Index: head/sys/kern/kern_umtx.c
===================================================================
--- head/sys/kern/kern_umtx.c	(revision 347354)
+++ head/sys/kern/kern_umtx.c	(revision 347355)
@@ -1,4568 +1,4572 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2015, 2016 The FreeBSD Foundation
  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
  * All rights reserved.
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_umtx_profiling.h"
 
 #include <sys/param.h>
 #include <sys/kernel.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/filedesc.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mutex.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/resource.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sbuf.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/systm.h>
 #include <sys/sysproto.h>
 #include <sys/syscallsubr.h>
 #include <sys/taskqueue.h>
 #include <sys/time.h>
 #include <sys/eventhandler.h>
 #include <sys/umtx.h>
 
 #include <security/mac/mac_framework.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 
 #include <machine/atomic.h>
 #include <machine/cpu.h>
 
 #ifdef COMPAT_FREEBSD32
 #include <compat/freebsd32/freebsd32_proto.h>
 #endif
 
 #define _UMUTEX_TRY		1
 #define _UMUTEX_WAIT		2
 
 #ifdef UMTX_PROFILING
 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
 #endif
 
 /* Priority inheritance mutex info. */
 struct umtx_pi {
 	/* Owner thread */
 	struct thread		*pi_owner;
 
 	/* Reference count */
 	int			pi_refcount;
 
  	/* List entry to link umtx holding by thread */
 	TAILQ_ENTRY(umtx_pi)	pi_link;
 
 	/* List entry in hash */
 	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
 
 	/* List for waiters */
 	TAILQ_HEAD(,umtx_q)	pi_blocked;
 
 	/* Identify a userland lock object */
 	struct umtx_key		pi_key;
 };
 
 /* A userland synchronous object user. */
 struct umtx_q {
 	/* Linked list for the hash. */
 	TAILQ_ENTRY(umtx_q)	uq_link;
 
 	/* Umtx key. */
 	struct umtx_key		uq_key;
 
 	/* Umtx flags. */
 	int			uq_flags;
 #define UQF_UMTXQ	0x0001
 
 	/* The thread waits on. */
 	struct thread		*uq_thread;
 
 	/*
 	 * Blocked on PI mutex. read can use chain lock
 	 * or umtx_lock, write must have both chain lock and
 	 * umtx_lock being hold.
 	 */
 	struct umtx_pi		*uq_pi_blocked;
 
 	/* On blocked list */
 	TAILQ_ENTRY(umtx_q)	uq_lockq;
 
 	/* Thread contending with us */
 	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
 
 	/* Inherited priority from PP mutex */
 	u_char			uq_inherited_pri;
 	
 	/* Spare queue ready to be reused */
 	struct umtxq_queue	*uq_spare_queue;
 
 	/* The queue we on */
 	struct umtxq_queue	*uq_cur_queue;
 };
 
 TAILQ_HEAD(umtxq_head, umtx_q);
 
 /* Per-key wait-queue */
 struct umtxq_queue {
 	struct umtxq_head	head;
 	struct umtx_key		key;
 	LIST_ENTRY(umtxq_queue)	link;
 	int			length;
 };
 
 LIST_HEAD(umtxq_list, umtxq_queue);
 
 /* Userland lock object's wait-queue chain */
 struct umtxq_chain {
 	/* Lock for this chain. */
 	struct mtx		uc_lock;
 
 	/* List of sleep queues. */
 	struct umtxq_list	uc_queue[2];
 #define UMTX_SHARED_QUEUE	0
 #define UMTX_EXCLUSIVE_QUEUE	1
 
 	LIST_HEAD(, umtxq_queue) uc_spare_queue;
 
 	/* Busy flag */
 	char			uc_busy;
 
 	/* Chain lock waiters */
 	int			uc_waiters;
 
 	/* All PI in the list */
 	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
 
 #ifdef UMTX_PROFILING
 	u_int 			length;
 	u_int			max_length;
 #endif
 };
 
 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
 
 /*
  * Don't propagate time-sharing priority, there is a security reason,
  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  * and let another thread B block on the mutex, because B is
  * sleeping, its priority will be boosted, this causes A's priority to
  * be boosted via priority propagating too and will never be lowered even
  * if it is using 100%CPU, this is unfair to other processes.
  */
 
 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
 
 #define	GOLDEN_RATIO_PRIME	2654404609U
 #ifndef	UMTX_CHAINS
 #define	UMTX_CHAINS		512
 #endif
 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
 
 #define	GET_SHARE(flags)	\
     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
 
 #define BUSY_SPINS		200
 
 struct abs_timeout {
 	int clockid;
 	bool is_abs_real;	/* TIMER_ABSTIME && CLOCK_REALTIME* */
 	struct timespec cur;
 	struct timespec end;
 };
 
 #ifdef COMPAT_FREEBSD32
 struct umutex32 {
 	volatile __lwpid_t	m_owner;	/* Owner of the mutex */
 	__uint32_t		m_flags;	/* Flags of the mutex */
 	__uint32_t		m_ceilings[2];	/* Priority protect ceiling */
 	__uint32_t		m_rb_lnk;	/* Robust linkage */
 	__uint32_t		m_pad;
 	__uint32_t		m_spare[2];
 };
 
 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
 #endif
 
 int umtx_shm_vnobj_persistent = 0;
 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
     &umtx_shm_vnobj_persistent, 0,
     "False forces destruction of umtx attached to file, on last close");
 static int umtx_max_rb = 1000;
 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
     &umtx_max_rb, 0,
     "");
 
 static uma_zone_t		umtx_pi_zone;
 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
 static int			umtx_pi_allocated;
 
 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
     &umtx_pi_allocated, 0, "Allocated umtx_pi");
 static int umtx_verbose_rb = 1;
 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
     &umtx_verbose_rb, 0,
     "");
 
 #ifdef UMTX_PROFILING
 static long max_length;
 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
 #endif
 
 static void abs_timeout_update(struct abs_timeout *timo);
 
 static void umtx_shm_init(void);
 static void umtxq_sysinit(void *);
 static void umtxq_hash(struct umtx_key *key);
 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
 static void umtxq_lock(struct umtx_key *key);
 static void umtxq_unlock(struct umtx_key *key);
 static void umtxq_busy(struct umtx_key *key);
 static void umtxq_unbusy(struct umtx_key *key);
 static void umtxq_insert_queue(struct umtx_q *uq, int q);
 static void umtxq_remove_queue(struct umtx_q *uq, int q);
 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
 static int umtxq_count(struct umtx_key *key);
 static struct umtx_pi *umtx_pi_alloc(int);
 static void umtx_pi_free(struct umtx_pi *pi);
 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
     bool rb);
 static void umtx_thread_cleanup(struct thread *td);
 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
     struct image_params *imgp __unused);
 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
 
 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
 #define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
 #define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
 
 static struct mtx umtx_lock;
 
 #ifdef UMTX_PROFILING
 static void
 umtx_init_profiling(void) 
 {
 	struct sysctl_oid *chain_oid;
 	char chain_name[10];
 	int i;
 
 	for (i = 0; i < UMTX_CHAINS; ++i) {
 		snprintf(chain_name, sizeof(chain_name), "%d", i);
 		chain_oid = SYSCTL_ADD_NODE(NULL, 
 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO, 
 		    chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
 	}
 }
 
 static int
 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
 {
 	char buf[512];
 	struct sbuf sb;
 	struct umtxq_chain *uc;
 	u_int fract, i, j, tot, whole;
 	u_int sf0, sf1, sf2, sf3, sf4;
 	u_int si0, si1, si2, si3, si4;
 	u_int sw0, sw1, sw2, sw3, sw4;
 
 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 	for (i = 0; i < 2; i++) {
 		tot = 0;
 		for (j = 0; j < UMTX_CHAINS; ++j) {
 			uc = &umtxq_chains[i][j];
 			mtx_lock(&uc->uc_lock);
 			tot += uc->max_length;
 			mtx_unlock(&uc->uc_lock);
 		}
 		if (tot == 0)
 			sbuf_printf(&sb, "%u) Empty ", i);
 		else {
 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
 			si0 = si1 = si2 = si3 = si4 = 0;
 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
 			for (j = 0; j < UMTX_CHAINS; j++) {
 				uc = &umtxq_chains[i][j];
 				mtx_lock(&uc->uc_lock);
 				whole = uc->max_length * 100;
 				mtx_unlock(&uc->uc_lock);
 				fract = (whole % tot) * 100;
 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
 					sf0 = fract;
 					si0 = j;
 					sw0 = whole;
 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
 				    sf1)) {
 					sf1 = fract;
 					si1 = j;
 					sw1 = whole;
 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
 				    sf2)) {
 					sf2 = fract;
 					si2 = j;
 					sw2 = whole;
 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
 				    sf3)) {
 					sf3 = fract;
 					si3 = j;
 					sw3 = whole;
 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
 				    sf4)) {
 					sf4 = fract;
 					si4 = j;
 					sw4 = whole;
 				}
 			}
 			sbuf_printf(&sb, "queue %u:\n", i);
 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
 			    sf0 / tot, si0);
 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
 			    sf1 / tot, si1);
 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
 			    sf2 / tot, si2);
 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
 			    sf3 / tot, si3);
 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
 			    sf4 / tot, si4);
 		}
 	}
 	sbuf_trim(&sb);
 	sbuf_finish(&sb);
 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 	sbuf_delete(&sb);
 	return (0);
 }
 
 static int
 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
 {
 	struct umtxq_chain *uc;
 	u_int i, j;
 	int clear, error;
 
 	clear = 0;
 	error = sysctl_handle_int(oidp, &clear, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (clear != 0) {
 		for (i = 0; i < 2; ++i) {
 			for (j = 0; j < UMTX_CHAINS; ++j) {
 				uc = &umtxq_chains[i][j];
 				mtx_lock(&uc->uc_lock);
 				uc->length = 0;
 				uc->max_length = 0;	
 				mtx_unlock(&uc->uc_lock);
 			}
 		}
 	}
 	return (0);
 }
 
 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
 #endif
 
 static void
 umtxq_sysinit(void *arg __unused)
 {
 	int i, j;
 
 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	for (i = 0; i < 2; ++i) {
 		for (j = 0; j < UMTX_CHAINS; ++j) {
 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
 				 MTX_DEF | MTX_DUPOK);
 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
 			umtxq_chains[i][j].uc_busy = 0;
 			umtxq_chains[i][j].uc_waiters = 0;
 #ifdef UMTX_PROFILING
 			umtxq_chains[i][j].length = 0;
 			umtxq_chains[i][j].max_length = 0;	
 #endif
 		}
 	}
 #ifdef UMTX_PROFILING
 	umtx_init_profiling();
 #endif
 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
 	EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
 	    EVENTHANDLER_PRI_ANY);
 	umtx_shm_init();
 }
 
 struct umtx_q *
 umtxq_alloc(void)
 {
 	struct umtx_q *uq;
 
 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
 	    M_WAITOK | M_ZERO);
 	TAILQ_INIT(&uq->uq_spare_queue->head);
 	TAILQ_INIT(&uq->uq_pi_contested);
 	uq->uq_inherited_pri = PRI_MAX;
 	return (uq);
 }
 
 void
 umtxq_free(struct umtx_q *uq)
 {
 
 	MPASS(uq->uq_spare_queue != NULL);
 	free(uq->uq_spare_queue, M_UMTX);
 	free(uq, M_UMTX);
 }
 
 static inline void
 umtxq_hash(struct umtx_key *key)
 {
 	unsigned n;
 
 	n = (uintptr_t)key->info.both.a + key->info.both.b;
 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
 }
 
 static inline struct umtxq_chain *
 umtxq_getchain(struct umtx_key *key)
 {
 
 	if (key->type <= TYPE_SEM)
 		return (&umtxq_chains[1][key->hash]);
 	return (&umtxq_chains[0][key->hash]);
 }
 
 /*
  * Lock a chain.
  */
 static inline void
 umtxq_lock(struct umtx_key *key)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(key);
 	mtx_lock(&uc->uc_lock);
 }
 
 /*
  * Unlock a chain.
  */
 static inline void
 umtxq_unlock(struct umtx_key *key)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(key);
 	mtx_unlock(&uc->uc_lock);
 }
 
 /*
  * Set chain to busy state when following operation
  * may be blocked (kernel mutex can not be used).
  */
 static inline void
 umtxq_busy(struct umtx_key *key)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(key);
 	mtx_assert(&uc->uc_lock, MA_OWNED);
 	if (uc->uc_busy) {
 #ifdef SMP
 		if (smp_cpus > 1) {
 			int count = BUSY_SPINS;
 			if (count > 0) {
 				umtxq_unlock(key);
 				while (uc->uc_busy && --count > 0)
 					cpu_spinwait();
 				umtxq_lock(key);
 			}
 		}
 #endif
 		while (uc->uc_busy) {
 			uc->uc_waiters++;
 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
 			uc->uc_waiters--;
 		}
 	}
 	uc->uc_busy = 1;
 }
 
 /*
  * Unbusy a chain.
  */
 static inline void
 umtxq_unbusy(struct umtx_key *key)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(key);
 	mtx_assert(&uc->uc_lock, MA_OWNED);
 	KASSERT(uc->uc_busy != 0, ("not busy"));
 	uc->uc_busy = 0;
 	if (uc->uc_waiters)
 		wakeup_one(uc);
 }
 
 static inline void
 umtxq_unbusy_unlocked(struct umtx_key *key)
 {
 
 	umtxq_lock(key);
 	umtxq_unbusy(key);
 	umtxq_unlock(key);
 }
 
 static struct umtxq_queue *
 umtxq_queue_lookup(struct umtx_key *key, int q)
 {
 	struct umtxq_queue *uh;
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
 		if (umtx_key_match(&uh->key, key))
 			return (uh);
 	}
 
 	return (NULL);
 }
 
 static inline void
 umtxq_insert_queue(struct umtx_q *uq, int q)
 {
 	struct umtxq_queue *uh;
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(&uq->uq_key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
 	uh = umtxq_queue_lookup(&uq->uq_key, q);
 	if (uh != NULL) {
 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
 	} else {
 		uh = uq->uq_spare_queue;
 		uh->key = uq->uq_key;
 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
 #ifdef UMTX_PROFILING
 		uc->length++;
 		if (uc->length > uc->max_length) {
 			uc->max_length = uc->length;
 			if (uc->max_length > max_length)
 				max_length = uc->max_length;	
 		}
 #endif
 	}
 	uq->uq_spare_queue = NULL;
 
 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
 	uh->length++;
 	uq->uq_flags |= UQF_UMTXQ;
 	uq->uq_cur_queue = uh;
 	return;
 }
 
 static inline void
 umtxq_remove_queue(struct umtx_q *uq, int q)
 {
 	struct umtxq_chain *uc;
 	struct umtxq_queue *uh;
 
 	uc = umtxq_getchain(&uq->uq_key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	if (uq->uq_flags & UQF_UMTXQ) {
 		uh = uq->uq_cur_queue;
 		TAILQ_REMOVE(&uh->head, uq, uq_link);
 		uh->length--;
 		uq->uq_flags &= ~UQF_UMTXQ;
 		if (TAILQ_EMPTY(&uh->head)) {
 			KASSERT(uh->length == 0,
 			    ("inconsistent umtxq_queue length"));
 #ifdef UMTX_PROFILING
 			uc->length--;
 #endif
 			LIST_REMOVE(uh, link);
 		} else {
 			uh = LIST_FIRST(&uc->uc_spare_queue);
 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
 			LIST_REMOVE(uh, link);
 		}
 		uq->uq_spare_queue = uh;
 		uq->uq_cur_queue = NULL;
 	}
 }
 
 /*
  * Check if there are multiple waiters
  */
 static int
 umtxq_count(struct umtx_key *key)
 {
 	struct umtxq_queue *uh;
 
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
 	if (uh != NULL)
 		return (uh->length);
 	return (0);
 }
 
 /*
  * Check if there are multiple PI waiters and returns first
  * waiter.
  */
 static int
 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
 {
 	struct umtxq_queue *uh;
 
 	*first = NULL;
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
 	if (uh != NULL) {
 		*first = TAILQ_FIRST(&uh->head);
 		return (uh->length);
 	}
 	return (0);
 }
 
 static int
 umtxq_check_susp(struct thread *td)
 {
 	struct proc *p;
 	int error;
 
 	/*
 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
 	 * eventually break the lockstep loop.
 	 */
 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
 		return (0);
 	error = 0;
 	p = td->td_proc;
 	PROC_LOCK(p);
 	if (P_SHOULDSTOP(p) ||
 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
 		if (p->p_flag & P_SINGLE_EXIT)
 			error = EINTR;
 		else
 			error = ERESTART;
 	}
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 /*
  * Wake up threads waiting on an userland object.
  */
 
 static int
 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
 {
 	struct umtxq_queue *uh;
 	struct umtx_q *uq;
 	int ret;
 
 	ret = 0;
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
 	uh = umtxq_queue_lookup(key, q);
 	if (uh != NULL) {
 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
 			umtxq_remove_queue(uq, q);
 			wakeup(uq);
 			if (++ret >= n_wake)
 				return (ret);
 		}
 	}
 	return (ret);
 }
 
 
 /*
  * Wake up specified thread.
  */
 static inline void
 umtxq_signal_thread(struct umtx_q *uq)
 {
 
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
 	umtxq_remove(uq);
 	wakeup(uq);
 }
 
 static inline int 
 tstohz(const struct timespec *tsp)
 {
 	struct timeval tv;
 
 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
 	return tvtohz(&tv);
 }
 
 static void
 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
 	const struct timespec *timeout)
 {
 
 	timo->clockid = clockid;
 	if (!absolute) {
 		timo->is_abs_real = false;
 		abs_timeout_update(timo);
 		timespecadd(&timo->cur, timeout, &timo->end);
 	} else {
 		timo->end = *timeout;
 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
 		    clockid == CLOCK_REALTIME_FAST ||
 		    clockid == CLOCK_REALTIME_PRECISE;
 		/*
 		 * If is_abs_real, umtxq_sleep will read the clock
 		 * after setting td_rtcgen; otherwise, read it here.
 		 */
 		if (!timo->is_abs_real) {
 			abs_timeout_update(timo);
 		}
 	}
 }
 
 static void
 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
 {
 
 	abs_timeout_init(timo, umtxtime->_clockid,
 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
 }
 
 static inline void
 abs_timeout_update(struct abs_timeout *timo)
 {
 
 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
 }
 
 static int
 abs_timeout_gethz(struct abs_timeout *timo)
 {
 	struct timespec tts;
 
 	if (timespeccmp(&timo->end, &timo->cur, <=))
 		return (-1); 
 	timespecsub(&timo->end, &timo->cur, &tts);
 	return (tstohz(&tts));
 }
 
 static uint32_t
 umtx_unlock_val(uint32_t flags, bool rb)
 {
 
 	if (rb)
 		return (UMUTEX_RB_OWNERDEAD);
 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
 		return (UMUTEX_RB_NOTRECOV);
 	else
 		return (UMUTEX_UNOWNED);
 
 }
 
 /*
  * Put thread into sleep state, before sleeping, check if
  * thread was removed from umtx queue.
  */
 static inline int
 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
 {
 	struct umtxq_chain *uc;
 	int error, timo;
 
 	if (abstime != NULL && abstime->is_abs_real) {
 		curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
 		abs_timeout_update(abstime);
 	}
 
 	uc = umtxq_getchain(&uq->uq_key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	for (;;) {
 		if (!(uq->uq_flags & UQF_UMTXQ)) {
 			error = 0;
 			break;
 		}
 		if (abstime != NULL) {
 			timo = abs_timeout_gethz(abstime);
 			if (timo < 0) {
 				error = ETIMEDOUT;
 				break;
 			}
 		} else
 			timo = 0;
 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
 		if (error == EINTR || error == ERESTART) {
 			umtxq_lock(&uq->uq_key);
 			break;
 		}
 		if (abstime != NULL) {
 			if (abstime->is_abs_real)
 				curthread->td_rtcgen =
 				    atomic_load_acq_int(&rtc_generation);
 			abs_timeout_update(abstime);
 		}
 		umtxq_lock(&uq->uq_key);
 	}
 
 	curthread->td_rtcgen = 0;
 	return (error);
 }
 
 /*
  * Convert userspace address into unique logical address.
  */
 int
 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
 {
 	struct thread *td = curthread;
 	vm_map_t map;
 	vm_map_entry_t entry;
 	vm_pindex_t pindex;
 	vm_prot_t prot;
 	boolean_t wired;
 
 	key->type = type;
 	if (share == THREAD_SHARE) {
 		key->shared = 0;
 		key->info.private.vs = td->td_proc->p_vmspace;
 		key->info.private.addr = (uintptr_t)addr;
 	} else {
 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
 		map = &td->td_proc->p_vmspace->vm_map;
 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
 		    &entry, &key->info.shared.object, &pindex, &prot,
 		    &wired) != KERN_SUCCESS) {
 			return (EFAULT);
 		}
 
 		if ((share == PROCESS_SHARE) ||
 		    (share == AUTO_SHARE &&
 		     VM_INHERIT_SHARE == entry->inheritance)) {
 			key->shared = 1;
 			key->info.shared.offset = (vm_offset_t)addr -
 			    entry->start + entry->offset;
 			vm_object_reference(key->info.shared.object);
 		} else {
 			key->shared = 0;
 			key->info.private.vs = td->td_proc->p_vmspace;
 			key->info.private.addr = (uintptr_t)addr;
 		}
 		vm_map_lookup_done(map, entry);
 	}
 
 	umtxq_hash(key);
 	return (0);
 }
 
 /*
  * Release key.
  */
 void
 umtx_key_release(struct umtx_key *key)
 {
 	if (key->shared)
 		vm_object_deallocate(key->info.shared.object);
 }
 
 /*
  * Fetch and compare value, sleep on the address if value is not changed.
  */
 static int
 do_wait(struct thread *td, void *addr, u_long id,
     struct _umtx_time *timeout, int compat32, int is_private)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	u_long tmp;
 	uint32_t tmp32;
 	int error = 0;
 
 	uq = td->td_umtxq;
 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	umtxq_lock(&uq->uq_key);
 	umtxq_insert(uq);
 	umtxq_unlock(&uq->uq_key);
 	if (compat32 == 0) {
 		error = fueword(addr, &tmp);
 		if (error != 0)
 			error = EFAULT;
 	} else {
 		error = fueword32(addr, &tmp32);
 		if (error == 0)
 			tmp = tmp32;
 		else
 			error = EFAULT;
 	}
 	umtxq_lock(&uq->uq_key);
 	if (error == 0) {
 		if (tmp == id)
 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
 			    NULL : &timo);
 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
 			error = 0;
 		else
 			umtxq_remove(uq);
 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 		umtxq_remove(uq);
 	}
 	umtxq_unlock(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	if (error == ERESTART)
 		error = EINTR;
 	return (error);
 }
 
 /*
  * Wake up threads sleeping on the specified address.
  */
 int
 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
 {
 	struct umtx_key key;
 	int ret;
 	
 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
 		return (ret);
 	umtxq_lock(&key);
 	umtxq_signal(&key, n_wake);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (0);
 }
 
 /*
  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
  */
 static int
 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
     struct _umtx_time *timeout, int mode)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t owner, old, id;
 	int error, rv;
 
 	id = td->td_tid;
 	uq = td->td_umtxq;
 	error = 0;
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	/*
 	 * Care must be exercised when dealing with umtx structure. It
 	 * can fault on any access.
 	 */
 	for (;;) {
 		rv = fueword32(&m->m_owner, &owner);
 		if (rv == -1)
 			return (EFAULT);
 		if (mode == _UMUTEX_WAIT) {
 			if (owner == UMUTEX_UNOWNED ||
 			    owner == UMUTEX_CONTESTED ||
 			    owner == UMUTEX_RB_OWNERDEAD ||
 			    owner == UMUTEX_RB_NOTRECOV)
 				return (0);
 		} else {
 			/*
 			 * Robust mutex terminated.  Kernel duty is to
 			 * return EOWNERDEAD to the userspace.  The
 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
 			 * by the common userspace code.
 			 */
 			if (owner == UMUTEX_RB_OWNERDEAD) {
 				rv = casueword32(&m->m_owner,
 				    UMUTEX_RB_OWNERDEAD, &owner,
 				    id | UMUTEX_CONTESTED);
 				if (rv == -1)
 					return (EFAULT);
 				if (owner == UMUTEX_RB_OWNERDEAD)
 					return (EOWNERDEAD); /* success */
 				rv = umtxq_check_susp(td);
 				if (rv != 0)
 					return (rv);
 				continue;
 			}
 			if (owner == UMUTEX_RB_NOTRECOV)
 				return (ENOTRECOVERABLE);
 
 
 			/*
 			 * Try the uncontested case.  This should be
 			 * done in userland.
 			 */
 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
 			    &owner, id);
 			/* The address was invalid. */
 			if (rv == -1)
 				return (EFAULT);
 
 			/* The acquire succeeded. */
 			if (owner == UMUTEX_UNOWNED)
 				return (0);
 
 			/*
 			 * If no one owns it but it is contested try
 			 * to acquire it.
 			 */
 			if (owner == UMUTEX_CONTESTED) {
 				rv = casueword32(&m->m_owner,
 				    UMUTEX_CONTESTED, &owner,
 				    id | UMUTEX_CONTESTED);
 				/* The address was invalid. */
 				if (rv == -1)
 					return (EFAULT);
 
 				if (owner == UMUTEX_CONTESTED)
 					return (0);
 
 				rv = umtxq_check_susp(td);
 				if (rv != 0)
 					return (rv);
 
 				/*
 				 * If this failed the lock has
 				 * changed, restart.
 				 */
 				continue;
 			}
 		}
 
 		if (mode == _UMUTEX_TRY)
 			return (EBUSY);
 
 		/*
 		 * If we caught a signal, we have retried and now
 		 * exit immediately.
 		 */
 		if (error != 0)
 			return (error);
 
 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 		    GET_SHARE(flags), &uq->uq_key)) != 0)
 			return (error);
 
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_insert(uq);
 		umtxq_unlock(&uq->uq_key);
 
 		/*
 		 * Set the contested bit so that a release in user space
 		 * knows to use the system call for unlock.  If this fails
 		 * either some one else has acquired the lock or it has been
 		 * released.
 		 */
 		rv = casueword32(&m->m_owner, owner, &old,
 		    owner | UMUTEX_CONTESTED);
 
 		/* The address was invalid. */
 		if (rv == -1) {
 			umtxq_lock(&uq->uq_key);
 			umtxq_remove(uq);
 			umtxq_unbusy(&uq->uq_key);
 			umtxq_unlock(&uq->uq_key);
 			umtx_key_release(&uq->uq_key);
 			return (EFAULT);
 		}
 
 		/*
 		 * We set the contested bit, sleep. Otherwise the lock changed
 		 * and we need to retry or we lost a race to the thread
 		 * unlocking the umtx.
 		 */
 		umtxq_lock(&uq->uq_key);
 		umtxq_unbusy(&uq->uq_key);
 		if (old == owner)
 			error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
 			    NULL : &timo);
 		umtxq_remove(uq);
 		umtxq_unlock(&uq->uq_key);
 		umtx_key_release(&uq->uq_key);
 
 		if (error == 0)
 			error = umtxq_check_susp(td);
 	}
 
 	return (0);
 }
 
 /*
  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
  */
 static int
 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 {
 	struct umtx_key key;
 	uint32_t owner, old, id, newlock;
 	int error, count;
 
 	id = td->td_tid;
 	/*
 	 * Make sure we own this mtx.
 	 */
 	error = fueword32(&m->m_owner, &owner);
 	if (error == -1)
 		return (EFAULT);
 
 	if ((owner & ~UMUTEX_CONTESTED) != id)
 		return (EPERM);
 
 	newlock = umtx_unlock_val(flags, rb);
 	if ((owner & UMUTEX_CONTESTED) == 0) {
 		error = casueword32(&m->m_owner, owner, &old, newlock);
 		if (error == -1)
 			return (EFAULT);
 		if (old == owner)
 			return (0);
 		owner = old;
 	}
 
 	/* We should only ever be in here for contested locks */
 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 	    &key)) != 0)
 		return (error);
 
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	count = umtxq_count(&key);
 	umtxq_unlock(&key);
 
 	/*
 	 * When unlocking the umtx, it must be marked as unowned if
 	 * there is zero or one thread only waiting for it.
 	 * Otherwise, it must be marked as contested.
 	 */
 	if (count > 1)
 		newlock |= UMUTEX_CONTESTED;
 	error = casueword32(&m->m_owner, owner, &old, newlock);
 	umtxq_lock(&key);
 	umtxq_signal(&key, 1);
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	if (error == -1)
 		return (EFAULT);
 	if (old != owner)
 		return (EINVAL);
 	return (0);
 }
 
 /*
  * Check if the mutex is available and wake up a waiter,
  * only for simple mutex.
  */
 static int
 do_wake_umutex(struct thread *td, struct umutex *m)
 {
 	struct umtx_key key;
 	uint32_t owner;
 	uint32_t flags;
 	int error;
 	int count;
 
 	error = fueword32(&m->m_owner, &owner);
 	if (error == -1)
 		return (EFAULT);
 
 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
 	    owner != UMUTEX_RB_NOTRECOV)
 		return (0);
 
 	error = fueword32(&m->m_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 
 	/* We should only ever be in here for contested locks */
 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 	    &key)) != 0)
 		return (error);
 
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	count = umtxq_count(&key);
 	umtxq_unlock(&key);
 
