Index: stable/11/sys/netinet/sctp.h =================================================================== --- stable/11/sys/netinet/sctp.h (revision 347153) +++ stable/11/sys/netinet/sctp.h (revision 347154) @@ -1,640 +1,640 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_H_ #define _NETINET_SCTP_H_ #include #define SCTP_PACKED __attribute__((packed)) /* * SCTP protocol - RFC4960. */ struct sctphdr { uint16_t src_port; /* source port */ uint16_t dest_port; /* destination port */ uint32_t v_tag; /* verification tag of packet */ uint32_t checksum; /* CRC32C checksum */ /* chunks follow... */ } SCTP_PACKED; /* * SCTP Chunks */ struct sctp_chunkhdr { uint8_t chunk_type; /* chunk type */ uint8_t chunk_flags; /* chunk flags */ uint16_t chunk_length; /* chunk length */ /* optional params follow */ } SCTP_PACKED; /* * SCTP chunk parameters */ struct sctp_paramhdr { uint16_t param_type; /* parameter type */ uint16_t param_length; /* parameter length */ } SCTP_PACKED; /* * user socket options: socket API defined */ /* * read-write options */ #define SCTP_RTOINFO 0x00000001 #define SCTP_ASSOCINFO 0x00000002 #define SCTP_INITMSG 0x00000003 #define SCTP_NODELAY 0x00000004 #define SCTP_AUTOCLOSE 0x00000005 #define SCTP_SET_PEER_PRIMARY_ADDR 0x00000006 #define SCTP_PRIMARY_ADDR 0x00000007 #define SCTP_ADAPTATION_LAYER 0x00000008 /* same as above */ #define SCTP_ADAPTION_LAYER 0x00000008 #define SCTP_DISABLE_FRAGMENTS 0x00000009 #define SCTP_PEER_ADDR_PARAMS 0x0000000a #define SCTP_DEFAULT_SEND_PARAM 0x0000000b /* ancillary data/notification interest options */ #define SCTP_EVENTS 0x0000000c /* deprecated */ /* Without this applied we will give V4 and V6 addresses on a V6 socket */ #define SCTP_I_WANT_MAPPED_V4_ADDR 0x0000000d #define SCTP_MAXSEG 0x0000000e #define SCTP_DELAYED_SACK 0x0000000f #define SCTP_FRAGMENT_INTERLEAVE 0x00000010 #define SCTP_PARTIAL_DELIVERY_POINT 0x00000011 /* authentication support */ #define SCTP_AUTH_CHUNK 0x00000012 #define SCTP_AUTH_KEY 0x00000013 #define SCTP_HMAC_IDENT 0x00000014 #define SCTP_AUTH_ACTIVE_KEY 0x00000015 #define SCTP_AUTH_DELETE_KEY 0x00000016 #define SCTP_USE_EXT_RCVINFO 0x00000017 #define SCTP_AUTO_ASCONF 0x00000018 /* rw */ #define SCTP_MAXBURST 0x00000019 /* rw */ #define SCTP_MAX_BURST 0x00000019 /* rw */ /* assoc level context */ #define SCTP_CONTEXT 0x0000001a /* rw */ /* explicit EOR signalling */ #define SCTP_EXPLICIT_EOR 0x0000001b #define SCTP_REUSE_PORT 0x0000001c /* rw */ #define SCTP_AUTH_DEACTIVATE_KEY 0x0000001d #define SCTP_EVENT 0x0000001e #define SCTP_RECVRCVINFO 0x0000001f #define SCTP_RECVNXTINFO 0x00000020 #define SCTP_DEFAULT_SNDINFO 0x00000021 #define SCTP_DEFAULT_PRINFO 0x00000022 #define SCTP_PEER_ADDR_THLDS 0x00000023 #define SCTP_REMOTE_UDP_ENCAPS_PORT 0x00000024 #define SCTP_ECN_SUPPORTED 0x00000025 #define SCTP_PR_SUPPORTED 0x00000026 #define SCTP_AUTH_SUPPORTED 0x00000027 #define SCTP_ASCONF_SUPPORTED 0x00000028 #define SCTP_RECONFIG_SUPPORTED 0x00000029 #define SCTP_NRSACK_SUPPORTED 0x00000030 #define SCTP_PKTDROP_SUPPORTED 0x00000031 #define SCTP_MAX_CWND 0x00000032 /* * read-only options */ #define SCTP_STATUS 0x00000100 #define SCTP_GET_PEER_ADDR_INFO 0x00000101 /* authentication support */ #define SCTP_PEER_AUTH_CHUNKS 0x00000102 #define SCTP_LOCAL_AUTH_CHUNKS 0x00000103 #define SCTP_GET_ASSOC_NUMBER 0x00000104 /* ro */ #define SCTP_GET_ASSOC_ID_LIST 0x00000105 /* ro */ #define SCTP_TIMEOUTS 0x00000106 #define SCTP_PR_STREAM_STATUS 0x00000107 #define SCTP_PR_ASSOC_STATUS 0x00000108 /* * user socket options: BSD implementation specific */ /* * Blocking I/O is enabled on any TCP type socket by default. For the UDP * model if this is turned on then the socket buffer is shared for send * resources amongst all associations. The default for the UDP model is that * is SS_NBIO is set. Which means all associations have a separate send * limit BUT they will NOT ever BLOCK instead you will get an error back * EAGAIN if you try to send too much. If you want the blocking semantics you * set this option at the cost of sharing one socket send buffer size amongst * all associations. Peeled off sockets turn this option off and block. But * since both TCP and peeled off sockets have only one assoc per socket this * is fine. It probably does NOT make sense to set this on SS_NBIO on a TCP * model OR peeled off UDP model, but we do allow you to do so. You just use * the normal syscall to toggle SS_NBIO the way you want. * * Blocking I/O is controlled by the SS_NBIO flag on the socket state so_state * field. */ #define SCTP_ENABLE_STREAM_RESET 0x00000900 /* struct * sctp_assoc_value */ #define SCTP_RESET_STREAMS 0x00000901 /* struct * sctp_reset_streams */ #define SCTP_RESET_ASSOC 0x00000902 /* sctp_assoc_t */ #define SCTP_ADD_STREAMS 0x00000903 /* struct * sctp_add_streams */ /* For enable stream reset */ #define SCTP_ENABLE_RESET_STREAM_REQ 0x00000001 #define SCTP_ENABLE_RESET_ASSOC_REQ 0x00000002 #define SCTP_ENABLE_CHANGE_ASSOC_REQ 0x00000004 #define SCTP_ENABLE_VALUE_MASK 0x00000007 /* For reset streams */ #define SCTP_STREAM_RESET_INCOMING 0x00000001 #define SCTP_STREAM_RESET_OUTGOING 0x00000002 /* here on down are more implementation specific */ #define SCTP_SET_DEBUG_LEVEL 0x00001005 #define SCTP_CLR_STAT_LOG 0x00001007 /* CMT ON/OFF socket option */ #define SCTP_CMT_ON_OFF 0x00001200 #define SCTP_CMT_USE_DAC 0x00001201 /* JRS - Pluggable Congestion Control Socket option */ #define SCTP_PLUGGABLE_CC 0x00001202 /* RS - Pluggable Stream Scheduling Socket option */ #define SCTP_PLUGGABLE_SS 0x00001203 #define SCTP_SS_VALUE 0x00001204 #define SCTP_CC_OPTION 0x00001205 /* Options for CC * modules */ /* For I-DATA */ #define SCTP_INTERLEAVING_SUPPORTED 0x00001206 /* read only */ #define SCTP_GET_SNDBUF_USE 0x00001101 #define SCTP_GET_STAT_LOG 0x00001103 #define SCTP_PCB_STATUS 0x00001104 #define SCTP_GET_NONCE_VALUES 0x00001105 /* Special hook for dynamically setting primary for all assoc's, * this is a write only option that requires root privilege. */ #define SCTP_SET_DYNAMIC_PRIMARY 0x00002001 /* VRF (virtual router feature) and multi-VRF support * options. VRF's provide splits within a router * that give the views of multiple routers. A * standard host, without VRF support, is just * a single VRF. If VRF's are supported then * the transport must be VRF aware. This means * that every socket call coming in must be directed * within the endpoint to one of the VRF's it belongs * to. The endpoint, before binding, may select * the "default" VRF it is in by using a set socket * option with SCTP_VRF_ID. This will also * get propagated to the default VRF. Once the * endpoint binds an address then it CANNOT add * additional VRF's to become a Multi-VRF endpoint. * * Before BINDING additional VRF's can be added with * the SCTP_ADD_VRF_ID call or deleted with * SCTP_DEL_VRF_ID. * * Associations are ALWAYS contained inside a single * VRF. They cannot reside in two (or more) VRF's. Incoming * packets, assuming the router is VRF aware, can always * tell us what VRF they arrived on. A host not supporting * any VRF's will find that the packets always arrived on the * single VRF that the host has. * */ #define SCTP_VRF_ID 0x00003001 #define SCTP_ADD_VRF_ID 0x00003002 #define SCTP_GET_VRF_IDS 0x00003003 #define SCTP_GET_ASOC_VRF 0x00003004 #define SCTP_DEL_VRF_ID 0x00003005 /* * If you enable packet logging you can get * a poor mans ethereal output in binary * form. Note this is a compile option to * the kernel, SCTP_PACKET_LOGGING, and * without it in your kernel you * will get a EOPNOTSUPP */ #define SCTP_GET_PACKET_LOG 0x00004001 /* * hidden implementation specific options these are NOT user visible (should * move out of sctp.h) */ /* sctp_bindx() flags as hidden socket options */ #define SCTP_BINDX_ADD_ADDR 0x00008001 #define SCTP_BINDX_REM_ADDR 0x00008002 /* Hidden socket option that gets the addresses */ #define SCTP_GET_PEER_ADDRESSES 0x00008003 #define SCTP_GET_LOCAL_ADDRESSES 0x00008004 /* return the total count in bytes needed to hold all local addresses bound */ #define SCTP_GET_LOCAL_ADDR_SIZE 0x00008005 /* Return the total count in bytes needed to hold the remote address */ #define SCTP_GET_REMOTE_ADDR_SIZE 0x00008006 /* hidden option for connectx */ #define SCTP_CONNECT_X 0x00008007 /* hidden option for connectx_delayed, part of sendx */ #define SCTP_CONNECT_X_DELAYED 0x00008008 #define SCTP_CONNECT_X_COMPLETE 0x00008009 /* hidden socket option based sctp_peeloff */ #define SCTP_PEELOFF 0x0000800a /* the real worker for sctp_getaddrlen() */ #define SCTP_GET_ADDR_LEN 0x0000800b /* Debug things that need to be purged */ #define SCTP_SET_INITIAL_DBG_SEQ 0x00009f00 /* JRS - Supported congestion control modules for pluggable * congestion control */ /* Standard TCP Congestion Control */ #define SCTP_CC_RFC2581 0x00000000 /* High Speed TCP Congestion Control (Floyd) */ #define SCTP_CC_HSTCP 0x00000001 /* HTCP Congestion Control */ #define SCTP_CC_HTCP 0x00000002 /* RTCC Congestion Control - RFC2581 plus */ #define SCTP_CC_RTCC 0x00000003 #define SCTP_CC_OPT_RTCC_SETMODE 0x00002000 #define SCTP_CC_OPT_USE_DCCC_ECN 0x00002001 #define SCTP_CC_OPT_STEADY_STEP 0x00002002 #define SCTP_CMT_OFF 0 #define SCTP_CMT_BASE 1 #define SCTP_CMT_RPV1 2 #define SCTP_CMT_RPV2 3 #define SCTP_CMT_MPTCP 4 #define SCTP_CMT_MAX SCTP_CMT_MPTCP /* RS - Supported stream scheduling modules for pluggable * stream scheduling */ /* Default simple round-robin */ #define SCTP_SS_DEFAULT 0x00000000 /* Real round-robin */ #define SCTP_SS_ROUND_ROBIN 0x00000001 /* Real round-robin per packet */ #define SCTP_SS_ROUND_ROBIN_PACKET 0x00000002 /* Priority */ #define SCTP_SS_PRIORITY 0x00000003 /* Fair Bandwidth */ #define SCTP_SS_FAIR_BANDWITH 0x00000004 /* First-come, first-serve */ #define SCTP_SS_FIRST_COME 0x00000005 /* fragment interleave constants * setting must be one of these or * EINVAL returned. */ #define SCTP_FRAG_LEVEL_0 0x00000000 #define SCTP_FRAG_LEVEL_1 0x00000001 #define SCTP_FRAG_LEVEL_2 0x00000002 /* * user state values */ #define SCTP_CLOSED 0x0000 #define SCTP_BOUND 0x1000 #define SCTP_LISTEN 0x2000 #define SCTP_COOKIE_WAIT 0x0002 #define SCTP_COOKIE_ECHOED 0x0004 #define SCTP_ESTABLISHED 0x0008 #define SCTP_SHUTDOWN_SENT 0x0010 #define SCTP_SHUTDOWN_RECEIVED 0x0020 #define SCTP_SHUTDOWN_ACK_SENT 0x0040 #define SCTP_SHUTDOWN_PENDING 0x0080 /* * SCTP operational error codes (user visible) */ #define SCTP_CAUSE_NO_ERROR 0x0000 #define SCTP_CAUSE_INVALID_STREAM 0x0001 #define SCTP_CAUSE_MISSING_PARAM 0x0002 #define SCTP_CAUSE_STALE_COOKIE 0x0003 #define SCTP_CAUSE_OUT_OF_RESC 0x0004 #define SCTP_CAUSE_UNRESOLVABLE_ADDR 0x0005 #define SCTP_CAUSE_UNRECOG_CHUNK 0x0006 #define SCTP_CAUSE_INVALID_PARAM 0x0007 #define SCTP_CAUSE_UNRECOG_PARAM 0x0008 #define SCTP_CAUSE_NO_USER_DATA 0x0009 #define SCTP_CAUSE_COOKIE_IN_SHUTDOWN 0x000a #define SCTP_CAUSE_RESTART_W_NEWADDR 0x000b #define SCTP_CAUSE_USER_INITIATED_ABT 0x000c #define SCTP_CAUSE_PROTOCOL_VIOLATION 0x000d /* Error causes from RFC5061 */ #define SCTP_CAUSE_DELETING_LAST_ADDR 0x00a0 #define SCTP_CAUSE_RESOURCE_SHORTAGE 0x00a1 #define SCTP_CAUSE_DELETING_SRC_ADDR 0x00a2 #define SCTP_CAUSE_ILLEGAL_ASCONF_ACK 0x00a3 #define SCTP_CAUSE_REQUEST_REFUSED 0x00a4 /* Error causes from nat-draft */ #define SCTP_CAUSE_NAT_COLLIDING_STATE 0x00b0 #define SCTP_CAUSE_NAT_MISSING_STATE 0x00b1 /* Error causes from RFC4895 */ #define SCTP_CAUSE_UNSUPPORTED_HMACID 0x0105 /* * error cause parameters (user visible) */ struct sctp_gen_error_cause { uint16_t code; uint16_t length; uint8_t info[]; } SCTP_PACKED; struct sctp_error_cause { uint16_t code; uint16_t length; /* optional cause-specific info may follow */ } SCTP_PACKED; struct sctp_error_invalid_stream { struct sctp_error_cause cause; /* code=SCTP_CAUSE_INVALID_STREAM */ uint16_t stream_id; /* stream id of the DATA in error */ uint16_t reserved; } SCTP_PACKED; struct sctp_error_missing_param { struct sctp_error_cause cause; /* code=SCTP_CAUSE_MISSING_PARAM */ uint32_t num_missing_params; /* number of missing parameters */ uint16_t type[]; } SCTP_PACKED; struct sctp_error_stale_cookie { struct sctp_error_cause cause; /* code=SCTP_CAUSE_STALE_COOKIE */ uint32_t stale_time; /* time in usec of staleness */ } SCTP_PACKED; struct sctp_error_out_of_resource { struct sctp_error_cause cause; /* code=SCTP_CAUSE_OUT_OF_RESOURCES */ } SCTP_PACKED; struct sctp_error_unresolv_addr { struct sctp_error_cause cause; /* code=SCTP_CAUSE_UNRESOLVABLE_ADDR */ } SCTP_PACKED; struct sctp_error_unrecognized_chunk { struct sctp_error_cause cause; /* code=SCTP_CAUSE_UNRECOG_CHUNK */ - struct sctp_chunkhdr ch;/* header from chunk in error */ + struct sctp_chunkhdr ch; /* header from chunk in error */ } SCTP_PACKED; struct sctp_error_no_user_data { struct sctp_error_cause cause; /* code=SCTP_CAUSE_NO_USER_DATA */ uint32_t tsn; /* TSN of the empty data chunk */ } SCTP_PACKED; struct sctp_error_auth_invalid_hmac { struct sctp_error_cause cause; /* code=SCTP_CAUSE_UNSUPPORTED_HMACID */ uint16_t hmac_id; } SCTP_PACKED; /* * Main SCTP chunk types we place these here so natd and f/w's in user land * can find them. */ /************0x00 series ***********/ #define SCTP_DATA 0x00 #define SCTP_INITIATION 0x01 #define SCTP_INITIATION_ACK 0x02 #define SCTP_SELECTIVE_ACK 0x03 #define SCTP_HEARTBEAT_REQUEST 0x04 #define SCTP_HEARTBEAT_ACK 0x05 #define SCTP_ABORT_ASSOCIATION 0x06 #define SCTP_SHUTDOWN 0x07 #define SCTP_SHUTDOWN_ACK 0x08 #define SCTP_OPERATION_ERROR 0x09 #define SCTP_COOKIE_ECHO 0x0a #define SCTP_COOKIE_ACK 0x0b #define SCTP_ECN_ECHO 0x0c #define SCTP_ECN_CWR 0x0d #define SCTP_SHUTDOWN_COMPLETE 0x0e /* RFC4895 */ #define SCTP_AUTHENTICATION 0x0f /* EY nr_sack chunk id*/ #define SCTP_NR_SELECTIVE_ACK 0x10 /************0x40 series ***********/ #define SCTP_IDATA 0x40 /************0x80 series ***********/ /* RFC5061 */ #define SCTP_ASCONF_ACK 0x80 /* draft-ietf-stewart-pktdrpsctp */ #define SCTP_PACKET_DROPPED 0x81 /* draft-ietf-stewart-strreset-xxx */ #define SCTP_STREAM_RESET 0x82 /* RFC4820 */ #define SCTP_PAD_CHUNK 0x84 /************0xc0 series ***********/ /* RFC3758 */ #define SCTP_FORWARD_CUM_TSN 0xc0 /* RFC5061 */ #define SCTP_ASCONF 0xc1 #define SCTP_IFORWARD_CUM_TSN 0xc2 /* ABORT and SHUTDOWN COMPLETE FLAG */ #define SCTP_HAD_NO_TCB 0x01 /* Packet dropped flags */ #define SCTP_FROM_MIDDLE_BOX SCTP_HAD_NO_TCB #define SCTP_BADCRC 0x02 #define SCTP_PACKET_TRUNCATED 0x04 /* Flag for ECN -CWR */ #define SCTP_CWR_REDUCE_OVERRIDE 0x01 #define SCTP_CWR_IN_SAME_WINDOW 0x02 #define SCTP_SAT_NETWORK_MIN 400 /* min ms for RTT to set satellite * time */ #define SCTP_SAT_NETWORK_BURST_INCR 2 /* how many times to multiply maxburst * in sat */ /* Data Chuck Specific Flags */ #define SCTP_DATA_FRAG_MASK 0x03 #define SCTP_DATA_MIDDLE_FRAG 0x00 #define SCTP_DATA_LAST_FRAG 0x01 #define SCTP_DATA_FIRST_FRAG 0x02 #define SCTP_DATA_NOT_FRAG 0x03 #define SCTP_DATA_UNORDERED 0x04 #define SCTP_DATA_SACK_IMMEDIATELY 0x08 /* ECN Nonce: SACK Chunk Specific Flags */ #define SCTP_SACK_NONCE_SUM 0x01 /* CMT DAC algorithm SACK flag */ #define SCTP_SACK_CMT_DAC 0x80 /* * PCB flags (in sctp_flags bitmask). * Note the features and flags are meant * for use by netstat. */ #define SCTP_PCB_FLAGS_UDPTYPE 0x00000001 #define SCTP_PCB_FLAGS_TCPTYPE 0x00000002 #define SCTP_PCB_FLAGS_BOUNDALL 0x00000004 #define SCTP_PCB_FLAGS_ACCEPTING 0x00000008 #define SCTP_PCB_FLAGS_UNBOUND 0x00000010 #define SCTP_PCB_FLAGS_CLOSE_IP 0x00040000 #define SCTP_PCB_FLAGS_WAS_CONNECTED 0x00080000 #define SCTP_PCB_FLAGS_WAS_ABORTED 0x00100000 /* TCP model support */ #define SCTP_PCB_FLAGS_CONNECTED 0x00200000 #define SCTP_PCB_FLAGS_IN_TCPPOOL 0x00400000 #define SCTP_PCB_FLAGS_DONT_WAKE 0x00800000 #define SCTP_PCB_FLAGS_WAKEOUTPUT 0x01000000 #define SCTP_PCB_FLAGS_WAKEINPUT 0x02000000 #define SCTP_PCB_FLAGS_BOUND_V6 0x04000000 #define SCTP_PCB_FLAGS_BLOCKING_IO 0x08000000 #define SCTP_PCB_FLAGS_SOCKET_GONE 0x10000000 #define SCTP_PCB_FLAGS_SOCKET_ALLGONE 0x20000000 #define SCTP_PCB_FLAGS_SOCKET_CANT_READ 0x40000000 /* flags to copy to new PCB */ #define SCTP_PCB_COPY_FLAGS (SCTP_PCB_FLAGS_BOUNDALL|\ SCTP_PCB_FLAGS_WAKEINPUT|\ SCTP_PCB_FLAGS_BOUND_V6) /* * PCB Features (in sctp_features bitmask) */ #define SCTP_PCB_FLAGS_DO_NOT_PMTUD 0x0000000000000001 #define SCTP_PCB_FLAGS_EXT_RCVINFO 0x0000000000000002 /* deprecated */ #define SCTP_PCB_FLAGS_DONOT_HEARTBEAT 0x0000000000000004 #define SCTP_PCB_FLAGS_FRAG_INTERLEAVE 0x0000000000000008 #define SCTP_PCB_FLAGS_INTERLEAVE_STRMS 0x0000000000000010 #define SCTP_PCB_FLAGS_DO_ASCONF 0x0000000000000020 #define SCTP_PCB_FLAGS_AUTO_ASCONF 0x0000000000000040 /* socket options */ #define SCTP_PCB_FLAGS_NODELAY 0x0000000000000100 #define SCTP_PCB_FLAGS_AUTOCLOSE 0x0000000000000200 #define SCTP_PCB_FLAGS_RECVDATAIOEVNT 0x0000000000000400 /* deprecated */ #define SCTP_PCB_FLAGS_RECVASSOCEVNT 0x0000000000000800 #define SCTP_PCB_FLAGS_RECVPADDREVNT 0x0000000000001000 #define SCTP_PCB_FLAGS_RECVPEERERR 0x0000000000002000 #define SCTP_PCB_FLAGS_RECVSENDFAILEVNT 0x0000000000004000 /* deprecated */ #define SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT 0x0000000000008000 #define SCTP_PCB_FLAGS_ADAPTATIONEVNT 0x0000000000010000 #define SCTP_PCB_FLAGS_PDAPIEVNT 0x0000000000020000 #define SCTP_PCB_FLAGS_AUTHEVNT 0x0000000000040000 #define SCTP_PCB_FLAGS_STREAM_RESETEVNT 0x0000000000080000 #define SCTP_PCB_FLAGS_NO_FRAGMENT 0x0000000000100000 #define SCTP_PCB_FLAGS_EXPLICIT_EOR 0x0000000000400000 #define SCTP_PCB_FLAGS_NEEDS_MAPPED_V4 0x0000000000800000 #define SCTP_PCB_FLAGS_MULTIPLE_ASCONFS 0x0000000001000000 #define SCTP_PCB_FLAGS_PORTREUSE 0x0000000002000000 #define SCTP_PCB_FLAGS_DRYEVNT 0x0000000004000000 #define SCTP_PCB_FLAGS_RECVRCVINFO 0x0000000008000000 #define SCTP_PCB_FLAGS_RECVNXTINFO 0x0000000010000000 #define SCTP_PCB_FLAGS_ASSOC_RESETEVNT 0x0000000020000000 #define SCTP_PCB_FLAGS_STREAM_CHANGEEVNT 0x0000000040000000 #define SCTP_PCB_FLAGS_RECVNSENDFAILEVNT 0x0000000080000000 /*- * mobility_features parameters (by micchie).Note * these features are applied against the * sctp_mobility_features flags.. not the sctp_features * flags. */ #define SCTP_MOBILITY_BASE 0x00000001 #define SCTP_MOBILITY_FASTHANDOFF 0x00000002 #define SCTP_MOBILITY_PRIM_DELETED 0x00000004 #define SCTP_SMALLEST_PMTU 512 /* smallest pmtu allowed when disabling PMTU * discovery */ #undef SCTP_PACKED #include /* This dictates the size of the packet * collection buffer. This only applies * if SCTP_PACKET_LOGGING is enabled in * your config. */ #define SCTP_PACKET_LOG_SIZE 65536 /* Maximum delays and such a user can set for options that * take ms. */ #define SCTP_MAX_SACK_DELAY 500 /* per RFC4960 */ #define SCTP_MAX_HB_INTERVAL 14400000 /* 4 hours in ms */ #define SCTP_MAX_COOKIE_LIFE 3600000 /* 1 hour in ms */ /* Types of logging/KTR tracing that can be enabled via the * sysctl net.inet.sctp.sctp_logging. You must also enable * SUBSYS tracing. * Note that you must have the SCTP option in the kernel * to enable these as well. */ #define SCTP_BLK_LOGGING_ENABLE 0x00000001 #define SCTP_CWND_MONITOR_ENABLE 0x00000002 #define SCTP_CWND_LOGGING_ENABLE 0x00000004 #define SCTP_FLIGHT_LOGGING_ENABLE 0x00000020 #define SCTP_FR_LOGGING_ENABLE 0x00000040 #define SCTP_LOCK_LOGGING_ENABLE 0x00000080 #define SCTP_MAP_LOGGING_ENABLE 0x00000100 #define SCTP_MBCNT_LOGGING_ENABLE 0x00000200 #define SCTP_MBUF_LOGGING_ENABLE 0x00000400 #define SCTP_NAGLE_LOGGING_ENABLE 0x00000800 #define SCTP_RECV_RWND_LOGGING_ENABLE 0x00001000 #define SCTP_RTTVAR_LOGGING_ENABLE 0x00002000 #define SCTP_SACK_LOGGING_ENABLE 0x00004000 #define SCTP_SACK_RWND_LOGGING_ENABLE 0x00008000 #define SCTP_SB_LOGGING_ENABLE 0x00010000 #define SCTP_STR_LOGGING_ENABLE 0x00020000 #define SCTP_WAKE_LOGGING_ENABLE 0x00040000 #define SCTP_LOG_MAXBURST_ENABLE 0x00080000 #define SCTP_LOG_RWND_ENABLE 0x00100000 #define SCTP_LOG_SACK_ARRIVALS_ENABLE 0x00200000 #define SCTP_LTRACE_CHUNK_ENABLE 0x00400000 #define SCTP_LTRACE_ERROR_ENABLE 0x00800000 #define SCTP_LAST_PACKET_TRACING 0x01000000 #define SCTP_THRESHOLD_LOGGING 0x02000000 #define SCTP_LOG_AT_SEND_2_SCTP 0x04000000 #define SCTP_LOG_AT_SEND_2_OUTQ 0x08000000 #define SCTP_LOG_TRY_ADVANCE 0x10000000 #endif /* !_NETINET_SCTP_H_ */ Index: stable/11/sys/netinet/sctp_asconf.c =================================================================== --- stable/11/sys/netinet/sctp_asconf.c (revision 347153) +++ stable/11/sys/netinet/sctp_asconf.c (revision 347154) @@ -1,3465 +1,3487 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include /* * debug flags: * SCTP_DEBUG_ASCONF1: protocol info, general info and errors * SCTP_DEBUG_ASCONF2: detailed info */ /* * RFC 5061 * * An ASCONF parameter queue exists per asoc which holds the pending address * operations. Lists are updated upon receipt of ASCONF-ACK. * * A restricted_addrs list exists per assoc to hold local addresses that are * not (yet) usable by the assoc as a source address. These addresses are * either pending an ASCONF operation (and exist on the ASCONF parameter * queue), or they are permanently restricted (the peer has returned an * ERROR indication to an ASCONF(ADD), or the peer does not support ASCONF). * * Deleted addresses are always immediately removed from the lists as they will * (shortly) no longer exist in the kernel. We send ASCONFs as a courtesy, * only if allowed. */ /* * ASCONF parameter processing. * response_required: set if a reply is required (eg. SUCCESS_REPORT). * returns a mbuf to an "error" response parameter or NULL/"success" if ok. * FIX: allocating this many mbufs on the fly is pretty inefficient... */ static struct mbuf * sctp_asconf_success_response(uint32_t id) { struct mbuf *m_reply = NULL; struct sctp_asconf_paramhdr *aph; m_reply = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_paramhdr), 0, M_NOWAIT, 1, MT_DATA); if (m_reply == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_success_response: couldn't get mbuf!\n"); return (NULL); } aph = mtod(m_reply, struct sctp_asconf_paramhdr *); aph->correlation_id = id; aph->ph.param_type = htons(SCTP_SUCCESS_REPORT); aph->ph.param_length = sizeof(struct sctp_asconf_paramhdr); SCTP_BUF_LEN(m_reply) = aph->ph.param_length; aph->ph.param_length = htons(aph->ph.param_length); return (m_reply); } static struct mbuf * sctp_asconf_error_response(uint32_t id, uint16_t cause, uint8_t *error_tlv, uint16_t tlv_length) { struct mbuf *m_reply = NULL; struct sctp_asconf_paramhdr *aph; struct sctp_error_cause *error; uint8_t *tlv; m_reply = sctp_get_mbuf_for_msg((sizeof(struct sctp_asconf_paramhdr) + tlv_length + sizeof(struct sctp_error_cause)), 0, M_NOWAIT, 1, MT_DATA); if (m_reply == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_error_response: couldn't get mbuf!\n"); return (NULL); } aph = mtod(m_reply, struct sctp_asconf_paramhdr *); error = (struct sctp_error_cause *)(aph + 1); aph->correlation_id = id; aph->ph.param_type = htons(SCTP_ERROR_CAUSE_IND); error->code = htons(cause); error->length = tlv_length + sizeof(struct sctp_error_cause); aph->ph.param_length = error->length + sizeof(struct sctp_asconf_paramhdr); if (aph->ph.param_length > MLEN) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_error_response: tlv_length (%xh) too big\n", tlv_length); sctp_m_freem(m_reply); /* discard */ return (NULL); } if (error_tlv != NULL) { tlv = (uint8_t *)(error + 1); memcpy(tlv, error_tlv, tlv_length); } SCTP_BUF_LEN(m_reply) = aph->ph.param_length; error->length = htons(error->length); aph->ph.param_length = htons(aph->ph.param_length); return (m_reply); } static struct mbuf * sctp_process_asconf_add_ip(struct sockaddr *src, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int send_hb, int response_required) { struct sctp_nets *net; struct mbuf *m_reply = NULL; union sctp_sockstore store; struct sctp_paramhdr *ph; uint16_t param_type, aparam_length; #if defined(INET) || defined(INET6) uint16_t param_length; #endif struct sockaddr *sa; int zero_address = 0; int bad_address = 0; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); #if defined(INET) || defined(INET6) param_length = ntohs(ph->param_length); #endif sa = &store.sa; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = &store.sin; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_port = stcb->rport; sin->sin_addr.s_addr = v4addr->addr; if ((sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { bad_address = 1; } if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: adding "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = &store.sin6; memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_port = stcb->rport; memcpy((caddr_t)&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { bad_address = 1; } if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: adding "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_INVALID_PARAM, (uint8_t *)aph, aparam_length); return (m_reply); } /* end switch */ /* if 0.0.0.0/::0, add the source address instead */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { sa = src; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: using source addr "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, src); } /* add the address */ if (bad_address) { m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_INVALID_PARAM, (uint8_t *)aph, aparam_length); } else if (sctp_add_remote_addr(stcb, sa, &net, stcb->asoc.port, SCTP_DONOT_SETSCOPE, SCTP_ADDR_DYNAMIC_ADDED) != 0) { SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: error adding address\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_RESOURCE_SHORTAGE, (uint8_t *)aph, aparam_length); } else { /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_ADD_IP, stcb, 0, sa, SCTP_SO_NOT_LOCKED); if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, stcb->sctp_ep, stcb, net); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); if (send_hb) { sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); } } return (m_reply); } static int sctp_asconf_del_remote_addrs_except(struct sctp_tcb *stcb, struct sockaddr *src) { struct sctp_nets *src_net, *net; /* make sure the source address exists as a destination net */ src_net = sctp_findnet(stcb, src); if (src_net == NULL) { /* not found */ return (-1); } + /* delete all destination addresses except the source */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net != src_net) { /* delete this address */ sctp_remove_net(stcb, net); SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_del_remote_addrs_except: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, (struct sockaddr *)&net->ro._l_addr); /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_DELETE_IP, stcb, 0, (struct sockaddr *)&net->ro._l_addr, SCTP_SO_NOT_LOCKED); } } return (0); } static struct mbuf * sctp_process_asconf_delete_ip(struct sockaddr *src, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int response_required) { struct mbuf *m_reply = NULL; union sctp_sockstore store; struct sctp_paramhdr *ph; uint16_t param_type, aparam_length; #if defined(INET) || defined(INET6) uint16_t param_length; #endif struct sockaddr *sa; int zero_address = 0; int result; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); #if defined(INET) || defined(INET6) param_length = ntohs(ph->param_length); #endif sa = &store.sa; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = &store.sin; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_port = stcb->rport; sin->sin_addr.s_addr = v4addr->addr; if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = &store.sin6; memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_port = stcb->rport; memcpy(&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *)aph, aparam_length); return (m_reply); } /* make sure the source address is not being deleted */ if (sctp_cmpaddr(sa, src)) { /* trying to delete the source address! */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: tried to delete source addr\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_DELETING_SRC_ADDR, (uint8_t *)aph, aparam_length); return (m_reply); } + /* if deleting 0.0.0.0/::0, delete all addresses except src addr */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { result = sctp_asconf_del_remote_addrs_except(stcb, src); if (result) { /* src address did not exist? */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: src addr does not exist?\n"); /* what error to reply with?? */ m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_REQUEST_REFUSED, (uint8_t *)aph, aparam_length); } else if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } return (m_reply); } + /* delete the address */ result = sctp_del_remote_addr(stcb, sa); /* * note if result == -2, the address doesn't exist in the asoc but * since it's being deleted anyways, we just ack the delete -- but * this probably means something has already gone awry */ if (result == -1) { /* only one address in the asoc */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: tried to delete last IP addr!\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_DELETING_LAST_ADDR, (uint8_t *)aph, aparam_length); } else { if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_DELETE_IP, stcb, 0, sa, SCTP_SO_NOT_LOCKED); } return (m_reply); } static struct mbuf * sctp_process_asconf_set_primary(struct sockaddr *src, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int response_required) { struct mbuf *m_reply = NULL; union sctp_sockstore store; struct sctp_paramhdr *ph; uint16_t param_type, aparam_length; #if defined(INET) || defined(INET6) uint16_t param_length; #endif struct sockaddr *sa; int zero_address = 0; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); #if defined(INET) || defined(INET6) param_length = ntohs(ph->param_length); #endif sa = &store.sa; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = &store.sin; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = v4addr->addr; if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = &store.sin6; memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); memcpy((caddr_t)&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *)aph, aparam_length); return (m_reply); } /* if 0.0.0.0/::0, use the source address instead */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { sa = src; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: using source addr "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, src); } /* set the primary address */ if (sctp_set_primary_addr(stcb, sa, NULL) == 0) { SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: primary address set\n"); /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_SET_PRIMARY, stcb, 0, sa, SCTP_SO_NOT_LOCKED); if ((stcb->asoc.primary_destination->dest_state & SCTP_ADDR_REACHABLE) && (!(stcb->asoc.primary_destination->dest_state & SCTP_ADDR_PF)) && (stcb->asoc.alternate)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } /* * Mobility adaptation. Ideally, when the reception of SET * PRIMARY with DELETE IP ADDRESS of the previous primary * destination, unacknowledged DATA are retransmitted * immediately to the new primary destination for seamless * handover. If the destination is UNCONFIRMED and marked to * REQ_PRIM, The retransmission occur when reception of the * HEARTBEAT-ACK. (See sctp_handle_heartbeat_ack in * sctp_input.c) Also, when change of the primary * destination, it is better that all subsequent new DATA * containing already queued DATA are transmitted to the new * primary destination. (by micchie) */ if ((sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) && sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED) && (stcb->asoc.primary_destination->dest_state & SCTP_ADDR_UNCONFIRMED) == 0) { sctp_timer_stop(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_1); if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_assoc_immediate_retrans(stcb, stcb->asoc.primary_destination); } if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE)) { sctp_move_chunks_from_net(stcb, stcb->asoc.deleted_primary); } sctp_delete_prim_timer(stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); } } else { /* couldn't set the requested primary address! */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: set primary failed!\n"); /* must have been an invalid address, so report */ m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *)aph, aparam_length); } return (m_reply); } /* * handles an ASCONF chunk. * if all parameters are processed ok, send a plain (empty) ASCONF-ACK */ void sctp_handle_asconf(struct mbuf *m, unsigned int offset, struct sockaddr *src, struct sctp_asconf_chunk *cp, struct sctp_tcb *stcb, int first) { struct sctp_association *asoc; uint32_t serial_num; struct mbuf *n, *m_ack, *m_result, *m_tail; struct sctp_asconf_ack_chunk *ack_cp; struct sctp_asconf_paramhdr *aph; struct sctp_ipv6addr_param *p_addr; unsigned int asconf_limit, cnt; int error = 0; /* did an error occur? */ /* asconf param buffer */ uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; struct sctp_asconf_ack *ack, *ack_next; /* verify minimum length */ if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_asconf_chunk)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: chunk too small = %xh\n", ntohs(cp->ch.chunk_length)); return; } asoc = &stcb->asoc; serial_num = ntohl(cp->serial_number); if (SCTP_TSN_GE(asoc->asconf_seq_in, serial_num)) { /* got a duplicate ASCONF */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: got duplicate serial number = %xh\n", serial_num); return; } else if (serial_num != (asoc->asconf_seq_in + 1)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: incorrect serial number = %xh (expected next = %xh)\n", serial_num, asoc->asconf_seq_in + 1); return; } + /* it's the expected "next" sequence number, so process it */ asoc->asconf_seq_in = serial_num; /* update sequence */ /* get length of all the param's in the ASCONF */ asconf_limit = offset + ntohs(cp->ch.chunk_length); SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: asconf_limit=%u, sequence=%xh\n", asconf_limit, serial_num); if (first) { /* delete old cache */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: Now processing first ASCONF. Try to delete old cache\n"); TAILQ_FOREACH_SAFE(ack, &asoc->asconf_ack_sent, next, ack_next) { if (ack->serial_number == serial_num) break; SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: delete old(%u) < first(%u)\n", ack->serial_number, serial_num); TAILQ_REMOVE(&asoc->asconf_ack_sent, ack, next); if (ack->data != NULL) { sctp_m_freem(ack->data); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asconf_ack), ack); } } + m_ack = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_ack_chunk), 0, M_NOWAIT, 1, MT_DATA); if (m_ack == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get mbuf!\n"); return; } m_tail = m_ack; /* current reply chain's tail */ /* fill in ASCONF-ACK header */ ack_cp = mtod(m_ack, struct sctp_asconf_ack_chunk *); ack_cp->ch.chunk_type = SCTP_ASCONF_ACK; ack_cp->ch.chunk_flags = 0; ack_cp->serial_number = htonl(serial_num); /* set initial lengths (eg. just an ASCONF-ACK), ntohx at the end! */ SCTP_BUF_LEN(m_ack) = sizeof(struct sctp_asconf_ack_chunk); ack_cp->ch.chunk_length = sizeof(struct sctp_asconf_ack_chunk); /* skip the lookup address parameter */ offset += sizeof(struct sctp_asconf_chunk); p_addr = (struct sctp_ipv6addr_param *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&aparam_buf); if (p_addr == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get lookup addr!\n"); /* respond with a missing/invalid mandatory parameter error */ return; } /* param_length is already validated in process_control... */ offset += ntohs(p_addr->ph.param_length); /* skip lookup addr */ /* get pointer to first asconf param in ASCONF */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), (uint8_t *)&aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "Empty ASCONF received?\n"); goto send_reply; } /* process through all parameters */ cnt = 0; while (aph != NULL) { unsigned int param_length, param_type; param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (offset + param_length > asconf_limit) { /* parameter goes beyond end of chunk! */ sctp_m_freem(m_ack); return; } m_result = NULL; if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: param length (%u) larger than buffer size!\n", param_length); sctp_m_freem(m_ack); return; } if (param_length <= sizeof(struct sctp_paramhdr)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: param length (%u) too short\n", param_length); sctp_m_freem(m_ack); } /* get the entire parameter */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, param_length, aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get entire param\n"); sctp_m_freem(m_ack); return; } switch (param_type) { case SCTP_ADD_IP_ADDRESS: m_result = sctp_process_asconf_add_ip(src, aph, stcb, (cnt < SCTP_BASE_SYSCTL(sctp_hb_maxburst)), error); cnt++; break; case SCTP_DEL_IP_ADDRESS: m_result = sctp_process_asconf_delete_ip(src, aph, stcb, error); break; case SCTP_ERROR_CAUSE_IND: /* not valid in an ASCONF chunk */ break; case SCTP_SET_PRIM_ADDR: m_result = sctp_process_asconf_set_primary(src, aph, stcb, error); break; case SCTP_NAT_VTAGS: SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: sees a NAT VTAG state parameter\n"); break; case SCTP_SUCCESS_REPORT: /* not valid in an ASCONF chunk */ break; case SCTP_ULP_ADAPTATION: /* FIX */ break; default: if ((param_type & 0x8000) == 0) { /* Been told to STOP at this param */ asconf_limit = offset; /* * FIX FIX - We need to call * sctp_arethere_unrecognized_parameters() * to get a operr and send it for any * param's with the 0x4000 bit set OR do it * here ourselves... note we still must STOP * if the 0x8000 bit is clear. */ } /* unknown/invalid param type */ break; } /* switch */ /* add any (error) result to the reply mbuf chain */ if (m_result != NULL) { SCTP_BUF_NEXT(m_tail) = m_result; m_tail = m_result; /* update lengths, make sure it's aligned too */ SCTP_BUF_LEN(m_result) = SCTP_SIZE32(SCTP_BUF_LEN(m_result)); ack_cp->ch.chunk_length += SCTP_BUF_LEN(m_result); /* set flag to force success reports */ error = 1; } offset += SCTP_SIZE32(param_length); /* update remaining ASCONF message length to process */ if (offset >= asconf_limit) { /* no more data in the mbuf chain */ break; } /* get pointer to next asconf param */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), (uint8_t *)&aparam_buf); if (aph == NULL) { /* can't get an asconf paramhdr */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: can't get asconf param hdr!\n"); /* FIX ME - add error here... */ } } send_reply: ack_cp->ch.chunk_length = htons(ack_cp->ch.chunk_length); /* save the ASCONF-ACK reply */ ack = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_asconf_ack), struct sctp_asconf_ack); if (ack == NULL) { sctp_m_freem(m_ack); return; } ack->serial_number = serial_num; ack->last_sent_to = NULL; ack->data = m_ack; ack->len = 0; for (n = m_ack; n != NULL; n = SCTP_BUF_NEXT(n)) { ack->len += SCTP_BUF_LEN(n); } TAILQ_INSERT_TAIL(&stcb->asoc.asconf_ack_sent, ack, next); /* see if last_control_chunk_from is set properly (use IP src addr) */ if (stcb->asoc.last_control_chunk_from == NULL) { /* * this could happen if the source address was just newly * added */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: looking up net for IP source address\n"); SCTPDBG(SCTP_DEBUG_ASCONF1, "Looking for IP source: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, src); /* look up the from address */ stcb->asoc.last_control_chunk_from = sctp_findnet(stcb, src); #ifdef SCTP_DEBUG if (stcb->asoc.last_control_chunk_from == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: IP source address not found?!\n"); } #endif } } /* * does the address match? returns 0 if not, 1 if so */ static uint32_t sctp_asconf_addr_match(struct sctp_asconf_addr *aa, struct sockaddr *sa) { switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* XXX scopeid */ struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; if ((aa->ap.addrp.ph.param_type == SCTP_IPV6_ADDRESS) && (memcmp(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)) == 0)) { return (1); } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; if ((aa->ap.addrp.ph.param_type == SCTP_IPV4_ADDRESS) && (memcmp(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)) == 0)) { return (1); } break; } #endif default: break; } return (0); } /* * does the address match? returns 0 if not, 1 if so */ static uint32_t sctp_addr_match(struct sctp_paramhdr *ph, struct sockaddr *sa) { #if defined(INET) || defined(INET6) uint16_t param_type, param_length; param_type = ntohs(ph->param_type); param_length = ntohs(ph->param_length); #endif switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* XXX scopeid */ struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; struct sctp_ipv6addr_param *v6addr; v6addr = (struct sctp_ipv6addr_param *)ph; if ((param_type == SCTP_IPV6_ADDRESS) && (param_length == sizeof(struct sctp_ipv6addr_param)) && (memcmp(&v6addr->addr, &sin6->sin6_addr, sizeof(struct in6_addr)) == 0)) { return (1); } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; struct sctp_ipv4addr_param *v4addr; v4addr = (struct sctp_ipv4addr_param *)ph; if ((param_type == SCTP_IPV4_ADDRESS) && (param_length == sizeof(struct sctp_ipv4addr_param)) && (memcmp(&v4addr->addr, &sin->sin_addr, sizeof(struct in_addr)) == 0)) { return (1); } break; } #endif default: break; } return (0); } /* * Cleanup for non-responded/OP ERR'd ASCONF */ void sctp_asconf_cleanup(struct sctp_tcb *stcb, struct sctp_nets *net) { /* * clear out any existing asconfs going out */ sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_2); stcb->asoc.asconf_seq_out_acked = stcb->asoc.asconf_seq_out; /* remove the old ASCONF on our outbound queue */ sctp_toss_old_asconf(stcb); } /* * cleanup any cached source addresses that may be topologically * incorrect after a new address has been added to this interface. */ static void sctp_asconf_nets_cleanup(struct sctp_tcb *stcb, struct sctp_ifn *ifn) { struct sctp_nets *net; /* * Ideally, we want to only clear cached routes and source addresses * that are topologically incorrect. But since there is no easy way * to know whether the newly added address on the ifn would cause a * routing change (i.e. a new egress interface would be chosen) * without doing a new routing lookup and source address selection, * we will (for now) just flush any cached route using a different * ifn (and cached source addrs) and let output re-choose them * during the next send on that net. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* * clear any cached route (and cached source address) if the * route's interface is NOT the same as the address change. * If it's the same interface, just clear the cached source * address. */ if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro) && ((ifn == NULL) || (SCTP_GET_IF_INDEX_FROM_ROUTE(&net->ro) != ifn->ifn_index))) { /* clear any cached route */ RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } /* clear any cached source address */ if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } } } void sctp_assoc_immediate_retrans(struct sctp_tcb *stcb, struct sctp_nets *dstnet) { int error; if (dstnet->dest_state & SCTP_ADDR_UNCONFIRMED) { return; } if (stcb->asoc.deleted_primary == NULL) { return; } + if (!TAILQ_EMPTY(&stcb->asoc.sent_queue)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "assoc_immediate_retrans: Deleted primary is "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &stcb->asoc.deleted_primary->ro._l_addr.sa); SCTPDBG(SCTP_DEBUG_ASCONF1, "Current Primary is "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &stcb->asoc.primary_destination->ro._l_addr.sa); sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, stcb->asoc.deleted_primary, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_3); stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } SCTP_TCB_LOCK_ASSERT(stcb); error = sctp_t3rxt_timer(stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); if (error) { SCTP_INP_DECR_REF(stcb->sctp_ep); return; } SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); #endif sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); if ((stcb->asoc.num_send_timers_up == 0) && (stcb->asoc.sent_queue_cnt > 0)) { struct sctp_tmit_chunk *chk; chk = TAILQ_FIRST(&stcb->asoc.sent_queue); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo); } } return; } static int sctp_asconf_queue_mgmt(struct sctp_tcb *, struct sctp_ifa *, uint16_t); void sctp_net_immediate_retrans(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_tmit_chunk *chk; SCTPDBG(SCTP_DEBUG_ASCONF1, "net_immediate_retrans: RTO is %d\n", net->RTO); sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_4); stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->error_count = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->whoTo == net) { if (chk->sent < SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); sctp_flight_size_decrease(chk); sctp_total_flight_decrease(stcb, chk); net->marked_retrans++; stcb->asoc.marked_retrans++; } } } if (net->marked_retrans) { sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); } } static void sctp_path_check_and_react(struct sctp_tcb *stcb, struct sctp_ifa *newifa) { struct sctp_nets *net; int addrnum, changed; /* * If number of local valid addresses is 1, the valid address is * probably newly added address. Several valid addresses in this * association. A source address may not be changed. Additionally, * they can be configured on a same interface as "alias" addresses. * (by micchie) */ addrnum = sctp_local_addr_count(stcb); SCTPDBG(SCTP_DEBUG_ASCONF1, "p_check_react(): %d local addresses\n", addrnum); if (addrnum == 1) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* clear any cached route and source address */ if (net->ro.ro_rt) { RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } /* Retransmit unacknowledged DATA chunks immediately */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_net_immediate_retrans(stcb, net); } /* also, SET PRIMARY is maybe already sent */ } return; } + /* Multiple local addresses exsist in the association. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* clear any cached route and source address */ if (net->ro.ro_rt) { RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } /* * Check if the nexthop is corresponding to the new address. * If the new address is corresponding to the current * nexthop, the path will be changed. If the new address is * NOT corresponding to the current nexthop, the path will * not be changed. */ SCTP_RTALLOC((sctp_route_t *)&net->ro, stcb->sctp_ep->def_vrf_id, stcb->sctp_ep->fibnum); if (net->ro.ro_rt == NULL) continue; changed = 0; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: if (sctp_v4src_match_nexthop(newifa, (sctp_route_t *)&net->ro)) { changed = 1; } break; #endif #ifdef INET6 case AF_INET6: if (sctp_v6src_match_nexthop( &newifa->address.sin6, (sctp_route_t *)&net->ro)) { changed = 1; } break; #endif default: break; } /* * if the newly added address does not relate routing * information, we skip. */ if (changed == 0) continue; /* Retransmit unacknowledged DATA chunks immediately */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_net_immediate_retrans(stcb, net); } /* Send SET PRIMARY for this new address */ if (net == stcb->asoc.primary_destination) { (void)sctp_asconf_queue_mgmt(stcb, newifa, SCTP_SET_PRIM_ADDR); } } } /* * process an ADD/DELETE IP ack from peer. * addr: corresponding sctp_ifa to the address being added/deleted. * type: SCTP_ADD_IP_ADDRESS or SCTP_DEL_IP_ADDRESS. * flag: 1=success, 0=failure. */ static void sctp_asconf_addr_mgmt_ack(struct sctp_tcb *stcb, struct sctp_ifa *addr, uint32_t flag) { /* * do the necessary asoc list work- if we get a failure indication, * leave the address on the assoc's restricted list. If we get a * success indication, remove the address from the restricted list. */ /* * Note: this will only occur for ADD_IP_ADDRESS, since * DEL_IP_ADDRESS is never actually added to the list... */ if (flag) { /* success case, so remove from the restricted list */ sctp_del_local_addr_restricted(stcb, addr); if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_path_check_and_react(stcb, addr); return; } /* clear any cached/topologically incorrect source addresses */ sctp_asconf_nets_cleanup(stcb, addr->ifn_p); } /* else, leave it on the list */ } /* * add an asconf add/delete/set primary IP address parameter to the queue. * type = SCTP_ADD_IP_ADDRESS, SCTP_DEL_IP_ADDRESS, SCTP_SET_PRIM_ADDR. * returns 0 if queued, -1 if not queued/removed. * NOTE: if adding, but a delete for the same address is already scheduled * (and not yet sent out), simply remove it from queue. Same for deleting * an address already scheduled for add. If a duplicate operation is found, * ignore the new one. */ static int sctp_asconf_queue_mgmt(struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type) { struct sctp_asconf_addr *aa, *aa_next; /* make sure the request isn't already in the queue */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { /* address match? */ if (sctp_asconf_addr_match(aa, &ifa->address.sa) == 0) continue; /* * is the request already in queue but not sent? pass the * request already sent in order to resolve the following * case: 1. arrival of ADD, then sent 2. arrival of DEL. we * can't remove the ADD request already sent 3. arrival of * ADD */ if (aa->ap.aph.ph.param_type == type && aa->sent == 0) { return (-1); } /* is the negative request already in queue, and not sent */ if ((aa->sent == 0) && (type == SCTP_ADD_IP_ADDRESS) && (aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS)) { /* add requested, delete already queued */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); /* remove the ifa from the restricted list */ sctp_del_local_addr_restricted(stcb, ifa); /* free the asconf param */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_mgmt: add removes queued entry\n"); return (-1); } if ((aa->sent == 0) && (type == SCTP_DEL_IP_ADDRESS) && (aa->ap.aph.ph.param_type == SCTP_ADD_IP_ADDRESS)) { /* delete requested, add already queued */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); /* remove the aa->ifa from the restricted list */ sctp_del_local_addr_restricted(stcb, aa->ifa); /* free the asconf param */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_mgmt: delete removes queued entry\n"); return (-1); } } /* for each aa */ /* adding new request to the queue */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_queue_mgmt: failed to get memory!\n"); return (-1); } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ap.aph.ph.param_type = type; aa->ifa = ifa; atomic_add_int(&ifa->refcount, 1); /* correlation_id filled in during send routine later... */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = &ifa->address.sin6; aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv6addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv6addr_param); memcpy(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)); break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = &ifa->address.sin; aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv4addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv4addr_param); memcpy(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)); break; } #endif default: /* invalid family! */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); sctp_free_ifa(ifa); return (-1); } aa->sent = 0; /* clear sent flag */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); #ifdef SCTP_DEBUG if (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_ASCONF2) { if (type == SCTP_ADD_IP_ADDRESS) { SCTP_PRINTF("asconf_queue_mgmt: inserted asconf ADD_IP_ADDRESS: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, &ifa->address.sa); } else if (type == SCTP_DEL_IP_ADDRESS) { SCTP_PRINTF("asconf_queue_mgmt: appended asconf DEL_IP_ADDRESS: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, &ifa->address.sa); } else { SCTP_PRINTF("asconf_queue_mgmt: appended asconf SET_PRIM_ADDR: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, &ifa->address.sa); } } #endif return (0); } /* * add an asconf operation for the given ifa and type. * type = SCTP_ADD_IP_ADDRESS, SCTP_DEL_IP_ADDRESS, SCTP_SET_PRIM_ADDR. * returns 0 if completed, -1 if not completed, 1 if immediate send is * advisable. */ static int sctp_asconf_queue_add(struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type) { uint32_t status; int pending_delete_queued = 0; int last; /* see if peer supports ASCONF */ if (stcb->asoc.asconf_supported == 0) { return (-1); } + /* * if this is deleting the last address from the assoc, mark it as * pending. */ if ((type == SCTP_DEL_IP_ADDRESS) && !stcb->asoc.asconf_del_pending) { if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { last = (sctp_local_addr_count(stcb) == 0); } else { last = (sctp_local_addr_count(stcb) == 1); } if (last) { /* set the pending delete info only */ stcb->asoc.asconf_del_pending = 1; stcb->asoc.asconf_addr_del_pending = ifa; atomic_add_int(&ifa->refcount, 1); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_add: mark delete last address pending\n"); return (-1); } } + /* queue an asconf parameter */ status = sctp_asconf_queue_mgmt(stcb, ifa, type); /* * if this is an add, and there is a delete also pending (i.e. the * last local address is being changed), queue the pending delete * too. */ if ((type == SCTP_ADD_IP_ADDRESS) && stcb->asoc.asconf_del_pending && (status == 0)) { /* queue in the pending delete */ if (sctp_asconf_queue_mgmt(stcb, stcb->asoc.asconf_addr_del_pending, SCTP_DEL_IP_ADDRESS) == 0) { SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_add: queing pending delete\n"); pending_delete_queued = 1; /* clear out the pending delete info */ stcb->asoc.asconf_del_pending = 0; sctp_free_ifa(stcb->asoc.asconf_addr_del_pending); stcb->asoc.asconf_addr_del_pending = NULL; } } + if (pending_delete_queued) { struct sctp_nets *net; /* * since we know that the only/last address is now being * changed in this case, reset the cwnd/rto on all nets to * start as a new address and path. Also clear the error * counts to give the assoc the best chance to complete the * address change. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->RTO = 0; net->error_count = 0; } stcb->asoc.overall_error_count = 0; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_ASCONF, __LINE__); } + /* queue in an advisory set primary too */ (void)sctp_asconf_queue_mgmt(stcb, ifa, SCTP_SET_PRIM_ADDR); /* let caller know we should send this out immediately */ status = 1; } return (status); } /*- * add an asconf delete IP address parameter to the queue by sockaddr and * possibly with no sctp_ifa available. This is only called by the routine * that checks the addresses in an INIT-ACK against the current address list. * returns 0 if completed, non-zero if not completed. * NOTE: if an add is already scheduled (and not yet sent out), simply * remove it from queue. If a duplicate operation is found, ignore the * new one. */ static int sctp_asconf_queue_sa_delete(struct sctp_tcb *stcb, struct sockaddr *sa) { struct sctp_ifa *ifa; struct sctp_asconf_addr *aa, *aa_next; if (stcb == NULL) { return (-1); } /* see if peer supports ASCONF */ if (stcb->asoc.asconf_supported == 0) { return (-1); } /* make sure the request isn't already in the queue */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { /* address match? */ if (sctp_asconf_addr_match(aa, sa) == 0) continue; /* is the request already in queue (sent or not) */ if (aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS) { return (-1); } /* is the negative request already in queue, and not sent */ if (aa->sent == 1) continue; if (aa->ap.aph.ph.param_type == SCTP_ADD_IP_ADDRESS) { /* add already queued, so remove existing entry */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); sctp_del_local_addr_restricted(stcb, aa->ifa); /* free the entry */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); return (-1); } } /* for each aa */ /* find any existing ifa-- NOTE ifa CAN be allowed to be NULL */ ifa = sctp_find_ifa_by_addr(sa, stcb->asoc.vrf_id, SCTP_ADDR_NOT_LOCKED); /* adding new request to the queue */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_queue_sa_delete: failed to get memory!\n"); return (-1); } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ap.aph.ph.param_type = SCTP_DEL_IP_ADDRESS; aa->ifa = ifa; if (ifa) atomic_add_int(&ifa->refcount, 1); /* correlation_id filled in during send routine later... */ switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* IPv6 address */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv6addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv6addr_param); memcpy(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)); break; } #endif #ifdef INET case AF_INET: { /* IPv4 address */ struct sockaddr_in *sin = (struct sockaddr_in *)sa; aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv4addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv4addr_param); memcpy(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)); break; } #endif default: /* invalid family! */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); if (ifa) sctp_free_ifa(ifa); return (-1); } aa->sent = 0; /* clear sent flag */ /* delete goes to the back of the queue */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); /* sa_ignore MEMLEAK {memory is put on the tailq} */ return (0); } /* * find a specific asconf param on our "sent" queue */ static struct sctp_asconf_addr * sctp_asconf_find_param(struct sctp_tcb *stcb, uint32_t correlation_id) { struct sctp_asconf_addr *aa; TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->ap.aph.correlation_id == correlation_id && aa->sent == 1) { /* found it */ return (aa); } } /* didn't find it */ return (NULL); } /* * process an SCTP_ERROR_CAUSE_IND for a ASCONF-ACK parameter and do * notifications based on the error response */ static void sctp_asconf_process_error(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_asconf_paramhdr *aph) { struct sctp_error_cause *eh; struct sctp_paramhdr *ph; uint16_t param_type; uint16_t error_code; eh = (struct sctp_error_cause *)(aph + 1); ph = (struct sctp_paramhdr *)(eh + 1); /* validate lengths */ if (htons(eh->length) + sizeof(struct sctp_error_cause) > htons(aph->ph.param_length)) { /* invalid error cause length */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_process_error: cause element too long\n"); return; } if (htons(ph->param_length) + sizeof(struct sctp_paramhdr) > htons(eh->length)) { /* invalid included TLV length */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_process_error: included TLV too long\n"); return; } /* which error code ? */ error_code = ntohs(eh->code); param_type = ntohs(aph->ph.param_type); /* FIX: this should go back up the REMOTE_ERROR ULP notify */ switch (error_code) { case SCTP_CAUSE_RESOURCE_SHORTAGE: /* we allow ourselves to "try again" for this error */ break; default: /* peer can't handle it... */ switch (param_type) { case SCTP_ADD_IP_ADDRESS: case SCTP_DEL_IP_ADDRESS: case SCTP_SET_PRIM_ADDR: break; default: break; } } } /* * process an asconf queue param. * aparam: parameter to process, will be removed from the queue. * flag: 1=success case, 0=failure case */ static void sctp_asconf_process_param_ack(struct sctp_tcb *stcb, struct sctp_asconf_addr *aparam, uint32_t flag) { uint16_t param_type; /* process this param */ param_type = aparam->ap.aph.ph.param_type; switch (param_type) { case SCTP_ADD_IP_ADDRESS: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: added IP address\n"); sctp_asconf_addr_mgmt_ack(stcb, aparam->ifa, flag); break; case SCTP_DEL_IP_ADDRESS: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: deleted IP address\n"); /* nothing really to do... lists already updated */ break; case SCTP_SET_PRIM_ADDR: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: set primary IP address\n"); /* nothing to do... peer may start using this addr */ break; default: /* should NEVER happen */ break; } /* remove the param and free it */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aparam, next); if (aparam->ifa) sctp_free_ifa(aparam->ifa); SCTP_FREE(aparam, SCTP_M_ASC_ADDR); } /* * cleanup from a bad asconf ack parameter */ static void sctp_asconf_ack_clear(struct sctp_tcb *stcb SCTP_UNUSED) { /* assume peer doesn't really know how to do asconfs */ /* XXX we could free the pending queue here */ } void sctp_handle_asconf_ack(struct mbuf *m, int offset, struct sctp_asconf_ack_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_no_unlock) { struct sctp_association *asoc; uint32_t serial_num; uint16_t ack_length; struct sctp_asconf_paramhdr *aph; struct sctp_asconf_addr *aa, *aa_next; uint32_t last_error_id = 0; /* last error correlation id */ uint32_t id; struct sctp_asconf_addr *ap; /* asconf param buffer */ uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; /* verify minimum length */ if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_asconf_ack_chunk)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: chunk too small = %xh\n", ntohs(cp->ch.chunk_length)); return; } asoc = &stcb->asoc; serial_num = ntohl(cp->serial_number); /* * NOTE: we may want to handle this differently- currently, we will * abort when we get an ack for the expected serial number + 1 (eg. * we didn't send it), process an ack normally if it is the expected * serial number, and re-send the previous ack for *ALL* other * serial numbers */ /* * if the serial number is the next expected, but I didn't send it, * abort the asoc, since someone probably just hijacked us... */ if (serial_num == (asoc->asconf_seq_out + 1)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: got unexpected next serial number! Aborting asoc!\n"); snprintf(msg, sizeof(msg), "Never sent serial number %8.8x", serial_num); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_no_unlock = 1; return; } if (serial_num != asoc->asconf_seq_out_acked + 1) { /* got a duplicate/unexpected ASCONF-ACK */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: got duplicate/unexpected serial number = %xh (expected = %xh)\n", serial_num, asoc->asconf_seq_out_acked + 1); return; } + if (serial_num == asoc->asconf_seq_out - 1) { /* stop our timer */ sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_5); } + /* process the ASCONF-ACK contents */ ack_length = ntohs(cp->ch.chunk_length) - sizeof(struct sctp_asconf_ack_chunk); offset += sizeof(struct sctp_asconf_ack_chunk); /* process through all parameters */ while (ack_length >= sizeof(struct sctp_asconf_paramhdr)) { unsigned int param_length, param_type; /* get pointer to next asconf parameter */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); if (aph == NULL) { /* can't get an asconf paramhdr */ sctp_asconf_ack_clear(stcb); return; } param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (param_length > ack_length) { sctp_asconf_ack_clear(stcb); return; } if (param_length < sizeof(struct sctp_paramhdr)) { sctp_asconf_ack_clear(stcb); return; } /* get the complete parameter... */ if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "param length (%u) larger than buffer size!\n", param_length); sctp_asconf_ack_clear(stcb); return; } aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, param_length, aparam_buf); if (aph == NULL) { sctp_asconf_ack_clear(stcb); return; } /* correlation_id is transparent to peer, no ntohl needed */ id = aph->correlation_id; switch (param_type) { case SCTP_ERROR_CAUSE_IND: last_error_id = id; /* find the corresponding asconf param in our queue */ ap = sctp_asconf_find_param(stcb, id); if (ap == NULL) { /* hmm... can't find this in our queue! */ break; } /* process the parameter, failed flag */ sctp_asconf_process_param_ack(stcb, ap, 0); /* process the error response */ sctp_asconf_process_error(stcb, aph); break; case SCTP_SUCCESS_REPORT: /* find the corresponding asconf param in our queue */ ap = sctp_asconf_find_param(stcb, id); if (ap == NULL) { /* hmm... can't find this in our queue! */ break; } /* process the parameter, success flag */ sctp_asconf_process_param_ack(stcb, ap, 1); break; default: break; } /* switch */ /* update remaining ASCONF-ACK message length to process */ ack_length -= SCTP_SIZE32(param_length); if (ack_length <= 0) { /* no more data in the mbuf chain */ break; } offset += SCTP_SIZE32(param_length); } /* while */ /* * if there are any "sent" params still on the queue, these are * implicitly "success", or "failed" (if we got an error back) ... * so process these appropriately * * we assume that the correlation_id's are monotonically increasing * beginning from 1 and that we don't have *that* many outstanding * at any given time */ if (last_error_id == 0) - last_error_id--;/* set to "max" value */ + last_error_id--; /* set to "max" value */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { if (aa->sent == 1) { /* * implicitly successful or failed if correlation_id * < last_error_id, then success else, failure */ if (aa->ap.aph.correlation_id < last_error_id) sctp_asconf_process_param_ack(stcb, aa, 1); else sctp_asconf_process_param_ack(stcb, aa, 0); } else { /* * since we always process in order (FIFO queue) if * we reach one that hasn't been sent, the rest * should not have been sent either. so, we're * done... */ break; } } /* update the next sequence number to use */ asoc->asconf_seq_out_acked++; /* remove the old ASCONF on our outbound queue */ sctp_toss_old_asconf(stcb); if (!TAILQ_EMPTY(&stcb->asoc.asconf_queue)) { #ifdef SCTP_TIMER_BASED_ASCONF /* we have more params, so restart our timer */ sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net); #else /* we have more params, so send out more */ sctp_send_asconf(stcb, net, SCTP_ADDR_NOT_LOCKED); #endif } } #ifdef INET6 static uint32_t sctp_is_scopeid_in_nets(struct sctp_tcb *stcb, struct sockaddr *sa) { struct sockaddr_in6 *sin6, *net6; struct sctp_nets *net; if (sa->sa_family != AF_INET6) { /* wrong family */ return (0); } sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) == 0) { /* not link local address */ return (0); } /* hunt through our destination nets list for this scope_id */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (((struct sockaddr *)(&net->ro._l_addr))->sa_family != AF_INET6) continue; net6 = (struct sockaddr_in6 *)&net->ro._l_addr; if (IN6_IS_ADDR_LINKLOCAL(&net6->sin6_addr) == 0) continue; if (sctp_is_same_scope(sin6, net6)) { /* found one */ return (1); } } /* didn't find one */ return (0); } #endif /* * address management functions */ static void sctp_addr_mgmt_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type, int addr_locked) { int status; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0 || sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { /* subset bound, no ASCONF allowed case, so ignore */ return; } /* * note: we know this is not the subset bound, no ASCONF case eg. * this is boundall or subset bound w/ASCONF allowed */ /* first, make sure that the address is IPv4 or IPv6 and not jailed */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &ifa->address.sin6.sin6_addr) != 0) { return; } break; #endif #ifdef INET case AF_INET: if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &ifa->address.sin.sin_addr) != 0) { return; } break; #endif default: return; } #ifdef INET6 /* make sure we're "allowed" to add this type of addr */ if (ifa->address.sa.sa_family == AF_INET6) { /* invalid if we're not a v6 endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) return; /* is the v6 addr really valid ? */ if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { return; } } #endif /* put this address on the "pending/do not use yet" list */ sctp_add_local_addr_restricted(stcb, ifa); /* * check address scope if address is out of scope, don't queue * anything... note: this would leave the address on both inp and * asoc lists */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = &ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* we skip unspecifed addresses */ return; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (stcb->asoc.scope.local_scope == 0) { return; } /* is it the right link local scope? */ if (sctp_is_scopeid_in_nets(stcb, &ifa->address.sa) == 0) { return; } } if (stcb->asoc.scope.site_scope == 0 && IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) { return; } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; struct in6pcb *inp6; inp6 = (struct in6pcb *)&inp->ip_inp.inp; /* invalid if we are a v6 only endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) return; sin = &ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* we skip unspecifed addresses */ return; } if (stcb->asoc.scope.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { return; } break; } #endif default: /* else, not AF_INET or AF_INET6, so skip */ return; } /* queue an asconf for this address add/delete */ if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { /* does the peer do asconf? */ if (stcb->asoc.asconf_supported) { /* queue an asconf for this addr */ status = sctp_asconf_queue_add(stcb, ifa, type); /* * if queued ok, and in the open state, send out the * ASCONF. If in the non-open state, these will be * sent when the state goes open. */ if (status == 0 && ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED))) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, inp, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, addr_locked); #endif } } } } int sctp_asconf_iterator_ep(struct sctp_inpcb *inp, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l; int cnt_invalid = 0; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: /* invalid if we're not a v6 endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } break; #endif #ifdef INET case AF_INET: { /* invalid if we are a v6 only endpoint */ struct in6pcb *inp6; inp6 = (struct in6pcb *)&inp->ip_inp.inp; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) { cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } break; } #endif default: /* invalid address family */ cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } } return (0); } static int sctp_asconf_iterator_ep_end(struct sctp_inpcb *inp, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_ifa *ifa; struct sctp_asconf_iterator *asc; struct sctp_laddr *laddr, *nladdr, *l; /* Only for specific case not bound all */ asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; if (l->action == SCTP_ADD_IP_ADDRESS) { LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { laddr->action = 0; break; } + } } else if (l->action == SCTP_DEL_IP_ADDRESS) { LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { /* remove only after all guys are done */ if (laddr->ifa == ifa) { sctp_del_local_addr_ep(inp, ifa); } } } } return (0); } void sctp_asconf_iterator_stcb(struct sctp_inpcb *inp, struct sctp_tcb *stcb, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l; int cnt_invalid = 0; int type, status; int num_queued = 0; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; type = l->action; /* address's vrf_id must be the vrf_id of the assoc */ if (ifa->vrf_id != stcb->asoc.vrf_id) { continue; } + /* Same checks again for assoc */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { /* invalid if we're not a v6 endpoint */ struct sockaddr_in6 *sin6; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; } sin6 = &ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* we skip unspecifed addresses */ continue; } if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (stcb->asoc.scope.local_scope == 0) { continue; } /* is it the right link local scope? */ if (sctp_is_scopeid_in_nets(stcb, &ifa->address.sa) == 0) { continue; } } break; } #endif #ifdef INET case AF_INET: { /* invalid if we are a v6 only endpoint */ struct in6pcb *inp6; struct sockaddr_in *sin; inp6 = (struct in6pcb *)&inp->ip_inp.inp; /* invalid if we are a v6 only endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) continue; sin = &ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* we skip unspecifed addresses */ continue; } if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if (stcb->asoc.scope.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) { cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; } break; } #endif default: /* invalid address family */ cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; break; } if (type == SCTP_ADD_IP_ADDRESS) { /* prevent this address from being used as a source */ sctp_add_local_addr_restricted(stcb, ifa); } else if (type == SCTP_DEL_IP_ADDRESS) { struct sctp_nets *net; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_rtentry_t *rt; /* delete this address if cached */ if (net->ro._s_addr == ifa) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; rt = net->ro.ro_rt; if (rt) { RTFREE(rt); net->ro.ro_rt = NULL; } /* * Now we deleted our src address, * should we not also now reset the * cwnd/rto to start as if its a new * address? */ stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->RTO = 0; } } } else if (type == SCTP_SET_PRIM_ADDR) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* must validate the ifa is in the ep */ if (sctp_is_addr_in_ep(stcb->sctp_ep, ifa) == 0) { continue; } } else { /* Need to check scopes for this guy */ if (sctp_is_address_in_scope(ifa, &stcb->asoc.scope, 0) == 0) { continue; } } } /* queue an asconf for this address add/delete */ if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF) && stcb->asoc.asconf_supported == 1) { /* queue an asconf for this addr */ status = sctp_asconf_queue_add(stcb, ifa, type); /* * if queued ok, and in the open state, update the * count of queued params. If in the non-open * state, these get sent when the assoc goes open. */ if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { if (status >= 0) { num_queued++; } } } } /* * If we have queued params in the open state, send out an ASCONF. */ if (num_queued > 0) { sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); } } void sctp_asconf_iterator_end(void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l, *nl; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH_SAFE(l, &asc->list_of_work, sctp_nxt_addr, nl) { ifa = l->ifa; if (l->action == SCTP_ADD_IP_ADDRESS) { /* Clear the defer use flag */ ifa->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } sctp_free_ifa(ifa); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), l); SCTP_DECR_LADDR_COUNT(); } SCTP_FREE(asc, SCTP_M_ASC_IT); } /* * sa is the sockaddr to ask the peer to set primary to. * returns: 0 = completed, -1 = error */ int32_t sctp_set_primary_ip_address_sa(struct sctp_tcb *stcb, struct sockaddr *sa) { uint32_t vrf_id; struct sctp_ifa *ifa; /* find the ifa for the desired set primary */ vrf_id = stcb->asoc.vrf_id; ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); if (ifa == NULL) { /* Invalid address */ return (-1); } + /* queue an ASCONF:SET_PRIM_ADDR to be sent */ if (!sctp_asconf_queue_add(stcb, ifa, SCTP_SET_PRIM_ADDR)) { /* set primary queuing succeeded */ SCTPDBG(SCTP_DEBUG_ASCONF1, "set_primary_ip_address_sa: queued on tcb=%p, ", (void *)stcb); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); #endif } } else { SCTPDBG(SCTP_DEBUG_ASCONF1, "set_primary_ip_address_sa: failed to add to queue on tcb=%p, ", (void *)stcb); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); return (-1); } return (0); } int sctp_is_addr_pending(struct sctp_tcb *stcb, struct sctp_ifa *sctp_ifa) { struct sctp_tmit_chunk *chk, *nchk; unsigned int offset, asconf_limit; struct sctp_asconf_chunk *acp; struct sctp_asconf_paramhdr *aph; uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; struct sctp_paramhdr *ph; int add_cnt, del_cnt; uint16_t last_param_type; add_cnt = del_cnt = 0; last_param_type = 0; TAILQ_FOREACH_SAFE(chk, &stcb->asoc.asconf_send_queue, sctp_next, nchk) { if (chk->data == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: No mbuf data?\n"); continue; } offset = 0; acp = mtod(chk->data, struct sctp_asconf_chunk *); offset += sizeof(struct sctp_asconf_chunk); asconf_limit = ntohs(acp->ch.chunk_length); ph = (struct sctp_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_paramhdr), aparam_buf); if (ph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: couldn't get lookup addr!\n"); continue; } offset += ntohs(ph->param_length); aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: Empty ASCONF will be sent?\n"); continue; } while (aph != NULL) { unsigned int param_length, param_type; param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (offset + param_length > asconf_limit) { /* parameter goes beyond end of chunk! */ break; } if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: param length (%u) larger than buffer size!\n", param_length); break; } if (param_length <= sizeof(struct sctp_paramhdr)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: param length(%u) too short\n", param_length); break; } + aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, param_length, aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: couldn't get entire param\n"); break; } + ph = (struct sctp_paramhdr *)(aph + 1); if (sctp_addr_match(ph, &sctp_ifa->address.sa) != 0) { switch (param_type) { case SCTP_ADD_IP_ADDRESS: add_cnt++; break; case SCTP_DEL_IP_ADDRESS: del_cnt++; break; default: break; } last_param_type = param_type; } + offset += SCTP_SIZE32(param_length); if (offset >= asconf_limit) { /* no more data in the mbuf chain */ break; } /* get pointer to next asconf param */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); } } /* * we want to find the sequences which consist of ADD -> DEL -> ADD * or DEL -> ADD */ if (add_cnt > del_cnt || (add_cnt == del_cnt && last_param_type == SCTP_ADD_IP_ADDRESS)) { return (1); } return (0); } static struct sockaddr * sctp_find_valid_localaddr(struct sctp_tcb *stcb, int addr_locked) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if (stcb->asoc.scope.loopback_scope == 0 && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { /* Skip if loopback_scope not set */ continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (stcb->asoc.scope.ipv4_addr_legal) { struct sockaddr_in *sin; sin = &sctp_ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* skip unspecifed addresses */ continue; } if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if (stcb->asoc.scope.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) continue; if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) continue; /* * found a valid local v4 address to * use */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (&sctp_ifa->address.sa); } break; #endif #ifdef INET6 case AF_INET6: if (stcb->asoc.scope.ipv6_addr_legal) { struct sockaddr_in6 *sin6; if (sctp_ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { continue; } + sin6 = &sctp_ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * we skip unspecifed * addresses */ continue; } if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (stcb->asoc.scope.local_scope == 0 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) continue; if (stcb->asoc.scope.site_scope == 0 && IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) continue; if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) continue; /* * found a valid local v6 address to * use */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (&sctp_ifa->address.sa); } break; #endif default: break; } } } /* no valid addresses found */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } static struct sockaddr * sctp_find_valid_localaddr_ep(struct sctp_tcb *stcb) { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { continue; } /* is the address restricted ? */ if (sctp_is_addr_restricted(stcb, laddr->ifa) && (!sctp_is_addr_pending(stcb, laddr->ifa))) continue; /* found a valid local address to use */ return (&laddr->ifa->address.sa); } /* no valid addresses found */ return (NULL); } /* * builds an ASCONF chunk from queued ASCONF params. * returns NULL on error (no mbuf, no ASCONF params queued, etc). */ struct mbuf * sctp_compose_asconf(struct sctp_tcb *stcb, int *retlen, int addr_locked) { struct mbuf *m_asconf, *m_asconf_chk; struct sctp_asconf_addr *aa; struct sctp_asconf_chunk *acp; struct sctp_asconf_paramhdr *aph; struct sctp_asconf_addr_param *aap; uint32_t p_length; uint32_t correlation_id = 1; /* 0 is reserved... */ caddr_t ptr, lookup_ptr; uint8_t lookup_used = 0; /* are there any asconf params to send? */ TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->sent == 0) break; } if (aa == NULL) return (NULL); /* * get a chunk header mbuf and a cluster for the asconf params since * it's simpler to fill in the asconf chunk header lookup address on * the fly */ m_asconf_chk = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_chunk), 0, M_NOWAIT, 1, MT_DATA); if (m_asconf_chk == NULL) { /* no mbuf's */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: couldn't get chunk mbuf!\n"); return (NULL); } m_asconf = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_NOWAIT, 1, MT_DATA); if (m_asconf == NULL) { /* no mbuf's */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: couldn't get mbuf!\n"); sctp_m_freem(m_asconf_chk); return (NULL); } SCTP_BUF_LEN(m_asconf_chk) = sizeof(struct sctp_asconf_chunk); SCTP_BUF_LEN(m_asconf) = 0; acp = mtod(m_asconf_chk, struct sctp_asconf_chunk *); memset(acp, 0, sizeof(struct sctp_asconf_chunk)); /* save pointers to lookup address and asconf params */ lookup_ptr = (caddr_t)(acp + 1); /* after the header */ ptr = mtod(m_asconf, caddr_t); /* beginning of cluster */ /* fill in chunk header info */ acp->ch.chunk_type = SCTP_ASCONF; acp->ch.chunk_flags = 0; acp->serial_number = htonl(stcb->asoc.asconf_seq_out); stcb->asoc.asconf_seq_out++; /* add parameters... up to smallest MTU allowed */ TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->sent) continue; /* get the parameter length */ p_length = SCTP_SIZE32(aa->ap.aph.ph.param_length); /* will it fit in current chunk? */ if ((SCTP_BUF_LEN(m_asconf) + p_length > stcb->asoc.smallest_mtu) || (SCTP_BUF_LEN(m_asconf) + p_length > MCLBYTES)) { /* won't fit, so we're done with this chunk */ break; } /* assign (and store) a correlation id */ aa->ap.aph.correlation_id = correlation_id++; /* * fill in address if we're doing a delete this is a simple * way for us to fill in the correlation address, which * should only be used by the peer if we're deleting our * source address and adding a new address (e.g. renumbering * case) */ if (lookup_used == 0 && (aa->special_del == 0) && aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS) { struct sctp_ipv6addr_param *lookup; uint16_t p_size, addr_size; lookup = (struct sctp_ipv6addr_param *)lookup_ptr; lookup->ph.param_type = htons(aa->ap.addrp.ph.param_type); if (aa->ap.addrp.ph.param_type == SCTP_IPV6_ADDRESS) { /* copy IPv6 address */ p_size = sizeof(struct sctp_ipv6addr_param); addr_size = sizeof(struct in6_addr); } else { /* copy IPv4 address */ p_size = sizeof(struct sctp_ipv4addr_param); addr_size = sizeof(struct in_addr); } lookup->ph.param_length = htons(SCTP_SIZE32(p_size)); memcpy(lookup->addr, &aa->ap.addrp.addr, addr_size); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(p_size); lookup_used = 1; } /* copy into current space */ memcpy(ptr, &aa->ap, p_length); /* network elements and update lengths */ aph = (struct sctp_asconf_paramhdr *)ptr; aap = (struct sctp_asconf_addr_param *)ptr; /* correlation_id is transparent to peer, no htonl needed */ aph->ph.param_type = htons(aph->ph.param_type); aph->ph.param_length = htons(aph->ph.param_length); aap->addrp.ph.param_type = htons(aap->addrp.ph.param_type); aap->addrp.ph.param_length = htons(aap->addrp.ph.param_length); SCTP_BUF_LEN(m_asconf) += SCTP_SIZE32(p_length); ptr += SCTP_SIZE32(p_length); /* * these params are removed off the pending list upon * getting an ASCONF-ACK back from the peer, just set flag */ aa->sent = 1; } /* check to see if the lookup addr has been populated yet */ if (lookup_used == 0) { /* NOTE: if the address param is optional, can skip this... */ /* add any valid (existing) address... */ struct sctp_ipv6addr_param *lookup; uint16_t p_size, addr_size; struct sockaddr *found_addr; caddr_t addr_ptr; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) found_addr = sctp_find_valid_localaddr(stcb, addr_locked); else found_addr = sctp_find_valid_localaddr_ep(stcb); lookup = (struct sctp_ipv6addr_param *)lookup_ptr; if (found_addr != NULL) { switch (found_addr->sa_family) { #ifdef INET6 case AF_INET6: /* copy IPv6 address */ lookup->ph.param_type = htons(SCTP_IPV6_ADDRESS); p_size = sizeof(struct sctp_ipv6addr_param); addr_size = sizeof(struct in6_addr); addr_ptr = (caddr_t)&((struct sockaddr_in6 *) found_addr)->sin6_addr; break; #endif #ifdef INET case AF_INET: /* copy IPv4 address */ lookup->ph.param_type = htons(SCTP_IPV4_ADDRESS); p_size = sizeof(struct sctp_ipv4addr_param); addr_size = sizeof(struct in_addr); addr_ptr = (caddr_t)&((struct sockaddr_in *) found_addr)->sin_addr; break; #endif default: p_size = 0; addr_size = 0; addr_ptr = NULL; break; } lookup->ph.param_length = htons(SCTP_SIZE32(p_size)); memcpy(lookup->addr, addr_ptr, addr_size); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(p_size); } else { /* uh oh... don't have any address?? */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: no lookup addr!\n"); /* XXX for now, we send a IPv4 address of 0.0.0.0 */ lookup->ph.param_type = htons(SCTP_IPV4_ADDRESS); lookup->ph.param_length = htons(SCTP_SIZE32(sizeof(struct sctp_ipv4addr_param))); memset(lookup->addr, 0, sizeof(struct in_addr)); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(sizeof(struct sctp_ipv4addr_param)); } } /* chain it all together */ SCTP_BUF_NEXT(m_asconf_chk) = m_asconf; *retlen = SCTP_BUF_LEN(m_asconf_chk) + SCTP_BUF_LEN(m_asconf); acp->ch.chunk_length = htons(*retlen); return (m_asconf_chk); } /* * section to handle address changes before an association is up eg. changes * during INIT/INIT-ACK/COOKIE-ECHO handshake */ /* * processes the (local) addresses in the INIT-ACK chunk */ static void sctp_process_initack_addresses(struct sctp_tcb *stcb, struct mbuf *m, unsigned int offset, unsigned int length) { struct sctp_paramhdr tmp_param, *ph; uint16_t plen, ptype; struct sctp_ifa *sctp_ifa; union sctp_sockstore store; #ifdef INET6 struct sctp_ipv6addr_param addr6_store; #endif #ifdef INET struct sctp_ipv4addr_param addr4_store; #endif SCTPDBG(SCTP_DEBUG_ASCONF2, "processing init-ack addresses\n"); if (stcb == NULL) /* Un-needed check for SA */ return; /* convert to upper bound */ length += offset; if ((offset + sizeof(struct sctp_paramhdr)) > length) { return; } /* go through the addresses in the init-ack */ ph = (struct sctp_paramhdr *) sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); while (ph != NULL) { ptype = ntohs(ph->param_type); plen = ntohs(ph->param_length); switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: { struct sctp_ipv6addr_param *a6p; /* get the entire IPv6 address param */ a6p = (struct sctp_ipv6addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv6addr_param), (uint8_t *)&addr6_store); if (plen != sizeof(struct sctp_ipv6addr_param) || a6p == NULL) { return; } memset(&store, 0, sizeof(union sctp_sockstore)); store.sin6.sin6_family = AF_INET6; store.sin6.sin6_len = sizeof(struct sockaddr_in6); store.sin6.sin6_port = stcb->rport; memcpy(&store.sin6.sin6_addr, a6p->addr, sizeof(struct in6_addr)); break; } #endif #ifdef INET case SCTP_IPV4_ADDRESS: { struct sctp_ipv4addr_param *a4p; /* get the entire IPv4 address param */ a4p = (struct sctp_ipv4addr_param *)sctp_m_getptr(m, offset, sizeof(struct sctp_ipv4addr_param), (uint8_t *)&addr4_store); if (plen != sizeof(struct sctp_ipv4addr_param) || a4p == NULL) { return; } memset(&store, 0, sizeof(union sctp_sockstore)); store.sin.sin_family = AF_INET; store.sin.sin_len = sizeof(struct sockaddr_in); store.sin.sin_port = stcb->rport; store.sin.sin_addr.s_addr = a4p->addr; break; } #endif default: goto next_addr; } /* see if this address really (still) exists */ sctp_ifa = sctp_find_ifa_by_addr(&store.sa, stcb->asoc.vrf_id, SCTP_ADDR_NOT_LOCKED); if (sctp_ifa == NULL) { /* address doesn't exist anymore */ int status; /* are ASCONFs allowed ? */ if ((sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_DO_ASCONF)) && stcb->asoc.asconf_supported) { /* queue an ASCONF DEL_IP_ADDRESS */ status = sctp_asconf_queue_sa_delete(stcb, &store.sa); /* * if queued ok, and in correct state, send * out the ASCONF. */ if (status == 0 && SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); #endif } } } + next_addr: /* * Sanity check: Make sure the length isn't 0, otherwise * we'll be stuck in this loop for a long time... */ if (SCTP_SIZE32(plen) == 0) { SCTP_PRINTF("process_initack_addrs: bad len (%d) type=%xh\n", plen, ptype); return; } /* get next parameter */ offset += SCTP_SIZE32(plen); if ((offset + sizeof(struct sctp_paramhdr)) > length) return; ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); } /* while */ } /* FIX ME: need to verify return result for v6 address type if v6 disabled */ /* * checks to see if a specific address is in the initack address list returns * 1 if found, 0 if not */ static uint32_t sctp_addr_in_initack(struct mbuf *m, uint32_t offset, uint32_t length, struct sockaddr *sa) { struct sctp_paramhdr tmp_param, *ph; uint16_t plen, ptype; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *a4p; struct sctp_ipv6addr_param addr4_store; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *a6p; struct sctp_ipv6addr_param addr6_store; struct sockaddr_in6 sin6_tmp; #endif switch (sa->sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: return (0); } SCTPDBG(SCTP_DEBUG_ASCONF2, "find_initack_addr: starting search for "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, sa); /* convert to upper bound */ length += offset; if ((offset + sizeof(struct sctp_paramhdr)) > length) { SCTPDBG(SCTP_DEBUG_ASCONF1, "find_initack_addr: invalid offset?\n"); return (0); } /* go through the addresses in the init-ack */ ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); while (ph != NULL) { ptype = ntohs(ph->param_type); plen = ntohs(ph->param_length); switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: if (sa->sa_family == AF_INET6) { /* get the entire IPv6 address param */ if (plen != sizeof(struct sctp_ipv6addr_param)) { break; } /* get the entire IPv6 address param */ a6p = (struct sctp_ipv6addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv6addr_param), (uint8_t *)&addr6_store); if (a6p == NULL) { return (0); } sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { /* create a copy and clear scope */ memcpy(&sin6_tmp, sin6, sizeof(struct sockaddr_in6)); sin6 = &sin6_tmp; in6_clearscope(&sin6->sin6_addr); } if (memcmp(&sin6->sin6_addr, a6p->addr, sizeof(struct in6_addr)) == 0) { /* found it */ return (1); } } break; #endif /* INET6 */ #ifdef INET case SCTP_IPV4_ADDRESS: if (sa->sa_family == AF_INET) { if (plen != sizeof(struct sctp_ipv4addr_param)) { break; } /* get the entire IPv4 address param */ a4p = (struct sctp_ipv4addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv4addr_param), (uint8_t *)&addr4_store); if (a4p == NULL) { return (0); } sin = (struct sockaddr_in *)sa; if (sin->sin_addr.s_addr == a4p->addr) { /* found it */ return (1); } } break; #endif default: break; } /* get next parameter */ offset += SCTP_SIZE32(plen); if (offset + sizeof(struct sctp_paramhdr) > length) { return (0); } ph = (struct sctp_paramhdr *) sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); } /* while */ /* not found! */ return (0); } /* * makes sure that the current endpoint local addr list is consistent with * the new association (eg. subset bound, asconf allowed) adds addresses as * necessary */ static void sctp_check_address_list_ep(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr) { struct sctp_laddr *laddr; /* go through the endpoint list */ LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { /* be paranoid and validate the laddr */ if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "check_addr_list_ep: laddr->ifa is NULL"); continue; } if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "check_addr_list_ep: laddr->ifa->ifa_addr is NULL"); continue; } /* do i have it implicitly? */ if (sctp_cmpaddr(&laddr->ifa->address.sa, init_addr)) { continue; } /* check to see if in the init-ack */ if (!sctp_addr_in_initack(m, offset, length, &laddr->ifa->address.sa)) { /* try to add it */ sctp_addr_mgmt_assoc(stcb->sctp_ep, stcb, laddr->ifa, SCTP_ADD_IP_ADDRESS, SCTP_ADDR_NOT_LOCKED); } } } /* * makes sure that the current kernel address list is consistent with the new * association (with all addrs bound) adds addresses as necessary */ static void sctp_check_address_list_all(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr, uint16_t local_scope, uint16_t site_scope, uint16_t ipv4_scope, uint16_t loopback_scope) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; uint32_t vrf_id; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif if (stcb) { vrf_id = stcb->asoc.vrf_id; } else { return; } SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTP_IPI_ADDR_RUNLOCK(); return; } /* go through all our known interfaces */ LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if (loopback_scope == 0 && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { /* skip loopback interface */ continue; } /* go through each interface address */ LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { /* do i have it implicitly? */ if (sctp_cmpaddr(&sctp_ifa->address.sa, init_addr)) { continue; } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: sin = &sctp_ifa->address.sin; if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if ((ipv4_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { /* private address not in scope */ continue; } break; #endif #ifdef INET6 case AF_INET6: sin6 = &sctp_ifa->address.sin6; if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if ((local_scope == 0) && (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr))) { continue; } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } break; #endif default: break; } /* check to see if in the init-ack */ if (!sctp_addr_in_initack(m, offset, length, &sctp_ifa->address.sa)) { /* try to add it */ sctp_addr_mgmt_assoc(stcb->sctp_ep, stcb, sctp_ifa, SCTP_ADD_IP_ADDRESS, SCTP_ADDR_LOCKED); } } /* end foreach ifa */ } /* end foreach ifn */ SCTP_IPI_ADDR_RUNLOCK(); } /* * validates an init-ack chunk (from a cookie-echo) with current addresses * adds addresses from the init-ack into our local address list, if needed * queues asconf adds/deletes addresses as needed and makes appropriate list * changes for source address selection m, offset: points to the start of the * address list in an init-ack chunk length: total length of the address * params only init_addr: address where my INIT-ACK was sent from */ void sctp_check_address_list(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr, uint16_t local_scope, uint16_t site_scope, uint16_t ipv4_scope, uint16_t loopback_scope) { /* process the local addresses in the initack */ sctp_process_initack_addresses(stcb, m, offset, length); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* bound all case */ sctp_check_address_list_all(stcb, m, offset, length, init_addr, local_scope, site_scope, ipv4_scope, loopback_scope); } else { /* subset bound case */ if (sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_DO_ASCONF)) { /* asconf's allowed */ sctp_check_address_list_ep(stcb, m, offset, length, init_addr); } /* else, no asconfs allowed, so what we sent is what we get */ } } /* * sctp_bindx() support */ uint32_t sctp_addr_mgmt_ep_sa(struct sctp_inpcb *inp, struct sockaddr *sa, uint32_t type, uint32_t vrf_id, struct sctp_ifa *sctp_ifap) { struct sctp_ifa *ifa; struct sctp_laddr *laddr, *nladdr; if (sa->sa_len == 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EINVAL); return (EINVAL); } if (sctp_ifap) { ifa = sctp_ifap; } else if (type == SCTP_ADD_IP_ADDRESS) { /* For an add the address MUST be on the system */ ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); } else if (type == SCTP_DEL_IP_ADDRESS) { /* For a delete we need to find it in the inp */ ifa = sctp_find_ifa_in_ep(inp, sa, SCTP_ADDR_NOT_LOCKED); } else { ifa = NULL; } if (ifa != NULL) { if (type == SCTP_ADD_IP_ADDRESS) { sctp_add_local_addr_ep(inp, ifa, type); } else if (type == SCTP_DEL_IP_ADDRESS) { if (inp->laddr_count < 2) { /* can't delete the last local address */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EINVAL); return (EINVAL); } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (ifa == laddr->ifa) { /* Mark in the delete */ laddr->action = type; } } } if (LIST_EMPTY(&inp->sctp_asoc_list)) { /* * There is no need to start the iterator if the inp * has no associations. */ if (type == SCTP_DEL_IP_ADDRESS) { LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { if (laddr->ifa == ifa) { sctp_del_local_addr_ep(inp, ifa); } } } } else { struct sctp_asconf_iterator *asc; struct sctp_laddr *wi; int ret; SCTP_MALLOC(asc, struct sctp_asconf_iterator *, sizeof(struct sctp_asconf_iterator), SCTP_M_ASC_IT); if (asc == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, ENOMEM); return (ENOMEM); } wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { SCTP_FREE(asc, SCTP_M_ASC_IT); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, ENOMEM); return (ENOMEM); } LIST_INIT(&asc->list_of_work); asc->cnt = 1; SCTP_INCR_LADDR_COUNT(); wi->ifa = ifa; wi->action = type; atomic_add_int(&ifa->refcount, 1); LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr); ret = sctp_initiate_iterator(sctp_asconf_iterator_ep, sctp_asconf_iterator_stcb, sctp_asconf_iterator_ep_end, SCTP_PCB_ANY_FLAGS, SCTP_PCB_ANY_FEATURES, SCTP_ASOC_ANY_STATE, (void *)asc, 0, sctp_asconf_iterator_end, inp, 0); if (ret) { SCTP_PRINTF("Failed to initiate iterator for addr_mgmt_ep_sa\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EFAULT); sctp_asconf_iterator_end(asc, 0); return (EFAULT); } } return (0); } else { /* invalid address! */ SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } } void sctp_asconf_send_nat_state_update(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_asconf_addr *aa; struct sctp_ifa *sctp_ifap; struct sctp_asconf_tag_param *vtag; #ifdef INET struct sockaddr_in *to; #endif #ifdef INET6 struct sockaddr_in6 *to6; #endif if (net == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: Missing net\n"); return; } if (stcb == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: Missing stcb\n"); return; } /* * Need to have in the asconf: - vtagparam(my_vtag/peer_vtag) - * add(0.0.0.0) - del(0.0.0.0) - Any global addresses add(addr) */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ifa = NULL; aa->sent = 0; /* clear sent flag */ vtag = (struct sctp_asconf_tag_param *)&aa->ap.aph; vtag->aph.ph.param_type = SCTP_NAT_VTAGS; vtag->aph.ph.param_length = sizeof(struct sctp_asconf_tag_param); vtag->local_vtag = htonl(stcb->asoc.my_vtag); vtag->remote_vtag = htonl(stcb->asoc.peer_vtag); TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } memset(aa, 0, sizeof(struct sctp_asconf_addr)); /* fill in asconf address parameter fields */ /* ADD(0.0.0.0) */ switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addrv4_param); aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv4addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif #ifdef INET6 case AF_INET6: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addr_param); aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv6addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif default: SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: unknown address family\n"); SCTP_FREE(aa, SCTP_M_ASC_ADDR); return; } SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } memset(aa, 0, sizeof(struct sctp_asconf_addr)); /* fill in asconf address parameter fields */ /* ADD(0.0.0.0) */ switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addrv4_param); aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv4addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif #ifdef INET6 case AF_INET6: aa->ap.aph.ph.param_type = SCTP_DEL_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addr_param); aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv6addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif default: SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: unknown address family\n"); SCTP_FREE(aa, SCTP_M_ASC_ADDR); return; } /* Now we must hunt the addresses and add all global addresses */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifnp; uint32_t vrf_id; vrf_id = stcb->sctp_ep->def_vrf_id; vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { goto skip_rest; } + SCTP_IPI_ADDR_RLOCK(); LIST_FOREACH(sctp_ifnp, &vrf->ifnlist, next_ifn) { LIST_FOREACH(sctp_ifap, &sctp_ifnp->ifalist, next_ifa) { switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: to = &sctp_ifap->address.sin; if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &to->sin_addr) != 0) { continue; } if (IN4_ISPRIVATE_ADDRESS(&to->sin_addr)) { continue; } if (IN4_ISLOOPBACK_ADDRESS(&to->sin_addr)) { continue; } break; #endif #ifdef INET6 case AF_INET6: to6 = &sctp_ifap->address.sin6; if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &to6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LOOPBACK(&to6->sin6_addr)) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&to6->sin6_addr)) { continue; } break; #endif default: continue; } sctp_asconf_queue_mgmt(stcb, sctp_ifap, SCTP_ADD_IP_ADDRESS); } } SCTP_IPI_ADDR_RUNLOCK(); } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) /* * Address being deleted by the system, dont * list. */ continue; if (laddr->action == SCTP_DEL_IP_ADDRESS) { /* * Address being deleted on this ep don't * list. */ continue; } sctp_ifap = laddr->ifa; switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: to = &sctp_ifap->address.sin; if (IN4_ISPRIVATE_ADDRESS(&to->sin_addr)) { continue; } if (IN4_ISLOOPBACK_ADDRESS(&to->sin_addr)) { continue; } break; #endif #ifdef INET6 case AF_INET6: to6 = &sctp_ifap->address.sin6; if (IN6_IS_ADDR_LOOPBACK(&to6->sin6_addr)) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&to6->sin6_addr)) { continue; } break; #endif default: continue; } sctp_asconf_queue_mgmt(stcb, sctp_ifap, SCTP_ADD_IP_ADDRESS); } } skip_rest: /* Now we must send the asconf into the queue */ sctp_send_asconf(stcb, net, SCTP_ADDR_NOT_LOCKED); } Index: stable/11/sys/netinet/sctp_asconf.h =================================================================== --- stable/11/sys/netinet/sctp_asconf.h (revision 347153) +++ stable/11/sys/netinet/sctp_asconf.h (revision 347154) @@ -1,92 +1,92 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_ASCONF_H_ #define _NETINET_SCTP_ASCONF_H_ #if defined(_KERNEL) || defined(__Userspace__) /* * function prototypes */ extern void sctp_asconf_cleanup(struct sctp_tcb *, struct sctp_nets *); extern struct mbuf *sctp_compose_asconf(struct sctp_tcb *, int *, int); extern void sctp_handle_asconf(struct mbuf *, unsigned int, struct sockaddr *, struct sctp_asconf_chunk *, struct sctp_tcb *, int); extern void sctp_handle_asconf_ack(struct mbuf *, int, struct sctp_asconf_ack_chunk *, struct sctp_tcb *, struct sctp_nets *, int *); extern uint32_t sctp_addr_mgmt_ep_sa(struct sctp_inpcb *, struct sockaddr *, uint32_t, uint32_t, struct sctp_ifa *); -extern int +extern int sctp_asconf_iterator_ep(struct sctp_inpcb *inp, void *ptr, uint32_t val); -extern void +extern void sctp_asconf_iterator_stcb(struct sctp_inpcb *inp, struct sctp_tcb *stcb, void *ptr, uint32_t type); extern void sctp_asconf_iterator_end(void *ptr, uint32_t val); extern int32_t sctp_set_primary_ip_address_sa(struct sctp_tcb *, struct sockaddr *); extern void sctp_check_address_list(struct sctp_tcb *, struct mbuf *, int, int, struct sockaddr *, uint16_t, uint16_t, uint16_t, uint16_t); extern void sctp_assoc_immediate_retrans(struct sctp_tcb *, struct sctp_nets *); extern void sctp_net_immediate_retrans(struct sctp_tcb *, struct sctp_nets *); extern void sctp_asconf_send_nat_state_update(struct sctp_tcb *stcb, struct sctp_nets *net); extern int sctp_is_addr_pending(struct sctp_tcb *, struct sctp_ifa *); #endif /* _KERNEL */ #endif /* !_NETINET_SCTP_ASCONF_H_ */ Index: stable/11/sys/netinet/sctp_auth.c =================================================================== --- stable/11/sys/netinet/sctp_auth.c (revision 347153) +++ stable/11/sys/netinet/sctp_auth.c (revision 347154) @@ -1,2037 +1,2043 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #ifdef SCTP_DEBUG #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) #endif /* SCTP_DEBUG */ void sctp_clear_chunklist(sctp_auth_chklist_t *chklist) { memset(chklist, 0, sizeof(*chklist)); /* chklist->num_chunks = 0; */ } sctp_auth_chklist_t * sctp_alloc_chunklist(void) { sctp_auth_chklist_t *chklist; SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), SCTP_M_AUTH_CL); if (chklist == NULL) { SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); } else { sctp_clear_chunklist(chklist); } return (chklist); } void sctp_free_chunklist(sctp_auth_chklist_t *list) { if (list != NULL) SCTP_FREE(list, SCTP_M_AUTH_CL); } sctp_auth_chklist_t * sctp_copy_chunklist(sctp_auth_chklist_t *list) { sctp_auth_chklist_t *new_list; if (list == NULL) return (NULL); /* get a new list */ new_list = sctp_alloc_chunklist(); if (new_list == NULL) return (NULL); /* copy it */ memcpy(new_list, list, sizeof(*new_list)); return (new_list); } /* * add a chunk to the required chunks list */ int sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) { if (list == NULL) return (-1); /* is chunk restricted? */ if ((chunk == SCTP_INITIATION) || (chunk == SCTP_INITIATION_ACK) || (chunk == SCTP_SHUTDOWN_COMPLETE) || (chunk == SCTP_AUTHENTICATION)) { return (-1); } if (list->chunks[chunk] == 0) { list->chunks[chunk] = 1; list->num_chunks++; SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: added chunk %u (0x%02x) to Auth list\n", chunk, chunk); } return (0); } /* * delete a chunk from the required chunks list */ int sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) { if (list == NULL) return (-1); if (list->chunks[chunk] == 1) { list->chunks[chunk] = 0; list->num_chunks--; SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: deleted chunk %u (0x%02x) from Auth list\n", chunk, chunk); } return (0); } size_t sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) { if (list == NULL) return (0); else return (list->num_chunks); } /* * return the current number and list of required chunks caller must * guarantee ptr has space for up to 256 bytes */ int sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) { int i, count = 0; if (list == NULL) return (0); for (i = 0; i < 256; i++) { if (list->chunks[i] != 0) { *ptr++ = i; count++; } } return (count); } int sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) { int i, size = 0; if (list == NULL) return (0); if (list->num_chunks <= 32) { /* just list them, one byte each */ for (i = 0; i < 256; i++) { if (list->chunks[i] != 0) { *ptr++ = i; size++; } } } else { int index, offset; /* pack into a 32 byte bitfield */ for (i = 0; i < 256; i++) { if (list->chunks[i] != 0) { index = i / 8; offset = i % 8; ptr[index] |= (1 << offset); } } size = 32; } return (size); } int sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, sctp_auth_chklist_t *list) { int i; int size; if (list == NULL) return (0); if (num_chunks <= 32) { /* just pull them, one byte each */ for (i = 0; i < num_chunks; i++) { (void)sctp_auth_add_chunk(*ptr++, list); } size = num_chunks; } else { int index, offset; /* unpack from a 32 byte bitfield */ for (index = 0; index < 32; index++) { for (offset = 0; offset < 8; offset++) { if (ptr[index] & (1 << offset)) { (void)sctp_auth_add_chunk((index * 8) + offset, list); } } } size = 32; } return (size); } /* * allocate structure space for a key of length keylen */ sctp_key_t * sctp_alloc_key(uint32_t keylen) { sctp_key_t *new_key; SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, SCTP_M_AUTH_KY); if (new_key == NULL) { /* out of memory */ return (NULL); } new_key->keylen = keylen; return (new_key); } void sctp_free_key(sctp_key_t *key) { if (key != NULL) SCTP_FREE(key, SCTP_M_AUTH_KY); } void sctp_print_key(sctp_key_t *key, const char *str) { uint32_t i; if (key == NULL) { SCTP_PRINTF("%s: [Null key]\n", str); return; } SCTP_PRINTF("%s: len %u, ", str, key->keylen); if (key->keylen) { for (i = 0; i < key->keylen; i++) SCTP_PRINTF("%02x", key->key[i]); SCTP_PRINTF("\n"); } else { SCTP_PRINTF("[Null key]\n"); } } void sctp_show_key(sctp_key_t *key, const char *str) { uint32_t i; if (key == NULL) { SCTP_PRINTF("%s: [Null key]\n", str); return; } SCTP_PRINTF("%s: len %u, ", str, key->keylen); if (key->keylen) { for (i = 0; i < key->keylen; i++) SCTP_PRINTF("%02x", key->key[i]); SCTP_PRINTF("\n"); } else { SCTP_PRINTF("[Null key]\n"); } } static uint32_t sctp_get_keylen(sctp_key_t *key) { if (key != NULL) return (key->keylen); else return (0); } /* * generate a new random key of length 'keylen' */ sctp_key_t * sctp_generate_random_key(uint32_t keylen) { sctp_key_t *new_key; new_key = sctp_alloc_key(keylen); if (new_key == NULL) { /* out of memory */ return (NULL); } SCTP_READ_RANDOM(new_key->key, keylen); new_key->keylen = keylen; return (new_key); } sctp_key_t * sctp_set_key(uint8_t *key, uint32_t keylen) { sctp_key_t *new_key; new_key = sctp_alloc_key(keylen); if (new_key == NULL) { /* out of memory */ return (NULL); } memcpy(new_key->key, key, keylen); return (new_key); } /*- * given two keys of variable size, compute which key is "larger/smaller" * returns: 1 if key1 > key2 * -1 if key1 < key2 * 0 if key1 = key2 */ static int sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) { uint32_t maxlen; uint32_t i; uint32_t key1len, key2len; uint8_t *key_1, *key_2; uint8_t val1, val2; /* sanity/length check */ key1len = sctp_get_keylen(key1); key2len = sctp_get_keylen(key2); if ((key1len == 0) && (key2len == 0)) return (0); else if (key1len == 0) return (-1); else if (key2len == 0) return (1); if (key1len < key2len) { maxlen = key2len; } else { maxlen = key1len; } key_1 = key1->key; key_2 = key2->key; /* check for numeric equality */ for (i = 0; i < maxlen; i++) { /* left-pad with zeros */ val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); if (val1 > val2) { return (1); } else if (val1 < val2) { return (-1); } } /* keys are equal value, so check lengths */ if (key1len == key2len) return (0); else if (key1len < key2len) return (-1); else return (1); } /* * generate the concatenated keying material based on the two keys and the * shared key (if available). draft-ietf-tsvwg-auth specifies the specific * order for concatenation */ sctp_key_t * sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) { uint32_t keylen; sctp_key_t *new_key; uint8_t *key_ptr; keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + sctp_get_keylen(shared); if (keylen > 0) { /* get space for the new key */ new_key = sctp_alloc_key(keylen); if (new_key == NULL) { /* out of memory */ return (NULL); } new_key->keylen = keylen; key_ptr = new_key->key; } else { /* all keys empty/null?! */ return (NULL); } /* concatenate the keys */ if (sctp_compare_key(key1, key2) <= 0) { /* key is shared + key1 + key2 */ if (sctp_get_keylen(shared)) { memcpy(key_ptr, shared->key, shared->keylen); key_ptr += shared->keylen; } if (sctp_get_keylen(key1)) { memcpy(key_ptr, key1->key, key1->keylen); key_ptr += key1->keylen; } if (sctp_get_keylen(key2)) { memcpy(key_ptr, key2->key, key2->keylen); } } else { /* key is shared + key2 + key1 */ if (sctp_get_keylen(shared)) { memcpy(key_ptr, shared->key, shared->keylen); key_ptr += shared->keylen; } if (sctp_get_keylen(key2)) { memcpy(key_ptr, key2->key, key2->keylen); key_ptr += key2->keylen; } if (sctp_get_keylen(key1)) { memcpy(key_ptr, key1->key, key1->keylen); } } return (new_key); } sctp_sharedkey_t * sctp_alloc_sharedkey(void) { sctp_sharedkey_t *new_key; SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), SCTP_M_AUTH_KY); if (new_key == NULL) { /* out of memory */ return (NULL); } new_key->keyid = 0; new_key->key = NULL; new_key->refcount = 1; new_key->deactivated = 0; return (new_key); } void sctp_free_sharedkey(sctp_sharedkey_t *skey) { if (skey == NULL) return; if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { if (skey->key != NULL) sctp_free_key(skey->key); SCTP_FREE(skey, SCTP_M_AUTH_KY); } } sctp_sharedkey_t * sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) { sctp_sharedkey_t *skey; LIST_FOREACH(skey, shared_keys, next) { if (skey->keyid == key_id) return (skey); } return (NULL); } int sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, sctp_sharedkey_t *new_skey) { sctp_sharedkey_t *skey; if ((shared_keys == NULL) || (new_skey == NULL)) return (EINVAL); /* insert into an empty list? */ if (LIST_EMPTY(shared_keys)) { LIST_INSERT_HEAD(shared_keys, new_skey, next); return (0); } /* insert into the existing list, ordered by key id */ LIST_FOREACH(skey, shared_keys, next) { if (new_skey->keyid < skey->keyid) { /* insert it before here */ LIST_INSERT_BEFORE(skey, new_skey, next); return (0); } else if (new_skey->keyid == skey->keyid) { /* replace the existing key */ /* verify this key *can* be replaced */ if ((skey->deactivated) && (skey->refcount > 1)) { SCTPDBG(SCTP_DEBUG_AUTH1, "can't replace shared key id %u\n", new_skey->keyid); return (EBUSY); } SCTPDBG(SCTP_DEBUG_AUTH1, "replacing shared key id %u\n", new_skey->keyid); LIST_INSERT_BEFORE(skey, new_skey, next); LIST_REMOVE(skey, next); sctp_free_sharedkey(skey); return (0); } if (LIST_NEXT(skey, next) == NULL) { /* belongs at the end of the list */ LIST_INSERT_AFTER(skey, new_skey, next); return (0); } } /* shouldn't reach here */ return (EINVAL); } void sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) { sctp_sharedkey_t *skey; /* find the shared key */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); /* bump the ref count */ if (skey) { atomic_add_int(&skey->refcount, 1); SCTPDBG(SCTP_DEBUG_AUTH2, "%s: stcb %p key %u refcount acquire to %d\n", __func__, (void *)stcb, key_id, skey->refcount); } } void sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { sctp_sharedkey_t *skey; /* find the shared key */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); /* decrement the ref count */ if (skey) { SCTPDBG(SCTP_DEBUG_AUTH2, "%s: stcb %p key %u refcount release to %d\n", __func__, (void *)stcb, key_id, skey->refcount); /* see if a notification should be generated */ if ((skey->refcount <= 2) && (skey->deactivated)) { /* notify ULP that key is no longer used */ sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, key_id, 0, so_locked); SCTPDBG(SCTP_DEBUG_AUTH2, "%s: stcb %p key %u no longer used, %d\n", __func__, (void *)stcb, key_id, skey->refcount); } sctp_free_sharedkey(skey); } } static sctp_sharedkey_t * sctp_copy_sharedkey(const sctp_sharedkey_t *skey) { sctp_sharedkey_t *new_skey; if (skey == NULL) return (NULL); new_skey = sctp_alloc_sharedkey(); if (new_skey == NULL) return (NULL); if (skey->key != NULL) new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); else new_skey->key = NULL; new_skey->keyid = skey->keyid; return (new_skey); } int sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) { sctp_sharedkey_t *skey, *new_skey; int count = 0; if ((src == NULL) || (dest == NULL)) return (0); LIST_FOREACH(skey, src, next) { new_skey = sctp_copy_sharedkey(skey); if (new_skey != NULL) { if (sctp_insert_sharedkey(dest, new_skey)) { sctp_free_sharedkey(new_skey); } else { count++; } } } return (count); } sctp_hmaclist_t * sctp_alloc_hmaclist(uint16_t num_hmacs) { sctp_hmaclist_t *new_list; int alloc_size; alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, SCTP_M_AUTH_HL); if (new_list == NULL) { /* out of memory */ return (NULL); } new_list->max_algo = num_hmacs; new_list->num_algo = 0; return (new_list); } void sctp_free_hmaclist(sctp_hmaclist_t *list) { if (list != NULL) { SCTP_FREE(list, SCTP_M_AUTH_HL); list = NULL; } } int sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) { int i; if (list == NULL) return (-1); if (list->num_algo == list->max_algo) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); return (-1); } if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { return (-1); } /* Now is it already in the list */ for (i = 0; i < list->num_algo; i++) { if (list->hmac[i] == hmac_id) { /* already in list */ return (-1); } } SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); list->hmac[list->num_algo++] = hmac_id; return (0); } sctp_hmaclist_t * sctp_copy_hmaclist(sctp_hmaclist_t *list) { sctp_hmaclist_t *new_list; int i; if (list == NULL) return (NULL); /* get a new list */ new_list = sctp_alloc_hmaclist(list->max_algo); if (new_list == NULL) return (NULL); /* copy it */ new_list->max_algo = list->max_algo; new_list->num_algo = list->num_algo; for (i = 0; i < list->num_algo; i++) new_list->hmac[i] = list->hmac[i]; return (new_list); } sctp_hmaclist_t * sctp_default_supported_hmaclist(void) { sctp_hmaclist_t *new_list; new_list = sctp_alloc_hmaclist(2); if (new_list == NULL) return (NULL); /* We prefer SHA256, so list it first */ (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); return (new_list); } /*- * HMAC algos are listed in priority/preference order * find the best HMAC id to use for the peer based on local support */ uint16_t sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) { int i, j; if ((local == NULL) || (peer == NULL)) return (SCTP_AUTH_HMAC_ID_RSVD); for (i = 0; i < peer->num_algo; i++) { for (j = 0; j < local->num_algo; j++) { if (peer->hmac[i] == local->hmac[j]) { /* found the "best" one */ SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: negotiated peer HMAC id %u\n", peer->hmac[i]); return (peer->hmac[i]); } } } /* didn't find one! */ return (SCTP_AUTH_HMAC_ID_RSVD); } /*- * serialize the HMAC algo list and return space used * caller must guarantee ptr has appropriate space */ int sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) { int i; uint16_t hmac_id; if (list == NULL) return (0); for (i = 0; i < list->num_algo; i++) { hmac_id = htons(list->hmac[i]); memcpy(ptr, &hmac_id, sizeof(hmac_id)); ptr += sizeof(hmac_id); } return (list->num_algo * sizeof(hmac_id)); } int sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) { uint32_t i; for (i = 0; i < num_hmacs; i++) { if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { return (0); } } return (-1); } sctp_authinfo_t * sctp_alloc_authinfo(void) { sctp_authinfo_t *new_authinfo; SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), SCTP_M_AUTH_IF); if (new_authinfo == NULL) { /* out of memory */ return (NULL); } memset(new_authinfo, 0, sizeof(*new_authinfo)); return (new_authinfo); } void sctp_free_authinfo(sctp_authinfo_t *authinfo) { if (authinfo == NULL) return; if (authinfo->random != NULL) sctp_free_key(authinfo->random); if (authinfo->peer_random != NULL) sctp_free_key(authinfo->peer_random); if (authinfo->assoc_key != NULL) sctp_free_key(authinfo->assoc_key); if (authinfo->recv_key != NULL) sctp_free_key(authinfo->recv_key); /* We are NOT dynamically allocating authinfo's right now... */ /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ } uint32_t sctp_get_auth_chunk_len(uint16_t hmac_algo) { int size; size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); return (SCTP_SIZE32(size)); } uint32_t sctp_get_hmac_digest_len(uint16_t hmac_algo) { switch (hmac_algo) { case SCTP_AUTH_HMAC_ID_SHA1: return (SCTP_AUTH_DIGEST_LEN_SHA1); case SCTP_AUTH_HMAC_ID_SHA256: return (SCTP_AUTH_DIGEST_LEN_SHA256); default: /* unknown HMAC algorithm: can't do anything */ return (0); } /* end switch */ } static inline int sctp_get_hmac_block_len(uint16_t hmac_algo) { switch (hmac_algo) { case SCTP_AUTH_HMAC_ID_SHA1: return (64); case SCTP_AUTH_HMAC_ID_SHA256: return (64); case SCTP_AUTH_HMAC_ID_RSVD: default: /* unknown HMAC algorithm: can't do anything */ return (0); } /* end switch */ } static void sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) { switch (hmac_algo) { case SCTP_AUTH_HMAC_ID_SHA1: SCTP_SHA1_INIT(&ctx->sha1); break; case SCTP_AUTH_HMAC_ID_SHA256: SCTP_SHA256_INIT(&ctx->sha256); break; case SCTP_AUTH_HMAC_ID_RSVD: default: /* unknown HMAC algorithm: can't do anything */ return; } /* end switch */ } static void sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, uint8_t *text, uint32_t textlen) { switch (hmac_algo) { case SCTP_AUTH_HMAC_ID_SHA1: SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); break; case SCTP_AUTH_HMAC_ID_SHA256: SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); break; case SCTP_AUTH_HMAC_ID_RSVD: default: /* unknown HMAC algorithm: can't do anything */ return; } /* end switch */ } static void sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, uint8_t *digest) { switch (hmac_algo) { case SCTP_AUTH_HMAC_ID_SHA1: SCTP_SHA1_FINAL(digest, &ctx->sha1); break; case SCTP_AUTH_HMAC_ID_SHA256: SCTP_SHA256_FINAL(digest, &ctx->sha256); break; case SCTP_AUTH_HMAC_ID_RSVD: default: /* unknown HMAC algorithm: can't do anything */ return; } /* end switch */ } /*- * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) * * Compute the HMAC digest using the desired hash key, text, and HMAC * algorithm. Resulting digest is placed in 'digest' and digest length * is returned, if the HMAC was performed. * * WARNING: it is up to the caller to supply sufficient space to hold the * resultant digest. */ uint32_t sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, uint8_t *text, uint32_t textlen, uint8_t *digest) { uint32_t digestlen; uint32_t blocklen; sctp_hash_context_t ctx; uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; uint32_t i; /* sanity check the material and length */ if ((key == NULL) || (keylen == 0) || (text == NULL) || (textlen == 0) || (digest == NULL)) { /* can't do HMAC with empty key or text or digest store */ return (0); } /* validate the hmac algo and get the digest length */ digestlen = sctp_get_hmac_digest_len(hmac_algo); if (digestlen == 0) return (0); /* hash the key if it is longer than the hash block size */ blocklen = sctp_get_hmac_block_len(hmac_algo); if (keylen > blocklen) { sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, key, keylen); sctp_hmac_final(hmac_algo, &ctx, temp); /* set the hashed key as the key */ keylen = digestlen; key = temp; } /* initialize the inner/outer pads with the key and "append" zeroes */ memset(ipad, 0, blocklen); memset(opad, 0, blocklen); memcpy(ipad, key, keylen); memcpy(opad, key, keylen); /* XOR the key with ipad and opad values */ for (i = 0; i < blocklen; i++) { ipad[i] ^= 0x36; opad[i] ^= 0x5c; } /* perform inner hash */ sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); sctp_hmac_update(hmac_algo, &ctx, text, textlen); sctp_hmac_final(hmac_algo, &ctx, temp); /* perform outer hash */ sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); sctp_hmac_final(hmac_algo, &ctx, digest); return (digestlen); } /* mbuf version */ uint32_t sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) { uint32_t digestlen; uint32_t blocklen; sctp_hash_context_t ctx; uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; uint32_t i; struct mbuf *m_tmp; /* sanity check the material and length */ if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { /* can't do HMAC with empty key or text or digest store */ return (0); } /* validate the hmac algo and get the digest length */ digestlen = sctp_get_hmac_digest_len(hmac_algo); if (digestlen == 0) return (0); /* hash the key if it is longer than the hash block size */ blocklen = sctp_get_hmac_block_len(hmac_algo); if (keylen > blocklen) { sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, key, keylen); sctp_hmac_final(hmac_algo, &ctx, temp); /* set the hashed key as the key */ keylen = digestlen; key = temp; } /* initialize the inner/outer pads with the key and "append" zeroes */ memset(ipad, 0, blocklen); memset(opad, 0, blocklen); memcpy(ipad, key, keylen); memcpy(opad, key, keylen); /* XOR the key with ipad and opad values */ for (i = 0; i < blocklen; i++) { ipad[i] ^= 0x36; opad[i] ^= 0x5c; } /* perform inner hash */ sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); /* find the correct starting mbuf and offset (get start of text) */ m_tmp = m; while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { m_offset -= SCTP_BUF_LEN(m_tmp); m_tmp = SCTP_BUF_NEXT(m_tmp); } /* now use the rest of the mbuf chain for the text */ while (m_tmp != NULL) { if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); } else { sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, SCTP_BUF_LEN(m_tmp) - m_offset); } /* clear the offset since it's only for the first mbuf */ m_offset = 0; m_tmp = SCTP_BUF_NEXT(m_tmp); } sctp_hmac_final(hmac_algo, &ctx, temp); /* perform outer hash */ sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); sctp_hmac_final(hmac_algo, &ctx, digest); return (digestlen); } /*- * verify the HMAC digest using the desired hash key, text, and HMAC * algorithm. * Returns -1 on error, 0 on success. */ int sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, uint8_t *text, uint32_t textlen, uint8_t *digest, uint32_t digestlen) { uint32_t len; uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; /* sanity check the material and length */ if ((key == NULL) || (keylen == 0) || (text == NULL) || (textlen == 0) || (digest == NULL)) { /* can't do HMAC with empty key or text or digest */ return (-1); } len = sctp_get_hmac_digest_len(hmac_algo); if ((len == 0) || (digestlen != len)) return (-1); /* compute the expected hash */ if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) return (-1); if (memcmp(digest, temp, digestlen) != 0) return (-1); else return (0); } /* * computes the requested HMAC using a key struct (which may be modified if * the keylen exceeds the HMAC block len). */ uint32_t sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, uint32_t textlen, uint8_t *digest) { uint32_t digestlen; uint32_t blocklen; sctp_hash_context_t ctx; uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; /* sanity check */ if ((key == NULL) || (text == NULL) || (textlen == 0) || (digest == NULL)) { /* can't do HMAC with empty key or text or digest store */ return (0); } /* validate the hmac algo and get the digest length */ digestlen = sctp_get_hmac_digest_len(hmac_algo); if (digestlen == 0) return (0); /* hash the key if it is longer than the hash block size */ blocklen = sctp_get_hmac_block_len(hmac_algo); if (key->keylen > blocklen) { sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); sctp_hmac_final(hmac_algo, &ctx, temp); /* save the hashed key as the new key */ key->keylen = digestlen; memcpy(key->key, temp, key->keylen); } return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, digest)); } /* mbuf version */ uint32_t sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, uint32_t m_offset, uint8_t *digest) { uint32_t digestlen; uint32_t blocklen; sctp_hash_context_t ctx; uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; /* sanity check */ if ((key == NULL) || (m == NULL) || (digest == NULL)) { /* can't do HMAC with empty key or text or digest store */ return (0); } /* validate the hmac algo and get the digest length */ digestlen = sctp_get_hmac_digest_len(hmac_algo); if (digestlen == 0) return (0); /* hash the key if it is longer than the hash block size */ blocklen = sctp_get_hmac_block_len(hmac_algo); if (key->keylen > blocklen) { sctp_hmac_init(hmac_algo, &ctx); sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); sctp_hmac_final(hmac_algo, &ctx, temp); /* save the hashed key as the new key */ key->keylen = digestlen; memcpy(key->key, temp, key->keylen); } return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); } int sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) { int i; if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) return (0); for (i = 0; i < list->num_algo; i++) if (list->hmac[i] == id) return (1); /* not in the list */ return (0); } /*- * clear any cached key(s) if they match the given key id on an association. * the cached key(s) will be recomputed and re-cached at next use. * ASSUMES TCB_LOCK is already held */ void sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) { if (stcb == NULL) return; if (keyid == stcb->asoc.authinfo.assoc_keyid) { sctp_free_key(stcb->asoc.authinfo.assoc_key); stcb->asoc.authinfo.assoc_key = NULL; } if (keyid == stcb->asoc.authinfo.recv_keyid) { sctp_free_key(stcb->asoc.authinfo.recv_key); stcb->asoc.authinfo.recv_key = NULL; } } /*- * clear any cached key(s) if they match the given key id for all assocs on * an endpoint. * ASSUMES INP_WLOCK is already held */ void sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) { struct sctp_tcb *stcb; if (inp == NULL) return; /* clear the cached keys on all assocs on this instance */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); sctp_clear_cachedkeys(stcb, keyid); SCTP_TCB_UNLOCK(stcb); } } /*- * delete a shared key from an association * ASSUMES TCB_LOCK is already held */ int sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) { sctp_sharedkey_t *skey; if (stcb == NULL) return (-1); /* is the keyid the assoc active sending key */ if (keyid == stcb->asoc.authinfo.active_keyid) return (-1); /* does the key exist? */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); if (skey == NULL) return (-1); /* are there other refcount holders on the key? */ if (skey->refcount > 1) return (-1); /* remove it */ LIST_REMOVE(skey, next); sctp_free_sharedkey(skey); /* frees skey->key as well */ /* clear any cached keys */ sctp_clear_cachedkeys(stcb, keyid); return (0); } /*- * deletes a shared key from the endpoint * ASSUMES INP_WLOCK is already held */ int sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) { sctp_sharedkey_t *skey; if (inp == NULL) return (-1); /* is the keyid the active sending key on the endpoint */ if (keyid == inp->sctp_ep.default_keyid) return (-1); /* does the key exist? */ skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); if (skey == NULL) return (-1); /* endpoint keys are not refcounted */ /* remove it */ LIST_REMOVE(skey, next); sctp_free_sharedkey(skey); /* frees skey->key as well */ /* clear any cached keys */ sctp_clear_cachedkeys_ep(inp, keyid); return (0); } /*- * set the active key on an association * ASSUMES TCB_LOCK is already held */ int sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) { sctp_sharedkey_t *skey = NULL; /* find the key on the assoc */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); if (skey == NULL) { /* that key doesn't exist */ return (-1); } if ((skey->deactivated) && (skey->refcount > 1)) { /* can't reactivate a deactivated key with other refcounts */ return (-1); } + /* set the (new) active key */ stcb->asoc.authinfo.active_keyid = keyid; /* reset the deactivated flag */ skey->deactivated = 0; return (0); } /*- * set the active key on an endpoint * ASSUMES INP_WLOCK is already held */ int sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) { sctp_sharedkey_t *skey; /* find the key */ skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); if (skey == NULL) { /* that key doesn't exist */ return (-1); } inp->sctp_ep.default_keyid = keyid; return (0); } /*- * deactivates a shared key from the association * ASSUMES INP_WLOCK is already held */ int sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) { sctp_sharedkey_t *skey; if (stcb == NULL) return (-1); /* is the keyid the assoc active sending key */ if (keyid == stcb->asoc.authinfo.active_keyid) return (-1); /* does the key exist? */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); if (skey == NULL) return (-1); /* are there other refcount holders on the key? */ if (skey->refcount == 1) { /* no other users, send a notification for this key */ sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, SCTP_SO_LOCKED); } + /* mark the key as deactivated */ skey->deactivated = 1; return (0); } /*- * deactivates a shared key from the endpoint * ASSUMES INP_WLOCK is already held */ int sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) { sctp_sharedkey_t *skey; if (inp == NULL) return (-1); /* is the keyid the active sending key on the endpoint */ if (keyid == inp->sctp_ep.default_keyid) return (-1); /* does the key exist? */ skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); if (skey == NULL) return (-1); /* endpoint keys are not refcounted */ /* remove it */ LIST_REMOVE(skey, next); sctp_free_sharedkey(skey); /* frees skey->key as well */ return (0); } /* * get local authentication parameters from cookie (from INIT-ACK) */ void sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, uint32_t offset, uint32_t length) { struct sctp_paramhdr *phdr, tmp_param; uint16_t plen, ptype; uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_random *p_random = NULL; uint16_t random_len = 0; uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_hmac_algo *hmacs = NULL; uint16_t hmacs_len = 0; uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_chunk_list *chunks = NULL; uint16_t num_chunks = 0; sctp_key_t *new_key; uint32_t keylen; /* convert to upper bound */ length += offset; phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); while (phdr != NULL) { ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); if ((plen == 0) || (offset + plen > length)) break; if (ptype == SCTP_RANDOM) { if (plen > sizeof(random_store)) break; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)random_store, plen); if (phdr == NULL) return; /* save the random and length for the key */ p_random = (struct sctp_auth_random *)phdr; random_len = plen - sizeof(*p_random); } else if (ptype == SCTP_HMAC_LIST) { uint16_t num_hmacs; uint16_t i; if (plen > sizeof(hmacs_store)) break; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)hmacs_store, plen); if (phdr == NULL) return; /* save the hmacs list and num for the key */ hmacs = (struct sctp_auth_hmac_algo *)phdr; hmacs_len = plen - sizeof(*hmacs); num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); if (stcb->asoc.local_hmacs != NULL) sctp_free_hmaclist(stcb->asoc.local_hmacs); stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); if (stcb->asoc.local_hmacs != NULL) { for (i = 0; i < num_hmacs; i++) { (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, ntohs(hmacs->hmac_ids[i])); } } } else if (ptype == SCTP_CHUNK_LIST) { int i; if (plen > sizeof(chunks_store)) break; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)chunks_store, plen); if (phdr == NULL) return; chunks = (struct sctp_auth_chunk_list *)phdr; num_chunks = plen - sizeof(*chunks); /* save chunks list and num for the key */ if (stcb->asoc.local_auth_chunks != NULL) sctp_clear_chunklist(stcb->asoc.local_auth_chunks); else stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); for (i = 0; i < num_chunks; i++) { (void)sctp_auth_add_chunk(chunks->chunk_types[i], stcb->asoc.local_auth_chunks); } } /* get next parameter */ offset += SCTP_SIZE32(plen); if (offset + sizeof(struct sctp_paramhdr) > length) break; phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); } /* concatenate the full random key */ keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; if (chunks != NULL) { keylen += sizeof(*chunks) + num_chunks; } new_key = sctp_alloc_key(keylen); if (new_key != NULL) { /* copy in the RANDOM */ if (p_random != NULL) { keylen = sizeof(*p_random) + random_len; memcpy(new_key->key, p_random, keylen); } else { keylen = 0; } /* append in the AUTH chunks */ if (chunks != NULL) { memcpy(new_key->key + keylen, chunks, sizeof(*chunks) + num_chunks); keylen += sizeof(*chunks) + num_chunks; } /* append in the HMACs */ if (hmacs != NULL) { memcpy(new_key->key + keylen, hmacs, sizeof(*hmacs) + hmacs_len); } } if (stcb->asoc.authinfo.random != NULL) sctp_free_key(stcb->asoc.authinfo.random); stcb->asoc.authinfo.random = new_key; stcb->asoc.authinfo.random_len = random_len; sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); /* negotiate what HMAC to use for the peer */ stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, stcb->asoc.local_hmacs); /* copy defaults from the endpoint */ /* FIX ME: put in cookie? */ stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; /* copy out the shared key list (by reference) from the endpoint */ (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, &stcb->asoc.shared_keys); } /* * compute and fill in the HMAC digest for a packet */ void sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) { uint32_t digestlen; sctp_sharedkey_t *skey; sctp_key_t *key; if ((stcb == NULL) || (auth == NULL)) return; /* zero the digest + chunk padding */ digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); memset(auth->hmac, 0, SCTP_SIZE32(digestlen)); /* is the desired key cached? */ if ((keyid != stcb->asoc.authinfo.assoc_keyid) || (stcb->asoc.authinfo.assoc_key == NULL)) { if (stcb->asoc.authinfo.assoc_key != NULL) { /* free the old cached key */ sctp_free_key(stcb->asoc.authinfo.assoc_key); } skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); /* the only way skey is NULL is if null key id 0 is used */ if (skey != NULL) key = skey->key; else key = NULL; /* compute a new assoc key and cache it */ stcb->asoc.authinfo.assoc_key = sctp_compute_hashkey(stcb->asoc.authinfo.random, stcb->asoc.authinfo.peer_random, key); stcb->asoc.authinfo.assoc_keyid = keyid; SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", stcb->asoc.authinfo.assoc_keyid); #ifdef SCTP_DEBUG if (SCTP_AUTH_DEBUG) sctp_print_key(stcb->asoc.authinfo.assoc_key, "Assoc Key"); #endif } + /* set in the active key id */ auth->shared_key_id = htons(keyid); /* compute and fill in the digest */ (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, m, auth_offset, auth->hmac); } static void sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) { struct mbuf *m_tmp; uint8_t *data; /* sanity check */ if (m == NULL) return; /* find the correct starting mbuf and offset (get start position) */ m_tmp = m; while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { m_offset -= SCTP_BUF_LEN(m_tmp); m_tmp = SCTP_BUF_NEXT(m_tmp); } /* now use the rest of the mbuf chain */ while ((m_tmp != NULL) && (size > 0)) { data = mtod(m_tmp, uint8_t *)+m_offset; if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) { memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset); size -= SCTP_BUF_LEN(m_tmp) - m_offset; } else { memset(data, 0, size); size = 0; } /* clear the offset since it's only for the first mbuf */ m_offset = 0; m_tmp = SCTP_BUF_NEXT(m_tmp); } } /*- * process the incoming Authentication chunk * return codes: * -1 on any authentication error * 0 on authentication verification */ int sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, struct mbuf *m, uint32_t offset) { uint16_t chunklen; uint16_t shared_key_id; uint16_t hmac_id; sctp_sharedkey_t *skey; uint32_t digestlen; uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; /* auth is checked for NULL by caller */ chunklen = ntohs(auth->ch.chunk_length); if (chunklen < sizeof(*auth)) { SCTP_STAT_INCR(sctps_recvauthfailed); return (-1); } SCTP_STAT_INCR(sctps_recvauth); /* get the auth params */ shared_key_id = ntohs(auth->shared_key_id); hmac_id = ntohs(auth->hmac_id); SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", shared_key_id, hmac_id); /* is the indicated HMAC supported? */ if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { struct mbuf *op_err; struct sctp_error_auth_invalid_hmac *cause; SCTP_STAT_INCR(sctps_recvivalhmacid); SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP Auth: unsupported HMAC id %u\n", hmac_id); /* * report this in an Error Chunk: Unsupported HMAC * Identifier */ op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), 0, M_NOWAIT, 1, MT_HEADER); if (op_err != NULL) { /* pre-reserve some space */ SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); /* fill in the error */ cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); cause->hmac_id = ntohs(hmac_id); SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); /* queue it */ sctp_queue_op_err(stcb, op_err); } return (-1); } /* get the indicated shared key, if available */ if ((stcb->asoc.authinfo.recv_key == NULL) || (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { /* find the shared key on the assoc first */ skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, shared_key_id); /* if the shared key isn't found, discard the chunk */ if (skey == NULL) { SCTP_STAT_INCR(sctps_recvivalkeyid); SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP Auth: unknown key id %u\n", shared_key_id); return (-1); } /* generate a notification if this is a new key id */ if (stcb->asoc.authinfo.recv_keyid != shared_key_id) /* * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, * shared_key_id, (void * *)stcb->asoc.authinfo.recv_keyid); */ sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, shared_key_id, stcb->asoc.authinfo.recv_keyid, SCTP_SO_NOT_LOCKED); /* compute a new recv assoc key and cache it */ if (stcb->asoc.authinfo.recv_key != NULL) sctp_free_key(stcb->asoc.authinfo.recv_key); stcb->asoc.authinfo.recv_key = sctp_compute_hashkey(stcb->asoc.authinfo.random, stcb->asoc.authinfo.peer_random, skey->key); stcb->asoc.authinfo.recv_keyid = shared_key_id; #ifdef SCTP_DEBUG if (SCTP_AUTH_DEBUG) sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); #endif } /* validate the digest length */ digestlen = sctp_get_hmac_digest_len(hmac_id); if (chunklen < (sizeof(*auth) + digestlen)) { /* invalid digest length */ SCTP_STAT_INCR(sctps_recvauthfailed); SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP Auth: chunk too short for HMAC\n"); return (-1); } /* save a copy of the digest, zero the pseudo header, and validate */ memcpy(digest, auth->hmac, digestlen); sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, m, offset, computed_digest); /* compare the computed digest with the one in the AUTH chunk */ if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) { SCTP_STAT_INCR(sctps_recvauthfailed); SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP Auth: HMAC digest check failed\n"); return (-1); } return (0); } /* * Generate NOTIFICATION */ void sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, uint16_t keyid, uint16_t alt_keyid, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_authkey_event *auth; struct sctp_queued_to_read *control; if ((stcb == NULL) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) ) { /* If the socket is gone we are out of here */ return; } + if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) /* event not enabled */ return; m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 0, M_NOWAIT, 1, MT_HEADER); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; auth = mtod(m_notify, struct sctp_authkey_event *); memset(auth, 0, sizeof(struct sctp_authkey_event)); auth->auth_type = SCTP_AUTHENTICATION_EVENT; auth->auth_flags = 0; auth->auth_length = sizeof(*auth); auth->auth_keynumber = keyid; auth->auth_altkeynumber = alt_keyid; auth->auth_indication = indication; auth->auth_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(*auth); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } /*- * validates the AUTHentication related parameters in an INIT/INIT-ACK * Note: currently only used for INIT as INIT-ACK is handled inline * with sctp_load_addresses_from_init() */ int sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) { struct sctp_paramhdr *phdr, param_buf; uint16_t ptype, plen; int peer_supports_asconf = 0; int peer_supports_auth = 0; int got_random = 0, got_hmacs = 0, got_chklist = 0; uint8_t saw_asconf = 0; uint8_t saw_asconf_ack = 0; /* go through each of the params. */ phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); while (phdr) { ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); if (offset + plen > limit) { break; } if (plen < sizeof(struct sctp_paramhdr)) { break; } if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { /* A supported extension chunk */ struct sctp_supported_chunk_types_param *pr_supported; uint8_t local_store[SCTP_SMALL_CHUNK_STORE]; int num_ent, i; if (plen > sizeof(local_store)) { break; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&local_store, plen); if (phdr == NULL) { return (-1); } pr_supported = (struct sctp_supported_chunk_types_param *)phdr; num_ent = plen - sizeof(struct sctp_paramhdr); for (i = 0; i < num_ent; i++) { switch (pr_supported->chunk_types[i]) { case SCTP_ASCONF: case SCTP_ASCONF_ACK: peer_supports_asconf = 1; break; default: /* one we don't care about */ break; } } } else if (ptype == SCTP_RANDOM) { /* enforce the random length */ if (plen != (sizeof(struct sctp_auth_random) + SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid RANDOM len\n"); return (-1); } got_random = 1; } else if (ptype == SCTP_HMAC_LIST) { struct sctp_auth_hmac_algo *hmacs; uint8_t store[SCTP_PARAM_BUFFER_SIZE]; int num_hmacs; if (plen > sizeof(store)) { break; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)store, plen); if (phdr == NULL) { return (-1); } hmacs = (struct sctp_auth_hmac_algo *)phdr; num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]); /* validate the hmac list */ if (sctp_verify_hmac_param(hmacs, num_hmacs)) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid HMAC param\n"); return (-1); } got_hmacs = 1; } else if (ptype == SCTP_CHUNK_LIST) { struct sctp_auth_chunk_list *chunks; uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; int i, num_chunks; if (plen > sizeof(chunks_store)) { break; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)chunks_store, plen); if (phdr == NULL) { return (-1); } /*- * Flip through the list and mark that the * peer supports asconf/asconf_ack. */ chunks = (struct sctp_auth_chunk_list *)phdr; num_chunks = plen - sizeof(*chunks); for (i = 0; i < num_chunks; i++) { /* record asconf/asconf-ack if listed */ if (chunks->chunk_types[i] == SCTP_ASCONF) saw_asconf = 1; if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) saw_asconf_ack = 1; } if (num_chunks) got_chklist = 1; } + offset += SCTP_SIZE32(plen); if (offset >= limit) { break; } phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); } /* validate authentication required parameters */ if (got_random && got_hmacs) { peer_supports_auth = 1; } else { peer_supports_auth = 0; } if (!peer_supports_auth && got_chklist) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: peer sent chunk list w/o AUTH\n"); return (-1); } if (peer_supports_asconf && !peer_supports_auth) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: peer supports ASCONF but not AUTH\n"); return (-1); } else if ((peer_supports_asconf) && (peer_supports_auth) && ((saw_asconf == 0) || (saw_asconf_ack == 0))) { return (-2); } return (0); } void sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) { uint16_t chunks_len = 0; uint16_t hmacs_len = 0; uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; sctp_key_t *new_key; uint16_t keylen; /* initialize hmac list from endpoint */ stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); if (stcb->asoc.local_hmacs != NULL) { hmacs_len = stcb->asoc.local_hmacs->num_algo * sizeof(stcb->asoc.local_hmacs->hmac[0]); } /* initialize auth chunks list from endpoint */ stcb->asoc.local_auth_chunks = sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); if (stcb->asoc.local_auth_chunks != NULL) { int i; for (i = 0; i < 256; i++) { if (stcb->asoc.local_auth_chunks->chunks[i]) chunks_len++; } } /* copy defaults from the endpoint */ stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; /* copy out the shared key list (by reference) from the endpoint */ (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, &stcb->asoc.shared_keys); /* now set the concatenated key (random + chunks + hmacs) */ /* key includes parameter headers */ keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + hmacs_len; new_key = sctp_alloc_key(keylen); if (new_key != NULL) { struct sctp_paramhdr *ph; int plen; /* generate and copy in the RANDOM */ ph = (struct sctp_paramhdr *)new_key->key; ph->param_type = htons(SCTP_RANDOM); plen = sizeof(*ph) + random_len; ph->param_length = htons(plen); SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); keylen = plen; /* append in the AUTH chunks */ /* NOTE: currently we always have chunks to list */ ph = (struct sctp_paramhdr *)(new_key->key + keylen); ph->param_type = htons(SCTP_CHUNK_LIST); plen = sizeof(*ph) + chunks_len; ph->param_length = htons(plen); keylen += sizeof(*ph); if (stcb->asoc.local_auth_chunks) { int i; for (i = 0; i < 256; i++) { if (stcb->asoc.local_auth_chunks->chunks[i]) new_key->key[keylen++] = i; } } + /* append in the HMACs */ ph = (struct sctp_paramhdr *)(new_key->key + keylen); ph->param_type = htons(SCTP_HMAC_LIST); plen = sizeof(*ph) + hmacs_len; ph->param_length = htons(plen); keylen += sizeof(*ph); (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, new_key->key + keylen); } if (stcb->asoc.authinfo.random != NULL) sctp_free_key(stcb->asoc.authinfo.random); stcb->asoc.authinfo.random = new_key; stcb->asoc.authinfo.random_len = random_len; } Index: stable/11/sys/netinet/sctp_auth.h =================================================================== --- stable/11/sys/netinet/sctp_auth.h (revision 347153) +++ stable/11/sys/netinet/sctp_auth.h (revision 347154) @@ -1,231 +1,231 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_AUTH_H_ #define _NETINET_SCTP_AUTH_H_ #include /* digest lengths */ #define SCTP_AUTH_DIGEST_LEN_SHA1 20 #define SCTP_AUTH_DIGEST_LEN_SHA256 32 #define SCTP_AUTH_DIGEST_LEN_MAX SCTP_AUTH_DIGEST_LEN_SHA256 /* random sizes */ #define SCTP_AUTH_RANDOM_SIZE_DEFAULT 32 #define SCTP_AUTH_RANDOM_SIZE_REQUIRED 32 /* union of all supported HMAC algorithm contexts */ typedef union sctp_hash_context { SCTP_SHA1_CTX sha1; SCTP_SHA256_CTX sha256; } sctp_hash_context_t; typedef struct sctp_key { uint32_t keylen; uint8_t key[]; } sctp_key_t; typedef struct sctp_shared_key { LIST_ENTRY(sctp_shared_key) next; sctp_key_t *key; /* key text */ uint32_t refcount; /* reference count */ uint16_t keyid; /* shared key ID */ uint8_t deactivated; /* key is deactivated */ } sctp_sharedkey_t; LIST_HEAD(sctp_keyhead, sctp_shared_key); /* authentication chunks list */ typedef struct sctp_auth_chklist { uint8_t chunks[256]; uint8_t num_chunks; } sctp_auth_chklist_t; /* hmac algos supported list */ typedef struct sctp_hmaclist { uint16_t max_algo; /* max algorithms allocated */ uint16_t num_algo; /* num algorithms used */ uint16_t hmac[]; } sctp_hmaclist_t; /* authentication info */ typedef struct sctp_authinformation { sctp_key_t *random; /* local random key (concatenated) */ uint32_t random_len; /* local random number length for param */ - sctp_key_t *peer_random;/* peer's random key (concatenated) */ + sctp_key_t *peer_random; /* peer's random key (concatenated) */ sctp_key_t *assoc_key; /* cached concatenated send key */ sctp_key_t *recv_key; /* cached concatenated recv key */ uint16_t active_keyid; /* active send keyid */ uint16_t assoc_keyid; /* current send keyid (cached) */ uint16_t recv_keyid; /* last recv keyid (cached) */ } sctp_authinfo_t; /* * Macros */ #define sctp_auth_is_required_chunk(chunk, list) ((list == NULL) ? (0) : (list->chunks[chunk] != 0)) /* * function prototypes */ /* socket option api functions */ extern sctp_auth_chklist_t *sctp_alloc_chunklist(void); extern void sctp_free_chunklist(sctp_auth_chklist_t *chklist); extern void sctp_clear_chunklist(sctp_auth_chklist_t *chklist); extern sctp_auth_chklist_t *sctp_copy_chunklist(sctp_auth_chklist_t *chklist); extern int sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list); extern int sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list); extern size_t sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list); -extern int +extern int sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr); -extern int +extern int sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr); -extern int +extern int sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, sctp_auth_chklist_t *list); /* key handling */ extern sctp_key_t *sctp_alloc_key(uint32_t keylen); extern void sctp_free_key(sctp_key_t *key); extern void sctp_print_key(sctp_key_t *key, const char *str); extern void sctp_show_key(sctp_key_t *key, const char *str); extern sctp_key_t *sctp_generate_random_key(uint32_t keylen); extern sctp_key_t *sctp_set_key(uint8_t *key, uint32_t keylen); extern sctp_key_t * sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared); /* shared key handling */ extern sctp_sharedkey_t *sctp_alloc_sharedkey(void); extern void sctp_free_sharedkey(sctp_sharedkey_t *skey); extern sctp_sharedkey_t * sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id); -extern int +extern int sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, sctp_sharedkey_t *new_skey); -extern int +extern int sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest); /* ref counts on shared keys, by key id */ extern void sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t keyid); -extern void +extern void sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t keyid, int so_locked); /* hmac list handling */ extern sctp_hmaclist_t *sctp_alloc_hmaclist(uint16_t num_hmacs); extern void sctp_free_hmaclist(sctp_hmaclist_t *list); extern int sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id); extern sctp_hmaclist_t *sctp_copy_hmaclist(sctp_hmaclist_t *list); extern sctp_hmaclist_t *sctp_default_supported_hmaclist(void); -extern uint16_t +extern uint16_t sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local); extern int sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr); -extern int +extern int sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs); extern sctp_authinfo_t *sctp_alloc_authinfo(void); extern void sctp_free_authinfo(sctp_authinfo_t *authinfo); /* keyed-HMAC functions */ extern uint32_t sctp_get_auth_chunk_len(uint16_t hmac_algo); extern uint32_t sctp_get_hmac_digest_len(uint16_t hmac_algo); -extern uint32_t +extern uint32_t sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, uint8_t *text, uint32_t textlen, uint8_t *digest); -extern int +extern int sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, uint8_t *text, uint32_t textlen, uint8_t *digest, uint32_t digestlen); -extern uint32_t +extern uint32_t sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, uint32_t textlen, uint8_t *digest); extern int sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id); /* mbuf versions */ -extern uint32_t +extern uint32_t sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer); -extern uint32_t +extern uint32_t sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, uint32_t m_offset, uint8_t *digest); /* * authentication routines */ extern void sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid); extern void sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid); extern int sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid); extern int sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid); extern int sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid); extern int sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid); extern int sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid); extern int sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid); -extern void +extern void sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, uint32_t offset, uint32_t length); -extern void +extern void sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t key_id); extern struct mbuf * sctp_add_auth_chunk(struct mbuf *m, struct mbuf **m_end, struct sctp_auth_chunk **auth_ret, uint32_t *offset, struct sctp_tcb *stcb, uint8_t chunk); -extern int +extern int sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *ch, struct mbuf *m, uint32_t offset); -extern void +extern void sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, uint16_t keyid, uint16_t alt_keyid, int so_locked); -extern int +extern int sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit); -extern void +extern void sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb); /* test functions */ #endif /* __SCTP_AUTH_H__ */ Index: stable/11/sys/netinet/sctp_bsd_addr.c =================================================================== --- stable/11/sys/netinet/sctp_bsd_addr.c (revision 347153) +++ stable/11/sys/netinet/sctp_bsd_addr.c (revision 347154) @@ -1,544 +1,546 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Declare all of our malloc named types */ MALLOC_DEFINE(SCTP_M_MAP, "sctp_map", "sctp asoc map descriptor"); MALLOC_DEFINE(SCTP_M_STRMI, "sctp_stri", "sctp stream in array"); MALLOC_DEFINE(SCTP_M_STRMO, "sctp_stro", "sctp stream out array"); MALLOC_DEFINE(SCTP_M_ASC_ADDR, "sctp_aadr", "sctp asconf address"); MALLOC_DEFINE(SCTP_M_ASC_IT, "sctp_a_it", "sctp asconf iterator"); MALLOC_DEFINE(SCTP_M_AUTH_CL, "sctp_atcl", "sctp auth chunklist"); MALLOC_DEFINE(SCTP_M_AUTH_KY, "sctp_atky", "sctp auth key"); MALLOC_DEFINE(SCTP_M_AUTH_HL, "sctp_athm", "sctp auth hmac list"); MALLOC_DEFINE(SCTP_M_AUTH_IF, "sctp_athi", "sctp auth info"); MALLOC_DEFINE(SCTP_M_STRESET, "sctp_stre", "sctp stream reset"); MALLOC_DEFINE(SCTP_M_CMSG, "sctp_cmsg", "sctp CMSG buffer"); MALLOC_DEFINE(SCTP_M_COPYAL, "sctp_cpal", "sctp copy all"); MALLOC_DEFINE(SCTP_M_VRF, "sctp_vrf", "sctp vrf struct"); MALLOC_DEFINE(SCTP_M_IFA, "sctp_ifa", "sctp ifa struct"); MALLOC_DEFINE(SCTP_M_IFN, "sctp_ifn", "sctp ifn struct"); MALLOC_DEFINE(SCTP_M_TIMW, "sctp_timw", "sctp time block"); MALLOC_DEFINE(SCTP_M_MVRF, "sctp_mvrf", "sctp mvrf pcb list"); MALLOC_DEFINE(SCTP_M_ITER, "sctp_iter", "sctp iterator control"); MALLOC_DEFINE(SCTP_M_SOCKOPT, "sctp_socko", "sctp socket option"); MALLOC_DEFINE(SCTP_M_MCORE, "sctp_mcore", "sctp mcore queue"); /* Global NON-VNET structure that controls the iterator */ struct iterator_control sctp_it_ctl; void sctp_wakeup_iterator(void) { wakeup(&sctp_it_ctl.iterator_running); } static void sctp_iterator_thread(void *v SCTP_UNUSED) { SCTP_IPI_ITERATOR_WQ_LOCK(); /* In FreeBSD this thread never terminates. */ for (;;) { msleep(&sctp_it_ctl.iterator_running, &sctp_it_ctl.ipi_iterator_wq_mtx, 0, "waiting_for_work", 0); sctp_iterator_worker(); } } void sctp_startup_iterator(void) { if (sctp_it_ctl.thread_proc) { /* You only get one */ return; } /* Initialize global locks here, thus only once. */ SCTP_ITERATOR_LOCK_INIT(); SCTP_IPI_ITERATOR_WQ_INIT(); TAILQ_INIT(&sctp_it_ctl.iteratorhead); kproc_create(sctp_iterator_thread, (void *)NULL, &sctp_it_ctl.thread_proc, RFPROC, SCTP_KTHREAD_PAGES, SCTP_KTRHEAD_NAME); } #ifdef INET6 void sctp_gather_internal_ifa_flags(struct sctp_ifa *ifa) { struct in6_ifaddr *ifa6; ifa6 = (struct in6_ifaddr *)ifa->ifa; ifa->flags = ifa6->ia6_flags; if (!MODULE_GLOBAL(ip6_use_deprecated)) { if (ifa->flags & IN6_IFF_DEPRECATED) { ifa->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE; } else { ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE; } } else { ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE; } if (ifa->flags & (IN6_IFF_DETACHED | IN6_IFF_ANYCAST | IN6_IFF_NOTREADY)) { ifa->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE; } else { ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE; } } #endif /* INET6 */ static uint32_t sctp_is_desired_interface_type(struct ifnet *ifn) { int result; /* check the interface type to see if it's one we care about */ switch (ifn->if_type) { case IFT_ETHER: case IFT_ISO88023: case IFT_ISO88024: case IFT_ISO88025: case IFT_ISO88026: case IFT_STARLAN: case IFT_P10: case IFT_P80: case IFT_HY: case IFT_FDDI: case IFT_XETHER: case IFT_ISDNBASIC: case IFT_ISDNPRIMARY: case IFT_PTPSERIAL: case IFT_OTHER: case IFT_PPP: case IFT_LOOP: case IFT_SLIP: case IFT_GIF: case IFT_L2VLAN: case IFT_STF: case IFT_IP: case IFT_IPOVERCDLC: case IFT_IPOVERCLAW: case IFT_PROPVIRTUAL: /* NetGraph Virtual too */ case IFT_VIRTUALIPADDRESS: result = 1; break; default: result = 0; } return (result); } static void sctp_init_ifns_for_vrf(int vrfid) { /* * Here we must apply ANY locks needed by the IFN we access and also * make sure we lock any IFA that exists as we float through the * list of IFA's */ struct ifnet *ifn; struct ifaddr *ifa; struct sctp_ifa *sctp_ifa; uint32_t ifa_flags; #ifdef INET6 struct in6_ifaddr *ifa6; #endif IFNET_RLOCK(); TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_list) { if (sctp_is_desired_interface_type(ifn) == 0) { /* non desired type */ continue; } IF_ADDR_RLOCK(ifn); TAILQ_FOREACH(ifa, &ifn->if_addrlist, ifa_list) { if (ifa->ifa_addr == NULL) { continue; } switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if (((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr == 0) { continue; } break; #endif #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr)) { /* skip unspecifed addresses */ continue; } break; #endif default: continue; } switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifa_flags = 0; break; #endif #ifdef INET6 case AF_INET6: ifa6 = (struct in6_ifaddr *)ifa; ifa_flags = ifa6->ia6_flags; break; #endif default: ifa_flags = 0; break; } sctp_ifa = sctp_add_addr_to_vrf(vrfid, (void *)ifn, ifn->if_index, ifn->if_type, ifn->if_xname, (void *)ifa, ifa->ifa_addr, ifa_flags, 0); if (sctp_ifa) { sctp_ifa->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } } IF_ADDR_RUNLOCK(ifn); } IFNET_RUNLOCK(); } void sctp_init_vrf_list(int vrfid) { if (vrfid > SCTP_MAX_VRF_ID) /* can't do that */ return; /* Don't care about return here */ (void)sctp_allocate_vrf(vrfid); /* * Now we need to build all the ifn's for this vrf and there * addresses */ sctp_init_ifns_for_vrf(vrfid); } void sctp_addr_change(struct ifaddr *ifa, int cmd) { uint32_t ifa_flags = 0; if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { return; } /* * BSD only has one VRF, if this changes we will need to hook in the * right things here to get the id to pass to the address management * routine. */ if (SCTP_BASE_VAR(first_time) == 0) { /* Special test to see if my ::1 will showup with this */ SCTP_BASE_VAR(first_time) = 1; sctp_init_ifns_for_vrf(SCTP_DEFAULT_VRFID); } + if ((cmd != RTM_ADD) && (cmd != RTM_DELETE)) { /* don't know what to do with this */ return; } + if (ifa->ifa_addr == NULL) { return; } if (sctp_is_desired_interface_type(ifa->ifa_ifp) == 0) { /* non desired type */ return; } switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if (((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr == 0) { return; } break; #endif #ifdef INET6 case AF_INET6: ifa_flags = ((struct in6_ifaddr *)ifa)->ia6_flags; if (IN6_IS_ADDR_UNSPECIFIED(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr)) { /* skip unspecifed addresses */ return; } break; #endif default: /* non inet/inet6 skip */ return; } if (cmd == RTM_ADD) { (void)sctp_add_addr_to_vrf(SCTP_DEFAULT_VRFID, (void *)ifa->ifa_ifp, ifa->ifa_ifp->if_index, ifa->ifa_ifp->if_type, ifa->ifa_ifp->if_xname, (void *)ifa, ifa->ifa_addr, ifa_flags, 1); } else { sctp_del_addr_from_vrf(SCTP_DEFAULT_VRFID, ifa->ifa_addr, ifa->ifa_ifp->if_index, ifa->ifa_ifp->if_xname); /* * We don't bump refcount here so when it completes the * final delete will happen. */ } } void sctp_add_or_del_interfaces(int (*pred) (struct ifnet *), int add){ struct ifnet *ifn; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_list) { if (!(*pred) (ifn)) { continue; } TAILQ_FOREACH(ifa, &ifn->if_addrlist, ifa_list) { sctp_addr_change(ifa, add ? RTM_ADD : RTM_DELETE); } } IFNET_RUNLOCK(); } struct mbuf * sctp_get_mbuf_for_msg(unsigned int space_needed, int want_header, int how, int allonebuf, int type) { struct mbuf *m = NULL; m = m_getm2(NULL, space_needed, how, type, want_header ? M_PKTHDR : 0); if (m == NULL) { /* bad, no memory */ return (m); } if (allonebuf) { if (SCTP_BUF_SIZE(m) < space_needed) { m_freem(m); return (NULL); } KASSERT(SCTP_BUF_NEXT(m) == NULL, ("%s: no chain allowed", __FUNCTION__)); } #ifdef SCTP_MBUF_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mb(m, SCTP_MBUF_IALLOC); } #endif return (m); } #ifdef SCTP_PACKET_LOGGING void sctp_packet_log(struct mbuf *m) { int *lenat, thisone; void *copyto; uint32_t *tick_tock; int length; int total_len; int grabbed_lock = 0; int value, newval, thisend, thisbegin; /* * Buffer layout. -sizeof this entry (total_len) -previous end * (value) -ticks of log (ticks) o -ip packet o -as logged - * where this started (thisbegin) x <--end points here */ length = SCTP_HEADER_LEN(m); total_len = SCTP_SIZE32((length + (4 * sizeof(int)))); /* Log a packet to the buffer. */ if (total_len > SCTP_PACKET_LOG_SIZE) { /* Can't log this packet I have not a buffer big enough */ return; } if (length < (int)(SCTP_MIN_V4_OVERHEAD + sizeof(struct sctp_cookie_ack_chunk))) { return; } atomic_add_int(&SCTP_BASE_VAR(packet_log_writers), 1); try_again: if (SCTP_BASE_VAR(packet_log_writers) > SCTP_PKTLOG_WRITERS_NEED_LOCK) { SCTP_IP_PKTLOG_LOCK(); grabbed_lock = 1; again_locked: value = SCTP_BASE_VAR(packet_log_end); newval = SCTP_BASE_VAR(packet_log_end) + total_len; if (newval >= SCTP_PACKET_LOG_SIZE) { /* we wrapped */ thisbegin = 0; thisend = total_len; } else { thisbegin = SCTP_BASE_VAR(packet_log_end); thisend = newval; } if (!(atomic_cmpset_int(&SCTP_BASE_VAR(packet_log_end), value, thisend))) { goto again_locked; } } else { value = SCTP_BASE_VAR(packet_log_end); newval = SCTP_BASE_VAR(packet_log_end) + total_len; if (newval >= SCTP_PACKET_LOG_SIZE) { /* we wrapped */ thisbegin = 0; thisend = total_len; } else { thisbegin = SCTP_BASE_VAR(packet_log_end); thisend = newval; } if (!(atomic_cmpset_int(&SCTP_BASE_VAR(packet_log_end), value, thisend))) { goto try_again; } } /* Sanity check */ if (thisend >= SCTP_PACKET_LOG_SIZE) { SCTP_PRINTF("Insanity stops a log thisbegin:%d thisend:%d writers:%d lock:%d end:%d\n", thisbegin, thisend, SCTP_BASE_VAR(packet_log_writers), grabbed_lock, SCTP_BASE_VAR(packet_log_end)); SCTP_BASE_VAR(packet_log_end) = 0; goto no_log; } lenat = (int *)&SCTP_BASE_VAR(packet_log_buffer)[thisbegin]; *lenat = total_len; lenat++; *lenat = value; lenat++; tick_tock = (uint32_t *)lenat; lenat++; *tick_tock = sctp_get_tick_count(); copyto = (void *)lenat; thisone = thisend - sizeof(int); lenat = (int *)&SCTP_BASE_VAR(packet_log_buffer)[thisone]; *lenat = thisbegin; if (grabbed_lock) { SCTP_IP_PKTLOG_UNLOCK(); grabbed_lock = 0; } m_copydata(m, 0, length, (caddr_t)copyto); no_log: if (grabbed_lock) { SCTP_IP_PKTLOG_UNLOCK(); } atomic_subtract_int(&SCTP_BASE_VAR(packet_log_writers), 1); } int sctp_copy_out_packet_log(uint8_t *target, int length) { /* * We wind through the packet log starting at start copying up to * length bytes out. We return the number of bytes copied. */ int tocopy, this_copy; int *lenat; int did_delay = 0; tocopy = length; if (length < (int)(2 * sizeof(int))) { /* not enough room */ return (0); } if (SCTP_PKTLOG_WRITERS_NEED_LOCK) { atomic_add_int(&SCTP_BASE_VAR(packet_log_writers), SCTP_PKTLOG_WRITERS_NEED_LOCK); again: if ((did_delay == 0) && (SCTP_BASE_VAR(packet_log_writers) != SCTP_PKTLOG_WRITERS_NEED_LOCK)) { /* * we delay here for just a moment hoping the * writer(s) that were present when we entered will * have left and we only have locking ones that will * contend with us for the lock. This does not * assure 100% access, but its good enough for a * logging facility like this. */ did_delay = 1; DELAY(10); goto again; } } SCTP_IP_PKTLOG_LOCK(); lenat = (int *)target; *lenat = SCTP_BASE_VAR(packet_log_end); lenat++; this_copy = min((length - sizeof(int)), SCTP_PACKET_LOG_SIZE); memcpy((void *)lenat, (void *)SCTP_BASE_VAR(packet_log_buffer), this_copy); if (SCTP_PKTLOG_WRITERS_NEED_LOCK) { atomic_subtract_int(&SCTP_BASE_VAR(packet_log_writers), SCTP_PKTLOG_WRITERS_NEED_LOCK); } SCTP_IP_PKTLOG_UNLOCK(); return (this_copy + sizeof(int)); } #endif Index: stable/11/sys/netinet/sctp_cc_functions.c =================================================================== --- stable/11/sys/netinet/sctp_cc_functions.c (revision 347153) +++ stable/11/sys/netinet/sctp_cc_functions.c (revision 347154) @@ -1,2372 +1,2380 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SHIFT_MPTCP_MULTI_N 40 #define SHIFT_MPTCP_MULTI_Z 16 #define SHIFT_MPTCP_MULTI 8 static void sctp_enforce_cwnd_limit(struct sctp_association *assoc, struct sctp_nets *net) { if ((assoc->max_cwnd > 0) && (net->cwnd > assoc->max_cwnd) && (net->cwnd > (net->mtu - sizeof(struct sctphdr)))) { net->cwnd = assoc->max_cwnd; if (net->cwnd < (net->mtu - sizeof(struct sctphdr))) { net->cwnd = net->mtu - sizeof(struct sctphdr); } } } static void sctp_set_initial_cc_param(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_association *assoc; uint32_t cwnd_in_mtu; assoc = &stcb->asoc; cwnd_in_mtu = SCTP_BASE_SYSCTL(sctp_initial_cwnd); if (cwnd_in_mtu == 0) { /* Using 0 means that the value of RFC 4960 is used. */ net->cwnd = min((net->mtu * 4), max((2 * net->mtu), SCTP_INITIAL_CWND)); } else { /* * We take the minimum of the burst limit and the initial * congestion window. */ if ((assoc->max_burst > 0) && (cwnd_in_mtu > assoc->max_burst)) cwnd_in_mtu = assoc->max_burst; net->cwnd = (net->mtu - sizeof(struct sctphdr)) * cwnd_in_mtu; } if ((stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV1) || (stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV2)) { /* In case of resource pooling initialize appropriately */ net->cwnd /= assoc->numnets; if (net->cwnd < (net->mtu - sizeof(struct sctphdr))) { net->cwnd = net->mtu - sizeof(struct sctphdr); } } sctp_enforce_cwnd_limit(assoc, net); net->ssthresh = assoc->peers_rwnd; SDT_PROBE5(sctp, cwnd, net, init, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, 0, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & (SCTP_CWND_MONITOR_ENABLE | SCTP_CWND_LOGGING_ENABLE)) { sctp_log_cwnd(stcb, net, 0, SCTP_CWND_INITIALIZATION); } } static void sctp_cwnd_update_after_fr(struct sctp_tcb *stcb, struct sctp_association *asoc) { struct sctp_nets *net; uint32_t t_ssthresh, t_cwnd; uint64_t t_ucwnd_sbw; /* MT FIXME: Don't compute this over and over again */ t_ssthresh = 0; t_cwnd = 0; t_ucwnd_sbw = 0; if ((asoc->sctp_cmt_on_off == SCTP_CMT_RPV1) || (asoc->sctp_cmt_on_off == SCTP_CMT_RPV2)) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { t_ssthresh += net->ssthresh; t_cwnd += net->cwnd; if (net->lastsa > 0) { t_ucwnd_sbw += (uint64_t)net->cwnd / (uint64_t)net->lastsa; } } if (t_ucwnd_sbw == 0) { t_ucwnd_sbw = 1; } } + /*- * CMT fast recovery code. Need to debug. ((sctp_cmt_on_off > 0) && * (net->fast_retran_loss_recovery == 0))) */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if ((asoc->fast_retran_loss_recovery == 0) || (asoc->sctp_cmt_on_off > 0)) { /* out of a RFC2582 Fast recovery window? */ if (net->net_ack > 0) { /* * per section 7.2.3, are there any * destinations that had a fast retransmit * to them. If so what we need to do is * adjust ssthresh and cwnd. */ struct sctp_tmit_chunk *lchk; int old_cwnd = net->cwnd; if ((asoc->sctp_cmt_on_off == SCTP_CMT_RPV1) || (asoc->sctp_cmt_on_off == SCTP_CMT_RPV2)) { if (asoc->sctp_cmt_on_off == SCTP_CMT_RPV1) { net->ssthresh = (uint32_t)(((uint64_t)4 * (uint64_t)net->mtu * (uint64_t)net->ssthresh) / (uint64_t)t_ssthresh); } if (asoc->sctp_cmt_on_off == SCTP_CMT_RPV2) { uint32_t srtt; srtt = net->lastsa; /* * lastsa>>3; we don't need * to devide ... */ if (srtt == 0) { srtt = 1; } /* * Short Version => Equal to * Contel Version MBe */ net->ssthresh = (uint32_t)(((uint64_t)4 * (uint64_t)net->mtu * (uint64_t)net->cwnd) / ((uint64_t)srtt * t_ucwnd_sbw)); /* INCREASE FACTOR */ ; } if ((net->cwnd > t_cwnd / 2) && (net->ssthresh < net->cwnd - t_cwnd / 2)) { net->ssthresh = net->cwnd - t_cwnd / 2; } if (net->ssthresh < net->mtu) { net->ssthresh = net->mtu; } } else { net->ssthresh = net->cwnd / 2; if (net->ssthresh < (net->mtu * 2)) { net->ssthresh = 2 * net->mtu; } } net->cwnd = net->ssthresh; sctp_enforce_cwnd_limit(asoc, net); SDT_PROBE5(sctp, cwnd, net, fr, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_FR); } lchk = TAILQ_FIRST(&asoc->send_queue); net->partial_bytes_acked = 0; /* Turn on fast recovery window */ asoc->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ asoc->fast_recovery_tsn = asoc->sending_seq - 1; } else { asoc->fast_recovery_tsn = lchk->rec.data.tsn - 1; } /* * CMT fast recovery -- per destination * recovery variable. */ net->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ net->fast_recovery_tsn = asoc->sending_seq - 1; } else { net->fast_recovery_tsn = lchk->rec.data.tsn - 1; } sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_CC_FUNCTIONS + SCTP_LOC_1); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } } else if (net->net_ack > 0) { /* * Mark a peg that we WOULD have done a cwnd * reduction but RFC2582 prevented this action. */ SCTP_STAT_INCR(sctps_fastretransinrtt); } } } /* Defines for instantaneous bw decisions */ #define SCTP_INST_LOOSING 1 /* Losing to other flows */ #define SCTP_INST_NEUTRAL 2 /* Neutral, no indication */ #define SCTP_INST_GAINING 3 /* Gaining, step down possible */ static int cc_bw_same(struct sctp_tcb *stcb, struct sctp_nets *net, uint64_t nbw, uint64_t rtt_offset, uint64_t vtag, uint8_t inst_ind) { uint64_t oth, probepoint; probepoint = (((uint64_t)net->cwnd) << 32); if (net->rtt > net->cc_mod.rtcc.lbw_rtt + rtt_offset) { /* * rtt increased we don't update bw.. so we don't update the * rtt either. */ /* Probe point 5 */ probepoint |= ((5 << 16) | 1); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if ((net->cc_mod.rtcc.steady_step) && (inst_ind != SCTP_INST_LOOSING)) { if (net->cc_mod.rtcc.last_step_state == 5) net->cc_mod.rtcc.step_cnt++; else net->cc_mod.rtcc.step_cnt = 1; net->cc_mod.rtcc.last_step_state = 5; if ((net->cc_mod.rtcc.step_cnt == net->cc_mod.rtcc.steady_step) || ((net->cc_mod.rtcc.step_cnt > net->cc_mod.rtcc.steady_step) && ((net->cc_mod.rtcc.step_cnt % net->cc_mod.rtcc.steady_step) == 0))) { /* Try a step down */ oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); if (net->cwnd > (4 * net->mtu)) { net->cwnd -= net->mtu; net->cc_mod.rtcc.vol_reduce++; } else { net->cc_mod.rtcc.step_cnt = 0; } } } return (1); } if (net->rtt < net->cc_mod.rtcc.lbw_rtt - rtt_offset) { /* * rtt decreased, there could be more room. we update both * the bw and the rtt here to lock this in as a good step * down. */ /* Probe point 6 */ probepoint |= ((6 << 16) | 0); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if (net->cc_mod.rtcc.steady_step) { oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); if ((net->cc_mod.rtcc.last_step_state == 5) && (net->cc_mod.rtcc.step_cnt > net->cc_mod.rtcc.steady_step)) { /* Step down worked */ net->cc_mod.rtcc.step_cnt = 0; return (1); } else { net->cc_mod.rtcc.last_step_state = 6; net->cc_mod.rtcc.step_cnt = 0; } } net->cc_mod.rtcc.lbw = nbw; net->cc_mod.rtcc.lbw_rtt = net->rtt; net->cc_mod.rtcc.cwnd_at_bw_set = net->cwnd; if (inst_ind == SCTP_INST_GAINING) return (1); else if (inst_ind == SCTP_INST_NEUTRAL) return (1); else return (0); } /* * Ok bw and rtt remained the same .. no update to any */ /* Probe point 7 */ probepoint |= ((7 << 16) | net->cc_mod.rtcc.ret_from_eq); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if ((net->cc_mod.rtcc.steady_step) && (inst_ind != SCTP_INST_LOOSING)) { if (net->cc_mod.rtcc.last_step_state == 5) net->cc_mod.rtcc.step_cnt++; else net->cc_mod.rtcc.step_cnt = 1; net->cc_mod.rtcc.last_step_state = 5; if ((net->cc_mod.rtcc.step_cnt == net->cc_mod.rtcc.steady_step) || ((net->cc_mod.rtcc.step_cnt > net->cc_mod.rtcc.steady_step) && ((net->cc_mod.rtcc.step_cnt % net->cc_mod.rtcc.steady_step) == 0))) { /* Try a step down */ if (net->cwnd > (4 * net->mtu)) { net->cwnd -= net->mtu; net->cc_mod.rtcc.vol_reduce++; return (1); } else { net->cc_mod.rtcc.step_cnt = 0; } } } if (inst_ind == SCTP_INST_GAINING) return (1); else if (inst_ind == SCTP_INST_NEUTRAL) return (1); else return ((int)net->cc_mod.rtcc.ret_from_eq); } static int cc_bw_decrease(struct sctp_tcb *stcb, struct sctp_nets *net, uint64_t nbw, uint64_t rtt_offset, uint64_t vtag, uint8_t inst_ind) { uint64_t oth, probepoint; /* Bandwidth decreased. */ probepoint = (((uint64_t)net->cwnd) << 32); if (net->rtt > net->cc_mod.rtcc.lbw_rtt + rtt_offset) { /* rtt increased */ /* Did we add more */ if ((net->cwnd > net->cc_mod.rtcc.cwnd_at_bw_set) && (inst_ind != SCTP_INST_LOOSING)) { /* We caused it maybe.. back off? */ /* PROBE POINT 1 */ probepoint |= ((1 << 16) | 1); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if (net->cc_mod.rtcc.ret_from_eq) { /* * Switch over to CA if we are less * aggressive */ net->ssthresh = net->cwnd - 1; net->partial_bytes_acked = 0; } return (1); } /* Probe point 2 */ probepoint |= ((2 << 16) | 0); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); /* Someone else - fight for more? */ if (net->cc_mod.rtcc.steady_step) { oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); /* * Did we voluntarily give up some? if so take one * back please */ if ((net->cc_mod.rtcc.vol_reduce) && (inst_ind != SCTP_INST_GAINING)) { net->cwnd += net->mtu; sctp_enforce_cwnd_limit(&stcb->asoc, net); net->cc_mod.rtcc.vol_reduce--; } net->cc_mod.rtcc.last_step_state = 2; net->cc_mod.rtcc.step_cnt = 0; } goto out_decision; } else if (net->rtt < net->cc_mod.rtcc.lbw_rtt - rtt_offset) { /* bw & rtt decreased */ /* Probe point 3 */ probepoint |= ((3 << 16) | 0); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if (net->cc_mod.rtcc.steady_step) { oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); if ((net->cc_mod.rtcc.vol_reduce) && (inst_ind != SCTP_INST_GAINING)) { net->cwnd += net->mtu; sctp_enforce_cwnd_limit(&stcb->asoc, net); net->cc_mod.rtcc.vol_reduce--; } net->cc_mod.rtcc.last_step_state = 3; net->cc_mod.rtcc.step_cnt = 0; } goto out_decision; } /* The bw decreased but rtt stayed the same */ /* Probe point 4 */ probepoint |= ((4 << 16) | 0); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if (net->cc_mod.rtcc.steady_step) { oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); if ((net->cc_mod.rtcc.vol_reduce) && (inst_ind != SCTP_INST_GAINING)) { net->cwnd += net->mtu; sctp_enforce_cwnd_limit(&stcb->asoc, net); net->cc_mod.rtcc.vol_reduce--; } net->cc_mod.rtcc.last_step_state = 4; net->cc_mod.rtcc.step_cnt = 0; } out_decision: net->cc_mod.rtcc.lbw = nbw; net->cc_mod.rtcc.lbw_rtt = net->rtt; net->cc_mod.rtcc.cwnd_at_bw_set = net->cwnd; if (inst_ind == SCTP_INST_GAINING) { return (1); } else { return (0); } } static int cc_bw_increase(struct sctp_tcb *stcb, struct sctp_nets *net, uint64_t nbw, uint64_t vtag) { uint64_t oth, probepoint; /* * BW increased, so update and return 0, since all actions in our * table say to do the normal CC update. Note that we pay no * attention to the inst_ind since our overall sum is increasing. */ /* PROBE POINT 0 */ probepoint = (((uint64_t)net->cwnd) << 32); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); if (net->cc_mod.rtcc.steady_step) { oth = net->cc_mod.rtcc.vol_reduce; oth <<= 16; oth |= net->cc_mod.rtcc.step_cnt; oth <<= 16; oth |= net->cc_mod.rtcc.last_step_state; SDT_PROBE5(sctp, cwnd, net, rttstep, vtag, ((net->cc_mod.rtcc.lbw << 32) | nbw), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), oth, probepoint); net->cc_mod.rtcc.last_step_state = 0; net->cc_mod.rtcc.step_cnt = 0; net->cc_mod.rtcc.vol_reduce = 0; } net->cc_mod.rtcc.lbw = nbw; net->cc_mod.rtcc.lbw_rtt = net->rtt; net->cc_mod.rtcc.cwnd_at_bw_set = net->cwnd; return (0); } /* RTCC Algorithm to limit growth of cwnd, return * true if you want to NOT allow cwnd growth */ static int cc_bw_limit(struct sctp_tcb *stcb, struct sctp_nets *net, uint64_t nbw) { uint64_t bw_offset, rtt_offset; uint64_t probepoint, rtt, vtag; uint64_t bytes_for_this_rtt, inst_bw; uint64_t div, inst_off; int bw_shift; uint8_t inst_ind; int ret; /*- * Here we need to see if we want * to limit cwnd growth due to increase * in overall rtt but no increase in bw. * We use the following table to figure * out what we should do. When we return * 0, cc update goes on as planned. If we * return 1, then no cc update happens and cwnd * stays where it is at. * ---------------------------------- * BW | RTT | Action * ********************************* * INC | INC | return 0 * ---------------------------------- * INC | SAME | return 0 * ---------------------------------- * INC | DECR | return 0 * ---------------------------------- * SAME | INC | return 1 * ---------------------------------- * SAME | SAME | return 1 * ---------------------------------- * SAME | DECR | return 0 * ---------------------------------- * DECR | INC | return 0 or 1 based on if we caused. * ---------------------------------- * DECR | SAME | return 0 * ---------------------------------- * DECR | DECR | return 0 * ---------------------------------- * * We are a bit fuzz on what an increase or * decrease is. For BW it is the same if * it did not change within 1/64th. For * RTT it stayed the same if it did not * change within 1/32nd */ bw_shift = SCTP_BASE_SYSCTL(sctp_rttvar_bw); rtt = stcb->asoc.my_vtag; vtag = (rtt << 32) | (((uint32_t)(stcb->sctp_ep->sctp_lport)) << 16) | (stcb->rport); probepoint = (((uint64_t)net->cwnd) << 32); rtt = net->rtt; if (net->cc_mod.rtcc.rtt_set_this_sack) { net->cc_mod.rtcc.rtt_set_this_sack = 0; bytes_for_this_rtt = net->cc_mod.rtcc.bw_bytes - net->cc_mod.rtcc.bw_bytes_at_last_rttc; net->cc_mod.rtcc.bw_bytes_at_last_rttc = net->cc_mod.rtcc.bw_bytes; if (net->rtt) { div = net->rtt / 1000; if (div) { inst_bw = bytes_for_this_rtt / div; inst_off = inst_bw >> bw_shift; if (inst_bw > nbw) inst_ind = SCTP_INST_GAINING; else if ((inst_bw + inst_off) < nbw) inst_ind = SCTP_INST_LOOSING; else inst_ind = SCTP_INST_NEUTRAL; probepoint |= ((0xb << 16) | inst_ind); } else { inst_ind = net->cc_mod.rtcc.last_inst_ind; inst_bw = bytes_for_this_rtt / (uint64_t)(net->rtt); /* Can't determine do not change */ probepoint |= ((0xc << 16) | inst_ind); } } else { inst_ind = net->cc_mod.rtcc.last_inst_ind; inst_bw = bytes_for_this_rtt; /* Can't determine do not change */ probepoint |= ((0xd << 16) | inst_ind); } SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((nbw << 32) | inst_bw), ((net->cc_mod.rtcc.lbw_rtt << 32) | rtt), net->flight_size, probepoint); } else { /* No rtt measurement, use last one */ inst_ind = net->cc_mod.rtcc.last_inst_ind; } bw_offset = net->cc_mod.rtcc.lbw >> bw_shift; if (nbw > net->cc_mod.rtcc.lbw + bw_offset) { ret = cc_bw_increase(stcb, net, nbw, vtag); goto out; } rtt_offset = net->cc_mod.rtcc.lbw_rtt >> SCTP_BASE_SYSCTL(sctp_rttvar_rtt); if (nbw < net->cc_mod.rtcc.lbw - bw_offset) { ret = cc_bw_decrease(stcb, net, nbw, rtt_offset, vtag, inst_ind); goto out; } /* * If we reach here then we are in a situation where the bw stayed * the same. */ ret = cc_bw_same(stcb, net, nbw, rtt_offset, vtag, inst_ind); out: net->cc_mod.rtcc.last_inst_ind = inst_ind; return (ret); } static void sctp_cwnd_update_after_sack_common(struct sctp_tcb *stcb, struct sctp_association *asoc, int accum_moved, int reneged_all SCTP_UNUSED, int will_exit, int use_rtcc) { struct sctp_nets *net; int old_cwnd; uint32_t t_ssthresh, t_cwnd, incr; uint64_t t_ucwnd_sbw; uint64_t t_path_mptcp; uint64_t mptcp_like_alpha; uint32_t srtt; uint64_t max_path; /* MT FIXME: Don't compute this over and over again */ t_ssthresh = 0; t_cwnd = 0; t_ucwnd_sbw = 0; t_path_mptcp = 0; mptcp_like_alpha = 1; if ((stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV1) || (stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV2) || (stcb->asoc.sctp_cmt_on_off == SCTP_CMT_MPTCP)) { max_path = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { t_ssthresh += net->ssthresh; t_cwnd += net->cwnd; /* lastsa>>3; we don't need to devide ... */ srtt = net->lastsa; if (srtt > 0) { uint64_t tmp; t_ucwnd_sbw += (uint64_t)net->cwnd / (uint64_t)srtt; t_path_mptcp += (((uint64_t)net->cwnd) << SHIFT_MPTCP_MULTI_Z) / (((uint64_t)net->mtu) * (uint64_t)srtt); tmp = (((uint64_t)net->cwnd) << SHIFT_MPTCP_MULTI_N) / ((uint64_t)net->mtu * (uint64_t)(srtt * srtt)); if (tmp > max_path) { max_path = tmp; } } } if (t_path_mptcp > 0) { mptcp_like_alpha = max_path / (t_path_mptcp * t_path_mptcp); } else { mptcp_like_alpha = 1; } } if (t_ssthresh == 0) { t_ssthresh = 1; } if (t_ucwnd_sbw == 0) { t_ucwnd_sbw = 1; } /******************************/ /* update cwnd and Early FR */ /******************************/ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code. Need to debug. */ if (net->fast_retran_loss_recovery && net->new_pseudo_cumack) { if (SCTP_TSN_GE(asoc->last_acked_seq, net->fast_recovery_tsn) || SCTP_TSN_GE(net->pseudo_cumack, net->fast_recovery_tsn)) { net->will_exit_fast_recovery = 1; } } #endif /* if nothing was acked on this destination skip it */ if (net->net_ack == 0) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, 0, SCTP_CWND_LOG_FROM_SACK); } continue; } #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code */ /* * if (sctp_cmt_on_off > 0 && net->fast_retran_loss_recovery * && net->will_exit_fast_recovery == 0) { @@@ Do something * } else if (sctp_cmt_on_off == 0 && * asoc->fast_retran_loss_recovery && will_exit == 0) { */ #endif if (asoc->fast_retran_loss_recovery && (will_exit == 0) && (asoc->sctp_cmt_on_off == 0)) { /* * If we are in loss recovery we skip any cwnd * update */ return; } /* * Did any measurements go on for this network? */ if (use_rtcc && (net->cc_mod.rtcc.tls_needs_set > 0)) { uint64_t nbw; /* * At this point our bw_bytes has been updated by * incoming sack information. * * But our bw may not yet be set. * */ if ((net->cc_mod.rtcc.new_tot_time / 1000) > 0) { nbw = net->cc_mod.rtcc.bw_bytes / (net->cc_mod.rtcc.new_tot_time / 1000); } else { nbw = net->cc_mod.rtcc.bw_bytes; } if (net->cc_mod.rtcc.lbw) { if (cc_bw_limit(stcb, net, nbw)) { /* Hold here, no update */ continue; } } else { uint64_t vtag, probepoint; probepoint = (((uint64_t)net->cwnd) << 32); probepoint |= ((0xa << 16) | 0); vtag = (net->rtt << 32) | (((uint32_t)(stcb->sctp_ep->sctp_lport)) << 16) | (stcb->rport); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, nbw, ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); net->cc_mod.rtcc.lbw = nbw; net->cc_mod.rtcc.lbw_rtt = net->rtt; if (net->cc_mod.rtcc.rtt_set_this_sack) { net->cc_mod.rtcc.rtt_set_this_sack = 0; net->cc_mod.rtcc.bw_bytes_at_last_rttc = net->cc_mod.rtcc.bw_bytes; } } } /* * CMT: CUC algorithm. Update cwnd if pseudo-cumack has * moved. */ if (accum_moved || ((asoc->sctp_cmt_on_off > 0) && net->new_pseudo_cumack)) { /* If the cumulative ack moved we can proceed */ if (net->cwnd <= net->ssthresh) { /* We are in slow start */ if (net->flight_size + net->net_ack >= net->cwnd) { uint32_t limit; old_cwnd = net->cwnd; switch (asoc->sctp_cmt_on_off) { case SCTP_CMT_RPV1: limit = (uint32_t)(((uint64_t)net->mtu * (uint64_t)SCTP_BASE_SYSCTL(sctp_L2_abc_variable) * (uint64_t)net->ssthresh) / (uint64_t)t_ssthresh); incr = (uint32_t)(((uint64_t)net->net_ack * (uint64_t)net->ssthresh) / (uint64_t)t_ssthresh); if (incr > limit) { incr = limit; } if (incr == 0) { incr = 1; } break; case SCTP_CMT_RPV2: /* * lastsa>>3; we don't need * to divide ... */ srtt = net->lastsa; if (srtt == 0) { srtt = 1; } limit = (uint32_t)(((uint64_t)net->mtu * (uint64_t)SCTP_BASE_SYSCTL(sctp_L2_abc_variable) * (uint64_t)net->cwnd) / ((uint64_t)srtt * t_ucwnd_sbw)); /* INCREASE FACTOR */ incr = (uint32_t)(((uint64_t)net->net_ack * (uint64_t)net->cwnd) / ((uint64_t)srtt * t_ucwnd_sbw)); /* INCREASE FACTOR */ if (incr > limit) { incr = limit; } if (incr == 0) { incr = 1; } break; case SCTP_CMT_MPTCP: limit = (uint32_t)(((uint64_t)net->mtu * mptcp_like_alpha * (uint64_t)SCTP_BASE_SYSCTL(sctp_L2_abc_variable)) >> SHIFT_MPTCP_MULTI); incr = (uint32_t)(((uint64_t)net->net_ack * mptcp_like_alpha) >> SHIFT_MPTCP_MULTI); if (incr > limit) { incr = limit; } if (incr > net->net_ack) { incr = net->net_ack; } if (incr > net->mtu) { incr = net->mtu; } break; default: incr = net->net_ack; if (incr > net->mtu * SCTP_BASE_SYSCTL(sctp_L2_abc_variable)) { incr = net->mtu * SCTP_BASE_SYSCTL(sctp_L2_abc_variable); } break; } net->cwnd += incr; sctp_enforce_cwnd_limit(asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, incr, SCTP_CWND_LOG_FROM_SS); } SDT_PROBE5(sctp, cwnd, net, ack, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_SS); } } } else { /* We are in congestion avoidance */ /* * Add to pba */ net->partial_bytes_acked += net->net_ack; if ((net->flight_size + net->net_ack >= net->cwnd) && (net->partial_bytes_acked >= net->cwnd)) { net->partial_bytes_acked -= net->cwnd; old_cwnd = net->cwnd; switch (asoc->sctp_cmt_on_off) { case SCTP_CMT_RPV1: incr = (uint32_t)(((uint64_t)net->mtu * (uint64_t)net->ssthresh) / (uint64_t)t_ssthresh); if (incr == 0) { incr = 1; } break; case SCTP_CMT_RPV2: /* * lastsa>>3; we don't need * to divide ... */ srtt = net->lastsa; if (srtt == 0) { srtt = 1; } incr = (uint32_t)((uint64_t)net->mtu * (uint64_t)net->cwnd / ((uint64_t)srtt * t_ucwnd_sbw)); /* INCREASE FACTOR */ if (incr == 0) { incr = 1; } break; case SCTP_CMT_MPTCP: incr = (uint32_t)((mptcp_like_alpha * (uint64_t)net->cwnd) >> SHIFT_MPTCP_MULTI); if (incr > net->mtu) { incr = net->mtu; } break; default: incr = net->mtu; break; } net->cwnd += incr; sctp_enforce_cwnd_limit(asoc, net); SDT_PROBE5(sctp, cwnd, net, ack, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_FROM_CA); } } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_CA); } } } } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_NO_CUMACK); } } } } static void sctp_cwnd_update_exit_pf_common(struct sctp_tcb *stcb, struct sctp_nets *net) { int old_cwnd; old_cwnd = net->cwnd; net->cwnd = net->mtu; SDT_PROBE5(sctp, cwnd, net, ack, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); SCTPDBG(SCTP_DEBUG_INDATA1, "Destination %p moved from PF to reachable with cwnd %d.\n", (void *)net, net->cwnd); } static void sctp_cwnd_update_after_timeout(struct sctp_tcb *stcb, struct sctp_nets *net) { int old_cwnd = net->cwnd; uint32_t t_ssthresh, t_cwnd; uint64_t t_ucwnd_sbw; /* MT FIXME: Don't compute this over and over again */ t_ssthresh = 0; t_cwnd = 0; if ((stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV1) || (stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV2)) { struct sctp_nets *lnet; uint32_t srtt; t_ucwnd_sbw = 0; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { t_ssthresh += lnet->ssthresh; t_cwnd += lnet->cwnd; srtt = lnet->lastsa; /* lastsa>>3; we don't need to divide ... */ if (srtt > 0) { t_ucwnd_sbw += (uint64_t)lnet->cwnd / (uint64_t)srtt; } } if (t_ssthresh < 1) { t_ssthresh = 1; } if (t_ucwnd_sbw < 1) { t_ucwnd_sbw = 1; } if (stcb->asoc.sctp_cmt_on_off == SCTP_CMT_RPV1) { net->ssthresh = (uint32_t)(((uint64_t)4 * (uint64_t)net->mtu * (uint64_t)net->ssthresh) / (uint64_t)t_ssthresh); } else { uint64_t cc_delta; srtt = net->lastsa; /* lastsa>>3; we don't need to divide ... */ if (srtt == 0) { srtt = 1; } cc_delta = t_ucwnd_sbw * (uint64_t)srtt / 2; if (cc_delta < t_cwnd) { net->ssthresh = (uint32_t)((uint64_t)t_cwnd - cc_delta); } else { net->ssthresh = net->mtu; } } if ((net->cwnd > t_cwnd / 2) && (net->ssthresh < net->cwnd - t_cwnd / 2)) { net->ssthresh = net->cwnd - t_cwnd / 2; } if (net->ssthresh < net->mtu) { net->ssthresh = net->mtu; } } else { net->ssthresh = max(net->cwnd / 2, 4 * net->mtu); } net->cwnd = net->mtu; net->partial_bytes_acked = 0; SDT_PROBE5(sctp, cwnd, net, to, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->cwnd - old_cwnd, SCTP_CWND_LOG_FROM_RTX); } } static void sctp_cwnd_update_after_ecn_echo_common(struct sctp_tcb *stcb, struct sctp_nets *net, int in_window, int num_pkt_lost, int use_rtcc) { int old_cwnd = net->cwnd; if ((use_rtcc) && (net->lan_type == SCTP_LAN_LOCAL) && (net->cc_mod.rtcc.use_dccc_ecn)) { /* Data center Congestion Control */ if (in_window == 0) { /* * Go to CA with the cwnd at the point we sent the * TSN that was marked with a CE. */ if (net->ecn_prev_cwnd < net->cwnd) { /* Restore to prev cwnd */ net->cwnd = net->ecn_prev_cwnd - (net->mtu * num_pkt_lost); } else { /* Just cut in 1/2 */ net->cwnd /= 2; } /* Drop to CA */ net->ssthresh = net->cwnd - (num_pkt_lost * net->mtu); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SAT); } } else { /* * Further tuning down required over the drastic * original cut */ net->ssthresh -= (net->mtu * num_pkt_lost); net->cwnd -= (net->mtu * num_pkt_lost); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SAT); } + } SCTP_STAT_INCR(sctps_ecnereducedcwnd); } else { if (in_window == 0) { SCTP_STAT_INCR(sctps_ecnereducedcwnd); net->ssthresh = net->cwnd / 2; if (net->ssthresh < net->mtu) { net->ssthresh = net->mtu; /* * here back off the timer as well, to slow * us down */ net->RTO <<= 1; } net->cwnd = net->ssthresh; SDT_PROBE5(sctp, cwnd, net, ecn, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SAT); } } } } static void sctp_cwnd_update_after_packet_dropped(struct sctp_tcb *stcb, struct sctp_nets *net, struct sctp_pktdrop_chunk *cp, uint32_t *bottle_bw, uint32_t *on_queue) { uint32_t bw_avail; unsigned int incr; int old_cwnd = net->cwnd; /* get bottle neck bw */ *bottle_bw = ntohl(cp->bottle_bw); /* and whats on queue */ *on_queue = ntohl(cp->current_onq); /* * adjust the on-queue if our flight is more it could be that the * router has not yet gotten data "in-flight" to it */ if (*on_queue < net->flight_size) { *on_queue = net->flight_size; } /* rtt is measured in micro seconds, bottle_bw in bytes per second */ bw_avail = (uint32_t)(((uint64_t)(*bottle_bw) * net->rtt) / (uint64_t)1000000); if (bw_avail > *bottle_bw) { /* * Cap the growth to no more than the bottle neck. This can * happen as RTT slides up due to queues. It also means if * you have more than a 1 second RTT with a empty queue you * will be limited to the bottle_bw per second no matter if * other points have 1/2 the RTT and you could get more * out... */ bw_avail = *bottle_bw; } if (*on_queue > bw_avail) { /* * No room for anything else don't allow anything else to be * "added to the fire". */ int seg_inflight, seg_onqueue, my_portion; net->partial_bytes_acked = 0; /* how much are we over queue size? */ incr = *on_queue - bw_avail; if (stcb->asoc.seen_a_sack_this_pkt) { /* * undo any cwnd adjustment that the sack might have * made */ net->cwnd = net->prev_cwnd; } /* Now how much of that is mine? */ seg_inflight = net->flight_size / net->mtu; seg_onqueue = *on_queue / net->mtu; my_portion = (incr * seg_inflight) / seg_onqueue; /* Have I made an adjustment already */ if (net->cwnd > net->flight_size) { /* * for this flight I made an adjustment we need to * decrease the portion by a share our previous * adjustment. */ int diff_adj; diff_adj = net->cwnd - net->flight_size; if (diff_adj > my_portion) my_portion = 0; else my_portion -= diff_adj; } /* * back down to the previous cwnd (assume we have had a sack * before this packet). minus what ever portion of the * overage is my fault. */ net->cwnd -= my_portion; /* we will NOT back down more than 1 MTU */ if (net->cwnd <= net->mtu) { net->cwnd = net->mtu; } /* force into CA */ net->ssthresh = net->cwnd - 1; } else { /* * Take 1/4 of the space left or max burst up .. whichever * is less. */ incr = (bw_avail - *on_queue) >> 2; if ((stcb->asoc.max_burst > 0) && (stcb->asoc.max_burst * net->mtu < incr)) { incr = stcb->asoc.max_burst * net->mtu; } net->cwnd += incr; } if (net->cwnd > bw_avail) { /* We can't exceed the pipe size */ net->cwnd = bw_avail; } if (net->cwnd < net->mtu) { /* We always have 1 MTU */ net->cwnd = net->mtu; } sctp_enforce_cwnd_limit(&stcb->asoc, net); if (net->cwnd - old_cwnd != 0) { /* log only changes */ SDT_PROBE5(sctp, cwnd, net, pd, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SAT); } } } static void sctp_cwnd_update_after_output(struct sctp_tcb *stcb, struct sctp_nets *net, int burst_limit) { int old_cwnd = net->cwnd; if (net->ssthresh < net->cwnd) net->ssthresh = net->cwnd; if (burst_limit) { net->cwnd = (net->flight_size + (burst_limit * net->mtu)); sctp_enforce_cwnd_limit(&stcb->asoc, net); SDT_PROBE5(sctp, cwnd, net, bl, stcb->asoc.my_vtag, ((stcb->sctp_ep->sctp_lport << 16) | (stcb->rport)), net, old_cwnd, net->cwnd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_BRST); } } } static void sctp_cwnd_update_after_sack(struct sctp_tcb *stcb, struct sctp_association *asoc, int accum_moved, int reneged_all, int will_exit) { /* Passing a zero argument in last disables the rtcc algorithm */ sctp_cwnd_update_after_sack_common(stcb, asoc, accum_moved, reneged_all, will_exit, 0); } static void sctp_cwnd_update_after_ecn_echo(struct sctp_tcb *stcb, struct sctp_nets *net, int in_window, int num_pkt_lost) { /* Passing a zero argument in last disables the rtcc algorithm */ sctp_cwnd_update_after_ecn_echo_common(stcb, net, in_window, num_pkt_lost, 0); } /* Here starts the RTCCVAR type CC invented by RRS which * is a slight mod to RFC2581. We reuse a common routine or * two since these algorithms are so close and need to * remain the same. */ static void sctp_cwnd_update_rtcc_after_ecn_echo(struct sctp_tcb *stcb, struct sctp_nets *net, int in_window, int num_pkt_lost) { sctp_cwnd_update_after_ecn_echo_common(stcb, net, in_window, num_pkt_lost, 1); } static -void +void sctp_cwnd_update_rtcc_tsn_acknowledged(struct sctp_nets *net, struct sctp_tmit_chunk *tp1) { net->cc_mod.rtcc.bw_bytes += tp1->send_size; } static void sctp_cwnd_prepare_rtcc_net_for_sack(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net) { if (net->cc_mod.rtcc.tls_needs_set > 0) { /* We had a bw measurment going on */ struct timeval ltls; SCTP_GETPTIME_TIMEVAL(<ls); timevalsub(<ls, &net->cc_mod.rtcc.tls); net->cc_mod.rtcc.new_tot_time = (ltls.tv_sec * 1000000) + ltls.tv_usec; } } static void sctp_cwnd_new_rtcc_transmission_begins(struct sctp_tcb *stcb, struct sctp_nets *net) { uint64_t vtag, probepoint; if (net->cc_mod.rtcc.lbw) { /* Clear the old bw.. we went to 0 in-flight */ vtag = (net->rtt << 32) | (((uint32_t)(stcb->sctp_ep->sctp_lport)) << 16) | (stcb->rport); probepoint = (((uint64_t)net->cwnd) << 32); /* Probe point 8 */ probepoint |= ((8 << 16) | 0); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, ((net->cc_mod.rtcc.lbw << 32) | 0), ((net->cc_mod.rtcc.lbw_rtt << 32) | net->rtt), net->flight_size, probepoint); net->cc_mod.rtcc.lbw_rtt = 0; net->cc_mod.rtcc.cwnd_at_bw_set = 0; net->cc_mod.rtcc.lbw = 0; net->cc_mod.rtcc.bw_bytes_at_last_rttc = 0; net->cc_mod.rtcc.vol_reduce = 0; net->cc_mod.rtcc.bw_tot_time = 0; net->cc_mod.rtcc.bw_bytes = 0; net->cc_mod.rtcc.tls_needs_set = 0; if (net->cc_mod.rtcc.steady_step) { net->cc_mod.rtcc.vol_reduce = 0; net->cc_mod.rtcc.step_cnt = 0; net->cc_mod.rtcc.last_step_state = 0; } if (net->cc_mod.rtcc.ret_from_eq) { /* less aggressive one - reset cwnd too */ uint32_t cwnd_in_mtu, cwnd; cwnd_in_mtu = SCTP_BASE_SYSCTL(sctp_initial_cwnd); if (cwnd_in_mtu == 0) { /* * Using 0 means that the value of RFC 4960 * is used. */ cwnd = min((net->mtu * 4), max((2 * net->mtu), SCTP_INITIAL_CWND)); } else { /* * We take the minimum of the burst limit * and the initial congestion window. */ if ((stcb->asoc.max_burst > 0) && (cwnd_in_mtu > stcb->asoc.max_burst)) cwnd_in_mtu = stcb->asoc.max_burst; cwnd = (net->mtu - sizeof(struct sctphdr)) * cwnd_in_mtu; } if (net->cwnd > cwnd) { /* * Only set if we are not a timeout (i.e. * down to 1 mtu) */ net->cwnd = cwnd; } } } } static void sctp_set_rtcc_initial_cc_param(struct sctp_tcb *stcb, struct sctp_nets *net) { uint64_t vtag, probepoint; sctp_set_initial_cc_param(stcb, net); stcb->asoc.use_precise_time = 1; probepoint = (((uint64_t)net->cwnd) << 32); probepoint |= ((9 << 16) | 0); vtag = (net->rtt << 32) | (((uint32_t)(stcb->sctp_ep->sctp_lport)) << 16) | (stcb->rport); SDT_PROBE5(sctp, cwnd, net, rttvar, vtag, 0, 0, 0, probepoint); net->cc_mod.rtcc.lbw_rtt = 0; net->cc_mod.rtcc.cwnd_at_bw_set = 0; net->cc_mod.rtcc.vol_reduce = 0; net->cc_mod.rtcc.lbw = 0; net->cc_mod.rtcc.vol_reduce = 0; net->cc_mod.rtcc.bw_bytes_at_last_rttc = 0; net->cc_mod.rtcc.bw_tot_time = 0; net->cc_mod.rtcc.bw_bytes = 0; net->cc_mod.rtcc.tls_needs_set = 0; net->cc_mod.rtcc.ret_from_eq = SCTP_BASE_SYSCTL(sctp_rttvar_eqret); net->cc_mod.rtcc.steady_step = SCTP_BASE_SYSCTL(sctp_steady_step); net->cc_mod.rtcc.use_dccc_ecn = SCTP_BASE_SYSCTL(sctp_use_dccc_ecn); net->cc_mod.rtcc.step_cnt = 0; net->cc_mod.rtcc.last_step_state = 0; } static int sctp_cwnd_rtcc_socket_option(struct sctp_tcb *stcb, int setorget, struct sctp_cc_option *cc_opt) { struct sctp_nets *net; if (setorget == 1) { /* a set */ if (cc_opt->option == SCTP_CC_OPT_RTCC_SETMODE) { if ((cc_opt->aid_value.assoc_value != 0) && (cc_opt->aid_value.assoc_value != 1)) { return (EINVAL); } TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->cc_mod.rtcc.ret_from_eq = cc_opt->aid_value.assoc_value; } } else if (cc_opt->option == SCTP_CC_OPT_USE_DCCC_ECN) { if ((cc_opt->aid_value.assoc_value != 0) && (cc_opt->aid_value.assoc_value != 1)) { return (EINVAL); } TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->cc_mod.rtcc.use_dccc_ecn = cc_opt->aid_value.assoc_value; } } else if (cc_opt->option == SCTP_CC_OPT_STEADY_STEP) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->cc_mod.rtcc.steady_step = cc_opt->aid_value.assoc_value; } } else { return (EINVAL); } } else { /* a get */ if (cc_opt->option == SCTP_CC_OPT_RTCC_SETMODE) { net = TAILQ_FIRST(&stcb->asoc.nets); if (net == NULL) { return (EFAULT); } cc_opt->aid_value.assoc_value = net->cc_mod.rtcc.ret_from_eq; } else if (cc_opt->option == SCTP_CC_OPT_USE_DCCC_ECN) { net = TAILQ_FIRST(&stcb->asoc.nets); if (net == NULL) { return (EFAULT); } cc_opt->aid_value.assoc_value = net->cc_mod.rtcc.use_dccc_ecn; } else if (cc_opt->option == SCTP_CC_OPT_STEADY_STEP) { net = TAILQ_FIRST(&stcb->asoc.nets); if (net == NULL) { return (EFAULT); } cc_opt->aid_value.assoc_value = net->cc_mod.rtcc.steady_step; } else { return (EINVAL); } } return (0); } static void sctp_cwnd_update_rtcc_packet_transmitted(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net) { if (net->cc_mod.rtcc.tls_needs_set == 0) { SCTP_GETPTIME_TIMEVAL(&net->cc_mod.rtcc.tls); net->cc_mod.rtcc.tls_needs_set = 2; } } static void sctp_cwnd_update_rtcc_after_sack(struct sctp_tcb *stcb, struct sctp_association *asoc, int accum_moved, int reneged_all, int will_exit) { /* Passing a one argument at the last enables the rtcc algorithm */ sctp_cwnd_update_after_sack_common(stcb, asoc, accum_moved, reneged_all, will_exit, 1); } static void sctp_rtt_rtcc_calculated(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net, struct timeval *now SCTP_UNUSED) { net->cc_mod.rtcc.rtt_set_this_sack = 1; } /* Here starts Sally Floyds HS-TCP */ struct sctp_hs_raise_drop { int32_t cwnd; int8_t increase; int8_t drop_percent; }; #define SCTP_HS_TABLE_SIZE 73 static const struct sctp_hs_raise_drop sctp_cwnd_adjust[SCTP_HS_TABLE_SIZE] = { {38, 1, 50}, /* 0 */ {118, 2, 44}, /* 1 */ {221, 3, 41}, /* 2 */ {347, 4, 38}, /* 3 */ {495, 5, 37}, /* 4 */ {663, 6, 35}, /* 5 */ {851, 7, 34}, /* 6 */ {1058, 8, 33}, /* 7 */ {1284, 9, 32}, /* 8 */ {1529, 10, 31}, /* 9 */ {1793, 11, 30}, /* 10 */ {2076, 12, 29}, /* 11 */ {2378, 13, 28}, /* 12 */ {2699, 14, 28}, /* 13 */ {3039, 15, 27}, /* 14 */ {3399, 16, 27}, /* 15 */ {3778, 17, 26}, /* 16 */ {4177, 18, 26}, /* 17 */ {4596, 19, 25}, /* 18 */ {5036, 20, 25}, /* 19 */ {5497, 21, 24}, /* 20 */ {5979, 22, 24}, /* 21 */ {6483, 23, 23}, /* 22 */ {7009, 24, 23}, /* 23 */ {7558, 25, 22}, /* 24 */ {8130, 26, 22}, /* 25 */ {8726, 27, 22}, /* 26 */ {9346, 28, 21}, /* 27 */ {9991, 29, 21}, /* 28 */ {10661, 30, 21}, /* 29 */ {11358, 31, 20}, /* 30 */ {12082, 32, 20}, /* 31 */ {12834, 33, 20}, /* 32 */ {13614, 34, 19}, /* 33 */ {14424, 35, 19}, /* 34 */ {15265, 36, 19}, /* 35 */ {16137, 37, 19}, /* 36 */ {17042, 38, 18}, /* 37 */ {17981, 39, 18}, /* 38 */ {18955, 40, 18}, /* 39 */ {19965, 41, 17}, /* 40 */ {21013, 42, 17}, /* 41 */ {22101, 43, 17}, /* 42 */ {23230, 44, 17}, /* 43 */ {24402, 45, 16}, /* 44 */ {25618, 46, 16}, /* 45 */ {26881, 47, 16}, /* 46 */ {28193, 48, 16}, /* 47 */ {29557, 49, 15}, /* 48 */ {30975, 50, 15}, /* 49 */ {32450, 51, 15}, /* 50 */ {33986, 52, 15}, /* 51 */ {35586, 53, 14}, /* 52 */ {37253, 54, 14}, /* 53 */ {38992, 55, 14}, /* 54 */ {40808, 56, 14}, /* 55 */ {42707, 57, 13}, /* 56 */ {44694, 58, 13}, /* 57 */ {46776, 59, 13}, /* 58 */ {48961, 60, 13}, /* 59 */ {51258, 61, 13}, /* 60 */ {53677, 62, 12}, /* 61 */ {56230, 63, 12}, /* 62 */ {58932, 64, 12}, /* 63 */ {61799, 65, 12}, /* 64 */ {64851, 66, 11}, /* 65 */ {68113, 67, 11}, /* 66 */ {71617, 68, 11}, /* 67 */ {75401, 69, 10}, /* 68 */ {79517, 70, 10}, /* 69 */ {84035, 71, 10}, /* 70 */ {89053, 72, 10}, /* 71 */ {94717, 73, 9} /* 72 */ }; static void sctp_hs_cwnd_increase(struct sctp_tcb *stcb, struct sctp_nets *net) { int cur_val, i, indx, incr; int old_cwnd = net->cwnd; cur_val = net->cwnd >> 10; indx = SCTP_HS_TABLE_SIZE - 1; if (cur_val < sctp_cwnd_adjust[0].cwnd) { /* normal mode */ if (net->net_ack > net->mtu) { net->cwnd += net->mtu; } else { net->cwnd += net->net_ack; } } else { for (i = net->last_hs_used; i < SCTP_HS_TABLE_SIZE; i++) { if (cur_val < sctp_cwnd_adjust[i].cwnd) { indx = i; break; } } net->last_hs_used = indx; incr = (((int32_t)sctp_cwnd_adjust[indx].increase) << 10); net->cwnd += incr; } sctp_enforce_cwnd_limit(&stcb->asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SS); } } static void sctp_hs_cwnd_decrease(struct sctp_tcb *stcb, struct sctp_nets *net) { int cur_val, i, indx; int old_cwnd = net->cwnd; cur_val = net->cwnd >> 10; if (cur_val < sctp_cwnd_adjust[0].cwnd) { /* normal mode */ net->ssthresh = net->cwnd / 2; if (net->ssthresh < (net->mtu * 2)) { net->ssthresh = 2 * net->mtu; } net->cwnd = net->ssthresh; } else { /* drop by the proper amount */ net->ssthresh = net->cwnd - (int)((net->cwnd / 100) * (int32_t)sctp_cwnd_adjust[net->last_hs_used].drop_percent); net->cwnd = net->ssthresh; /* now where are we */ indx = net->last_hs_used; cur_val = net->cwnd >> 10; /* reset where we are in the table */ if (cur_val < sctp_cwnd_adjust[0].cwnd) { /* feel out of hs */ net->last_hs_used = 0; } else { for (i = indx; i >= 1; i--) { if (cur_val > sctp_cwnd_adjust[i - 1].cwnd) { break; } } net->last_hs_used = indx; } } sctp_enforce_cwnd_limit(&stcb->asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_FR); } } static void sctp_hs_cwnd_update_after_fr(struct sctp_tcb *stcb, struct sctp_association *asoc) { struct sctp_nets *net; /* * CMT fast recovery code. Need to debug. ((sctp_cmt_on_off > 0) && * (net->fast_retran_loss_recovery == 0))) */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if ((asoc->fast_retran_loss_recovery == 0) || (asoc->sctp_cmt_on_off > 0)) { /* out of a RFC2582 Fast recovery window? */ if (net->net_ack > 0) { /* * per section 7.2.3, are there any * destinations that had a fast retransmit * to them. If so what we need to do is * adjust ssthresh and cwnd. */ struct sctp_tmit_chunk *lchk; sctp_hs_cwnd_decrease(stcb, net); lchk = TAILQ_FIRST(&asoc->send_queue); net->partial_bytes_acked = 0; /* Turn on fast recovery window */ asoc->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ asoc->fast_recovery_tsn = asoc->sending_seq - 1; } else { asoc->fast_recovery_tsn = lchk->rec.data.tsn - 1; } /* * CMT fast recovery -- per destination * recovery variable. */ net->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ net->fast_recovery_tsn = asoc->sending_seq - 1; } else { net->fast_recovery_tsn = lchk->rec.data.tsn - 1; } sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_CC_FUNCTIONS + SCTP_LOC_2); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } } else if (net->net_ack > 0) { /* * Mark a peg that we WOULD have done a cwnd * reduction but RFC2582 prevented this action. */ SCTP_STAT_INCR(sctps_fastretransinrtt); } } } static void sctp_hs_cwnd_update_after_sack(struct sctp_tcb *stcb, struct sctp_association *asoc, int accum_moved, int reneged_all SCTP_UNUSED, int will_exit) { struct sctp_nets *net; /******************************/ /* update cwnd and Early FR */ /******************************/ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code. Need to debug. */ if (net->fast_retran_loss_recovery && net->new_pseudo_cumack) { if (SCTP_TSN_GE(asoc->last_acked_seq, net->fast_recovery_tsn) || SCTP_TSN_GE(net->pseudo_cumack, net->fast_recovery_tsn)) { net->will_exit_fast_recovery = 1; } } #endif /* if nothing was acked on this destination skip it */ if (net->net_ack == 0) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, 0, SCTP_CWND_LOG_FROM_SACK); } continue; } #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code */ /* * if (sctp_cmt_on_off > 0 && net->fast_retran_loss_recovery * && net->will_exit_fast_recovery == 0) { @@@ Do something * } else if (sctp_cmt_on_off == 0 && * asoc->fast_retran_loss_recovery && will_exit == 0) { */ #endif if (asoc->fast_retran_loss_recovery && (will_exit == 0) && (asoc->sctp_cmt_on_off == 0)) { /* * If we are in loss recovery we skip any cwnd * update */ return; } /* * CMT: CUC algorithm. Update cwnd if pseudo-cumack has * moved. */ if (accum_moved || ((asoc->sctp_cmt_on_off > 0) && net->new_pseudo_cumack)) { /* If the cumulative ack moved we can proceed */ if (net->cwnd <= net->ssthresh) { /* We are in slow start */ if (net->flight_size + net->net_ack >= net->cwnd) { sctp_hs_cwnd_increase(stcb, net); } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_SS); } } } else { /* We are in congestion avoidance */ net->partial_bytes_acked += net->net_ack; if ((net->flight_size + net->net_ack >= net->cwnd) && (net->partial_bytes_acked >= net->cwnd)) { net->partial_bytes_acked -= net->cwnd; net->cwnd += net->mtu; sctp_enforce_cwnd_limit(asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_FROM_CA); } } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_CA); } } } } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_NO_CUMACK); } } } } /* * H-TCP congestion control. The algorithm is detailed in: * R.N.Shorten, D.J.Leith: * "H-TCP: TCP for high-speed and long-distance networks" * Proc. PFLDnet, Argonne, 2004. * http://www.hamilton.ie/net/htcp3.pdf */ static int use_rtt_scaling = 1; static int use_bandwidth_switch = 1; static inline int between(uint32_t seq1, uint32_t seq2, uint32_t seq3) { return (seq3 - seq2 >= seq1 - seq2); } static inline uint32_t htcp_cong_time(struct htcp *ca) { return (sctp_get_tick_count() - ca->last_cong); } static inline uint32_t htcp_ccount(struct htcp *ca) { return (htcp_cong_time(ca) / ca->minRTT); } static inline void htcp_reset(struct htcp *ca) { ca->undo_last_cong = ca->last_cong; ca->undo_maxRTT = ca->maxRTT; ca->undo_old_maxB = ca->old_maxB; ca->last_cong = sctp_get_tick_count(); } #ifdef SCTP_NOT_USED static uint32_t htcp_cwnd_undo(struct sctp_tcb *stcb, struct sctp_nets *net) { net->cc_mod.htcp_ca.last_cong = net->cc_mod.htcp_ca.undo_last_cong; net->cc_mod.htcp_ca.maxRTT = net->cc_mod.htcp_ca.undo_maxRTT; net->cc_mod.htcp_ca.old_maxB = net->cc_mod.htcp_ca.undo_old_maxB; return (max(net->cwnd, ((net->ssthresh / net->mtu << 7) / net->cc_mod.htcp_ca.beta) * net->mtu)); } #endif static inline void measure_rtt(struct sctp_nets *net) { uint32_t srtt = net->lastsa >> SCTP_RTT_SHIFT; /* keep track of minimum RTT seen so far, minRTT is zero at first */ if (net->cc_mod.htcp_ca.minRTT > srtt || !net->cc_mod.htcp_ca.minRTT) net->cc_mod.htcp_ca.minRTT = srtt; /* max RTT */ if (net->fast_retran_ip == 0 && net->ssthresh < 0xFFFF && htcp_ccount(&net->cc_mod.htcp_ca) > 3) { if (net->cc_mod.htcp_ca.maxRTT < net->cc_mod.htcp_ca.minRTT) net->cc_mod.htcp_ca.maxRTT = net->cc_mod.htcp_ca.minRTT; if (net->cc_mod.htcp_ca.maxRTT < srtt && srtt <= net->cc_mod.htcp_ca.maxRTT + MSEC_TO_TICKS(20)) net->cc_mod.htcp_ca.maxRTT = srtt; } } static void measure_achieved_throughput(struct sctp_nets *net) { uint32_t now = sctp_get_tick_count(); if (net->fast_retran_ip == 0) net->cc_mod.htcp_ca.bytes_acked = net->net_ack; if (!use_bandwidth_switch) return; /* achieved throughput calculations */ /* JRS - not 100% sure of this statement */ if (net->fast_retran_ip == 1) { net->cc_mod.htcp_ca.bytecount = 0; net->cc_mod.htcp_ca.lasttime = now; return; } + net->cc_mod.htcp_ca.bytecount += net->net_ack; if ((net->cc_mod.htcp_ca.bytecount >= net->cwnd - (((net->cc_mod.htcp_ca.alpha >> 7) ? (net->cc_mod.htcp_ca.alpha >> 7) : 1) * net->mtu)) && (now - net->cc_mod.htcp_ca.lasttime >= net->cc_mod.htcp_ca.minRTT) && (net->cc_mod.htcp_ca.minRTT > 0)) { uint32_t cur_Bi = net->cc_mod.htcp_ca.bytecount / net->mtu * hz / (now - net->cc_mod.htcp_ca.lasttime); if (htcp_ccount(&net->cc_mod.htcp_ca) <= 3) { /* just after backoff */ net->cc_mod.htcp_ca.minB = net->cc_mod.htcp_ca.maxB = net->cc_mod.htcp_ca.Bi = cur_Bi; } else { net->cc_mod.htcp_ca.Bi = (3 * net->cc_mod.htcp_ca.Bi + cur_Bi) / 4; if (net->cc_mod.htcp_ca.Bi > net->cc_mod.htcp_ca.maxB) net->cc_mod.htcp_ca.maxB = net->cc_mod.htcp_ca.Bi; if (net->cc_mod.htcp_ca.minB > net->cc_mod.htcp_ca.maxB) net->cc_mod.htcp_ca.minB = net->cc_mod.htcp_ca.maxB; } net->cc_mod.htcp_ca.bytecount = 0; net->cc_mod.htcp_ca.lasttime = now; } } static inline void htcp_beta_update(struct htcp *ca, uint32_t minRTT, uint32_t maxRTT) { if (use_bandwidth_switch) { uint32_t maxB = ca->maxB; uint32_t old_maxB = ca->old_maxB; ca->old_maxB = ca->maxB; if (!between(5 * maxB, 4 * old_maxB, 6 * old_maxB)) { ca->beta = BETA_MIN; ca->modeswitch = 0; return; } } + if (ca->modeswitch && minRTT > (uint32_t)MSEC_TO_TICKS(10) && maxRTT) { ca->beta = (minRTT << 7) / maxRTT; if (ca->beta < BETA_MIN) ca->beta = BETA_MIN; else if (ca->beta > BETA_MAX) ca->beta = BETA_MAX; } else { ca->beta = BETA_MIN; ca->modeswitch = 1; } } static inline void htcp_alpha_update(struct htcp *ca) { uint32_t minRTT = ca->minRTT; uint32_t factor = 1; uint32_t diff = htcp_cong_time(ca); if (diff > (uint32_t)hz) { diff -= hz; factor = 1 + (10 * diff + ((diff / 2) * (diff / 2) / hz)) / hz; } + if (use_rtt_scaling && minRTT) { uint32_t scale = (hz << 3) / (10 * minRTT); scale = min(max(scale, 1U << 2), 10U << 3); /* clamping ratio to * interval [0.5,10]<<3 */ factor = (factor << 3) / scale; if (!factor) factor = 1; } + ca->alpha = 2 * factor * ((1 << 7) - ca->beta); if (!ca->alpha) ca->alpha = ALPHA_BASE; } /* After we have the rtt data to calculate beta, we'd still prefer to wait one * rtt before we adjust our beta to ensure we are working from a consistent * data. * * This function should be called when we hit a congestion event since only at * that point do we really have a real sense of maxRTT (the queues en route * were getting just too full now). */ static void htcp_param_update(struct sctp_nets *net) { uint32_t minRTT = net->cc_mod.htcp_ca.minRTT; uint32_t maxRTT = net->cc_mod.htcp_ca.maxRTT; htcp_beta_update(&net->cc_mod.htcp_ca, minRTT, maxRTT); htcp_alpha_update(&net->cc_mod.htcp_ca); /* * add slowly fading memory for maxRTT to accommodate routing * changes etc */ if (minRTT > 0 && maxRTT > minRTT) net->cc_mod.htcp_ca.maxRTT = minRTT + ((maxRTT - minRTT) * 95) / 100; } static uint32_t htcp_recalc_ssthresh(struct sctp_nets *net) { htcp_param_update(net); return (max(((net->cwnd / net->mtu * net->cc_mod.htcp_ca.beta) >> 7) * net->mtu, 2U * net->mtu)); } static void htcp_cong_avoid(struct sctp_tcb *stcb, struct sctp_nets *net) { /*- * How to handle these functions? * if (!tcp_is_cwnd_limited(sk, in_flight)) RRS - good question. * return; */ if (net->cwnd <= net->ssthresh) { /* We are in slow start */ if (net->flight_size + net->net_ack >= net->cwnd) { if (net->net_ack > (net->mtu * SCTP_BASE_SYSCTL(sctp_L2_abc_variable))) { net->cwnd += (net->mtu * SCTP_BASE_SYSCTL(sctp_L2_abc_variable)); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_FROM_SS); } + } else { net->cwnd += net->net_ack; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_FROM_SS); } + } sctp_enforce_cwnd_limit(&stcb->asoc, net); } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_SS); } } } else { measure_rtt(net); /* * In dangerous area, increase slowly. In theory this is * net->cwnd += alpha / net->cwnd */ /* What is snd_cwnd_cnt?? */ if (((net->partial_bytes_acked / net->mtu * net->cc_mod.htcp_ca.alpha) >> 7) * net->mtu >= net->cwnd) { /*- * Does SCTP have a cwnd clamp? * if (net->snd_cwnd < net->snd_cwnd_clamp) - Nope (RRS). */ net->cwnd += net->mtu; net->partial_bytes_acked = 0; sctp_enforce_cwnd_limit(&stcb->asoc, net); htcp_alpha_update(&net->cc_mod.htcp_ca); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_FROM_CA); } } else { net->partial_bytes_acked += net->net_ack; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->net_ack, SCTP_CWND_LOG_NOADV_CA); } } net->cc_mod.htcp_ca.bytes_acked = net->mtu; } } #ifdef SCTP_NOT_USED /* Lower bound on congestion window. */ static uint32_t htcp_min_cwnd(struct sctp_tcb *stcb, struct sctp_nets *net) { return (net->ssthresh); } #endif static void htcp_init(struct sctp_nets *net) { memset(&net->cc_mod.htcp_ca, 0, sizeof(struct htcp)); net->cc_mod.htcp_ca.alpha = ALPHA_BASE; net->cc_mod.htcp_ca.beta = BETA_MIN; net->cc_mod.htcp_ca.bytes_acked = net->mtu; net->cc_mod.htcp_ca.last_cong = sctp_get_tick_count(); } static void sctp_htcp_set_initial_cc_param(struct sctp_tcb *stcb, struct sctp_nets *net) { /* * We take the max of the burst limit times a MTU or the * INITIAL_CWND. We then limit this to 4 MTU's of sending. */ net->cwnd = min((net->mtu * 4), max((2 * net->mtu), SCTP_INITIAL_CWND)); net->ssthresh = stcb->asoc.peers_rwnd; sctp_enforce_cwnd_limit(&stcb->asoc, net); htcp_init(net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & (SCTP_CWND_MONITOR_ENABLE | SCTP_CWND_LOGGING_ENABLE)) { sctp_log_cwnd(stcb, net, 0, SCTP_CWND_INITIALIZATION); } } static void sctp_htcp_cwnd_update_after_sack(struct sctp_tcb *stcb, struct sctp_association *asoc, int accum_moved, int reneged_all SCTP_UNUSED, int will_exit) { struct sctp_nets *net; /******************************/ /* update cwnd and Early FR */ /******************************/ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code. Need to debug. */ if (net->fast_retran_loss_recovery && net->new_pseudo_cumack) { if (SCTP_TSN_GE(asoc->last_acked_seq, net->fast_recovery_tsn) || SCTP_TSN_GE(net->pseudo_cumack, net->fast_recovery_tsn)) { net->will_exit_fast_recovery = 1; } } #endif /* if nothing was acked on this destination skip it */ if (net->net_ack == 0) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, 0, SCTP_CWND_LOG_FROM_SACK); } continue; } #ifdef JANA_CMT_FAST_RECOVERY /* * CMT fast recovery code */ /* * if (sctp_cmt_on_off > 0 && net->fast_retran_loss_recovery * && net->will_exit_fast_recovery == 0) { @@@ Do something * } else if (sctp_cmt_on_off == 0 && * asoc->fast_retran_loss_recovery && will_exit == 0) { */ #endif if (asoc->fast_retran_loss_recovery && will_exit == 0 && (asoc->sctp_cmt_on_off == 0)) { /* * If we are in loss recovery we skip any cwnd * update */ return; } /* * CMT: CUC algorithm. Update cwnd if pseudo-cumack has * moved. */ if (accum_moved || ((asoc->sctp_cmt_on_off > 0) && net->new_pseudo_cumack)) { htcp_cong_avoid(stcb, net); measure_achieved_throughput(net); } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, net, net->mtu, SCTP_CWND_LOG_NO_CUMACK); } } } } static void sctp_htcp_cwnd_update_after_fr(struct sctp_tcb *stcb, struct sctp_association *asoc) { struct sctp_nets *net; /* * CMT fast recovery code. Need to debug. ((sctp_cmt_on_off > 0) && * (net->fast_retran_loss_recovery == 0))) */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if ((asoc->fast_retran_loss_recovery == 0) || (asoc->sctp_cmt_on_off > 0)) { /* out of a RFC2582 Fast recovery window? */ if (net->net_ack > 0) { /* * per section 7.2.3, are there any * destinations that had a fast retransmit * to them. If so what we need to do is * adjust ssthresh and cwnd. */ struct sctp_tmit_chunk *lchk; int old_cwnd = net->cwnd; /* JRS - reset as if state were changed */ htcp_reset(&net->cc_mod.htcp_ca); net->ssthresh = htcp_recalc_ssthresh(net); net->cwnd = net->ssthresh; sctp_enforce_cwnd_limit(asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_FR); } lchk = TAILQ_FIRST(&asoc->send_queue); net->partial_bytes_acked = 0; /* Turn on fast recovery window */ asoc->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ asoc->fast_recovery_tsn = asoc->sending_seq - 1; } else { asoc->fast_recovery_tsn = lchk->rec.data.tsn - 1; } /* * CMT fast recovery -- per destination * recovery variable. */ net->fast_retran_loss_recovery = 1; if (lchk == NULL) { /* Mark end of the window */ net->fast_recovery_tsn = asoc->sending_seq - 1; } else { net->fast_recovery_tsn = lchk->rec.data.tsn - 1; } sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_CC_FUNCTIONS + SCTP_LOC_3); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } } else if (net->net_ack > 0) { /* * Mark a peg that we WOULD have done a cwnd * reduction but RFC2582 prevented this action. */ SCTP_STAT_INCR(sctps_fastretransinrtt); } } } static void sctp_htcp_cwnd_update_after_timeout(struct sctp_tcb *stcb, struct sctp_nets *net) { int old_cwnd = net->cwnd; /* JRS - reset as if the state were being changed to timeout */ htcp_reset(&net->cc_mod.htcp_ca); net->ssthresh = htcp_recalc_ssthresh(net); net->cwnd = net->mtu; net->partial_bytes_acked = 0; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->cwnd - old_cwnd, SCTP_CWND_LOG_FROM_RTX); } } static void sctp_htcp_cwnd_update_after_ecn_echo(struct sctp_tcb *stcb, struct sctp_nets *net, int in_window, int num_pkt_lost SCTP_UNUSED) { int old_cwnd; old_cwnd = net->cwnd; /* JRS - reset hctp as if state changed */ if (in_window == 0) { htcp_reset(&net->cc_mod.htcp_ca); SCTP_STAT_INCR(sctps_ecnereducedcwnd); net->ssthresh = htcp_recalc_ssthresh(net); if (net->ssthresh < net->mtu) { net->ssthresh = net->mtu; /* here back off the timer as well, to slow us down */ net->RTO <<= 1; } net->cwnd = net->ssthresh; sctp_enforce_cwnd_limit(&stcb->asoc, net); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, (net->cwnd - old_cwnd), SCTP_CWND_LOG_FROM_SAT); } } } const struct sctp_cc_functions sctp_cc_functions[] = { { .sctp_set_initial_cc_param = sctp_set_initial_cc_param, .sctp_cwnd_update_after_sack = sctp_cwnd_update_after_sack, .sctp_cwnd_update_exit_pf = sctp_cwnd_update_exit_pf_common, .sctp_cwnd_update_after_fr = sctp_cwnd_update_after_fr, .sctp_cwnd_update_after_timeout = sctp_cwnd_update_after_timeout, .sctp_cwnd_update_after_ecn_echo = sctp_cwnd_update_after_ecn_echo, .sctp_cwnd_update_after_packet_dropped = sctp_cwnd_update_after_packet_dropped, .sctp_cwnd_update_after_output = sctp_cwnd_update_after_output, }, { .sctp_set_initial_cc_param = sctp_set_initial_cc_param, .sctp_cwnd_update_after_sack = sctp_hs_cwnd_update_after_sack, .sctp_cwnd_update_exit_pf = sctp_cwnd_update_exit_pf_common, .sctp_cwnd_update_after_fr = sctp_hs_cwnd_update_after_fr, .sctp_cwnd_update_after_timeout = sctp_cwnd_update_after_timeout, .sctp_cwnd_update_after_ecn_echo = sctp_cwnd_update_after_ecn_echo, .sctp_cwnd_update_after_packet_dropped = sctp_cwnd_update_after_packet_dropped, .sctp_cwnd_update_after_output = sctp_cwnd_update_after_output, }, { .sctp_set_initial_cc_param = sctp_htcp_set_initial_cc_param, .sctp_cwnd_update_after_sack = sctp_htcp_cwnd_update_after_sack, .sctp_cwnd_update_exit_pf = sctp_cwnd_update_exit_pf_common, .sctp_cwnd_update_after_fr = sctp_htcp_cwnd_update_after_fr, .sctp_cwnd_update_after_timeout = sctp_htcp_cwnd_update_after_timeout, .sctp_cwnd_update_after_ecn_echo = sctp_htcp_cwnd_update_after_ecn_echo, .sctp_cwnd_update_after_packet_dropped = sctp_cwnd_update_after_packet_dropped, .sctp_cwnd_update_after_output = sctp_cwnd_update_after_output, }, { .sctp_set_initial_cc_param = sctp_set_rtcc_initial_cc_param, .sctp_cwnd_update_after_sack = sctp_cwnd_update_rtcc_after_sack, .sctp_cwnd_update_exit_pf = sctp_cwnd_update_exit_pf_common, .sctp_cwnd_update_after_fr = sctp_cwnd_update_after_fr, .sctp_cwnd_update_after_timeout = sctp_cwnd_update_after_timeout, .sctp_cwnd_update_after_ecn_echo = sctp_cwnd_update_rtcc_after_ecn_echo, .sctp_cwnd_update_after_packet_dropped = sctp_cwnd_update_after_packet_dropped, .sctp_cwnd_update_after_output = sctp_cwnd_update_after_output, .sctp_cwnd_update_packet_transmitted = sctp_cwnd_update_rtcc_packet_transmitted, .sctp_cwnd_update_tsn_acknowledged = sctp_cwnd_update_rtcc_tsn_acknowledged, .sctp_cwnd_new_transmission_begins = sctp_cwnd_new_rtcc_transmission_begins, .sctp_cwnd_prepare_net_for_sack = sctp_cwnd_prepare_rtcc_net_for_sack, .sctp_cwnd_socket_option = sctp_cwnd_rtcc_socket_option, .sctp_rtt_calculated = sctp_rtt_rtcc_calculated } }; Index: stable/11/sys/netinet/sctp_header.h =================================================================== --- stable/11/sys/netinet/sctp_header.h (revision 347153) +++ stable/11/sys/netinet/sctp_header.h (revision 347154) @@ -1,584 +1,584 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_HEADER_H_ #define _NETINET_SCTP_HEADER_H_ #include #include #include #define SCTP_PACKED __attribute__((packed)) /* * Parameter structures */ struct sctp_ipv4addr_param { - struct sctp_paramhdr ph;/* type=SCTP_IPV4_PARAM_TYPE, len=8 */ + struct sctp_paramhdr ph; /* type=SCTP_IPV4_PARAM_TYPE, len=8 */ uint32_t addr; /* IPV4 address */ } SCTP_PACKED; #define SCTP_V6_ADDR_BYTES 16 struct sctp_ipv6addr_param { - struct sctp_paramhdr ph;/* type=SCTP_IPV6_PARAM_TYPE, len=20 */ + struct sctp_paramhdr ph; /* type=SCTP_IPV6_PARAM_TYPE, len=20 */ uint8_t addr[SCTP_V6_ADDR_BYTES]; /* IPV6 address */ } SCTP_PACKED; /* Cookie Preservative */ struct sctp_cookie_perserve_param { - struct sctp_paramhdr ph;/* type=SCTP_COOKIE_PRESERVE, len=8 */ + struct sctp_paramhdr ph; /* type=SCTP_COOKIE_PRESERVE, len=8 */ uint32_t time; /* time in ms to extend cookie */ } SCTP_PACKED; #define SCTP_ARRAY_MIN_LEN 1 /* Host Name Address */ struct sctp_host_name_param { - struct sctp_paramhdr ph;/* type=SCTP_HOSTNAME_ADDRESS */ + struct sctp_paramhdr ph; /* type=SCTP_HOSTNAME_ADDRESS */ char name[SCTP_ARRAY_MIN_LEN]; /* host name */ } SCTP_PACKED; /* * This is the maximum padded size of a s-a-p * so paramheadr + 3 address types (6 bytes) + 2 byte pad = 12 */ #define SCTP_MAX_ADDR_PARAMS_SIZE 12 /* supported address type */ struct sctp_supported_addr_param { - struct sctp_paramhdr ph;/* type=SCTP_SUPPORTED_ADDRTYPE */ + struct sctp_paramhdr ph; /* type=SCTP_SUPPORTED_ADDRTYPE */ uint16_t addr_type[2]; /* array of supported address types */ } SCTP_PACKED; /* heartbeat info parameter */ struct sctp_heartbeat_info_param { struct sctp_paramhdr ph; uint32_t time_value_1; uint32_t time_value_2; uint32_t random_value1; uint32_t random_value2; uint8_t addr_family; uint8_t addr_len; /* make sure that this structure is 4 byte aligned */ uint8_t padding[2]; char address[SCTP_ADDRMAX]; } SCTP_PACKED; /* draft-ietf-tsvwg-prsctp */ /* PR-SCTP supported parameter */ struct sctp_prsctp_supported_param { struct sctp_paramhdr ph; } SCTP_PACKED; /* draft-ietf-tsvwg-addip-sctp */ struct sctp_asconf_paramhdr { /* an ASCONF "parameter" */ - struct sctp_paramhdr ph;/* a SCTP parameter header */ - uint32_t correlation_id;/* correlation id for this param */ + struct sctp_paramhdr ph; /* a SCTP parameter header */ + uint32_t correlation_id; /* correlation id for this param */ } SCTP_PACKED; struct sctp_asconf_addr_param { /* an ASCONF address parameter */ struct sctp_asconf_paramhdr aph; /* asconf "parameter" */ struct sctp_ipv6addr_param addrp; /* max storage size */ } SCTP_PACKED; struct sctp_asconf_tag_param { /* an ASCONF NAT-Vtag parameter */ struct sctp_asconf_paramhdr aph; /* asconf "parameter" */ uint32_t local_vtag; uint32_t remote_vtag; } SCTP_PACKED; struct sctp_asconf_addrv4_param { /* an ASCONF address (v4) parameter */ struct sctp_asconf_paramhdr aph; /* asconf "parameter" */ struct sctp_ipv4addr_param addrp; /* max storage size */ } SCTP_PACKED; #define SCTP_MAX_SUPPORTED_EXT 256 struct sctp_supported_chunk_types_param { - struct sctp_paramhdr ph;/* type = 0x8008 len = x */ + struct sctp_paramhdr ph; /* type = 0x8008 len = x */ uint8_t chunk_types[]; } SCTP_PACKED; /* * Structures for DATA chunks */ struct sctp_data { uint32_t tsn; uint16_t sid; uint16_t ssn; uint32_t ppid; /* user data follows */ } SCTP_PACKED; struct sctp_data_chunk { struct sctp_chunkhdr ch; struct sctp_data dp; } SCTP_PACKED; struct sctp_idata { uint32_t tsn; uint16_t sid; uint16_t reserved; /* Where does the SSN go? */ uint32_t mid; union { uint32_t ppid; uint32_t fsn; /* Fragment Sequence Number */ } ppid_fsn; /* user data follows */ } SCTP_PACKED; struct sctp_idata_chunk { struct sctp_chunkhdr ch; struct sctp_idata dp; } SCTP_PACKED; /* * Structures for the control chunks */ /* Initiate (INIT)/Initiate Ack (INIT ACK) */ struct sctp_init { uint32_t initiate_tag; /* initiate tag */ uint32_t a_rwnd; /* a_rwnd */ uint16_t num_outbound_streams; /* OS */ uint16_t num_inbound_streams; /* MIS */ uint32_t initial_tsn; /* I-TSN */ /* optional param's follow */ } SCTP_PACKED; #define SCTP_IDENTIFICATION_SIZE 16 #define SCTP_ADDRESS_SIZE 4 #define SCTP_RESERVE_SPACE 6 /* state cookie header */ struct sctp_state_cookie { /* this is our definition... */ uint8_t identification[SCTP_IDENTIFICATION_SIZE]; /* id of who we are */ struct timeval time_entered; /* the time I built cookie */ uint32_t cookie_life; /* life I will award this cookie */ uint32_t tie_tag_my_vtag; /* my tag in old association */ uint32_t tie_tag_peer_vtag; /* peers tag in old association */ uint32_t peers_vtag; /* peers tag in INIT (for quick ref) */ uint32_t my_vtag; /* my tag in INIT-ACK (for quick ref) */ uint32_t address[SCTP_ADDRESS_SIZE]; /* 4 ints/128 bits */ uint32_t addr_type; /* address type */ uint32_t laddress[SCTP_ADDRESS_SIZE]; /* my local from address */ uint32_t laddr_type; /* my local from address type */ uint32_t scope_id; /* v6 scope id for link-locals */ uint16_t peerport; /* port address of the peer in the INIT */ uint16_t myport; /* my port address used in the INIT */ - uint8_t ipv4_addr_legal;/* Are V4 addr legal? */ - uint8_t ipv6_addr_legal;/* Are V6 addr legal? */ + uint8_t ipv4_addr_legal; /* Are V4 addr legal? */ + uint8_t ipv6_addr_legal; /* Are V6 addr legal? */ uint8_t local_scope; /* IPv6 local scope flag */ uint8_t site_scope; /* IPv6 site scope flag */ uint8_t ipv4_scope; /* IPv4 private addr scope */ uint8_t loopback_scope; /* loopback scope information */ uint8_t reserved[SCTP_RESERVE_SPACE]; /* Align to 64 bits */ /* * at the end is tacked on the INIT chunk and the INIT-ACK chunk * (minus the cookie). */ } SCTP_PACKED; /* state cookie parameter */ struct sctp_state_cookie_param { struct sctp_paramhdr ph; struct sctp_state_cookie cookie; } SCTP_PACKED; struct sctp_init_chunk { struct sctp_chunkhdr ch; struct sctp_init init; } SCTP_PACKED; struct sctp_init_msg { struct sctphdr sh; struct sctp_init_chunk msg; } SCTP_PACKED; /* ... used for both INIT and INIT ACK */ #define sctp_init_ack sctp_init #define sctp_init_ack_chunk sctp_init_chunk #define sctp_init_ack_msg sctp_init_msg /* Selective Ack (SACK) */ struct sctp_gap_ack_block { uint16_t start; /* Gap Ack block start */ uint16_t end; /* Gap Ack block end */ } SCTP_PACKED; struct sctp_sack { uint32_t cum_tsn_ack; /* cumulative TSN Ack */ uint32_t a_rwnd; /* updated a_rwnd of sender */ uint16_t num_gap_ack_blks; /* number of Gap Ack blocks */ uint16_t num_dup_tsns; /* number of duplicate TSNs */ /* struct sctp_gap_ack_block's follow */ /* uint32_t duplicate_tsn's follow */ } SCTP_PACKED; struct sctp_sack_chunk { struct sctp_chunkhdr ch; struct sctp_sack sack; } SCTP_PACKED; struct sctp_nr_sack { uint32_t cum_tsn_ack; /* cumulative TSN Ack */ uint32_t a_rwnd; /* updated a_rwnd of sender */ uint16_t num_gap_ack_blks; /* number of Gap Ack blocks */ uint16_t num_nr_gap_ack_blks; /* number of NR Gap Ack blocks */ uint16_t num_dup_tsns; /* number of duplicate TSNs */ uint16_t reserved; /* not currently used */ /* struct sctp_gap_ack_block's follow */ /* uint32_t duplicate_tsn's follow */ } SCTP_PACKED; struct sctp_nr_sack_chunk { struct sctp_chunkhdr ch; struct sctp_nr_sack nr_sack; } SCTP_PACKED; /* Heartbeat Request (HEARTBEAT) */ struct sctp_heartbeat { struct sctp_heartbeat_info_param hb_info; } SCTP_PACKED; struct sctp_heartbeat_chunk { struct sctp_chunkhdr ch; struct sctp_heartbeat heartbeat; } SCTP_PACKED; /* ... used for Heartbeat Ack (HEARTBEAT ACK) */ #define sctp_heartbeat_ack sctp_heartbeat #define sctp_heartbeat_ack_chunk sctp_heartbeat_chunk /* Abort Asssociation (ABORT) */ struct sctp_abort_chunk { struct sctp_chunkhdr ch; /* optional error cause may follow */ } SCTP_PACKED; struct sctp_abort_msg { struct sctphdr sh; struct sctp_abort_chunk msg; } SCTP_PACKED; /* Shutdown Association (SHUTDOWN) */ struct sctp_shutdown_chunk { struct sctp_chunkhdr ch; uint32_t cumulative_tsn_ack; } SCTP_PACKED; /* Shutdown Acknowledgment (SHUTDOWN ACK) */ struct sctp_shutdown_ack_chunk { struct sctp_chunkhdr ch; } SCTP_PACKED; /* Operation Error (ERROR) */ struct sctp_error_chunk { struct sctp_chunkhdr ch; /* optional error causes follow */ } SCTP_PACKED; /* Cookie Echo (COOKIE ECHO) */ struct sctp_cookie_echo_chunk { struct sctp_chunkhdr ch; struct sctp_state_cookie cookie; } SCTP_PACKED; /* Cookie Acknowledgment (COOKIE ACK) */ struct sctp_cookie_ack_chunk { struct sctp_chunkhdr ch; } SCTP_PACKED; /* Explicit Congestion Notification Echo (ECNE) */ struct old_sctp_ecne_chunk { struct sctp_chunkhdr ch; uint32_t tsn; } SCTP_PACKED; struct sctp_ecne_chunk { struct sctp_chunkhdr ch; uint32_t tsn; uint32_t num_pkts_since_cwr; } SCTP_PACKED; /* Congestion Window Reduced (CWR) */ struct sctp_cwr_chunk { struct sctp_chunkhdr ch; uint32_t tsn; } SCTP_PACKED; /* Shutdown Complete (SHUTDOWN COMPLETE) */ struct sctp_shutdown_complete_chunk { struct sctp_chunkhdr ch; } SCTP_PACKED; struct sctp_adaptation_layer_indication { struct sctp_paramhdr ph; uint32_t indication; } SCTP_PACKED; /* * draft-ietf-tsvwg-addip-sctp */ /* Address/Stream Configuration Change (ASCONF) */ struct sctp_asconf_chunk { struct sctp_chunkhdr ch; uint32_t serial_number; /* lookup address parameter (mandatory) */ /* asconf parameters follow */ } SCTP_PACKED; /* Address/Stream Configuration Acknowledge (ASCONF ACK) */ struct sctp_asconf_ack_chunk { struct sctp_chunkhdr ch; uint32_t serial_number; /* asconf parameters follow */ } SCTP_PACKED; /* draft-ietf-tsvwg-prsctp */ /* Forward Cumulative TSN (FORWARD TSN) */ struct sctp_forward_tsn_chunk { struct sctp_chunkhdr ch; uint32_t new_cumulative_tsn; /* stream/sequence pairs (sctp_strseq) follow */ } SCTP_PACKED; struct sctp_strseq { uint16_t sid; uint16_t ssn; } SCTP_PACKED; struct sctp_strseq_mid { uint16_t sid; uint16_t flags; uint32_t mid; }; struct sctp_forward_tsn_msg { struct sctphdr sh; struct sctp_forward_tsn_chunk msg; } SCTP_PACKED; /* should be a multiple of 4 - 1 aka 3/7/11 etc. */ #define SCTP_NUM_DB_TO_VERIFY 31 struct sctp_chunk_desc { uint8_t chunk_type; uint8_t data_bytes[SCTP_NUM_DB_TO_VERIFY]; uint32_t tsn_ifany; } SCTP_PACKED; struct sctp_pktdrop_chunk { struct sctp_chunkhdr ch; uint32_t bottle_bw; uint32_t current_onq; uint16_t trunc_len; uint16_t reserved; uint8_t data[]; } SCTP_PACKED; /**********STREAM RESET STUFF ******************/ struct sctp_stream_reset_request { struct sctp_paramhdr ph; uint32_t request_seq; } SCTP_PACKED; struct sctp_stream_reset_out_request { struct sctp_paramhdr ph; uint32_t request_seq; /* monotonically increasing seq no */ uint32_t response_seq; /* if a response, the resp seq no */ uint32_t send_reset_at_tsn; /* last TSN I assigned outbound */ uint16_t list_of_streams[]; /* if not all list of streams */ } SCTP_PACKED; struct sctp_stream_reset_in_request { struct sctp_paramhdr ph; uint32_t request_seq; uint16_t list_of_streams[]; /* if not all list of streams */ } SCTP_PACKED; struct sctp_stream_reset_tsn_request { struct sctp_paramhdr ph; uint32_t request_seq; } SCTP_PACKED; struct sctp_stream_reset_response { struct sctp_paramhdr ph; uint32_t response_seq; /* if a response, the resp seq no */ uint32_t result; } SCTP_PACKED; struct sctp_stream_reset_response_tsn { struct sctp_paramhdr ph; uint32_t response_seq; /* if a response, the resp seq no */ uint32_t result; uint32_t senders_next_tsn; uint32_t receivers_next_tsn; } SCTP_PACKED; struct sctp_stream_reset_add_strm { struct sctp_paramhdr ph; uint32_t request_seq; uint16_t number_of_streams; uint16_t reserved; } SCTP_PACKED; #define SCTP_STREAM_RESET_RESULT_NOTHING_TO_DO 0x00000000 /* XXX: unused */ #define SCTP_STREAM_RESET_RESULT_PERFORMED 0x00000001 #define SCTP_STREAM_RESET_RESULT_DENIED 0x00000002 #define SCTP_STREAM_RESET_RESULT_ERR__WRONG_SSN 0x00000003 /* XXX: unused */ #define SCTP_STREAM_RESET_RESULT_ERR_IN_PROGRESS 0x00000004 #define SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO 0x00000005 #define SCTP_STREAM_RESET_RESULT_IN_PROGRESS 0x00000006 /* XXX: unused */ /* * convience structures, note that if you are making a request for specific * streams then the request will need to be an overlay structure. */ struct sctp_stream_reset_tsn_req { struct sctp_chunkhdr ch; struct sctp_stream_reset_tsn_request sr_req; } SCTP_PACKED; struct sctp_stream_reset_resp { struct sctp_chunkhdr ch; struct sctp_stream_reset_response sr_resp; } SCTP_PACKED; /* respone only valid with a TSN request */ struct sctp_stream_reset_resp_tsn { struct sctp_chunkhdr ch; struct sctp_stream_reset_response_tsn sr_resp; } SCTP_PACKED; /****************************************************/ /* * Authenticated chunks support draft-ietf-tsvwg-sctp-auth */ /* Should we make the max be 32? */ #define SCTP_RANDOM_MAX_SIZE 256 struct sctp_auth_random { - struct sctp_paramhdr ph;/* type = 0x8002 */ + struct sctp_paramhdr ph; /* type = 0x8002 */ uint8_t random_data[]; } SCTP_PACKED; struct sctp_auth_chunk_list { - struct sctp_paramhdr ph;/* type = 0x8003 */ + struct sctp_paramhdr ph; /* type = 0x8003 */ uint8_t chunk_types[]; } SCTP_PACKED; struct sctp_auth_hmac_algo { - struct sctp_paramhdr ph;/* type = 0x8004 */ + struct sctp_paramhdr ph; /* type = 0x8004 */ uint16_t hmac_ids[]; } SCTP_PACKED; struct sctp_auth_chunk { struct sctp_chunkhdr ch; uint16_t shared_key_id; uint16_t hmac_id; uint8_t hmac[]; } SCTP_PACKED; /* * we pre-reserve enough room for a ECNE or CWR AND a SACK with no missing * pieces. If ENCE is missing we could have a couple of blocks. This way we * optimize so we MOST likely can bundle a SACK/ECN with the smallest size * data chunk I will split into. We could increase throughput slightly by * taking out these two but the 24-sack/8-CWR i.e. 32 bytes I pre-reserve I * feel is worth it for now. */ #ifndef SCTP_MAX_OVERHEAD #ifdef INET6 #define SCTP_MAX_OVERHEAD (sizeof(struct sctp_data_chunk) + \ sizeof(struct sctphdr) + \ sizeof(struct sctp_ecne_chunk) + \ sizeof(struct sctp_sack_chunk) + \ sizeof(struct ip6_hdr)) #define SCTP_MED_OVERHEAD (sizeof(struct sctp_data_chunk) + \ sizeof(struct sctphdr) + \ sizeof(struct ip6_hdr)) #define SCTP_MIN_OVERHEAD (sizeof(struct ip6_hdr) + \ sizeof(struct sctphdr)) #else #define SCTP_MAX_OVERHEAD (sizeof(struct sctp_data_chunk) + \ sizeof(struct sctphdr) + \ sizeof(struct sctp_ecne_chunk) + \ sizeof(struct sctp_sack_chunk) + \ sizeof(struct ip)) #define SCTP_MED_OVERHEAD (sizeof(struct sctp_data_chunk) + \ sizeof(struct sctphdr) + \ sizeof(struct ip)) #define SCTP_MIN_OVERHEAD (sizeof(struct ip) + \ sizeof(struct sctphdr)) #endif /* INET6 */ #endif /* !SCTP_MAX_OVERHEAD */ #define SCTP_MED_V4_OVERHEAD (sizeof(struct sctp_data_chunk) + \ sizeof(struct sctphdr) + \ sizeof(struct ip)) #define SCTP_MIN_V4_OVERHEAD (sizeof(struct ip) + \ sizeof(struct sctphdr)) #undef SCTP_PACKED #endif /* !__sctp_header_h__ */ Index: stable/11/sys/netinet/sctp_indata.c =================================================================== --- stable/11/sys/netinet/sctp_indata.c (revision 347153) +++ stable/11/sys/netinet/sctp_indata.c (revision 347154) @@ -1,5754 +1,5774 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * NOTES: On the outbound side of things I need to check the sack timer to * see if I should generate a sack into the chunk queue (if I have data to * send that is and will be sending it .. for bundling. * * The callback in sctp_usrreq.c will get called when the socket is read from. * This will cause sctp_service_queues() to get called on the top entry in * the list. */ static uint32_t sctp_add_chk_to_control(struct sctp_queued_to_read *control, struct sctp_stream_in *strm, struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_tmit_chunk *chk, int lock_held); void sctp_set_rwnd(struct sctp_tcb *stcb, struct sctp_association *asoc) { asoc->my_rwnd = sctp_calc_rwnd(stcb, asoc); } /* Calculate what the rwnd would be */ uint32_t sctp_calc_rwnd(struct sctp_tcb *stcb, struct sctp_association *asoc) { uint32_t calc = 0; /* * This is really set wrong with respect to a 1-2-m socket. Since * the sb_cc is the count that everyone as put up. When we re-write * sctp_soreceive then we will fix this so that ONLY this * associations data is taken into account. */ if (stcb->sctp_socket == NULL) { return (calc); } + KASSERT(asoc->cnt_on_reasm_queue > 0 || asoc->size_on_reasm_queue == 0, ("size_on_reasm_queue is %u", asoc->size_on_reasm_queue)); KASSERT(asoc->cnt_on_all_streams > 0 || asoc->size_on_all_streams == 0, ("size_on_all_streams is %u", asoc->size_on_all_streams)); if (stcb->asoc.sb_cc == 0 && asoc->cnt_on_reasm_queue == 0 && asoc->cnt_on_all_streams == 0) { /* Full rwnd granted */ calc = max(SCTP_SB_LIMIT_RCV(stcb->sctp_socket), SCTP_MINIMAL_RWND); return (calc); } /* get actual space */ calc = (uint32_t)sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv); /* * take out what has NOT been put on socket queue and we yet hold * for putting up. */ calc = sctp_sbspace_sub(calc, (uint32_t)(asoc->size_on_reasm_queue + asoc->cnt_on_reasm_queue * MSIZE)); calc = sctp_sbspace_sub(calc, (uint32_t)(asoc->size_on_all_streams + asoc->cnt_on_all_streams * MSIZE)); if (calc == 0) { /* out of space */ return (calc); } + /* what is the overhead of all these rwnd's */ calc = sctp_sbspace_sub(calc, stcb->asoc.my_rwnd_control_len); /* * If the window gets too small due to ctrl-stuff, reduce it to 1, * even it is 0. SWS engaged */ if (calc < stcb->asoc.my_rwnd_control_len) { calc = 1; } return (calc); } /* * Build out our readq entry based on the incoming packet. */ struct sctp_queued_to_read * sctp_build_readq_entry(struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t tsn, uint32_t ppid, uint32_t context, uint16_t sid, uint32_t mid, uint8_t flags, struct mbuf *dm) { struct sctp_queued_to_read *read_queue_e = NULL; sctp_alloc_a_readq(stcb, read_queue_e); if (read_queue_e == NULL) { goto failed_build; } memset(read_queue_e, 0, sizeof(struct sctp_queued_to_read)); read_queue_e->sinfo_stream = sid; read_queue_e->sinfo_flags = (flags << 8); read_queue_e->sinfo_ppid = ppid; read_queue_e->sinfo_context = context; read_queue_e->sinfo_tsn = tsn; read_queue_e->sinfo_cumtsn = tsn; read_queue_e->sinfo_assoc_id = sctp_get_associd(stcb); read_queue_e->mid = mid; read_queue_e->top_fsn = read_queue_e->fsn_included = 0xffffffff; TAILQ_INIT(&read_queue_e->reasm); read_queue_e->whoFrom = net; atomic_add_int(&net->ref_count, 1); read_queue_e->data = dm; read_queue_e->stcb = stcb; read_queue_e->port_from = stcb->rport; failed_build: return (read_queue_e); } struct mbuf * sctp_build_ctl_nchunk(struct sctp_inpcb *inp, struct sctp_sndrcvinfo *sinfo) { struct sctp_extrcvinfo *seinfo; struct sctp_sndrcvinfo *outinfo; struct sctp_rcvinfo *rcvinfo; struct sctp_nxtinfo *nxtinfo; struct cmsghdr *cmh; struct mbuf *ret; int len; int use_extended; int provide_nxt; if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVRCVINFO) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) { /* user does not want any ancillary data */ return (NULL); } + len = 0; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO)) { len += CMSG_SPACE(sizeof(struct sctp_rcvinfo)); } seinfo = (struct sctp_extrcvinfo *)sinfo; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO) && (seinfo->serinfo_next_flags & SCTP_NEXT_MSG_AVAIL)) { provide_nxt = 1; len += CMSG_SPACE(sizeof(struct sctp_nxtinfo)); } else { provide_nxt = 0; } if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT)) { if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO)) { use_extended = 1; len += CMSG_SPACE(sizeof(struct sctp_extrcvinfo)); } else { use_extended = 0; len += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)); } } else { use_extended = 0; } ret = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (ret == NULL) { /* No space */ return (ret); } SCTP_BUF_LEN(ret) = 0; /* We need a CMSG header followed by the struct */ cmh = mtod(ret, struct cmsghdr *); /* * Make sure that there is no un-initialized padding between the * cmsg header and cmsg data and after the cmsg data. */ memset(cmh, 0, len); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO)) { cmh->cmsg_level = IPPROTO_SCTP; cmh->cmsg_len = CMSG_LEN(sizeof(struct sctp_rcvinfo)); cmh->cmsg_type = SCTP_RCVINFO; rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmh); rcvinfo->rcv_sid = sinfo->sinfo_stream; rcvinfo->rcv_ssn = sinfo->sinfo_ssn; rcvinfo->rcv_flags = sinfo->sinfo_flags; rcvinfo->rcv_ppid = sinfo->sinfo_ppid; rcvinfo->rcv_tsn = sinfo->sinfo_tsn; rcvinfo->rcv_cumtsn = sinfo->sinfo_cumtsn; rcvinfo->rcv_context = sinfo->sinfo_context; rcvinfo->rcv_assoc_id = sinfo->sinfo_assoc_id; cmh = (struct cmsghdr *)((caddr_t)cmh + CMSG_SPACE(sizeof(struct sctp_rcvinfo))); SCTP_BUF_LEN(ret) += CMSG_SPACE(sizeof(struct sctp_rcvinfo)); } if (provide_nxt) { cmh->cmsg_level = IPPROTO_SCTP; cmh->cmsg_len = CMSG_LEN(sizeof(struct sctp_nxtinfo)); cmh->cmsg_type = SCTP_NXTINFO; nxtinfo = (struct sctp_nxtinfo *)CMSG_DATA(cmh); nxtinfo->nxt_sid = seinfo->serinfo_next_stream; nxtinfo->nxt_flags = 0; if (seinfo->serinfo_next_flags & SCTP_NEXT_MSG_IS_UNORDERED) { nxtinfo->nxt_flags |= SCTP_UNORDERED; } if (seinfo->serinfo_next_flags & SCTP_NEXT_MSG_IS_NOTIFICATION) { nxtinfo->nxt_flags |= SCTP_NOTIFICATION; } if (seinfo->serinfo_next_flags & SCTP_NEXT_MSG_ISCOMPLETE) { nxtinfo->nxt_flags |= SCTP_COMPLETE; } nxtinfo->nxt_ppid = seinfo->serinfo_next_ppid; nxtinfo->nxt_length = seinfo->serinfo_next_length; nxtinfo->nxt_assoc_id = seinfo->serinfo_next_aid; cmh = (struct cmsghdr *)((caddr_t)cmh + CMSG_SPACE(sizeof(struct sctp_nxtinfo))); SCTP_BUF_LEN(ret) += CMSG_SPACE(sizeof(struct sctp_nxtinfo)); } if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT)) { cmh->cmsg_level = IPPROTO_SCTP; outinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmh); if (use_extended) { cmh->cmsg_len = CMSG_LEN(sizeof(struct sctp_extrcvinfo)); cmh->cmsg_type = SCTP_EXTRCV; memcpy(outinfo, sinfo, sizeof(struct sctp_extrcvinfo)); SCTP_BUF_LEN(ret) += CMSG_SPACE(sizeof(struct sctp_extrcvinfo)); } else { cmh->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); cmh->cmsg_type = SCTP_SNDRCV; *outinfo = *sinfo; SCTP_BUF_LEN(ret) += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)); } } return (ret); } static void sctp_mark_non_revokable(struct sctp_association *asoc, uint32_t tsn) { uint32_t gap, i, cumackp1; int fnd = 0; int in_r = 0, in_nr = 0; if (SCTP_BASE_SYSCTL(sctp_do_drain) == 0) { return; } cumackp1 = asoc->cumulative_tsn + 1; if (SCTP_TSN_GT(cumackp1, tsn)) { /* * this tsn is behind the cum ack and thus we don't need to * worry about it being moved from one to the other. */ return; } SCTP_CALC_TSN_TO_GAP(gap, tsn, asoc->mapping_array_base_tsn); in_r = SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap); in_nr = SCTP_IS_TSN_PRESENT(asoc->nr_mapping_array, gap); if ((in_r == 0) && (in_nr == 0)) { #ifdef INVARIANTS panic("Things are really messed up now"); #else SCTP_PRINTF("gap:%x tsn:%x\n", gap, tsn); sctp_print_mapping_array(asoc); #endif } if (in_nr == 0) SCTP_SET_TSN_PRESENT(asoc->nr_mapping_array, gap); if (in_r) SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_nr_map)) { asoc->highest_tsn_inside_nr_map = tsn; } if (tsn == asoc->highest_tsn_inside_map) { /* We must back down to see what the new highest is */ for (i = tsn - 1; SCTP_TSN_GE(i, asoc->mapping_array_base_tsn); i--) { SCTP_CALC_TSN_TO_GAP(gap, i, asoc->mapping_array_base_tsn); if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap)) { asoc->highest_tsn_inside_map = i; fnd = 1; break; } } if (!fnd) { asoc->highest_tsn_inside_map = asoc->mapping_array_base_tsn - 1; } } } static int sctp_place_control_in_stream(struct sctp_stream_in *strm, struct sctp_association *asoc, struct sctp_queued_to_read *control) { struct sctp_queued_to_read *at; struct sctp_readhead *q; uint8_t flags, unordered; flags = (control->sinfo_flags >> 8); unordered = flags & SCTP_DATA_UNORDERED; if (unordered) { q = &strm->uno_inqueue; if (asoc->idata_supported == 0) { if (!TAILQ_EMPTY(q)) { /* * Only one stream can be here in old style * -- abort */ return (-1); } TAILQ_INSERT_TAIL(q, control, next_instrm); control->on_strm_q = SCTP_ON_UNORDERED; return (0); } } else { q = &strm->inqueue; } if ((flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { control->end_added = 1; control->first_frag_seen = 1; control->last_frag_seen = 1; } if (TAILQ_EMPTY(q)) { /* Empty queue */ TAILQ_INSERT_HEAD(q, control, next_instrm); if (unordered) { control->on_strm_q = SCTP_ON_UNORDERED; } else { control->on_strm_q = SCTP_ON_ORDERED; } return (0); } else { TAILQ_FOREACH(at, q, next_instrm) { if (SCTP_MID_GT(asoc->idata_supported, at->mid, control->mid)) { /* * one in queue is bigger than the new one, * insert before this one */ TAILQ_INSERT_BEFORE(at, control, next_instrm); if (unordered) { control->on_strm_q = SCTP_ON_UNORDERED; } else { control->on_strm_q = SCTP_ON_ORDERED; } break; } else if (SCTP_MID_EQ(asoc->idata_supported, at->mid, control->mid)) { /* * Gak, He sent me a duplicate msg id * number?? return -1 to abort. */ return (-1); } else { if (TAILQ_NEXT(at, next_instrm) == NULL) { /* * We are at the end, insert it * after this one */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del(control, at, SCTP_STR_LOG_FROM_INSERT_TL); } TAILQ_INSERT_AFTER(q, at, control, next_instrm); if (unordered) { control->on_strm_q = SCTP_ON_UNORDERED; } else { control->on_strm_q = SCTP_ON_ORDERED; } break; } } } } return (0); } static void sctp_abort_in_reasm(struct sctp_tcb *stcb, struct sctp_queued_to_read *control, struct sctp_tmit_chunk *chk, int *abort_flag, int opspot) { char msg[SCTP_DIAG_INFO_LEN]; struct mbuf *oper; if (stcb->asoc.idata_supported) { snprintf(msg, sizeof(msg), "Reass %x,CF:%x,TSN=%8.8x,SID=%4.4x,FSN=%8.8x,MID:%8.8x", opspot, control->fsn_included, chk->rec.data.tsn, chk->rec.data.sid, chk->rec.data.fsn, chk->rec.data.mid); } else { snprintf(msg, sizeof(msg), "Reass %x,CI:%x,TSN=%8.8x,SID=%4.4x,FSN=%4.4x,SSN:%4.4x", opspot, control->fsn_included, chk->rec.data.tsn, chk->rec.data.sid, chk->rec.data.fsn, (uint16_t)chk->rec.data.mid); } oper = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); sctp_m_freem(chk->data); chk->data = NULL; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_1; sctp_abort_an_association(stcb->sctp_ep, stcb, oper, SCTP_SO_NOT_LOCKED); *abort_flag = 1; } static void sctp_clean_up_control(struct sctp_tcb *stcb, struct sctp_queued_to_read *control) { /* * The control could not be placed and must be cleaned. */ struct sctp_tmit_chunk *chk, *nchk; TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) sctp_m_freem(chk->data); chk->data = NULL; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } sctp_free_a_readq(stcb, control); } /* * Queue the chunk either right into the socket buffer if it is the next one * to go OR put it in the correct place in the delivery queue. If we do * append to the so_buf, keep doing so until we are out of order as * long as the control's entered are non-fragmented. */ static void sctp_queue_data_to_stream(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_queued_to_read *control, int *abort_flag, int *need_reasm) { /* * FIX-ME maybe? What happens when the ssn wraps? If we are getting * all the data in one stream this could happen quite rapidly. One * could use the TSN to keep track of things, but this scheme breaks * down in the other type of stream usage that could occur. Send a * single msg to stream 0, send 4Billion messages to stream 1, now * send a message to stream 0. You have a situation where the TSN * has wrapped but not in the stream. Is this worth worrying about * or should we just change our queue sort at the bottom to be by * TSN. * * Could it also be legal for a peer to send ssn 1 with TSN 2 and * ssn 2 with TSN 1? If the peer is doing some sort of funky TSN/SSN * assignment this could happen... and I don't see how this would be * a violation. So for now I am undecided an will leave the sort by * SSN alone. Maybe a hybred approach is the answer * */ struct sctp_queued_to_read *at; int queue_needed; uint32_t nxt_todel; struct mbuf *op_err; struct sctp_stream_in *strm; char msg[SCTP_DIAG_INFO_LEN]; strm = &asoc->strmin[control->sinfo_stream]; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del(control, NULL, SCTP_STR_LOG_FROM_INTO_STRD); } if (SCTP_MID_GT((asoc->idata_supported), strm->last_mid_delivered, control->mid)) { /* The incoming sseq is behind where we last delivered? */ SCTPDBG(SCTP_DEBUG_INDATA1, "Duplicate S-SEQ: %u delivered: %u from peer, Abort association\n", strm->last_mid_delivered, control->mid); /* * throw it in the stream so it gets cleaned up in * association destruction */ TAILQ_INSERT_HEAD(&strm->inqueue, control, next_instrm); if (asoc->idata_supported) { snprintf(msg, sizeof(msg), "Delivered MID=%8.8x, got TSN=%8.8x, SID=%4.4x, MID=%8.8x", strm->last_mid_delivered, control->sinfo_tsn, control->sinfo_stream, control->mid); } else { snprintf(msg, sizeof(msg), "Delivered SSN=%4.4x, got TSN=%8.8x, SID=%4.4x, SSN=%4.4x", (uint16_t)strm->last_mid_delivered, control->sinfo_tsn, control->sinfo_stream, (uint16_t)control->mid); } op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_2; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; return; } queue_needed = 1; asoc->size_on_all_streams += control->length; sctp_ucount_incr(asoc->cnt_on_all_streams); nxt_todel = strm->last_mid_delivered + 1; if (SCTP_MID_EQ(asoc->idata_supported, nxt_todel, control->mid)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { SCTP_SOCKET_UNLOCK(so, 1); return; } #endif /* can be delivered right away? */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del(control, NULL, SCTP_STR_LOG_FROM_IMMED_DEL); } /* EY it wont be queued if it could be delivered directly */ queue_needed = 0; if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); strm->last_mid_delivered++; sctp_mark_non_revokable(asoc, control->sinfo_tsn); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_LOCKED); TAILQ_FOREACH_SAFE(control, &strm->inqueue, next_instrm, at) { /* all delivered */ nxt_todel = strm->last_mid_delivered + 1; if (SCTP_MID_EQ(asoc->idata_supported, nxt_todel, control->mid) && (((control->sinfo_flags >> 8) & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG)) { if (control->on_strm_q == SCTP_ON_ORDERED) { TAILQ_REMOVE(&strm->inqueue, control, next_instrm); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); #ifdef INVARIANTS } else { panic("Huh control: %p is on_strm_q: %d", control, control->on_strm_q); #endif } control->on_strm_q = 0; strm->last_mid_delivered++; /* * We ignore the return of deliver_data here * since we always can hold the chunk on the * d-queue. And we have a finite number that * can be delivered from the strq. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del(control, NULL, SCTP_STR_LOG_FROM_IMMED_DEL); } sctp_mark_non_revokable(asoc, control->sinfo_tsn); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_LOCKED); continue; } else if (SCTP_MID_EQ(asoc->idata_supported, nxt_todel, control->mid)) { *need_reasm = 1; } break; } #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } if (queue_needed) { /* * Ok, we did not deliver this guy, find the correct place * to put it on the queue. */ if (sctp_place_control_in_stream(strm, asoc, control)) { snprintf(msg, sizeof(msg), "Queue to str MID: %u duplicate", control->mid); sctp_clean_up_control(stcb, control); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_3; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; } } } static void sctp_setup_tail_pointer(struct sctp_queued_to_read *control) { struct mbuf *m, *prev = NULL; struct sctp_tcb *stcb; stcb = control->stcb; control->held_length = 0; control->length = 0; m = control->data; while (m) { if (SCTP_BUF_LEN(m) == 0) { /* Skip mbufs with NO length */ if (prev == NULL) { /* First one */ control->data = sctp_m_free(m); m = control->data; } else { SCTP_BUF_NEXT(prev) = sctp_m_free(m); m = SCTP_BUF_NEXT(prev); } if (m == NULL) { control->tail_mbuf = prev; } continue; } prev = m; atomic_add_int(&control->length, SCTP_BUF_LEN(m)); if (control->on_read_q) { /* * On read queue so we must increment the SB stuff, * we assume caller has done any locks of SB. */ sctp_sballoc(stcb, &stcb->sctp_socket->so_rcv, m); } m = SCTP_BUF_NEXT(m); } if (prev) { control->tail_mbuf = prev; } } static void sctp_add_to_tail_pointer(struct sctp_queued_to_read *control, struct mbuf *m, uint32_t *added) { struct mbuf *prev = NULL; struct sctp_tcb *stcb; stcb = control->stcb; if (stcb == NULL) { #ifdef INVARIANTS panic("Control broken"); #else return; #endif } if (control->tail_mbuf == NULL) { /* TSNH */ control->data = m; sctp_setup_tail_pointer(control); return; } control->tail_mbuf->m_next = m; while (m) { if (SCTP_BUF_LEN(m) == 0) { /* Skip mbufs with NO length */ if (prev == NULL) { /* First one */ control->tail_mbuf->m_next = sctp_m_free(m); m = control->tail_mbuf->m_next; } else { SCTP_BUF_NEXT(prev) = sctp_m_free(m); m = SCTP_BUF_NEXT(prev); } if (m == NULL) { control->tail_mbuf = prev; } continue; } prev = m; if (control->on_read_q) { /* * On read queue so we must increment the SB stuff, * we assume caller has done any locks of SB. */ sctp_sballoc(stcb, &stcb->sctp_socket->so_rcv, m); } *added += SCTP_BUF_LEN(m); atomic_add_int(&control->length, SCTP_BUF_LEN(m)); m = SCTP_BUF_NEXT(m); } if (prev) { control->tail_mbuf = prev; } } static void sctp_build_readq_entry_from_ctl(struct sctp_queued_to_read *nc, struct sctp_queued_to_read *control) { memset(nc, 0, sizeof(struct sctp_queued_to_read)); nc->sinfo_stream = control->sinfo_stream; nc->mid = control->mid; TAILQ_INIT(&nc->reasm); nc->top_fsn = control->top_fsn; nc->mid = control->mid; nc->sinfo_flags = control->sinfo_flags; nc->sinfo_ppid = control->sinfo_ppid; nc->sinfo_context = control->sinfo_context; nc->fsn_included = 0xffffffff; nc->sinfo_tsn = control->sinfo_tsn; nc->sinfo_cumtsn = control->sinfo_cumtsn; nc->sinfo_assoc_id = control->sinfo_assoc_id; nc->whoFrom = control->whoFrom; atomic_add_int(&nc->whoFrom->ref_count, 1); nc->stcb = control->stcb; nc->port_from = control->port_from; } static void sctp_reset_a_control(struct sctp_queued_to_read *control, struct sctp_inpcb *inp, uint32_t tsn) { control->fsn_included = tsn; if (control->on_read_q) { /* * We have to purge it from there, hopefully this will work * :-) */ TAILQ_REMOVE(&inp->read_queue, control, next); control->on_read_q = 0; } } static int sctp_handle_old_unordered_data(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_stream_in *strm, struct sctp_queued_to_read *control, uint32_t pd_point, int inp_read_lock_held) { /* * Special handling for the old un-ordered data chunk. All the * chunks/TSN's go to mid 0. So we have to do the old style watching * to see if we have it all. If you return one, no other control * entries on the un-ordered queue will be looked at. In theory * there should be no others entries in reality, unless the guy is * sending both unordered NDATA and unordered DATA... */ struct sctp_tmit_chunk *chk, *lchk, *tchk; uint32_t fsn; struct sctp_queued_to_read *nc; int cnt_added; if (control->first_frag_seen == 0) { /* Nothing we can do, we have not seen the first piece yet */ return (1); } /* Collapse any we can */ cnt_added = 0; restart: fsn = control->fsn_included + 1; /* Now what can we add? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, lchk) { if (chk->rec.data.fsn == fsn) { /* Ok lets add it */ sctp_alloc_a_readq(stcb, nc); if (nc == NULL) { break; } memset(nc, 0, sizeof(struct sctp_queued_to_read)); TAILQ_REMOVE(&control->reasm, chk, sctp_next); sctp_add_chk_to_control(control, strm, stcb, asoc, chk, SCTP_READ_LOCK_NOT_HELD); fsn++; cnt_added++; chk = NULL; if (control->end_added) { /* We are done */ if (!TAILQ_EMPTY(&control->reasm)) { /* * Ok we have to move anything left * on the control queue to a new * control. */ sctp_build_readq_entry_from_ctl(nc, control); tchk = TAILQ_FIRST(&control->reasm); if (tchk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) { TAILQ_REMOVE(&control->reasm, tchk, sctp_next); if (asoc->size_on_reasm_queue >= tchk->send_size) { asoc->size_on_reasm_queue -= tchk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, tchk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); nc->first_frag_seen = 1; nc->fsn_included = tchk->rec.data.fsn; nc->data = tchk->data; nc->sinfo_ppid = tchk->rec.data.ppid; nc->sinfo_tsn = tchk->rec.data.tsn; sctp_mark_non_revokable(asoc, tchk->rec.data.tsn); tchk->data = NULL; sctp_free_a_chunk(stcb, tchk, SCTP_SO_NOT_LOCKED); sctp_setup_tail_pointer(nc); tchk = TAILQ_FIRST(&control->reasm); } /* Spin the rest onto the queue */ while (tchk) { TAILQ_REMOVE(&control->reasm, tchk, sctp_next); TAILQ_INSERT_TAIL(&nc->reasm, tchk, sctp_next); tchk = TAILQ_FIRST(&control->reasm); } /* * Now lets add it to the queue * after removing control */ TAILQ_INSERT_TAIL(&strm->uno_inqueue, nc, next_instrm); nc->on_strm_q = SCTP_ON_UNORDERED; if (control->on_strm_q) { TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); control->on_strm_q = 0; } } if (control->pdapi_started) { strm->pd_api_started = 0; control->pdapi_started = 0; } if (control->on_strm_q) { TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); control->on_strm_q = 0; SCTP_STAT_INCR_COUNTER64(sctps_reasmusrmsgs); } if (control->on_read_q == 0) { sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); } sctp_wakeup_the_read_socket(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); if ((nc->first_frag_seen) && !TAILQ_EMPTY(&nc->reasm)) { /* * Switch to the new guy and * continue */ control = nc; goto restart; } else { if (nc->on_strm_q == 0) { sctp_free_a_readq(stcb, nc); } } return (1); } else { sctp_free_a_readq(stcb, nc); } } else { /* Can't add more */ break; } } if ((control->length > pd_point) && (strm->pd_api_started == 0)) { strm->pd_api_started = 1; control->pdapi_started = 1; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); sctp_wakeup_the_read_socket(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); return (0); } else { return (1); } } static void sctp_inject_old_unordered_data(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_queued_to_read *control, struct sctp_tmit_chunk *chk, int *abort_flag) { struct sctp_tmit_chunk *at; int inserted; /* * Here we need to place the chunk into the control structure sorted * in the correct order. */ if (chk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) { /* Its the very first one. */ SCTPDBG(SCTP_DEBUG_XXX, "chunk is a first fsn: %u becomes fsn_included\n", chk->rec.data.fsn); if (control->first_frag_seen) { /* * In old un-ordered we can reassembly on one * control multiple messages. As long as the next * FIRST is greater then the old first (TSN i.e. FSN * wise) */ struct mbuf *tdata; uint32_t tmp; if (SCTP_TSN_GT(chk->rec.data.fsn, control->fsn_included)) { /* * Easy way the start of a new guy beyond * the lowest */ goto place_chunk; } if ((chk->rec.data.fsn == control->fsn_included) || (control->pdapi_started)) { /* * Ok this should not happen, if it does we * started the pd-api on the higher TSN * (since the equals part is a TSN failure * it must be that). * * We are completly hosed in that case since * I have no way to recover. This really * will only happen if we can get more TSN's * higher before the pd-api-point. */ sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_4); return; } /* * Ok we have two firsts and the one we just got is * smaller than the one we previously placed.. yuck! * We must swap them out. */ /* swap the mbufs */ tdata = control->data; control->data = chk->data; chk->data = tdata; /* Save the lengths */ chk->send_size = control->length; /* Recompute length of control and tail pointer */ sctp_setup_tail_pointer(control); /* Fix the FSN included */ tmp = control->fsn_included; control->fsn_included = chk->rec.data.fsn; chk->rec.data.fsn = tmp; /* Fix the TSN included */ tmp = control->sinfo_tsn; control->sinfo_tsn = chk->rec.data.tsn; chk->rec.data.tsn = tmp; /* Fix the PPID included */ tmp = control->sinfo_ppid; control->sinfo_ppid = chk->rec.data.ppid; chk->rec.data.ppid = tmp; /* Fix tail pointer */ goto place_chunk; } control->first_frag_seen = 1; control->fsn_included = chk->rec.data.fsn; control->top_fsn = chk->rec.data.fsn; control->sinfo_tsn = chk->rec.data.tsn; control->sinfo_ppid = chk->rec.data.ppid; control->data = chk->data; sctp_mark_non_revokable(asoc, chk->rec.data.tsn); chk->data = NULL; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); sctp_setup_tail_pointer(control); return; } place_chunk: inserted = 0; TAILQ_FOREACH(at, &control->reasm, sctp_next) { if (SCTP_TSN_GT(at->rec.data.fsn, chk->rec.data.fsn)) { /* * This one in queue is bigger than the new one, * insert the new one before at. */ asoc->size_on_reasm_queue += chk->send_size; sctp_ucount_incr(asoc->cnt_on_reasm_queue); inserted = 1; TAILQ_INSERT_BEFORE(at, chk, sctp_next); break; } else if (at->rec.data.fsn == chk->rec.data.fsn) { /* * They sent a duplicate fsn number. This really * should not happen since the FSN is a TSN and it * should have been dropped earlier. */ sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_5); return; } + } if (inserted == 0) { /* Its at the end */ asoc->size_on_reasm_queue += chk->send_size; sctp_ucount_incr(asoc->cnt_on_reasm_queue); control->top_fsn = chk->rec.data.fsn; TAILQ_INSERT_TAIL(&control->reasm, chk, sctp_next); } } static int sctp_deliver_reasm_check(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_stream_in *strm, int inp_read_lock_held) { /* * Given a stream, strm, see if any of the SSN's on it that are * fragmented are ready to deliver. If so go ahead and place them on * the read queue. In so placing if we have hit the end, then we * need to remove them from the stream's queue. */ struct sctp_queued_to_read *control, *nctl = NULL; uint32_t next_to_del; uint32_t pd_point; int ret = 0; if (stcb->sctp_socket) { pd_point = min(SCTP_SB_LIMIT_RCV(stcb->sctp_socket) >> SCTP_PARTIAL_DELIVERY_SHIFT, stcb->sctp_ep->partial_delivery_point); } else { pd_point = stcb->sctp_ep->partial_delivery_point; } control = TAILQ_FIRST(&strm->uno_inqueue); if ((control != NULL) && (asoc->idata_supported == 0)) { /* Special handling needed for "old" data format */ if (sctp_handle_old_unordered_data(stcb, asoc, strm, control, pd_point, inp_read_lock_held)) { goto done_un; } } if (strm->pd_api_started) { /* Can't add more */ return (0); } while (control) { SCTPDBG(SCTP_DEBUG_XXX, "Looking at control: %p e(%d) ssn: %u top_fsn: %u inc_fsn: %u -uo\n", control, control->end_added, control->mid, control->top_fsn, control->fsn_included); nctl = TAILQ_NEXT(control, next_instrm); if (control->end_added) { /* We just put the last bit on */ if (control->on_strm_q) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_UNORDERED) { panic("Huh control: %p on_q: %d -- not unordered?", control, control->on_strm_q); } #endif SCTP_STAT_INCR_COUNTER64(sctps_reasmusrmsgs); TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); control->on_strm_q = 0; } if (control->on_read_q == 0) { sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); } } else { /* Can we do a PD-API for this un-ordered guy? */ if ((control->length >= pd_point) && (strm->pd_api_started == 0)) { strm->pd_api_started = 1; control->pdapi_started = 1; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); break; } } control = nctl; } done_un: control = TAILQ_FIRST(&strm->inqueue); if (strm->pd_api_started) { /* Can't add more */ return (0); } if (control == NULL) { return (ret); } if (SCTP_MID_EQ(asoc->idata_supported, strm->last_mid_delivered, control->mid)) { /* * Ok the guy at the top was being partially delivered * completed, so we remove it. Note the pd_api flag was * taken off when the chunk was merged on in * sctp_queue_data_for_reasm below. */ nctl = TAILQ_NEXT(control, next_instrm); SCTPDBG(SCTP_DEBUG_XXX, "Looking at control: %p e(%d) ssn: %u top_fsn: %u inc_fsn: %u (lastdel: %u)- o\n", control, control->end_added, control->mid, control->top_fsn, control->fsn_included, strm->last_mid_delivered); if (control->end_added) { if (control->on_strm_q) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_ORDERED) { panic("Huh control: %p on_q: %d -- not ordered?", control, control->on_strm_q); } #endif SCTP_STAT_INCR_COUNTER64(sctps_reasmusrmsgs); TAILQ_REMOVE(&strm->inqueue, control, next_instrm); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); control->on_strm_q = 0; } if (strm->pd_api_started && control->pdapi_started) { control->pdapi_started = 0; strm->pd_api_started = 0; } if (control->on_read_q == 0) { sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); } control = nctl; } } if (strm->pd_api_started) { /* * Can't add more must have gotten an un-ordered above being * partially delivered. */ return (0); } deliver_more: next_to_del = strm->last_mid_delivered + 1; if (control) { SCTPDBG(SCTP_DEBUG_XXX, "Looking at control: %p e(%d) ssn: %u top_fsn: %u inc_fsn: %u (nxtdel: %u)- o\n", control, control->end_added, control->mid, control->top_fsn, control->fsn_included, next_to_del); nctl = TAILQ_NEXT(control, next_instrm); if (SCTP_MID_EQ(asoc->idata_supported, control->mid, next_to_del) && (control->first_frag_seen)) { int done; /* Ok we can deliver it onto the stream. */ if (control->end_added) { /* We are done with it afterwards */ if (control->on_strm_q) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_ORDERED) { panic("Huh control: %p on_q: %d -- not ordered?", control, control->on_strm_q); } #endif SCTP_STAT_INCR_COUNTER64(sctps_reasmusrmsgs); TAILQ_REMOVE(&strm->inqueue, control, next_instrm); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); control->on_strm_q = 0; } ret++; } if (((control->sinfo_flags >> 8) & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { /* * A singleton now slipping through - mark * it non-revokable too */ sctp_mark_non_revokable(asoc, control->sinfo_tsn); } else if (control->end_added == 0) { /* * Check if we can defer adding until its * all there */ if ((control->length < pd_point) || (strm->pd_api_started)) { /* * Don't need it or cannot add more * (one being delivered that way) */ goto out; } } done = (control->end_added) && (control->last_frag_seen); if (control->on_read_q == 0) { if (!done) { if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } strm->pd_api_started = 1; control->pdapi_started = 1; } sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, inp_read_lock_held, SCTP_SO_NOT_LOCKED); } strm->last_mid_delivered = next_to_del; if (done) { control = nctl; goto deliver_more; } } } out: return (ret); } uint32_t sctp_add_chk_to_control(struct sctp_queued_to_read *control, struct sctp_stream_in *strm, struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_tmit_chunk *chk, int hold_rlock) { /* * Given a control and a chunk, merge the data from the chk onto the * control and free up the chunk resources. */ uint32_t added = 0; int i_locked = 0; if (control->on_read_q && (hold_rlock == 0)) { /* * Its being pd-api'd so we must do some locks. */ SCTP_INP_READ_LOCK(stcb->sctp_ep); i_locked = 1; } if (control->data == NULL) { control->data = chk->data; sctp_setup_tail_pointer(control); } else { sctp_add_to_tail_pointer(control, chk->data, &added); } control->fsn_included = chk->rec.data.fsn; asoc->size_on_reasm_queue -= chk->send_size; sctp_ucount_decr(asoc->cnt_on_reasm_queue); sctp_mark_non_revokable(asoc, chk->rec.data.tsn); chk->data = NULL; if (chk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) { control->first_frag_seen = 1; control->sinfo_tsn = chk->rec.data.tsn; control->sinfo_ppid = chk->rec.data.ppid; } if (chk->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { /* Its complete */ if ((control->on_strm_q) && (control->on_read_q)) { if (control->pdapi_started) { control->pdapi_started = 0; strm->pd_api_started = 0; } if (control->on_strm_q == SCTP_ON_UNORDERED) { /* Unordered */ TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); control->on_strm_q = 0; } else if (control->on_strm_q == SCTP_ON_ORDERED) { /* Ordered */ TAILQ_REMOVE(&strm->inqueue, control, next_instrm); /* * Don't need to decrement * size_on_all_streams, since control is on * the read queue. */ sctp_ucount_decr(asoc->cnt_on_all_streams); control->on_strm_q = 0; #ifdef INVARIANTS } else if (control->on_strm_q) { panic("Unknown state on ctrl: %p on_strm_q: %d", control, control->on_strm_q); #endif } } control->end_added = 1; control->last_frag_seen = 1; } if (i_locked) { SCTP_INP_READ_UNLOCK(stcb->sctp_ep); } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); return (added); } /* * Dump onto the re-assembly queue, in its proper place. After dumping on the * queue, see if anthing can be delivered. If so pull it off (or as much as * we can. If we run out of space then we must dump what we can and set the * appropriate flag to say we queued what we could. */ static void sctp_queue_data_for_reasm(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_queued_to_read *control, struct sctp_tmit_chunk *chk, int created_control, int *abort_flag, uint32_t tsn) { uint32_t next_fsn; struct sctp_tmit_chunk *at, *nat; struct sctp_stream_in *strm; int do_wakeup, unordered; uint32_t lenadded; strm = &asoc->strmin[control->sinfo_stream]; /* * For old un-ordered data chunks. */ if ((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED) { unordered = 1; } else { unordered = 0; } /* Must be added to the stream-in queue */ if (created_control) { if (unordered == 0) { sctp_ucount_incr(asoc->cnt_on_all_streams); } if (sctp_place_control_in_stream(strm, asoc, control)) { /* Duplicate SSN? */ sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_6); sctp_clean_up_control(stcb, control); return; } if ((tsn == (asoc->cumulative_tsn + 1) && (asoc->idata_supported == 0))) { /* * Ok we created this control and now lets validate * that its legal i.e. there is a B bit set, if not * and we have up to the cum-ack then its invalid. */ if ((chk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) == 0) { sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_7); return; } } } if ((asoc->idata_supported == 0) && (unordered == 1)) { sctp_inject_old_unordered_data(stcb, asoc, control, chk, abort_flag); return; } /* * Ok we must queue the chunk into the reasembly portion: o if its * the first it goes to the control mbuf. o if its not first but the * next in sequence it goes to the control, and each succeeding one * in order also goes. o if its not in order we place it on the list * in its place. */ if (chk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) { /* Its the very first one. */ SCTPDBG(SCTP_DEBUG_XXX, "chunk is a first fsn: %u becomes fsn_included\n", chk->rec.data.fsn); if (control->first_frag_seen) { /* * Error on senders part, they either sent us two * data chunks with FIRST, or they sent two * un-ordered chunks that were fragmented at the * same time in the same stream. */ sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_8); return; } control->first_frag_seen = 1; control->sinfo_ppid = chk->rec.data.ppid; control->sinfo_tsn = chk->rec.data.tsn; control->fsn_included = chk->rec.data.fsn; control->data = chk->data; sctp_mark_non_revokable(asoc, chk->rec.data.tsn); chk->data = NULL; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); sctp_setup_tail_pointer(control); asoc->size_on_all_streams += control->length; } else { /* Place the chunk in our list */ int inserted = 0; if (control->last_frag_seen == 0) { /* Still willing to raise highest FSN seen */ if (SCTP_TSN_GT(chk->rec.data.fsn, control->top_fsn)) { SCTPDBG(SCTP_DEBUG_XXX, "We have a new top_fsn: %u\n", chk->rec.data.fsn); control->top_fsn = chk->rec.data.fsn; } if (chk->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { SCTPDBG(SCTP_DEBUG_XXX, "The last fsn is now in place fsn: %u\n", chk->rec.data.fsn); control->last_frag_seen = 1; } if (asoc->idata_supported || control->first_frag_seen) { /* * For IDATA we always check since we know * that the first fragment is 0. For old * DATA we have to receive the first before * we know the first FSN (which is the TSN). */ if (SCTP_TSN_GE(control->fsn_included, chk->rec.data.fsn)) { /* * We have already delivered up to * this so its a dup */ sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_9); return; } } } else { if (chk->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { /* Second last? huh? */ SCTPDBG(SCTP_DEBUG_XXX, "Duplicate last fsn: %u (top: %u) -- abort\n", chk->rec.data.fsn, control->top_fsn); sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_10); return; } if (asoc->idata_supported || control->first_frag_seen) { /* * For IDATA we always check since we know * that the first fragment is 0. For old * DATA we have to receive the first before * we know the first FSN (which is the TSN). */ if (SCTP_TSN_GE(control->fsn_included, chk->rec.data.fsn)) { /* * We have already delivered up to * this so its a dup */ SCTPDBG(SCTP_DEBUG_XXX, "New fsn: %u is already seen in included_fsn: %u -- abort\n", chk->rec.data.fsn, control->fsn_included); sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_11); return; } } /* * validate not beyond top FSN if we have seen last * one */ if (SCTP_TSN_GT(chk->rec.data.fsn, control->top_fsn)) { SCTPDBG(SCTP_DEBUG_XXX, "New fsn: %u is beyond or at top_fsn: %u -- abort\n", chk->rec.data.fsn, control->top_fsn); sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_12); return; } } /* * If we reach here, we need to place the new chunk in the * reassembly for this control. */ SCTPDBG(SCTP_DEBUG_XXX, "chunk is a not first fsn: %u needs to be inserted\n", chk->rec.data.fsn); TAILQ_FOREACH(at, &control->reasm, sctp_next) { if (SCTP_TSN_GT(at->rec.data.fsn, chk->rec.data.fsn)) { /* * This one in queue is bigger than the new * one, insert the new one before at. */ SCTPDBG(SCTP_DEBUG_XXX, "Insert it before fsn: %u\n", at->rec.data.fsn); asoc->size_on_reasm_queue += chk->send_size; sctp_ucount_incr(asoc->cnt_on_reasm_queue); TAILQ_INSERT_BEFORE(at, chk, sctp_next); inserted = 1; break; } else if (at->rec.data.fsn == chk->rec.data.fsn) { /* * Gak, He sent me a duplicate str seq * number */ /* * foo bar, I guess I will just free this * new guy, should we abort too? FIX ME * MAYBE? Or it COULD be that the SSN's have * wrapped. Maybe I should compare to TSN * somehow... sigh for now just blow away * the chunk! */ SCTPDBG(SCTP_DEBUG_XXX, "Duplicate to fsn: %u -- abort\n", at->rec.data.fsn); sctp_abort_in_reasm(stcb, control, chk, abort_flag, SCTP_FROM_SCTP_INDATA + SCTP_LOC_13); return; } } if (inserted == 0) { /* Goes on the end */ SCTPDBG(SCTP_DEBUG_XXX, "Inserting at tail of list fsn: %u\n", chk->rec.data.fsn); asoc->size_on_reasm_queue += chk->send_size; sctp_ucount_incr(asoc->cnt_on_reasm_queue); TAILQ_INSERT_TAIL(&control->reasm, chk, sctp_next); } } /* * Ok lets see if we can suck any up into the control structure that * are in seq if it makes sense. */ do_wakeup = 0; /* * If the first fragment has not been seen there is no sense in * looking. */ if (control->first_frag_seen) { next_fsn = control->fsn_included + 1; TAILQ_FOREACH_SAFE(at, &control->reasm, sctp_next, nat) { if (at->rec.data.fsn == next_fsn) { /* We can add this one now to the control */ SCTPDBG(SCTP_DEBUG_XXX, "Adding more to control: %p at: %p fsn: %u next_fsn: %u included: %u\n", control, at, at->rec.data.fsn, next_fsn, control->fsn_included); TAILQ_REMOVE(&control->reasm, at, sctp_next); lenadded = sctp_add_chk_to_control(control, strm, stcb, asoc, at, SCTP_READ_LOCK_NOT_HELD); if (control->on_read_q) { do_wakeup = 1; } else { /* * We only add to the * size-on-all-streams if its not on * the read q. The read q flag will * cause a sballoc so its accounted * for there. */ asoc->size_on_all_streams += lenadded; } next_fsn++; if (control->end_added && control->pdapi_started) { if (strm->pd_api_started) { strm->pd_api_started = 0; control->pdapi_started = 0; } if (control->on_read_q == 0) { sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, control->end_added, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } break; } } else { break; } } } if (do_wakeup) { /* Need to wakeup the reader */ sctp_wakeup_the_read_socket(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); } } static struct sctp_queued_to_read * sctp_find_reasm_entry(struct sctp_stream_in *strm, uint32_t mid, int ordered, int idata_supported) { struct sctp_queued_to_read *control; if (ordered) { TAILQ_FOREACH(control, &strm->inqueue, next_instrm) { if (SCTP_MID_EQ(idata_supported, control->mid, mid)) { break; } } } else { if (idata_supported) { TAILQ_FOREACH(control, &strm->uno_inqueue, next_instrm) { if (SCTP_MID_EQ(idata_supported, control->mid, mid)) { break; } } } else { control = TAILQ_FIRST(&strm->uno_inqueue); } } return (control); } static int sctp_process_a_data_chunk(struct sctp_tcb *stcb, struct sctp_association *asoc, struct mbuf **m, int offset, int chk_length, struct sctp_nets *net, uint32_t *high_tsn, int *abort_flag, int *break_flag, int last_chunk, uint8_t chk_type) { struct sctp_tmit_chunk *chk = NULL; /* make gcc happy */ uint32_t tsn, fsn, gap, mid; struct mbuf *dmbuf; int the_len; int need_reasm_check = 0; uint16_t sid; struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; struct sctp_queued_to_read *control, *ncontrol; uint32_t ppid; uint8_t chk_flags; struct sctp_stream_reset_list *liste; int ordered; size_t clen; int created_control = 0; if (chk_type == SCTP_IDATA) { struct sctp_idata_chunk *chunk, chunk_buf; chunk = (struct sctp_idata_chunk *)sctp_m_getptr(*m, offset, sizeof(struct sctp_idata_chunk), (uint8_t *)&chunk_buf); chk_flags = chunk->ch.chunk_flags; clen = sizeof(struct sctp_idata_chunk); tsn = ntohl(chunk->dp.tsn); sid = ntohs(chunk->dp.sid); mid = ntohl(chunk->dp.mid); if (chk_flags & SCTP_DATA_FIRST_FRAG) { fsn = 0; ppid = chunk->dp.ppid_fsn.ppid; } else { fsn = ntohl(chunk->dp.ppid_fsn.fsn); ppid = 0xffffffff; /* Use as an invalid value. */ } } else { struct sctp_data_chunk *chunk, chunk_buf; chunk = (struct sctp_data_chunk *)sctp_m_getptr(*m, offset, sizeof(struct sctp_data_chunk), (uint8_t *)&chunk_buf); chk_flags = chunk->ch.chunk_flags; clen = sizeof(struct sctp_data_chunk); tsn = ntohl(chunk->dp.tsn); sid = ntohs(chunk->dp.sid); mid = (uint32_t)(ntohs(chunk->dp.ssn)); fsn = tsn; ppid = chunk->dp.ppid; } if ((size_t)chk_length == clen) { /* * Need to send an abort since we had a empty data chunk. */ op_err = sctp_generate_no_user_data_cause(tsn); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_14; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; return (0); } if ((chk_flags & SCTP_DATA_SACK_IMMEDIATELY) == SCTP_DATA_SACK_IMMEDIATELY) { asoc->send_sack = 1; } ordered = ((chk_flags & SCTP_DATA_UNORDERED) == 0); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(tsn, asoc->cumulative_tsn, asoc->highest_tsn_inside_map, SCTP_MAP_TSN_ENTERS); } if (stcb == NULL) { return (0); } SCTP_LTRACE_CHK(stcb->sctp_ep, stcb, chk_type, tsn); if (SCTP_TSN_GE(asoc->cumulative_tsn, tsn)) { /* It is a duplicate */ SCTP_STAT_INCR(sctps_recvdupdata); if (asoc->numduptsns < SCTP_MAX_DUP_TSNS) { /* Record a dup for the next outbound sack */ asoc->dup_tsns[asoc->numduptsns] = tsn; asoc->numduptsns++; } asoc->send_sack = 1; return (0); } /* Calculate the number of TSN's between the base and this TSN */ SCTP_CALC_TSN_TO_GAP(gap, tsn, asoc->mapping_array_base_tsn); if (gap >= (SCTP_MAPPING_ARRAY << 3)) { /* Can't hold the bit in the mapping at max array, toss it */ return (0); } if (gap >= (uint32_t)(asoc->mapping_array_size << 3)) { SCTP_TCB_LOCK_ASSERT(stcb); if (sctp_expand_mapping_array(asoc, gap)) { /* Can't expand, drop it */ return (0); } } if (SCTP_TSN_GT(tsn, *high_tsn)) { *high_tsn = tsn; } /* See if we have received this one already */ if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap) || SCTP_IS_TSN_PRESENT(asoc->nr_mapping_array, gap)) { SCTP_STAT_INCR(sctps_recvdupdata); if (asoc->numduptsns < SCTP_MAX_DUP_TSNS) { /* Record a dup for the next outbound sack */ asoc->dup_tsns[asoc->numduptsns] = tsn; asoc->numduptsns++; } asoc->send_sack = 1; return (0); } /* * Check to see about the GONE flag, duplicates would cause a sack * to be sent up above */ if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET))) { /* * wait a minute, this guy is gone, there is no longer a * receiver. Send peer an ABORT! */ op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; return (0); } /* * Now before going further we see if there is room. If NOT then we * MAY let one through only IF this TSN is the one we are waiting * for on a partial delivery API. */ /* Is the stream valid? */ if (sid >= asoc->streamincnt) { struct sctp_error_invalid_stream *cause; op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_invalid_stream), 0, M_NOWAIT, 1, MT_DATA); if (op_err != NULL) { /* add some space up front so prepend will work well */ SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); cause = mtod(op_err, struct sctp_error_invalid_stream *); /* * Error causes are just param's and this one has * two back to back phdr, one with the error type * and size, the other with the streamid and a rsvd */ SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_invalid_stream); cause->cause.code = htons(SCTP_CAUSE_INVALID_STREAM); cause->cause.length = htons(sizeof(struct sctp_error_invalid_stream)); cause->stream_id = htons(sid); cause->reserved = htons(0); sctp_queue_op_err(stcb, op_err); } SCTP_STAT_INCR(sctps_badsid); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_SET_TSN_PRESENT(asoc->nr_mapping_array, gap); if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_nr_map)) { asoc->highest_tsn_inside_nr_map = tsn; } if (tsn == (asoc->cumulative_tsn + 1)) { /* Update cum-ack */ asoc->cumulative_tsn = tsn; } return (0); } /* * If its a fragmented message, lets see if we can find the control * on the reassembly queues. */ if ((chk_type == SCTP_IDATA) && ((chk_flags & SCTP_DATA_FIRST_FRAG) == 0) && (fsn == 0)) { /* * The first *must* be fsn 0, and other (middle/end) pieces * can *not* be fsn 0. XXX: This can happen in case of a * wrap around. Ignore is for now. */ snprintf(msg, sizeof(msg), "FSN zero for MID=%8.8x, but flags=%2.2x", mid, chk_flags); goto err_out; } control = sctp_find_reasm_entry(&asoc->strmin[sid], mid, ordered, asoc->idata_supported); SCTPDBG(SCTP_DEBUG_XXX, "chunk_flags:0x%x look for control on queues %p\n", chk_flags, control); if ((chk_flags & SCTP_DATA_NOT_FRAG) != SCTP_DATA_NOT_FRAG) { /* See if we can find the re-assembly entity */ if (control != NULL) { /* We found something, does it belong? */ if (ordered && (mid != control->mid)) { snprintf(msg, sizeof(msg), "Reassembly problem (MID=%8.8x)", mid); err_out: op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_15; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; return (0); } if (ordered && ((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED)) { /* * We can't have a switched order with an * unordered chunk */ snprintf(msg, sizeof(msg), "All fragments of a user message must be ordered or unordered (TSN=%8.8x)", tsn); goto err_out; } if (!ordered && (((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED) == 0)) { /* * We can't have a switched unordered with a * ordered chunk */ snprintf(msg, sizeof(msg), "All fragments of a user message must be ordered or unordered (TSN=%8.8x)", tsn); goto err_out; } } } else { /* * Its a complete segment. Lets validate we don't have a * re-assembly going on with the same Stream/Seq (for * ordered) or in the same Stream for unordered. */ if (control != NULL) { if (ordered || asoc->idata_supported) { SCTPDBG(SCTP_DEBUG_XXX, "chunk_flags: 0x%x dup detected on MID: %u\n", chk_flags, mid); snprintf(msg, sizeof(msg), "Duplicate MID=%8.8x detected.", mid); goto err_out; } else { if ((tsn == control->fsn_included + 1) && (control->end_added == 0)) { snprintf(msg, sizeof(msg), "Illegal message sequence, missing end for MID: %8.8x", control->fsn_included); goto err_out; } else { control = NULL; } } } } /* now do the tests */ if (((asoc->cnt_on_all_streams + asoc->cnt_on_reasm_queue + asoc->cnt_msg_on_sb) >= SCTP_BASE_SYSCTL(sctp_max_chunks_on_queue)) || (((int)asoc->my_rwnd) <= 0)) { /* * When we have NO room in the rwnd we check to make sure * the reader is doing its job... */ if (stcb->sctp_socket->so_rcv.sb_cc) { /* some to read, wake-up */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return (0); } #endif sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } /* now is it in the mapping array of what we have accepted? */ if (chk_type == SCTP_DATA) { if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_map) && SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_nr_map)) { /* Nope not in the valid range dump it */ dump_packet: sctp_set_rwnd(stcb, asoc); if ((asoc->cnt_on_all_streams + asoc->cnt_on_reasm_queue + asoc->cnt_msg_on_sb) >= SCTP_BASE_SYSCTL(sctp_max_chunks_on_queue)) { SCTP_STAT_INCR(sctps_datadropchklmt); } else { SCTP_STAT_INCR(sctps_datadroprwnd); } *break_flag = 1; return (0); } } else { if (control == NULL) { goto dump_packet; } if (SCTP_TSN_GT(fsn, control->top_fsn)) { goto dump_packet; } } } #ifdef SCTP_ASOCLOG_OF_TSNS SCTP_TCB_LOCK_ASSERT(stcb); if (asoc->tsn_in_at >= SCTP_TSN_LOG_SIZE) { asoc->tsn_in_at = 0; asoc->tsn_in_wrapped = 1; } asoc->in_tsnlog[asoc->tsn_in_at].tsn = tsn; asoc->in_tsnlog[asoc->tsn_in_at].strm = sid; asoc->in_tsnlog[asoc->tsn_in_at].seq = mid; asoc->in_tsnlog[asoc->tsn_in_at].sz = chk_length; asoc->in_tsnlog[asoc->tsn_in_at].flgs = chunk_flags; asoc->in_tsnlog[asoc->tsn_in_at].stcb = (void *)stcb; asoc->in_tsnlog[asoc->tsn_in_at].in_pos = asoc->tsn_in_at; asoc->in_tsnlog[asoc->tsn_in_at].in_out = 1; asoc->tsn_in_at++; #endif /* * Before we continue lets validate that we are not being fooled by * an evil attacker. We can only have Nk chunks based on our TSN * spread allowed by the mapping array N * 8 bits, so there is no * way our stream sequence numbers could have wrapped. We of course * only validate the FIRST fragment so the bit must be set. */ if ((chk_flags & SCTP_DATA_FIRST_FRAG) && (TAILQ_EMPTY(&asoc->resetHead)) && (chk_flags & SCTP_DATA_UNORDERED) == 0 && SCTP_MID_GE(asoc->idata_supported, asoc->strmin[sid].last_mid_delivered, mid)) { /* The incoming sseq is behind where we last delivered? */ SCTPDBG(SCTP_DEBUG_INDATA1, "EVIL/Broken-Dup S-SEQ: %u delivered: %u from peer, Abort!\n", mid, asoc->strmin[sid].last_mid_delivered); if (asoc->idata_supported) { snprintf(msg, sizeof(msg), "Delivered MID=%8.8x, got TSN=%8.8x, SID=%4.4x, MID=%8.8x", asoc->strmin[sid].last_mid_delivered, tsn, sid, mid); } else { snprintf(msg, sizeof(msg), "Delivered SSN=%4.4x, got TSN=%8.8x, SID=%4.4x, SSN=%4.4x", (uint16_t)asoc->strmin[sid].last_mid_delivered, tsn, sid, (uint16_t)mid); } op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_16; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_flag = 1; return (0); } if (chk_type == SCTP_IDATA) { the_len = (chk_length - sizeof(struct sctp_idata_chunk)); } else { the_len = (chk_length - sizeof(struct sctp_data_chunk)); } if (last_chunk == 0) { if (chk_type == SCTP_IDATA) { dmbuf = SCTP_M_COPYM(*m, (offset + sizeof(struct sctp_idata_chunk)), the_len, M_NOWAIT); } else { dmbuf = SCTP_M_COPYM(*m, (offset + sizeof(struct sctp_data_chunk)), the_len, M_NOWAIT); } #ifdef SCTP_MBUF_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mbc(dmbuf, SCTP_MBUF_ICOPY); } #endif } else { /* We can steal the last chunk */ int l_len; dmbuf = *m; /* lop off the top part */ if (chk_type == SCTP_IDATA) { m_adj(dmbuf, (offset + sizeof(struct sctp_idata_chunk))); } else { m_adj(dmbuf, (offset + sizeof(struct sctp_data_chunk))); } if (SCTP_BUF_NEXT(dmbuf) == NULL) { l_len = SCTP_BUF_LEN(dmbuf); } else { /* * need to count up the size hopefully does not hit * this to often :-0 */ struct mbuf *lat; l_len = 0; for (lat = dmbuf; lat; lat = SCTP_BUF_NEXT(lat)) { l_len += SCTP_BUF_LEN(lat); } } if (l_len > the_len) { /* Trim the end round bytes off too */ m_adj(dmbuf, -(l_len - the_len)); } } if (dmbuf == NULL) { SCTP_STAT_INCR(sctps_nomem); return (0); } /* * Now no matter what, we need a control, get one if we don't have * one (we may have gotten it above when we found the message was * fragmented */ if (control == NULL) { sctp_alloc_a_readq(stcb, control); sctp_build_readq_entry_mac(control, stcb, asoc->context, net, tsn, ppid, sid, chk_flags, NULL, fsn, mid); if (control == NULL) { SCTP_STAT_INCR(sctps_nomem); return (0); } if ((chk_flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { struct mbuf *mm; control->data = dmbuf; for (mm = control->data; mm; mm = mm->m_next) { control->length += SCTP_BUF_LEN(mm); } control->tail_mbuf = NULL; control->end_added = 1; control->last_frag_seen = 1; control->first_frag_seen = 1; control->fsn_included = fsn; control->top_fsn = fsn; } created_control = 1; } SCTPDBG(SCTP_DEBUG_XXX, "chunk_flags: 0x%x ordered: %d MID: %u control: %p\n", chk_flags, ordered, mid, control); if ((chk_flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG && TAILQ_EMPTY(&asoc->resetHead) && ((ordered == 0) || (SCTP_MID_EQ(asoc->idata_supported, asoc->strmin[sid].last_mid_delivered + 1, mid) && TAILQ_EMPTY(&asoc->strmin[sid].inqueue)))) { /* Candidate for express delivery */ /* * Its not fragmented, No PD-API is up, Nothing in the * delivery queue, Its un-ordered OR ordered and the next to * deliver AND nothing else is stuck on the stream queue, * And there is room for it in the socket buffer. Lets just * stuff it up the buffer.... */ SCTP_SET_TSN_PRESENT(asoc->nr_mapping_array, gap); if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_nr_map)) { asoc->highest_tsn_inside_nr_map = tsn; } SCTPDBG(SCTP_DEBUG_XXX, "Injecting control: %p to be read (MID: %u)\n", control, mid); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); if ((chk_flags & SCTP_DATA_UNORDERED) == 0) { /* for ordered, bump what we delivered */ asoc->strmin[sid].last_mid_delivered++; } SCTP_STAT_INCR(sctps_recvexpress); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del_alt(stcb, tsn, mid, sid, SCTP_STR_LOG_FROM_EXPRS_DEL); } control = NULL; goto finish_express_del; } + /* Now will we need a chunk too? */ if ((chk_flags & SCTP_DATA_NOT_FRAG) != SCTP_DATA_NOT_FRAG) { sctp_alloc_a_chunk(stcb, chk); if (chk == NULL) { /* No memory so we drop the chunk */ SCTP_STAT_INCR(sctps_nomem); if (last_chunk == 0) { /* we copied it, free the copy */ sctp_m_freem(dmbuf); } return (0); } chk->rec.data.tsn = tsn; chk->no_fr_allowed = 0; chk->rec.data.fsn = fsn; chk->rec.data.mid = mid; chk->rec.data.sid = sid; chk->rec.data.ppid = ppid; chk->rec.data.context = stcb->asoc.context; chk->rec.data.doing_fast_retransmit = 0; chk->rec.data.rcv_flags = chk_flags; chk->asoc = asoc; chk->send_size = the_len; chk->whoTo = net; SCTPDBG(SCTP_DEBUG_XXX, "Building ck: %p for control: %p to be read (MID: %u)\n", chk, control, mid); atomic_add_int(&net->ref_count, 1); chk->data = dmbuf; } /* Set the appropriate TSN mark */ if (SCTP_BASE_SYSCTL(sctp_do_drain) == 0) { SCTP_SET_TSN_PRESENT(asoc->nr_mapping_array, gap); if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_nr_map)) { asoc->highest_tsn_inside_nr_map = tsn; } } else { SCTP_SET_TSN_PRESENT(asoc->mapping_array, gap); if (SCTP_TSN_GT(tsn, asoc->highest_tsn_inside_map)) { asoc->highest_tsn_inside_map = tsn; } } /* Now is it complete (i.e. not fragmented)? */ if ((chk_flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { /* * Special check for when streams are resetting. We could be * more smart about this and check the actual stream to see * if it is not being reset.. that way we would not create a * HOLB when amongst streams being reset and those not being * reset. * */ if (((liste = TAILQ_FIRST(&asoc->resetHead)) != NULL) && SCTP_TSN_GT(tsn, liste->tsn)) { /* * yep its past where we need to reset... go ahead * and queue it. */ if (TAILQ_EMPTY(&asoc->pending_reply_queue)) { /* first one on */ TAILQ_INSERT_TAIL(&asoc->pending_reply_queue, control, next); } else { struct sctp_queued_to_read *lcontrol, *nlcontrol; unsigned char inserted = 0; TAILQ_FOREACH_SAFE(lcontrol, &asoc->pending_reply_queue, next, nlcontrol) { if (SCTP_TSN_GT(control->sinfo_tsn, lcontrol->sinfo_tsn)) { continue; } else { /* found it */ TAILQ_INSERT_BEFORE(lcontrol, control, next); inserted = 1; break; } } if (inserted == 0) { /* * must be put at end, use prevP * (all setup from loop) to setup * nextP. */ TAILQ_INSERT_TAIL(&asoc->pending_reply_queue, control, next); } } goto finish_express_del; } if (chk_flags & SCTP_DATA_UNORDERED) { /* queue directly into socket buffer */ SCTPDBG(SCTP_DEBUG_XXX, "Unordered data to be read control: %p MID: %u\n", control, mid); sctp_mark_non_revokable(asoc, control->sinfo_tsn); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } else { SCTPDBG(SCTP_DEBUG_XXX, "Queue control: %p for reordering MID: %u\n", control, mid); sctp_queue_data_to_stream(stcb, asoc, control, abort_flag, &need_reasm_check); if (*abort_flag) { if (last_chunk) { *m = NULL; } return (0); } } goto finish_express_del; } /* If we reach here its a reassembly */ need_reasm_check = 1; SCTPDBG(SCTP_DEBUG_XXX, "Queue data to stream for reasm control: %p MID: %u\n", control, mid); sctp_queue_data_for_reasm(stcb, asoc, control, chk, created_control, abort_flag, tsn); if (*abort_flag) { /* * the assoc is now gone and chk was put onto the reasm * queue, which has all been freed. */ if (last_chunk) { *m = NULL; } return (0); } finish_express_del: /* Here we tidy up things */ if (tsn == (asoc->cumulative_tsn + 1)) { /* Update cum-ack */ asoc->cumulative_tsn = tsn; } if (last_chunk) { *m = NULL; } if (ordered) { SCTP_STAT_INCR_COUNTER64(sctps_inorderchunks); } else { SCTP_STAT_INCR_COUNTER64(sctps_inunorderchunks); } SCTP_STAT_INCR(sctps_recvdata); /* Set it present please */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_STR_LOGGING_ENABLE) { sctp_log_strm_del_alt(stcb, tsn, mid, sid, SCTP_STR_LOG_FROM_MARK_TSN); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(asoc->mapping_array_base_tsn, asoc->cumulative_tsn, asoc->highest_tsn_inside_map, SCTP_MAP_PREPARE_SLIDE); } if (need_reasm_check) { (void)sctp_deliver_reasm_check(stcb, asoc, &asoc->strmin[sid], SCTP_READ_LOCK_NOT_HELD); need_reasm_check = 0; } /* check the special flag for stream resets */ if (((liste = TAILQ_FIRST(&asoc->resetHead)) != NULL) && SCTP_TSN_GE(asoc->cumulative_tsn, liste->tsn)) { /* * we have finished working through the backlogged TSN's now * time to reset streams. 1: call reset function. 2: free * pending_reply space 3: distribute any chunks in * pending_reply_queue. */ sctp_reset_in_stream(stcb, liste->number_entries, liste->list_of_streams); TAILQ_REMOVE(&asoc->resetHead, liste, next_resp); sctp_send_deferred_reset_response(stcb, liste, SCTP_STREAM_RESET_RESULT_PERFORMED); SCTP_FREE(liste, SCTP_M_STRESET); /* sa_ignore FREED_MEMORY */ liste = TAILQ_FIRST(&asoc->resetHead); if (TAILQ_EMPTY(&asoc->resetHead)) { /* All can be removed */ TAILQ_FOREACH_SAFE(control, &asoc->pending_reply_queue, next, ncontrol) { TAILQ_REMOVE(&asoc->pending_reply_queue, control, next); sctp_queue_data_to_stream(stcb, asoc, control, abort_flag, &need_reasm_check); if (*abort_flag) { return (0); } if (need_reasm_check) { (void)sctp_deliver_reasm_check(stcb, asoc, &asoc->strmin[control->sinfo_stream], SCTP_READ_LOCK_NOT_HELD); need_reasm_check = 0; } } } else { TAILQ_FOREACH_SAFE(control, &asoc->pending_reply_queue, next, ncontrol) { if (SCTP_TSN_GT(control->sinfo_tsn, liste->tsn)) { break; } /* * if control->sinfo_tsn is <= liste->tsn we * can process it which is the NOT of * control->sinfo_tsn > liste->tsn */ TAILQ_REMOVE(&asoc->pending_reply_queue, control, next); sctp_queue_data_to_stream(stcb, asoc, control, abort_flag, &need_reasm_check); if (*abort_flag) { return (0); } if (need_reasm_check) { (void)sctp_deliver_reasm_check(stcb, asoc, &asoc->strmin[control->sinfo_stream], SCTP_READ_LOCK_NOT_HELD); need_reasm_check = 0; } } } } return (1); } static const int8_t sctp_map_lookup_tab[256] = { 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 8 }; void sctp_slide_mapping_arrays(struct sctp_tcb *stcb) { /* * Now we also need to check the mapping array in a couple of ways. * 1) Did we move the cum-ack point? * * When you first glance at this you might think that all entries * that make up the position of the cum-ack would be in the * nr-mapping array only.. i.e. things up to the cum-ack are always * deliverable. Thats true with one exception, when its a fragmented * message we may not deliver the data until some threshold (or all * of it) is in place. So we must OR the nr_mapping_array and * mapping_array to get a true picture of the cum-ack. */ struct sctp_association *asoc; int at; uint8_t val; int slide_from, slide_end, lgap, distance; uint32_t old_cumack, old_base, old_highest, highest_tsn; asoc = &stcb->asoc; old_cumack = asoc->cumulative_tsn; old_base = asoc->mapping_array_base_tsn; old_highest = asoc->highest_tsn_inside_map; /* * We could probably improve this a small bit by calculating the * offset of the current cum-ack as the starting point. */ at = 0; for (slide_from = 0; slide_from < stcb->asoc.mapping_array_size; slide_from++) { val = asoc->nr_mapping_array[slide_from] | asoc->mapping_array[slide_from]; if (val == 0xff) { at += 8; } else { /* there is a 0 bit */ at += sctp_map_lookup_tab[val]; break; } } asoc->cumulative_tsn = asoc->mapping_array_base_tsn + (at - 1); if (SCTP_TSN_GT(asoc->cumulative_tsn, asoc->highest_tsn_inside_map) && SCTP_TSN_GT(asoc->cumulative_tsn, asoc->highest_tsn_inside_nr_map)) { #ifdef INVARIANTS panic("huh, cumack 0x%x greater than high-tsn 0x%x in map", asoc->cumulative_tsn, asoc->highest_tsn_inside_map); #else SCTP_PRINTF("huh, cumack 0x%x greater than high-tsn 0x%x in map - should panic?\n", asoc->cumulative_tsn, asoc->highest_tsn_inside_map); sctp_print_mapping_array(asoc); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(0, 6, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } asoc->highest_tsn_inside_map = asoc->cumulative_tsn; asoc->highest_tsn_inside_nr_map = asoc->cumulative_tsn; #endif } if (SCTP_TSN_GT(asoc->highest_tsn_inside_nr_map, asoc->highest_tsn_inside_map)) { highest_tsn = asoc->highest_tsn_inside_nr_map; } else { highest_tsn = asoc->highest_tsn_inside_map; } if ((asoc->cumulative_tsn == highest_tsn) && (at >= 8)) { /* The complete array was completed by a single FR */ /* highest becomes the cum-ack */ int clr; #ifdef INVARIANTS unsigned int i; #endif /* clear the array */ clr = ((at + 7) >> 3); if (clr > asoc->mapping_array_size) { clr = asoc->mapping_array_size; } memset(asoc->mapping_array, 0, clr); memset(asoc->nr_mapping_array, 0, clr); #ifdef INVARIANTS for (i = 0; i < asoc->mapping_array_size; i++) { if ((asoc->mapping_array[i]) || (asoc->nr_mapping_array[i])) { SCTP_PRINTF("Error Mapping array's not clean at clear\n"); sctp_print_mapping_array(asoc); } } #endif asoc->mapping_array_base_tsn = asoc->cumulative_tsn + 1; asoc->highest_tsn_inside_nr_map = asoc->highest_tsn_inside_map = asoc->cumulative_tsn; } else if (at >= 8) { /* we can slide the mapping array down */ /* slide_from holds where we hit the first NON 0xff byte */ /* * now calculate the ceiling of the move using our highest * TSN value */ SCTP_CALC_TSN_TO_GAP(lgap, highest_tsn, asoc->mapping_array_base_tsn); slide_end = (lgap >> 3); if (slide_end < slide_from) { sctp_print_mapping_array(asoc); #ifdef INVARIANTS panic("impossible slide"); #else SCTP_PRINTF("impossible slide lgap: %x slide_end: %x slide_from: %x? at: %d\n", lgap, slide_end, slide_from, at); return; #endif } if (slide_end > asoc->mapping_array_size) { #ifdef INVARIANTS panic("would overrun buffer"); #else SCTP_PRINTF("Gak, would have overrun map end: %d slide_end: %d\n", asoc->mapping_array_size, slide_end); slide_end = asoc->mapping_array_size; #endif } distance = (slide_end - slide_from) + 1; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(old_base, old_cumack, old_highest, SCTP_MAP_PREPARE_SLIDE); sctp_log_map((uint32_t)slide_from, (uint32_t)slide_end, (uint32_t)lgap, SCTP_MAP_SLIDE_FROM); } if (distance + slide_from > asoc->mapping_array_size || distance < 0) { /* * Here we do NOT slide forward the array so that * hopefully when more data comes in to fill it up * we will be able to slide it forward. Really I * don't think this should happen :-0 */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map((uint32_t)distance, (uint32_t)slide_from, (uint32_t)asoc->mapping_array_size, SCTP_MAP_SLIDE_NONE); } } else { int ii; for (ii = 0; ii < distance; ii++) { asoc->mapping_array[ii] = asoc->mapping_array[slide_from + ii]; asoc->nr_mapping_array[ii] = asoc->nr_mapping_array[slide_from + ii]; } for (ii = distance; ii < asoc->mapping_array_size; ii++) { asoc->mapping_array[ii] = 0; asoc->nr_mapping_array[ii] = 0; } if (asoc->highest_tsn_inside_map + 1 == asoc->mapping_array_base_tsn) { asoc->highest_tsn_inside_map += (slide_from << 3); } if (asoc->highest_tsn_inside_nr_map + 1 == asoc->mapping_array_base_tsn) { asoc->highest_tsn_inside_nr_map += (slide_from << 3); } asoc->mapping_array_base_tsn += (slide_from << 3); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(asoc->mapping_array_base_tsn, asoc->cumulative_tsn, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } } } } void sctp_sack_check(struct sctp_tcb *stcb, int was_a_gap) { struct sctp_association *asoc; uint32_t highest_tsn; int is_a_gap; sctp_slide_mapping_arrays(stcb); asoc = &stcb->asoc; if (SCTP_TSN_GT(asoc->highest_tsn_inside_nr_map, asoc->highest_tsn_inside_map)) { highest_tsn = asoc->highest_tsn_inside_nr_map; } else { highest_tsn = asoc->highest_tsn_inside_map; } /* Is there a gap now? */ is_a_gap = SCTP_TSN_GT(highest_tsn, stcb->asoc.cumulative_tsn); /* * Now we need to see if we need to queue a sack or just start the * timer (if allowed). */ if (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_SENT) { /* * Ok special case, in SHUTDOWN-SENT case. here we maker * sure SACK timer is off and instead send a SHUTDOWN and a * SACK */ if (SCTP_OS_TIMER_PENDING(&stcb->asoc.dack_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTP_INDATA + SCTP_LOC_17); } sctp_send_shutdown(stcb, ((stcb->asoc.alternate) ? stcb->asoc.alternate : stcb->asoc.primary_destination)); if (is_a_gap) { sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); } } else { /* * CMT DAC algorithm: increase number of packets received * since last ack */ stcb->asoc.cmt_dac_pkts_rcvd++; if ((stcb->asoc.send_sack == 1) || /* We need to send a * SACK */ ((was_a_gap) && (is_a_gap == 0)) || /* was a gap, but no * longer is one */ (stcb->asoc.numduptsns) || /* we have dup's */ (is_a_gap) || /* is still a gap */ (stcb->asoc.delayed_ack == 0) || /* Delayed sack disabled */ (stcb->asoc.data_pkts_seen >= stcb->asoc.sack_freq) /* hit limit of pkts */ ) { if ((stcb->asoc.sctp_cmt_on_off > 0) && (SCTP_BASE_SYSCTL(sctp_cmt_use_dac)) && (stcb->asoc.send_sack == 0) && (stcb->asoc.numduptsns == 0) && (stcb->asoc.delayed_ack) && (!SCTP_OS_TIMER_PENDING(&stcb->asoc.dack_timer.timer))) { /* * CMT DAC algorithm: With CMT, delay acks * even in the face of * * reordering. Therefore, if acks that do * not have to be sent because of the above * reasons, will be delayed. That is, acks * that would have been sent due to gap * reports will be delayed with DAC. Start * the delayed ack timer. */ sctp_timer_start(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL); } else { /* * Ok we must build a SACK since the timer * is pending, we got our first packet OR * there are gaps or duplicates. */ (void)SCTP_OS_TIMER_STOP(&stcb->asoc.dack_timer.timer); sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); } } else { if (!SCTP_OS_TIMER_PENDING(&stcb->asoc.dack_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL); } } } } int sctp_process_data(struct mbuf **mm, int iphlen, int *offset, int length, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t *high_tsn) { struct sctp_chunkhdr *ch, chunk_buf; struct sctp_association *asoc; int num_chunks = 0; /* number of control chunks processed */ int stop_proc = 0; int break_flag, last_chunk; int abort_flag = 0, was_a_gap; struct mbuf *m; uint32_t highest_tsn; uint16_t chk_length; /* set the rwnd */ sctp_set_rwnd(stcb, &stcb->asoc); m = *mm; SCTP_TCB_LOCK_ASSERT(stcb); asoc = &stcb->asoc; if (SCTP_TSN_GT(asoc->highest_tsn_inside_nr_map, asoc->highest_tsn_inside_map)) { highest_tsn = asoc->highest_tsn_inside_nr_map; } else { highest_tsn = asoc->highest_tsn_inside_map; } was_a_gap = SCTP_TSN_GT(highest_tsn, stcb->asoc.cumulative_tsn); /* * setup where we got the last DATA packet from for any SACK that * may need to go out. Don't bump the net. This is done ONLY when a * chunk is assigned. */ asoc->last_data_chunk_from = net; /*- * Now before we proceed we must figure out if this is a wasted * cluster... i.e. it is a small packet sent in and yet the driver * underneath allocated a full cluster for it. If so we must copy it * to a smaller mbuf and free up the cluster mbuf. This will help * with cluster starvation. Note for __Panda__ we don't do this * since it has clusters all the way down to 64 bytes. */ if (SCTP_BUF_LEN(m) < (long)MLEN && SCTP_BUF_NEXT(m) == NULL) { /* we only handle mbufs that are singletons.. not chains */ m = sctp_get_mbuf_for_msg(SCTP_BUF_LEN(m), 0, M_NOWAIT, 1, MT_DATA); if (m) { /* ok lets see if we can copy the data up */ caddr_t *from, *to; /* get the pointers and copy */ to = mtod(m, caddr_t *); from = mtod((*mm), caddr_t *); memcpy(to, from, SCTP_BUF_LEN((*mm))); /* copy the length and free up the old */ SCTP_BUF_LEN(m) = SCTP_BUF_LEN((*mm)); sctp_m_freem(*mm); /* success, back copy */ *mm = m; } else { /* We are in trouble in the mbuf world .. yikes */ m = *mm; } } /* get pointer to the first chunk header */ ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, *offset, sizeof(struct sctp_chunkhdr), (uint8_t *)&chunk_buf); if (ch == NULL) { return (1); } /* * process all DATA chunks... */ *high_tsn = asoc->cumulative_tsn; break_flag = 0; asoc->data_pkts_seen++; while (stop_proc == 0) { /* validate chunk length */ chk_length = ntohs(ch->chunk_length); if (length - *offset < chk_length) { /* all done, mutulated chunk */ stop_proc = 1; continue; } if ((asoc->idata_supported == 1) && (ch->chunk_type == SCTP_DATA)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; snprintf(msg, sizeof(msg), "%s", "I-DATA chunk received when DATA was negotiated"); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_18; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (2); } if ((asoc->idata_supported == 0) && (ch->chunk_type == SCTP_IDATA)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; snprintf(msg, sizeof(msg), "%s", "DATA chunk received when I-DATA was negotiated"); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_19; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (2); } if ((ch->chunk_type == SCTP_DATA) || (ch->chunk_type == SCTP_IDATA)) { uint16_t clen; if (ch->chunk_type == SCTP_DATA) { clen = sizeof(struct sctp_data_chunk); } else { clen = sizeof(struct sctp_idata_chunk); } if (chk_length < clen) { /* * Need to send an abort since we had a * invalid data chunk. */ struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; snprintf(msg, sizeof(msg), "%s chunk of length %u", ch->chunk_type == SCTP_DATA ? "DATA" : "I-DATA", chk_length); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_20; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (2); } #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xB1, 0); #endif if (SCTP_SIZE32(chk_length) == (length - *offset)) { last_chunk = 1; } else { last_chunk = 0; } if (sctp_process_a_data_chunk(stcb, asoc, mm, *offset, chk_length, net, high_tsn, &abort_flag, &break_flag, last_chunk, ch->chunk_type)) { num_chunks++; } if (abort_flag) return (2); if (break_flag) { /* * Set because of out of rwnd space and no * drop rep space left. */ stop_proc = 1; continue; } } else { /* not a data chunk in the data region */ switch (ch->chunk_type) { case SCTP_INITIATION: case SCTP_INITIATION_ACK: case SCTP_SELECTIVE_ACK: case SCTP_NR_SELECTIVE_ACK: case SCTP_HEARTBEAT_REQUEST: case SCTP_HEARTBEAT_ACK: case SCTP_ABORT_ASSOCIATION: case SCTP_SHUTDOWN: case SCTP_SHUTDOWN_ACK: case SCTP_OPERATION_ERROR: case SCTP_COOKIE_ECHO: case SCTP_COOKIE_ACK: case SCTP_ECN_ECHO: case SCTP_ECN_CWR: case SCTP_SHUTDOWN_COMPLETE: case SCTP_AUTHENTICATION: case SCTP_ASCONF_ACK: case SCTP_PACKET_DROPPED: case SCTP_STREAM_RESET: case SCTP_FORWARD_CUM_TSN: case SCTP_ASCONF: { /* * Now, what do we do with KNOWN * chunks that are NOT in the right * place? * * For now, I do nothing but ignore * them. We may later want to add * sysctl stuff to switch out and do * either an ABORT() or possibly * process them. */ struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; snprintf(msg, sizeof(msg), "DATA chunk followed by chunk of type %2.2x", ch->chunk_type); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (2); } default: /* * Unknown chunk type: use bit rules after * checking length */ if (chk_length < sizeof(struct sctp_chunkhdr)) { /* * Need to send an abort since we * had a invalid chunk. */ struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; snprintf(msg, sizeof(msg), "Chunk of length %u", chk_length); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_20; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (2); } if (ch->chunk_type & 0x40) { /* Add a error report to the queue */ struct mbuf *op_err; struct sctp_gen_error_cause *cause; op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_gen_error_cause), 0, M_NOWAIT, 1, MT_DATA); if (op_err != NULL) { cause = mtod(op_err, struct sctp_gen_error_cause *); cause->code = htons(SCTP_CAUSE_UNRECOG_CHUNK); cause->length = htons((uint16_t)(chk_length + sizeof(struct sctp_gen_error_cause))); SCTP_BUF_LEN(op_err) = sizeof(struct sctp_gen_error_cause); SCTP_BUF_NEXT(op_err) = SCTP_M_COPYM(m, *offset, chk_length, M_NOWAIT); if (SCTP_BUF_NEXT(op_err) != NULL) { sctp_queue_op_err(stcb, op_err); } else { sctp_m_freem(op_err); } } } if ((ch->chunk_type & 0x80) == 0) { /* discard the rest of this packet */ stop_proc = 1; } /* else skip this bad chunk and * continue... */ break; } /* switch of chunk type */ } *offset += SCTP_SIZE32(chk_length); if ((*offset >= length) || stop_proc) { /* no more data left in the mbuf chain */ stop_proc = 1; continue; } ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, *offset, sizeof(struct sctp_chunkhdr), (uint8_t *)&chunk_buf); if (ch == NULL) { *offset = length; stop_proc = 1; continue; } } if (break_flag) { /* * we need to report rwnd overrun drops. */ sctp_send_packet_dropped(stcb, net, *mm, length, iphlen, 0); } if (num_chunks) { /* * Did we get data, if so update the time for auto-close and * give peer credit for being alive. */ SCTP_STAT_INCR(sctps_recvpktwithdata); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INDATA, __LINE__); } stcb->asoc.overall_error_count = 0; (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_last_rcvd); } /* now service all of the reassm queue if needed */ if (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_SENT) { /* Assure that we ack right away */ stcb->asoc.send_sack = 1; } /* Start a sack timer or QUEUE a SACK for sending */ sctp_sack_check(stcb, was_a_gap); return (0); } static int sctp_process_segment_range(struct sctp_tcb *stcb, struct sctp_tmit_chunk **p_tp1, uint32_t last_tsn, uint16_t frag_strt, uint16_t frag_end, int nr_sacking, int *num_frs, uint32_t *biggest_newly_acked_tsn, uint32_t *this_sack_lowest_newack, int *rto_ok) { struct sctp_tmit_chunk *tp1; unsigned int theTSN; int j, wake_him = 0, circled = 0; /* Recover the tp1 we last saw */ tp1 = *p_tp1; if (tp1 == NULL) { tp1 = TAILQ_FIRST(&stcb->asoc.sent_queue); } for (j = frag_strt; j <= frag_end; j++) { theTSN = j + last_tsn; while (tp1) { if (tp1->rec.data.doing_fast_retransmit) (*num_frs) += 1; /*- * CMT: CUCv2 algorithm. For each TSN being * processed from the sent queue, track the * next expected pseudo-cumack, or * rtx_pseudo_cumack, if required. Separate * cumack trackers for first transmissions, * and retransmissions. */ if ((tp1->sent < SCTP_DATAGRAM_RESEND) && (tp1->whoTo->find_pseudo_cumack == 1) && (tp1->snd_count == 1)) { tp1->whoTo->pseudo_cumack = tp1->rec.data.tsn; tp1->whoTo->find_pseudo_cumack = 0; } if ((tp1->sent < SCTP_DATAGRAM_RESEND) && (tp1->whoTo->find_rtx_pseudo_cumack == 1) && (tp1->snd_count > 1)) { tp1->whoTo->rtx_pseudo_cumack = tp1->rec.data.tsn; tp1->whoTo->find_rtx_pseudo_cumack = 0; } if (tp1->rec.data.tsn == theTSN) { if (tp1->sent != SCTP_DATAGRAM_UNSENT) { /*- * must be held until * cum-ack passes */ if (tp1->sent < SCTP_DATAGRAM_RESEND) { /*- * If it is less than RESEND, it is * now no-longer in flight. * Higher values may already be set * via previous Gap Ack Blocks... * i.e. ACKED or RESEND. */ if (SCTP_TSN_GT(tp1->rec.data.tsn, *biggest_newly_acked_tsn)) { *biggest_newly_acked_tsn = tp1->rec.data.tsn; } /*- * CMT: SFR algo (and HTNA) - set * saw_newack to 1 for dest being * newly acked. update * this_sack_highest_newack if * appropriate. */ if (tp1->rec.data.chunk_was_revoked == 0) tp1->whoTo->saw_newack = 1; if (SCTP_TSN_GT(tp1->rec.data.tsn, tp1->whoTo->this_sack_highest_newack)) { tp1->whoTo->this_sack_highest_newack = tp1->rec.data.tsn; } /*- * CMT DAC algo: also update * this_sack_lowest_newack */ if (*this_sack_lowest_newack == 0) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(*this_sack_lowest_newack, last_tsn, tp1->rec.data.tsn, 0, 0, SCTP_LOG_TSN_ACKED); } *this_sack_lowest_newack = tp1->rec.data.tsn; } /*- * CMT: CUCv2 algorithm. If (rtx-)pseudo-cumack for corresp * dest is being acked, then we have a new (rtx-)pseudo-cumack. Set * new_(rtx_)pseudo_cumack to TRUE so that the cwnd for this dest can be * updated. Also trigger search for the next expected (rtx-)pseudo-cumack. * Separate pseudo_cumack trackers for first transmissions and * retransmissions. */ if (tp1->rec.data.tsn == tp1->whoTo->pseudo_cumack) { if (tp1->rec.data.chunk_was_revoked == 0) { tp1->whoTo->new_pseudo_cumack = 1; } tp1->whoTo->find_pseudo_cumack = 1; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, tp1->whoTo, tp1->rec.data.tsn, SCTP_CWND_LOG_FROM_SACK); } if (tp1->rec.data.tsn == tp1->whoTo->rtx_pseudo_cumack) { if (tp1->rec.data.chunk_was_revoked == 0) { tp1->whoTo->new_pseudo_cumack = 1; } tp1->whoTo->find_rtx_pseudo_cumack = 1; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(*biggest_newly_acked_tsn, last_tsn, tp1->rec.data.tsn, frag_strt, frag_end, SCTP_LOG_TSN_ACKED); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_GAP, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } sctp_flight_size_decrease(tp1); if (stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) { (*stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) (tp1->whoTo, tp1); } sctp_total_flight_decrease(stcb, tp1); tp1->whoTo->net_ack += tp1->send_size; if (tp1->snd_count < 2) { /*- * True non-retransmited chunk */ tp1->whoTo->net_ack2 += tp1->send_size; /*- * update RTO too ? */ if (tp1->do_rtt) { if (*rto_ok) { tp1->whoTo->RTO = sctp_calculate_rto(stcb, &stcb->asoc, tp1->whoTo, &tp1->sent_rcv_time, SCTP_RTT_FROM_DATA); *rto_ok = 0; } if (tp1->whoTo->rto_needed == 0) { tp1->whoTo->rto_needed = 1; } tp1->do_rtt = 0; } } + } if (tp1->sent <= SCTP_DATAGRAM_RESEND) { if (SCTP_TSN_GT(tp1->rec.data.tsn, stcb->asoc.this_sack_highest_gap)) { stcb->asoc.this_sack_highest_gap = tp1->rec.data.tsn; } if (tp1->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_decr(stcb->asoc.sent_queue_retran_cnt); #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xB2, (stcb->asoc.sent_queue_retran_cnt & 0x000000ff)); #endif } } /*- * All chunks NOT UNSENT fall through here and are marked * (leave PR-SCTP ones that are to skip alone though) */ if ((tp1->sent != SCTP_FORWARD_TSN_SKIP) && (tp1->sent != SCTP_DATAGRAM_NR_ACKED)) { tp1->sent = SCTP_DATAGRAM_MARKED; } if (tp1->rec.data.chunk_was_revoked) { /* deflate the cwnd */ tp1->whoTo->cwnd -= tp1->book_size; tp1->rec.data.chunk_was_revoked = 0; } /* NR Sack code here */ if (nr_sacking && (tp1->sent != SCTP_DATAGRAM_NR_ACKED)) { if (stcb->asoc.strmout[tp1->rec.data.sid].chunks_on_queues > 0) { stcb->asoc.strmout[tp1->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", tp1->rec.data.sid); #endif } if ((stcb->asoc.strmout[tp1->rec.data.sid].chunks_on_queues == 0) && (stcb->asoc.strmout[tp1->rec.data.sid].state == SCTP_STREAM_RESET_PENDING) && TAILQ_EMPTY(&stcb->asoc.strmout[tp1->rec.data.sid].outqueue)) { stcb->asoc.trigger_reset = 1; } tp1->sent = SCTP_DATAGRAM_NR_ACKED; if (tp1->data) { /* * sa_ignore * NO_NULL_CHK */ sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1); sctp_m_freem(tp1->data); tp1->data = NULL; } wake_him++; } } break; } /* if (tp1->tsn == theTSN) */ if (SCTP_TSN_GT(tp1->rec.data.tsn, theTSN)) { break; } tp1 = TAILQ_NEXT(tp1, sctp_next); if ((tp1 == NULL) && (circled == 0)) { circled++; tp1 = TAILQ_FIRST(&stcb->asoc.sent_queue); } } /* end while (tp1) */ if (tp1 == NULL) { circled = 0; tp1 = TAILQ_FIRST(&stcb->asoc.sent_queue); } /* In case the fragments were not in order we must reset */ } /* end for (j = fragStart */ *p_tp1 = tp1; return (wake_him); /* Return value only used for nr-sack */ } static int sctp_handle_segments(struct mbuf *m, int *offset, struct sctp_tcb *stcb, struct sctp_association *asoc, uint32_t last_tsn, uint32_t *biggest_tsn_acked, uint32_t *biggest_newly_acked_tsn, uint32_t *this_sack_lowest_newack, int num_seg, int num_nr_seg, int *rto_ok) { struct sctp_gap_ack_block *frag, block; struct sctp_tmit_chunk *tp1; int i; int num_frs = 0; int chunk_freed; int non_revocable; uint16_t frag_strt, frag_end, prev_frag_end; tp1 = TAILQ_FIRST(&asoc->sent_queue); prev_frag_end = 0; chunk_freed = 0; for (i = 0; i < (num_seg + num_nr_seg); i++) { if (i == num_seg) { prev_frag_end = 0; tp1 = TAILQ_FIRST(&asoc->sent_queue); } frag = (struct sctp_gap_ack_block *)sctp_m_getptr(m, *offset, sizeof(struct sctp_gap_ack_block), (uint8_t *)&block); *offset += sizeof(block); if (frag == NULL) { return (chunk_freed); } frag_strt = ntohs(frag->start); frag_end = ntohs(frag->end); if (frag_strt > frag_end) { /* This gap report is malformed, skip it. */ continue; } if (frag_strt <= prev_frag_end) { /* This gap report is not in order, so restart. */ tp1 = TAILQ_FIRST(&asoc->sent_queue); } if (SCTP_TSN_GT((last_tsn + frag_end), *biggest_tsn_acked)) { *biggest_tsn_acked = last_tsn + frag_end; } if (i < num_seg) { non_revocable = 0; } else { non_revocable = 1; } if (sctp_process_segment_range(stcb, &tp1, last_tsn, frag_strt, frag_end, non_revocable, &num_frs, biggest_newly_acked_tsn, this_sack_lowest_newack, rto_ok)) { chunk_freed = 1; } prev_frag_end = frag_end; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { if (num_frs) sctp_log_fr(*biggest_tsn_acked, *biggest_newly_acked_tsn, last_tsn, SCTP_FR_LOG_BIGGEST_TSNS); } return (chunk_freed); } static void sctp_check_for_revoked(struct sctp_tcb *stcb, struct sctp_association *asoc, uint32_t cumack, uint32_t biggest_tsn_acked) { struct sctp_tmit_chunk *tp1; TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (SCTP_TSN_GT(tp1->rec.data.tsn, cumack)) { /* * ok this guy is either ACK or MARKED. If it is * ACKED it has been previously acked but not this * time i.e. revoked. If it is MARKED it was ACK'ed * again. */ if (SCTP_TSN_GT(tp1->rec.data.tsn, biggest_tsn_acked)) { break; } if (tp1->sent == SCTP_DATAGRAM_ACKED) { /* it has been revoked */ tp1->sent = SCTP_DATAGRAM_SENT; tp1->rec.data.chunk_was_revoked = 1; /* * We must add this stuff back in to assure * timers and such get started. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_UP_REVOKE, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } sctp_flight_size_increase(tp1); sctp_total_flight_increase(stcb, tp1); /* * We inflate the cwnd to compensate for our * artificial inflation of the flight_size. */ tp1->whoTo->cwnd += tp1->book_size; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(asoc->last_acked_seq, cumack, tp1->rec.data.tsn, 0, 0, SCTP_LOG_TSN_REVOKED); } } else if (tp1->sent == SCTP_DATAGRAM_MARKED) { /* it has been re-acked in this SACK */ tp1->sent = SCTP_DATAGRAM_ACKED; } } if (tp1->sent == SCTP_DATAGRAM_UNSENT) break; } } static void sctp_strike_gap_ack_chunks(struct sctp_tcb *stcb, struct sctp_association *asoc, uint32_t biggest_tsn_acked, uint32_t biggest_tsn_newly_acked, uint32_t this_sack_lowest_newack, int accum_moved) { struct sctp_tmit_chunk *tp1; int strike_flag = 0; struct timeval now; int tot_retrans = 0; uint32_t sending_seq; struct sctp_nets *net; int num_dests_sacked = 0; /* * select the sending_seq, this is either the next thing ready to be * sent but not transmitted, OR, the next seq we assign. */ tp1 = TAILQ_FIRST(&stcb->asoc.send_queue); if (tp1 == NULL) { sending_seq = asoc->sending_seq; } else { sending_seq = tp1->rec.data.tsn; } /* CMT DAC algo: finding out if SACK is a mixed SACK */ if ((asoc->sctp_cmt_on_off > 0) && SCTP_BASE_SYSCTL(sctp_cmt_use_dac)) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (net->saw_newack) num_dests_sacked++; } } if (stcb->asoc.prsctp_supported) { (void)SCTP_GETTIME_TIMEVAL(&now); } TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { strike_flag = 0; if (tp1->no_fr_allowed) { /* this one had a timeout or something */ continue; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { if (tp1->sent < SCTP_DATAGRAM_RESEND) sctp_log_fr(biggest_tsn_newly_acked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_CHECK_STRIKE); } if (SCTP_TSN_GT(tp1->rec.data.tsn, biggest_tsn_acked) || tp1->sent == SCTP_DATAGRAM_UNSENT) { /* done */ break; } if (stcb->asoc.prsctp_supported) { if ((PR_SCTP_TTL_ENABLED(tp1->flags)) && tp1->sent < SCTP_DATAGRAM_ACKED) { /* Is it expired? */ if (timevalcmp(&now, &tp1->rec.data.timetodrop, >)) { /* Yes so drop it */ if (tp1->data != NULL) { (void)sctp_release_pr_sctp_chunk(stcb, tp1, 1, SCTP_SO_NOT_LOCKED); } continue; } } + } if (SCTP_TSN_GT(tp1->rec.data.tsn, asoc->this_sack_highest_gap) && !(accum_moved && asoc->fast_retran_loss_recovery)) { /* we are beyond the tsn in the sack */ break; } if (tp1->sent >= SCTP_DATAGRAM_RESEND) { /* either a RESEND, ACKED, or MARKED */ /* skip */ if (tp1->sent == SCTP_FORWARD_TSN_SKIP) { /* Continue strikin FWD-TSN chunks */ tp1->rec.data.fwd_tsn_cnt++; } continue; } /* * CMT : SFR algo (covers part of DAC and HTNA as well) */ if (tp1->whoTo && tp1->whoTo->saw_newack == 0) { /* * No new acks were receieved for data sent to this * dest. Therefore, according to the SFR algo for * CMT, no data sent to this dest can be marked for * FR using this SACK. */ continue; } else if (tp1->whoTo && SCTP_TSN_GT(tp1->rec.data.tsn, tp1->whoTo->this_sack_highest_newack) && !(accum_moved && asoc->fast_retran_loss_recovery)) { /* * CMT: New acks were receieved for data sent to * this dest. But no new acks were seen for data * sent after tp1. Therefore, according to the SFR * algo for CMT, tp1 cannot be marked for FR using * this SACK. This step covers part of the DAC algo * and the HTNA algo as well. */ continue; } /* * Here we check to see if we were have already done a FR * and if so we see if the biggest TSN we saw in the sack is * smaller than the recovery point. If so we don't strike * the tsn... otherwise we CAN strike the TSN. */ /* * @@@ JRI: Check for CMT if (accum_moved && * asoc->fast_retran_loss_recovery && (sctp_cmt_on_off == * 0)) { */ if (accum_moved && asoc->fast_retran_loss_recovery) { /* * Strike the TSN if in fast-recovery and cum-ack * moved. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(biggest_tsn_newly_acked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } if (tp1->sent < SCTP_DATAGRAM_RESEND) { tp1->sent++; } if ((asoc->sctp_cmt_on_off > 0) && SCTP_BASE_SYSCTL(sctp_cmt_use_dac)) { /* * CMT DAC algorithm: If SACK flag is set to * 0, then lowest_newack test will not pass * because it would have been set to the * cumack earlier. If not already to be * rtx'd, If not a mixed sack and if tp1 is * not between two sacked TSNs, then mark by * one more. NOTE that we are marking by one * additional time since the SACK DAC flag * indicates that two packets have been * received after this missing TSN. */ if ((tp1->sent < SCTP_DATAGRAM_RESEND) && (num_dests_sacked == 1) && SCTP_TSN_GT(this_sack_lowest_newack, tp1->rec.data.tsn)) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(16 + num_dests_sacked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } tp1->sent++; } } } else if ((tp1->rec.data.doing_fast_retransmit) && (asoc->sctp_cmt_on_off == 0)) { /* * For those that have done a FR we must take * special consideration if we strike. I.e the * biggest_newly_acked must be higher than the * sending_seq at the time we did the FR. */ if ( #ifdef SCTP_FR_TO_ALTERNATE /* * If FR's go to new networks, then we must only do * this for singly homed asoc's. However if the FR's * go to the same network (Armando's work) then its * ok to FR multiple times. */ (asoc->numnets < 2) #else (1) #endif ) { if (SCTP_TSN_GE(biggest_tsn_newly_acked, tp1->rec.data.fast_retran_tsn)) { /* * Strike the TSN, since this ack is * beyond where things were when we * did a FR. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(biggest_tsn_newly_acked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } if (tp1->sent < SCTP_DATAGRAM_RESEND) { tp1->sent++; } strike_flag = 1; if ((asoc->sctp_cmt_on_off > 0) && SCTP_BASE_SYSCTL(sctp_cmt_use_dac)) { /* * CMT DAC algorithm: If * SACK flag is set to 0, * then lowest_newack test * will not pass because it * would have been set to * the cumack earlier. If * not already to be rtx'd, * If not a mixed sack and * if tp1 is not between two * sacked TSNs, then mark by * one more. NOTE that we * are marking by one * additional time since the * SACK DAC flag indicates * that two packets have * been received after this * missing TSN. */ if ((tp1->sent < SCTP_DATAGRAM_RESEND) && (num_dests_sacked == 1) && SCTP_TSN_GT(this_sack_lowest_newack, tp1->rec.data.tsn)) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(32 + num_dests_sacked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } if (tp1->sent < SCTP_DATAGRAM_RESEND) { tp1->sent++; } } } } } /* * JRI: TODO: remove code for HTNA algo. CMT's SFR * algo covers HTNA. */ } else if (SCTP_TSN_GT(tp1->rec.data.tsn, biggest_tsn_newly_acked)) { /* * We don't strike these: This is the HTNA * algorithm i.e. we don't strike If our TSN is * larger than the Highest TSN Newly Acked. */ ; } else { /* Strike the TSN */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(biggest_tsn_newly_acked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } if (tp1->sent < SCTP_DATAGRAM_RESEND) { tp1->sent++; } if ((asoc->sctp_cmt_on_off > 0) && SCTP_BASE_SYSCTL(sctp_cmt_use_dac)) { /* * CMT DAC algorithm: If SACK flag is set to * 0, then lowest_newack test will not pass * because it would have been set to the * cumack earlier. If not already to be * rtx'd, If not a mixed sack and if tp1 is * not between two sacked TSNs, then mark by * one more. NOTE that we are marking by one * additional time since the SACK DAC flag * indicates that two packets have been * received after this missing TSN. */ if ((tp1->sent < SCTP_DATAGRAM_RESEND) && (num_dests_sacked == 1) && SCTP_TSN_GT(this_sack_lowest_newack, tp1->rec.data.tsn)) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(48 + num_dests_sacked, tp1->rec.data.tsn, tp1->sent, SCTP_FR_LOG_STRIKE_CHUNK); } tp1->sent++; } } } if (tp1->sent == SCTP_DATAGRAM_RESEND) { struct sctp_nets *alt; /* fix counts and things */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_RSND, (tp1->whoTo ? (tp1->whoTo->flight_size) : 0), tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } if (tp1->whoTo) { tp1->whoTo->net_ack++; sctp_flight_size_decrease(tp1); if (stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) { (*stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) (tp1->whoTo, tp1); } } + if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_RWND_ENABLE) { sctp_log_rwnd(SCTP_INCREASE_PEER_RWND, asoc->peers_rwnd, tp1->send_size, SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)); } /* add back to the rwnd */ asoc->peers_rwnd += (tp1->send_size + SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)); /* remove from the total flight */ sctp_total_flight_decrease(stcb, tp1); if ((stcb->asoc.prsctp_supported) && (PR_SCTP_RTX_ENABLED(tp1->flags))) { /* * Has it been retransmitted tv_sec times? - * we store the retran count there. */ if (tp1->snd_count > tp1->rec.data.timetodrop.tv_sec) { /* Yes, so drop it */ if (tp1->data != NULL) { (void)sctp_release_pr_sctp_chunk(stcb, tp1, 1, SCTP_SO_NOT_LOCKED); } /* Make sure to flag we had a FR */ if (tp1->whoTo != NULL) { tp1->whoTo->net_ack++; } continue; } } /* * SCTP_PRINTF("OK, we are now ready to FR this * guy\n"); */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(tp1->rec.data.tsn, tp1->snd_count, 0, SCTP_FR_MARKED); } if (strike_flag) { /* This is a subsequent FR */ SCTP_STAT_INCR(sctps_sendmultfastretrans); } sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); if (asoc->sctp_cmt_on_off > 0) { /* * CMT: Using RTX_SSTHRESH policy for CMT. * If CMT is being used, then pick dest with * largest ssthresh for any retransmission. */ tp1->no_fr_allowed = 1; alt = tp1->whoTo; /* sa_ignore NO_NULL_CHK */ if (asoc->sctp_cmt_pf > 0) { /* * JRS 5/18/07 - If CMT PF is on, * use the PF version of * find_alt_net() */ alt = sctp_find_alternate_net(stcb, alt, 2); } else { /* * JRS 5/18/07 - If only CMT is on, * use the CMT version of * find_alt_net() */ /* sa_ignore NO_NULL_CHK */ alt = sctp_find_alternate_net(stcb, alt, 1); } if (alt == NULL) { alt = tp1->whoTo; } /* * CUCv2: If a different dest is picked for * the retransmission, then new * (rtx-)pseudo_cumack needs to be tracked * for orig dest. Let CUCv2 track new (rtx-) * pseudo-cumack always. */ if (tp1->whoTo) { tp1->whoTo->find_pseudo_cumack = 1; tp1->whoTo->find_rtx_pseudo_cumack = 1; } + } else { /* CMT is OFF */ #ifdef SCTP_FR_TO_ALTERNATE /* Can we find an alternate? */ alt = sctp_find_alternate_net(stcb, tp1->whoTo, 0); #else /* * default behavior is to NOT retransmit * FR's to an alternate. Armando Caro's * paper details why. */ alt = tp1->whoTo; #endif } tp1->rec.data.doing_fast_retransmit = 1; tot_retrans++; /* mark the sending seq for possible subsequent FR's */ /* * SCTP_PRINTF("Marking TSN for FR new value %x\n", * (uint32_t)tpi->rec.data.tsn); */ if (TAILQ_EMPTY(&asoc->send_queue)) { /* * If the queue of send is empty then its * the next sequence number that will be * assigned so we subtract one from this to * get the one we last sent. */ tp1->rec.data.fast_retran_tsn = sending_seq; } else { /* * If there are chunks on the send queue * (unsent data that has made it from the * stream queues but not out the door, we * take the first one (which will have the * lowest TSN) and subtract one to get the * one we last sent. */ struct sctp_tmit_chunk *ttt; ttt = TAILQ_FIRST(&asoc->send_queue); tp1->rec.data.fast_retran_tsn = ttt->rec.data.tsn; } if (tp1->do_rtt) { /* * this guy had a RTO calculation pending on * it, cancel it */ if ((tp1->whoTo != NULL) && (tp1->whoTo->rto_needed == 0)) { tp1->whoTo->rto_needed = 1; } tp1->do_rtt = 0; } if (alt != tp1->whoTo) { /* yes, there is an alternate. */ sctp_free_remote_addr(tp1->whoTo); /* sa_ignore FREED_MEMORY */ tp1->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } } } } struct sctp_tmit_chunk * sctp_try_advance_peer_ack_point(struct sctp_tcb *stcb, struct sctp_association *asoc) { struct sctp_tmit_chunk *tp1, *tp2, *a_adv = NULL; struct timeval now; int now_filled = 0; if (asoc->prsctp_supported == 0) { return (NULL); } TAILQ_FOREACH_SAFE(tp1, &asoc->sent_queue, sctp_next, tp2) { if (tp1->sent != SCTP_FORWARD_TSN_SKIP && tp1->sent != SCTP_DATAGRAM_RESEND && tp1->sent != SCTP_DATAGRAM_NR_ACKED) { /* no chance to advance, out of here */ break; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_TRY_ADVANCE) { if ((tp1->sent == SCTP_FORWARD_TSN_SKIP) || (tp1->sent == SCTP_DATAGRAM_NR_ACKED)) { sctp_misc_ints(SCTP_FWD_TSN_CHECK, asoc->advanced_peer_ack_point, tp1->rec.data.tsn, 0, 0); } } if (!PR_SCTP_ENABLED(tp1->flags)) { /* * We can't fwd-tsn past any that are reliable aka * retransmitted until the asoc fails. */ break; } if (!now_filled) { (void)SCTP_GETTIME_TIMEVAL(&now); now_filled = 1; } /* * now we got a chunk which is marked for another * retransmission to a PR-stream but has run out its chances * already maybe OR has been marked to skip now. Can we skip * it if its a resend? */ if (tp1->sent == SCTP_DATAGRAM_RESEND && (PR_SCTP_TTL_ENABLED(tp1->flags))) { /* * Now is this one marked for resend and its time is * now up? */ if (timevalcmp(&now, &tp1->rec.data.timetodrop, >)) { /* Yes so drop it */ if (tp1->data) { (void)sctp_release_pr_sctp_chunk(stcb, tp1, 1, SCTP_SO_NOT_LOCKED); } } else { /* * No, we are done when hit one for resend * whos time as not expired. */ break; } } /* * Ok now if this chunk is marked to drop it we can clean up * the chunk, advance our peer ack point and we can check * the next chunk. */ if ((tp1->sent == SCTP_FORWARD_TSN_SKIP) || (tp1->sent == SCTP_DATAGRAM_NR_ACKED)) { /* advance PeerAckPoint goes forward */ if (SCTP_TSN_GT(tp1->rec.data.tsn, asoc->advanced_peer_ack_point)) { asoc->advanced_peer_ack_point = tp1->rec.data.tsn; a_adv = tp1; } else if (tp1->rec.data.tsn == asoc->advanced_peer_ack_point) { /* No update but we do save the chk */ a_adv = tp1; } } else { /* * If it is still in RESEND we can advance no * further */ break; } } return (a_adv); } static int sctp_fs_audit(struct sctp_association *asoc) { struct sctp_tmit_chunk *chk; int inflight = 0, resend = 0, inbetween = 0, acked = 0, above = 0; int ret; #ifndef INVARIANTS int entry_flight, entry_cnt; #endif ret = 0; #ifndef INVARIANTS entry_flight = asoc->total_flight; entry_cnt = asoc->total_flight_count; #endif if (asoc->pr_sctp_cnt >= asoc->sent_queue_cnt) return (0); TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) { if (chk->sent < SCTP_DATAGRAM_RESEND) { SCTP_PRINTF("Chk TSN: %u size: %d inflight cnt: %d\n", chk->rec.data.tsn, chk->send_size, chk->snd_count); inflight++; } else if (chk->sent == SCTP_DATAGRAM_RESEND) { resend++; } else if (chk->sent < SCTP_DATAGRAM_ACKED) { inbetween++; } else if (chk->sent > SCTP_DATAGRAM_ACKED) { above++; } else { acked++; } } if ((inflight > 0) || (inbetween > 0)) { #ifdef INVARIANTS panic("Flight size-express incorrect? \n"); #else SCTP_PRINTF("asoc->total_flight: %d cnt: %d\n", entry_flight, entry_cnt); SCTP_PRINTF("Flight size-express incorrect F: %d I: %d R: %d Ab: %d ACK: %d\n", inflight, inbetween, resend, above, acked); ret = 1; #endif } return (ret); } static void sctp_window_probe_recovery(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_tmit_chunk *tp1) { tp1->window_probe = 0; if ((tp1->sent >= SCTP_DATAGRAM_ACKED) || (tp1->data == NULL)) { /* TSN's skipped we do NOT move back. */ sctp_misc_ints(SCTP_FLIGHT_LOG_DWN_WP_FWD, tp1->whoTo ? tp1->whoTo->flight_size : 0, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); return; } /* First setup this by shrinking flight */ if (stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) { (*stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) (tp1->whoTo, tp1); } sctp_flight_size_decrease(tp1); sctp_total_flight_decrease(stcb, tp1); /* Now mark for resend */ tp1->sent = SCTP_DATAGRAM_RESEND; sctp_ucount_incr(asoc->sent_queue_retran_cnt); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_WP, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } } void sctp_express_handle_sack(struct sctp_tcb *stcb, uint32_t cumack, uint32_t rwnd, int *abort_now, int ecne_seen) { struct sctp_nets *net; struct sctp_association *asoc; struct sctp_tmit_chunk *tp1, *tp2; uint32_t old_rwnd; int win_probe_recovery = 0; int win_probe_recovered = 0; int j, done_once = 0; int rto_ok = 1; uint32_t send_s; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_SACK_ARRIVALS_ENABLE) { sctp_misc_ints(SCTP_SACK_LOG_EXPRESS, cumack, rwnd, stcb->asoc.last_acked_seq, stcb->asoc.peers_rwnd); } SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_ASOCLOG_OF_TSNS stcb->asoc.cumack_log[stcb->asoc.cumack_log_at] = cumack; stcb->asoc.cumack_log_at++; if (stcb->asoc.cumack_log_at > SCTP_TSN_LOG_SIZE) { stcb->asoc.cumack_log_at = 0; } #endif asoc = &stcb->asoc; old_rwnd = asoc->peers_rwnd; if (SCTP_TSN_GT(asoc->last_acked_seq, cumack)) { /* old ack */ return; } else if (asoc->last_acked_seq == cumack) { /* Window update sack */ asoc->peers_rwnd = sctp_sbspace_sub(rwnd, (uint32_t)(asoc->total_flight + (asoc->total_flight_count * SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)))); if (asoc->peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ asoc->peers_rwnd = 0; } if (asoc->peers_rwnd > old_rwnd) { goto again; } return; } + /* First setup for CC stuff */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (SCTP_TSN_GT(cumack, net->cwr_window_tsn)) { /* Drag along the window_tsn for cwr's */ net->cwr_window_tsn = cumack; } net->prev_cwnd = net->cwnd; net->net_ack = 0; net->net_ack2 = 0; /* * CMT: Reset CUC and Fast recovery algo variables before * SACK processing */ net->new_pseudo_cumack = 0; net->will_exit_fast_recovery = 0; if (stcb->asoc.cc_functions.sctp_cwnd_prepare_net_for_sack) { (*stcb->asoc.cc_functions.sctp_cwnd_prepare_net_for_sack) (stcb, net); } } if (!TAILQ_EMPTY(&asoc->sent_queue)) { tp1 = TAILQ_LAST(&asoc->sent_queue, sctpchunk_listhead); send_s = tp1->rec.data.tsn + 1; } else { send_s = asoc->sending_seq; } if (SCTP_TSN_GE(cumack, send_s)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; *abort_now = 1; /* XXX */ snprintf(msg, sizeof(msg), "Cum ack %8.8x greater or equal than TSN %8.8x", cumack, send_s); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_21; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); return; } asoc->this_sack_highest_gap = cumack; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INDATA, __LINE__); } stcb->asoc.overall_error_count = 0; if (SCTP_TSN_GT(cumack, asoc->last_acked_seq)) { /* process the new consecutive TSN first */ TAILQ_FOREACH_SAFE(tp1, &asoc->sent_queue, sctp_next, tp2) { if (SCTP_TSN_GE(cumack, tp1->rec.data.tsn)) { if (tp1->sent == SCTP_DATAGRAM_UNSENT) { SCTP_PRINTF("Warning, an unsent is now acked?\n"); } if (tp1->sent < SCTP_DATAGRAM_ACKED) { /* * If it is less than ACKED, it is * now no-longer in flight. Higher * values may occur during marking */ if (tp1->sent < SCTP_DATAGRAM_RESEND) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_CA, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } sctp_flight_size_decrease(tp1); if (stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) { (*stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) (tp1->whoTo, tp1); } /* sa_ignore NO_NULL_CHK */ sctp_total_flight_decrease(stcb, tp1); } tp1->whoTo->net_ack += tp1->send_size; if (tp1->snd_count < 2) { /* * True non-retransmited * chunk */ tp1->whoTo->net_ack2 += tp1->send_size; /* update RTO too? */ if (tp1->do_rtt) { if (rto_ok) { tp1->whoTo->RTO = /* * sa_ignore * NO_NULL_CHK */ sctp_calculate_rto(stcb, asoc, tp1->whoTo, &tp1->sent_rcv_time, SCTP_RTT_FROM_DATA); rto_ok = 0; } if (tp1->whoTo->rto_needed == 0) { tp1->whoTo->rto_needed = 1; } tp1->do_rtt = 0; } } /* * CMT: CUCv2 algorithm. From the * cumack'd TSNs, for each TSN being * acked for the first time, set the * following variables for the * corresp destination. * new_pseudo_cumack will trigger a * cwnd update. * find_(rtx_)pseudo_cumack will * trigger search for the next * expected (rtx-)pseudo-cumack. */ tp1->whoTo->new_pseudo_cumack = 1; tp1->whoTo->find_pseudo_cumack = 1; tp1->whoTo->find_rtx_pseudo_cumack = 1; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { /* sa_ignore NO_NULL_CHK */ sctp_log_cwnd(stcb, tp1->whoTo, tp1->rec.data.tsn, SCTP_CWND_LOG_FROM_SACK); } } if (tp1->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_decr(asoc->sent_queue_retran_cnt); } if (tp1->rec.data.chunk_was_revoked) { /* deflate the cwnd */ tp1->whoTo->cwnd -= tp1->book_size; tp1->rec.data.chunk_was_revoked = 0; } if (tp1->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[tp1->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[tp1->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", tp1->rec.data.sid); #endif } } if ((asoc->strmout[tp1->rec.data.sid].chunks_on_queues == 0) && (asoc->strmout[tp1->rec.data.sid].state == SCTP_STREAM_RESET_PENDING) && TAILQ_EMPTY(&asoc->strmout[tp1->rec.data.sid].outqueue)) { asoc->trigger_reset = 1; } TAILQ_REMOVE(&asoc->sent_queue, tp1, sctp_next); if (tp1->data) { /* sa_ignore NO_NULL_CHK */ sctp_free_bufspace(stcb, asoc, tp1, 1); sctp_m_freem(tp1->data); tp1->data = NULL; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(asoc->last_acked_seq, cumack, tp1->rec.data.tsn, 0, 0, SCTP_LOG_FREE_SENT); } asoc->sent_queue_cnt--; sctp_free_a_chunk(stcb, tp1, SCTP_SO_NOT_LOCKED); } else { break; } } } /* sa_ignore NO_NULL_CHK */ if (stcb->sctp_socket) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif SOCKBUF_LOCK(&stcb->sctp_socket->so_snd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_WAKE_LOGGING_ENABLE) { /* sa_ignore NO_NULL_CHK */ sctp_wakeup_log(stcb, 1, SCTP_WAKESND_FROM_SACK); } #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return; } #endif sctp_sowwakeup_locked(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_WAKE_LOGGING_ENABLE) { sctp_wakeup_log(stcb, 1, SCTP_NOWAKE_FROM_SACK); } } /* JRS - Use the congestion control given in the CC module */ if ((asoc->last_acked_seq != cumack) && (ecne_seen == 0)) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (net->net_ack2 > 0) { /* * Karn's rule applies to clearing error * count, this is optional. */ net->error_count = 0; if (!(net->dest_state & SCTP_ADDR_REACHABLE)) { /* addr came good */ net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED); } if (net == stcb->asoc.primary_destination) { if (stcb->asoc.alternate) { /* * release the alternate, * primary is good */ sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } } if (net->dest_state & SCTP_ADDR_PF) { net->dest_state &= ~SCTP_ADDR_PF; sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_22); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); asoc->cc_functions.sctp_cwnd_update_exit_pf(stcb, net); /* Done with this net */ net->net_ack = 0; } /* restore any doubled timers */ net->RTO = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv; if (net->RTO < stcb->asoc.minrto) { net->RTO = stcb->asoc.minrto; } if (net->RTO > stcb->asoc.maxrto) { net->RTO = stcb->asoc.maxrto; } } } asoc->cc_functions.sctp_cwnd_update_after_sack(stcb, asoc, 1, 0, 0); } asoc->last_acked_seq = cumack; if (TAILQ_EMPTY(&asoc->sent_queue)) { /* nothing left in-flight */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { net->flight_size = 0; net->partial_bytes_acked = 0; } asoc->total_flight = 0; asoc->total_flight_count = 0; } + /* RWND update */ asoc->peers_rwnd = sctp_sbspace_sub(rwnd, (uint32_t)(asoc->total_flight + (asoc->total_flight_count * SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)))); if (asoc->peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ asoc->peers_rwnd = 0; } if (asoc->peers_rwnd > old_rwnd) { win_probe_recovery = 1; } /* Now assure a timer where data is queued at */ again: j = 0; TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (win_probe_recovery && (net->window_probe)) { win_probe_recovered = 1; /* * Find first chunk that was used with window probe * and clear the sent */ /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (tp1->window_probe) { /* move back to data send queue */ sctp_window_probe_recovery(stcb, asoc, tp1); break; } } } if (net->flight_size) { j++; sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); if (net->window_probe) { net->window_probe = 0; } } else { if (net->window_probe) { /* * In window probes we must assure a timer * is still running there */ net->window_probe = 0; if (!SCTP_OS_TIMER_PENDING(&net->rxt_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } } else if (SCTP_OS_TIMER_PENDING(&net->rxt_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_23); } } } if ((j == 0) && (!TAILQ_EMPTY(&asoc->sent_queue)) && (asoc->sent_queue_retran_cnt == 0) && (win_probe_recovered == 0) && (done_once == 0)) { /* * huh, this should not happen unless all packets are * PR-SCTP and marked to skip of course. */ if (sctp_fs_audit(asoc)) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { net->flight_size = 0; } asoc->total_flight = 0; asoc->total_flight_count = 0; asoc->sent_queue_retran_cnt = 0; TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (tp1->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_increase(tp1); sctp_total_flight_increase(stcb, tp1); } else if (tp1->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(asoc->sent_queue_retran_cnt); } } } done_once = 1; goto again; } /**********************************/ /* Now what about shutdown issues */ /**********************************/ if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue)) { /* nothing left on sendqueue.. consider done */ /* clean up */ if ((asoc->stream_queue_cnt == 1) && ((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) || (asoc->state & SCTP_STATE_SHUTDOWN_RECEIVED)) && ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc))) { asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT; } if (((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) && (asoc->stream_queue_cnt == 1) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; *abort_now = 1; /* XXX */ op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_24; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); return; } if ((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) && (asoc->stream_queue_cnt == 0)) { struct sctp_nets *netp; if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (asoc->alternate) { netp = asoc->alternate; } else { netp = asoc->primary_destination; } sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); } else if ((SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED) && (asoc->stream_queue_cnt == 0)) { struct sctp_nets *netp; SCTP_STAT_DECR_GAUGE32(sctps_currestab); SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_ACK_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (asoc->alternate) { netp = asoc->alternate; } else { netp = asoc->primary_destination; } sctp_send_shutdown_ack(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNACK, stcb->sctp_ep, stcb, netp); } } /*********************************************/ /* Here we perform PR-SCTP procedures */ /* (section 4.2) */ /*********************************************/ /* C1. update advancedPeerAckPoint */ if (SCTP_TSN_GT(cumack, asoc->advanced_peer_ack_point)) { asoc->advanced_peer_ack_point = cumack; } /* PR-Sctp issues need to be addressed too */ if ((asoc->prsctp_supported) && (asoc->pr_sctp_cnt > 0)) { struct sctp_tmit_chunk *lchk; uint32_t old_adv_peer_ack_point; old_adv_peer_ack_point = asoc->advanced_peer_ack_point; lchk = sctp_try_advance_peer_ack_point(stcb, asoc); /* C3. See if we need to send a Fwd-TSN */ if (SCTP_TSN_GT(asoc->advanced_peer_ack_point, cumack)) { /* * ISSUE with ECN, see FWD-TSN processing. */ if (SCTP_TSN_GT(asoc->advanced_peer_ack_point, old_adv_peer_ack_point)) { send_forward_tsn(stcb, asoc); } else if (lchk) { /* try to FR fwd-tsn's that get lost too */ if (lchk->rec.data.fwd_tsn_cnt >= 3) { send_forward_tsn(stcb, asoc); } } } if (lchk) { /* Assure a timer is up */ sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, lchk->whoTo); } } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SACK_RWND_UPDATE, rwnd, stcb->asoc.peers_rwnd, stcb->asoc.total_flight, stcb->asoc.total_output_queue_size); } } void sctp_handle_sack(struct mbuf *m, int offset_seg, int offset_dup, struct sctp_tcb *stcb, uint16_t num_seg, uint16_t num_nr_seg, uint16_t num_dup, int *abort_now, uint8_t flags, uint32_t cum_ack, uint32_t rwnd, int ecne_seen) { struct sctp_association *asoc; struct sctp_tmit_chunk *tp1, *tp2; uint32_t last_tsn, biggest_tsn_acked, biggest_tsn_newly_acked, this_sack_lowest_newack; uint16_t wake_him = 0; uint32_t send_s = 0; long j; int accum_moved = 0; int will_exit_fast_recovery = 0; uint32_t a_rwnd, old_rwnd; int win_probe_recovery = 0; int win_probe_recovered = 0; struct sctp_nets *net = NULL; int done_once; int rto_ok = 1; uint8_t reneged_all = 0; uint8_t cmt_dac_flag; /* * we take any chance we can to service our queues since we cannot * get awoken when the socket is read from :< */ /* * Now perform the actual SACK handling: 1) Verify that it is not an * old sack, if so discard. 2) If there is nothing left in the send * queue (cum-ack is equal to last acked) then you have a duplicate * too, update any rwnd change and verify no timers are running. * then return. 3) Process any new consequtive data i.e. cum-ack * moved process these first and note that it moved. 4) Process any * sack blocks. 5) Drop any acked from the queue. 6) Check for any * revoked blocks and mark. 7) Update the cwnd. 8) Nothing left, * sync up flightsizes and things, stop all timers and also check * for shutdown_pending state. If so then go ahead and send off the * shutdown. If in shutdown recv, send off the shutdown-ack and * start that timer, Ret. 9) Strike any non-acked things and do FR * procedure if needed being sure to set the FR flag. 10) Do pr-sctp * procedures. 11) Apply any FR penalties. 12) Assure we will SACK * if in shutdown_recv state. */ SCTP_TCB_LOCK_ASSERT(stcb); /* CMT DAC algo */ this_sack_lowest_newack = 0; SCTP_STAT_INCR(sctps_slowpath_sack); last_tsn = cum_ack; cmt_dac_flag = flags & SCTP_SACK_CMT_DAC; #ifdef SCTP_ASOCLOG_OF_TSNS stcb->asoc.cumack_log[stcb->asoc.cumack_log_at] = cum_ack; stcb->asoc.cumack_log_at++; if (stcb->asoc.cumack_log_at > SCTP_TSN_LOG_SIZE) { stcb->asoc.cumack_log_at = 0; } #endif a_rwnd = rwnd; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_SACK_ARRIVALS_ENABLE) { sctp_misc_ints(SCTP_SACK_LOG_NORMAL, cum_ack, rwnd, stcb->asoc.last_acked_seq, stcb->asoc.peers_rwnd); } + old_rwnd = stcb->asoc.peers_rwnd; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INDATA, __LINE__); } stcb->asoc.overall_error_count = 0; asoc = &stcb->asoc; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(asoc->last_acked_seq, cum_ack, 0, num_seg, num_dup, SCTP_LOG_NEW_SACK); } if ((num_dup) && (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE)) { uint16_t i; uint32_t *dupdata, dblock; for (i = 0; i < num_dup; i++) { dupdata = (uint32_t *)sctp_m_getptr(m, offset_dup + i * sizeof(uint32_t), sizeof(uint32_t), (uint8_t *)&dblock); if (dupdata == NULL) { break; } sctp_log_fr(*dupdata, 0, 0, SCTP_FR_DUPED); } } /* reality check */ if (!TAILQ_EMPTY(&asoc->sent_queue)) { tp1 = TAILQ_LAST(&asoc->sent_queue, sctpchunk_listhead); send_s = tp1->rec.data.tsn + 1; } else { tp1 = NULL; send_s = asoc->sending_seq; } if (SCTP_TSN_GE(cum_ack, send_s)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * no way, we have not even sent this TSN out yet. Peer is * hopelessly messed up with us. */ SCTP_PRINTF("NEW cum_ack:%x send_s:%x is smaller or equal\n", cum_ack, send_s); if (tp1) { SCTP_PRINTF("Got send_s from tsn:%x + 1 of tp1: %p\n", tp1->rec.data.tsn, (void *)tp1); } hopeless_peer: *abort_now = 1; /* XXX */ snprintf(msg, sizeof(msg), "Cum ack %8.8x greater or equal than TSN %8.8x", cum_ack, send_s); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_25; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); return; } /**********************/ /* 1) check the range */ /**********************/ if (SCTP_TSN_GT(asoc->last_acked_seq, last_tsn)) { /* acking something behind */ return; } + /* update the Rwnd of the peer */ if (TAILQ_EMPTY(&asoc->sent_queue) && TAILQ_EMPTY(&asoc->send_queue) && (asoc->stream_queue_cnt == 0)) { /* nothing left on send/sent and strmq */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_RWND_ENABLE) { sctp_log_rwnd_set(SCTP_SET_PEER_RWND_VIA_SACK, asoc->peers_rwnd, 0, 0, a_rwnd); } asoc->peers_rwnd = a_rwnd; if (asoc->sent_queue_retran_cnt) { asoc->sent_queue_retran_cnt = 0; } if (asoc->peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ asoc->peers_rwnd = 0; } /* stop any timers */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_26); net->partial_bytes_acked = 0; net->flight_size = 0; } asoc->total_flight = 0; asoc->total_flight_count = 0; return; } /* * We init netAckSz and netAckSz2 to 0. These are used to track 2 * things. The total byte count acked is tracked in netAckSz AND * netAck2 is used to track the total bytes acked that are un- * amibguious and were never retransmitted. We track these on a per * destination address basis. */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (SCTP_TSN_GT(cum_ack, net->cwr_window_tsn)) { /* Drag along the window_tsn for cwr's */ net->cwr_window_tsn = cum_ack; } net->prev_cwnd = net->cwnd; net->net_ack = 0; net->net_ack2 = 0; /* * CMT: Reset CUC and Fast recovery algo variables before * SACK processing */ net->new_pseudo_cumack = 0; net->will_exit_fast_recovery = 0; if (stcb->asoc.cc_functions.sctp_cwnd_prepare_net_for_sack) { (*stcb->asoc.cc_functions.sctp_cwnd_prepare_net_for_sack) (stcb, net); } + /* * CMT: SFR algo (and HTNA) - this_sack_highest_newack has * to be greater than the cumack. Also reset saw_newack to 0 * for all dests. */ net->saw_newack = 0; net->this_sack_highest_newack = last_tsn; } /* process the new consecutive TSN first */ TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (SCTP_TSN_GE(last_tsn, tp1->rec.data.tsn)) { if (tp1->sent != SCTP_DATAGRAM_UNSENT) { accum_moved = 1; if (tp1->sent < SCTP_DATAGRAM_ACKED) { /* * If it is less than ACKED, it is * now no-longer in flight. Higher * values may occur during marking */ if ((tp1->whoTo->dest_state & SCTP_ADDR_UNCONFIRMED) && (tp1->snd_count < 2)) { /* * If there was no retran * and the address is * un-confirmed and we sent * there and are now * sacked.. its confirmed, * mark it so. */ tp1->whoTo->dest_state &= ~SCTP_ADDR_UNCONFIRMED; } if (tp1->sent < SCTP_DATAGRAM_RESEND) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_CA, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } sctp_flight_size_decrease(tp1); sctp_total_flight_decrease(stcb, tp1); if (stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) { (*stcb->asoc.cc_functions.sctp_cwnd_update_tsn_acknowledged) (tp1->whoTo, tp1); } } tp1->whoTo->net_ack += tp1->send_size; /* CMT SFR and DAC algos */ this_sack_lowest_newack = tp1->rec.data.tsn; tp1->whoTo->saw_newack = 1; if (tp1->snd_count < 2) { /* * True non-retransmited * chunk */ tp1->whoTo->net_ack2 += tp1->send_size; /* update RTO too? */ if (tp1->do_rtt) { if (rto_ok) { tp1->whoTo->RTO = sctp_calculate_rto(stcb, asoc, tp1->whoTo, &tp1->sent_rcv_time, SCTP_RTT_FROM_DATA); rto_ok = 0; } if (tp1->whoTo->rto_needed == 0) { tp1->whoTo->rto_needed = 1; } tp1->do_rtt = 0; } } /* * CMT: CUCv2 algorithm. From the * cumack'd TSNs, for each TSN being * acked for the first time, set the * following variables for the * corresp destination. * new_pseudo_cumack will trigger a * cwnd update. * find_(rtx_)pseudo_cumack will * trigger search for the next * expected (rtx-)pseudo-cumack. */ tp1->whoTo->new_pseudo_cumack = 1; tp1->whoTo->find_pseudo_cumack = 1; tp1->whoTo->find_rtx_pseudo_cumack = 1; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(asoc->last_acked_seq, cum_ack, tp1->rec.data.tsn, 0, 0, SCTP_LOG_TSN_ACKED); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { sctp_log_cwnd(stcb, tp1->whoTo, tp1->rec.data.tsn, SCTP_CWND_LOG_FROM_SACK); } } if (tp1->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_decr(asoc->sent_queue_retran_cnt); #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xB3, (asoc->sent_queue_retran_cnt & 0x000000ff)); #endif } if (tp1->rec.data.chunk_was_revoked) { /* deflate the cwnd */ tp1->whoTo->cwnd -= tp1->book_size; tp1->rec.data.chunk_was_revoked = 0; } if (tp1->sent != SCTP_DATAGRAM_NR_ACKED) { tp1->sent = SCTP_DATAGRAM_ACKED; } } } else { break; } } biggest_tsn_newly_acked = biggest_tsn_acked = last_tsn; /* always set this up to cum-ack */ asoc->this_sack_highest_gap = last_tsn; if ((num_seg > 0) || (num_nr_seg > 0)) { /* * thisSackHighestGap will increase while handling NEW * segments this_sack_highest_newack will increase while * handling NEWLY ACKED chunks. this_sack_lowest_newack is * used for CMT DAC algo. saw_newack will also change. */ if (sctp_handle_segments(m, &offset_seg, stcb, asoc, last_tsn, &biggest_tsn_acked, &biggest_tsn_newly_acked, &this_sack_lowest_newack, num_seg, num_nr_seg, &rto_ok)) { wake_him++; } /* * validate the biggest_tsn_acked in the gap acks if strict * adherence is wanted. */ if (SCTP_TSN_GE(biggest_tsn_acked, send_s)) { /* * peer is either confused or we are under attack. * We must abort. */ SCTP_PRINTF("Hopeless peer! biggest_tsn_acked:%x largest seq:%x\n", biggest_tsn_acked, send_s); goto hopeless_peer; } } /*******************************************/ /* cancel ALL T3-send timer if accum moved */ /*******************************************/ if (asoc->sctp_cmt_on_off > 0) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (net->new_pseudo_cumack) sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_27); } } else { if (accum_moved) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_28); } } } /********************************************/ /* drop the acked chunks from the sentqueue */ /********************************************/ asoc->last_acked_seq = cum_ack; TAILQ_FOREACH_SAFE(tp1, &asoc->sent_queue, sctp_next, tp2) { if (SCTP_TSN_GT(tp1->rec.data.tsn, cum_ack)) { break; } if (tp1->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[tp1->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[tp1->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", tp1->rec.data.sid); #endif } } if ((asoc->strmout[tp1->rec.data.sid].chunks_on_queues == 0) && (asoc->strmout[tp1->rec.data.sid].state == SCTP_STREAM_RESET_PENDING) && TAILQ_EMPTY(&asoc->strmout[tp1->rec.data.sid].outqueue)) { asoc->trigger_reset = 1; } TAILQ_REMOVE(&asoc->sent_queue, tp1, sctp_next); if (PR_SCTP_ENABLED(tp1->flags)) { if (asoc->pr_sctp_cnt != 0) asoc->pr_sctp_cnt--; } asoc->sent_queue_cnt--; if (tp1->data) { /* sa_ignore NO_NULL_CHK */ sctp_free_bufspace(stcb, asoc, tp1, 1); sctp_m_freem(tp1->data); tp1->data = NULL; if (asoc->prsctp_supported && PR_SCTP_BUF_ENABLED(tp1->flags)) { asoc->sent_queue_cnt_removeable--; } } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_LOGGING_ENABLE) { sctp_log_sack(asoc->last_acked_seq, cum_ack, tp1->rec.data.tsn, 0, 0, SCTP_LOG_FREE_SENT); } sctp_free_a_chunk(stcb, tp1, SCTP_SO_NOT_LOCKED); wake_him++; } if (TAILQ_EMPTY(&asoc->sent_queue) && (asoc->total_flight > 0)) { #ifdef INVARIANTS panic("Warning flight size is positive and should be 0"); #else SCTP_PRINTF("Warning flight size incorrect should be 0 is %d\n", asoc->total_flight); #endif asoc->total_flight = 0; } + /* sa_ignore NO_NULL_CHK */ if ((wake_him) && (stcb->sctp_socket)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif SOCKBUF_LOCK(&stcb->sctp_socket->so_snd); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_WAKE_LOGGING_ENABLE) { sctp_wakeup_log(stcb, wake_him, SCTP_WAKESND_FROM_SACK); } #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return; } #endif sctp_sowwakeup_locked(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_WAKE_LOGGING_ENABLE) { sctp_wakeup_log(stcb, wake_him, SCTP_NOWAKE_FROM_SACK); } } if (asoc->fast_retran_loss_recovery && accum_moved) { if (SCTP_TSN_GE(asoc->last_acked_seq, asoc->fast_recovery_tsn)) { /* Setup so we will exit RFC2582 fast recovery */ will_exit_fast_recovery = 1; } } /* * Check for revoked fragments: * * if Previous sack - Had no frags then we can't have any revoked if * Previous sack - Had frag's then - If we now have frags aka * num_seg > 0 call sctp_check_for_revoked() to tell if peer revoked * some of them. else - The peer revoked all ACKED fragments, since * we had some before and now we have NONE. */ if (num_seg) { sctp_check_for_revoked(stcb, asoc, cum_ack, biggest_tsn_acked); asoc->saw_sack_with_frags = 1; } else if (asoc->saw_sack_with_frags) { int cnt_revoked = 0; /* Peer revoked all dg's marked or acked */ TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (tp1->sent == SCTP_DATAGRAM_ACKED) { tp1->sent = SCTP_DATAGRAM_SENT; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_UP_REVOKE, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)tp1->whoTo, tp1->rec.data.tsn); } sctp_flight_size_increase(tp1); sctp_total_flight_increase(stcb, tp1); tp1->rec.data.chunk_was_revoked = 1; /* * To ensure that this increase in * flightsize, which is artificial, does not * throttle the sender, we also increase the * cwnd artificially. */ tp1->whoTo->cwnd += tp1->book_size; cnt_revoked++; } } if (cnt_revoked) { reneged_all = 1; } asoc->saw_sack_with_frags = 0; } if (num_nr_seg > 0) asoc->saw_sack_with_nr_frags = 1; else asoc->saw_sack_with_nr_frags = 0; /* JRS - Use the congestion control given in the CC module */ if (ecne_seen == 0) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (net->net_ack2 > 0) { /* * Karn's rule applies to clearing error * count, this is optional. */ net->error_count = 0; if (!(net->dest_state & SCTP_ADDR_REACHABLE)) { /* addr came good */ net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED); } + if (net == stcb->asoc.primary_destination) { if (stcb->asoc.alternate) { /* * release the alternate, * primary is good */ sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } } + if (net->dest_state & SCTP_ADDR_PF) { net->dest_state &= ~SCTP_ADDR_PF; sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_29); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); asoc->cc_functions.sctp_cwnd_update_exit_pf(stcb, net); /* Done with this net */ net->net_ack = 0; } /* restore any doubled timers */ net->RTO = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv; if (net->RTO < stcb->asoc.minrto) { net->RTO = stcb->asoc.minrto; } if (net->RTO > stcb->asoc.maxrto) { net->RTO = stcb->asoc.maxrto; } } } asoc->cc_functions.sctp_cwnd_update_after_sack(stcb, asoc, accum_moved, reneged_all, will_exit_fast_recovery); } + if (TAILQ_EMPTY(&asoc->sent_queue)) { /* nothing left in-flight */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { /* stop all timers */ sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_30); net->flight_size = 0; net->partial_bytes_acked = 0; } asoc->total_flight = 0; asoc->total_flight_count = 0; } + /**********************************/ /* Now what about shutdown issues */ /**********************************/ if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue)) { /* nothing left on sendqueue.. consider done */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_RWND_ENABLE) { sctp_log_rwnd_set(SCTP_SET_PEER_RWND_VIA_SACK, asoc->peers_rwnd, 0, 0, a_rwnd); } asoc->peers_rwnd = a_rwnd; if (asoc->peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ asoc->peers_rwnd = 0; } /* clean up */ if ((asoc->stream_queue_cnt == 1) && ((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) || (asoc->state & SCTP_STATE_SHUTDOWN_RECEIVED)) && ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc))) { asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT; } if (((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) && (asoc->stream_queue_cnt == 1) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; *abort_now = 1; /* XXX */ op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_24; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); return; } if ((asoc->state & SCTP_STATE_SHUTDOWN_PENDING) && (asoc->stream_queue_cnt == 0)) { struct sctp_nets *netp; if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (asoc->alternate) { netp = asoc->alternate; } else { netp = asoc->primary_destination; } sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); return; } else if ((SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED) && (asoc->stream_queue_cnt == 0)) { struct sctp_nets *netp; SCTP_STAT_DECR_GAUGE32(sctps_currestab); SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_ACK_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (asoc->alternate) { netp = asoc->alternate; } else { netp = asoc->primary_destination; } sctp_send_shutdown_ack(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNACK, stcb->sctp_ep, stcb, netp); return; } } /* * Now here we are going to recycle net_ack for a different use... * HEADS UP. */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { net->net_ack = 0; } /* * CMT DAC algorithm: If SACK DAC flag was 0, then no extra marking * to be done. Setting this_sack_lowest_newack to the cum_ack will * automatically ensure that. */ if ((asoc->sctp_cmt_on_off > 0) && SCTP_BASE_SYSCTL(sctp_cmt_use_dac) && (cmt_dac_flag == 0)) { this_sack_lowest_newack = cum_ack; } if ((num_seg > 0) || (num_nr_seg > 0)) { sctp_strike_gap_ack_chunks(stcb, asoc, biggest_tsn_acked, biggest_tsn_newly_acked, this_sack_lowest_newack, accum_moved); } /* JRS - Use the congestion control given in the CC module */ asoc->cc_functions.sctp_cwnd_update_after_fr(stcb, asoc); /* Now are we exiting loss recovery ? */ if (will_exit_fast_recovery) { /* Ok, we must exit fast recovery */ asoc->fast_retran_loss_recovery = 0; } if ((asoc->sat_t3_loss_recovery) && SCTP_TSN_GE(asoc->last_acked_seq, asoc->sat_t3_recovery_tsn)) { /* end satellite t3 loss recovery */ asoc->sat_t3_loss_recovery = 0; } /* * CMT Fast recovery */ TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (net->will_exit_fast_recovery) { /* Ok, we must exit fast recovery */ net->fast_retran_loss_recovery = 0; } } /* Adjust and set the new rwnd value */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_RWND_ENABLE) { sctp_log_rwnd_set(SCTP_SET_PEER_RWND_VIA_SACK, asoc->peers_rwnd, asoc->total_flight, (asoc->total_flight_count * SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)), a_rwnd); } asoc->peers_rwnd = sctp_sbspace_sub(a_rwnd, (uint32_t)(asoc->total_flight + (asoc->total_flight_count * SCTP_BASE_SYSCTL(sctp_peer_chunk_oh)))); if (asoc->peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ asoc->peers_rwnd = 0; } if (asoc->peers_rwnd > old_rwnd) { win_probe_recovery = 1; } + /* * Now we must setup so we have a timer up for anyone with * outstanding data. */ done_once = 0; again: j = 0; TAILQ_FOREACH(net, &asoc->nets, sctp_next) { if (win_probe_recovery && (net->window_probe)) { win_probe_recovered = 1; /*- * Find first chunk that was used with * window probe and clear the event. Put * it back into the send queue as if has * not been sent. */ TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (tp1->window_probe) { sctp_window_probe_recovery(stcb, asoc, tp1); break; } } } if (net->flight_size) { j++; if (!SCTP_OS_TIMER_PENDING(&net->rxt_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } if (net->window_probe) { net->window_probe = 0; } } else { if (net->window_probe) { /* * In window probes we must assure a timer * is still running there */ if (!SCTP_OS_TIMER_PENDING(&net->rxt_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net); } } else if (SCTP_OS_TIMER_PENDING(&net->rxt_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INDATA + SCTP_LOC_32); } } } if ((j == 0) && (!TAILQ_EMPTY(&asoc->sent_queue)) && (asoc->sent_queue_retran_cnt == 0) && (win_probe_recovered == 0) && (done_once == 0)) { /* * huh, this should not happen unless all packets are * PR-SCTP and marked to skip of course. */ if (sctp_fs_audit(asoc)) { TAILQ_FOREACH(net, &asoc->nets, sctp_next) { net->flight_size = 0; } asoc->total_flight = 0; asoc->total_flight_count = 0; asoc->sent_queue_retran_cnt = 0; TAILQ_FOREACH(tp1, &asoc->sent_queue, sctp_next) { if (tp1->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_increase(tp1); sctp_total_flight_increase(stcb, tp1); } else if (tp1->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(asoc->sent_queue_retran_cnt); } } } done_once = 1; goto again; } /*********************************************/ /* Here we perform PR-SCTP procedures */ /* (section 4.2) */ /*********************************************/ /* C1. update advancedPeerAckPoint */ if (SCTP_TSN_GT(cum_ack, asoc->advanced_peer_ack_point)) { asoc->advanced_peer_ack_point = cum_ack; } /* C2. try to further move advancedPeerAckPoint ahead */ if ((asoc->prsctp_supported) && (asoc->pr_sctp_cnt > 0)) { struct sctp_tmit_chunk *lchk; uint32_t old_adv_peer_ack_point; old_adv_peer_ack_point = asoc->advanced_peer_ack_point; lchk = sctp_try_advance_peer_ack_point(stcb, asoc); /* C3. See if we need to send a Fwd-TSN */ if (SCTP_TSN_GT(asoc->advanced_peer_ack_point, cum_ack)) { /* * ISSUE with ECN, see FWD-TSN processing. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOG_TRY_ADVANCE) { sctp_misc_ints(SCTP_FWD_TSN_CHECK, 0xee, cum_ack, asoc->advanced_peer_ack_point, old_adv_peer_ack_point); } if (SCTP_TSN_GT(asoc->advanced_peer_ack_point, old_adv_peer_ack_point)) { send_forward_tsn(stcb, asoc); } else if (lchk) { /* try to FR fwd-tsn's that get lost too */ if (lchk->rec.data.fwd_tsn_cnt >= 3) { send_forward_tsn(stcb, asoc); } } } if (lchk) { /* Assure a timer is up */ sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, lchk->whoTo); } } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SACK_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SACK_RWND_UPDATE, a_rwnd, stcb->asoc.peers_rwnd, stcb->asoc.total_flight, stcb->asoc.total_output_queue_size); } } void sctp_update_acked(struct sctp_tcb *stcb, struct sctp_shutdown_chunk *cp, int *abort_flag) { /* Copy cum-ack */ uint32_t cum_ack, a_rwnd; cum_ack = ntohl(cp->cumulative_tsn_ack); /* Arrange so a_rwnd does NOT change */ a_rwnd = stcb->asoc.peers_rwnd + stcb->asoc.total_flight; /* Now call the express sack handling */ sctp_express_handle_sack(stcb, cum_ack, a_rwnd, abort_flag, 0); } static void sctp_kick_prsctp_reorder_queue(struct sctp_tcb *stcb, struct sctp_stream_in *strmin) { struct sctp_queued_to_read *control, *ncontrol; struct sctp_association *asoc; uint32_t mid; int need_reasm_check = 0; asoc = &stcb->asoc; mid = strmin->last_mid_delivered; /* * First deliver anything prior to and including the stream no that * came in. */ TAILQ_FOREACH_SAFE(control, &strmin->inqueue, next_instrm, ncontrol) { if (SCTP_MID_GE(asoc->idata_supported, mid, control->mid)) { /* this is deliverable now */ if (((control->sinfo_flags >> 8) & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { if (control->on_strm_q) { if (control->on_strm_q == SCTP_ON_ORDERED) { TAILQ_REMOVE(&strmin->inqueue, control, next_instrm); } else if (control->on_strm_q == SCTP_ON_UNORDERED) { TAILQ_REMOVE(&strmin->uno_inqueue, control, next_instrm); #ifdef INVARIANTS } else { panic("strmin: %p ctl: %p unknown %d", strmin, control, control->on_strm_q); #endif } control->on_strm_q = 0; } /* subtract pending on streams */ if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); /* deliver it to at least the delivery-q */ if (stcb->sctp_socket) { sctp_mark_non_revokable(asoc, control->sinfo_tsn); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, SCTP_SO_NOT_LOCKED); } } else { /* Its a fragmented message */ if (control->first_frag_seen) { /* * Make it so this is next to * deliver, we restore later */ strmin->last_mid_delivered = control->mid - 1; need_reasm_check = 1; break; } } } else { /* no more delivery now. */ break; } } if (need_reasm_check) { int ret; ret = sctp_deliver_reasm_check(stcb, &stcb->asoc, strmin, SCTP_READ_LOCK_HELD); if (SCTP_MID_GT(asoc->idata_supported, mid, strmin->last_mid_delivered)) { /* Restore the next to deliver unless we are ahead */ strmin->last_mid_delivered = mid; } if (ret == 0) { /* Left the front Partial one on */ return; } need_reasm_check = 0; } /* * now we must deliver things in queue the normal way if any are * now ready. */ mid = strmin->last_mid_delivered + 1; TAILQ_FOREACH_SAFE(control, &strmin->inqueue, next_instrm, ncontrol) { if (SCTP_MID_EQ(asoc->idata_supported, mid, control->mid)) { if (((control->sinfo_flags >> 8) & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { /* this is deliverable now */ if (control->on_strm_q) { if (control->on_strm_q == SCTP_ON_ORDERED) { TAILQ_REMOVE(&strmin->inqueue, control, next_instrm); } else if (control->on_strm_q == SCTP_ON_UNORDERED) { TAILQ_REMOVE(&strmin->uno_inqueue, control, next_instrm); #ifdef INVARIANTS } else { panic("strmin: %p ctl: %p unknown %d", strmin, control, control->on_strm_q); #endif } control->on_strm_q = 0; } /* subtract pending on streams */ if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); /* deliver it to at least the delivery-q */ strmin->last_mid_delivered = control->mid; if (stcb->sctp_socket) { sctp_mark_non_revokable(asoc, control->sinfo_tsn); sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, SCTP_SO_NOT_LOCKED); } mid = strmin->last_mid_delivered + 1; } else { /* Its a fragmented message */ if (control->first_frag_seen) { /* * Make it so this is next to * deliver */ strmin->last_mid_delivered = control->mid - 1; need_reasm_check = 1; break; } } } else { break; } } if (need_reasm_check) { (void)sctp_deliver_reasm_check(stcb, &stcb->asoc, strmin, SCTP_READ_LOCK_HELD); } } static void sctp_flush_reassm_for_str_seq(struct sctp_tcb *stcb, struct sctp_association *asoc, uint16_t stream, uint32_t mid, int ordered, uint32_t cumtsn) { struct sctp_queued_to_read *control; struct sctp_stream_in *strm; struct sctp_tmit_chunk *chk, *nchk; int cnt_removed = 0; /* * For now large messages held on the stream reasm that are complete * will be tossed too. We could in theory do more work to spin * through and stop after dumping one msg aka seeing the start of a * new msg at the head, and call the delivery function... to see if * it can be delivered... But for now we just dump everything on the * queue. */ strm = &asoc->strmin[stream]; control = sctp_find_reasm_entry(strm, mid, ordered, asoc->idata_supported); if (control == NULL) { /* Not found */ return; } if (!asoc->idata_supported && !ordered && SCTP_TSN_GT(control->fsn_included, cumtsn)) { return; } TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { /* Purge hanging chunks */ if (!asoc->idata_supported && (ordered == 0)) { if (SCTP_TSN_GT(chk->rec.data.tsn, cumtsn)) { break; } } cnt_removed++; TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (asoc->size_on_reasm_queue >= chk->send_size) { asoc->size_on_reasm_queue -= chk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, chk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } if (!TAILQ_EMPTY(&control->reasm)) { /* This has to be old data, unordered */ if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_reset_a_control(control, stcb->sctp_ep, cumtsn); chk = TAILQ_FIRST(&control->reasm); if (chk->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) { TAILQ_REMOVE(&control->reasm, chk, sctp_next); sctp_add_chk_to_control(control, strm, stcb, asoc, chk, SCTP_READ_LOCK_HELD); } sctp_deliver_reasm_check(stcb, asoc, strm, SCTP_READ_LOCK_HELD); return; } if (control->on_strm_q == SCTP_ON_ORDERED) { TAILQ_REMOVE(&strm->inqueue, control, next_instrm); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); control->on_strm_q = 0; } else if (control->on_strm_q == SCTP_ON_UNORDERED) { TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); control->on_strm_q = 0; #ifdef INVARIANTS } else if (control->on_strm_q) { panic("strm: %p ctl: %p unknown %d", strm, control, control->on_strm_q); #endif } control->on_strm_q = 0; if (control->on_read_q == 0) { sctp_free_remote_addr(control->whoFrom); if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_a_readq(stcb, control); } } void sctp_handle_forward_tsn(struct sctp_tcb *stcb, struct sctp_forward_tsn_chunk *fwd, int *abort_flag, struct mbuf *m, int offset) { /* The pr-sctp fwd tsn */ /* * here we will perform all the data receiver side steps for * processing FwdTSN, as required in by pr-sctp draft: * * Assume we get FwdTSN(x): * * 1) update local cumTSN to x 2) try to further advance cumTSN to x * + others we have 3) examine and update re-ordering queue on * pr-in-streams 4) clean up re-assembly queue 5) Send a sack to * report where we are. */ struct sctp_association *asoc; uint32_t new_cum_tsn, gap; unsigned int i, fwd_sz, m_size; uint32_t str_seq; struct sctp_stream_in *strm; struct sctp_queued_to_read *control, *sv; asoc = &stcb->asoc; if ((fwd_sz = ntohs(fwd->ch.chunk_length)) < sizeof(struct sctp_forward_tsn_chunk)) { SCTPDBG(SCTP_DEBUG_INDATA1, "Bad size too small/big fwd-tsn\n"); return; } m_size = (stcb->asoc.mapping_array_size << 3); /*************************************************************/ /* 1. Here we update local cumTSN and shift the bitmap array */ /*************************************************************/ new_cum_tsn = ntohl(fwd->new_cumulative_tsn); if (SCTP_TSN_GE(asoc->cumulative_tsn, new_cum_tsn)) { /* Already got there ... */ return; } /* * now we know the new TSN is more advanced, let's find the actual * gap */ SCTP_CALC_TSN_TO_GAP(gap, new_cum_tsn, asoc->mapping_array_base_tsn); asoc->cumulative_tsn = new_cum_tsn; if (gap >= m_size) { if ((long)gap > sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv)) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * out of range (of single byte chunks in the rwnd I * give out). This must be an attacker. */ *abort_flag = 1; snprintf(msg, sizeof(msg), "New cum ack %8.8x too high, highest TSN %8.8x", new_cum_tsn, asoc->highest_tsn_inside_map); op_err = sctp_generate_cause(SCTP_CAUSE_PROTOCOL_VIOLATION, msg); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_INDATA + SCTP_LOC_33; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); return; } SCTP_STAT_INCR(sctps_fwdtsn_map_over); memset(stcb->asoc.mapping_array, 0, stcb->asoc.mapping_array_size); asoc->mapping_array_base_tsn = new_cum_tsn + 1; asoc->highest_tsn_inside_map = new_cum_tsn; memset(stcb->asoc.nr_mapping_array, 0, stcb->asoc.mapping_array_size); asoc->highest_tsn_inside_nr_map = new_cum_tsn; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(0, 3, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } } else { SCTP_TCB_LOCK_ASSERT(stcb); for (i = 0; i <= gap; i++) { if (!SCTP_IS_TSN_PRESENT(asoc->mapping_array, i) && !SCTP_IS_TSN_PRESENT(asoc->nr_mapping_array, i)) { SCTP_SET_TSN_PRESENT(asoc->nr_mapping_array, i); if (SCTP_TSN_GT(asoc->mapping_array_base_tsn + i, asoc->highest_tsn_inside_nr_map)) { asoc->highest_tsn_inside_nr_map = asoc->mapping_array_base_tsn + i; } } } } /*************************************************************/ /* 2. Clear up re-assembly queue */ /*************************************************************/ /* This is now done as part of clearing up the stream/seq */ if (asoc->idata_supported == 0) { uint16_t sid; /* Flush all the un-ordered data based on cum-tsn */ SCTP_INP_READ_LOCK(stcb->sctp_ep); for (sid = 0; sid < asoc->streamincnt; sid++) { sctp_flush_reassm_for_str_seq(stcb, asoc, sid, 0, 0, new_cum_tsn); } SCTP_INP_READ_UNLOCK(stcb->sctp_ep); } /*******************************************************/ /* 3. Update the PR-stream re-ordering queues and fix */ /* delivery issues as needed. */ /*******************************************************/ fwd_sz -= sizeof(*fwd); if (m && fwd_sz) { /* New method. */ unsigned int num_str; uint32_t mid, cur_mid; uint16_t sid; uint16_t ordered, flags; struct sctp_strseq *stseq, strseqbuf; struct sctp_strseq_mid *stseq_m, strseqbuf_m; offset += sizeof(*fwd); SCTP_INP_READ_LOCK(stcb->sctp_ep); if (asoc->idata_supported) { num_str = fwd_sz / sizeof(struct sctp_strseq_mid); } else { num_str = fwd_sz / sizeof(struct sctp_strseq); } for (i = 0; i < num_str; i++) { if (asoc->idata_supported) { stseq_m = (struct sctp_strseq_mid *)sctp_m_getptr(m, offset, sizeof(struct sctp_strseq_mid), (uint8_t *)&strseqbuf_m); offset += sizeof(struct sctp_strseq_mid); if (stseq_m == NULL) { break; } sid = ntohs(stseq_m->sid); mid = ntohl(stseq_m->mid); flags = ntohs(stseq_m->flags); if (flags & PR_SCTP_UNORDERED_FLAG) { ordered = 0; } else { ordered = 1; } } else { stseq = (struct sctp_strseq *)sctp_m_getptr(m, offset, sizeof(struct sctp_strseq), (uint8_t *)&strseqbuf); offset += sizeof(struct sctp_strseq); if (stseq == NULL) { break; } sid = ntohs(stseq->sid); mid = (uint32_t)ntohs(stseq->ssn); ordered = 1; } /* Convert */ /* now process */ /* * Ok we now look for the stream/seq on the read * queue where its not all delivered. If we find it * we transmute the read entry into a PDI_ABORTED. */ if (sid >= asoc->streamincnt) { /* screwed up streams, stop! */ break; } if ((asoc->str_of_pdapi == sid) && (asoc->ssn_of_pdapi == mid)) { /* * If this is the one we were partially * delivering now then we no longer are. * Note this will change with the reassembly * re-write. */ asoc->fragmented_delivery_inprogress = 0; } strm = &asoc->strmin[sid]; for (cur_mid = strm->last_mid_delivered; SCTP_MID_GE(asoc->idata_supported, mid, cur_mid); cur_mid++) { sctp_flush_reassm_for_str_seq(stcb, asoc, sid, cur_mid, ordered, new_cum_tsn); } TAILQ_FOREACH(control, &stcb->sctp_ep->read_queue, next) { if ((control->sinfo_stream == sid) && (SCTP_MID_EQ(asoc->idata_supported, control->mid, mid))) { str_seq = (sid << 16) | (0x0000ffff & mid); control->pdapi_aborted = 1; sv = stcb->asoc.control_pdapi; control->end_added = 1; if (control->on_strm_q == SCTP_ON_ORDERED) { TAILQ_REMOVE(&strm->inqueue, control, next_instrm); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); } else if (control->on_strm_q == SCTP_ON_UNORDERED) { TAILQ_REMOVE(&strm->uno_inqueue, control, next_instrm); #ifdef INVARIANTS } else if (control->on_strm_q) { panic("strm: %p ctl: %p unknown %d", strm, control, control->on_strm_q); #endif } control->on_strm_q = 0; stcb->asoc.control_pdapi = control; sctp_ulp_notify(SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION, stcb, SCTP_PARTIAL_DELIVERY_ABORTED, (void *)&str_seq, SCTP_SO_NOT_LOCKED); stcb->asoc.control_pdapi = sv; break; } else if ((control->sinfo_stream == sid) && SCTP_MID_GT(asoc->idata_supported, control->mid, mid)) { /* We are past our victim SSN */ break; } } if (SCTP_MID_GT(asoc->idata_supported, mid, strm->last_mid_delivered)) { /* Update the sequence number */ strm->last_mid_delivered = mid; } /* now kick the stream the new way */ /* sa_ignore NO_NULL_CHK */ sctp_kick_prsctp_reorder_queue(stcb, strm); } SCTP_INP_READ_UNLOCK(stcb->sctp_ep); } /* * Now slide thing forward. */ sctp_slide_mapping_arrays(stcb); } Index: stable/11/sys/netinet/sctp_indata.h =================================================================== --- stable/11/sys/netinet/sctp_indata.h (revision 347153) +++ stable/11/sys/netinet/sctp_indata.h (revision 347154) @@ -1,118 +1,117 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_INDATA_H_ #define _NETINET_SCTP_INDATA_H_ #if defined(_KERNEL) || defined(__Userspace__) struct sctp_queued_to_read * sctp_build_readq_entry(struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t tsn, uint32_t ppid, uint32_t context, uint16_t sid, uint32_t mid, uint8_t flags, struct mbuf *dm); #define sctp_build_readq_entry_mac(_ctl, in_it, context, net, tsn, ppid, sid, flags, dm, tfsn, mid) do { \ if (_ctl) { \ atomic_add_int(&((net)->ref_count), 1); \ memset(_ctl, 0, sizeof(struct sctp_queued_to_read)); \ (_ctl)->sinfo_stream = sid; \ TAILQ_INIT(&_ctl->reasm); \ (_ctl)->top_fsn = tfsn; \ (_ctl)->mid = mid; \ (_ctl)->sinfo_flags = (flags << 8); \ (_ctl)->sinfo_ppid = ppid; \ (_ctl)->sinfo_context = context; \ (_ctl)->fsn_included = 0xffffffff; \ (_ctl)->top_fsn = 0xffffffff; \ (_ctl)->sinfo_tsn = tsn; \ (_ctl)->sinfo_cumtsn = tsn; \ (_ctl)->sinfo_assoc_id = sctp_get_associd((in_it)); \ (_ctl)->whoFrom = net; \ (_ctl)->data = dm; \ (_ctl)->stcb = (in_it); \ (_ctl)->port_from = (in_it)->rport; \ } \ } while (0) struct mbuf * sctp_build_ctl_nchunk(struct sctp_inpcb *inp, struct sctp_sndrcvinfo *sinfo); void sctp_set_rwnd(struct sctp_tcb *, struct sctp_association *); uint32_t sctp_calc_rwnd(struct sctp_tcb *stcb, struct sctp_association *asoc); void sctp_express_handle_sack(struct sctp_tcb *stcb, uint32_t cumack, uint32_t rwnd, int *abort_now, int ecne_seen); void sctp_handle_sack(struct mbuf *m, int offset_seg, int offset_dup, struct sctp_tcb *stcb, uint16_t num_seg, uint16_t num_nr_seg, uint16_t num_dup, int *abort_now, uint8_t flags, uint32_t cum_ack, uint32_t rwnd, int ecne_seen); /* draft-ietf-tsvwg-usctp */ void sctp_handle_forward_tsn(struct sctp_tcb *, struct sctp_forward_tsn_chunk *, int *, struct mbuf *, int); -struct sctp_tmit_chunk * - sctp_try_advance_peer_ack_point(struct sctp_tcb *, struct sctp_association *); +struct sctp_tmit_chunk *sctp_try_advance_peer_ack_point(struct sctp_tcb *, struct sctp_association *); void sctp_service_queues(struct sctp_tcb *, struct sctp_association *); void sctp_update_acked(struct sctp_tcb *, struct sctp_shutdown_chunk *, int *); int sctp_process_data(struct mbuf **, int, int *, int, struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *, uint32_t *); void sctp_slide_mapping_arrays(struct sctp_tcb *stcb); void sctp_sack_check(struct sctp_tcb *, int); #endif #endif Index: stable/11/sys/netinet/sctp_input.c =================================================================== --- stable/11/sys/netinet/sctp_input.c (revision 347153) +++ stable/11/sys/netinet/sctp_input.c (revision 347154) @@ -1,6015 +1,6038 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #endif #include static void sctp_stop_all_cookie_timers(struct sctp_tcb *stcb) { struct sctp_nets *net; /* * This now not only stops all cookie timers it also stops any INIT * timers as well. This will make sure that the timers are stopped * in all collision cases. */ SCTP_TCB_LOCK_ASSERT(stcb); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->rxt_timer.type == SCTP_TIMER_TYPE_COOKIE) { sctp_timer_stop(SCTP_TIMER_TYPE_COOKIE, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_1); } else if (net->rxt_timer.type == SCTP_TIMER_TYPE_INIT) { sctp_timer_stop(SCTP_TIMER_TYPE_INIT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_2); } } } /* INIT handler */ static void sctp_handle_init(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_init_chunk *cp, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_no_unlock, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { struct sctp_init *init; struct mbuf *op_err; SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_init: handling INIT tcb:%p\n", (void *)stcb); if (stcb == NULL) { SCTP_INP_RLOCK(inp); } /* validate length */ if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_init_chunk)) { op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } /* validate parameters */ init = &cp->init; if (init->initiate_tag == 0) { /* protocol error... send abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } if (ntohl(init->a_rwnd) < SCTP_MIN_RWND) { /* invalid parameter... send abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } if (init->num_inbound_streams == 0) { /* protocol error... send abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } if (init->num_outbound_streams == 0) { /* protocol error... send abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } if (sctp_validate_init_auth_params(m, offset + sizeof(*cp), offset + ntohs(cp->ch.chunk_length))) { /* auth parameter(s) error... send abort */ op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Problem with AUTH parameters"); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); if (stcb) *abort_no_unlock = 1; goto outnow; } /* We are only accepting if we have a socket with positive * so_qlimit. */ if ((stcb == NULL) && ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_socket == NULL) || (inp->sctp_socket->so_qlimit == 0))) { /* * FIX ME ?? What about TCP model and we have a * match/restart case? Actually no fix is needed. the lookup * will always find the existing assoc so stcb would not be * NULL. It may be questionable to do this since we COULD * just send back the INIT-ACK and hope that the app did * accept()'s by the time the COOKIE was sent. But there is * a price to pay for COOKIE generation and I don't want to * pay it on the chance that the app will actually do some * accepts(). The App just looses and should NOT be in this * state :-) */ if (SCTP_BASE_SYSCTL(sctp_blackhole) == 0) { op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "No listener"); sctp_send_abort(m, iphlen, src, dst, sh, 0, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); } goto outnow; } if ((stcb != NULL) && (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_ACK_SENT)) { SCTPDBG(SCTP_DEBUG_INPUT3, "sctp_handle_init: sending SHUTDOWN-ACK\n"); sctp_send_shutdown_ack(stcb, NULL); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_CONTROL_PROC, SCTP_SO_NOT_LOCKED); } else { SCTPDBG(SCTP_DEBUG_INPUT3, "sctp_handle_init: sending INIT-ACK\n"); sctp_send_initiate_ack(inp, stcb, net, m, iphlen, offset, src, dst, sh, cp, mflowtype, mflowid, vrf_id, port); } outnow: if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); } } /* * process peer "INIT/INIT-ACK" chunk returns value < 0 on error */ int sctp_is_there_unsent_data(struct sctp_tcb *stcb, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { int unsent_data; unsigned int i; struct sctp_stream_queue_pending *sp; struct sctp_association *asoc; /* * This function returns if any stream has true unsent data on it. * Note that as it looks through it will clean up any places that * have old data that has been sent but left at top of stream queue. */ asoc = &stcb->asoc; unsent_data = 0; SCTP_TCB_SEND_LOCK(stcb); if (!stcb->asoc.ss_functions.sctp_ss_is_empty(stcb, asoc)) { /* Check to see if some data queued */ for (i = 0; i < stcb->asoc.streamoutcnt; i++) { /* sa_ignore FREED_MEMORY */ sp = TAILQ_FIRST(&stcb->asoc.strmout[i].outqueue); if (sp == NULL) { continue; } if ((sp->msg_is_complete) && (sp->length == 0) && (sp->sender_all_done)) { /* * We are doing differed cleanup. Last time * through when we took all the data the * sender_all_done was not set. */ if (sp->put_last_out == 0) { SCTP_PRINTF("Gak, put out entire msg with NO end!