C
 #define	BGE_EE_MAC_OFFSET_5906		0x10
 #define	BGE_EE_HWCFG_OFFSET		0xC8
 
 #define	BGE_HWCFG_VOLTAGE		0x00000003
 #define	BGE_HWCFG_PHYLED_MODE		0x0000000C
 #define	BGE_HWCFG_MEDIA			0x00000030
 #define	BGE_HWCFG_ASF			0x00000080
 
 #define	BGE_VOLTAGE_1POINT3		0x00000000
 #define	BGE_VOLTAGE_1POINT8		0x00000001
 
 #define	BGE_PHYLEDMODE_UNSPEC		0x00000000
 #define	BGE_PHYLEDMODE_TRIPLELED	0x00000004
 #define	BGE_PHYLEDMODE_SINGLELED	0x00000008
 
 #define	BGE_MEDIA_UNSPEC		0x00000000
 #define	BGE_MEDIA_COPPER		0x00000010
 #define	BGE_MEDIA_FIBER			0x00000020
 
 #define	BGE_TICKS_PER_SEC		1000000
 
 /*
  * Ring size constants.
  */
 #define	BGE_EVENT_RING_CNT	256
 #define	BGE_CMD_RING_CNT	64
 #define	BGE_STD_RX_RING_CNT	512
 #define	BGE_JUMBO_RX_RING_CNT	256
 #define	BGE_MINI_RX_RING_CNT	1024
 #define	BGE_RETURN_RING_CNT	1024
 
 /* 5705 has smaller return ring size */
 
 #define	BGE_RETURN_RING_CNT_5705	512
 
 /*
  * Possible TX ring sizes.
  */
 #define	BGE_TX_RING_CNT_128	128
 #define	BGE_TX_RING_BASE_128	0x3800
 
 #define	BGE_TX_RING_CNT_256	256
 #define	BGE_TX_RING_BASE_256	0x3000
 
 #define	BGE_TX_RING_CNT_512	512
 #define	BGE_TX_RING_BASE_512	0x2000
 
 #define	BGE_TX_RING_CNT		BGE_TX_RING_CNT_512
 #define	BGE_TX_RING_BASE	BGE_TX_RING_BASE_512
 
 /*
  * Tigon III statistics counters.
  */
 /* Statistics maintained MAC Receive block. */
 struct bge_rx_mac_stats {
 	bge_hostaddr		ifHCInOctets;
 	bge_hostaddr		Reserved1;
 	bge_hostaddr		etherStatsFragments;
 	bge_hostaddr		ifHCInUcastPkts;
 	bge_hostaddr		ifHCInMulticastPkts;
 	bge_hostaddr		ifHCInBroadcastPkts;
 	bge_hostaddr		dot3StatsFCSErrors;
 	bge_hostaddr		dot3StatsAlignmentErrors;
 	bge_hostaddr		xonPauseFramesReceived;
 	bge_hostaddr		xoffPauseFramesReceived;
 	bge_hostaddr		macControlFramesReceived;
 	bge_hostaddr		xoffStateEntered;
 	bge_hostaddr		dot3StatsFramesTooLong;
 	bge_hostaddr		etherStatsJabbers;
 	bge_hostaddr		etherStatsUndersizePkts;
 	bge_hostaddr		inRangeLengthError;
 	bge_hostaddr		outRangeLengthError;
 	bge_hostaddr		etherStatsPkts64Octets;
 	bge_hostaddr		etherStatsPkts65Octetsto127Octets;
 	bge_hostaddr		etherStatsPkts128Octetsto255Octets;
 	bge_hostaddr		etherStatsPkts256Octetsto511Octets;
 	bge_hostaddr		etherStatsPkts512Octetsto1023Octets;
 	bge_hostaddr		etherStatsPkts1024Octetsto1522Octets;
 	bge_hostaddr		etherStatsPkts1523Octetsto2047Octets;
 	bge_hostaddr		etherStatsPkts2048Octetsto4095Octets;
 	bge_hostaddr		etherStatsPkts4096Octetsto8191Octets;
 	bge_hostaddr		etherStatsPkts8192Octetsto9022Octets;
 };
 