 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
 	    owner != UMUTEX_RB_NOTRECOV) {
 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 		    UMUTEX_UNOWNED);
 		if (error == -1)
 			error = EFAULT;
 	}
 
 	umtxq_lock(&key);
 	if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 		umtxq_signal(&key, 1);
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (error);
 }
 
 /*
  * Check if the mutex has waiters and tries to fix contention bit.
  */
 static int
 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
 {
 	struct umtx_key key;
 	uint32_t owner, old;
 	int type;
 	int error;
 	int count;
 
 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
 	    UMUTEX_ROBUST)) {
 	case 0:
 	case UMUTEX_ROBUST:
 		type = TYPE_NORMAL_UMUTEX;
 		break;
 	case UMUTEX_PRIO_INHERIT:
 		type = TYPE_PI_UMUTEX;
 		break;
 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
 		type = TYPE_PI_ROBUST_UMUTEX;
 		break;
 	case UMUTEX_PRIO_PROTECT:
 		type = TYPE_PP_UMUTEX;
 		break;
 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
 		type = TYPE_PP_ROBUST_UMUTEX;
 		break;
 	default:
 		return (EINVAL);
 	}
 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
 		return (error);
 
 	owner = 0;
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	count = umtxq_count(&key);
 	umtxq_unlock(&key);
 	/*
 	 * Only repair contention bit if there is a waiter, this means the mutex
 	 * is still being referenced by userland code, otherwise don't update
 	 * any memory.
 	 */
 	if (count > 1) {
 		error = fueword32(&m->m_owner, &owner);
 		if (error == -1)
 			error = EFAULT;
 		while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
 			error = casueword32(&m->m_owner, owner, &old,
 			    owner | UMUTEX_CONTESTED);
 			if (error == -1) {
 				error = EFAULT;
 				break;
 			}
 			if (old == owner)
 				break;
 			owner = old;
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 		}
 	} else if (count == 1) {
 		error = fueword32(&m->m_owner, &owner);
 		if (error == -1)
 			error = EFAULT;
 		while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
 		    (owner & UMUTEX_CONTESTED) == 0) {
 			error = casueword32(&m->m_owner, owner, &old,
 			    owner | UMUTEX_CONTESTED);
 			if (error == -1) {
 				error = EFAULT;
 				break;
 			}
 			if (old == owner)
 				break;
 			owner = old;
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 		}
 	}
 	umtxq_lock(&key);
 	if (error == EFAULT) {
 		umtxq_signal(&key, INT_MAX);
 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 		umtxq_signal(&key, 1);
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (error);
 }
 
 static inline struct umtx_pi *
 umtx_pi_alloc(int flags)
 {
 	struct umtx_pi *pi;
 
 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 	TAILQ_INIT(&pi->pi_blocked);
 	atomic_add_int(&umtx_pi_allocated, 1);
 	return (pi);
 }
 
 static inline void
 umtx_pi_free(struct umtx_pi *pi)
 {
 	uma_zfree(umtx_pi_zone, pi);
 	atomic_add_int(&umtx_pi_allocated, -1);
 }
 
 /*
  * Adjust the thread's position on a pi_state after its priority has been
  * changed.
  */
 static int
 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 {
 	struct umtx_q *uq, *uq1, *uq2;
 	struct thread *td1;
 
 	mtx_assert(&umtx_lock, MA_OWNED);
 	if (pi == NULL)
 		return (0);
 
 	uq = td->td_umtxq;
 
 	/*
 	 * Check if the thread needs to be moved on the blocked chain.
 	 * It needs to be moved if either its priority is lower than
 	 * the previous thread or higher than the next thread.
 	 */
 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 	uq2 = TAILQ_NEXT(uq, uq_lockq);
 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 		/*
 		 * Remove thread from blocked chain and determine where
 		 * it should be moved to.
 		 */
 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 			td1 = uq1->uq_thread;
 			MPASS(td1->td_proc->p_magic == P_MAGIC);
 			if (UPRI(td1) > UPRI(td))
 				break;
 		}
 
 		if (uq1 == NULL)
 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 		else
 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 	}
 	return (1);
 }
 
 static struct umtx_pi *
 umtx_pi_next(struct umtx_pi *pi)
 {
 	struct umtx_q *uq_owner;
 
 	if (pi->pi_owner == NULL)
 		return (NULL);
 	uq_owner = pi->pi_owner->td_umtxq;
 	if (uq_owner == NULL)
 		return (NULL);
 	return (uq_owner->uq_pi_blocked);
 }
 
 /*
  * Floyd's Cycle-Finding Algorithm.
  */
 static bool
 umtx_pi_check_loop(struct umtx_pi *pi)
 {
 	struct umtx_pi *pi1;	/* fast iterator */
 
 	mtx_assert(&umtx_lock, MA_OWNED);
 	if (pi == NULL)
 		return (false);
 	pi1 = pi;
 	for (;;) {
 		pi = umtx_pi_next(pi);
 		if (pi == NULL)
 			break;
 		pi1 = umtx_pi_next(pi1);
 		if (pi1 == NULL)
 			break;
 		pi1 = umtx_pi_next(pi1);
 		if (pi1 == NULL)
 			break;
 		if (pi == pi1)
 			return (true);
 	}
 	return (false);
 }
 
 /*
  * Propagate priority when a thread is blocked on POSIX
  * PI mutex.
  */ 
 static void
 umtx_propagate_priority(struct thread *td)
 {
 	struct umtx_q *uq;
 	struct umtx_pi *pi;
 	int pri;
 
 	mtx_assert(&umtx_lock, MA_OWNED);
 	pri = UPRI(td);
 	uq = td->td_umtxq;
 	pi = uq->uq_pi_blocked;
 	if (pi == NULL)
 		return;
 	if (umtx_pi_check_loop(pi))
 		return;
 
 	for (;;) {
 		td = pi->pi_owner;
 		if (td == NULL || td == curthread)
 			return;
 
 		MPASS(td->td_proc != NULL);
 		MPASS(td->td_proc->p_magic == P_MAGIC);
 
 		thread_lock(td);
 		if (td->td_lend_user_pri > pri)
 			sched_lend_user_prio(td, pri);
 		else {
 			thread_unlock(td);
 			break;
 		}
 		thread_unlock(td);
 
 		/*
 		 * Pick up the lock that td is blocked on.
 		 */
 		uq = td->td_umtxq;
 		pi = uq->uq_pi_blocked;
 		if (pi == NULL)
 			break;
 		/* Resort td on the list if needed. */
 		umtx_pi_adjust_thread(pi, td);
 	}
 }
 
 /*
  * Unpropagate priority for a PI mutex when a thread blocked on
  * it is interrupted by signal or resumed by others.
  */
 static void
 umtx_repropagate_priority(struct umtx_pi *pi)
 {
 	struct umtx_q *uq, *uq_owner;
 	struct umtx_pi *pi2;
 	int pri;
 
 	mtx_assert(&umtx_lock, MA_OWNED);
 
 	if (umtx_pi_check_loop(pi))
 		return;
 	while (pi != NULL && pi->pi_owner != NULL) {
 		pri = PRI_MAX;
 		uq_owner = pi->pi_owner->td_umtxq;
 
 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 			uq = TAILQ_FIRST(&pi2->pi_blocked);
 			if (uq != NULL) {
 				if (pri > UPRI(uq->uq_thread))
 					pri = UPRI(uq->uq_thread);
 			}
 		}
 
 		if (pri > uq_owner->uq_inherited_pri)
 			pri = uq_owner->uq_inherited_pri;
 		thread_lock(pi->pi_owner);
 		sched_lend_user_prio(pi->pi_owner, pri);
 		thread_unlock(pi->pi_owner);
 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 	}
 }
 
 /*
  * Insert a PI mutex into owned list.
  */
 static void
 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 {
 	struct umtx_q *uq_owner;
 
 	uq_owner = owner->td_umtxq;
 	mtx_assert(&umtx_lock, MA_OWNED);
 	MPASS(pi->pi_owner == NULL);
 	pi->pi_owner = owner;
 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 }
 
 
 /*
  * Disown a PI mutex, and remove it from the owned list.
  */
 static void
 umtx_pi_disown(struct umtx_pi *pi)
 {
 
 	mtx_assert(&umtx_lock, MA_OWNED);
 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
 	pi->pi_owner = NULL;
 }
 
 /*
  * Claim ownership of a PI mutex.
  */
 static int
 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 {
 	struct umtx_q *uq;
 	int pri;
 
 	mtx_lock(&umtx_lock);
 	if (pi->pi_owner == owner) {
 		mtx_unlock(&umtx_lock);
 		return (0);
 	}
 
 	if (pi->pi_owner != NULL) {
 		/*
 		 * userland may have already messed the mutex, sigh.
 		 */
 		mtx_unlock(&umtx_lock);
 		return (EPERM);
 	}
 	umtx_pi_setowner(pi, owner);
 	uq = TAILQ_FIRST(&pi->pi_blocked);
 	if (uq != NULL) {
 		pri = UPRI(uq->uq_thread);
 		thread_lock(owner);
 		if (pri < UPRI(owner))
 			sched_lend_user_prio(owner, pri);
 		thread_unlock(owner);
 	}
 	mtx_unlock(&umtx_lock);
 	return (0);
 }
 
 /*
  * Adjust a thread's order position in its blocked PI mutex,
  * this may result new priority propagating process.
  */
 void
 umtx_pi_adjust(struct thread *td, u_char oldpri)
 {
 	struct umtx_q *uq;
 	struct umtx_pi *pi;
 
 	uq = td->td_umtxq;
 	mtx_lock(&umtx_lock);
 	/*
 	 * Pick up the lock that td is blocked on.
 	 */
 	pi = uq->uq_pi_blocked;
 	if (pi != NULL) {
 		umtx_pi_adjust_thread(pi, td);
 		umtx_repropagate_priority(pi);
 	}
 	mtx_unlock(&umtx_lock);
 }
 
 /*
  * Sleep on a PI mutex.
  */
 static int
 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
     const char *wmesg, struct abs_timeout *timo, bool shared)
 {
 	struct thread *td, *td1;
 	struct umtx_q *uq1;
 	int error, pri;
 #ifdef INVARIANTS
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(&pi->pi_key);
 #endif
 	error = 0;
 	td = uq->uq_thread;
 	KASSERT(td == curthread, ("inconsistent uq_thread"));
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
 	umtxq_insert(uq);
 	mtx_lock(&umtx_lock);
 	if (pi->pi_owner == NULL) {
 		mtx_unlock(&umtx_lock);
 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
 		mtx_lock(&umtx_lock);
 		if (td1 != NULL) {
 			if (pi->pi_owner == NULL)
 				umtx_pi_setowner(pi, td1);
 			PROC_UNLOCK(td1->td_proc);
 		}
 	}
 
 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 		pri = UPRI(uq1->uq_thread);
 		if (pri > UPRI(td))
 			break;
 	}
 
 	if (uq1 != NULL)
 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 	else
 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 
 	uq->uq_pi_blocked = pi;
 	thread_lock(td);
 	td->td_flags |= TDF_UPIBLOCKED;
 	thread_unlock(td);
 	umtx_propagate_priority(td);
 	mtx_unlock(&umtx_lock);
 	umtxq_unbusy(&uq->uq_key);
 
 	error = umtxq_sleep(uq, wmesg, timo);
 	umtxq_remove(uq);
 
 	mtx_lock(&umtx_lock);
 	uq->uq_pi_blocked = NULL;
 	thread_lock(td);
 	td->td_flags &= ~TDF_UPIBLOCKED;
 	thread_unlock(td);
 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 	umtx_repropagate_priority(pi);
 	mtx_unlock(&umtx_lock);
 	umtxq_unlock(&uq->uq_key);
 
 	return (error);
 }
 
 /*
  * Add reference count for a PI mutex.
  */
 static void
 umtx_pi_ref(struct umtx_pi *pi)
 {
 
 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
 	pi->pi_refcount++;
 }
 
 /*
  * Decrease reference count for a PI mutex, if the counter
  * is decreased to zero, its memory space is freed.
  */ 
 static void
 umtx_pi_unref(struct umtx_pi *pi)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(&pi->pi_key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 	if (--pi->pi_refcount == 0) {
 		mtx_lock(&umtx_lock);
 		if (pi->pi_owner != NULL)
 			umtx_pi_disown(pi);
 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 			("blocked queue not empty"));
 		mtx_unlock(&umtx_lock);
 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 		umtx_pi_free(pi);
 	}
 }
 
 /*
  * Find a PI mutex in hash table.
  */
 static struct umtx_pi *
 umtx_pi_lookup(struct umtx_key *key)
 {
 	struct umtxq_chain *uc;
 	struct umtx_pi *pi;
 
 	uc = umtxq_getchain(key);
 	UMTXQ_LOCKED_ASSERT(uc);
 
 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 		if (umtx_key_match(&pi->pi_key, key)) {
 			return (pi);
 		}
 	}
 	return (NULL);
 }
 
 /*
  * Insert a PI mutex into hash table.
  */
 static inline void
 umtx_pi_insert(struct umtx_pi *pi)
 {
 	struct umtxq_chain *uc;
 
 	uc = umtxq_getchain(&pi->pi_key);
 	UMTXQ_LOCKED_ASSERT(uc);
 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 }
 
 /*
  * Lock a PI mutex.
  */
 static int
 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
     struct _umtx_time *timeout, int try)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	struct umtx_pi *pi, *new_pi;
 	uint32_t id, old_owner, owner, old;
 	int error, rv;
 
 	id = td->td_tid;
 	uq = td->td_umtxq;
 
 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 	    &uq->uq_key)) != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	umtxq_lock(&uq->uq_key);
 	pi = umtx_pi_lookup(&uq->uq_key);
 	if (pi == NULL) {
 		new_pi = umtx_pi_alloc(M_NOWAIT);
 		if (new_pi == NULL) {
 			umtxq_unlock(&uq->uq_key);
 			new_pi = umtx_pi_alloc(M_WAITOK);
 			umtxq_lock(&uq->uq_key);
 			pi = umtx_pi_lookup(&uq->uq_key);
 			if (pi != NULL) {
 				umtx_pi_free(new_pi);
 				new_pi = NULL;
 			}
 		}
 		if (new_pi != NULL) {
 			new_pi->pi_key = uq->uq_key;
 			umtx_pi_insert(new_pi);
 			pi = new_pi;
 		}
 	}
 	umtx_pi_ref(pi);
 	umtxq_unlock(&uq->uq_key);
 
 	/*
 	 * Care must be exercised when dealing with umtx structure.  It
 	 * can fault on any access.
 	 */
 	for (;;) {
 		/*
 		 * Try the uncontested case.  This should be done in userland.
 		 */
 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
 		/* The address was invalid. */
 		if (rv == -1) {
 			error = EFAULT;
 			break;
 		}
 
 		/* The acquire succeeded. */
 		if (owner == UMUTEX_UNOWNED) {
 			error = 0;
 			break;
 		}
 
 		if (owner == UMUTEX_RB_NOTRECOV) {
 			error = ENOTRECOVERABLE;
 			break;
 		}
 
 		/* If no one owns it but it is contested try to acquire it. */
 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
 			old_owner = owner;
 			rv = casueword32(&m->m_owner, owner, &owner,
 			    id | UMUTEX_CONTESTED);
 			/* The address was invalid. */
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 
 			if (owner == old_owner) {
 				umtxq_lock(&uq->uq_key);
 				umtxq_busy(&uq->uq_key);
 				error = umtx_pi_claim(pi, td);
 				umtxq_unbusy(&uq->uq_key);
 				umtxq_unlock(&uq->uq_key);
 				if (error != 0) {
 					/*
 					 * Since we're going to return an
 					 * error, restore the m_owner to its
 					 * previous, unowned state to avoid
 					 * compounding the problem.
 					 */
 					(void)casuword32(&m->m_owner,
 					    id | UMUTEX_CONTESTED,
 					    old_owner);
 				}
 				if (error == 0 &&
 				    old_owner == UMUTEX_RB_OWNERDEAD)
 					error = EOWNERDEAD;
 				break;
 			}
 
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 
 			/* If this failed the lock has changed, restart. */
 			continue;
 		}
 
 		if ((owner & ~UMUTEX_CONTESTED) == id) {
 			error = EDEADLK;
 			break;
 		}
 
 		if (try != 0) {
 			error = EBUSY;
 			break;
 		}
 
 		/*
 		 * If we caught a signal, we have retried and now
 		 * exit immediately.
 		 */
 		if (error != 0)
 			break;
 			
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 
 		/*
 		 * Set the contested bit so that a release in user space
 		 * knows to use the system call for unlock.  If this fails
 		 * either some one else has acquired the lock or it has been
 		 * released.
 		 */
 		rv = casueword32(&m->m_owner, owner, &old, owner |
 		    UMUTEX_CONTESTED);
 
 		/* The address was invalid. */
 		if (rv == -1) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = EFAULT;
 			break;
 		}
 
 		umtxq_lock(&uq->uq_key);
 		/*
 		 * We set the contested bit, sleep. Otherwise the lock changed
 		 * and we need to retry or we lost a race to the thread
 		 * unlocking the umtx.  Note that the UMUTEX_RB_OWNERDEAD
 		 * value for owner is impossible there.
 		 */
 		if (old == owner) {
 			error = umtxq_sleep_pi(uq, pi,
 			    owner & ~UMUTEX_CONTESTED,
 			    "umtxpi", timeout == NULL ? NULL : &timo,
 			    (flags & USYNC_PROCESS_SHARED) != 0);
 			if (error != 0)
 				continue;
 		} else {
 			umtxq_unbusy(&uq->uq_key);
 			umtxq_unlock(&uq->uq_key);
 		}
 
 		error = umtxq_check_susp(td);
 		if (error != 0)
 			break;
 	}
 
 	umtxq_lock(&uq->uq_key);
 	umtx_pi_unref(pi);
 	umtxq_unlock(&uq->uq_key);
 
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 /*
  * Unlock a PI mutex.
  */
 static int
 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 {
 	struct umtx_key key;
 	struct umtx_q *uq_first, *uq_first2, *uq_me;
 	struct umtx_pi *pi, *pi2;
 	uint32_t id, new_owner, old, owner;
 	int count, error, pri;
 
 	id = td->td_tid;
 	/*
 	 * Make sure we own this mtx.
 	 */
 	error = fueword32(&m->m_owner, &owner);
 	if (error == -1)
 		return (EFAULT);
 
 	if ((owner & ~UMUTEX_CONTESTED) != id)
 		return (EPERM);
 
 	new_owner = umtx_unlock_val(flags, rb);
 
 	/* This should be done in userland */
 	if ((owner & UMUTEX_CONTESTED) == 0) {
 		error = casueword32(&m->m_owner, owner, &old, new_owner);
 		if (error == -1)
 			return (EFAULT);
 		if (old == owner)
 			return (0);
 		owner = old;
 	}
 
 	/* We should only ever be in here for contested locks */
 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 	    &key)) != 0)
 		return (error);
 
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	count = umtxq_count_pi(&key, &uq_first);
 	if (uq_first != NULL) {
 		mtx_lock(&umtx_lock);
 		pi = uq_first->uq_pi_blocked;
 		KASSERT(pi != NULL, ("pi == NULL?"));
 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
 			mtx_unlock(&umtx_lock);
 			umtxq_unbusy(&key);
 			umtxq_unlock(&key);
 			umtx_key_release(&key);
 			/* userland messed the mutex */
 			return (EPERM);
 		}
 		uq_me = td->td_umtxq;
 		if (pi->pi_owner == td)
 			umtx_pi_disown(pi);
 		/* get highest priority thread which is still sleeping. */
 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
 		while (uq_first != NULL && 
 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 		}
 		pri = PRI_MAX;
 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 			if (uq_first2 != NULL) {
 				if (pri > UPRI(uq_first2->uq_thread))
 					pri = UPRI(uq_first2->uq_thread);
 			}
 		}
 		thread_lock(td);
 		sched_lend_user_prio(td, pri);
 		thread_unlock(td);
 		mtx_unlock(&umtx_lock);
 		if (uq_first)
 			umtxq_signal_thread(uq_first);
 	} else {
 		pi = umtx_pi_lookup(&key);
 		/*
 		 * A umtx_pi can exist if a signal or timeout removed the
 		 * last waiter from the umtxq, but there is still
 		 * a thread in do_lock_pi() holding the umtx_pi.
 		 */
 		if (pi != NULL) {
 			/*
 			 * The umtx_pi can be unowned, such as when a thread
 			 * has just entered do_lock_pi(), allocated the
 			 * umtx_pi, and unlocked the umtxq.
 			 * If the current thread owns it, it must disown it.
 			 */
 			mtx_lock(&umtx_lock);
 			if (pi->pi_owner == td)
 				umtx_pi_disown(pi);
 			mtx_unlock(&umtx_lock);
 		}
 	}
 	umtxq_unlock(&key);
 
 	/*
 	 * When unlocking the umtx, it must be marked as unowned if
 	 * there is zero or one thread only waiting for it.
 	 * Otherwise, it must be marked as contested.
 	 */
 
 	if (count > 1)
 		new_owner |= UMUTEX_CONTESTED;
 	error = casueword32(&m->m_owner, owner, &old, new_owner);
 
 	umtxq_unbusy_unlocked(&key);
 	umtx_key_release(&key);
 	if (error == -1)
 		return (EFAULT);
 	if (old != owner)
 		return (EINVAL);
 	return (0);
 }
 
 /*
  * Lock a PP mutex.
  */
 static int
 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
     struct _umtx_time *timeout, int try)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq, *uq2;
 	struct umtx_pi *pi;
 	uint32_t ceiling;
 	uint32_t owner, id;
 	int error, pri, old_inherited_pri, su, rv;
 
 	id = td->td_tid;
 	uq = td->td_umtxq;
 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 	    &uq->uq_key)) != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 	for (;;) {
 		old_inherited_pri = uq->uq_inherited_pri;
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 
 		rv = fueword32(&m->m_ceilings[0], &ceiling);
 		if (rv == -1) {
 			error = EFAULT;
 			goto out;
 		}
 		ceiling = RTP_PRIO_MAX - ceiling;
 		if (ceiling > RTP_PRIO_MAX) {
 			error = EINVAL;
 			goto out;
 		}
 
 		mtx_lock(&umtx_lock);
 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 			mtx_unlock(&umtx_lock);
 			error = EINVAL;
 			goto out;
 		}
 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 			thread_lock(td);
 			if (uq->uq_inherited_pri < UPRI(td))
 				sched_lend_user_prio(td, uq->uq_inherited_pri);
 			thread_unlock(td);
 		}
 		mtx_unlock(&umtx_lock);
 
 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 		    id | UMUTEX_CONTESTED);
 		/* The address was invalid. */
 		if (rv == -1) {
 			error = EFAULT;
 			break;
 		}
 
 		if (owner == UMUTEX_CONTESTED) {
 			error = 0;
 			break;
 		} else if (owner == UMUTEX_RB_OWNERDEAD) {
 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
 			    &owner, id | UMUTEX_CONTESTED);
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 			if (owner == UMUTEX_RB_OWNERDEAD) {
 				error = EOWNERDEAD; /* success */
 				break;
 			}
 			error = 0;
 		} else if (owner == UMUTEX_RB_NOTRECOV) {
 			error = ENOTRECOVERABLE;
 			break;
 		}
 
 		if (try != 0) {
 			error = EBUSY;
 			break;
 		}
 
 		/*
 		 * If we caught a signal, we have retried and now
 		 * exit immediately.
 		 */
 		if (error != 0)
 			break;
 
 		umtxq_lock(&uq->uq_key);
 		umtxq_insert(uq);
 		umtxq_unbusy(&uq->uq_key);
 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
 		    NULL : &timo);
 		umtxq_remove(uq);
 		umtxq_unlock(&uq->uq_key);
 
 		mtx_lock(&umtx_lock);
 		uq->uq_inherited_pri = old_inherited_pri;
 		pri = PRI_MAX;
 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
 			if (uq2 != NULL) {
 				if (pri > UPRI(uq2->uq_thread))
 					pri = UPRI(uq2->uq_thread);
 			}
 		}
 		if (pri > uq->uq_inherited_pri)
 			pri = uq->uq_inherited_pri;
 		thread_lock(td);
 		sched_lend_user_prio(td, pri);
 		thread_unlock(td);
 		mtx_unlock(&umtx_lock);
 	}
 
 	if (error != 0 && error != EOWNERDEAD) {
 		mtx_lock(&umtx_lock);
 		uq->uq_inherited_pri = old_inherited_pri;
 		pri = PRI_MAX;
 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
 			if (uq2 != NULL) {
 				if (pri > UPRI(uq2->uq_thread))
 					pri = UPRI(uq2->uq_thread);
 			}
 		}
 		if (pri > uq->uq_inherited_pri)
 			pri = uq->uq_inherited_pri;
 		thread_lock(td);
 		sched_lend_user_prio(td, pri);
 		thread_unlock(td);
 		mtx_unlock(&umtx_lock);
 	}
 
 out:
 	umtxq_unbusy_unlocked(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 /*
  * Unlock a PP mutex.
  */
 static int
 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 {
 	struct umtx_key key;
 	struct umtx_q *uq, *uq2;
 	struct umtx_pi *pi;
 	uint32_t id, owner, rceiling;
 	int error, pri, new_inherited_pri, su;
 
 	id = td->td_tid;
 	uq = td->td_umtxq;
 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 
 	/*
 	 * Make sure we own this mtx.
 	 */
 	error = fueword32(&m->m_owner, &owner);
 	if (error == -1)
 		return (EFAULT);
 
 	if ((owner & ~UMUTEX_CONTESTED) != id)
 		return (EPERM);
 
 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 	if (error != 0)
 		return (error);
 
 	if (rceiling == -1)
 		new_inherited_pri = PRI_MAX;
 	else {
 		rceiling = RTP_PRIO_MAX - rceiling;
 		if (rceiling > RTP_PRIO_MAX)
 			return (EINVAL);
 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 	}
 
 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 	    &key)) != 0)
 		return (error);
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	umtxq_unlock(&key);
 	/*
 	 * For priority protected mutex, always set unlocked state
 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
 	 * to lock the mutex, it is necessary because thread priority
 	 * has to be adjusted for such mutex.
 	 */
 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
 	    UMUTEX_CONTESTED);
 
 	umtxq_lock(&key);
 	if (error == 0)
 		umtxq_signal(&key, 1);
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 
 	if (error == -1)
 		error = EFAULT;
 	else {
 		mtx_lock(&umtx_lock);
 		if (su != 0)
 			uq->uq_inherited_pri = new_inherited_pri;
 		pri = PRI_MAX;
 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
 			if (uq2 != NULL) {
 				if (pri > UPRI(uq2->uq_thread))
 					pri = UPRI(uq2->uq_thread);
 			}
 		}
 		if (pri > uq->uq_inherited_pri)
 			pri = uq->uq_inherited_pri;
 		thread_lock(td);
 		sched_lend_user_prio(td, pri);
 		thread_unlock(td);
 		mtx_unlock(&umtx_lock);
 	}
 	umtx_key_release(&key);
 	return (error);
 }
 
 static int
 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
     uint32_t *old_ceiling)
 {
 	struct umtx_q *uq;
 	uint32_t flags, id, owner, save_ceiling;
 	int error, rv, rv1;
 
 	error = fueword32(&m->m_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 		return (EINVAL);
 	if (ceiling > RTP_PRIO_MAX)
 		return (EINVAL);
 	id = td->td_tid;
 	uq = td->td_umtxq;
 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 	    &uq->uq_key)) != 0)
 		return (error);
 	for (;;) {
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 
 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
 		if (rv == -1) {
 			error = EFAULT;
 			break;
 		}
 
 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 		    id | UMUTEX_CONTESTED);
 		if (rv == -1) {
 			error = EFAULT;
 			break;
 		}
 
 		if (owner == UMUTEX_CONTESTED) {
 			rv = suword32(&m->m_ceilings[0], ceiling);
 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
 			break;
 		}
 
 		if ((owner & ~UMUTEX_CONTESTED) == id) {
 			rv = suword32(&m->m_ceilings[0], ceiling);
 			error = rv == 0 ? 0 : EFAULT;
 			break;
 		}
 
 		if (owner == UMUTEX_RB_OWNERDEAD) {
 			error = EOWNERDEAD;
 			break;
 		} else if (owner == UMUTEX_RB_NOTRECOV) {
 			error = ENOTRECOVERABLE;
 			break;
 		}
 
 		/*
 		 * If we caught a signal, we have retried and now
 		 * exit immediately.
 		 */
 		if (error != 0)
 			break;
 
 		/*
 		 * We set the contested bit, sleep. Otherwise the lock changed
 		 * and we need to retry or we lost a race to the thread
 		 * unlocking the umtx.
 		 */
 		umtxq_lock(&uq->uq_key);
 		umtxq_insert(uq);
 		umtxq_unbusy(&uq->uq_key);
 		error = umtxq_sleep(uq, "umtxpp", NULL);
 		umtxq_remove(uq);
 		umtxq_unlock(&uq->uq_key);
 	}
 	umtxq_lock(&uq->uq_key);
 	if (error == 0)
 		umtxq_signal(&uq->uq_key, INT_MAX);
 	umtxq_unbusy(&uq->uq_key);
 	umtxq_unlock(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	if (error == 0 && old_ceiling != NULL) {
 		rv = suword32(old_ceiling, save_ceiling);
 		error = rv == 0 ? 0 : EFAULT;
 	}
 	return (error);
 }
 