-1\n"); SCTP_PRINTF("sender_done:%d len:%d msg_comp:%d put_last_out:%d\n", sp->sender_all_done, sp->length, sp->msg_is_complete, sp->put_last_out); } atomic_subtract_int(&stcb->asoc.stream_queue_cnt, 1); TAILQ_REMOVE(&stcb->asoc.strmout[i].outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, &asoc->strmout[i], sp, 1); if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; } sctp_free_a_strmoq(stcb, sp, so_locked); if (!TAILQ_EMPTY(&stcb->asoc.strmout[i].outqueue)) { unsent_data++; } } else { unsent_data++; } if (unsent_data > 0) { break; } } } SCTP_TCB_SEND_UNLOCK(stcb); return (unsent_data); } static int sctp_process_init(struct sctp_init_chunk *cp, struct sctp_tcb *stcb) { struct sctp_init *init; struct sctp_association *asoc; struct sctp_nets *lnet; unsigned int i; init = &cp->init; asoc = &stcb->asoc; /* save off parameters */ asoc->peer_vtag = ntohl(init->initiate_tag); asoc->peers_rwnd = ntohl(init->a_rwnd); /* init tsn's */ asoc->highest_tsn_inside_map = asoc->asconf_seq_in = ntohl(init->initial_tsn) - 1; if (!TAILQ_EMPTY(&asoc->nets)) { /* update any ssthresh's that may have a default */ TAILQ_FOREACH(lnet, &asoc->nets, sctp_next) { lnet->ssthresh = asoc->peers_rwnd; if (SCTP_BASE_SYSCTL(sctp_logging_level) & (SCTP_CWND_MONITOR_ENABLE | SCTP_CWND_LOGGING_ENABLE)) { sctp_log_cwnd(stcb, lnet, 0, SCTP_CWND_INITIALIZATION); } + } } SCTP_TCB_SEND_LOCK(stcb); if (asoc->pre_open_streams > ntohs(init->num_inbound_streams)) { unsigned int newcnt; struct sctp_stream_out *outs; struct sctp_stream_queue_pending *sp, *nsp; struct sctp_tmit_chunk *chk, *nchk; /* abandon the upper streams */ newcnt = ntohs(init->num_inbound_streams); TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { if (chk->rec.data.sid >= newcnt) { TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); asoc->send_queue_cnt--; if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } if (chk->data != NULL) { sctp_free_bufspace(stcb, asoc, chk, 1); sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, chk, SCTP_SO_NOT_LOCKED); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); /* sa_ignore FREED_MEMORY */ } } if (asoc->strmout) { for (i = newcnt; i < asoc->pre_open_streams; i++) { outs = &asoc->strmout[i]; TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { atomic_subtract_int(&stcb->asoc.stream_queue_cnt, 1); TAILQ_REMOVE(&outs->outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp, 1); sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, 0, sp, SCTP_SO_NOT_LOCKED); if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } /* Free the chunk */ sctp_free_a_strmoq(stcb, sp, SCTP_SO_NOT_LOCKED); /* sa_ignore FREED_MEMORY */ } outs->state = SCTP_STREAM_CLOSED; } } /* cut back the count */ asoc->pre_open_streams = newcnt; } SCTP_TCB_SEND_UNLOCK(stcb); asoc->streamoutcnt = asoc->pre_open_streams; if (asoc->strmout) { for (i = 0; i < asoc->streamoutcnt; i++) { asoc->strmout[i].state = SCTP_STREAM_OPEN; } } /* EY - nr_sack: initialize highest tsn in nr_mapping_array */ asoc->highest_tsn_inside_nr_map = asoc->highest_tsn_inside_map; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(0, 5, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } /* This is the next one we expect */ asoc->str_reset_seq_in = asoc->asconf_seq_in + 1; asoc->mapping_array_base_tsn = ntohl(init->initial_tsn); asoc->tsn_last_delivered = asoc->cumulative_tsn = asoc->asconf_seq_in; asoc->advanced_peer_ack_point = asoc->last_acked_seq; /* open the requested streams */ if (asoc->strmin != NULL) { /* Free the old ones */ for (i = 0; i < asoc->streamincnt; i++) { sctp_clean_up_stream(stcb, &asoc->strmin[i].inqueue); sctp_clean_up_stream(stcb, &asoc->strmin[i].uno_inqueue); } SCTP_FREE(asoc->strmin, SCTP_M_STRMI); } if (asoc->max_inbound_streams > ntohs(init->num_outbound_streams)) { asoc->streamincnt = ntohs(init->num_outbound_streams); } else { asoc->streamincnt = asoc->max_inbound_streams; } SCTP_MALLOC(asoc->strmin, struct sctp_stream_in *, asoc->streamincnt * sizeof(struct sctp_stream_in), SCTP_M_STRMI); if (asoc->strmin == NULL) { /* we didn't get memory for the streams! */ SCTPDBG(SCTP_DEBUG_INPUT2, "process_init: couldn't get memory for the streams!\n"); return (-1); } for (i = 0; i < asoc->streamincnt; i++) { asoc->strmin[i].sid = i; asoc->strmin[i].last_mid_delivered = 0xffffffff; TAILQ_INIT(&asoc->strmin[i].inqueue); TAILQ_INIT(&asoc->strmin[i].uno_inqueue); asoc->strmin[i].pd_api_started = 0; asoc->strmin[i].delivery_started = 0; } /* * load_address_from_init will put the addresses into the * association when the COOKIE is processed or the INIT-ACK is * processed. Both types of COOKIE's existing and new call this * routine. It will remove addresses that are no longer in the * association (for the restarting case where addresses are * removed). Up front when the INIT arrives we will discard it if it * is a restart and new addresses have been added. */ /* sa_ignore MEMLEAK */ return (0); } /* * INIT-ACK message processing/consumption returns value < 0 on error */ static int sctp_process_init_ack(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_init_ack_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_no_unlock, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id) { struct sctp_association *asoc; struct mbuf *op_err; int retval, abort_flag; uint32_t initack_limit; int nat_friendly = 0; /* First verify that we have no illegal param's */ abort_flag = 0; op_err = sctp_arethere_unrecognized_parameters(m, (offset + sizeof(struct sctp_init_chunk)), &abort_flag, (struct sctp_chunkhdr *)cp, &nat_friendly); if (abort_flag) { /* Send an abort and notify peer */ sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_NOT_LOCKED); *abort_no_unlock = 1; return (-1); } asoc = &stcb->asoc; asoc->peer_supports_nat = (uint8_t)nat_friendly; /* process the peer's parameters in the INIT-ACK */ retval = sctp_process_init((struct sctp_init_chunk *)cp, stcb); if (retval < 0) { return (retval); } initack_limit = offset + ntohs(cp->ch.chunk_length); /* load all addresses */ if ((retval = sctp_load_addresses_from_init(stcb, m, (offset + sizeof(struct sctp_init_chunk)), initack_limit, src, dst, NULL, stcb->asoc.port))) { op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Problem with address parameters"); SCTPDBG(SCTP_DEBUG_INPUT1, "Load addresses from INIT causes an abort %d\n", retval); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } /* if the peer doesn't support asconf, flush the asconf queue */ if (asoc->asconf_supported == 0) { struct sctp_asconf_addr *param, *nparam; TAILQ_FOREACH_SAFE(param, &asoc->asconf_queue, next, nparam) { TAILQ_REMOVE(&asoc->asconf_queue, param, next); SCTP_FREE(param, SCTP_M_ASC_ADDR); } } + stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, stcb->asoc.local_hmacs); if (op_err) { sctp_queue_op_err(stcb, op_err); /* queuing will steal away the mbuf chain to the out queue */ op_err = NULL; } /* extract the cookie and queue it to "echo" it back... */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INPUT, __LINE__); } stcb->asoc.overall_error_count = 0; net->error_count = 0; /* * Cancel the INIT timer, We do this first before queueing the * cookie. We always cancel at the primary to assue that we are * canceling the timer started by the INIT which always goes to the * primary. */ sctp_timer_stop(SCTP_TIMER_TYPE_INIT, stcb->sctp_ep, stcb, asoc->primary_destination, SCTP_FROM_SCTP_INPUT + SCTP_LOC_3); /* calculate the RTO */ net->RTO = sctp_calculate_rto(stcb, asoc, net, &asoc->time_entered, SCTP_RTT_FROM_NON_DATA); retval = sctp_send_cookie_echo(m, offset, stcb, net); if (retval < 0) { /* * No cookie, we probably should send a op error. But in any * case if there is no cookie in the INIT-ACK, we can * abandon the peer, its broke. */ if (retval == -3) { uint16_t len; len = (uint16_t)(sizeof(struct sctp_error_missing_param) + sizeof(uint16_t)); /* We abort with an error of missing mandatory param */ op_err = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (op_err != NULL) { struct sctp_error_missing_param *cause; SCTP_BUF_LEN(op_err) = len; cause = mtod(op_err, struct sctp_error_missing_param *); /* Subtract the reserved param */ cause->cause.code = htons(SCTP_CAUSE_MISSING_PARAM); cause->cause.length = htons(len); cause->num_missing_params = htonl(1); cause->type[0] = htons(SCTP_STATE_COOKIE); } sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; } return (retval); } + return (0); } static void sctp_handle_heartbeat_ack(struct sctp_heartbeat_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net) { union sctp_sockstore store; struct sctp_nets *r_net, *f_net; struct timeval tv; int req_prim = 0; uint16_t old_error_counter; if (ntohs(cp->ch.chunk_length) != sizeof(struct sctp_heartbeat_chunk)) { /* Invalid length */ return; } + memset(&store, 0, sizeof(store)); switch (cp->heartbeat.hb_info.addr_family) { #ifdef INET case AF_INET: if (cp->heartbeat.hb_info.addr_len == sizeof(struct sockaddr_in)) { store.sin.sin_family = cp->heartbeat.hb_info.addr_family; store.sin.sin_len = cp->heartbeat.hb_info.addr_len; store.sin.sin_port = stcb->rport; memcpy(&store.sin.sin_addr, cp->heartbeat.hb_info.address, sizeof(store.sin.sin_addr)); } else { return; } break; #endif #ifdef INET6 case AF_INET6: if (cp->heartbeat.hb_info.addr_len == sizeof(struct sockaddr_in6)) { store.sin6.sin6_family = cp->heartbeat.hb_info.addr_family; store.sin6.sin6_len = cp->heartbeat.hb_info.addr_len; store.sin6.sin6_port = stcb->rport; memcpy(&store.sin6.sin6_addr, cp->heartbeat.hb_info.address, sizeof(struct in6_addr)); } else { return; } break; #endif default: return; } r_net = sctp_findnet(stcb, &store.sa); if (r_net == NULL) { SCTPDBG(SCTP_DEBUG_INPUT1, "Huh? I can't find the address I sent it to, discard\n"); return; } if ((r_net && (r_net->dest_state & SCTP_ADDR_UNCONFIRMED)) && (r_net->heartbeat_random1 == cp->heartbeat.hb_info.random_value1) && (r_net->heartbeat_random2 == cp->heartbeat.hb_info.random_value2)) { /* * If the its a HB and it's random value is correct when can * confirm the destination. */ r_net->dest_state &= ~SCTP_ADDR_UNCONFIRMED; if (r_net->dest_state & SCTP_ADDR_REQ_PRIMARY) { stcb->asoc.primary_destination = r_net; r_net->dest_state &= ~SCTP_ADDR_REQ_PRIMARY; f_net = TAILQ_FIRST(&stcb->asoc.nets); if (f_net != r_net) { /* * first one on the list is NOT the primary * sctp_cmpaddr() is much more efficient if * the primary is the first on the list, * make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, r_net, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, r_net, sctp_next); } req_prim = 1; } sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_CONFIRMED, stcb, 0, (void *)r_net, SCTP_SO_NOT_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, r_net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_4); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, r_net); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INPUT, __LINE__); } stcb->asoc.overall_error_count = 0; old_error_counter = r_net->error_count; r_net->error_count = 0; r_net->hb_responded = 1; tv.tv_sec = cp->heartbeat.hb_info.time_value_1; tv.tv_usec = cp->heartbeat.hb_info.time_value_2; /* Now lets do a RTO with this */ r_net->RTO = sctp_calculate_rto(stcb, &stcb->asoc, r_net, &tv, SCTP_RTT_FROM_NON_DATA); if (!(r_net->dest_state & SCTP_ADDR_REACHABLE)) { r_net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, (void *)r_net, SCTP_SO_NOT_LOCKED); } if (r_net->dest_state & SCTP_ADDR_PF) { r_net->dest_state &= ~SCTP_ADDR_PF; stcb->asoc.cc_functions.sctp_cwnd_update_exit_pf(stcb, net); } if (old_error_counter > 0) { sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, r_net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_5); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, r_net); } if (r_net == stcb->asoc.primary_destination) { if (stcb->asoc.alternate) { /* release the alternate, primary is good */ sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } } /* Mobility adaptation */ if (req_prim) { if ((sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) && sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED)) { sctp_timer_stop(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTP_INPUT + SCTP_LOC_6); if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_assoc_immediate_retrans(stcb, stcb->asoc.primary_destination); } if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE)) { sctp_move_chunks_from_net(stcb, stcb->asoc.deleted_primary); } sctp_delete_prim_timer(stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); } } } static int sctp_handle_nat_colliding_state(struct sctp_tcb *stcb) { /* * return 0 means we want you to proceed with the abort non-zero * means no abort processing */ struct sctpasochead *head; if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED)) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_WAIT) { /* generate a new vtag and send init */ LIST_REMOVE(stcb, sctp_asocs); stcb->asoc.my_vtag = sctp_select_a_tag(stcb->sctp_ep, stcb->sctp_ep->sctp_lport, stcb->rport, 1); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* * put it in the bucket in the vtag hash of assoc's for the * system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); sctp_send_initiate(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); SCTP_INP_INFO_WUNLOCK(); return (1); } if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED) { /* * treat like a case where the cookie expired i.e.: - dump * current cookie. - generate a new vtag. - resend init. */ /* generate a new vtag and send init */ LIST_REMOVE(stcb, sctp_asocs); stcb->asoc.state &= ~SCTP_STATE_COOKIE_ECHOED; stcb->asoc.state |= SCTP_STATE_COOKIE_WAIT; sctp_stop_all_cookie_timers(stcb); sctp_toss_old_cookies(stcb, &stcb->asoc); stcb->asoc.my_vtag = sctp_select_a_tag(stcb->sctp_ep, stcb->sctp_ep->sctp_lport, stcb->rport, 1); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* * put it in the bucket in the vtag hash of assoc's for the * system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); sctp_send_initiate(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); SCTP_INP_INFO_WUNLOCK(); return (1); } return (0); } static int sctp_handle_nat_missing_state(struct sctp_tcb *stcb, struct sctp_nets *net) { /* * return 0 means we want you to proceed with the abort non-zero * means no abort processing */ if (stcb->asoc.auth_supported == 0) { SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_nat_missing_state: Peer does not support AUTH, cannot send an asconf\n"); return (0); } sctp_asconf_send_nat_state_update(stcb, net); return (1); } /* Returns 1 if the stcb was aborted, 0 otherwise */ static int sctp_handle_abort(struct sctp_abort_chunk *abort, struct sctp_tcb *stcb, struct sctp_nets *net) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif uint16_t len; uint16_t error; SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_abort: handling ABORT\n"); if (stcb == NULL) return (0); len = ntohs(abort->ch.chunk_length); if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_error_cause)) { /* * Need to check the cause codes for our two magic nat * aborts which don't kill the assoc necessarily. */ struct sctp_error_cause *cause; cause = (struct sctp_error_cause *)(abort + 1); error = ntohs(cause->code); if (error == SCTP_CAUSE_NAT_COLLIDING_STATE) { SCTPDBG(SCTP_DEBUG_INPUT2, "Received Colliding state abort flags:%x\n", abort->ch.chunk_flags); if (sctp_handle_nat_colliding_state(stcb)) { return (0); } } else if (error == SCTP_CAUSE_NAT_MISSING_STATE) { SCTPDBG(SCTP_DEBUG_INPUT2, "Received missing state abort flags:%x\n", abort->ch.chunk_flags); if (sctp_handle_nat_missing_state(stcb, net)) { return (0); } } } else { error = 0; } /* stop any receive timers */ sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_7); /* notify user of the abort and clean up... */ sctp_abort_notification(stcb, 1, error, abort, SCTP_SO_NOT_LOCKED); /* free the tcb */ SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } #ifdef SCTP_ASOCLOG_OF_TSNS sctp_print_out_track_log(stcb); #endif #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif stcb->asoc.state |= SCTP_STATE_WAS_ABORTED; (void)sctp_free_assoc(stcb->sctp_ep, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_8); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_abort: finished\n"); return (1); } static void sctp_start_net_timers(struct sctp_tcb *stcb) { uint32_t cnt_hb_sent; struct sctp_nets *net; cnt_hb_sent = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* * For each network start: 1) A pmtu timer. 2) A HB timer 3) * If the dest in unconfirmed send a hb as well if under * max_hb_burst have been sent. */ sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, stcb->sctp_ep, stcb, net); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); if ((net->dest_state & SCTP_ADDR_UNCONFIRMED) && (cnt_hb_sent < SCTP_BASE_SYSCTL(sctp_hb_maxburst))) { sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); cnt_hb_sent++; } } if (cnt_hb_sent) { sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_COOKIE_ACK, SCTP_SO_NOT_LOCKED); } } static void sctp_handle_shutdown(struct sctp_shutdown_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_flag) { struct sctp_association *asoc; int some_on_streamwheel; int old_state; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_shutdown: handling SHUTDOWN\n"); if (stcb == NULL) return; asoc = &stcb->asoc; if ((SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED)) { return; } if (ntohs(cp->ch.chunk_length) != sizeof(struct sctp_shutdown_chunk)) { /* Shutdown NOT the expected size */ return; } old_state = SCTP_GET_STATE(asoc); sctp_update_acked(stcb, cp, abort_flag); if (*abort_flag) { return; } if (asoc->control_pdapi) { /* * With a normal shutdown we assume the end of last record. */ SCTP_INP_READ_LOCK(stcb->sctp_ep); if (asoc->control_pdapi->on_strm_q) { struct sctp_stream_in *strm; strm = &asoc->strmin[asoc->control_pdapi->sinfo_stream]; if (asoc->control_pdapi->on_strm_q == SCTP_ON_UNORDERED) { /* Unordered */ TAILQ_REMOVE(&strm->uno_inqueue, asoc->control_pdapi, next_instrm); asoc->control_pdapi->on_strm_q = 0; } else if (asoc->control_pdapi->on_strm_q == SCTP_ON_ORDERED) { /* Ordered */ TAILQ_REMOVE(&strm->inqueue, asoc->control_pdapi, next_instrm); asoc->control_pdapi->on_strm_q = 0; #ifdef INVARIANTS } else { panic("Unknown state on ctrl:%p on_strm_q:%d", asoc->control_pdapi, asoc->control_pdapi->on_strm_q); #endif } } asoc->control_pdapi->end_added = 1; asoc->control_pdapi->pdapi_aborted = 1; asoc->control_pdapi = NULL; SCTP_INP_READ_UNLOCK(stcb->sctp_ep); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return; } #endif if (stcb->sctp_socket) { sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket); } #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } /* goto SHUTDOWN_RECEIVED state to block new requests */ if (stcb->sctp_socket) { if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_RECEIVED) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT)) { SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_RECEIVED); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); /* * notify upper layer that peer has initiated a * shutdown */ sctp_ulp_notify(SCTP_NOTIFY_PEER_SHUTDOWN, stcb, 0, NULL, SCTP_SO_NOT_LOCKED); /* reset time */ (void)SCTP_GETTIME_TIMEVAL(&asoc->time_entered); } } if (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_SENT) { /* * stop the shutdown timer, since we WILL move to * SHUTDOWN-ACK-SENT. */ sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_9); } /* Now is there unsent data on a stream somewhere? */ some_on_streamwheel = sctp_is_there_unsent_data(stcb, SCTP_SO_NOT_LOCKED); if (!TAILQ_EMPTY(&asoc->send_queue) || !TAILQ_EMPTY(&asoc->sent_queue) || some_on_streamwheel) { /* By returning we will push more data out */ return; } else { /* no outstanding data to send, so move on... */ /* send SHUTDOWN-ACK */ /* move to SHUTDOWN-ACK-SENT state */ if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT) { SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_ACK_SENT); sctp_stop_timers_for_shutdown(stcb); sctp_send_shutdown_ack(stcb, net); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNACK, stcb->sctp_ep, stcb, net); } else if (old_state == SCTP_STATE_SHUTDOWN_ACK_SENT) { sctp_send_shutdown_ack(stcb, net); } } } static void sctp_handle_shutdown_ack(struct sctp_shutdown_ack_chunk *cp SCTP_UNUSED, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_association *asoc; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); #endif SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_shutdown_ack: handling SHUTDOWN ACK\n"); if (stcb == NULL) return; asoc = &stcb->asoc; /* process according to association state */ if ((SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED)) { /* unexpected SHUTDOWN-ACK... do OOTB handling... */ sctp_send_shutdown_complete(stcb, net, 1); SCTP_TCB_UNLOCK(stcb); return; } if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { /* unexpected SHUTDOWN-ACK... so ignore... */ SCTP_TCB_UNLOCK(stcb); return; } if (asoc->control_pdapi) { /* * With a normal shutdown we assume the end of last record. */ SCTP_INP_READ_LOCK(stcb->sctp_ep); asoc->control_pdapi->end_added = 1; asoc->control_pdapi->pdapi_aborted = 1; asoc->control_pdapi = NULL; SCTP_INP_READ_UNLOCK(stcb->sctp_ep); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return; } #endif sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } #ifdef INVARIANTS if (!TAILQ_EMPTY(&asoc->send_queue) || !TAILQ_EMPTY(&asoc->sent_queue) || sctp_is_there_unsent_data(stcb, SCTP_SO_NOT_LOCKED)) { panic("Queues are not empty when handling SHUTDOWN-ACK"); } #endif /* stop the timer */ sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_10); /* send SHUTDOWN-COMPLETE */ sctp_send_shutdown_complete(stcb, net, 0); /* notify upper layer protocol */ if (stcb->sctp_socket) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { stcb->sctp_socket->so_snd.sb_cc = 0; } sctp_ulp_notify(SCTP_NOTIFY_ASSOC_DOWN, stcb, 0, NULL, SCTP_SO_NOT_LOCKED); } SCTP_STAT_INCR_COUNTER32(sctps_shutdown); /* free the TCB but first save off the ep */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(stcb->sctp_ep, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_11); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } static void sctp_process_unrecog_chunk(struct sctp_tcb *stcb, uint8_t chunk_type, struct sctp_nets *net) { switch (chunk_type) { case SCTP_ASCONF_ACK: case SCTP_ASCONF: sctp_asconf_cleanup(stcb, net); break; case SCTP_IFORWARD_CUM_TSN: case SCTP_FORWARD_CUM_TSN: stcb->asoc.prsctp_supported = 0; break; default: SCTPDBG(SCTP_DEBUG_INPUT2, "Peer does not support chunk type %d (0x%x).\n", chunk_type, chunk_type); break; } } /* * Skip past the param header and then we will find the param that caused the * problem. There are a number of param's in a ASCONF OR the prsctp param * these will turn of specific features. * XXX: Is this the right thing to do? */ static void sctp_process_unrecog_param(struct sctp_tcb *stcb, uint16_t parameter_type) { switch (parameter_type) { /* pr-sctp draft */ case SCTP_PRSCTP_SUPPORTED: stcb->asoc.prsctp_supported = 0; break; case SCTP_SUPPORTED_CHUNK_EXT: break; /* draft-ietf-tsvwg-addip-sctp */ case SCTP_HAS_NAT_SUPPORT: stcb->asoc.peer_supports_nat = 0; break; case SCTP_ADD_IP_ADDRESS: case SCTP_DEL_IP_ADDRESS: case SCTP_SET_PRIM_ADDR: stcb->asoc.asconf_supported = 0; break; case SCTP_SUCCESS_REPORT: case SCTP_ERROR_CAUSE_IND: SCTPDBG(SCTP_DEBUG_INPUT2, "Huh, the peer does not support success? or error cause?\n"); SCTPDBG(SCTP_DEBUG_INPUT2, "Turning off ASCONF to this strange peer\n"); stcb->asoc.asconf_supported = 0; break; default: SCTPDBG(SCTP_DEBUG_INPUT2, "Peer does not support param type %d (0x%x)??\n", parameter_type, parameter_type); break; } } static int sctp_handle_error(struct sctp_chunkhdr *ch, struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t limit) { struct sctp_error_cause *cause; struct sctp_association *asoc; uint32_t remaining_length, adjust; uint16_t code, cause_code, cause_length; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif /* parse through all of the errors and process */ asoc = &stcb->asoc; cause = (struct sctp_error_cause *)((caddr_t)ch + sizeof(struct sctp_chunkhdr)); remaining_length = ntohs(ch->chunk_length); if (remaining_length > limit) { remaining_length = limit; } if (remaining_length >= sizeof(struct sctp_chunkhdr)) { remaining_length -= sizeof(struct sctp_chunkhdr); } else { remaining_length = 0; } code = 0; while (remaining_length >= sizeof(struct sctp_error_cause)) { /* Process an Error Cause */ cause_code = ntohs(cause->code); cause_length = ntohs(cause->length); if ((cause_length > remaining_length) || (cause_length == 0)) { /* Invalid cause length, possibly due to truncation. */ SCTPDBG(SCTP_DEBUG_INPUT1, "Bogus length in cause - bytes left: %u cause length: %u\n", remaining_length, cause_length); return (0); } if (code == 0) { /* report the first error cause */ code = cause_code; } switch (cause_code) { case SCTP_CAUSE_INVALID_STREAM: case SCTP_CAUSE_MISSING_PARAM: case SCTP_CAUSE_INVALID_PARAM: case SCTP_CAUSE_NO_USER_DATA: SCTPDBG(SCTP_DEBUG_INPUT1, "Software error we got a %u back? We have a bug :/ (or do they?)\n", cause_code); break; case SCTP_CAUSE_NAT_COLLIDING_STATE: SCTPDBG(SCTP_DEBUG_INPUT2, "Received Colliding state abort flags: %x\n", ch->chunk_flags); if (sctp_handle_nat_colliding_state(stcb)) { return (0); } break; case SCTP_CAUSE_NAT_MISSING_STATE: SCTPDBG(SCTP_DEBUG_INPUT2, "Received missing state abort flags: %x\n", ch->chunk_flags); if (sctp_handle_nat_missing_state(stcb, net)) { return (0); } break; case SCTP_CAUSE_STALE_COOKIE: /* * We only act if we have echoed a cookie and are * waiting. */ if ((cause_length >= sizeof(struct sctp_error_stale_cookie)) && (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED)) { struct sctp_error_stale_cookie *stale_cookie; stale_cookie = (struct sctp_error_stale_cookie *)cause; asoc->cookie_preserve_req = ntohl(stale_cookie->stale_time); /* Double it to be more robust on RTX */ if (asoc->cookie_preserve_req <= UINT32_MAX / 2) { asoc->cookie_preserve_req *= 2; } else { asoc->cookie_preserve_req = UINT32_MAX; } asoc->stale_cookie_count++; if (asoc->stale_cookie_count > asoc->max_init_times) { sctp_abort_notification(stcb, 0, 0, NULL, SCTP_SO_NOT_LOCKED); /* now free the asoc */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(stcb->sctp_ep, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_12); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (-1); } /* blast back to INIT state */ sctp_toss_old_cookies(stcb, &stcb->asoc); asoc->state &= ~SCTP_STATE_COOKIE_ECHOED; asoc->state |= SCTP_STATE_COOKIE_WAIT; sctp_stop_all_cookie_timers(stcb); sctp_send_initiate(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); } break; case SCTP_CAUSE_UNRESOLVABLE_ADDR: /* * Nothing we can do here, we don't do hostname * addresses so if the peer does not like my IPv6 * (or IPv4 for that matter) it does not matter. If * they don't support that type of address, they can * NOT possibly get that packet type... i.e. with no * IPv6 you can't receive a IPv6 packet. so we can * safely ignore this one. If we ever added support * for HOSTNAME Addresses, then we would need to do * something here. */ break; case SCTP_CAUSE_UNRECOG_CHUNK: if (cause_length >= sizeof(struct sctp_error_unrecognized_chunk)) { struct sctp_error_unrecognized_chunk *unrec_chunk; unrec_chunk = (struct sctp_error_unrecognized_chunk *)cause; sctp_process_unrecog_chunk(stcb, unrec_chunk->ch.chunk_type, net); } break; case SCTP_CAUSE_UNRECOG_PARAM: /* XXX: We only consider the first parameter */ if (cause_length >= sizeof(struct sctp_error_cause) + sizeof(struct sctp_paramhdr)) { struct sctp_paramhdr *unrec_parameter; unrec_parameter = (struct sctp_paramhdr *)(cause + 1); sctp_process_unrecog_param(stcb, ntohs(unrec_parameter->param_type)); } break; case SCTP_CAUSE_COOKIE_IN_SHUTDOWN: /* * We ignore this since the timer will drive out a * new cookie anyway and there timer will drive us * to send a SHUTDOWN_COMPLETE. We can't send one * here since we don't have their tag. */ break; case SCTP_CAUSE_DELETING_LAST_ADDR: case SCTP_CAUSE_RESOURCE_SHORTAGE: case SCTP_CAUSE_DELETING_SRC_ADDR: /* * We should NOT get these here, but in a * ASCONF-ACK. */ SCTPDBG(SCTP_DEBUG_INPUT2, "Peer sends ASCONF errors in a error cause with code %u.\n", cause_code); break; case SCTP_CAUSE_OUT_OF_RESC: /* * And what, pray tell do we do with the fact that * the peer is out of resources? Not really sure we * could do anything but abort. I suspect this * should have came WITH an abort instead of in a * OP-ERROR. */ break; default: SCTPDBG(SCTP_DEBUG_INPUT1, "sctp_handle_error: unknown code 0x%x\n", cause_code); break; } adjust = SCTP_SIZE32(cause_length); if (remaining_length >= adjust) { remaining_length -= adjust; } else { remaining_length = 0; } cause = (struct sctp_error_cause *)((caddr_t)cause + adjust); } sctp_ulp_notify(SCTP_NOTIFY_REMOTE_ERROR, stcb, code, ch, SCTP_SO_NOT_LOCKED); return (0); } static int sctp_handle_init_ack(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_init_ack_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_no_unlock, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id) { struct sctp_init_ack *init_ack; struct mbuf *op_err; SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_init_ack: handling INIT-ACK\n"); if (stcb == NULL) { SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_init_ack: TCB is null\n"); return (-1); } if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_init_ack_chunk)) { /* Invalid length */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } init_ack = &cp->init; /* validate parameters */ if (init_ack->initiate_tag == 0) { /* protocol error... send an abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } if (ntohl(init_ack->a_rwnd) < SCTP_MIN_RWND) { /* protocol error... send an abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } if (init_ack->num_inbound_streams == 0) { /* protocol error... send an abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } if (init_ack->num_outbound_streams == 0) { /* protocol error... send an abort */ op_err = sctp_generate_cause(SCTP_CAUSE_INVALID_PARAM, ""); sctp_abort_association(stcb->sctp_ep, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, net->port); *abort_no_unlock = 1; return (-1); } /* process according to association state... */ switch (stcb->asoc.state & SCTP_STATE_MASK) { case SCTP_STATE_COOKIE_WAIT: /* this is the expected state for this chunk */ /* process the INIT-ACK parameters */ if (stcb->asoc.primary_destination->dest_state & SCTP_ADDR_UNCONFIRMED) { /* * The primary is where we sent the INIT, we can * always consider it confirmed when the INIT-ACK is * returned. Do this before we load addresses * though. */ stcb->asoc.primary_destination->dest_state &= ~SCTP_ADDR_UNCONFIRMED; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_CONFIRMED, stcb, 0, (void *)stcb->asoc.primary_destination, SCTP_SO_NOT_LOCKED); } if (sctp_process_init_ack(m, iphlen, offset, src, dst, sh, cp, stcb, net, abort_no_unlock, mflowtype, mflowid, vrf_id) < 0) { /* error in parsing parameters */ return (-1); } /* update our state */ SCTPDBG(SCTP_DEBUG_INPUT2, "moving to COOKIE-ECHOED state\n"); SCTP_SET_STATE(&stcb->asoc, SCTP_STATE_COOKIE_ECHOED); /* reset the RTO calc */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INPUT, __LINE__); } stcb->asoc.overall_error_count = 0; (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); /* * collapse the init timer back in case of a exponential * backoff */ sctp_timer_start(SCTP_TIMER_TYPE_COOKIE, stcb->sctp_ep, stcb, net); /* * the send at the end of the inbound data processing will * cause the cookie to be sent */ break; case SCTP_STATE_SHUTDOWN_SENT: /* incorrect state... discard */ break; case SCTP_STATE_COOKIE_ECHOED: /* incorrect state... discard */ break; case SCTP_STATE_OPEN: /* incorrect state... discard */ break; case SCTP_STATE_EMPTY: case SCTP_STATE_INUSE: default: /* incorrect state... discard */ return (-1); break; } SCTPDBG(SCTP_DEBUG_INPUT1, "Leaving handle-init-ack end\n"); return (0); } static struct sctp_tcb * sctp_process_cookie_new(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_state_cookie *cookie, int cookie_len, struct sctp_inpcb *inp, struct sctp_nets **netp, struct sockaddr *init_src, int *notification, int auth_skipped, uint32_t auth_offset, uint32_t auth_len, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port); /* * handle a state cookie for an existing association m: input packet mbuf * chain-- assumes a pullup on IP/SCTP/COOKIE-ECHO chunk note: this is a * "split" mbuf and the cookie signature does not exist offset: offset into * mbuf to the cookie-echo chunk */ static struct sctp_tcb * sctp_process_cookie_existing(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_state_cookie *cookie, int cookie_len, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets **netp, struct sockaddr *init_src, int *notification, int auth_skipped, uint32_t auth_offset, uint32_t auth_len, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { struct sctp_association *asoc; struct sctp_init_chunk *init_cp, init_buf; struct sctp_init_ack_chunk *initack_cp, initack_buf; struct sctp_nets *net; struct mbuf *op_err; struct timeval old; int init_offset, initack_offset, i; int retval; int spec_flag = 0; uint32_t how_indx; #if defined(SCTP_DETAILED_STR_STATS) int j; #endif net = *netp; /* I know that the TCB is non-NULL from the caller */ asoc = &stcb->asoc; for (how_indx = 0; how_indx < sizeof(asoc->cookie_how); how_indx++) { if (asoc->cookie_how[how_indx] == 0) break; } if (how_indx < sizeof(asoc->cookie_how)) { asoc->cookie_how[how_indx] = 1; } if (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_ACK_SENT) { /* SHUTDOWN came in after sending INIT-ACK */ sctp_send_shutdown_ack(stcb, stcb->asoc.primary_destination); op_err = sctp_generate_cause(SCTP_CAUSE_COOKIE_IN_SHUTDOWN, ""); sctp_send_operr_to(src, dst, sh, cookie->peers_vtag, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, net->port); if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 2; return (NULL); } /* * find and validate the INIT chunk in the cookie (peer's info) the * INIT should start after the cookie-echo header struct (chunk * header, state cookie header struct) */ init_offset = offset += sizeof(struct sctp_cookie_echo_chunk); init_cp = (struct sctp_init_chunk *) sctp_m_getptr(m, init_offset, sizeof(struct sctp_init_chunk), (uint8_t *)&init_buf); if (init_cp == NULL) { /* could not pull a INIT chunk in cookie */ return (NULL); } if (init_cp->ch.chunk_type != SCTP_INITIATION) { return (NULL); } /* * find and validate the INIT-ACK chunk in the cookie (my info) the * INIT-ACK follows the INIT chunk */ initack_offset = init_offset + SCTP_SIZE32(ntohs(init_cp->ch.chunk_length)); initack_cp = (struct sctp_init_ack_chunk *) sctp_m_getptr(m, initack_offset, sizeof(struct sctp_init_ack_chunk), (uint8_t *)&initack_buf); if (initack_cp == NULL) { /* could not pull INIT-ACK chunk in cookie */ return (NULL); } if (initack_cp->ch.chunk_type != SCTP_INITIATION_ACK) { return (NULL); } if ((ntohl(initack_cp->init.initiate_tag) == asoc->my_vtag) && (ntohl(init_cp->init.initiate_tag) == asoc->peer_vtag)) { /* * case D in Section 5.2.4 Table 2: MMAA process accordingly * to get into the OPEN state */ if (ntohl(initack_cp->init.initial_tsn) != asoc->init_seq_number) { /*- * Opps, this means that we somehow generated two vtag's * the same. I.e. we did: * Us Peer * <---INIT(tag=a)------ * ----INIT-ACK(tag=t)--> * ----INIT(tag=t)------> *1 * <---INIT-ACK(tag=a)--- * <----CE(tag=t)------------- *2 * * At point *1 we should be generating a different * tag t'. Which means we would throw away the CE and send * ours instead. Basically this is case C (throw away side). */ if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 17; return (NULL); } switch (SCTP_GET_STATE(asoc)) { case SCTP_STATE_COOKIE_WAIT: case SCTP_STATE_COOKIE_ECHOED: /* * INIT was sent but got a COOKIE_ECHO with the * correct tags... just accept it...but we must * process the init so that we can make sure we have * the right seq no's. */ /* First we must process the INIT !! */ retval = sctp_process_init(init_cp, stcb); if (retval < 0) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 3; return (NULL); } /* we have already processed the INIT so no problem */ sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_13); sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_14); /* update current state */ if (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED) SCTP_STAT_INCR_COUNTER32(sctps_activeestab); else SCTP_STAT_INCR_COUNTER32(sctps_collisionestab); SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); if (asoc->state & SCTP_STATE_SHUTDOWN_PENDING) { sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } SCTP_STAT_INCR_GAUGE32(sctps_currestab); sctp_stop_all_cookie_timers(stcb); if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && (inp->sctp_socket->so_qlimit == 0) ) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif /* * Here is where collision would go if we * did a connect() and instead got a * init/init-ack/cookie done before the * init-ack came back.. */ stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { SCTP_SOCKET_UNLOCK(so, 1); return (NULL); } #endif soisconnected(stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } /* notify upper layer */ *notification = SCTP_NOTIFY_ASSOC_UP; /* * since we did not send a HB make sure we don't * double things */ old.tv_sec = cookie->time_entered.tv_sec; old.tv_usec = cookie->time_entered.tv_usec; net->hb_responded = 1; net->RTO = sctp_calculate_rto(stcb, asoc, net, &old, SCTP_RTT_FROM_NON_DATA); if (stcb->asoc.sctp_autoclose_ticks && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE))) { sctp_timer_start(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL); } break; default: /* * we're in the OPEN state (or beyond), so peer must * have simply lost the COOKIE-ACK */ break; } /* end switch */ sctp_stop_all_cookie_timers(stcb); /* * We ignore the return code here.. not sure if we should * somehow abort.. but we do have an existing asoc. This * really should not fail. */ if (sctp_load_addresses_from_init(stcb, m, init_offset + sizeof(struct sctp_init_chunk), initack_offset, src, dst, init_src, stcb->asoc.port)) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 4; return (NULL); } /* respond with a COOKIE-ACK */ sctp_toss_old_cookies(stcb, asoc); sctp_send_cookie_ack(stcb); if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 5; return (stcb); } + if (ntohl(initack_cp->init.initiate_tag) != asoc->my_vtag && ntohl(init_cp->init.initiate_tag) == asoc->peer_vtag && cookie->tie_tag_my_vtag == 0 && cookie->tie_tag_peer_vtag == 0) { /* * case C in Section 5.2.4 Table 2: XMOO silently discard */ if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 6; return (NULL); } /* * If nat support, and the below and stcb is established, send back * a ABORT(colliding state) if we are established. */ if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) && (asoc->peer_supports_nat) && ((ntohl(initack_cp->init.initiate_tag) == asoc->my_vtag) && ((ntohl(init_cp->init.initiate_tag) != asoc->peer_vtag) || (asoc->peer_vtag == 0)))) { /* * Special case - Peer's support nat. We may have two init's * that we gave out the same tag on since one was not * established.. i.e. we get INIT from host-1 behind the nat * and we respond tag-a, we get a INIT from host-2 behind * the nat and we get tag-a again. Then we bring up host-1 * (or 2's) assoc, Then comes the cookie from hsot-2 (or 1). * Now we have colliding state. We must send an abort here * with colliding state indication. */ op_err = sctp_generate_cause(SCTP_CAUSE_NAT_COLLIDING_STATE, ""); sctp_send_abort(m, iphlen, src, dst, sh, 0, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); return (NULL); } if ((ntohl(initack_cp->init.initiate_tag) == asoc->my_vtag) && ((ntohl(init_cp->init.initiate_tag) != asoc->peer_vtag) || (asoc->peer_vtag == 0))) { /* * case B in Section 5.2.4 Table 2: MXAA or MOAA my info * should be ok, re-accept peer info */ if (ntohl(initack_cp->init.initial_tsn) != asoc->init_seq_number) { /* * Extension of case C. If we hit this, then the * random number generator returned the same vtag * when we first sent our INIT-ACK and when we later * sent our INIT. The side with the seq numbers that * are different will be the one that normnally * would have hit case C. This in effect "extends" * our vtags in this collision case to be 64 bits. * The same collision could occur aka you get both * vtag and seq number the same twice in a row.. but * is much less likely. If it did happen then we * would proceed through and bring up the assoc.. we * may end up with the wrong stream setup however.. * which would be bad.. but there is no way to * tell.. until we send on a stream that does not * exist :-) */ if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 7; return (NULL); } if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 8; sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_15); sctp_stop_all_cookie_timers(stcb); /* * since we did not send a HB make sure we don't double * things */ net->hb_responded = 1; if (stcb->asoc.sctp_autoclose_ticks && sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) { sctp_timer_start(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL); } asoc->my_rwnd = ntohl(initack_cp->init.a_rwnd); asoc->pre_open_streams = ntohs(initack_cp->init.num_outbound_streams); if (ntohl(init_cp->init.initiate_tag) != asoc->peer_vtag) { /* * Ok the peer probably discarded our data (if we * echoed a cookie+data). So anything on the * sent_queue should be marked for retransmit, we * may not get something to kick us so it COULD * still take a timeout to move these.. but it can't * hurt to mark them. */ struct sctp_tmit_chunk *chk; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->sent < SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; sctp_flight_size_decrease(chk); sctp_total_flight_decrease(stcb, chk); sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); spec_flag++; } } } /* process the INIT info (peer's info) */ retval = sctp_process_init(init_cp, stcb); if (retval < 0) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 9; return (NULL); } if (sctp_load_addresses_from_init(stcb, m, init_offset + sizeof(struct sctp_init_chunk), initack_offset, src, dst, init_src, stcb->asoc.port)) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 10; return (NULL); } if ((asoc->state & SCTP_STATE_COOKIE_WAIT) || (asoc->state & SCTP_STATE_COOKIE_ECHOED)) { *notification = SCTP_NOTIFY_ASSOC_UP; if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && (inp->sctp_socket->so_qlimit == 0)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { SCTP_SOCKET_UNLOCK(so, 1); return (NULL); } #endif soisconnected(stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } if (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED) SCTP_STAT_INCR_COUNTER32(sctps_activeestab); else SCTP_STAT_INCR_COUNTER32(sctps_collisionestab); SCTP_STAT_INCR_GAUGE32(sctps_currestab); } else if (SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) { SCTP_STAT_INCR_COUNTER32(sctps_restartestab); } else { SCTP_STAT_INCR_COUNTER32(sctps_collisionestab); } SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); if (asoc->state & SCTP_STATE_SHUTDOWN_PENDING) { sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } sctp_stop_all_cookie_timers(stcb); sctp_toss_old_cookies(stcb, asoc); sctp_send_cookie_ack(stcb); if (spec_flag) { /* * only if we have retrans set do we do this. What * this call does is get only the COOKIE-ACK out and * then when we return the normal call to * sctp_chunk_output will get the retrans out behind * this. */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_COOKIE_ACK, SCTP_SO_NOT_LOCKED); } if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 11; return (stcb); } if ((ntohl(initack_cp->init.initiate_tag) != asoc->my_vtag && ntohl(init_cp->init.initiate_tag) != asoc->peer_vtag) && cookie->tie_tag_my_vtag == asoc->my_vtag_nonce && cookie->tie_tag_peer_vtag == asoc->peer_vtag_nonce && cookie->tie_tag_peer_vtag != 0) { struct sctpasochead *head; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif if (asoc->peer_supports_nat) { /* * This is a gross gross hack. Just call the * cookie_new code since we are allowing a duplicate * association. I hope this works... */ return (sctp_process_cookie_new(m, iphlen, offset, src, dst, sh, cookie, cookie_len, inp, netp, init_src, notification, auth_skipped, auth_offset, auth_len, mflowtype, mflowid, vrf_id, port)); } /* * case A in Section 5.2.4 Table 2: XXMM (peer restarted) */ /* temp code */ if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 12; sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_16); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_17); /* notify upper layer */ *notification = SCTP_NOTIFY_ASSOC_RESTART; atomic_add_int(&stcb->asoc.refcnt, 1); if ((SCTP_GET_STATE(asoc) != SCTP_STATE_OPEN) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_RECEIVED) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT)) { SCTP_STAT_INCR_GAUGE32(sctps_currestab); } if (SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) { SCTP_STAT_INCR_GAUGE32(sctps_restartestab); } else if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) { SCTP_STAT_INCR_GAUGE32(sctps_collisionestab); } if (asoc->state & SCTP_STATE_SHUTDOWN_PENDING) { SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } else if (!(asoc->state & SCTP_STATE_SHUTDOWN_SENT)) { /* move to OPEN state, if not in SHUTDOWN_SENT */ SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); } asoc->pre_open_streams = ntohs(initack_cp->init.num_outbound_streams); asoc->init_seq_number = ntohl(initack_cp->init.initial_tsn); asoc->sending_seq = asoc->asconf_seq_out = asoc->str_reset_seq_out = asoc->init_seq_number; asoc->asconf_seq_out_acked = asoc->asconf_seq_out - 1; asoc->asconf_seq_in = asoc->last_acked_seq = asoc->init_seq_number - 1; asoc->str_reset_seq_in = asoc->init_seq_number; asoc->advanced_peer_ack_point = asoc->last_acked_seq; if (asoc->mapping_array) { memset(asoc->mapping_array, 0, asoc->mapping_array_size); } if (asoc->nr_mapping_array) { memset(asoc->nr_mapping_array, 0, asoc->mapping_array_size); } SCTP_TCB_UNLOCK(stcb); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); SCTP_SOCKET_LOCK(so, 1); #endif SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(stcb->sctp_ep); SCTP_TCB_LOCK(stcb); atomic_add_int(&stcb->asoc.refcnt, -1); /* send up all the data */ SCTP_TCB_SEND_LOCK(stcb); sctp_report_all_outbound(stcb, 0, 1, SCTP_SO_LOCKED); for (i = 0; i < stcb->asoc.streamoutcnt; i++) { stcb->asoc.strmout[i].chunks_on_queues = 0; #if defined(SCTP_DETAILED_STR_STATS) for (j = 0; j < SCTP_PR_SCTP_MAX + 1; j++) { asoc->strmout[i].abandoned_sent[j] = 0; asoc->strmout[i].abandoned_unsent[j] = 0; } #else asoc->strmout[i].abandoned_sent[0] = 0; asoc->strmout[i].abandoned_unsent[0] = 0; #endif stcb->asoc.strmout[i].sid = i; stcb->asoc.strmout[i].next_mid_ordered = 0; stcb->asoc.strmout[i].next_mid_unordered = 0; stcb->asoc.strmout[i].last_msg_incomplete = 0; } /* process the INIT-ACK info (my info) */ asoc->my_vtag = ntohl(initack_cp->init.initiate_tag); asoc->my_rwnd = ntohl(initack_cp->init.a_rwnd); /* pull from vtag hash */ LIST_REMOVE(stcb, sctp_asocs); /* re-insert to new vtag position */ head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* * put it in the bucket in the vtag hash of assoc's for the * system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); SCTP_TCB_SEND_UNLOCK(stcb); SCTP_INP_WUNLOCK(stcb->sctp_ep); SCTP_INP_INFO_WUNLOCK(); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif asoc->total_flight = 0; asoc->total_flight_count = 0; /* process the INIT info (peer's info) */ retval = sctp_process_init(init_cp, stcb); if (retval < 0) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 13; return (NULL); } /* * since we did not send a HB make sure we don't double * things */ net->hb_responded = 1; if (sctp_load_addresses_from_init(stcb, m, init_offset + sizeof(struct sctp_init_chunk), initack_offset, src, dst, init_src, stcb->asoc.port)) { if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 14; return (NULL); } /* respond with a COOKIE-ACK */ sctp_stop_all_cookie_timers(stcb); sctp_toss_old_cookies(stcb, asoc); sctp_send_cookie_ack(stcb); if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 15; return (stcb); } if (how_indx < sizeof(asoc->cookie_how)) asoc->cookie_how[how_indx] = 16; /* all other cases... */ return (NULL); } /* * handle a state cookie for a new association m: input packet mbuf chain-- * assumes a pullup on IP/SCTP/COOKIE-ECHO chunk note: this is a "split" mbuf * and the cookie signature does not exist offset: offset into mbuf to the * cookie-echo chunk length: length of the cookie chunk to: where the init * was from returns a new TCB */ static struct sctp_tcb * sctp_process_cookie_new(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_state_cookie *cookie, int cookie_len, struct sctp_inpcb *inp, struct sctp_nets **netp, struct sockaddr *init_src, int *notification, int auth_skipped, uint32_t auth_offset, uint32_t auth_len, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { struct sctp_tcb *stcb; struct sctp_init_chunk *init_cp, init_buf; struct sctp_init_ack_chunk *initack_cp, initack_buf; union sctp_sockstore store; struct sctp_association *asoc; int init_offset, initack_offset, initack_limit; int retval; int error = 0; uint8_t auth_chunk_buf[SCTP_PARAM_BUFFER_SIZE]; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(inp); #endif /* * find and validate the INIT chunk in the cookie (peer's info) the * INIT should start after the cookie-echo header struct (chunk * header, state cookie header struct) */ init_offset = offset + sizeof(struct sctp_cookie_echo_chunk); init_cp = (struct sctp_init_chunk *) sctp_m_getptr(m, init_offset, sizeof(struct sctp_init_chunk), (uint8_t *)&init_buf); if (init_cp == NULL) { /* could not pull a INIT chunk in cookie */ SCTPDBG(SCTP_DEBUG_INPUT1, "process_cookie_new: could not pull INIT chunk hdr\n"); return (NULL); } if (init_cp->ch.chunk_type != SCTP_INITIATION) { SCTPDBG(SCTP_DEBUG_INPUT1, "HUH? process_cookie_new: could not find INIT chunk!\n"); return (NULL); } initack_offset = init_offset + SCTP_SIZE32(ntohs(init_cp->ch.chunk_length)); /* * find and validate the INIT-ACK chunk in the cookie (my info) the * INIT-ACK follows the INIT chunk */ initack_cp = (struct sctp_init_ack_chunk *) sctp_m_getptr(m, initack_offset, sizeof(struct sctp_init_ack_chunk), (uint8_t *)&initack_buf); if (initack_cp == NULL) { /* could not pull INIT-ACK chunk in cookie */ SCTPDBG(SCTP_DEBUG_INPUT1, "process_cookie_new: could not pull INIT-ACK chunk hdr\n"); return (NULL); } if (initack_cp->ch.chunk_type != SCTP_INITIATION_ACK) { return (NULL); } /* * NOTE: We can't use the INIT_ACK's chk_length to determine the * "initack_limit" value. This is because the chk_length field * includes the length of the cookie, but the cookie is omitted when * the INIT and INIT_ACK are tacked onto the cookie... */ initack_limit = offset + cookie_len; /* * now that we know the INIT/INIT-ACK are in place, create a new TCB * and popluate */ /* * Here we do a trick, we set in NULL for the proc/thread argument. * We do this since in effect we only use the p argument when the * socket is unbound and we must do an implicit bind. Since we are * getting a cookie, we cannot be unbound. */ stcb = sctp_aloc_assoc(inp, init_src, &error, ntohl(initack_cp->init.initiate_tag), vrf_id, ntohs(initack_cp->init.num_outbound_streams), port, (struct thread *)NULL ); if (stcb == NULL) { struct mbuf *op_err; /* memory problem? */ SCTPDBG(SCTP_DEBUG_INPUT1, "process_cookie_new: no room for another TCB!\n"); op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_association(inp, (struct sctp_tcb *)NULL, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); return (NULL); } /* get the correct sctp_nets */ if (netp) *netp = sctp_findnet(stcb, init_src); asoc = &stcb->asoc; /* get scope variables out of cookie */ asoc->scope.ipv4_local_scope = cookie->ipv4_scope; asoc->scope.site_scope = cookie->site_scope; asoc->scope.local_scope = cookie->local_scope; asoc->scope.loopback_scope = cookie->loopback_scope; if ((asoc->scope.ipv4_addr_legal != cookie->ipv4_addr_legal) || (asoc->scope.ipv6_addr_legal != cookie->ipv6_addr_legal)) { struct mbuf *op_err; /* * Houston we have a problem. The EP changed while the * cookie was in flight. Only recourse is to abort the * association. */ op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_association(inp, (struct sctp_tcb *)NULL, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_18); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (NULL); } /* process the INIT-ACK info (my info) */ asoc->my_vtag = ntohl(initack_cp->init.initiate_tag); asoc->my_rwnd = ntohl(initack_cp->init.a_rwnd); asoc->pre_open_streams = ntohs(initack_cp->init.num_outbound_streams); asoc->init_seq_number = ntohl(initack_cp->init.initial_tsn); asoc->sending_seq = asoc->asconf_seq_out = asoc->str_reset_seq_out = asoc->init_seq_number; asoc->asconf_seq_out_acked = asoc->asconf_seq_out - 1; asoc->asconf_seq_in = asoc->last_acked_seq = asoc->init_seq_number - 1; asoc->str_reset_seq_in = asoc->init_seq_number; asoc->advanced_peer_ack_point = asoc->last_acked_seq; /* process the INIT info (peer's info) */ if (netp) retval = sctp_process_init(init_cp, stcb); else retval = 0; if (retval < 0) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_19); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (NULL); } /* load all addresses */ if (sctp_load_addresses_from_init(stcb, m, init_offset + sizeof(struct sctp_init_chunk), initack_offset, src, dst, init_src, port)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_20); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (NULL); } /* * verify any preceding AUTH chunk that was skipped */ /* pull the local authentication parameters from the cookie/init-ack */ sctp_auth_get_cookie_params(stcb, m, initack_offset + sizeof(struct sctp_init_ack_chunk), initack_limit - (initack_offset + sizeof(struct sctp_init_ack_chunk))); if (auth_skipped) { struct sctp_auth_chunk *auth; auth = (struct sctp_auth_chunk *) sctp_m_getptr(m, auth_offset, auth_len, auth_chunk_buf); if ((auth == NULL) || sctp_handle_auth(stcb, auth, m, auth_offset)) { /* auth HMAC failed, dump the assoc and packet */ SCTPDBG(SCTP_DEBUG_AUTH1, "COOKIE-ECHO: AUTH failed\n"); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_21); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (NULL); } else { /* remaining chunks checked... good to go */ stcb->asoc.authenticated = 1; } } + /* * if we're doing ASCONFs, check to see if we have any new local * addresses that need to get added to the peer (eg. addresses * changed while cookie echo in flight). This needs to be done * after we go to the OPEN state to do the correct asconf * processing. else, make sure we have the correct addresses in our * lists */ /* warning, we re-use sin, sin6, sa_store here! */ /* pull in local_address (our "from" address) */ switch (cookie->laddr_type) { #ifdef INET case SCTP_IPV4_ADDRESS: /* source addr is IPv4 */ memset(&store.sin, 0, sizeof(struct sockaddr_in)); store.sin.sin_family = AF_INET; store.sin.sin_len = sizeof(struct sockaddr_in); store.sin.sin_addr.s_addr = cookie->laddress[0]; break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: /* source addr is IPv6 */ memset(&store.sin6, 0, sizeof(struct sockaddr_in6)); store.sin6.sin6_family = AF_INET6; store.sin6.sin6_len = sizeof(struct sockaddr_in6); store.sin6.sin6_scope_id = cookie->scope_id; memcpy(&store.sin6.sin6_addr, cookie->laddress, sizeof(struct in6_addr)); break; #endif default: #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_22); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return (NULL); } /* update current state */ SCTPDBG(SCTP_DEBUG_INPUT2, "moving to OPEN state\n"); SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); if (asoc->state & SCTP_STATE_SHUTDOWN_PENDING) { sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } sctp_stop_all_cookie_timers(stcb); SCTP_STAT_INCR_COUNTER32(sctps_passiveestab); SCTP_STAT_INCR_GAUGE32(sctps_currestab); /* set up to notify upper layer */ *notification = SCTP_NOTIFY_ASSOC_UP; if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && (inp->sctp_socket->so_qlimit == 0)) { /* * This is an endpoint that called connect() how it got a * cookie that is NEW is a bit of a mystery. It must be that * the INIT was sent, but before it got there.. a complete * INIT/INIT-ACK/COOKIE arrived. But of course then it * should have went to the other code.. not here.. oh well.. * a bit of protection is worth having.. */ stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { SCTP_SOCKET_UNLOCK(so, 1); return (NULL); } #endif soisconnected(stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } else if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_socket->so_qlimit)) { /* * We don't want to do anything with this one. Since it is * the listening guy. The timer will get started for * accepted connections in the caller. */ ; } /* since we did not send a HB make sure we don't double things */ if ((netp) && (*netp)) (*netp)->hb_responded = 1; if (stcb->asoc.sctp_autoclose_ticks && sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) { sctp_timer_start(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL); } (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); if ((netp != NULL) && (*netp != NULL)) { struct timeval old; /* calculate the RTT and set the encaps port */ old.tv_sec = cookie->time_entered.tv_sec; old.tv_usec = cookie->time_entered.tv_usec; (*netp)->RTO = sctp_calculate_rto(stcb, asoc, *netp, &old, SCTP_RTT_FROM_NON_DATA); } /* respond with a COOKIE-ACK */ sctp_send_cookie_ack(stcb); /* * check the address lists for any ASCONFs that need to be sent * AFTER the cookie-ack is sent */ sctp_check_address_list(stcb, m, initack_offset + sizeof(struct sctp_init_ack_chunk), initack_limit - (initack_offset + sizeof(struct sctp_init_ack_chunk)), &store.sa, cookie->local_scope, cookie->site_scope, cookie->ipv4_scope, cookie->loopback_scope); return (stcb); } /* * CODE LIKE THIS NEEDS TO RUN IF the peer supports the NAT extension, i.e * we NEED to make sure we are not already using the vtag. If so we * need to send back an ABORT-TRY-AGAIN-WITH-NEW-TAG No middle box bit! head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(tag, SCTP_BASE_INFO(hashasocmark))]; LIST_FOREACH(stcb, head, sctp_asocs) { if ((stcb->asoc.my_vtag == tag) && (stcb->rport == rport) && (inp == stcb->sctp_ep)) { -- SEND ABORT - TRY AGAIN -- } } */ /* * handles a COOKIE-ECHO message stcb: modified to either a new or left as * existing (non-NULL) TCB */ static struct mbuf * sctp_handle_cookie_echo(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_cookie_echo_chunk *cp, struct sctp_inpcb **inp_p, struct sctp_tcb **stcb, struct sctp_nets **netp, int auth_skipped, uint32_t auth_offset, uint32_t auth_len, struct sctp_tcb **locked_tcb, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { struct sctp_state_cookie *cookie; struct sctp_tcb *l_stcb = *stcb; struct sctp_inpcb *l_inp; struct sockaddr *to; struct sctp_pcb *ep; struct mbuf *m_sig; uint8_t calc_sig[SCTP_SIGNATURE_SIZE], tmp_sig[SCTP_SIGNATURE_SIZE]; uint8_t *sig; uint8_t cookie_ok = 0; unsigned int sig_offset, cookie_offset; unsigned int cookie_len; struct timeval now; struct timeval time_expires; int notification = 0; struct sctp_nets *netl; int had_a_existing_tcb = 0; int send_int_conf = 0; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_cookie: handling COOKIE-ECHO\n"); if (inp_p == NULL) { return (NULL); } cookie = &cp->cookie; cookie_offset = offset + sizeof(struct sctp_chunkhdr); cookie_len = ntohs(cp->ch.chunk_length); if (cookie_len < sizeof(struct sctp_cookie_echo_chunk) + sizeof(struct sctp_init_chunk) + sizeof(struct sctp_init_ack_chunk) + SCTP_SIGNATURE_SIZE) { /* cookie too small */ return (NULL); } if ((cookie->peerport != sh->src_port) || (cookie->myport != sh->dest_port) || (cookie->my_vtag != sh->v_tag)) { /* * invalid ports or bad tag. Note that we always leave the * v_tag in the header in network order and when we stored * it in the my_vtag slot we also left it in network order. * This maintains the match even though it may be in the * opposite byte order of the machine :-> */ return (NULL); } /* * split off the signature into its own mbuf (since it should not be * calculated in the sctp_hmac_m() call). */ sig_offset = offset + cookie_len - SCTP_SIGNATURE_SIZE; m_sig = m_split(m, sig_offset, M_NOWAIT); if (m_sig == NULL) { /* out of memory or ?? */ return (NULL); } #ifdef SCTP_MBUF_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mbc(m_sig, SCTP_MBUF_SPLIT); } #endif /* * compute the signature/digest for the cookie */ ep = &(*inp_p)->sctp_ep; l_inp = *inp_p; if (l_stcb) { SCTP_TCB_UNLOCK(l_stcb); } SCTP_INP_RLOCK(l_inp); if (l_stcb) { SCTP_TCB_LOCK(l_stcb); } /* which cookie is it? */ if ((cookie->time_entered.tv_sec < (long)ep->time_of_secret_change) && (ep->current_secret_number != ep->last_secret_number)) { /* it's the old cookie */ (void)sctp_hmac_m(SCTP_HMAC, (uint8_t *)ep->secret_key[(int)ep->last_secret_number], SCTP_SECRET_SIZE, m, cookie_offset, calc_sig, 0); } else { /* it's the current cookie */ (void)sctp_hmac_m(SCTP_HMAC, (uint8_t *)ep->secret_key[(int)ep->current_secret_number], SCTP_SECRET_SIZE, m, cookie_offset, calc_sig, 0); } /* get the signature */ SCTP_INP_RUNLOCK(l_inp); sig = (uint8_t *)sctp_m_getptr(m_sig, 0, SCTP_SIGNATURE_SIZE, (uint8_t *)&tmp_sig); if (sig == NULL) { /* couldn't find signature */ sctp_m_freem(m_sig); return (NULL); } /* compare the received digest with the computed digest */ if (timingsafe_bcmp(calc_sig, sig, SCTP_SIGNATURE_SIZE) != 0) { /* try the old cookie? */ if ((cookie->time_entered.tv_sec == (long)ep->time_of_secret_change) && (ep->current_secret_number != ep->last_secret_number)) { /* compute digest with old */ (void)sctp_hmac_m(SCTP_HMAC, (uint8_t *)ep->secret_key[(int)ep->last_secret_number], SCTP_SECRET_SIZE, m, cookie_offset, calc_sig, 0); /* compare */ if (timingsafe_bcmp(calc_sig, sig, SCTP_SIGNATURE_SIZE) == 0) cookie_ok = 1; } } else { cookie_ok = 1; } /* * Now before we continue we must reconstruct our mbuf so that * normal processing of any other chunks will work. */ { struct mbuf *m_at; m_at = m; while (SCTP_BUF_NEXT(m_at) != NULL) { m_at = SCTP_BUF_NEXT(m_at); } SCTP_BUF_NEXT(m_at) = m_sig; } if (cookie_ok == 0) { SCTPDBG(SCTP_DEBUG_INPUT2, "handle_cookie_echo: cookie signature validation failed!\n"); SCTPDBG(SCTP_DEBUG_INPUT2, "offset = %u, cookie_offset = %u, sig_offset = %u\n", (uint32_t)offset, cookie_offset, sig_offset); return (NULL); } + /* * check the cookie timestamps to be sure it's not stale */ (void)SCTP_GETTIME_TIMEVAL(&now); /* Expire time is in Ticks, so we convert to seconds */ time_expires.tv_sec = cookie->time_entered.tv_sec + TICKS_TO_SEC(cookie->cookie_life); time_expires.tv_usec = cookie->time_entered.tv_usec; if (timevalcmp(&now, &time_expires, >)) { /* cookie is stale! */ struct mbuf *op_err; struct sctp_error_stale_cookie *cause; struct timeval diff; uint32_t staleness; op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_stale_cookie), 0, M_NOWAIT, 1, MT_DATA); if (op_err == NULL) { /* FOOBAR */ return (NULL); } /* Set the len */ SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_stale_cookie); cause = mtod(op_err, struct sctp_error_stale_cookie *); cause->cause.code = htons(SCTP_CAUSE_STALE_COOKIE); cause->cause.length = htons((sizeof(struct sctp_paramhdr) + (sizeof(uint32_t)))); diff = now; timevalsub(&diff, &time_expires); if ((uint32_t)diff.tv_sec > UINT32_MAX / 1000000) { staleness = UINT32_MAX; } else { staleness = diff.tv_sec * 1000000; } if (UINT32_MAX - staleness >= (uint32_t)diff.tv_usec) { staleness += diff.tv_usec; } else { staleness = UINT32_MAX; } cause->stale_time = htonl(staleness); sctp_send_operr_to(src, dst, sh, cookie->peers_vtag, op_err, mflowtype, mflowid, l_inp->fibnum, vrf_id, port); return (NULL); } /* * Now we must see with the lookup address if we have an existing * asoc. This will only happen if we were in the COOKIE-WAIT state * and a INIT collided with us and somewhere the peer sent the * cookie on another address besides the single address our assoc * had for him. In this case we will have one of the tie-tags set at * least AND the address field in the cookie can be used to look it * up. */ to = NULL; switch (cookie->addr_type) { #ifdef INET6 case SCTP_IPV6_ADDRESS: memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(sin6); sin6.sin6_port = sh->src_port; sin6.sin6_scope_id = cookie->scope_id; memcpy(&sin6.sin6_addr.s6_addr, cookie->address, sizeof(sin6.sin6_addr.s6_addr)); to = (struct sockaddr *)&sin6; break; #endif #ifdef INET case SCTP_IPV4_ADDRESS: memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = sh->src_port; sin.sin_addr.s_addr = cookie->address[0]; to = (struct sockaddr *)&sin; break; #endif default: /* This should not happen */ return (NULL); } if (*stcb == NULL) { /* Yep, lets check */ *stcb = sctp_findassociation_ep_addr(inp_p, to, netp, dst, NULL); if (*stcb == NULL) { /* * We should have only got back the same inp. If we * got back a different ep we have a problem. The * original findep got back l_inp and now */ if (l_inp != *inp_p) { SCTP_PRINTF("Bad problem find_ep got a diff inp then special_locate?\n"); } } else { if (*locked_tcb == NULL) { /* * In this case we found the assoc only * after we locked the create lock. This * means we are in a colliding case and we * must make sure that we unlock the tcb if * its one of the cases where we throw away * the incoming packets. */ *locked_tcb = *stcb; /* * We must also increment the inp ref count * since the ref_count flags was set when we * did not find the TCB, now we found it * which reduces the refcount.. we must * raise it back out to balance it all :-) */ SCTP_INP_INCR_REF((*stcb)->sctp_ep); if ((*stcb)->sctp_ep != l_inp) { SCTP_PRINTF("Huh? ep:%p diff then l_inp:%p?\n", (void *)(*stcb)->sctp_ep, (void *)l_inp); } } } } + cookie_len -= SCTP_SIGNATURE_SIZE; if (*stcb == NULL) { /* this is the "normal" case... get a new TCB */ *stcb = sctp_process_cookie_new(m, iphlen, offset, src, dst, sh, cookie, cookie_len, *inp_p, netp, to, ¬ification, auth_skipped, auth_offset, auth_len, mflowtype, mflowid, vrf_id, port); } else { /* this is abnormal... cookie-echo on existing TCB */ had_a_existing_tcb = 1; *stcb = sctp_process_cookie_existing(m, iphlen, offset, src, dst, sh, cookie, cookie_len, *inp_p, *stcb, netp, to, ¬ification, auth_skipped, auth_offset, auth_len, mflowtype, mflowid, vrf_id, port); } if (*stcb == NULL) { /* still no TCB... must be bad cookie-echo */ return (NULL); } if (*netp != NULL) { (*netp)->flowtype = mflowtype; (*netp)->flowid = mflowid; } /* * Ok, we built an association so confirm the address we sent the * INIT-ACK to. */ netl = sctp_findnet(*stcb, to); /* * This code should in theory NOT run but */ if (netl == NULL) { /* TSNH! Huh, why do I need to add this address here? */ if (sctp_add_remote_addr(*stcb, to, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_IN_COOKIE_PROC)) { return (NULL); } netl = sctp_findnet(*stcb, to); } if (netl) { if (netl->dest_state & SCTP_ADDR_UNCONFIRMED) { netl->dest_state &= ~SCTP_ADDR_UNCONFIRMED; (void)sctp_set_primary_addr((*stcb), (struct sockaddr *)NULL, netl); send_int_conf = 1; } } sctp_start_net_timers(*stcb); if ((*inp_p)->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { if (!had_a_existing_tcb || (((*inp_p)->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* * If we have a NEW cookie or the connect never * reached the connected state during collision we * must do the TCP accept thing. */ struct socket *so, *oso; struct sctp_inpcb *inp; if (notification == SCTP_NOTIFY_ASSOC_RESTART) { /* * For a restart we will keep the same * socket, no need to do anything. I THINK!! */ sctp_ulp_notify(notification, *stcb, 0, NULL, SCTP_SO_NOT_LOCKED); if (send_int_conf) { sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_CONFIRMED, (*stcb), 0, (void *)netl, SCTP_SO_NOT_LOCKED); } return (m); } oso = (*inp_p)->sctp_socket; atomic_add_int(&(*stcb)->asoc.refcnt, 1); SCTP_TCB_UNLOCK((*stcb)); CURVNET_SET(oso->so_vnet); so = sonewconn(oso, 0 ); CURVNET_RESTORE(); SCTP_TCB_LOCK((*stcb)); atomic_subtract_int(&(*stcb)->asoc.refcnt, 1); if (so == NULL) { struct mbuf *op_err; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *pcb_so; #endif /* Too many sockets */ SCTPDBG(SCTP_DEBUG_INPUT1, "process_cookie_new: no room for another socket!\n"); op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_association(*inp_p, NULL, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) pcb_so = SCTP_INP_SO(*inp_p); atomic_add_int(&(*stcb)->asoc.refcnt, 1); SCTP_TCB_UNLOCK((*stcb)); SCTP_SOCKET_LOCK(pcb_so, 1); SCTP_TCB_LOCK((*stcb)); atomic_subtract_int(&(*stcb)->asoc.refcnt, 1); #endif (void)sctp_free_assoc(*inp_p, *stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_23); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(pcb_so, 1); #endif return (NULL); } inp = (struct sctp_inpcb *)so->so_pcb; SCTP_INP_INCR_REF(inp); /* * We add the unbound flag here so that if we get an * soabort() before we get the move_pcb done, we * will properly cleanup. */ inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE | SCTP_PCB_FLAGS_CONNECTED | SCTP_PCB_FLAGS_IN_TCPPOOL | SCTP_PCB_FLAGS_UNBOUND | (SCTP_PCB_COPY_FLAGS & (*inp_p)->sctp_flags) | SCTP_PCB_FLAGS_DONT_WAKE); inp->sctp_features = (*inp_p)->sctp_features; inp->sctp_mobility_features = (*inp_p)->sctp_mobility_features; inp->sctp_socket = so; inp->sctp_frag_point = (*inp_p)->sctp_frag_point; inp->max_cwnd = (*inp_p)->max_cwnd; inp->sctp_cmt_on_off = (*inp_p)->sctp_cmt_on_off; inp->ecn_supported = (*inp_p)->ecn_supported; inp->prsctp_supported = (*inp_p)->prsctp_supported; inp->auth_supported = (*inp_p)->auth_supported; inp->asconf_supported = (*inp_p)->asconf_supported; inp->reconfig_supported = (*inp_p)->reconfig_supported; inp->nrsack_supported = (*inp_p)->nrsack_supported; inp->pktdrop_supported = (*inp_p)->pktdrop_supported; inp->partial_delivery_point = (*inp_p)->partial_delivery_point; inp->sctp_context = (*inp_p)->sctp_context; inp->local_strreset_support = (*inp_p)->local_strreset_support; inp->fibnum = (*inp_p)->fibnum; inp->inp_starting_point_for_iterator = NULL; /* * copy in the authentication parameters from the * original endpoint */ if (inp->sctp_ep.local_hmacs) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); inp->sctp_ep.local_hmacs = sctp_copy_hmaclist((*inp_p)->sctp_ep.local_hmacs); if (inp->sctp_ep.local_auth_chunks) sctp_free_chunklist(inp->sctp_ep.local_auth_chunks); inp->sctp_ep.local_auth_chunks = sctp_copy_chunklist((*inp_p)->sctp_ep.local_auth_chunks); /* * Now we must move it from one hash table to * another and get the tcb in the right place. */ /* * This is where the one-2-one socket is put into * the accept state waiting for the accept! */ if (*stcb) { (*stcb)->asoc.state |= SCTP_STATE_IN_ACCEPT_QUEUE; } sctp_move_pcb_and_assoc(*inp_p, inp, *stcb); atomic_add_int(&(*stcb)->asoc.refcnt, 1); SCTP_TCB_UNLOCK((*stcb)); sctp_pull_off_control_to_new_inp((*inp_p), inp, *stcb, 0); SCTP_TCB_LOCK((*stcb)); atomic_subtract_int(&(*stcb)->asoc.refcnt, 1); /* * now we must check to see if we were aborted while * the move was going on and the lock/unlock * happened. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* * yep it was, we leave the assoc attached * to the socket since the sctp_inpcb_free() * call will send an abort for us. */ SCTP_INP_DECR_REF(inp); return (NULL); } SCTP_INP_DECR_REF(inp); /* Switch over to the new guy */ *inp_p = inp; sctp_ulp_notify(notification, *stcb, 0, NULL, SCTP_SO_NOT_LOCKED); if (send_int_conf) { sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_CONFIRMED, (*stcb), 0, (void *)netl, SCTP_SO_NOT_LOCKED); } + /* * Pull it from the incomplete queue and wake the * guy */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) atomic_add_int(&(*stcb)->asoc.refcnt, 1); SCTP_TCB_UNLOCK((*stcb)); SCTP_SOCKET_LOCK(so, 1); #endif soisconnected(so); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_TCB_LOCK((*stcb)); atomic_subtract_int(&(*stcb)->asoc.refcnt, 1); SCTP_SOCKET_UNLOCK(so, 1); #endif return (m); } } if (notification) { sctp_ulp_notify(notification, *stcb, 0, NULL, SCTP_SO_NOT_LOCKED); } if (send_int_conf) { sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_CONFIRMED, (*stcb), 0, (void *)netl, SCTP_SO_NOT_LOCKED); } return (m); } static void sctp_handle_cookie_ack(struct sctp_cookie_ack_chunk *cp SCTP_UNUSED, struct sctp_tcb *stcb, struct sctp_nets *net) { /* cp must not be used, others call this without a c-ack :-) */ struct sctp_association *asoc; SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_cookie_ack: handling COOKIE-ACK\n"); if ((stcb == NULL) || (net == NULL)) { return; } + asoc = &stcb->asoc; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, asoc->overall_error_count, 0, SCTP_FROM_SCTP_INPUT, __LINE__); } asoc->overall_error_count = 0; sctp_stop_all_cookie_timers(stcb); /* process according to association state */ if (SCTP_GET_STATE(asoc) == SCTP_STATE_COOKIE_ECHOED) { /* state change only needed when I am in right state */ SCTPDBG(SCTP_DEBUG_INPUT2, "moving to OPEN state\n"); SCTP_SET_STATE(asoc, SCTP_STATE_OPEN); sctp_start_net_timers(stcb); if (asoc->state & SCTP_STATE_SHUTDOWN_PENDING) { sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } /* update RTO */ SCTP_STAT_INCR_COUNTER32(sctps_activeestab); SCTP_STAT_INCR_GAUGE32(sctps_currestab); if (asoc->overall_error_count == 0) { net->RTO = sctp_calculate_rto(stcb, asoc, net, &asoc->time_entered, SCTP_RTT_FROM_NON_DATA); } (void)SCTP_GETTIME_TIMEVAL(&asoc->time_entered); sctp_ulp_notify(SCTP_NOTIFY_ASSOC_UP, stcb, 0, NULL, SCTP_SO_NOT_LOCKED); if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif if ((stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) == 0) { soisconnected(stcb->sctp_socket); } #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } /* * since we did not send a HB make sure we don't double * things */ net->hb_responded = 1; if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* * We don't need to do the asconf thing, nor hb or * autoclose if the socket is closed. */ goto closed_socket; } + sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); if (stcb->asoc.sctp_autoclose_ticks && sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_AUTOCLOSE)) { sctp_timer_start(SCTP_TIMER_TYPE_AUTOCLOSE, stcb->sctp_ep, stcb, NULL); } /* * send ASCONF if parameters are pending and ASCONFs are * allowed (eg. addresses changed when init/cookie echo were * in flight) */ if ((sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_DO_ASCONF)) && (stcb->asoc.asconf_supported == 1) && (!TAILQ_EMPTY(&stcb->asoc.asconf_queue))) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, stcb->asoc.primary_destination, SCTP_ADDR_NOT_LOCKED); #endif } } closed_socket: /* Toss the cookie if I can */ sctp_toss_old_cookies(stcb, asoc); if (!TAILQ_EMPTY(&asoc->sent_queue)) { /* Restart the timer if we have pending data */ struct sctp_tmit_chunk *chk; chk = TAILQ_FIRST(&asoc->sent_queue); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo); } } static void sctp_handle_ecn_echo(struct sctp_ecne_chunk *cp, struct sctp_tcb *stcb) { struct sctp_nets *net; struct sctp_tmit_chunk *lchk; struct sctp_ecne_chunk bkup; uint8_t override_bit; uint32_t tsn, window_data_tsn; int len; unsigned int pkt_cnt; len = ntohs(cp->ch.chunk_length); if ((len != sizeof(struct sctp_ecne_chunk)) && (len != sizeof(struct old_sctp_ecne_chunk))) { return; } if (len == sizeof(struct old_sctp_ecne_chunk)) { /* Its the old format */ memcpy(&bkup, cp, sizeof(struct old_sctp_ecne_chunk)); bkup.num_pkts_since_cwr = htonl(1); cp = &bkup; } SCTP_STAT_INCR(sctps_recvecne); tsn = ntohl(cp->tsn); pkt_cnt = ntohl(cp->num_pkts_since_cwr); lchk = TAILQ_LAST(&stcb->asoc.send_queue, sctpchunk_listhead); if (lchk == NULL) { window_data_tsn = stcb->asoc.sending_seq - 1; } else { window_data_tsn = lchk->rec.data.tsn; } /* Find where it was sent to if possible. */ net = NULL; TAILQ_FOREACH(lchk, &stcb->asoc.sent_queue, sctp_next) { if (lchk->rec.data.tsn == tsn) { net = lchk->whoTo; net->ecn_prev_cwnd = lchk->rec.data.cwnd_at_send; break; } if (SCTP_TSN_GT(lchk->rec.data.tsn, tsn)) { break; } } if (net == NULL) { /* * What to do. A previous send of a CWR was possibly lost. * See how old it is, we may have it marked on the actual * net. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (tsn == net->last_cwr_tsn) { /* Found him, send it off */ break; } } if (net == NULL) { /* * If we reach here, we need to send a special CWR * that says hey, we did this a long time ago and * you lost the response. */ net = TAILQ_FIRST(&stcb->asoc.nets); if (net == NULL) { /* TSNH */ return; } override_bit = SCTP_CWR_REDUCE_OVERRIDE; } else { override_bit = 0; } } else { override_bit = 0; } if (SCTP_TSN_GT(tsn, net->cwr_window_tsn) && ((override_bit & SCTP_CWR_REDUCE_OVERRIDE) == 0)) { /* * JRS - Use the congestion control given in the pluggable * CC module */ stcb->asoc.cc_functions.sctp_cwnd_update_after_ecn_echo(stcb, net, 0, pkt_cnt); /* * We reduce once every RTT. So we will only lower cwnd at * the next sending seq i.e. the window_data_tsn */ net->cwr_window_tsn = window_data_tsn; net->ecn_ce_pkt_cnt += pkt_cnt; net->lost_cnt = pkt_cnt; net->last_cwr_tsn = tsn; } else { override_bit |= SCTP_CWR_IN_SAME_WINDOW; if (SCTP_TSN_GT(tsn, net->last_cwr_tsn) && ((override_bit & SCTP_CWR_REDUCE_OVERRIDE) == 0)) { /* * Another loss in the same window update how many * marks/packets lost we have had. */ int cnt = 1; if (pkt_cnt > net->lost_cnt) { /* Should be the case */ cnt = (pkt_cnt - net->lost_cnt); net->ecn_ce_pkt_cnt += cnt; } net->lost_cnt = pkt_cnt; net->last_cwr_tsn = tsn; /* * Most CC functions will ignore this call, since we * are in-window yet of the initial CE the peer saw. */ stcb->asoc.cc_functions.sctp_cwnd_update_after_ecn_echo(stcb, net, 1, cnt); } } /* * We always send a CWR this way if our previous one was lost our * peer will get an update, or if it is not time again to reduce we * still get the cwr to the peer. Note we set the override when we * could not find the TSN on the chunk or the destination network. */ sctp_send_cwr(stcb, net, net->last_cwr_tsn, override_bit); } static void sctp_handle_ecn_cwr(struct sctp_cwr_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net) { /* * Here we get a CWR from the peer. We must look in the outqueue and * make sure that we have a covered ECNE in the control chunk part. * If so remove it. */ struct sctp_tmit_chunk *chk, *nchk; struct sctp_ecne_chunk *ecne; int override; uint32_t cwr_tsn; cwr_tsn = ntohl(cp->tsn); override = cp->ch.chunk_flags & SCTP_CWR_REDUCE_OVERRIDE; TAILQ_FOREACH_SAFE(chk, &stcb->asoc.control_send_queue, sctp_next, nchk) { if (chk->rec.chunk_id.id != SCTP_ECN_ECHO) { continue; } if ((override == 0) && (chk->whoTo != net)) { /* Must be from the right src unless override is set */ continue; } ecne = mtod(chk->data, struct sctp_ecne_chunk *); if (SCTP_TSN_GE(cwr_tsn, ntohl(ecne->tsn))) { /* this covers this ECNE, we can remove it */ stcb->asoc.ecn_echo_cnt_onq--; TAILQ_REMOVE(&stcb->asoc.control_send_queue, chk, sctp_next); stcb->asoc.ctrl_queue_cnt--; sctp_m_freem(chk->data); chk->data = NULL; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); if (override == 0) { break; } } } } static void sctp_handle_shutdown_complete(struct sctp_shutdown_complete_chunk *cp SCTP_UNUSED, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_association *asoc; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_shutdown_complete: handling SHUTDOWN-COMPLETE\n"); if (stcb == NULL) return; asoc = &stcb->asoc; /* process according to association state */ if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT) { /* unexpected SHUTDOWN-COMPLETE... so ignore... */ SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_shutdown_complete: not in SCTP_STATE_SHUTDOWN_ACK_SENT --- ignore\n"); SCTP_TCB_UNLOCK(stcb); return; } /* notify upper layer protocol */ if (stcb->sctp_socket) { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_DOWN, stcb, 0, NULL, SCTP_SO_NOT_LOCKED); } #ifdef INVARIANTS if (!TAILQ_EMPTY(&asoc->send_queue) || !TAILQ_EMPTY(&asoc->sent_queue) || sctp_is_there_unsent_data(stcb, SCTP_SO_NOT_LOCKED)) { panic("Queues are not empty when handling SHUTDOWN-COMPLETE"); } #endif /* stop the timer */ sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWNACK, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_24); SCTP_STAT_INCR_COUNTER32(sctps_shutdown); /* free the TCB */ SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_handle_shutdown_complete: calls free-asoc\n"); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(stcb->sctp_ep, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_25); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif return; } static int process_chunk_drop(struct sctp_tcb *stcb, struct sctp_chunk_desc *desc, struct sctp_nets *net, uint8_t flg) { switch (desc->chunk_type) { case SCTP_DATA: /* find the tsn to resend (possibly */ { uint32_t tsn; struct sctp_tmit_chunk *tp1; tsn = ntohl(desc->tsn_ifany); TAILQ_FOREACH(tp1, &stcb->asoc.sent_queue, sctp_next) { if (tp1->rec.data.tsn == tsn) { /* found it */ break; } if (SCTP_TSN_GT(tp1->rec.data.tsn, tsn)) { /* not found */ tp1 = NULL; break; } } if (tp1 == NULL) { /* * Do it the other way , aka without paying * attention to queue seq order. */ SCTP_STAT_INCR(sctps_pdrpdnfnd); TAILQ_FOREACH(tp1, &stcb->asoc.sent_queue, sctp_next) { if (tp1->rec.data.tsn == tsn) { /* found it */ break; } } } if (tp1 == NULL) { SCTP_STAT_INCR(sctps_pdrptsnnf); } if ((tp1) && (tp1->sent < SCTP_DATAGRAM_ACKED)) { uint8_t *ddp; if (((flg & SCTP_BADCRC) == 0) && ((flg & SCTP_FROM_MIDDLE_BOX) == 0)) { return (0); } if ((stcb->asoc.peers_rwnd == 0) && ((flg & SCTP_FROM_MIDDLE_BOX) == 0)) { SCTP_STAT_INCR(sctps_pdrpdiwnp); return (0); } if (stcb->asoc.peers_rwnd == 0 && (flg & SCTP_FROM_MIDDLE_BOX)) { SCTP_STAT_INCR(sctps_pdrpdizrw); return (0); } ddp = (uint8_t *)(mtod(tp1->data, caddr_t)+ sizeof(struct sctp_data_chunk)); { unsigned int iii; for (iii = 0; iii < sizeof(desc->data_bytes); iii++) { if (ddp[iii] != desc->data_bytes[iii]) { SCTP_STAT_INCR(sctps_pdrpbadd); return (-1); } } } if (tp1->do_rtt) { /* * this guy had a RTO calculation * pending on it, cancel it */ if (tp1->whoTo->rto_needed == 0) { tp1->whoTo->rto_needed = 1; } tp1->do_rtt = 0; } SCTP_STAT_INCR(sctps_pdrpmark); if (tp1->sent != SCTP_DATAGRAM_RESEND) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); /* * mark it as if we were doing a FR, since * we will be getting gap ack reports behind * the info from the router. */ tp1->rec.data.doing_fast_retransmit = 1; /* * mark the tsn with what sequences can * cause a new FR. */ if (TAILQ_EMPTY(&stcb->asoc.send_queue)) { tp1->rec.data.fast_retran_tsn = stcb->asoc.sending_seq; } else { tp1->rec.data.fast_retran_tsn = (TAILQ_FIRST(&stcb->asoc.send_queue))->rec.data.tsn; } /* restart the timer */ sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, tp1->whoTo, SCTP_FROM_SCTP_INPUT + SCTP_LOC_26); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, tp1->whoTo); /* fix counts and things */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_PDRP, tp1->whoTo->flight_size, tp1->book_size, (uint32_t)(uintptr_t)stcb, tp1->rec.data.tsn); } if (tp1->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_decrease(tp1); sctp_total_flight_decrease(stcb, tp1); } tp1->sent = SCTP_DATAGRAM_RESEND; } { /* audit code */ unsigned int audit; audit = 0; TAILQ_FOREACH(tp1, &stcb->asoc.sent_queue, sctp_next) { if (tp1->sent == SCTP_DATAGRAM_RESEND) audit++; } TAILQ_FOREACH(tp1, &stcb->asoc.control_send_queue, sctp_next) { if (tp1->sent == SCTP_DATAGRAM_RESEND) audit++; } if (audit != stcb->asoc.sent_queue_retran_cnt) { SCTP_PRINTF("**Local Audit finds cnt:%d asoc cnt:%d\n", audit, stcb->asoc.sent_queue_retran_cnt); #ifndef SCTP_AUDITING_ENABLED stcb->asoc.sent_queue_retran_cnt = audit; #endif } } } break; case SCTP_ASCONF: { struct sctp_tmit_chunk *asconf; TAILQ_FOREACH(asconf, &stcb->asoc.control_send_queue, sctp_next) { if (asconf->rec.chunk_id.id == SCTP_ASCONF) { break; } } if (asconf) { if (asconf->sent != SCTP_DATAGRAM_RESEND) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); asconf->sent = SCTP_DATAGRAM_RESEND; asconf->snd_count--; } } break; case SCTP_INITIATION: /* resend the INIT */ stcb->asoc.dropped_special_cnt++; if (stcb->asoc.dropped_special_cnt < SCTP_RETRY_DROPPED_THRESH) { /* * If we can get it in, in a few attempts we do * this, otherwise we let the timer fire. */ sctp_timer_stop(SCTP_TIMER_TYPE_INIT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_INPUT + SCTP_LOC_27); sctp_send_initiate(stcb->sctp_ep, stcb, SCTP_SO_NOT_LOCKED); } break; case SCTP_SELECTIVE_ACK: case SCTP_NR_SELECTIVE_ACK: /* resend the sack */ sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); break; case SCTP_HEARTBEAT_REQUEST: /* resend a demand HB */ if ((stcb->asoc.overall_error_count + 3) < stcb->asoc.max_send_times) { /* * Only retransmit if we KNOW we wont destroy the * tcb */ sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); } break; case SCTP_SHUTDOWN: sctp_send_shutdown(stcb, net); break; case SCTP_SHUTDOWN_ACK: sctp_send_shutdown_ack(stcb, net); break; case SCTP_COOKIE_ECHO: { struct sctp_tmit_chunk *cookie; cookie = NULL; TAILQ_FOREACH(cookie, &stcb->asoc.control_send_queue, sctp_next) { if (cookie->rec.chunk_id.id == SCTP_COOKIE_ECHO) { break; } } if (cookie) { if (cookie->sent != SCTP_DATAGRAM_RESEND) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); cookie->sent = SCTP_DATAGRAM_RESEND; sctp_stop_all_cookie_timers(stcb); } } break; case SCTP_COOKIE_ACK: sctp_send_cookie_ack(stcb); break; case SCTP_ASCONF_ACK: /* resend last asconf ack */ sctp_send_asconf_ack(stcb); break; case SCTP_IFORWARD_CUM_TSN: case SCTP_FORWARD_CUM_TSN: send_forward_tsn(stcb, &stcb->asoc); break; /* can't do anything with these */ case SCTP_PACKET_DROPPED: case SCTP_INITIATION_ACK: /* this should not happen */ case SCTP_HEARTBEAT_ACK: case SCTP_ABORT_ASSOCIATION: case SCTP_OPERATION_ERROR: case SCTP_SHUTDOWN_COMPLETE: case SCTP_ECN_ECHO: case SCTP_ECN_CWR: default: break; } return (0); } void sctp_reset_in_stream(struct sctp_tcb *stcb, uint32_t number_entries, uint16_t *list) { uint32_t i; uint16_t temp; /* * We set things to 0xffffffff since this is the last delivered * sequence and we will be sending in 0 after the reset. */ if (number_entries) { for (i = 0; i < number_entries; i++) { temp = ntohs(list[i]); if (temp >= stcb->asoc.streamincnt) { continue; } stcb->asoc.strmin[temp].last_mid_delivered = 0xffffffff; } } else { list = NULL; for (i = 0; i < stcb->asoc.streamincnt; i++) { stcb->asoc.strmin[i].last_mid_delivered = 0xffffffff; } } sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_RECV, stcb, number_entries, (void *)list, SCTP_SO_NOT_LOCKED); } static void sctp_reset_out_streams(struct sctp_tcb *stcb, uint32_t number_entries, uint16_t *list) { uint32_t i; uint16_t temp; if (number_entries > 0) { for (i = 0; i < number_entries; i++) { temp = ntohs(list[i]); if (temp >= stcb->asoc.streamoutcnt) { /* no such stream */ continue; } stcb->asoc.strmout[temp].next_mid_ordered = 0; stcb->asoc.strmout[temp].next_mid_unordered = 0; } } else { for (i = 0; i < stcb->asoc.streamoutcnt; i++) { stcb->asoc.strmout[i].next_mid_ordered = 0; stcb->asoc.strmout[i].next_mid_unordered = 0; } } sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_SEND, stcb, number_entries, (void *)list, SCTP_SO_NOT_LOCKED); } static void sctp_reset_clear_pending(struct sctp_tcb *stcb, uint32_t number_entries, uint16_t *list) { uint32_t i; uint16_t temp; if (number_entries > 0) { for (i = 0; i < number_entries; i++) { temp = ntohs(list[i]); if (temp >= stcb->asoc.streamoutcnt) { /* no such stream */ continue; } stcb->asoc.strmout[temp].state = SCTP_STREAM_OPEN; } } else { for (i = 0; i < stcb->asoc.streamoutcnt; i++) { stcb->asoc.strmout[i].state = SCTP_STREAM_OPEN; } } } struct sctp_stream_reset_request * sctp_find_stream_reset(struct sctp_tcb *stcb, uint32_t seq, struct sctp_tmit_chunk **bchk) { struct sctp_association *asoc; struct sctp_chunkhdr *ch; struct sctp_stream_reset_request *r; struct sctp_tmit_chunk *chk; int len, clen; asoc = &stcb->asoc; if (TAILQ_EMPTY(&stcb->asoc.control_send_queue)) { asoc->stream_reset_outstanding = 0; return (NULL); } if (stcb->asoc.str_reset == NULL) { asoc->stream_reset_outstanding = 0; return (NULL); } chk = stcb->asoc.str_reset; if (chk->data == NULL) { return (NULL); } if (bchk) { /* he wants a copy of the chk pointer */ *bchk = chk; } clen = chk->send_size; ch = mtod(chk->data, struct sctp_chunkhdr *); r = (struct sctp_stream_reset_request *)(ch + 1); if (ntohl(r->request_seq) == seq) { /* found it */ return (r); } len = SCTP_SIZE32(ntohs(r->ph.param_length)); if (clen > (len + (int)sizeof(struct sctp_chunkhdr))) { /* move to the next one, there can only be a max of two */ r = (struct sctp_stream_reset_request *)((caddr_t)r + len); if (ntohl(r->request_seq) == seq) { return (r); } } /* that seq is not here */ return (NULL); } static void sctp_clean_up_stream_reset(struct sctp_tcb *stcb) { struct sctp_association *asoc; struct sctp_tmit_chunk *chk; asoc = &stcb->asoc; chk = asoc->str_reset; if (chk == NULL) { return; } asoc->str_reset = NULL; sctp_timer_stop(SCTP_TIMER_TYPE_STRRESET, stcb->sctp_ep, stcb, chk->whoTo, SCTP_FROM_SCTP_INPUT + SCTP_LOC_28); TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next); asoc->ctrl_queue_cnt--; if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } static int sctp_handle_stream_reset_response(struct sctp_tcb *stcb, uint32_t seq, uint32_t action, struct sctp_stream_reset_response *respin) { uint16_t type; int lparam_len; struct sctp_association *asoc = &stcb->asoc; struct sctp_tmit_chunk *chk; struct sctp_stream_reset_request *req_param; struct sctp_stream_reset_out_request *req_out_param; struct sctp_stream_reset_in_request *req_in_param; uint32_t number_entries; if (asoc->stream_reset_outstanding == 0) { /* duplicate */ return (0); } if (seq == stcb->asoc.str_reset_seq_out) { req_param = sctp_find_stream_reset(stcb, seq, &chk); if (req_param != NULL) { stcb->asoc.str_reset_seq_out++; type = ntohs(req_param->ph.param_type); lparam_len = ntohs(req_param->ph.param_length); if (type == SCTP_STR_RESET_OUT_REQUEST) { int no_clear = 0; req_out_param = (struct sctp_stream_reset_out_request *)req_param; number_entries = (lparam_len - sizeof(struct sctp_stream_reset_out_request)) / sizeof(uint16_t); asoc->stream_reset_out_is_outstanding = 0; if (asoc->stream_reset_outstanding) asoc->stream_reset_outstanding--; if (action == SCTP_STREAM_RESET_RESULT_PERFORMED) { /* do it */ sctp_reset_out_streams(stcb, number_entries, req_out_param->list_of_streams); } else if (action == SCTP_STREAM_RESET_RESULT_DENIED) { sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_DENIED_OUT, stcb, number_entries, req_out_param->list_of_streams, SCTP_SO_NOT_LOCKED); } else if (action == SCTP_STREAM_RESET_RESULT_IN_PROGRESS) { /* * Set it up so we don't stop * retransmitting */ asoc->stream_reset_outstanding++; stcb->asoc.str_reset_seq_out--; asoc->stream_reset_out_is_outstanding = 1; no_clear = 1; } else { sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_FAILED_OUT, stcb, number_entries, req_out_param->list_of_streams, SCTP_SO_NOT_LOCKED); } if (no_clear == 0) { sctp_reset_clear_pending(stcb, number_entries, req_out_param->list_of_streams); } } else if (type == SCTP_STR_RESET_IN_REQUEST) { req_in_param = (struct sctp_stream_reset_in_request *)req_param; number_entries = (lparam_len - sizeof(struct sctp_stream_reset_in_request)) / sizeof(uint16_t); if (asoc->stream_reset_outstanding) asoc->stream_reset_outstanding--; if (action == SCTP_STREAM_RESET_RESULT_DENIED) { sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_DENIED_IN, stcb, number_entries, req_in_param->list_of_streams, SCTP_SO_NOT_LOCKED); } else if (action != SCTP_STREAM_RESET_RESULT_PERFORMED) { sctp_ulp_notify(SCTP_NOTIFY_STR_RESET_FAILED_IN, stcb, number_entries, req_in_param->list_of_streams, SCTP_SO_NOT_LOCKED); } } else if (type == SCTP_STR_RESET_ADD_OUT_STREAMS) { /* Ok we now may have more streams */ int num_stream; num_stream = stcb->asoc.strm_pending_add_size; if (num_stream > (stcb->asoc.strm_realoutsize - stcb->asoc.streamoutcnt)) { /* TSNH */ num_stream = stcb->asoc.strm_realoutsize - stcb->asoc.streamoutcnt; } stcb->asoc.strm_pending_add_size = 0; if (asoc->stream_reset_outstanding) asoc->stream_reset_outstanding--; if (action == SCTP_STREAM_RESET_RESULT_PERFORMED) { /* Put the new streams into effect */ int i; for (i = asoc->streamoutcnt; i < (asoc->streamoutcnt + num_stream); i++) { asoc->strmout[i].state = SCTP_STREAM_OPEN; } asoc->streamoutcnt += num_stream; sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, 0); } else if (action == SCTP_STREAM_RESET_RESULT_DENIED) { sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, SCTP_STREAM_CHANGE_DENIED); } else { sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, SCTP_STREAM_CHANGE_FAILED); } } else if (type == SCTP_STR_RESET_ADD_IN_STREAMS) { if (asoc->stream_reset_outstanding) asoc->stream_reset_outstanding--; if (action == SCTP_STREAM_RESET_RESULT_DENIED) { sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, SCTP_STREAM_CHANGE_DENIED); } else if (action != SCTP_STREAM_RESET_RESULT_PERFORMED) { sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, SCTP_STREAM_CHANGE_FAILED); } } else if (type == SCTP_STR_RESET_TSN_REQUEST) { /** * a) Adopt the new in tsn. * b) reset the map * c) Adopt the new out-tsn */ struct sctp_stream_reset_response_tsn *resp; struct sctp_forward_tsn_chunk fwdtsn; int abort_flag = 0; if (respin == NULL) { /* huh ? */ return (0); } if (ntohs(respin->ph.param_length) < sizeof(struct sctp_stream_reset_response_tsn)) { return (0); } if (action == SCTP_STREAM_RESET_RESULT_PERFORMED) { resp = (struct sctp_stream_reset_response_tsn *)respin; asoc->stream_reset_outstanding--; fwdtsn.ch.chunk_length = htons(sizeof(struct sctp_forward_tsn_chunk)); fwdtsn.ch.chunk_type = SCTP_FORWARD_CUM_TSN; fwdtsn.new_cumulative_tsn = htonl(ntohl(resp->senders_next_tsn) - 1); sctp_handle_forward_tsn(stcb, &fwdtsn, &abort_flag, NULL, 0); if (abort_flag) { return (1); } stcb->asoc.highest_tsn_inside_map = (ntohl(resp->senders_next_tsn) - 1); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(0, 7, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } + stcb->asoc.tsn_last_delivered = stcb->asoc.cumulative_tsn = stcb->asoc.highest_tsn_inside_map; stcb->asoc.mapping_array_base_tsn = ntohl(resp->senders_next_tsn); memset(stcb->asoc.mapping_array, 0, stcb->asoc.mapping_array_size); stcb->asoc.highest_tsn_inside_nr_map = stcb->asoc.highest_tsn_inside_map; memset(stcb->asoc.nr_mapping_array, 0, stcb->asoc.mapping_array_size); stcb->asoc.sending_seq = ntohl(resp->receivers_next_tsn); stcb->asoc.last_acked_seq = stcb->asoc.cumulative_tsn; sctp_reset_out_streams(stcb, 0, (uint16_t *)NULL); sctp_reset_in_stream(stcb, 0, (uint16_t *)NULL); sctp_notify_stream_reset_tsn(stcb, stcb->asoc.sending_seq, (stcb->asoc.mapping_array_base_tsn + 1), 0); } else if (action == SCTP_STREAM_RESET_RESULT_DENIED) { sctp_notify_stream_reset_tsn(stcb, stcb->asoc.sending_seq, (stcb->asoc.mapping_array_base_tsn + 1), SCTP_ASSOC_RESET_DENIED); } else { sctp_notify_stream_reset_tsn(stcb, stcb->asoc.sending_seq, (stcb->asoc.mapping_array_base_tsn + 1), SCTP_ASSOC_RESET_FAILED); } } /* get rid of the request and get the request flags */ if (asoc->stream_reset_outstanding == 0) { sctp_clean_up_stream_reset(stcb); } } } if (asoc->stream_reset_outstanding == 0) { sctp_send_stream_reset_out_if_possible(stcb, SCTP_SO_NOT_LOCKED); } return (0); } static void sctp_handle_str_reset_request_in(struct sctp_tcb *stcb, struct sctp_tmit_chunk *chk, struct sctp_stream_reset_in_request *req, int trunc) { uint32_t seq; int len, i; int number_entries; uint16_t temp; /* * peer wants me to send a str-reset to him for my outgoing seq's if * seq_in is right. */ struct sctp_association *asoc = &stcb->asoc; seq = ntohl(req->request_seq); if (asoc->str_reset_seq_in == seq) { asoc->last_reset_action[1] = asoc->last_reset_action[0]; if (!(asoc->local_strreset_support & SCTP_ENABLE_RESET_STREAM_REQ)) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if (trunc) { /* Can't do it, since they exceeded our buffer size */ asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if (stcb->asoc.stream_reset_out_is_outstanding == 0) { len = ntohs(req->ph.param_length); number_entries = ((len - sizeof(struct sctp_stream_reset_in_request)) / sizeof(uint16_t)); if (number_entries) { for (i = 0; i < number_entries; i++) { temp = ntohs(req->list_of_streams[i]); if (temp >= stcb->asoc.streamoutcnt) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; goto bad_boy; } req->list_of_streams[i] = temp; } for (i = 0; i < number_entries; i++) { if (stcb->asoc.strmout[req->list_of_streams[i]].state == SCTP_STREAM_OPEN) { stcb->asoc.strmout[req->list_of_streams[i]].state = SCTP_STREAM_RESET_PENDING; } } } else { /* Its all */ for (i = 0; i < stcb->asoc.streamoutcnt; i++) { if (stcb->asoc.strmout[i].state == SCTP_STREAM_OPEN) stcb->asoc.strmout[i].state = SCTP_STREAM_RESET_PENDING; } } asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_PERFORMED; } else { /* Can't do it, since we have sent one out */ asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_ERR_IN_PROGRESS; } bad_boy: sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); asoc->str_reset_seq_in++; } else if (asoc->str_reset_seq_in - 1 == seq) { sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); } else if (asoc->str_reset_seq_in - 2 == seq) { sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[1]); } else { sctp_add_stream_reset_result(chk, seq, SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO); } sctp_send_stream_reset_out_if_possible(stcb, SCTP_SO_NOT_LOCKED); } static int sctp_handle_str_reset_request_tsn(struct sctp_tcb *stcb, struct sctp_tmit_chunk *chk, struct sctp_stream_reset_tsn_request *req) { /* reset all in and out and update the tsn */ /* * A) reset my str-seq's on in and out. B) Select a receive next, * and set cum-ack to it. Also process this selected number as a * fwd-tsn as well. C) set in the response my next sending seq. */ struct sctp_forward_tsn_chunk fwdtsn; struct sctp_association *asoc = &stcb->asoc; int abort_flag = 0; uint32_t seq; seq = ntohl(req->request_seq); if (asoc->str_reset_seq_in == seq) { asoc->last_reset_action[1] = stcb->asoc.last_reset_action[0]; if (!(asoc->local_strreset_support & SCTP_ENABLE_CHANGE_ASSOC_REQ)) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else { fwdtsn.ch.chunk_length = htons(sizeof(struct sctp_forward_tsn_chunk)); fwdtsn.ch.chunk_type = SCTP_FORWARD_CUM_TSN; fwdtsn.ch.chunk_flags = 0; fwdtsn.new_cumulative_tsn = htonl(stcb->asoc.highest_tsn_inside_map + 1); sctp_handle_forward_tsn(stcb, &fwdtsn, &abort_flag, NULL, 0); if (abort_flag) { return (1); } asoc->highest_tsn_inside_map += SCTP_STREAM_RESET_TSN_DELTA; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MAP_LOGGING_ENABLE) { sctp_log_map(0, 10, asoc->highest_tsn_inside_map, SCTP_MAP_SLIDE_RESULT); } asoc->tsn_last_delivered = asoc->cumulative_tsn = asoc->highest_tsn_inside_map; asoc->mapping_array_base_tsn = asoc->highest_tsn_inside_map + 1; memset(asoc->mapping_array, 0, asoc->mapping_array_size); asoc->highest_tsn_inside_nr_map = asoc->highest_tsn_inside_map; memset(asoc->nr_mapping_array, 0, asoc->mapping_array_size); atomic_add_int(&asoc->sending_seq, 1); /* save off historical data for retrans */ asoc->last_sending_seq[1] = asoc->last_sending_seq[0]; asoc->last_sending_seq[0] = asoc->sending_seq; asoc->last_base_tsnsent[1] = asoc->last_base_tsnsent[0]; asoc->last_base_tsnsent[0] = asoc->mapping_array_base_tsn; sctp_reset_out_streams(stcb, 0, (uint16_t *)NULL); sctp_reset_in_stream(stcb, 0, (uint16_t *)NULL); asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_PERFORMED; sctp_notify_stream_reset_tsn(stcb, asoc->sending_seq, (asoc->mapping_array_base_tsn + 1), 0); } sctp_add_stream_reset_result_tsn(chk, seq, asoc->last_reset_action[0], asoc->last_sending_seq[0], asoc->last_base_tsnsent[0]); asoc->str_reset_seq_in++; } else if (asoc->str_reset_seq_in - 1 == seq) { sctp_add_stream_reset_result_tsn(chk, seq, asoc->last_reset_action[0], asoc->last_sending_seq[0], asoc->last_base_tsnsent[0]); } else if (asoc->str_reset_seq_in - 2 == seq) { sctp_add_stream_reset_result_tsn(chk, seq, asoc->last_reset_action[1], asoc->last_sending_seq[1], asoc->last_base_tsnsent[1]); } else { sctp_add_stream_reset_result(chk, seq, SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO); } return (0); } static void sctp_handle_str_reset_request_out(struct sctp_tcb *stcb, struct sctp_tmit_chunk *chk, struct sctp_stream_reset_out_request *req, int trunc) { uint32_t seq, tsn; int number_entries, len; struct sctp_association *asoc = &stcb->asoc; seq = ntohl(req->request_seq); /* now if its not a duplicate we process it */ if (asoc->str_reset_seq_in == seq) { len = ntohs(req->ph.param_length); number_entries = ((len - sizeof(struct sctp_stream_reset_out_request)) / sizeof(uint16_t)); /* * the sender is resetting, handle the list issue.. we must * a) verify if we can do the reset, if so no problem b) If * we can't do the reset we must copy the request. c) queue * it, and setup the data in processor to trigger it off * when needed and dequeue all the queued data. */ tsn = ntohl(req->send_reset_at_tsn); /* move the reset action back one */ asoc->last_reset_action[1] = asoc->last_reset_action[0]; if (!(asoc->local_strreset_support & SCTP_ENABLE_RESET_STREAM_REQ)) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if (trunc) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if (SCTP_TSN_GE(asoc->cumulative_tsn, tsn)) { /* we can do it now */ sctp_reset_in_stream(stcb, number_entries, req->list_of_streams); asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_PERFORMED; } else { /* * we must queue it up and thus wait for the TSN's * to arrive that are at or before tsn */ struct sctp_stream_reset_list *liste; int siz; siz = sizeof(struct sctp_stream_reset_list) + (number_entries * sizeof(uint16_t)); SCTP_MALLOC(liste, struct sctp_stream_reset_list *, siz, SCTP_M_STRESET); if (liste == NULL) { /* gak out of memory */ asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); return; } liste->seq = seq; liste->tsn = tsn; liste->number_entries = number_entries; memcpy(&liste->list_of_streams, req->list_of_streams, number_entries * sizeof(uint16_t)); TAILQ_INSERT_TAIL(&asoc->resetHead, liste, next_resp); asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_IN_PROGRESS; } sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); asoc->str_reset_seq_in++; } else if ((asoc->str_reset_seq_in - 1) == seq) { /* * one seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); } else if ((asoc->str_reset_seq_in - 2) == seq) { /* * two seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[1]); } else { sctp_add_stream_reset_result(chk, seq, SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO); } } static void sctp_handle_str_reset_add_strm(struct sctp_tcb *stcb, struct sctp_tmit_chunk *chk, struct sctp_stream_reset_add_strm *str_add) { /* * Peer is requesting to add more streams. If its within our * max-streams we will allow it. */ uint32_t num_stream, i; uint32_t seq; struct sctp_association *asoc = &stcb->asoc; struct sctp_queued_to_read *ctl, *nctl; /* Get the number. */ seq = ntohl(str_add->request_seq); num_stream = ntohs(str_add->number_of_streams); /* Now what would be the new total? */ if (asoc->str_reset_seq_in == seq) { num_stream += stcb->asoc.streamincnt; stcb->asoc.last_reset_action[1] = stcb->asoc.last_reset_action[0]; if (!(asoc->local_strreset_support & SCTP_ENABLE_CHANGE_ASSOC_REQ)) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if ((num_stream > stcb->asoc.max_inbound_streams) || (num_stream > 0xffff)) { /* We must reject it they ask for to many */ denied: stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else { /* Ok, we can do that :-) */ struct sctp_stream_in *oldstrm; /* save off the old */ oldstrm = stcb->asoc.strmin; SCTP_MALLOC(stcb->asoc.strmin, struct sctp_stream_in *, (num_stream * sizeof(struct sctp_stream_in)), SCTP_M_STRMI); if (stcb->asoc.strmin == NULL) { stcb->asoc.strmin = oldstrm; goto denied; } /* copy off the old data */ for (i = 0; i < stcb->asoc.streamincnt; i++) { TAILQ_INIT(&stcb->asoc.strmin[i].inqueue); TAILQ_INIT(&stcb->asoc.strmin[i].uno_inqueue); stcb->asoc.strmin[i].sid = i; stcb->asoc.strmin[i].last_mid_delivered = oldstrm[i].last_mid_delivered; stcb->asoc.strmin[i].delivery_started = oldstrm[i].delivery_started; stcb->asoc.strmin[i].pd_api_started = oldstrm[i].pd_api_started; /* now anything on those queues? */ TAILQ_FOREACH_SAFE(ctl, &oldstrm[i].inqueue, next_instrm, nctl) { TAILQ_REMOVE(&oldstrm[i].inqueue, ctl, next_instrm); TAILQ_INSERT_TAIL(&stcb->asoc.strmin[i].inqueue, ctl, next_instrm); } TAILQ_FOREACH_SAFE(ctl, &oldstrm[i].uno_inqueue, next_instrm, nctl) { TAILQ_REMOVE(&oldstrm[i].uno_inqueue, ctl, next_instrm); TAILQ_INSERT_TAIL(&stcb->asoc.strmin[i].uno_inqueue, ctl, next_instrm); } } /* Init the new streams */ for (i = stcb->asoc.streamincnt; i < num_stream; i++) { TAILQ_INIT(&stcb->asoc.strmin[i].inqueue); TAILQ_INIT(&stcb->asoc.strmin[i].uno_inqueue); stcb->asoc.strmin[i].sid = i; stcb->asoc.strmin[i].last_mid_delivered = 0xffffffff; stcb->asoc.strmin[i].pd_api_started = 0; stcb->asoc.strmin[i].delivery_started = 0; } SCTP_FREE(oldstrm, SCTP_M_STRMI); /* update the size */ stcb->asoc.streamincnt = num_stream; stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_PERFORMED; sctp_notify_stream_reset_add(stcb, stcb->asoc.streamincnt, stcb->asoc.streamoutcnt, 0); } sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); asoc->str_reset_seq_in++; } else if ((asoc->str_reset_seq_in - 1) == seq) { /* * one seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); } else if ((asoc->str_reset_seq_in - 2) == seq) { /* * two seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[1]); } else { sctp_add_stream_reset_result(chk, seq, SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO); } } static void sctp_handle_str_reset_add_out_strm(struct sctp_tcb *stcb, struct sctp_tmit_chunk *chk, struct sctp_stream_reset_add_strm *str_add) { /* * Peer is requesting to add more streams. If its within our * max-streams we will allow it. */ uint16_t num_stream; uint32_t seq; struct sctp_association *asoc = &stcb->asoc; /* Get the number. */ seq = ntohl(str_add->request_seq); num_stream = ntohs(str_add->number_of_streams); /* Now what would be the new total? */ if (asoc->str_reset_seq_in == seq) { stcb->asoc.last_reset_action[1] = stcb->asoc.last_reset_action[0]; if (!(asoc->local_strreset_support & SCTP_ENABLE_CHANGE_ASSOC_REQ)) { asoc->last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } else if (stcb->asoc.stream_reset_outstanding) { /* We must reject it we have something pending */ stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_ERR_IN_PROGRESS; } else { /* Ok, we can do that :-) */ int mychk; mychk = stcb->asoc.streamoutcnt; mychk += num_stream; if (mychk < 0x10000) { stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_PERFORMED; if (sctp_send_str_reset_req(stcb, 0, NULL, 0, 0, 1, num_stream, 0, 1)) { stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } } else { stcb->asoc.last_reset_action[0] = SCTP_STREAM_RESET_RESULT_DENIED; } } sctp_add_stream_reset_result(chk, seq, stcb->asoc.last_reset_action[0]); asoc->str_reset_seq_in++; } else if ((asoc->str_reset_seq_in - 1) == seq) { /* * one seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[0]); } else if ((asoc->str_reset_seq_in - 2) == seq) { /* * two seq back, just echo back last action since my * response was lost. */ sctp_add_stream_reset_result(chk, seq, asoc->last_reset_action[1]); } else { sctp_add_stream_reset_result(chk, seq, SCTP_STREAM_RESET_RESULT_ERR_BAD_SEQNO); } } #ifdef __GNUC__ __attribute__((noinline)) #endif static int sctp_handle_stream_reset(struct sctp_tcb *stcb, struct mbuf *m, int offset, struct sctp_chunkhdr *ch_req) { uint16_t remaining_length, param_len, ptype; struct sctp_paramhdr pstore; uint8_t cstore[SCTP_CHUNK_BUFFER_SIZE]; uint32_t seq = 0; int num_req = 0; int trunc = 0; struct sctp_tmit_chunk *chk; struct sctp_chunkhdr *ch; struct sctp_paramhdr *ph; int ret_code = 0; int num_param = 0; /* now it may be a reset or a reset-response */ remaining_length = ntohs(ch_req->chunk_length) - sizeof(struct sctp_chunkhdr); /* setup for adding the response */ sctp_alloc_a_chunk(stcb, chk); if (chk == NULL) { return (ret_code); } chk->copy_by_ref = 0; chk->rec.chunk_id.id = SCTP_STREAM_RESET; chk->rec.chunk_id.can_take_data = 0; chk->flags = 0; chk->asoc = &stcb->asoc; chk->no_fr_allowed = 0; chk->book_size = chk->send_size = sizeof(struct sctp_chunkhdr); chk->book_size_scale = 0; chk->data = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_NOWAIT, 1, MT_DATA); if (chk->data == NULL) { strres_nochunk: if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); return (ret_code); } SCTP_BUF_RESV_UF(chk->data, SCTP_MIN_OVERHEAD); /* setup chunk parameters */ chk->sent = SCTP_DATAGRAM_UNSENT; chk->snd_count = 0; chk->whoTo = NULL; ch = mtod(chk->data, struct sctp_chunkhdr *); ch->chunk_type = SCTP_STREAM_RESET; ch->chunk_flags = 0; ch->chunk_length = htons(chk->send_size); SCTP_BUF_LEN(chk->data) = SCTP_SIZE32(chk->send_size); offset += sizeof(struct sctp_chunkhdr); while (remaining_length >= sizeof(struct sctp_paramhdr)) { ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(pstore), (uint8_t *)&pstore); if (ph == NULL) { /* TSNH */ break; } param_len = ntohs(ph->param_length); if ((param_len > remaining_length) || (param_len < (sizeof(struct sctp_paramhdr) + sizeof(uint32_t)))) { /* bad parameter length */ break; } ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, min(param_len, sizeof(cstore)), (uint8_t *)&cstore); if (ph == NULL) { /* TSNH */ break; } ptype = ntohs(ph->param_type); num_param++; if (param_len > sizeof(cstore)) { trunc = 1; } else { trunc = 0; } if (num_param > SCTP_MAX_RESET_PARAMS) { /* hit the max of parameters already sorry.. */ break; } if (ptype == SCTP_STR_RESET_OUT_REQUEST) { struct sctp_stream_reset_out_request *req_out; if (param_len < sizeof(struct sctp_stream_reset_out_request)) { break; } req_out = (struct sctp_stream_reset_out_request *)ph; num_req++; if (stcb->asoc.stream_reset_outstanding) { seq = ntohl(req_out->response_seq); if (seq == stcb->asoc.str_reset_seq_out) { /* implicit ack */ (void)sctp_handle_stream_reset_response(stcb, seq, SCTP_STREAM_RESET_RESULT_PERFORMED, NULL); } } sctp_handle_str_reset_request_out(stcb, chk, req_out, trunc); } else if (ptype == SCTP_STR_RESET_ADD_OUT_STREAMS) { struct sctp_stream_reset_add_strm *str_add; if (param_len < sizeof(struct sctp_stream_reset_add_strm)) { break; } str_add = (struct sctp_stream_reset_add_strm *)ph; num_req++; sctp_handle_str_reset_add_strm(stcb, chk, str_add); } else if (ptype == SCTP_STR_RESET_ADD_IN_STREAMS) { struct sctp_stream_reset_add_strm *str_add; if (param_len < sizeof(struct sctp_stream_reset_add_strm)) { break; } str_add = (struct sctp_stream_reset_add_strm *)ph; num_req++; sctp_handle_str_reset_add_out_strm(stcb, chk, str_add); } else if (ptype == SCTP_STR_RESET_IN_REQUEST) { struct sctp_stream_reset_in_request *req_in; num_req++; req_in = (struct sctp_stream_reset_in_request *)ph; sctp_handle_str_reset_request_in(stcb, chk, req_in, trunc); } else if (ptype == SCTP_STR_RESET_TSN_REQUEST) { struct sctp_stream_reset_tsn_request *req_tsn; num_req++; req_tsn = (struct sctp_stream_reset_tsn_request *)ph; if (sctp_handle_str_reset_request_tsn(stcb, chk, req_tsn)) { ret_code = 1; goto strres_nochunk; } /* no more */ break; } else if (ptype == SCTP_STR_RESET_RESPONSE) { struct sctp_stream_reset_response *resp; uint32_t result; if (param_len < sizeof(struct sctp_stream_reset_response)) { break; } resp = (struct sctp_stream_reset_response *)ph; seq = ntohl(resp->response_seq); result = ntohl(resp->result); if (sctp_handle_stream_reset_response(stcb, seq, result, resp)) { ret_code = 1; goto strres_nochunk; } } else { break; } offset += SCTP_SIZE32(param_len); if (remaining_length >= SCTP_SIZE32(param_len)) { remaining_length -= SCTP_SIZE32(param_len); } else { remaining_length = 0; } } if (num_req == 0) { /* we have no response free the stuff */ goto strres_nochunk; } /* ok we have a chunk to link in */ TAILQ_INSERT_TAIL(&stcb->asoc.control_send_queue, chk, sctp_next); stcb->asoc.ctrl_queue_cnt++; return (ret_code); } /* * Handle a router or endpoints report of a packet loss, there are two ways * to handle this, either we get the whole packet and must disect it * ourselves (possibly with truncation and or corruption) or it is a summary * from a middle box that did the disectting for us. */ static void sctp_handle_packet_dropped(struct sctp_pktdrop_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t limit) { uint32_t bottle_bw, on_queue; uint16_t trunc_len; unsigned int chlen; unsigned int at; struct sctp_chunk_desc desc; struct sctp_chunkhdr *ch; chlen = ntohs(cp->ch.chunk_length); chlen -= sizeof(struct sctp_pktdrop_chunk); /* XXX possible chlen underflow */ if (chlen == 0) { ch = NULL; if (cp->ch.chunk_flags & SCTP_FROM_MIDDLE_BOX) SCTP_STAT_INCR(sctps_pdrpbwrpt); } else { ch = (struct sctp_chunkhdr *)(cp->data + sizeof(struct sctphdr)); chlen -= sizeof(struct sctphdr); /* XXX possible chlen underflow */ memset(&desc, 0, sizeof(desc)); } trunc_len = (uint16_t)ntohs(cp->trunc_len); if (trunc_len > limit) { trunc_len = limit; } + /* now the chunks themselves */ while ((ch != NULL) && (chlen >= sizeof(struct sctp_chunkhdr))) { desc.chunk_type = ch->chunk_type; /* get amount we need to move */ at = ntohs(ch->chunk_length); if (at < sizeof(struct sctp_chunkhdr)) { /* corrupt chunk, maybe at the end? */ SCTP_STAT_INCR(sctps_pdrpcrupt); break; } if (trunc_len == 0) { /* we are supposed to have all of it */ if (at > chlen) { /* corrupt skip it */ SCTP_STAT_INCR(sctps_pdrpcrupt); break; } } else { /* is there enough of it left ? */ if (desc.chunk_type == SCTP_DATA) { if (chlen < (sizeof(struct sctp_data_chunk) + sizeof(desc.data_bytes))) { break; } } else { if (chlen < sizeof(struct sctp_chunkhdr)) { break; } } } if (desc.chunk_type == SCTP_DATA) { /* can we get out the tsn? */ if ((cp->ch.chunk_flags & SCTP_FROM_MIDDLE_BOX)) SCTP_STAT_INCR(sctps_pdrpmbda); if (chlen >= (sizeof(struct sctp_data_chunk) + sizeof(uint32_t))) { /* yep */ struct sctp_data_chunk *dcp; uint8_t *ddp; unsigned int iii; dcp = (struct sctp_data_chunk *)ch; ddp = (uint8_t *)(dcp + 1); for (iii = 0; iii < sizeof(desc.data_bytes); iii++) { desc.data_bytes[iii] = ddp[iii]; } desc.tsn_ifany = dcp->dp.tsn; } else { /* nope we are done. */ SCTP_STAT_INCR(sctps_pdrpnedat); break; } } else { if ((cp->ch.chunk_flags & SCTP_FROM_MIDDLE_BOX)) SCTP_STAT_INCR(sctps_pdrpmbct); } if (process_chunk_drop(stcb, &desc, net, cp->ch.chunk_flags)) { SCTP_STAT_INCR(sctps_pdrppdbrk); break; } if (SCTP_SIZE32(at) > chlen) { break; } chlen -= SCTP_SIZE32(at); if (chlen < sizeof(struct sctp_chunkhdr)) { /* done, none left */ break; } ch = (struct sctp_chunkhdr *)((caddr_t)ch + SCTP_SIZE32(at)); } /* Now update any rwnd --- possibly */ if ((cp->ch.chunk_flags & SCTP_FROM_MIDDLE_BOX) == 0) { /* From a peer, we get a rwnd report */ uint32_t a_rwnd; SCTP_STAT_INCR(sctps_pdrpfehos); bottle_bw = ntohl(cp->bottle_bw); on_queue = ntohl(cp->current_onq); if (bottle_bw && on_queue) { /* a rwnd report is in here */ if (bottle_bw > on_queue) a_rwnd = bottle_bw - on_queue; else a_rwnd = 0; if (a_rwnd == 0) stcb->asoc.peers_rwnd = 0; else { if (a_rwnd > stcb->asoc.total_flight) { stcb->asoc.peers_rwnd = a_rwnd - stcb->asoc.total_flight; } else { stcb->asoc.peers_rwnd = 0; } if (stcb->asoc.peers_rwnd < stcb->sctp_ep->sctp_ep.sctp_sws_sender) { /* SWS sender side engages */ stcb->asoc.peers_rwnd = 0; } } } } else { SCTP_STAT_INCR(sctps_pdrpfmbox); } /* now middle boxes in sat networks get a cwnd bump */ if ((cp->ch.chunk_flags & SCTP_FROM_MIDDLE_BOX) && (stcb->asoc.sat_t3_loss_recovery == 0) && (stcb->asoc.sat_network)) { /* * This is debatable but for sat networks it makes sense * Note if a T3 timer has went off, we will prohibit any * changes to cwnd until we exit the t3 loss recovery. */ stcb->asoc.cc_functions.sctp_cwnd_update_after_packet_dropped(stcb, net, cp, &bottle_bw, &on_queue); } } /* * handles all control chunks in a packet inputs: - m: mbuf chain, assumed to * still contain IP/SCTP header - stcb: is the tcb found for this packet - * offset: offset into the mbuf chain to first chunkhdr - length: is the * length of the complete packet outputs: - length: modified to remaining * length after control processing - netp: modified to new sctp_nets after * cookie-echo processing - return NULL to discard the packet (ie. no asoc, * bad packet,...) otherwise return the tcb for this packet */ #ifdef __GNUC__ __attribute__((noinline)) #endif static struct sctp_tcb * sctp_process_control(struct mbuf *m, int iphlen, int *offset, int length, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_chunkhdr *ch, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets **netp, int *fwd_tsn_seen, uint8_t mflowtype, uint32_t mflowid, uint16_t fibnum, uint32_t vrf_id, uint16_t port) { struct sctp_association *asoc; struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; uint32_t vtag_in; int num_chunks = 0; /* number of control chunks processed */ uint32_t chk_length, contiguous; int ret; int abort_no_unlock = 0; int ecne_seen = 0; /* * How big should this be, and should it be alloc'd? Lets try the * d-mtu-ceiling for now (2k) and that should hopefully work ... * until we get into jumbo grams and such.. */ uint8_t chunk_buf[SCTP_CHUNK_BUFFER_SIZE]; int got_auth = 0; uint32_t auth_offset = 0, auth_len = 0; int auth_skipped = 0; int asconf_cnt = 0; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif SCTPDBG(SCTP_DEBUG_INPUT1, "sctp_process_control: iphlen=%u, offset=%u, length=%u stcb:%p\n", iphlen, *offset, length, (void *)stcb); if (stcb) { SCTP_TCB_LOCK_ASSERT(stcb); } /* validate chunk header length... */ if (ntohs(ch->chunk_length) < sizeof(*ch)) { SCTPDBG(SCTP_DEBUG_INPUT1, "Invalid header length %d\n", ntohs(ch->chunk_length)); *offset = length; return (stcb); } /* * validate the verification tag */ vtag_in = ntohl(sh->v_tag); if (ch->chunk_type == SCTP_INITIATION) { SCTPDBG(SCTP_DEBUG_INPUT1, "Its an INIT of len:%d vtag:%x\n", ntohs(ch->chunk_length), vtag_in); if (vtag_in != 0) { /* protocol error- silently discard... */ SCTP_STAT_INCR(sctps_badvtag); if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } return (NULL); } } else if (ch->chunk_type != SCTP_COOKIE_ECHO) { /* * If there is no stcb, skip the AUTH chunk and process * later after a stcb is found (to validate the lookup was * valid. */ if ((ch->chunk_type == SCTP_AUTHENTICATION) && (stcb == NULL) && (inp->auth_supported == 1)) { /* save this chunk for later processing */ auth_skipped = 1; auth_offset = *offset; auth_len = ntohs(ch->chunk_length); /* (temporarily) move past this chunk */ *offset += SCTP_SIZE32(auth_len); if (*offset >= length) { /* no more data left in the mbuf chain */ *offset = length; return (NULL); } ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, *offset, sizeof(struct sctp_chunkhdr), chunk_buf); } if (ch == NULL) { /* Help */ *offset = length; return (stcb); } if (ch->chunk_type == SCTP_COOKIE_ECHO) { goto process_control_chunks; } /* * first check if it's an ASCONF with an unknown src addr we * need to look inside to find the association */ if (ch->chunk_type == SCTP_ASCONF && stcb == NULL) { struct sctp_chunkhdr *asconf_ch = ch; uint32_t asconf_offset = 0, asconf_len = 0; /* inp's refcount may be reduced */ SCTP_INP_INCR_REF(inp); asconf_offset = *offset; do { asconf_len = ntohs(asconf_ch->chunk_length); if (asconf_len < sizeof(struct sctp_asconf_paramhdr)) break; stcb = sctp_findassociation_ep_asconf(m, *offset, dst, sh, &inp, netp, vrf_id); if (stcb != NULL) break; asconf_offset += SCTP_SIZE32(asconf_len); asconf_ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, asconf_offset, sizeof(struct sctp_chunkhdr), chunk_buf); } while (asconf_ch != NULL && asconf_ch->chunk_type == SCTP_ASCONF); if (stcb == NULL) { /* * reduce inp's refcount if not reduced in * sctp_findassociation_ep_asconf(). */ SCTP_INP_DECR_REF(inp); } + /* now go back and verify any auth chunk to be sure */ if (auth_skipped && (stcb != NULL)) { struct sctp_auth_chunk *auth; auth = (struct sctp_auth_chunk *) sctp_m_getptr(m, auth_offset, auth_len, chunk_buf); got_auth = 1; auth_skipped = 0; if ((auth == NULL) || sctp_handle_auth(stcb, auth, m, auth_offset)) { /* auth HMAC failed so dump it */ *offset = length; return (stcb); } else { /* remaining chunks are HMAC checked */ stcb->asoc.authenticated = 1; } } } if (stcb == NULL) { snprintf(msg, sizeof(msg), "OOTB, %s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); /* no association, so it's out of the blue... */ sctp_handle_ootb(m, iphlen, *offset, src, dst, sh, inp, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); *offset = length; return (NULL); } asoc = &stcb->asoc; /* ABORT and SHUTDOWN can use either v_tag... */ if ((ch->chunk_type == SCTP_ABORT_ASSOCIATION) || (ch->chunk_type == SCTP_SHUTDOWN_COMPLETE) || (ch->chunk_type == SCTP_PACKET_DROPPED)) { /* Take the T-bit always into account. */ if ((((ch->chunk_flags & SCTP_HAD_NO_TCB) == 0) && (vtag_in == asoc->my_vtag)) || (((ch->chunk_flags & SCTP_HAD_NO_TCB) == SCTP_HAD_NO_TCB) && (asoc->peer_vtag != htonl(0)) && (vtag_in == asoc->peer_vtag))) { /* this is valid */ } else { /* drop this packet... */ SCTP_STAT_INCR(sctps_badvtag); if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } return (NULL); } } else if (ch->chunk_type == SCTP_SHUTDOWN_ACK) { if (vtag_in != asoc->my_vtag) { /* * this could be a stale SHUTDOWN-ACK or the * peer never got the SHUTDOWN-COMPLETE and * is still hung; we have started a new asoc * but it won't complete until the shutdown * is completed */ if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } snprintf(msg, sizeof(msg), "OOTB, %s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_handle_ootb(m, iphlen, *offset, src, dst, sh, inp, op_err, mflowtype, mflowid, fibnum, vrf_id, port); return (NULL); } } else { /* for all other chunks, vtag must match */ if (vtag_in != asoc->my_vtag) { /* invalid vtag... */ SCTPDBG(SCTP_DEBUG_INPUT3, "invalid vtag: %xh, expect %xh\n", vtag_in, asoc->my_vtag); SCTP_STAT_INCR(sctps_badvtag); if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } *offset = length; return (NULL); } } } /* end if !SCTP_COOKIE_ECHO */ /* * process all control chunks... */ if (((ch->chunk_type == SCTP_SELECTIVE_ACK) || (ch->chunk_type == SCTP_NR_SELECTIVE_ACK) || (ch->chunk_type == SCTP_HEARTBEAT_REQUEST)) && (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED)) { /* implied cookie-ack.. we must have lost the ack */ sctp_handle_cookie_ack((struct sctp_cookie_ack_chunk *)ch, stcb, *netp); } + process_control_chunks: while (IS_SCTP_CONTROL(ch)) { /* validate chunk length */ chk_length = ntohs(ch->chunk_length); SCTPDBG(SCTP_DEBUG_INPUT2, "sctp_process_control: processing a chunk type=%u, len=%u\n", ch->chunk_type, chk_length); SCTP_LTRACE_CHK(inp, stcb, ch->chunk_type, chk_length); if (chk_length < sizeof(*ch) || (*offset + (int)chk_length) > length) { *offset = length; return (stcb); } SCTP_STAT_INCR_COUNTER64(sctps_incontrolchunks); /* * INIT and INIT-ACK only gets the init ack "header" portion * only because we don't have to process the peer's COOKIE. * All others get a complete chunk. */ switch (ch->chunk_type) { case SCTP_INITIATION: contiguous = sizeof(struct sctp_init_chunk); break; case SCTP_INITIATION_ACK: contiguous = sizeof(struct sctp_init_ack_chunk); break; default: contiguous = min(chk_length, sizeof(chunk_buf)); break; } ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, *offset, contiguous, chunk_buf); if (ch == NULL) { *offset = length; if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } return (NULL); } + num_chunks++; /* Save off the last place we got a control from */ if (stcb != NULL) { if (((netp != NULL) && (*netp != NULL)) || (ch->chunk_type == SCTP_ASCONF)) { /* * allow last_control to be NULL if * ASCONF... ASCONF processing will find the * right net later */ if ((netp != NULL) && (*netp != NULL)) stcb->asoc.last_control_chunk_from = *netp; } } #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xB0, ch->chunk_type); #endif /* check to see if this chunk required auth, but isn't */ if ((stcb != NULL) && sctp_auth_is_required_chunk(ch->chunk_type, stcb->asoc.local_auth_chunks) && !stcb->asoc.authenticated) { /* "silently" ignore */ SCTP_STAT_INCR(sctps_recvauthmissing); goto next_chunk; } switch (ch->chunk_type) { case SCTP_INITIATION: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_INIT\n"); /* The INIT chunk must be the only chunk. */ if ((num_chunks > 1) || (length - *offset > (int)SCTP_SIZE32(chk_length))) { /* RFC 4960 requires that no ABORT is sent */ *offset = length; if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } return (NULL); } /* Honor our resource limit. */ if (chk_length > SCTP_LARGEST_INIT_ACCEPTED) { op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); *offset = length; return (NULL); } sctp_handle_init(m, iphlen, *offset, src, dst, sh, (struct sctp_init_chunk *)ch, inp, stcb, *netp, &abort_no_unlock, mflowtype, mflowid, vrf_id, port); *offset = length; if ((!abort_no_unlock) && (stcb != NULL)) { SCTP_TCB_UNLOCK(stcb); } return (NULL); break; case SCTP_PAD_CHUNK: break; case SCTP_INITIATION_ACK: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_INIT_ACK\n"); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* We are not interested anymore */ if ((stcb != NULL) && (stcb->asoc.total_output_queue_size)) { ; } else { *offset = length; if (stcb != NULL) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_29); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } return (NULL); } } /* The INIT-ACK chunk must be the only chunk. */ if ((num_chunks > 1) || (length - *offset > (int)SCTP_SIZE32(chk_length))) { *offset = length; return (stcb); } if ((netp != NULL) && (*netp != NULL)) { ret = sctp_handle_init_ack(m, iphlen, *offset, src, dst, sh, (struct sctp_init_ack_chunk *)ch, stcb, *netp, &abort_no_unlock, mflowtype, mflowid, vrf_id); } else { ret = -1; } *offset = length; if (abort_no_unlock) { return (NULL); } /* * Special case, I must call the output routine to * get the cookie echoed */ if ((stcb != NULL) && (ret == 0)) { sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_CONTROL_PROC, SCTP_SO_NOT_LOCKED); } return (stcb); break; case SCTP_SELECTIVE_ACK: case SCTP_NR_SELECTIVE_ACK: { int abort_now = 0; uint32_t a_rwnd, cum_ack; uint16_t num_seg, num_nr_seg, num_dup; uint8_t flags; int offset_seg, offset_dup; SCTPDBG(SCTP_DEBUG_INPUT3, "%s\n", ch->chunk_type == SCTP_SELECTIVE_ACK ? "SCTP_SACK" : "SCTP_NR_SACK"); SCTP_STAT_INCR(sctps_recvsacks); if (stcb == NULL) { SCTPDBG(SCTP_DEBUG_INDATA1, "No stcb when processing %s chunk\n", (ch->chunk_type == SCTP_SELECTIVE_ACK) ? "SCTP_SACK" : "SCTP_NR_SACK"); break; } if (ch->chunk_type == SCTP_SELECTIVE_ACK) { if (chk_length < sizeof(struct sctp_sack_chunk)) { SCTPDBG(SCTP_DEBUG_INDATA1, "Bad size on SACK chunk, too small\n"); break; } } else { if (stcb->asoc.nrsack_supported == 0) { goto unknown_chunk; } if (chk_length < sizeof(struct sctp_nr_sack_chunk)) { SCTPDBG(SCTP_DEBUG_INDATA1, "Bad size on NR_SACK chunk, too small\n"); break; } } if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_ACK_SENT) { /*- * If we have sent a shutdown-ack, we will pay no * attention to a sack sent in to us since * we don't care anymore. */ break; } flags = ch->chunk_flags; if (ch->chunk_type == SCTP_SELECTIVE_ACK) { struct sctp_sack_chunk *sack; sack = (struct sctp_sack_chunk *)ch; cum_ack = ntohl(sack->sack.cum_tsn_ack); num_seg = ntohs(sack->sack.num_gap_ack_blks); num_nr_seg = 0; num_dup = ntohs(sack->sack.num_dup_tsns); a_rwnd = ntohl(sack->sack.a_rwnd); if (sizeof(struct sctp_sack_chunk) + num_seg * sizeof(struct sctp_gap_ack_block) + num_dup * sizeof(uint32_t) != chk_length) { SCTPDBG(SCTP_DEBUG_INDATA1, "Bad size of SACK chunk\n"); break; } offset_seg = *offset + sizeof(struct sctp_sack_chunk); offset_dup = offset_seg + num_seg * sizeof(struct sctp_gap_ack_block); } else { struct sctp_nr_sack_chunk *nr_sack; nr_sack = (struct sctp_nr_sack_chunk *)ch; cum_ack = ntohl(nr_sack->nr_sack.cum_tsn_ack); num_seg = ntohs(nr_sack->nr_sack.num_gap_ack_blks); num_nr_seg = ntohs(nr_sack->nr_sack.num_nr_gap_ack_blks); num_dup = ntohs(nr_sack->nr_sack.num_dup_tsns); a_rwnd = ntohl(nr_sack->nr_sack.a_rwnd); if (sizeof(struct sctp_nr_sack_chunk) + (num_seg + num_nr_seg) * sizeof(struct sctp_gap_ack_block) + num_dup * sizeof(uint32_t) != chk_length) { SCTPDBG(SCTP_DEBUG_INDATA1, "Bad size of NR_SACK chunk\n"); break; } offset_seg = *offset + sizeof(struct sctp_nr_sack_chunk); offset_dup = offset_seg + (num_seg + num_nr_seg) * sizeof(struct sctp_gap_ack_block); } SCTPDBG(SCTP_DEBUG_INPUT3, "%s process cum_ack:%x num_seg:%d