 
 /* Statistics maintained MAC Transmit block. */
 struct bge_tx_mac_stats {
 	bge_hostaddr		ifHCOutOctets;
 	bge_hostaddr		Reserved2;
 	bge_hostaddr		etherStatsCollisions;
 	bge_hostaddr		outXonSent;
 	bge_hostaddr		outXoffSent;
 	bge_hostaddr		flowControlDone;
 	bge_hostaddr		dot3StatsInternalMacTransmitErrors;
 	bge_hostaddr		dot3StatsSingleCollisionFrames;
 	bge_hostaddr		dot3StatsMultipleCollisionFrames;
 	bge_hostaddr		dot3StatsDeferredTransmissions;
 	bge_hostaddr		Reserved3;
 	bge_hostaddr		dot3StatsExcessiveCollisions;
 	bge_hostaddr		dot3StatsLateCollisions;
 	bge_hostaddr		dot3Collided2Times;
 	bge_hostaddr		dot3Collided3Times;
 	bge_hostaddr		dot3Collided4Times;
 	bge_hostaddr		dot3Collided5Times;
 	bge_hostaddr		dot3Collided6Times;
 	bge_hostaddr		dot3Collided7Times;
 	bge_hostaddr		dot3Collided8Times;
 	bge_hostaddr		dot3Collided9Times;
 	bge_hostaddr		dot3Collided10Times;
 	bge_hostaddr		dot3Collided11Times;
 	bge_hostaddr		dot3Collided12Times;
 	bge_hostaddr		dot3Collided13Times;
 	bge_hostaddr		dot3Collided14Times;
 	bge_hostaddr		dot3Collided15Times;
 	bge_hostaddr		ifHCOutUcastPkts;
 	bge_hostaddr		ifHCOutMulticastPkts;
 	bge_hostaddr		ifHCOutBroadcastPkts;
 	bge_hostaddr		dot3StatsCarrierSenseErrors;
 	bge_hostaddr		ifOutDiscards;
 	bge_hostaddr		ifOutErrors;
 };
 
 /* Stats counters access through registers */
 struct bge_mac_stats {
 	/* TX MAC statistics */
 	uint64_t		ifHCOutOctets;
 	uint64_t		Reserved0;
 	uint64_t		etherStatsCollisions;
 	uint64_t		outXonSent;
 	uint64_t		outXoffSent;
 	uint64_t		Reserved1;
 	uint64_t		dot3StatsInternalMacTransmitErrors;
 	uint64_t		dot3StatsSingleCollisionFrames;
 	uint64_t		dot3StatsMultipleCollisionFrames;
 	uint64_t		dot3StatsDeferredTransmissions;
 	uint64_t		Reserved2;
 	uint64_t		dot3StatsExcessiveCollisions;
 	uint64_t		dot3StatsLateCollisions;
 	uint64_t		Reserved3[14];
 	uint64_t		ifHCOutUcastPkts;
 	uint64_t		ifHCOutMulticastPkts;
 	uint64_t		ifHCOutBroadcastPkts;
 	uint64_t		Reserved4[2];
 	/* RX MAC statistics */
 	uint64_t		ifHCInOctets;
 	uint64_t		Reserved5;
 	uint64_t		etherStatsFragments;
 	uint64_t		ifHCInUcastPkts;
 	uint64_t		ifHCInMulticastPkts;
 	uint64_t		ifHCInBroadcastPkts;
 	uint64_t		dot3StatsFCSErrors;
 	uint64_t		dot3StatsAlignmentErrors;
 	uint64_t		xonPauseFramesReceived;
 	uint64_t		xoffPauseFramesReceived;
 	uint64_t		macControlFramesReceived;
 	uint64_t		xoffStateEntered;
 	uint64_t		dot3StatsFramesTooLong;
 	uint64_t		etherStatsJabbers;
 	uint64_t		etherStatsUndersizePkts;
 	/* Receive List Placement control */
 	uint64_t		FramesDroppedDueToFilters;
 	uint64_t		DmaWriteQueueFull;
 	uint64_t		DmaWriteHighPriQueueFull;
 	uint64_t		NoMoreRxBDs;
 	uint64_t		InputDiscards;
 	uint64_t		InputErrors;
 	uint64_t		RecvThresholdHit;
 };
 
 struct bge_stats {
 	uint8_t		Reserved0[256];
 