 /*
  * Lock a userland POSIX mutex.
  */
 static int
 do_lock_umutex(struct thread *td, struct umutex *m,
     struct _umtx_time *timeout, int mode)
 {
 	uint32_t flags;
 	int error;
 
 	error = fueword32(&m->m_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 
 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 	case 0:
 		error = do_lock_normal(td, m, flags, timeout, mode);
 		break;
 	case UMUTEX_PRIO_INHERIT:
 		error = do_lock_pi(td, m, flags, timeout, mode);
 		break;
 	case UMUTEX_PRIO_PROTECT:
 		error = do_lock_pp(td, m, flags, timeout, mode);
 		break;
 	default:
 		return (EINVAL);
 	}
 	if (timeout == NULL) {
 		if (error == EINTR && mode != _UMUTEX_WAIT)
 			error = ERESTART;
 	} else {
 		/* Timed-locking is not restarted. */
 		if (error == ERESTART)
 			error = EINTR;
 	}
 	return (error);
 }
 
 /*
  * Unlock a userland POSIX mutex.
  */
 static int
 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
 {
 	uint32_t flags;
 	int error;
 
 	error = fueword32(&m->m_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 
 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 	case 0:
 		return (do_unlock_normal(td, m, flags, rb));
 	case UMUTEX_PRIO_INHERIT:
 		return (do_unlock_pi(td, m, flags, rb));
 	case UMUTEX_PRIO_PROTECT:
 		return (do_unlock_pp(td, m, flags, rb));
 	}
 
 	return (EINVAL);
 }
 
 static int
 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
     struct timespec *timeout, u_long wflags)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t flags, clockid, hasw;
 	int error;
 
 	uq = td->td_umtxq;
 	error = fueword32(&cv->c_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	if ((wflags & CVWAIT_CLOCKID) != 0) {
 		error = fueword32(&cv->c_clockid, &clockid);
 		if (error == -1) {
 			umtx_key_release(&uq->uq_key);
 			return (EFAULT);
 		}
 		if (clockid < CLOCK_REALTIME ||
 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
 			/* hmm, only HW clock id will work. */
 			umtx_key_release(&uq->uq_key);
 			return (EINVAL);
 		}
 	} else {
 		clockid = CLOCK_REALTIME;
 	}
 
 	umtxq_lock(&uq->uq_key);
 	umtxq_busy(&uq->uq_key);
 	umtxq_insert(uq);
 	umtxq_unlock(&uq->uq_key);
 
 	/*
 	 * Set c_has_waiters to 1 before releasing user mutex, also
 	 * don't modify cache line when unnecessary.
 	 */
 	error = fueword32(&cv->c_has_waiters, &hasw);
 	if (error == 0 && hasw == 0)
 		suword32(&cv->c_has_waiters, 1);
 
 	umtxq_unbusy_unlocked(&uq->uq_key);
 
 	error = do_unlock_umutex(td, m, false);
 
 	if (timeout != NULL)
 		abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
 		    timeout);
 	
 	umtxq_lock(&uq->uq_key);
 	if (error == 0) {
 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
 		    NULL : &timo);
 	}
 
 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
 		error = 0;
 	else {
 		/*
 		 * This must be timeout,interrupted by signal or
 		 * surprious wakeup, clear c_has_waiter flag when
 		 * necessary.
 		 */
 		umtxq_busy(&uq->uq_key);
 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 			int oldlen = uq->uq_cur_queue->length;
 			umtxq_remove(uq);
 			if (oldlen == 1) {
 				umtxq_unlock(&uq->uq_key);
 				suword32(&cv->c_has_waiters, 0);
 				umtxq_lock(&uq->uq_key);
 			}
 		}
 		umtxq_unbusy(&uq->uq_key);
 		if (error == ERESTART)
 			error = EINTR;
 	}
 
 	umtxq_unlock(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 /*
  * Signal a userland condition variable.
  */
 static int
 do_cv_signal(struct thread *td, struct ucond *cv)
 {
 	struct umtx_key key;
 	int error, cnt, nwake;
 	uint32_t flags;
 
 	error = fueword32(&cv->c_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 		return (error);	
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	cnt = umtxq_count(&key);
 	nwake = umtxq_signal(&key, 1);
 	if (cnt <= nwake) {
 		umtxq_unlock(&key);
 		error = suword32(&cv->c_has_waiters, 0);
 		if (error == -1)
 			error = EFAULT;
 		umtxq_lock(&key);
 	}
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (error);
 }
 
 static int
 do_cv_broadcast(struct thread *td, struct ucond *cv)
 {
 	struct umtx_key key;
 	int error;
 	uint32_t flags;
 
 	error = fueword32(&cv->c_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 		return (error);	
 
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	umtxq_signal(&key, INT_MAX);
 	umtxq_unlock(&key);
 
 	error = suword32(&cv->c_has_waiters, 0);
 	if (error == -1)
 		error = EFAULT;
 
 	umtxq_unbusy_unlocked(&key);
 
 	umtx_key_release(&key);
 	return (error);
 }
 
 static int
 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t flags, wrflags;
 	int32_t state, oldstate;
 	int32_t blocked_readers;
 	int error, error1, rv;
 
 	uq = td->td_umtxq;
 	error = fueword32(&rwlock->rw_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	wrflags = URWLOCK_WRITE_OWNER;
 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 		wrflags |= URWLOCK_WRITE_WAITERS;
 
 	for (;;) {
 		rv = fueword32(&rwlock->rw_state, &state);
 		if (rv == -1) {
 			umtx_key_release(&uq->uq_key);
 			return (EFAULT);
 		}
 
 		/* try to lock it */
 		while (!(state & wrflags)) {
 			if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
 				umtx_key_release(&uq->uq_key);
 				return (EAGAIN);
 			}
 			rv = casueword32(&rwlock->rw_state, state,
 			    &oldstate, state + 1);
 			if (rv == -1) {
 				umtx_key_release(&uq->uq_key);
 				return (EFAULT);
 			}
 			if (oldstate == state) {
 				umtx_key_release(&uq->uq_key);
 				return (0);
 			}
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 			state = oldstate;
 		}
 
 		if (error)
 			break;
 
 		/* grab monitor lock */
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 
 		/*
 		 * re-read the state, in case it changed between the try-lock above
 		 * and the check below
 		 */
 		rv = fueword32(&rwlock->rw_state, &state);
 		if (rv == -1)
 			error = EFAULT;
 
 		/* set read contention bit */
 		while (error == 0 && (state & wrflags) &&
 		    !(state & URWLOCK_READ_WAITERS)) {
 			rv = casueword32(&rwlock->rw_state, state,
 			    &oldstate, state | URWLOCK_READ_WAITERS);
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 			if (oldstate == state)
 				goto sleep;
 			state = oldstate;
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 		}
 		if (error != 0) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			break;
 		}
 
 		/* state is changed while setting flags, restart */
 		if (!(state & wrflags)) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 			continue;
 		}
 
 sleep:
 		/* contention bit is set, before sleeping, increase read waiter count */
 		rv = fueword32(&rwlock->rw_blocked_readers,
 		    &blocked_readers);
 		if (rv == -1) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = EFAULT;
 			break;
 		}
 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 
 		while (state & wrflags) {
 			umtxq_lock(&uq->uq_key);
 			umtxq_insert(uq);
 			umtxq_unbusy(&uq->uq_key);
 
 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
 			    NULL : &timo);
 
 			umtxq_busy(&uq->uq_key);
 			umtxq_remove(uq);
 			umtxq_unlock(&uq->uq_key);
 			if (error)
 				break;
 			rv = fueword32(&rwlock->rw_state, &state);
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 		}
 
 		/* decrease read waiter count, and may clear read contention bit */
 		rv = fueword32(&rwlock->rw_blocked_readers,
 		    &blocked_readers);
 		if (rv == -1) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = EFAULT;
 			break;
 		}
 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 		if (blocked_readers == 1) {
 			rv = fueword32(&rwlock->rw_state, &state);
 			if (rv == -1) {
 				umtxq_unbusy_unlocked(&uq->uq_key);
 				error = EFAULT;
 				break;
 			}
 			for (;;) {
 				rv = casueword32(&rwlock->rw_state, state,
 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
 				if (rv == -1) {
 					error = EFAULT;
 					break;
 				}
 				if (oldstate == state)
 					break;
 				state = oldstate;
 				error1 = umtxq_check_susp(td);
 				if (error1 != 0) {
 					if (error == 0)
 						error = error1;
 					break;
 				}
 			}
 		}
 
 		umtxq_unbusy_unlocked(&uq->uq_key);
 		if (error != 0)
 			break;
 	}
 	umtx_key_release(&uq->uq_key);
 	if (error == ERESTART)
 		error = EINTR;
 	return (error);
 }
 
 static int
 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t flags;
 	int32_t state, oldstate;
 	int32_t blocked_writers;
 	int32_t blocked_readers;
 	int error, error1, rv;
 
 	uq = td->td_umtxq;
 	error = fueword32(&rwlock->rw_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	blocked_readers = 0;
 	for (;;) {
 		rv = fueword32(&rwlock->rw_state, &state);
 		if (rv == -1) {
 			umtx_key_release(&uq->uq_key);
 			return (EFAULT);
 		}
 		while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 			rv = casueword32(&rwlock->rw_state, state,
 			    &oldstate, state | URWLOCK_WRITE_OWNER);
 			if (rv == -1) {
 				umtx_key_release(&uq->uq_key);
 				return (EFAULT);
 			}
 			if (oldstate == state) {
 				umtx_key_release(&uq->uq_key);
 				return (0);
 			}
 			state = oldstate;
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 		}
 
 		if (error) {
 			if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
 			    blocked_readers != 0) {
 				umtxq_lock(&uq->uq_key);
 				umtxq_busy(&uq->uq_key);
 				umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
 				umtxq_unbusy(&uq->uq_key);
 				umtxq_unlock(&uq->uq_key);
 			}
 
 			break;
 		}
 
 		/* grab monitor lock */
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 
 		/*
 		 * re-read the state, in case it changed between the try-lock above
 		 * and the check below
 		 */
 		rv = fueword32(&rwlock->rw_state, &state);
 		if (rv == -1)
 			error = EFAULT;
 
 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
 		    URWLOCK_READER_COUNT(state) != 0) &&
 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
 			rv = casueword32(&rwlock->rw_state, state,
 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 			if (oldstate == state)
 				goto sleep;
 			state = oldstate;
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 		}
 		if (error != 0) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			break;
 		}
 
 		if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = umtxq_check_susp(td);
 			if (error != 0)
 				break;
 			continue;
 		}
 sleep:
 		rv = fueword32(&rwlock->rw_blocked_writers,
 		    &blocked_writers);
 		if (rv == -1) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = EFAULT;
 			break;
 		}
 		suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
 
 		while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
 			umtxq_lock(&uq->uq_key);
 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 			umtxq_unbusy(&uq->uq_key);
 
 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
 			    NULL : &timo);
 
 			umtxq_busy(&uq->uq_key);
 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 			umtxq_unlock(&uq->uq_key);
 			if (error)
 				break;
 			rv = fueword32(&rwlock->rw_state, &state);
 			if (rv == -1) {
 				error = EFAULT;
 				break;
 			}
 		}
 
 		rv = fueword32(&rwlock->rw_blocked_writers,
 		    &blocked_writers);
 		if (rv == -1) {
 			umtxq_unbusy_unlocked(&uq->uq_key);
 			error = EFAULT;
 			break;
 		}
 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 		if (blocked_writers == 1) {
 			rv = fueword32(&rwlock->rw_state, &state);
 			if (rv == -1) {
 				umtxq_unbusy_unlocked(&uq->uq_key);
 				error = EFAULT;
 				break;
 			}
 			for (;;) {
 				rv = casueword32(&rwlock->rw_state, state,
 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
 				if (rv == -1) {
 					error = EFAULT;
 					break;
 				}
 				if (oldstate == state)
 					break;
 				state = oldstate;
 				error1 = umtxq_check_susp(td);
 				/*
 				 * We are leaving the URWLOCK_WRITE_WAITERS
 				 * behind, but this should not harm the
 				 * correctness.
 				 */
 				if (error1 != 0) {
 					if (error == 0)
 						error = error1;
 					break;
 				}
 			}
 			rv = fueword32(&rwlock->rw_blocked_readers,
 			    &blocked_readers);
 			if (rv == -1) {
 				umtxq_unbusy_unlocked(&uq->uq_key);
 				error = EFAULT;
 				break;
 			}
 		} else
 			blocked_readers = 0;
 
 		umtxq_unbusy_unlocked(&uq->uq_key);
 	}
 
 	umtx_key_release(&uq->uq_key);
 	if (error == ERESTART)
 		error = EINTR;
 	return (error);
 }
 
 static int
 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 {
 	struct umtx_q *uq;
 	uint32_t flags;
 	int32_t state, oldstate;
 	int error, rv, q, count;
 
 	uq = td->td_umtxq;
 	error = fueword32(&rwlock->rw_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	error = fueword32(&rwlock->rw_state, &state);
 	if (error == -1) {
 		error = EFAULT;
 		goto out;
 	}
 	if (state & URWLOCK_WRITE_OWNER) {
 		for (;;) {
 			rv = casueword32(&rwlock->rw_state, state, 
 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
 			if (rv == -1) {
 				error = EFAULT;
 				goto out;
 			}
 			if (oldstate != state) {
 				state = oldstate;
 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 					error = EPERM;
 					goto out;
 				}
 				error = umtxq_check_susp(td);
 				if (error != 0)
 					goto out;
 			} else
 				break;
 		}
 	} else if (URWLOCK_READER_COUNT(state) != 0) {
 		for (;;) {
 			rv = casueword32(&rwlock->rw_state, state,
 			    &oldstate, state - 1);
 			if (rv == -1) {
 				error = EFAULT;
 				goto out;
 			}
 			if (oldstate != state) {
 				state = oldstate;
 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
 					error = EPERM;
 					goto out;
 				}
 				error = umtxq_check_susp(td);
 				if (error != 0)
 					goto out;
 			} else
 				break;
 		}
 	} else {
 		error = EPERM;
 		goto out;
 	}
 
 	count = 0;
 
 	if (!(flags & URWLOCK_PREFER_READER)) {
 		if (state & URWLOCK_WRITE_WAITERS) {
 			count = 1;
 			q = UMTX_EXCLUSIVE_QUEUE;
 		} else if (state & URWLOCK_READ_WAITERS) {
 			count = INT_MAX;
 			q = UMTX_SHARED_QUEUE;
 		}
 	} else {
 		if (state & URWLOCK_READ_WAITERS) {
 			count = INT_MAX;
 			q = UMTX_SHARED_QUEUE;
 		} else if (state & URWLOCK_WRITE_WAITERS) {
 			count = 1;
 			q = UMTX_EXCLUSIVE_QUEUE;
 		}
 	}
 
 	if (count) {
 		umtxq_lock(&uq->uq_key);
 		umtxq_busy(&uq->uq_key);
 		umtxq_signal_queue(&uq->uq_key, count, q);
 		umtxq_unbusy(&uq->uq_key);
 		umtxq_unlock(&uq->uq_key);
 	}
 out:
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 static int
 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t flags, count, count1;
 	int error, rv;
 
 	uq = td->td_umtxq;
 	error = fueword32(&sem->_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	umtxq_lock(&uq->uq_key);
 	umtxq_busy(&uq->uq_key);
 	umtxq_insert(uq);
 	umtxq_unlock(&uq->uq_key);
 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
 	if (rv == 0)
 		rv = fueword32(&sem->_count, &count);
 	if (rv == -1 || count != 0) {
 		umtxq_lock(&uq->uq_key);
 		umtxq_unbusy(&uq->uq_key);
 		umtxq_remove(uq);
 		umtxq_unlock(&uq->uq_key);
 		umtx_key_release(&uq->uq_key);
 		return (rv == -1 ? EFAULT : 0);
 	}
 	umtxq_lock(&uq->uq_key);
 	umtxq_unbusy(&uq->uq_key);
 
 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 
 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
 		error = 0;
 	else {
 		umtxq_remove(uq);
 		/* A relative timeout cannot be restarted. */
 		if (error == ERESTART && timeout != NULL &&
 		    (timeout->_flags & UMTX_ABSTIME) == 0)
 			error = EINTR;
 	}
 	umtxq_unlock(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 /*
  * Signal a userland semaphore.
  */
 static int
 do_sem_wake(struct thread *td, struct _usem *sem)
 {
 	struct umtx_key key;
 	int error, cnt;
 	uint32_t flags;
 
 	error = fueword32(&sem->_flags, &flags);
 	if (error == -1)
 		return (EFAULT);
 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 		return (error);	
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	cnt = umtxq_count(&key);
 	if (cnt > 0) {
 		/*
 		 * Check if count is greater than 0, this means the memory is
 		 * still being referenced by user code, so we can safely
 		 * update _has_waiters flag.
 		 */
 		if (cnt == 1) {
 			umtxq_unlock(&key);
 			error = suword32(&sem->_has_waiters, 0);
 			umtxq_lock(&key);
 			if (error == -1)
 				error = EFAULT;
 		}
 		umtxq_signal(&key, 1);
 	}
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (error);
 }
 #endif
 
 static int
 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
 {
 	struct abs_timeout timo;
 	struct umtx_q *uq;
 	uint32_t count, flags;
 	int error, rv;
 
 	uq = td->td_umtxq;
 	flags = fuword32(&sem->_flags);
 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 	if (error != 0)
 		return (error);
 
 	if (timeout != NULL)
 		abs_timeout_init2(&timo, timeout);
 
 	umtxq_lock(&uq->uq_key);
 	umtxq_busy(&uq->uq_key);
 	umtxq_insert(uq);
 	umtxq_unlock(&uq->uq_key);
 	rv = fueword32(&sem->_count, &count);
 	if (rv == -1) {
 		umtxq_lock(&uq->uq_key);
 		umtxq_unbusy(&uq->uq_key);
 		umtxq_remove(uq);
 		umtxq_unlock(&uq->uq_key);
 		umtx_key_release(&uq->uq_key);
 		return (EFAULT);
 	}
 	for (;;) {
 		if (USEM_COUNT(count) != 0) {
 			umtxq_lock(&uq->uq_key);
 			umtxq_unbusy(&uq->uq_key);
 			umtxq_remove(uq);
 			umtxq_unlock(&uq->uq_key);
 			umtx_key_release(&uq->uq_key);
 			return (0);
 		}
 		if (count == USEM_HAS_WAITERS)
 			break;
 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
 		if (rv == -1) {
 			umtxq_lock(&uq->uq_key);
 			umtxq_unbusy(&uq->uq_key);
 			umtxq_remove(uq);
 			umtxq_unlock(&uq->uq_key);
 			umtx_key_release(&uq->uq_key);
 			return (EFAULT);
 		}
 		if (count == 0)
 			break;
 	}
 	umtxq_lock(&uq->uq_key);
 	umtxq_unbusy(&uq->uq_key);
 
 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 
 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
 		error = 0;
 	else {
 		umtxq_remove(uq);
 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
 			/* A relative timeout cannot be restarted. */
 			if (error == ERESTART)
 				error = EINTR;
 			if (error == EINTR) {
 				abs_timeout_update(&timo);
 				timespecsub(&timo.end, &timo.cur,
 				    &timeout->_timeout);
 			}
 		}
 	}
 	umtxq_unlock(&uq->uq_key);
 	umtx_key_release(&uq->uq_key);
 	return (error);
 }
 
 /*
  * Signal a userland semaphore.
  */
 static int
 do_sem2_wake(struct thread *td, struct _usem2 *sem)
 {
 	struct umtx_key key;
 	int error, cnt, rv;
 	uint32_t count, flags;
 
 	rv = fueword32(&sem->_flags, &flags);
 	if (rv == -1)
 		return (EFAULT);
 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 		return (error);	
 	umtxq_lock(&key);
 	umtxq_busy(&key);
 	cnt = umtxq_count(&key);
 	if (cnt > 0) {
 		/*
 		 * If this was the last sleeping thread, clear the waiters
 		 * flag in _count.
 		 */
 		if (cnt == 1) {
 			umtxq_unlock(&key);
 			rv = fueword32(&sem->_count, &count);
 			while (rv != -1 && count & USEM_HAS_WAITERS)
 				rv = casueword32(&sem->_count, count, &count,
 				    count & ~USEM_HAS_WAITERS);
 			if (rv == -1)
 				error = EFAULT;
 			umtxq_lock(&key);
 		}
 
 		umtxq_signal(&key, 1);
 	}
 	umtxq_unbusy(&key);
 	umtxq_unlock(&key);
 	umtx_key_release(&key);
 	return (error);
 }
 
 inline int
 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
 {
 	int error;
 
 	error = copyin(addr, tsp, sizeof(struct timespec));
 	if (error == 0) {
 		if (tsp->tv_sec < 0 ||
 		    tsp->tv_nsec >= 1000000000 ||
 		    tsp->tv_nsec < 0)
 			error = EINVAL;
 	}
 	return (error);
 }
 
 static inline int
 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
 {
 	int error;
 	
 	if (size <= sizeof(struct timespec)) {
 		tp->_clockid = CLOCK_REALTIME;
 		tp->_flags = 0;
 		error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
 	} else 
 		error = copyin(addr, tp, sizeof(struct _umtx_time));
 	if (error != 0)
 		return (error);
 	if (tp->_timeout.tv_sec < 0 ||
 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
 		return (EINVAL);
 	return (0);
 }
 
 static int
 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (EOPNOTSUPP);
 }
 
 static int
 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout, *tm_p;
 	int error;
 
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
 }
 
 static int
 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout, *tm_p;
 	int error;
 
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 }
 
 static int
 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 }
 
 static int
 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 }
 
 #define BATCH_SIZE	128
 static int
 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
 {
 	char *uaddrs[BATCH_SIZE], **upp;
 	int count, error, i, pos, tocopy;
 
 	upp = (char **)uap->obj;
 	error = 0;
 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 	    pos += tocopy) {
 		tocopy = MIN(count, BATCH_SIZE);
 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
 		if (error != 0)
 			break;
 		for (i = 0; i < tocopy; ++i)
 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 		maybe_yield();
 	}
 	return (error);
 }
 
 static int
 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 }
 
 static int
 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
 }
 
 static int
 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
 }
 
 static int
 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 }
 
 static int
 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_wake_umutex(td, uap->obj));
 }
 
 static int
 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_unlock_umutex(td, uap->obj, false));
 }
 
 static int
 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
 }
 
 static int
 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct timespec *ts, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		ts = NULL;
 	else {
 		error = umtx_copyin_timeout(uap->uaddr2, &timeout);
 		if (error != 0)
 			return (error);
 		ts = &timeout;
 	}
 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 }
 
 static int
 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_cv_signal(td, uap->obj));
 }
 
 static int
 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_cv_broadcast(td, uap->obj));
 }
 
 static int
 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 	} else {
 		error = umtx_copyin_umtx_time(uap->uaddr2,
 		   (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 	}
 	return (error);
 }
 
 static int
 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		error = do_rw_wrlock(td, uap->obj, 0);
 	} else {
 		error = umtx_copyin_umtx_time(uap->uaddr2, 
 		   (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 
 		error = do_rw_wrlock(td, uap->obj, &timeout);
 	}
 	return (error);
 }
 
 static int
 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_rw_unlock(td, uap->obj));
 }
 
 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 static int
 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time(
 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_sem_wait(td, uap->obj, tm_p));
 }
 
 static int
 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_sem_wake(td, uap->obj));
 }
 #endif
 
 static int
 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_wake2_umutex(td, uap->obj, uap->val));
 }
 
 static int
 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	size_t uasize;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		uasize = 0;
 		tm_p = NULL;
 	} else {
 		uasize = (size_t)uap->uaddr1;
 		error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	error = do_sem2_wait(td, uap->obj, tm_p);
 	if (error == EINTR && uap->uaddr2 != NULL &&
 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
 	    uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
 		error = copyout(&timeout._timeout,
 		    (struct _umtx_time *)uap->uaddr2 + 1,
 		    sizeof(struct timespec));
 		if (error == 0) {
 			error = EINTR;
 		}
 	}
 
 	return (error);
 }
 
 static int
 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (do_sem2_wake(td, uap->obj));
 }
 
 #define	USHM_OBJ_UMTX(o)						\
     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
 
 #define	USHMF_REG_LINKED	0x0001
 #define	USHMF_OBJ_LINKED	0x0002
 struct umtx_shm_reg {
 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
 	struct umtx_key		ushm_key;
 	struct ucred		*ushm_cred;
 	struct shmfd		*ushm_obj;
 	u_int			ushm_refcnt;
 	u_int			ushm_flags;
 };
 
 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
 
 static uma_zone_t umtx_shm_reg_zone;
 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
 static struct mtx umtx_shm_lock;
 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
 
 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
 
 static void
 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
 {
 	struct umtx_shm_reg_head d;
 	struct umtx_shm_reg *reg, *reg1;
 
 	TAILQ_INIT(&d);
 	mtx_lock(&umtx_shm_lock);
 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
 	mtx_unlock(&umtx_shm_lock);
 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
 		umtx_shm_free_reg(reg);
 	}
 }
 
 static struct task umtx_shm_reg_delfree_task =
     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
 
 static struct umtx_shm_reg *
 umtx_shm_find_reg_locked(const struct umtx_key *key)
 {
 	struct umtx_shm_reg *reg;
 	struct umtx_shm_reg_head *reg_head;
 
 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
 	mtx_assert(&umtx_shm_lock, MA_OWNED);
 	reg_head = &umtx_shm_registry[key->hash];
 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
 		KASSERT(reg->ushm_key.shared,
 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
 		if (reg->ushm_key.info.shared.object ==
 		    key->info.shared.object &&
 		    reg->ushm_key.info.shared.offset ==
 		    key->info.shared.offset) {
 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
 			KASSERT(reg->ushm_refcnt > 0,
 			    ("reg %p refcnt 0 onlist", reg));
 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
 			    ("reg %p not linked", reg));
 			reg->ushm_refcnt++;
 			return (reg);
 		}
 	}
 	return (NULL);
 }
 
 static struct umtx_shm_reg *
 umtx_shm_find_reg(const struct umtx_key *key)
 {
 	struct umtx_shm_reg *reg;
 
 	mtx_lock(&umtx_shm_lock);
 	reg = umtx_shm_find_reg_locked(key);
 	mtx_unlock(&umtx_shm_lock);
 	return (reg);
 }
 
 static void
 umtx_shm_free_reg(struct umtx_shm_reg *reg)
 {
 
 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
 	crfree(reg->ushm_cred);
 	shm_drop(reg->ushm_obj);
 	uma_zfree(umtx_shm_reg_zone, reg);
 }
 
 static bool
 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
 {
 	bool res;
 
 	mtx_assert(&umtx_shm_lock, MA_OWNED);
 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 	reg->ushm_refcnt--;
 	res = reg->ushm_refcnt == 0;
 	if (res || force) {
 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 			    reg, ushm_reg_link);
 			reg->ushm_flags &= ~USHMF_REG_LINKED;
 		}
 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 			LIST_REMOVE(reg, ushm_obj_link);
 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 		}
 	}
 	return (res);
 }
 
 static void
 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
 {
 	vm_object_t object;
 	bool dofree;
 
 	if (force) {
 		object = reg->ushm_obj->shm_object;
 		VM_OBJECT_WLOCK(object);
 		object->flags |= OBJ_UMTXDEAD;
 		VM_OBJECT_WUNLOCK(object);
 	}
 	mtx_lock(&umtx_shm_lock);
 	dofree = umtx_shm_unref_reg_locked(reg, force);
 	mtx_unlock(&umtx_shm_lock);
 	if (dofree)
 		umtx_shm_free_reg(reg);
 }
 
 void
 umtx_shm_object_init(vm_object_t object)
 {
 
 	LIST_INIT(USHM_OBJ_UMTX(object));
 }
 
 void
 umtx_shm_object_terminated(vm_object_t object)
 {
 	struct umtx_shm_reg *reg, *reg1;
 	bool dofree;
 
 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
 		return;
 
 	dofree = false;
 	mtx_lock(&umtx_shm_lock);
 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
 		if (umtx_shm_unref_reg_locked(reg, true)) {
 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
 			    ushm_reg_link);
 			dofree = true;
 		}
 	}
 	mtx_unlock(&umtx_shm_lock);
 	if (dofree)
 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
 }
 
 static int
 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
     struct umtx_shm_reg **res)
 {
 	struct umtx_shm_reg *reg, *reg1;
 	struct ucred *cred;
 	int error;
 
 	reg = umtx_shm_find_reg(key);
 	if (reg != NULL) {
 		*res = reg;
 		return (0);
 	}
 	cred = td->td_ucred;
 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
 		return (ENOMEM);
 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
 	reg->ushm_refcnt = 1;
 	bcopy(key, &reg->ushm_key, sizeof(*key));
 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
 	reg->ushm_cred = crhold(cred);
 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
 	if (error != 0) {
 		umtx_shm_free_reg(reg);
 		return (error);
 	}
 	mtx_lock(&umtx_shm_lock);
 	reg1 = umtx_shm_find_reg_locked(key);
 	if (reg1 != NULL) {
 		mtx_unlock(&umtx_shm_lock);
 		umtx_shm_free_reg(reg);
 		*res = reg1;
 		return (0);
 	}
 	reg->ushm_refcnt++;
 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
 	    ushm_obj_link);
 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
 	mtx_unlock(&umtx_shm_lock);
 	*res = reg;
 	return (0);
 }
 
 static int
 umtx_shm_alive(struct thread *td, void *addr)
 {
 	vm_map_t map;
 	vm_map_entry_t entry;
 	vm_object_t object;
 	vm_pindex_t pindex;
 	vm_prot_t prot;
 	int res, ret;
 	boolean_t wired;
 
 	map = &td->td_proc->p_vmspace->vm_map;
 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
 	    &object, &pindex, &prot, &wired);
 	if (res != KERN_SUCCESS)
 		return (EFAULT);
 	if (object == NULL)
 		ret = EINVAL;
 	else
 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
 	vm_map_lookup_done(map, entry);
 	return (ret);
 }
 
 static void
 umtx_shm_init(void)
 {
 	int i;
 
