Index: head/cddl/contrib/opensolaris/cmd/zfs/zfs_iter.c =================================================================== --- head/cddl/contrib/opensolaris/cmd/zfs/zfs_iter.c (revision 347239) +++ head/cddl/contrib/opensolaris/cmd/zfs/zfs_iter.c (revision 347240) @@ -1,497 +1,497 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 Pawel Jakub Dawidek. All rights reserved. * Copyright 2013 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include "zfs_util.h" #include "zfs_iter.h" /* * This is a private interface used to gather up all the datasets specified on * the command line so that we can iterate over them in order. * * First, we iterate over all filesystems, gathering them together into an * AVL tree. We report errors for any explicitly specified datasets * that we couldn't open. * * When finished, we have an AVL tree of ZFS handles. We go through and execute * the provided callback for each one, passing whatever data the user supplied. */ typedef struct zfs_node { zfs_handle_t *zn_handle; uu_avl_node_t zn_avlnode; } zfs_node_t; typedef struct callback_data { uu_avl_t *cb_avl; int cb_flags; zfs_type_t cb_types; zfs_sort_column_t *cb_sortcol; zprop_list_t **cb_proplist; int cb_depth_limit; int cb_depth; uint8_t cb_props_table[ZFS_NUM_PROPS]; } callback_data_t; uu_avl_pool_t *avl_pool; /* * Include snaps if they were requested or if this a zfs list where types * were not specified and the "listsnapshots" property is set on this pool. */ static boolean_t zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb) { zpool_handle_t *zph; if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0) return (cb->cb_types & ZFS_TYPE_SNAPSHOT); zph = zfs_get_pool_handle(zhp); return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL)); } /* * Called for each dataset. If the object is of an appropriate type, * add it to the avl tree and recurse over any children as necessary. */ static int zfs_callback(zfs_handle_t *zhp, void *data) { callback_data_t *cb = data; boolean_t should_close = B_TRUE; boolean_t include_snaps = zfs_include_snapshots(zhp, cb); boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK); if ((zfs_get_type(zhp) & cb->cb_types) || ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) { uu_avl_index_t idx; zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); node->zn_handle = zhp; uu_avl_node_init(node, &node->zn_avlnode, avl_pool); if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, &idx) == NULL) { if (cb->cb_proplist) { if ((*cb->cb_proplist) && !(*cb->cb_proplist)->pl_all) zfs_prune_proplist(zhp, cb->cb_props_table); if (zfs_expand_proplist(zhp, cb->cb_proplist, (cb->cb_flags & ZFS_ITER_RECVD_PROPS), (cb->cb_flags & ZFS_ITER_LITERAL_PROPS)) != 0) { free(node); return (-1); } } uu_avl_insert(cb->cb_avl, node, idx); should_close = B_FALSE; } else { free(node); } } /* * Recurse if necessary. */ if (cb->cb_flags & ZFS_ITER_RECURSE && ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || cb->cb_depth < cb->cb_depth_limit)) { cb->cb_depth++; if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) (void) zfs_iter_filesystems(zhp, zfs_callback, data); if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) (void) zfs_iter_snapshots(zhp, (cb->cb_flags & ZFS_ITER_SIMPLE) != 0, zfs_callback, data); if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) (void) zfs_iter_bookmarks(zhp, zfs_callback, data); cb->cb_depth--; } if (should_close) zfs_close(zhp); return (0); } int zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, boolean_t reverse) { zfs_sort_column_t *col; zfs_prop_t prop; if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL && !zfs_prop_user(name)) return (-1); col = safe_malloc(sizeof (zfs_sort_column_t)); col->sc_prop = prop; col->sc_reverse = reverse; if (prop == ZPROP_INVAL) { col->sc_user_prop = safe_malloc(strlen(name) + 1); (void) strcpy(col->sc_user_prop, name); } if (*sc == NULL) { col->sc_last = col; *sc = col; } else { (*sc)->sc_last->sc_next = col; (*sc)->sc_last = col; } return (0); } void zfs_free_sort_columns(zfs_sort_column_t *sc) { zfs_sort_column_t *col; while (sc != NULL) { col = sc->sc_next; free(sc->sc_user_prop); free(sc); sc = col; } } boolean_t zfs_sort_only_by_name(const zfs_sort_column_t *sc) { return (sc != NULL && sc->sc_next == NULL && sc->sc_prop == ZFS_PROP_NAME); } /* ARGSUSED */ static int zfs_compare(const void *larg, const void *rarg, void *unused) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; const char *lname = zfs_get_name(l); const char *rname = zfs_get_name(r); char *lat, *rat; uint64_t lcreate, rcreate; int ret; lat = (char *)strchr(lname, '@'); rat = (char *)strchr(rname, '@'); if (lat != NULL) *lat = '\0'; if (rat != NULL) *rat = '\0'; ret = strcmp(lname, rname); - if (ret == 0) { + if (ret == 0 && (lat != NULL || rat != NULL)) { /* * If we're comparing a dataset to one of its snapshots, we * always make the full dataset first. */ if (lat == NULL) { ret = -1; } else if (rat == NULL) { ret = 1; } else { /* * If we have two snapshots from the same dataset, then * we want to sort them according to creation time. We * use the hidden CREATETXG property to get an absolute * ordering of snapshots. */ lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); /* * Both lcreate and rcreate being 0 means we don't have * properties and we should compare full name. */ if (lcreate == 0 && rcreate == 0) ret = strcmp(lat + 1, rat + 1); else if (lcreate < rcreate) ret = -1; else if (lcreate > rcreate) ret = 1; } } if (lat != NULL) *lat = '@'; if (rat != NULL) *rat = '@'; return (ret); } /* * Sort datasets by specified columns. * * o Numeric types sort in ascending order. * o String types sort in alphabetical order. * o Types inappropriate for a row sort that row to the literal * bottom, regardless of the specified ordering. * * If no sort columns are specified, or two datasets compare equally * across all specified columns, they are sorted alphabetically by name * with snapshots grouped under their parents. */ static int zfs_sort(const void *larg, const void *rarg, void *data) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; zfs_sort_column_t *sc = (zfs_sort_column_t *)data; zfs_sort_column_t *psc; for (psc = sc; psc != NULL; psc = psc->sc_next) { char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; char *lstr, *rstr; uint64_t lnum, rnum; boolean_t lvalid, rvalid; int ret = 0; /* * We group the checks below the generic code. If 'lstr' and * 'rstr' are non-NULL, then we do a string based comparison. * Otherwise, we compare 'lnum' and 'rnum'. */ lstr = rstr = NULL; if (psc->sc_prop == ZPROP_INVAL) { nvlist_t *luser, *ruser; nvlist_t *lval, *rval; luser = zfs_get_user_props(l); ruser = zfs_get_user_props(r); lvalid = (nvlist_lookup_nvlist(luser, psc->sc_user_prop, &lval) == 0); rvalid = (nvlist_lookup_nvlist(ruser, psc->sc_user_prop, &rval) == 0); if (lvalid) verify(nvlist_lookup_string(lval, ZPROP_VALUE, &lstr) == 0); if (rvalid) verify(nvlist_lookup_string(rval, ZPROP_VALUE, &rstr) == 0); } else if (psc->sc_prop == ZFS_PROP_NAME) { lvalid = rvalid = B_TRUE; (void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf)); (void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf)); lstr = lbuf; rstr = rbuf; } else if (zfs_prop_is_string(psc->sc_prop)) { lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); lstr = lbuf; rstr = rbuf; } else { lvalid = zfs_prop_valid_for_type(psc->sc_prop, zfs_get_type(l)); rvalid = zfs_prop_valid_for_type(psc->sc_prop, zfs_get_type(r)); if (lvalid) (void) zfs_prop_get_numeric(l, psc->sc_prop, &lnum, NULL, NULL, 0); if (rvalid) (void) zfs_prop_get_numeric(r, psc->sc_prop, &rnum, NULL, NULL, 0); } if (!lvalid && !rvalid) continue; else if (!lvalid) return (1); else if (!rvalid) return (-1); if (lstr) ret = strcmp(lstr, rstr); else if (lnum < rnum) ret = -1; else if (lnum > rnum) ret = 1; if (ret != 0) { if (psc->sc_reverse == B_TRUE) ret = (ret < 0) ? 1 : -1; return (ret); } } return (zfs_compare(larg, rarg, NULL)); } int zfs_for_each(int argc, char **argv, int flags, zfs_type_t types, zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit, zfs_iter_f callback, void *data) { callback_data_t cb = {0}; int ret = 0; zfs_node_t *node; uu_avl_walk_t *walk; avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); if (avl_pool == NULL) nomem(); cb.cb_sortcol = sortcol; cb.cb_flags = flags; cb.cb_proplist = proplist; cb.cb_types = types; cb.cb_depth_limit = limit; /* * If cb_proplist is provided then in the zfs_handles created we * retain only those properties listed in cb_proplist and sortcol. * The rest are pruned. So, the caller should make sure that no other * properties other than those listed in cb_proplist/sortcol are * accessed. * * If cb_proplist is NULL then we retain all the properties. We * always retain the zoned property, which some other properties * need (userquota & friends), and the createtxg property, which * we need to sort snapshots. */ if (cb.cb_proplist && *cb.cb_proplist) { zprop_list_t *p = *cb.cb_proplist; while (p) { if (p->pl_prop >= ZFS_PROP_TYPE && p->pl_prop < ZFS_NUM_PROPS) { cb.cb_props_table[p->pl_prop] = B_TRUE; } p = p->pl_next; } while (sortcol) { if (sortcol->sc_prop >= ZFS_PROP_TYPE && sortcol->sc_prop < ZFS_NUM_PROPS) { cb.cb_props_table[sortcol->sc_prop] = B_TRUE; } sortcol = sortcol->sc_next; } cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE; cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE; } else { (void) memset(cb.cb_props_table, B_TRUE, sizeof (cb.cb_props_table)); } if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) nomem(); if (argc == 0) { /* * If given no arguments, iterate over all datasets. */ cb.cb_flags |= ZFS_ITER_RECURSE; ret = zfs_iter_root(g_zfs, zfs_callback, &cb); } else { int i; zfs_handle_t *zhp; zfs_type_t argtype; /* * If we're recursive, then we always allow filesystems as * arguments. If we also are interested in snapshots, then we * can take volumes as well. */ argtype = types; if (flags & ZFS_ITER_RECURSE) { argtype |= ZFS_TYPE_FILESYSTEM; if (types & ZFS_TYPE_SNAPSHOT) argtype |= ZFS_TYPE_VOLUME; } for (i = 0; i < argc; i++) { if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) { zhp = zfs_path_to_zhandle(g_zfs, argv[i], argtype); } else { zhp = zfs_open(g_zfs, argv[i], argtype); } if (zhp != NULL) ret |= zfs_callback(zhp, &cb); else ret = 1; } } /* * At this point we've got our AVL tree full of zfs handles, so iterate * over each one and execute the real user callback. */ for (node = uu_avl_first(cb.cb_avl); node != NULL; node = uu_avl_next(cb.cb_avl, node)) ret |= callback(node->zn_handle, data); /* * Finally, clean up the AVL tree. */ if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) nomem(); while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(cb.cb_avl, node); zfs_close(node->zn_handle); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(cb.cb_avl); uu_avl_pool_destroy(avl_pool); return (ret); }