a_rwnd:%d\n", (ch->chunk_type == SCTP_SELECTIVE_ACK) ? "SCTP_SACK" : "SCTP_NR_SACK", cum_ack, num_seg, a_rwnd); stcb->asoc.seen_a_sack_this_pkt = 1; if ((stcb->asoc.pr_sctp_cnt == 0) && (num_seg == 0) && (num_nr_seg == 0) && SCTP_TSN_GE(cum_ack, stcb->asoc.last_acked_seq) && (stcb->asoc.saw_sack_with_frags == 0) && (stcb->asoc.saw_sack_with_nr_frags == 0) && (!TAILQ_EMPTY(&stcb->asoc.sent_queue))) { /* * We have a SIMPLE sack having no * prior segments and data on sent * queue to be acked. Use the faster * path sack processing. We also * allow window update sacks with no * missing segments to go this way * too. */ sctp_express_handle_sack(stcb, cum_ack, a_rwnd, &abort_now, ecne_seen); } else { if ((netp != NULL) && (*netp != NULL)) { sctp_handle_sack(m, offset_seg, offset_dup, stcb, num_seg, num_nr_seg, num_dup, &abort_now, flags, cum_ack, a_rwnd, ecne_seen); } } if (abort_now) { /* ABORT signal from sack processing */ *offset = length; return (NULL); } if (TAILQ_EMPTY(&stcb->asoc.send_queue) && TAILQ_EMPTY(&stcb->asoc.sent_queue) && (stcb->asoc.stream_queue_cnt == 0)) { sctp_ulp_notify(SCTP_NOTIFY_SENDER_DRY, stcb, 0, NULL, SCTP_SO_NOT_LOCKED); } break; } case SCTP_HEARTBEAT_REQUEST: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_HEARTBEAT\n"); if ((stcb != NULL) && (netp != NULL) && (*netp != NULL)) { SCTP_STAT_INCR(sctps_recvheartbeat); sctp_send_heartbeat_ack(stcb, m, *offset, chk_length, *netp); } break; case SCTP_HEARTBEAT_ACK: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_HEARTBEAT_ACK\n"); if ((stcb == NULL) || (chk_length != sizeof(struct sctp_heartbeat_chunk))) { /* Its not ours */ *offset = length; return (stcb); } SCTP_STAT_INCR(sctps_recvheartbeatack); if ((netp != NULL) && (*netp != NULL)) { sctp_handle_heartbeat_ack((struct sctp_heartbeat_chunk *)ch, stcb, *netp); } break; case SCTP_ABORT_ASSOCIATION: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_ABORT, stcb %p\n", (void *)stcb); *offset = length; if ((stcb != NULL) && (netp != NULL) && (*netp != NULL)) { if (sctp_handle_abort((struct sctp_abort_chunk *)ch, stcb, *netp)) { return (NULL); } else { return (stcb); } } else { return (NULL); } break; case SCTP_SHUTDOWN: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_SHUTDOWN, stcb %p\n", (void *)stcb); if ((stcb == NULL) || (chk_length != sizeof(struct sctp_shutdown_chunk))) { *offset = length; return (stcb); } if ((netp != NULL) && (*netp != NULL)) { int abort_flag = 0; sctp_handle_shutdown((struct sctp_shutdown_chunk *)ch, stcb, *netp, &abort_flag); if (abort_flag) { *offset = length; return (NULL); } } break; case SCTP_SHUTDOWN_ACK: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_SHUTDOWN_ACK, stcb %p\n", (void *)stcb); if ((stcb != NULL) && (netp != NULL) && (*netp != NULL)) { sctp_handle_shutdown_ack((struct sctp_shutdown_ack_chunk *)ch, stcb, *netp); } *offset = length; return (NULL); break; case SCTP_OPERATION_ERROR: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_OP_ERR\n"); if ((stcb != NULL) && (netp != NULL) && (*netp != NULL) && sctp_handle_error(ch, stcb, *netp, contiguous) < 0) { *offset = length; return (NULL); } break; case SCTP_COOKIE_ECHO: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_COOKIE_ECHO, stcb %p\n", (void *)stcb); if ((stcb != NULL) && (stcb->asoc.total_output_queue_size > 0)) { ; } else { if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* We are not interested anymore */ abend: if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } *offset = length; return (NULL); } } /* * First are we accepting? We do this again here * since it is possible that a previous endpoint WAS * listening responded to a INIT-ACK and then * closed. We opened and bound.. and are now no * longer listening. */ if ((stcb == NULL) && (inp->sctp_socket->so_qlen >= inp->sctp_socket->so_qlimit)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (SCTP_BASE_SYSCTL(sctp_abort_if_one_2_one_hits_limit))) { op_err = sctp_generate_cause(SCTP_CAUSE_OUT_OF_RESC, ""); sctp_abort_association(inp, stcb, m, iphlen, src, dst, sh, op_err, mflowtype, mflowid, vrf_id, port); } *offset = length; return (NULL); } else { struct mbuf *ret_buf; struct sctp_inpcb *linp; if (stcb) { linp = NULL; } else { linp = inp; } if (linp != NULL) { SCTP_ASOC_CREATE_LOCK(linp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { SCTP_ASOC_CREATE_UNLOCK(linp); goto abend; } } + if (netp != NULL) { struct sctp_tcb *locked_stcb; locked_stcb = stcb; ret_buf = sctp_handle_cookie_echo(m, iphlen, *offset, src, dst, sh, (struct sctp_cookie_echo_chunk *)ch, &inp, &stcb, netp, auth_skipped, auth_offset, auth_len, &locked_stcb, mflowtype, mflowid, vrf_id, port); if ((locked_stcb != NULL) && (locked_stcb != stcb)) { SCTP_TCB_UNLOCK(locked_stcb); } if (stcb != NULL) { SCTP_TCB_LOCK_ASSERT(stcb); } } else { ret_buf = NULL; } if (linp != NULL) { SCTP_ASOC_CREATE_UNLOCK(linp); } if (ret_buf == NULL) { if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } SCTPDBG(SCTP_DEBUG_INPUT3, "GAK, null buffer\n"); *offset = length; return (NULL); } /* if AUTH skipped, see if it verified... */ if (auth_skipped) { got_auth = 1; auth_skipped = 0; } if (!TAILQ_EMPTY(&stcb->asoc.sent_queue)) { /* * Restart the timer if we have * pending data */ struct sctp_tmit_chunk *chk; chk = TAILQ_FIRST(&stcb->asoc.sent_queue); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo); } } break; case SCTP_COOKIE_ACK: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_COOKIE_ACK, stcb %p\n", (void *)stcb); if ((stcb == NULL) || chk_length != sizeof(struct sctp_cookie_ack_chunk)) { return (stcb); } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* We are not interested anymore */ if ((stcb) && (stcb->asoc.total_output_queue_size)) { ; } else if (stcb) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_30); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif *offset = length; return (NULL); } } if ((netp != NULL) && (*netp != NULL)) { sctp_handle_cookie_ack((struct sctp_cookie_ack_chunk *)ch, stcb, *netp); } break; case SCTP_ECN_ECHO: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_ECN_ECHO\n"); if ((stcb == NULL) || (chk_length != sizeof(struct sctp_ecne_chunk))) { /* Its not ours */ *offset = length; return (stcb); } if (stcb->asoc.ecn_supported == 0) { goto unknown_chunk; } sctp_handle_ecn_echo((struct sctp_ecne_chunk *)ch, stcb); ecne_seen = 1; break; case SCTP_ECN_CWR: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_ECN_CWR\n"); if ((stcb == NULL) || (chk_length != sizeof(struct sctp_cwr_chunk))) { *offset = length; return (stcb); } if (stcb->asoc.ecn_supported == 0) { goto unknown_chunk; } sctp_handle_ecn_cwr((struct sctp_cwr_chunk *)ch, stcb, *netp); break; case SCTP_SHUTDOWN_COMPLETE: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_SHUTDOWN_COMPLETE, stcb %p\n", (void *)stcb); /* must be first and only chunk */ if ((num_chunks > 1) || (length - *offset > (int)SCTP_SIZE32(chk_length))) { *offset = length; return (stcb); } if ((stcb != NULL) && (netp != NULL) && (*netp != NULL)) { sctp_handle_shutdown_complete((struct sctp_shutdown_complete_chunk *)ch, stcb, *netp); } *offset = length; return (NULL); break; case SCTP_ASCONF: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_ASCONF\n"); if (stcb != NULL) { if (stcb->asoc.asconf_supported == 0) { goto unknown_chunk; } sctp_handle_asconf(m, *offset, src, (struct sctp_asconf_chunk *)ch, stcb, asconf_cnt == 0); asconf_cnt++; } break; case SCTP_ASCONF_ACK: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_ASCONF_ACK\n"); if (chk_length < sizeof(struct sctp_asconf_ack_chunk)) { /* Its not ours */ *offset = length; return (stcb); } if ((stcb != NULL) && (netp != NULL) && (*netp != NULL)) { if (stcb->asoc.asconf_supported == 0) { goto unknown_chunk; } /* He's alive so give him credit */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_INPUT, __LINE__); } stcb->asoc.overall_error_count = 0; sctp_handle_asconf_ack(m, *offset, (struct sctp_asconf_ack_chunk *)ch, stcb, *netp, &abort_no_unlock); if (abort_no_unlock) return (NULL); } break; case SCTP_FORWARD_CUM_TSN: case SCTP_IFORWARD_CUM_TSN: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_FWD_TSN\n"); if (chk_length < sizeof(struct sctp_forward_tsn_chunk)) { /* Its not ours */ *offset = length; return (stcb); } + if (stcb != NULL) { int abort_flag = 0; if (stcb->asoc.prsctp_supported == 0) { goto unknown_chunk; } *fwd_tsn_seen = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* We are not interested anymore */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_INPUT + SCTP_LOC_31); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif *offset = length; return (NULL); } /* * For sending a SACK this looks like DATA * chunks. */ stcb->asoc.last_data_chunk_from = stcb->asoc.last_control_chunk_from; sctp_handle_forward_tsn(stcb, (struct sctp_forward_tsn_chunk *)ch, &abort_flag, m, *offset); if (abort_flag) { *offset = length; return (NULL); } } break; case SCTP_STREAM_RESET: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_STREAM_RESET\n"); if (((stcb == NULL) || (ch == NULL) || (chk_length < sizeof(struct sctp_stream_reset_tsn_req)))) { /* Its not ours */ *offset = length; return (stcb); } if (stcb->asoc.reconfig_supported == 0) { goto unknown_chunk; } if (sctp_handle_stream_reset(stcb, m, *offset, ch)) { /* stop processing */ *offset = length; return (NULL); } break; case SCTP_PACKET_DROPPED: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_PACKET_DROPPED\n"); /* re-get it all please */ if (chk_length < sizeof(struct sctp_pktdrop_chunk)) { /* Its not ours */ *offset = length; return (stcb); } + if ((ch != NULL) && (stcb != NULL) && (netp != NULL) && (*netp != NULL)) { if (stcb->asoc.pktdrop_supported == 0) { goto unknown_chunk; } sctp_handle_packet_dropped((struct sctp_pktdrop_chunk *)ch, stcb, *netp, min(chk_length, contiguous)); } break; case SCTP_AUTHENTICATION: SCTPDBG(SCTP_DEBUG_INPUT3, "SCTP_AUTHENTICATION\n"); if (stcb == NULL) { /* save the first AUTH for later processing */ if (auth_skipped == 0) { auth_offset = *offset; auth_len = chk_length; auth_skipped = 1; } /* skip this chunk (temporarily) */ goto next_chunk; } if (stcb->asoc.auth_supported == 0) { goto unknown_chunk; } if ((chk_length < (sizeof(struct sctp_auth_chunk))) || (chk_length > (sizeof(struct sctp_auth_chunk) + SCTP_AUTH_DIGEST_LEN_MAX))) { /* Its not ours */ *offset = length; return (stcb); } if (got_auth == 1) { /* skip this chunk... it's already auth'd */ goto next_chunk; } got_auth = 1; if ((ch == NULL) || sctp_handle_auth(stcb, (struct sctp_auth_chunk *)ch, m, *offset)) { /* auth HMAC failed so dump the packet */ *offset = length; return (stcb); } else { /* remaining chunks are HMAC checked */ stcb->asoc.authenticated = 1; } break; default: unknown_chunk: /* it's an unknown chunk! */ if ((ch->chunk_type & 0x40) && (stcb != NULL)) { struct sctp_gen_error_cause *cause; int len; op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_gen_error_cause), 0, M_NOWAIT, 1, MT_DATA); if (op_err != NULL) { len = min(SCTP_SIZE32(chk_length), (uint32_t)(length - *offset)); cause = mtod(op_err, struct sctp_gen_error_cause *); cause->code = htons(SCTP_CAUSE_UNRECOG_CHUNK); cause->length = htons((uint16_t)(len + sizeof(struct sctp_gen_error_cause))); SCTP_BUF_LEN(op_err) = sizeof(struct sctp_gen_error_cause); SCTP_BUF_NEXT(op_err) = SCTP_M_COPYM(m, *offset, len, M_NOWAIT); if (SCTP_BUF_NEXT(op_err) != NULL) { #ifdef SCTP_MBUF_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mbc(SCTP_BUF_NEXT(op_err), SCTP_MBUF_ICOPY); } #endif sctp_queue_op_err(stcb, op_err); } else { sctp_m_freem(op_err); } } } if ((ch->chunk_type & 0x80) == 0) { /* discard this packet */ *offset = length; return (stcb); } /* else skip this bad chunk and continue... */ break; } /* switch (ch->chunk_type) */ next_chunk: /* get the next chunk */ *offset += SCTP_SIZE32(chk_length); if (*offset >= length) { /* no more data left in the mbuf chain */ break; } ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, *offset, sizeof(struct sctp_chunkhdr), chunk_buf); if (ch == NULL) { *offset = length; return (stcb); } } /* while */ if ((asconf_cnt > 0) && (stcb != NULL)) { sctp_send_asconf_ack(stcb); } return (stcb); } /* * common input chunk processing (v4 and v6) */ void sctp_common_input_processing(struct mbuf **mm, int iphlen, int offset, int length, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_chunkhdr *ch, uint8_t compute_crc, uint8_t ecn_bits, uint8_t mflowtype, uint32_t mflowid, uint16_t fibnum, uint32_t vrf_id, uint16_t port) { uint32_t high_tsn; int fwd_tsn_seen = 0, data_processed = 0; struct mbuf *m = *mm, *op_err; char msg[SCTP_DIAG_INFO_LEN]; int un_sent; int cnt_ctrl_ready = 0; struct sctp_inpcb *inp = NULL, *inp_decr = NULL; struct sctp_tcb *stcb = NULL; struct sctp_nets *net = NULL; SCTP_STAT_INCR(sctps_recvdatagrams); #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xE0, 1); sctp_auditing(0, inp, stcb, net); #endif if (compute_crc != 0) { uint32_t check, calc_check; check = sh->checksum; sh->checksum = 0; calc_check = sctp_calculate_cksum(m, iphlen); sh->checksum = check; if (calc_check != check) { SCTPDBG(SCTP_DEBUG_INPUT1, "Bad CSUM on SCTP packet calc_check:%x check:%x m:%p mlen:%d iphlen:%d\n", calc_check, check, (void *)m, length, iphlen); stcb = sctp_findassociation_addr(m, offset, src, dst, sh, ch, &inp, &net, vrf_id); #if defined(INET) || defined(INET6) if ((ch->chunk_type != SCTP_INITIATION) && (net != NULL) && (net->port != port)) { if (net->port == 0) { /* UDP encapsulation turned on. */ net->mtu -= sizeof(struct udphdr); if (stcb->asoc.smallest_mtu > net->mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } } else if (port == 0) { /* UDP encapsulation turned off. */ net->mtu += sizeof(struct udphdr); /* XXX Update smallest_mtu */ } net->port = port; } #endif if (net != NULL) { net->flowtype = mflowtype; net->flowid = mflowid; } if ((inp != NULL) && (stcb != NULL)) { sctp_send_packet_dropped(stcb, net, m, length, iphlen, 1); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_INPUT_ERROR, SCTP_SO_NOT_LOCKED); } else if ((inp != NULL) && (stcb == NULL)) { inp_decr = inp; } SCTP_STAT_INCR(sctps_badsum); SCTP_STAT_INCR_COUNTER32(sctps_checksumerrors); goto out; } } /* Destination port of 0 is illegal, based on RFC4960. */ if (sh->dest_port == 0) { SCTP_STAT_INCR(sctps_hdrops); goto out; } stcb = sctp_findassociation_addr(m, offset, src, dst, sh, ch, &inp, &net, vrf_id); #if defined(INET) || defined(INET6) if ((ch->chunk_type != SCTP_INITIATION) && (net != NULL) && (net->port != port)) { if (net->port == 0) { /* UDP encapsulation turned on. */ net->mtu -= sizeof(struct udphdr); if (stcb->asoc.smallest_mtu > net->mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } } else if (port == 0) { /* UDP encapsulation turned off. */ net->mtu += sizeof(struct udphdr); /* XXX Update smallest_mtu */ } net->port = port; } #endif if (net != NULL) { net->flowtype = mflowtype; net->flowid = mflowid; } if (inp == NULL) { SCTP_STAT_INCR(sctps_noport); if (badport_bandlim(BANDLIM_SCTP_OOTB) < 0) { goto out; } if (ch->chunk_type == SCTP_SHUTDOWN_ACK) { sctp_send_shutdown_complete2(src, dst, sh, mflowtype, mflowid, fibnum, vrf_id, port); goto out; } if (ch->chunk_type == SCTP_SHUTDOWN_COMPLETE) { goto out; } if (ch->chunk_type != SCTP_ABORT_ASSOCIATION) { if ((SCTP_BASE_SYSCTL(sctp_blackhole) == 0) || ((SCTP_BASE_SYSCTL(sctp_blackhole) == 1) && (ch->chunk_type != SCTP_INIT))) { op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Out of the blue"); sctp_send_abort(m, iphlen, src, dst, sh, 0, op_err, mflowtype, mflowid, fibnum, vrf_id, port); } } goto out; } else if (stcb == NULL) { inp_decr = inp; } SCTPDBG(SCTP_DEBUG_INPUT1, "Ok, Common input processing called, m:%p iphlen:%d offset:%d length:%d stcb:%p\n", (void *)m, iphlen, offset, length, (void *)stcb); if (stcb) { /* always clear this before beginning a packet */ stcb->asoc.authenticated = 0; stcb->asoc.seen_a_sack_this_pkt = 0; SCTPDBG(SCTP_DEBUG_INPUT1, "stcb:%p state:%x\n", (void *)stcb, stcb->asoc.state); if ((stcb->asoc.state & SCTP_STATE_WAS_ABORTED) || (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED)) { /*- * If we hit here, we had a ref count * up when the assoc was aborted and the * timer is clearing out the assoc, we should * NOT respond to any packet.. its OOTB. */ SCTP_TCB_UNLOCK(stcb); stcb = NULL; snprintf(msg, sizeof(msg), "OOTB, %s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_handle_ootb(m, iphlen, offset, src, dst, sh, inp, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); goto out; } + } if (IS_SCTP_CONTROL(ch)) { /* process the control portion of the SCTP packet */ /* sa_ignore NO_NULL_CHK */ stcb = sctp_process_control(m, iphlen, &offset, length, src, dst, sh, ch, inp, stcb, &net, &fwd_tsn_seen, mflowtype, mflowid, fibnum, vrf_id, port); if (stcb) { /* * This covers us if the cookie-echo was there and * it changes our INP. */ inp = stcb->sctp_ep; #if defined(INET) || defined(INET6) if ((ch->chunk_type != SCTP_INITIATION) && (net != NULL) && (net->port != port)) { if (net->port == 0) { /* UDP encapsulation turned on. */ net->mtu -= sizeof(struct udphdr); if (stcb->asoc.smallest_mtu > net->mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } } else if (port == 0) { /* UDP encapsulation turned off. */ net->mtu += sizeof(struct udphdr); /* XXX Update smallest_mtu */ } net->port = port; } #endif } } else { /* * no control chunks, so pre-process DATA chunks (these * checks are taken care of by control processing) */ /* * if DATA only packet, and auth is required, then punt... * can't have authenticated without any AUTH (control) * chunks */ if ((stcb != NULL) && sctp_auth_is_required_chunk(SCTP_DATA, stcb->asoc.local_auth_chunks)) { /* "silently" ignore */ SCTP_STAT_INCR(sctps_recvauthmissing); goto out; } if (stcb == NULL) { /* out of the blue DATA chunk */ snprintf(msg, sizeof(msg), "OOTB, %s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_handle_ootb(m, iphlen, offset, src, dst, sh, inp, op_err, mflowtype, mflowid, fibnum, vrf_id, port); goto out; } if (stcb->asoc.my_vtag != ntohl(sh->v_tag)) { /* v_tag mismatch! */ SCTP_STAT_INCR(sctps_badvtag); goto out; } } if (stcb == NULL) { /* * no valid TCB for this packet, or we found it's a bad * packet while processing control, or we're done with this * packet (done or skip rest of data), so we drop it... */ goto out; } + /* * DATA chunk processing */ /* plow through the data chunks while length > offset */ /* * Rest should be DATA only. Check authentication state if AUTH for * DATA is required. */ if ((length > offset) && (stcb != NULL) && sctp_auth_is_required_chunk(SCTP_DATA, stcb->asoc.local_auth_chunks) && !stcb->asoc.authenticated) { /* "silently" ignore */ SCTP_STAT_INCR(sctps_recvauthmissing); SCTPDBG(SCTP_DEBUG_AUTH1, "Data chunk requires AUTH, skipped\n"); goto trigger_send; } if (length > offset) { int retval; /* * First check to make sure our state is correct. We would * not get here unless we really did have a tag, so we don't * abort if this happens, just dump the chunk silently. */ switch (SCTP_GET_STATE(&stcb->asoc)) { case SCTP_STATE_COOKIE_ECHOED: /* * we consider data with valid tags in this state * shows us the cookie-ack was lost. Imply it was * there. */ sctp_handle_cookie_ack((struct sctp_cookie_ack_chunk *)ch, stcb, net); break; case SCTP_STATE_COOKIE_WAIT: /* * We consider OOTB any data sent during asoc setup. */ snprintf(msg, sizeof(msg), "OOTB, %s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_handle_ootb(m, iphlen, offset, src, dst, sh, inp, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); goto out; /* sa_ignore NOTREACHED */ break; case SCTP_STATE_EMPTY: /* should not happen */ case SCTP_STATE_INUSE: /* should not happen */ case SCTP_STATE_SHUTDOWN_RECEIVED: /* This is a peer error */ case SCTP_STATE_SHUTDOWN_ACK_SENT: default: goto out; /* sa_ignore NOTREACHED */ break; case SCTP_STATE_OPEN: case SCTP_STATE_SHUTDOWN_SENT: break; } /* plow through the data chunks while length > offset */ retval = sctp_process_data(mm, iphlen, &offset, length, inp, stcb, net, &high_tsn); if (retval == 2) { /* * The association aborted, NO UNLOCK needed since * the association is destroyed. */ stcb = NULL; goto out; } data_processed = 1; /* * Anything important needs to have been m_copy'ed in * process_data */ } + /* take care of ecn */ if ((data_processed == 1) && (stcb->asoc.ecn_supported == 1) && ((ecn_bits & SCTP_CE_BITS) == SCTP_CE_BITS)) { /* Yep, we need to add a ECNE */ sctp_send_ecn_echo(stcb, net, high_tsn); } + if ((data_processed == 0) && (fwd_tsn_seen)) { int was_a_gap; uint32_t highest_tsn; if (SCTP_TSN_GT(stcb->asoc.highest_tsn_inside_nr_map, stcb->asoc.highest_tsn_inside_map)) { highest_tsn = stcb->asoc.highest_tsn_inside_nr_map; } else { highest_tsn = stcb->asoc.highest_tsn_inside_map; } was_a_gap = SCTP_TSN_GT(highest_tsn, stcb->asoc.cumulative_tsn); stcb->asoc.send_sack = 1; sctp_sack_check(stcb, was_a_gap); } else if (fwd_tsn_seen) { stcb->asoc.send_sack = 1; } /* trigger send of any chunks in queue... */ trigger_send: #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xE0, 2); sctp_auditing(1, inp, stcb, net); #endif SCTPDBG(SCTP_DEBUG_INPUT1, "Check for chunk output prw:%d tqe:%d tf=%d\n", stcb->asoc.peers_rwnd, TAILQ_EMPTY(&stcb->asoc.control_send_queue), stcb->asoc.total_flight); un_sent = (stcb->asoc.total_output_queue_size - stcb->asoc.total_flight); if (!TAILQ_EMPTY(&stcb->asoc.control_send_queue)) { cnt_ctrl_ready = stcb->asoc.ctrl_queue_cnt - stcb->asoc.ecn_echo_cnt_onq; } if (!TAILQ_EMPTY(&stcb->asoc.asconf_send_queue) || cnt_ctrl_ready || stcb->asoc.trigger_reset || ((un_sent) && (stcb->asoc.peers_rwnd > 0 || (stcb->asoc.peers_rwnd <= 0 && stcb->asoc.total_flight == 0)))) { SCTPDBG(SCTP_DEBUG_INPUT3, "Calling chunk OUTPUT\n"); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_CONTROL_PROC, SCTP_SO_NOT_LOCKED); SCTPDBG(SCTP_DEBUG_INPUT3, "chunk OUTPUT returns\n"); } #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xE0, 3); sctp_auditing(2, inp, stcb, net); #endif out: if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } if (inp_decr != NULL) { /* reduce ref-count */ SCTP_INP_WLOCK(inp_decr); SCTP_INP_DECR_REF(inp_decr); SCTP_INP_WUNLOCK(inp_decr); } return; } #ifdef INET void sctp_input_with_port(struct mbuf *i_pak, int off, uint16_t port) { struct mbuf *m; int iphlen; uint32_t vrf_id = 0; uint8_t ecn_bits; struct sockaddr_in src, dst; struct ip *ip; struct sctphdr *sh; struct sctp_chunkhdr *ch; int length, offset; uint8_t compute_crc; uint32_t mflowid; uint8_t mflowtype; uint16_t fibnum; iphlen = off; if (SCTP_GET_PKT_VRFID(i_pak, vrf_id)) { SCTP_RELEASE_PKT(i_pak); return; } m = SCTP_HEADER_TO_CHAIN(i_pak); #ifdef SCTP_MBUF_LOGGING /* Log in any input mbufs */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mbc(m, SCTP_MBUF_INPUT); } #endif #ifdef SCTP_PACKET_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LAST_PACKET_TRACING) { sctp_packet_log(m); } #endif SCTPDBG(SCTP_DEBUG_CRCOFFLOAD, "sctp_input(): Packet of length %d received on %s with csum_flags 0x%b.\n", m->m_pkthdr.len, if_name(m->m_pkthdr.rcvif), (int)m->m_pkthdr.csum_flags, CSUM_BITS); mflowid = m->m_pkthdr.flowid; mflowtype = M_HASHTYPE_GET(m); fibnum = M_GETFIB(m); SCTP_STAT_INCR(sctps_recvpackets); SCTP_STAT_INCR_COUNTER64(sctps_inpackets); /* Get IP, SCTP, and first chunk header together in the first mbuf. */ offset = iphlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr); if (SCTP_BUF_LEN(m) < offset) { if ((m = m_pullup(m, offset)) == NULL) { SCTP_STAT_INCR(sctps_hdrops); return; } } ip = mtod(m, struct ip *); sh = (struct sctphdr *)((caddr_t)ip + iphlen); ch = (struct sctp_chunkhdr *)((caddr_t)sh + sizeof(struct sctphdr)); offset -= sizeof(struct sctp_chunkhdr); memset(&src, 0, sizeof(struct sockaddr_in)); src.sin_family = AF_INET; src.sin_len = sizeof(struct sockaddr_in); src.sin_port = sh->src_port; src.sin_addr = ip->ip_src; memset(&dst, 0, sizeof(struct sockaddr_in)); dst.sin_family = AF_INET; dst.sin_len = sizeof(struct sockaddr_in); dst.sin_port = sh->dest_port; dst.sin_addr = ip->ip_dst; length = ntohs(ip->ip_len); /* Validate mbuf chain length with IP payload length. */ if (SCTP_HEADER_LEN(m) != length) { SCTPDBG(SCTP_DEBUG_INPUT1, "sctp_input() length:%d reported length:%d\n", length, SCTP_HEADER_LEN(m)); SCTP_STAT_INCR(sctps_hdrops); goto out; } /* SCTP does not allow broadcasts or multicasts */ if (IN_MULTICAST(ntohl(dst.sin_addr.s_addr))) { goto out; } if (SCTP_IS_IT_BROADCAST(dst.sin_addr, m)) { goto out; } ecn_bits = ip->ip_tos; if (m->m_pkthdr.csum_flags & CSUM_SCTP_VALID) { SCTP_STAT_INCR(sctps_recvhwcrc); compute_crc = 0; } else { SCTP_STAT_INCR(sctps_recvswcrc); compute_crc = 1; } sctp_common_input_processing(&m, iphlen, offset, length, (struct sockaddr *)&src, (struct sockaddr *)&dst, sh, ch, compute_crc, ecn_bits, mflowtype, mflowid, fibnum, vrf_id, port); out: if (m) { sctp_m_freem(m); } return; } #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) extern int *sctp_cpuarry; #endif int sctp_input(struct mbuf **mp, int *offp, int proto SCTP_UNUSED) { struct mbuf *m; int off; m = *mp; off = *offp; #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) if (mp_ncpus > 1) { struct ip *ip; struct sctphdr *sh; int offset; int cpu_to_use; uint32_t flowid, tag; if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { flowid = m->m_pkthdr.flowid; } else { /* * No flow id built by lower layers fix it so we * create one. */ offset = off + sizeof(struct sctphdr); if (SCTP_BUF_LEN(m) < offset) { if ((m = m_pullup(m, offset)) == NULL) { SCTP_STAT_INCR(sctps_hdrops); return (IPPROTO_DONE); } } ip = mtod(m, struct ip *); sh = (struct sctphdr *)((caddr_t)ip + off); tag = htonl(sh->v_tag); flowid = tag ^ ntohs(sh->dest_port) ^ ntohs(sh->src_port); m->m_pkthdr.flowid = flowid; M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE_HASH); } cpu_to_use = sctp_cpuarry[flowid % mp_ncpus]; sctp_queue_to_mcore(m, off, cpu_to_use); return (IPPROTO_DONE); } #endif sctp_input_with_port(m, off, 0); return (IPPROTO_DONE); } #endif Index: stable/11/sys/netinet/sctp_input.h =================================================================== --- stable/11/sys/netinet/sctp_input.h (revision 347153) +++ stable/11/sys/netinet/sctp_input.h (revision 347154) @@ -1,61 +1,61 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_INPUT_H_ #define _NETINET_SCTP_INPUT_H_ #if defined(_KERNEL) || defined(__Userspace__) void sctp_common_input_processing(struct mbuf **, int, int, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, struct sctp_chunkhdr *, uint8_t, uint8_t, uint8_t, uint32_t, uint16_t, uint32_t, uint16_t); struct sctp_stream_reset_request * sctp_find_stream_reset(struct sctp_tcb *stcb, uint32_t seq, struct sctp_tmit_chunk **bchk); -void +void sctp_reset_in_stream(struct sctp_tcb *stcb, uint32_t number_entries, uint16_t *list); int sctp_is_there_unsent_data(struct sctp_tcb *stcb, int so_locked); #endif #endif Index: stable/11/sys/netinet/sctp_output.h =================================================================== --- stable/11/sys/netinet/sctp_output.h (revision 347153) +++ stable/11/sys/netinet/sctp_output.h (revision 347154) @@ -1,222 +1,222 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_OUTPUT_H_ #define _NETINET_SCTP_OUTPUT_H_ #include #if defined(_KERNEL) || defined(__Userspace__) struct mbuf * sctp_add_addresses_to_i_ia(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_scoping *scope, struct mbuf *m_at, int cnt_inits_to, uint16_t *padding_len, uint16_t *chunk_len); int sctp_is_addr_restricted(struct sctp_tcb *, struct sctp_ifa *); int sctp_is_address_in_scope(struct sctp_ifa *ifa, struct sctp_scoping *scope, int do_update); int sctp_is_addr_in_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa); struct sctp_ifa * sctp_source_address_selection(struct sctp_inpcb *inp, struct sctp_tcb *stcb, sctp_route_t *ro, struct sctp_nets *net, int non_asoc_addr_ok, uint32_t vrf_id); int sctp_v6src_match_nexthop(struct sockaddr_in6 *src6, sctp_route_t *ro); int sctp_v4src_match_nexthop(struct sctp_ifa *sifa, sctp_route_t *ro); -void +void sctp_send_initiate(struct sctp_inpcb *, struct sctp_tcb *, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); void sctp_send_initiate_ack(struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *, struct mbuf *, int, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, struct sctp_init_chunk *, uint8_t, uint32_t, uint32_t, uint16_t); struct mbuf * sctp_arethere_unrecognized_parameters(struct mbuf *, int, int *, struct sctp_chunkhdr *, int *); void sctp_queue_op_err(struct sctp_tcb *, struct mbuf *); int sctp_send_cookie_echo(struct mbuf *, int, struct sctp_tcb *, struct sctp_nets *); void sctp_send_cookie_ack(struct sctp_tcb *); void sctp_send_heartbeat_ack(struct sctp_tcb *, struct mbuf *, int, int, struct sctp_nets *); void sctp_remove_from_wheel(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_stream_out *strq, int holds_lock); void sctp_send_shutdown(struct sctp_tcb *, struct sctp_nets *); void sctp_send_shutdown_ack(struct sctp_tcb *, struct sctp_nets *); void sctp_send_shutdown_complete(struct sctp_tcb *, struct sctp_nets *, int); -void +void sctp_send_shutdown_complete2(struct sockaddr *, struct sockaddr *, struct sctphdr *, uint8_t, uint32_t, uint16_t, uint32_t, uint16_t); void sctp_send_asconf(struct sctp_tcb *, struct sctp_nets *, int addr_locked); void sctp_send_asconf_ack(struct sctp_tcb *); int sctp_get_frag_point(struct sctp_tcb *, struct sctp_association *); void sctp_toss_old_cookies(struct sctp_tcb *, struct sctp_association *); void sctp_toss_old_asconf(struct sctp_tcb *); void sctp_fix_ecn_echo(struct sctp_association *); void sctp_move_chunks_from_net(struct sctp_tcb *stcb, struct sctp_nets *net); #define SCTP_DATA_CHUNK_OVERHEAD(stcb) ((stcb)->asoc.idata_supported ? \ sizeof(struct sctp_idata_chunk) : \ sizeof(struct sctp_data_chunk)) int sctp_output(struct sctp_inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct thread *, int); -void +void sctp_chunk_output(struct sctp_inpcb *, struct sctp_tcb *, int, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); -void +void sctp_send_abort_tcb(struct sctp_tcb *, struct mbuf *, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); void send_forward_tsn(struct sctp_tcb *, struct sctp_association *); void sctp_send_sack(struct sctp_tcb *, int); void sctp_send_hb(struct sctp_tcb *, struct sctp_nets *, int); void sctp_send_ecn_echo(struct sctp_tcb *, struct sctp_nets *, uint32_t); void sctp_send_packet_dropped(struct sctp_tcb *, struct sctp_nets *, struct mbuf *, int, int, int); void sctp_send_cwr(struct sctp_tcb *, struct sctp_nets *, uint32_t, uint8_t); void sctp_add_stream_reset_result(struct sctp_tmit_chunk *, uint32_t, uint32_t); void sctp_send_deferred_reset_response(struct sctp_tcb *, struct sctp_stream_reset_list *, int); void sctp_add_stream_reset_result_tsn(struct sctp_tmit_chunk *, uint32_t, uint32_t, uint32_t, uint32_t); int sctp_send_stream_reset_out_if_possible(struct sctp_tcb *, int); int sctp_send_str_reset_req(struct sctp_tcb *, uint16_t, uint16_t *, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t, uint8_t); void sctp_send_abort(struct mbuf *, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, uint32_t, struct mbuf *, uint8_t, uint32_t, uint16_t, uint32_t, uint16_t); -void +void sctp_send_operr_to(struct sockaddr *, struct sockaddr *, struct sctphdr *, uint32_t, struct mbuf *, uint8_t, uint32_t, uint16_t, uint32_t, uint16_t); #endif /* _KERNEL || __Userspace__ */ #if defined(_KERNEL) || defined(__Userspace__) int sctp_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *p ); #endif #endif Index: stable/11/sys/netinet/sctp_pcb.c =================================================================== --- stable/11/sys/netinet/sctp_pcb.c (revision 347153) +++ stable/11/sys/netinet/sctp_pcb.c (revision 347154) @@ -1,7167 +1,7183 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET6 #include #endif #include #include #include VNET_DEFINE(struct sctp_base_info, system_base_info); /* FIX: we don't handle multiple link local scopes */ /* "scopeless" replacement IN6_ARE_ADDR_EQUAL */ #ifdef INET6 int SCTP6_ARE_ADDR_EQUAL(struct sockaddr_in6 *a, struct sockaddr_in6 *b) { struct sockaddr_in6 tmp_a, tmp_b; memcpy(&tmp_a, a, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_a, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } memcpy(&tmp_b, b, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_b, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } return (IN6_ARE_ADDR_EQUAL(&tmp_a.sin6_addr, &tmp_b.sin6_addr)); } #endif void sctp_fill_pcbinfo(struct sctp_pcbinfo *spcb) { /* * We really don't need to lock this, but I will just because it * does not hurt. */ SCTP_INP_INFO_RLOCK(); spcb->ep_count = SCTP_BASE_INFO(ipi_count_ep); spcb->asoc_count = SCTP_BASE_INFO(ipi_count_asoc); spcb->laddr_count = SCTP_BASE_INFO(ipi_count_laddr); spcb->raddr_count = SCTP_BASE_INFO(ipi_count_raddr); spcb->chk_count = SCTP_BASE_INFO(ipi_count_chunk); spcb->readq_count = SCTP_BASE_INFO(ipi_count_readq); spcb->stream_oque = SCTP_BASE_INFO(ipi_count_strmoq); spcb->free_chunks = SCTP_BASE_INFO(ipi_free_chunks); SCTP_INP_INFO_RUNLOCK(); } /*- * Addresses are added to VRF's (Virtual Router's). For BSD we * have only the default VRF 0. We maintain a hash list of * VRF's. Each VRF has its own list of sctp_ifn's. Each of * these has a list of addresses. When we add a new address * to a VRF we lookup the ifn/ifn_index, if the ifn does * not exist we create it and add it to the list of IFN's * within the VRF. Once we have the sctp_ifn, we add the * address to the list. So we look something like: * * hash-vrf-table * vrf-> ifn-> ifn -> ifn * vrf | * ... +--ifa-> ifa -> ifa * vrf * * We keep these separate lists since the SCTP subsystem will * point to these from its source address selection nets structure. * When an address is deleted it does not happen right away on * the SCTP side, it gets scheduled. What we do when a * delete happens is immediately remove the address from * the master list and decrement the refcount. As our * addip iterator works through and frees the src address * selection pointing to the sctp_ifa, eventually the refcount * will reach 0 and we will delete it. Note that it is assumed * that any locking on system level ifn/ifa is done at the * caller of these functions and these routines will only * lock the SCTP structures as they add or delete things. * * Other notes on VRF concepts. * - An endpoint can be in multiple VRF's * - An association lives within a VRF and only one VRF. * - Any incoming packet we can deduce the VRF for by * looking at the mbuf/pak inbound (for BSD its VRF=0 :D) * - Any downward send call or connect call must supply the * VRF via ancillary data or via some sort of set default * VRF socket option call (again for BSD no brainer since * the VRF is always 0). * - An endpoint may add multiple VRF's to it. * - Listening sockets can accept associations in any * of the VRF's they are in but the assoc will end up * in only one VRF (gotten from the packet or connect/send). * */ struct sctp_vrf * sctp_allocate_vrf(int vrf_id) { struct sctp_vrf *vrf = NULL; struct sctp_vrflist *bucket; /* First allocate the VRF structure */ vrf = sctp_find_vrf(vrf_id); if (vrf) { /* Already allocated */ return (vrf); } SCTP_MALLOC(vrf, struct sctp_vrf *, sizeof(struct sctp_vrf), SCTP_M_VRF); if (vrf == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif return (NULL); } /* setup the VRF */ memset(vrf, 0, sizeof(struct sctp_vrf)); vrf->vrf_id = vrf_id; LIST_INIT(&vrf->ifnlist); vrf->total_ifa_count = 0; vrf->refcount = 0; /* now also setup table ids */ SCTP_INIT_VRF_TABLEID(vrf); /* Init the HASH of addresses */ vrf->vrf_addr_hash = SCTP_HASH_INIT(SCTP_VRF_ADDR_HASH_SIZE, &vrf->vrf_addr_hashmark); if (vrf->vrf_addr_hash == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif SCTP_FREE(vrf, SCTP_M_VRF); return (NULL); } + /* Add it to the hash table */ bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_INSERT_HEAD(bucket, vrf, next_vrf); atomic_add_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); return (vrf); } struct sctp_ifn * sctp_find_ifn(void *ifn, uint32_t ifn_index) { struct sctp_ifn *sctp_ifnp; struct sctp_ifnlist *hash_ifn_head; /* * We assume the lock is held for the addresses if that's wrong * problems could occur :-) */ hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_FOREACH(sctp_ifnp, hash_ifn_head, next_bucket) { if (sctp_ifnp->ifn_index == ifn_index) { return (sctp_ifnp); } if (sctp_ifnp->ifn_p && ifn && (sctp_ifnp->ifn_p == ifn)) { return (sctp_ifnp); } } return (NULL); } struct sctp_vrf * sctp_find_vrf(uint32_t vrf_id) { struct sctp_vrflist *bucket; struct sctp_vrf *liste; bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH(liste, bucket, next_vrf) { if (vrf_id == liste->vrf_id) { return (liste); } } return (NULL); } void sctp_free_vrf(struct sctp_vrf *vrf) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&vrf->refcount)) { if (vrf->vrf_addr_hash) { SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); vrf->vrf_addr_hash = NULL; } /* We zero'd the count */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); } } void sctp_free_ifn(struct sctp_ifn *sctp_ifnp) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifnp->refcount)) { /* We zero'd the count */ if (sctp_ifnp->vrf) { sctp_free_vrf(sctp_ifnp->vrf); } SCTP_FREE(sctp_ifnp, SCTP_M_IFN); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); } } void sctp_update_ifn_mtu(uint32_t ifn_index, uint32_t mtu) { struct sctp_ifn *sctp_ifnp; sctp_ifnp = sctp_find_ifn((void *)NULL, ifn_index); if (sctp_ifnp != NULL) { sctp_ifnp->ifn_mtu = mtu; } } void sctp_free_ifa(struct sctp_ifa *sctp_ifap) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifap->refcount)) { /* We zero'd the count */ if (sctp_ifap->ifn_p) { sctp_free_ifn(sctp_ifap->ifn_p); } SCTP_FREE(sctp_ifap, SCTP_M_IFA); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); } } static void sctp_delete_ifn(struct sctp_ifn *sctp_ifnp, int hold_addr_lock) { struct sctp_ifn *found; found = sctp_find_ifn(sctp_ifnp->ifn_p, sctp_ifnp->ifn_index); if (found == NULL) { /* Not in the list.. sorry */ return; } if (hold_addr_lock == 0) SCTP_IPI_ADDR_WLOCK(); LIST_REMOVE(sctp_ifnp, next_bucket); LIST_REMOVE(sctp_ifnp, next_ifn); SCTP_DEREGISTER_INTERFACE(sctp_ifnp->ifn_index, sctp_ifnp->registered_af); if (hold_addr_lock == 0) SCTP_IPI_ADDR_WUNLOCK(); /* Take away the reference, and possibly free it */ sctp_free_ifn(sctp_ifnp); } void sctp_mark_ifa_addr_down(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unusable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_VALID); sctp_ifap->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE; out: SCTP_IPI_ADDR_RUNLOCK(); } void sctp_mark_ifa_addr_up(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unusable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_IFA_UNUSEABLE); sctp_ifap->localifa_flags |= SCTP_ADDR_VALID; out: SCTP_IPI_ADDR_RUNLOCK(); } /*- * Add an ifa to an ifn. * Register the interface as necessary. * NOTE: ADDR write lock MUST be held. */ static void sctp_add_ifa_to_ifn(struct sctp_ifn *sctp_ifnp, struct sctp_ifa *sctp_ifap) { int ifa_af; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); /* update address counts */ sctp_ifnp->ifa_count++; ifa_af = sctp_ifap->address.sa.sa_family; switch (ifa_af) { #ifdef INET case AF_INET: sctp_ifnp->num_v4++; break; #endif #ifdef INET6 case AF_INET6: sctp_ifnp->num_v6++; break; #endif default: break; } if (sctp_ifnp->ifa_count == 1) { /* register the new interface */ SCTP_REGISTER_INTERFACE(sctp_ifnp->ifn_index, ifa_af); sctp_ifnp->registered_af = ifa_af; } } /*- * Remove an ifa from its ifn. * If no more addresses exist, remove the ifn too. Otherwise, re-register * the interface based on the remaining address families left. * NOTE: ADDR write lock MUST be held. */ static void sctp_remove_ifa_from_ifn(struct sctp_ifa *sctp_ifap) { LIST_REMOVE(sctp_ifap, next_ifa); if (sctp_ifap->ifn_p) { /* update address counts */ sctp_ifap->ifn_p->ifa_count--; switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: sctp_ifap->ifn_p->num_v4--; break; #endif #ifdef INET6 case AF_INET6: sctp_ifap->ifn_p->num_v6--; break; #endif default: break; } if (LIST_EMPTY(&sctp_ifap->ifn_p->ifalist)) { /* remove the ifn, possibly freeing it */ sctp_delete_ifn(sctp_ifap->ifn_p, SCTP_ADDR_LOCKED); } else { /* re-register address family type, if needed */ if ((sctp_ifap->ifn_p->num_v6 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET6)) { SCTP_DEREGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET6); SCTP_REGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET); sctp_ifap->ifn_p->registered_af = AF_INET; } else if ((sctp_ifap->ifn_p->num_v4 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET)) { SCTP_DEREGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET); SCTP_REGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET6); sctp_ifap->ifn_p->registered_af = AF_INET6; } /* free the ifn refcount */ sctp_free_ifn(sctp_ifap->ifn_p); } sctp_ifap->ifn_p = NULL; } } struct sctp_ifa * sctp_add_addr_to_vrf(uint32_t vrf_id, void *ifn, uint32_t ifn_index, uint32_t ifn_type, const char *if_name, void *ifa, struct sockaddr *addr, uint32_t ifa_flags, int dynamic_add) { struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifnp = NULL; struct sctp_ifa *sctp_ifap = NULL; struct sctp_ifalist *hash_addr_head; struct sctp_ifnlist *hash_ifn_head; uint32_t hash_of_addr; int new_ifn_af = 0; #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: adding address: ", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif SCTP_IPI_ADDR_WLOCK(); sctp_ifnp = sctp_find_ifn(ifn, ifn_index); if (sctp_ifnp) { vrf = sctp_ifnp->vrf; } else { vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { vrf = sctp_allocate_vrf(vrf_id); if (vrf == NULL) { SCTP_IPI_ADDR_WUNLOCK(); return (NULL); } } } if (sctp_ifnp == NULL) { /* * build one and add it, can't hold lock until after malloc * done though. */ SCTP_IPI_ADDR_WUNLOCK(); SCTP_MALLOC(sctp_ifnp, struct sctp_ifn *, sizeof(struct sctp_ifn), SCTP_M_IFN); if (sctp_ifnp == NULL) { #ifdef INVARIANTS panic("No memory for IFN"); #endif return (NULL); } memset(sctp_ifnp, 0, sizeof(struct sctp_ifn)); sctp_ifnp->ifn_index = ifn_index; sctp_ifnp->ifn_p = ifn; sctp_ifnp->ifn_type = ifn_type; sctp_ifnp->refcount = 0; sctp_ifnp->vrf = vrf; atomic_add_int(&vrf->refcount, 1); sctp_ifnp->ifn_mtu = SCTP_GATHER_MTU_FROM_IFN_INFO(ifn, ifn_index, addr->sa_family); if (if_name != NULL) { snprintf(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", if_name); } else { snprintf(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", "unknown"); } hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_INIT(&sctp_ifnp->ifalist); SCTP_IPI_ADDR_WLOCK(); LIST_INSERT_HEAD(hash_ifn_head, sctp_ifnp, next_bucket); LIST_INSERT_HEAD(&vrf->ifnlist, sctp_ifnp, next_ifn); atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); new_ifn_af = 1; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Hmm, it already exists? */ if ((sctp_ifap->ifn_p) && (sctp_ifap->ifn_p->ifn_index == ifn_index)) { SCTPDBG(SCTP_DEBUG_PCB4, "Using existing ifn %s (0x%x) for ifa %p\n", sctp_ifap->ifn_p->ifn_name, ifn_index, (void *)sctp_ifap); if (new_ifn_af) { /* Remove the created one that we don't want */ sctp_delete_ifn(sctp_ifnp, SCTP_ADDR_LOCKED); } if (sctp_ifap->localifa_flags & SCTP_BEING_DELETED) { /* easy to solve, just switch back to active */ SCTPDBG(SCTP_DEBUG_PCB4, "Clearing deleted ifa flag\n"); sctp_ifap->localifa_flags = SCTP_ADDR_VALID; sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); } exit_stage_left: SCTP_IPI_ADDR_WUNLOCK(); return (sctp_ifap); } else { if (sctp_ifap->ifn_p) { /* * The last IFN gets the address, remove the * old one */ SCTPDBG(SCTP_DEBUG_PCB4, "Moving ifa %p from %s (0x%x) to %s (0x%x)\n", (void *)sctp_ifap, sctp_ifap->ifn_p->ifn_name, sctp_ifap->ifn_p->ifn_index, if_name, ifn_index); /* remove the address from the old ifn */ sctp_remove_ifa_from_ifn(sctp_ifap); /* move the address over to the new ifn */ sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); goto exit_stage_left; } else { /* repair ifnp which was NULL ? */ sctp_ifap->localifa_flags = SCTP_ADDR_VALID; SCTPDBG(SCTP_DEBUG_PCB4, "Repairing ifn %p for ifa %p\n", (void *)sctp_ifnp, (void *)sctp_ifap); sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); } goto exit_stage_left; } } SCTP_IPI_ADDR_WUNLOCK(); SCTP_MALLOC(sctp_ifap, struct sctp_ifa *, sizeof(struct sctp_ifa), SCTP_M_IFA); if (sctp_ifap == NULL) { #ifdef INVARIANTS panic("No memory for IFA"); #endif return (NULL); } memset(sctp_ifap, 0, sizeof(struct sctp_ifa)); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifnp->refcount, 1); sctp_ifap->vrf_id = vrf_id; sctp_ifap->ifa = ifa; memcpy(&sctp_ifap->address, addr, addr->sa_len); sctp_ifap->localifa_flags = SCTP_ADDR_VALID | SCTP_ADDR_DEFER_USE; sctp_ifap->flags = ifa_flags; /* Set scope */ switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = &sctp_ifap->address.sin; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN4_ISLOOPBACK_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_loop = 1; } if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v4++; if (new_ifn_af) new_ifn_af = AF_INET; break; } #endif #ifdef INET6 case AF_INET6: { /* ok to use deprecated addresses? */ struct sockaddr_in6 *sin6; sin6 = &sctp_ifap->address.sin6; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))) { sctp_ifap->src_is_loop = 1; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v6++; if (new_ifn_af) new_ifn_af = AF_INET6; break; } #endif default: new_ifn_af = 0; break; } hash_of_addr = sctp_get_ifa_hash_val(&sctp_ifap->address.sa); if ((sctp_ifap->src_is_priv == 0) && (sctp_ifap->src_is_loop == 0)) { sctp_ifap->src_is_glob = 1; } SCTP_IPI_ADDR_WLOCK(); hash_addr_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)]; LIST_INSERT_HEAD(hash_addr_head, sctp_ifap, next_bucket); sctp_ifap->refcount = 1; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifnp->ifa_count++; vrf->total_ifa_count++; atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); if (new_ifn_af) { SCTP_REGISTER_INTERFACE(ifn_index, new_ifn_af); sctp_ifnp->registered_af = new_ifn_af; } SCTP_IPI_ADDR_WUNLOCK(); if (dynamic_add) { /* * Bump up the refcount so that when the timer completes it * will drop back down. */ struct sctp_laddr *wi; atomic_add_int(&sctp_ifap->refcount, 1); wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Opps, must decrement the count */ sctp_del_addr_from_vrf(vrf_id, addr, ifn_index, if_name); return (NULL); } SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_ADD_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); } else { /* it's ready for use */ sctp_ifap->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } return (sctp_ifap); } void sctp_del_addr_from_vrf(uint32_t vrf_id, struct sockaddr *addr, uint32_t ifn_index, const char *if_name) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap = NULL; SCTP_IPI_ADDR_WLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out_now; } + #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: deleting address:", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Validate the delete */ if (sctp_ifap->ifn_p) { int valid = 0; /*- * The name has priority over the ifn_index * if its given. We do this especially for * panda who might recycle indexes fast. */ if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) == 0) { /* They match its a correct delete */ valid = 1; } } if (!valid) { /* last ditch check ifn_index */ if (ifn_index == sctp_ifap->ifn_p->ifn_index) { valid = 1; } } if (!valid) { SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s does not match addresses\n", ifn_index, ((if_name == NULL) ? "NULL" : if_name)); SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s - ignoring delete\n", sctp_ifap->ifn_p->ifn_index, sctp_ifap->ifn_p->ifn_name); SCTP_IPI_ADDR_WUNLOCK(); return; } } SCTPDBG(SCTP_DEBUG_PCB4, "Deleting ifa %p\n", (void *)sctp_ifap); sctp_ifap->localifa_flags &= SCTP_ADDR_VALID; /* * We don't set the flag. This means that the structure will * hang around in EP's that have bound specific to it until * they close. This gives us TCP like behavior if someone * removes an address (or for that matter adds it right * back). */ /* sctp_ifap->localifa_flags |= SCTP_BEING_DELETED; */ vrf->total_ifa_count--; LIST_REMOVE(sctp_ifap, next_bucket); sctp_remove_ifa_from_ifn(sctp_ifap); } #ifdef SCTP_DEBUG else { SCTPDBG(SCTP_DEBUG_PCB4, "Del Addr-ifn:%d Could not find address:", ifn_index); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif out_now: SCTP_IPI_ADDR_WUNLOCK(); if (sctp_ifap) { struct sctp_laddr *wi; wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Oops, must decrement the count */ sctp_free_ifa(sctp_ifap); return; } SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_DEL_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); /* * Should this really be a tailq? As it is we will process * the newest first :-0 */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); } return; } static int sctp_does_stcb_own_this_addr(struct sctp_tcb *stcb, struct sockaddr *to) { int loopback_scope; #if defined(INET) int ipv4_local_scope, ipv4_addr_legal; #endif #if defined(INET6) int local_scope, site_scope, ipv6_addr_legal; #endif struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; loopback_scope = stcb->asoc.scope.loopback_scope; #if defined(INET) ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope; ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal; #endif #if defined(INET6) local_scope = stcb->asoc.scope.local_scope; site_scope = stcb->asoc.scope.site_scope; ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal; #endif SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { /* no vrf, no addresses */ SCTP_IPI_ADDR_RUNLOCK(); return (0); } + if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) { /* * We allow pending addresses, where * we have sent an asconf-add to be * considered valid. */ continue; } if (sctp_ifa->address.sa.sa_family != to->sa_family) { continue; } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin, *rsin; sin = &sctp_ifa->address.sin; rsin = (struct sockaddr_in *)to; if ((ipv4_local_scope == 0) && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { continue; } if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6, *rsin6; sin6 = &sctp_ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif default: /* TSNH */ break; } } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n"); continue; } if (sctp_is_addr_restricted(stcb, laddr->ifa) && (!sctp_is_addr_pending(stcb, laddr->ifa))) { /* * We allow pending addresses, where we have * sent an asconf-add to be considered * valid. */ continue; } if (laddr->ifa->address.sa.sa_family != to->sa_family) { continue; } switch (to->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = &laddr->ifa->address.sin; rsin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = &laddr->ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif default: /* TSNH */ break; } } } SCTP_IPI_ADDR_RUNLOCK(); return (0); } static struct sctp_tcb * sctp_tcb_special_locate(struct sctp_inpcb **inp_p, struct sockaddr *from, struct sockaddr *to, struct sctp_nets **netp, uint32_t vrf_id) { /**** ASSUMES THE CALLER holds the INP_INFO_RLOCK */ /* * If we support the TCP model, then we must now dig through to see * if we can find our endpoint in the list of tcp ep's. */ uint16_t lport, rport; struct sctppcbhead *ephead; struct sctp_inpcb *inp; struct sctp_laddr *laddr; struct sctp_tcb *stcb; struct sctp_nets *net; if ((to == NULL) || (from == NULL)) { return (NULL); } + switch (to->sa_family) { #ifdef INET case AF_INET: if (from->sa_family == AF_INET) { lport = ((struct sockaddr_in *)to)->sin_port; rport = ((struct sockaddr_in *)from)->sin_port; } else { return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (from->sa_family == AF_INET6) { lport = ((struct sockaddr_in6 *)to)->sin6_port; rport = ((struct sockaddr_in6 *)from)->sin6_port; } else { return (NULL); } break; #endif default: return (NULL); } ephead = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; /* * Ok now for each of the guys in this bucket we must look and see: * - Does the remote port match. - Does there single association's * addresses match this address (to). If so we update p_ep to point * to this ep and return the tcb from it. */ LIST_FOREACH(inp, ephead, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if (lport != inp->sctp_lport) { SCTP_INP_RUNLOCK(inp); continue; } switch (to->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)to; if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)to; if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; } #endif default: SCTP_INP_RUNLOCK(inp); continue; } if (inp->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(inp); continue; } /* check to see if the ep has one of the addresses */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* We are NOT bound all, so look further */ int match = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == to->sa_family) { /* see if it matches */ #ifdef INET if (from->sa_family == AF_INET) { struct sockaddr_in *intf_addr, *sin; intf_addr = &laddr->ifa->address.sin; sin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == intf_addr->sin_addr.s_addr) { match = 1; break; } } #endif #ifdef INET6 if (from->sa_family == AF_INET6) { struct sockaddr_in6 *intf_addr6; struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *) to; intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { match = 1; break; } } #endif } } if (match == 0) { /* This endpoint does not have this address */ SCTP_INP_RUNLOCK(inp); continue; } } /* * Ok if we hit here the ep has the address, does it hold * the tcb? */ /* XXX: Why don't we TAILQ_FOREACH through sctp_asoc_list? */ stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); continue; } SCTP_TCB_LOCK(stcb); if (!sctp_does_stcb_own_this_addr(stcb, to)) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (!sctp_does_stcb_own_this_addr(stcb, to)) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } /* Does this TCB have a matching address? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._l_addr.sa.sa_family != from->sa_family) { /* not the same family, can't be a match */ continue; } switch (from->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *)&net->ro._l_addr; rsin = (struct sockaddr_in *)from; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)from; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); } return (NULL); } /* * rules for use * * 1) If I return a NULL you must decrement any INP ref cnt. 2) If I find an * stcb, both will be locked (locked_tcb and stcb) but decrement will be done * (if locked == NULL). 3) Decrement happens on return ONLY if locked == * NULL. */ struct sctp_tcb * sctp_findassociation_ep_addr(struct sctp_inpcb **inp_p, struct sockaddr *remote, struct sctp_nets **netp, struct sockaddr *local, struct sctp_tcb *locked_tcb) { struct sctpasochead *head; struct sctp_inpcb *inp; struct sctp_tcb *stcb = NULL; struct sctp_nets *net; uint16_t rport; inp = *inp_p; switch (remote->sa_family) { #ifdef INET case AF_INET: rport = (((struct sockaddr_in *)remote)->sin_port); break; #endif #ifdef INET6 case AF_INET6: rport = (((struct sockaddr_in6 *)remote)->sin6_port); break; #endif default: return (NULL); } if (locked_tcb) { /* * UN-lock so we can do proper locking here this occurs when * called from load_addresses_from_init. */ atomic_add_int(&locked_tcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(locked_tcb); } SCTP_INP_INFO_RLOCK(); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /*- * Now either this guy is our listener or it's the * connector. If it is the one that issued the connect, then * it's only chance is to be the first TCB in the list. If * it is the acceptor, then do the special_lookup to hash * and find the real inp. */ if ((inp->sctp_socket) && (inp->sctp_socket->so_qlimit)) { /* to is peer addr, from is my addr */ stcb = sctp_tcb_special_locate(inp_p, remote, local, netp, inp->def_vrf_id); if ((stcb != NULL) && (locked_tcb == NULL)) { /* we have a locked tcb, lower refcount */ SCTP_INP_DECR_REF(inp); } if ((locked_tcb != NULL) && (locked_tcb != stcb)) { SCTP_INP_RLOCK(locked_tcb->sctp_ep); SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); SCTP_INP_RUNLOCK(locked_tcb->sctp_ep); } SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto null_return; } SCTP_TCB_LOCK(stcb); if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); goto null_return; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); goto null_return; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); goto null_return; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } + SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(rport, inp->sctp_hashmark)]; LIST_FOREACH(stcb, head, sctp_tcbhash) { if (stcb->rport != rport) { /* remote port does not match */ continue; } SCTP_TCB_LOCK(stcb); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); continue; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *) &net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } null_return: /* clean up for returning null */ if (locked_tcb) { SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); /* not found */ return (NULL); } /* * Find an association for a specific endpoint using the association id given * out in the COMM_UP notification */ struct sctp_tcb * sctp_findasoc_ep_asocid_locked(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { /* * Use my the assoc_id to find a endpoint */ struct sctpasochead *head; struct sctp_tcb *stcb; uint32_t id; if (inp == NULL) { SCTP_PRINTF("TSNH ep_associd\n"); return (NULL); } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_PRINTF("TSNH ep_associd0\n"); return (NULL); } id = (uint32_t)asoc_id; head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; if (head == NULL) { /* invalid id TSNH */ SCTP_PRINTF("TSNH ep_associd1\n"); return (NULL); } LIST_FOREACH(stcb, head, sctp_tcbasocidhash) { if (stcb->asoc.assoc_id == id) { if (inp != stcb->sctp_ep) { /* * some other guy has the same id active (id * collision ??). */ SCTP_PRINTF("TSNH ep_associd2\n"); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { continue; } if (want_lock) { SCTP_TCB_LOCK(stcb); } return (stcb); } } return (NULL); } struct sctp_tcb * sctp_findassociation_ep_asocid(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { struct sctp_tcb *stcb; SCTP_INP_RLOCK(inp); stcb = sctp_findasoc_ep_asocid_locked(inp, asoc_id, want_lock); SCTP_INP_RUNLOCK(inp); return (stcb); } /* * Endpoint probe expects that the INP_INFO is locked. */ static struct sctp_inpcb * sctp_endpoint_probe(struct sockaddr *nam, struct sctppcbhead *head, uint16_t lport, uint32_t vrf_id) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sockaddr_in6 *intf_addr6; #endif int fnd; #ifdef INET sin = NULL; #endif #ifdef INET6 sin6 = NULL; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; break; #endif default: /* unsupported family */ return (NULL); } if (head == NULL) return (NULL); LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) && (inp->sctp_lport == lport)) { /* got it */ switch (nam->sa_family) { #ifdef INET case AF_INET: if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* * IPv4 on a IPv6 socket with ONLY * IPv6 set */ SCTP_INP_RUNLOCK(inp); continue; } if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; #endif #ifdef INET6 case AF_INET6: /* * A V6 address and the endpoint is NOT * bound V6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { SCTP_INP_RUNLOCK(inp); continue; } if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; #endif default: break; } /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; SCTP_INP_RUNLOCK(inp); if (!fnd) continue; return (inp); } SCTP_INP_RUNLOCK(inp); } switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == INADDR_ANY) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif default: break; } /* * ok, not bound to all so see if we can find a EP bound to this * address. */ LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL)) { SCTP_INP_RUNLOCK(inp); continue; } /* * Ok this could be a likely candidate, look at all of its * addresses */ if (inp->sctp_lport != lport) { SCTP_INP_RUNLOCK(inp); continue; } /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) { SCTP_INP_RUNLOCK(inp); continue; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } SCTPDBG(SCTP_DEBUG_PCB1, "Ok laddr->ifa:%p is possible, ", (void *)laddr->ifa); if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "Huh IFA being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == nam->sa_family) { /* possible, see if it matches */ switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == laddr->ifa->address.sin.sin_addr.s_addr) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif #ifdef INET6 case AF_INET6: intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif } } } SCTP_INP_RUNLOCK(inp); } return (NULL); } static struct sctp_inpcb * sctp_isport_inuse(struct sctp_inpcb *inp, uint16_t lport, uint32_t vrf_id) { struct sctppcbhead *head; struct sctp_inpcb *t_inp; int fnd; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; LIST_FOREACH(t_inp, head, sctp_hash) { if (t_inp->sctp_lport != lport) { continue; } /* is it in the VRF in question */ fnd = 0; if (t_inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) continue; /* This one is in use. */ /* check the v6/v4 binding issue */ if ((t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(t_inp)) { if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* collision in V6 space */ return (t_inp); } else { /* inp is BOUND_V4 no conflict */ continue; } } else if (t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* t_inp is bound v4 and v6, conflict always */ return (t_inp); } else { /* t_inp is bound only V4 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* no conflict */ continue; } /* else fall through to conflict */ } return (t_inp); } return (NULL); } int sctp_swap_inpcb_for_listen(struct sctp_inpcb *inp) { /* For 1-2-1 with port reuse */ struct sctppcbhead *head; struct sctp_inpcb *tinp, *ninp; if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) { /* only works with port reuse on */ return (-1); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) { return (0); } SCTP_INP_RUNLOCK(inp); SCTP_INP_INFO_WLOCK(); head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; /* Kick out all non-listeners to the TCP hash */ LIST_FOREACH_SAFE(tinp, head, sctp_hash, ninp) { if (tinp->sctp_lport != inp->sctp_lport) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { continue; } if (tinp->sctp_socket->so_qlimit) { continue; } SCTP_INP_WLOCK(tinp); LIST_REMOVE(tinp, sctp_hash); head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(tinp->sctp_lport, SCTP_BASE_INFO(hashtcpmark))]; tinp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; LIST_INSERT_HEAD(head, tinp, sctp_hash); SCTP_INP_WUNLOCK(tinp); } SCTP_INP_WLOCK(inp); /* Pull from where he was */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags &= ~SCTP_PCB_FLAGS_IN_TCPPOOL; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; LIST_INSERT_HEAD(head, inp, sctp_hash); SCTP_INP_WUNLOCK(inp); SCTP_INP_RLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (0); } struct sctp_inpcb * sctp_pcb_findep(struct sockaddr *nam, int find_tcp_pool, int have_lock, uint32_t vrf_id) { /* * First we check the hash table to see if someone has this port * bound with just the port. */ struct sctp_inpcb *inp; struct sctppcbhead *head; int lport; unsigned int i; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; lport = sin->sin_port; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; lport = sin6->sin6_port; break; #endif default: return (NULL); } /* * I could cheat here and just cast to one of the types but we will * do it right. It also provides the check against an Unsupported * type too. */ /* Find the head of the ALLADDR chain */ if (have_lock == 0) { SCTP_INP_INFO_RLOCK(); } head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); /* * If the TCP model exists it could be that the main listening * endpoint is gone but there still exists a connected socket for * this guy. If so we can return the first one that we find. This * may NOT be the correct one so the caller should be wary on the * returned INP. Currently the only caller that sets find_tcp_pool * is in bindx where we are verifying that a user CAN bind the * address. He either has bound it already, or someone else has, or * its open to bind, so this is good enough. */ if (inp == NULL && find_tcp_pool) { for (i = 0; i < SCTP_BASE_INFO(hashtcpmark) + 1; i++) { head = &SCTP_BASE_INFO(sctp_tcpephash)[i]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); if (inp) { break; } } } if (inp) { SCTP_INP_INCR_REF(inp); } if (have_lock == 0) { SCTP_INP_INFO_RUNLOCK(); } return (inp); } /* * Find an association for an endpoint with the pointer to whom you want to * send to and the endpoint pointer. The address can be IPv4 or IPv6. We may * need to change the *to to some other struct like a mbuf... */ struct sctp_tcb * sctp_findassociation_addr_sa(struct sockaddr *from, struct sockaddr *to, struct sctp_inpcb **inp_p, struct sctp_nets **netp, int find_tcp_pool, uint32_t vrf_id) { struct sctp_inpcb *inp = NULL; struct sctp_tcb *stcb; SCTP_INP_INFO_RLOCK(); if (find_tcp_pool) { if (inp_p != NULL) { stcb = sctp_tcb_special_locate(inp_p, from, to, netp, vrf_id); } else { stcb = sctp_tcb_special_locate(&inp, from, to, netp, vrf_id); } if (stcb != NULL) { SCTP_INP_INFO_RUNLOCK(); return (stcb); } } inp = sctp_pcb_findep(to, 0, 1, vrf_id); if (inp_p != NULL) { *inp_p = inp; } SCTP_INP_INFO_RUNLOCK(); if (inp == NULL) { return (NULL); } /* * ok, we have an endpoint, now lets find the assoc for it (if any) * we now place the source address or from in the to of the find * endpoint call. Since in reality this chain is used from the * inbound packet side. */ if (inp_p != NULL) { stcb = sctp_findassociation_ep_addr(inp_p, from, netp, to, NULL); } else { stcb = sctp_findassociation_ep_addr(&inp, from, netp, to, NULL); } return (stcb); } /* * This routine will grub through the mbuf that is a INIT or INIT-ACK and * find all addresses that the sender has specified in any address list. Each * address will be used to lookup the TCB and see if one exits. */ static struct sctp_tcb * sctp_findassociation_special_addr(struct mbuf *m, int offset, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, struct sockaddr *dst) { struct sctp_paramhdr *phdr, param_buf; #if defined(INET) || defined(INET6) struct sctp_tcb *stcb; uint16_t ptype; #endif uint16_t plen; #ifdef INET struct sockaddr_in sin4; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif #ifdef INET memset(&sin4, 0, sizeof(sin4)); sin4.sin_len = sizeof(sin4); sin4.sin_family = AF_INET; sin4.sin_port = sh->src_port; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; sin6.sin6_port = sh->src_port; #endif offset += sizeof(struct sctp_init_chunk); phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); while (phdr != NULL) { /* now we must see if we want the parameter */ #if defined(INET) || defined(INET6) ptype = ntohs(phdr->param_type); #endif plen = ntohs(phdr->param_length); if (plen == 0) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS && plen == sizeof(struct sctp_ipv4addr_param)) { /* Get the rest of the address */ struct sctp_ipv4addr_param ip4_param, *p4; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip4_param, sizeof(ip4_param)); if (phdr == NULL) { return (NULL); } p4 = (struct sctp_ipv4addr_param *)phdr; memcpy(&sin4.sin_addr, &p4->addr, sizeof(p4->addr)); /* look it up */ stcb = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin4, netp, dst, NULL); if (stcb != NULL) { return (stcb); } } #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS && plen == sizeof(struct sctp_ipv6addr_param)) { /* Get the rest of the address */ struct sctp_ipv6addr_param ip6_param, *p6; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip6_param, sizeof(ip6_param)); if (phdr == NULL) { return (NULL); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy(&sin6.sin6_addr, &p6->addr, sizeof(p6->addr)); /* look it up */ stcb = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin6, netp, dst, NULL); if (stcb != NULL) { return (stcb); } } #endif offset += SCTP_SIZE32(plen); phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); } return (NULL); } static struct sctp_tcb * sctp_findassoc_by_vtag(struct sockaddr *from, struct sockaddr *to, uint32_t vtag, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint16_t rport, uint16_t lport, int skip_src_check, uint32_t vrf_id, uint32_t remote_tag) { /* * Use my vtag to hash. If we find it we then verify the source addr * is in the assoc. If all goes well we save a bit on rec of a * packet. */ struct sctpasochead *head; struct sctp_nets *net; struct sctp_tcb *stcb; SCTP_INP_INFO_RLOCK(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(vtag, SCTP_BASE_INFO(hashasocmark))]; LIST_FOREACH(stcb, head, sctp_asocs) { SCTP_INP_RLOCK(stcb->sctp_ep); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } if (stcb->sctp_ep->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(stcb->sctp_ep); if (stcb->asoc.my_vtag == vtag) { /* candidate */ if (stcb->rport != rport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->sctp_ep->sctp_lport != lport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } /* RRS:Need toaddr check here */ if (sctp_does_stcb_own_this_addr(stcb, to) == 0) { /* Endpoint does not own this address */ SCTP_TCB_UNLOCK(stcb); continue; } if (remote_tag) { /* * If we have both vtags that's all we match * on */ if (stcb->asoc.peer_vtag == remote_tag) { /* * If both tags match we consider it * conclusive and check NO * source/destination addresses */ goto conclusive; } } if (skip_src_check) { conclusive: if (from) { *netp = sctp_findnet(stcb, from); } else { *netp = NULL; /* unknown */ } if (inp_p) *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } net = sctp_findnet(stcb, from); if (net) { /* yep its him. */ *netp = net; SCTP_STAT_INCR(sctps_vtagexpress); *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { /* * not him, this should only happen in rare * cases so I peg it. */ SCTP_STAT_INCR(sctps_vtagbogus); } } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_INFO_RUNLOCK(); return (NULL); } /* * Find an association with the pointer to the inbound IP packet. This can be * a IPv4 or IPv6 packet. */ struct sctp_tcb * sctp_findassociation_addr(struct mbuf *m, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_chunkhdr *ch, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { struct sctp_tcb *stcb; struct sctp_inpcb *inp; if (sh->v_tag) { /* we only go down this path if vtag is non-zero */ stcb = sctp_findassoc_by_vtag(src, dst, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 0, vrf_id, 0); if (stcb) { return (stcb); } } + if (inp_p) { stcb = sctp_findassociation_addr_sa(src, dst, inp_p, netp, 1, vrf_id); inp = *inp_p; } else { stcb = sctp_findassociation_addr_sa(src, dst, &inp, netp, 1, vrf_id); } SCTPDBG(SCTP_DEBUG_PCB1, "stcb:%p inp:%p\n", (void *)stcb, (void *)inp); if (stcb == NULL && inp) { /* Found a EP but not this address */ if ((ch->chunk_type == SCTP_INITIATION) || (ch->chunk_type == SCTP_INITIATION_ACK)) { /*- * special hook, we do NOT return linp or an * association that is linked to an existing * association that is under the TCP pool (i.e. no * listener exists). The endpoint finding routine * will always find a listener before examining the * TCP pool. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) { if (inp_p) { *inp_p = NULL; } return (NULL); } stcb = sctp_findassociation_special_addr(m, offset, sh, &inp, netp, dst); if (inp_p != NULL) { *inp_p = inp; } } } SCTPDBG(SCTP_DEBUG_PCB1, "stcb is %p\n", (void *)stcb); return (stcb); } /* * lookup an association by an ASCONF lookup address. * if the lookup address is 0.0.0.0 or ::0, use the vtag to do the lookup */ struct sctp_tcb * sctp_findassociation_ep_asconf(struct mbuf *m, int offset, struct sockaddr *dst, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { struct sctp_tcb *stcb; union sctp_sockstore remote_store; struct sctp_paramhdr param_buf, *phdr; int ptype; int zero_address = 0; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif memset(&remote_store, 0, sizeof(remote_store)); phdr = sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), ¶m_buf, sizeof(struct sctp_paramhdr)); if (phdr == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf lookup addr\n", __func__); return NULL; } ptype = (int)((uint32_t)ntohs(phdr->param_type)); /* get the correlation address */ switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: { /* ipv6 address param */ struct sctp_ipv6addr_param *p6, p6_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv6addr_param)) { return NULL; } p6 = (struct sctp_ipv6addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p6_buf.ph, sizeof(p6_buf)); if (p6 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v6 lookup addr\n", __func__); return (NULL); } sin6 = &remote_store.sin6; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = sh->src_port; memcpy(&sin6->sin6_addr, &p6->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; break; } #endif #ifdef INET case SCTP_IPV4_ADDRESS: { /* ipv4 address param */ struct sctp_ipv4addr_param *p4, p4_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv4addr_param)) { return NULL; } p4 = (struct sctp_ipv4addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p4_buf.ph, sizeof(p4_buf)); if (p4 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v4 lookup addr\n", __func__); return (NULL); } sin = &remote_store.sin; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = sh->src_port; memcpy(&sin->sin_addr, &p4->addr, sizeof(struct in_addr)); if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; break; } #endif default: /* invalid address param type */ return NULL; } if (zero_address) { stcb = sctp_findassoc_by_vtag(NULL, dst, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 1, vrf_id, 0); if (stcb != NULL) { SCTP_INP_DECR_REF(*inp_p); } } else { stcb = sctp_findassociation_ep_addr(inp_p, &remote_store.sa, netp, dst, NULL); } return (stcb); } /* * allocate a sctp_inpcb and setup a temporary binding to a port/all * addresses. This way if we don't get a bind we by default pick a ephemeral * port with all addresses bound. */ int sctp_inpcb_alloc(struct socket *so, uint32_t vrf_id) { /* * we get called when a new endpoint starts up. We need to allocate * the sctp_inpcb structure from the zone and init it. Mark it as * unbound and find a port that we can use as an ephemeral with * INADDR_ANY. If the user binds later no problem we can then add in * the specific addresses. And setup the default parameters for the * EP. */ int i, error; struct sctp_inpcb *inp; struct sctp_pcb *m; struct timeval time; sctp_sharedkey_t *null_key; error = 0; SCTP_INP_INFO_WLOCK(); inp = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_ep), struct sctp_inpcb); if (inp == NULL) { SCTP_PRINTF("Out of SCTP-INPCB structures - no resources\n"); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); return (ENOBUFS); } /* zap it */ memset(inp, 0, sizeof(*inp)); /* bump generations */ /* setup socket pointers */ inp->sctp_socket = so; inp->ip_inp.inp.inp_socket = so; inp->ip_inp.inp.inp_cred = crhold(so->so_cred); #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { if (MODULE_GLOBAL(ip6_auto_flowlabel)) { inp->ip_inp.inp.inp_flags |= IN6P_AUTOFLOWLABEL; } if (MODULE_GLOBAL(ip6_v6only)) { inp->ip_inp.inp.inp_flags |= IN6P_IPV6_V6ONLY; } } #endif inp->sctp_associd_counter = 1; inp->partial_delivery_point = SCTP_SB_LIMIT_RCV(so) >> SCTP_PARTIAL_DELIVERY_SHIFT; inp->sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT; inp->max_cwnd = 0; inp->sctp_cmt_on_off = SCTP_BASE_SYSCTL(sctp_cmt_on_off); inp->ecn_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_ecn_enable); inp->prsctp_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_pr_enable); inp->auth_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_auth_enable); inp->asconf_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_asconf_enable); inp->reconfig_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_reconfig_enable); inp->nrsack_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_nrsack_enable); inp->pktdrop_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_pktdrop_enable); inp->idata_supported = 0; inp->fibnum = so->so_fibnum; /* init the small hash table we use to track asocid <-> tcb */ inp->sctp_asocidhash = SCTP_HASH_INIT(SCTP_STACK_VTAG_HASH_SIZE, &inp->hashasocidmark); if (inp->sctp_asocidhash == NULL) { crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_INP_INFO_WUNLOCK(); return (ENOBUFS); } SCTP_INCR_EP_COUNT(); inp->ip_inp.inp.inp_ip_ttl = MODULE_GLOBAL(ip_defttl); SCTP_INP_INFO_WUNLOCK(); so->so_pcb = (caddr_t)inp; if (SCTP_SO_TYPE(so) == SOCK_SEQPACKET) { /* UDP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure it is NON-BLOCKING IO for UDP */ /* SCTP_SET_SO_NBIO(so); */ } else if (SCTP_SO_TYPE(so) == SOCK_STREAM) { /* TCP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure we have blocking IO by default */ SOCK_LOCK(so); SCTP_CLEAR_SO_NBIO(so); SOCK_UNLOCK(so); } else { /* * unsupported socket type (RAW, etc)- in case we missed it * in protosw */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EOPNOTSUPP); so->so_pcb = NULL; crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (EOPNOTSUPP); } if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_1) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_2) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } inp->sctp_tcbhash = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_pcbtblsize), &inp->sctp_hashmark); if (inp->sctp_tcbhash == NULL) { SCTP_PRINTF("Out of SCTP-INPCB->hashinit - no resources\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); so->so_pcb = NULL; crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (ENOBUFS); } inp->def_vrf_id = vrf_id; SCTP_INP_INFO_WLOCK(); SCTP_INP_LOCK_INIT(inp); INP_LOCK_INIT(&inp->ip_inp.inp, "inp", "sctpinp"); SCTP_INP_READ_INIT(inp); SCTP_ASOC_CREATE_LOCK_INIT(inp); /* lock the new ep */ SCTP_INP_WLOCK(inp); /* add it to the info area */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(listhead), inp, sctp_list); SCTP_INP_INFO_WUNLOCK(); TAILQ_INIT(&inp->read_queue); LIST_INIT(&inp->sctp_addr_list); LIST_INIT(&inp->sctp_asoc_list); #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_INIT(&inp->sctp_asoc_free_list); #endif /* Init the timer structure for signature change */ SCTP_OS_TIMER_INIT(&inp->sctp_ep.signature_change.timer); inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NEWCOOKIE; /* now init the actual endpoint default data */ m = &inp->sctp_ep; /* setup the base timeout information */ m->sctp_timeoutticks[SCTP_TIMER_SEND] = SEC_TO_TICKS(SCTP_SEND_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_INIT] = SEC_TO_TICKS(SCTP_INIT_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_delayed_sack_time_default)); m->sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_heartbeat_interval_default)); m->sctp_timeoutticks[SCTP_TIMER_PMTU] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_pmtu_raise_time_default)); m->sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_shutdown_guard_time_default)); m->sctp_timeoutticks[SCTP_TIMER_SIGNATURE] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_secret_lifetime_default)); /* all max/min max are in ms */ m->sctp_maxrto = SCTP_BASE_SYSCTL(sctp_rto_max_default); m->sctp_minrto = SCTP_BASE_SYSCTL(sctp_rto_min_default); m->initial_rto = SCTP_BASE_SYSCTL(sctp_rto_initial_default); m->initial_init_rto_max = SCTP_BASE_SYSCTL(sctp_init_rto_max_default); m->sctp_sack_freq = SCTP_BASE_SYSCTL(sctp_sack_freq_default); m->max_init_times = SCTP_BASE_SYSCTL(sctp_init_rtx_max_default); m->max_send_times = SCTP_BASE_SYSCTL(sctp_assoc_rtx_max_default); m->def_net_failure = SCTP_BASE_SYSCTL(sctp_path_rtx_max_default); m->def_net_pf_threshold = SCTP_BASE_SYSCTL(sctp_path_pf_threshold); m->sctp_sws_sender = SCTP_SWS_SENDER_DEF; m->sctp_sws_receiver = SCTP_SWS_RECEIVER_DEF; m->max_burst = SCTP_BASE_SYSCTL(sctp_max_burst_default); m->fr_max_burst = SCTP_BASE_SYSCTL(sctp_fr_max_burst_default); m->sctp_default_cc_module = SCTP_BASE_SYSCTL(sctp_default_cc_module); m->sctp_default_ss_module = SCTP_BASE_SYSCTL(sctp_default_ss_module); m->max_open_streams_intome = SCTP_BASE_SYSCTL(sctp_nr_incoming_streams_default); /* number of streams to pre-open on a association */ m->pre_open_stream_count = SCTP_BASE_SYSCTL(sctp_nr_outgoing_streams_default); m->default_mtu = 0; /* Add adaptation cookie */ m->adaptation_layer_indicator = 0; m->adaptation_layer_indicator_provided = 0; /* seed random number generator */ m->random_counter = 1; m->store_at = SCTP_SIGNATURE_SIZE; SCTP_READ_RANDOM(m->random_numbers, sizeof(m->random_numbers)); sctp_fill_random_store(m); /* Minimum cookie size */ m->size_of_a_cookie = (sizeof(struct sctp_init_msg) * 2) + sizeof(struct sctp_state_cookie); m->size_of_a_cookie += SCTP_SIGNATURE_SIZE; /* Setup the initial secret */ (void)SCTP_GETTIME_TIMEVAL(&time); m->time_of_secret_change = time.tv_sec; for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) { m->secret_key[0][i] = sctp_select_initial_TSN(m); } sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL); /* How long is a cookie good for ? */ m->def_cookie_life = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_valid_cookie_life_default)); /* * Initialize authentication parameters */ m->local_hmacs = sctp_default_supported_hmaclist(); m->local_auth_chunks = sctp_alloc_chunklist(); if (inp->asconf_supported) { sctp_auth_add_chunk(SCTP_ASCONF, m->local_auth_chunks); sctp_auth_add_chunk(SCTP_ASCONF_ACK, m->local_auth_chunks); } m->default_dscp = 0; #ifdef INET6 m->default_flowlabel = 0; #endif m->port = 0; /* encapsulation disabled by default */ LIST_INIT(&m->shared_keys); /* add default NULL key as key id 0 */ null_key = sctp_alloc_sharedkey(); sctp_insert_sharedkey(&m->shared_keys, null_key); SCTP_INP_WUNLOCK(inp); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 12); #endif return (error); } void sctp_move_pcb_and_assoc(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb) { struct sctp_nets *net; uint16_t lport, rport; struct sctppcbhead *head; struct sctp_laddr *laddr, *oladdr; atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(old_inp); SCTP_INP_WLOCK(new_inp); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); new_inp->sctp_ep.time_of_secret_change = old_inp->sctp_ep.time_of_secret_change; memcpy(new_inp->sctp_ep.secret_key, old_inp->sctp_ep.secret_key, sizeof(old_inp->sctp_ep.secret_key)); new_inp->sctp_ep.current_secret_number = old_inp->sctp_ep.current_secret_number; new_inp->sctp_ep.last_secret_number = old_inp->sctp_ep.last_secret_number; new_inp->sctp_ep.size_of_a_cookie = old_inp->sctp_ep.size_of_a_cookie; /* make it so new data pours into the new socket */ stcb->sctp_socket = new_inp->sctp_socket; stcb->sctp_ep = new_inp; /* Copy the port across */ lport = new_inp->sctp_lport = old_inp->sctp_lport; rport = stcb->rport; /* Pull the tcb from the old association */ LIST_REMOVE(stcb, sctp_tcbhash); LIST_REMOVE(stcb, sctp_tcblist); if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } /* Now insert the new_inp into the TCP connected hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; LIST_INSERT_HEAD(head, new_inp, sctp_hash); /* Its safe to access */ new_inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; /* Now move the tcb into the endpoint list */ LIST_INSERT_HEAD(&new_inp->sctp_asoc_list, stcb, sctp_tcblist); /* * Question, do we even need to worry about the ep-hash since we * only have one connection? Probably not :> so lets get rid of it * and not suck up any kernel memory in that. */ if (stcb->asoc.in_asocid_hash) { struct sctpasochead *lhd; lhd = &new_inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(stcb->asoc.assoc_id, new_inp->hashasocidmark)]; LIST_INSERT_HEAD(lhd, stcb, sctp_tcbasocidhash); } /* Ok. Let's restart timer. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, new_inp, stcb, net); } SCTP_INP_INFO_WUNLOCK(); if (new_inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(new_inp->sctp_tcbhash, new_inp->sctp_hashmark); new_inp->sctp_tcbhash = NULL; } if ((new_inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* Subset bound, so copy in the laddr list from the old_inp */ LIST_FOREACH(oladdr, &old_inp->sctp_addr_list, sctp_nxt_addr) { laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* * Gak, what can we do? This assoc is really * HOSED. We probably should send an abort * here. */ SCTPDBG(SCTP_DEBUG_PCB1, "Association hosed in TCP model, out of laddr memory\n"); continue; } SCTP_INCR_LADDR_COUNT(); memset(laddr, 0, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = oladdr->ifa; atomic_add_int(&laddr->ifa->refcount, 1); LIST_INSERT_HEAD(&new_inp->sctp_addr_list, laddr, sctp_nxt_addr); new_inp->laddr_count++; if (oladdr == stcb->asoc.last_used_address) { stcb->asoc.last_used_address = laddr; } } } /* * Now any running timers need to be adjusted since we really don't * care if they are running or not just blast in the new_inp into * all of them. */ stcb->asoc.dack_timer.ep = (void *)new_inp; stcb->asoc.asconf_timer.ep = (void *)new_inp; stcb->asoc.strreset_timer.ep = (void *)new_inp; stcb->asoc.shut_guard_timer.ep = (void *)new_inp; stcb->asoc.autoclose_timer.ep = (void *)new_inp; stcb->asoc.delayed_event_timer.ep = (void *)new_inp; stcb->asoc.delete_prim_timer.ep = (void *)new_inp; /* now what about the nets? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->pmtu_timer.ep = (void *)new_inp; net->hb_timer.ep = (void *)new_inp; net->rxt_timer.ep = (void *)new_inp; } SCTP_INP_WUNLOCK(new_inp); SCTP_INP_WUNLOCK(old_inp); } /* * insert an laddr entry with the given ifa for the desired list */ static int sctp_insert_laddr(struct sctpladdr *list, struct sctp_ifa *ifa, uint32_t act) { struct sctp_laddr *laddr; laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } SCTP_INCR_LADDR_COUNT(); memset(laddr, 0, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = ifa; laddr->action = act; atomic_add_int(&ifa->refcount, 1); /* insert it */ LIST_INSERT_HEAD(list, laddr, sctp_nxt_addr); return (0); } /* * Remove an laddr entry from the local address list (on an assoc) */ static void sctp_remove_laddr(struct sctp_laddr *laddr) { /* remove from the list */ LIST_REMOVE(laddr, sctp_nxt_addr); sctp_free_ifa(laddr->ifa); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), laddr); SCTP_DECR_LADDR_COUNT(); } /* sctp_ifap is used to bypass normal local address validation checks */ int sctp_inpcb_bind(struct socket *so, struct sockaddr *addr, struct sctp_ifa *sctp_ifap, struct thread *p) { /* bind a ep to a socket address */ struct sctppcbhead *head; struct sctp_inpcb *inp, *inp_tmp; struct inpcb *ip_inp; int port_reuse_active = 0; int bindall; uint16_t lport; int error; uint32_t vrf_id; lport = 0; bindall = 1; inp = (struct sctp_inpcb *)so->so_pcb; ip_inp = (struct inpcb *)so->so_pcb; #ifdef SCTP_DEBUG if (addr) { SCTPDBG(SCTP_DEBUG_PCB1, "Bind called port: %d\n", ntohs(((struct sockaddr_in *)addr)->sin_port)); SCTPDBG(SCTP_DEBUG_PCB1, "Addr: "); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) { /* already did a bind, subsequent binds NOT allowed ! */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } #ifdef INVARIANTS if (p == NULL) panic("null proc/thread"); #endif if (addr != NULL) { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; /* IPV6_V6ONLY socket? */ if (SCTP_IPV6_V6ONLY(ip_inp)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } if (addr->sa_len != sizeof(*sin)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } + sin = (struct sockaddr_in *)addr; lport = sin->sin_port; /* * For LOOPBACK the prison_local_ip4() call * will transmute the ip address to the * proper value. */ if (p && (error = prison_local_ip4(p->td_ucred, &sin->sin_addr)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } if (sin->sin_addr.s_addr != INADDR_ANY) { bindall = 0; } break; } #endif #ifdef INET6 case AF_INET6: { /* * Only for pure IPv6 Address. (No IPv4 * Mapped!) */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (addr->sa_len != sizeof(*sin6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } lport = sin6->sin6_port; /* * For LOOPBACK the prison_local_ip6() call * will transmute the ipv6 address to the * proper value. */ if (p && (error = prison_local_ip6(p->td_ucred, &sin6->sin6_addr, (SCTP_IPV6_V6ONLY(inp) != 0))) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { bindall = 0; /* KAME hack: embed scopeid */ if (sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } } /* this must be cleared for ifa_ifwithaddr() */ sin6->sin6_scope_id = 0; break; } #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EAFNOSUPPORT); return (EAFNOSUPPORT); } } SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); /* Setup a vrf_id to be the default for the non-bind-all case. */ vrf_id = inp->def_vrf_id; /* increase our count due to the unlock we do */ SCTP_INP_INCR_REF(inp); if (lport) { /* * Did the caller specify a port? if so we must see if an ep * already has this one bound. */ /* got to be root to get at low ports */ if (ntohs(lport) < IPPORT_RESERVED) { if ((p != NULL) && ((error = priv_check(p, PRIV_NETINET_RESERVEDPORT) ) != 0)) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (error); } } SCTP_INP_WUNLOCK(inp); if (bindall) { vrf_id = inp->def_vrf_id; inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_DECR_REF(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } else { inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_DECR_REF(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } continue_anyway: SCTP_INP_WLOCK(inp); if (bindall) { /* verify that no lport is not used by a singleton */ if ((port_reuse_active == 0) && (inp_tmp = sctp_isport_inuse(inp, lport, vrf_id))) { /* Sorry someone already has this one bound */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { port_reuse_active = 1; } else { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } } } else { uint16_t first, last, candidate; uint16_t count; int done; if (ip_inp->inp_flags & INP_HIGHPORT) { first = MODULE_GLOBAL(ipport_hifirstauto); last = MODULE_GLOBAL(ipport_hilastauto); } else if (ip_inp->inp_flags & INP_LOWPORT) { if (p && (error = priv_check(p, PRIV_NETINET_RESERVEDPORT) )) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } first = MODULE_GLOBAL(ipport_lowfirstauto); last = MODULE_GLOBAL(ipport_lowlastauto); } else { first = MODULE_GLOBAL(ipport_firstauto); last = MODULE_GLOBAL(ipport_lastauto); } if (first > last) { uint16_t temp; temp = first; first = last; last = temp; } count = last - first + 1; /* number of candidates */ candidate = first + sctp_select_initial_TSN(&inp->sctp_ep) % (count); done = 0; while (!done) { if (sctp_isport_inuse(inp, htons(candidate), inp->def_vrf_id) == NULL) { done = 1; } if (!done) { if (--count == 0) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } if (candidate == last) candidate = first; else candidate = candidate + 1; } } lport = htons(candidate); } SCTP_INP_DECR_REF(inp); if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { /* * this really should not happen. The guy did a non-blocking * bind and then did a close at the same time. */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } /* ok we look clear to give out this port, so lets setup the binding */ if (bindall) { /* binding to all addresses, so just set in the proper flags */ inp->sctp_flags |= SCTP_PCB_FLAGS_BOUNDALL; /* set the automatic addr changes from kernel flag */ if (SCTP_BASE_SYSCTL(sctp_auto_asconf) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } if (SCTP_BASE_SYSCTL(sctp_multiple_asconfs) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } /* * set the automatic mobility_base from kernel flag (by * micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_base) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } /* * set the automatic mobility_fasthandoff from kernel flag * (by micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_fasthandoff) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } } else { /* * bind specific, make sure flags is off and add a new * address structure to the sctp_addr_list inside the ep * structure. * * We will need to allocate one and insert it at the head. * The socketopt call can just insert new addresses in there * as well. It will also have to do the embed scope kame * hack too (before adding). */ struct sctp_ifa *ifa; union sctp_sockstore store; memset(&store, 0, sizeof(store)); switch (addr->sa_family) { #ifdef INET case AF_INET: memcpy(&store.sin, addr, sizeof(struct sockaddr_in)); store.sin.sin_port = 0; break; #endif #ifdef INET6 case AF_INET6: memcpy(&store.sin6, addr, sizeof(struct sockaddr_in6)); store.sin6.sin6_port = 0; break; #endif default: break; } /* * first find the interface with the bound address need to * zero out the port to find the address! yuck! can't do * this earlier since need port for sctp_pcb_findep() */ if (sctp_ifap != NULL) { ifa = sctp_ifap; } else { /* * Note for BSD we hit here always other O/S's will * pass things in via the sctp_ifap argument * (Panda). */ ifa = sctp_find_ifa_by_addr(&store.sa, vrf_id, SCTP_ADDR_NOT_LOCKED); } if (ifa == NULL) { /* Can't find an interface with that address */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } #ifdef INET6 if (addr->sa_family == AF_INET6) { /* GAK, more FIXME IFA lock? */ if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } } #endif /* we're not bound all */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUNDALL; /* allow bindx() to send ASCONF's for binding changes */ sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); /* clear automatic addr changes from kernel flag */ sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); /* add this address to the endpoint list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, 0); if (error != 0) { SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (error); } inp->laddr_count++; } /* find the bucket */ if (port_reuse_active) { /* Put it into tcp 1-2-1 hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashtcpmark))]; inp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; } else { head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; } /* put it in the bucket */ LIST_INSERT_HEAD(head, inp, sctp_hash); SCTPDBG(SCTP_DEBUG_PCB1, "Main hash to bind at head:%p, bound port:%d - in tcp_pool=%d\n", (void *)head, ntohs(lport), port_reuse_active); /* set in the port */ inp->sctp_lport = lport; /* turn off just the unbound flag */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (0); } static void sctp_iterator_inp_being_freed(struct sctp_inpcb *inp) { struct sctp_iterator *it, *nit; /* * We enter with the only the ITERATOR_LOCK in place and a write * lock on the inp_info stuff. */ it = sctp_it_ctl.cur_it; if (it && (it->vn != curvnet)) { /* Its not looking at our VNET */ return; } if (it && (it->inp == inp)) { /* * This is tricky and we hold the iterator lock, but when it * returns and gets the lock (when we release it) the * iterator will try to operate on inp. We need to stop that * from happening. But of course the iterator has a * reference on the stcb and inp. We can mark it and it will * stop. * * If its a single iterator situation, we set the end * iterator flag. Otherwise we set the iterator to go to the * next inp. * */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } else { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_INP; } } /* * Now go through and remove any single reference to our inp that * may be still pending on the list */ SCTP_IPI_ITERATOR_WQ_LOCK(); TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } if (it->inp == inp) { /* This one points to me is it inp specific? */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { /* Remove and free this one */ TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } else { it->inp = LIST_NEXT(it->inp, sctp_list); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } } /* * When its put in the refcnt is incremented so decr * it */ SCTP_INP_DECR_REF(inp); } } SCTP_IPI_ITERATOR_WQ_UNLOCK(); } /* release sctp_inpcb unbind the port */ void sctp_inpcb_free(struct sctp_inpcb *inp, int immediate, int from) { /* * Here we free a endpoint. We must find it (if it is in the Hash * table) and remove it from there. Then we must also find it in the * overall list and remove it from there. After all removals are * complete then any timer has to be stopped. Then start the actual * freeing. a) Any local lists. b) Any associations. c) The hash of * all associations. d) finally the ep itself. */ struct sctp_tcb *asoc, *nasoc; struct sctp_laddr *laddr, *nladdr; struct inpcb *ip_pcb; struct socket *so; int being_refed = 0; struct sctp_queued_to_read *sq, *nsq; int cnt; sctp_sharedkey_t *shared_key, *nshared_key; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 0); #endif SCTP_ITERATOR_LOCK(); /* mark any iterators on the list or being processed */ sctp_iterator_inp_being_freed(inp); SCTP_ITERATOR_UNLOCK(); so = inp->sctp_socket; if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { /* been here before.. eeks.. get out of here */ SCTP_PRINTF("This conflict in free SHOULD not be happening! from %d, imm %d\n", from, immediate); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 1); #endif return; } SCTP_ASOC_CREATE_LOCK(inp); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); if (from == SCTP_CALLED_AFTER_CMPSET_OFCLOSE) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CLOSE_IP; /* socket is gone, so no more wakeups allowed */ inp->sctp_flags |= SCTP_PCB_FLAGS_DONT_WAKE; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; } /* First time through we have the socket lock, after that no more. */ sctp_timer_stop(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL, SCTP_FROM_SCTP_PCB + SCTP_LOC_1); if (inp->control) { sctp_m_freem(inp->control); inp->control = NULL; } if (inp->pkt) { sctp_m_freem(inp->pkt); inp->pkt = NULL; } ip_pcb = &inp->ip_inp.inp; /* we could just cast the main pointer * here but I will be nice :> (i.e. * ip_pcb = ep;) */ if (immediate == SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE) { int cnt_in_sd; cnt_in_sd = 0; LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_list, sctp_tcblist, nasoc) { SCTP_TCB_LOCK(asoc); if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* Skip guys being freed */ cnt_in_sd++; if (asoc->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { /* * Special case - we did not start a * kill timer on the asoc due to it * was not closed. So go ahead and * start it now. */ asoc->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, asoc, NULL); } SCTP_TCB_UNLOCK(asoc); continue; } if (((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_ECHOED)) && (asoc->asoc.total_output_queue_size == 0)) { /* * If we have data in queue, we don't want * to just free since the app may have done, * send()/close or connect/send/close. And * it wants the data to get across first. */ /* Just abandon things in the front states */ if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_2) == 0) { cnt_in_sd++; } continue; } /* Disconnect the socket please */ asoc->sctp_socket = NULL; asoc->asoc.state |= SCTP_STATE_CLOSED_SOCKET; if ((asoc->asoc.size_on_reasm_queue > 0) || (asoc->asoc.control_pdapi) || (asoc->asoc.size_on_all_streams > 0) || (so && (so->so_rcv.sb_cc > 0))) { /* Left with Data unread */ struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_3; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_4) == 0) { cnt_in_sd++; } continue; } else if (TAILQ_EMPTY(&asoc->asoc.send_queue) && TAILQ_EMPTY(&asoc->asoc.sent_queue) && (asoc->asoc.stream_queue_cnt == 0)) { if ((*asoc->asoc.ss_functions.sctp_ss_is_user_msgs_incomplete) (asoc, &asoc->asoc)) { goto abort_anyway; } if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { struct sctp_nets *netp; /* * there is nothing queued to send, * so I send shutdown */ if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(&asoc->asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(&asoc->asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(asoc); if (asoc->asoc.alternate) { netp = asoc->asoc.alternate; } else { netp = asoc->asoc.primary_destination; } sctp_send_shutdown(asoc, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, asoc->sctp_ep, asoc, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc, asoc->asoc.primary_destination); sctp_chunk_output(inp, asoc, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_LOCKED); } } else { /* mark into shutdown pending */ asoc->asoc.state |= SCTP_STATE_SHUTDOWN_PENDING; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc, asoc->asoc.primary_destination); if ((*asoc->asoc.ss_functions.sctp_ss_is_user_msgs_incomplete) (asoc, &asoc->asoc)) { asoc->asoc.state |= SCTP_STATE_PARTIAL_MSG_LEFT; } if (TAILQ_EMPTY(&asoc->asoc.send_queue) && TAILQ_EMPTY(&asoc->asoc.sent_queue) && (asoc->asoc.state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_5; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_6) == 0) { cnt_in_sd++; } continue; } else { sctp_chunk_output(inp, asoc, SCTP_OUTPUT_FROM_CLOSING, SCTP_SO_LOCKED); } } cnt_in_sd++; SCTP_TCB_UNLOCK(asoc); } /* now is there some left in our SHUTDOWN state? */ if (cnt_in_sd) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 2); #endif inp->sctp_socket = NULL; SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } } inp->sctp_socket = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) != SCTP_PCB_FLAGS_UNBOUND) { /* * ok, this guy has been bound. It's port is somewhere in * the SCTP_BASE_INFO(hash table). Remove it! */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags |= SCTP_PCB_FLAGS_UNBOUND; } + /* * If there is a timer running to kill us, forget it, since it may * have a contest on the INP lock.. which would cause us to die ... */ cnt = 0; LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_list, sctp_tcblist, nasoc) { SCTP_TCB_LOCK(asoc); if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { if (asoc->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { asoc->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, asoc, NULL); } cnt++; SCTP_TCB_UNLOCK(asoc); continue; } /* Free associations that are NOT killing us */ if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_COOKIE_WAIT) && ((asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) { struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_7; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); } else if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { cnt++; SCTP_TCB_UNLOCK(asoc); continue; } if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_FORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_8) == 0) { cnt++; } } if (cnt) { /* Ok we have someone out there that will kill us */ (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 3); #endif SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } if (SCTP_INP_LOCK_CONTENDED(inp)) being_refed++; if (SCTP_INP_READ_CONTENDED(inp)) being_refed++; if (SCTP_ASOC_CREATE_LOCK_CONTENDED(inp)) being_refed++; if ((inp->refcount) || (being_refed) || (inp->sctp_flags & SCTP_PCB_FLAGS_CLOSE_IP)) { (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 4); #endif sctp_timer_start(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } inp->sctp_ep.signature_change.type = 0; inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_ALLGONE; /* * Remove it from the list .. last thing we need a lock for. */ LIST_REMOVE(inp, sctp_list); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); /* * Now we release all locks. Since this INP cannot be found anymore * except possibly by the kill timer that might be running. We call * the drain function here. It should hit the case were it sees the * ACTIVE flag cleared and exit out freeing us to proceed and * destroy everything. */ if (from != SCTP_CALLED_FROM_INPKILL_TIMER) { (void)SCTP_OS_TIMER_STOP_DRAIN(&inp->sctp_ep.signature_change.timer); } else { /* Probably un-needed */ (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 5); #endif if ((inp->sctp_asocidhash) != NULL) { SCTP_HASH_FREE(inp->sctp_asocidhash, inp->hashasocidmark); inp->sctp_asocidhash = NULL; } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(sq, &inp->read_queue, next, nsq) { /* Its only abandoned if it had data left */ if (sq->length) SCTP_STAT_INCR(sctps_left_abandon); TAILQ_REMOVE(&inp->read_queue, sq, next); sctp_free_remote_addr(sq->whoFrom); if (so) so->so_rcv.sb_cc -= sq->length; if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } /* * no need to free the net count, since at this point all * assoc's are gone. */ sctp_free_a_readq(NULL, sq); } /* Now the sctp_pcb things */ /* * free each asoc if it is not already closed/free. we can't use the * macro here since le_next will get freed as part of the * sctp_free_assoc() call. */ if (ip_pcb->inp_options) { (void)sctp_m_free(ip_pcb->inp_options); ip_pcb->inp_options = 0; } + + #ifdef INET6 if (ip_pcb->inp_vflag & INP_IPV6) { struct in6pcb *in6p; in6p = (struct in6pcb *)inp; ip6_freepcbopts(in6p->in6p_outputopts); } #endif /* INET6 */ ip_pcb->inp_vflag = 0; /* free up authentication fields */ if (inp->sctp_ep.local_auth_chunks != NULL) sctp_free_chunklist(inp->sctp_ep.local_auth_chunks); if (inp->sctp_ep.local_hmacs != NULL) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); LIST_FOREACH_SAFE(shared_key, &inp->sctp_ep.shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* * if we have an address list the following will free the list of * ifaddr's that are set into this ep. Again macro limitations here, * since the LIST_FOREACH could be a bad idea. */ LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { sctp_remove_laddr(laddr); } #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_free_list, sctp_tcblist, nasoc) { LIST_REMOVE(asoc, sctp_tcblist); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), asoc); SCTP_DECR_ASOC_COUNT(); } /* *** END TEMP CODE *** */ #endif /* Now lets see about freeing the EP hash table. */ if (inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(inp->sctp_tcbhash, inp->sctp_hashmark); inp->sctp_tcbhash = NULL; } /* Now we must put the ep memory back into the zone pool */ crfree(inp->ip_inp.inp.inp_cred); INP_LOCK_DESTROY(&inp->ip_inp.inp); SCTP_INP_LOCK_DESTROY(inp); SCTP_INP_READ_DESTROY(inp); SCTP_ASOC_CREATE_LOCK_DESTROY(inp); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_DECR_EP_COUNT(); } struct sctp_nets * sctp_findnet(struct sctp_tcb *stcb, struct sockaddr *addr) { struct sctp_nets *net; /* locate the address */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (sctp_cmpaddr(addr, (struct sockaddr *)&net->ro._l_addr)) return (net); } return (NULL); } int sctp_is_address_on_local_host(struct sockaddr *addr, uint32_t vrf_id) { struct sctp_ifa *sctp_ifa; sctp_ifa = sctp_find_ifa_by_addr(addr, vrf_id, SCTP_ADDR_NOT_LOCKED); if (sctp_ifa) { return (1); } else { return (0); } } /* * add's a remote endpoint address, done with the INIT/INIT-ACK as well as * when a ASCONF arrives that adds it. It will also initialize all the cwnd * stats of stuff. */ int sctp_add_remote_addr(struct sctp_tcb *stcb, struct sockaddr *newaddr, struct sctp_nets **netp, uint16_t port, int set_scope, int from) { /* * The following is redundant to the same lines in the * sctp_aloc_assoc() but is needed since others call the add address * function */ struct sctp_nets *net, *netfirst; int addr_inscope; SCTPDBG(SCTP_DEBUG_PCB1, "Adding an address (from:%d) to the peer: ", from); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, newaddr); netfirst = sctp_findnet(stcb, newaddr); if (netfirst) { /* * Lie and return ok, we don't want to make the association * go away for this behavior. It will happen in the TCP * model in a connected socket. It does not reach the hash * table until after the association is built so it can't be * found. Mark as reachable, since the initial creation will * have been cleared and the NOT_IN_ASSOC flag will have * been added... and we don't want to end up removing it * back out. */ if (netfirst->dest_state & SCTP_ADDR_UNCONFIRMED) { netfirst->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED); } else { netfirst->dest_state = SCTP_ADDR_REACHABLE; } return (0); } addr_inscope = 1; switch (newaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)newaddr; if (sin->sin_addr.s_addr == 0) { /* Invalid address */ return (-1); } /* zero out the zero area */ memset(&sin->sin_zero, 0, sizeof(sin->sin_zero)); /* assure len is set */ sin->sin_len = sizeof(struct sockaddr_in); if (set_scope) { if (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { stcb->asoc.scope.ipv4_local_scope = 1; } } else { /* Validate the address is in scope */ if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) && (stcb->asoc.scope.ipv4_local_scope == 0)) { addr_inscope = 0; } } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)newaddr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Invalid address */ return (-1); } /* assure len is set */ sin6->sin6_len = sizeof(struct sockaddr_in6); if (set_scope) { if (sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id)) { stcb->asoc.scope.loopback_scope = 1; stcb->asoc.scope.local_scope = 0; stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.site_scope = 1; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { /* * If the new destination is a * LINK_LOCAL we must have common * site scope. Don't set the local * scope since we may not share all * links, only loopback can do this. * Links on the local network would * also be on our private network * for v4 too. */ stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.site_scope = 1; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) { /* * If the new destination is * SITE_LOCAL then we must have site * scope in common. */ stcb->asoc.scope.site_scope = 1; } } else { /* Validate the address is in scope */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr) && (stcb->asoc.scope.loopback_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) && (stcb->asoc.scope.local_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) && (stcb->asoc.scope.site_scope == 0)) { addr_inscope = 0; } } break; } #endif default: /* not supported family type */ return (-1); } net = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_net), struct sctp_nets); if (net == NULL) { return (-1); } SCTP_INCR_RADDR_COUNT(); memset(net, 0, sizeof(struct sctp_nets)); (void)SCTP_GETTIME_TIMEVAL(&net->start_time); memcpy(&net->ro._l_addr, newaddr, newaddr->sa_len); switch (newaddr->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)&net->ro._l_addr)->sin_port = stcb->rport; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&net->ro._l_addr)->sin6_port = stcb->rport; break; #endif default: break; } net->addr_is_local = sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id); if (net->addr_is_local && ((set_scope || (from == SCTP_ADDR_IS_CONFIRMED)))) { stcb->asoc.scope.loopback_scope = 1; stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.local_scope = 0; stcb->asoc.scope.site_scope = 1; addr_inscope = 1; } net->failure_threshold = stcb->asoc.def_net_failure; net->pf_threshold = stcb->asoc.def_net_pf_threshold; if (addr_inscope == 0) { net->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_OUT_OF_SCOPE); } else { if (from == SCTP_ADDR_IS_CONFIRMED) /* SCTP_ADDR_IS_CONFIRMED is passed by connect_x */ net->dest_state = SCTP_ADDR_REACHABLE; else net->dest_state = SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED; } /* * We set this to 0, the timer code knows that this means its an * initial value */ net->rto_needed = 1; net->RTO = 0; net->RTO_measured = 0; stcb->asoc.numnets++; net->ref_count = 1; net->cwr_window_tsn = net->last_cwr_tsn = stcb->asoc.sending_seq - 1; net->port = port; net->dscp = stcb->asoc.default_dscp; #ifdef INET6 net->flowlabel = stcb->asoc.default_flowlabel; #endif if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT)) { net->dest_state |= SCTP_ADDR_NOHB; } else { net->dest_state &= ~SCTP_ADDR_NOHB; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD)) { net->dest_state |= SCTP_ADDR_NO_PMTUD; } else { net->dest_state &= ~SCTP_ADDR_NO_PMTUD; } net->heart_beat_delay = stcb->asoc.heart_beat_delay; /* Init the timer structure */ SCTP_OS_TIMER_INIT(&net->rxt_timer.timer); SCTP_OS_TIMER_INIT(&net->pmtu_timer.timer); SCTP_OS_TIMER_INIT(&net->hb_timer.timer); /* Now generate a route for this guy */ #ifdef INET6 /* KAME hack: embed scopeid */ if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)); sin6->sin6_scope_id = 0; } #endif SCTP_RTALLOC((sctp_route_t *)&net->ro, stcb->asoc.vrf_id, stcb->sctp_ep->fibnum); net->src_addr_selected = 0; if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro)) { /* Get source address */ net->ro._s_addr = sctp_source_address_selection(stcb->sctp_ep, stcb, (sctp_route_t *)&net->ro, net, 0, stcb->asoc.vrf_id); if (stcb->asoc.default_mtu > 0) { net->mtu = stcb->asoc.default_mtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } #if defined(INET) || defined(INET6) if (net->port) { net->mtu += (uint32_t)sizeof(struct udphdr); } #endif } else if (net->ro._s_addr != NULL) { uint32_t imtu, rmtu, hcmtu; net->src_addr_selected = 1; /* Now get the interface MTU */ if (net->ro._s_addr->ifn_p != NULL) { imtu = SCTP_GATHER_MTU_FROM_INTFC(net->ro._s_addr->ifn_p); } else { imtu = 0; } rmtu = SCTP_GATHER_MTU_FROM_ROUTE(net->ro._s_addr, &net->ro._l_addr.sa, net->ro.ro_rt); hcmtu = sctp_hc_get_mtu(&net->ro._l_addr, stcb->sctp_ep->fibnum); net->mtu = sctp_min_mtu(hcmtu, rmtu, imtu); if (rmtu == 0) { /* * Start things off to match mtu of * interface please. */ SCTP_SET_MTU_OF_ROUTE(&net->ro._l_addr.sa, net->ro.ro_rt, net->mtu); } } } if (net->mtu == 0) { if (stcb->asoc.default_mtu > 0) { net->mtu = stcb->asoc.default_mtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } #if defined(INET) || defined(INET6) if (net->port) { net->mtu += (uint32_t)sizeof(struct udphdr); } #endif } else { switch (newaddr->sa_family) { #ifdef INET case AF_INET: net->mtu = SCTP_DEFAULT_MTU; break; #endif #ifdef INET6 case AF_INET6: net->mtu = 1280; break; #endif default: break; } } } #if defined(INET) || defined(INET6) if (net->port) { net->mtu -= (uint32_t)sizeof(struct udphdr); } #endif if (from == SCTP_ALLOC_ASOC) { stcb->asoc.smallest_mtu = net->mtu; } if (stcb->asoc.smallest_mtu > net->mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } #ifdef INET6 if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_recoverscope(sin6); } #endif /* JRS - Use the congestion control given in the CC module */ if (stcb->asoc.cc_functions.sctp_set_initial_cc_param != NULL) (*stcb->asoc.cc_functions.sctp_set_initial_cc_param) (stcb, net); /* * CMT: CUC algo - set find_pseudo_cumack to TRUE (1) at beginning * of assoc (2005/06/27, iyengar@cis.udel.edu) */ net->find_pseudo_cumack = 1; net->find_rtx_pseudo_cumack = 1; /* Choose an initial flowid. */ net->flowid = stcb->asoc.my_vtag ^ ntohs(stcb->rport) ^ ntohs(stcb->sctp_ep->sctp_lport); net->flowtype = M_HASHTYPE_OPAQUE_HASH; if (netp) { *netp = net; } netfirst = TAILQ_FIRST(&stcb->asoc.nets); if (net->ro.ro_rt == NULL) { /* Since we have no route put it at the back */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); } else if (netfirst == NULL) { /* We are the first one in the pool. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (netfirst->ro.ro_rt == NULL) { /* * First one has NO route. Place this one ahead of the first * one. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (net->ro.ro_rt->rt_ifp != netfirst->ro.ro_rt->rt_ifp) { /* * This one has a different interface than the one at the * top of the list. Place it ahead. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else { /* * Ok we have the same interface as the first one. Move * forward until we find either a) one with a NULL route... * insert ahead of that b) one with a different ifp.. insert * after that. c) end of the list.. insert at the tail. */ struct sctp_nets *netlook; do { netlook = TAILQ_NEXT(netfirst, sctp_next); if (netlook == NULL) { /* End of the list */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); break; } else if (netlook->ro.ro_rt == NULL) { /* next one has NO route */ TAILQ_INSERT_BEFORE(netfirst, net, sctp_next); break; } else if (netlook->ro.ro_rt->rt_ifp != net->ro.ro_rt->rt_ifp) { TAILQ_INSERT_AFTER(&stcb->asoc.nets, netlook, net, sctp_next); break; } /* Shift forward */ netfirst = netlook; } while (netlook != NULL); } /* got to have a primary set */ if (stcb->asoc.primary_destination == 0) { stcb->asoc.primary_destination = net; } else if ((stcb->asoc.primary_destination->ro.ro_rt == NULL) && (net->ro.ro_rt) && ((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0)) { /* No route to current primary adopt new primary */ stcb->asoc.primary_destination = net; } /* Validate primary is first */ net = TAILQ_FIRST(&stcb->asoc.nets); if ((net != stcb->asoc.primary_destination) && (stcb->asoc.primary_destination)) { /* * first one on the list is NOT the primary sctp_cmpaddr() * is much more efficient if the primary is the first on the * list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } static uint32_t sctp_aloc_a_assoc_id(struct sctp_inpcb *inp, struct sctp_tcb *stcb) { uint32_t id; struct sctpasochead *head; struct sctp_tcb *lstcb; SCTP_INP_WLOCK(inp); try_again: if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { /* TSNH */ SCTP_INP_WUNLOCK(inp); return (0); } /* * We don't allow assoc id to be one of SCTP_FUTURE_ASSOC, * SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC. */ if (inp->sctp_associd_counter <= SCTP_ALL_ASSOC) { inp->sctp_associd_counter = SCTP_ALL_ASSOC + 1; } id = inp->sctp_associd_counter; inp->sctp_associd_counter++; lstcb = sctp_findasoc_ep_asocid_locked(inp, (sctp_assoc_t)id, 0); if (lstcb) { goto try_again; } head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbasocidhash); stcb->asoc.in_asocid_hash = 1; SCTP_INP_WUNLOCK(inp); return id; } /* * allocate an association and add it to the endpoint. The caller must be * careful to add all additional addresses once they are know right away or * else the assoc will be may experience a blackout scenario. */ struct sctp_tcb * sctp_aloc_assoc(struct sctp_inpcb *inp, struct sockaddr *firstaddr, int *error, uint32_t override_tag, uint32_t vrf_id, uint16_t o_streams, uint16_t port, struct thread *p ) { /* note the p argument is only valid in unbound sockets */ struct sctp_tcb *stcb; struct sctp_association *asoc; struct sctpasochead *head; uint16_t rport; int err; /* * Assumption made here: Caller has done a * sctp_findassociation_ep_addr(ep, addr's); to make sure the * address does not exist already. */ if (SCTP_BASE_INFO(ipi_count_asoc) >= SCTP_MAX_NUM_OF_ASOC) { /* Hit max assoc, sorry no more */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } if (firstaddr == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) && ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) || (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) { /* * If its in the TCP pool, its NOT allowed to create an * association. The parent listener needs to call * sctp_aloc_assoc.. or the one-2-many socket. If a peeled * off, or connected one does this.. its an error. */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED)) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } } SCTPDBG(SCTP_DEBUG_PCB3, "Allocate an association for peer:"); #ifdef SCTP_DEBUG if (firstaddr) { SCTPDBG_ADDR(SCTP_DEBUG_PCB3, firstaddr); switch (firstaddr->sa_family) { #ifdef INET case AF_INET: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in *)firstaddr)->sin_port)); break; #endif #ifdef INET6 case AF_INET6: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in6 *)firstaddr)->sin6_port)); break; #endif default: break; } } else { SCTPDBG(SCTP_DEBUG_PCB3, "None\n"); } #endif /* SCTP_DEBUG */ switch (firstaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)firstaddr; if ((ntohs(sin->sin_port) == 0) || (sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* Invalid address */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin->sin_port; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)firstaddr; if ((ntohs(sin6->sin6_port) == 0) || IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* Invalid address */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin6->sin6_port; break; } #endif default: /* not supported family type */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_INP_RUNLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* * If you have not performed a bind, then we need to do the * ephemeral bind for you. */ if ((err = sctp_inpcb_bind(inp->sctp_socket, (struct sockaddr *)NULL, (struct sctp_ifa *)NULL, p ))) { /* bind error, probably perm */ *error = err; return (NULL); } } stcb = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_asoc), struct sctp_tcb); if (stcb == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); *error = ENOMEM; return (NULL); } SCTP_INCR_ASOC_COUNT(); memset(stcb, 0, sizeof(*stcb)); asoc = &stcb->asoc; asoc->assoc_id = sctp_aloc_a_assoc_id(inp, stcb); SCTP_TCB_LOCK_INIT(stcb); SCTP_TCB_SEND_LOCK_INIT(stcb); stcb->rport = rport; /* setup back pointer's */ stcb->sctp_ep = inp; stcb->sctp_socket = inp->sctp_socket; if ((err = sctp_init_asoc(inp, stcb, override_tag, vrf_id, o_streams))) { /* failed */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); *error = err; return (NULL); } /* and the port */ SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { /* inpcb freed while alloc going on */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_DECR_ASOC_COUNT(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_TCB_LOCK(stcb); /* now that my_vtag is set, add it to the hash */ head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* put it in the bucket in the vtag hash of assoc's for the system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); SCTP_INP_INFO_WUNLOCK(); if ((err = sctp_add_remote_addr(stcb, firstaddr, NULL, port, SCTP_DO_SETSCOPE, SCTP_ALLOC_ASOC))) { /* failure.. memory error? */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } SCTP_DECR_ASOC_COUNT(); SCTP_TCB_UNLOCK(stcb); SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_INP_WUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } /* Init all the timers */ SCTP_OS_TIMER_INIT(&asoc->dack_timer.timer); SCTP_OS_TIMER_INIT(&asoc->strreset_timer.timer); SCTP_OS_TIMER_INIT(&asoc->asconf_timer.timer); SCTP_OS_TIMER_INIT(&asoc->shut_guard_timer.timer); SCTP_OS_TIMER_INIT(&asoc->autoclose_timer.timer); SCTP_OS_TIMER_INIT(&asoc->delayed_event_timer.timer); SCTP_OS_TIMER_INIT(&asoc->delete_prim_timer.timer); LIST_INSERT_HEAD(&inp->sctp_asoc_list, stcb, sctp_tcblist); /* now file the port under the hash as well */ if (inp->sctp_tcbhash != NULL) { head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(stcb->rport, inp->sctp_hashmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbhash); } SCTP_INP_WUNLOCK(inp); SCTPDBG(SCTP_DEBUG_PCB1, "Association %p now allocated\n", (void *)stcb); return (stcb); } void sctp_remove_net(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_association *asoc; asoc = &stcb->asoc; asoc->numnets--; TAILQ_REMOVE(&asoc->nets, net, sctp_next); if (net == asoc->primary_destination) { /* Reset primary */ struct sctp_nets *lnet; lnet = TAILQ_FIRST(&asoc->nets); /* * Mobility adaptation Ideally, if deleted destination is * the primary, it becomes a fast retransmission trigger by * the subsequent SET PRIMARY. (by micchie) */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: primary dst is deleting\n"); if (asoc->deleted_primary != NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: deleted primary may be already stored\n"); goto out; } asoc->deleted_primary = net; atomic_add_int(&net->ref_count, 1); memset(&net->lastsa, 0, sizeof(net->lastsa)); memset(&net->lastsv, 0, sizeof(net->lastsv)); sctp_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED); sctp_timer_start(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL); } out: /* Try to find a confirmed primary */ asoc->primary_destination = sctp_find_alternate_net(stcb, lnet, 0); } if (net == asoc->last_data_chunk_from) { /* Reset primary */ asoc->last_data_chunk_from = TAILQ_FIRST(&asoc->nets); } if (net == asoc->last_control_chunk_from) { /* Clear net */ asoc->last_control_chunk_from = NULL; } if (net == stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } sctp_free_remote_addr(net); } /* * remove a remote endpoint address from an association, it will fail if the * address does not exist. */ int sctp_del_remote_addr(struct sctp_tcb *stcb, struct sockaddr *remaddr) { /* * Here we need to remove a remote address. This is quite simple, we * first find it in the list of address for the association * (tasoc->asoc.nets) and then if it is there, we do a LIST_REMOVE * on that item. Note we do not allow it to be removed if there are * no other addresses. */ struct sctp_association *asoc; struct sctp_nets *net, *nnet; asoc = &stcb->asoc; /* locate the address */ TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { if (net->ro._l_addr.sa.sa_family != remaddr->sa_family) { continue; } if (sctp_cmpaddr((struct sockaddr *)&net->ro._l_addr, remaddr)) { /* we found the guy */ if (asoc->numnets < 2) { /* Must have at LEAST two remote addresses */ return (-1); } else { sctp_remove_net(stcb, net); return (0); } } } /* not found. */ return (-2); } void sctp_delete_from_timewait(uint32_t tag, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; int found = 0; int i; chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; found = 1; break; } } if (found) break; } } int sctp_is_in_timewait(uint32_t tag, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; int found = 0; int i; SCTP_INP_INFO_WLOCK(); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { found = 1; break; } } if (found) break; } SCTP_INP_INFO_WUNLOCK(); return (found); } void sctp_add_vtag_to_timewait(uint32_t tag, uint32_t time, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; struct timeval now; int set, i; if (time == 0) { /* Its disabled */ return; } (void)SCTP_GETTIME_TIMEVAL(&now); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; set = 0; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { /* Block(s) present, lets find space, and expire on the fly */ for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == 0) && !set) { twait_block->vtag_block[i].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[i].v_tag = tag; twait_block->vtag_block[i].lport = lport; twait_block->vtag_block[i].rport = rport; set = 1; } else if ((twait_block->vtag_block[i].v_tag) && ((long)twait_block->vtag_block[i].tv_sec_at_expire < now.tv_sec)) { /* Audit expires this guy */ twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; if (set == 0) { /* Reuse it for my new tag */ twait_block->vtag_block[i].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[i].v_tag = tag; twait_block->vtag_block[i].lport = lport; twait_block->vtag_block[i].rport = rport; set = 1; } } } if (set) { /* * We only do up to the block where we can place our * tag for audits */ break; } } /* Need to add a new block to chain */ if (!set) { SCTP_MALLOC(twait_block, struct sctp_tagblock *, sizeof(struct sctp_tagblock), SCTP_M_TIMW); if (twait_block == NULL) { #ifdef INVARIANTS panic("Can not alloc tagblock"); #endif return; } memset(twait_block, 0, sizeof(struct sctp_tagblock)); LIST_INSERT_HEAD(chain, twait_block, sctp_nxt_tagblock); twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[0].v_tag = tag; twait_block->vtag_block[0].lport = lport; twait_block->vtag_block[0].rport = rport; } } void sctp_clean_up_stream(struct sctp_tcb *stcb, struct sctp_readhead *rh) { struct sctp_tmit_chunk *chk, *nchk; struct sctp_queued_to_read *control, *ncontrol; TAILQ_FOREACH_SAFE(control, rh, next_instrm, ncontrol) { TAILQ_REMOVE(rh, control, next_instrm); control->on_strm_q = 0; if (control->on_read_q == 0) { sctp_free_remote_addr(control->whoFrom); if (control->data) { sctp_m_freem(control->data); control->data = NULL; } } /* Reassembly free? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* * We don't free the address here since all the net's were * freed above. */ if (control->on_read_q == 0) { sctp_free_a_readq(stcb, control); } } } /*- * Free the association after un-hashing the remote port. This * function ALWAYS returns holding NO LOCK on the stcb. It DOES * expect that the input to this function IS a locked TCB. * It will return 0, if it did NOT destroy the association (instead * it unlocks it. It will return NON-zero if it either destroyed the * association OR the association is already destroyed. */ int sctp_free_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int from_inpcbfree, int from_location) { int i; struct sctp_association *asoc; struct sctp_nets *net, *nnet; struct sctp_laddr *laddr, *naddr; struct sctp_tmit_chunk *chk, *nchk; struct sctp_asconf_addr *aparam, *naparam; struct sctp_asconf_ack *aack, *naack; struct sctp_stream_reset_list *strrst, *nstrrst; struct sctp_queued_to_read *sq, *nsq; struct sctp_stream_queue_pending *sp, *nsp; sctp_sharedkey_t *shared_key, *nshared_key; struct socket *so; /* first, lets purge the entry from the hash table. */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 6); #endif if (stcb->asoc.state == 0) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 7); #endif /* there is no asoc, really TSNH :-0 */ return (1); } if (stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } /* TEMP CODE */ if (stcb->freed_from_where == 0) { /* Only record the first place free happened from */ stcb->freed_from_where = from_location; } /* TEMP CODE */ asoc = &stcb->asoc; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; else so = inp->sctp_socket; /* * We used timer based freeing if a reader or writer is in the way. * So we first check if we are actually being called from a timer, * if so we abort early if a reader or writer is still in the way. */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) && (from_inpcbfree == SCTP_NORMAL_PROC)) { /* * is it the timer driving us? if so are the reader/writers * gone? */ if (stcb->asoc.refcnt) { /* nope, reader or writer in the way */ sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); /* no asoc destroyed */ SCTP_TCB_UNLOCK(stcb); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 8); #endif return (0); } } /* now clean up any other timers */ (void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer); asoc->dack_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); /*- * For stream reset we don't blast this unless * it is a str-reset timer, it might be the * free-asoc timer which we DON'T want to * disturb. */ if (asoc->strreset_timer.type == SCTP_TIMER_TYPE_STRRESET) asoc->strreset_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer); asoc->asconf_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer); asoc->autoclose_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer); asoc->shut_guard_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer); asoc->delayed_event_timer.self = NULL; /* Mobility adaptation */ (void)SCTP_OS_TIMER_STOP(&asoc->delete_prim_timer.timer); asoc->delete_prim_timer.self = NULL; TAILQ_FOREACH(net, &asoc->nets, sctp_next) { (void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer); net->rxt_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer); net->pmtu_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&net->hb_timer.timer); net->hb_timer.self = NULL; } /* Now the read queue needs to be cleaned up (only once) */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0) { stcb->asoc.state |= SCTP_STATE_ABOUT_TO_BE_FREED; SCTP_INP_READ_LOCK(inp); TAILQ_FOREACH(sq, &inp->read_queue, next) { if (sq->stcb == stcb) { sq->do_not_ref_stcb = 1; sq->sinfo_cumtsn = stcb->asoc.cumulative_tsn; /* * If there is no end, there never will be * now. */ if (sq->end_added == 0) { /* Held for PD-API clear that. */ sq->pdapi_aborted = 1; sq->held_length = 0; if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_PDAPIEVNT) && (so != NULL)) { /* * Need to add a PD-API * aborted indication. * Setting the control_pdapi * assures that it will be * added right after this * msg. */ uint32_t strseq; stcb->asoc.control_pdapi = sq; strseq = (sq->sinfo_stream << 16) | (sq->mid & 0x0000ffff); sctp_ulp_notify(SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION, stcb, SCTP_PARTIAL_DELIVERY_ABORTED, (void *)&strseq, SCTP_SO_LOCKED); stcb->asoc.control_pdapi = NULL; } } /* Add an end to wake them */ sq->end_added = 1; } } SCTP_INP_READ_UNLOCK(inp); if (stcb->block_entry) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_PCB, ECONNRESET); stcb->block_entry->error = ECONNRESET; stcb->block_entry = NULL; } } if ((stcb->asoc.refcnt) || (stcb->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE)) { /* * Someone holds a reference OR the socket is unaccepted * yet. */ if ((stcb->asoc.refcnt) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { stcb->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); } SCTP_TCB_UNLOCK(stcb); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if (so) { /* Wake any reader/writers */ sctp_sorwakeup(inp, so); sctp_sowwakeup(inp, so); } + #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 9); #endif /* no asoc destroyed */ return (0); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 10); #endif /* * When I reach here, no others want to kill the assoc yet.. and I * own the lock. Now its possible an abort comes in when I do the * lock exchange below to grab all the locks to do the final take * out. to prevent this we increment the count, which will start a * timer and blow out above thus assuring us that we hold exclusive * killing of the asoc. Note that after getting back the TCB lock we * will go ahead and increment the counter back up and stop any * timer a passing stranger may have started :-S */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); SCTP_TCB_LOCK(stcb); } /* Double check the GONE flag */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* * For TCP type we need special handling when we are * connected. We also include the peel'ed off ones to. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CONNECTED; inp->sctp_flags |= SCTP_PCB_FLAGS_WAS_CONNECTED; if (so) { SOCK_LOCK(so); if (so->so_rcv.sb_cc == 0) { so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING | SS_ISCONNECTED); } socantrcvmore_locked(so); socantsendmore(so); sctp_sowwakeup(inp, so); sctp_sorwakeup(inp, so); SCTP_SOWAKEUP(so); } } } + /* * Make it invalid too, that way if its about to run it will abort * and return. */ /* re-increment the lock */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_add_int(&stcb->asoc.refcnt, -1); } if (stcb->asoc.refcnt) { stcb->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_WUNLOCK(inp); } SCTP_TCB_UNLOCK(stcb); return (0); } asoc->state = 0; if (inp->sctp_tcbhash) { LIST_REMOVE(stcb, sctp_tcbhash); } if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } /* Now lets remove it from the list of ALL associations in the EP */ LIST_REMOVE(stcb, sctp_tcblist); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); } /* pull from vtag hash */ LIST_REMOVE(stcb, sctp_asocs); sctp_add_vtag_to_timewait(asoc->my_vtag, SCTP_BASE_SYSCTL(sctp_vtag_time_wait), inp->sctp_lport, stcb->rport); /* * Now restop the timers to be sure this is paranoia at is finest! */ (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer); TAILQ_FOREACH(net, &asoc->nets, sctp_next) { (void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer); (void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer); (void)SCTP_OS_TIMER_STOP(&net->hb_timer.timer); } asoc->strreset_timer.type = SCTP_TIMER_TYPE_NONE; /* * The chunk lists and such SHOULD be empty but we check them just * in case. */ /* anything on the wheel needs to be removed */ for (i = 0; i < asoc->streamoutcnt; i++) { struct sctp_stream_out *outs; outs = &asoc->strmout[i]; /* now clean up any chunks here */ TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { atomic_subtract_int(&asoc->stream_queue_cnt, 1); TAILQ_REMOVE(&outs->outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp, 0); sctp_free_spbufspace(stcb, asoc, sp); if (sp->data) { if (so) { /* Still an open socket - report */ sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, 0, (void *)sp, SCTP_SO_LOCKED); } if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } sctp_free_a_strmoq(stcb, sp, SCTP_SO_LOCKED); } } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(strrst, &asoc->resetHead, next_resp, nstrrst) { TAILQ_REMOVE(&asoc->resetHead, strrst, next_resp); SCTP_FREE(strrst, SCTP_M_STRESET); } TAILQ_FOREACH_SAFE(sq, &asoc->pending_reply_queue, next, nsq) { TAILQ_REMOVE(&asoc->pending_reply_queue, sq, next); if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } sctp_free_remote_addr(sq->whoFrom); sq->whoFrom = NULL; sq->stcb = NULL; /* Free the ctl entry */ sctp_free_a_readq(stcb, sq); /* sa_ignore FREED_MEMORY */ } TAILQ_FOREACH_SAFE(chk, &asoc->free_chunks, sctp_next, nchk) { TAILQ_REMOVE(&asoc->free_chunks, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); atomic_subtract_int(&SCTP_BASE_INFO(ipi_free_chunks), 1); asoc->free_chunk_cnt--; /* sa_ignore FREED_MEMORY */ } /* pending send queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); if (chk->whoTo) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = NULL; } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* sent queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { if (chk->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } } TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } #ifdef INVARIANTS for (i = 0; i < stcb->asoc.streamoutcnt; i++) { if (stcb->asoc.strmout[i].chunks_on_queues > 0) { panic("%u chunks left for stream %u.", stcb->asoc.strmout[i].chunks_on_queues, i); } } #endif /* control queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->control_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* ASCONF queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->asconf_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->asconf_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } /* the stream outs */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } asoc->strm_realoutsize = asoc->streamoutcnt = 0; if (asoc->strmin) { for (i = 0; i < asoc->streamincnt; i++) { sctp_clean_up_stream(stcb, &asoc->strmin[i].inqueue); sctp_clean_up_stream(stcb, &asoc->strmin[i].uno_inqueue); } SCTP_FREE(asoc->strmin, SCTP_M_STRMI); asoc->strmin = NULL; } asoc->streamincnt = 0; TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { #ifdef INVARIANTS if (SCTP_BASE_INFO(ipi_count_raddr) == 0) { panic("no net's left alloc'ed, or list points to itself"); } #endif TAILQ_REMOVE(&asoc->nets, net, sctp_next); sctp_free_remote_addr(net); } LIST_FOREACH_SAFE(laddr, &asoc->sctp_restricted_addrs, sctp_nxt_addr, naddr) { /* sa_ignore FREED_MEMORY */ sctp_remove_laddr(laddr); } /* pending asconf (address) parameters */ TAILQ_FOREACH_SAFE(aparam, &asoc->asconf_queue, next, naparam) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_queue, aparam, next); SCTP_FREE(aparam, SCTP_M_ASC_ADDR); } TAILQ_FOREACH_SAFE(aack, &asoc->asconf_ack_sent, next, naack) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_ack_sent, aack, next); if (aack->data != NULL) { sctp_m_freem(aack->data); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asconf_ack), aack); } /* clean up auth stuff */ if (asoc->local_hmacs) sctp_free_hmaclist(asoc->local_hmacs); if (asoc->peer_hmacs) sctp_free_hmaclist(asoc->peer_hmacs); if (asoc->local_auth_chunks) sctp_free_chunklist(asoc->local_auth_chunks); if (asoc->peer_auth_chunks) sctp_free_chunklist(asoc->peer_auth_chunks); sctp_free_authinfo(&asoc->authinfo); LIST_FOREACH_SAFE(shared_key, &asoc->shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* Insert new items here :> */ /* Get rid of LOCK */ SCTP_TCB_UNLOCK(stcb); SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_RLOCK(inp); } #ifdef SCTP_TRACK_FREED_ASOCS if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* now clean up the tasoc itself */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); } else { LIST_INSERT_HEAD(&inp->sctp_asoc_free_list, stcb, sctp_tcblist); } #else SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); #endif if (from_inpcbfree == SCTP_NORMAL_PROC) { if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* * If its NOT the inp_free calling us AND sctp_close * as been called, we call back... */ SCTP_INP_RUNLOCK(inp); /* * This will start the kill timer (if we are the * last one) since we hold an increment yet. But * this is the only safe way to do this since * otherwise if the socket closes at the same time * we are here we might collide in the cleanup. */ sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE, SCTP_CALLED_DIRECTLY_NOCMPSET); SCTP_INP_DECR_REF(inp); goto out_of; } else { /* The socket is still open. */ SCTP_INP_DECR_REF(inp); } } if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_RUNLOCK(inp); } out_of: /* destroyed the asoc */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 11); #endif return (1); } /* * determine if a destination is "reachable" based upon the addresses bound * to the current endpoint (e.g. only v4 or v6 currently bound) */ /* * FIX: if we allow assoc-level bindx(), then this needs to be fixed to use * assoc level v4/v6 flags, as the assoc *may* not have the same address * types bound as its endpoint */ int sctp_destination_is_reachable(struct sctp_tcb *stcb, struct sockaddr *destaddr) { struct sctp_inpcb *inp; int answer; /* * No locks here, the TCB, in all cases is already locked and an * assoc is up. There is either a INP lock by the caller applied (in * asconf case when deleting an address) or NOT in the HB case, * however if HB then the INP increment is up and the INP will not * be removed (on top of the fact that we have a TCB lock). So we * only want to read the sctp_flags, which is either bound-all or * not.. no protection needed since once an assoc is up you can't be * changing your binding. */ inp = stcb->sctp_ep; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* if bound all, destination is not restricted */ /* * RRS: Question during lock work: Is this correct? If you * are bound-all you still might need to obey the V4--V6 * flags??? IMO this bound-all stuff needs to be removed! */ return (1); } /* NOTE: all "scope" checks are done when local addresses are added */ switch (destaddr->sa_family) { #ifdef INET6 case AF_INET6: answer = inp->ip_inp.inp.inp_vflag & INP_IPV6; break; #endif #ifdef INET case AF_INET: answer = inp->ip_inp.inp.inp_vflag & INP_IPV4; break; #endif default: /* invalid family, so it's unreachable */ answer = 0; break; } return (answer); } /* * update the inp_vflags on an endpoint */ static void sctp_update_ep_vflag(struct sctp_inpcb *inp) { struct sctp_laddr *laddr; /* first clear the flag */ inp->ip_inp.inp.inp_vflag = 0; /* set the flag based on addresses on the ep list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } + if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { continue; } switch (laddr->ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } } } /* * Add the address to the endpoint local address list There is nothing to be * done if we are bound to all addresses */ void sctp_add_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa, uint32_t action) { struct sctp_laddr *laddr; struct sctp_tcb *stcb; int fnd, error = 0; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-useable addr. */ return; } } #endif /* first, is it already present? */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd == 0) { /* Not in the ep list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, action); if (error != 0) return; inp->laddr_count++; /* update inp_vflag flags */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { sctp_add_local_addr_restricted(stcb, ifa); } } return; } /* * select a new (hopefully reachable) destination net (should only be used * when we deleted an ep addr that is the only usable source address to reach * the destination net) */ static void sctp_select_primary_destination(struct sctp_tcb *stcb) { struct sctp_nets *net; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* for now, we'll just pick the first reachable one we find */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) continue; if (sctp_destination_is_reachable(stcb, (struct sockaddr *)&net->ro._l_addr)) { /* found a reachable destination */ stcb->asoc.primary_destination = net; } } /* I can't there from here! ...we're gonna die shortly... */ } /* * Delete the address from the endpoint local address list. There is nothing * to be done if we are bound to all addresses */ void sctp_del_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; int fnd; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd && (inp->laddr_count < 2)) { /* can't delete unless there are at LEAST 2 addresses */ return; } if (fnd) { /* * clean up any use of this address go through our * associations and clear any last_used_address that match * this one for each assoc, see if a new primary_destination * is needed */ struct sctp_tcb *stcb; /* clean up "next_addr_touse" */ if (inp->next_addr_touse == laddr) /* delete this address */ inp->next_addr_touse = NULL; /* clean up "last_used_address" */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { struct sctp_nets *net; SCTP_TCB_LOCK(stcb); if (stcb->asoc.last_used_address == laddr) /* delete this address */ stcb->asoc.last_used_address = NULL; /* * Now spin through all the nets and purge any ref * to laddr */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._s_addr == laddr->ifa) { /* Yep, purge src address selected */ sctp_rtentry_t *rt; /* delete this address if cached */ rt = net->ro.ro_rt; if (rt != NULL) { RTFREE(rt); net->ro.ro_rt = NULL; } sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } } SCTP_TCB_UNLOCK(stcb); } /* for each tcb */ /* remove it from the ep list */ sctp_remove_laddr(laddr); inp->laddr_count--; /* update inp_vflag flags */ sctp_update_ep_vflag(inp); } return; } /* * Add the address to the TCB local address restricted list. * This is a "pending" address list (eg. addresses waiting for an * ASCONF-ACK response) and cannot be used as a valid source address. */ void sctp_add_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; struct sctpladdr *list; /* * Assumes TCB is locked.. and possibly the INP. May need to * confirm/fix that if we need it and is not the case. */ list = &stcb->asoc.sctp_restricted_addrs; #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ return; } } #endif /* does the address already exist? */ LIST_FOREACH(laddr, list, sctp_nxt_addr) { if (laddr->ifa == ifa) { return; } } /* add to the list */ (void)sctp_insert_laddr(list, ifa, 0); return; } /* * Remove a local address from the TCB local address restricted list */ void sctp_del_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; /* * This is called by asconf work. It is assumed that a) The TCB is * locked and b) The INP is locked. This is true in as much as I can * trace through the entry asconf code where I did these locks. * Again, the ASCONF code is a bit different in that it does lock * the INP during its work often times. This must be since we don't * want other proc's looking up things while what they are looking * up is changing :-D */ inp = stcb->sctp_ep; /* if subset bound and don't allow ASCONF's, can't delete last */ if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { if (stcb->sctp_ep->laddr_count < 2) { /* can't delete last address */ return; } } LIST_FOREACH(laddr, &stcb->asoc.sctp_restricted_addrs, sctp_nxt_addr) { /* remove the address if it exists */ if (laddr->ifa == NULL) continue; if (laddr->ifa == ifa) { sctp_remove_laddr(laddr); return; } } /* address not found! */ return; } /* * Temporarily remove for __APPLE__ until we use the Tiger equivalents */ /* sysctl */ static int sctp_max_number_of_assoc = SCTP_MAX_NUM_OF_ASOC; static int sctp_scale_up_for_address = SCTP_SCALE_FOR_ADDR; #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) struct sctp_mcore_ctrl *sctp_mcore_workers = NULL; int *sctp_cpuarry = NULL; void sctp_queue_to_mcore(struct mbuf *m, int off, int cpu_to_use) { /* Queue a packet to a processor for the specified core */ struct sctp_mcore_queue *qent; struct sctp_mcore_ctrl *wkq; int need_wake = 0; if (sctp_mcore_workers == NULL) { /* Something went way bad during setup */ sctp_input_with_port(m, off, 0); return; } SCTP_MALLOC(qent, struct sctp_mcore_queue *, (sizeof(struct sctp_mcore_queue)), SCTP_M_MCORE); if (qent == NULL) { /* This is trouble */ sctp_input_with_port(m, off, 0); return; } qent->vn = curvnet; qent->m = m; qent->off = off; qent->v6 = 0; wkq = &sctp_mcore_workers[cpu_to_use]; SCTP_MCORE_QLOCK(wkq); TAILQ_INSERT_TAIL(&wkq->que, qent, next); if (wkq->running == 0) { need_wake = 1; } SCTP_MCORE_QUNLOCK(wkq); if (need_wake) { wakeup(&wkq->running); } } static void sctp_mcore_thread(void *arg) { struct sctp_mcore_ctrl *wkq; struct sctp_mcore_queue *qent; wkq = (struct sctp_mcore_ctrl *)arg; struct mbuf *m; int off, v6; /* Wait for first tickle */ SCTP_MCORE_LOCK(wkq); wkq->running = 0; msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); SCTP_MCORE_UNLOCK(wkq); /* Bind to our cpu */ thread_lock(curthread); sched_bind(curthread, wkq->cpuid); thread_unlock(curthread); /* Now lets start working */ SCTP_MCORE_LOCK(wkq); /* Now grab lock and go */ for (;;) { SCTP_MCORE_QLOCK(wkq); skip_sleep: wkq->running = 1; qent = TAILQ_FIRST(&wkq->que); if (qent) { TAILQ_REMOVE(&wkq->que, qent, next); SCTP_MCORE_QUNLOCK(wkq); CURVNET_SET(qent->vn); m = qent->m; off = qent->off; v6 = qent->v6; SCTP_FREE(qent, SCTP_M_MCORE); if (v6 == 0) { sctp_input_with_port(m, off, 0); } else { SCTP_PRINTF("V6 not yet supported\n"); sctp_m_freem(m); } CURVNET_RESTORE(); SCTP_MCORE_QLOCK(wkq); } wkq->running = 0; if (!TAILQ_EMPTY(&wkq->que)) { goto skip_sleep; } SCTP_MCORE_QUNLOCK(wkq); msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); } } static void sctp_startup_mcore_threads(void) { int i, cpu; if (mp_ncpus == 1) return; if (sctp_mcore_workers != NULL) { /* * Already been here in some previous vnet? */ return; } SCTP_MALLOC(sctp_mcore_workers, struct sctp_mcore_ctrl *, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl)), SCTP_M_MCORE); if (sctp_mcore_workers == NULL) { /* TSNH I hope */ return; } memset(sctp_mcore_workers, 0, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl))); /* Init the structures */ for (i = 0; i <= mp_maxid; i++) { TAILQ_INIT(&sctp_mcore_workers[i].que); SCTP_MCORE_LOCK_INIT(&sctp_mcore_workers[i]); SCTP_MCORE_QLOCK_INIT(&sctp_mcore_workers[i]); sctp_mcore_workers[i].cpuid = i; } if (sctp_cpuarry == NULL) { SCTP_MALLOC(sctp_cpuarry, int *, (mp_ncpus * sizeof(int)), SCTP_M_MCORE); i = 0; CPU_FOREACH(cpu) { sctp_cpuarry[i] = cpu; i++; } } + /* Now start them all */ CPU_FOREACH(cpu) { (void)kproc_create(sctp_mcore_thread, (void *)&sctp_mcore_workers[cpu], &sctp_mcore_workers[cpu].thread_proc, RFPROC, SCTP_KTHREAD_PAGES, SCTP_MCORE_NAME); } } #endif void sctp_pcb_init() { /* * SCTP initialization for the PCB structures should be called by * the sctp_init() function. */ int i; struct timeval tv; if (SCTP_BASE_VAR(sctp_pcb_initialized) != 0) { /* error I was called twice */ return; } SCTP_BASE_VAR(sctp_pcb_initialized) = 1; #if defined(SCTP_LOCAL_TRACE_BUF) memset(&SCTP_BASE_SYSCTL(sctp_log), 0, sizeof(struct sctp_log)); #endif #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_MALLOC(SCTP_BASE_STATS, struct sctpstat *, ((mp_maxid + 1) * sizeof(struct sctpstat)), SCTP_M_MCORE); #endif (void)SCTP_GETTIME_TIMEVAL(&tv); #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) memset(SCTP_BASE_STATS, 0, sizeof(struct sctpstat) * (mp_maxid + 1)); SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_sec = (uint32_t)tv.tv_sec; SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_usec = (uint32_t)tv.tv_usec; #else memset(&SCTP_BASE_STATS, 0, sizeof(struct sctpstat)); SCTP_BASE_STAT(sctps_discontinuitytime).tv_sec = (uint32_t)tv.tv_sec; SCTP_BASE_STAT(sctps_discontinuitytime).tv_usec = (uint32_t)tv.tv_usec; #endif /* init the empty list of (All) Endpoints */ LIST_INIT(&SCTP_BASE_INFO(listhead)); /* init the hash table of endpoints */ TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", &SCTP_BASE_SYSCTL(sctp_hashtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", &SCTP_BASE_SYSCTL(sctp_pcbtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", &SCTP_BASE_SYSCTL(sctp_chunkscale)); SCTP_BASE_INFO(sctp_asochash) = SCTP_HASH_INIT((SCTP_BASE_SYSCTL(sctp_hashtblsize) * 31), &SCTP_BASE_INFO(hashasocmark)); SCTP_BASE_INFO(sctp_ephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashmark)); SCTP_BASE_INFO(sctp_tcpephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashtcpmark)); SCTP_BASE_INFO(hashtblsize) = SCTP_BASE_SYSCTL(sctp_hashtblsize); SCTP_BASE_INFO(sctp_vrfhash) = SCTP_HASH_INIT(SCTP_SIZE_OF_VRF_HASH, &SCTP_BASE_INFO(hashvrfmark)); SCTP_BASE_INFO(vrf_ifn_hash) = SCTP_HASH_INIT(SCTP_VRF_IFN_HASH_SIZE, &SCTP_BASE_INFO(vrf_ifn_hashmark)); /* init the zones */ /* * FIX ME: Should check for NULL returns, but if it does fail we are * doomed to panic anyways... add later maybe. */ SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_ep), "sctp_ep", sizeof(struct sctp_inpcb), maxsockets); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asoc), "sctp_asoc", sizeof(struct sctp_tcb), sctp_max_number_of_assoc); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_laddr), "sctp_laddr", sizeof(struct sctp_laddr), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_net), "sctp_raddr", sizeof(struct sctp_nets), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_chunk), "sctp_chunk", sizeof(struct sctp_tmit_chunk), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_readq), "sctp_readq", sizeof(struct sctp_queued_to_read), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_strmoq), "sctp_stream_msg_out", sizeof(struct sctp_stream_queue_pending), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf), "sctp_asconf", sizeof(struct sctp_asconf), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf_ack), "sctp_asconf_ack", sizeof(struct sctp_asconf_ack), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); /* Master Lock INIT for info structure */ SCTP_INP_INFO_LOCK_INIT(); SCTP_STATLOG_INIT_LOCK(); SCTP_IPI_COUNT_INIT(); SCTP_IPI_ADDR_INIT(); #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_INIT(); #endif LIST_INIT(&SCTP_BASE_INFO(addr_wq)); SCTP_WQ_ADDR_INIT(); /* not sure if we need all the counts */ SCTP_BASE_INFO(ipi_count_ep) = 0; /* assoc/tcb zone info */ SCTP_BASE_INFO(ipi_count_asoc) = 0; /* local addrlist zone info */ SCTP_BASE_INFO(ipi_count_laddr) = 0; /* remote addrlist zone info */ SCTP_BASE_INFO(ipi_count_raddr) = 0; /* chunk info */ SCTP_BASE_INFO(ipi_count_chunk) = 0; /* socket queue zone info */ SCTP_BASE_INFO(ipi_count_readq) = 0; /* stream out queue cont */ SCTP_BASE_INFO(ipi_count_strmoq) = 0; SCTP_BASE_INFO(ipi_free_strmoq) = 0; SCTP_BASE_INFO(ipi_free_chunks) = 0; SCTP_OS_TIMER_INIT(&SCTP_BASE_INFO(addr_wq_timer.timer)); /* Init the TIMEWAIT list */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { LIST_INIT(&SCTP_BASE_INFO(vtag_timewait)[i]); } sctp_startup_iterator(); #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) sctp_startup_mcore_threads(); #endif /* * INIT the default VRF which for BSD is the only one, other O/S's * may have more. But initially they must start with one and then * add the VRF's as addresses are added. */ sctp_init_vrf_list(SCTP_DEFAULT_VRF); } /* * Assumes that the SCTP_BASE_INFO() lock is NOT held. */ void sctp_pcb_finish(void) { struct sctp_vrflist *vrf_bucket; struct sctp_vrf *vrf, *nvrf; struct sctp_ifn *ifn, *nifn; struct sctp_ifa *ifa, *nifa; struct sctpvtaghead *chain; struct sctp_tagblock *twait_block, *prev_twait_block; struct sctp_laddr *wi, *nwi; int i; struct sctp_iterator *it, *nit; if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_PRINTF("%s: race condition on teardown.\n", __func__); return; } SCTP_BASE_VAR(sctp_pcb_initialized) = 0; /* * In FreeBSD the iterator thread never exits but we do clean up. * The only way FreeBSD reaches here is if we have VRF's but we * still add the ifdef to make it compile on old versions. */ retry: SCTP_IPI_ITERATOR_WQ_LOCK(); /* * sctp_iterator_worker() might be working on an it entry without * holding the lock. We won't find it on the list either and * continue and free/destroy it. While holding the lock, spin, to * avoid the race condition as sctp_iterator_worker() will have to * wait to re-aquire the lock. */ if (sctp_it_ctl.iterator_running != 0 || sctp_it_ctl.cur_it != NULL) { SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_PRINTF("%s: Iterator running while we held the lock. Retry. " "cur_it=%p\n", __func__, sctp_it_ctl.cur_it); DELAY(10); goto retry; } TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_ITERATOR_LOCK(); if ((sctp_it_ctl.cur_it) && (sctp_it_ctl.cur_it->vn == curvnet)) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } SCTP_ITERATOR_UNLOCK(); SCTP_OS_TIMER_STOP_DRAIN(&SCTP_BASE_INFO(addr_wq_timer.timer)); SCTP_WQ_ADDR_LOCK(); LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) { LIST_REMOVE(wi, sctp_nxt_addr); SCTP_DECR_LADDR_COUNT(); if (wi->action == SCTP_DEL_IP_ADDRESS) { SCTP_FREE(wi->ifa, SCTP_M_IFA); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), wi); } SCTP_WQ_ADDR_UNLOCK(); /* * free the vrf/ifn/ifa lists and hashes (be sure address monitor is * destroyed first). */ vrf_bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(SCTP_DEFAULT_VRFID & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH_SAFE(vrf, vrf_bucket, next_vrf, nvrf) { LIST_FOREACH_SAFE(ifn, &vrf->ifnlist, next_ifn, nifn) { LIST_FOREACH_SAFE(ifa, &ifn->ifalist, next_ifa, nifa) { /* free the ifa */ LIST_REMOVE(ifa, next_bucket); LIST_REMOVE(ifa, next_ifa); SCTP_FREE(ifa, SCTP_M_IFA); } /* free the ifn */ LIST_REMOVE(ifn, next_bucket); LIST_REMOVE(ifn, next_ifn); SCTP_FREE(ifn, SCTP_M_IFN); } SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); /* free the vrf */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); } /* free the vrf hashes */ SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_vrfhash), SCTP_BASE_INFO(hashvrfmark)); SCTP_HASH_FREE(SCTP_BASE_INFO(vrf_ifn_hash), SCTP_BASE_INFO(vrf_ifn_hashmark)); /* * free the TIMEWAIT list elements malloc'd in the function * sctp_add_vtag_to_timewait()... */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { chain = &SCTP_BASE_INFO(vtag_timewait)[i]; if (!LIST_EMPTY(chain)) { prev_twait_block = NULL; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { if (prev_twait_block) { SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } prev_twait_block = twait_block; } SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } } /* free the locks and mutexes */ #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_DESTROY(); #endif SCTP_IPI_ADDR_DESTROY(); SCTP_STATLOG_DESTROY(); SCTP_INP_INFO_LOCK_DESTROY(); SCTP_WQ_ADDR_DESTROY(); /* Get rid of other stuff too. */ if (SCTP_BASE_INFO(sctp_asochash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_asochash), SCTP_BASE_INFO(hashasocmark)); if (SCTP_BASE_INFO(sctp_ephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_ephash), SCTP_BASE_INFO(hashmark)); if (SCTP_BASE_INFO(sctp_tcpephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_tcpephash), SCTP_BASE_INFO(hashtcpmark)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_ep)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asoc)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_laddr)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_net)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_chunk)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_readq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_strmoq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf_ack)); #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_FREE(SCTP_BASE_STATS, SCTP_M_MCORE); #endif } int sctp_load_addresses_from_init(struct sctp_tcb *stcb, struct mbuf *m, int offset, int limit, struct sockaddr *src, struct sockaddr *dst, struct sockaddr *altsa, uint16_t port) { /* * grub through the INIT pulling addresses and loading them to the * nets structure in the asoc. The from address in the mbuf should * also be loaded (if it is not already). This routine can be called * with either INIT or INIT-ACK's as long as the m points to the IP * packet and the offset points to the beginning of the parameters. */ struct sctp_inpcb *inp; struct sctp_nets *net, *nnet, *net_tmp; struct sctp_paramhdr *phdr, param_buf; struct sctp_tcb *stcb_tmp; uint16_t ptype, plen; struct sockaddr *sa; uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_random *p_random = NULL; uint16_t random_len = 0; uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_hmac_algo *hmacs = NULL; uint16_t hmacs_len = 0; uint8_t saw_asconf = 0; uint8_t saw_asconf_ack = 0; uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_chunk_list *chunks = NULL; uint16_t num_chunks = 0; sctp_key_t *new_key; uint32_t keylen; int got_random = 0, got_hmacs = 0, got_chklist = 0; uint8_t peer_supports_ecn; uint8_t peer_supports_prsctp; uint8_t peer_supports_auth; uint8_t peer_supports_asconf; uint8_t peer_supports_asconf_ack; uint8_t peer_supports_reconfig; uint8_t peer_supports_nrsack; uint8_t peer_supports_pktdrop; uint8_t peer_supports_idata; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif /* First get the destination address setup too. */ #ifdef INET memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = stcb->rport; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_port = stcb->rport; #endif if (altsa) { sa = altsa; } else { sa = src; } peer_supports_idata = 0; peer_supports_ecn = 0; peer_supports_prsctp = 0; peer_supports_auth = 0; peer_supports_asconf = 0; peer_supports_reconfig = 0; peer_supports_nrsack = 0; peer_supports_pktdrop = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* mark all addresses that we have currently on the list */ net->dest_state |= SCTP_ADDR_NOT_IN_ASSOC; } /* does the source address already exist? if so skip it */ inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net_tmp, dst, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* no scope set here since we have a tcb already. */ switch (sa->sa_family) { #ifdef INET case AF_INET: if (stcb->asoc.scope.ipv4_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_2)) { return (-1); } } break; #endif #ifdef INET6 case AF_INET6: if (stcb->asoc.scope.ipv6_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_3)) { return (-2); } } break; #endif default: break; } } else { if (net_tmp != NULL && stcb_tmp == stcb) { net_tmp->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } else if (stcb_tmp != stcb) { /* It belongs to another association? */ if (stcb_tmp) SCTP_TCB_UNLOCK(stcb_tmp); return (-3); } } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-4); } /* now we must go through each of the params. */ phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); while (phdr) { ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); /* * SCTP_PRINTF("ptype => %0x, plen => %d\n", * (uint32_t)ptype, (int)plen); */ if (offset + plen > limit) { break; } if (plen == 0) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS) { if (stcb->asoc.scope.ipv4_addr_legal) { struct sctp_ipv4addr_param *p4, p4_buf; /* ok get the v4 address and check/add */ phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p4_buf, sizeof(p4_buf)); if (plen != sizeof(struct sctp_ipv4addr_param) || phdr == NULL) { return (-5); } p4 = (struct sctp_ipv4addr_param *)phdr; sin.sin_addr.s_addr = p4->addr; if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { /* Skip multi-cast addresses */ goto next_param; } if ((sin.sin_addr.s_addr == INADDR_BROADCAST) || (sin.sin_addr.s_addr == INADDR_ANY)) { goto next_param; } sa = (struct sockaddr *)&sin; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, dst, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* * no scope set since we have a tcb * already */ /* * we must validate the state again * here */ add_it_now: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-7); } if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_4)) { return (-8); } } else if (stcb_tmp == stcb) { if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-10); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) { if (SCTP_GET_STATE(&stcb_tmp->asoc) & SCTP_STATE_COOKIE_WAIT) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * in setup state we * abort this guy */ snprintf(msg, sizeof(msg), "%s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, op_err, SCTP_SO_NOT_LOCKED); goto add_it_now; } SCTP_TCB_UNLOCK(stcb_tmp); } + if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-12); } return (-13); } } } else #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS) { if (stcb->asoc.scope.ipv6_addr_legal) { /* ok get the v6 address and check/add */ struct sctp_ipv6addr_param *p6, p6_buf; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p6_buf, sizeof(p6_buf)); if (plen != sizeof(struct sctp_ipv6addr_param) || phdr == NULL) { return (-14); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy((caddr_t)&sin6.sin6_addr, p6->addr, sizeof(p6->addr)); if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) { /* Skip multi-cast addresses */ goto next_param; } if (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr)) { /* * Link local make no sense without * scope */ goto next_param; } sa = (struct sockaddr *)&sin6; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, dst, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if (stcb_tmp == NULL && (inp == stcb->sctp_ep || inp == NULL)) { /* * we must validate the state again * here */ add_it_now6: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-16); } /* * we must add the address, no scope * set */ if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_5)) { return (-17); } } else if (stcb_tmp == stcb) { /* * we must validate the state again * here */ if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-19); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) { if (SCTP_GET_STATE(&stcb_tmp->asoc) & SCTP_STATE_COOKIE_WAIT) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * in setup state we * abort this guy */ snprintf(msg, sizeof(msg), "%s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, op_err, SCTP_SO_NOT_LOCKED); goto add_it_now6; } SCTP_TCB_UNLOCK(stcb_tmp); } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-21); } return (-22); } } } else #endif if (ptype == SCTP_ECN_CAPABLE) { peer_supports_ecn = 1; } else if (ptype == SCTP_ULP_ADAPTATION) { if (stcb->asoc.state != SCTP_STATE_OPEN) { struct sctp_adaptation_layer_indication ai, *aip; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ai, sizeof(ai)); aip = (struct sctp_adaptation_layer_indication *)phdr; if (aip) { stcb->asoc.peers_adaptation = ntohl(aip->indication); stcb->asoc.adaptation_needed = 1; } } } else if (ptype == SCTP_SET_PRIM_ADDR) { struct sctp_asconf_addr_param lstore, *fee; int lptype; struct sockaddr *lsa = NULL; #ifdef INET struct sctp_asconf_addrv4_param *fii; #endif if (stcb->asoc.asconf_supported == 0) { return (-100); } if (plen > sizeof(lstore)) { return (-23); } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&lstore, plen); if (phdr == NULL) { return (-24); } fee = (struct sctp_asconf_addr_param *)phdr; lptype = ntohs(fee->addrp.ph.param_type); switch (lptype) { #ifdef INET case SCTP_IPV4_ADDRESS: if (plen != sizeof(struct sctp_asconf_addrv4_param)) { SCTP_PRINTF("Sizeof setprim in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addrv4_param), plen); } else { fii = (struct sctp_asconf_addrv4_param *)fee; sin.sin_addr.s_addr = fii->addrp.addr; lsa = (struct sockaddr *)&sin; } break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (plen != sizeof(struct sctp_asconf_addr_param)) { SCTP_PRINTF("Sizeof setprim (v6) in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addr_param), plen); } else { memcpy(sin6.sin6_addr.s6_addr, fee->addrp.addr, sizeof(fee->addrp.addr)); lsa = (struct sockaddr *)&sin6; } break; #endif default: break; } if (lsa) { (void)sctp_set_primary_addr(stcb, sa, NULL); } } else if (ptype == SCTP_HAS_NAT_SUPPORT) { stcb->asoc.peer_supports_nat = 1; } else if (ptype == SCTP_PRSCTP_SUPPORTED) { /* Peer supports pr-sctp */ peer_supports_prsctp = 1; } else if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { /* A supported extension chunk */ struct sctp_supported_chunk_types_param *pr_supported; uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; int num_ent, i; if (plen > sizeof(local_store)) { return (-35); } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&local_store, plen); if (phdr == NULL) { return (-25); } pr_supported = (struct sctp_supported_chunk_types_param *)phdr; num_ent = plen - sizeof(struct sctp_paramhdr); for (i = 0; i < num_ent; i++) { switch (pr_supported->chunk_types[i]) { case SCTP_ASCONF: peer_supports_asconf = 1; break; case SCTP_ASCONF_ACK: peer_supports_asconf_ack = 1; break; case SCTP_FORWARD_CUM_TSN: peer_supports_prsctp = 1; break; case SCTP_PACKET_DROPPED: peer_supports_pktdrop = 1; break; case SCTP_NR_SELECTIVE_ACK: peer_supports_nrsack = 1; break; case SCTP_STREAM_RESET: peer_supports_reconfig = 1; break; case SCTP_AUTHENTICATION: peer_supports_auth = 1; break; case SCTP_IDATA: peer_supports_idata = 1; break; default: /* one I have not learned yet */ break; } } } else if (ptype == SCTP_RANDOM) { if (plen > sizeof(random_store)) break; if (got_random) { /* already processed a RANDOM */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)random_store, plen); if (phdr == NULL) return (-26); p_random = (struct sctp_auth_random *)phdr; random_len = plen - sizeof(*p_random); /* enforce the random length */ if (random_len != SCTP_AUTH_RANDOM_SIZE_REQUIRED) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid RANDOM len\n"); return (-27); } got_random = 1; } else if (ptype == SCTP_HMAC_LIST) { uint16_t num_hmacs; uint16_t i; if (plen > sizeof(hmacs_store)) break; if (got_hmacs) { /* already processed a HMAC list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)hmacs_store, plen); if (phdr == NULL) return (-28); hmacs = (struct sctp_auth_hmac_algo *)phdr; hmacs_len = plen - sizeof(*hmacs); num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); /* validate the hmac list */ if (sctp_verify_hmac_param(hmacs, num_hmacs)) { return (-29); } if (stcb->asoc.peer_hmacs != NULL) sctp_free_hmaclist(stcb->asoc.peer_hmacs); stcb->asoc.peer_hmacs = sctp_alloc_hmaclist(num_hmacs); if (stcb->asoc.peer_hmacs != NULL) { for (i = 0; i < num_hmacs; i++) { (void)sctp_auth_add_hmacid(stcb->asoc.peer_hmacs, ntohs(hmacs->hmac_ids[i])); } } got_hmacs = 1; } else if (ptype == SCTP_CHUNK_LIST) { int i; if (plen > sizeof(chunks_store)) break; if (got_chklist) { /* already processed a Chunks list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)chunks_store, plen); if (phdr == NULL) return (-30); chunks = (struct sctp_auth_chunk_list *)phdr; num_chunks = plen - sizeof(*chunks); if (stcb->asoc.peer_auth_chunks != NULL) sctp_clear_chunklist(stcb->asoc.peer_auth_chunks); else stcb->asoc.peer_auth_chunks = sctp_alloc_chunklist(); for (i = 0; i < num_chunks; i++) { (void)sctp_auth_add_chunk(chunks->chunk_types[i], stcb->asoc.peer_auth_chunks); /* record asconf/asconf-ack if listed */ if (chunks->chunk_types[i] == SCTP_ASCONF) saw_asconf = 1; if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) saw_asconf_ack = 1; } got_chklist = 1; } else if ((ptype == SCTP_HEARTBEAT_INFO) || (ptype == SCTP_STATE_COOKIE) || (ptype == SCTP_UNRECOG_PARAM) || (ptype == SCTP_COOKIE_PRESERVE) || (ptype == SCTP_SUPPORTED_ADDRTYPE) || (ptype == SCTP_ADD_IP_ADDRESS) || (ptype == SCTP_DEL_IP_ADDRESS) || (ptype == SCTP_ERROR_CAUSE_IND) || (ptype == SCTP_SUCCESS_REPORT)) { /* don't care */ ; } else { if ((ptype & 0x8000) == 0x0000) { /* * must stop processing the rest of the * param's. Any report bits were handled * with the call to * sctp_arethere_unrecognized_parameters() * when the INIT or INIT-ACK was first seen. */ break; } } next_param: offset += SCTP_SIZE32(plen); if (offset >= limit) { break; } phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); } /* Now check to see if we need to purge any addresses */ TAILQ_FOREACH_SAFE(net, &stcb->asoc.nets, sctp_next, nnet) { if ((net->dest_state & SCTP_ADDR_NOT_IN_ASSOC) == SCTP_ADDR_NOT_IN_ASSOC) { /* This address has been removed from the asoc */ /* remove and free it */ stcb->asoc.numnets--; TAILQ_REMOVE(&stcb->asoc.nets, net, sctp_next); sctp_free_remote_addr(net); if (net == stcb->asoc.primary_destination) { stcb->asoc.primary_destination = NULL; sctp_select_primary_destination(stcb); } } } if ((stcb->asoc.ecn_supported == 1) && (peer_supports_ecn == 0)) { stcb->asoc.ecn_supported = 0; } if ((stcb->asoc.prsctp_supported == 1) && (peer_supports_prsctp == 0)) { stcb->asoc.prsctp_supported = 0; } if ((stcb->asoc.auth_supported == 1) && ((peer_supports_auth == 0) || (got_random == 0) || (got_hmacs == 0))) { stcb->asoc.auth_supported = 0; } if ((stcb->asoc.asconf_supported == 1) && ((peer_supports_asconf == 0) || (peer_supports_asconf_ack == 0) || (stcb->asoc.auth_supported == 0) || (saw_asconf == 0) || (saw_asconf_ack == 0))) { stcb->asoc.asconf_supported = 0; } if ((stcb->asoc.reconfig_supported == 1) && (peer_supports_reconfig == 0)) { stcb->asoc.reconfig_supported = 0; } if ((stcb->asoc.idata_supported == 1) && (peer_supports_idata == 0)) { stcb->asoc.idata_supported = 0; } if ((stcb->asoc.nrsack_supported == 1) && (peer_supports_nrsack == 0)) { stcb->asoc.nrsack_supported = 0; } if ((stcb->asoc.pktdrop_supported == 1) && (peer_supports_pktdrop == 0)) { stcb->asoc.pktdrop_supported = 0; } /* validate authentication required parameters */ if ((peer_supports_auth == 0) && (got_chklist == 1)) { /* peer does not support auth but sent a chunks list? */ return (-31); } if ((peer_supports_asconf == 1) && (peer_supports_auth == 0)) { /* peer supports asconf but not auth? */ return (-32); } else if ((peer_supports_asconf == 1) && (peer_supports_auth == 1) && ((saw_asconf == 0) || (saw_asconf_ack == 0))) { return (-33); } /* concatenate the full random key */ keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; if (chunks != NULL) { keylen += sizeof(*chunks) + num_chunks; } new_key = sctp_alloc_key(keylen); if (new_key != NULL) { /* copy in the RANDOM */ if (p_random != NULL) { keylen = sizeof(*p_random) + random_len; memcpy(new_key->key, p_random, keylen); } else { keylen = 0; } /* append in the AUTH chunks */ if (chunks != NULL) { memcpy(new_key->key + keylen, chunks, sizeof(*chunks) + num_chunks); keylen += sizeof(*chunks) + num_chunks; } /* append in the HMACs */ if (hmacs != NULL) { memcpy(new_key->key + keylen, hmacs, sizeof(*hmacs) + hmacs_len); } } else { /* failed to get memory for the key */ return (-34); } if (stcb->asoc.authinfo.peer_random != NULL) sctp_free_key(stcb->asoc.authinfo.peer_random); stcb->asoc.authinfo.peer_random = new_key; sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); return (0); } int sctp_set_primary_addr(struct sctp_tcb *stcb, struct sockaddr *sa, struct sctp_nets *net) { /* make sure the requested primary address exists in the assoc */ if (net == NULL && sa) net = sctp_findnet(stcb, sa); if (net == NULL) { /* didn't find the requested primary address! */ return (-1); } else { /* set the primary address */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) { /* Must be confirmed, so queue to set */ net->dest_state |= SCTP_ADDR_REQ_PRIMARY; return (0); } stcb->asoc.primary_destination = net; if (!(net->dest_state & SCTP_ADDR_PF) && (stcb->asoc.alternate)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } net = TAILQ_FIRST(&stcb->asoc.nets); if (net != stcb->asoc.primary_destination) { /* * first one on the list is NOT the primary * sctp_cmpaddr() is much more efficient if the * primary is the first on the list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } } int sctp_is_vtag_good(uint32_t tag, uint16_t lport, uint16_t rport, struct timeval *now) { /* * This function serves two purposes. It will see if a TAG can be * re-used and return 1 for yes it is ok and 0 for don't use that * tag. A secondary function it will do is purge out old tags that * can be removed. */ struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; struct sctpasochead *head; struct sctp_tcb *stcb; int i; SCTP_INP_INFO_RLOCK(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(tag, SCTP_BASE_INFO(hashasocmark))]; LIST_FOREACH(stcb, head, sctp_asocs) { /* * We choose not to lock anything here. TCB's can't be * removed since we have the read lock, so they can't be * freed on us, same thing for the INP. I may be wrong with * this assumption, but we will go with it for now :-) */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (stcb->asoc.my_vtag == tag) { /* candidate */ if (stcb->rport != rport) { continue; } if (stcb->sctp_ep->sctp_lport != lport) { continue; } /* Its a used tag set */ SCTP_INP_INFO_RUNLOCK(); return (0); } } chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; /* Now what about timed wait ? */ LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { /* * Block(s) are present, lets see if we have this tag in the * list */ for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if (twait_block->vtag_block[i].v_tag == 0) { /* not used */ continue; } else if ((long)twait_block->vtag_block[i].tv_sec_at_expire < now->tv_sec) { /* Audit expires this guy */ twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; } else if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { /* Bad tag, sorry :< */ SCTP_INP_INFO_RUNLOCK(); return (0); } } } SCTP_INP_INFO_RUNLOCK(); return (1); } static void sctp_drain_mbufs(struct sctp_tcb *stcb) { /* * We must hunt this association for MBUF's past the cumack (i.e. * out of order data that we can renege on). */ struct sctp_association *asoc; struct sctp_tmit_chunk *chk, *nchk; uint32_t cumulative_tsn_p1; struct sctp_queued_to_read *control, *ncontrol; int cnt, strmat; uint32_t gap, i; int fnd = 0; /* We look for anything larger than the cum-ack + 1 */ asoc = &stcb->asoc; if (asoc->cumulative_tsn == asoc->highest_tsn_inside_map) { /* none we can reneg on. */ return; } SCTP_STAT_INCR(sctps_protocol_drains_done); cumulative_tsn_p1 = asoc->cumulative_tsn + 1; cnt = 0; /* Ok that was fun, now we will drain all the inbound streams? */ for (strmat = 0; strmat < asoc->streamincnt; strmat++) { TAILQ_FOREACH_SAFE(control, &asoc->strmin[strmat].inqueue, next_instrm, ncontrol) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_ORDERED) { panic("Huh control: %p on_q: %d -- not ordered?", control, control->on_strm_q); } #endif if (SCTP_TSN_GT(control->sinfo_tsn, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, control->sinfo_tsn, asoc->mapping_array_base_tsn); KASSERT(control->length > 0, ("control has zero length")); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); if (control->on_read_q) { TAILQ_REMOVE(&stcb->sctp_ep->read_queue, control, next); control->on_read_q = 0; } TAILQ_REMOVE(&asoc->strmin[strmat].inqueue, control, next_instrm); control->on_strm_q = 0; if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_remote_addr(control->whoFrom); /* Now its reasm? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { cnt++; SCTP_CALC_TSN_TO_GAP(gap, chk->rec.data.tsn, asoc->mapping_array_base_tsn); KASSERT(chk->send_size > 0, ("chunk has zero length")); if (asoc->size_on_reasm_queue >= chk->send_size) { asoc->size_on_reasm_queue -= chk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, chk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } sctp_free_a_readq(stcb, control); } } TAILQ_FOREACH_SAFE(control, &asoc->strmin[strmat].uno_inqueue, next_instrm, ncontrol) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_UNORDERED) { panic("Huh control: %p on_q: %d -- not unordered?", control, control->on_strm_q); } #endif if (SCTP_TSN_GT(control->sinfo_tsn, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, control->sinfo_tsn, asoc->mapping_array_base_tsn); KASSERT(control->length > 0, ("control has zero length")); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); if (control->on_read_q) { TAILQ_REMOVE(&stcb->sctp_ep->read_queue, control, next); control->on_read_q = 0; } TAILQ_REMOVE(&asoc->strmin[strmat].uno_inqueue, control, next_instrm); control->on_strm_q = 0; if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_remote_addr(control->whoFrom); /* Now its reasm? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { cnt++; SCTP_CALC_TSN_TO_GAP(gap, chk->rec.data.tsn, asoc->mapping_array_base_tsn); KASSERT(chk->send_size > 0, ("chunk has zero length")); if (asoc->size_on_reasm_queue >= chk->send_size) { asoc->size_on_reasm_queue -= chk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, chk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } sctp_free_a_readq(stcb, control); } } } if (cnt) { /* We must back down to see what the new highest is */ for (i = asoc->highest_tsn_inside_map; SCTP_TSN_GE(i, asoc->mapping_array_base_tsn); i--) { SCTP_CALC_TSN_TO_GAP(gap, i, asoc->mapping_array_base_tsn); if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap)) { asoc->highest_tsn_inside_map = i; fnd = 1; break; } } if (!fnd) { asoc->highest_tsn_inside_map = asoc->mapping_array_base_tsn - 1; } + /* * Question, should we go through the delivery queue? The * only reason things are on here is the app not reading OR * a p-d-api up. An attacker COULD send enough in to * initiate the PD-API and then send a bunch of stuff to * other streams... these would wind up on the delivery * queue.. and then we would not get to them. But in order * to do this I then have to back-track and un-deliver * sequence numbers in streams.. el-yucko. I think for now * we will NOT look at the delivery queue and leave it to be * something to consider later. An alternative would be to * abort the P-D-API with a notification and then deliver * the data.... Or another method might be to keep track of * how many times the situation occurs and if we see a * possible attack underway just abort the association. */ #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB1, "Freed %d chunks from reneg harvest\n", cnt); #endif /* * Now do we need to find a new * asoc->highest_tsn_inside_map? */ asoc->last_revoke_count = cnt; (void)SCTP_OS_TIMER_STOP(&stcb->asoc.dack_timer.timer); /* sa_ignore NO_NULL_CHK */ sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_DRAIN, SCTP_SO_NOT_LOCKED); } /* * Another issue, in un-setting the TSN's in the mapping array we * DID NOT adjust the highest_tsn marker. This will cause one of * two things to occur. It may cause us to do extra work in checking * for our mapping array movement. More importantly it may cause us * to SACK every datagram. This may not be a bad thing though since * we will recover once we get our cum-ack above and all this stuff * we dumped recovered. */ } void sctp_drain() { /* * We must walk the PCB lists for ALL associations here. The system * is LOW on MBUF's and needs help. This is where reneging will * occur. We really hope this does NOT happen! */ VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct sctp_inpcb *inp; struct sctp_tcb *stcb; SCTP_STAT_INCR(sctps_protocol_drain_calls); if (SCTP_BASE_SYSCTL(sctp_do_drain) == 0) { #ifdef VIMAGE continue; #else return; #endif } SCTP_INP_INFO_RLOCK(); LIST_FOREACH(inp, &SCTP_BASE_INFO(listhead), sctp_list) { /* For each endpoint */ SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { /* For each association */ SCTP_TCB_LOCK(stcb); sctp_drain_mbufs(stcb); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } SCTP_INP_INFO_RUNLOCK(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * start a new iterator * iterates through all endpoints and associations based on the pcb_state * flags and asoc_state. "af" (mandatory) is executed for all matching * assocs and "ef" (optional) is executed when the iterator completes. * "inpf" (optional) is executed for each new endpoint as it is being * iterated through. inpe (optional) is called when the inp completes * its way through all the stcbs. */ int sctp_initiate_iterator(inp_func inpf, asoc_func af, inp_func inpe, uint32_t pcb_state, uint32_t pcb_features, uint32_t asoc_state, void *argp, uint32_t argi, end_func ef, struct sctp_inpcb *s_inp, uint8_t chunk_output_off) { struct sctp_iterator *it = NULL; if (af == NULL) { return (-1); } if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_PRINTF("%s: abort on initialize being %d\n", __func__, SCTP_BASE_VAR(sctp_pcb_initialized)); return (-1); } SCTP_MALLOC(it, struct sctp_iterator *, sizeof(struct sctp_iterator), SCTP_M_ITER); if (it == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); return (ENOMEM); } memset(it, 0, sizeof(*it)); it->function_assoc = af; it->function_inp = inpf; if (inpf) it->done_current_ep = 0; else it->done_current_ep = 1; it->function_atend = ef; it->pointer = argp; it->val = argi; it->pcb_flags = pcb_state; it->pcb_features = pcb_features; it->asoc_state = asoc_state; it->function_inp_end = inpe; it->no_chunk_output = chunk_output_off; it->vn = curvnet; if (s_inp) { /* Assume lock is held here */ it->inp = s_inp; SCTP_INP_INCR_REF(it->inp); it->iterator_flags = SCTP_ITERATOR_DO_SINGLE_INP; } else { SCTP_INP_INFO_RLOCK(); it->inp = LIST_FIRST(&SCTP_BASE_INFO(listhead)); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } SCTP_INP_INFO_RUNLOCK(); it->iterator_flags = SCTP_ITERATOR_DO_ALL_INP; } SCTP_IPI_ITERATOR_WQ_LOCK(); if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_PRINTF("%s: rollback on initialize being %d it=%p\n", __func__, SCTP_BASE_VAR(sctp_pcb_initialized), it); SCTP_FREE(it, SCTP_M_ITER); return (-1); } TAILQ_INSERT_TAIL(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (sctp_it_ctl.iterator_running == 0) { sctp_wakeup_iterator(); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); /* sa_ignore MEMLEAK {memory is put on the tailq for the iterator} */ return (0); } Index: stable/11/sys/netinet/sctp_pcb.h =================================================================== --- stable/11/sys/netinet/sctp_pcb.h (revision 347153) +++ stable/11/sys/netinet/sctp_pcb.h (revision 347154) @@ -1,651 +1,649 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_PCB_H_ #define _NETINET_SCTP_PCB_H_ #include #include #include #include LIST_HEAD(sctppcbhead, sctp_inpcb); LIST_HEAD(sctpasochead, sctp_tcb); LIST_HEAD(sctpladdr, sctp_laddr); LIST_HEAD(sctpvtaghead, sctp_tagblock); LIST_HEAD(sctp_vrflist, sctp_vrf); LIST_HEAD(sctp_ifnlist, sctp_ifn); LIST_HEAD(sctp_ifalist, sctp_ifa); TAILQ_HEAD(sctp_readhead, sctp_queued_to_read); TAILQ_HEAD(sctp_streamhead, sctp_stream_queue_pending); #include #include #define SCTP_PCBHASH_ALLADDR(port, mask) (port & mask) #define SCTP_PCBHASH_ASOC(tag, mask) (tag & mask) struct sctp_vrf { LIST_ENTRY(sctp_vrf) next_vrf; struct sctp_ifalist *vrf_addr_hash; struct sctp_ifnlist ifnlist; uint32_t vrf_id; uint32_t tbl_id_v4; /* default v4 table id */ uint32_t tbl_id_v6; /* default v6 table id */ uint32_t total_ifa_count; u_long vrf_addr_hashmark; uint32_t refcount; }; struct sctp_ifn { struct sctp_ifalist ifalist; struct sctp_vrf *vrf; LIST_ENTRY(sctp_ifn) next_ifn; LIST_ENTRY(sctp_ifn) next_bucket; void *ifn_p; /* never access without appropriate lock */ uint32_t ifn_mtu; uint32_t ifn_type; uint32_t ifn_index; /* shorthand way to look at ifn for reference */ uint32_t refcount; /* number of reference held should be >= * ifa_count */ uint32_t ifa_count; /* IFA's we hold (in our list - ifalist) */ uint32_t num_v6; /* number of v6 addresses */ uint32_t num_v4; /* number of v4 addresses */ uint32_t registered_af; /* registered address family for i/f events */ char ifn_name[SCTP_IFNAMSIZ]; }; /* SCTP local IFA flags */ #define SCTP_ADDR_VALID 0x00000001 /* its up and active */ #define SCTP_BEING_DELETED 0x00000002 /* being deleted, when * refcount = 0. Note that it * is pulled from the ifn list * and ifa_p is nulled right * away but it cannot be freed * until the last *net * pointing to it is deleted. */ #define SCTP_ADDR_DEFER_USE 0x00000004 /* Hold off using this one */ #define SCTP_ADDR_IFA_UNUSEABLE 0x00000008 struct sctp_ifa { LIST_ENTRY(sctp_ifa) next_ifa; LIST_ENTRY(sctp_ifa) next_bucket; struct sctp_ifn *ifn_p; /* back pointer to parent ifn */ void *ifa; /* pointer to ifa, needed for flag update for * that we MUST lock appropriate locks. This * is for V6. */ union sctp_sockstore address; uint32_t refcount; /* number of folks referring to this */ uint32_t flags; uint32_t localifa_flags; uint32_t vrf_id; /* vrf_id of this addr (for deleting) */ uint8_t src_is_loop; uint8_t src_is_priv; uint8_t src_is_glob; uint8_t resv; }; struct sctp_laddr { LIST_ENTRY(sctp_laddr) sctp_nxt_addr; /* next in list */ struct sctp_ifa *ifa; uint32_t action; /* Used during asconf and adding if no-zero * src-addr selection will not consider this * address. */ struct timeval start_time; /* time when this address was created */ }; struct sctp_block_entry { int error; }; struct sctp_timewait { uint32_t tv_sec_at_expire; /* the seconds from boot to expire */ uint32_t v_tag; /* the vtag that can not be reused */ uint16_t lport; /* the local port used in vtag */ uint16_t rport; /* the remote port used in vtag */ }; struct sctp_tagblock { LIST_ENTRY(sctp_tagblock) sctp_nxt_tagblock; struct sctp_timewait vtag_block[SCTP_NUMBER_IN_VTAG_BLOCK]; }; struct sctp_epinfo { #ifdef INET struct socket *udp4_tun_socket; #endif #ifdef INET6 struct socket *udp6_tun_socket; #endif struct sctpasochead *sctp_asochash; u_long hashasocmark; struct sctppcbhead *sctp_ephash; u_long hashmark; /*- * The TCP model represents a substantial overhead in that we get an * additional hash table to keep explicit connections in. The * listening TCP endpoint will exist in the usual ephash above and * accept only INIT's. It will be incapable of sending off an INIT. * When a dg arrives we must look in the normal ephash. If we find a * TCP endpoint that will tell us to go to the specific endpoint * hash and re-hash to find the right assoc/socket. If we find a UDP * model socket we then must complete the lookup. If this fails, * i.e. no association can be found then we must continue to see if * a sctp_peeloff()'d socket is in the tcpephash (a spun off socket * acts like a TCP model connected socket). */ struct sctppcbhead *sctp_tcpephash; u_long hashtcpmark; uint32_t hashtblsize; struct sctp_vrflist *sctp_vrfhash; u_long hashvrfmark; struct sctp_ifnlist *vrf_ifn_hash; u_long vrf_ifn_hashmark; struct sctppcbhead listhead; struct sctpladdr addr_wq; /* ep zone info */ sctp_zone_t ipi_zone_ep; sctp_zone_t ipi_zone_asoc; sctp_zone_t ipi_zone_laddr; sctp_zone_t ipi_zone_net; sctp_zone_t ipi_zone_chunk; sctp_zone_t ipi_zone_readq; sctp_zone_t ipi_zone_strmoq; sctp_zone_t ipi_zone_asconf; sctp_zone_t ipi_zone_asconf_ack; struct rwlock ipi_ep_mtx; struct mtx ipi_iterator_wq_mtx; struct rwlock ipi_addr_mtx; struct mtx ipi_pktlog_mtx; struct mtx wq_addr_mtx; uint32_t ipi_count_ep; /* assoc/tcb zone info */ uint32_t ipi_count_asoc; /* local addrlist zone info */ uint32_t ipi_count_laddr; /* remote addrlist zone info */ uint32_t ipi_count_raddr; /* chunk structure list for output */ uint32_t ipi_count_chunk; /* socket queue zone info */ uint32_t ipi_count_readq; /* socket queue zone info */ uint32_t ipi_count_strmoq; /* Number of vrfs */ uint32_t ipi_count_vrfs; /* Number of ifns */ uint32_t ipi_count_ifns; /* Number of ifas */ uint32_t ipi_count_ifas; /* system wide number of free chunks hanging around */ uint32_t ipi_free_chunks; uint32_t ipi_free_strmoq; struct sctpvtaghead vtag_timewait[SCTP_STACK_VTAG_HASH_SIZE]; /* address work queue handling */ struct sctp_timer addr_wq_timer; }; struct sctp_base_info { /* * All static structures that anchor the system must be here. */ struct sctp_epinfo sctppcbinfo; #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) struct sctpstat *sctpstat; #else struct sctpstat sctpstat; #endif struct sctp_sysctl sctpsysctl; uint8_t first_time; char sctp_pcb_initialized; #if defined(SCTP_PACKET_LOGGING) int packet_log_writers; int packet_log_end; uint8_t packet_log_buffer[SCTP_PACKET_LOG_SIZE]; #endif }; /*- * Here we have all the relevant information for each SCTP entity created. We * will need to modify this as approprate. We also need to figure out how to * access /dev/random. */ struct sctp_pcb { unsigned int time_of_secret_change; /* number of seconds from * timeval.tv_sec */ uint32_t secret_key[SCTP_HOW_MANY_SECRETS][SCTP_NUMBER_OF_SECRETS]; unsigned int size_of_a_cookie; unsigned int sctp_timeoutticks[SCTP_NUM_TMRS]; unsigned int sctp_minrto; unsigned int sctp_maxrto; unsigned int initial_rto; int initial_init_rto_max; unsigned int sctp_sack_freq; uint32_t sctp_sws_sender; uint32_t sctp_sws_receiver; uint32_t sctp_default_cc_module; uint32_t sctp_default_ss_module; /* authentication related fields */ struct sctp_keyhead shared_keys; sctp_auth_chklist_t *local_auth_chunks; sctp_hmaclist_t *local_hmacs; uint16_t default_keyid; uint32_t default_mtu; /* various thresholds */ /* Max times I will init at a guy */ uint16_t max_init_times; /* Max times I will send before we consider someone dead */ uint16_t max_send_times; uint16_t def_net_failure; uint16_t def_net_pf_threshold; /* number of streams to pre-open on a association */ uint16_t pre_open_stream_count; uint16_t max_open_streams_intome; /* random number generator */ uint32_t random_counter; uint8_t random_numbers[SCTP_SIGNATURE_ALOC_SIZE]; uint8_t random_store[SCTP_SIGNATURE_ALOC_SIZE]; /* * This timer is kept running per endpoint. When it fires it will * change the secret key. The default is once a hour */ struct sctp_timer signature_change; uint32_t def_cookie_life; /* defaults to 0 */ int auto_close_time; uint32_t initial_sequence_debug; uint32_t adaptation_layer_indicator; uint8_t adaptation_layer_indicator_provided; uint32_t store_at; uint32_t max_burst; uint32_t fr_max_burst; #ifdef INET6 uint32_t default_flowlabel; #endif uint8_t default_dscp; char current_secret_number; char last_secret_number; uint16_t port; /* remote UDP encapsulation port */ }; #ifndef SCTP_ALIGNMENT #define SCTP_ALIGNMENT 32 #endif #ifndef SCTP_ALIGNM1 #define SCTP_ALIGNM1 (SCTP_ALIGNMENT-1) #endif #define sctp_lport ip_inp.inp.inp_lport struct sctp_pcbtsn_rlog { uint32_t vtag; uint16_t strm; uint16_t seq; uint16_t sz; uint16_t flgs; }; #define SCTP_READ_LOG_SIZE 135 /* we choose the number to make a pcb a page */ struct sctp_inpcb { /*- * put an inpcb in front of it all, kind of a waste but we need to * for compatibility with all the other stuff. */ union { struct inpcb inp; char align[(sizeof(struct in6pcb) + SCTP_ALIGNM1) & - ~SCTP_ALIGNM1]; + ~SCTP_ALIGNM1]; } ip_inp; /* Socket buffer lock protects read_queue and of course sb_cc */ struct sctp_readhead read_queue; LIST_ENTRY(sctp_inpcb) sctp_list; /* lists all endpoints */ /* hash of all endpoints for model */ LIST_ENTRY(sctp_inpcb) sctp_hash; /* count of local addresses bound, 0 if bound all */ int laddr_count; /* list of addrs in use by the EP, NULL if bound-all */ struct sctpladdr sctp_addr_list; /* * used for source address selection rotation when we are subset * bound */ struct sctp_laddr *next_addr_touse; /* back pointer to our socket */ struct socket *sctp_socket; uint64_t sctp_features; /* Feature flags */ uint32_t sctp_flags; /* INP state flag set */ uint32_t sctp_mobility_features; /* Mobility Feature flags */ - struct sctp_pcb sctp_ep;/* SCTP ep data */ + struct sctp_pcb sctp_ep; /* SCTP ep data */ /* head of the hash of all associations */ struct sctpasochead *sctp_tcbhash; u_long sctp_hashmark; /* head of the list of all associations */ struct sctpasochead sctp_asoc_list; #ifdef SCTP_TRACK_FREED_ASOCS struct sctpasochead sctp_asoc_free_list; #endif struct sctp_iterator *inp_starting_point_for_iterator; uint32_t sctp_frag_point; uint32_t partial_delivery_point; uint32_t sctp_context; uint32_t max_cwnd; uint8_t local_strreset_support; uint32_t sctp_cmt_on_off; uint8_t ecn_supported; uint8_t prsctp_supported; uint8_t auth_supported; uint8_t idata_supported; uint8_t asconf_supported; uint8_t reconfig_supported; uint8_t nrsack_supported; uint8_t pktdrop_supported; struct sctp_nonpad_sndrcvinfo def_send; /*- * These three are here for the sosend_dgram * (pkt, pkt_last and control). * routine. However, I don't think anyone in * the current FreeBSD kernel calls this. So * they are candidates with sctp_sendm for * de-supporting. */ struct mbuf *pkt, *pkt_last; struct mbuf *control; struct mtx inp_mtx; struct mtx inp_create_mtx; struct mtx inp_rdata_mtx; int32_t refcount; uint32_t def_vrf_id; uint16_t fibnum; uint32_t total_sends; uint32_t total_recvs; uint32_t last_abort_code; uint32_t total_nospaces; struct sctpasochead *sctp_asocidhash; u_long hashasocidmark; uint32_t sctp_associd_counter; #ifdef SCTP_ASOCLOG_OF_TSNS struct sctp_pcbtsn_rlog readlog[SCTP_READ_LOG_SIZE]; uint32_t readlog_index; #endif }; struct sctp_tcb { struct socket *sctp_socket; /* back pointer to socket */ struct sctp_inpcb *sctp_ep; /* back pointer to ep */ LIST_ENTRY(sctp_tcb) sctp_tcbhash; /* next link in hash * table */ LIST_ENTRY(sctp_tcb) sctp_tcblist; /* list of all of the * TCB's */ LIST_ENTRY(sctp_tcb) sctp_tcbasocidhash; /* next link in asocid * hash table */ LIST_ENTRY(sctp_tcb) sctp_asocs; /* vtag hash list */ struct sctp_block_entry *block_entry; /* pointer locked by socket * send buffer */ struct sctp_association asoc; /*- * freed_by_sorcv_sincelast is protected by the sockbuf_lock NOT the * tcb_lock. Its special in this way to help avoid extra mutex calls * in the reading of data. */ uint32_t freed_by_sorcv_sincelast; uint32_t total_sends; uint32_t total_recvs; int freed_from_where; uint16_t rport; /* remote port in network format */ uint16_t resv; struct mtx tcb_mtx; struct mtx tcb_send_mtx; }; #include /* TODO where to put non-_KERNEL things for __Userspace__? */ #if defined(_KERNEL) || defined(__Userspace__) /* Attention Julian, this is the extern that * goes with the base info. sctp_pcb.c has * the real definition. */ VNET_DECLARE(struct sctp_base_info, system_base_info); #ifdef INET6 int SCTP6_ARE_ADDR_EQUAL(struct sockaddr_in6 *a, struct sockaddr_in6 *b); #endif void sctp_fill_pcbinfo(struct sctp_pcbinfo *); -struct sctp_ifn * - sctp_find_ifn(void *ifn, uint32_t ifn_index); +struct sctp_ifn *sctp_find_ifn(void *ifn, uint32_t ifn_index); struct sctp_vrf *sctp_allocate_vrf(int vrfid); struct sctp_vrf *sctp_find_vrf(uint32_t vrfid); void sctp_free_vrf(struct sctp_vrf *vrf); /*- * Change address state, can be used if * O/S supports telling transports about * changes to IFA/IFN's (link layer triggers). * If a ifn goes down, we will do src-addr-selection * and NOT use that, as a source address. This does * not stop the routing system from routing out * that interface, but we won't put it as a source. */ void sctp_mark_ifa_addr_down(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index); void sctp_mark_ifa_addr_up(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index); struct sctp_ifa * sctp_add_addr_to_vrf(uint32_t vrfid, void *ifn, uint32_t ifn_index, uint32_t ifn_type, const char *if_name, void *ifa, struct sockaddr *addr, uint32_t ifa_flags, int dynamic_add); void sctp_update_ifn_mtu(uint32_t ifn_index, uint32_t mtu); void sctp_free_ifn(struct sctp_ifn *sctp_ifnp); void sctp_free_ifa(struct sctp_ifa *sctp_ifap); -void +void sctp_del_addr_from_vrf(uint32_t vrfid, struct sockaddr *addr, uint32_t ifn_index, const char *if_name); struct sctp_nets *sctp_findnet(struct sctp_tcb *, struct sockaddr *); struct sctp_inpcb *sctp_pcb_findep(struct sockaddr *, int, int, uint32_t); -int +int sctp_inpcb_bind(struct socket *, struct sockaddr *, struct sctp_ifa *, struct thread *); struct sctp_tcb * sctp_findassociation_addr(struct mbuf *, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, struct sctp_chunkhdr *, struct sctp_inpcb **, struct sctp_nets **, uint32_t vrf_id); struct sctp_tcb * sctp_findassociation_addr_sa(struct sockaddr *, struct sockaddr *, struct sctp_inpcb **, struct sctp_nets **, int, uint32_t); void sctp_move_pcb_and_assoc(struct sctp_inpcb *, struct sctp_inpcb *, struct sctp_tcb *); /*- * For this call ep_addr, the to is the destination endpoint address of the * peer (relative to outbound). The from field is only used if the TCP model * is enabled and helps distingush amongst the subset bound (non-boundall). * The TCP model MAY change the actual ep field, this is why it is passed. */ struct sctp_tcb * sctp_findassociation_ep_addr(struct sctp_inpcb **, struct sockaddr *, struct sctp_nets **, struct sockaddr *, struct sctp_tcb *); -struct sctp_tcb * - sctp_findasoc_ep_asocid_locked(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock); +struct sctp_tcb *sctp_findasoc_ep_asocid_locked(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock); struct sctp_tcb * sctp_findassociation_ep_asocid(struct sctp_inpcb *, sctp_assoc_t, int); struct sctp_tcb * sctp_findassociation_ep_asconf(struct mbuf *, int, struct sockaddr *, struct sctphdr *, struct sctp_inpcb **, struct sctp_nets **, uint32_t vrf_id); int sctp_inpcb_alloc(struct socket *so, uint32_t vrf_id); int sctp_is_address_on_local_host(struct sockaddr *addr, uint32_t vrf_id); void sctp_inpcb_free(struct sctp_inpcb *, int, int); struct sctp_tcb * sctp_aloc_assoc(struct sctp_inpcb *, struct sockaddr *, int *, uint32_t, uint32_t, uint16_t, uint16_t, struct thread *); int sctp_free_assoc(struct sctp_inpcb *, struct sctp_tcb *, int, int); void sctp_delete_from_timewait(uint32_t, uint16_t, uint16_t); int sctp_is_in_timewait(uint32_t tag, uint16_t lport, uint16_t rport); void sctp_add_vtag_to_timewait(uint32_t tag, uint32_t time, uint16_t lport, uint16_t rport); void sctp_add_local_addr_ep(struct sctp_inpcb *, struct sctp_ifa *, uint32_t); void sctp_del_local_addr_ep(struct sctp_inpcb *, struct sctp_ifa *); int sctp_add_remote_addr(struct sctp_tcb *, struct sockaddr *, struct sctp_nets **, uint16_t, int, int); void sctp_remove_net(struct sctp_tcb *, struct sctp_nets *); int sctp_del_remote_addr(struct sctp_tcb *, struct sockaddr *); void sctp_pcb_init(void); void sctp_pcb_finish(void); void sctp_add_local_addr_restricted(struct sctp_tcb *, struct sctp_ifa *); void sctp_del_local_addr_restricted(struct sctp_tcb *, struct sctp_ifa *); int sctp_load_addresses_from_init(struct sctp_tcb *, struct mbuf *, int, int, struct sockaddr *, struct sockaddr *, struct sockaddr *, uint16_t); int sctp_set_primary_addr(struct sctp_tcb *, struct sockaddr *, struct sctp_nets *); int sctp_is_vtag_good(uint32_t, uint16_t lport, uint16_t rport, struct timeval *); /* void sctp_drain(void); */ int sctp_destination_is_reachable(struct sctp_tcb *, struct sockaddr *); int sctp_swap_inpcb_for_listen(struct sctp_inpcb *inp); void sctp_clean_up_stream(struct sctp_tcb *stcb, struct sctp_readhead *rh); /*- * Null in last arg inpcb indicate run on ALL ep's. Specific inp in last arg * indicates run on ONLY assoc's of the specified endpoint. */ int sctp_initiate_iterator(inp_func inpf, asoc_func af, inp_func inpe, uint32_t, uint32_t, uint32_t, void *, uint32_t, end_func ef, struct sctp_inpcb *, uint8_t co_off); #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) void sctp_queue_to_mcore(struct mbuf *m, int off, int cpu_to_use); #endif #endif /* _KERNEL */ #endif /* !__sctp_pcb_h__ */ Index: stable/11/sys/netinet/sctp_peeloff.c =================================================================== --- stable/11/sys/netinet/sctp_peeloff.c (revision 347153) +++ stable/11/sys/netinet/sctp_peeloff.c (revision 347154) @@ -1,156 +1,158 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include int sctp_can_peel_off(struct socket *head, sctp_assoc_t assoc_id) { struct sctp_inpcb *inp; struct sctp_tcb *stcb; uint32_t state; if (head == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, EBADF); return (EBADF); } inp = (struct sctp_inpcb *)head->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, EFAULT); return (EFAULT); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, EOPNOTSUPP); return (EOPNOTSUPP); } stcb = sctp_findassociation_ep_asocid(inp, assoc_id, 1); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_PEELOFF, ENOENT); return (ENOENT); } state = SCTP_GET_STATE((&stcb->asoc)); if ((state == SCTP_STATE_EMPTY) || (state == SCTP_STATE_INUSE)) { SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_PEELOFF, ENOTCONN); return (ENOTCONN); } SCTP_TCB_UNLOCK(stcb); /* We are clear to peel this one off */ return (0); } int sctp_do_peeloff(struct socket *head, struct socket *so, sctp_assoc_t assoc_id) { struct sctp_inpcb *inp, *n_inp; struct sctp_tcb *stcb; uint32_t state; inp = (struct sctp_inpcb *)head->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, EFAULT); return (EFAULT); } stcb = sctp_findassociation_ep_asocid(inp, assoc_id, 1); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, ENOTCONN); return (ENOTCONN); } + state = SCTP_GET_STATE((&stcb->asoc)); if ((state == SCTP_STATE_EMPTY) || (state == SCTP_STATE_INUSE)) { SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, ENOTCONN); return (ENOTCONN); } + n_inp = (struct sctp_inpcb *)so->so_pcb; n_inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE | SCTP_PCB_FLAGS_CONNECTED | SCTP_PCB_FLAGS_IN_TCPPOOL | /* Turn on Blocking IO */ (SCTP_PCB_COPY_FLAGS & inp->sctp_flags)); n_inp->sctp_socket = so; n_inp->sctp_features = inp->sctp_features; n_inp->sctp_mobility_features = inp->sctp_mobility_features; n_inp->sctp_frag_point = inp->sctp_frag_point; n_inp->sctp_cmt_on_off = inp->sctp_cmt_on_off; n_inp->ecn_supported = inp->ecn_supported; n_inp->prsctp_supported = inp->prsctp_supported; n_inp->auth_supported = inp->auth_supported; n_inp->asconf_supported = inp->asconf_supported; n_inp->reconfig_supported = inp->reconfig_supported; n_inp->nrsack_supported = inp->nrsack_supported; n_inp->pktdrop_supported = inp->pktdrop_supported; n_inp->partial_delivery_point = inp->partial_delivery_point; n_inp->sctp_context = inp->sctp_context; n_inp->max_cwnd = inp->max_cwnd; n_inp->local_strreset_support = inp->local_strreset_support; n_inp->inp_starting_point_for_iterator = NULL; /* copy in the authentication parameters from the original endpoint */ if (n_inp->sctp_ep.local_hmacs) sctp_free_hmaclist(n_inp->sctp_ep.local_hmacs); n_inp->sctp_ep.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); if (n_inp->sctp_ep.local_auth_chunks) sctp_free_chunklist(n_inp->sctp_ep.local_auth_chunks); n_inp->sctp_ep.local_auth_chunks = sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, &n_inp->sctp_ep.shared_keys); /* * Now we must move it from one hash table to another and get the * stcb in the right place. */ sctp_move_pcb_and_assoc(inp, n_inp, stcb); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); sctp_pull_off_control_to_new_inp(inp, n_inp, stcb, SBL_WAIT); atomic_subtract_int(&stcb->asoc.refcnt, 1); return (0); } Index: stable/11/sys/netinet/sctp_structs.h =================================================================== --- stable/11/sys/netinet/sctp_structs.h (revision 347153) +++ stable/11/sys/netinet/sctp_structs.h (revision 347154) @@ -1,1248 +1,1249 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_STRUCTS_H_ #define _NETINET_SCTP_STRUCTS_H_ #include #include #include struct sctp_timer { sctp_os_timer_t timer; int type; /* * Depending on the timer type these will be setup and cast with the * appropriate entity. */ void *ep; void *tcb; void *net; void *vnet; /* for sanity checking */ void *self; uint32_t ticks; uint32_t stopped_from; }; struct sctp_foo_stuff { struct sctp_inpcb *inp; uint32_t lineno; uint32_t ticks; int updown; }; /* * This is the information we track on each interface that we know about from * the distant end. */ TAILQ_HEAD(sctpnetlisthead, sctp_nets); struct sctp_stream_reset_list { TAILQ_ENTRY(sctp_stream_reset_list) next_resp; uint32_t seq; uint32_t tsn; uint32_t number_entries; uint16_t list_of_streams[]; }; TAILQ_HEAD(sctp_resethead, sctp_stream_reset_list); /* * Users of the iterator need to malloc a iterator with a call to * sctp_initiate_iterator(inp_func, assoc_func, inp_func, pcb_flags, pcb_features, * asoc_state, void-ptr-arg, uint32-arg, end_func, inp); * * Use the following two defines if you don't care what pcb flags are on the EP * and/or you don't care what state the association is in. * * Note that if you specify an INP as the last argument then ONLY each * association of that single INP will be executed upon. Note that the pcb * flags STILL apply so if the inp you specify has different pcb_flags then * what you put in pcb_flags nothing will happen. use SCTP_PCB_ANY_FLAGS to * assure the inp you specify gets treated. */ #define SCTP_PCB_ANY_FLAGS 0x00000000 #define SCTP_PCB_ANY_FEATURES 0x00000000 #define SCTP_ASOC_ANY_STATE 0x00000000 typedef void (*asoc_func) (struct sctp_inpcb *, struct sctp_tcb *, void *ptr, - uint32_t val); + uint32_t val); typedef int (*inp_func) (struct sctp_inpcb *, void *ptr, uint32_t val); typedef void (*end_func) (void *ptr, uint32_t val); #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) /* whats on the mcore control struct */ struct sctp_mcore_queue { TAILQ_ENTRY(sctp_mcore_queue) next; struct vnet *vn; struct mbuf *m; int off; int v6; }; TAILQ_HEAD(sctp_mcore_qhead, sctp_mcore_queue); struct sctp_mcore_ctrl { SCTP_PROCESS_STRUCT thread_proc; struct sctp_mcore_qhead que; struct mtx core_mtx; struct mtx que_mtx; int running; int cpuid; }; #endif struct sctp_iterator { TAILQ_ENTRY(sctp_iterator) sctp_nxt_itr; struct vnet *vn; struct sctp_timer tmr; struct sctp_inpcb *inp; /* current endpoint */ struct sctp_tcb *stcb; /* current* assoc */ struct sctp_inpcb *next_inp; /* special hook to skip to */ asoc_func function_assoc; /* per assoc function */ inp_func function_inp; /* per endpoint function */ inp_func function_inp_end; /* end INP function */ - end_func function_atend;/* iterator completion function */ + end_func function_atend; /* iterator completion function */ void *pointer; /* pointer for apply func to use */ uint32_t val; /* value for apply func to use */ uint32_t pcb_flags; /* endpoint flags being checked */ uint32_t pcb_features; /* endpoint features being checked */ uint32_t asoc_state; /* assoc state being checked */ uint32_t iterator_flags; uint8_t no_chunk_output; uint8_t done_current_ep; }; /* iterator_flags values */ #define SCTP_ITERATOR_DO_ALL_INP 0x00000001 #define SCTP_ITERATOR_DO_SINGLE_INP 0x00000002 TAILQ_HEAD(sctpiterators, sctp_iterator); struct sctp_copy_all { struct sctp_inpcb *inp; /* ep */ struct mbuf *m; struct sctp_sndrcvinfo sndrcv; int sndlen; int cnt_sent; int cnt_failed; }; struct sctp_asconf_iterator { struct sctpladdr list_of_work; int cnt; }; struct iterator_control { struct mtx ipi_iterator_wq_mtx; struct mtx it_mtx; SCTP_PROCESS_STRUCT thread_proc; struct sctpiterators iteratorhead; struct sctp_iterator *cur_it; uint32_t iterator_running; uint32_t iterator_flags; }; #define SCTP_ITERATOR_STOP_CUR_IT 0x00000004 #define SCTP_ITERATOR_STOP_CUR_INP 0x00000008 struct sctp_net_route { sctp_rtentry_t *ro_rt; struct llentry *ro_lle; char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; uint16_t spare; union sctp_sockstore _l_addr; /* remote peer addr */ struct sctp_ifa *_s_addr; /* our selected src addr */ }; struct htcp { uint16_t alpha; /* Fixed point arith, << 7 */ uint8_t beta; /* Fixed point arith, << 7 */ uint8_t modeswitch; /* Delay modeswitch until we had at least one * congestion event */ uint32_t last_cong; /* Time since last congestion event end */ uint32_t undo_last_cong; uint16_t bytes_acked; uint32_t bytecount; uint32_t minRTT; uint32_t maxRTT; uint32_t undo_maxRTT; uint32_t undo_old_maxB; /* Bandwidth estimation */ uint32_t minB; uint32_t maxB; uint32_t old_maxB; uint32_t Bi; uint32_t lasttime; }; struct rtcc_cc { struct timeval tls; /* The time we started the sending */ uint64_t lbw; /* Our last estimated bw */ uint64_t lbw_rtt; /* RTT at bw estimate */ uint64_t bw_bytes; /* The total bytes since this sending began */ uint64_t bw_tot_time; /* The total time since sending began */ uint64_t new_tot_time; /* temp holding the new value */ uint64_t bw_bytes_at_last_rttc; /* What bw_bytes was at last rtt calc */ - uint32_t cwnd_at_bw_set;/* Cwnd at last bw saved - lbw */ + uint32_t cwnd_at_bw_set; /* Cwnd at last bw saved - lbw */ uint32_t vol_reduce; /* cnt of voluntary reductions */ uint16_t steady_step; /* The number required to be in steady state */ uint16_t step_cnt; /* The current number */ uint8_t ret_from_eq; /* When all things are equal what do I return * 0/1 - 1 no cc advance */ uint8_t use_dccc_ecn; /* Flag to enable DCCC ECN */ uint8_t tls_needs_set; /* Flag to indicate we need to set tls 0 or 1 * means set at send 2 not */ - uint8_t last_step_state;/* Last state if steady state stepdown is on */ + uint8_t last_step_state; /* Last state if steady state stepdown + * is on */ uint8_t rtt_set_this_sack; /* Flag saying this sack had RTT calc * on it */ uint8_t last_inst_ind; /* Last saved inst indication */ }; struct sctp_nets { TAILQ_ENTRY(sctp_nets) sctp_next; /* next link */ /* * Things on the top half may be able to be split into a common * structure shared by all. */ struct sctp_timer pmtu_timer; struct sctp_timer hb_timer; /* * The following two in combination equate to a route entry for v6 * or v4. */ struct sctp_net_route ro; /* mtu discovered so far */ uint32_t mtu; uint32_t ssthresh; /* not sure about this one for split */ uint32_t last_cwr_tsn; uint32_t cwr_window_tsn; uint32_t ecn_ce_pkt_cnt; uint32_t lost_cnt; /* smoothed average things for RTT and RTO itself */ int lastsa; int lastsv; uint64_t rtt; /* last measured rtt value in us */ unsigned int RTO; /* This is used for SHUTDOWN/SHUTDOWN-ACK/SEND or INIT timers */ struct sctp_timer rxt_timer; /* last time in seconds I sent to it */ struct timeval last_sent_time; union cc_control_data { struct htcp htcp_ca; /* JRS - struct used in HTCP algorithm */ struct rtcc_cc rtcc; /* rtcc module cc stuff */ } cc_mod; int ref_count; /* Congestion stats per destination */ /* * flight size variables and such, sorry Vern, I could not avoid * this if I wanted performance :> */ uint32_t flight_size; uint32_t cwnd; /* actual cwnd */ uint32_t prev_cwnd; /* cwnd before any processing */ uint32_t ecn_prev_cwnd; /* ECN prev cwnd at first ecn_echo seen in new * window */ uint32_t partial_bytes_acked; /* in CA tracks when to incr a MTU */ /* tracking variables to avoid the aloc/free in sack processing */ unsigned int net_ack; unsigned int net_ack2; /* * JRS - 5/8/07 - Variable to track last time a destination was * active for CMT PF */ uint32_t last_active; /* * CMT variables (iyengar@cis.udel.edu) */ uint32_t this_sack_highest_newack; /* tracks highest TSN newly * acked for a given dest in * the current SACK. Used in * SFR and HTNA algos */ uint32_t pseudo_cumack; /* CMT CUC algorithm. Maintains next expected * pseudo-cumack for this destination */ uint32_t rtx_pseudo_cumack; /* CMT CUC algorithm. Maintains next * expected pseudo-cumack for this * destination */ /* CMT fast recovery variables */ uint32_t fast_recovery_tsn; uint32_t heartbeat_random1; uint32_t heartbeat_random2; #ifdef INET6 uint32_t flowlabel; #endif uint8_t dscp; struct timeval start_time; /* time when this net was created */ - uint32_t marked_retrans;/* number or DATA chunks marked for timer - * based retransmissions */ + uint32_t marked_retrans; /* number or DATA chunks marked for + * timer based retransmissions */ uint32_t marked_fastretrans; uint32_t heart_beat_delay; /* Heart Beat delay in ms */ /* if this guy is ok or not ... status */ uint16_t dest_state; /* number of timeouts to consider the destination unreachable */ uint16_t failure_threshold; /* number of timeouts to consider the destination potentially failed */ uint16_t pf_threshold; /* error stats on the destination */ uint16_t error_count; /* UDP port number in case of UDP tunneling */ uint16_t port; uint8_t fast_retran_loss_recovery; uint8_t will_exit_fast_recovery; /* Flags that probably can be combined into dest_state */ uint8_t fast_retran_ip; /* fast retransmit in progress */ uint8_t hb_responded; uint8_t saw_newack; /* CMT's SFR algorithm flag */ uint8_t src_addr_selected; /* if we split we move */ uint8_t indx_of_eligible_next_to_use; uint8_t addr_is_local; /* its a local address (if known) could move * in split */ /* * CMT variables (iyengar@cis.udel.edu) */ uint8_t find_pseudo_cumack; /* CMT CUC algorithm. Flag used to * find a new pseudocumack. This flag * is set after a new pseudo-cumack * has been received and indicates * that the sender should find the * next pseudo-cumack expected for * this destination */ uint8_t find_rtx_pseudo_cumack; /* CMT CUCv2 algorithm. Flag used to * find a new rtx-pseudocumack. This * flag is set after a new * rtx-pseudo-cumack has been received * and indicates that the sender * should find the next * rtx-pseudo-cumack expected for this * destination */ uint8_t new_pseudo_cumack; /* CMT CUC algorithm. Flag used to * indicate if a new pseudo-cumack or * rtx-pseudo-cumack has been received */ uint8_t window_probe; /* Doing a window probe? */ uint8_t RTO_measured; /* Have we done the first measure */ uint8_t last_hs_used; /* index into the last HS table entry we used */ uint8_t lan_type; uint8_t rto_needed; uint32_t flowid; uint8_t flowtype; }; struct sctp_data_chunkrec { uint32_t tsn; /* the TSN of this transmit */ uint32_t mid; /* the message identifier of this transmit */ uint16_t sid; /* the stream number of this guy */ uint32_t ppid; uint32_t context; /* from send */ uint32_t cwnd_at_send; /* * part of the Highest sacked algorithm to be able to stroke counts * on ones that are FR'd. */ uint32_t fast_retran_tsn; /* sending_seq at the time of FR */ struct timeval timetodrop; /* time we drop it from queue */ uint32_t fsn; /* Fragment Sequence Number */ uint8_t doing_fast_retransmit; uint8_t rcv_flags; /* flags pulled from data chunk on inbound for * outbound holds sending flags for PR-SCTP. */ uint8_t state_flags; uint8_t chunk_was_revoked; uint8_t fwd_tsn_cnt; }; TAILQ_HEAD(sctpchunk_listhead, sctp_tmit_chunk); /* The lower byte is used to enumerate PR_SCTP policies */ #define CHUNK_FLAGS_PR_SCTP_TTL SCTP_PR_SCTP_TTL #define CHUNK_FLAGS_PR_SCTP_BUF SCTP_PR_SCTP_BUF #define CHUNK_FLAGS_PR_SCTP_RTX SCTP_PR_SCTP_RTX /* The upper byte is used as a bit mask */ #define CHUNK_FLAGS_FRAGMENT_OK 0x0100 struct chk_id { uint8_t id; uint8_t can_take_data; }; struct sctp_tmit_chunk { union { struct sctp_data_chunkrec data; struct chk_id chunk_id; } rec; struct sctp_association *asoc; /* bp to asoc this belongs to */ struct timeval sent_rcv_time; /* filled in if RTT being calculated */ struct mbuf *data; /* pointer to mbuf chain of data */ struct mbuf *last_mbuf; /* pointer to last mbuf in chain */ struct sctp_nets *whoTo; TAILQ_ENTRY(sctp_tmit_chunk) sctp_next; /* next link */ int32_t sent; /* the send status */ uint16_t snd_count; /* number of times I sent */ uint16_t flags; /* flags, such as FRAGMENT_OK */ uint16_t send_size; uint16_t book_size; uint16_t mbcnt; uint16_t auth_keyid; uint8_t holds_key_ref; /* flag if auth keyid refcount is held */ uint8_t pad_inplace; uint8_t do_rtt; uint8_t book_size_scale; uint8_t no_fr_allowed; uint8_t copy_by_ref; uint8_t window_probe; }; struct sctp_queued_to_read { /* sinfo structure Pluse more */ uint16_t sinfo_stream; /* off the wire */ uint16_t sinfo_flags; /* SCTP_UNORDERED from wire use SCTP_EOF for * EOR */ uint32_t sinfo_ppid; /* off the wire */ uint32_t sinfo_context; /* pick this up from assoc def context? */ uint32_t sinfo_timetolive; /* not used by kernel */ uint32_t sinfo_tsn; /* Use this in reassembly as first TSN */ uint32_t sinfo_cumtsn; /* Use this in reassembly as last TSN */ sctp_assoc_t sinfo_assoc_id; /* our assoc id */ /* Non sinfo stuff */ uint32_t mid; /* Fragment Index */ uint32_t length; /* length of data */ uint32_t held_length; /* length held in sb */ uint32_t top_fsn; /* Highest FSN in queue */ uint32_t fsn_included; /* Highest FSN in *data portion */ struct sctp_nets *whoFrom; /* where it came from */ struct mbuf *data; /* front of the mbuf chain of data with * PKT_HDR */ struct mbuf *tail_mbuf; /* used for multi-part data */ struct mbuf *aux_data; /* used to hold/cache control if o/s does not * take it from us */ struct sctp_tcb *stcb; /* assoc, used for window update */ TAILQ_ENTRY(sctp_queued_to_read) next; TAILQ_ENTRY(sctp_queued_to_read) next_instrm; struct sctpchunk_listhead reasm; uint16_t port_from; uint16_t spec_flags; /* Flags to hold the notification field */ uint8_t do_not_ref_stcb; uint8_t end_added; uint8_t pdapi_aborted; uint8_t pdapi_started; uint8_t some_taken; uint8_t last_frag_seen; uint8_t first_frag_seen; uint8_t on_read_q; uint8_t on_strm_q; }; #define SCTP_ON_ORDERED 1 #define SCTP_ON_UNORDERED 2 /* This data structure will be on the outbound * stream queues. Data will be pulled off from * the front of the mbuf data and chunk-ified * by the output routines. We will custom * fit every chunk we pull to the send/sent * queue to make up the next full packet * if we can. An entry cannot be removed * from the stream_out queue until * the msg_is_complete flag is set. This * means at times data/tail_mbuf MIGHT * be NULL.. If that occurs it happens * for one of two reasons. Either the user * is blocked on a send() call and has not * awoken to copy more data down... OR * the user is in the explict MSG_EOR mode * and wrote some data, but has not completed * sending. */ struct sctp_stream_queue_pending { struct mbuf *data; struct mbuf *tail_mbuf; struct timeval ts; struct sctp_nets *net; TAILQ_ENTRY(sctp_stream_queue_pending) next; TAILQ_ENTRY(sctp_stream_queue_pending) ss_next; uint32_t fsn; uint32_t length; uint32_t timetolive; uint32_t ppid; uint32_t context; uint16_t sinfo_flags; uint16_t sid; uint16_t act_flags; uint16_t auth_keyid; uint8_t holds_key_ref; uint8_t msg_is_complete; uint8_t some_taken; uint8_t sender_all_done; uint8_t put_last_out; uint8_t discard_rest; }; /* * this struct contains info that is used to track inbound stream data and * help with ordering. */ TAILQ_HEAD(sctpwheelunrel_listhead, sctp_stream_in); struct sctp_stream_in { struct sctp_readhead inqueue; struct sctp_readhead uno_inqueue; uint32_t last_mid_delivered; /* used for re-order */ uint16_t sid; uint8_t delivery_started; uint8_t pd_api_started; }; TAILQ_HEAD(sctpwheel_listhead, sctp_stream_out); TAILQ_HEAD(sctplist_listhead, sctp_stream_queue_pending); /* Round-robin schedulers */ struct ss_rr { /* next link in wheel */ TAILQ_ENTRY(sctp_stream_out) next_spoke; }; /* Priority scheduler */ struct ss_prio { /* next link in wheel */ TAILQ_ENTRY(sctp_stream_out) next_spoke; /* priority id */ uint16_t priority; }; /* Fair Bandwidth scheduler */ struct ss_fb { /* next link in wheel */ TAILQ_ENTRY(sctp_stream_out) next_spoke; /* stores message size */ int32_t rounds; }; /* * This union holds all data necessary for * different stream schedulers. */ struct scheduling_data { struct sctp_stream_out *locked_on_sending; /* circular looking for output selection */ struct sctp_stream_out *last_out_stream; union { struct sctpwheel_listhead wheel; struct sctplist_listhead list; } out; }; /* * This union holds all parameters per stream * necessary for different stream schedulers. */ union scheduling_parameters { struct ss_rr rr; struct ss_prio prio; struct ss_fb fb; }; /* States for outgoing streams */ #define SCTP_STREAM_CLOSED 0x00 #define SCTP_STREAM_OPENING 0x01 #define SCTP_STREAM_OPEN 0x02 #define SCTP_STREAM_RESET_PENDING 0x03 #define SCTP_STREAM_RESET_IN_FLIGHT 0x04 #define SCTP_MAX_STREAMS_AT_ONCE_RESET 200 /* This struct is used to track the traffic on outbound streams */ struct sctp_stream_out { struct sctp_streamhead outqueue; union scheduling_parameters ss_params; uint32_t chunks_on_queues; /* send queue and sent queue */ #if defined(SCTP_DETAILED_STR_STATS) uint32_t abandoned_unsent[SCTP_PR_SCTP_MAX + 1]; uint32_t abandoned_sent[SCTP_PR_SCTP_MAX + 1]; #else /* Only the aggregation */ uint32_t abandoned_unsent[1]; uint32_t abandoned_sent[1]; #endif /* * For associations using DATA chunks, the lower 16-bit of * next_mid_ordered are used as the next SSN. */ uint32_t next_mid_ordered; uint32_t next_mid_unordered; uint16_t sid; uint8_t last_msg_incomplete; uint8_t state; }; /* used to keep track of the addresses yet to try to add/delete */ TAILQ_HEAD(sctp_asconf_addrhead, sctp_asconf_addr); struct sctp_asconf_addr { TAILQ_ENTRY(sctp_asconf_addr) next; struct sctp_asconf_addr_param ap; struct sctp_ifa *ifa; /* save the ifa for add/del ip */ uint8_t sent; /* has this been sent yet? */ uint8_t special_del; /* not to be used in lookup */ }; struct sctp_scoping { uint8_t ipv4_addr_legal; uint8_t ipv6_addr_legal; uint8_t loopback_scope; uint8_t ipv4_local_scope; uint8_t local_scope; uint8_t site_scope; }; #define SCTP_TSN_LOG_SIZE 40 struct sctp_tsn_log { void *stcb; uint32_t tsn; uint32_t seq; uint16_t strm; uint16_t sz; uint16_t flgs; uint16_t in_pos; uint16_t in_out; uint16_t resv; }; #define SCTP_FS_SPEC_LOG_SIZE 200 struct sctp_fs_spec_log { uint32_t sent; uint32_t total_flight; uint32_t tsn; uint16_t book; uint8_t incr; uint8_t decr; }; /* This struct is here to cut out the compatiabilty * pad that bulks up both the inp and stcb. The non * pad portion MUST stay in complete sync with * sctp_sndrcvinfo... i.e. if sinfo_xxxx is added * this must be done here too. */ struct sctp_nonpad_sndrcvinfo { uint16_t sinfo_stream; uint16_t sinfo_ssn; uint16_t sinfo_flags; uint32_t sinfo_ppid; uint32_t sinfo_context; uint32_t sinfo_timetolive; uint32_t sinfo_tsn; uint32_t sinfo_cumtsn; sctp_assoc_t sinfo_assoc_id; uint16_t sinfo_keynumber; uint16_t sinfo_keynumber_valid; }; /* * JRS - Structure to hold function pointers to the functions responsible * for congestion control. */ struct sctp_cc_functions { void (*sctp_set_initial_cc_param) (struct sctp_tcb *stcb, struct sctp_nets *net); void (*sctp_cwnd_update_after_sack) (struct sctp_tcb *stcb, - struct sctp_association *asoc, - int accum_moved, int reneged_all, int will_exit); + struct sctp_association *asoc, + int accum_moved, int reneged_all, int will_exit); void (*sctp_cwnd_update_exit_pf) (struct sctp_tcb *stcb, struct sctp_nets *net); void (*sctp_cwnd_update_after_fr) (struct sctp_tcb *stcb, - struct sctp_association *asoc); + struct sctp_association *asoc); void (*sctp_cwnd_update_after_timeout) (struct sctp_tcb *stcb, - struct sctp_nets *net); + struct sctp_nets *net); void (*sctp_cwnd_update_after_ecn_echo) (struct sctp_tcb *stcb, - struct sctp_nets *net, int in_window, int num_pkt_lost); + struct sctp_nets *net, int in_window, int num_pkt_lost); void (*sctp_cwnd_update_after_packet_dropped) (struct sctp_tcb *stcb, - struct sctp_nets *net, struct sctp_pktdrop_chunk *cp, - uint32_t *bottle_bw, uint32_t *on_queue); + struct sctp_nets *net, struct sctp_pktdrop_chunk *cp, + uint32_t *bottle_bw, uint32_t *on_queue); void (*sctp_cwnd_update_after_output) (struct sctp_tcb *stcb, - struct sctp_nets *net, int burst_limit); + struct sctp_nets *net, int burst_limit); void (*sctp_cwnd_update_packet_transmitted) (struct sctp_tcb *stcb, - struct sctp_nets *net); + struct sctp_nets *net); void (*sctp_cwnd_update_tsn_acknowledged) (struct sctp_nets *net, - struct sctp_tmit_chunk *); + struct sctp_tmit_chunk *); void (*sctp_cwnd_new_transmission_begins) (struct sctp_tcb *stcb, - struct sctp_nets *net); + struct sctp_nets *net); void (*sctp_cwnd_prepare_net_for_sack) (struct sctp_tcb *stcb, - struct sctp_nets *net); + struct sctp_nets *net); int (*sctp_cwnd_socket_option) (struct sctp_tcb *stcb, int set, struct sctp_cc_option *); void (*sctp_rtt_calculated) (struct sctp_tcb *, struct sctp_nets *, struct timeval *); }; /* * RS - Structure to hold function pointers to the functions responsible * for stream scheduling. */ struct sctp_ss_functions { void (*sctp_ss_init) (struct sctp_tcb *stcb, struct sctp_association *asoc, - int holds_lock); + int holds_lock); void (*sctp_ss_clear) (struct sctp_tcb *stcb, struct sctp_association *asoc, - int clear_values, int holds_lock); + int clear_values, int holds_lock); void (*sctp_ss_init_stream) (struct sctp_tcb *stcb, struct sctp_stream_out *strq, struct sctp_stream_out *with_strq); void (*sctp_ss_add_to_stream) (struct sctp_tcb *stcb, struct sctp_association *asoc, - struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock); + struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock); int (*sctp_ss_is_empty) (struct sctp_tcb *stcb, struct sctp_association *asoc); void (*sctp_ss_remove_from_stream) (struct sctp_tcb *stcb, struct sctp_association *asoc, - struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock); - struct sctp_stream_out *(*sctp_ss_select_stream) (struct sctp_tcb *stcb, - struct sctp_nets *net, struct sctp_association *asoc); + struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp, int holds_lock); +struct sctp_stream_out *(*sctp_ss_select_stream) (struct sctp_tcb *stcb, + struct sctp_nets *net, struct sctp_association *asoc); void (*sctp_ss_scheduled) (struct sctp_tcb *stcb, struct sctp_nets *net, - struct sctp_association *asoc, struct sctp_stream_out *strq, int moved_how_much); + struct sctp_association *asoc, struct sctp_stream_out *strq, int moved_how_much); void (*sctp_ss_packet_done) (struct sctp_tcb *stcb, struct sctp_nets *net, - struct sctp_association *asoc); + struct sctp_association *asoc); int (*sctp_ss_get_value) (struct sctp_tcb *stcb, struct sctp_association *asoc, - struct sctp_stream_out *strq, uint16_t *value); + struct sctp_stream_out *strq, uint16_t *value); int (*sctp_ss_set_value) (struct sctp_tcb *stcb, struct sctp_association *asoc, - struct sctp_stream_out *strq, uint16_t value); + struct sctp_stream_out *strq, uint16_t value); int (*sctp_ss_is_user_msgs_incomplete) (struct sctp_tcb *stcb, struct sctp_association *asoc); }; /* used to save ASCONF chunks for retransmission */ TAILQ_HEAD(sctp_asconf_head, sctp_asconf); struct sctp_asconf { TAILQ_ENTRY(sctp_asconf) next; uint32_t serial_number; uint16_t snd_count; struct mbuf *data; uint16_t len; }; /* used to save ASCONF-ACK chunks for retransmission */ TAILQ_HEAD(sctp_asconf_ackhead, sctp_asconf_ack); struct sctp_asconf_ack { TAILQ_ENTRY(sctp_asconf_ack) next; uint32_t serial_number; struct sctp_nets *last_sent_to; struct mbuf *data; uint16_t len; }; /* * Here we have information about each individual association that we track. * We probably in production would be more dynamic. But for ease of * implementation we will have a fixed array that we hunt for in a linear * fashion. */ struct sctp_association { /* association state */ int state; /* queue of pending addrs to add/delete */ struct sctp_asconf_addrhead asconf_queue; struct timeval time_entered; /* time we entered state */ struct timeval time_last_rcvd; struct timeval time_last_sent; struct timeval time_last_sat_advance; struct sctp_nonpad_sndrcvinfo def_send; /* timers and such */ struct sctp_timer dack_timer; /* Delayed ack timer */ struct sctp_timer asconf_timer; /* asconf */ struct sctp_timer strreset_timer; /* stream reset */ struct sctp_timer shut_guard_timer; /* shutdown guard */ struct sctp_timer autoclose_timer; /* automatic close timer */ struct sctp_timer delayed_event_timer; /* timer for delayed events */ struct sctp_timer delete_prim_timer; /* deleting primary dst */ /* list of restricted local addresses */ struct sctpladdr sctp_restricted_addrs; /* last local address pending deletion (waiting for an address add) */ struct sctp_ifa *asconf_addr_del_pending; /* Deleted primary destination (used to stop timer) */ struct sctp_nets *deleted_primary; struct sctpnetlisthead nets; /* remote address list */ /* Free chunk list */ struct sctpchunk_listhead free_chunks; /* Control chunk queue */ struct sctpchunk_listhead control_send_queue; /* ASCONF chunk queue */ struct sctpchunk_listhead asconf_send_queue; /* * Once a TSN hits the wire it is moved to the sent_queue. We * maintain two counts here (don't know if any but retran_cnt is * needed). The idea is that the sent_queue_retran_cnt reflects how * many chunks have been marked for retranmission by either T3-rxt * or FR. */ struct sctpchunk_listhead sent_queue; struct sctpchunk_listhead send_queue; /* Scheduling queues */ struct scheduling_data ss_data; /* If an iterator is looking at me, this is it */ struct sctp_iterator *stcb_starting_point_for_iterator; /* ASCONF save the last ASCONF-ACK so we can resend it if necessary */ struct sctp_asconf_ackhead asconf_ack_sent; /* * pointer to last stream reset queued to control queue by us with * requests. */ struct sctp_tmit_chunk *str_reset; /* * if Source Address Selection happening, this will rotate through * the link list. */ struct sctp_laddr *last_used_address; /* stream arrays */ struct sctp_stream_in *strmin; struct sctp_stream_out *strmout; uint8_t *mapping_array; /* primary destination to use */ struct sctp_nets *primary_destination; struct sctp_nets *alternate; /* If primary is down or PF */ /* For CMT */ struct sctp_nets *last_net_cmt_send_started; /* last place I got a data chunk from */ struct sctp_nets *last_data_chunk_from; /* last place I got a control from */ struct sctp_nets *last_control_chunk_from; /* * wait to the point the cum-ack passes req->send_reset_at_tsn for * any req on the list. */ struct sctp_resethead resetHead; /* queue of chunks waiting to be sent into the local stack */ struct sctp_readhead pending_reply_queue; /* JRS - the congestion control functions are in this struct */ struct sctp_cc_functions cc_functions; /* * JRS - value to store the currently loaded congestion control * module */ uint32_t congestion_control_module; /* RS - the stream scheduling functions are in this struct */ struct sctp_ss_functions ss_functions; /* RS - value to store the currently loaded stream scheduling module */ uint32_t stream_scheduling_module; uint32_t vrf_id; uint32_t cookie_preserve_req; /* ASCONF next seq I am sending out, inits at init-tsn */ uint32_t asconf_seq_out; uint32_t asconf_seq_out_acked; /* ASCONF last received ASCONF from peer, starts at peer's TSN-1 */ uint32_t asconf_seq_in; /* next seq I am sending in str reset messages */ uint32_t str_reset_seq_out; /* next seq I am expecting in str reset messages */ uint32_t str_reset_seq_in; /* various verification tag information */ uint32_t my_vtag; /* The tag to be used. if assoc is re-initited * by remote end, and I have unlocked this * will be regenerated to a new random value. */ uint32_t peer_vtag; /* The peers last tag */ uint32_t my_vtag_nonce; uint32_t peer_vtag_nonce; uint32_t assoc_id; /* This is the SCTP fragmentation threshold */ uint32_t smallest_mtu; /* * Special hook for Fast retransmit, allows us to track the highest * TSN that is NEW in this SACK if gap ack blocks are present. */ uint32_t this_sack_highest_gap; /* * The highest consecutive TSN that has been acked by peer on my * sends */ uint32_t last_acked_seq; /* The next TSN that I will use in sending. */ uint32_t sending_seq; /* Original seq number I used ??questionable to keep?? */ uint32_t init_seq_number; /* The Advanced Peer Ack Point, as required by the PR-SCTP */ /* (A1 in Section 4.2) */ uint32_t advanced_peer_ack_point; /* * The highest consequetive TSN at the bottom of the mapping array * (for his sends). */ uint32_t cumulative_tsn; /* * Used to track the mapping array and its offset bits. This MAY be * lower then cumulative_tsn. */ uint32_t mapping_array_base_tsn; /* * used to track highest TSN we have received and is listed in the * mapping array. */ uint32_t highest_tsn_inside_map; /* EY - new NR variables used for nr_sack based on mapping_array */ uint8_t *nr_mapping_array; uint32_t highest_tsn_inside_nr_map; uint32_t fast_recovery_tsn; uint32_t sat_t3_recovery_tsn; uint32_t tsn_last_delivered; /* * For the pd-api we should re-write this a bit more efficient. We * could have multiple sctp_queued_to_read's that we are building at * once. Now we only do this when we get ready to deliver to the * socket buffer. Note that we depend on the fact that the struct is * "stuck" on the read queue until we finish all the pd-api. */ struct sctp_queued_to_read *control_pdapi; uint32_t tsn_of_pdapi_last_delivered; uint32_t pdapi_ppid; uint32_t context; uint32_t last_reset_action[SCTP_MAX_RESET_PARAMS]; uint32_t last_sending_seq[SCTP_MAX_RESET_PARAMS]; uint32_t last_base_tsnsent[SCTP_MAX_RESET_PARAMS]; #ifdef SCTP_ASOCLOG_OF_TSNS /* * special log - This adds considerable size to the asoc, but * provides a log that you can use to detect problems via kgdb. */ struct sctp_tsn_log in_tsnlog[SCTP_TSN_LOG_SIZE]; struct sctp_tsn_log out_tsnlog[SCTP_TSN_LOG_SIZE]; uint32_t cumack_log[SCTP_TSN_LOG_SIZE]; uint32_t cumack_logsnt[SCTP_TSN_LOG_SIZE]; uint16_t tsn_in_at; uint16_t tsn_out_at; uint16_t tsn_in_wrapped; uint16_t tsn_out_wrapped; uint16_t cumack_log_at; uint16_t cumack_log_atsnt; #endif /* SCTP_ASOCLOG_OF_TSNS */ #ifdef SCTP_FS_SPEC_LOG struct sctp_fs_spec_log fslog[SCTP_FS_SPEC_LOG_SIZE]; uint16_t fs_index; #endif /* * window state information and smallest MTU that I use to bound * segmentation */ uint32_t peers_rwnd; uint32_t my_rwnd; uint32_t my_last_reported_rwnd; uint32_t sctp_frag_point; uint32_t total_output_queue_size; uint32_t sb_cc; /* shadow of sb_cc */ uint32_t sb_send_resv; /* amount reserved on a send */ uint32_t my_rwnd_control_len; /* shadow of sb_mbcnt used for rwnd * control */ #ifdef INET6 uint32_t default_flowlabel; #endif uint32_t pr_sctp_cnt; int ctrl_queue_cnt; /* could be removed REM - NO IT CAN'T!! RRS */ /* * All outbound datagrams queue into this list from the individual * stream queue. Here they get assigned a TSN and then await * sending. The stream seq comes when it is first put in the * individual str queue */ unsigned int stream_queue_cnt; unsigned int send_queue_cnt; unsigned int sent_queue_cnt; unsigned int sent_queue_cnt_removeable; /* * Number on sent queue that are marked for retran until this value * is 0 we only send one packet of retran'ed data. */ unsigned int sent_queue_retran_cnt; unsigned int size_on_reasm_queue; unsigned int cnt_on_reasm_queue; unsigned int fwd_tsn_cnt; /* amount of data (bytes) currently in flight (on all destinations) */ unsigned int total_flight; /* Total book size in flight */ unsigned int total_flight_count; /* count of chunks used with * book total */ /* count of destinaton nets and list of destination nets */ unsigned int numnets; /* Total error count on this association */ unsigned int overall_error_count; unsigned int cnt_msg_on_sb; /* All stream count of chunks for delivery */ unsigned int size_on_all_streams; unsigned int cnt_on_all_streams; /* Heart Beat delay in ms */ uint32_t heart_beat_delay; /* autoclose */ unsigned int sctp_autoclose_ticks; /* how many preopen streams we have */ unsigned int pre_open_streams; /* How many streams I support coming into me */ unsigned int max_inbound_streams; /* the cookie life I award for any cookie, in seconds */ unsigned int cookie_life; /* time to delay acks for */ unsigned int delayed_ack; unsigned int old_delayed_ack; unsigned int sack_freq; unsigned int data_pkts_seen; unsigned int numduptsns; int dup_tsns[SCTP_MAX_DUP_TSNS]; unsigned int initial_init_rto_max; /* initial RTO for INIT's */ unsigned int initial_rto; /* initial send RTO */ unsigned int minrto; /* per assoc RTO-MIN */ unsigned int maxrto; /* per assoc RTO-MAX */ /* authentication fields */ sctp_auth_chklist_t *local_auth_chunks; sctp_auth_chklist_t *peer_auth_chunks; sctp_hmaclist_t *local_hmacs; /* local HMACs supported */ sctp_hmaclist_t *peer_hmacs; /* peer HMACs supported */ struct sctp_keyhead shared_keys; /* assoc's shared keys */ sctp_authinfo_t authinfo; /* randoms, cached keys */ /* * refcnt to block freeing when a sender or receiver is off coping * user data in. */ uint32_t refcnt; uint32_t chunks_on_out_queue; /* total chunks floating around, * locked by send socket buffer */ uint32_t peers_adaptation; uint32_t default_mtu; uint16_t peer_hmac_id; /* peer HMAC id to send */ /* * Being that we have no bag to collect stale cookies, and that we * really would not want to anyway.. we will count them in this * counter. We of course feed them to the pigeons right away (I have * always thought of pigeons as flying rats). */ uint16_t stale_cookie_count; /* * For the partial delivery API, if up, invoked this is what last * TSN I delivered */ uint16_t str_of_pdapi; uint16_t ssn_of_pdapi; /* counts of actual built streams. Allocation may be more however */ /* could re-arrange to optimize space here. */ uint16_t streamincnt; uint16_t streamoutcnt; uint16_t strm_realoutsize; uint16_t strm_pending_add_size; /* my maximum number of retrans of INIT and SEND */ /* copied from SCTP but should be individually setable */ uint16_t max_init_times; uint16_t max_send_times; uint16_t def_net_failure; uint16_t def_net_pf_threshold; /* * lock flag: 0 is ok to send, 1+ (duals as a retran count) is * awaiting ACK */ uint16_t mapping_array_size; uint16_t last_strm_seq_delivered; uint16_t last_strm_no_delivered; uint16_t last_revoke_count; int16_t num_send_timers_up; uint16_t stream_locked_on; uint16_t ecn_echo_cnt_onq; uint16_t free_chunk_cnt; uint8_t stream_locked; uint8_t authenticated; /* packet authenticated ok */ /* * This flag indicates that a SACK need to be sent. Initially this * is 1 to send the first sACK immediately. */ uint8_t send_sack; /* max burst of new packets into the network */ uint32_t max_burst; /* max burst of fast retransmit packets */ uint32_t fr_max_burst; uint8_t sat_network; /* RTT is in range of sat net or greater */ uint8_t sat_network_lockout; /* lockout code */ uint8_t burst_limit_applied; /* Burst limit in effect at last send? */ /* flag goes on when we are doing a partial delivery api */ uint8_t hb_random_values[4]; uint8_t fragmented_delivery_inprogress; uint8_t fragment_flags; uint8_t last_flags_delivered; uint8_t hb_ect_randombit; uint8_t hb_random_idx; uint8_t default_dscp; uint8_t asconf_del_pending; /* asconf delete last addr pending */ uint8_t trigger_reset; /* * This value, plus all other ack'd but above cum-ack is added * together to cross check against the bit that we have yet to * define (probably in the SACK). When the cum-ack is updated, this * sum is updated as well. */ /* Flags whether an extension is supported or not */ uint8_t ecn_supported; uint8_t prsctp_supported; uint8_t auth_supported; uint8_t asconf_supported; uint8_t reconfig_supported; uint8_t nrsack_supported; uint8_t pktdrop_supported; uint8_t idata_supported; /* Did the peer make the stream config (add out) request */ uint8_t peer_req_out; uint8_t local_strreset_support; uint8_t peer_supports_nat; struct sctp_scoping scope; /* flags to handle send alternate net tracking */ uint8_t used_alt_asconfack; uint8_t fast_retran_loss_recovery; uint8_t sat_t3_loss_recovery; uint8_t dropped_special_cnt; uint8_t seen_a_sack_this_pkt; uint8_t stream_reset_outstanding; uint8_t stream_reset_out_is_outstanding; uint8_t delayed_connection; uint8_t ifp_had_enobuf; uint8_t saw_sack_with_frags; uint8_t saw_sack_with_nr_frags; uint8_t in_asocid_hash; uint8_t assoc_up_sent; uint8_t adaptation_needed; uint8_t adaptation_sent; /* CMT variables */ uint8_t cmt_dac_pkts_rcvd; uint8_t sctp_cmt_on_off; uint8_t iam_blocking; uint8_t cookie_how[8]; /* JRS 5/21/07 - CMT PF variable */ uint8_t sctp_cmt_pf; uint8_t use_precise_time; uint64_t sctp_features; uint32_t max_cwnd; uint16_t port; /* remote UDP encapsulation port */ /* * The mapping array is used to track out of order sequences above * last_acked_seq. 0 indicates packet missing 1 indicates packet * rec'd. We slide it up every time we raise last_acked_seq and 0 * trailing locactions out. If I get a TSN above the array * mappingArraySz, I discard the datagram and let retransmit happen. */ uint32_t marked_retrans; uint32_t timoinit; uint32_t timodata; uint32_t timosack; uint32_t timoshutdown; uint32_t timoheartbeat; uint32_t timocookie; uint32_t timoshutdownack; struct timeval start_time; struct timeval discontinuity_time; uint64_t abandoned_unsent[SCTP_PR_SCTP_MAX + 1]; uint64_t abandoned_sent[SCTP_PR_SCTP_MAX + 1]; }; #endif Index: stable/11/sys/netinet/sctp_timer.c =================================================================== --- stable/11/sys/netinet/sctp_timer.c (revision 347153) +++ stable/11/sys/netinet/sctp_timer.c (revision 347154) @@ -1,1594 +1,1600 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define _IP_VHL #include #include #ifdef INET6 #endif #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #endif void sctp_audit_retranmission_queue(struct sctp_association *asoc) { struct sctp_tmit_chunk *chk; SCTPDBG(SCTP_DEBUG_TIMER4, "Audit invoked on send queue cnt:%d onqueue:%d\n", asoc->sent_queue_retran_cnt, asoc->sent_queue_cnt); asoc->sent_queue_retran_cnt = 0; asoc->sent_queue_cnt = 0; TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(asoc->sent_queue_retran_cnt); } asoc->sent_queue_cnt++; } TAILQ_FOREACH(chk, &asoc->control_send_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(asoc->sent_queue_retran_cnt); } } TAILQ_FOREACH(chk, &asoc->asconf_send_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(asoc->sent_queue_retran_cnt); } } SCTPDBG(SCTP_DEBUG_TIMER4, "Audit completes retran:%d onqueue:%d\n", asoc->sent_queue_retran_cnt, asoc->sent_queue_cnt); } static int sctp_threshold_management(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint16_t threshold) { if (net) { net->error_count++; SCTPDBG(SCTP_DEBUG_TIMER4, "Error count for %p now %d thresh:%d\n", (void *)net, net->error_count, net->failure_threshold); if (net->error_count > net->failure_threshold) { /* We had a threshold failure */ if (net->dest_state & SCTP_ADDR_REACHABLE) { net->dest_state &= ~SCTP_ADDR_REACHABLE; net->dest_state &= ~SCTP_ADDR_REQ_PRIMARY; net->dest_state &= ~SCTP_ADDR_PF; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED); } } else if ((net->pf_threshold < net->failure_threshold) && (net->error_count > net->pf_threshold)) { if (!(net->dest_state & SCTP_ADDR_PF)) { net->dest_state |= SCTP_ADDR_PF; net->last_active = sctp_get_tick_count(); sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_TIMER + SCTP_LOC_1); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } } } if (stcb == NULL) return (0); if (net) { if ((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_INCR, stcb->asoc.overall_error_count, (stcb->asoc.overall_error_count + 1), SCTP_FROM_SCTP_TIMER, __LINE__); } stcb->asoc.overall_error_count++; } } else { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_INCR, stcb->asoc.overall_error_count, (stcb->asoc.overall_error_count + 1), SCTP_FROM_SCTP_TIMER, __LINE__); } stcb->asoc.overall_error_count++; } SCTPDBG(SCTP_DEBUG_TIMER4, "Overall error count for %p now %d thresh:%u state:%x\n", (void *)&stcb->asoc, stcb->asoc.overall_error_count, (uint32_t)threshold, ((net == NULL) ? (uint32_t)0 : (uint32_t)net->dest_state)); /* * We specifically do not do >= to give the assoc one more change * before we fail it. */ if (stcb->asoc.overall_error_count > threshold) { /* Abort notification sends a ULP notify */ struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Association error counter exceeded"); inp->last_abort_code = SCTP_FROM_SCTP_TIMER + SCTP_LOC_2; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); return (1); } return (0); } /* * sctp_find_alternate_net() returns a non-NULL pointer as long * the argument net is non-NULL. */ struct sctp_nets * sctp_find_alternate_net(struct sctp_tcb *stcb, struct sctp_nets *net, int mode) { /* Find and return an alternate network if possible */ struct sctp_nets *alt, *mnet, *min_errors_net = NULL, *max_cwnd_net = NULL; int once; /* JRS 5/14/07 - Initialize min_errors to an impossible value. */ int min_errors = -1; uint32_t max_cwnd = 0; if (stcb->asoc.numnets == 1) { /* No others but net */ return (TAILQ_FIRST(&stcb->asoc.nets)); } /* * JRS 5/14/07 - If mode is set to 2, use the CMT PF find alternate * net algorithm. This algorithm chooses the active destination (not * in PF state) with the largest cwnd value. If all destinations are * in PF state, unreachable, or unconfirmed, choose the desination * that is in PF state with the lowest error count. In case of a * tie, choose the destination that was most recently active. */ if (mode == 2) { TAILQ_FOREACH(mnet, &stcb->asoc.nets, sctp_next) { /* * JRS 5/14/07 - If the destination is unreachable * or unconfirmed, skip it. */ if (((mnet->dest_state & SCTP_ADDR_REACHABLE) != SCTP_ADDR_REACHABLE) || (mnet->dest_state & SCTP_ADDR_UNCONFIRMED)) { continue; } /* * JRS 5/14/07 - If the destination is reachable * but in PF state, compare the error count of the * destination to the minimum error count seen thus * far. Store the destination with the lower error * count. If the error counts are equal, store the * destination that was most recently active. */ if (mnet->dest_state & SCTP_ADDR_PF) { /* * JRS 5/14/07 - If the destination under * consideration is the current destination, * work as if the error count is one higher. * The actual error count will not be * incremented until later in the t3 * handler. */ if (mnet == net) { if (min_errors == -1) { min_errors = mnet->error_count + 1; min_errors_net = mnet; } else if (mnet->error_count + 1 < min_errors) { min_errors = mnet->error_count + 1; min_errors_net = mnet; } else if (mnet->error_count + 1 == min_errors && mnet->last_active > min_errors_net->last_active) { min_errors_net = mnet; min_errors = mnet->error_count + 1; } continue; } else { if (min_errors == -1) { min_errors = mnet->error_count; min_errors_net = mnet; } else if (mnet->error_count < min_errors) { min_errors = mnet->error_count; min_errors_net = mnet; } else if (mnet->error_count == min_errors && mnet->last_active > min_errors_net->last_active) { min_errors_net = mnet; min_errors = mnet->error_count; } continue; } } /* * JRS 5/14/07 - If the destination is reachable and * not in PF state, compare the cwnd of the * destination to the highest cwnd seen thus far. * Store the destination with the higher cwnd value. * If the cwnd values are equal, randomly choose one * of the two destinations. */ if (max_cwnd < mnet->cwnd) { max_cwnd_net = mnet; max_cwnd = mnet->cwnd; } else if (max_cwnd == mnet->cwnd) { uint32_t rndval; uint8_t this_random; if (stcb->asoc.hb_random_idx > 3) { rndval = sctp_select_initial_TSN(&stcb->sctp_ep->sctp_ep); memcpy(stcb->asoc.hb_random_values, &rndval, sizeof(stcb->asoc.hb_random_values)); this_random = stcb->asoc.hb_random_values[0]; stcb->asoc.hb_random_idx++; stcb->asoc.hb_ect_randombit = 0; } else { this_random = stcb->asoc.hb_random_values[stcb->asoc.hb_random_idx]; stcb->asoc.hb_random_idx++; stcb->asoc.hb_ect_randombit = 0; } if (this_random % 2 == 1) { max_cwnd_net = mnet; max_cwnd = mnet->cwnd; /* Useless? */ } } } if (max_cwnd_net == NULL) { if (min_errors_net == NULL) { return (net); } return (min_errors_net); } else { return (max_cwnd_net); } } /* JRS 5/14/07 - If mode is set to 1, use the * CMT policy for choosing an alternate net. */ else if (mode == 1) { TAILQ_FOREACH(mnet, &stcb->asoc.nets, sctp_next) { if (((mnet->dest_state & SCTP_ADDR_REACHABLE) != SCTP_ADDR_REACHABLE) || (mnet->dest_state & SCTP_ADDR_UNCONFIRMED)) { /* * will skip ones that are not-reachable or * unconfirmed */ continue; } if (max_cwnd < mnet->cwnd) { max_cwnd_net = mnet; max_cwnd = mnet->cwnd; } else if (max_cwnd == mnet->cwnd) { uint32_t rndval; uint8_t this_random; if (stcb->asoc.hb_random_idx > 3) { rndval = sctp_select_initial_TSN(&stcb->sctp_ep->sctp_ep); memcpy(stcb->asoc.hb_random_values, &rndval, sizeof(stcb->asoc.hb_random_values)); this_random = stcb->asoc.hb_random_values[0]; stcb->asoc.hb_random_idx = 0; stcb->asoc.hb_ect_randombit = 0; } else { this_random = stcb->asoc.hb_random_values[stcb->asoc.hb_random_idx]; stcb->asoc.hb_random_idx++; stcb->asoc.hb_ect_randombit = 0; } if (this_random % 2) { max_cwnd_net = mnet; max_cwnd = mnet->cwnd; } } } if (max_cwnd_net) { return (max_cwnd_net); } } mnet = net; once = 0; if (mnet == NULL) { mnet = TAILQ_FIRST(&stcb->asoc.nets); if (mnet == NULL) { return (NULL); } } for (;;) { alt = TAILQ_NEXT(mnet, sctp_next); if (alt == NULL) { once++; if (once > 1) { break; } alt = TAILQ_FIRST(&stcb->asoc.nets); if (alt == NULL) { return (NULL); } } if (alt->ro.ro_rt == NULL) { if (alt->ro._s_addr) { sctp_free_ifa(alt->ro._s_addr); alt->ro._s_addr = NULL; } alt->src_addr_selected = 0; } if (((alt->dest_state & SCTP_ADDR_REACHABLE) == SCTP_ADDR_REACHABLE) && (alt->ro.ro_rt != NULL) && (!(alt->dest_state & SCTP_ADDR_UNCONFIRMED))) { /* Found a reachable address */ break; } mnet = alt; } if (alt == NULL) { /* Case where NO insv network exists (dormant state) */ /* we rotate destinations */ once = 0; mnet = net; for (;;) { if (mnet == NULL) { return (TAILQ_FIRST(&stcb->asoc.nets)); } alt = TAILQ_NEXT(mnet, sctp_next); if (alt == NULL) { once++; if (once > 1) { break; } alt = TAILQ_FIRST(&stcb->asoc.nets); if (alt == NULL) { break; } } if ((!(alt->dest_state & SCTP_ADDR_UNCONFIRMED)) && (alt != net)) { /* Found an alternate address */ break; } mnet = alt; } } if (alt == NULL) { return (net); } return (alt); } static void sctp_backoff_on_timeout(struct sctp_tcb *stcb, struct sctp_nets *net, int win_probe, int num_marked, int num_abandoned) { if (net->RTO == 0) { if (net->RTO_measured) { net->RTO = stcb->asoc.minrto; } else { net->RTO = stcb->asoc.initial_rto; } } net->RTO <<= 1; if (net->RTO > stcb->asoc.maxrto) { net->RTO = stcb->asoc.maxrto; } if ((win_probe == 0) && (num_marked || num_abandoned)) { /* We don't apply penalty to window probe scenarios */ /* JRS - Use the congestion control given in the CC module */ stcb->asoc.cc_functions.sctp_cwnd_update_after_timeout(stcb, net); } } #ifndef INVARIANTS static void sctp_recover_sent_list(struct sctp_tcb *stcb) { struct sctp_tmit_chunk *chk, *nchk; struct sctp_association *asoc; asoc = &stcb->asoc; TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { if (SCTP_TSN_GE(asoc->last_acked_seq, chk->rec.data.tsn)) { SCTP_PRINTF("Found chk:%p tsn:%x <= last_acked_seq:%x\n", (void *)chk, chk->rec.data.tsn, asoc->last_acked_seq); if (chk->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; } } if ((asoc->strmout[chk->rec.data.sid].chunks_on_queues == 0) && (asoc->strmout[chk->rec.data.sid].state == SCTP_STREAM_RESET_PENDING) && TAILQ_EMPTY(&asoc->strmout[chk->rec.data.sid].outqueue)) { asoc->trigger_reset = 1; } TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); if (PR_SCTP_ENABLED(chk->flags)) { if (asoc->pr_sctp_cnt != 0) asoc->pr_sctp_cnt--; } if (chk->data) { /* sa_ignore NO_NULL_CHK */ sctp_free_bufspace(stcb, asoc, chk, 1); sctp_m_freem(chk->data); chk->data = NULL; if (asoc->prsctp_supported && PR_SCTP_BUF_ENABLED(chk->flags)) { asoc->sent_queue_cnt_removeable--; } } asoc->sent_queue_cnt--; sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } } SCTP_PRINTF("after recover order is as follows\n"); TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) { SCTP_PRINTF("chk:%p TSN:%x\n", (void *)chk, chk->rec.data.tsn); } } #endif static int sctp_mark_all_for_resend(struct sctp_tcb *stcb, struct sctp_nets *net, struct sctp_nets *alt, int window_probe, int *num_marked, int *num_abandoned) { /* * Mark all chunks (well not all) that were sent to *net for * retransmission. Move them to alt for there destination as well... * We only mark chunks that have been outstanding long enough to * have received feed-back. */ struct sctp_tmit_chunk *chk, *nchk; struct sctp_nets *lnets; struct timeval now, min_wait, tv; int cur_rto; int cnt_abandoned; int audit_tf, num_mk, fir; unsigned int cnt_mk; uint32_t orig_flight, orig_tf; uint32_t tsnlast, tsnfirst; int recovery_cnt = 0; /* none in flight now */ audit_tf = 0; fir = 0; /* * figure out how long a data chunk must be pending before we can * mark it .. */ (void)SCTP_GETTIME_TIMEVAL(&now); /* get cur rto in micro-seconds */ cur_rto = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv; cur_rto *= 1000; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(cur_rto, stcb->asoc.peers_rwnd, window_probe, SCTP_FR_T3_MARK_TIME); sctp_log_fr(net->flight_size, 0, 0, SCTP_FR_CWND_REPORT); sctp_log_fr(net->flight_size, net->cwnd, stcb->asoc.total_flight, SCTP_FR_CWND_REPORT); } tv.tv_sec = cur_rto / 1000000; tv.tv_usec = cur_rto % 1000000; min_wait = now; timevalsub(&min_wait, &tv); if (min_wait.tv_sec < 0 || min_wait.tv_usec < 0) { /* * if we hit here, we don't have enough seconds on the clock * to account for the RTO. We just let the lower seconds be * the bounds and don't worry about it. This may mean we * will mark a lot more than we should. */ min_wait.tv_sec = min_wait.tv_usec = 0; } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(cur_rto, now.tv_sec, now.tv_usec, SCTP_FR_T3_MARK_TIME); sctp_log_fr(0, min_wait.tv_sec, min_wait.tv_usec, SCTP_FR_T3_MARK_TIME); } /* * Our rwnd will be incorrect here since we are not adding back the * cnt * mbuf but we will fix that down below. */ orig_flight = net->flight_size; orig_tf = stcb->asoc.total_flight; net->fast_retran_ip = 0; /* Now on to each chunk */ cnt_abandoned = 0; num_mk = cnt_mk = 0; tsnfirst = tsnlast = 0; #ifndef INVARIANTS start_again: #endif TAILQ_FOREACH_SAFE(chk, &stcb->asoc.sent_queue, sctp_next, nchk) { if (SCTP_TSN_GE(stcb->asoc.last_acked_seq, chk->rec.data.tsn)) { /* Strange case our list got out of order? */ SCTP_PRINTF("Our list is out of order? last_acked:%x chk:%x\n", (unsigned int)stcb->asoc.last_acked_seq, (unsigned int)chk->rec.data.tsn); recovery_cnt++; #ifdef INVARIANTS panic("last acked >= chk on sent-Q"); #else SCTP_PRINTF("Recover attempts a restart cnt:%d\n", recovery_cnt); sctp_recover_sent_list(stcb); if (recovery_cnt < 10) { goto start_again; } else { SCTP_PRINTF("Recovery fails %d times??