 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
 	for (i = 0; i < nitems(umtx_shm_registry); i++)
 		TAILQ_INIT(&umtx_shm_registry[i]);
 }
 
 static int
 umtx_shm(struct thread *td, void *addr, u_int flags)
 {
 	struct umtx_key key;
 	struct umtx_shm_reg *reg;
 	struct file *fp;
 	int error, fd;
 
 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
 		return (EINVAL);
 	if ((flags & UMTX_SHM_ALIVE) != 0)
 		return (umtx_shm_alive(td, addr));
 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
 	if (error != 0)
 		return (error);
 	KASSERT(key.shared == 1, ("non-shared key"));
 	if ((flags & UMTX_SHM_CREAT) != 0) {
 		error = umtx_shm_create_reg(td, &key, &reg);
 	} else {
 		reg = umtx_shm_find_reg(&key);
 		if (reg == NULL)
 			error = ESRCH;
 	}
 	umtx_key_release(&key);
 	if (error != 0)
 		return (error);
 	KASSERT(reg != NULL, ("no reg"));
 	if ((flags & UMTX_SHM_DESTROY) != 0) {
 		umtx_shm_unref_reg(reg, true);
 	} else {
 #if 0
 #ifdef MAC
 		error = mac_posixshm_check_open(td->td_ucred,
 		    reg->ushm_obj, FFLAGS(O_RDWR));
 		if (error == 0)
 #endif
 			error = shm_access(reg->ushm_obj, td->td_ucred,
 			    FFLAGS(O_RDWR));
 		if (error == 0)
 #endif
 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
 		if (error == 0) {
 			shm_hold(reg->ushm_obj);
 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
 			    &shm_ops);
 			td->td_retval[0] = fd;
 			fdrop(fp, td);
 		}
 	}
 	umtx_shm_unref_reg(reg, false);
 	return (error);
 }
 
 static int
 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	return (umtx_shm(td, uap->uaddr1, uap->val));
 }
 
 static int
 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
 {
 
 	td->td_rb_list = rbp->robust_list_offset;
 	td->td_rbp_list = rbp->robust_priv_list_offset;
 	td->td_rb_inact = rbp->robust_inact_offset;
 	return (0);
 }
 
 static int
 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct umtx_robust_lists_params rb;
 	int error;
 
 	if (uap->val > sizeof(rb))
 		return (EINVAL);
 	bzero(&rb, sizeof(rb));
 	error = copyin(uap->uaddr1, &rb, uap->val);
 	if (error != 0)
 		return (error);
 	return (umtx_robust_lists(td, &rb));
 }
 
 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
 
 static const _umtx_op_func op_table[] = {
 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
 	[UMTX_OP_WAIT]		= __umtx_op_wait,
 	[UMTX_OP_WAKE]		= __umtx_op_wake,
 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
 #else
 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
 #endif
 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
 	[UMTX_OP_SHM]		= __umtx_op_shm,
 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
 };
 
 int
 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 {
 
 	if ((unsigned)uap->op < nitems(op_table))
 		return (*op_table[uap->op])(td, uap);
 	return (EINVAL);
 }
 
 #ifdef COMPAT_FREEBSD32
 
 struct timespec32 {
 	int32_t tv_sec;
 	int32_t tv_nsec;
 };
 
 struct umtx_time32 {
 	struct	timespec32	timeout;
 	uint32_t		flags;
 	uint32_t		clockid;
 };
 
 static inline int
 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
 {
 	struct timespec32 ts32;
 	int error;
 
 	error = copyin(addr, &ts32, sizeof(struct timespec32));
 	if (error == 0) {
 		if (ts32.tv_sec < 0 ||
 		    ts32.tv_nsec >= 1000000000 ||
 		    ts32.tv_nsec < 0)
 			error = EINVAL;
 		else {
 			tsp->tv_sec = ts32.tv_sec;
 			tsp->tv_nsec = ts32.tv_nsec;
 		}
 	}
 	return (error);
 }
 
 static inline int
 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
 {
 	struct umtx_time32 t32;
 	int error;
 	
 	t32.clockid = CLOCK_REALTIME;
 	t32.flags   = 0;
 	if (size <= sizeof(struct timespec32))
 		error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
 	else 
 		error = copyin(addr, &t32, sizeof(struct umtx_time32));
 	if (error != 0)
 		return (error);
 	if (t32.timeout.tv_sec < 0 ||
 	    t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
 		return (EINVAL);
 	tp->_timeout.tv_sec = t32.timeout.tv_sec;
 	tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
 	tp->_flags = t32.flags;
 	tp->_clockid = t32.clockid;
 	return (0);
 }
 
 static int
 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2,
 			(size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 }
 
 static int
 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2,
 			    (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
 }
 
 static int
 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2, 
 		    (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 }
 
 static int
 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct timespec *ts, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		ts = NULL;
 	else {
 		error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
 		if (error != 0)
 			return (error);
 		ts = &timeout;
 	}
 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 }
 
 static int
 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 	} else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2,
 		    (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 	}
 	return (error);
 }
 
 static int
 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		error = do_rw_wrlock(td, uap->obj, 0);
 	} else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2,
 		    (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		error = do_rw_wrlock(td, uap->obj, &timeout);
 	}
 	return (error);
 }
 
 static int
 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time32(
 		    uap->uaddr2, (size_t)uap->uaddr1,&timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 }
 
 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 static int
 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL)
 		tm_p = NULL;
 	else {
 		error = umtx_copyin_umtx_time32(uap->uaddr2,
 		    (size_t)uap->uaddr1, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	return (do_sem_wait(td, uap->obj, tm_p));
 }
 #endif
 
 static int
 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct _umtx_time *tm_p, timeout;
 	size_t uasize;
 	int error;
 
 	/* Allow a null timespec (wait forever). */
 	if (uap->uaddr2 == NULL) {
 		uasize = 0;
 		tm_p = NULL;
 	} else {
 		uasize = (size_t)uap->uaddr1;
 		error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
 		if (error != 0)
 			return (error);
 		tm_p = &timeout;
 	}
 	error = do_sem2_wait(td, uap->obj, tm_p);
 	if (error == EINTR && uap->uaddr2 != NULL &&
 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
 	    uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
 		struct timespec32 remain32 = {
 			.tv_sec = timeout._timeout.tv_sec,
 			.tv_nsec = timeout._timeout.tv_nsec
 		};
 		error = copyout(&remain32,
 		    (struct umtx_time32 *)uap->uaddr2 + 1,
 		    sizeof(struct timespec32));
 		if (error == 0) {
 			error = EINTR;
 		}
 	}
 
 	return (error);
 }
 
 static int
 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
 {
 	uint32_t uaddrs[BATCH_SIZE], **upp;
 	int count, error, i, pos, tocopy;
 
 	upp = (uint32_t **)uap->obj;
 	error = 0;
 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 	    pos += tocopy) {
 		tocopy = MIN(count, BATCH_SIZE);
 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
 		if (error != 0)
 			break;
 		for (i = 0; i < tocopy; ++i)
 			kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
 			    INT_MAX, 1);
 		maybe_yield();
 	}
 	return (error);
 }
 
 struct umtx_robust_lists_params_compat32 {
 	uint32_t	robust_list_offset;
 	uint32_t	robust_priv_list_offset;
 	uint32_t	robust_inact_offset;
 };
 
 static int
 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
 {
 	struct umtx_robust_lists_params rb;
 	struct umtx_robust_lists_params_compat32 rb32;
 	int error;
 
 	if (uap->val > sizeof(rb32))
 		return (EINVAL);
 	bzero(&rb, sizeof(rb));
 	bzero(&rb32, sizeof(rb32));
 	error = copyin(uap->uaddr1, &rb32, uap->val);
 	if (error != 0)
 		return (error);
 	rb.robust_list_offset = rb32.robust_list_offset;
 	rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
 	rb.robust_inact_offset = rb32.robust_inact_offset;
 	return (umtx_robust_lists(td, &rb));
 }
 
 static const _umtx_op_func op_table_compat32[] = {
 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
 	[UMTX_OP_WAIT]		= __umtx_op_wait_compat32,
 	[UMTX_OP_WAKE]		= __umtx_op_wake,
 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex_compat32,
 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait_compat32,
 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_compat32,
 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock_compat32,
 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock_compat32,
 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex_compat32,
 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait_compat32,
 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
 #else
 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
 #endif
 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private32,
 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait_compat32,
 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
 	[UMTX_OP_SHM]		= __umtx_op_shm,
 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists_compat32,
 };
 
 int
 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
 {
 
 	if ((unsigned)uap->op < nitems(op_table_compat32)) {
 		return (*op_table_compat32[uap->op])(td,
 		    (struct _umtx_op_args *)uap);
 	}
 	return (EINVAL);
 }
 #endif
 
 void
 umtx_thread_init(struct thread *td)
 {
 
 	td->td_umtxq = umtxq_alloc();
 	td->td_umtxq->uq_thread = td;
 }
 
 void
 umtx_thread_fini(struct thread *td)
 {
 
 	umtxq_free(td->td_umtxq);
 }
 
 /*
  * It will be called when new thread is created, e.g fork().
  */
 void
 umtx_thread_alloc(struct thread *td)
 {
 	struct umtx_q *uq;
 
 	uq = td->td_umtxq;
 	uq->uq_inherited_pri = PRI_MAX;
 
 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 }
 
 /*
  * exec() hook.
  *
  * Clear robust lists for all process' threads, not delaying the
  * cleanup to thread_exit hook, since the relevant address space is
  * destroyed right now.
  */
 static void
 umtx_exec_hook(void *arg __unused, struct proc *p,
     struct image_params *imgp __unused)
 {
 	struct thread *td;
 
 	KASSERT(p == curproc, ("need curproc"));
-	PROC_LOCK(p);
 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
 	    ("curproc must be single-threaded"));
+	/*
+	 * There is no need to lock the list as only this thread can be
+	 * running.
+	 */
 	FOREACH_THREAD_IN_PROC(p, td) {
 		KASSERT(td == curthread ||
 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
 		    ("running thread %p %p", p, td));
-		PROC_UNLOCK(p);
 		umtx_thread_cleanup(td);
-		PROC_LOCK(p);
 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
 	}
-	PROC_UNLOCK(p);
 }
 
 /*
  * thread_exit() hook.
  */
 void
 umtx_thread_exit(struct thread *td)
 {
 
 	umtx_thread_cleanup(td);
 }
 
 static int
 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
 {
 	u_long res1;
 #ifdef COMPAT_FREEBSD32
 	uint32_t res32;
 #endif
 	int error;
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 		error = fueword32((void *)ptr, &res32);
 		if (error == 0)
 			res1 = res32;
 	} else
 #endif
 	{
 		error = fueword((void *)ptr, &res1);
 	}
 	if (error == 0)
 		*res = res1;
 	else
 		error = EFAULT;
 	return (error);
 }
 
 static void
 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
 {
 #ifdef COMPAT_FREEBSD32
 	struct umutex32 m32;
 
 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 		memcpy(&m32, m, sizeof(m32));
 		*rb_list = m32.m_rb_lnk;
 	} else
 #endif
 		*rb_list = m->m_rb_lnk;
 }
 
 static int
 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
 {
 	struct umutex m;
 	int error;
 
 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
 	error = copyin((void *)rbp, &m, sizeof(m));
 	if (error != 0)
 		return (error);
 	if (rb_list != NULL)
 		umtx_read_rb_list(td, &m, rb_list);
 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
 		return (EINVAL);
 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
 		/* inact is cleared after unlock, allow the inconsistency */
 		return (inact ? 0 : EINVAL);
 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
 }
 
 static void
 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
     const char *name)
 {
 	int error, i;
 	uintptr_t rbp;
 	bool inact;
 
 	if (rb_list == 0)
 		return;
 	error = umtx_read_uptr(td, rb_list, &rbp);
 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
 		if (rbp == *rb_inact) {
 			inact = true;
 			*rb_inact = 0;
 		} else
 			inact = false;
 		error = umtx_handle_rb(td, rbp, &rbp, inact);
 	}
 	if (i == umtx_max_rb && umtx_verbose_rb) {
 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
 	}
 	if (error != 0 && umtx_verbose_rb) {
 		uprintf("comm %s pid %d: handling %srb error %d\n",
 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
 	}
 }
 
 /*
  * Clean up umtx data.
  */
 static void
 umtx_thread_cleanup(struct thread *td)
 {
 	struct umtx_q *uq;
 	struct umtx_pi *pi;
 	uintptr_t rb_inact;
 
 	/*
 	 * Disown pi mutexes.
 	 */
 	uq = td->td_umtxq;
 	if (uq != NULL) {
-		mtx_lock(&umtx_lock);
-		uq->uq_inherited_pri = PRI_MAX;
-		while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
-			pi->pi_owner = NULL;
-			TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
+		if (uq->uq_inherited_pri != PRI_MAX ||
+		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
+			mtx_lock(&umtx_lock);
+			uq->uq_inherited_pri = PRI_MAX;
+			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
+				pi->pi_owner = NULL;
+				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
+			}
+			mtx_unlock(&umtx_lock);
 		}
-		mtx_unlock(&umtx_lock);
-		thread_lock(td);
-		sched_lend_user_prio(td, PRI_MAX);
-		thread_unlock(td);
+		sched_lend_user_prio_cond(td, PRI_MAX);
 	}
+
+	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
+		return;
 
 	/*
 	 * Handle terminated robust mutexes.  Must be done after
 	 * robust pi disown, otherwise unlock could see unowned
 	 * entries.
 	 */
 	rb_inact = td->td_rb_inact;
 	if (rb_inact != 0)
 		(void)umtx_read_uptr(td, rb_inact, &rb_inact);
 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
 	if (rb_inact != 0)
 		(void)umtx_handle_rb(td, rb_inact, NULL, true);
 }
Index: head/sys/kern/sched_4bsd.c
===================================================================
--- head/sys/kern/sched_4bsd.c	(revision 347354)
+++ head/sys/kern/sched_4bsd.c	(revision 347355)
@@ -1,1768 +1,1789 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1990, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_hwpmc_hooks.h"
 #include "opt_sched.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/cpuset.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/kthread.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/resourcevar.h>
 #include <sys/sched.h>
 #include <sys/sdt.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 #include <sys/sx.h>
 #include <sys/turnstile.h>
 #include <sys/umtx.h>
 #include <machine/pcb.h>
 #include <machine/smp.h>
 
 #ifdef HWPMC_HOOKS
 #include <sys/pmckern.h>
 #endif
 
 #ifdef KDTRACE_HOOKS
 #include <sys/dtrace_bsd.h>
 int				dtrace_vtime_active;
 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
 #endif
 
 /*
  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
  * the range 100-256 Hz (approximately).
  */
 #define	ESTCPULIM(e) \
     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
 #ifdef SMP
 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
 #else
 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
 #endif
 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
 
 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
 
 /*
  * The schedulable entity that runs a context.
  * This is  an extension to the thread structure and is tailored to
  * the requirements of this scheduler.
  * All fields are protected by the scheduler lock.
  */
 struct td_sched {
 	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
 	u_int		ts_estcpu;	/* Estimated cpu utilization. */
 	int		ts_cpticks;	/* Ticks of cpu time. */
 	int		ts_slptime;	/* Seconds !RUNNING. */
 	int		ts_slice;	/* Remaining part of time slice. */
 	int		ts_flags;
 	struct runq	*ts_runq;	/* runq the thread is currently on */
 #ifdef KTR
 	char		ts_name[TS_NAME_LEN];
 #endif
 };
 
 /* flags kept in td_flags */
 #define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
 #define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
 
 /* flags kept in ts_flags */
 #define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
 
 #define SKE_RUNQ_PCPU(ts)						\
     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
 
 #define	THREAD_CAN_SCHED(td, cpu)	\
     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
 
 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
     sizeof(struct thread0_storage),
     "increase struct thread0_storage.t0st_sched size");
 
 static struct mtx sched_lock;
 
 static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
 static int	sched_tdcnt;	/* Total runnable threads in the system. */
 static int	sched_slice = 12; /* Thread run time before rescheduling. */
 
 static void	setup_runqs(void);
 static void	schedcpu(void);
 static void	schedcpu_thread(void);
 static void	sched_priority(struct thread *td, u_char prio);
 static void	sched_setup(void *dummy);
 static void	maybe_resched(struct thread *td);
 static void	updatepri(struct thread *td);
 static void	resetpriority(struct thread *td);
 static void	resetpriority_thread(struct thread *td);
 #ifdef SMP
 static int	sched_pickcpu(struct thread *td);
 static int	forward_wakeup(int cpunum);
 static void	kick_other_cpu(int pri, int cpuid);
 #endif
 
 static struct kproc_desc sched_kp = {
         "schedcpu",
         schedcpu_thread,
         NULL
 };
 SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
     &sched_kp);
 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
 
 static void sched_initticks(void *dummy);
 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
     NULL);
 
 /*
  * Global run queue.
  */
 static struct runq runq;
 
 #ifdef SMP
 /*
  * Per-CPU run queues
  */
 static struct runq runq_pcpu[MAXCPU];
 long runq_length[MAXCPU];
 
 static cpuset_t idle_cpus_mask;
 #endif
 
 struct pcpuidlestat {
 	u_int idlecalls;
 	u_int oldidlecalls;
 };
 DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
 
 static void
 setup_runqs(void)
 {
 #ifdef SMP
 	int i;
 
 	for (i = 0; i < MAXCPU; ++i)
 		runq_init(&runq_pcpu[i]);
 #endif
 
 	runq_init(&runq);
 }
 
 static int
 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 {
 	int error, new_val, period;
 
 	period = 1000000 / realstathz;
 	new_val = period * sched_slice;
 	error = sysctl_handle_int(oidp, &new_val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (new_val <= 0)
 		return (EINVAL);
 	sched_slice = imax(1, (new_val + period / 2) / period);
 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 	    realstathz);
 	return (0);
 }
 
 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
 
 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
     "Scheduler name");
 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
     NULL, 0, sysctl_kern_quantum, "I",
     "Quantum for timeshare threads in microseconds");
 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
     "Quantum for timeshare threads in stathz ticks");
 #ifdef SMP
 /* Enable forwarding of wakeups to all other cpus */
 static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
     "Kernel SMP");
 
 static int runq_fuzz = 1;
 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
 
 static int forward_wakeup_enabled = 1;
 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
 	   &forward_wakeup_enabled, 0,
 	   "Forwarding of wakeup to idle CPUs");
 
 static int forward_wakeups_requested = 0;
 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
 	   &forward_wakeups_requested, 0,
 	   "Requests for Forwarding of wakeup to idle CPUs");
 
 static int forward_wakeups_delivered = 0;
 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
 	   &forward_wakeups_delivered, 0,
 	   "Completed Forwarding of wakeup to idle CPUs");
 
 static int forward_wakeup_use_mask = 1;
 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
 	   &forward_wakeup_use_mask, 0,
 	   "Use the mask of idle cpus");
 
 static int forward_wakeup_use_loop = 0;
 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
 	   &forward_wakeup_use_loop, 0,
 	   "Use a loop to find idle cpus");
 
 #endif
 #if 0
 static int sched_followon = 0;
 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
 	   &sched_followon, 0,
 	   "allow threads to share a quantum");
 #endif
 
 SDT_PROVIDER_DEFINE(sched);
 
 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
     "struct proc *", "uint8_t");
 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
     "struct proc *", "void *");
 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
     "struct proc *", "void *", "int");
 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
     "struct proc *", "uint8_t", "struct thread *");
 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
     "struct proc *");
 SDT_PROBE_DEFINE(sched, , , on__cpu);
 SDT_PROBE_DEFINE(sched, , , remain__cpu);
 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
     "struct proc *");
 
 static __inline void
 sched_load_add(void)
 {
 
 	sched_tdcnt++;
 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
 }
 
 static __inline void
 sched_load_rem(void)
 {
 
 	sched_tdcnt--;
 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
 }
 /*
  * Arrange to reschedule if necessary, taking the priorities and
  * schedulers into account.
  */
 static void
 maybe_resched(struct thread *td)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	if (td->td_priority < curthread->td_priority)
 		curthread->td_flags |= TDF_NEEDRESCHED;
 }
 
 /*
  * This function is called when a thread is about to be put on run queue
  * because it has been made runnable or its priority has been adjusted.  It
  * determines if the new thread should preempt the current thread.  If so,
  * it sets td_owepreempt to request a preemption.
  */
 int
 maybe_preempt(struct thread *td)
 {
 #ifdef PREEMPTION
 	struct thread *ctd;
 	int cpri, pri;
 
 	/*
 	 * The new thread should not preempt the current thread if any of the
 	 * following conditions are true:
 	 *
 	 *  - The kernel is in the throes of crashing (panicstr).
 	 *  - The current thread has a higher (numerically lower) or
 	 *    equivalent priority.  Note that this prevents curthread from
 	 *    trying to preempt to itself.
 	 *  - The current thread has an inhibitor set or is in the process of
 	 *    exiting.  In this case, the current thread is about to switch
 	 *    out anyways, so there's no point in preempting.  If we did,
 	 *    the current thread would not be properly resumed as well, so
 	 *    just avoid that whole landmine.
 	 *  - If the new thread's priority is not a realtime priority and
 	 *    the current thread's priority is not an idle priority and
 	 *    FULL_PREEMPTION is disabled.
 	 *
 	 * If all of these conditions are false, but the current thread is in
 	 * a nested critical section, then we have to defer the preemption
 	 * until we exit the critical section.  Otherwise, switch immediately
 	 * to the new thread.
 	 */
 	ctd = curthread;
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT((td->td_inhibitors == 0),
 			("maybe_preempt: trying to run inhibited thread"));
 	pri = td->td_priority;
 	cpri = ctd->td_priority;
 	if (panicstr != NULL || pri >= cpri /* || dumping */ ||
 	    TD_IS_INHIBITED(ctd))
 		return (0);
 #ifndef FULL_PREEMPTION
 	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
 		return (0);
 #endif
 
 	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
 	ctd->td_owepreempt = 1;
 	return (1);
 #else
 	return (0);
 #endif
 }
 
 /*
  * Constants for digital decay and forget:
  *	90% of (ts_estcpu) usage in 5 * loadav time
  *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
  *          Note that, as ps(1) mentions, this can let percentages
  *          total over 100% (I've seen 137.9% for 3 processes).
  *
  * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
  *
  * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
  * That is, the system wants to compute a value of decay such
  * that the following for loop:
  * 	for (i = 0; i < (5 * loadavg); i++)
  * 		ts_estcpu *= decay;
  * will compute
  * 	ts_estcpu *= 0.1;
  * for all values of loadavg:
  *
  * Mathematically this loop can be expressed by saying:
  * 	decay ** (5 * loadavg) ~= .1
  *
  * The system computes decay as:
  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
  *
  * We wish to prove that the system's computation of decay
  * will always fulfill the equation:
  * 	decay ** (5 * loadavg) ~= .1
  *
  * If we compute b as:
  * 	b = 2 * loadavg
  * then
  * 	decay = b / (b + 1)
  *
  * We now need to prove two things:
  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  *
  * Facts:
  *         For x close to zero, exp(x) =~ 1 + x, since
  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  *         For x close to zero, ln(1+x) =~ x, since
  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  *         ln(.1) =~ -2.30
  *
  * Proof of (1):
  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  *	solving for factor,
  *      ln(factor) =~ (-2.30/5*loadav), or
  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  *
  * Proof of (2):
  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  *	solving for power,
  *      power*ln(b/(b+1)) =~ -2.30, or
  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  *
  * Actual power values for the implemented algorithm are as follows:
  *      loadav: 1       2       3       4
  *      power:  5.68    10.32   14.94   19.55
  */
 
 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
 #define	loadfactor(loadav)	(2 * (loadav))
 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
 
 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
 
 /*
  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  *
  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  *
  * If you don't want to bother with the faster/more-accurate formula, you
  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  * (more general) method of calculating the %age of CPU used by a process.
  */
 #define	CCPU_SHIFT	11
 
 /*
  * Recompute process priorities, every hz ticks.
  * MP-safe, called without the Giant mutex.
  */
 /* ARGSUSED */
 static void
 schedcpu(void)
 {
 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
 	struct thread *td;
 	struct proc *p;
 	struct td_sched *ts;
 	int awake;
 
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		PROC_LOCK(p);
 		if (p->p_state == PRS_NEW) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		FOREACH_THREAD_IN_PROC(p, td) {
 			awake = 0;
 			ts = td_get_sched(td);
 			thread_lock(td);
 			/*
 			 * Increment sleep time (if sleeping).  We
 			 * ignore overflow, as above.
 			 */
 			/*
 			 * The td_sched slptimes are not touched in wakeup
 			 * because the thread may not HAVE everything in
 			 * memory? XXX I think this is out of date.
 			 */
 			if (TD_ON_RUNQ(td)) {
 				awake = 1;
 				td->td_flags &= ~TDF_DIDRUN;
 			} else if (TD_IS_RUNNING(td)) {
 				awake = 1;
 				/* Do not clear TDF_DIDRUN */
 			} else if (td->td_flags & TDF_DIDRUN) {
 				awake = 1;
 				td->td_flags &= ~TDF_DIDRUN;
 			}
 
 			/*
 			 * ts_pctcpu is only for ps and ttyinfo().
 			 */
 			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
 			/*
 			 * If the td_sched has been idle the entire second,
 			 * stop recalculating its priority until
 			 * it wakes up.
 			 */
 			if (ts->ts_cpticks != 0) {
 #if	(FSHIFT >= CCPU_SHIFT)
 				ts->ts_pctcpu += (realstathz == 100)
 				    ? ((fixpt_t) ts->ts_cpticks) <<
 				    (FSHIFT - CCPU_SHIFT) :
 				    100 * (((fixpt_t) ts->ts_cpticks)
 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
 #else
 				ts->ts_pctcpu += ((FSCALE - ccpu) *
 				    (ts->ts_cpticks *
 				    FSCALE / realstathz)) >> FSHIFT;
 #endif
 				ts->ts_cpticks = 0;
 			}
 			/*
 			 * If there are ANY running threads in this process,
 			 * then don't count it as sleeping.
 			 * XXX: this is broken.
 			 */
 			if (awake) {
 				if (ts->ts_slptime > 1) {
 					/*
 					 * In an ideal world, this should not
 					 * happen, because whoever woke us
 					 * up from the long sleep should have
 					 * unwound the slptime and reset our
 					 * priority before we run at the stale
 					 * priority.  Should KASSERT at some
 					 * point when all the cases are fixed.
 					 */
 					updatepri(td);
 				}
 				ts->ts_slptime = 0;
 			} else
 				ts->ts_slptime++;
 			if (ts->ts_slptime > 1) {
 				thread_unlock(td);
 				continue;
 			}
 			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
 		      	resetpriority(td);
 			resetpriority_thread(td);
 			thread_unlock(td);
 		}
 		PROC_UNLOCK(p);
 	}
 	sx_sunlock(&allproc_lock);
 }
 
 /*
  * Main loop for a kthread that executes schedcpu once a second.
  */
 static void
 schedcpu_thread(void)
 {
 
 	for (;;) {
 		schedcpu();
 		pause("-", hz);
 	}
 }
 
 /*
  * Recalculate the priority of a process after it has slept for a while.
  * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
  * least six times the loadfactor will decay ts_estcpu to zero.
  */
 static void
 updatepri(struct thread *td)
 {
 	struct td_sched *ts;
 	fixpt_t loadfac;
 	unsigned int newcpu;
 
 	ts = td_get_sched(td);
 	loadfac = loadfactor(averunnable.ldavg[0]);
 	if (ts->ts_slptime > 5 * loadfac)
 		ts->ts_estcpu = 0;
 	else {
 		newcpu = ts->ts_estcpu;
 		ts->ts_slptime--;	/* was incremented in schedcpu() */
 		while (newcpu && --ts->ts_slptime)
 			newcpu = decay_cpu(loadfac, newcpu);
 		ts->ts_estcpu = newcpu;
 	}
 }
 
 /*
  * Compute the priority of a process when running in user mode.
  * Arrange to reschedule if the resulting priority is better
  * than that of the current process.
  */
 static void
 resetpriority(struct thread *td)
 {
 	u_int newpriority;
 
 	if (td->td_pri_class != PRI_TIMESHARE)
 		return;
 	newpriority = PUSER +
 	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
 	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
 	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
 	    PRI_MAX_TIMESHARE);
 	sched_user_prio(td, newpriority);
 }
 
 /*
  * Update the thread's priority when the associated process's user
  * priority changes.
  */
 static void
 resetpriority_thread(struct thread *td)
 {
 
 	/* Only change threads with a time sharing user priority. */
 	if (td->td_priority < PRI_MIN_TIMESHARE ||
 	    td->td_priority > PRI_MAX_TIMESHARE)
 		return;
 
 	/* XXX the whole needresched thing is broken, but not silly. */
 	maybe_resched(td);
 
 	sched_prio(td, td->td_user_pri);
 }
 
 /* ARGSUSED */
 static void
 sched_setup(void *dummy)
 {
 
 	setup_runqs();
 
 	/* Account for thread0. */
 	sched_load_add();
 }
 
 /*
  * This routine determines time constants after stathz and hz are setup.
  */
 static void
 sched_initticks(void *dummy)
 {
 
 	realstathz = stathz ? stathz : hz;
 	sched_slice = realstathz / 10;	/* ~100ms */
 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 	    realstathz);
 }
 