 	/* Statistics maintained by Receive MAC. */
 	struct bge_rx_mac_stats rxstats;
 
 	bge_hostaddr		Unused1[37];
 
 	/* Statistics maintained by Transmit MAC. */
 	struct bge_tx_mac_stats txstats;
 
 	bge_hostaddr		Unused2[31];
 
 	/* Statistics maintained by Receive List Placement. */
 	bge_hostaddr		COSIfHCInPkts[16];
 	bge_hostaddr		COSFramesDroppedDueToFilters;
 	bge_hostaddr		nicDmaWriteQueueFull;
 	bge_hostaddr		nicDmaWriteHighPriQueueFull;
 	bge_hostaddr		nicNoMoreRxBDs;
 	bge_hostaddr		ifInDiscards;
 	bge_hostaddr		ifInErrors;
 	bge_hostaddr		nicRecvThresholdHit;
 
 	bge_hostaddr		Unused3[9];
 
 	/* Statistics maintained by Send Data Initiator. */
 	bge_hostaddr		COSIfHCOutPkts[16];
 	bge_hostaddr		nicDmaReadQueueFull;
 	bge_hostaddr		nicDmaReadHighPriQueueFull;
 	bge_hostaddr		nicSendDataCompQueueFull;
 
 	/* Statistics maintained by Host Coalescing. */
 	bge_hostaddr		nicRingSetSendProdIndex;
 	bge_hostaddr		nicRingStatusUpdate;
 	bge_hostaddr		nicInterrupts;
 	bge_hostaddr		nicAvoidedInterrupts;
 	bge_hostaddr		nicSendThresholdHit;
 
 	uint8_t		Reserved4[320];
 };
 
 /*
  * Tigon general information block. This resides in host memory
  * and contains the status counters, ring control blocks and
  * producer pointers.
  */
 
 struct bge_gib {
 	struct bge_stats	bge_stats;
 	struct bge_rcb		bge_tx_rcb[16];
 	struct bge_rcb		bge_std_rx_rcb;
 	struct bge_rcb		bge_jumbo_rx_rcb;
 	struct bge_rcb		bge_mini_rx_rcb;
 	struct bge_rcb		bge_return_rcb;
 };
 
 #define	BGE_FRAMELEN		1518
 #define	BGE_MAX_FRAMELEN	1536
 #define	BGE_JUMBO_FRAMELEN	9018
 #define	BGE_JUMBO_MTU		(BGE_JUMBO_FRAMELEN-ETHER_HDR_LEN-ETHER_CRC_LEN)
 #define	BGE_MIN_FRAMELEN		60
 
 /*
  * Other utility macros.
  */
 #define	BGE_INC(x, y)	(x) = (x + 1) % y
 
 /*
  * BAR0 MAC register access macros. The Tigon always uses memory mapped register
  * accesses and all registers must be accessed with 32 bit operations.
  */
 
 #define	CSR_WRITE_4(sc, reg, val)	\
 	bus_write_4(sc->bge_res, reg, val)
 
 #define	CSR_READ_4(sc, reg)		\
 	bus_read_4(sc->bge_res, reg)
 
 #define	BGE_SETBIT(sc, reg, x)	\
 	CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) | (x)))
 #define	BGE_CLRBIT(sc, reg, x)	\
 	CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) & ~(x)))
 
 /* BAR2 APE register access macros. */
 #define	APE_WRITE_4(sc, reg, val)	\
 	bus_write_4(sc->bge_res2, reg, val)
 
 #define	APE_READ_4(sc, reg)		\
 	bus_read_4(sc->bge_res2, reg)
 
 #define	APE_SETBIT(sc, reg, x)	\
 	APE_WRITE_4(sc, reg, (APE_READ_4(sc, reg) | (x)))
 #define	APE_CLRBIT(sc, reg, x)	\
 	APE_WRITE_4(sc, reg, (APE_READ_4(sc, reg) & ~(x)))
 