\n", recovery_cnt); } #endif } if ((chk->whoTo == net) && (chk->sent < SCTP_DATAGRAM_ACKED)) { /* * found one to mark: If it is less than * DATAGRAM_ACKED it MUST not be a skipped or marked * TSN but instead one that is either already set * for retransmission OR one that needs * retransmission. */ /* validate its been outstanding long enough */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(chk->rec.data.tsn, chk->sent_rcv_time.tv_sec, chk->sent_rcv_time.tv_usec, SCTP_FR_T3_MARK_TIME); } if ((chk->sent_rcv_time.tv_sec > min_wait.tv_sec) && (window_probe == 0)) { /* * we have reached a chunk that was sent * some seconds past our min.. forget it we * will find no more to send. */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(0, chk->sent_rcv_time.tv_sec, chk->sent_rcv_time.tv_usec, SCTP_FR_T3_STOPPED); } continue; } else if ((chk->sent_rcv_time.tv_sec == min_wait.tv_sec) && (window_probe == 0)) { /* * we must look at the micro seconds to * know. */ if (chk->sent_rcv_time.tv_usec >= min_wait.tv_usec) { /* * ok it was sent after our boundary * time. */ continue; } } if (stcb->asoc.prsctp_supported && PR_SCTP_TTL_ENABLED(chk->flags)) { /* Is it expired? */ if (timevalcmp(&now, &chk->rec.data.timetodrop, >)) { /* Yes so drop it */ if (chk->data) { (void)sctp_release_pr_sctp_chunk(stcb, chk, 1, SCTP_SO_NOT_LOCKED); cnt_abandoned++; } continue; } } if (stcb->asoc.prsctp_supported && PR_SCTP_RTX_ENABLED(chk->flags)) { /* Has it been retransmitted tv_sec times? */ if (chk->snd_count > chk->rec.data.timetodrop.tv_sec) { if (chk->data) { (void)sctp_release_pr_sctp_chunk(stcb, chk, 1, SCTP_SO_NOT_LOCKED); cnt_abandoned++; } continue; } } if (chk->sent < SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); num_mk++; if (fir == 0) { fir = 1; tsnfirst = chk->rec.data.tsn; } tsnlast = chk->rec.data.tsn; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(chk->rec.data.tsn, chk->snd_count, 0, SCTP_FR_T3_MARKED); } + if (chk->rec.data.chunk_was_revoked) { /* deflate the cwnd */ chk->whoTo->cwnd -= chk->book_size; chk->rec.data.chunk_was_revoked = 0; } net->marked_retrans++; stcb->asoc.marked_retrans++; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_RSND_TO, chk->whoTo->flight_size, chk->book_size, (uint32_t)(uintptr_t)chk->whoTo, chk->rec.data.tsn); } sctp_flight_size_decrease(chk); sctp_total_flight_decrease(stcb, chk); stcb->asoc.peers_rwnd += chk->send_size; stcb->asoc.peers_rwnd += SCTP_BASE_SYSCTL(sctp_peer_chunk_oh); } chk->sent = SCTP_DATAGRAM_RESEND; chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; SCTP_STAT_INCR(sctps_markedretrans); /* reset the TSN for striking and other FR stuff */ chk->rec.data.doing_fast_retransmit = 0; /* Clear any time so NO RTT is being done */ if (chk->do_rtt) { if (chk->whoTo->rto_needed == 0) { chk->whoTo->rto_needed = 1; } } chk->do_rtt = 0; if (alt != net) { sctp_free_remote_addr(chk->whoTo); chk->no_fr_allowed = 1; chk->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } else { chk->no_fr_allowed = 0; if (TAILQ_EMPTY(&stcb->asoc.send_queue)) { chk->rec.data.fast_retran_tsn = stcb->asoc.sending_seq; } else { chk->rec.data.fast_retran_tsn = (TAILQ_FIRST(&stcb->asoc.send_queue))->rec.data.tsn; } } /* * CMT: Do not allow FRs on retransmitted TSNs. */ if (stcb->asoc.sctp_cmt_on_off > 0) { chk->no_fr_allowed = 1; } #ifdef THIS_SHOULD_NOT_BE_DONE } else if (chk->sent == SCTP_DATAGRAM_ACKED) { /* remember highest acked one */ could_be_sent = chk; #endif } if (chk->sent == SCTP_DATAGRAM_RESEND) { cnt_mk++; } } if ((orig_flight - net->flight_size) != (orig_tf - stcb->asoc.total_flight)) { /* we did not subtract the same things? */ audit_tf = 1; } + if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(tsnfirst, tsnlast, num_mk, SCTP_FR_T3_TIMEOUT); } #ifdef SCTP_DEBUG if (num_mk) { SCTPDBG(SCTP_DEBUG_TIMER1, "LAST TSN marked was %x\n", tsnlast); SCTPDBG(SCTP_DEBUG_TIMER1, "Num marked for retransmission was %d peer-rwd:%u\n", num_mk, stcb->asoc.peers_rwnd); } #endif *num_marked = num_mk; *num_abandoned = cnt_abandoned; /* * Now check for a ECN Echo that may be stranded And include the * cnt_mk'd to have all resends in the control queue. */ TAILQ_FOREACH(chk, &stcb->asoc.control_send_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { cnt_mk++; } if ((chk->whoTo == net) && (chk->rec.chunk_id.id == SCTP_ECN_ECHO)) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = alt; if (chk->sent != SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); cnt_mk++; } atomic_add_int(&alt->ref_count, 1); } } #ifdef THIS_SHOULD_NOT_BE_DONE if ((stcb->asoc.sent_queue_retran_cnt == 0) && (could_be_sent)) { /* fix it so we retransmit the highest acked anyway */ sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); cnt_mk++; could_be_sent->sent = SCTP_DATAGRAM_RESEND; } #endif if (stcb->asoc.sent_queue_retran_cnt != cnt_mk) { #ifdef INVARIANTS SCTP_PRINTF("Local Audit says there are %d for retran asoc cnt:%d we marked:%d this time\n", cnt_mk, stcb->asoc.sent_queue_retran_cnt, num_mk); #endif #ifndef SCTP_AUDITING_ENABLED stcb->asoc.sent_queue_retran_cnt = cnt_mk; #endif } if (audit_tf) { SCTPDBG(SCTP_DEBUG_TIMER4, "Audit total flight due to negative value net:%p\n", (void *)net); stcb->asoc.total_flight = 0; stcb->asoc.total_flight_count = 0; /* Clear all networks flight size */ TAILQ_FOREACH(lnets, &stcb->asoc.nets, sctp_next) { lnets->flight_size = 0; SCTPDBG(SCTP_DEBUG_TIMER4, "Net:%p c-f cwnd:%d ssthresh:%d\n", (void *)lnets, lnets->cwnd, lnets->ssthresh); } TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->sent < SCTP_DATAGRAM_RESEND) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_UP, chk->whoTo->flight_size, chk->book_size, (uint32_t)(uintptr_t)chk->whoTo, chk->rec.data.tsn); } + sctp_flight_size_increase(chk); sctp_total_flight_increase(stcb, chk); } } } /* We return 1 if we only have a window probe outstanding */ return (0); } int sctp_t3rxt_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_nets *alt; int win_probe, num_mk, num_abandoned; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FR_LOGGING_ENABLE) { sctp_log_fr(0, 0, 0, SCTP_FR_T3_TIMEOUT); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_LOGGING_ENABLE) { struct sctp_nets *lnet; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { if (net == lnet) { sctp_log_cwnd(stcb, lnet, 1, SCTP_CWND_LOG_FROM_T3); } else { sctp_log_cwnd(stcb, lnet, 0, SCTP_CWND_LOG_FROM_T3); } } } /* Find an alternate and mark those for retransmission */ if ((stcb->asoc.peers_rwnd == 0) && (stcb->asoc.total_flight < net->mtu)) { SCTP_STAT_INCR(sctps_timowindowprobe); win_probe = 1; } else { win_probe = 0; } if (win_probe == 0) { /* We don't do normal threshold management on window probes */ if (sctp_threshold_management(inp, stcb, net, stcb->asoc.max_send_times)) { /* Association was destroyed */ return (1); } else { if (net != stcb->asoc.primary_destination) { /* send a immediate HB if our RTO is stale */ struct timeval now; unsigned int ms_goneby; (void)SCTP_GETTIME_TIMEVAL(&now); if (net->last_sent_time.tv_sec) { ms_goneby = (now.tv_sec - net->last_sent_time.tv_sec) * 1000; } else { ms_goneby = 0; } if ((net->dest_state & SCTP_ADDR_PF) == 0) { if ((ms_goneby > net->RTO) || (net->RTO == 0)) { /* * no recent feed back in an * RTO or more, request a * RTT update */ sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); } } } } } else { /* * For a window probe we don't penalize the net's but only * the association. This may fail it if SACKs are not coming * back. If sack's are coming with rwnd locked at 0, we will * continue to hold things waiting for rwnd to raise */ if (sctp_threshold_management(inp, stcb, NULL, stcb->asoc.max_send_times)) { /* Association was destroyed */ return (1); } } if (stcb->asoc.sctp_cmt_on_off > 0) { if (net->pf_threshold < net->failure_threshold) { alt = sctp_find_alternate_net(stcb, net, 2); } else { /* * CMT: Using RTX_SSTHRESH policy for CMT. If CMT is * being used, then pick dest with largest ssthresh * for any retransmission. */ alt = sctp_find_alternate_net(stcb, net, 1); /* * CUCv2: If a different dest is picked for the * retransmission, then new (rtx-)pseudo_cumack * needs to be tracked for orig dest. Let CUCv2 * track new (rtx-) pseudo-cumack always. */ net->find_pseudo_cumack = 1; net->find_rtx_pseudo_cumack = 1; } } else { alt = sctp_find_alternate_net(stcb, net, 0); } num_mk = 0; num_abandoned = 0; (void)sctp_mark_all_for_resend(stcb, net, alt, win_probe, &num_mk, &num_abandoned); /* FR Loss recovery just ended with the T3. */ stcb->asoc.fast_retran_loss_recovery = 0; /* CMT FR loss recovery ended with the T3 */ net->fast_retran_loss_recovery = 0; if ((stcb->asoc.cc_functions.sctp_cwnd_new_transmission_begins) && (net->flight_size == 0)) { (*stcb->asoc.cc_functions.sctp_cwnd_new_transmission_begins) (stcb, net); } + /* * setup the sat loss recovery that prevents satellite cwnd advance. */ stcb->asoc.sat_t3_loss_recovery = 1; stcb->asoc.sat_t3_recovery_tsn = stcb->asoc.sending_seq; /* Backoff the timer and cwnd */ sctp_backoff_on_timeout(stcb, net, win_probe, num_mk, num_abandoned); if ((!(net->dest_state & SCTP_ADDR_REACHABLE)) || (net->dest_state & SCTP_ADDR_PF)) { /* Move all pending over too */ sctp_move_chunks_from_net(stcb, net); /* * Get the address that failed, to force a new src address * selecton and a route allocation. */ if (net->ro._s_addr) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; } net->src_addr_selected = 0; /* Force a route allocation too */ if (net->ro.ro_rt) { RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } + /* Was it our primary? */ if ((stcb->asoc.primary_destination == net) && (alt != net)) { /* * Yes, note it as such and find an alternate note: * this means HB code must use this to resent the * primary if it goes active AND if someone does a * change-primary then this flag must be cleared * from any net structures. */ if (stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); } stcb->asoc.alternate = alt; atomic_add_int(&stcb->asoc.alternate->ref_count, 1); } } /* * Special case for cookie-echo'ed case, we don't do output but must * await the COOKIE-ACK before retransmission */ if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED) { /* * Here we just reset the timer and start again since we * have not established the asoc */ sctp_timer_start(SCTP_TIMER_TYPE_SEND, inp, stcb, net); return (0); } if (stcb->asoc.prsctp_supported) { struct sctp_tmit_chunk *lchk; lchk = sctp_try_advance_peer_ack_point(stcb, &stcb->asoc); /* C3. See if we need to send a Fwd-TSN */ if (SCTP_TSN_GT(stcb->asoc.advanced_peer_ack_point, stcb->asoc.last_acked_seq)) { send_forward_tsn(stcb, &stcb->asoc); if (lchk) { /* Assure a timer is up */ sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, lchk->whoTo); } } } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_CWND_MONITOR_ENABLE) { sctp_log_cwnd(stcb, net, net->cwnd, SCTP_CWND_LOG_FROM_RTX); } return (0); } int sctp_t1init_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { /* bump the thresholds */ if (stcb->asoc.delayed_connection) { /* * special hook for delayed connection. The library did NOT * complete the rest of its sends. */ stcb->asoc.delayed_connection = 0; sctp_send_initiate(inp, stcb, SCTP_SO_NOT_LOCKED); return (0); } if (SCTP_GET_STATE((&stcb->asoc)) != SCTP_STATE_COOKIE_WAIT) { return (0); } if (sctp_threshold_management(inp, stcb, net, stcb->asoc.max_init_times)) { /* Association was destroyed */ return (1); } stcb->asoc.dropped_special_cnt = 0; sctp_backoff_on_timeout(stcb, stcb->asoc.primary_destination, 1, 0, 0); if (stcb->asoc.initial_init_rto_max < net->RTO) { net->RTO = stcb->asoc.initial_init_rto_max; } if (stcb->asoc.numnets > 1) { /* If we have more than one addr use it */ struct sctp_nets *alt; alt = sctp_find_alternate_net(stcb, stcb->asoc.primary_destination, 0); if (alt != stcb->asoc.primary_destination) { sctp_move_chunks_from_net(stcb, stcb->asoc.primary_destination); stcb->asoc.primary_destination = alt; } } /* Send out a new init */ sctp_send_initiate(inp, stcb, SCTP_SO_NOT_LOCKED); return (0); } /* * For cookie and asconf we actually need to find and mark for resend, then * increment the resend counter (after all the threshold management stuff of * course). */ int sctp_cookie_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net SCTP_UNUSED) { struct sctp_nets *alt; struct sctp_tmit_chunk *cookie; /* first before all else we must find the cookie */ TAILQ_FOREACH(cookie, &stcb->asoc.control_send_queue, sctp_next) { if (cookie->rec.chunk_id.id == SCTP_COOKIE_ECHO) { break; } } if (cookie == NULL) { if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED) { /* FOOBAR! */ struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Cookie timer expired, but no cookie"); inp->last_abort_code = SCTP_FROM_SCTP_TIMER + SCTP_LOC_3; sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); } else { #ifdef INVARIANTS panic("Cookie timer expires in wrong state?"); #else SCTP_PRINTF("Strange in state %d not cookie-echoed yet c-e timer expires?\n", SCTP_GET_STATE(&stcb->asoc)); return (0); #endif } return (0); } /* Ok we found the cookie, threshold management next */ if (sctp_threshold_management(inp, stcb, cookie->whoTo, stcb->asoc.max_init_times)) { /* Assoc is over */ return (1); } /* * Cleared threshold management, now lets backoff the address and * select an alternate */ stcb->asoc.dropped_special_cnt = 0; sctp_backoff_on_timeout(stcb, cookie->whoTo, 1, 0, 0); alt = sctp_find_alternate_net(stcb, cookie->whoTo, 0); if (alt != cookie->whoTo) { sctp_free_remote_addr(cookie->whoTo); cookie->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } /* Now mark the retran info */ if (cookie->sent != SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); } cookie->sent = SCTP_DATAGRAM_RESEND; cookie->flags |= CHUNK_FLAGS_FRAGMENT_OK; /* * Now call the output routine to kick out the cookie again, Note we * don't mark any chunks for retran so that FR will need to kick in * to move these (or a send timer). */ return (0); } int sctp_strreset_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_nets *alt; struct sctp_tmit_chunk *strrst = NULL, *chk = NULL; if (stcb->asoc.stream_reset_outstanding == 0) { return (0); } /* find the existing STRRESET, we use the seq number we sent out on */ (void)sctp_find_stream_reset(stcb, stcb->asoc.str_reset_seq_out, &strrst); if (strrst == NULL) { return (0); } /* do threshold management */ if (sctp_threshold_management(inp, stcb, strrst->whoTo, stcb->asoc.max_send_times)) { /* Assoc is over */ return (1); } /* * Cleared threshold management, now lets backoff the address and * select an alternate */ sctp_backoff_on_timeout(stcb, strrst->whoTo, 1, 0, 0); alt = sctp_find_alternate_net(stcb, strrst->whoTo, 0); sctp_free_remote_addr(strrst->whoTo); strrst->whoTo = alt; atomic_add_int(&alt->ref_count, 1); /* See if a ECN Echo is also stranded */ TAILQ_FOREACH(chk, &stcb->asoc.control_send_queue, sctp_next) { if ((chk->whoTo == net) && (chk->rec.chunk_id.id == SCTP_ECN_ECHO)) { sctp_free_remote_addr(chk->whoTo); if (chk->sent != SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); } chk->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } } if (!(net->dest_state & SCTP_ADDR_REACHABLE)) { /* * If the address went un-reachable, we need to move to * alternates for ALL chk's in queue */ sctp_move_chunks_from_net(stcb, net); } /* mark the retran info */ if (strrst->sent != SCTP_DATAGRAM_RESEND) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); strrst->sent = SCTP_DATAGRAM_RESEND; strrst->flags |= CHUNK_FLAGS_FRAGMENT_OK; /* restart the timer */ sctp_timer_start(SCTP_TIMER_TYPE_STRRESET, inp, stcb, strrst->whoTo); return (0); } int sctp_asconf_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_nets *alt; struct sctp_tmit_chunk *asconf, *chk; /* is this a first send, or a retransmission? */ if (TAILQ_EMPTY(&stcb->asoc.asconf_send_queue)) { /* compose a new ASCONF chunk and send it */ sctp_send_asconf(stcb, net, SCTP_ADDR_NOT_LOCKED); } else { /* * Retransmission of the existing ASCONF is needed */ /* find the existing ASCONF */ asconf = TAILQ_FIRST(&stcb->asoc.asconf_send_queue); if (asconf == NULL) { return (0); } /* do threshold management */ if (sctp_threshold_management(inp, stcb, asconf->whoTo, stcb->asoc.max_send_times)) { /* Assoc is over */ return (1); } if (asconf->snd_count > stcb->asoc.max_send_times) { /* * Something is rotten: our peer is not responding * to ASCONFs but apparently is to other chunks. * i.e. it is not properly handling the chunk type * upper bits. Mark this peer as ASCONF incapable * and cleanup. */ SCTPDBG(SCTP_DEBUG_TIMER1, "asconf_timer: Peer has not responded to our repeated ASCONFs\n"); sctp_asconf_cleanup(stcb, net); return (0); } /* * cleared threshold management, so now backoff the net and * select an alternate */ sctp_backoff_on_timeout(stcb, asconf->whoTo, 1, 0, 0); alt = sctp_find_alternate_net(stcb, asconf->whoTo, 0); if (asconf->whoTo != alt) { sctp_free_remote_addr(asconf->whoTo); asconf->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } + /* See if an ECN Echo is also stranded */ TAILQ_FOREACH(chk, &stcb->asoc.control_send_queue, sctp_next) { if ((chk->whoTo == net) && (chk->rec.chunk_id.id == SCTP_ECN_ECHO)) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = alt; if (chk->sent != SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); } atomic_add_int(&alt->ref_count, 1); } } TAILQ_FOREACH(chk, &stcb->asoc.asconf_send_queue, sctp_next) { if (chk->whoTo != alt) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = alt; atomic_add_int(&alt->ref_count, 1); } if (asconf->sent != SCTP_DATAGRAM_RESEND && chk->sent != SCTP_DATAGRAM_UNSENT) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); chk->sent = SCTP_DATAGRAM_RESEND; chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } if (!(net->dest_state & SCTP_ADDR_REACHABLE)) { /* * If the address went un-reachable, we need to move * to the alternate for ALL chunks in queue */ sctp_move_chunks_from_net(stcb, net); } /* mark the retran info */ if (asconf->sent != SCTP_DATAGRAM_RESEND) sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); asconf->sent = SCTP_DATAGRAM_RESEND; asconf->flags |= CHUNK_FLAGS_FRAGMENT_OK; /* send another ASCONF if any and we can do */ sctp_send_asconf(stcb, alt, SCTP_ADDR_NOT_LOCKED); } return (0); } /* Mobility adaptation */ void sctp_delete_prim_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net SCTP_UNUSED) { if (stcb->asoc.deleted_primary == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "delete_prim_timer: deleted_primary is not stored...\n"); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); return; } SCTPDBG(SCTP_DEBUG_ASCONF1, "delete_prim_timer: finished to keep deleted primary "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &stcb->asoc.deleted_primary->ro._l_addr.sa); sctp_free_remote_addr(stcb->asoc.deleted_primary); stcb->asoc.deleted_primary = NULL; sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); return; } /* * For the shutdown and shutdown-ack, we do not keep one around on the * control queue. This means we must generate a new one and call the general * chunk output routine, AFTER having done threshold management. * It is assumed that net is non-NULL. */ int sctp_shutdown_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_nets *alt; /* first threshold management */ if (sctp_threshold_management(inp, stcb, net, stcb->asoc.max_send_times)) { /* Assoc is over */ return (1); } sctp_backoff_on_timeout(stcb, net, 1, 0, 0); /* second select an alternative */ alt = sctp_find_alternate_net(stcb, net, 0); /* third generate a shutdown into the queue for out net */ sctp_send_shutdown(stcb, alt); /* fourth restart timer */ sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, inp, stcb, alt); return (0); } int sctp_shutdownack_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_nets *alt; /* first threshold management */ if (sctp_threshold_management(inp, stcb, net, stcb->asoc.max_send_times)) { /* Assoc is over */ return (1); } sctp_backoff_on_timeout(stcb, net, 1, 0, 0); /* second select an alternative */ alt = sctp_find_alternate_net(stcb, net, 0); /* third generate a shutdown into the queue for out net */ sctp_send_shutdown_ack(stcb, alt); /* fourth restart timer */ sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNACK, inp, stcb, alt); return (0); } static void sctp_audit_stream_queues_for_size(struct sctp_inpcb *inp, struct sctp_tcb *stcb) { struct sctp_stream_queue_pending *sp; unsigned int i, chks_in_queue = 0; int being_filled = 0; /* * This function is ONLY called when the send/sent queues are empty. */ if ((stcb == NULL) || (inp == NULL)) return; if (stcb->asoc.sent_queue_retran_cnt) { SCTP_PRINTF("Hmm, sent_queue_retran_cnt is non-zero %d\n", stcb->asoc.sent_queue_retran_cnt); stcb->asoc.sent_queue_retran_cnt = 0; } if (stcb->asoc.ss_functions.sctp_ss_is_empty(stcb, &stcb->asoc)) { /* No stream scheduler information, initialize scheduler */ stcb->asoc.ss_functions.sctp_ss_init(stcb, &stcb->asoc, 0); if (!stcb->asoc.ss_functions.sctp_ss_is_empty(stcb, &stcb->asoc)) { /* yep, we lost a stream or two */ SCTP_PRINTF("Found additional streams NOT managed by scheduler, corrected\n"); } else { /* no streams lost */ stcb->asoc.total_output_queue_size = 0; } } /* Check to see if some data queued, if so report it */ for (i = 0; i < stcb->asoc.streamoutcnt; i++) { if (!TAILQ_EMPTY(&stcb->asoc.strmout[i].outqueue)) { TAILQ_FOREACH(sp, &stcb->asoc.strmout[i].outqueue, next) { if (sp->msg_is_complete) being_filled++; chks_in_queue++; } } } if (chks_in_queue != stcb->asoc.stream_queue_cnt) { SCTP_PRINTF("Hmm, stream queue cnt at %d I counted %d in stream out wheel\n", stcb->asoc.stream_queue_cnt, chks_in_queue); } if (chks_in_queue) { /* call the output queue function */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); if ((TAILQ_EMPTY(&stcb->asoc.send_queue)) && (TAILQ_EMPTY(&stcb->asoc.sent_queue))) { /* * Probably should go in and make it go back through * and add fragments allowed */ if (being_filled == 0) { SCTP_PRINTF("Still nothing moved %d chunks are stuck\n", chks_in_queue); } } } else { SCTP_PRINTF("Found no chunks on any queue tot:%lu\n", (u_long)stcb->asoc.total_output_queue_size); stcb->asoc.total_output_queue_size = 0; } } int sctp_heartbeat_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { uint8_t net_was_pf; if (net->dest_state & SCTP_ADDR_PF) { net_was_pf = 1; } else { net_was_pf = 0; } if (net->hb_responded == 0) { if (net->ro._s_addr) { /* * Invalidate the src address if we did not get a * response last time. */ sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } sctp_backoff_on_timeout(stcb, net, 1, 0, 0); if (sctp_threshold_management(inp, stcb, net, stcb->asoc.max_send_times)) { /* Assoc is over */ return (1); } } /* Zero PBA, if it needs it */ if (net->partial_bytes_acked) { net->partial_bytes_acked = 0; } if ((stcb->asoc.total_output_queue_size > 0) && (TAILQ_EMPTY(&stcb->asoc.send_queue)) && (TAILQ_EMPTY(&stcb->asoc.sent_queue))) { sctp_audit_stream_queues_for_size(inp, stcb); } if (!(net->dest_state & SCTP_ADDR_NOHB) && !((net_was_pf == 0) && (net->dest_state & SCTP_ADDR_PF))) { /* * when move to PF during threshold mangement, a HB has been * queued in that routine */ uint32_t ms_gone_by; if ((net->last_sent_time.tv_sec > 0) || (net->last_sent_time.tv_usec > 0)) { struct timeval diff; SCTP_GETTIME_TIMEVAL(&diff); timevalsub(&diff, &net->last_sent_time); ms_gone_by = (uint32_t)(diff.tv_sec * 1000) + (uint32_t)(diff.tv_usec / 1000); } else { ms_gone_by = 0xffffffff; } if ((ms_gone_by >= net->heart_beat_delay) || (net->dest_state & SCTP_ADDR_PF)) { sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); } } return (0); } void sctp_pathmtu_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { uint32_t next_mtu, mtu; next_mtu = sctp_get_next_mtu(net->mtu); if ((next_mtu > net->mtu) && (net->port == 0)) { if ((net->src_addr_selected == 0) || (net->ro._s_addr == NULL) || (net->ro._s_addr->localifa_flags & SCTP_BEING_DELETED)) { if ((net->ro._s_addr != NULL) && (net->ro._s_addr->localifa_flags & SCTP_BEING_DELETED)) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } else if (net->ro._s_addr == NULL) { #if defined(INET6) && defined(SCTP_EMBEDDED_V6_SCOPE) if (net->ro._l_addr.sa.sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; /* KAME hack: embed scopeid */ (void)sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)); } #endif net->ro._s_addr = sctp_source_address_selection(inp, stcb, (sctp_route_t *)&net->ro, net, 0, stcb->asoc.vrf_id); #if defined(INET6) && defined(SCTP_EMBEDDED_V6_SCOPE) if (net->ro._l_addr.sa.sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_recoverscope(sin6); } #endif /* INET6 */ } if (net->ro._s_addr) net->src_addr_selected = 1; } if (net->ro._s_addr) { mtu = SCTP_GATHER_MTU_FROM_ROUTE(net->ro._s_addr, &net->ro._s_addr.sa, net->ro.ro_rt); #if defined(INET) || defined(INET6) if (net->port) { mtu -= sizeof(struct udphdr); } #endif if (mtu > next_mtu) { net->mtu = next_mtu; } else { net->mtu = mtu; } } } /* restart the timer */ sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } void sctp_autoclose_timer(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct timeval tn, *tim_touse; struct sctp_association *asoc; int ticks_gone_by; (void)SCTP_GETTIME_TIMEVAL(&tn); if (stcb->asoc.sctp_autoclose_ticks && sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) { /* Auto close is on */ asoc = &stcb->asoc; /* pick the time to use */ if (asoc->time_last_rcvd.tv_sec > asoc->time_last_sent.tv_sec) { tim_touse = &asoc->time_last_rcvd; } else { tim_touse = &asoc->time_last_sent; } /* Now has long enough transpired to autoclose? */ ticks_gone_by = SEC_TO_TICKS(tn.tv_sec - tim_touse->tv_sec); if ((ticks_gone_by > 0) && (ticks_gone_by >= (int)asoc->sctp_autoclose_ticks)) { /* * autoclose time has hit, call the output routine, * which should do nothing just to be SURE we don't * have hanging data. We can then safely check the * queues and know that we are clear to send * shutdown */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_AUTOCLOSE_TMR, SCTP_SO_NOT_LOCKED); /* Are we clean? */ if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue)) { /* * there is nothing queued to send, so I'm * done... */ if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) { /* only send SHUTDOWN 1st time thru */ struct sctp_nets *netp; if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (stcb->asoc.alternate) { netp = stcb->asoc.alternate; } else { netp = stcb->asoc.primary_destination; } sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); } } } else { /* * No auto close at this time, reset t-o to check * later */ int tmp; /* fool the timer startup to use the time left */ tmp = asoc->sctp_autoclose_ticks; asoc->sctp_autoclose_ticks -= ticks_gone_by; sctp_timer_start(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, net); /* restore the real tick value */ asoc->sctp_autoclose_ticks = tmp; } } } Index: stable/11/sys/netinet/sctp_uio.h =================================================================== --- stable/11/sys/netinet/sctp_uio.h (revision 347153) +++ stable/11/sys/netinet/sctp_uio.h (revision 347154) @@ -1,1343 +1,1345 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_UIO_H_ #define _NETINET_SCTP_UIO_H_ #if ! defined(_KERNEL) #include #endif #include #include #include typedef uint32_t sctp_assoc_t; #define SCTP_FUTURE_ASSOC 0 #define SCTP_CURRENT_ASSOC 1 #define SCTP_ALL_ASSOC 2 struct sctp_event { sctp_assoc_t se_assoc_id; uint16_t se_type; uint8_t se_on; }; /* Compatibility to previous define's */ #define sctp_stream_reset_events sctp_stream_reset_event /* On/Off setup for subscription to events */ struct sctp_event_subscribe { uint8_t sctp_data_io_event; uint8_t sctp_association_event; uint8_t sctp_address_event; uint8_t sctp_send_failure_event; uint8_t sctp_peer_error_event; uint8_t sctp_shutdown_event; uint8_t sctp_partial_delivery_event; uint8_t sctp_adaptation_layer_event; uint8_t sctp_authentication_event; uint8_t sctp_sender_dry_event; uint8_t sctp_stream_reset_event; }; /* ancillary data types */ #define SCTP_INIT 0x0001 #define SCTP_SNDRCV 0x0002 #define SCTP_EXTRCV 0x0003 #define SCTP_SNDINFO 0x0004 #define SCTP_RCVINFO 0x0005 #define SCTP_NXTINFO 0x0006 #define SCTP_PRINFO 0x0007 #define SCTP_AUTHINFO 0x0008 #define SCTP_DSTADDRV4 0x0009 #define SCTP_DSTADDRV6 0x000a /* * ancillary data structures */ struct sctp_initmsg { uint16_t sinit_num_ostreams; uint16_t sinit_max_instreams; uint16_t sinit_max_attempts; uint16_t sinit_max_init_timeo; }; /* We add 96 bytes to the size of sctp_sndrcvinfo. * This makes the current structure 128 bytes long * which is nicely 64 bit aligned but also has room * for us to add more and keep ABI compatibility. * For example, already we have the sctp_extrcvinfo * when enabled which is 48 bytes. */ /* * The assoc up needs a verfid * all sendrcvinfo's need a verfid for SENDING only. */ #define SCTP_ALIGN_RESV_PAD 92 #define SCTP_ALIGN_RESV_PAD_SHORT 76 struct sctp_sndrcvinfo { uint16_t sinfo_stream; uint16_t sinfo_ssn; uint16_t sinfo_flags; uint32_t sinfo_ppid; uint32_t sinfo_context; uint32_t sinfo_timetolive; uint32_t sinfo_tsn; uint32_t sinfo_cumtsn; sctp_assoc_t sinfo_assoc_id; uint16_t sinfo_keynumber; uint16_t sinfo_keynumber_valid; uint8_t __reserve_pad[SCTP_ALIGN_RESV_PAD]; }; struct sctp_extrcvinfo { uint16_t sinfo_stream; uint16_t sinfo_ssn; uint16_t sinfo_flags; uint32_t sinfo_ppid; uint32_t sinfo_context; uint32_t sinfo_timetolive; /* should have been sinfo_pr_value */ uint32_t sinfo_tsn; uint32_t sinfo_cumtsn; sctp_assoc_t sinfo_assoc_id; uint16_t serinfo_next_flags; uint16_t serinfo_next_stream; uint32_t serinfo_next_aid; uint32_t serinfo_next_length; uint32_t serinfo_next_ppid; uint16_t sinfo_keynumber; uint16_t sinfo_keynumber_valid; uint8_t __reserve_pad[SCTP_ALIGN_RESV_PAD_SHORT]; }; #define sinfo_pr_value sinfo_timetolive #define sreinfo_next_flags serinfo_next_flags #define sreinfo_next_stream serinfo_next_stream #define sreinfo_next_aid serinfo_next_aid #define sreinfo_next_length serinfo_next_length #define sreinfo_next_ppid serinfo_next_ppid struct sctp_sndinfo { uint16_t snd_sid; uint16_t snd_flags; uint32_t snd_ppid; uint32_t snd_context; sctp_assoc_t snd_assoc_id; }; struct sctp_prinfo { uint16_t pr_policy; uint32_t pr_value; }; struct sctp_default_prinfo { uint16_t pr_policy; uint32_t pr_value; sctp_assoc_t pr_assoc_id; }; struct sctp_authinfo { uint16_t auth_keynumber; }; struct sctp_rcvinfo { uint16_t rcv_sid; uint16_t rcv_ssn; uint16_t rcv_flags; uint32_t rcv_ppid; uint32_t rcv_tsn; uint32_t rcv_cumtsn; uint32_t rcv_context; sctp_assoc_t rcv_assoc_id; }; struct sctp_nxtinfo { uint16_t nxt_sid; uint16_t nxt_flags; uint32_t nxt_ppid; uint32_t nxt_length; sctp_assoc_t nxt_assoc_id; }; #define SCTP_NO_NEXT_MSG 0x0000 #define SCTP_NEXT_MSG_AVAIL 0x0001 #define SCTP_NEXT_MSG_ISCOMPLETE 0x0002 #define SCTP_NEXT_MSG_IS_UNORDERED 0x0004 #define SCTP_NEXT_MSG_IS_NOTIFICATION 0x0008 struct sctp_recvv_rn { struct sctp_rcvinfo recvv_rcvinfo; struct sctp_nxtinfo recvv_nxtinfo; }; #define SCTP_RECVV_NOINFO 0 #define SCTP_RECVV_RCVINFO 1 #define SCTP_RECVV_NXTINFO 2 #define SCTP_RECVV_RN 3 #define SCTP_SENDV_NOINFO 0 #define SCTP_SENDV_SNDINFO 1 #define SCTP_SENDV_PRINFO 2 #define SCTP_SENDV_AUTHINFO 3 #define SCTP_SENDV_SPA 4 struct sctp_sendv_spa { uint32_t sendv_flags; struct sctp_sndinfo sendv_sndinfo; struct sctp_prinfo sendv_prinfo; struct sctp_authinfo sendv_authinfo; }; #define SCTP_SEND_SNDINFO_VALID 0x00000001 #define SCTP_SEND_PRINFO_VALID 0x00000002 #define SCTP_SEND_AUTHINFO_VALID 0x00000004 struct sctp_snd_all_completes { uint16_t sall_stream; uint16_t sall_flags; uint32_t sall_ppid; uint32_t sall_context; uint32_t sall_num_sent; uint32_t sall_num_failed; }; /* Flags that go into the sinfo->sinfo_flags field */ #define SCTP_NOTIFICATION 0x0010 /* next message is a notification */ #define SCTP_COMPLETE 0x0020 /* next message is complete */ #define SCTP_EOF 0x0100 /* Start shutdown procedures */ #define SCTP_ABORT 0x0200 /* Send an ABORT to peer */ #define SCTP_UNORDERED 0x0400 /* Message is un-ordered */ #define SCTP_ADDR_OVER 0x0800 /* Override the primary-address */ #define SCTP_SENDALL 0x1000 /* Send this on all associations */ #define SCTP_EOR 0x2000 /* end of message signal */ #define SCTP_SACK_IMMEDIATELY 0x4000 /* Set I-Bit */ #define INVALID_SINFO_FLAG(x) (((x) & 0xfffffff0 \ & ~(SCTP_EOF | SCTP_ABORT | SCTP_UNORDERED |\ SCTP_ADDR_OVER | SCTP_SENDALL | SCTP_EOR |\ SCTP_SACK_IMMEDIATELY)) != 0) /* for the endpoint */ /* The lower four bits is an enumeration of PR-SCTP policies */ -#define SCTP_PR_SCTP_NONE 0x0000/* Reliable transfer */ -#define SCTP_PR_SCTP_TTL 0x0001/* Time based PR-SCTP */ -#define SCTP_PR_SCTP_PRIO 0x0002/* Buffer based PR-SCTP */ +#define SCTP_PR_SCTP_NONE 0x0000 /* Reliable transfer */ +#define SCTP_PR_SCTP_TTL 0x0001 /* Time based PR-SCTP */ +#define SCTP_PR_SCTP_PRIO 0x0002 /* Buffer based PR-SCTP */ #define SCTP_PR_SCTP_BUF SCTP_PR_SCTP_PRIO /* For backwards compatibility */ -#define SCTP_PR_SCTP_RTX 0x0003/* Number of retransmissions based PR-SCTP */ +#define SCTP_PR_SCTP_RTX 0x0003 /* Number of retransmissions based + * PR-SCTP */ #define SCTP_PR_SCTP_MAX SCTP_PR_SCTP_RTX -#define SCTP_PR_SCTP_ALL 0x000f/* Used for aggregated stats */ +#define SCTP_PR_SCTP_ALL 0x000f /* Used for aggregated stats */ #define PR_SCTP_POLICY(x) ((x) & 0x0f) #define PR_SCTP_ENABLED(x) ((PR_SCTP_POLICY(x) != SCTP_PR_SCTP_NONE) && \ (PR_SCTP_POLICY(x) != SCTP_PR_SCTP_ALL)) #define PR_SCTP_TTL_ENABLED(x) (PR_SCTP_POLICY(x) == SCTP_PR_SCTP_TTL) #define PR_SCTP_BUF_ENABLED(x) (PR_SCTP_POLICY(x) == SCTP_PR_SCTP_BUF) #define PR_SCTP_RTX_ENABLED(x) (PR_SCTP_POLICY(x) == SCTP_PR_SCTP_RTX) #define PR_SCTP_INVALID_POLICY(x) (PR_SCTP_POLICY(x) > SCTP_PR_SCTP_MAX) #define PR_SCTP_VALID_POLICY(x) (PR_SCTP_POLICY(x) <= SCTP_PR_SCTP_MAX) /* Stat's */ struct sctp_pcbinfo { uint32_t ep_count; uint32_t asoc_count; uint32_t laddr_count; uint32_t raddr_count; uint32_t chk_count; uint32_t readq_count; uint32_t free_chunks; uint32_t stream_oque; }; struct sctp_sockstat { sctp_assoc_t ss_assoc_id; uint32_t ss_total_sndbuf; uint32_t ss_total_recv_buf; }; /* * notification event structures */ /* * association change event */ struct sctp_assoc_change { uint16_t sac_type; uint16_t sac_flags; uint32_t sac_length; uint16_t sac_state; uint16_t sac_error; uint16_t sac_outbound_streams; uint16_t sac_inbound_streams; sctp_assoc_t sac_assoc_id; uint8_t sac_info[]; }; /* sac_state values */ #define SCTP_COMM_UP 0x0001 #define SCTP_COMM_LOST 0x0002 #define SCTP_RESTART 0x0003 #define SCTP_SHUTDOWN_COMP 0x0004 #define SCTP_CANT_STR_ASSOC 0x0005 /* sac_info values */ #define SCTP_ASSOC_SUPPORTS_PR 0x01 #define SCTP_ASSOC_SUPPORTS_AUTH 0x02 #define SCTP_ASSOC_SUPPORTS_ASCONF 0x03 #define SCTP_ASSOC_SUPPORTS_MULTIBUF 0x04 #define SCTP_ASSOC_SUPPORTS_RE_CONFIG 0x05 #define SCTP_ASSOC_SUPPORTS_INTERLEAVING 0x06 #define SCTP_ASSOC_SUPPORTS_MAX 0x06 /* * Address event */ struct sctp_paddr_change { uint16_t spc_type; uint16_t spc_flags; uint32_t spc_length; struct sockaddr_storage spc_aaddr; uint32_t spc_state; uint32_t spc_error; sctp_assoc_t spc_assoc_id; }; /* paddr state values */ #define SCTP_ADDR_AVAILABLE 0x0001 #define SCTP_ADDR_UNREACHABLE 0x0002 #define SCTP_ADDR_REMOVED 0x0003 #define SCTP_ADDR_ADDED 0x0004 #define SCTP_ADDR_MADE_PRIM 0x0005 #define SCTP_ADDR_CONFIRMED 0x0006 #define SCTP_ACTIVE 0x0001 /* SCTP_ADDR_REACHABLE */ #define SCTP_INACTIVE 0x0002 /* neither SCTP_ADDR_REACHABLE nor * SCTP_ADDR_UNCONFIRMED */ #define SCTP_UNCONFIRMED 0x0200 /* SCTP_ADDR_UNCONFIRMED */ /* remote error events */ struct sctp_remote_error { uint16_t sre_type; uint16_t sre_flags; uint32_t sre_length; uint16_t sre_error; sctp_assoc_t sre_assoc_id; uint8_t sre_data[]; }; /* data send failure event (deprecated) */ struct sctp_send_failed { uint16_t ssf_type; uint16_t ssf_flags; uint32_t ssf_length; uint32_t ssf_error; struct sctp_sndrcvinfo ssf_info; sctp_assoc_t ssf_assoc_id; uint8_t ssf_data[]; }; /* data send failure event (not deprecated) */ struct sctp_send_failed_event { uint16_t ssfe_type; uint16_t ssfe_flags; uint32_t ssfe_length; uint32_t ssfe_error; struct sctp_sndinfo ssfe_info; sctp_assoc_t ssfe_assoc_id; uint8_t ssfe_data[]; }; /* flag that indicates state of data */ #define SCTP_DATA_UNSENT 0x0001 /* inqueue never on wire */ #define SCTP_DATA_SENT 0x0002 /* on wire at failure */ /* shutdown event */ struct sctp_shutdown_event { uint16_t sse_type; uint16_t sse_flags; uint32_t sse_length; sctp_assoc_t sse_assoc_id; }; /* Adaptation layer indication stuff */ struct sctp_adaptation_event { uint16_t sai_type; uint16_t sai_flags; uint32_t sai_length; uint32_t sai_adaptation_ind; sctp_assoc_t sai_assoc_id; }; struct sctp_setadaptation { uint32_t ssb_adaptation_ind; }; /* compatible old spelling */ struct sctp_adaption_event { uint16_t sai_type; uint16_t sai_flags; uint32_t sai_length; uint32_t sai_adaption_ind; sctp_assoc_t sai_assoc_id; }; struct sctp_setadaption { uint32_t ssb_adaption_ind; }; /* * Partial Delivery API event */ struct sctp_pdapi_event { uint16_t pdapi_type; uint16_t pdapi_flags; uint32_t pdapi_length; uint32_t pdapi_indication; uint16_t pdapi_stream; uint16_t pdapi_seq; sctp_assoc_t pdapi_assoc_id; }; /* indication values */ #define SCTP_PARTIAL_DELIVERY_ABORTED 0x0001 /* * authentication key event */ struct sctp_authkey_event { uint16_t auth_type; uint16_t auth_flags; uint32_t auth_length; uint16_t auth_keynumber; uint16_t auth_altkeynumber; uint32_t auth_indication; sctp_assoc_t auth_assoc_id; }; /* indication values */ #define SCTP_AUTH_NEW_KEY 0x0001 #define SCTP_AUTH_NEWKEY SCTP_AUTH_NEW_KEY #define SCTP_AUTH_NO_AUTH 0x0002 #define SCTP_AUTH_FREE_KEY 0x0003 struct sctp_sender_dry_event { uint16_t sender_dry_type; uint16_t sender_dry_flags; uint32_t sender_dry_length; sctp_assoc_t sender_dry_assoc_id; }; /* * Stream reset event - subscribe to SCTP_STREAM_RESET_EVENT */ struct sctp_stream_reset_event { uint16_t strreset_type; uint16_t strreset_flags; uint32_t strreset_length; sctp_assoc_t strreset_assoc_id; uint16_t strreset_stream_list[]; }; /* flags in stream_reset_event (strreset_flags) */ #define SCTP_STREAM_RESET_INCOMING_SSN 0x0001 #define SCTP_STREAM_RESET_OUTGOING_SSN 0x0002 #define SCTP_STREAM_RESET_DENIED 0x0004 #define SCTP_STREAM_RESET_FAILED 0x0008 /* * Assoc reset event - subscribe to SCTP_ASSOC_RESET_EVENT */ struct sctp_assoc_reset_event { uint16_t assocreset_type; uint16_t assocreset_flags; uint32_t assocreset_length; sctp_assoc_t assocreset_assoc_id; uint32_t assocreset_local_tsn; uint32_t assocreset_remote_tsn; }; #define SCTP_ASSOC_RESET_DENIED 0x0004 #define SCTP_ASSOC_RESET_FAILED 0x0008 /* * Stream change event - subscribe to SCTP_STREAM_CHANGE_EVENT */ struct sctp_stream_change_event { uint16_t strchange_type; uint16_t strchange_flags; uint32_t strchange_length; sctp_assoc_t strchange_assoc_id; uint16_t strchange_instrms; uint16_t strchange_outstrms; }; #define SCTP_STREAM_CHANGE_DENIED 0x0004 #define SCTP_STREAM_CHANGE_FAILED 0x0008 /* SCTP notification event */ struct sctp_tlv { uint16_t sn_type; uint16_t sn_flags; uint32_t sn_length; }; union sctp_notification { struct sctp_tlv sn_header; struct sctp_assoc_change sn_assoc_change; struct sctp_paddr_change sn_paddr_change; struct sctp_remote_error sn_remote_error; struct sctp_send_failed sn_send_failed; struct sctp_shutdown_event sn_shutdown_event; struct sctp_adaptation_event sn_adaptation_event; /* compatibility same as above */ struct sctp_adaption_event sn_adaption_event; struct sctp_pdapi_event sn_pdapi_event; struct sctp_authkey_event sn_auth_event; struct sctp_sender_dry_event sn_sender_dry_event; struct sctp_send_failed_event sn_send_failed_event; struct sctp_stream_reset_event sn_strreset_event; struct sctp_assoc_reset_event sn_assocreset_event; struct sctp_stream_change_event sn_strchange_event; }; /* notification types */ #define SCTP_ASSOC_CHANGE 0x0001 #define SCTP_PEER_ADDR_CHANGE 0x0002 #define SCTP_REMOTE_ERROR 0x0003 #define SCTP_SEND_FAILED 0x0004 #define SCTP_SHUTDOWN_EVENT 0x0005 #define SCTP_ADAPTATION_INDICATION 0x0006 /* same as above */ #define SCTP_ADAPTION_INDICATION 0x0006 #define SCTP_PARTIAL_DELIVERY_EVENT 0x0007 #define SCTP_AUTHENTICATION_EVENT 0x0008 #define SCTP_STREAM_RESET_EVENT 0x0009 #define SCTP_SENDER_DRY_EVENT 0x000a #define SCTP_NOTIFICATIONS_STOPPED_EVENT 0x000b /* we don't send this */ #define SCTP_ASSOC_RESET_EVENT 0x000c #define SCTP_STREAM_CHANGE_EVENT 0x000d #define SCTP_SEND_FAILED_EVENT 0x000e /* * socket option structs */ struct sctp_paddrparams { struct sockaddr_storage spp_address; sctp_assoc_t spp_assoc_id; uint32_t spp_hbinterval; uint32_t spp_pathmtu; uint32_t spp_flags; uint32_t spp_ipv6_flowlabel; uint16_t spp_pathmaxrxt; uint8_t spp_dscp; }; #define spp_ipv4_tos spp_dscp #define SPP_HB_ENABLE 0x00000001 #define SPP_HB_DISABLE 0x00000002 #define SPP_HB_DEMAND 0x00000004 #define SPP_PMTUD_ENABLE 0x00000008 #define SPP_PMTUD_DISABLE 0x00000010 #define SPP_HB_TIME_IS_ZERO 0x00000080 #define SPP_IPV6_FLOWLABEL 0x00000100 #define SPP_DSCP 0x00000200 #define SPP_IPV4_TOS SPP_DSCP struct sctp_paddrthlds { struct sockaddr_storage spt_address; sctp_assoc_t spt_assoc_id; uint16_t spt_pathmaxrxt; uint16_t spt_pathpfthld; uint16_t spt_pathcpthld; }; struct sctp_paddrinfo { struct sockaddr_storage spinfo_address; sctp_assoc_t spinfo_assoc_id; int32_t spinfo_state; uint32_t spinfo_cwnd; uint32_t spinfo_srtt; uint32_t spinfo_rto; uint32_t spinfo_mtu; }; struct sctp_rtoinfo { sctp_assoc_t srto_assoc_id; uint32_t srto_initial; uint32_t srto_max; uint32_t srto_min; }; struct sctp_assocparams { sctp_assoc_t sasoc_assoc_id; uint32_t sasoc_peer_rwnd; uint32_t sasoc_local_rwnd; uint32_t sasoc_cookie_life; uint16_t sasoc_asocmaxrxt; uint16_t sasoc_number_peer_destinations; }; struct sctp_setprim { struct sockaddr_storage ssp_addr; sctp_assoc_t ssp_assoc_id; uint8_t ssp_padding[4]; }; struct sctp_setpeerprim { struct sockaddr_storage sspp_addr; sctp_assoc_t sspp_assoc_id; uint8_t sspp_padding[4]; }; struct sctp_getaddresses { sctp_assoc_t sget_assoc_id; /* addr is filled in for N * sockaddr_storage */ struct sockaddr addr[1]; }; struct sctp_status { sctp_assoc_t sstat_assoc_id; int32_t sstat_state; uint32_t sstat_rwnd; uint16_t sstat_unackdata; uint16_t sstat_penddata; uint16_t sstat_instrms; uint16_t sstat_outstrms; uint32_t sstat_fragmentation_point; struct sctp_paddrinfo sstat_primary; }; /* * AUTHENTICATION support */ /* SCTP_AUTH_CHUNK */ struct sctp_authchunk { uint8_t sauth_chunk; }; /* SCTP_AUTH_KEY */ struct sctp_authkey { sctp_assoc_t sca_assoc_id; uint16_t sca_keynumber; uint16_t sca_keylength; uint8_t sca_key[]; }; /* SCTP_HMAC_IDENT */ struct sctp_hmacalgo { uint32_t shmac_number_of_idents; uint16_t shmac_idents[]; }; /* AUTH hmac_id */ #define SCTP_AUTH_HMAC_ID_RSVD 0x0000 #define SCTP_AUTH_HMAC_ID_SHA1 0x0001 /* default, mandatory */ #define SCTP_AUTH_HMAC_ID_SHA256 0x0003 /* SCTP_AUTH_ACTIVE_KEY / SCTP_AUTH_DELETE_KEY */ struct sctp_authkeyid { sctp_assoc_t scact_assoc_id; uint16_t scact_keynumber; }; /* SCTP_PEER_AUTH_CHUNKS / SCTP_LOCAL_AUTH_CHUNKS */ struct sctp_authchunks { sctp_assoc_t gauth_assoc_id; uint32_t gauth_number_of_chunks; uint8_t gauth_chunks[]; }; struct sctp_assoc_value { sctp_assoc_t assoc_id; uint32_t assoc_value; }; struct sctp_cc_option { int option; struct sctp_assoc_value aid_value; }; struct sctp_stream_value { sctp_assoc_t assoc_id; uint16_t stream_id; uint16_t stream_value; }; struct sctp_assoc_ids { uint32_t gaids_number_of_ids; sctp_assoc_t gaids_assoc_id[]; }; struct sctp_sack_info { sctp_assoc_t sack_assoc_id; uint32_t sack_delay; uint32_t sack_freq; }; struct sctp_timeouts { sctp_assoc_t stimo_assoc_id; uint32_t stimo_init; uint32_t stimo_data; uint32_t stimo_sack; uint32_t stimo_shutdown; uint32_t stimo_heartbeat; uint32_t stimo_cookie; uint32_t stimo_shutdownack; }; struct sctp_udpencaps { struct sockaddr_storage sue_address; sctp_assoc_t sue_assoc_id; uint16_t sue_port; }; struct sctp_prstatus { sctp_assoc_t sprstat_assoc_id; uint16_t sprstat_sid; uint16_t sprstat_policy; uint64_t sprstat_abandoned_unsent; uint64_t sprstat_abandoned_sent; }; struct sctp_cwnd_args { struct sctp_nets *net; /* network to *//* FIXME: LP64 issue */ - uint32_t cwnd_new_value;/* cwnd in k */ + uint32_t cwnd_new_value; /* cwnd in k */ uint32_t pseudo_cumack; uint16_t inflight; /* flightsize in k */ uint16_t cwnd_augment; /* increment to it */ uint8_t meets_pseudo_cumack; uint8_t need_new_pseudo_cumack; uint8_t cnt_in_send; uint8_t cnt_in_str; }; struct sctp_blk_args { uint32_t onsb; /* in 1k bytes */ uint32_t sndlen; /* len of send being attempted */ uint32_t peer_rwnd; /* rwnd of peer */ - uint16_t send_sent_qcnt;/* chnk cnt */ + uint16_t send_sent_qcnt; /* chnk cnt */ uint16_t stream_qcnt; /* chnk cnt */ - uint16_t chunks_on_oque;/* chunks out */ + uint16_t chunks_on_oque; /* chunks out */ uint16_t flight_size; /* flight size in k */ }; /* * Max we can reset in one setting, note this is dictated not by the define * but the size of a mbuf cluster so don't change this define and think you * can specify more. You must do multiple resets if you want to reset more * than SCTP_MAX_EXPLICIT_STR_RESET. */ #define SCTP_MAX_EXPLICT_STR_RESET 1000 struct sctp_reset_streams { sctp_assoc_t srs_assoc_id; uint16_t srs_flags; uint16_t srs_number_streams; /* 0 == ALL */ uint16_t srs_stream_list[]; /* list if strrst_num_streams is not 0 */ }; struct sctp_add_streams { sctp_assoc_t sas_assoc_id; uint16_t sas_instrms; uint16_t sas_outstrms; }; struct sctp_get_nonce_values { sctp_assoc_t gn_assoc_id; uint32_t gn_peers_tag; uint32_t gn_local_tag; }; /* Debugging logs */ struct sctp_str_log { void *stcb; /* FIXME: LP64 issue */ uint32_t n_tsn; uint32_t e_tsn; uint16_t n_sseq; uint16_t e_sseq; uint16_t strm; }; struct sctp_sb_log { void *stcb; /* FIXME: LP64 issue */ uint32_t so_sbcc; uint32_t stcb_sbcc; uint32_t incr; }; struct sctp_fr_log { uint32_t largest_tsn; uint32_t largest_new_tsn; uint32_t tsn; }; struct sctp_fr_map { uint32_t base; uint32_t cum; uint32_t high; }; struct sctp_rwnd_log { uint32_t rwnd; uint32_t send_size; uint32_t overhead; uint32_t new_rwnd; }; struct sctp_mbcnt_log { uint32_t total_queue_size; uint32_t size_change; uint32_t total_queue_mb_size; uint32_t mbcnt_change; }; struct sctp_sack_log { uint32_t cumack; uint32_t oldcumack; uint32_t tsn; uint16_t numGaps; uint16_t numDups; }; struct sctp_lock_log { void *sock; /* FIXME: LP64 issue */ void *inp; /* FIXME: LP64 issue */ uint8_t tcb_lock; uint8_t inp_lock; uint8_t info_lock; uint8_t sock_lock; uint8_t sockrcvbuf_lock; uint8_t socksndbuf_lock; uint8_t create_lock; uint8_t resv; }; struct sctp_rto_log { void *net; /* FIXME: LP64 issue */ uint32_t rtt; }; struct sctp_nagle_log { void *stcb; /* FIXME: LP64 issue */ uint32_t total_flight; uint32_t total_in_queue; uint16_t count_in_queue; uint16_t count_in_flight; }; struct sctp_sbwake_log { void *stcb; /* FIXME: LP64 issue */ uint16_t send_q; uint16_t sent_q; uint16_t flight; uint16_t wake_cnt; uint8_t stream_qcnt; /* chnk cnt */ uint8_t chunks_on_oque; /* chunks out */ uint8_t sbflags; uint8_t sctpflags; }; struct sctp_misc_info { uint32_t log1; uint32_t log2; uint32_t log3; uint32_t log4; }; struct sctp_log_closing { void *inp; /* FIXME: LP64 issue */ void *stcb; /* FIXME: LP64 issue */ uint32_t sctp_flags; uint16_t state; int16_t loc; }; struct sctp_mbuf_log { struct mbuf *mp; /* FIXME: LP64 issue */ caddr_t ext; caddr_t data; uint16_t size; uint8_t refcnt; uint8_t mbuf_flags; }; struct sctp_cwnd_log { uint64_t time_event; uint8_t from; uint8_t event_type; uint8_t resv[2]; union { struct sctp_log_closing close; struct sctp_blk_args blk; struct sctp_cwnd_args cwnd; struct sctp_str_log strlog; struct sctp_fr_log fr; struct sctp_fr_map map; struct sctp_rwnd_log rwnd; struct sctp_mbcnt_log mbcnt; struct sctp_sack_log sack; struct sctp_lock_log lock; struct sctp_rto_log rto; struct sctp_sb_log sb; struct sctp_nagle_log nagle; struct sctp_sbwake_log wake; struct sctp_mbuf_log mb; struct sctp_misc_info misc; } x; }; struct sctp_cwnd_log_req { int32_t num_in_log; /* Number in log */ int32_t num_ret; /* Number returned */ int32_t start_at; /* start at this one */ int32_t end_at; /* end at this one */ struct sctp_cwnd_log log[]; }; struct sctp_timeval { uint32_t tv_sec; uint32_t tv_usec; }; struct sctpstat { struct sctp_timeval sctps_discontinuitytime; /* sctpStats 18 * (TimeStamp) */ /* MIB according to RFC 3873 */ uint32_t sctps_currestab; /* sctpStats 1 (Gauge32) */ uint32_t sctps_activeestab; /* sctpStats 2 (Counter32) */ uint32_t sctps_restartestab; uint32_t sctps_collisionestab; uint32_t sctps_passiveestab; /* sctpStats 3 (Counter32) */ uint32_t sctps_aborted; /* sctpStats 4 (Counter32) */ - uint32_t sctps_shutdown;/* sctpStats 5 (Counter32) */ + uint32_t sctps_shutdown; /* sctpStats 5 (Counter32) */ uint32_t sctps_outoftheblue; /* sctpStats 6 (Counter32) */ uint32_t sctps_checksumerrors; /* sctpStats 7 (Counter32) */ uint32_t sctps_outcontrolchunks; /* sctpStats 8 (Counter64) */ uint32_t sctps_outorderchunks; /* sctpStats 9 (Counter64) */ uint32_t sctps_outunorderchunks; /* sctpStats 10 (Counter64) */ uint32_t sctps_incontrolchunks; /* sctpStats 11 (Counter64) */ uint32_t sctps_inorderchunks; /* sctpStats 12 (Counter64) */ uint32_t sctps_inunorderchunks; /* sctpStats 13 (Counter64) */ uint32_t sctps_fragusrmsgs; /* sctpStats 14 (Counter64) */ uint32_t sctps_reasmusrmsgs; /* sctpStats 15 (Counter64) */ uint32_t sctps_outpackets; /* sctpStats 16 (Counter64) */ uint32_t sctps_inpackets; /* sctpStats 17 (Counter64) */ /* input statistics: */ uint32_t sctps_recvpackets; /* total input packets */ uint32_t sctps_recvdatagrams; /* total input datagrams */ uint32_t sctps_recvpktwithdata; /* total packets that had data */ uint32_t sctps_recvsacks; /* total input SACK chunks */ - uint32_t sctps_recvdata;/* total input DATA chunks */ + uint32_t sctps_recvdata; /* total input DATA chunks */ uint32_t sctps_recvdupdata; /* total input duplicate DATA chunks */ uint32_t sctps_recvheartbeat; /* total input HB chunks */ uint32_t sctps_recvheartbeatack; /* total input HB-ACK chunks */ - uint32_t sctps_recvecne;/* total input ECNE chunks */ - uint32_t sctps_recvauth;/* total input AUTH chunks */ + uint32_t sctps_recvecne; /* total input ECNE chunks */ + uint32_t sctps_recvauth; /* total input AUTH chunks */ uint32_t sctps_recvauthmissing; /* total input chunks missing AUTH */ uint32_t sctps_recvivalhmacid; /* total number of invalid HMAC ids * received */ uint32_t sctps_recvivalkeyid; /* total number of invalid secret ids * received */ uint32_t sctps_recvauthfailed; /* total number of auth failed */ uint32_t sctps_recvexpress; /* total fast path receives all one * chunk */ uint32_t sctps_recvexpressm; /* total fast path multi-part data */ uint32_t sctps_recv_spare; /* formerly sctps_recvnocrc */ uint32_t sctps_recvswcrc; uint32_t sctps_recvhwcrc; /* output statistics: */ uint32_t sctps_sendpackets; /* total output packets */ uint32_t sctps_sendsacks; /* total output SACKs */ - uint32_t sctps_senddata;/* total output DATA chunks */ + uint32_t sctps_senddata; /* total output DATA chunks */ uint32_t sctps_sendretransdata; /* total output retransmitted DATA * chunks */ uint32_t sctps_sendfastretrans; /* total output fast retransmitted * DATA chunks */ uint32_t sctps_sendmultfastretrans; /* total FR's that happened * more than once to same * chunk (u-del multi-fr * algo). */ uint32_t sctps_sendheartbeat; /* total output HB chunks */ - uint32_t sctps_sendecne;/* total output ECNE chunks */ - uint32_t sctps_sendauth;/* total output AUTH chunks FIXME */ + uint32_t sctps_sendecne; /* total output ECNE chunks */ + uint32_t sctps_sendauth; /* total output AUTH chunks FIXME */ uint32_t sctps_senderrors; /* ip_output error counter */ uint32_t sctps_send_spare; /* formerly sctps_sendnocrc */ uint32_t sctps_sendswcrc; uint32_t sctps_sendhwcrc; /* PCKDROPREP statistics: */ uint32_t sctps_pdrpfmbox; /* Packet drop from middle box */ uint32_t sctps_pdrpfehos; /* P-drop from end host */ - uint32_t sctps_pdrpmbda;/* P-drops with data */ - uint32_t sctps_pdrpmbct;/* P-drops, non-data, non-endhost */ + uint32_t sctps_pdrpmbda; /* P-drops with data */ + uint32_t sctps_pdrpmbct; /* P-drops, non-data, non-endhost */ uint32_t sctps_pdrpbwrpt; /* P-drop, non-endhost, bandwidth rep * only */ uint32_t sctps_pdrpcrupt; /* P-drop, not enough for chunk header */ uint32_t sctps_pdrpnedat; /* P-drop, not enough data to confirm */ uint32_t sctps_pdrppdbrk; /* P-drop, where process_chunk_drop * said break */ uint32_t sctps_pdrptsnnf; /* P-drop, could not find TSN */ uint32_t sctps_pdrpdnfnd; /* P-drop, attempt reverse TSN lookup */ uint32_t sctps_pdrpdiwnp; /* P-drop, e-host confirms zero-rwnd */ uint32_t sctps_pdrpdizrw; /* P-drop, midbox confirms no space */ - uint32_t sctps_pdrpbadd;/* P-drop, data did not match TSN */ - uint32_t sctps_pdrpmark;/* P-drop, TSN's marked for Fast Retran */ + uint32_t sctps_pdrpbadd; /* P-drop, data did not match TSN */ + uint32_t sctps_pdrpmark; /* P-drop, TSN's marked for Fast + * Retran */ /* timeouts */ uint32_t sctps_timoiterator; /* Number of iterator timers that * fired */ - uint32_t sctps_timodata;/* Number of T3 data time outs */ + uint32_t sctps_timodata; /* Number of T3 data time outs */ uint32_t sctps_timowindowprobe; /* Number of window probe (T3) timers * that fired */ - uint32_t sctps_timoinit;/* Number of INIT timers that fired */ - uint32_t sctps_timosack;/* Number of sack timers that fired */ + uint32_t sctps_timoinit; /* Number of INIT timers that fired */ + uint32_t sctps_timosack; /* Number of sack timers that fired */ uint32_t sctps_timoshutdown; /* Number of shutdown timers that * fired */ uint32_t sctps_timoheartbeat; /* Number of heartbeat timers that * fired */ uint32_t sctps_timocookie; /* Number of times a cookie timeout * fired */ uint32_t sctps_timosecret; /* Number of times an endpoint changed * its cookie secret */ uint32_t sctps_timopathmtu; /* Number of PMTU timers that fired */ uint32_t sctps_timoshutdownack; /* Number of shutdown ack timers that * fired */ uint32_t sctps_timoshutdownguard; /* Number of shutdown guard * timers that fired */ uint32_t sctps_timostrmrst; /* Number of stream reset timers that * fired */ uint32_t sctps_timoearlyfr; /* Number of early FR timers that * fired */ uint32_t sctps_timoasconf; /* Number of times an asconf timer * fired */ uint32_t sctps_timodelprim; /* Number of times a prim_deleted * timer fired */ uint32_t sctps_timoautoclose; /* Number of times auto close timer * fired */ uint32_t sctps_timoassockill; /* Number of asoc free timers expired */ uint32_t sctps_timoinpkill; /* Number of inp free timers expired */ /* former early FR counters */ uint32_t sctps_spare[11]; /* others */ uint32_t sctps_hdrops; /* packet shorter than header */ uint32_t sctps_badsum; /* checksum error */ uint32_t sctps_noport; /* no endpoint for port */ uint32_t sctps_badvtag; /* bad v-tag */ uint32_t sctps_badsid; /* bad SID */ uint32_t sctps_nomem; /* no memory */ uint32_t sctps_fastretransinrtt; /* number of multiple FR in a * RTT window */ uint32_t sctps_markedretrans; uint32_t sctps_naglesent; /* nagle allowed sending */ uint32_t sctps_naglequeued; /* nagle doesn't allow sending */ uint32_t sctps_maxburstqueued; /* max burst doesn't allow sending */ uint32_t sctps_ifnomemqueued; /* look ahead tells us no memory in * interface ring buffer OR we had a * send error and are queuing one * send. */ uint32_t sctps_windowprobed; /* total number of window probes sent */ uint32_t sctps_lowlevelerr; /* total times an output error causes * us to clamp down on next user send. */ uint32_t sctps_lowlevelerrusr; /* total times sctp_senderrors were * caused from a user send from a user * invoked send not a sack response */ uint32_t sctps_datadropchklmt; /* Number of in data drops due to * chunk limit reached */ uint32_t sctps_datadroprwnd; /* Number of in data drops due to rwnd * limit reached */ uint32_t sctps_ecnereducedcwnd; /* Number of times a ECN reduced the * cwnd */ uint32_t sctps_vtagexpress; /* Used express lookup via vtag */ uint32_t sctps_vtagbogus; /* Collision in express lookup. */ uint32_t sctps_primary_randry; /* Number of times the sender ran dry * of user data on primary */ uint32_t sctps_cmt_randry; /* Same for above */ uint32_t sctps_slowpath_sack; /* Sacks the slow way */ uint32_t sctps_wu_sacks_sent; /* Window Update only sacks sent */ uint32_t sctps_sends_with_flags; /* number of sends with * sinfo_flags !=0 */ uint32_t sctps_sends_with_unord; /* number of unordered sends */ uint32_t sctps_sends_with_eof; /* number of sends with EOF flag set */ uint32_t sctps_sends_with_abort; /* number of sends with ABORT * flag set */ uint32_t sctps_protocol_drain_calls; /* number of times protocol * drain called */ uint32_t sctps_protocol_drains_done; /* number of times we did a * protocol drain */ uint32_t sctps_read_peeks; /* Number of times recv was called * with peek */ uint32_t sctps_cached_chk; /* Number of cached chunks used */ uint32_t sctps_cached_strmoq; /* Number of cached stream oq's used */ uint32_t sctps_left_abandon; /* Number of unread messages abandoned * by close */ uint32_t sctps_send_burst_avoid; /* Unused */ uint32_t sctps_send_cwnd_avoid; /* Send cwnd full avoidance, already * max burst inflight to net */ uint32_t sctps_fwdtsn_map_over; /* number of map array over-runs via * fwd-tsn's */ uint32_t sctps_queue_upd_ecne; /* Number of times we queued or * updated an ECN chunk on send queue */ uint32_t sctps_reserved[31]; /* Future ABI compat - remove int's * from here when adding new */ }; #define SCTP_STAT_INCR(_x) SCTP_STAT_INCR_BY(_x,1) #define SCTP_STAT_DECR(_x) SCTP_STAT_DECR_BY(_x,1) #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) #define SCTP_STAT_INCR_BY(_x,_d) (SCTP_BASE_STATS[PCPU_GET(cpuid)]._x += _d) #define SCTP_STAT_DECR_BY(_x,_d) (SCTP_BASE_STATS[PCPU_GET(cpuid)]._x -= _d) #else #define SCTP_STAT_INCR_BY(_x,_d) atomic_add_int(&SCTP_BASE_STAT(_x), _d) #define SCTP_STAT_DECR_BY(_x,_d) atomic_subtract_int(&SCTP_BASE_STAT(_x), _d) #endif /* The following macros are for handling MIB values, */ #define SCTP_STAT_INCR_COUNTER32(_x) SCTP_STAT_INCR(_x) #define SCTP_STAT_INCR_COUNTER64(_x) SCTP_STAT_INCR(_x) #define SCTP_STAT_INCR_GAUGE32(_x) SCTP_STAT_INCR(_x) #define SCTP_STAT_DECR_COUNTER32(_x) SCTP_STAT_DECR(_x) #define SCTP_STAT_DECR_COUNTER64(_x) SCTP_STAT_DECR(_x) #define SCTP_STAT_DECR_GAUGE32(_x) SCTP_STAT_DECR(_x) union sctp_sockstore { struct sockaddr_in sin; struct sockaddr_in6 sin6; struct sockaddr sa; }; /***********************************/ /* And something for us old timers */ /***********************************/ #ifndef ntohll #include #define ntohll(x) be64toh(x) #endif #ifndef htonll #include #define htonll(x) htobe64(x) #endif /***********************************/ struct xsctp_inpcb { uint32_t last; uint32_t flags; uint64_t features; uint32_t total_sends; uint32_t total_recvs; uint32_t total_nospaces; uint32_t fragmentation_point; uint16_t local_port; uint16_t qlen_old; uint16_t maxqlen_old; void *socket; uint32_t qlen; uint32_t maxqlen; #if defined(__LP64__) uint32_t extra_padding[27]; /* future */ #else uint32_t extra_padding[28]; /* future */ #endif }; struct xsctp_tcb { union sctp_sockstore primary_addr; /* sctpAssocEntry 5/6 */ uint32_t last; uint32_t heartbeat_interval; /* sctpAssocEntry 7 */ uint32_t state; /* sctpAssocEntry 8 */ uint32_t in_streams; /* sctpAssocEntry 9 */ uint32_t out_streams; /* sctpAssocEntry 10 */ - uint32_t max_nr_retrans;/* sctpAssocEntry 11 */ + uint32_t max_nr_retrans; /* sctpAssocEntry 11 */ uint32_t primary_process; /* sctpAssocEntry 12 */ uint32_t T1_expireries; /* sctpAssocEntry 13 */ uint32_t T2_expireries; /* sctpAssocEntry 14 */ uint32_t retransmitted_tsns; /* sctpAssocEntry 15 */ uint32_t total_sends; uint32_t total_recvs; uint32_t local_tag; uint32_t remote_tag; uint32_t initial_tsn; uint32_t highest_tsn; uint32_t cumulative_tsn; uint32_t cumulative_tsn_ack; uint32_t mtu; uint32_t refcnt; uint16_t local_port; /* sctpAssocEntry 3 */ uint16_t remote_port; /* sctpAssocEntry 4 */ struct sctp_timeval start_time; /* sctpAssocEntry 16 */ struct sctp_timeval discontinuity_time; /* sctpAssocEntry 17 */ uint32_t peers_rwnd; sctp_assoc_t assoc_id; /* sctpAssocEntry 1 */ uint32_t extra_padding[32]; /* future */ }; struct xsctp_laddr { union sctp_sockstore address; /* sctpAssocLocalAddrEntry 1/2 */ uint32_t last; struct sctp_timeval start_time; /* sctpAssocLocalAddrEntry 3 */ uint32_t extra_padding[32]; /* future */ }; struct xsctp_raddr { union sctp_sockstore address; /* sctpAssocLocalRemEntry 1/2 */ uint32_t last; uint32_t rto; /* sctpAssocLocalRemEntry 5 */ uint32_t max_path_rtx; /* sctpAssocLocalRemEntry 6 */ uint32_t rtx; /* sctpAssocLocalRemEntry 7 */ uint32_t error_counter; /* */ uint32_t cwnd; /* */ uint32_t flight_size; /* */ uint32_t mtu; /* */ uint8_t active; /* sctpAssocLocalRemEntry 3 */ uint8_t confirmed; /* */ uint8_t heartbeat_enabled; /* sctpAssocLocalRemEntry 4 */ uint8_t potentially_failed; struct sctp_timeval start_time; /* sctpAssocLocalRemEntry 8 */ uint32_t rtt; uint32_t heartbeat_interval; uint32_t ssthresh; uint16_t encaps_port; uint16_t state; uint32_t extra_padding[29]; /* future */ }; #define SCTP_MAX_LOGGING_SIZE 30000 #define SCTP_TRACE_PARAMS 6 /* This number MUST be even */ struct sctp_log_entry { uint64_t timestamp; uint32_t subsys; uint32_t padding; uint32_t params[SCTP_TRACE_PARAMS]; }; struct sctp_log { struct sctp_log_entry entry[SCTP_MAX_LOGGING_SIZE]; uint32_t index; uint32_t padding; }; /* * Kernel defined for sctp_send */ #if defined(_KERNEL) || defined(__Userspace__) int sctp_lower_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *i_pak, struct mbuf *control, int flags, struct sctp_sndrcvinfo *srcv ,struct thread *p ); int sctp_sorecvmsg(struct socket *so, struct uio *uio, struct mbuf **mp, struct sockaddr *from, int fromlen, int *msg_flags, struct sctp_sndrcvinfo *sinfo, int filling_sinfo); #endif /* * API system calls */ #if !(defined(_KERNEL)) && !(defined(__Userspace__)) __BEGIN_DECLS int sctp_peeloff(int, sctp_assoc_t); int sctp_bindx(int, struct sockaddr *, int, int); int sctp_connectx(int, const struct sockaddr *, int, sctp_assoc_t *); int sctp_getaddrlen(sa_family_t); int sctp_getpaddrs(int, sctp_assoc_t, struct sockaddr **); void sctp_freepaddrs(struct sockaddr *); int sctp_getladdrs(int, sctp_assoc_t, struct sockaddr **); void sctp_freeladdrs(struct sockaddr *); int sctp_opt_info(int, sctp_assoc_t, int, void *, socklen_t *); /* deprecated */ -ssize_t +ssize_t sctp_sendmsg(int, const void *, size_t, const struct sockaddr *, socklen_t, uint32_t, uint32_t, uint16_t, uint32_t, uint32_t); /* deprecated */ -ssize_t +ssize_t sctp_send(int, const void *, size_t, const struct sctp_sndrcvinfo *, int); /* deprecated */ -ssize_t +ssize_t sctp_sendx(int, const void *, size_t, struct sockaddr *, int, struct sctp_sndrcvinfo *, int); /* deprecated */ -ssize_t +ssize_t sctp_sendmsgx(int sd, const void *, size_t, struct sockaddr *, int, uint32_t, uint32_t, uint16_t, uint32_t, uint32_t); sctp_assoc_t sctp_getassocid(int, struct sockaddr *); /* deprecated */ -ssize_t +ssize_t sctp_recvmsg(int, void *, size_t, struct sockaddr *, socklen_t *, struct sctp_sndrcvinfo *, int *); -ssize_t +ssize_t sctp_sendv(int, const struct iovec *, int, struct sockaddr *, int, void *, socklen_t, unsigned int, int); -ssize_t +ssize_t sctp_recvv(int, const struct iovec *, int, struct sockaddr *, socklen_t *, void *, socklen_t *, unsigned int *, int *); __END_DECLS #endif /* !_KERNEL */ #endif /* !__sctp_uio_h__ */ Index: stable/11/sys/netinet/sctp_usrreq.c =================================================================== --- stable/11/sys/netinet/sctp_usrreq.c (revision 347153) +++ stable/11/sys/netinet/sctp_usrreq.c (revision 347154) @@ -1,7461 +1,7483 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #include #include extern const struct sctp_cc_functions sctp_cc_functions[]; extern const struct sctp_ss_functions sctp_ss_functions[]; void sctp_init(void) { u_long sb_max_adj; /* Initialize and modify the sysctled variables */ sctp_init_sysctls(); if ((nmbclusters / 8) > SCTP_ASOC_MAX_CHUNKS_ON_QUEUE) SCTP_BASE_SYSCTL(sctp_max_chunks_on_queue) = (nmbclusters / 8); /* * Allow a user to take no more than 1/2 the number of clusters or * the SB_MAX whichever is smaller for the send window. */ sb_max_adj = (u_long)((u_quad_t)(SB_MAX) * MCLBYTES / (MSIZE + MCLBYTES)); SCTP_BASE_SYSCTL(sctp_sendspace) = min(sb_max_adj, (((uint32_t)nmbclusters / 2) * SCTP_DEFAULT_MAXSEGMENT)); /* * Now for the recv window, should we take the same amount? or * should I do 1/2 the SB_MAX instead in the SB_MAX min above. For * now I will just copy. */ SCTP_BASE_SYSCTL(sctp_recvspace) = SCTP_BASE_SYSCTL(sctp_sendspace); SCTP_BASE_VAR(first_time) = 0; SCTP_BASE_VAR(sctp_pcb_initialized) = 0; sctp_pcb_init(); #if defined(SCTP_PACKET_LOGGING) SCTP_BASE_VAR(packet_log_writers) = 0; SCTP_BASE_VAR(packet_log_end) = 0; memset(&SCTP_BASE_VAR(packet_log_buffer), 0, SCTP_PACKET_LOG_SIZE); #endif } #ifdef VIMAGE static void sctp_finish(void *unused __unused) { sctp_pcb_finish(); } VNET_SYSUNINIT(sctp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, sctp_finish, NULL); #endif void sctp_pathmtu_adjustment(struct sctp_tcb *stcb, uint16_t nxtsz) { struct sctp_tmit_chunk *chk; uint16_t overhead; /* Adjust that too */ stcb->asoc.smallest_mtu = nxtsz; /* now off to subtract IP_DF flag if needed */ overhead = IP_HDR_SIZE + sizeof(struct sctphdr); if (sctp_auth_is_required_chunk(SCTP_DATA, stcb->asoc.peer_auth_chunks)) { overhead += sctp_get_auth_chunk_len(stcb->asoc.peer_hmac_id); } TAILQ_FOREACH(chk, &stcb->asoc.send_queue, sctp_next) { if ((chk->send_size + overhead) > nxtsz) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } } TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if ((chk->send_size + overhead) > nxtsz) { /* * For this guy we also mark for immediate resend * since we sent to big of chunk */ chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; if (chk->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_decrease(chk); sctp_total_flight_decrease(stcb, chk); chk->sent = SCTP_DATAGRAM_RESEND; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); chk->rec.data.doing_fast_retransmit = 0; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_FLIGHT_LOGGING_ENABLE) { sctp_misc_ints(SCTP_FLIGHT_LOG_DOWN_PMTU, chk->whoTo->flight_size, chk->book_size, (uint32_t)(uintptr_t)chk->whoTo, chk->rec.data.tsn); } /* Clear any time so NO RTT is being done */ chk->do_rtt = 0; } } } } #ifdef INET void sctp_notify(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint8_t icmp_type, uint8_t icmp_code, uint16_t ip_len, uint32_t next_mtu) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif int timer_stopped; if (icmp_type != ICMP_UNREACH) { /* We only care about unreachable */ SCTP_TCB_UNLOCK(stcb); return; } if ((icmp_code == ICMP_UNREACH_NET) || (icmp_code == ICMP_UNREACH_HOST) || (icmp_code == ICMP_UNREACH_NET_UNKNOWN) || (icmp_code == ICMP_UNREACH_HOST_UNKNOWN) || (icmp_code == ICMP_UNREACH_ISOLATED) || (icmp_code == ICMP_UNREACH_NET_PROHIB) || (icmp_code == ICMP_UNREACH_HOST_PROHIB) || (icmp_code == ICMP_UNREACH_FILTER_PROHIB)) { /* Mark the net unreachable. */ if (net->dest_state & SCTP_ADDR_REACHABLE) { /* OK, that destination is NOT reachable. */ net->dest_state &= ~SCTP_ADDR_REACHABLE; net->dest_state &= ~SCTP_ADDR_PF; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED); } SCTP_TCB_UNLOCK(stcb); } else if ((icmp_code == ICMP_UNREACH_PROTOCOL) || (icmp_code == ICMP_UNREACH_PORT)) { /* Treat it like an ABORT. */ sctp_abort_notification(stcb, 1, 0, NULL, SCTP_SO_NOT_LOCKED); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_2); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); /* SCTP_TCB_UNLOCK(stcb); MT: I think this is not needed. */ #endif /* no need to unlock here, since the TCB is gone */ } else if (icmp_code == ICMP_UNREACH_NEEDFRAG) { if (net->dest_state & SCTP_ADDR_NO_PMTUD) { SCTP_TCB_UNLOCK(stcb); return; } /* Find the next (smaller) MTU */ if (next_mtu == 0) { /* * Old type router that does not tell us what the * next MTU is. Rats we will have to guess (in a * educated fashion of course). */ next_mtu = sctp_get_prev_mtu(ip_len); } /* Stop the PMTU timer. */ if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { timer_stopped = 1; sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_1); } else { timer_stopped = 0; } /* Update the path MTU. */ if (net->port) { next_mtu -= sizeof(struct udphdr); } if (net->mtu > next_mtu) { net->mtu = next_mtu; if (net->port) { sctp_hc_set_mtu(&net->ro._l_addr, inp->fibnum, next_mtu + sizeof(struct udphdr)); } else { sctp_hc_set_mtu(&net->ro._l_addr, inp->fibnum, next_mtu); } } /* Update the association MTU */ if (stcb->asoc.smallest_mtu > next_mtu) { sctp_pathmtu_adjustment(stcb, next_mtu); } /* Finally, start the PMTU timer if it was running before. */ if (timer_stopped) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } SCTP_TCB_UNLOCK(stcb); } else { SCTP_TCB_UNLOCK(stcb); } } void sctp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct ip *outer_ip; struct ip *inner_ip; struct sctphdr *sh; struct icmp *icmp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_init_chunk *ch; struct sockaddr_in src, dst; if (sa->sa_family != AF_INET || ((struct sockaddr_in *)sa)->sin_addr.s_addr == INADDR_ANY) { return; } if (PRC_IS_REDIRECT(cmd)) { vip = NULL; } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { return; } if (vip != NULL) { inner_ip = (struct ip *)vip; icmp = (struct icmp *)((caddr_t)inner_ip - (sizeof(struct icmp) - sizeof(struct ip))); outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); sh = (struct sctphdr *)((caddr_t)inner_ip + (inner_ip->ip_hl << 2)); memset(&src, 0, sizeof(struct sockaddr_in)); src.sin_family = AF_INET; src.sin_len = sizeof(struct sockaddr_in); src.sin_port = sh->src_port; src.sin_addr = inner_ip->ip_src; memset(&dst, 0, sizeof(struct sockaddr_in)); dst.sin_family = AF_INET; dst.sin_len = sizeof(struct sockaddr_in); dst.sin_port = sh->dest_port; dst.sin_addr = inner_ip->ip_dst; /* * 'dst' holds the dest of the packet that failed to be * sent. 'src' holds our local endpoint address. Thus we * reverse the dst and the src in the lookup. */ inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the verification tag */ if (ntohl(sh->v_tag) != 0) { /* * This must be the verification tag used * for sending out packets. We don't * consider packets reflecting the * verification tag. */ if (ntohl(sh->v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ntohs(outer_ip->ip_len) >= sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + 20) { /* * In this case we can check if we * got an INIT chunk and if the * initiate tag matches. */ ch = (struct sctp_init_chunk *)(sh + 1); if ((ch->ch.chunk_type != SCTP_INITIATION) || (ntohl(ch->init.initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } sctp_notify(inp, stcb, net, icmp->icmp_type, icmp->icmp_code, ntohs(inner_ip->ip_len), (uint32_t)ntohs(icmp->icmp_nextmtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } } return; } #endif static int sctp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct sctp_inpcb *inp; struct sctp_nets *net; struct sctp_tcb *stcb; int error; uint32_t vrf_id; /* FIX, for non-bsd is this right? */ vrf_id = SCTP_DEFAULT_VRFID; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); stcb = sctp_findassociation_addr_sa(sintosa(&addrs[1]), sintosa(&addrs[0]), &inp, &net, 1, vrf_id); if (stcb == NULL || inp == NULL || inp->sctp_socket == NULL) { if ((inp != NULL) && (stcb == NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); goto cred_can_cont; } + SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; goto out; } SCTP_TCB_UNLOCK(stcb); /* * We use the write lock here, only since in the error leg we need * it. If we used RLOCK, then we would have to * wlock/decr/unlock/rlock. Which in theory could create a hole. * Better to use higher wlock. */ SCTP_INP_WLOCK(inp); cred_can_cont: error = cr_canseesocket(req->td->td_ucred, inp->sctp_socket); if (error) { SCTP_INP_WUNLOCK(inp); goto out; } cru2x(inp->sctp_socket->so_cred, &xuc); SCTP_INP_WUNLOCK(inp); error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); out: return (error); } SYSCTL_PROC(_net_inet_sctp, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW, 0, 0, sctp_getcred, "S,ucred", "Get the ucred of a SCTP connection"); #ifdef INET static void sctp_abort(struct socket *so) { struct sctp_inpcb *inp; uint32_t flags; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { return; } + sctp_must_try_again: flags = inp->sctp_flags; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 16); #endif sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_AFTER_CMPSET_OFCLOSE); SOCK_LOCK(so); SCTP_SB_CLEAR(so->so_snd); /* * same for the rcv ones, they are only here for the * accounting/select. */ SCTP_SB_CLEAR(so->so_rcv); /* Now null out the reference, we are completely detached. */ so->so_pcb = NULL; SOCK_UNLOCK(so); } else { flags = inp->sctp_flags; if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { goto sctp_must_try_again; } } return; } static int sctp_attach(struct socket *so, int proto SCTP_UNUSED, struct thread *p SCTP_UNUSED) { struct sctp_inpcb *inp; struct inpcb *ip_inp; int error; uint32_t vrf_id = SCTP_DEFAULT_VRFID; inp = (struct sctp_inpcb *)so->so_pcb; if (inp != NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = SCTP_SORESERVE(so, SCTP_BASE_SYSCTL(sctp_sendspace), SCTP_BASE_SYSCTL(sctp_recvspace)); if (error) { return (error); } } error = sctp_inpcb_alloc(so, vrf_id); if (error) { return (error); } inp = (struct sctp_inpcb *)so->so_pcb; SCTP_INP_WLOCK(inp); inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUND_V6; /* I'm not v6! */ ip_inp = &inp->ip_inp.inp; ip_inp->inp_vflag |= INP_IPV4; ip_inp->inp_ip_ttl = MODULE_GLOBAL(ip_defttl); SCTP_INP_WUNLOCK(inp); return (0); } static int sctp_bind(struct socket *so, struct sockaddr *addr, struct thread *p) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } if (addr != NULL) { if ((addr->sa_family != AF_INET) || (addr->sa_len != sizeof(struct sockaddr_in))) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } } return (sctp_inpcb_bind(so, addr, NULL, p)); } #endif void sctp_close(struct socket *so) { struct sctp_inpcb *inp; uint32_t flags; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) return; /* * Inform all the lower layer assoc that we are done. */ sctp_must_try_again: flags = inp->sctp_flags; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 13); #endif sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_AFTER_CMPSET_OFCLOSE); } else { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 14); #endif sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE, SCTP_CALLED_AFTER_CMPSET_OFCLOSE); } /* * The socket is now detached, no matter what the state of * the SCTP association. */ SOCK_LOCK(so); SCTP_SB_CLEAR(so->so_snd); /* * same for the rcv ones, they are only here for the * accounting/select. */ SCTP_SB_CLEAR(so->so_rcv); /* Now null out the reference, we are completely detached. */ so->so_pcb = NULL; SOCK_UNLOCK(so); } else { flags = inp->sctp_flags; if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { goto sctp_must_try_again; } } return; } int sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p); int sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p) { struct sctp_inpcb *inp; int error; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { if (control) { sctp_m_freem(control); control = NULL; } SCTP_LTRACE_ERR_RET_PKT(m, inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); sctp_m_freem(m); return (EINVAL); } /* Got to have an to address if we are NOT a connected socket */ if ((addr == NULL) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE))) { goto connected_type; } else if (addr == NULL) { SCTP_LTRACE_ERR_RET_PKT(m, inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EDESTADDRREQ); error = EDESTADDRREQ; sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } return (error); } #ifdef INET6 if (addr->sa_family != AF_INET) { /* must be a v4 address! */ SCTP_LTRACE_ERR_RET_PKT(m, inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EDESTADDRREQ); sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } error = EDESTADDRREQ; return (error); } #endif /* INET6 */ connected_type: /* now what about control */ if (control) { if (inp->control) { SCTP_PRINTF("huh? control set?\n"); sctp_m_freem(inp->control); inp->control = NULL; } inp->control = control; } /* Place the data */ if (inp->pkt) { SCTP_BUF_NEXT(inp->pkt_last) = m; inp->pkt_last = m; } else { inp->pkt_last = inp->pkt = m; } if ( /* FreeBSD uses a flag passed */ ((flags & PRUS_MORETOCOME) == 0) ) { /* * note with the current version this code will only be used * by OpenBSD-- NetBSD, FreeBSD, and MacOS have methods for * re-defining sosend to use the sctp_sosend. One can * optionally switch back to this code (by changing back the * definitions) but this is not advisable. This code is used * by FreeBSD when sending a file with sendfile() though. */ int ret; ret = sctp_output(inp, inp->pkt, addr, inp->control, p, flags); inp->pkt = NULL; inp->control = NULL; return (ret); } else { return (0); } } int sctp_disconnect(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTCONN); return (ENOTCONN); } SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { /* No connection */ SCTP_INP_RUNLOCK(inp); return (0); } else { struct sctp_association *asoc; struct sctp_tcb *stcb; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } SCTP_TCB_LOCK(stcb); asoc = &stcb->asoc; if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* We are about to be freed, out of here */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { if (SCTP_GET_STATE(asoc) != SCTP_STATE_COOKIE_WAIT) { /* Left with Data unread */ struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); sctp_send_abort_tcb(stcb, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); } SCTP_INP_RUNLOCK(inp); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_3); /* No unlock tcb assoc is gone */ return (0); } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->stream_queue_cnt == 0)) { /* there is nothing queued to send, so done */ if ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc)) { goto abort_anyway; } if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { /* only send SHUTDOWN 1st time thru */ struct sctp_nets *netp; if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); if (stcb->asoc.alternate) { netp = stcb->asoc.alternate; } else { netp = stcb->asoc.primary_destination; } sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_LOCKED); } } else { /* * we still got (or just got) data to send, * so set SHUTDOWN_PENDING */ /* * XXX sockets draft says that SCTP_EOF * should be sent with no data. currently, * we will allow user data to be sent first * and move to SHUTDOWN-PENDING */ struct sctp_nets *netp; if (stcb->asoc.alternate) { netp = stcb->asoc.alternate; } else { netp = stcb->asoc.primary_destination; } asoc->state |= SCTP_STATE_SHUTDOWN_PENDING; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); if ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc)) { asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT; } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_4; sctp_send_abort_tcb(stcb, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_INP_RUNLOCK(inp); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_5); return (0); } else { sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_CLOSING, SCTP_SO_LOCKED); } } soisdisconnecting(so); SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } /* not reached */ } else { /* UDP model does not support this */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); return (EOPNOTSUPP); } } int sctp_flush(struct socket *so, int how) { /* * We will just clear out the values and let subsequent close clear * out the data, if any. Note if the user did a shutdown(SHUT_RD) * they will not be able to read the data, the socket will block * that from happening. */ struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } SCTP_INP_RLOCK(inp); /* For the 1 to many model this does nothing */ if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { SCTP_INP_RUNLOCK(inp); return (0); } SCTP_INP_RUNLOCK(inp); if ((how == PRU_FLUSH_RD) || (how == PRU_FLUSH_RDWR)) { /* * First make sure the sb will be happy, we don't use these * except maybe the count */ SCTP_INP_WLOCK(inp); SCTP_INP_READ_LOCK(inp); inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_CANT_READ; SCTP_INP_READ_UNLOCK(inp); SCTP_INP_WUNLOCK(inp); so->so_rcv.sb_cc = 0; so->so_rcv.sb_mbcnt = 0; so->so_rcv.sb_mb = NULL; } if ((how == PRU_FLUSH_WR) || (how == PRU_FLUSH_RDWR)) { /* * First make sure the sb will be happy, we don't use these * except maybe the count */ so->so_snd.sb_cc = 0; so->so_snd.sb_mbcnt = 0; so->so_snd.sb_mb = NULL; } return (0); } int sctp_shutdown(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } SCTP_INP_RLOCK(inp); /* For UDP model this is a invalid call */ if (!((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { /* Restore the flags that the soshutdown took away. */ SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_state &= ~SBS_CANTRCVMORE; SOCKBUF_UNLOCK(&so->so_rcv); /* This proc will wakeup for read and do nothing (I hope) */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); return (EOPNOTSUPP); } else { /* * Ok, if we reach here its the TCP model and it is either a * SHUT_WR or SHUT_RDWR. This means we put the shutdown flag * against it. */ struct sctp_tcb *stcb; struct sctp_association *asoc; struct sctp_nets *netp; if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { SCTP_INP_RUNLOCK(inp); return (ENOTCONN); } socantsendmore(so); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { /* * Ok, we hit the case that the shutdown call was * made after an abort or something. Nothing to do * now. */ SCTP_INP_RUNLOCK(inp); return (0); } SCTP_TCB_LOCK(stcb); asoc = &stcb->asoc; if (asoc->state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } if ((SCTP_GET_STATE(asoc) != SCTP_STATE_COOKIE_WAIT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_COOKIE_ECHOED) && (SCTP_GET_STATE(asoc) != SCTP_STATE_OPEN)) { /* * If we are not in or before ESTABLISHED, there is * no protocol action required. */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } if (stcb->asoc.alternate) { netp = stcb->asoc.alternate; } else { netp = stcb->asoc.primary_destination; } if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) && TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->stream_queue_cnt == 0)) { if ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc)) { goto abort_anyway; } /* there is nothing queued to send, so I'm done... */ SCTP_STAT_DECR_GAUGE32(sctps_currestab); SCTP_SET_STATE(asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_stop_timers_for_shutdown(stcb); sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); } else { /* * We still got (or just got) data to send, so set * SHUTDOWN_PENDING. */ SCTP_ADD_SUBSTATE(asoc, SCTP_STATE_SHUTDOWN_PENDING); if ((*asoc->ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, asoc)) { SCTP_ADD_SUBSTATE(asoc, SCTP_STATE_PARTIAL_MSG_LEFT); } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_6; sctp_abort_an_association(stcb->sctp_ep, stcb, op_err, SCTP_SO_LOCKED); SCTP_INP_RUNLOCK(inp); return (0); } } sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, netp); /* * XXX: Why do this in the case where we have still data * queued? */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_CLOSING, SCTP_SO_LOCKED); SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } } /* * copies a "user" presentable address and removes embedded scope, etc. * returns 0 on success, 1 on error */ static uint32_t sctp_fill_user_address(struct sockaddr_storage *ss, struct sockaddr *sa) { #ifdef INET6 struct sockaddr_in6 lsa6; sa = (struct sockaddr *)sctp_recover_scope((struct sockaddr_in6 *)sa, &lsa6); #endif memcpy(ss, sa, sa->sa_len); return (0); } /* * NOTE: assumes addr lock is held */ static size_t sctp_fill_up_addresses_vrf(struct sctp_inpcb *inp, struct sctp_tcb *stcb, size_t limit, struct sockaddr_storage *sas, uint32_t vrf_id) { struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; size_t actual; int loopback_scope; #if defined(INET) int ipv4_local_scope, ipv4_addr_legal; #endif #if defined(INET6) int local_scope, site_scope, ipv6_addr_legal; #endif struct sctp_vrf *vrf; actual = 0; if (limit <= 0) return (actual); if (stcb) { /* Turn on all the appropriate scope */ loopback_scope = stcb->asoc.scope.loopback_scope; #if defined(INET) ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope; ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal; #endif #if defined(INET6) local_scope = stcb->asoc.scope.local_scope; site_scope = stcb->asoc.scope.site_scope; ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal; #endif } else { /* Use generic values for endpoints. */ loopback_scope = 1; #if defined(INET) ipv4_local_scope = 1; #endif #if defined(INET6) local_scope = 1; site_scope = 1; #endif if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { #if defined(INET6) ipv6_addr_legal = 1; #endif #if defined(INET) if (SCTP_IPV6_V6ONLY(inp)) { ipv4_addr_legal = 0; } else { ipv4_addr_legal = 1; } #endif } else { #if defined(INET6) ipv6_addr_legal = 0; #endif #if defined(INET) ipv4_addr_legal = 1; #endif } } vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { return (0); } if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { /* Skip loopback if loopback_scope not set */ continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (stcb) { /* * For the BOUND-ALL case, the list * associated with a TCB is Always * considered a reverse list.. i.e. * it lists addresses that are NOT * part of the association. If this * is one of those we must skip it. */ if (sctp_is_addr_restricted(stcb, sctp_ifa)) { continue; } } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin; sin = &sctp_ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* * we skip * unspecifed * addresses */ continue; } if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if ((ipv4_local_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { continue; } #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { in6_sin_2_v4mapsin6(sin, (struct sockaddr_in6 *)sas); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(struct sockaddr_in6)); actual += sizeof(struct sockaddr_in6); } else { #endif memcpy(sas, sin, sizeof(*sin)); ((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin)); actual += sizeof(*sin); #ifdef INET6 } #endif if (actual >= limit) { return (actual); } } else { continue; } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6; sin6 = &sctp_ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * we skip * unspecifed * addresses */ continue; } if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) /* * * bad * link * * local * * address */ continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } memcpy(sas, sin6, sizeof(*sin6)); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin6)); actual += sizeof(*sin6); if (actual >= limit) { return (actual); } } else { continue; } break; #endif default: /* TSNH */ break; } } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (stcb) { if (sctp_is_addr_restricted(stcb, laddr->ifa)) { continue; } } if (sctp_fill_user_address(sas, &laddr->ifa->address.sa)) continue; switch (laddr->ifa->address.sa.sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; break; #endif default: /* TSNH */ break; } sas = (struct sockaddr_storage *)((caddr_t)sas + laddr->ifa->address.sa.sa_len); actual += laddr->ifa->address.sa.sa_len; if (actual >= limit) { return (actual); } } } return (actual); } static size_t sctp_fill_up_addresses(struct sctp_inpcb *inp, struct sctp_tcb *stcb, size_t limit, struct sockaddr_storage *sas) { size_t size = 0; SCTP_IPI_ADDR_RLOCK(); /* fill up addresses for the endpoint's default vrf */ size = sctp_fill_up_addresses_vrf(inp, stcb, limit, sas, inp->def_vrf_id); SCTP_IPI_ADDR_RUNLOCK(); return (size); } /* * NOTE: assumes addr lock is held */ static int sctp_count_max_addresses_vrf(struct sctp_inpcb *inp, uint32_t vrf_id) { int cnt = 0; struct sctp_vrf *vrf = NULL; /* * In both sub-set bound an bound_all cases we return the MAXIMUM * number of addresses that you COULD get. In reality the sub-set * bound may have an exclusion list for a given TCB OR in the * bound-all case a TCB may NOT include the loopback or other * addresses as well. */ vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { return (0); } if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { /* Count them if they are the right type */ switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); #else cnt += sizeof(struct sockaddr_in); #endif break; #endif #ifdef INET6 case AF_INET6: cnt += sizeof(struct sockaddr_in6); break; #endif default: break; } } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { switch (laddr->ifa->address.sa.sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); #else cnt += sizeof(struct sockaddr_in); #endif break; #endif #ifdef INET6 case AF_INET6: cnt += sizeof(struct sockaddr_in6); break; #endif default: break; } } } return (cnt); } static int sctp_count_max_addresses(struct sctp_inpcb *inp) { int cnt = 0; SCTP_IPI_ADDR_RLOCK(); /* count addresses for the endpoint's default VRF */ cnt = sctp_count_max_addresses_vrf(inp, inp->def_vrf_id); SCTP_IPI_ADDR_RUNLOCK(); return (cnt); } static int sctp_do_connect_x(struct socket *so, struct sctp_inpcb *inp, void *optval, size_t optsize, void *p, int delay) { int error = 0; int creat_lock_on = 0; struct sctp_tcb *stcb = NULL; struct sockaddr *sa; unsigned int num_v6 = 0, num_v4 = 0, *totaddrp, totaddr; uint32_t vrf_id; int bad_addresses = 0; sctp_assoc_t *a_id; SCTPDBG(SCTP_DEBUG_PCB1, "Connectx called\n"); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EADDRINUSE); return (EADDRINUSE); } + if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) && (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE))) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } + if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); SCTP_INP_RUNLOCK(inp); } if (stcb) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); return (EALREADY); } SCTP_INP_INCR_REF(inp); SCTP_ASOC_CREATE_LOCK(inp); creat_lock_on = 1; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EFAULT); error = EFAULT; goto out_now; } totaddrp = (unsigned int *)optval; totaddr = *totaddrp; sa = (struct sockaddr *)(totaddrp + 1); stcb = sctp_connectx_helper_find(inp, sa, &totaddr, &num_v4, &num_v6, &error, (unsigned int)(optsize - sizeof(int)), &bad_addresses); if ((stcb != NULL) || bad_addresses) { /* Already have or am bring up an association */ SCTP_ASOC_CREATE_UNLOCK(inp); creat_lock_on = 0; if (stcb) SCTP_TCB_UNLOCK(stcb); if (bad_addresses == 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; } goto out_now; } #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (num_v6 > 0)) { error = EINVAL; goto out_now; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && (num_v4 > 0)) { struct in6pcb *inp6; inp6 = (struct in6pcb *)inp; if (SCTP_IPV6_V6ONLY(inp6)) { /* * if IPV6_V6ONLY flag, ignore connections destined * to a v4 addr or v4-mapped addr */ SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_now; } } #endif /* INET6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ error = sctp_inpcb_bind(so, NULL, NULL, p); if (error) { goto out_now; } } + /* FIX ME: do we want to pass in a vrf on the connect call? */ vrf_id = inp->def_vrf_id; /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, sa, &error, 0, vrf_id, inp->sctp_ep.pre_open_stream_count, inp->sctp_ep.port, (struct thread *)p ); if (stcb == NULL) { /* Gak! no memory */ goto out_now; } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } SCTP_SET_STATE(&stcb->asoc, SCTP_STATE_COOKIE_WAIT); /* move to second address */ switch (sa->sa_family) { #ifdef INET case AF_INET: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in)); break; #endif #ifdef INET6 case AF_INET6: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6)); break; #endif default: break; } error = 0; sctp_connectx_helper_add(stcb, sa, (totaddr - 1), &error); /* Fill in the return id */ if (error) { (void)sctp_free_assoc(inp, stcb, SCTP_PCBFREE_FORCE, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_7); goto out_now; } a_id = (sctp_assoc_t *)optval; *a_id = sctp_get_associd(stcb); /* initialize authentication parameters for the assoc */ sctp_initialize_auth_params(inp, stcb); if (delay) { /* doing delayed connection */ stcb->asoc.delayed_connection = 1; sctp_timer_start(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination); } else { (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_send_initiate(inp, stcb, SCTP_SO_LOCKED); } SCTP_TCB_UNLOCK(stcb); out_now: if (creat_lock_on) { SCTP_ASOC_CREATE_UNLOCK(inp); } SCTP_INP_DECR_REF(inp); return (error); } #define SCTP_FIND_STCB(inp, stcb, assoc_id) { \ if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||\ (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { \ SCTP_INP_RLOCK(inp); \ stcb = LIST_FIRST(&inp->sctp_asoc_list); \ if (stcb) { \ SCTP_TCB_LOCK(stcb); \ } \ SCTP_INP_RUNLOCK(inp); \ } else if (assoc_id > SCTP_ALL_ASSOC) { \ stcb = sctp_findassociation_ep_asocid(inp, assoc_id, 1); \ if (stcb == NULL) { \ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); \ error = ENOENT; \ break; \ } \ } else { \ stcb = NULL; \ } \ } #define SCTP_CHECK_AND_CAST(destp, srcp, type, size) {\ if (size < sizeof(type)) { \ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); \ error = EINVAL; \ break; \ } else { \ destp = (type *)srcp; \ } \ } static int sctp_getopt(struct socket *so, int optname, void *optval, size_t *optsize, void *p) { struct sctp_inpcb *inp = NULL; int error, val = 0; struct sctp_tcb *stcb = NULL; if (optval == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } + inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return EINVAL; } error = 0; switch (optname) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_EXPLICIT_EOR: case SCTP_AUTO_ASCONF: case SCTP_DISABLE_FRAGMENTS: case SCTP_I_WANT_MAPPED_V4_ADDR: case SCTP_USE_EXT_RCVINFO: SCTP_INP_RLOCK(inp); switch (optname) { case SCTP_DISABLE_FRAGMENTS: val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NO_FRAGMENT); break; case SCTP_I_WANT_MAPPED_V4_ADDR: val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4); break; case SCTP_AUTO_ASCONF: if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* only valid for bound all sockets */ val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto flags_out; } break; case SCTP_EXPLICIT_EOR: val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR); break; case SCTP_NODELAY: val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NODELAY); break; case SCTP_USE_EXT_RCVINFO: val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO); break; case SCTP_AUTOCLOSE: if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) val = TICKS_TO_SEC(inp->sctp_ep.auto_close_time); else val = 0; break; default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOPROTOOPT); error = ENOPROTOOPT; } /* end switch (sopt->sopt_name) */ if (*optsize < sizeof(val)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } flags_out: SCTP_INP_RUNLOCK(inp); if (error == 0) { /* return the option value */ *(int *)optval = val; *optsize = sizeof(val); } break; case SCTP_GET_PACKET_LOG: { #ifdef SCTP_PACKET_LOGGING uint8_t *target; int ret; SCTP_CHECK_AND_CAST(target, optval, uint8_t, *optsize); ret = sctp_copy_out_packet_log(target, (int)*optsize); *optsize = ret; #else SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; #endif break; } case SCTP_REUSE_PORT: { uint32_t *value; if ((inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE)) { /* Can't do this for a 1-m socket */ error = EINVAL; break; } SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); *value = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE); *optsize = sizeof(uint32_t); break; } case SCTP_PARTIAL_DELIVERY_POINT: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); *value = inp->partial_delivery_point; *optsize = sizeof(uint32_t); break; } case SCTP_FRAGMENT_INTERLEAVE: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) { if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS)) { *value = SCTP_FRAG_LEVEL_2; } else { *value = SCTP_FRAG_LEVEL_1; } } else { *value = SCTP_FRAG_LEVEL_0; } *optsize = sizeof(uint32_t); break; } case SCTP_INTERLEAVING_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.idata_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); if (inp->idata_supported) { av->assoc_value = 1; } else { av->assoc_value = 0; } SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_CMT_ON_OFF: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.sctp_cmt_on_off; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->sctp_cmt_on_off; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_PLUGGABLE_CC: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.congestion_control_module; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->sctp_ep.sctp_default_cc_module; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_CC_OPTION: { struct sctp_cc_option *cc_opt; SCTP_CHECK_AND_CAST(cc_opt, optval, struct sctp_cc_option, *optsize); SCTP_FIND_STCB(inp, stcb, cc_opt->aid_value.assoc_id); if (stcb == NULL) { error = EINVAL; } else { if (stcb->asoc.cc_functions.sctp_cwnd_socket_option == NULL) { error = ENOTSUP; } else { error = (*stcb->asoc.cc_functions.sctp_cwnd_socket_option) (stcb, 0, cc_opt); *optsize = sizeof(struct sctp_cc_option); } SCTP_TCB_UNLOCK(stcb); } break; } case SCTP_PLUGGABLE_SS: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.stream_scheduling_module; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->sctp_ep.sctp_default_ss_module; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_SS_VALUE: { struct sctp_stream_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_stream_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { if ((av->stream_id >= stcb->asoc.streamoutcnt) || (stcb->asoc.ss_functions.sctp_ss_get_value(stcb, &stcb->asoc, &stcb->asoc.strmout[av->stream_id], &av->stream_value) < 0)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { *optsize = sizeof(struct sctp_stream_value); } SCTP_TCB_UNLOCK(stcb); } else { /* * Can't get stream value without * association */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } break; } case SCTP_GET_ADDR_LEN: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); error = EINVAL; #ifdef INET if (av->assoc_value == AF_INET) { av->assoc_value = sizeof(struct sockaddr_in); error = 0; } #endif #ifdef INET6 if (av->assoc_value == AF_INET6) { av->assoc_value = sizeof(struct sockaddr_in6); error = 0; } #endif if (error) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); } else { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_GET_ASSOC_NUMBER: { uint32_t *value, cnt; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* Can't do this for a 1-1 socket */ error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } cnt = 0; LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { cnt++; } SCTP_INP_RUNLOCK(inp); *value = cnt; *optsize = sizeof(uint32_t); break; } case SCTP_GET_ASSOC_ID_LIST: { struct sctp_assoc_ids *ids; uint32_t at; size_t limit; SCTP_CHECK_AND_CAST(ids, optval, struct sctp_assoc_ids, *optsize); SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* Can't do this for a 1-1 socket */ error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } at = 0; limit = (*optsize - sizeof(uint32_t)) / sizeof(sctp_assoc_t); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { if (at < limit) { ids->gaids_assoc_id[at++] = sctp_get_associd(stcb); if (at == 0) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } SCTP_INP_RUNLOCK(inp); if (error == 0) { ids->gaids_number_of_ids = at; *optsize = ((at * sizeof(sctp_assoc_t)) + sizeof(uint32_t)); } break; } case SCTP_CONTEXT: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.context; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->sctp_context; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_VRF_ID: { uint32_t *default_vrfid; SCTP_CHECK_AND_CAST(default_vrfid, optval, uint32_t, *optsize); *default_vrfid = inp->def_vrf_id; *optsize = sizeof(uint32_t); break; } case SCTP_GET_ASOC_VRF: { struct sctp_assoc_value *id; SCTP_CHECK_AND_CAST(id, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, id->assoc_id); if (stcb == NULL) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); } else { id->assoc_value = stcb->asoc.vrf_id; SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_GET_VRF_IDS: { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; break; } case SCTP_GET_NONCE_VALUES: { struct sctp_get_nonce_values *gnv; SCTP_CHECK_AND_CAST(gnv, optval, struct sctp_get_nonce_values, *optsize); SCTP_FIND_STCB(inp, stcb, gnv->gn_assoc_id); if (stcb) { gnv->gn_peers_tag = stcb->asoc.peer_vtag; gnv->gn_local_tag = stcb->asoc.my_vtag; SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_get_nonce_values); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTCONN); error = ENOTCONN; } break; } case SCTP_DELAYED_SACK: { struct sctp_sack_info *sack; SCTP_CHECK_AND_CAST(sack, optval, struct sctp_sack_info, *optsize); SCTP_FIND_STCB(inp, stcb, sack->sack_assoc_id); if (stcb) { sack->sack_delay = stcb->asoc.delayed_ack; sack->sack_freq = stcb->asoc.sack_freq; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sack->sack_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); sack->sack_delay = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); sack->sack_freq = inp->sctp_ep.sctp_sack_freq; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_sack_info); } break; } case SCTP_GET_SNDBUF_USE: { struct sctp_sockstat *ss; SCTP_CHECK_AND_CAST(ss, optval, struct sctp_sockstat, *optsize); SCTP_FIND_STCB(inp, stcb, ss->ss_assoc_id); if (stcb) { ss->ss_total_sndbuf = stcb->asoc.total_output_queue_size; ss->ss_total_recv_buf = (stcb->asoc.size_on_reasm_queue + stcb->asoc.size_on_all_streams); SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_sockstat); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTCONN); error = ENOTCONN; } break; } case SCTP_MAX_BURST: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.max_burst; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->sctp_ep.max_burst; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_MAXSEG: { struct sctp_assoc_value *av; int ovh; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = sctp_get_frag_point(stcb, &stcb->asoc); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } if (inp->sctp_frag_point >= SCTP_DEFAULT_MAXSEGMENT) av->assoc_value = 0; else av->assoc_value = inp->sctp_frag_point - ovh; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_GET_STAT_LOG: error = sctp_fill_stat_log(optval, optsize); break; case SCTP_EVENTS: { struct sctp_event_subscribe *events; SCTP_CHECK_AND_CAST(events, optval, struct sctp_event_subscribe, *optsize); memset(events, 0, sizeof(struct sctp_event_subscribe)); SCTP_INP_RLOCK(inp); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT)) events->sctp_data_io_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT)) events->sctp_association_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT)) events->sctp_address_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT)) events->sctp_send_failure_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR)) events->sctp_peer_error_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)) events->sctp_shutdown_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT)) events->sctp_partial_delivery_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT)) events->sctp_adaptation_layer_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT)) events->sctp_authentication_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DRYEVNT)) events->sctp_sender_dry_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT)) events->sctp_stream_reset_event = 1; SCTP_INP_RUNLOCK(inp); *optsize = sizeof(struct sctp_event_subscribe); break; } case SCTP_ADAPTATION_LAYER: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); SCTP_INP_RLOCK(inp); *value = inp->sctp_ep.adaptation_layer_indicator; SCTP_INP_RUNLOCK(inp); *optsize = sizeof(uint32_t); break; } case SCTP_SET_INITIAL_DBG_SEQ: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); SCTP_INP_RLOCK(inp); *value = inp->sctp_ep.initial_sequence_debug; SCTP_INP_RUNLOCK(inp); *optsize = sizeof(uint32_t); break; } case SCTP_GET_LOCAL_ADDR_SIZE: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); SCTP_INP_RLOCK(inp); *value = sctp_count_max_addresses(inp); SCTP_INP_RUNLOCK(inp); *optsize = sizeof(uint32_t); break; } case SCTP_GET_REMOTE_ADDR_SIZE: { uint32_t *value; size_t size; struct sctp_nets *net; SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize); /* FIXME MT: change to sctp_assoc_value? */ SCTP_FIND_STCB(inp, stcb, (sctp_assoc_t)*value); if (stcb) { size = 0; /* Count the sizes */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { size += sizeof(struct sockaddr_in6); } else { size += sizeof(struct sockaddr_in); } #else size += sizeof(struct sockaddr_in); #endif break; #endif #ifdef INET6 case AF_INET6: size += sizeof(struct sockaddr_in6); break; #endif default: break; } } SCTP_TCB_UNLOCK(stcb); *value = (uint32_t)size; *optsize = sizeof(uint32_t); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTCONN); error = ENOTCONN; } break; } case SCTP_GET_PEER_ADDRESSES: /* * Get the address information, an array is passed in to * fill up we pack it. */ { size_t cpsz, left; struct sockaddr_storage *sas; struct sctp_nets *net; struct sctp_getaddresses *saddr; SCTP_CHECK_AND_CAST(saddr, optval, struct sctp_getaddresses, *optsize); SCTP_FIND_STCB(inp, stcb, saddr->sget_assoc_id); if (stcb) { left = (*optsize) - sizeof(struct sctp_getaddresses); *optsize = sizeof(struct sctp_getaddresses); sas = (struct sockaddr_storage *)&saddr->addr[0]; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { cpsz = sizeof(struct sockaddr_in6); } else { cpsz = sizeof(struct sockaddr_in); } #else cpsz = sizeof(struct sockaddr_in); #endif break; #endif #ifdef INET6 case AF_INET6: cpsz = sizeof(struct sockaddr_in6); break; #endif default: cpsz = 0; break; } if (cpsz == 0) { break; } if (left < cpsz) { /* not enough room. */ break; } #if defined(INET) && defined(INET6) if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) && (net->ro._l_addr.sa.sa_family == AF_INET)) { /* Must map the address */ in6_sin_2_v4mapsin6(&net->ro._l_addr.sin, (struct sockaddr_in6 *)sas); } else { memcpy(sas, &net->ro._l_addr, cpsz); } #else memcpy(sas, &net->ro._l_addr, cpsz); #endif ((struct sockaddr_in *)sas)->sin_port = stcb->rport; sas = (struct sockaddr_storage *)((caddr_t)sas + cpsz); left -= cpsz; *optsize += cpsz; } SCTP_TCB_UNLOCK(stcb); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; } break; } case SCTP_GET_LOCAL_ADDRESSES: { size_t limit, actual; struct sockaddr_storage *sas; struct sctp_getaddresses *saddr; SCTP_CHECK_AND_CAST(saddr, optval, struct sctp_getaddresses, *optsize); SCTP_FIND_STCB(inp, stcb, saddr->sget_assoc_id); sas = (struct sockaddr_storage *)&saddr->addr[0]; limit = *optsize - sizeof(sctp_assoc_t); actual = sctp_fill_up_addresses(inp, stcb, limit, sas); if (stcb) { SCTP_TCB_UNLOCK(stcb); } *optsize = sizeof(struct sockaddr_storage) + actual; break; } case SCTP_PEER_ADDR_PARAMS: { struct sctp_paddrparams *paddrp; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(paddrp, optval, struct sctp_paddrparams, *optsize); SCTP_FIND_STCB(inp, stcb, paddrp->spp_assoc_id); #if defined(INET) && defined(INET6) if (paddrp->spp_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&paddrp->spp_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&paddrp->spp_address; } } else { addr = (struct sockaddr *)&paddrp->spp_address; } #else addr = (struct sockaddr *)&paddrp->spp_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } + if (stcb != NULL) { /* Applies to the specific association */ paddrp->spp_flags = 0; if (net != NULL) { paddrp->spp_hbinterval = net->heart_beat_delay; paddrp->spp_pathmaxrxt = net->failure_threshold; paddrp->spp_pathmtu = net->mtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: paddrp->spp_pathmtu -= SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: paddrp->spp_pathmtu -= SCTP_MIN_OVERHEAD; break; #endif default: break; } /* get flags for HB */ if (net->dest_state & SCTP_ADDR_NOHB) { paddrp->spp_flags |= SPP_HB_DISABLE; } else { paddrp->spp_flags |= SPP_HB_ENABLE; } /* get flags for PMTU */ if (net->dest_state & SCTP_ADDR_NO_PMTUD) { paddrp->spp_flags |= SPP_PMTUD_DISABLE; } else { paddrp->spp_flags |= SPP_PMTUD_ENABLE; } if (net->dscp & 0x01) { paddrp->spp_dscp = net->dscp & 0xfc; paddrp->spp_flags |= SPP_DSCP; } #ifdef INET6 if ((net->ro._l_addr.sa.sa_family == AF_INET6) && (net->flowlabel & 0x80000000)) { paddrp->spp_ipv6_flowlabel = net->flowlabel & 0x000fffff; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; } #endif } else { /* * No destination so return default * value */ paddrp->spp_pathmaxrxt = stcb->asoc.def_net_failure; paddrp->spp_pathmtu = stcb->asoc.default_mtu; if (stcb->asoc.default_dscp & 0x01) { paddrp->spp_dscp = stcb->asoc.default_dscp & 0xfc; paddrp->spp_flags |= SPP_DSCP; } #ifdef INET6 if (stcb->asoc.default_flowlabel & 0x80000000) { paddrp->spp_ipv6_flowlabel = stcb->asoc.default_flowlabel & 0x000fffff; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; } #endif /* default settings should be these */ if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT)) { paddrp->spp_flags |= SPP_HB_DISABLE; } else { paddrp->spp_flags |= SPP_HB_ENABLE; } if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD)) { paddrp->spp_flags |= SPP_PMTUD_DISABLE; } else { paddrp->spp_flags |= SPP_PMTUD_ENABLE; } paddrp->spp_hbinterval = stcb->asoc.heart_beat_delay; } paddrp->spp_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (paddrp->spp_assoc_id == SCTP_FUTURE_ASSOC)) { /* Use endpoint defaults */ SCTP_INP_RLOCK(inp); paddrp->spp_pathmaxrxt = inp->sctp_ep.def_net_failure; paddrp->spp_hbinterval = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]); paddrp->spp_assoc_id = SCTP_FUTURE_ASSOC; /* get inp's default */ if (inp->sctp_ep.default_dscp & 0x01) { paddrp->spp_dscp = inp->sctp_ep.default_dscp & 0xfc; paddrp->spp_flags |= SPP_DSCP; } #ifdef INET6 if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && (inp->sctp_ep.default_flowlabel & 0x80000000)) { paddrp->spp_ipv6_flowlabel = inp->sctp_ep.default_flowlabel & 0x000fffff; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; } #endif paddrp->spp_pathmtu = inp->sctp_ep.default_mtu; if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT)) { paddrp->spp_flags |= SPP_HB_ENABLE; } else { paddrp->spp_flags |= SPP_HB_DISABLE; } if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_NOT_PMTUD)) { paddrp->spp_flags |= SPP_PMTUD_ENABLE; } else { paddrp->spp_flags |= SPP_PMTUD_DISABLE; } SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_paddrparams); } break; } case SCTP_GET_PEER_ADDR_INFO: { struct sctp_paddrinfo *paddri; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(paddri, optval, struct sctp_paddrinfo, *optsize); SCTP_FIND_STCB(inp, stcb, paddri->spinfo_assoc_id); #if defined(INET) && defined(INET6) if (paddri->spinfo_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&paddri->spinfo_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&paddri->spinfo_address; } } else { addr = (struct sockaddr *)&paddri->spinfo_address; } #else addr = (struct sockaddr *)&paddri->spinfo_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net != NULL)) { if (net->dest_state & SCTP_ADDR_UNCONFIRMED) { /* It's unconfirmed */ paddri->spinfo_state = SCTP_UNCONFIRMED; } else if (net->dest_state & SCTP_ADDR_REACHABLE) { /* It's active */ paddri->spinfo_state = SCTP_ACTIVE; } else { /* It's inactive */ paddri->spinfo_state = SCTP_INACTIVE; } paddri->spinfo_cwnd = net->cwnd; paddri->spinfo_srtt = net->lastsa >> SCTP_RTT_SHIFT; paddri->spinfo_rto = net->RTO; paddri->spinfo_assoc_id = sctp_get_associd(stcb); paddri->spinfo_mtu = net->mtu; switch (addr->sa_family) { #if defined(INET) case AF_INET: paddri->spinfo_mtu -= SCTP_MIN_V4_OVERHEAD; break; #endif #if defined(INET6) case AF_INET6: paddri->spinfo_mtu -= SCTP_MIN_OVERHEAD; break; #endif default: break; } SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_paddrinfo); } else { if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; } break; } case SCTP_PCB_STATUS: { struct sctp_pcbinfo *spcb; SCTP_CHECK_AND_CAST(spcb, optval, struct sctp_pcbinfo, *optsize); sctp_fill_pcbinfo(spcb); *optsize = sizeof(struct sctp_pcbinfo); break; } case SCTP_STATUS: { struct sctp_nets *net; struct sctp_status *sstat; SCTP_CHECK_AND_CAST(sstat, optval, struct sctp_status, *optsize); SCTP_FIND_STCB(inp, stcb, sstat->sstat_assoc_id); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } sstat->sstat_state = sctp_map_assoc_state(stcb->asoc.state); sstat->sstat_assoc_id = sctp_get_associd(stcb); sstat->sstat_rwnd = stcb->asoc.peers_rwnd; sstat->sstat_unackdata = stcb->asoc.sent_queue_cnt; /* * We can't include chunks that have been passed to * the socket layer. Only things in queue. */ sstat->sstat_penddata = (stcb->asoc.cnt_on_reasm_queue + stcb->asoc.cnt_on_all_streams); sstat->sstat_instrms = stcb->asoc.streamincnt; sstat->sstat_outstrms = stcb->asoc.streamoutcnt; sstat->sstat_fragmentation_point = sctp_get_frag_point(stcb, &stcb->asoc); memcpy(&sstat->sstat_primary.spinfo_address, &stcb->asoc.primary_destination->ro._l_addr, ((struct sockaddr *)(&stcb->asoc.primary_destination->ro._l_addr))->sa_len); net = stcb->asoc.primary_destination; ((struct sockaddr_in *)&sstat->sstat_primary.spinfo_address)->sin_port = stcb->rport; /* * Again the user can get info from sctp_constants.h * for what the state of the network is. */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) { /* It's unconfirmed */ sstat->sstat_primary.spinfo_state = SCTP_UNCONFIRMED; } else if (net->dest_state & SCTP_ADDR_REACHABLE) { /* It's active */ sstat->sstat_primary.spinfo_state = SCTP_ACTIVE; } else { /* It's inactive */ sstat->sstat_primary.spinfo_state = SCTP_INACTIVE; } sstat->sstat_primary.spinfo_cwnd = net->cwnd; sstat->sstat_primary.spinfo_srtt = net->lastsa >> SCTP_RTT_SHIFT; sstat->sstat_primary.spinfo_rto = net->RTO; sstat->sstat_primary.spinfo_mtu = net->mtu; switch (stcb->asoc.primary_destination->ro._l_addr.sa.sa_family) { #if defined(INET) case AF_INET: sstat->sstat_primary.spinfo_mtu -= SCTP_MIN_V4_OVERHEAD; break; #endif #if defined(INET6) case AF_INET6: sstat->sstat_primary.spinfo_mtu -= SCTP_MIN_OVERHEAD; break; #endif default: break; } sstat->sstat_primary.spinfo_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_status); break; } case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; SCTP_CHECK_AND_CAST(srto, optval, struct sctp_rtoinfo, *optsize); SCTP_FIND_STCB(inp, stcb, srto->srto_assoc_id); if (stcb) { srto->srto_initial = stcb->asoc.initial_rto; srto->srto_max = stcb->asoc.maxrto; srto->srto_min = stcb->asoc.minrto; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (srto->srto_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); srto->srto_initial = inp->sctp_ep.initial_rto; srto->srto_max = inp->sctp_ep.sctp_maxrto; srto->srto_min = inp->sctp_ep.sctp_minrto; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_rtoinfo); } break; } case SCTP_TIMEOUTS: { struct sctp_timeouts *stimo; SCTP_CHECK_AND_CAST(stimo, optval, struct sctp_timeouts, *optsize); SCTP_FIND_STCB(inp, stcb, stimo->stimo_assoc_id); if (stcb) { stimo->stimo_init = stcb->asoc.timoinit; stimo->stimo_data = stcb->asoc.timodata; stimo->stimo_sack = stcb->asoc.timosack; stimo->stimo_shutdown = stcb->asoc.timoshutdown; stimo->stimo_heartbeat = stcb->asoc.timoheartbeat; stimo->stimo_cookie = stcb->asoc.timocookie; stimo->stimo_shutdownack = stcb->asoc.timoshutdownack; SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_timeouts); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } break; } case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; SCTP_CHECK_AND_CAST(sasoc, optval, struct sctp_assocparams, *optsize); SCTP_FIND_STCB(inp, stcb, sasoc->sasoc_assoc_id); if (stcb) { sasoc->sasoc_cookie_life = TICKS_TO_MSEC(stcb->asoc.cookie_life); sasoc->sasoc_asocmaxrxt = stcb->asoc.max_send_times; sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets; sasoc->sasoc_peer_rwnd = stcb->asoc.peers_rwnd; sasoc->sasoc_local_rwnd = stcb->asoc.my_rwnd; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sasoc->sasoc_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); sasoc->sasoc_cookie_life = TICKS_TO_MSEC(inp->sctp_ep.def_cookie_life); sasoc->sasoc_asocmaxrxt = inp->sctp_ep.max_send_times; sasoc->sasoc_number_peer_destinations = 0; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = sbspace(&inp->sctp_socket->so_rcv); SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assocparams); } break; } case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; SCTP_CHECK_AND_CAST(s_info, optval, struct sctp_sndrcvinfo, *optsize); SCTP_FIND_STCB(inp, stcb, s_info->sinfo_assoc_id); if (stcb) { memcpy(s_info, &stcb->asoc.def_send, sizeof(stcb->asoc.def_send)); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (s_info->sinfo_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); memcpy(s_info, &inp->def_send, sizeof(inp->def_send)); SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_sndrcvinfo); } break; } case SCTP_INITMSG: { struct sctp_initmsg *sinit; SCTP_CHECK_AND_CAST(sinit, optval, struct sctp_initmsg, *optsize); SCTP_INP_RLOCK(inp); sinit->sinit_num_ostreams = inp->sctp_ep.pre_open_stream_count; sinit->sinit_max_instreams = inp->sctp_ep.max_open_streams_intome; sinit->sinit_max_attempts = inp->sctp_ep.max_init_times; sinit->sinit_max_init_timeo = inp->sctp_ep.initial_init_rto_max; SCTP_INP_RUNLOCK(inp); *optsize = sizeof(struct sctp_initmsg); break; } case SCTP_PRIMARY_ADDR: /* we allow a "get" operation on this */ { struct sctp_setprim *ssp; SCTP_CHECK_AND_CAST(ssp, optval, struct sctp_setprim, *optsize); SCTP_FIND_STCB(inp, stcb, ssp->ssp_assoc_id); if (stcb) { union sctp_sockstore *addr; addr = &stcb->asoc.primary_destination->ro._l_addr; switch (addr->sa.sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { in6_sin_2_v4mapsin6(&addr->sin, (struct sockaddr_in6 *)&ssp->ssp_addr); } else { memcpy(&ssp->ssp_addr, &addr->sin, sizeof(struct sockaddr_in)); } #else memcpy(&ssp->ssp_addr, &addr->sin, sizeof(struct sockaddr_in)); #endif break; #endif #ifdef INET6 case AF_INET6: memcpy(&ssp->ssp_addr, &addr->sin6, sizeof(struct sockaddr_in6)); break; #endif default: break; } SCTP_TCB_UNLOCK(stcb); *optsize = sizeof(struct sctp_setprim); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } break; } case SCTP_HMAC_IDENT: { struct sctp_hmacalgo *shmac; sctp_hmaclist_t *hmaclist; uint32_t size; int i; SCTP_CHECK_AND_CAST(shmac, optval, struct sctp_hmacalgo, *optsize); SCTP_INP_RLOCK(inp); hmaclist = inp->sctp_ep.local_hmacs; if (hmaclist == NULL) { /* no HMACs to return */ *optsize = sizeof(*shmac); SCTP_INP_RUNLOCK(inp); break; } /* is there room for all of the hmac ids? */ size = sizeof(*shmac) + (hmaclist->num_algo * sizeof(shmac->shmac_idents[0])); if ((size_t)(*optsize) < size) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } /* copy in the list */ shmac->shmac_number_of_idents = hmaclist->num_algo; for (i = 0; i < hmaclist->num_algo; i++) { shmac->shmac_idents[i] = hmaclist->hmac[i]; } SCTP_INP_RUNLOCK(inp); *optsize = size; break; } case SCTP_AUTH_ACTIVE_KEY: { struct sctp_authkeyid *scact; SCTP_CHECK_AND_CAST(scact, optval, struct sctp_authkeyid, *optsize); SCTP_FIND_STCB(inp, stcb, scact->scact_assoc_id); if (stcb) { /* get the active key on the assoc */ scact->scact_keynumber = stcb->asoc.authinfo.active_keyid; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (scact->scact_assoc_id == SCTP_FUTURE_ASSOC)) { /* get the endpoint active key */ SCTP_INP_RLOCK(inp); scact->scact_keynumber = inp->sctp_ep.default_keyid; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_authkeyid); } break; } case SCTP_LOCAL_AUTH_CHUNKS: { struct sctp_authchunks *sac; sctp_auth_chklist_t *chklist = NULL; size_t size = 0; SCTP_CHECK_AND_CAST(sac, optval, struct sctp_authchunks, *optsize); SCTP_FIND_STCB(inp, stcb, sac->gauth_assoc_id); if (stcb) { /* get off the assoc */ chklist = stcb->asoc.local_auth_chunks; /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if (*optsize < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); } else { /* copy in the chunks */ (void)sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); sac->gauth_number_of_chunks = (uint32_t)size; *optsize = sizeof(struct sctp_authchunks) + size; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sac->gauth_assoc_id == SCTP_FUTURE_ASSOC)) { /* get off the endpoint */ SCTP_INP_RLOCK(inp); chklist = inp->sctp_ep.local_auth_chunks; /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if (*optsize < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); } else { /* copy in the chunks */ (void)sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); sac->gauth_number_of_chunks = (uint32_t)size; *optsize = sizeof(struct sctp_authchunks) + size; } SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_PEER_AUTH_CHUNKS: { struct sctp_authchunks *sac; sctp_auth_chklist_t *chklist = NULL; size_t size = 0; SCTP_CHECK_AND_CAST(sac, optval, struct sctp_authchunks, *optsize); SCTP_FIND_STCB(inp, stcb, sac->gauth_assoc_id); if (stcb) { /* get off the assoc */ chklist = stcb->asoc.peer_auth_chunks; /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if (*optsize < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); } else { /* copy in the chunks */ (void)sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); sac->gauth_number_of_chunks = (uint32_t)size; *optsize = sizeof(struct sctp_authchunks) + size; } SCTP_TCB_UNLOCK(stcb); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; } break; } case SCTP_EVENT: { struct sctp_event *event; uint32_t event_type; SCTP_CHECK_AND_CAST(event, optval, struct sctp_event, *optsize); SCTP_FIND_STCB(inp, stcb, event->se_assoc_id); switch (event->se_type) { case SCTP_ASSOC_CHANGE: event_type = SCTP_PCB_FLAGS_RECVASSOCEVNT; break; case SCTP_PEER_ADDR_CHANGE: event_type = SCTP_PCB_FLAGS_RECVPADDREVNT; break; case SCTP_REMOTE_ERROR: event_type = SCTP_PCB_FLAGS_RECVPEERERR; break; case SCTP_SEND_FAILED: event_type = SCTP_PCB_FLAGS_RECVSENDFAILEVNT; break; case SCTP_SHUTDOWN_EVENT: event_type = SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT; break; case SCTP_ADAPTATION_INDICATION: event_type = SCTP_PCB_FLAGS_ADAPTATIONEVNT; break; case SCTP_PARTIAL_DELIVERY_EVENT: event_type = SCTP_PCB_FLAGS_PDAPIEVNT; break; case SCTP_AUTHENTICATION_EVENT: event_type = SCTP_PCB_FLAGS_AUTHEVNT; break; case SCTP_STREAM_RESET_EVENT: event_type = SCTP_PCB_FLAGS_STREAM_RESETEVNT; break; case SCTP_SENDER_DRY_EVENT: event_type = SCTP_PCB_FLAGS_DRYEVNT; break; case SCTP_NOTIFICATIONS_STOPPED_EVENT: event_type = 0; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTSUP); error = ENOTSUP; break; case SCTP_ASSOC_RESET_EVENT: event_type = SCTP_PCB_FLAGS_ASSOC_RESETEVNT; break; case SCTP_STREAM_CHANGE_EVENT: event_type = SCTP_PCB_FLAGS_STREAM_CHANGEEVNT; break; case SCTP_SEND_FAILED_EVENT: event_type = SCTP_PCB_FLAGS_RECVNSENDFAILEVNT; break; default: event_type = 0; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (event_type > 0) { if (stcb) { event->se_on = sctp_stcb_is_feature_on(inp, stcb, event_type); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (event->se_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); event->se_on = sctp_is_feature_on(inp, event_type); SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } } if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } if (error == 0) { *optsize = sizeof(struct sctp_event); } break; } case SCTP_RECVRCVINFO: { int onoff; if (*optsize < sizeof(int)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { SCTP_INP_RLOCK(inp); onoff = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO); SCTP_INP_RUNLOCK(inp); } if (error == 0) { /* return the option value */ *(int *)optval = onoff; *optsize = sizeof(int); } break; } case SCTP_RECVNXTINFO: { int onoff; if (*optsize < sizeof(int)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { SCTP_INP_RLOCK(inp); onoff = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO); SCTP_INP_RUNLOCK(inp); } if (error == 0) { /* return the option value */ *(int *)optval = onoff; *optsize = sizeof(int); } break; } case SCTP_DEFAULT_SNDINFO: { struct sctp_sndinfo *info; SCTP_CHECK_AND_CAST(info, optval, struct sctp_sndinfo, *optsize); SCTP_FIND_STCB(inp, stcb, info->snd_assoc_id); if (stcb) { info->snd_sid = stcb->asoc.def_send.sinfo_stream; info->snd_flags = stcb->asoc.def_send.sinfo_flags; info->snd_flags &= 0xfff0; info->snd_ppid = stcb->asoc.def_send.sinfo_ppid; info->snd_context = stcb->asoc.def_send.sinfo_context; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (info->snd_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); info->snd_sid = inp->def_send.sinfo_stream; info->snd_flags = inp->def_send.sinfo_flags; info->snd_flags &= 0xfff0; info->snd_ppid = inp->def_send.sinfo_ppid; info->snd_context = inp->def_send.sinfo_context; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_sndinfo); } break; } case SCTP_DEFAULT_PRINFO: { struct sctp_default_prinfo *info; SCTP_CHECK_AND_CAST(info, optval, struct sctp_default_prinfo, *optsize); SCTP_FIND_STCB(inp, stcb, info->pr_assoc_id); if (stcb) { info->pr_policy = PR_SCTP_POLICY(stcb->asoc.def_send.sinfo_flags); info->pr_value = stcb->asoc.def_send.sinfo_timetolive; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (info->pr_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); info->pr_policy = PR_SCTP_POLICY(inp->def_send.sinfo_flags); info->pr_value = inp->def_send.sinfo_timetolive; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_default_prinfo); } break; } case SCTP_PEER_ADDR_THLDS: { struct sctp_paddrthlds *thlds; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(thlds, optval, struct sctp_paddrthlds, *optsize); SCTP_FIND_STCB(inp, stcb, thlds->spt_assoc_id); #if defined(INET) && defined(INET6) if (thlds->spt_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&thlds->spt_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&thlds->spt_address; } } else { addr = (struct sockaddr *)&thlds->spt_address; } #else addr = (struct sockaddr *)&thlds->spt_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } + if (stcb != NULL) { if (net != NULL) { thlds->spt_pathmaxrxt = net->failure_threshold; thlds->spt_pathpfthld = net->pf_threshold; thlds->spt_pathcpthld = 0xffff; } else { thlds->spt_pathmaxrxt = stcb->asoc.def_net_failure; thlds->spt_pathpfthld = stcb->asoc.def_net_pf_threshold; thlds->spt_pathcpthld = 0xffff; } thlds->spt_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (thlds->spt_assoc_id == SCTP_FUTURE_ASSOC)) { /* Use endpoint defaults */ SCTP_INP_RLOCK(inp); thlds->spt_pathmaxrxt = inp->sctp_ep.def_net_failure; thlds->spt_pathpfthld = inp->sctp_ep.def_net_pf_threshold; thlds->spt_pathcpthld = 0xffff; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_paddrthlds); } break; } case SCTP_REMOTE_UDP_ENCAPS_PORT: { struct sctp_udpencaps *encaps; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(encaps, optval, struct sctp_udpencaps, *optsize); SCTP_FIND_STCB(inp, stcb, encaps->sue_assoc_id); #if defined(INET) && defined(INET6) if (encaps->sue_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&encaps->sue_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&encaps->sue_address; } } else { addr = (struct sockaddr *)&encaps->sue_address; } #else addr = (struct sockaddr *)&encaps->sue_address; #endif if (stcb) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } + if (stcb != NULL) { if (net) { encaps->sue_port = net->port; } else { encaps->sue_port = stcb->asoc.port; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (encaps->sue_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); encaps->sue_port = inp->sctp_ep.port; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_udpencaps); } break; } case SCTP_ECN_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.ecn_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->ecn_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_PR_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.prsctp_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->prsctp_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_AUTH_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.auth_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->auth_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_ASCONF_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.asconf_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->asconf_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_RECONFIG_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.reconfig_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->reconfig_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_NRSACK_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.nrsack_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->nrsack_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_PKTDROP_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.pktdrop_supported; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->pktdrop_supported; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_ENABLE_STREAM_RESET: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = (uint32_t)stcb->asoc.local_strreset_support; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = (uint32_t)inp->local_strreset_support; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } case SCTP_PR_STREAM_STATUS: { struct sctp_prstatus *sprstat; uint16_t sid; uint16_t policy; SCTP_CHECK_AND_CAST(sprstat, optval, struct sctp_prstatus, *optsize); SCTP_FIND_STCB(inp, stcb, sprstat->sprstat_assoc_id); sid = sprstat->sprstat_sid; policy = sprstat->sprstat_policy; #if defined(SCTP_DETAILED_STR_STATS) if ((stcb != NULL) && (sid < stcb->asoc.streamoutcnt) && (policy != SCTP_PR_SCTP_NONE) && ((policy <= SCTP_PR_SCTP_MAX) || (policy == SCTP_PR_SCTP_ALL))) { if (policy == SCTP_PR_SCTP_ALL) { sprstat->sprstat_abandoned_unsent = stcb->asoc.strmout[sid].abandoned_unsent[0]; sprstat->sprstat_abandoned_sent = stcb->asoc.strmout[sid].abandoned_sent[0]; } else { sprstat->sprstat_abandoned_unsent = stcb->asoc.strmout[sid].abandoned_unsent[policy]; sprstat->sprstat_abandoned_sent = stcb->asoc.strmout[sid].abandoned_sent[policy]; } #else if ((stcb != NULL) && (sid < stcb->asoc.streamoutcnt) && (policy == SCTP_PR_SCTP_ALL)) { sprstat->sprstat_abandoned_unsent = stcb->asoc.strmout[sid].abandoned_unsent[0]; sprstat->sprstat_abandoned_sent = stcb->asoc.strmout[sid].abandoned_sent[0]; #endif } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } if (error == 0) { *optsize = sizeof(struct sctp_prstatus); } break; } case SCTP_PR_ASSOC_STATUS: { struct sctp_prstatus *sprstat; uint16_t policy; SCTP_CHECK_AND_CAST(sprstat, optval, struct sctp_prstatus, *optsize); SCTP_FIND_STCB(inp, stcb, sprstat->sprstat_assoc_id); policy = sprstat->sprstat_policy; if ((stcb != NULL) && (policy != SCTP_PR_SCTP_NONE) && ((policy <= SCTP_PR_SCTP_MAX) || (policy == SCTP_PR_SCTP_ALL))) { if (policy == SCTP_PR_SCTP_ALL) { sprstat->sprstat_abandoned_unsent = stcb->asoc.abandoned_unsent[0]; sprstat->sprstat_abandoned_sent = stcb->asoc.abandoned_sent[0]; } else { sprstat->sprstat_abandoned_unsent = stcb->asoc.abandoned_unsent[policy]; sprstat->sprstat_abandoned_sent = stcb->asoc.abandoned_sent[policy]; } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } if (error == 0) { *optsize = sizeof(struct sctp_prstatus); } break; } case SCTP_MAX_CWND: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { av->assoc_value = stcb->asoc.max_cwnd; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_RLOCK(inp); av->assoc_value = inp->max_cwnd; SCTP_INP_RUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } if (error == 0) { *optsize = sizeof(struct sctp_assoc_value); } break; } default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOPROTOOPT); error = ENOPROTOOPT; break; } /* end switch (sopt->sopt_name) */ if (error) { *optsize = 0; } return (error); } static int sctp_setopt(struct socket *so, int optname, void *optval, size_t optsize, void *p) { int error, set_opt; uint32_t *mopt; struct sctp_tcb *stcb = NULL; struct sctp_inpcb *inp = NULL; uint32_t vrf_id; if (optval == NULL) { SCTP_PRINTF("optval is NULL\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_PRINTF("inp is NULL?