 /* External interfaces start here */
 
 /*
  * Very early in the boot some setup of scheduler-specific
  * parts of proc0 and of some scheduler resources needs to be done.
  * Called from:
  *  proc0_init()
  */
 void
 schedinit(void)
 {
 
 	/*
 	 * Set up the scheduler specific parts of thread0.
 	 */
 	thread0.td_lock = &sched_lock;
 	td_get_sched(&thread0)->ts_slice = sched_slice;
 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
 }
 
 int
 sched_runnable(void)
 {
 #ifdef SMP
 	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
 #else
 	return runq_check(&runq);
 #endif
 }
 
 int
 sched_rr_interval(void)
 {
 
 	/* Convert sched_slice from stathz to hz. */
 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 }
 
 /*
  * We adjust the priority of the current process.  The priority of a
  * process gets worse as it accumulates CPU time.  The cpu usage
  * estimator (ts_estcpu) is increased here.  resetpriority() will
  * compute a different priority each time ts_estcpu increases by
  * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
  * cpu usage estimator ramps up quite quickly when the process is
  * running (linearly), and decays away exponentially, at a rate which
  * is proportionally slower when the system is busy.  The basic
  * principle is that the system will 90% forget that the process used
  * a lot of CPU time in 5 * loadav seconds.  This causes the system to
  * favor processes which haven't run much recently, and to round-robin
  * among other processes.
  */
 void
 sched_clock(struct thread *td)
 {
 	struct pcpuidlestat *stat;
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 
 	ts->ts_cpticks++;
 	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
 	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
 		resetpriority(td);
 		resetpriority_thread(td);
 	}
 
 	/*
 	 * Force a context switch if the current thread has used up a full
 	 * time slice (default is 100ms).
 	 */
 	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
 		ts->ts_slice = sched_slice;
 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 	}
 
 	stat = DPCPU_PTR(idlestat);
 	stat->oldidlecalls = stat->idlecalls;
 	stat->idlecalls = 0;
 }
 
 /*
  * Charge child's scheduling CPU usage to parent.
  */
 void
 sched_exit(struct proc *p, struct thread *td)
 {
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
 	    "prio:%d", td->td_priority);
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
 }
 
 void
 sched_exit_thread(struct thread *td, struct thread *child)
 {
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
 	    "prio:%d", child->td_priority);
 	thread_lock(td);
 	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
 	    td_get_sched(child)->ts_estcpu);
 	thread_unlock(td);
 	thread_lock(child);
 	if ((child->td_flags & TDF_NOLOAD) == 0)
 		sched_load_rem();
 	thread_unlock(child);
 }
 
 void
 sched_fork(struct thread *td, struct thread *childtd)
 {
 	sched_fork_thread(td, childtd);
 }
 
 void
 sched_fork_thread(struct thread *td, struct thread *childtd)
 {
 	struct td_sched *ts, *tsc;
 
 	childtd->td_oncpu = NOCPU;
 	childtd->td_lastcpu = NOCPU;
 	childtd->td_lock = &sched_lock;
 	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
 	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
 	childtd->td_priority = childtd->td_base_pri;
 	ts = td_get_sched(childtd);
 	bzero(ts, sizeof(*ts));
 	tsc = td_get_sched(td);
 	ts->ts_estcpu = tsc->ts_estcpu;
 	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
 	ts->ts_slice = 1;
 }
 
 void
 sched_nice(struct proc *p, int nice)
 {
 	struct thread *td;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	p->p_nice = nice;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		thread_lock(td);
 		resetpriority(td);
 		resetpriority_thread(td);
 		thread_unlock(td);
 	}
 }
 
 void
 sched_class(struct thread *td, int class)
 {
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	td->td_pri_class = class;
 }
 
 /*
  * Adjust the priority of a thread.
  */
 static void
 sched_priority(struct thread *td, u_char prio)
 {
 
 
 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
 	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
 	    sched_tdname(curthread));
 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 	if (td != curthread && prio > td->td_priority) {
 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 		    curthread);
 	}
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	if (td->td_priority == prio)
 		return;
 	td->td_priority = prio;
 	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
 		sched_rem(td);
 		sched_add(td, SRQ_BORING);
 	}
 }
 
 /*
  * Update a thread's priority when it is lent another thread's
  * priority.
  */
 void
 sched_lend_prio(struct thread *td, u_char prio)
 {
 
 	td->td_flags |= TDF_BORROWING;
 	sched_priority(td, prio);
 }
 
 /*
  * Restore a thread's priority when priority propagation is
  * over.  The prio argument is the minimum priority the thread
  * needs to have to satisfy other possible priority lending
  * requests.  If the thread's regulary priority is less
  * important than prio the thread will keep a priority boost
  * of prio.
  */
 void
 sched_unlend_prio(struct thread *td, u_char prio)
 {
 	u_char base_pri;
 
 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
 		base_pri = td->td_user_pri;
 	else
 		base_pri = td->td_base_pri;
 	if (prio >= base_pri) {
 		td->td_flags &= ~TDF_BORROWING;
 		sched_prio(td, base_pri);
 	} else
 		sched_lend_prio(td, prio);
 }
 
 void
 sched_prio(struct thread *td, u_char prio)
 {
 	u_char oldprio;
 
 	/* First, update the base priority. */
 	td->td_base_pri = prio;
 
 	/*
 	 * If the thread is borrowing another thread's priority, don't ever
 	 * lower the priority.
 	 */
 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 		return;
 
 	/* Change the real priority. */
 	oldprio = td->td_priority;
 	sched_priority(td, prio);
 
 	/*
 	 * If the thread is on a turnstile, then let the turnstile update
 	 * its state.
 	 */
 	if (TD_ON_LOCK(td) && oldprio != prio)
 		turnstile_adjust(td, oldprio);
 }
 
 void
 sched_user_prio(struct thread *td, u_char prio)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	td->td_base_user_pri = prio;
 	if (td->td_lend_user_pri <= prio)
 		return;
 	td->td_user_pri = prio;
 }
 
 void
 sched_lend_user_prio(struct thread *td, u_char prio)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	td->td_lend_user_pri = prio;
 	td->td_user_pri = min(prio, td->td_base_user_pri);
 	if (td->td_priority > td->td_user_pri)
 		sched_prio(td, td->td_user_pri);
 	else if (td->td_priority != td->td_user_pri)
 		td->td_flags |= TDF_NEEDRESCHED;
 }
 
+/*
+ * Like the above but first check if there is anything to do.
+ */
+void
+sched_lend_user_prio_cond(struct thread *td, u_char prio)
+{
+
+	if (td->td_lend_user_pri != prio)
+		goto lend;
+	if (td->td_user_pri != min(prio, td->td_base_user_pri))
+		goto lend;
+	if (td->td_priority >= td->td_user_pri)
+		goto lend;
+	return;
+
+lend:
+	thread_lock(td);
+	sched_lend_user_prio(td, prio);
+	thread_unlock(td);
+}
+
 void
 sched_sleep(struct thread *td, int pri)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	td->td_slptick = ticks;
 	td_get_sched(td)->ts_slptime = 0;
 	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 		sched_prio(td, pri);
 	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
 		td->td_flags |= TDF_CANSWAP;
 }
 
 void
 sched_switch(struct thread *td, struct thread *newtd, int flags)
 {
 	struct mtx *tmtx;
 	struct td_sched *ts;
 	struct proc *p;
 	int preempted;
 
 	tmtx = NULL;
 	ts = td_get_sched(td);
 	p = td->td_proc;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 
 	/* 
 	 * Switch to the sched lock to fix things up and pick
 	 * a new thread.
 	 * Block the td_lock in order to avoid breaking the critical path.
 	 */
 	if (td->td_lock != &sched_lock) {
 		mtx_lock_spin(&sched_lock);
 		tmtx = thread_lock_block(td);
 	}
 
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		sched_load_rem();
 
 	td->td_lastcpu = td->td_oncpu;
 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 	    (flags & SW_PREEMPT) != 0;
 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 	td->td_owepreempt = 0;
 	td->td_oncpu = NOCPU;
 
 	/*
 	 * At the last moment, if this thread is still marked RUNNING,
 	 * then put it back on the run queue as it has not been suspended
 	 * or stopped or any thing else similar.  We never put the idle
 	 * threads on the run queue, however.
 	 */
 	if (td->td_flags & TDF_IDLETD) {
 		TD_SET_CAN_RUN(td);
 #ifdef SMP
 		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
 #endif
 	} else {
 		if (TD_IS_RUNNING(td)) {
 			/* Put us back on the run queue. */
 			sched_add(td, preempted ?
 			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 			    SRQ_OURSELF|SRQ_YIELDING);
 		}
 	}
 	if (newtd) {
 		/*
 		 * The thread we are about to run needs to be counted
 		 * as if it had been added to the run queue and selected.
 		 * It came from:
 		 * * A preemption
 		 * * An upcall
 		 * * A followon
 		 */
 		KASSERT((newtd->td_inhibitors == 0),
 			("trying to run inhibited thread"));
 		newtd->td_flags |= TDF_DIDRUN;
         	TD_SET_RUNNING(newtd);
 		if ((newtd->td_flags & TDF_NOLOAD) == 0)
 			sched_load_add();
 	} else {
 		newtd = choosethread();
 		MPASS(newtd->td_lock == &sched_lock);
 	}
 
 #if (KTR_COMPILE & KTR_SCHED) != 0
 	if (TD_IS_IDLETHREAD(td))
 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 		    "prio:%d", td->td_priority);
 	else
 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 		    "lockname:\"%s\"", td->td_lockname);
 #endif
 
 	if (td != newtd) {
 #ifdef	HWPMC_HOOKS
 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 #endif
 
 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 
                 /* I feel sleepy */
 		lock_profile_release_lock(&sched_lock.lock_object);
 #ifdef KDTRACE_HOOKS
 		/*
 		 * If DTrace has set the active vtime enum to anything
 		 * other than INACTIVE (0), then it should have set the
 		 * function to call.
 		 */
 		if (dtrace_vtime_active)
 			(*dtrace_vtime_switch_func)(newtd);
 #endif
 
 		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
 		lock_profile_obtain_lock_success(&sched_lock.lock_object,
 		    0, 0, __FILE__, __LINE__);
 		/*
 		 * Where am I?  What year is it?
 		 * We are in the same thread that went to sleep above,
 		 * but any amount of time may have passed. All our context
 		 * will still be available as will local variables.
 		 * PCPU values however may have changed as we may have
 		 * changed CPU so don't trust cached values of them.
 		 * New threads will go to fork_exit() instead of here
 		 * so if you change things here you may need to change
 		 * things there too.
 		 *
 		 * If the thread above was exiting it will never wake
 		 * up again here, so either it has saved everything it
 		 * needed to, or the thread_wait() or wait() will
 		 * need to reap it.
 		 */
 
 		SDT_PROBE0(sched, , , on__cpu);
 #ifdef	HWPMC_HOOKS
 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 #endif
 	} else
 		SDT_PROBE0(sched, , , remain__cpu);
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 	    "prio:%d", td->td_priority);
 
 #ifdef SMP
 	if (td->td_flags & TDF_IDLETD)
 		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
 #endif
 	sched_lock.mtx_lock = (uintptr_t)td;
 	td->td_oncpu = PCPU_GET(cpuid);
 	MPASS(td->td_lock == &sched_lock);
 }
 
 void
 sched_wakeup(struct thread *td)
 {
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 	td->td_flags &= ~TDF_CANSWAP;
 	if (ts->ts_slptime > 1) {
 		updatepri(td);
 		resetpriority(td);
 	}
 	td->td_slptick = 0;
 	ts->ts_slptime = 0;
 	ts->ts_slice = sched_slice;
 	sched_add(td, SRQ_BORING);
 }
 
 #ifdef SMP
 static int
 forward_wakeup(int cpunum)
 {
 	struct pcpu *pc;
 	cpuset_t dontuse, map, map2;
 	u_int id, me;
 	int iscpuset;
 
 	mtx_assert(&sched_lock, MA_OWNED);
 
 	CTR0(KTR_RUNQ, "forward_wakeup()");
 
 	if ((!forward_wakeup_enabled) ||
 	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
 		return (0);
 	if (!smp_started || panicstr)
 		return (0);
 
 	forward_wakeups_requested++;
 
 	/*
 	 * Check the idle mask we received against what we calculated
 	 * before in the old version.
 	 */
 	me = PCPU_GET(cpuid);
 
 	/* Don't bother if we should be doing it ourself. */
 	if (CPU_ISSET(me, &idle_cpus_mask) &&
 	    (cpunum == NOCPU || me == cpunum))
 		return (0);
 
 	CPU_SETOF(me, &dontuse);
 	CPU_OR(&dontuse, &stopped_cpus);
 	CPU_OR(&dontuse, &hlt_cpus_mask);
 	CPU_ZERO(&map2);
 	if (forward_wakeup_use_loop) {
 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 			id = pc->pc_cpuid;
 			if (!CPU_ISSET(id, &dontuse) &&
 			    pc->pc_curthread == pc->pc_idlethread) {
 				CPU_SET(id, &map2);
 			}
 		}
 	}
 
 	if (forward_wakeup_use_mask) {
 		map = idle_cpus_mask;
 		CPU_NAND(&map, &dontuse);
 
 		/* If they are both on, compare and use loop if different. */
 		if (forward_wakeup_use_loop) {
 			if (CPU_CMP(&map, &map2)) {
 				printf("map != map2, loop method preferred\n");
 				map = map2;
 			}
 		}
 	} else {
 		map = map2;
 	}
 
 	/* If we only allow a specific CPU, then mask off all the others. */
 	if (cpunum != NOCPU) {
 		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
 		iscpuset = CPU_ISSET(cpunum, &map);
 		if (iscpuset == 0)
 			CPU_ZERO(&map);
 		else
 			CPU_SETOF(cpunum, &map);
 	}
 	if (!CPU_EMPTY(&map)) {
 		forward_wakeups_delivered++;
 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 			id = pc->pc_cpuid;
 			if (!CPU_ISSET(id, &map))
 				continue;
 			if (cpu_idle_wakeup(pc->pc_cpuid))
 				CPU_CLR(id, &map);
 		}
 		if (!CPU_EMPTY(&map))
 			ipi_selected(map, IPI_AST);
 		return (1);
 	}
 	if (cpunum == NOCPU)
 		printf("forward_wakeup: Idle processor not found\n");
 	return (0);
 }
 
 static void
 kick_other_cpu(int pri, int cpuid)
 {
 	struct pcpu *pcpu;
 	int cpri;
 
 	pcpu = pcpu_find(cpuid);
 	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
 		forward_wakeups_delivered++;
 		if (!cpu_idle_wakeup(cpuid))
 			ipi_cpu(cpuid, IPI_AST);
 		return;
 	}
 
 	cpri = pcpu->pc_curthread->td_priority;
 	if (pri >= cpri)
 		return;
 
 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
 #if !defined(FULL_PREEMPTION)
 	if (pri <= PRI_MAX_ITHD)
 #endif /* ! FULL_PREEMPTION */
 	{
 		ipi_cpu(cpuid, IPI_PREEMPT);
 		return;
 	}
 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
 
 	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
 	ipi_cpu(cpuid, IPI_AST);
 	return;
 }
 #endif /* SMP */
 
 #ifdef SMP
 static int
 sched_pickcpu(struct thread *td)
 {
 	int best, cpu;
 
 	mtx_assert(&sched_lock, MA_OWNED);
 
 	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
 		best = td->td_lastcpu;
 	else
 		best = NOCPU;
 	CPU_FOREACH(cpu) {
 		if (!THREAD_CAN_SCHED(td, cpu))
 			continue;
 	
 		if (best == NOCPU)
 			best = cpu;
 		else if (runq_length[cpu] < runq_length[best])
 			best = cpu;
 	}
 	KASSERT(best != NOCPU, ("no valid CPUs"));
 
 	return (best);
 }
 #endif
 
 void
 sched_add(struct thread *td, int flags)
 #ifdef SMP
 {
 	cpuset_t tidlemsk;
 	struct td_sched *ts;
 	u_int cpu, cpuid;
 	int forwarded = 0;
 	int single_cpu = 0;
 
 	ts = td_get_sched(td);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT((td->td_inhibitors == 0),
 	    ("sched_add: trying to run inhibited thread"));
 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 	    ("sched_add: bad thread state"));
 	KASSERT(td->td_flags & TDF_INMEM,
 	    ("sched_add: thread swapped out"));
 
 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 	    sched_tdname(curthread));
 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 	    KTR_ATTR_LINKED, sched_tdname(td));
 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 	    flags & SRQ_PREEMPTED);
 
 
 	/*
 	 * Now that the thread is moving to the run-queue, set the lock
 	 * to the scheduler's lock.
 	 */
 	if (td->td_lock != &sched_lock) {
 		mtx_lock_spin(&sched_lock);
 		thread_lock_set(td, &sched_lock);
 	}
 	TD_SET_RUNQ(td);
 
 	/*
 	 * If SMP is started and the thread is pinned or otherwise limited to
 	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
 	 * Otherwise, queue the thread to the global run queue.
 	 *
 	 * If SMP has not yet been started we must use the global run queue
 	 * as per-CPU state may not be initialized yet and we may crash if we
 	 * try to access the per-CPU run queues.
 	 */
 	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
 	    ts->ts_flags & TSF_AFFINITY)) {
 		if (td->td_pinned != 0)
 			cpu = td->td_lastcpu;
 		else if (td->td_flags & TDF_BOUND) {
 			/* Find CPU from bound runq. */
 			KASSERT(SKE_RUNQ_PCPU(ts),
 			    ("sched_add: bound td_sched not on cpu runq"));
 			cpu = ts->ts_runq - &runq_pcpu[0];
 		} else
 			/* Find a valid CPU for our cpuset */
 			cpu = sched_pickcpu(td);
 		ts->ts_runq = &runq_pcpu[cpu];
 		single_cpu = 1;
 		CTR3(KTR_RUNQ,
 		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
 		    cpu);
 	} else {
 		CTR2(KTR_RUNQ,
 		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
 		    td);
 		cpu = NOCPU;
 		ts->ts_runq = &runq;
 	}
 
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		sched_load_add();
 	runq_add(ts->ts_runq, td, flags);
 	if (cpu != NOCPU)
 		runq_length[cpu]++;
 
 	cpuid = PCPU_GET(cpuid);
 	if (single_cpu && cpu != cpuid) {
 	        kick_other_cpu(td->td_priority, cpu);
 	} else {
 		if (!single_cpu) {
 			tidlemsk = idle_cpus_mask;
 			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
 			CPU_CLR(cpuid, &tidlemsk);
 
 			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
 			    ((flags & SRQ_INTR) == 0) &&
 			    !CPU_EMPTY(&tidlemsk))
 				forwarded = forward_wakeup(cpu);
 		}
 
 		if (!forwarded) {
 			if (!maybe_preempt(td))
 				maybe_resched(td);
 		}
 	}
 }
 #else /* SMP */
 {
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT((td->td_inhibitors == 0),
 	    ("sched_add: trying to run inhibited thread"));
 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 	    ("sched_add: bad thread state"));
 	KASSERT(td->td_flags & TDF_INMEM,
 	    ("sched_add: thread swapped out"));
 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 	    sched_tdname(curthread));
 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 	    KTR_ATTR_LINKED, sched_tdname(td));
 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 	    flags & SRQ_PREEMPTED);
 
 	/*
 	 * Now that the thread is moving to the run-queue, set the lock
 	 * to the scheduler's lock.
 	 */
 	if (td->td_lock != &sched_lock) {
 		mtx_lock_spin(&sched_lock);
 		thread_lock_set(td, &sched_lock);
 	}
 	TD_SET_RUNQ(td);
 	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
 	ts->ts_runq = &runq;
 
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		sched_load_add();
 	runq_add(ts->ts_runq, td, flags);
 	if (!maybe_preempt(td))
 		maybe_resched(td);
 }
 #endif /* SMP */
 
 void
 sched_rem(struct thread *td)
 {
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	KASSERT(td->td_flags & TDF_INMEM,
 	    ("sched_rem: thread swapped out"));
 	KASSERT(TD_ON_RUNQ(td),
 	    ("sched_rem: thread not on run queue"));
 	mtx_assert(&sched_lock, MA_OWNED);
 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 	    sched_tdname(curthread));
 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		sched_load_rem();
 #ifdef SMP
 	if (ts->ts_runq != &runq)
 		runq_length[ts->ts_runq - runq_pcpu]--;
 #endif
 	runq_remove(ts->ts_runq, td);
 	TD_SET_CAN_RUN(td);
 }
 
 /*
  * Select threads to run.  Note that running threads still consume a
  * slot.
  */
 struct thread *
 sched_choose(void)
 {
 	struct thread *td;
 	struct runq *rq;
 
 	mtx_assert(&sched_lock,  MA_OWNED);
 #ifdef SMP
 	struct thread *tdcpu;
 
 	rq = &runq;
 	td = runq_choose_fuzz(&runq, runq_fuzz);
 	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
 
 	if (td == NULL ||
 	    (tdcpu != NULL &&
 	     tdcpu->td_priority < td->td_priority)) {
 		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
 		     PCPU_GET(cpuid));
 		td = tdcpu;
 		rq = &runq_pcpu[PCPU_GET(cpuid)];
 	} else {
 		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
 	}
 
 #else
 	rq = &runq;
 	td = runq_choose(&runq);
 #endif
 
 	if (td) {
 #ifdef SMP
 		if (td == tdcpu)
 			runq_length[PCPU_GET(cpuid)]--;
 #endif
 		runq_remove(rq, td);
 		td->td_flags |= TDF_DIDRUN;
 
 		KASSERT(td->td_flags & TDF_INMEM,
 		    ("sched_choose: thread swapped out"));
 		return (td);
 	}
 	return (PCPU_GET(idlethread));
 }
 
 void
 sched_preempt(struct thread *td)
 {
 
 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 	thread_lock(td);
 	if (td->td_critnest > 1)
 		td->td_owepreempt = 1;
 	else
 		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
 	thread_unlock(td);
 }
 
 void
 sched_userret_slowpath(struct thread *td)
 {
 
 	thread_lock(td);
 	td->td_priority = td->td_user_pri;
 	td->td_base_pri = td->td_user_pri;
 	thread_unlock(td);
 }
 
 void
 sched_bind(struct thread *td, int cpu)
 {
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 
 	ts = td_get_sched(td);
 
 	td->td_flags |= TDF_BOUND;
 #ifdef SMP
 	ts->ts_runq = &runq_pcpu[cpu];
 	if (PCPU_GET(cpuid) == cpu)
 		return;
 
 	mi_switch(SW_VOL, NULL);
 #endif
 }
 
 void
 sched_unbind(struct thread* td)
 {
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 	td->td_flags &= ~TDF_BOUND;
 }
 
 int
 sched_is_bound(struct thread *td)
 {
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	return (td->td_flags & TDF_BOUND);
 }
 
 void
 sched_relinquish(struct thread *td)
 {
 	thread_lock(td);
 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 	thread_unlock(td);
 }
 
 int
 sched_load(void)
 {
 	return (sched_tdcnt);
 }
 
 int
 sched_sizeof_proc(void)
 {
 	return (sizeof(struct proc));
 }
 
 int
 sched_sizeof_thread(void)
 {
 	return (sizeof(struct thread) + sizeof(struct td_sched));
 }
 
 fixpt_t
 sched_pctcpu(struct thread *td)
 {
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 	return (ts->ts_pctcpu);
 }
 
 #ifdef RACCT
 /*
  * Calculates the contribution to the thread cpu usage for the latest
  * (unfinished) second.
  */
 fixpt_t
 sched_pctcpu_delta(struct thread *td)
 {
 	struct td_sched *ts;
 	fixpt_t delta;
 	int realstathz;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 	delta = 0;
 	realstathz = stathz ? stathz : hz;
 	if (ts->ts_cpticks != 0) {
 #if	(FSHIFT >= CCPU_SHIFT)
 		delta = (realstathz == 100)
 		    ? ((fixpt_t) ts->ts_cpticks) <<
 		    (FSHIFT - CCPU_SHIFT) :
 		    100 * (((fixpt_t) ts->ts_cpticks)
 		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
 #else
 		delta = ((FSCALE - ccpu) *
 		    (ts->ts_cpticks *
 		    FSCALE / realstathz)) >> FSHIFT;
 #endif
 	}
 
 	return (delta);
 }
 #endif
 
 u_int
 sched_estcpu(struct thread *td)
 {
 	
 	return (td_get_sched(td)->ts_estcpu);
 }
 
 /*
  * The actual idle process.
  */
 void
 sched_idletd(void *dummy)
 {
 	struct pcpuidlestat *stat;
 
 	THREAD_NO_SLEEPING();
 	stat = DPCPU_PTR(idlestat);
 	for (;;) {
 		mtx_assert(&Giant, MA_NOTOWNED);
 
 		while (sched_runnable() == 0) {
 			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
 			stat->idlecalls++;
 		}
 
 		mtx_lock_spin(&sched_lock);
 		mi_switch(SW_VOL | SWT_IDLE, NULL);
 		mtx_unlock_spin(&sched_lock);
 	}
 }
 
 /*
  * A CPU is entering for the first time or a thread is exiting.
  */
 void
 sched_throw(struct thread *td)
 {
 	/*
 	 * Correct spinlock nesting.  The idle thread context that we are
 	 * borrowing was created so that it would start out with a single
 	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
 	 * explicitly acquired locks in this function, the nesting count
 	 * is now 2 rather than 1.  Since we are nested, calling
 	 * spinlock_exit() will simply adjust the counts without allowing
 	 * spin lock using code to interrupt us.
 	 */
 	if (td == NULL) {
 		mtx_lock_spin(&sched_lock);
 		spinlock_exit();
 		PCPU_SET(switchtime, cpu_ticks());
 		PCPU_SET(switchticks, ticks);
 	} else {
 		lock_profile_release_lock(&sched_lock.lock_object);
 		MPASS(td->td_lock == &sched_lock);
 		td->td_lastcpu = td->td_oncpu;
 		td->td_oncpu = NOCPU;
 	}
 	mtx_assert(&sched_lock, MA_OWNED);
 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 	cpu_throw(td, choosethread());	/* doesn't return */
 }
 
 void
 sched_fork_exit(struct thread *td)
 {
 
 	/*
 	 * Finish setting up thread glue so that it begins execution in a
 	 * non-nested critical section with sched_lock held but not recursed.
 	 */
 	td->td_oncpu = PCPU_GET(cpuid);
 	sched_lock.mtx_lock = (uintptr_t)td;
 	lock_profile_obtain_lock_success(&sched_lock.lock_object,
 	    0, 0, __FILE__, __LINE__);
 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 	    "prio:%d", td->td_priority);
 	SDT_PROBE0(sched, , , on__cpu);
 }
 
 char *
 sched_tdname(struct thread *td)
 {
 #ifdef KTR
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	if (ts->ts_name[0] == '\0')
 		snprintf(ts->ts_name, sizeof(ts->ts_name),
 		    "%s tid %d", td->td_name, td->td_tid);
 	return (ts->ts_name);
 #else   
 	return (td->td_name);
 #endif
 }
 
 #ifdef KTR
 void
 sched_clear_tdname(struct thread *td)
 {
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	ts->ts_name[0] = '\0';
 }
 #endif
 
 void
 sched_affinity(struct thread *td)
 {
 #ifdef SMP
 	struct td_sched *ts;
 	int cpu;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);	
 
 	/*
 	 * Set the TSF_AFFINITY flag if there is at least one CPU this
 	 * thread can't run on.
 	 */
 	ts = td_get_sched(td);
 	ts->ts_flags &= ~TSF_AFFINITY;
 	CPU_FOREACH(cpu) {
 		if (!THREAD_CAN_SCHED(td, cpu)) {
 			ts->ts_flags |= TSF_AFFINITY;
 			break;
 		}
 	}
 
 	/*
 	 * If this thread can run on all CPUs, nothing else to do.
 	 */
 	if (!(ts->ts_flags & TSF_AFFINITY))
 		return;
 
 	/* Pinned threads and bound threads should be left alone. */
 	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
 		return;
 
 	switch (td->td_state) {
 	case TDS_RUNQ:
 		/*
 		 * If we are on a per-CPU runqueue that is in the set,
 		 * then nothing needs to be done.
 		 */
 		if (ts->ts_runq != &runq &&
 		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
 			return;
 
 		/* Put this thread on a valid per-CPU runqueue. */
 		sched_rem(td);
 		sched_add(td, SRQ_BORING);
 		break;
 	case TDS_RUNNING:
 		/*
 		 * See if our current CPU is in the set.  If not, force a
 		 * context switch.
 		 */
 		if (THREAD_CAN_SCHED(td, td->td_oncpu))
 			return;
 
 		td->td_flags |= TDF_NEEDRESCHED;
 		if (td != curthread)
 			ipi_cpu(cpu, IPI_AST);
 		break;
 	default:
 		break;
 	}
 #endif
 }
Index: head/sys/kern/sched_ule.c
===================================================================
--- head/sys/kern/sched_ule.c	(revision 347354)
+++ head/sys/kern/sched_ule.c	(revision 347355)
@@ -1,3074 +1,3095 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 /*
  * This file implements the ULE scheduler.  ULE supports independent CPU
  * run queues and fine grain locking.  It has superior interactive
  * performance under load even on uni-processor systems.
  *
  * etymology:
  *   ULE is the last three letters in schedule.  It owes its name to a
  * generic user created for a scheduling system by Paul Mikesell at
  * Isilon Systems and a general lack of creativity on the part of the author.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_hwpmc_hooks.h"
 #include "opt_sched.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/resource.h>
 #include <sys/resourcevar.h>
 #include <sys/sched.h>
 #include <sys/sdt.h>
 #include <sys/smp.h>
 #include <sys/sx.h>
 #include <sys/sysctl.h>
 #include <sys/sysproto.h>
 #include <sys/turnstile.h>
 #include <sys/umtx.h>
 #include <sys/vmmeter.h>
 #include <sys/cpuset.h>
 #include <sys/sbuf.h>
 