 #define	PCI_SETBIT(dev, reg, x, s)	\
 	pci_write_config(dev, reg, (pci_read_config(dev, reg, s) | (x)), s)
 #define	PCI_CLRBIT(dev, reg, x, s)	\
 	pci_write_config(dev, reg, (pci_read_config(dev, reg, s) & ~(x)), s)
 
 /*
  * Memory management stuff.
  */
 
 #define	BGE_NSEG_JUMBO	4
 #define	BGE_NSEG_NEW	35
 #define	BGE_TSOSEG_SZ	4096
 
 /* Maximum DMA address for controllers that have 40bit DMA address bug. */
 #if (BUS_SPACE_MAXADDR < 0xFFFFFFFFFF)
 #define	BGE_DMA_MAXADDR		BUS_SPACE_MAXADDR
 #else
 #define	BGE_DMA_MAXADDR		0xFFFFFFFFFF
 #endif
 
+#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
+#define	BGE_DMA_BNDRY		0x100000000
+#else
+#define	BGE_DMA_BNDRY		0
+#endif
+
 /*
  * Ring structures. Most of these reside in host memory and we tell
  * the NIC where they are via the ring control blocks. The exceptions
  * are the tx and command rings, which live in NIC memory and which
  * we access via the shared memory window.
  */
 
 struct bge_ring_data {
 	struct bge_rx_bd	*bge_rx_std_ring;
 	bus_addr_t		bge_rx_std_ring_paddr;
 	struct bge_extrx_bd	*bge_rx_jumbo_ring;
 	bus_addr_t		bge_rx_jumbo_ring_paddr;
 	struct bge_rx_bd	*bge_rx_return_ring;
 	bus_addr_t		bge_rx_return_ring_paddr;
 	struct bge_tx_bd	*bge_tx_ring;
 	bus_addr_t		bge_tx_ring_paddr;
 	struct bge_status_block	*bge_status_block;
 	bus_addr_t		bge_status_block_paddr;
 	struct bge_stats	*bge_stats;
 	bus_addr_t		bge_stats_paddr;
 	struct bge_gib		bge_info;
 };
 
 #define	BGE_STD_RX_RING_SZ	\
 	(sizeof(struct bge_rx_bd) * BGE_STD_RX_RING_CNT)
 #define	BGE_JUMBO_RX_RING_SZ	\
 	(sizeof(struct bge_extrx_bd) * BGE_JUMBO_RX_RING_CNT)
 #define	BGE_TX_RING_SZ		\
 	(sizeof(struct bge_tx_bd) * BGE_TX_RING_CNT)
 #define	BGE_RX_RTN_RING_SZ(x)	\
 	(sizeof(struct bge_rx_bd) * x->bge_return_ring_cnt)
 
 #define	BGE_STATUS_BLK_SZ	sizeof (struct bge_status_block)
 
 #define	BGE_STATS_SZ		sizeof (struct bge_stats)
 