 #ifdef HWPMC_HOOKS
 #include <sys/pmckern.h>
 #endif
 
 #ifdef KDTRACE_HOOKS
 #include <sys/dtrace_bsd.h>
 int				dtrace_vtime_active;
 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
 #endif
 
 #include <machine/cpu.h>
 #include <machine/smp.h>
 
 #define	KTR_ULE	0
 
 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
 
 /*
  * Thread scheduler specific section.  All fields are protected
  * by the thread lock.
  */
 struct td_sched {	
 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
 	short		ts_flags;	/* TSF_* flags. */
 	int		ts_cpu;		/* CPU that we have affinity for. */
 	int		ts_rltick;	/* Real last tick, for affinity. */
 	int		ts_slice;	/* Ticks of slice remaining. */
 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
 	u_int		ts_runtime;	/* Number of ticks we were running */
 	int		ts_ltick;	/* Last tick that we were running on */
 	int		ts_ftick;	/* First tick that we were running on */
 	int		ts_ticks;	/* Tick count */
 #ifdef KTR
 	char		ts_name[TS_NAME_LEN];
 #endif
 };
 /* flags kept in ts_flags */
 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
 
 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
 #define	THREAD_CAN_SCHED(td, cpu)	\
     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
 
 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
     sizeof(struct thread0_storage),
     "increase struct thread0_storage.t0st_sched size");
 
 /*
  * Priority ranges used for interactive and non-interactive timeshare
  * threads.  The timeshare priorities are split up into four ranges.
  * The first range handles interactive threads.  The last three ranges
  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  * ranges supporting nice values.
  */
 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
 
 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
 
 /*
  * Cpu percentage computation macros and defines.
  *
  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
  */
 #define	SCHED_TICK_SECS		10
 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
 #define	SCHED_TICK_SHIFT	10
 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
 
 /*
  * These macros determine priorities for non-interactive threads.  They are
  * assigned a priority based on their recent cpu utilization as expressed
  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  * and end of the MIN to MAX timeshare range are only reachable with negative
  * or positive nice respectively.
  *
  * PRI_RANGE:	Priority range for utilization dependent priorities.
  * PRI_NRESV:	Number of nice values.
  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
  * PRI_NICE:	Determines the part of the priority inherited from nice.
  */
 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
 #define	SCHED_PRI_TICKS(ts)						\
     (SCHED_TICK_HZ((ts)) /						\
     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
 #define	SCHED_PRI_NICE(nice)	(nice)
 
 /*
  * These determine the interactivity of a process.  Interactivity differs from
  * cpu utilization in that it expresses the voluntary time slept vs time ran
  * while cpu utilization includes all time not running.  This more accurately
  * models the intent of the thread.
  *
  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
  *		before throttling back.
  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
  * INTERACT_THRESH:	Threshold for placement on the current runq.
  */
 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
 #define	SCHED_INTERACT_MAX	(100)
 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
 #define	SCHED_INTERACT_THRESH	(30)
 
 /*
  * These parameters determine the slice behavior for batch work.
  */
 #define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
 #define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
 
 /* Flags kept in td_flags. */
 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
 
 /*
  * tickincr:		Converts a stathz tick into a hz domain scaled by
  *			the shift factor.  Without the shift the error rate
  *			due to rounding would be unacceptably high.
  * realstathz:		stathz is sometimes 0 and run off of hz.
  * sched_slice:		Runtime of each thread before rescheduling.
  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
  */
 static int sched_interact = SCHED_INTERACT_THRESH;
 static int tickincr = 8 << SCHED_TICK_SHIFT;
 static int realstathz = 127;	/* reset during boot. */
 static int sched_slice = 10;	/* reset during boot. */
 static int sched_slice_min = 1;	/* reset during boot. */
 #ifdef PREEMPTION
 #ifdef FULL_PREEMPTION
 static int preempt_thresh = PRI_MAX_IDLE;
 #else
 static int preempt_thresh = PRI_MIN_KERN;
 #endif
 #else 
 static int preempt_thresh = 0;
 #endif
 static int static_boost = PRI_MIN_BATCH;
 static int sched_idlespins = 10000;
 static int sched_idlespinthresh = -1;
 
 /*
  * tdq - per processor runqs and statistics.  All fields are protected by the
  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  * locking in sched_pickcpu();
  */
 struct tdq {
 	/* 
 	 * Ordered to improve efficiency of cpu_search() and switch().
 	 * tdq_lock is padded to avoid false sharing with tdq_load and
 	 * tdq_cpu_idle.
 	 */
 	struct mtx_padalign tdq_lock;		/* run queue lock. */
 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
 	volatile int	tdq_load;		/* Aggregate load. */
 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
 	volatile int	tdq_transferable;	/* Transferable thread count. */
 	volatile short	tdq_switchcnt;		/* Switches this tick. */
 	volatile short	tdq_oldswitchcnt;	/* Switches last tick. */
 	u_char		tdq_lowpri;		/* Lowest priority thread. */
 	u_char		tdq_ipipending;		/* IPI pending. */
 	u_char		tdq_idx;		/* Current insert index. */
 	u_char		tdq_ridx;		/* Current removal index. */
 	struct runq	tdq_realtime;		/* real-time run queue. */
 	struct runq	tdq_timeshare;		/* timeshare run queue. */
 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
 	char		tdq_name[TDQ_NAME_LEN];
 #ifdef KTR
 	char		tdq_loadname[TDQ_LOADNAME_LEN];
 #endif
 } __aligned(64);
 
 /* Idle thread states and config. */
 #define	TDQ_RUNNING	1
 #define	TDQ_IDLE	2
 
 #ifdef SMP
 struct cpu_group *cpu_top;		/* CPU topology */
 
 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
 
 /*
  * Run-time tunables.
  */
 static int rebalance = 1;
 static int balance_interval = 128;	/* Default set in sched_initticks(). */
 static int affinity;
 static int steal_idle = 1;
 static int steal_thresh = 2;
 static int always_steal = 0;
 static int trysteal_limit = 2;
 
 /*
  * One thread queue per processor.
  */
 static struct tdq	tdq_cpu[MAXCPU];
 static struct tdq	*balance_tdq;
 static int balance_ticks;
 DPCPU_DEFINE_STATIC(uint32_t, randomval);
 
 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
 #else	/* !SMP */
 static struct tdq	tdq_cpu;
 
 #define	TDQ_ID(x)	(0)
 #define	TDQ_SELF()	(&tdq_cpu)
 #define	TDQ_CPU(x)	(&tdq_cpu)
 #endif
 
 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
 
 static void sched_priority(struct thread *);
 static void sched_thread_priority(struct thread *, u_char);
 static int sched_interact_score(struct thread *);
 static void sched_interact_update(struct thread *);
 static void sched_interact_fork(struct thread *);
 static void sched_pctcpu_update(struct td_sched *, int);
 
 /* Operations on per processor queues */
 static struct thread *tdq_choose(struct tdq *);
 static void tdq_setup(struct tdq *);
 static void tdq_load_add(struct tdq *, struct thread *);
 static void tdq_load_rem(struct tdq *, struct thread *);
 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
 static inline int sched_shouldpreempt(int, int, int);
 void tdq_print(int cpu);
 static void runq_print(struct runq *rq);
 static void tdq_add(struct tdq *, struct thread *, int);
 #ifdef SMP
 static struct thread *tdq_move(struct tdq *, struct tdq *);
 static int tdq_idled(struct tdq *);
 static void tdq_notify(struct tdq *, struct thread *);
 static struct thread *tdq_steal(struct tdq *, int);
 static struct thread *runq_steal(struct runq *, int);
 static int sched_pickcpu(struct thread *, int);
 static void sched_balance(void);
 static int sched_balance_pair(struct tdq *, struct tdq *);
 static inline struct tdq *sched_setcpu(struct thread *, int, int);
 static inline void thread_unblock_switch(struct thread *, struct mtx *);
 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
     struct cpu_group *cg, int indent);
 #endif
 
 static void sched_setup(void *dummy);
 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
 
 static void sched_initticks(void *dummy);
 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
     NULL);
 
 SDT_PROVIDER_DEFINE(sched);
 
 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
     "struct proc *", "uint8_t");
 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
     "struct proc *", "void *");
 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
     "struct proc *", "void *", "int");
 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
     "struct proc *", "uint8_t", "struct thread *");
 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
     "struct proc *");
 SDT_PROBE_DEFINE(sched, , , on__cpu);
 SDT_PROBE_DEFINE(sched, , , remain__cpu);
 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
     "struct proc *");
 
 /*
  * Print the threads waiting on a run-queue.
  */
 static void
 runq_print(struct runq *rq)
 {
 	struct rqhead *rqh;
 	struct thread *td;
 	int pri;
 	int j;
 	int i;
 
 	for (i = 0; i < RQB_LEN; i++) {
 		printf("\t\trunq bits %d 0x%zx\n",
 		    i, rq->rq_status.rqb_bits[i]);
 		for (j = 0; j < RQB_BPW; j++)
 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
 				pri = j + (i << RQB_L2BPW);
 				rqh = &rq->rq_queues[pri];
 				TAILQ_FOREACH(td, rqh, td_runq) {
 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
 					    td, td->td_name, td->td_priority,
 					    td->td_rqindex, pri);
 				}
 			}
 	}
 }
 
 /*
  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  */
 void
 tdq_print(int cpu)
 {
 	struct tdq *tdq;
 
 	tdq = TDQ_CPU(cpu);
 
 	printf("tdq %d:\n", TDQ_ID(tdq));
 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
 	printf("\tLock name:      %s\n", tdq->tdq_name);
 	printf("\tload:           %d\n", tdq->tdq_load);
 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
 	printf("\trealtime runq:\n");
 	runq_print(&tdq->tdq_realtime);
 	printf("\ttimeshare runq:\n");
 	runq_print(&tdq->tdq_timeshare);
 	printf("\tidle runq:\n");
 	runq_print(&tdq->tdq_idle);
 }
 
 static inline int
 sched_shouldpreempt(int pri, int cpri, int remote)
 {
 	/*
 	 * If the new priority is not better than the current priority there is
 	 * nothing to do.
 	 */
 	if (pri >= cpri)
 		return (0);
 	/*
 	 * Always preempt idle.
 	 */
 	if (cpri >= PRI_MIN_IDLE)
 		return (1);
 	/*
 	 * If preemption is disabled don't preempt others.
 	 */
 	if (preempt_thresh == 0)
 		return (0);
 	/*
 	 * Preempt if we exceed the threshold.
 	 */
 	if (pri <= preempt_thresh)
 		return (1);
 	/*
 	 * If we're interactive or better and there is non-interactive
 	 * or worse running preempt only remote processors.
 	 */
 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
 		return (1);
 	return (0);
 }
 
 /*
  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  * date with what is actually on the run-queue.  Selects the correct
  * queue position for timeshare threads.
  */
 static __inline void
 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
 {
 	struct td_sched *ts;
 	u_char pri;
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 
 	pri = td->td_priority;
 	ts = td_get_sched(td);
 	TD_SET_RUNQ(td);
 	if (THREAD_CAN_MIGRATE(td)) {
 		tdq->tdq_transferable++;
 		ts->ts_flags |= TSF_XFERABLE;
 	}
 	if (pri < PRI_MIN_BATCH) {
 		ts->ts_runq = &tdq->tdq_realtime;
 	} else if (pri <= PRI_MAX_BATCH) {
 		ts->ts_runq = &tdq->tdq_timeshare;
 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
 			("Invalid priority %d on timeshare runq", pri));
 		/*
 		 * This queue contains only priorities between MIN and MAX
 		 * realtime.  Use the whole queue to represent these values.
 		 */
 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
 			/*
 			 * This effectively shortens the queue by one so we
 			 * can have a one slot difference between idx and
 			 * ridx while we wait for threads to drain.
 			 */
 			if (tdq->tdq_ridx != tdq->tdq_idx &&
 			    pri == tdq->tdq_ridx)
 				pri = (unsigned char)(pri - 1) % RQ_NQS;
 		} else
 			pri = tdq->tdq_ridx;
 		runq_add_pri(ts->ts_runq, td, pri, flags);
 		return;
 	} else
 		ts->ts_runq = &tdq->tdq_idle;
 	runq_add(ts->ts_runq, td, flags);
 }
 
 /* 
  * Remove a thread from a run-queue.  This typically happens when a thread
  * is selected to run.  Running threads are not on the queue and the
  * transferable count does not reflect them.
  */
 static __inline void
 tdq_runq_rem(struct tdq *tdq, struct thread *td)
 {
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	KASSERT(ts->ts_runq != NULL,
 	    ("tdq_runq_remove: thread %p null ts_runq", td));
 	if (ts->ts_flags & TSF_XFERABLE) {
 		tdq->tdq_transferable--;
 		ts->ts_flags &= ~TSF_XFERABLE;
 	}
 	if (ts->ts_runq == &tdq->tdq_timeshare) {
 		if (tdq->tdq_idx != tdq->tdq_ridx)
 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
 		else
 			runq_remove_idx(ts->ts_runq, td, NULL);
 	} else
 		runq_remove(ts->ts_runq, td);
 }
 
 /*
  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  * for this thread to the referenced thread queue.
  */
 static void
 tdq_load_add(struct tdq *tdq, struct thread *td)
 {
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 
 	tdq->tdq_load++;
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		tdq->tdq_sysload++;
 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
 }
 
 /*
  * Remove the load from a thread that is transitioning to a sleep state or
  * exiting.
  */
 static void
 tdq_load_rem(struct tdq *tdq, struct thread *td)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	KASSERT(tdq->tdq_load != 0,
 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
 
 	tdq->tdq_load--;
 	if ((td->td_flags & TDF_NOLOAD) == 0)
 		tdq->tdq_sysload--;
 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
 }
 
 /*
  * Bound timeshare latency by decreasing slice size as load increases.  We
  * consider the maximum latency as the sum of the threads waiting to run
  * aside from curthread and target no more than sched_slice latency but
  * no less than sched_slice_min runtime.
  */
 static inline int
 tdq_slice(struct tdq *tdq)
 {
 	int load;
 
 	/*
 	 * It is safe to use sys_load here because this is called from
 	 * contexts where timeshare threads are running and so there
 	 * cannot be higher priority load in the system.
 	 */
 	load = tdq->tdq_sysload - 1;
 	if (load >= SCHED_SLICE_MIN_DIVISOR)
 		return (sched_slice_min);
 	if (load <= 1)
 		return (sched_slice);
 	return (sched_slice / load);
 }
 
 /*
  * Set lowpri to its exact value by searching the run-queue and
  * evaluating curthread.  curthread may be passed as an optimization.
  */
 static void
 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
 {
 	struct thread *td;
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	if (ctd == NULL)
 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
 	td = tdq_choose(tdq);
 	if (td == NULL || td->td_priority > ctd->td_priority)
 		tdq->tdq_lowpri = ctd->td_priority;
 	else
 		tdq->tdq_lowpri = td->td_priority;
 }
 
 #ifdef SMP
 /*
  * We need some randomness. Implement a classic Linear Congruential
  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  * of the random state (in the low bits of our answer) to keep
  * the maximum randomness.
  */
 static uint32_t
 sched_random(void)
 {
 	uint32_t *rndptr;
 
 	rndptr = DPCPU_PTR(randomval);
 	*rndptr = *rndptr * 69069 + 5;
 
 	return (*rndptr >> 16);
 }
 
 struct cpu_search {
 	cpuset_t cs_mask;
 	u_int	cs_prefer;
 	int	cs_pri;		/* Min priority for low. */
 	int	cs_limit;	/* Max load for low, min load for high. */
 	int	cs_cpu;
 	int	cs_load;
 };
 
 #define	CPU_SEARCH_LOWEST	0x1
 #define	CPU_SEARCH_HIGHEST	0x2
 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
 
 #define	CPUSET_FOREACH(cpu, mask)				\
 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
 		if (CPU_ISSET(cpu, &mask))
 
 static __always_inline int cpu_search(const struct cpu_group *cg,
     struct cpu_search *low, struct cpu_search *high, const int match);
 int __noinline cpu_search_lowest(const struct cpu_group *cg,
     struct cpu_search *low);
 int __noinline cpu_search_highest(const struct cpu_group *cg,
     struct cpu_search *high);
 int __noinline cpu_search_both(const struct cpu_group *cg,
     struct cpu_search *low, struct cpu_search *high);
 
 /*
  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  * according to the match argument.  This routine actually compares the
  * load on all paths through the tree and finds the least loaded cpu on
  * the least loaded path, which may differ from the least loaded cpu in
  * the system.  This balances work among caches and buses.
  *
  * This inline is instantiated in three forms below using constants for the
  * match argument.  It is reduced to the minimum set for each case.  It is
  * also recursive to the depth of the tree.
  */
 static __always_inline int
 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
     struct cpu_search *high, const int match)
 {
 	struct cpu_search lgroup;
 	struct cpu_search hgroup;
 	cpuset_t cpumask;
 	struct cpu_group *child;
 	struct tdq *tdq;
 	int cpu, i, hload, lload, load, total, rnd;
 
 	total = 0;
 	cpumask = cg->cg_mask;
 	if (match & CPU_SEARCH_LOWEST) {
 		lload = INT_MAX;
 		lgroup = *low;
 	}
 	if (match & CPU_SEARCH_HIGHEST) {
 		hload = INT_MIN;
 		hgroup = *high;
 	}
 
 	/* Iterate through the child CPU groups and then remaining CPUs. */
 	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
 		if (i == 0) {
 #ifdef HAVE_INLINE_FFSL
 			cpu = CPU_FFS(&cpumask) - 1;
 #else
 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
 				cpu--;
 #endif
 			if (cpu < 0)
 				break;
 			child = NULL;
 		} else
 			child = &cg->cg_child[i - 1];
 
 		if (match & CPU_SEARCH_LOWEST)
 			lgroup.cs_cpu = -1;
 		if (match & CPU_SEARCH_HIGHEST)
 			hgroup.cs_cpu = -1;
 		if (child) {			/* Handle child CPU group. */
 			CPU_NAND(&cpumask, &child->cg_mask);
 			switch (match) {
 			case CPU_SEARCH_LOWEST:
 				load = cpu_search_lowest(child, &lgroup);
 				break;
 			case CPU_SEARCH_HIGHEST:
 				load = cpu_search_highest(child, &hgroup);
 				break;
 			case CPU_SEARCH_BOTH:
 				load = cpu_search_both(child, &lgroup, &hgroup);
 				break;
 			}
 		} else {			/* Handle child CPU. */
 			CPU_CLR(cpu, &cpumask);
 			tdq = TDQ_CPU(cpu);
 			load = tdq->tdq_load * 256;
 			rnd = sched_random() % 32;
 			if (match & CPU_SEARCH_LOWEST) {
 				if (cpu == low->cs_prefer)
 					load -= 64;
 				/* If that CPU is allowed and get data. */
 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
 				    tdq->tdq_load <= lgroup.cs_limit &&
 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
 					lgroup.cs_cpu = cpu;
 					lgroup.cs_load = load - rnd;
 				}
 			}
 			if (match & CPU_SEARCH_HIGHEST)
 				if (tdq->tdq_load >= hgroup.cs_limit &&
 				    tdq->tdq_transferable &&
 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
 					hgroup.cs_cpu = cpu;
 					hgroup.cs_load = load - rnd;
 				}
 		}
 		total += load;
 
 		/* We have info about child item. Compare it. */
 		if (match & CPU_SEARCH_LOWEST) {
 			if (lgroup.cs_cpu >= 0 &&
 			    (load < lload ||
 			     (load == lload && lgroup.cs_load < low->cs_load))) {
 				lload = load;
 				low->cs_cpu = lgroup.cs_cpu;
 				low->cs_load = lgroup.cs_load;
 			}
 		}
 		if (match & CPU_SEARCH_HIGHEST)
 			if (hgroup.cs_cpu >= 0 &&
 			    (load > hload ||
 			     (load == hload && hgroup.cs_load > high->cs_load))) {
 				hload = load;
 				high->cs_cpu = hgroup.cs_cpu;
 				high->cs_load = hgroup.cs_load;
 			}
 		if (child) {
 			i--;
 			if (i == 0 && CPU_EMPTY(&cpumask))
 				break;
 		}
 #ifndef HAVE_INLINE_FFSL
 		else
 			cpu--;
 #endif
 	}
 	return (total);
 }
 
 /*
  * cpu_search instantiations must pass constants to maintain the inline
  * optimization.
  */
 int
 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
 {
 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
 }
 
 int
 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
 {
 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
 }
 
 int
 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
     struct cpu_search *high)
 {
 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
 }
 
 /*
  * Find the cpu with the least load via the least loaded path that has a
  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  * acceptable.
  */
 static inline int
 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
     int prefer)
 {
 	struct cpu_search low;
 
 	low.cs_cpu = -1;
 	low.cs_prefer = prefer;
 	low.cs_mask = mask;
 	low.cs_pri = pri;
 	low.cs_limit = maxload;
 	cpu_search_lowest(cg, &low);
 	return low.cs_cpu;
 }
 
 /*
  * Find the cpu with the highest load via the highest loaded path.
  */
 static inline int
 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
 {
 	struct cpu_search high;
 
 	high.cs_cpu = -1;
 	high.cs_mask = mask;
 	high.cs_limit = minload;
 	cpu_search_highest(cg, &high);
 	return high.cs_cpu;
 }
 
 static void
 sched_balance_group(struct cpu_group *cg)
 {
 	cpuset_t hmask, lmask;
 	int high, low, anylow;
 
 	CPU_FILL(&hmask);
 	for (;;) {
 		high = sched_highest(cg, hmask, 2);
 		/* Stop if there is no more CPU with transferrable threads. */
 		if (high == -1)
 			break;
 		CPU_CLR(high, &hmask);
 		CPU_COPY(&hmask, &lmask);
 		/* Stop if there is no more CPU left for low. */
 		if (CPU_EMPTY(&lmask))
 			break;
 		anylow = 1;
 nextlow:
 		low = sched_lowest(cg, lmask, -1,
 		    TDQ_CPU(high)->tdq_load - 1, high);
 		/* Stop if we looked well and found no less loaded CPU. */
 		if (anylow && low == -1)
 			break;
 		/* Go to next high if we found no less loaded CPU. */
 		if (low == -1)
 			continue;
 		/* Transfer thread from high to low. */
 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
 			/* CPU that got thread can no longer be a donor. */
 			CPU_CLR(low, &hmask);
 		} else {
 			/*
 			 * If failed, then there is no threads on high
 			 * that can run on this low. Drop low from low
 			 * mask and look for different one.
 			 */
 			CPU_CLR(low, &lmask);
 			anylow = 0;
 			goto nextlow;
 		}
 	}
 }
 
 static void
 sched_balance(void)
 {
 	struct tdq *tdq;
 
 	balance_ticks = max(balance_interval / 2, 1) +
 	    (sched_random() % balance_interval);
 	tdq = TDQ_SELF();
 	TDQ_UNLOCK(tdq);
 	sched_balance_group(cpu_top);
 	TDQ_LOCK(tdq);
 }
 
 /*
  * Lock two thread queues using their address to maintain lock order.
  */
 static void
 tdq_lock_pair(struct tdq *one, struct tdq *two)
 {
 	if (one < two) {
 		TDQ_LOCK(one);
 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
 	} else {
 		TDQ_LOCK(two);
 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
 	}
 }
 
 /*
  * Unlock two thread queues.  Order is not important here.
  */
 static void
 tdq_unlock_pair(struct tdq *one, struct tdq *two)
 {
 	TDQ_UNLOCK(one);
 	TDQ_UNLOCK(two);
 }
 
 /*
  * Transfer load between two imbalanced thread queues.
  */
 static int
 sched_balance_pair(struct tdq *high, struct tdq *low)
 {
 	struct thread *td;
 	int cpu;
 
 	tdq_lock_pair(high, low);
 	td = NULL;
 	/*
 	 * Transfer a thread from high to low.
 	 */
 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
 	    (td = tdq_move(high, low)) != NULL) {
 		/*
 		 * In case the target isn't the current cpu notify it of the
 		 * new load, possibly sending an IPI to force it to reschedule.
 		 */
 		cpu = TDQ_ID(low);
 		if (cpu != PCPU_GET(cpuid))
 			tdq_notify(low, td);
 	}
 	tdq_unlock_pair(high, low);
 	return (td != NULL);
 }
 
 /*
  * Move a thread from one thread queue to another.
  */
 static struct thread *
 tdq_move(struct tdq *from, struct tdq *to)
 {
 	struct td_sched *ts;
 	struct thread *td;
 	struct tdq *tdq;
 	int cpu;
 
 	TDQ_LOCK_ASSERT(from, MA_OWNED);
 	TDQ_LOCK_ASSERT(to, MA_OWNED);
 
 	tdq = from;
 	cpu = TDQ_ID(to);
 	td = tdq_steal(tdq, cpu);
 	if (td == NULL)
 		return (NULL);
 	ts = td_get_sched(td);
 	/*
 	 * Although the run queue is locked the thread may be blocked.  Lock
 	 * it to clear this and acquire the run-queue lock.
 	 */
 	thread_lock(td);
 	/* Drop recursive lock on from acquired via thread_lock(). */
 	TDQ_UNLOCK(from);
 	sched_rem(td);
 	ts->ts_cpu = cpu;
 	td->td_lock = TDQ_LOCKPTR(to);
 	tdq_add(to, td, SRQ_YIELDING);
 	return (td);
 }
 
 /*
  * This tdq has idled.  Try to steal a thread from another cpu and switch
  * to it.
  */
 static int
 tdq_idled(struct tdq *tdq)
 {
 	struct cpu_group *cg;
 	struct tdq *steal;
 	cpuset_t mask;
 	int cpu, switchcnt;
 
 	if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
 		return (1);
 	CPU_FILL(&mask);
 	CPU_CLR(PCPU_GET(cpuid), &mask);
     restart:
 	switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 	for (cg = tdq->tdq_cg; ; ) {
 		cpu = sched_highest(cg, mask, steal_thresh);
 		/*
 		 * We were assigned a thread but not preempted.  Returning
 		 * 0 here will cause our caller to switch to it.
 		 */
 		if (tdq->tdq_load)
 			return (0);
 		if (cpu == -1) {
 			cg = cg->cg_parent;
 			if (cg == NULL)
 				return (1);
 			continue;
 		}
 		steal = TDQ_CPU(cpu);
 		/*
 		 * The data returned by sched_highest() is stale and
 		 * the chosen CPU no longer has an eligible thread.
 		 *
 		 * Testing this ahead of tdq_lock_pair() only catches
 		 * this situation about 20% of the time on an 8 core
 		 * 16 thread Ryzen 7, but it still helps performance.
 		 */
 		if (steal->tdq_load < steal_thresh ||
 		    steal->tdq_transferable == 0)
 			goto restart;
 		tdq_lock_pair(tdq, steal);
 		/*
 		 * We were assigned a thread while waiting for the locks.
 		 * Switch to it now instead of stealing a thread.
 		 */
 		if (tdq->tdq_load)
 			break;
 		/*
 		 * The data returned by sched_highest() is stale and
 		 * the chosen CPU no longer has an eligible thread, or
 		 * we were preempted and the CPU loading info may be out
 		 * of date.  The latter is rare.  In either case restart
 		 * the search.
 		 */
 		if (steal->tdq_load < steal_thresh ||
 		    steal->tdq_transferable == 0 ||
 		    switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) {
 			tdq_unlock_pair(tdq, steal);
 			goto restart;
 		}
 		/*
 		 * Steal the thread and switch to it.
 		 */
 		if (tdq_move(steal, tdq) != NULL)
 			break;
 		/*
 		 * We failed to acquire a thread even though it looked
 		 * like one was available.  This could be due to affinity
 		 * restrictions or for other reasons.  Loop again after
 		 * removing this CPU from the set.  The restart logic
 		 * above does not restore this CPU to the set due to the
 		 * likelyhood of failing here again.
 		 */
 		CPU_CLR(cpu, &mask);
 		tdq_unlock_pair(tdq, steal);
 	}
 	TDQ_UNLOCK(steal);
 	mi_switch(SW_VOL | SWT_IDLE, NULL);
 	thread_unlock(curthread);
 	return (0);
 }
 
 /*
  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
  */
 static void
 tdq_notify(struct tdq *tdq, struct thread *td)
 {
 	struct thread *ctd;
 	int pri;
 	int cpu;
 
 	if (tdq->tdq_ipipending)
 		return;
 	cpu = td_get_sched(td)->ts_cpu;
 	pri = td->td_priority;
 	ctd = pcpu_find(cpu)->pc_curthread;
 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 		return;
 
 	/*
 	 * Make sure that our caller's earlier update to tdq_load is
 	 * globally visible before we read tdq_cpu_idle.  Idle thread
 	 * accesses both of them without locks, and the order is important.
 	 */
 	atomic_thread_fence_seq_cst();
 
 	if (TD_IS_IDLETHREAD(ctd)) {
 		/*
 		 * If the MD code has an idle wakeup routine try that before
 		 * falling back to IPI.
 		 */
 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 			return;
 	}
 	tdq->tdq_ipipending = 1;
 	ipi_cpu(cpu, IPI_PREEMPT);
 }
 
 /*
  * Steals load from a timeshare queue.  Honors the rotating queue head
  * index.
  */
 static struct thread *
 runq_steal_from(struct runq *rq, int cpu, u_char start)
 {
 	struct rqbits *rqb;
 	struct rqhead *rqh;
 	struct thread *td, *first;
 	int bit;
 	int i;
 
 	rqb = &rq->rq_status;
 	bit = start & (RQB_BPW -1);
 	first = NULL;
 again:
 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 		if (rqb->rqb_bits[i] == 0)
 			continue;
 		if (bit == 0)
 			bit = RQB_FFS(rqb->rqb_bits[i]);
 		for (; bit < RQB_BPW; bit++) {
 			if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 				continue;
 			rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 			TAILQ_FOREACH(td, rqh, td_runq) {
 				if (first && THREAD_CAN_MIGRATE(td) &&
 				    THREAD_CAN_SCHED(td, cpu))
 					return (td);
 				first = td;
 			}
 		}
 	}
 	if (start != 0) {
 		start = 0;
 		goto again;
 	}
 
 	if (first && THREAD_CAN_MIGRATE(first) &&
 	    THREAD_CAN_SCHED(first, cpu))
 		return (first);
 	return (NULL);
 }
 
 /*
  * Steals load from a standard linear queue.
  */
 static struct thread *
 runq_steal(struct runq *rq, int cpu)
 {
 	struct rqhead *rqh;
 	struct rqbits *rqb;
 	struct thread *td;
 	int word;
 	int bit;
 
 	rqb = &rq->rq_status;
 	for (word = 0; word < RQB_LEN; word++) {
 		if (rqb->rqb_bits[word] == 0)
 			continue;
 		for (bit = 0; bit < RQB_BPW; bit++) {
 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 				continue;
 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 			TAILQ_FOREACH(td, rqh, td_runq)
 				if (THREAD_CAN_MIGRATE(td) &&
 				    THREAD_CAN_SCHED(td, cpu))
 					return (td);
 		}
 	}
 	return (NULL);
 }
 
 /*
  * Attempt to steal a thread in priority order from a thread queue.
  */
 static struct thread *
 tdq_steal(struct tdq *tdq, int cpu)
 {
 	struct thread *td;
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 		return (td);
 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
 	    cpu, tdq->tdq_ridx)) != NULL)
 		return (td);
 	return (runq_steal(&tdq->tdq_idle, cpu));
 }
 
 /*
  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
  * current lock and returns with the assigned queue locked.
  */
 static inline struct tdq *
 sched_setcpu(struct thread *td, int cpu, int flags)
 {
 
 	struct tdq *tdq;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	tdq = TDQ_CPU(cpu);
 	td_get_sched(td)->ts_cpu = cpu;
 	/*
 	 * If the lock matches just return the queue.
 	 */
 	if (td->td_lock == TDQ_LOCKPTR(tdq))
 		return (tdq);
 #ifdef notyet
 	/*
 	 * If the thread isn't running its lockptr is a
 	 * turnstile or a sleepqueue.  We can just lock_set without
 	 * blocking.
 	 */
 	if (TD_CAN_RUN(td)) {
 		TDQ_LOCK(tdq);
 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
 		return (tdq);
 	}
 #endif
 	/*
 	 * The hard case, migration, we need to block the thread first to
 	 * prevent order reversals with other cpus locks.
 	 */
 	spinlock_enter();
 	thread_lock_block(td);
 	TDQ_LOCK(tdq);
 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 	spinlock_exit();
 	return (tdq);
 }
 
 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 
 static int
 sched_pickcpu(struct thread *td, int flags)
 {
 	struct cpu_group *cg, *ccg;
 	struct td_sched *ts;
 	struct tdq *tdq;
 	cpuset_t mask;
 	int cpu, pri, self;
 
 	self = PCPU_GET(cpuid);
 	ts = td_get_sched(td);
 	KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
 	    "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
 	if (smp_started == 0)
 		return (self);
 	/*
 	 * Don't migrate a running thread from sched_switch().
 	 */
 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 		return (ts->ts_cpu);
 	/*
 	 * Prefer to run interrupt threads on the processors that generate
 	 * the interrupt.
 	 */
 	pri = td->td_priority;
 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 		SCHED_STAT_INC(pickcpu_intrbind);
 		ts->ts_cpu = self;
 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
 			SCHED_STAT_INC(pickcpu_affinity);
 			return (ts->ts_cpu);
 		}
 	}
 	/*
 	 * If the thread can run on the last cpu and the affinity has not
 	 * expired and it is idle, run it there.
 	 */
 	tdq = TDQ_CPU(ts->ts_cpu);
 	cg = tdq->tdq_cg;
 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 		if (cg->cg_flags & CG_FLAG_THREAD) {
 			CPUSET_FOREACH(cpu, cg->cg_mask) {
 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 					break;
 			}
 		} else
 			cpu = INT_MAX;
 		if (cpu > mp_maxid) {
 			SCHED_STAT_INC(pickcpu_idle_affinity);
 			return (ts->ts_cpu);
 		}
 	}
 	/*
 	 * Search for the last level cache CPU group in the tree.
 	 * Skip caches with expired affinity time and SMT groups.
 	 * Affinity to higher level caches will be handled less aggressively.
 	 */
 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 		if (cg->cg_flags & CG_FLAG_THREAD)
 			continue;
 		if (!SCHED_AFFINITY(ts, cg->cg_level))
 			continue;
 		ccg = cg;
 	}
 	if (ccg != NULL)
 		cg = ccg;
 	cpu = -1;
 	/* Search the group for the less loaded idle CPU we can run now. */
 	mask = td->td_cpuset->cs_mask;
 	if (cg != NULL && cg != cpu_top &&
 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
 		    INT_MAX, ts->ts_cpu);
 	/* Search globally for the less loaded CPU we can run now. */
 	if (cpu == -1)
 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 	/* Search globally for the less loaded CPU. */
 	if (cpu == -1)
 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 	KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
 	/*
 	 * Compare the lowest loaded cpu to current cpu.
 	 */
 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
 		SCHED_STAT_INC(pickcpu_local);
 		cpu = self;
 	} else
 		SCHED_STAT_INC(pickcpu_lowest);
 	if (cpu != ts->ts_cpu)
 		SCHED_STAT_INC(pickcpu_migration);
 	return (cpu);
 }
 #endif
 
 /*
  * Pick the highest priority task we have and return it.
  */
 static struct thread *
 tdq_choose(struct tdq *tdq)
 {
 	struct thread *td;
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	td = runq_choose(&tdq->tdq_realtime);
 	if (td != NULL)
 		return (td);
 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 	if (td != NULL) {
 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
 		    ("tdq_choose: Invalid priority on timeshare queue %d",
 		    td->td_priority));
 		return (td);
 	}
 	td = runq_choose(&tdq->tdq_idle);
 	if (td != NULL) {
 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
 		    ("tdq_choose: Invalid priority on idle queue %d",
 		    td->td_priority));
 		return (td);
 	}
 
 	return (NULL);
 }
 
 /*
  * Initialize a thread queue.
  */
 static void
 tdq_setup(struct tdq *tdq)
 {
 
 	if (bootverbose)
 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 	runq_init(&tdq->tdq_realtime);
 	runq_init(&tdq->tdq_timeshare);
 	runq_init(&tdq->tdq_idle);
 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 	    "sched lock %d", (int)TDQ_ID(tdq));
 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 	    MTX_SPIN | MTX_RECURSE);
 #ifdef KTR
 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 	    "CPU %d load", (int)TDQ_ID(tdq));
 #endif
 }
 
 #ifdef SMP
 static void
 sched_setup_smp(void)
 {
 	struct tdq *tdq;
 	int i;
 
 	cpu_top = smp_topo();
 	CPU_FOREACH(i) {
 		tdq = TDQ_CPU(i);
 		tdq_setup(tdq);
 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
 		if (tdq->tdq_cg == NULL)
 			panic("Can't find cpu group for %d\n", i);
 	}
 	balance_tdq = TDQ_SELF();
 }
 #endif
 
 /*
  * Setup the thread queues and initialize the topology based on MD
  * information.
  */
 static void
 sched_setup(void *dummy)
 {
 	struct tdq *tdq;
 
 	tdq = TDQ_SELF();
 #ifdef SMP
 	sched_setup_smp();
 #else
 	tdq_setup(tdq);
 #endif
 
 	/* Add thread0's load since it's running. */
 	TDQ_LOCK(tdq);
 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 	tdq_load_add(tdq, &thread0);
 	tdq->tdq_lowpri = thread0.td_priority;
 	TDQ_UNLOCK(tdq);
 }
 
 /*
  * This routine determines time constants after stathz and hz are setup.
  */
 /* ARGSUSED */
 static void
 sched_initticks(void *dummy)
 {
 	int incr;
 
 	realstathz = stathz ? stathz : hz;
 	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 	    realstathz);
 
 	/*
 	 * tickincr is shifted out by 10 to avoid rounding errors due to
 	 * hz not being evenly divisible by stathz on all platforms.
 	 */
 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 	/*
 	 * This does not work for values of stathz that are more than
 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 	 */
 	if (incr == 0)
 		incr = 1;
 	tickincr = incr;
 #ifdef SMP
 	/*
 	 * Set the default balance interval now that we know
 	 * what realstathz is.
 	 */
 	balance_interval = realstathz;
 	balance_ticks = balance_interval;
 	affinity = SCHED_AFFINITY_DEFAULT;
 #endif
 	if (sched_idlespinthresh < 0)
 		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 }
 
 
 /*
  * This is the core of the interactivity algorithm.  Determines a score based
  * on past behavior.  It is the ratio of sleep time to run time scaled to
  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
  * differs from the cpu usage because it does not account for time spent
  * waiting on a run-queue.  Would be prettier if we had floating point.
  *
  * When a thread's sleep time is greater than its run time the
  * calculation is:
  *
  *                           scaling factor 
  * interactivity score =  ---------------------
  *                        sleep time / run time
  *
  *
  * When a thread's run time is greater than its sleep time the
  * calculation is:
  *
  *                           scaling factor 
  * interactivity score =  ---------------------    + scaling factor
  *                        run time / sleep time
  */
 static int
 sched_interact_score(struct thread *td)
 {
 	struct td_sched *ts;
 	int div;
 
 	ts = td_get_sched(td);
 	/*
 	 * The score is only needed if this is likely to be an interactive
 	 * task.  Don't go through the expense of computing it if there's
 	 * no chance.
 	 */
 	if (sched_interact <= SCHED_INTERACT_HALF &&
 		ts->ts_runtime >= ts->ts_slptime)
 			return (SCHED_INTERACT_HALF);
 
 	if (ts->ts_runtime > ts->ts_slptime) {
 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 		return (SCHED_INTERACT_HALF +
 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 	}
 	if (ts->ts_slptime > ts->ts_runtime) {
 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 		return (ts->ts_runtime / div);
 	}
 	/* runtime == slptime */
 	if (ts->ts_runtime)
 		return (SCHED_INTERACT_HALF);
 
 	/*
 	 * This can happen if slptime and runtime are 0.
 	 */
 	return (0);
 
 }
 
 /*
  * Scale the scheduling priority according to the "interactivity" of this
  * process.
  */
 static void
 sched_priority(struct thread *td)
 {
 	int score;
 	int pri;
 
 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 		return;
 	/*
 	 * If the score is interactive we place the thread in the realtime
 	 * queue with a priority that is less than kernel and interrupt
 	 * priorities.  These threads are not subject to nice restrictions.
 	 *
 	 * Scores greater than this are placed on the normal timeshare queue
 	 * where the priority is partially decided by the most recent cpu
 	 * utilization and the rest is decided by nice value.
 	 *
 	 * The nice value of the process has a linear effect on the calculated
 	 * score.  Negative nice values make it easier for a thread to be
 	 * considered interactive.
 	 */
 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 	if (score < sched_interact) {
 		pri = PRI_MIN_INTERACT;
 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 		    sched_interact) * score;
 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 		    ("sched_priority: invalid interactive priority %d score %d",
 		    pri, score));
 	} else {
 		pri = SCHED_PRI_MIN;
 		if (td_get_sched(td)->ts_ticks)
 			pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 			    SCHED_PRI_RANGE - 1);
 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 		    ("sched_priority: invalid priority %d: nice %d, " 
 		    "ticks %d ftick %d ltick %d tick pri %d",
 		    pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 		    td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 		    SCHED_PRI_TICKS(td_get_sched(td))));
 	}
 	sched_user_prio(td, pri);
 
 	return;
 }
 
 /*
  * This routine enforces a maximum limit on the amount of scheduling history
  * kept.  It is called after either the slptime or runtime is adjusted.  This
  * function is ugly due to integer math.
  */
 static void
 sched_interact_update(struct thread *td)
 {
 	struct td_sched *ts;
 	u_int sum;
 
 	ts = td_get_sched(td);
 	sum = ts->ts_runtime + ts->ts_slptime;
 	if (sum < SCHED_SLP_RUN_MAX)
 		return;
 	/*
 	 * This only happens from two places:
 	 * 1) We have added an unusual amount of run time from fork_exit.
 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
 	 */
 	if (sum > SCHED_SLP_RUN_MAX * 2) {
 		if (ts->ts_runtime > ts->ts_slptime) {
 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
 			ts->ts_slptime = 1;
 		} else {
 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
 			ts->ts_runtime = 1;
 		}
 		return;
 	}
 	/*
 	 * If we have exceeded by more than 1/5th then the algorithm below
 	 * will not bring us back into range.  Dividing by two here forces
 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 	 */
 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 		ts->ts_runtime /= 2;
 		ts->ts_slptime /= 2;
 		return;
 	}
 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 }
 
 /*
  * Scale back the interactivity history when a child thread is created.  The
  * history is inherited from the parent but the thread may behave totally
  * differently.  For example, a shell spawning a compiler process.  We want
  * to learn that the compiler is behaving badly very quickly.
  */
 static void
 sched_interact_fork(struct thread *td)
 {
 	struct td_sched *ts;
 	int ratio;
 	int sum;
 
 	ts = td_get_sched(td);
 	sum = ts->ts_runtime + ts->ts_slptime;
 	if (sum > SCHED_SLP_RUN_FORK) {
 		ratio = sum / SCHED_SLP_RUN_FORK;
 		ts->ts_runtime /= ratio;
 		ts->ts_slptime /= ratio;
 	}
 }
 
 /*
  * Called from proc0_init() to setup the scheduler fields.
  */
 void
 schedinit(void)
 {
 	struct td_sched *ts0;
 
 	/*
 	 * Set up the scheduler specific parts of thread0.
 	 */
 	ts0 = td_get_sched(&thread0);
 	ts0->ts_ltick = ticks;
 	ts0->ts_ftick = ticks;
 	ts0->ts_slice = 0;
 	ts0->ts_cpu = curcpu;	/* set valid CPU number */
 }
 
 /*
  * This is only somewhat accurate since given many processes of the same
  * priority they will switch when their slices run out, which will be
  * at most sched_slice stathz ticks.
  */
 int
 sched_rr_interval(void)
 {
 
 	/* Convert sched_slice from stathz to hz. */
 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 }
 
 /*
  * Update the percent cpu tracking information when it is requested or
  * the total history exceeds the maximum.  We keep a sliding history of
  * tick counts that slowly decays.  This is less precise than the 4BSD
  * mechanism since it happens with less regular and frequent events.
  */
 static void
 sched_pctcpu_update(struct td_sched *ts, int run)
 {
 	int t = ticks;
 
 	/*
 	 * The signed difference may be negative if the thread hasn't run for
 	 * over half of the ticks rollover period.
 	 */
 	if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 		ts->ts_ticks = 0;
 		ts->ts_ftick = t - SCHED_TICK_TARG;
 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
 		ts->ts_ftick = t - SCHED_TICK_TARG;
 	}
 	if (run)
 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 	ts->ts_ltick = t;
 }
 
 /*
  * Adjust the priority of a thread.  Move it to the appropriate run-queue
  * if necessary.  This is the back-end for several priority related
  * functions.
  */
 static void
 sched_thread_priority(struct thread *td, u_char prio)
 {
 	struct td_sched *ts;
 	struct tdq *tdq;
 	int oldpri;
 
 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 	    "prio:%d", td->td_priority, "new prio:%d", prio,
 	    KTR_ATTR_LINKED, sched_tdname(curthread));
 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 	if (td != curthread && prio < td->td_priority) {
 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 		    curthread);
 	} 
 	ts = td_get_sched(td);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	if (td->td_priority == prio)
 		return;
 	/*
 	 * If the priority has been elevated due to priority
 	 * propagation, we may have to move ourselves to a new
 	 * queue.  This could be optimized to not re-add in some
 	 * cases.
 	 */
 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 		sched_rem(td);
 		td->td_priority = prio;
 		sched_add(td, SRQ_BORROWING);
 		return;
 	}
 	/*
 	 * If the thread is currently running we may have to adjust the lowpri
 	 * information so other cpus are aware of our current priority.
 	 */
 	if (TD_IS_RUNNING(td)) {
 		tdq = TDQ_CPU(ts->ts_cpu);
 		oldpri = td->td_priority;
 		td->td_priority = prio;
 		if (prio < tdq->tdq_lowpri)
 			tdq->tdq_lowpri = prio;
 		else if (tdq->tdq_lowpri == oldpri)
 			tdq_setlowpri(tdq, td);
 		return;
 	}
 	td->td_priority = prio;
 }
 
 /*
  * Update a thread's priority when it is lent another thread's
  * priority.
  */
 void
 sched_lend_prio(struct thread *td, u_char prio)
 {
 
 	td->td_flags |= TDF_BORROWING;
 	sched_thread_priority(td, prio);
 }
 
 /*
  * Restore a thread's priority when priority propagation is
  * over.  The prio argument is the minimum priority the thread
  * needs to have to satisfy other possible priority lending
  * requests.  If the thread's regular priority is less
  * important than prio, the thread will keep a priority boost
  * of prio.
  */
 void
 sched_unlend_prio(struct thread *td, u_char prio)
 {
 	u_char base_pri;
 
 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
 		base_pri = td->td_user_pri;
 	else
 		base_pri = td->td_base_pri;
 	if (prio >= base_pri) {
 		td->td_flags &= ~TDF_BORROWING;
 		sched_thread_priority(td, base_pri);
 	} else
 		sched_lend_prio(td, prio);
 }
 
 /*
  * Standard entry for setting the priority to an absolute value.
  */
 void
 sched_prio(struct thread *td, u_char prio)
 {
 	u_char oldprio;
 
 	/* First, update the base priority. */
 	td->td_base_pri = prio;
 
 	/*
 	 * If the thread is borrowing another thread's priority, don't
 	 * ever lower the priority.
 	 */
 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 		return;
 
 	/* Change the real priority. */
 	oldprio = td->td_priority;
 	sched_thread_priority(td, prio);
 
 	/*
 	 * If the thread is on a turnstile, then let the turnstile update
 	 * its state.
 	 */
 	if (TD_ON_LOCK(td) && oldprio != prio)
 		turnstile_adjust(td, oldprio);
 }
 
 /*
  * Set the base user priority, does not effect current running priority.
  */
 void
 sched_user_prio(struct thread *td, u_char prio)
 {
 
 	td->td_base_user_pri = prio;
 	if (td->td_lend_user_pri <= prio)
 		return;
 	td->td_user_pri = prio;
 }
 
 void
 sched_lend_user_prio(struct thread *td, u_char prio)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	td->td_lend_user_pri = prio;
 	td->td_user_pri = min(prio, td->td_base_user_pri);
 	if (td->td_priority > td->td_user_pri)
 		sched_prio(td, td->td_user_pri);
 	else if (td->td_priority != td->td_user_pri)
 		td->td_flags |= TDF_NEEDRESCHED;
 }
 
+/*
+ * Like the above but first check if there is anything to do.
+ */
+void
+sched_lend_user_prio_cond(struct thread *td, u_char prio)
+{
+
+	if (td->td_lend_user_pri != prio)
+		goto lend;
+	if (td->td_user_pri != min(prio, td->td_base_user_pri))
+		goto lend;
+	if (td->td_priority >= td->td_user_pri)
+		goto lend;
+	return;
+
+lend:
+	thread_lock(td);
+	sched_lend_user_prio(td, prio);
+	thread_unlock(td);
+}
+
 #ifdef SMP
 /*
  * This tdq is about to idle.  Try to steal a thread from another CPU before
  * choosing the idle thread.
  */
 static void
 tdq_trysteal(struct tdq *tdq)
 {
 	struct cpu_group *cg;
 	struct tdq *steal;
 	cpuset_t mask;
 	int cpu, i;
 
 	if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL)
 		return;
 	CPU_FILL(&mask);
 	CPU_CLR(PCPU_GET(cpuid), &mask);
 	/* We don't want to be preempted while we're iterating. */
 	spinlock_enter();
 	TDQ_UNLOCK(tdq);
 	for (i = 1, cg = tdq->tdq_cg; ; ) {
 		cpu = sched_highest(cg, mask, steal_thresh);
 		/*
 		 * If a thread was added while interrupts were disabled don't
 		 * steal one here.
 		 */
 		if (tdq->tdq_load > 0) {
 			TDQ_LOCK(tdq);
 			break;
 		}
 		if (cpu == -1) {
 			i++;
 			cg = cg->cg_parent;
 			if (cg == NULL || i > trysteal_limit) {
 				TDQ_LOCK(tdq);
 				break;
 			}
 			continue;
 		}
 		steal = TDQ_CPU(cpu);
 		/*
 		 * The data returned by sched_highest() is stale and
                  * the chosen CPU no longer has an eligible thread.
 		 */
 		if (steal->tdq_load < steal_thresh ||
 		    steal->tdq_transferable == 0)
 			continue;
 		tdq_lock_pair(tdq, steal);
 		/*
 		 * If we get to this point, unconditonally exit the loop
 		 * to bound the time spent in the critcal section.
 		 *
 		 * If a thread was added while interrupts were disabled don't
 		 * steal one here.
 		 */
 		if (tdq->tdq_load > 0) {
 			TDQ_UNLOCK(steal);
 			break;
 		}
 		/*
 		 * The data returned by sched_highest() is stale and
                  * the chosen CPU no longer has an eligible thread.
 		 */
 		if (steal->tdq_load < steal_thresh ||
 		    steal->tdq_transferable == 0) {
 			TDQ_UNLOCK(steal);
 			break;
 		}
 		/*
 		 * If we fail to acquire one due to affinity restrictions,
 		 * bail out and let the idle thread to a more complete search
 		 * outside of a critical section.
 		 */
 		if (tdq_move(steal, tdq) == NULL) {
 			TDQ_UNLOCK(steal);
 			break;
 		}
 		TDQ_UNLOCK(steal);
 		break;
 	}
 	spinlock_exit();
 }
 #endif
 
 /*
  * Handle migration from sched_switch().  This happens only for
  * cpu binding.
  */
 static struct mtx *
 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 {
 	struct tdq *tdn;
 
 	KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
 	    "thread %s queued on absent CPU %d.", td->td_name,
 	    td_get_sched(td)->ts_cpu));
 	tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 #ifdef SMP
 	tdq_load_rem(tdq, td);
 	/*
 	 * Do the lock dance required to avoid LOR.  We grab an extra
 	 * spinlock nesting to prevent preemption while we're
 	 * not holding either run-queue lock.
 	 */
 	spinlock_enter();
 	thread_lock_block(td);	/* This releases the lock on tdq. */
 
 	/*
 	 * Acquire both run-queue locks before placing the thread on the new
 	 * run-queue to avoid deadlocks created by placing a thread with a
 	 * blocked lock on the run-queue of a remote processor.  The deadlock
 	 * occurs when a third processor attempts to lock the two queues in
 	 * question while the target processor is spinning with its own
 	 * run-queue lock held while waiting for the blocked lock to clear.
 	 */
 	tdq_lock_pair(tdn, tdq);
 	tdq_add(tdn, td, flags);
 	tdq_notify(tdn, td);
 	TDQ_UNLOCK(tdn);
 	spinlock_exit();
 #endif
 	return (TDQ_LOCKPTR(tdn));
 }
 
 /*
  * Variadic version of thread_lock_unblock() that does not assume td_lock
  * is blocked.
  */
 static inline void
 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 {
 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 	    (uintptr_t)mtx);
 }
 
 /*
  * Switch threads.  This function has to handle threads coming in while
  * blocked for some reason, running, or idle.  It also must deal with
  * migrating a thread from one queue to another as running threads may
  * be assigned elsewhere via binding.
  */
 void
 sched_switch(struct thread *td, struct thread *newtd, int flags)
 {
 	struct tdq *tdq;
 	struct td_sched *ts;
 	struct mtx *mtx;
 	int srqflag;
 	int cpuid, preempted;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 
 	cpuid = PCPU_GET(cpuid);
 	tdq = TDQ_CPU(cpuid);
 	ts = td_get_sched(td);
 	mtx = td->td_lock;
 	sched_pctcpu_update(ts, 1);
 	ts->ts_rltick = ticks;
 	td->td_lastcpu = td->td_oncpu;
 	td->td_oncpu = NOCPU;
 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 	    (flags & SW_PREEMPT) != 0;
 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 	td->td_owepreempt = 0;
 	if (!TD_IS_IDLETHREAD(td))
 		tdq->tdq_switchcnt++;
 	/*
 	 * The lock pointer in an idle thread should never change.  Reset it
 	 * to CAN_RUN as well.
 	 */
 	if (TD_IS_IDLETHREAD(td)) {
 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 		TD_SET_CAN_RUN(td);
 	} else if (TD_IS_RUNNING(td)) {
 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 		srqflag = preempted ?
 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 		    SRQ_OURSELF|SRQ_YIELDING;
 #ifdef SMP
 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 			ts->ts_cpu = sched_pickcpu(td, 0);
 #endif
 		if (ts->ts_cpu == cpuid)
 			tdq_runq_add(tdq, td, srqflag);
 		else {
 			KASSERT(THREAD_CAN_MIGRATE(td) ||
 			    (ts->ts_flags & TSF_BOUND) != 0,
 			    ("Thread %p shouldn't migrate", td));
 			mtx = sched_switch_migrate(tdq, td, srqflag);
 		}
 	} else {
 		/* This thread must be going to sleep. */
 		TDQ_LOCK(tdq);
 		mtx = thread_lock_block(td);
 		tdq_load_rem(tdq, td);
 #ifdef SMP
 		if (tdq->tdq_load == 0)
 			tdq_trysteal(tdq);
 #endif
 	}
 
 #if (KTR_COMPILE & KTR_SCHED) != 0
 	if (TD_IS_IDLETHREAD(td))
 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 		    "prio:%d", td->td_priority);
 	else
 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 		    "lockname:\"%s\"", td->td_lockname);
 #endif
 
 	/*
 	 * We enter here with the thread blocked and assigned to the
 	 * appropriate cpu run-queue or sleep-queue and with the current
 	 * thread-queue locked.
 	 */
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 	newtd = choosethread();
 	/*
 	 * Call the MD code to switch contexts if necessary.
 	 */
 	if (td != newtd) {
 #ifdef	HWPMC_HOOKS
 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 #endif
 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 		sched_pctcpu_update(td_get_sched(newtd), 0);
 
 #ifdef KDTRACE_HOOKS
 		/*
 		 * If DTrace has set the active vtime enum to anything
 		 * other than INACTIVE (0), then it should have set the
 		 * function to call.
 		 */
 		if (dtrace_vtime_active)
 			(*dtrace_vtime_switch_func)(newtd);
 #endif
 
 		cpu_switch(td, newtd, mtx);
 		/*
 		 * We may return from cpu_switch on a different cpu.  However,
 		 * we always return with td_lock pointing to the current cpu's
 		 * run queue lock.
 		 */
 		cpuid = PCPU_GET(cpuid);
 		tdq = TDQ_CPU(cpuid);
 		lock_profile_obtain_lock_success(
 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 
 		SDT_PROBE0(sched, , , on__cpu);
 #ifdef	HWPMC_HOOKS
 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 #endif
 	} else {
 		thread_unblock_switch(td, mtx);
 		SDT_PROBE0(sched, , , remain__cpu);
 	}
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 	    "prio:%d", td->td_priority);
 
 	/*
 	 * Assert that all went well and return.
 	 */
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 	td->td_oncpu = cpuid;
 }
 
 /*
  * Adjust thread priorities as a result of a nice request.
  */
 void
 sched_nice(struct proc *p, int nice)
 {
 	struct thread *td;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	p->p_nice = nice;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		thread_lock(td);
 		sched_priority(td);
 		sched_prio(td, td->td_base_user_pri);
 		thread_unlock(td);
 	}
 }
 
 /*
  * Record the sleep time for the interactivity scorer.
  */
 void
 sched_sleep(struct thread *td, int prio)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 
 	td->td_slptick = ticks;
 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 		td->td_flags |= TDF_CANSWAP;
 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 		return;
 	if (static_boost == 1 && prio)
 		sched_prio(td, prio);
 	else if (static_boost && td->td_priority > static_boost)
 		sched_prio(td, static_boost);
 }
 
 /*
  * Schedule a thread to resume execution and record how long it voluntarily
  * slept.  We also update the pctcpu, interactivity, and priority.
  */
 void
 sched_wakeup(struct thread *td)
 {
 	struct td_sched *ts;
 	int slptick;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 	td->td_flags &= ~TDF_CANSWAP;
 	/*
 	 * If we slept for more than a tick update our interactivity and
 	 * priority.
 	 */
 	slptick = td->td_slptick;
 	td->td_slptick = 0;
 	if (slptick && slptick != ticks) {
 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 		sched_interact_update(td);
 		sched_pctcpu_update(ts, 0);
 	}
 	/*
 	 * Reset the slice value since we slept and advanced the round-robin.
 	 */
 	ts->ts_slice = 0;
 	sched_add(td, SRQ_BORING);
 }
 