 /*
  * Mbuf pointers. We need these to keep track of the virtual addresses
  * of our mbuf chains since we can only convert from physical to virtual,
  * not the other way around.
  */
 struct bge_chain_data {
 	bus_dma_tag_t		bge_parent_tag;
 	bus_dma_tag_t		bge_buffer_tag;
 	bus_dma_tag_t		bge_rx_std_ring_tag;
 	bus_dma_tag_t		bge_rx_jumbo_ring_tag;
 	bus_dma_tag_t		bge_rx_return_ring_tag;
 	bus_dma_tag_t		bge_tx_ring_tag;
 	bus_dma_tag_t		bge_status_tag;
 	bus_dma_tag_t		bge_stats_tag;
 	bus_dma_tag_t		bge_rx_mtag;	/* Rx mbuf mapping tag */
 	bus_dma_tag_t		bge_tx_mtag;	/* Tx mbuf mapping tag */
 	bus_dma_tag_t		bge_mtag_jumbo;	/* Jumbo mbuf mapping tag */
 	bus_dmamap_t		bge_tx_dmamap[BGE_TX_RING_CNT];
 	bus_dmamap_t		bge_rx_std_sparemap;
 	bus_dmamap_t		bge_rx_std_dmamap[BGE_STD_RX_RING_CNT];
 	bus_dmamap_t		bge_rx_jumbo_sparemap;
 	bus_dmamap_t		bge_rx_jumbo_dmamap[BGE_JUMBO_RX_RING_CNT];
 	bus_dmamap_t		bge_rx_std_ring_map;
 	bus_dmamap_t		bge_rx_jumbo_ring_map;
 	bus_dmamap_t		bge_tx_ring_map;
 	bus_dmamap_t		bge_rx_return_ring_map;
 	bus_dmamap_t		bge_status_map;
 	bus_dmamap_t		bge_stats_map;
 	struct mbuf		*bge_tx_chain[BGE_TX_RING_CNT];
 	struct mbuf		*bge_rx_std_chain[BGE_STD_RX_RING_CNT];
 	struct mbuf		*bge_rx_jumbo_chain[BGE_JUMBO_RX_RING_CNT];
 	int			bge_rx_std_seglen[BGE_STD_RX_RING_CNT];
 	int			bge_rx_jumbo_seglen[BGE_JUMBO_RX_RING_CNT][4];
 };
 
 struct bge_dmamap_arg {
 	bus_addr_t		bge_busaddr;
 };
 
 #define	BGE_HWREV_TIGON		0x01
 #define	BGE_HWREV_TIGON_II	0x02
 #define	BGE_TIMEOUT		100000
 #define	BGE_TXCONS_UNSET		0xFFFF	/* impossible value */
 #define	BGE_TX_TIMEOUT		5
 
 struct bge_bcom_hack {
 	int			reg;
 	int			val;
 };
 
 #define	ASF_ENABLE		1
 #define	ASF_NEW_HANDSHAKE	2
 #define	ASF_STACKUP		4
 
 struct bge_softc {
 	struct ifnet		*bge_ifp;	/* interface info */
 	device_t		bge_dev;
 	struct mtx		bge_mtx;
 	device_t		bge_miibus;
 	void			*bge_intrhand;
 	struct resource		*bge_irq;
 	struct resource		*bge_res;	/* MAC mapped I/O */
 	struct resource		*bge_res2;	/* APE mapped I/O */
 	struct ifmedia		bge_ifmedia;	/* TBI media info */
 	int			bge_expcap;
 	int			bge_expmrq;
 	int			bge_msicap;
 	int			bge_pcixcap;
 	uint32_t		bge_flags;
 #define	BGE_FLAG_TBI		0x00000001
 #define	BGE_FLAG_JUMBO		0x00000002
 #define	BGE_FLAG_JUMBO_STD	0x00000004
 #define	BGE_FLAG_EADDR		0x00000008
 #define	BGE_FLAG_MII_SERDES	0x00000010
 #define	BGE_FLAG_CPMU_PRESENT	0x00000020
 #define	BGE_FLAG_TAGGED_STATUS	0x00000040
 #define	BGE_FLAG_APE		0x00000080
 #define	BGE_FLAG_MSI		0x00000100
 #define	BGE_FLAG_PCIX		0x00000200
 #define	BGE_FLAG_PCIE		0x00000400
 #define	BGE_FLAG_TSO		0x00000800
 #define	BGE_FLAG_TSO3		0x00001000
 #define	BGE_FLAG_JUMBO_FRAME	0x00002000
 #define	BGE_FLAG_5700_FAMILY	0x00010000
 #define	BGE_FLAG_5705_PLUS	0x00020000
 #define	BGE_FLAG_5714_FAMILY	0x00040000
 #define	BGE_FLAG_575X_PLUS	0x00080000
 #define	BGE_FLAG_5755_PLUS	0x00100000
 #define	BGE_FLAG_5788		0x00200000
 #define	BGE_FLAG_5717_PLUS	0x00400000
 #define	BGE_FLAG_57765_PLUS	0x00800000
 #define	BGE_FLAG_40BIT_BUG	0x01000000
 #define	BGE_FLAG_4G_BNDRY_BUG	0x02000000
 #define	BGE_FLAG_RX_ALIGNBUG	0x04000000
 #define	BGE_FLAG_SHORT_DMA_BUG	0x08000000
 #define	BGE_FLAG_4K_RDMA_BUG	0x10000000
 #define	BGE_FLAG_MBOX_REORDER	0x20000000
 #define	BGE_FLAG_RDMA_BUG	0x40000000
 	uint32_t		bge_mfw_flags;	/* Management F/W flags */
 #define	BGE_MFW_ON_RXCPU	0x00000001
 #define	BGE_MFW_ON_APE		0x00000002
 #define	BGE_MFW_TYPE_NCSI	0x00000004
 #define	BGE_MFW_TYPE_DASH	0x00000008
 	int			bge_phy_ape_lock;
 	int			bge_func_addr;
 	int			bge_phy_addr;
 	uint32_t		bge_phy_flags;
 #define	BGE_PHY_NO_WIRESPEED	0x00000001
 #define	BGE_PHY_ADC_BUG		0x00000002
 #define	BGE_PHY_5704_A0_BUG	0x00000004
 #define	BGE_PHY_JITTER_BUG	0x00000008
 #define	BGE_PHY_BER_BUG		0x00000010
 #define	BGE_PHY_ADJUST_TRIM	0x00000020
 #define	BGE_PHY_CRC_BUG		0x00000040
 #define	BGE_PHY_NO_3LED		0x00000080
 	uint32_t		bge_chipid;
 	uint32_t		bge_asicrev;
 	uint32_t		bge_chiprev;
 	uint8_t			bge_asf_mode;
 	uint8_t			bge_asf_count;
 	uint16_t		bge_mps;
 	struct bge_ring_data	bge_ldata;	/* rings */
 	struct bge_chain_data	bge_cdata;	/* mbufs */
 	uint16_t		bge_tx_saved_considx;
 	uint16_t		bge_rx_saved_considx;
 	uint16_t		bge_ev_saved_considx;
 	uint16_t		bge_return_ring_cnt;
 	uint16_t		bge_std;	/* current std ring head */
 	uint16_t		bge_jumbo;	/* current jumo ring head */
 	uint32_t		bge_stat_ticks;
 	uint32_t		bge_rx_coal_ticks;
 	uint32_t		bge_tx_coal_ticks;
 	uint32_t		bge_tx_prodidx;
 	uint32_t		bge_rx_max_coal_bds;
 	uint32_t		bge_tx_max_coal_bds;
 	uint32_t		bge_mi_mode;
 	int			bge_if_flags;
 	int			bge_txcnt;
 	int			bge_link;	/* link state */
 	int			bge_link_evt;	/* pending link event */
 	int			bge_timer;
 	int			bge_forced_collapse;
 	int			bge_forced_udpcsum;
 	int			bge_msi;
 	int			bge_csum_features;
 	struct callout		bge_stat_ch;
 	uint32_t		bge_rx_discards;
 	uint32_t		bge_rx_inerrs;
 	uint32_t		bge_rx_nobds;
 	uint32_t		bge_tx_discards;
 	uint32_t		bge_tx_collisions;
 #ifdef DEVICE_POLLING
 	int			rxcycles;
 #endif /* DEVICE_POLLING */
 	struct bge_mac_stats	bge_mac_stats;
 	struct task		bge_intr_task;
 	struct taskqueue	*bge_tq;
 };
 
 #define	BGE_LOCK_INIT(_sc, _name) \
 	mtx_init(&(_sc)->bge_mtx, _name, MTX_NETWORK_LOCK, MTX_DEF)
 #define	BGE_LOCK(_sc)		mtx_lock(&(_sc)->bge_mtx)
 #define	BGE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->bge_mtx, MA_OWNED)
 #define	BGE_UNLOCK(_sc)		mtx_unlock(&(_sc)->bge_mtx)
 #define	BGE_LOCK_DESTROY(_sc)	mtx_destroy(&(_sc)->bge_mtx)
 
 #ifdef BUS_SPACE_MAXADDR
 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
 #define	BGE_DMA_BOUNDARY	(0x100000000)
 #else
 #define	BGE_DMA_BOUNDARY	0
 #endif
 #endif