 /*
  * Penalize the parent for creating a new child and initialize the child's
  * priority.
  */
 void
 sched_fork(struct thread *td, struct thread *child)
 {
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	sched_pctcpu_update(td_get_sched(td), 1);
 	sched_fork_thread(td, child);
 	/*
 	 * Penalize the parent and child for forking.
 	 */
 	sched_interact_fork(child);
 	sched_priority(child);
 	td_get_sched(td)->ts_runtime += tickincr;
 	sched_interact_update(td);
 	sched_priority(td);
 }
 
 /*
  * Fork a new thread, may be within the same process.
  */
 void
 sched_fork_thread(struct thread *td, struct thread *child)
 {
 	struct td_sched *ts;
 	struct td_sched *ts2;
 	struct tdq *tdq;
 
 	tdq = TDQ_SELF();
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	/*
 	 * Initialize child.
 	 */
 	ts = td_get_sched(td);
 	ts2 = td_get_sched(child);
 	child->td_oncpu = NOCPU;
 	child->td_lastcpu = NOCPU;
 	child->td_lock = TDQ_LOCKPTR(tdq);
 	child->td_cpuset = cpuset_ref(td->td_cpuset);
 	child->td_domain.dr_policy = td->td_cpuset->cs_domain;
 	ts2->ts_cpu = ts->ts_cpu;
 	ts2->ts_flags = 0;
 	/*
 	 * Grab our parents cpu estimation information.
 	 */
 	ts2->ts_ticks = ts->ts_ticks;
 	ts2->ts_ltick = ts->ts_ltick;
 	ts2->ts_ftick = ts->ts_ftick;
 	/*
 	 * Do not inherit any borrowed priority from the parent.
 	 */
 	child->td_priority = child->td_base_pri;
 	/*
 	 * And update interactivity score.
 	 */
 	ts2->ts_slptime = ts->ts_slptime;
 	ts2->ts_runtime = ts->ts_runtime;
 	/* Attempt to quickly learn interactivity. */
 	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 #ifdef KTR
 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
 #endif
 }
 
 /*
  * Adjust the priority class of a thread.
  */
 void
 sched_class(struct thread *td, int class)
 {
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	if (td->td_pri_class == class)
 		return;
 	td->td_pri_class = class;
 }
 
 /*
  * Return some of the child's priority and interactivity to the parent.
  */
 void
 sched_exit(struct proc *p, struct thread *child)
 {
 	struct thread *td;
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 	    "prio:%d", child->td_priority);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	td = FIRST_THREAD_IN_PROC(p);
 	sched_exit_thread(td, child);
 }
 
 /*
  * Penalize another thread for the time spent on this one.  This helps to
  * worsen the priority and interactivity of processes which schedule batch
  * jobs such as make.  This has little effect on the make process itself but
  * causes new processes spawned by it to receive worse scores immediately.
  */
 void
 sched_exit_thread(struct thread *td, struct thread *child)
 {
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 	    "prio:%d", child->td_priority);
 	/*
 	 * Give the child's runtime to the parent without returning the
 	 * sleep time as a penalty to the parent.  This causes shells that
 	 * launch expensive things to mark their children as expensive.
 	 */
 	thread_lock(td);
 	td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 	sched_interact_update(td);
 	sched_priority(td);
 	thread_unlock(td);
 }
 
 void
 sched_preempt(struct thread *td)
 {
 	struct tdq *tdq;
 
 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 
 	thread_lock(td);
 	tdq = TDQ_SELF();
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	tdq->tdq_ipipending = 0;
 	if (td->td_priority > tdq->tdq_lowpri) {
 		int flags;
 
 		flags = SW_INVOL | SW_PREEMPT;
 		if (td->td_critnest > 1)
 			td->td_owepreempt = 1;
 		else if (TD_IS_IDLETHREAD(td))
 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 		else
 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 	}
 	thread_unlock(td);
 }
 
 /*
  * Fix priorities on return to user-space.  Priorities may be elevated due
  * to static priorities in msleep() or similar.
  */
 void
 sched_userret_slowpath(struct thread *td)
 {
 
 	thread_lock(td);
 	td->td_priority = td->td_user_pri;
 	td->td_base_pri = td->td_user_pri;
 	tdq_setlowpri(TDQ_SELF(), td);
 	thread_unlock(td);
 }
 
 /*
  * Handle a stathz tick.  This is really only relevant for timeshare
  * threads.
  */
 void
 sched_clock(struct thread *td)
 {
 	struct tdq *tdq;
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	tdq = TDQ_SELF();
 #ifdef SMP
 	/*
 	 * We run the long term load balancer infrequently on the first cpu.
 	 */
 	if (balance_tdq == tdq && smp_started != 0 && rebalance != 0) {
 		if (balance_ticks && --balance_ticks == 0)
 			sched_balance();
 	}
 #endif
 	/*
 	 * Save the old switch count so we have a record of the last ticks
 	 * activity.   Initialize the new switch count based on our load.
 	 * If there is some activity seed it to reflect that.
 	 */
 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 	tdq->tdq_switchcnt = tdq->tdq_load;
 	/*
 	 * Advance the insert index once for each tick to ensure that all
 	 * threads get a chance to run.
 	 */
 	if (tdq->tdq_idx == tdq->tdq_ridx) {
 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 			tdq->tdq_ridx = tdq->tdq_idx;
 	}
 	ts = td_get_sched(td);
 	sched_pctcpu_update(ts, 1);
 	if (td->td_pri_class & PRI_FIFO_BIT)
 		return;
 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 		/*
 		 * We used a tick; charge it to the thread so
 		 * that we can compute our interactivity.
 		 */
 		td_get_sched(td)->ts_runtime += tickincr;
 		sched_interact_update(td);
 		sched_priority(td);
 	}
 
 	/*
 	 * Force a context switch if the current thread has used up a full
 	 * time slice (default is 100ms).
 	 */
 	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
 		ts->ts_slice = 0;
 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 	}
 }
 
 u_int
 sched_estcpu(struct thread *td __unused)
 {
 
 	return (0);
 }
 
 /*
  * Return whether the current CPU has runnable tasks.  Used for in-kernel
  * cooperative idle threads.
  */
 int
 sched_runnable(void)
 {
 	struct tdq *tdq;
 	int load;
 
 	load = 1;
 
 	tdq = TDQ_SELF();
 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
 		if (tdq->tdq_load > 0)
 			goto out;
 	} else
 		if (tdq->tdq_load - 1 > 0)
 			goto out;
 	load = 0;
 out:
 	return (load);
 }
 
 /*
  * Choose the highest priority thread to run.  The thread is removed from
  * the run-queue while running however the load remains.  For SMP we set
  * the tdq in the global idle bitmask if it idles here.
  */
 struct thread *
 sched_choose(void)
 {
 	struct thread *td;
 	struct tdq *tdq;
 
 	tdq = TDQ_SELF();
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	td = tdq_choose(tdq);
 	if (td) {
 		tdq_runq_rem(tdq, td);
 		tdq->tdq_lowpri = td->td_priority;
 		return (td);
 	}
 	tdq->tdq_lowpri = PRI_MAX_IDLE;
 	return (PCPU_GET(idlethread));
 }
 
 /*
  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
  * we always request it once we exit a critical section.
  */
 static inline void
 sched_setpreempt(struct thread *td)
 {
 	struct thread *ctd;
 	int cpri;
 	int pri;
 
 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 
 	ctd = curthread;
 	pri = td->td_priority;
 	cpri = ctd->td_priority;
 	if (pri < cpri)
 		ctd->td_flags |= TDF_NEEDRESCHED;
 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 		return;
 	if (!sched_shouldpreempt(pri, cpri, 0))
 		return;
 	ctd->td_owepreempt = 1;
 }
 
 /*
  * Add a thread to a thread queue.  Select the appropriate runq and add the
  * thread to it.  This is the internal function called when the tdq is
  * predetermined.
  */
 void
 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 {
 
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	KASSERT((td->td_inhibitors == 0),
 	    ("sched_add: trying to run inhibited thread"));
 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 	    ("sched_add: bad thread state"));
 	KASSERT(td->td_flags & TDF_INMEM,
 	    ("sched_add: thread swapped out"));
 
 	if (td->td_priority < tdq->tdq_lowpri)
 		tdq->tdq_lowpri = td->td_priority;
 	tdq_runq_add(tdq, td, flags);
 	tdq_load_add(tdq, td);
 }
 
 /*
  * Select the target thread queue and add a thread to it.  Request
  * preemption or IPI a remote processor if required.
  */
 void
 sched_add(struct thread *td, int flags)
 {
 	struct tdq *tdq;
 #ifdef SMP
 	int cpu;
 #endif
 
 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 	    sched_tdname(curthread));
 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 	    KTR_ATTR_LINKED, sched_tdname(td));
 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 	    flags & SRQ_PREEMPTED);
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	/*
 	 * Recalculate the priority before we select the target cpu or
 	 * run-queue.
 	 */
 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 		sched_priority(td);
 #ifdef SMP
 	/*
 	 * Pick the destination cpu and if it isn't ours transfer to the
 	 * target cpu.
 	 */
 	cpu = sched_pickcpu(td, flags);
 	tdq = sched_setcpu(td, cpu, flags);
 	tdq_add(tdq, td, flags);
 	if (cpu != PCPU_GET(cpuid)) {
 		tdq_notify(tdq, td);
 		return;
 	}
 #else
 	tdq = TDQ_SELF();
 	TDQ_LOCK(tdq);
 	/*
 	 * Now that the thread is moving to the run-queue, set the lock
 	 * to the scheduler's lock.
 	 */
 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
 	tdq_add(tdq, td, flags);
 #endif
 	if (!(flags & SRQ_YIELDING))
 		sched_setpreempt(td);
 }
 
 /*
  * Remove a thread from a run-queue without running it.  This is used
  * when we're stealing a thread from a remote queue.  Otherwise all threads
  * exit by calling sched_exit_thread() and sched_throw() themselves.
  */
 void
 sched_rem(struct thread *td)
 {
 	struct tdq *tdq;
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 	    "prio:%d", td->td_priority);
 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 	tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 	KASSERT(TD_ON_RUNQ(td),
 	    ("sched_rem: thread not on run queue"));
 	tdq_runq_rem(tdq, td);
 	tdq_load_rem(tdq, td);
 	TD_SET_CAN_RUN(td);
 	if (td->td_priority == tdq->tdq_lowpri)
 		tdq_setlowpri(tdq, NULL);
 }
 
 /*
  * Fetch cpu utilization information.  Updates on demand.
  */
 fixpt_t
 sched_pctcpu(struct thread *td)
 {
 	fixpt_t pctcpu;
 	struct td_sched *ts;
 
 	pctcpu = 0;
 	ts = td_get_sched(td);
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 	if (ts->ts_ticks) {
 		int rtick;
 
 		/* How many rtick per second ? */
 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 	}
 
 	return (pctcpu);
 }
 
 /*
  * Enforce affinity settings for a thread.  Called after adjustments to
  * cpumask.
  */
 void
 sched_affinity(struct thread *td)
 {
 #ifdef SMP
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	ts = td_get_sched(td);
 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 		return;
 	if (TD_ON_RUNQ(td)) {
 		sched_rem(td);
 		sched_add(td, SRQ_BORING);
 		return;
 	}
 	if (!TD_IS_RUNNING(td))
 		return;
 	/*
 	 * Force a switch before returning to userspace.  If the
 	 * target thread is not running locally send an ipi to force
 	 * the issue.
 	 */
 	td->td_flags |= TDF_NEEDRESCHED;
 	if (td != curthread)
 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 #endif
 }
 
 /*
  * Bind a thread to a target cpu.
  */
 void
 sched_bind(struct thread *td, int cpu)
 {
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 	ts = td_get_sched(td);
 	if (ts->ts_flags & TSF_BOUND)
 		sched_unbind(td);
 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 	ts->ts_flags |= TSF_BOUND;
 	sched_pin();
 	if (PCPU_GET(cpuid) == cpu)
 		return;
 	ts->ts_cpu = cpu;
 	/* When we return from mi_switch we'll be on the correct cpu. */
 	mi_switch(SW_VOL, NULL);
 }
 
 /*
  * Release a bound thread.
  */
 void
 sched_unbind(struct thread *td)
 {
 	struct td_sched *ts;
 
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 	ts = td_get_sched(td);
 	if ((ts->ts_flags & TSF_BOUND) == 0)
 		return;
 	ts->ts_flags &= ~TSF_BOUND;
 	sched_unpin();
 }
 
 int
 sched_is_bound(struct thread *td)
 {
 	THREAD_LOCK_ASSERT(td, MA_OWNED);
 	return (td_get_sched(td)->ts_flags & TSF_BOUND);
 }
 
 /*
  * Basic yield call.
  */
 void
 sched_relinquish(struct thread *td)
 {
 	thread_lock(td);
 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 	thread_unlock(td);
 }
 
 /*
  * Return the total system load.
  */
 int
 sched_load(void)
 {
 #ifdef SMP
 	int total;
 	int i;
 
 	total = 0;
 	CPU_FOREACH(i)
 		total += TDQ_CPU(i)->tdq_sysload;
 	return (total);
 #else
 	return (TDQ_SELF()->tdq_sysload);
 #endif
 }
 
 int
 sched_sizeof_proc(void)
 {
 	return (sizeof(struct proc));
 }
 
 int
 sched_sizeof_thread(void)
 {
 	return (sizeof(struct thread) + sizeof(struct td_sched));
 }
 
 #ifdef SMP
 #define	TDQ_IDLESPIN(tdq)						\
     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 #else
 #define	TDQ_IDLESPIN(tdq)	1
 #endif
 
 /*
  * The actual idle process.
  */
 void
 sched_idletd(void *dummy)
 {
 	struct thread *td;
 	struct tdq *tdq;
 	int oldswitchcnt, switchcnt;
 	int i;
 
 	mtx_assert(&Giant, MA_NOTOWNED);
 	td = curthread;
 	tdq = TDQ_SELF();
 	THREAD_NO_SLEEPING();
 	oldswitchcnt = -1;
 	for (;;) {
 		if (tdq->tdq_load) {
 			thread_lock(td);
 			mi_switch(SW_VOL | SWT_IDLE, NULL);
 			thread_unlock(td);
 		}
 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 #ifdef SMP
 		if (always_steal || switchcnt != oldswitchcnt) {
 			oldswitchcnt = switchcnt;
 			if (tdq_idled(tdq) == 0)
 				continue;
 		}
 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 #else
 		oldswitchcnt = switchcnt;
 #endif
 		/*
 		 * If we're switching very frequently, spin while checking
 		 * for load rather than entering a low power state that 
 		 * may require an IPI.  However, don't do any busy
 		 * loops while on SMT machines as this simply steals
 		 * cycles from cores doing useful work.
 		 */
 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 			for (i = 0; i < sched_idlespins; i++) {
 				if (tdq->tdq_load)
 					break;
 				cpu_spinwait();
 			}
 		}
 
 		/* If there was context switch during spin, restart it. */
 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 			continue;
 
 		/* Run main MD idle handler. */
 		tdq->tdq_cpu_idle = 1;
 		/*
 		 * Make sure that tdq_cpu_idle update is globally visible
 		 * before cpu_idle() read tdq_load.  The order is important
 		 * to avoid race with tdq_notify.
 		 */
 		atomic_thread_fence_seq_cst();
 		/*
 		 * Checking for again after the fence picks up assigned
 		 * threads often enough to make it worthwhile to do so in
 		 * order to avoid calling cpu_idle().
 		 */
 		if (tdq->tdq_load != 0) {
 			tdq->tdq_cpu_idle = 0;
 			continue;
 		}
 		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 		tdq->tdq_cpu_idle = 0;
 
 		/*
 		 * Account thread-less hardware interrupts and
 		 * other wakeup reasons equal to context switches.
 		 */
 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 		if (switchcnt != oldswitchcnt)
 			continue;
 		tdq->tdq_switchcnt++;
 		oldswitchcnt++;
 	}
 }
 
 /*
  * A CPU is entering for the first time or a thread is exiting.
  */
 void
 sched_throw(struct thread *td)
 {
 	struct thread *newtd;
 	struct tdq *tdq;
 
 	tdq = TDQ_SELF();
 	if (td == NULL) {
 		/* Correct spinlock nesting and acquire the correct lock. */
 		TDQ_LOCK(tdq);
 		spinlock_exit();
 		PCPU_SET(switchtime, cpu_ticks());
 		PCPU_SET(switchticks, ticks);
 	} else {
 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 		tdq_load_rem(tdq, td);
 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 		td->td_lastcpu = td->td_oncpu;
 		td->td_oncpu = NOCPU;
 	}
 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 	newtd = choosethread();
 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 	cpu_throw(td, newtd);		/* doesn't return */
 }
 
 /*
  * This is called from fork_exit().  Just acquire the correct locks and
  * let fork do the rest of the work.
  */
 void
 sched_fork_exit(struct thread *td)
 {
 	struct tdq *tdq;
 	int cpuid;
 
 	/*
 	 * Finish setting up thread glue so that it begins execution in a
 	 * non-nested critical section with the scheduler lock held.
 	 */
 	cpuid = PCPU_GET(cpuid);
 	tdq = TDQ_CPU(cpuid);
 	if (TD_IS_IDLETHREAD(td))
 		td->td_lock = TDQ_LOCKPTR(tdq);
 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 	td->td_oncpu = cpuid;
 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 	lock_profile_obtain_lock_success(
 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 
 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 	    "prio:%d", td->td_priority);
 	SDT_PROBE0(sched, , , on__cpu);
 }
 
 /*
  * Create on first use to catch odd startup conditons.
  */
 char *
 sched_tdname(struct thread *td)
 {
 #ifdef KTR
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	if (ts->ts_name[0] == '\0')
 		snprintf(ts->ts_name, sizeof(ts->ts_name),
 		    "%s tid %d", td->td_name, td->td_tid);
 	return (ts->ts_name);
 #else
 	return (td->td_name);
 #endif
 }
 
 #ifdef KTR
 void
 sched_clear_tdname(struct thread *td)
 {
 	struct td_sched *ts;
 
 	ts = td_get_sched(td);
 	ts->ts_name[0] = '\0';
 }
 #endif
 
 #ifdef SMP
 
 /*
  * Build the CPU topology dump string. Is recursively called to collect
  * the topology tree.
  */
 static int
 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
     int indent)
 {
 	char cpusetbuf[CPUSETBUFSIZ];
 	int i, first;
 
 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 	    "", 1 + indent / 2, cg->cg_level);
 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 	first = TRUE;
 	for (i = 0; i < MAXCPU; i++) {
 		if (CPU_ISSET(i, &cg->cg_mask)) {
 			if (!first)
 				sbuf_printf(sb, ", ");
 			else
 				first = FALSE;
 			sbuf_printf(sb, "%d", i);
 		}
 	}
 	sbuf_printf(sb, "</cpu>\n");
 
 	if (cg->cg_flags != 0) {
 		sbuf_printf(sb, "%*s <flags>", indent, "");
 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 		sbuf_printf(sb, "</flags>\n");
 	}
 
 	if (cg->cg_children > 0) {
 		sbuf_printf(sb, "%*s <children>\n", indent, "");
 		for (i = 0; i < cg->cg_children; i++)
 			sysctl_kern_sched_topology_spec_internal(sb, 
 			    &cg->cg_child[i], indent+2);
 		sbuf_printf(sb, "%*s </children>\n", indent, "");
 	}
 	sbuf_printf(sb, "%*s</group>\n", indent, "");
 	return (0);
 }
 
 /*
  * Sysctl handler for retrieving topology dump. It's a wrapper for
  * the recursive sysctl_kern_smp_topology_spec_internal().
  */
 static int
 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf *topo;
 	int err;
 
 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 
 	topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 	if (topo == NULL)
 		return (ENOMEM);
 
 	sbuf_printf(topo, "<groups>\n");
 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 	sbuf_printf(topo, "</groups>\n");
 
 	if (err == 0) {
 		err = sbuf_finish(topo);
 	}
 	sbuf_delete(topo);
 	return (err);
 }
 
 #endif
 
 static int
 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 {
 	int error, new_val, period;
 
 	period = 1000000 / realstathz;
 	new_val = period * sched_slice;
 	error = sysctl_handle_int(oidp, &new_val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (new_val <= 0)
 		return (EINVAL);
 	sched_slice = imax(1, (new_val + period / 2) / period);
 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 	    realstathz);
 	return (0);
 }
 
 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
     "Scheduler name");
 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
     NULL, 0, sysctl_kern_quantum, "I",
     "Quantum for timeshare threads in microseconds");
 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
     "Quantum for timeshare threads in stathz ticks");
 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
     "Interactivity score threshold");
 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
     &preempt_thresh, 0,
     "Maximal (lowest) priority for preemption");
 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
     "Assign static kernel priorities to sleeping threads");
 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
     "Number of times idle thread will spin waiting for new work");
 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
     &sched_idlespinthresh, 0,
     "Threshold before we will permit idle thread spinning");
 #ifdef SMP
 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
     "Number of hz ticks to keep thread affinity for");
 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
     "Enables the long-term load balancer");
 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
     &balance_interval, 0,
     "Average period in stathz ticks to run the long-term balancer");
 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
     "Attempts to steal work from other cores before idling");
 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
     "Minimum load on remote CPU before we'll steal");
 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
     0, "Topological distance limit for stealing threads in sched_switch()");
 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
     "Always run the stealer from the idle thread");
 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
     "XML dump of detected CPU topology");
 #endif
 
 /* ps compat.  All cpu percentages from ULE are weighted. */
 static int ccpu = 0;
 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
Index: head/sys/sys/sched.h
===================================================================
--- head/sys/sys/sched.h	(revision 347354)
+++ head/sys/sys/sched.h	(revision 347355)
@@ -1,266 +1,267 @@
 /*-
  * SPDX-License-Identifier: BSD-4-Clause
  *
  * Copyright (c) 1996, 1997
  *      HD Associates, Inc.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *      This product includes software developed by HD Associates, Inc
  *      and Jukka Antero Ukkonen.
  * 4. Neither the name of the author nor the names of any co-contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL HD ASSOCIATES OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*-
  * Copyright (c) 2002-2008, Jeffrey Roberson <jeff@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef _SCHED_H_
 #define	_SCHED_H_
 
 #ifdef _KERNEL
 /*
  * General scheduling info.
  *
  * sched_load:
  *	Total runnable non-ithread threads in the system.
  *
  * sched_runnable:
  *	Runnable threads for this processor.
  */
 int	sched_load(void);
 int	sched_rr_interval(void);
 int	sched_runnable(void);
 
 /* 
  * Proc related scheduling hooks.
  */
 void	sched_exit(struct proc *p, struct thread *childtd);
 void	sched_fork(struct thread *td, struct thread *childtd);
 void	sched_fork_exit(struct thread *td);
 void	sched_class(struct thread *td, int class);
 void	sched_nice(struct proc *p, int nice);
 
 /*
  * Threads are switched in and out, block on resources, have temporary
  * priorities inherited from their procs, and use up cpu time.
  */
 void	sched_exit_thread(struct thread *td, struct thread *child);
 u_int	sched_estcpu(struct thread *td);
 void	sched_fork_thread(struct thread *td, struct thread *child);
 void	sched_lend_prio(struct thread *td, u_char prio);
 void	sched_lend_user_prio(struct thread *td, u_char pri);
+void	sched_lend_user_prio_cond(struct thread *td, u_char pri);
 fixpt_t	sched_pctcpu(struct thread *td);
 void	sched_prio(struct thread *td, u_char prio);
 void	sched_sleep(struct thread *td, int prio);
 void	sched_switch(struct thread *td, struct thread *newtd, int flags);
 void	sched_throw(struct thread *td);
 void	sched_unlend_prio(struct thread *td, u_char prio);
 void	sched_user_prio(struct thread *td, u_char prio);
 void	sched_userret_slowpath(struct thread *td);
 void	sched_wakeup(struct thread *td);
 #ifdef	RACCT
 #ifdef	SCHED_4BSD
 fixpt_t	sched_pctcpu_delta(struct thread *td);
 #endif
 #endif
 
 static inline void
 sched_userret(struct thread *td)
 {
 
 	/*
 	 * XXX we cheat slightly on the locking here to avoid locking in
 	 * the usual case.  Setting td_priority here is essentially an
 	 * incomplete workaround for not setting it properly elsewhere.
 	 * Now that some interrupt handlers are threads, not setting it
 	 * properly elsewhere can clobber it in the window between setting
 	 * it here and returning to user mode, so don't waste time setting
 	 * it perfectly here.
 	 */
 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
 	    ("thread with borrowed priority returning to userland"));
 	if (__predict_false(td->td_priority != td->td_user_pri))
 		sched_userret_slowpath(td);
 }
 
 /*
  * Threads are moved on and off of run queues
  */
 void	sched_add(struct thread *td, int flags);
 void	sched_clock(struct thread *td);
 void	sched_preempt(struct thread *td);
 void	sched_rem(struct thread *td);
 void	sched_relinquish(struct thread *td);
 struct thread *sched_choose(void);
 void	sched_idletd(void *);
 
 /*
  * Binding makes cpu affinity permanent while pinning is used to temporarily
  * hold a thread on a particular CPU.
  */
 void	sched_bind(struct thread *td, int cpu);
 static __inline void sched_pin(void);
 void	sched_unbind(struct thread *td);
 static __inline void sched_unpin(void);
 int	sched_is_bound(struct thread *td);
 void	sched_affinity(struct thread *td);
 
 /*
  * These procedures tell the process data structure allocation code how
  * many bytes to actually allocate.
  */
 int	sched_sizeof_proc(void);
 int	sched_sizeof_thread(void);
 
 /*
  * This routine provides a consistent thread name for use with KTR graphing
  * functions.
  */
 char	*sched_tdname(struct thread *td);
 #ifdef KTR
 void	sched_clear_tdname(struct thread *td);
 #endif
 
 static __inline void
 sched_pin(void)
 {
 	curthread->td_pinned++;
 	__compiler_membar();
 }
 
 static __inline void
 sched_unpin(void)
 {
 	__compiler_membar();
 	curthread->td_pinned--;
 }
 
 /* sched_add arguments (formerly setrunqueue) */
 #define	SRQ_BORING	0x0000		/* No special circumstances. */
 #define	SRQ_YIELDING	0x0001		/* We are yielding (from mi_switch). */
 #define	SRQ_OURSELF	0x0002		/* It is ourself (from mi_switch). */
 #define	SRQ_INTR	0x0004		/* It is probably urgent. */
 #define	SRQ_PREEMPTED	0x0008		/* has been preempted.. be kind */
 #define	SRQ_BORROWING	0x0010		/* Priority updated due to prio_lend */
 
 /* Scheduler stats. */
 #ifdef SCHED_STATS
 DPCPU_DECLARE(long, sched_switch_stats[SWT_COUNT]);
 
 #define	SCHED_STAT_DEFINE_VAR(name, ptr, descr)				\
 static void name ## _add_proc(void *dummy __unused)			\
 {									\
 									\
 	SYSCTL_ADD_PROC(NULL,						\
 	    SYSCTL_STATIC_CHILDREN(_kern_sched_stats), OID_AUTO,	\
 	    #name, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,		\
 	    ptr, 0, sysctl_dpcpu_long, "LU", descr);			\
 }									\
 SYSINIT(name, SI_SUB_LAST, SI_ORDER_MIDDLE, name ## _add_proc, NULL);
 
 #define	SCHED_STAT_DEFINE(name, descr)					\
     DPCPU_DEFINE(unsigned long, name);					\
     SCHED_STAT_DEFINE_VAR(name, &DPCPU_NAME(name), descr)
 /*
  * Sched stats are always incremented in critical sections so no atomic
  * is necesssary to increment them.
  */
 #define SCHED_STAT_INC(var)     DPCPU_GET(var)++;
 #else
 #define	SCHED_STAT_DEFINE_VAR(name, descr, ptr)
 #define	SCHED_STAT_DEFINE(name, descr)
 #define SCHED_STAT_INC(var)			(void)0
 #endif
 
 /*
  * Fixup scheduler state for proc0 and thread0
  */
 void schedinit(void);
 #endif /* _KERNEL */
 
 /* POSIX 1003.1b Process Scheduling */
 
 /*
  * POSIX scheduling policies
  */
 #define SCHED_FIFO      1
 #define SCHED_OTHER     2
 #define SCHED_RR        3
 
 struct sched_param {
         int     sched_priority;
 };
 
 /*
  * POSIX scheduling declarations for userland.
  */
 #ifndef _KERNEL
 #include <sys/cdefs.h>
 #include <sys/_timespec.h>
 #include <sys/_types.h>
 
 #ifndef _PID_T_DECLARED
 typedef __pid_t         pid_t;
 #define _PID_T_DECLARED
 #endif
 
 __BEGIN_DECLS
 int     sched_get_priority_max(int);
 int     sched_get_priority_min(int);
 int     sched_getparam(pid_t, struct sched_param *);
 int     sched_getscheduler(pid_t);
 int     sched_rr_get_interval(pid_t, struct timespec *);
 int     sched_setparam(pid_t, const struct sched_param *);
 int     sched_setscheduler(pid_t, int, const struct sched_param *);
 int     sched_yield(void);
 __END_DECLS
 
 #endif
 #endif /* !_SCHED_H_ */