\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } vrf_id = inp->def_vrf_id; error = 0; switch (optname) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_AUTO_ASCONF: case SCTP_EXPLICIT_EOR: case SCTP_DISABLE_FRAGMENTS: case SCTP_USE_EXT_RCVINFO: case SCTP_I_WANT_MAPPED_V4_ADDR: /* copy in the option value */ SCTP_CHECK_AND_CAST(mopt, optval, uint32_t, optsize); set_opt = 0; if (error) break; switch (optname) { case SCTP_DISABLE_FRAGMENTS: set_opt = SCTP_PCB_FLAGS_NO_FRAGMENT; break; case SCTP_AUTO_ASCONF: /* * NOTE: we don't really support this flag */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* only valid for bound all sockets */ if ((SCTP_BASE_SYSCTL(sctp_auto_asconf) == 0) && (*mopt != 0)) { /* forbidden by admin */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EPERM); return (EPERM); } set_opt = SCTP_PCB_FLAGS_AUTO_ASCONF; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } break; case SCTP_EXPLICIT_EOR: set_opt = SCTP_PCB_FLAGS_EXPLICIT_EOR; break; case SCTP_USE_EXT_RCVINFO: set_opt = SCTP_PCB_FLAGS_EXT_RCVINFO; break; case SCTP_I_WANT_MAPPED_V4_ADDR: if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { set_opt = SCTP_PCB_FLAGS_NEEDS_MAPPED_V4; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } break; case SCTP_NODELAY: set_opt = SCTP_PCB_FLAGS_NODELAY; break; case SCTP_AUTOCLOSE: if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } set_opt = SCTP_PCB_FLAGS_AUTOCLOSE; /* * The value is in ticks. Note this does not effect * old associations, only new ones. */ inp->sctp_ep.auto_close_time = SEC_TO_TICKS(*mopt); break; } SCTP_INP_WLOCK(inp); if (*mopt != 0) { sctp_feature_on(inp, set_opt); } else { sctp_feature_off(inp, set_opt); } SCTP_INP_WUNLOCK(inp); break; case SCTP_REUSE_PORT: { SCTP_CHECK_AND_CAST(mopt, optval, uint32_t, optsize); if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) { /* Can't set it after we are bound */ error = EINVAL; break; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE)) { /* Can't do this for a 1-m socket */ error = EINVAL; break; } if (optval) sctp_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE); else sctp_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE); break; } case SCTP_PARTIAL_DELIVERY_POINT: { uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, optsize); if (*value > SCTP_SB_LIMIT_RCV(so)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } inp->partial_delivery_point = *value; break; } case SCTP_FRAGMENT_INTERLEAVE: /* not yet until we re-write sctp_recvmsg() */ { uint32_t *level; SCTP_CHECK_AND_CAST(level, optval, uint32_t, optsize); if (*level == SCTP_FRAG_LEVEL_2) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (*level == SCTP_FRAG_LEVEL_1) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (*level == SCTP_FRAG_LEVEL_0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } break; } case SCTP_INTERLEAVING_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->idata_supported = 0; } else { if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS))) { inp->idata_supported = 1; } else { /* * Must have Frag * interleave and * stream interleave * on */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_CMT_ON_OFF: if (SCTP_BASE_SYSCTL(sctp_cmt_on_off)) { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); if (av->assoc_value > SCTP_CMT_MAX) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.sctp_cmt_on_off = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_cmt_on_off = av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.sctp_cmt_on_off = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOPROTOOPT); error = ENOPROTOOPT; } break; case SCTP_PLUGGABLE_CC: { struct sctp_assoc_value *av; struct sctp_nets *net; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); if ((av->assoc_value != SCTP_CC_RFC2581) && (av->assoc_value != SCTP_CC_HSTCP) && (av->assoc_value != SCTP_CC_HTCP) && (av->assoc_value != SCTP_CC_RTCC)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.cc_functions = sctp_cc_functions[av->assoc_value]; stcb->asoc.congestion_control_module = av->assoc_value; if (stcb->asoc.cc_functions.sctp_set_initial_cc_param != NULL) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); } } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_ep.sctp_default_cc_module = av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.cc_functions = sctp_cc_functions[av->assoc_value]; stcb->asoc.congestion_control_module = av->assoc_value; if (stcb->asoc.cc_functions.sctp_set_initial_cc_param != NULL) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); } } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_CC_OPTION: { struct sctp_cc_option *cc_opt; SCTP_CHECK_AND_CAST(cc_opt, optval, struct sctp_cc_option, optsize); SCTP_FIND_STCB(inp, stcb, cc_opt->aid_value.assoc_id); if (stcb == NULL) { if (cc_opt->aid_value.assoc_id == SCTP_CURRENT_ASSOC) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (stcb->asoc.cc_functions.sctp_cwnd_socket_option) { (*stcb->asoc.cc_functions.sctp_cwnd_socket_option) (stcb, 1, cc_opt); } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else { error = EINVAL; } } else { if (stcb->asoc.cc_functions.sctp_cwnd_socket_option == NULL) { error = ENOTSUP; } else { error = (*stcb->asoc.cc_functions.sctp_cwnd_socket_option) (stcb, 1, cc_opt); } SCTP_TCB_UNLOCK(stcb); } break; } case SCTP_PLUGGABLE_SS: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); if ((av->assoc_value != SCTP_SS_DEFAULT) && (av->assoc_value != SCTP_SS_ROUND_ROBIN) && (av->assoc_value != SCTP_SS_ROUND_ROBIN_PACKET) && (av->assoc_value != SCTP_SS_PRIORITY) && (av->assoc_value != SCTP_SS_FAIR_BANDWITH) && (av->assoc_value != SCTP_SS_FIRST_COME)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.ss_functions.sctp_ss_clear(stcb, &stcb->asoc, 1, 1); stcb->asoc.ss_functions = sctp_ss_functions[av->assoc_value]; stcb->asoc.stream_scheduling_module = av->assoc_value; stcb->asoc.ss_functions.sctp_ss_init(stcb, &stcb->asoc, 1); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_ep.sctp_default_ss_module = av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.ss_functions.sctp_ss_clear(stcb, &stcb->asoc, 1, 1); stcb->asoc.ss_functions = sctp_ss_functions[av->assoc_value]; stcb->asoc.stream_scheduling_module = av->assoc_value; stcb->asoc.ss_functions.sctp_ss_init(stcb, &stcb->asoc, 1); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_SS_VALUE: { struct sctp_stream_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_stream_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { if ((av->stream_id >= stcb->asoc.streamoutcnt) || (stcb->asoc.ss_functions.sctp_ss_set_value(stcb, &stcb->asoc, &stcb->asoc.strmout[av->stream_id], av->stream_value) < 0)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if (av->assoc_id == SCTP_CURRENT_ASSOC) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (av->stream_id < stcb->asoc.streamoutcnt) { stcb->asoc.ss_functions.sctp_ss_set_value(stcb, &stcb->asoc, &stcb->asoc.strmout[av->stream_id], av->stream_value); } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else { /* * Can't set stream value without * association */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_CLR_STAT_LOG: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; break; case SCTP_CONTEXT: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.context = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_context = av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.context = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_VRF_ID: { uint32_t *default_vrfid; SCTP_CHECK_AND_CAST(default_vrfid, optval, uint32_t, optsize); if (*default_vrfid > SCTP_MAX_VRF_ID) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } inp->def_vrf_id = *default_vrfid; break; } case SCTP_DEL_VRF_ID: { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; break; } case SCTP_ADD_VRF_ID: { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; break; } case SCTP_DELAYED_SACK: { struct sctp_sack_info *sack; SCTP_CHECK_AND_CAST(sack, optval, struct sctp_sack_info, optsize); SCTP_FIND_STCB(inp, stcb, sack->sack_assoc_id); if (sack->sack_delay) { if (sack->sack_delay > SCTP_MAX_SACK_DELAY) sack->sack_delay = SCTP_MAX_SACK_DELAY; if (MSEC_TO_TICKS(sack->sack_delay) < 1) { sack->sack_delay = TICKS_TO_MSEC(1); } } if (stcb) { if (sack->sack_delay) { stcb->asoc.delayed_ack = sack->sack_delay; } if (sack->sack_freq) { stcb->asoc.sack_freq = sack->sack_freq; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sack->sack_assoc_id == SCTP_FUTURE_ASSOC) || (sack->sack_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); if (sack->sack_delay) { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(sack->sack_delay); } if (sack->sack_freq) { inp->sctp_ep.sctp_sack_freq = sack->sack_freq; } SCTP_INP_WUNLOCK(inp); } if ((sack->sack_assoc_id == SCTP_CURRENT_ASSOC) || (sack->sack_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (sack->sack_delay) { stcb->asoc.delayed_ack = sack->sack_delay; } if (sack->sack_freq) { stcb->asoc.sack_freq = sack->sack_freq; } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_AUTH_CHUNK: { struct sctp_authchunk *sauth; SCTP_CHECK_AND_CAST(sauth, optval, struct sctp_authchunk, optsize); SCTP_INP_WLOCK(inp); if (sctp_auth_add_chunk(sauth->sauth_chunk, inp->sctp_ep.local_auth_chunks)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { inp->auth_supported = 1; } SCTP_INP_WUNLOCK(inp); break; } case SCTP_AUTH_KEY: { struct sctp_authkey *sca; struct sctp_keyhead *shared_keys; sctp_sharedkey_t *shared_key; sctp_key_t *key = NULL; size_t size; SCTP_CHECK_AND_CAST(sca, optval, struct sctp_authkey, optsize); if (sca->sca_keylength == 0) { size = optsize - sizeof(struct sctp_authkey); } else { if (sca->sca_keylength + sizeof(struct sctp_authkey) <= optsize) { size = sca->sca_keylength; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } } SCTP_FIND_STCB(inp, stcb, sca->sca_assoc_id); if (stcb) { shared_keys = &stcb->asoc.shared_keys; /* clear the cached keys for this key id */ sctp_clear_cachedkeys(stcb, sca->sca_keynumber); /* * create the new shared key and * insert/replace it */ if (size > 0) { key = sctp_set_key(sca->sca_key, (uint32_t)size); if (key == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; SCTP_TCB_UNLOCK(stcb); break; } } shared_key = sctp_alloc_sharedkey(); if (shared_key == NULL) { sctp_free_key(key); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; SCTP_TCB_UNLOCK(stcb); break; } shared_key->key = key; shared_key->keyid = sca->sca_keynumber; error = sctp_insert_sharedkey(shared_keys, shared_key); SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sca->sca_assoc_id == SCTP_FUTURE_ASSOC) || (sca->sca_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); shared_keys = &inp->sctp_ep.shared_keys; /* * clear the cached keys on all * assocs for this key id */ sctp_clear_cachedkeys_ep(inp, sca->sca_keynumber); /* * create the new shared key and * insert/replace it */ if (size > 0) { key = sctp_set_key(sca->sca_key, (uint32_t)size); if (key == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; SCTP_INP_WUNLOCK(inp); break; } } shared_key = sctp_alloc_sharedkey(); if (shared_key == NULL) { sctp_free_key(key); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; SCTP_INP_WUNLOCK(inp); break; } shared_key->key = key; shared_key->keyid = sca->sca_keynumber; error = sctp_insert_sharedkey(shared_keys, shared_key); SCTP_INP_WUNLOCK(inp); } if ((sca->sca_assoc_id == SCTP_CURRENT_ASSOC) || (sca->sca_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); shared_keys = &stcb->asoc.shared_keys; /* * clear the cached keys for * this key id */ sctp_clear_cachedkeys(stcb, sca->sca_keynumber); /* * create the new shared key * and insert/replace it */ if (size > 0) { key = sctp_set_key(sca->sca_key, (uint32_t)size); if (key == NULL) { SCTP_TCB_UNLOCK(stcb); continue; } } shared_key = sctp_alloc_sharedkey(); if (shared_key == NULL) { sctp_free_key(key); SCTP_TCB_UNLOCK(stcb); continue; } shared_key->key = key; shared_key->keyid = sca->sca_keynumber; error = sctp_insert_sharedkey(shared_keys, shared_key); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_HMAC_IDENT: { struct sctp_hmacalgo *shmac; sctp_hmaclist_t *hmaclist; uint16_t hmacid; uint32_t i; SCTP_CHECK_AND_CAST(shmac, optval, struct sctp_hmacalgo, optsize); if ((optsize < sizeof(struct sctp_hmacalgo) + shmac->shmac_number_of_idents * sizeof(uint16_t)) || (shmac->shmac_number_of_idents > 0xffff)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } + hmaclist = sctp_alloc_hmaclist((uint16_t)shmac->shmac_number_of_idents); if (hmaclist == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; break; } for (i = 0; i < shmac->shmac_number_of_idents; i++) { hmacid = shmac->shmac_idents[i]; if (sctp_auth_add_hmacid(hmaclist, hmacid)) { /* invalid HMACs were found */ ; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; sctp_free_hmaclist(hmaclist); goto sctp_set_hmac_done; } } for (i = 0; i < hmaclist->num_algo; i++) { if (hmaclist->hmac[i] == SCTP_AUTH_HMAC_ID_SHA1) { /* already in list */ break; } } if (i == hmaclist->num_algo) { /* not found in list */ sctp_free_hmaclist(hmaclist); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } /* set it on the endpoint */ SCTP_INP_WLOCK(inp); if (inp->sctp_ep.local_hmacs) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); inp->sctp_ep.local_hmacs = hmaclist; SCTP_INP_WUNLOCK(inp); sctp_set_hmac_done: break; } case SCTP_AUTH_ACTIVE_KEY: { struct sctp_authkeyid *scact; SCTP_CHECK_AND_CAST(scact, optval, struct sctp_authkeyid, optsize); SCTP_FIND_STCB(inp, stcb, scact->scact_assoc_id); /* set the active key on the right place */ if (stcb) { /* set the active key on the assoc */ if (sctp_auth_setactivekey(stcb, scact->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (scact->scact_assoc_id == SCTP_FUTURE_ASSOC) || (scact->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); if (sctp_auth_setactivekey_ep(inp, scact->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_INP_WUNLOCK(inp); } if ((scact->scact_assoc_id == SCTP_CURRENT_ASSOC) || (scact->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); sctp_auth_setactivekey(stcb, scact->scact_keynumber); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_AUTH_DELETE_KEY: { struct sctp_authkeyid *scdel; SCTP_CHECK_AND_CAST(scdel, optval, struct sctp_authkeyid, optsize); SCTP_FIND_STCB(inp, stcb, scdel->scact_assoc_id); /* delete the key from the right place */ if (stcb) { if (sctp_delete_sharedkey(stcb, scdel->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (scdel->scact_assoc_id == SCTP_FUTURE_ASSOC) || (scdel->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); if (sctp_delete_sharedkey_ep(inp, scdel->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_INP_WUNLOCK(inp); } if ((scdel->scact_assoc_id == SCTP_CURRENT_ASSOC) || (scdel->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); sctp_delete_sharedkey(stcb, scdel->scact_keynumber); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_AUTH_DEACTIVATE_KEY: { struct sctp_authkeyid *keyid; SCTP_CHECK_AND_CAST(keyid, optval, struct sctp_authkeyid, optsize); SCTP_FIND_STCB(inp, stcb, keyid->scact_assoc_id); /* deactivate the key from the right place */ if (stcb) { if (sctp_deact_sharedkey(stcb, keyid->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (keyid->scact_assoc_id == SCTP_FUTURE_ASSOC) || (keyid->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); if (sctp_deact_sharedkey_ep(inp, keyid->scact_keynumber)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_INP_WUNLOCK(inp); } if ((keyid->scact_assoc_id == SCTP_CURRENT_ASSOC) || (keyid->scact_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); sctp_deact_sharedkey(stcb, keyid->scact_keynumber); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_ENABLE_STREAM_RESET: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); if (av->assoc_value & (~SCTP_ENABLE_VALUE_MASK)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.local_strreset_support = (uint8_t)av->assoc_value; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->local_strreset_support = (uint8_t)av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.local_strreset_support = (uint8_t)av->assoc_value; SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } + } break; } case SCTP_RESET_STREAMS: { struct sctp_reset_streams *strrst; int i, send_out = 0; int send_in = 0; SCTP_CHECK_AND_CAST(strrst, optval, struct sctp_reset_streams, optsize); SCTP_FIND_STCB(inp, stcb, strrst->srs_assoc_id); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; break; } if (stcb->asoc.reconfig_supported == 0) { /* * Peer does not support the chunk type. */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; SCTP_TCB_UNLOCK(stcb); break; } if (sizeof(struct sctp_reset_streams) + strrst->srs_number_streams * sizeof(uint16_t) > optsize) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } if (strrst->srs_flags & SCTP_STREAM_RESET_INCOMING) { send_in = 1; if (stcb->asoc.stream_reset_outstanding) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; SCTP_TCB_UNLOCK(stcb); break; } } if (strrst->srs_flags & SCTP_STREAM_RESET_OUTGOING) { send_out = 1; } if ((strrst->srs_number_streams > SCTP_MAX_STREAMS_AT_ONCE_RESET) && send_in) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOMEM); error = ENOMEM; SCTP_TCB_UNLOCK(stcb); break; } if ((send_in == 0) && (send_out == 0)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } for (i = 0; i < strrst->srs_number_streams; i++) { if ((send_in) && (strrst->srs_stream_list[i] > stcb->asoc.streamincnt)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if ((send_out) && (strrst->srs_stream_list[i] > stcb->asoc.streamoutcnt)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } } if (error) { SCTP_TCB_UNLOCK(stcb); break; } if (send_out) { int cnt; uint16_t strm; if (strrst->srs_number_streams) { for (i = 0, cnt = 0; i < strrst->srs_number_streams; i++) { strm = strrst->srs_stream_list[i]; if (stcb->asoc.strmout[strm].state == SCTP_STREAM_OPEN) { stcb->asoc.strmout[strm].state = SCTP_STREAM_RESET_PENDING; cnt++; } } } else { /* Its all */ for (i = 0, cnt = 0; i < stcb->asoc.streamoutcnt; i++) { if (stcb->asoc.strmout[i].state == SCTP_STREAM_OPEN) { stcb->asoc.strmout[i].state = SCTP_STREAM_RESET_PENDING; cnt++; } } } } if (send_in) { error = sctp_send_str_reset_req(stcb, strrst->srs_number_streams, strrst->srs_stream_list, send_in, 0, 0, 0, 0, 0); } else { error = sctp_send_stream_reset_out_if_possible(stcb, SCTP_SO_LOCKED); } if (error == 0) { sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_REQ, SCTP_SO_LOCKED); } else { /* * For outgoing streams don't report any * problems in sending the request to the * application. XXX: Double check resetting * incoming streams. */ error = 0; } SCTP_TCB_UNLOCK(stcb); break; } case SCTP_ADD_STREAMS: { struct sctp_add_streams *stradd; uint8_t addstream = 0; uint16_t add_o_strmcnt = 0; uint16_t add_i_strmcnt = 0; SCTP_CHECK_AND_CAST(stradd, optval, struct sctp_add_streams, optsize); SCTP_FIND_STCB(inp, stcb, stradd->sas_assoc_id); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; break; } if (stcb->asoc.reconfig_supported == 0) { /* * Peer does not support the chunk type. */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; SCTP_TCB_UNLOCK(stcb); break; } if (stcb->asoc.stream_reset_outstanding) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; SCTP_TCB_UNLOCK(stcb); break; } if ((stradd->sas_outstrms == 0) && (stradd->sas_instrms == 0)) { error = EINVAL; goto skip_stuff; } if (stradd->sas_outstrms) { addstream = 1; /* We allocate here */ add_o_strmcnt = stradd->sas_outstrms; if ((((int)add_o_strmcnt) + ((int)stcb->asoc.streamoutcnt)) > 0x0000ffff) { /* You can't have more than 64k */ error = EINVAL; goto skip_stuff; } } if (stradd->sas_instrms) { int cnt; addstream |= 2; /* * We allocate inside * sctp_send_str_reset_req() */ add_i_strmcnt = stradd->sas_instrms; cnt = add_i_strmcnt; cnt += stcb->asoc.streamincnt; if (cnt > 0x0000ffff) { /* You can't have more than 64k */ error = EINVAL; goto skip_stuff; } if (cnt > (int)stcb->asoc.max_inbound_streams) { /* More than you are allowed */ error = EINVAL; goto skip_stuff; } } error = sctp_send_str_reset_req(stcb, 0, NULL, 0, 0, addstream, add_o_strmcnt, add_i_strmcnt, 0); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_REQ, SCTP_SO_LOCKED); skip_stuff: SCTP_TCB_UNLOCK(stcb); break; } case SCTP_RESET_ASSOC: { int i; uint32_t *value; SCTP_CHECK_AND_CAST(value, optval, uint32_t, optsize); SCTP_FIND_STCB(inp, stcb, (sctp_assoc_t)*value); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; break; } if (stcb->asoc.reconfig_supported == 0) { /* * Peer does not support the chunk type. */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); error = EOPNOTSUPP; SCTP_TCB_UNLOCK(stcb); break; } if (stcb->asoc.stream_reset_outstanding) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; SCTP_TCB_UNLOCK(stcb); break; } /* * Is there any data pending in the send or sent * queues? */ if (!TAILQ_EMPTY(&stcb->asoc.send_queue) || !TAILQ_EMPTY(&stcb->asoc.sent_queue)) { busy_out: error = EBUSY; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); SCTP_TCB_UNLOCK(stcb); break; } /* Do any streams have data queued? */ for (i = 0; i < stcb->asoc.streamoutcnt; i++) { if (!TAILQ_EMPTY(&stcb->asoc.strmout[i].outqueue)) { goto busy_out; } } error = sctp_send_str_reset_req(stcb, 0, NULL, 0, 1, 0, 0, 0, 0); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_REQ, SCTP_SO_LOCKED); SCTP_TCB_UNLOCK(stcb); break; } case SCTP_CONNECT_X: if (optsize < (sizeof(int) + sizeof(struct sockaddr_in))) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } error = sctp_do_connect_x(so, inp, optval, optsize, p, 0); break; case SCTP_CONNECT_X_DELAYED: if (optsize < (sizeof(int) + sizeof(struct sockaddr_in))) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } error = sctp_do_connect_x(so, inp, optval, optsize, p, 1); break; case SCTP_CONNECT_X_COMPLETE: { struct sockaddr *sa; /* FIXME MT: check correct? */ SCTP_CHECK_AND_CAST(sa, optval, struct sockaddr, optsize); /* find tcb */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); error = ENOENT; break; } if (stcb->asoc.delayed_connection == 1) { stcb->asoc.delayed_connection = 0; (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_8); sctp_send_initiate(inp, stcb, SCTP_SO_LOCKED); } else { /* * already expired or did not use delayed * connectx */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; } SCTP_TCB_UNLOCK(stcb); break; } case SCTP_MAX_BURST: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.max_burst = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_ep.max_burst = av->assoc_value; SCTP_INP_WUNLOCK(inp); } if ((av->assoc_id == SCTP_CURRENT_ASSOC) || (av->assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.max_burst = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_MAXSEG: { struct sctp_assoc_value *av; int ovh; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } if (stcb) { if (av->assoc_value) { stcb->asoc.sctp_frag_point = (av->assoc_value + ovh); } else { stcb->asoc.sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); /* * FIXME MT: I think this is not in * tune with the API ID */ if (av->assoc_value) { inp->sctp_frag_point = (av->assoc_value + ovh); } else { inp->sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_EVENTS: { struct sctp_event_subscribe *events; SCTP_CHECK_AND_CAST(events, optval, struct sctp_event_subscribe, optsize); SCTP_INP_WLOCK(inp); if (events->sctp_data_io_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT); } if (events->sctp_association_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT); } if (events->sctp_address_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPADDREVNT); } if (events->sctp_send_failure_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } if (events->sctp_peer_error_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPEERERR); } if (events->sctp_shutdown_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } if (events->sctp_partial_delivery_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_PDAPIEVNT); } if (events->sctp_adaptation_layer_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } if (events->sctp_authentication_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTHEVNT); } if (events->sctp_sender_dry_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_DRYEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_DRYEVNT); } if (events->sctp_stream_reset_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } SCTP_INP_WUNLOCK(inp); SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (events->sctp_association_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVASSOCEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_RECVASSOCEVNT); } if (events->sctp_address_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVPADDREVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_RECVPADDREVNT); } if (events->sctp_send_failure_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } if (events->sctp_peer_error_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVPEERERR); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_RECVPEERERR); } if (events->sctp_shutdown_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } if (events->sctp_partial_delivery_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_PDAPIEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_PDAPIEVNT); } if (events->sctp_adaptation_layer_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } if (events->sctp_authentication_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_AUTHEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_AUTHEVNT); } if (events->sctp_sender_dry_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_DRYEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_DRYEVNT); } if (events->sctp_stream_reset_event) { sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } else { sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } SCTP_TCB_UNLOCK(stcb); } /* * Send up the sender dry event only for 1-to-1 * style sockets. */ if (events->sctp_sender_dry_event) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); if (TAILQ_EMPTY(&stcb->asoc.send_queue) && TAILQ_EMPTY(&stcb->asoc.sent_queue) && (stcb->asoc.stream_queue_cnt == 0)) { sctp_ulp_notify(SCTP_NOTIFY_SENDER_DRY, stcb, 0, NULL, SCTP_SO_LOCKED); } SCTP_TCB_UNLOCK(stcb); } } } SCTP_INP_RUNLOCK(inp); break; } case SCTP_ADAPTATION_LAYER: { struct sctp_setadaptation *adap_bits; SCTP_CHECK_AND_CAST(adap_bits, optval, struct sctp_setadaptation, optsize); SCTP_INP_WLOCK(inp); inp->sctp_ep.adaptation_layer_indicator = adap_bits->ssb_adaptation_ind; inp->sctp_ep.adaptation_layer_indicator_provided = 1; SCTP_INP_WUNLOCK(inp); break; } #ifdef SCTP_DEBUG case SCTP_SET_INITIAL_DBG_SEQ: { uint32_t *vvv; SCTP_CHECK_AND_CAST(vvv, optval, uint32_t, optsize); SCTP_INP_WLOCK(inp); inp->sctp_ep.initial_sequence_debug = *vvv; SCTP_INP_WUNLOCK(inp); break; } #endif case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; SCTP_CHECK_AND_CAST(s_info, optval, struct sctp_sndrcvinfo, optsize); SCTP_FIND_STCB(inp, stcb, s_info->sinfo_assoc_id); if (stcb) { if (s_info->sinfo_stream < stcb->asoc.streamoutcnt) { memcpy(&stcb->asoc.def_send, s_info, min(optsize, sizeof(stcb->asoc.def_send))); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (s_info->sinfo_assoc_id == SCTP_FUTURE_ASSOC) || (s_info->sinfo_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); memcpy(&inp->def_send, s_info, min(optsize, sizeof(inp->def_send))); SCTP_INP_WUNLOCK(inp); } if ((s_info->sinfo_assoc_id == SCTP_CURRENT_ASSOC) || (s_info->sinfo_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (s_info->sinfo_stream < stcb->asoc.streamoutcnt) { memcpy(&stcb->asoc.def_send, s_info, min(optsize, sizeof(stcb->asoc.def_send))); } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_PEER_ADDR_PARAMS: { struct sctp_paddrparams *paddrp; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(paddrp, optval, struct sctp_paddrparams, optsize); SCTP_FIND_STCB(inp, stcb, paddrp->spp_assoc_id); #if defined(INET) && defined(INET6) if (paddrp->spp_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&paddrp->spp_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&paddrp->spp_address; } } else { addr = (struct sockaddr *)&paddrp->spp_address; } #else addr = (struct sockaddr *)&paddrp->spp_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } /* sanity checks */ if ((paddrp->spp_flags & SPP_HB_ENABLE) && (paddrp->spp_flags & SPP_HB_DISABLE)) { if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } + if ((paddrp->spp_flags & SPP_PMTUD_ENABLE) && (paddrp->spp_flags & SPP_PMTUD_DISABLE)) { if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } + if (stcb != NULL) { /************************TCB SPECIFIC SET ******************/ if (net != NULL) { /************************NET SPECIFIC SET ******************/ if (paddrp->spp_flags & SPP_HB_DISABLE) { if (!(net->dest_state & SCTP_ADDR_UNCONFIRMED) && !(net->dest_state & SCTP_ADDR_NOHB)) { sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_9); } net->dest_state |= SCTP_ADDR_NOHB; } if (paddrp->spp_flags & SPP_HB_ENABLE) { if (paddrp->spp_hbinterval) { net->heart_beat_delay = paddrp->spp_hbinterval; } else if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) { net->heart_beat_delay = 0; } sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_10); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); net->dest_state &= ~SCTP_ADDR_NOHB; } if (paddrp->spp_flags & SPP_HB_DEMAND) { /* on demand HB */ sctp_send_hb(stcb, net, SCTP_SO_LOCKED); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SOCKOPT, SCTP_SO_LOCKED); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } if ((paddrp->spp_flags & SPP_PMTUD_DISABLE) && (paddrp->spp_pathmtu >= SCTP_SMALLEST_PMTU)) { if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_11); } net->dest_state |= SCTP_ADDR_NO_PMTUD; net->mtu = paddrp->spp_pathmtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } if (net->mtu < stcb->asoc.smallest_mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } } if (paddrp->spp_flags & SPP_PMTUD_ENABLE) { if (!SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } net->dest_state &= ~SCTP_ADDR_NO_PMTUD; } if (paddrp->spp_pathmaxrxt) { if (net->dest_state & SCTP_ADDR_PF) { if (net->error_count > paddrp->spp_pathmaxrxt) { net->dest_state &= ~SCTP_ADDR_PF; } } else { if ((net->error_count <= paddrp->spp_pathmaxrxt) && (net->error_count > net->pf_threshold)) { net->dest_state |= SCTP_ADDR_PF; sctp_send_hb(stcb, net, SCTP_SO_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_12); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); } } if (net->dest_state & SCTP_ADDR_REACHABLE) { if (net->error_count > paddrp->spp_pathmaxrxt) { net->dest_state &= ~SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, net, SCTP_SO_LOCKED); } } else { if (net->error_count <= paddrp->spp_pathmaxrxt) { net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, net, SCTP_SO_LOCKED); } } net->failure_threshold = paddrp->spp_pathmaxrxt; } if (paddrp->spp_flags & SPP_DSCP) { net->dscp = paddrp->spp_dscp & 0xfc; net->dscp |= 0x01; } #ifdef INET6 if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) { if (net->ro._l_addr.sa.sa_family == AF_INET6) { net->flowlabel = paddrp->spp_ipv6_flowlabel & 0x000fffff; net->flowlabel |= 0x80000000; } } #endif } else { /************************ASSOC ONLY -- NO NET SPECIFIC SET ******************/ if (paddrp->spp_pathmaxrxt != 0) { stcb->asoc.def_net_failure = paddrp->spp_pathmaxrxt; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->dest_state & SCTP_ADDR_PF) { if (net->error_count > paddrp->spp_pathmaxrxt) { net->dest_state &= ~SCTP_ADDR_PF; } } else { if ((net->error_count <= paddrp->spp_pathmaxrxt) && (net->error_count > net->pf_threshold)) { net->dest_state |= SCTP_ADDR_PF; sctp_send_hb(stcb, net, SCTP_SO_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_13); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); } } if (net->dest_state & SCTP_ADDR_REACHABLE) { if (net->error_count > paddrp->spp_pathmaxrxt) { net->dest_state &= ~SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, net, SCTP_SO_LOCKED); } } else { if (net->error_count <= paddrp->spp_pathmaxrxt) { net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, net, SCTP_SO_LOCKED); } } net->failure_threshold = paddrp->spp_pathmaxrxt; } } + if (paddrp->spp_flags & SPP_HB_ENABLE) { if (paddrp->spp_hbinterval != 0) { stcb->asoc.heart_beat_delay = paddrp->spp_hbinterval; } else if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) { stcb->asoc.heart_beat_delay = 0; } /* Turn back on the timer */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (paddrp->spp_hbinterval != 0) { net->heart_beat_delay = paddrp->spp_hbinterval; } else if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) { net->heart_beat_delay = 0; } if (net->dest_state & SCTP_ADDR_NOHB) { net->dest_state &= ~SCTP_ADDR_NOHB; } sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_14); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } if (paddrp->spp_flags & SPP_HB_DISABLE) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (!(net->dest_state & SCTP_ADDR_NOHB)) { net->dest_state |= SCTP_ADDR_NOHB; if (!(net->dest_state & SCTP_ADDR_UNCONFIRMED)) { sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_15); } } } sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } if ((paddrp->spp_flags & SPP_PMTUD_DISABLE) && (paddrp->spp_pathmtu >= SCTP_SMALLEST_PMTU)) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_16); } net->dest_state |= SCTP_ADDR_NO_PMTUD; net->mtu = paddrp->spp_pathmtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } if (net->mtu < stcb->asoc.smallest_mtu) { sctp_pathmtu_adjustment(stcb, net->mtu); } } stcb->asoc.default_mtu = paddrp->spp_pathmtu; sctp_stcb_feature_on(inp, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD); } if (paddrp->spp_flags & SPP_PMTUD_ENABLE) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (!SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } net->dest_state &= ~SCTP_ADDR_NO_PMTUD; } stcb->asoc.default_mtu = 0; sctp_stcb_feature_off(inp, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD); } if (paddrp->spp_flags & SPP_DSCP) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->dscp = paddrp->spp_dscp & 0xfc; net->dscp |= 0x01; } stcb->asoc.default_dscp = paddrp->spp_dscp & 0xfc; stcb->asoc.default_dscp |= 0x01; } #ifdef INET6 if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._l_addr.sa.sa_family == AF_INET6) { net->flowlabel = paddrp->spp_ipv6_flowlabel & 0x000fffff; net->flowlabel |= 0x80000000; } } stcb->asoc.default_flowlabel = paddrp->spp_ipv6_flowlabel & 0x000fffff; stcb->asoc.default_flowlabel |= 0x80000000; } #endif } SCTP_TCB_UNLOCK(stcb); } else { /************************NO TCB, SET TO default stuff ******************/ if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (paddrp->spp_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); /* * For the TOS/FLOWLABEL stuff you * set it with the options on the * socket */ if (paddrp->spp_pathmaxrxt != 0) { inp->sctp_ep.def_net_failure = paddrp->spp_pathmaxrxt; } + if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = 0; else if (paddrp->spp_hbinterval != 0) { if (paddrp->spp_hbinterval > SCTP_MAX_HB_INTERVAL) paddrp->spp_hbinterval = SCTP_MAX_HB_INTERVAL; inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(paddrp->spp_hbinterval); } + if (paddrp->spp_flags & SPP_HB_ENABLE) { if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = 0; } else if (paddrp->spp_hbinterval) { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(paddrp->spp_hbinterval); } sctp_feature_off(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } else if (paddrp->spp_flags & SPP_HB_DISABLE) { sctp_feature_on(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } if (paddrp->spp_flags & SPP_PMTUD_ENABLE) { inp->sctp_ep.default_mtu = 0; sctp_feature_off(inp, SCTP_PCB_FLAGS_DO_NOT_PMTUD); } else if (paddrp->spp_flags & SPP_PMTUD_DISABLE) { if (paddrp->spp_pathmtu >= SCTP_SMALLEST_PMTU) { inp->sctp_ep.default_mtu = paddrp->spp_pathmtu; } sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_NOT_PMTUD); } if (paddrp->spp_flags & SPP_DSCP) { inp->sctp_ep.default_dscp = paddrp->spp_dscp & 0xfc; inp->sctp_ep.default_dscp |= 0x01; } #ifdef INET6 if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) { if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { inp->sctp_ep.default_flowlabel = paddrp->spp_ipv6_flowlabel & 0x000fffff; inp->sctp_ep.default_flowlabel |= 0x80000000; } } #endif SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; uint32_t new_init, new_min, new_max; SCTP_CHECK_AND_CAST(srto, optval, struct sctp_rtoinfo, optsize); SCTP_FIND_STCB(inp, stcb, srto->srto_assoc_id); if (stcb) { if (srto->srto_initial) new_init = srto->srto_initial; else new_init = stcb->asoc.initial_rto; if (srto->srto_max) new_max = srto->srto_max; else new_max = stcb->asoc.maxrto; if (srto->srto_min) new_min = srto->srto_min; else new_min = stcb->asoc.minrto; if ((new_min <= new_init) && (new_init <= new_max)) { stcb->asoc.initial_rto = new_init; stcb->asoc.maxrto = new_max; stcb->asoc.minrto = new_min; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (srto->srto_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (srto->srto_initial) new_init = srto->srto_initial; else new_init = inp->sctp_ep.initial_rto; if (srto->srto_max) new_max = srto->srto_max; else new_max = inp->sctp_ep.sctp_maxrto; if (srto->srto_min) new_min = srto->srto_min; else new_min = inp->sctp_ep.sctp_minrto; if ((new_min <= new_init) && (new_init <= new_max)) { inp->sctp_ep.initial_rto = new_init; inp->sctp_ep.sctp_maxrto = new_max; inp->sctp_ep.sctp_minrto = new_min; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; SCTP_CHECK_AND_CAST(sasoc, optval, struct sctp_assocparams, optsize); SCTP_FIND_STCB(inp, stcb, sasoc->sasoc_assoc_id); if (sasoc->sasoc_cookie_life) { /* boundary check the cookie life */ if (sasoc->sasoc_cookie_life < 1000) sasoc->sasoc_cookie_life = 1000; if (sasoc->sasoc_cookie_life > SCTP_MAX_COOKIE_LIFE) { sasoc->sasoc_cookie_life = SCTP_MAX_COOKIE_LIFE; } } if (stcb) { if (sasoc->sasoc_asocmaxrxt) stcb->asoc.max_send_times = sasoc->sasoc_asocmaxrxt; if (sasoc->sasoc_cookie_life) { stcb->asoc.cookie_life = MSEC_TO_TICKS(sasoc->sasoc_cookie_life); } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (sasoc->sasoc_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (sasoc->sasoc_asocmaxrxt) inp->sctp_ep.max_send_times = sasoc->sasoc_asocmaxrxt; if (sasoc->sasoc_cookie_life) { inp->sctp_ep.def_cookie_life = MSEC_TO_TICKS(sasoc->sasoc_cookie_life); } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_INITMSG: { struct sctp_initmsg *sinit; SCTP_CHECK_AND_CAST(sinit, optval, struct sctp_initmsg, optsize); SCTP_INP_WLOCK(inp); if (sinit->sinit_num_ostreams) inp->sctp_ep.pre_open_stream_count = sinit->sinit_num_ostreams; if (sinit->sinit_max_instreams) inp->sctp_ep.max_open_streams_intome = sinit->sinit_max_instreams; if (sinit->sinit_max_attempts) inp->sctp_ep.max_init_times = sinit->sinit_max_attempts; if (sinit->sinit_max_init_timeo) inp->sctp_ep.initial_init_rto_max = sinit->sinit_max_init_timeo; SCTP_INP_WUNLOCK(inp); break; } case SCTP_PRIMARY_ADDR: { struct sctp_setprim *spa; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(spa, optval, struct sctp_setprim, optsize); SCTP_FIND_STCB(inp, stcb, spa->ssp_assoc_id); #if defined(INET) && defined(INET6) if (spa->ssp_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&spa->ssp_addr; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&spa->ssp_addr; } } else { addr = (struct sockaddr *)&spa->ssp_addr; } #else addr = (struct sockaddr *)&spa->ssp_addr; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net != NULL)) { if (net != stcb->asoc.primary_destination) { if (!(net->dest_state & SCTP_ADDR_UNCONFIRMED)) { /* Ok we need to set it */ if (sctp_set_primary_addr(stcb, (struct sockaddr *)NULL, net) == 0) { if ((stcb->asoc.alternate) && (!(net->dest_state & SCTP_ADDR_PF)) && (net->dest_state & SCTP_ADDR_REACHABLE)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } break; } case SCTP_SET_DYNAMIC_PRIMARY: { union sctp_sockstore *ss; error = priv_check(curthread, PRIV_NETINET_RESERVEDPORT); if (error) break; SCTP_CHECK_AND_CAST(ss, optval, union sctp_sockstore, optsize); /* SUPER USER CHECK? */ error = sctp_dynamic_set_primary(&ss->sa, vrf_id); break; } case SCTP_SET_PEER_PRIMARY_ADDR: { struct sctp_setpeerprim *sspp; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(sspp, optval, struct sctp_setpeerprim, optsize); SCTP_FIND_STCB(inp, stcb, sspp->sspp_assoc_id); if (stcb != NULL) { struct sctp_ifa *ifa; #if defined(INET) && defined(INET6) if (sspp->sspp_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&sspp->sspp_addr; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&sspp->sspp_addr; } } else { addr = (struct sockaddr *)&sspp->sspp_addr; } #else addr = (struct sockaddr *)&sspp->sspp_addr; #endif ifa = sctp_find_ifa_by_addr(addr, stcb->asoc.vrf_id, SCTP_ADDR_NOT_LOCKED); if (ifa == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_of_it; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* * Must validate the ifa found is in * our ep */ struct sctp_laddr *laddr; int found = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_OUTPUT1, "%s: NULL ifa\n", __func__); continue; } if ((sctp_is_addr_restricted(stcb, laddr->ifa)) && (!sctp_is_addr_pending(stcb, laddr->ifa))) { continue; } if (laddr->ifa == ifa) { found = 1; break; } } if (!found) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_of_it; } } else { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_of_it; } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_of_it; } break; } #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_of_it; } } if (sctp_set_primary_ip_address_sa(stcb, addr) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SOCKOPT, SCTP_SO_LOCKED); out_of_it: SCTP_TCB_UNLOCK(stcb); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } break; } case SCTP_BINDX_ADD_ADDR: { struct sctp_getaddresses *addrs; struct thread *td; td = (struct thread *)p; SCTP_CHECK_AND_CAST(addrs, optval, struct sctp_getaddresses, optsize); #ifdef INET if (addrs->addr->sa_family == AF_INET) { if (optsize < sizeof(struct sctp_getaddresses) - sizeof(struct sockaddr) + sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (td != NULL && (error = prison_local_ip4(td->td_ucred, &(((struct sockaddr_in *)(addrs->addr))->sin_addr)))) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif #ifdef INET6 if (addrs->addr->sa_family == AF_INET6) { if (optsize < sizeof(struct sctp_getaddresses) - sizeof(struct sockaddr) + sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (td != NULL && (error = prison_local_ip6(td->td_ucred, &(((struct sockaddr_in6 *)(addrs->addr))->sin6_addr), (SCTP_IPV6_V6ONLY(inp) != 0))) != 0) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif { error = EAFNOSUPPORT; break; } sctp_bindx_add_address(so, inp, addrs->addr, addrs->sget_assoc_id, vrf_id, &error, p); break; } case SCTP_BINDX_REM_ADDR: { struct sctp_getaddresses *addrs; struct thread *td; td = (struct thread *)p; SCTP_CHECK_AND_CAST(addrs, optval, struct sctp_getaddresses, optsize); #ifdef INET if (addrs->addr->sa_family == AF_INET) { if (optsize < sizeof(struct sctp_getaddresses) - sizeof(struct sockaddr) + sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (td != NULL && (error = prison_local_ip4(td->td_ucred, &(((struct sockaddr_in *)(addrs->addr))->sin_addr)))) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif #ifdef INET6 if (addrs->addr->sa_family == AF_INET6) { if (optsize < sizeof(struct sctp_getaddresses) - sizeof(struct sockaddr) + sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (td != NULL && (error = prison_local_ip6(td->td_ucred, &(((struct sockaddr_in6 *)(addrs->addr))->sin6_addr), (SCTP_IPV6_V6ONLY(inp) != 0))) != 0) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } else #endif { error = EAFNOSUPPORT; break; } sctp_bindx_delete_address(inp, addrs->addr, addrs->sget_assoc_id, vrf_id, &error); break; } case SCTP_EVENT: { struct sctp_event *event; uint32_t event_type; SCTP_CHECK_AND_CAST(event, optval, struct sctp_event, optsize); SCTP_FIND_STCB(inp, stcb, event->se_assoc_id); switch (event->se_type) { case SCTP_ASSOC_CHANGE: event_type = SCTP_PCB_FLAGS_RECVASSOCEVNT; break; case SCTP_PEER_ADDR_CHANGE: event_type = SCTP_PCB_FLAGS_RECVPADDREVNT; break; case SCTP_REMOTE_ERROR: event_type = SCTP_PCB_FLAGS_RECVPEERERR; break; case SCTP_SEND_FAILED: event_type = SCTP_PCB_FLAGS_RECVSENDFAILEVNT; break; case SCTP_SHUTDOWN_EVENT: event_type = SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT; break; case SCTP_ADAPTATION_INDICATION: event_type = SCTP_PCB_FLAGS_ADAPTATIONEVNT; break; case SCTP_PARTIAL_DELIVERY_EVENT: event_type = SCTP_PCB_FLAGS_PDAPIEVNT; break; case SCTP_AUTHENTICATION_EVENT: event_type = SCTP_PCB_FLAGS_AUTHEVNT; break; case SCTP_STREAM_RESET_EVENT: event_type = SCTP_PCB_FLAGS_STREAM_RESETEVNT; break; case SCTP_SENDER_DRY_EVENT: event_type = SCTP_PCB_FLAGS_DRYEVNT; break; case SCTP_NOTIFICATIONS_STOPPED_EVENT: event_type = 0; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTSUP); error = ENOTSUP; break; case SCTP_ASSOC_RESET_EVENT: event_type = SCTP_PCB_FLAGS_ASSOC_RESETEVNT; break; case SCTP_STREAM_CHANGE_EVENT: event_type = SCTP_PCB_FLAGS_STREAM_CHANGEEVNT; break; case SCTP_SEND_FAILED_EVENT: event_type = SCTP_PCB_FLAGS_RECVNSENDFAILEVNT; break; default: event_type = 0; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (event_type > 0) { if (stcb) { if (event->se_on) { sctp_stcb_feature_on(inp, stcb, event_type); if (event_type == SCTP_PCB_FLAGS_DRYEVNT) { if (TAILQ_EMPTY(&stcb->asoc.send_queue) && TAILQ_EMPTY(&stcb->asoc.sent_queue) && (stcb->asoc.stream_queue_cnt == 0)) { sctp_ulp_notify(SCTP_NOTIFY_SENDER_DRY, stcb, 0, NULL, SCTP_SO_LOCKED); } } } else { sctp_stcb_feature_off(inp, stcb, event_type); } SCTP_TCB_UNLOCK(stcb); } else { /* * We don't want to send up a storm * of events, so return an error for * sender dry events */ if ((event_type == SCTP_PCB_FLAGS_DRYEVNT) && ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) && ((event->se_assoc_id == SCTP_ALL_ASSOC) || (event->se_assoc_id == SCTP_CURRENT_ASSOC))) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTSUP); error = ENOTSUP; break; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (event->se_assoc_id == SCTP_FUTURE_ASSOC) || (event->se_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); if (event->se_on) { sctp_feature_on(inp, event_type); } else { sctp_feature_off(inp, event_type); } SCTP_INP_WUNLOCK(inp); } if ((event->se_assoc_id == SCTP_CURRENT_ASSOC) || (event->se_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (event->se_on) { sctp_stcb_feature_on(inp, stcb, event_type); } else { sctp_stcb_feature_off(inp, stcb, event_type); } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } } break; } case SCTP_RECVRCVINFO: { int *onoff; SCTP_CHECK_AND_CAST(onoff, optval, int, optsize); SCTP_INP_WLOCK(inp); if (*onoff != 0) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVRCVINFO); } SCTP_INP_WUNLOCK(inp); break; } case SCTP_RECVNXTINFO: { int *onoff; SCTP_CHECK_AND_CAST(onoff, optval, int, optsize); SCTP_INP_WLOCK(inp); if (*onoff != 0) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVNXTINFO); } SCTP_INP_WUNLOCK(inp); break; } case SCTP_DEFAULT_SNDINFO: { struct sctp_sndinfo *info; uint16_t policy; SCTP_CHECK_AND_CAST(info, optval, struct sctp_sndinfo, optsize); SCTP_FIND_STCB(inp, stcb, info->snd_assoc_id); if (stcb) { if (info->snd_sid < stcb->asoc.streamoutcnt) { stcb->asoc.def_send.sinfo_stream = info->snd_sid; policy = PR_SCTP_POLICY(stcb->asoc.def_send.sinfo_flags); stcb->asoc.def_send.sinfo_flags = info->snd_flags; stcb->asoc.def_send.sinfo_flags |= policy; stcb->asoc.def_send.sinfo_ppid = info->snd_ppid; stcb->asoc.def_send.sinfo_context = info->snd_context; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (info->snd_assoc_id == SCTP_FUTURE_ASSOC) || (info->snd_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->def_send.sinfo_stream = info->snd_sid; policy = PR_SCTP_POLICY(inp->def_send.sinfo_flags); inp->def_send.sinfo_flags = info->snd_flags; inp->def_send.sinfo_flags |= policy; inp->def_send.sinfo_ppid = info->snd_ppid; inp->def_send.sinfo_context = info->snd_context; SCTP_INP_WUNLOCK(inp); } if ((info->snd_assoc_id == SCTP_CURRENT_ASSOC) || (info->snd_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); if (info->snd_sid < stcb->asoc.streamoutcnt) { stcb->asoc.def_send.sinfo_stream = info->snd_sid; policy = PR_SCTP_POLICY(stcb->asoc.def_send.sinfo_flags); stcb->asoc.def_send.sinfo_flags = info->snd_flags; stcb->asoc.def_send.sinfo_flags |= policy; stcb->asoc.def_send.sinfo_ppid = info->snd_ppid; stcb->asoc.def_send.sinfo_context = info->snd_context; } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_DEFAULT_PRINFO: { struct sctp_default_prinfo *info; SCTP_CHECK_AND_CAST(info, optval, struct sctp_default_prinfo, optsize); SCTP_FIND_STCB(inp, stcb, info->pr_assoc_id); if (info->pr_policy > SCTP_PR_SCTP_MAX) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; break; } if (stcb) { stcb->asoc.def_send.sinfo_flags &= 0xfff0; stcb->asoc.def_send.sinfo_flags |= info->pr_policy; stcb->asoc.def_send.sinfo_timetolive = info->pr_value; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (info->pr_assoc_id == SCTP_FUTURE_ASSOC) || (info->pr_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_WLOCK(inp); inp->def_send.sinfo_flags &= 0xfff0; inp->def_send.sinfo_flags |= info->pr_policy; inp->def_send.sinfo_timetolive = info->pr_value; SCTP_INP_WUNLOCK(inp); } if ((info->pr_assoc_id == SCTP_CURRENT_ASSOC) || (info->pr_assoc_id == SCTP_ALL_ASSOC)) { SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); stcb->asoc.def_send.sinfo_flags &= 0xfff0; stcb->asoc.def_send.sinfo_flags |= info->pr_policy; stcb->asoc.def_send.sinfo_timetolive = info->pr_value; SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } } break; } case SCTP_PEER_ADDR_THLDS: /* Applies to the specific association */ { struct sctp_paddrthlds *thlds; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(thlds, optval, struct sctp_paddrthlds, optsize); SCTP_FIND_STCB(inp, stcb, thlds->spt_assoc_id); #if defined(INET) && defined(INET6) if (thlds->spt_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&thlds->spt_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&thlds->spt_address; } } else { addr = (struct sockaddr *)&thlds->spt_address; } #else addr = (struct sockaddr *)&thlds->spt_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } if (thlds->spt_pathcpthld != 0xffff) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } if (stcb != NULL) { if (net != NULL) { net->failure_threshold = thlds->spt_pathmaxrxt; net->pf_threshold = thlds->spt_pathpfthld; if (net->dest_state & SCTP_ADDR_PF) { if ((net->error_count > net->failure_threshold) || (net->error_count <= net->pf_threshold)) { net->dest_state &= ~SCTP_ADDR_PF; } } else { if ((net->error_count > net->pf_threshold) && (net->error_count <= net->failure_threshold)) { net->dest_state |= SCTP_ADDR_PF; sctp_send_hb(stcb, net, SCTP_SO_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_17); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); } } if (net->dest_state & SCTP_ADDR_REACHABLE) { if (net->error_count > net->failure_threshold) { net->dest_state &= ~SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, net, SCTP_SO_LOCKED); } } else { if (net->error_count <= net->failure_threshold) { net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, net, SCTP_SO_LOCKED); } } } else { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->failure_threshold = thlds->spt_pathmaxrxt; net->pf_threshold = thlds->spt_pathpfthld; if (net->dest_state & SCTP_ADDR_PF) { if ((net->error_count > net->failure_threshold) || (net->error_count <= net->pf_threshold)) { net->dest_state &= ~SCTP_ADDR_PF; } } else { if ((net->error_count > net->pf_threshold) && (net->error_count <= net->failure_threshold)) { net->dest_state |= SCTP_ADDR_PF; sctp_send_hb(stcb, net, SCTP_SO_LOCKED); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_18); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); } } if (net->dest_state & SCTP_ADDR_REACHABLE) { if (net->error_count > net->failure_threshold) { net->dest_state &= ~SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, net, SCTP_SO_LOCKED); } } else { if (net->error_count <= net->failure_threshold) { net->dest_state |= SCTP_ADDR_REACHABLE; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_UP, stcb, 0, net, SCTP_SO_LOCKED); } } } stcb->asoc.def_net_failure = thlds->spt_pathmaxrxt; stcb->asoc.def_net_pf_threshold = thlds->spt_pathpfthld; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (thlds->spt_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_ep.def_net_failure = thlds->spt_pathmaxrxt; inp->sctp_ep.def_net_pf_threshold = thlds->spt_pathpfthld; SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_REMOTE_UDP_ENCAPS_PORT: { struct sctp_udpencaps *encaps; struct sctp_nets *net; struct sockaddr *addr; #if defined(INET) && defined(INET6) struct sockaddr_in sin_store; #endif SCTP_CHECK_AND_CAST(encaps, optval, struct sctp_udpencaps, optsize); SCTP_FIND_STCB(inp, stcb, encaps->sue_assoc_id); #if defined(INET) && defined(INET6) if (encaps->sue_address.ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&encaps->sue_address; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin_store, sin6); addr = (struct sockaddr *)&sin_store; } else { addr = (struct sockaddr *)&encaps->sue_address; } } else { addr = (struct sockaddr *)&encaps->sue_address; } #else addr = (struct sockaddr *)&encaps->sue_address; #endif if (stcb != NULL) { net = sctp_findnet(stcb, addr); } else { /* * We increment here since * sctp_findassociation_ep_addr() wil do a * decrement if it finds the stcb as long as * the locked tcb (last argument) is NOT a * TCB.. aka NULL. */ net = NULL; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if ((stcb != NULL) && (net == NULL)) { #ifdef INET if (addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin->sin_addr.s_addr != INADDR_ANY) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } else #endif { error = EAFNOSUPPORT; SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); break; } } + if (stcb != NULL) { if (net != NULL) { net->port = encaps->sue_port; } else { stcb->asoc.port = encaps->sue_port; } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (encaps->sue_assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); inp->sctp_ep.port = encaps->sue_port; SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_ECN_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->ecn_supported = 0; } else { inp->ecn_supported = 1; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_PR_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->prsctp_supported = 0; } else { inp->prsctp_supported = 1; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_AUTH_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { if ((av->assoc_value == 0) && (inp->asconf_supported == 1)) { /* * AUTH is required for * ASCONF */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->auth_supported = 0; } else { inp->auth_supported = 1; } SCTP_INP_WUNLOCK(inp); } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_ASCONF_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { if ((av->assoc_value != 0) && (inp->auth_supported == 0)) { /* * AUTH is required for * ASCONF */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } else { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->asconf_supported = 0; sctp_auth_delete_chunk(SCTP_ASCONF, inp->sctp_ep.local_auth_chunks); sctp_auth_delete_chunk(SCTP_ASCONF_ACK, inp->sctp_ep.local_auth_chunks); } else { inp->asconf_supported = 1; sctp_auth_add_chunk(SCTP_ASCONF, inp->sctp_ep.local_auth_chunks); sctp_auth_add_chunk(SCTP_ASCONF_ACK, inp->sctp_ep.local_auth_chunks); } SCTP_INP_WUNLOCK(inp); } } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_RECONFIG_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->reconfig_supported = 0; } else { inp->reconfig_supported = 1; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_NRSACK_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->nrsack_supported = 0; } else { inp->nrsack_supported = 1; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_PKTDROP_SUPPORTED: { struct sctp_assoc_value *av; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); if (av->assoc_value == 0) { inp->pktdrop_supported = 0; } else { inp->pktdrop_supported = 1; } SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } case SCTP_MAX_CWND: { struct sctp_assoc_value *av; struct sctp_nets *net; SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize); SCTP_FIND_STCB(inp, stcb, av->assoc_id); if (stcb) { stcb->asoc.max_cwnd = av->assoc_value; if (stcb->asoc.max_cwnd > 0) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if ((net->cwnd > stcb->asoc.max_cwnd) && (net->cwnd > (net->mtu - sizeof(struct sctphdr)))) { net->cwnd = stcb->asoc.max_cwnd; if (net->cwnd < (net->mtu - sizeof(struct sctphdr))) { net->cwnd = net->mtu - sizeof(struct sctphdr); } } } } SCTP_TCB_UNLOCK(stcb); } else { if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (av->assoc_id == SCTP_FUTURE_ASSOC)) { SCTP_INP_WLOCK(inp); inp->max_cwnd = av->assoc_value; SCTP_INP_WUNLOCK(inp); } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } } break; } default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOPROTOOPT); error = ENOPROTOOPT; break; } /* end switch (opt) */ return (error); } int sctp_ctloutput(struct socket *so, struct sockopt *sopt) { void *optval = NULL; size_t optsize = 0; void *p; int error = 0; struct sctp_inpcb *inp; if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(so->so_pcb, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOBUFS); return (EINVAL); } SCTP_INP_WLOCK(inp); inp->fibnum = so->so_fibnum; SCTP_INP_WUNLOCK(inp); return (0); } if (sopt->sopt_level != IPPROTO_SCTP) { /* wrong proto level... send back up to IP */ #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) error = ip6_ctloutput(so, sopt); #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET error = ip_ctloutput(so, sopt); #endif return (error); } optsize = sopt->sopt_valsize; if (optsize > SCTP_SOCKET_OPTION_LIMIT) { SCTP_LTRACE_ERR_RET(so->so_pcb, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOBUFS); return (ENOBUFS); } if (optsize) { SCTP_MALLOC(optval, void *, optsize, SCTP_M_SOCKOPT); if (optval == NULL) { SCTP_LTRACE_ERR_RET(so->so_pcb, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOBUFS); return (ENOBUFS); } error = sooptcopyin(sopt, optval, optsize, optsize); if (error) { SCTP_FREE(optval, SCTP_M_SOCKOPT); goto out; } } p = (void *)sopt->sopt_td; if (sopt->sopt_dir == SOPT_SET) { error = sctp_setopt(so, sopt->sopt_name, optval, optsize, p); } else if (sopt->sopt_dir == SOPT_GET) { error = sctp_getopt(so, sopt->sopt_name, optval, &optsize, p); } else { SCTP_LTRACE_ERR_RET(so->so_pcb, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; } if ((error == 0) && (optval != NULL)) { error = sooptcopyout(sopt, optval, optsize); SCTP_FREE(optval, SCTP_M_SOCKOPT); } else if (optval != NULL) { SCTP_FREE(optval, SCTP_M_SOCKOPT); } out: return (error); } #ifdef INET static int sctp_connect(struct socket *so, struct sockaddr *addr, struct thread *p) { int error = 0; int create_lock_on = 0; uint32_t vrf_id; struct sctp_inpcb *inp; struct sctp_tcb *stcb = NULL; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { /* I made the same as TCP since we are not setup? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } if (addr == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return EINVAL; } + switch (addr->sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6p; if (addr->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } sin6p = (struct sockaddr_in6 *)addr; if (p != NULL && (error = prison_remote_ip6(p->td_ucred, &sin6p->sin6_addr)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); return (error); } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sinp; if (addr->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (EINVAL); } sinp = (struct sockaddr_in *)addr; if (p != NULL && (error = prison_remote_ip4(p->td_ucred, &sinp->sin_addr)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, error); return (error); } break; } #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EAFNOSUPPORT); return (EAFNOSUPPORT); } SCTP_INP_INCR_REF(inp); SCTP_ASOC_CREATE_LOCK(inp); create_lock_on = 1; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { /* Should I really unlock ? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EFAULT); error = EFAULT; goto out_now; } #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (addr->sa_family == AF_INET6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_now; } #endif if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ error = sctp_inpcb_bind(so, NULL, NULL, p); if (error) { goto out_now; } } /* Now do we connect? */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) && (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE))) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); error = EINVAL; goto out_now; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_USRREQ, EADDRINUSE); error = EADDRINUSE; goto out_now; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); SCTP_INP_RUNLOCK(inp); } else { /* * We increment here since sctp_findassociation_ep_addr() * will do a decrement if it finds the stcb as long as the * locked tcb (last argument) is NOT a TCB.. aka NULL. */ SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, NULL, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } else { SCTP_TCB_UNLOCK(stcb); } } if (stcb != NULL) { /* Already have or am bring up an association */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EALREADY); error = EALREADY; goto out_now; } + vrf_id = inp->def_vrf_id; /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, addr, &error, 0, vrf_id, inp->sctp_ep.pre_open_stream_count, inp->sctp_ep.port, p); if (stcb == NULL) { /* Gak! no memory */ goto out_now; } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } SCTP_SET_STATE(&stcb->asoc, SCTP_STATE_COOKIE_WAIT); (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); /* initialize authentication parameters for the assoc */ sctp_initialize_auth_params(inp, stcb); sctp_send_initiate(inp, stcb, SCTP_SO_LOCKED); SCTP_TCB_UNLOCK(stcb); out_now: if (create_lock_on) { SCTP_ASOC_CREATE_UNLOCK(inp); } + SCTP_INP_DECR_REF(inp); return (error); } #endif int sctp_listen(struct socket *so, int backlog, struct thread *p) { /* * Note this module depends on the protocol processing being called * AFTER any socket level flags and backlog are applied to the * socket. The traditional way that the socket flags are applied is * AFTER protocol processing. We have made a change to the * sys/kern/uipc_socket.c module to reverse this but this MUST be in * place if the socket API for SCTP is to work properly. */ int error = 0; struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { /* I made the same as TCP since we are not setup? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) { /* See if we have a listener */ struct sctp_inpcb *tinp; union sctp_sockstore store; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* not bound all */ struct sctp_laddr *laddr; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { memcpy(&store, &laddr->ifa->address, sizeof(store)); switch (store.sa.sa_family) { #ifdef INET case AF_INET: store.sin.sin_port = inp->sctp_lport; break; #endif #ifdef INET6 case AF_INET6: store.sin6.sin6_port = inp->sctp_lport; break; #endif default: break; } tinp = sctp_pcb_findep(&store.sa, 0, 0, inp->def_vrf_id); if (tinp && (tinp != inp) && ((tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) == 0) && ((tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (tinp->sctp_socket->so_qlimit)) { /* * we have a listener already and * its not this inp. */ SCTP_INP_DECR_REF(tinp); return (EADDRINUSE); } else if (tinp) { SCTP_INP_DECR_REF(tinp); } } } else { /* Setup a local addr bound all */ memset(&store, 0, sizeof(store)); #ifdef INET6 if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { store.sa.sa_family = AF_INET6; store.sa.sa_len = sizeof(struct sockaddr_in6); } #endif #ifdef INET if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { store.sa.sa_family = AF_INET; store.sa.sa_len = sizeof(struct sockaddr_in); } #endif switch (store.sa.sa_family) { #ifdef INET case AF_INET: store.sin.sin_port = inp->sctp_lport; break; #endif #ifdef INET6 case AF_INET6: store.sin6.sin6_port = inp->sctp_lport; break; #endif default: break; } tinp = sctp_pcb_findep(&store.sa, 0, 0, inp->def_vrf_id); if (tinp && (tinp != inp) && ((tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) == 0) && ((tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (tinp->sctp_socket->so_qlimit)) { /* * we have a listener already and its not * this inp. */ SCTP_INP_DECR_REF(tinp); return (EADDRINUSE); } else if (tinp) { SCTP_INP_DECR_REF(tinp); } } } SCTP_INP_RLOCK(inp); #ifdef SCTP_LOCK_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) { sctp_log_lock(inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_SOCK); } #endif SOCK_LOCK(so); error = solisten_proto_check(so); SOCK_UNLOCK(so); if (error) { SCTP_INP_RUNLOCK(inp); return (error); } if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* * The unlucky case - We are in the tcp pool with this guy. * - Someone else is in the main inp slot. - We must move * this guy (the listener) to the main slot - We must then * move the guy that was listener to the TCP Pool. */ if (sctp_swap_inpcb_for_listen(inp)) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EADDRINUSE); return (EADDRINUSE); } } + if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EADDRINUSE); return (EADDRINUSE); } SCTP_INP_RUNLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* We must do a bind. */ if ((error = sctp_inpcb_bind(so, NULL, NULL, p))) { /* bind error, probably perm */ return (error); } } SOCK_LOCK(so); /* It appears for 7.0 and on, we must always call this. */ solisten_proto(so, backlog); if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { /* remove the ACCEPTCONN flag for one-to-many sockets */ so->so_options &= ~SO_ACCEPTCONN; } if (backlog == 0) { /* turning off listen */ so->so_options &= ~SO_ACCEPTCONN; } SOCK_UNLOCK(so); return (error); } static int sctp_defered_wakeup_cnt = 0; int sctp_accept(struct socket *so, struct sockaddr **addr) { struct sctp_tcb *stcb; struct sctp_inpcb *inp; union sctp_sockstore store; #ifdef INET6 int error; #endif inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EOPNOTSUPP); return (EOPNOTSUPP); } if (so->so_state & SS_ISDISCONNECTED) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ECONNABORTED); return (ECONNABORTED); } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); store = stcb->asoc.primary_destination->ro._l_addr; stcb->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; SCTP_TCB_UNLOCK(stcb); switch (store.sa.sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); if (sin == NULL) return (ENOMEM); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = store.sin.sin_port; sin->sin_addr = store.sin.sin_addr; *addr = (struct sockaddr *)sin; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6); if (sin6 == NULL) return (ENOMEM); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = store.sin6.sin6_port; sin6->sin6_addr = store.sin6.sin6_addr; if ((error = sa6_recoverscope(sin6)) != 0) { SCTP_FREE_SONAME(sin6); return (error); } *addr = (struct sockaddr *)sin6; break; } #endif default: /* TSNH */ break; } /* Wake any delayed sleep action */ if (inp->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) { SCTP_INP_WLOCK(inp); inp->sctp_flags &= ~SCTP_PCB_FLAGS_DONT_WAKE; if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; SCTP_INP_WUNLOCK(inp); SOCKBUF_LOCK(&inp->sctp_socket->so_snd); if (sowriteable(inp->sctp_socket)) { sowwakeup_locked(inp->sctp_socket); } else { SOCKBUF_UNLOCK(&inp->sctp_socket->so_snd); } SCTP_INP_WLOCK(inp); } if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; SCTP_INP_WUNLOCK(inp); SOCKBUF_LOCK(&inp->sctp_socket->so_rcv); if (soreadable(inp->sctp_socket)) { sctp_defered_wakeup_cnt++; sorwakeup_locked(inp->sctp_socket); } else { SOCKBUF_UNLOCK(&inp->sctp_socket->so_rcv); } SCTP_INP_WLOCK(inp); } SCTP_INP_WUNLOCK(inp); } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_LOCK(stcb); sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_19); } return (0); } #ifdef INET int sctp_ingetaddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in *sin; uint32_t vrf_id; struct sctp_inpcb *inp; struct sctp_ifa *sctp_ifa; /* * Do the malloc first in case it blocks. */ SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); if (sin == NULL) return (ENOMEM); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); inp = (struct sctp_inpcb *)so->so_pcb; if (!inp) { SCTP_FREE_SONAME(sin); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } SCTP_INP_RLOCK(inp); sin->sin_port = inp->sctp_lport; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { struct sctp_tcb *stcb; struct sockaddr_in *sin_a; struct sctp_nets *net; int fnd; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto notConn; } fnd = 0; sin_a = NULL; SCTP_TCB_LOCK(stcb); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (struct sockaddr_in *)&net->ro._l_addr; if (sin_a == NULL) /* this will make coverity happy */ continue; if (sin_a->sin_family == AF_INET) { fnd = 1; break; } } if ((!fnd) || (sin_a == NULL)) { /* punt */ SCTP_TCB_UNLOCK(stcb); goto notConn; } + vrf_id = inp->def_vrf_id; sctp_ifa = sctp_source_address_selection(inp, stcb, (sctp_route_t *)&net->ro, net, 0, vrf_id); if (sctp_ifa) { sin->sin_addr = sctp_ifa->address.sin.sin_addr; sctp_free_ifa(sctp_ifa); } SCTP_TCB_UNLOCK(stcb); } else { /* For the bound all case you get back 0 */ notConn: sin->sin_addr.s_addr = 0; } } else { /* Take the first IPv4 address in the list */ struct sctp_laddr *laddr; int fnd = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->address.sa.sa_family == AF_INET) { struct sockaddr_in *sin_a; sin_a = &laddr->ifa->address.sin; sin->sin_addr = sin_a->sin_addr; fnd = 1; break; } } if (!fnd) { SCTP_FREE_SONAME(sin); SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); return (ENOENT); } } SCTP_INP_RUNLOCK(inp); (*addr) = (struct sockaddr *)sin; return (0); } int sctp_peeraddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in *sin; int fnd; struct sockaddr_in *sin_a; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; /* Do the malloc first in case it blocks. */ SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); if (sin == NULL) return (ENOMEM); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); inp = (struct sctp_inpcb *)so->so_pcb; if ((inp == NULL) || ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* UDP type and listeners will drop out here */ SCTP_FREE_SONAME(sin); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOTCONN); return (ENOTCONN); } SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); if (stcb == NULL) { SCTP_FREE_SONAME(sin); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, EINVAL); return (ECONNRESET); } fnd = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (struct sockaddr_in *)&net->ro._l_addr; if (sin_a->sin_family == AF_INET) { fnd = 1; sin->sin_port = stcb->rport; sin->sin_addr = sin_a->sin_addr; break; } } SCTP_TCB_UNLOCK(stcb); if (!fnd) { /* No IPv4 address */ SCTP_FREE_SONAME(sin); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_USRREQ, ENOENT); return (ENOENT); } (*addr) = (struct sockaddr *)sin; return (0); } struct pr_usrreqs sctp_usrreqs = { .pru_abort = sctp_abort, .pru_accept = sctp_accept, .pru_attach = sctp_attach, .pru_bind = sctp_bind, .pru_connect = sctp_connect, .pru_control = in_control, .pru_close = sctp_close, .pru_detach = sctp_close, .pru_sopoll = sopoll_generic, .pru_flush = sctp_flush, .pru_disconnect = sctp_disconnect, .pru_listen = sctp_listen, .pru_peeraddr = sctp_peeraddr, .pru_send = sctp_sendm, .pru_shutdown = sctp_shutdown, .pru_sockaddr = sctp_ingetaddr, .pru_sosend = sctp_sosend, .pru_soreceive = sctp_soreceive }; #endif Index: stable/11/sys/netinet/sctp_var.h =================================================================== --- stable/11/sys/netinet/sctp_var.h (revision 347153) +++ stable/11/sys/netinet/sctp_var.h (revision 347154) @@ -1,360 +1,360 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_VAR_H_ #define _NETINET_SCTP_VAR_H_ #include #if defined(_KERNEL) || defined(__Userspace__) extern struct pr_usrreqs sctp_usrreqs; #define sctp_feature_on(inp, feature) (inp->sctp_features |= feature) #define sctp_feature_off(inp, feature) (inp->sctp_features &= ~feature) #define sctp_is_feature_on(inp, feature) ((inp->sctp_features & feature) == feature) #define sctp_is_feature_off(inp, feature) ((inp->sctp_features & feature) == 0) #define sctp_stcb_feature_on(inp, stcb, feature) {\ if (stcb) { \ stcb->asoc.sctp_features |= feature; \ } else if (inp) { \ inp->sctp_features |= feature; \ } \ } #define sctp_stcb_feature_off(inp, stcb, feature) {\ if (stcb) { \ stcb->asoc.sctp_features &= ~feature; \ } else if (inp) { \ inp->sctp_features &= ~feature; \ } \ } #define sctp_stcb_is_feature_on(inp, stcb, feature) \ (((stcb != NULL) && \ ((stcb->asoc.sctp_features & feature) == feature)) || \ ((stcb == NULL) && (inp != NULL) && \ ((inp->sctp_features & feature) == feature))) #define sctp_stcb_is_feature_off(inp, stcb, feature) \ (((stcb != NULL) && \ ((stcb->asoc.sctp_features & feature) == 0)) || \ ((stcb == NULL) && (inp != NULL) && \ ((inp->sctp_features & feature) == 0)) || \ ((stcb == NULL) && (inp == NULL))) /* managing mobility_feature in inpcb (by micchie) */ #define sctp_mobility_feature_on(inp, feature) (inp->sctp_mobility_features |= feature) #define sctp_mobility_feature_off(inp, feature) (inp->sctp_mobility_features &= ~feature) #define sctp_is_mobility_feature_on(inp, feature) (inp->sctp_mobility_features & feature) #define sctp_is_mobility_feature_off(inp, feature) ((inp->sctp_mobility_features & feature) == 0) #define sctp_maxspace(sb) (max((sb)->sb_hiwat,SCTP_MINIMAL_RWND)) #define sctp_sbspace(asoc, sb) ((long) ((sctp_maxspace(sb) > (asoc)->sb_cc) ? (sctp_maxspace(sb) - (asoc)->sb_cc) : 0)) #define sctp_sbspace_failedmsgs(sb) ((long) ((sctp_maxspace(sb) > (sb)->sb_cc) ? (sctp_maxspace(sb) - (sb)->sb_cc) : 0)) #define sctp_sbspace_sub(a,b) (((a) > (b)) ? ((a) - (b)) : 0) /* * I tried to cache the readq entries at one point. But the reality * is that it did not add any performance since this meant we had to * lock the STCB on read. And at that point once you have to do an * extra lock, it really does not matter if the lock is in the ZONE * stuff or in our code. Note that this same problem would occur with * an mbuf cache as well so it is not really worth doing, at least * right now :-D */ #ifdef INVARIANTS #define sctp_free_a_readq(_stcb, _readq) { \ if ((_readq)->on_strm_q) \ panic("On strm q stcb:%p readq:%p", (_stcb), (_readq)); \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), (_readq)); \ SCTP_DECR_READQ_COUNT(); \ } #else #define sctp_free_a_readq(_stcb, _readq) { \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), (_readq)); \ SCTP_DECR_READQ_COUNT(); \ } #endif #define sctp_alloc_a_readq(_stcb, _readq) { \ (_readq) = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_readq), struct sctp_queued_to_read); \ if ((_readq)) { \ SCTP_INCR_READQ_COUNT(); \ } \ } #define sctp_free_a_strmoq(_stcb, _strmoq, _so_locked) { \ if ((_strmoq)->holds_key_ref) { \ sctp_auth_key_release(stcb, sp->auth_keyid, _so_locked); \ (_strmoq)->holds_key_ref = 0; \ } \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_strmoq), (_strmoq)); \ SCTP_DECR_STRMOQ_COUNT(); \ } #define sctp_alloc_a_strmoq(_stcb, _strmoq) { \ (_strmoq) = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_strmoq), struct sctp_stream_queue_pending); \ if ((_strmoq)) { \ memset(_strmoq, 0, sizeof(struct sctp_stream_queue_pending)); \ SCTP_INCR_STRMOQ_COUNT(); \ (_strmoq)->holds_key_ref = 0; \ } \ } #define sctp_free_a_chunk(_stcb, _chk, _so_locked) { \ if ((_chk)->holds_key_ref) {\ sctp_auth_key_release((_stcb), (_chk)->auth_keyid, _so_locked); \ (_chk)->holds_key_ref = 0; \ } \ if (_stcb) { \ SCTP_TCB_LOCK_ASSERT((_stcb)); \ if ((_chk)->whoTo) { \ sctp_free_remote_addr((_chk)->whoTo); \ (_chk)->whoTo = NULL; \ } \ if (((_stcb)->asoc.free_chunk_cnt > SCTP_BASE_SYSCTL(sctp_asoc_free_resc_limit)) || \ (SCTP_BASE_INFO(ipi_free_chunks) > SCTP_BASE_SYSCTL(sctp_system_free_resc_limit))) { \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), (_chk)); \ SCTP_DECR_CHK_COUNT(); \ } else { \ TAILQ_INSERT_TAIL(&(_stcb)->asoc.free_chunks, (_chk), sctp_next); \ (_stcb)->asoc.free_chunk_cnt++; \ atomic_add_int(&SCTP_BASE_INFO(ipi_free_chunks), 1); \ } \ } else { \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), (_chk)); \ SCTP_DECR_CHK_COUNT(); \ } \ } #define sctp_alloc_a_chunk(_stcb, _chk) { \ if (TAILQ_EMPTY(&(_stcb)->asoc.free_chunks)) { \ (_chk) = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_chunk), struct sctp_tmit_chunk); \ if ((_chk)) { \ SCTP_INCR_CHK_COUNT(); \ (_chk)->whoTo = NULL; \ (_chk)->holds_key_ref = 0; \ } \ } else { \ (_chk) = TAILQ_FIRST(&(_stcb)->asoc.free_chunks); \ TAILQ_REMOVE(&(_stcb)->asoc.free_chunks, (_chk), sctp_next); \ atomic_subtract_int(&SCTP_BASE_INFO(ipi_free_chunks), 1); \ (_chk)->holds_key_ref = 0; \ SCTP_STAT_INCR(sctps_cached_chk); \ (_stcb)->asoc.free_chunk_cnt--; \ } \ } #define sctp_free_remote_addr(__net) { \ if ((__net)) { \ if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&(__net)->ref_count)) { \ (void)SCTP_OS_TIMER_STOP(&(__net)->rxt_timer.timer); \ (void)SCTP_OS_TIMER_STOP(&(__net)->pmtu_timer.timer); \ (void)SCTP_OS_TIMER_STOP(&(__net)->hb_timer.timer); \ if ((__net)->ro.ro_rt) { \ RTFREE((__net)->ro.ro_rt); \ (__net)->ro.ro_rt = NULL; \ } \ if ((__net)->src_addr_selected) { \ sctp_free_ifa((__net)->ro._s_addr); \ (__net)->ro._s_addr = NULL; \ } \ (__net)->src_addr_selected = 0; \ (__net)->dest_state &= ~SCTP_ADDR_REACHABLE; \ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_net), (__net)); \ SCTP_DECR_RADDR_COUNT(); \ } \ } \ } #define sctp_sbfree(ctl, stcb, sb, m) { \ SCTP_SAVE_ATOMIC_DECREMENT(&(sb)->sb_cc, SCTP_BUF_LEN((m))); \ SCTP_SAVE_ATOMIC_DECREMENT(&(sb)->sb_mbcnt, MSIZE); \ if (((ctl)->do_not_ref_stcb == 0) && stcb) {\ SCTP_SAVE_ATOMIC_DECREMENT(&(stcb)->asoc.sb_cc, SCTP_BUF_LEN((m))); \ SCTP_SAVE_ATOMIC_DECREMENT(&(stcb)->asoc.my_rwnd_control_len, MSIZE); \ } \ if (SCTP_BUF_TYPE(m) != MT_DATA && SCTP_BUF_TYPE(m) != MT_HEADER && \ SCTP_BUF_TYPE(m) != MT_OOBDATA) \ atomic_subtract_int(&(sb)->sb_ctl,SCTP_BUF_LEN((m))); \ } #define sctp_sballoc(stcb, sb, m) { \ atomic_add_int(&(sb)->sb_cc,SCTP_BUF_LEN((m))); \ atomic_add_int(&(sb)->sb_mbcnt, MSIZE); \ if (stcb) { \ atomic_add_int(&(stcb)->asoc.sb_cc, SCTP_BUF_LEN((m))); \ atomic_add_int(&(stcb)->asoc.my_rwnd_control_len, MSIZE); \ } \ if (SCTP_BUF_TYPE(m) != MT_DATA && SCTP_BUF_TYPE(m) != MT_HEADER && \ SCTP_BUF_TYPE(m) != MT_OOBDATA) \ atomic_add_int(&(sb)->sb_ctl,SCTP_BUF_LEN((m))); \ } #define sctp_ucount_incr(val) { \ val++; \ } #define sctp_ucount_decr(val) { \ if (val > 0) { \ val--; \ } else { \ val = 0; \ } \ } #define sctp_mbuf_crush(data) do { \ struct mbuf *_m; \ _m = (data); \ while (_m && (SCTP_BUF_LEN(_m) == 0)) { \ (data) = SCTP_BUF_NEXT(_m); \ SCTP_BUF_NEXT(_m) = NULL; \ sctp_m_free(_m); \ _m = (data); \ } \ } while (0) #define sctp_flight_size_decrease(tp1) do { \ if (tp1->whoTo->flight_size >= tp1->book_size) \ tp1->whoTo->flight_size -= tp1->book_size; \ else \ tp1->whoTo->flight_size = 0; \ } while (0) #define sctp_flight_size_increase(tp1) do { \ (tp1)->whoTo->flight_size += (tp1)->book_size; \ } while (0) #ifdef SCTP_FS_SPEC_LOG #define sctp_total_flight_decrease(stcb, tp1) do { \ if (stcb->asoc.fs_index > SCTP_FS_SPEC_LOG_SIZE) \ stcb->asoc.fs_index = 0;\ stcb->asoc.fslog[stcb->asoc.fs_index].total_flight = stcb->asoc.total_flight; \ stcb->asoc.fslog[stcb->asoc.fs_index].tsn = tp1->rec.data.tsn; \ stcb->asoc.fslog[stcb->asoc.fs_index].book = tp1->book_size; \ stcb->asoc.fslog[stcb->asoc.fs_index].sent = tp1->sent; \ stcb->asoc.fslog[stcb->asoc.fs_index].incr = 0; \ stcb->asoc.fslog[stcb->asoc.fs_index].decr = 1; \ stcb->asoc.fs_index++; \ tp1->window_probe = 0; \ if (stcb->asoc.total_flight >= tp1->book_size) { \ stcb->asoc.total_flight -= tp1->book_size; \ if (stcb->asoc.total_flight_count > 0) \ stcb->asoc.total_flight_count--; \ } else { \ stcb->asoc.total_flight = 0; \ stcb->asoc.total_flight_count = 0; \ } \ } while (0) #define sctp_total_flight_increase(stcb, tp1) do { \ if (stcb->asoc.fs_index > SCTP_FS_SPEC_LOG_SIZE) \ stcb->asoc.fs_index = 0;\ stcb->asoc.fslog[stcb->asoc.fs_index].total_flight = stcb->asoc.total_flight; \ stcb->asoc.fslog[stcb->asoc.fs_index].tsn = tp1->rec.data.tsn; \ stcb->asoc.fslog[stcb->asoc.fs_index].book = tp1->book_size; \ stcb->asoc.fslog[stcb->asoc.fs_index].sent = tp1->sent; \ stcb->asoc.fslog[stcb->asoc.fs_index].incr = 1; \ stcb->asoc.fslog[stcb->asoc.fs_index].decr = 0; \ stcb->asoc.fs_index++; \ (stcb)->asoc.total_flight_count++; \ (stcb)->asoc.total_flight += (tp1)->book_size; \ } while (0) #else #define sctp_total_flight_decrease(stcb, tp1) do { \ tp1->window_probe = 0; \ if (stcb->asoc.total_flight >= tp1->book_size) { \ stcb->asoc.total_flight -= tp1->book_size; \ if (stcb->asoc.total_flight_count > 0) \ stcb->asoc.total_flight_count--; \ } else { \ stcb->asoc.total_flight = 0; \ stcb->asoc.total_flight_count = 0; \ } \ } while (0) #define sctp_total_flight_increase(stcb, tp1) do { \ (stcb)->asoc.total_flight_count++; \ (stcb)->asoc.total_flight += (tp1)->book_size; \ } while (0) #endif #define SCTP_PF_ENABLED(_net) (_net->pf_threshold < _net->failure_threshold) #define SCTP_NET_IS_PF(_net) (_net->pf_threshold < _net->error_count) struct sctp_nets; struct sctp_inpcb; struct sctp_tcb; struct sctphdr; void sctp_close(struct socket *so); int sctp_disconnect(struct socket *so); void sctp_ctlinput(int, struct sockaddr *, void *); int sctp_ctloutput(struct socket *, struct sockopt *); #ifdef INET void sctp_input_with_port(struct mbuf *, int, uint16_t); int sctp_input(struct mbuf **, int *, int); #endif void sctp_pathmtu_adjustment(struct sctp_tcb *, uint16_t); void sctp_drain(void); void sctp_init(void); -void +void sctp_notify(struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *, uint8_t, uint8_t, uint16_t, uint32_t); int sctp_flush(struct socket *, int); int sctp_shutdown(struct socket *); -int +int sctp_bindx(struct socket *, int, struct sockaddr_storage *, int, int, struct proc *); /* can't use sctp_assoc_t here */ int sctp_peeloff(struct socket *, struct socket *, int, caddr_t, int *); int sctp_ingetaddr(struct socket *, struct sockaddr **); int sctp_peeraddr(struct socket *, struct sockaddr **); int sctp_listen(struct socket *, int, struct thread *); int sctp_accept(struct socket *, struct sockaddr **); #endif /* _KERNEL */ #endif /* !_NETINET_SCTP_VAR_H_ */ Index: stable/11/sys/netinet/sctputil.c =================================================================== --- stable/11/sys/netinet/sctputil.c (revision 347153) +++ stable/11/sys/netinet/sctputil.c (revision 347154) @@ -1,7362 +1,7384 @@ /*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #if defined(INET6) || defined(INET) #include #endif #include #include #include #ifdef INET6 #include #endif #ifndef KTR_SCTP #define KTR_SCTP KTR_SUBSYS #endif extern const struct sctp_cc_functions sctp_cc_functions[]; extern const struct sctp_ss_functions sctp_ss_functions[]; void sctp_sblog(struct sockbuf *sb, struct sctp_tcb *stcb, int from, int incr) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.sb.stcb = stcb; sctp_clog.x.sb.so_sbcc = sb->sb_cc; if (stcb) sctp_clog.x.sb.stcb_sbcc = stcb->asoc.sb_cc; else sctp_clog.x.sb.stcb_sbcc = 0; sctp_clog.x.sb.incr = incr; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_SB, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_closing(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int16_t loc) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.close.inp = (void *)inp; sctp_clog.x.close.sctp_flags = inp->sctp_flags; if (stcb) { sctp_clog.x.close.stcb = (void *)stcb; sctp_clog.x.close.state = (uint16_t)stcb->asoc.state; } else { sctp_clog.x.close.stcb = 0; sctp_clog.x.close.state = 0; } sctp_clog.x.close.loc = loc; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_CLOSE, 0, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void rto_logging(struct sctp_nets *net, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.rto.net = (void *)net; sctp_clog.x.rto.rtt = net->rtt / 1000; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RTT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_strm_del_alt(struct sctp_tcb *stcb, uint32_t tsn, uint16_t sseq, uint16_t stream, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.strlog.stcb = stcb; sctp_clog.x.strlog.n_tsn = tsn; sctp_clog.x.strlog.n_sseq = sseq; sctp_clog.x.strlog.e_tsn = 0; sctp_clog.x.strlog.e_sseq = 0; sctp_clog.x.strlog.strm = stream; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_STRM, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_nagle_event(struct sctp_tcb *stcb, int action) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.nagle.stcb = (void *)stcb; sctp_clog.x.nagle.total_flight = stcb->asoc.total_flight; sctp_clog.x.nagle.total_in_queue = stcb->asoc.total_output_queue_size; sctp_clog.x.nagle.count_in_queue = stcb->asoc.chunks_on_out_queue; sctp_clog.x.nagle.count_in_flight = stcb->asoc.total_flight_count; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_NAGLE, action, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_sack(uint32_t old_cumack, uint32_t cumack, uint32_t tsn, uint16_t gaps, uint16_t dups, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.sack.cumack = cumack; sctp_clog.x.sack.oldcumack = old_cumack; sctp_clog.x.sack.tsn = tsn; sctp_clog.x.sack.numGaps = gaps; sctp_clog.x.sack.numDups = dups; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_SACK, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_map(uint32_t map, uint32_t cum, uint32_t high, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.map.base = map; sctp_clog.x.map.cum = cum; sctp_clog.x.map.high = high; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MAP, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_fr(uint32_t biggest_tsn, uint32_t biggest_new_tsn, uint32_t tsn, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.fr.largest_tsn = biggest_tsn; sctp_clog.x.fr.largest_new_tsn = biggest_new_tsn; sctp_clog.x.fr.tsn = tsn; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_FR, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #ifdef SCTP_MBUF_LOGGING void sctp_log_mb(struct mbuf *m, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.mb.mp = m; sctp_clog.x.mb.mbuf_flags = (uint8_t)(SCTP_BUF_GET_FLAGS(m)); sctp_clog.x.mb.size = (uint16_t)(SCTP_BUF_LEN(m)); sctp_clog.x.mb.data = SCTP_BUF_AT(m, 0); if (SCTP_BUF_IS_EXTENDED(m)) { sctp_clog.x.mb.ext = SCTP_BUF_EXTEND_BASE(m); sctp_clog.x.mb.refcnt = (uint8_t)(SCTP_BUF_EXTEND_REFCNT(m)); } else { sctp_clog.x.mb.ext = 0; sctp_clog.x.mb.refcnt = 0; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MBUF, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_mbc(struct mbuf *m, int from) { struct mbuf *mat; for (mat = m; mat; mat = SCTP_BUF_NEXT(mat)) { sctp_log_mb(mat, from); } } #endif void sctp_log_strm_del(struct sctp_queued_to_read *control, struct sctp_queued_to_read *poschk, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; if (control == NULL) { SCTP_PRINTF("Gak log of NULL?\n"); return; } sctp_clog.x.strlog.stcb = control->stcb; sctp_clog.x.strlog.n_tsn = control->sinfo_tsn; sctp_clog.x.strlog.n_sseq = (uint16_t)control->mid; sctp_clog.x.strlog.strm = control->sinfo_stream; if (poschk != NULL) { sctp_clog.x.strlog.e_tsn = poschk->sinfo_tsn; sctp_clog.x.strlog.e_sseq = (uint16_t)poschk->mid; } else { sctp_clog.x.strlog.e_tsn = 0; sctp_clog.x.strlog.e_sseq = 0; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_STRM, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_cwnd(struct sctp_tcb *stcb, struct sctp_nets *net, int augment, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.cwnd.net = net; if (stcb->asoc.send_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_send = 255; else sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt; if (stcb->asoc.stream_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_str = 255; else sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt; if (net) { sctp_clog.x.cwnd.cwnd_new_value = net->cwnd; sctp_clog.x.cwnd.inflight = net->flight_size; sctp_clog.x.cwnd.pseudo_cumack = net->pseudo_cumack; sctp_clog.x.cwnd.meets_pseudo_cumack = net->new_pseudo_cumack; sctp_clog.x.cwnd.need_new_pseudo_cumack = net->find_pseudo_cumack; } if (SCTP_CWNDLOG_PRESEND == from) { sctp_clog.x.cwnd.meets_pseudo_cumack = stcb->asoc.peers_rwnd; } sctp_clog.x.cwnd.cwnd_augment = augment; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_CWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_lock(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); if (inp) { sctp_clog.x.lock.sock = (void *)inp->sctp_socket; } else { sctp_clog.x.lock.sock = (void *)NULL; } sctp_clog.x.lock.inp = (void *)inp; if (stcb) { sctp_clog.x.lock.tcb_lock = mtx_owned(&stcb->tcb_mtx); } else { sctp_clog.x.lock.tcb_lock = SCTP_LOCK_UNKNOWN; } if (inp) { sctp_clog.x.lock.inp_lock = mtx_owned(&inp->inp_mtx); sctp_clog.x.lock.create_lock = mtx_owned(&inp->inp_create_mtx); } else { sctp_clog.x.lock.inp_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.create_lock = SCTP_LOCK_UNKNOWN; } sctp_clog.x.lock.info_lock = rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx)); if (inp && (inp->sctp_socket)) { sctp_clog.x.lock.sock_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx)); sctp_clog.x.lock.sockrcvbuf_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx)); sctp_clog.x.lock.socksndbuf_lock = mtx_owned(&(inp->sctp_socket->so_snd.sb_mtx)); } else { sctp_clog.x.lock.sock_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.sockrcvbuf_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.socksndbuf_lock = SCTP_LOCK_UNKNOWN; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_LOCK_EVENT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_maxburst(struct sctp_tcb *stcb, struct sctp_nets *net, int error, int burst, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.cwnd.net = net; sctp_clog.x.cwnd.cwnd_new_value = error; sctp_clog.x.cwnd.inflight = net->flight_size; sctp_clog.x.cwnd.cwnd_augment = burst; if (stcb->asoc.send_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_send = 255; else sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt; if (stcb->asoc.stream_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_str = 255; else sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MAXBURST, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_rwnd(uint8_t from, uint32_t peers_rwnd, uint32_t snd_size, uint32_t overhead) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.rwnd.rwnd = peers_rwnd; sctp_clog.x.rwnd.send_size = snd_size; sctp_clog.x.rwnd.overhead = overhead; sctp_clog.x.rwnd.new_rwnd = 0; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_rwnd_set(uint8_t from, uint32_t peers_rwnd, uint32_t flight_size, uint32_t overhead, uint32_t a_rwndval) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.rwnd.rwnd = peers_rwnd; sctp_clog.x.rwnd.send_size = flight_size; sctp_clog.x.rwnd.overhead = overhead; sctp_clog.x.rwnd.new_rwnd = a_rwndval; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #ifdef SCTP_MBCNT_LOGGING static void sctp_log_mbcnt(uint8_t from, uint32_t total_oq, uint32_t book, uint32_t total_mbcnt_q, uint32_t mbcnt) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.mbcnt.total_queue_size = total_oq; sctp_clog.x.mbcnt.size_change = book; sctp_clog.x.mbcnt.total_queue_mb_size = total_mbcnt_q; sctp_clog.x.mbcnt.mbcnt_change = mbcnt; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MBCNT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #endif void sctp_misc_ints(uint8_t from, uint32_t a, uint32_t b, uint32_t c, uint32_t d) { #if defined(SCTP_LOCAL_TRACE_BUF) SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_MISC_EVENT, from, a, b, c, d); #endif } void sctp_wakeup_log(struct sctp_tcb *stcb, uint32_t wake_cnt, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.wake.stcb = (void *)stcb; sctp_clog.x.wake.wake_cnt = wake_cnt; sctp_clog.x.wake.flight = stcb->asoc.total_flight_count; sctp_clog.x.wake.send_q = stcb->asoc.send_queue_cnt; sctp_clog.x.wake.sent_q = stcb->asoc.sent_queue_cnt; if (stcb->asoc.stream_queue_cnt < 0xff) sctp_clog.x.wake.stream_qcnt = (uint8_t)stcb->asoc.stream_queue_cnt; else sctp_clog.x.wake.stream_qcnt = 0xff; if (stcb->asoc.chunks_on_out_queue < 0xff) sctp_clog.x.wake.chunks_on_oque = (uint8_t)stcb->asoc.chunks_on_out_queue; else sctp_clog.x.wake.chunks_on_oque = 0xff; sctp_clog.x.wake.sctpflags = 0; /* set in the defered mode stuff */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) sctp_clog.x.wake.sctpflags |= 1; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) sctp_clog.x.wake.sctpflags |= 2; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) sctp_clog.x.wake.sctpflags |= 4; /* what about the sb */ if (stcb->sctp_socket) { struct socket *so = stcb->sctp_socket; sctp_clog.x.wake.sbflags = (uint8_t)((so->so_snd.sb_flags & 0x00ff)); } else { sctp_clog.x.wake.sbflags = 0xff; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_WAKE, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_block(uint8_t from, struct sctp_association *asoc, size_t sendlen) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.blk.onsb = asoc->total_output_queue_size; sctp_clog.x.blk.send_sent_qcnt = (uint16_t)(asoc->send_queue_cnt + asoc->sent_queue_cnt); sctp_clog.x.blk.peer_rwnd = asoc->peers_rwnd; sctp_clog.x.blk.stream_qcnt = (uint16_t)asoc->stream_queue_cnt; sctp_clog.x.blk.chunks_on_oque = (uint16_t)asoc->chunks_on_out_queue; sctp_clog.x.blk.flight_size = (uint16_t)(asoc->total_flight / 1024); sctp_clog.x.blk.sndlen = (uint32_t)sendlen; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_BLOCK, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } int sctp_fill_stat_log(void *optval SCTP_UNUSED, size_t *optsize SCTP_UNUSED) { /* May need to fix this if ktrdump does not work */ return (0); } #ifdef SCTP_AUDITING_ENABLED uint8_t sctp_audit_data[SCTP_AUDIT_SIZE][2]; static int sctp_audit_indx = 0; static void sctp_print_audit_report(void) { int i; int cnt; cnt = 0; for (i = sctp_audit_indx; i < SCTP_AUDIT_SIZE; i++) { if ((sctp_audit_data[i][0] == 0xe0) && (sctp_audit_data[i][1] == 0x01)) { cnt = 0; SCTP_PRINTF("\n"); } else if (sctp_audit_data[i][0] == 0xf0) { cnt = 0; SCTP_PRINTF("\n"); } else if ((sctp_audit_data[i][0] == 0xc0) && (sctp_audit_data[i][1] == 0x01)) { SCTP_PRINTF("\n"); cnt = 0; } SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0], (uint32_t)sctp_audit_data[i][1]); cnt++; if ((cnt % 14) == 0) SCTP_PRINTF("\n"); } for (i = 0; i < sctp_audit_indx; i++) { if ((sctp_audit_data[i][0] == 0xe0) && (sctp_audit_data[i][1] == 0x01)) { cnt = 0; SCTP_PRINTF("\n"); } else if (sctp_audit_data[i][0] == 0xf0) { cnt = 0; SCTP_PRINTF("\n"); } else if ((sctp_audit_data[i][0] == 0xc0) && (sctp_audit_data[i][1] == 0x01)) { SCTP_PRINTF("\n"); cnt = 0; } SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0], (uint32_t)sctp_audit_data[i][1]); cnt++; if ((cnt % 14) == 0) SCTP_PRINTF("\n"); } SCTP_PRINTF("\n"); } void sctp_auditing(int from, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { int resend_cnt, tot_out, rep, tot_book_cnt; struct sctp_nets *lnet; struct sctp_tmit_chunk *chk; sctp_audit_data[sctp_audit_indx][0] = 0xAA; sctp_audit_data[sctp_audit_indx][1] = 0x000000ff & from; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } if (inp == NULL) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0x01; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } return; } if (stcb == NULL) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0x02; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } return; } sctp_audit_data[sctp_audit_indx][0] = 0xA1; sctp_audit_data[sctp_audit_indx][1] = (0x000000ff & stcb->asoc.sent_queue_retran_cnt); sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 0; tot_book_cnt = 0; resend_cnt = tot_out = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { resend_cnt++; } else if (chk->sent < SCTP_DATAGRAM_RESEND) { tot_out += chk->book_size; tot_book_cnt++; } } if (resend_cnt != stcb->asoc.sent_queue_retran_cnt) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA1; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } SCTP_PRINTF("resend_cnt:%d asoc-tot:%d\n", resend_cnt, stcb->asoc.sent_queue_retran_cnt); rep = 1; stcb->asoc.sent_queue_retran_cnt = resend_cnt; sctp_audit_data[sctp_audit_indx][0] = 0xA2; sctp_audit_data[sctp_audit_indx][1] = (0x000000ff & stcb->asoc.sent_queue_retran_cnt); sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } } if (tot_out != stcb->asoc.total_flight) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA2; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("tot_flt:%d asoc_tot:%d\n", tot_out, (int)stcb->asoc.total_flight); stcb->asoc.total_flight = tot_out; } if (tot_book_cnt != stcb->asoc.total_flight_count) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA5; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("tot_flt_book:%d\n", tot_book_cnt); stcb->asoc.total_flight_count = tot_book_cnt; } tot_out = 0; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { tot_out += lnet->flight_size; } if (tot_out != stcb->asoc.total_flight) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA3; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("real flight:%d net total was %d\n", stcb->asoc.total_flight, tot_out); /* now corrective action */ TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { tot_out = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if ((chk->whoTo == lnet) && (chk->sent < SCTP_DATAGRAM_RESEND)) { tot_out += chk->book_size; } } if (lnet->flight_size != tot_out) { SCTP_PRINTF("net:%p flight was %d corrected to %d\n", (void *)lnet, lnet->flight_size, tot_out); lnet->flight_size = tot_out; } } } if (rep) { sctp_print_audit_report(); } } void sctp_audit_log(uint8_t ev, uint8_t fd) { sctp_audit_data[sctp_audit_indx][0] = ev; sctp_audit_data[sctp_audit_indx][1] = fd; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } } #endif /* * sctp_stop_timers_for_shutdown() should be called * when entering the SHUTDOWN_SENT or SHUTDOWN_ACK_SENT * state to make sure that all timers are stopped. */ void sctp_stop_timers_for_shutdown(struct sctp_tcb *stcb) { struct sctp_association *asoc; struct sctp_nets *net; asoc = &stcb->asoc; (void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer); TAILQ_FOREACH(net, &asoc->nets, sctp_next) { (void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer); (void)SCTP_OS_TIMER_STOP(&net->hb_timer.timer); } } /* * A list of sizes based on typical mtu's, used only if next hop size not * returned. These values MUST be multiples of 4 and MUST be ordered. */ static uint32_t sctp_mtu_sizes[] = { 68, 296, 508, 512, 544, 576, 1004, 1492, 1500, 1536, 2000, 2048, 4352, 4464, 8166, 17912, 32000, 65532 }; /* * Return the largest MTU in sctp_mtu_sizes smaller than val. * If val is smaller than the minimum, just return the largest * multiple of 4 smaller or equal to val. * Ensure that the result is a multiple of 4. */ uint32_t sctp_get_prev_mtu(uint32_t val) { uint32_t i; val &= 0xfffffffc; if (val <= sctp_mtu_sizes[0]) { return (val); } for (i = 1; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) { if (val <= sctp_mtu_sizes[i]) { break; } } KASSERT((sctp_mtu_sizes[i - 1] & 0x00000003) == 0, ("sctp_mtu_sizes[%u] not a multiple of 4", i - 1)); return (sctp_mtu_sizes[i - 1]); } /* * Return the smallest MTU in sctp_mtu_sizes larger than val. * If val is larger than the maximum, just return the largest multiple of 4 smaller * or equal to val. * Ensure that the result is a multiple of 4. */ uint32_t sctp_get_next_mtu(uint32_t val) { /* select another MTU that is just bigger than this one */ uint32_t i; val &= 0xfffffffc; for (i = 0; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) { if (val < sctp_mtu_sizes[i]) { KASSERT((sctp_mtu_sizes[i] & 0x00000003) == 0, ("sctp_mtu_sizes[%u] not a multiple of 4", i)); return (sctp_mtu_sizes[i]); } } return (val); } void sctp_fill_random_store(struct sctp_pcb *m) { /* * Here we use the MD5/SHA-1 to hash with our good randomNumbers and * our counter. The result becomes our good random numbers and we * then setup to give these out. Note that we do no locking to * protect this. This is ok, since if competing folks call this we * will get more gobbled gook in the random store which is what we * want. There is a danger that two guys will use the same random * numbers, but thats ok too since that is random as well :-> */ m->store_at = 0; (void)sctp_hmac(SCTP_HMAC, (uint8_t *)m->random_numbers, sizeof(m->random_numbers), (uint8_t *)&m->random_counter, sizeof(m->random_counter), (uint8_t *)m->random_store); m->random_counter++; } uint32_t sctp_select_initial_TSN(struct sctp_pcb *inp) { /* * A true implementation should use random selection process to get * the initial stream sequence number, using RFC1750 as a good * guideline */ uint32_t x, *xp; uint8_t *p; int store_at, new_store; if (inp->initial_sequence_debug != 0) { uint32_t ret; ret = inp->initial_sequence_debug; inp->initial_sequence_debug++; return (ret); } retry: store_at = inp->store_at; new_store = store_at + sizeof(uint32_t); if (new_store >= (SCTP_SIGNATURE_SIZE - 3)) { new_store = 0; } if (!atomic_cmpset_int(&inp->store_at, store_at, new_store)) { goto retry; } if (new_store == 0) { /* Refill the random store */ sctp_fill_random_store(inp); } p = &inp->random_store[store_at]; xp = (uint32_t *)p; x = *xp; return (x); } uint32_t sctp_select_a_tag(struct sctp_inpcb *inp, uint16_t lport, uint16_t rport, int check) { uint32_t x; struct timeval now; if (check) { (void)SCTP_GETTIME_TIMEVAL(&now); } for (;;) { x = sctp_select_initial_TSN(&inp->sctp_ep); if (x == 0) { /* we never use 0 */ continue; } if (!check || sctp_is_vtag_good(x, lport, rport, &now)) { break; } } return (x); } int32_t sctp_map_assoc_state(int kernel_state) { int32_t user_state; if (kernel_state & SCTP_STATE_WAS_ABORTED) { user_state = SCTP_CLOSED; } else if (kernel_state & SCTP_STATE_SHUTDOWN_PENDING) { user_state = SCTP_SHUTDOWN_PENDING; } else { switch (kernel_state & SCTP_STATE_MASK) { case SCTP_STATE_EMPTY: user_state = SCTP_CLOSED; break; case SCTP_STATE_INUSE: user_state = SCTP_CLOSED; break; case SCTP_STATE_COOKIE_WAIT: user_state = SCTP_COOKIE_WAIT; break; case SCTP_STATE_COOKIE_ECHOED: user_state = SCTP_COOKIE_ECHOED; break; case SCTP_STATE_OPEN: user_state = SCTP_ESTABLISHED; break; case SCTP_STATE_SHUTDOWN_SENT: user_state = SCTP_SHUTDOWN_SENT; break; case SCTP_STATE_SHUTDOWN_RECEIVED: user_state = SCTP_SHUTDOWN_RECEIVED; break; case SCTP_STATE_SHUTDOWN_ACK_SENT: user_state = SCTP_SHUTDOWN_ACK_SENT; break; default: user_state = SCTP_CLOSED; break; } } return (user_state); } int sctp_init_asoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint32_t override_tag, uint32_t vrf_id, uint16_t o_strms) { struct sctp_association *asoc; /* * Anything set to zero is taken care of by the allocation routine's * bzero */ /* * Up front select what scoping to apply on addresses I tell my peer * Not sure what to do with these right now, we will need to come up * with a way to set them. We may need to pass them through from the * caller in the sctp_aloc_assoc() function. */ int i; #if defined(SCTP_DETAILED_STR_STATS) int j; #endif asoc = &stcb->asoc; /* init all variables to a known value. */ SCTP_SET_STATE(&stcb->asoc, SCTP_STATE_INUSE); asoc->max_burst = inp->sctp_ep.max_burst; asoc->fr_max_burst = inp->sctp_ep.fr_max_burst; asoc->heart_beat_delay = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]); asoc->cookie_life = inp->sctp_ep.def_cookie_life; asoc->sctp_cmt_on_off = inp->sctp_cmt_on_off; asoc->ecn_supported = inp->ecn_supported; asoc->prsctp_supported = inp->prsctp_supported; asoc->idata_supported = inp->idata_supported; asoc->auth_supported = inp->auth_supported; asoc->asconf_supported = inp->asconf_supported; asoc->reconfig_supported = inp->reconfig_supported; asoc->nrsack_supported = inp->nrsack_supported; asoc->pktdrop_supported = inp->pktdrop_supported; asoc->idata_supported = inp->idata_supported; asoc->sctp_cmt_pf = (uint8_t)0; asoc->sctp_frag_point = inp->sctp_frag_point; asoc->sctp_features = inp->sctp_features; asoc->default_dscp = inp->sctp_ep.default_dscp; asoc->max_cwnd = inp->max_cwnd; #ifdef INET6 if (inp->sctp_ep.default_flowlabel) { asoc->default_flowlabel = inp->sctp_ep.default_flowlabel; } else { if (inp->ip_inp.inp.inp_flags & IN6P_AUTOFLOWLABEL) { asoc->default_flowlabel = sctp_select_initial_TSN(&inp->sctp_ep); asoc->default_flowlabel &= 0x000fffff; asoc->default_flowlabel |= 0x80000000; } else { asoc->default_flowlabel = 0; } } #endif asoc->sb_send_resv = 0; if (override_tag) { asoc->my_vtag = override_tag; } else { asoc->my_vtag = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 1); } /* Get the nonce tags */ asoc->my_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0); asoc->peer_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0); asoc->vrf_id = vrf_id; #ifdef SCTP_ASOCLOG_OF_TSNS asoc->tsn_in_at = 0; asoc->tsn_out_at = 0; asoc->tsn_in_wrapped = 0; asoc->tsn_out_wrapped = 0; asoc->cumack_log_at = 0; asoc->cumack_log_atsnt = 0; #endif #ifdef SCTP_FS_SPEC_LOG asoc->fs_index = 0; #endif asoc->refcnt = 0; asoc->assoc_up_sent = 0; asoc->asconf_seq_out = asoc->str_reset_seq_out = asoc->init_seq_number = asoc->sending_seq = sctp_select_initial_TSN(&inp->sctp_ep); asoc->asconf_seq_out_acked = asoc->asconf_seq_out - 1; /* we are optimisitic here */ asoc->peer_supports_nat = 0; asoc->sent_queue_retran_cnt = 0; /* for CMT */ asoc->last_net_cmt_send_started = NULL; /* This will need to be adjusted */ asoc->last_acked_seq = asoc->init_seq_number - 1; asoc->advanced_peer_ack_point = asoc->last_acked_seq; asoc->asconf_seq_in = asoc->last_acked_seq; /* here we are different, we hold the next one we expect */ asoc->str_reset_seq_in = asoc->last_acked_seq + 1; asoc->initial_init_rto_max = inp->sctp_ep.initial_init_rto_max; asoc->initial_rto = inp->sctp_ep.initial_rto; asoc->default_mtu = inp->sctp_ep.default_mtu; asoc->max_init_times = inp->sctp_ep.max_init_times; asoc->max_send_times = inp->sctp_ep.max_send_times; asoc->def_net_failure = inp->sctp_ep.def_net_failure; asoc->def_net_pf_threshold = inp->sctp_ep.def_net_pf_threshold; asoc->free_chunk_cnt = 0; asoc->iam_blocking = 0; asoc->context = inp->sctp_context; asoc->local_strreset_support = inp->local_strreset_support; asoc->def_send = inp->def_send; asoc->delayed_ack = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); asoc->sack_freq = inp->sctp_ep.sctp_sack_freq; asoc->pr_sctp_cnt = 0; asoc->total_output_queue_size = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { asoc->scope.ipv6_addr_legal = 1; if (SCTP_IPV6_V6ONLY(inp) == 0) { asoc->scope.ipv4_addr_legal = 1; } else { asoc->scope.ipv4_addr_legal = 0; } } else { asoc->scope.ipv6_addr_legal = 0; asoc->scope.ipv4_addr_legal = 1; } asoc->my_rwnd = max(SCTP_SB_LIMIT_RCV(inp->sctp_socket), SCTP_MINIMAL_RWND); asoc->peers_rwnd = SCTP_SB_LIMIT_RCV(inp->sctp_socket); asoc->smallest_mtu = inp->sctp_frag_point; asoc->minrto = inp->sctp_ep.sctp_minrto; asoc->maxrto = inp->sctp_ep.sctp_maxrto; asoc->stream_locked_on = 0; asoc->ecn_echo_cnt_onq = 0; asoc->stream_locked = 0; asoc->send_sack = 1; LIST_INIT(&asoc->sctp_restricted_addrs); TAILQ_INIT(&asoc->nets); TAILQ_INIT(&asoc->pending_reply_queue); TAILQ_INIT(&asoc->asconf_ack_sent); /* Setup to fill the hb random cache at first HB */ asoc->hb_random_idx = 4; asoc->sctp_autoclose_ticks = inp->sctp_ep.auto_close_time; stcb->asoc.congestion_control_module = inp->sctp_ep.sctp_default_cc_module; stcb->asoc.cc_functions = sctp_cc_functions[inp->sctp_ep.sctp_default_cc_module]; stcb->asoc.stream_scheduling_module = inp->sctp_ep.sctp_default_ss_module; stcb->asoc.ss_functions = sctp_ss_functions[inp->sctp_ep.sctp_default_ss_module]; /* * Now the stream parameters, here we allocate space for all streams * that we request by default. */ asoc->strm_realoutsize = asoc->streamoutcnt = asoc->pre_open_streams = o_strms; SCTP_MALLOC(asoc->strmout, struct sctp_stream_out *, asoc->streamoutcnt * sizeof(struct sctp_stream_out), SCTP_M_STRMO); if (asoc->strmout == NULL) { /* big trouble no memory */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } for (i = 0; i < asoc->streamoutcnt; i++) { /* * inbound side must be set to 0xffff, also NOTE when we get * the INIT-ACK back (for INIT sender) we MUST reduce the * count (streamoutcnt) but first check if we sent to any of * the upper streams that were dropped (if some were). Those * that were dropped must be notified to the upper layer as * failed to send. */ asoc->strmout[i].next_mid_ordered = 0; asoc->strmout[i].next_mid_unordered = 0; TAILQ_INIT(&asoc->strmout[i].outqueue); asoc->strmout[i].chunks_on_queues = 0; #if defined(SCTP_DETAILED_STR_STATS) for (j = 0; j < SCTP_PR_SCTP_MAX + 1; j++) { asoc->strmout[i].abandoned_sent[j] = 0; asoc->strmout[i].abandoned_unsent[j] = 0; } #else asoc->strmout[i].abandoned_sent[0] = 0; asoc->strmout[i].abandoned_unsent[0] = 0; #endif asoc->strmout[i].sid = i; asoc->strmout[i].last_msg_incomplete = 0; asoc->strmout[i].state = SCTP_STREAM_OPENING; asoc->ss_functions.sctp_ss_init_stream(stcb, &asoc->strmout[i], NULL); } asoc->ss_functions.sctp_ss_init(stcb, asoc, 0); /* Now the mapping array */ asoc->mapping_array_size = SCTP_INITIAL_MAPPING_ARRAY; SCTP_MALLOC(asoc->mapping_array, uint8_t *, asoc->mapping_array_size, SCTP_M_MAP); if (asoc->mapping_array == NULL) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } memset(asoc->mapping_array, 0, asoc->mapping_array_size); SCTP_MALLOC(asoc->nr_mapping_array, uint8_t *, asoc->mapping_array_size, SCTP_M_MAP); if (asoc->nr_mapping_array == NULL) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } memset(asoc->nr_mapping_array, 0, asoc->mapping_array_size); /* Now the init of the other outqueues */ TAILQ_INIT(&asoc->free_chunks); TAILQ_INIT(&asoc->control_send_queue); TAILQ_INIT(&asoc->asconf_send_queue); TAILQ_INIT(&asoc->send_queue); TAILQ_INIT(&asoc->sent_queue); TAILQ_INIT(&asoc->resetHead); asoc->max_inbound_streams = inp->sctp_ep.max_open_streams_intome; TAILQ_INIT(&asoc->asconf_queue); /* authentication fields */ asoc->authinfo.random = NULL; asoc->authinfo.active_keyid = 0; asoc->authinfo.assoc_key = NULL; asoc->authinfo.assoc_keyid = 0; asoc->authinfo.recv_key = NULL; asoc->authinfo.recv_keyid = 0; LIST_INIT(&asoc->shared_keys); asoc->marked_retrans = 0; asoc->port = inp->sctp_ep.port; asoc->timoinit = 0; asoc->timodata = 0; asoc->timosack = 0; asoc->timoshutdown = 0; asoc->timoheartbeat = 0; asoc->timocookie = 0; asoc->timoshutdownack = 0; (void)SCTP_GETTIME_TIMEVAL(&asoc->start_time); asoc->discontinuity_time = asoc->start_time; for (i = 0; i < SCTP_PR_SCTP_MAX + 1; i++) { asoc->abandoned_unsent[i] = 0; asoc->abandoned_sent[i] = 0; } /* * sa_ignore MEMLEAK {memory is put in the assoc mapping array and * freed later when the association is freed. */ return (0); } void sctp_print_mapping_array(struct sctp_association *asoc) { unsigned int i, limit; SCTP_PRINTF("Mapping array size: %d, baseTSN: %8.8x, cumAck: %8.8x, highestTSN: (%8.8x, %8.8x).\n", asoc->mapping_array_size, asoc->mapping_array_base_tsn, asoc->cumulative_tsn, asoc->highest_tsn_inside_map, asoc->highest_tsn_inside_nr_map); for (limit = asoc->mapping_array_size; limit > 1; limit--) { if (asoc->mapping_array[limit - 1] != 0) { break; } } SCTP_PRINTF("Renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit); for (i = 0; i < limit; i++) { SCTP_PRINTF("%2.2x%c", asoc->mapping_array[i], ((i + 1) % 16) ? ' ' : '\n'); } if (limit % 16) SCTP_PRINTF("\n"); for (limit = asoc->mapping_array_size; limit > 1; limit--) { if (asoc->nr_mapping_array[limit - 1]) { break; } } SCTP_PRINTF("Non renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit); for (i = 0; i < limit; i++) { SCTP_PRINTF("%2.2x%c", asoc->nr_mapping_array[i], ((i + 1) % 16) ? ' ' : '\n'); } if (limit % 16) SCTP_PRINTF("\n"); } int sctp_expand_mapping_array(struct sctp_association *asoc, uint32_t needed) { /* mapping array needs to grow */ uint8_t *new_array1, *new_array2; uint32_t new_size; new_size = asoc->mapping_array_size + ((needed + 7) / 8 + SCTP_MAPPING_ARRAY_INCR); SCTP_MALLOC(new_array1, uint8_t *, new_size, SCTP_M_MAP); SCTP_MALLOC(new_array2, uint8_t *, new_size, SCTP_M_MAP); if ((new_array1 == NULL) || (new_array2 == NULL)) { /* can't get more, forget it */ SCTP_PRINTF("No memory for expansion of SCTP mapping array %d\n", new_size); if (new_array1) { SCTP_FREE(new_array1, SCTP_M_MAP); } if (new_array2) { SCTP_FREE(new_array2, SCTP_M_MAP); } return (-1); } memset(new_array1, 0, new_size); memset(new_array2, 0, new_size); memcpy(new_array1, asoc->mapping_array, asoc->mapping_array_size); memcpy(new_array2, asoc->nr_mapping_array, asoc->mapping_array_size); SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->mapping_array = new_array1; asoc->nr_mapping_array = new_array2; asoc->mapping_array_size = new_size; return (0); } static void sctp_iterator_work(struct sctp_iterator *it) { int iteration_count = 0; int inp_skip = 0; int first_in = 1; struct sctp_inpcb *tinp; SCTP_INP_INFO_RLOCK(); SCTP_ITERATOR_LOCK(); sctp_it_ctl.cur_it = it; if (it->inp) { SCTP_INP_RLOCK(it->inp); SCTP_INP_DECR_REF(it->inp); } if (it->inp == NULL) { /* iterator is complete */ done_with_iterator: sctp_it_ctl.cur_it = NULL; SCTP_ITERATOR_UNLOCK(); SCTP_INP_INFO_RUNLOCK(); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); return; } select_a_new_ep: if (first_in) { first_in = 0; } else { SCTP_INP_RLOCK(it->inp); } while (((it->pcb_flags) && ((it->inp->sctp_flags & it->pcb_flags) != it->pcb_flags)) || ((it->pcb_features) && ((it->inp->sctp_features & it->pcb_features) != it->pcb_features))) { /* endpoint flags or features don't match, so keep looking */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { SCTP_INP_RUNLOCK(it->inp); goto done_with_iterator; } tinp = it->inp; it->inp = LIST_NEXT(it->inp, sctp_list); SCTP_INP_RUNLOCK(tinp); if (it->inp == NULL) { goto done_with_iterator; } SCTP_INP_RLOCK(it->inp); } /* now go through each assoc which is in the desired state */ if (it->done_current_ep == 0) { if (it->function_inp != NULL) inp_skip = (*it->function_inp) (it->inp, it->pointer, it->val); it->done_current_ep = 1; } if (it->stcb == NULL) { /* run the per instance function */ it->stcb = LIST_FIRST(&it->inp->sctp_asoc_list); } if ((inp_skip) || it->stcb == NULL) { if (it->function_inp_end != NULL) { inp_skip = (*it->function_inp_end) (it->inp, it->pointer, it->val); } SCTP_INP_RUNLOCK(it->inp); goto no_stcb; } while (it->stcb) { SCTP_TCB_LOCK(it->stcb); if (it->asoc_state && ((it->stcb->asoc.state & it->asoc_state) != it->asoc_state)) { /* not in the right state... keep looking */ SCTP_TCB_UNLOCK(it->stcb); goto next_assoc; } /* see if we have limited out the iterator loop */ iteration_count++; if (iteration_count > SCTP_ITERATOR_MAX_AT_ONCE) { /* Pause to let others grab the lock */ atomic_add_int(&it->stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(it->stcb); SCTP_INP_INCR_REF(it->inp); SCTP_INP_RUNLOCK(it->inp); SCTP_ITERATOR_UNLOCK(); SCTP_INP_INFO_RUNLOCK(); SCTP_INP_INFO_RLOCK(); SCTP_ITERATOR_LOCK(); if (sctp_it_ctl.iterator_flags) { /* We won't be staying here */ SCTP_INP_DECR_REF(it->inp); atomic_add_int(&it->stcb->asoc.refcnt, -1); if (sctp_it_ctl.iterator_flags & SCTP_ITERATOR_STOP_CUR_IT) { sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_IT; goto done_with_iterator; } if (sctp_it_ctl.iterator_flags & SCTP_ITERATOR_STOP_CUR_INP) { sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_INP; goto no_stcb; } /* If we reach here huh? */ SCTP_PRINTF("Unknown it ctl flag %x\n", sctp_it_ctl.iterator_flags); sctp_it_ctl.iterator_flags = 0; } SCTP_INP_RLOCK(it->inp); SCTP_INP_DECR_REF(it->inp); SCTP_TCB_LOCK(it->stcb); atomic_add_int(&it->stcb->asoc.refcnt, -1); iteration_count = 0; } + /* run function on this one */ (*it->function_assoc) (it->inp, it->stcb, it->pointer, it->val); /* * we lie here, it really needs to have its own type but * first I must verify that this won't effect things :-0 */ if (it->no_chunk_output == 0) sctp_chunk_output(it->inp, it->stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); SCTP_TCB_UNLOCK(it->stcb); next_assoc: it->stcb = LIST_NEXT(it->stcb, sctp_tcblist); if (it->stcb == NULL) { /* Run last function */ if (it->function_inp_end != NULL) { inp_skip = (*it->function_inp_end) (it->inp, it->pointer, it->val); } } } SCTP_INP_RUNLOCK(it->inp); no_stcb: /* done with all assocs on this endpoint, move on to next endpoint */ it->done_current_ep = 0; if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { it->inp = NULL; } else { it->inp = LIST_NEXT(it->inp, sctp_list); } if (it->inp == NULL) { goto done_with_iterator; } goto select_a_new_ep; } void sctp_iterator_worker(void) { struct sctp_iterator *it, *nit; /* This function is called with the WQ lock in place */ sctp_it_ctl.iterator_running = 1; TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { /* now lets work on this one */ TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); SCTP_IPI_ITERATOR_WQ_UNLOCK(); CURVNET_SET(it->vn); sctp_iterator_work(it); CURVNET_RESTORE(); SCTP_IPI_ITERATOR_WQ_LOCK(); /* sa_ignore FREED_MEMORY */ } sctp_it_ctl.iterator_running = 0; return; } static void sctp_handle_addr_wq(void) { /* deal with the ADDR wq from the rtsock calls */ struct sctp_laddr *wi, *nwi; struct sctp_asconf_iterator *asc; SCTP_MALLOC(asc, struct sctp_asconf_iterator *, sizeof(struct sctp_asconf_iterator), SCTP_M_ASC_IT); if (asc == NULL) { /* Try later, no memory */ sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); return; } LIST_INIT(&asc->list_of_work); asc->cnt = 0; LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) { LIST_REMOVE(wi, sctp_nxt_addr); LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr); asc->cnt++; } if (asc->cnt == 0) { SCTP_FREE(asc, SCTP_M_ASC_IT); } else { int ret; ret = sctp_initiate_iterator(sctp_asconf_iterator_ep, sctp_asconf_iterator_stcb, NULL, /* No ep end for boundall */ SCTP_PCB_FLAGS_BOUNDALL, SCTP_PCB_ANY_FEATURES, SCTP_ASOC_ANY_STATE, (void *)asc, 0, sctp_asconf_iterator_end, NULL, 0); if (ret) { SCTP_PRINTF("Failed to initiate iterator for handle_addr_wq\n"); /* * Freeing if we are stopping or put back on the * addr_wq. */ if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { sctp_asconf_iterator_end(asc, 0); } else { LIST_FOREACH(wi, &asc->list_of_work, sctp_nxt_addr) { LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); } SCTP_FREE(asc, SCTP_M_ASC_IT); } } } } void sctp_timeout_handler(void *t) { struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_timer *tmr; struct mbuf *op_err; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif int did_output; int type; tmr = (struct sctp_timer *)t; inp = (struct sctp_inpcb *)tmr->ep; stcb = (struct sctp_tcb *)tmr->tcb; net = (struct sctp_nets *)tmr->net; CURVNET_SET((struct vnet *)tmr->vnet); did_output = 1; #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xF0, (uint8_t)tmr->type); sctp_auditing(3, inp, stcb, net); #endif /* sanity checks... */ if (tmr->self != (void *)tmr) { /* * SCTP_PRINTF("Stale SCTP timer fired (%p), ignoring...\n", * (void *)tmr); */ CURVNET_RESTORE(); return; } tmr->stopped_from = 0xa001; if (!SCTP_IS_TIMER_TYPE_VALID(tmr->type)) { /* * SCTP_PRINTF("SCTP timer fired with invalid type: 0x%x\n", * tmr->type); */ CURVNET_RESTORE(); return; } tmr->stopped_from = 0xa002; if ((tmr->type != SCTP_TIMER_TYPE_ADDR_WQ) && (inp == NULL)) { CURVNET_RESTORE(); return; } /* if this is an iterator timeout, get the struct and clear inp */ tmr->stopped_from = 0xa003; if (inp) { SCTP_INP_INCR_REF(inp); if ((inp->sctp_socket == NULL) && ((tmr->type != SCTP_TIMER_TYPE_INPKILL) && (tmr->type != SCTP_TIMER_TYPE_INIT) && (tmr->type != SCTP_TIMER_TYPE_SEND) && (tmr->type != SCTP_TIMER_TYPE_RECV) && (tmr->type != SCTP_TIMER_TYPE_HEARTBEAT) && (tmr->type != SCTP_TIMER_TYPE_SHUTDOWN) && (tmr->type != SCTP_TIMER_TYPE_SHUTDOWNACK) && (tmr->type != SCTP_TIMER_TYPE_SHUTDOWNGUARD) && (tmr->type != SCTP_TIMER_TYPE_ASOCKILL))) { SCTP_INP_DECR_REF(inp); CURVNET_RESTORE(); return; } } tmr->stopped_from = 0xa004; if (stcb) { atomic_add_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state == 0) { atomic_add_int(&stcb->asoc.refcnt, -1); if (inp) { SCTP_INP_DECR_REF(inp); } CURVNET_RESTORE(); return; } } type = tmr->type; tmr->stopped_from = 0xa005; SCTPDBG(SCTP_DEBUG_TIMER1, "Timer type %d goes off\n", type); if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) { if (inp) { SCTP_INP_DECR_REF(inp); } if (stcb) { atomic_add_int(&stcb->asoc.refcnt, -1); } CURVNET_RESTORE(); return; } tmr->stopped_from = 0xa006; if (stcb) { SCTP_TCB_LOCK(stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if ((type != SCTP_TIMER_TYPE_ASOCKILL) && ((stcb->asoc.state == 0) || (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED))) { SCTP_TCB_UNLOCK(stcb); if (inp) { SCTP_INP_DECR_REF(inp); } CURVNET_RESTORE(); return; } } else if (inp != NULL) { if (type != SCTP_TIMER_TYPE_INPKILL) { SCTP_INP_WLOCK(inp); } } else { SCTP_WQ_ADDR_LOCK(); } /* record in stopped what t-o occurred */ tmr->stopped_from = type; /* mark as being serviced now */ if (SCTP_OS_TIMER_PENDING(&tmr->timer)) { /* * Callout has been rescheduled. */ goto get_out; } if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) { /* * Not active, so no action. */ goto get_out; } SCTP_OS_TIMER_DEACTIVATE(&tmr->timer); /* call the handler for the appropriate timer type */ switch (type) { case SCTP_TIMER_TYPE_ADDR_WQ: sctp_handle_addr_wq(); break; case SCTP_TIMER_TYPE_SEND: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timodata); stcb->asoc.timodata++; stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } SCTP_TCB_LOCK_ASSERT(stcb); if (sctp_t3rxt_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); if ((stcb->asoc.num_send_timers_up == 0) && (stcb->asoc.sent_queue_cnt > 0)) { struct sctp_tmit_chunk *chk; /* * safeguard. If there on some on the sent queue * somewhere but no timers running something is * wrong... so we start a timer on the first chunk * on the send queue on whatever net it is sent to. */ chk = TAILQ_FIRST(&stcb->asoc.sent_queue); sctp_timer_start(SCTP_TIMER_TYPE_SEND, inp, stcb, chk->whoTo); } break; case SCTP_TIMER_TYPE_INIT: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timoinit); stcb->asoc.timoinit++; if (sctp_t1init_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } /* We do output but not here */ did_output = 0; break; case SCTP_TIMER_TYPE_RECV: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timosack); stcb->asoc.timosack++; sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SACK_TMR, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_SHUTDOWN: if ((stcb == NULL) || (inp == NULL)) { break; } if (sctp_shutdown_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timoshutdown); stcb->asoc.timoshutdown++; #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_HEARTBEAT: if ((stcb == NULL) || (inp == NULL) || (net == NULL)) { break; } SCTP_STAT_INCR(sctps_timoheartbeat); stcb->asoc.timoheartbeat++; if (sctp_heartbeat_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif if (!(net->dest_state & SCTP_ADDR_NOHB)) { sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_HB_TMR, SCTP_SO_NOT_LOCKED); } break; case SCTP_TIMER_TYPE_COOKIE: if ((stcb == NULL) || (inp == NULL)) { break; } + if (sctp_cookie_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timocookie); stcb->asoc.timocookie++; #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif /* * We consider T3 and Cookie timer pretty much the same with * respect to where from in chunk_output. */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_NEWCOOKIE: { struct timeval tv; int i, secret; if (inp == NULL) { break; } SCTP_STAT_INCR(sctps_timosecret); (void)SCTP_GETTIME_TIMEVAL(&tv); inp->sctp_ep.time_of_secret_change = tv.tv_sec; inp->sctp_ep.last_secret_number = inp->sctp_ep.current_secret_number; inp->sctp_ep.current_secret_number++; if (inp->sctp_ep.current_secret_number >= SCTP_HOW_MANY_SECRETS) { inp->sctp_ep.current_secret_number = 0; } secret = (int)inp->sctp_ep.current_secret_number; for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) { inp->sctp_ep.secret_key[secret][i] = sctp_select_initial_TSN(&inp->sctp_ep); } sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, stcb, net); } did_output = 0; break; case SCTP_TIMER_TYPE_PATHMTURAISE: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timopathmtu); sctp_pathmtu_timer(inp, stcb, net); did_output = 0; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: if ((stcb == NULL) || (inp == NULL)) { break; } if (sctp_shutdownack_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timoshutdownack); stcb->asoc.timoshutdownack++; #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_ACK_TMR, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timoshutdownguard); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Shutdown guard timer expired"); sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED); /* no need to unlock on tcb its gone */ goto out_decr; case SCTP_TIMER_TYPE_STRRESET: if ((stcb == NULL) || (inp == NULL)) { break; } if (sctp_strreset_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timostrmrst); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_TMR, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_ASCONF: if ((stcb == NULL) || (inp == NULL)) { break; } if (sctp_asconf_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timoasconf); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_ASCONF_TMR, SCTP_SO_NOT_LOCKED); break; case SCTP_TIMER_TYPE_PRIM_DELETED: if ((stcb == NULL) || (inp == NULL)) { break; } sctp_delete_prim_timer(inp, stcb, net); SCTP_STAT_INCR(sctps_timodelprim); break; case SCTP_TIMER_TYPE_AUTOCLOSE: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timoautoclose); sctp_autoclose_timer(inp, stcb, net); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_AUTOCLOSE_TMR, SCTP_SO_NOT_LOCKED); did_output = 0; break; case SCTP_TIMER_TYPE_ASOCKILL: if ((stcb == NULL) || (inp == NULL)) { break; } SCTP_STAT_INCR(sctps_timoassockill); /* Can we free it yet? */ SCTP_INP_DECR_REF(inp); sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_1); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_2); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif /* * free asoc, always unlocks (or destroy's) so prevent * duplicate unlock or unlock of a free mtx :-0 */ stcb = NULL; goto out_no_decr; case SCTP_TIMER_TYPE_INPKILL: SCTP_STAT_INCR(sctps_timoinpkill); if (inp == NULL) { break; } /* * special case, take away our increment since WE are the * killer */ SCTP_INP_DECR_REF(inp); sctp_timer_stop(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_3); sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_FROM_INPKILL_TIMER); inp = NULL; goto out_no_decr; default: SCTPDBG(SCTP_DEBUG_TIMER1, "sctp_timeout_handler:unknown timer %d\n", type); break; } #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xF1, (uint8_t)type); if (inp) sctp_auditing(5, inp, stcb, net); #endif if ((did_output) && stcb) { /* * Now we need to clean up the control chunk chain if an * ECNE is on it. It must be marked as UNSENT again so next * call will continue to send it until such time that we get * a CWR, to remove it. It is, however, less likely that we * will find a ecn echo on the chain though. */ sctp_fix_ecn_echo(&stcb->asoc); } get_out: if (stcb) { SCTP_TCB_UNLOCK(stcb); } else if (inp != NULL) { SCTP_INP_WUNLOCK(inp); } else { SCTP_WQ_ADDR_UNLOCK(); } out_decr: if (inp) { SCTP_INP_DECR_REF(inp); } + out_no_decr: SCTPDBG(SCTP_DEBUG_TIMER1, "Timer now complete (type = %d)\n", type); CURVNET_RESTORE(); } void sctp_timer_start(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { uint32_t to_ticks; struct sctp_timer *tmr; if ((t_type != SCTP_TIMER_TYPE_ADDR_WQ) && (inp == NULL)) return; tmr = NULL; if (stcb) { SCTP_TCB_LOCK_ASSERT(stcb); } switch (t_type) { case SCTP_TIMER_TYPE_ADDR_WQ: /* Only 1 tick away :-) */ tmr = &SCTP_BASE_INFO(addr_wq_timer); to_ticks = SCTP_ADDRESS_TICK_DELAY; break; case SCTP_TIMER_TYPE_SEND: /* Here we use the RTO timer */ { int rto_val; if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; if (net->RTO == 0) { rto_val = stcb->asoc.initial_rto; } else { rto_val = net->RTO; } to_ticks = MSEC_TO_TICKS(rto_val); } break; case SCTP_TIMER_TYPE_INIT: /* * Here we use the INIT timer default usually about 1 * minute. */ if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } break; case SCTP_TIMER_TYPE_RECV: /* * Here we use the Delayed-Ack timer value from the inp * ususually about 200ms. */ if (stcb == NULL) { return; } tmr = &stcb->asoc.dack_timer; to_ticks = MSEC_TO_TICKS(stcb->asoc.delayed_ack); break; case SCTP_TIMER_TYPE_SHUTDOWN: /* Here we use the RTO of the destination. */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_HEARTBEAT: /* * the net is used here so that we can add in the RTO. Even * though we use a different timer. We also add the HB timer * PLUS a random jitter. */ if ((stcb == NULL) || (net == NULL)) { return; } else { uint32_t rndval; uint32_t jitter; if ((net->dest_state & SCTP_ADDR_NOHB) && !(net->dest_state & SCTP_ADDR_UNCONFIRMED)) { return; } if (net->RTO == 0) { to_ticks = stcb->asoc.initial_rto; } else { to_ticks = net->RTO; } rndval = sctp_select_initial_TSN(&inp->sctp_ep); jitter = rndval % to_ticks; if (jitter >= (to_ticks >> 1)) { to_ticks = to_ticks + (jitter - (to_ticks >> 1)); } else { to_ticks = to_ticks - jitter; } if (!(net->dest_state & SCTP_ADDR_UNCONFIRMED) && !(net->dest_state & SCTP_ADDR_PF)) { to_ticks += net->heart_beat_delay; } /* * Now we must convert the to_ticks that are now in * ms to ticks. */ to_ticks = MSEC_TO_TICKS(to_ticks); tmr = &net->hb_timer; } break; case SCTP_TIMER_TYPE_COOKIE: /* * Here we can use the RTO timer from the network since one * RTT was compelete. If a retran happened then we will be * using the RTO initial value. */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_NEWCOOKIE: /* * nothing needed but the endpoint here ususually about 60 * minutes. */ tmr = &inp->sctp_ep.signature_change; to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_SIGNATURE]; break; case SCTP_TIMER_TYPE_ASOCKILL: if (stcb == NULL) { return; } tmr = &stcb->asoc.strreset_timer; to_ticks = MSEC_TO_TICKS(SCTP_ASOC_KILL_TIMEOUT); break; case SCTP_TIMER_TYPE_INPKILL: /* * The inp is setup to die. We re-use the signature_chage * timer since that has stopped and we are in the GONE * state. */ tmr = &inp->sctp_ep.signature_change; to_ticks = MSEC_TO_TICKS(SCTP_INP_KILL_TIMEOUT); break; case SCTP_TIMER_TYPE_PATHMTURAISE: /* * Here we use the value found in the EP for PMTU ususually * about 10 minutes. */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->dest_state & SCTP_ADDR_NO_PMTUD) { return; } to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_PMTU]; tmr = &net->pmtu_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: /* Here we use the RTO of the destination */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: /* * Here we use the endpoints shutdown guard timer usually * about 3 minutes. */ if (stcb == NULL) { return; } if (inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] == 0) { to_ticks = 5 * MSEC_TO_TICKS(stcb->asoc.maxrto); } else { to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN]; } tmr = &stcb->asoc.shut_guard_timer; break; case SCTP_TIMER_TYPE_STRRESET: /* * Here the timer comes from the stcb but its value is from * the net's RTO. */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } tmr = &stcb->asoc.strreset_timer; break; case SCTP_TIMER_TYPE_ASCONF: /* * Here the timer comes from the stcb but its value is from * the net's RTO. */ if ((stcb == NULL) || (net == NULL)) { return; } if (net->RTO == 0) { to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); } else { to_ticks = MSEC_TO_TICKS(net->RTO); } tmr = &stcb->asoc.asconf_timer; break; case SCTP_TIMER_TYPE_PRIM_DELETED: if ((stcb == NULL) || (net != NULL)) { return; } to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto); tmr = &stcb->asoc.delete_prim_timer; break; case SCTP_TIMER_TYPE_AUTOCLOSE: if (stcb == NULL) { return; } if (stcb->asoc.sctp_autoclose_ticks == 0) { /* * Really an error since stcb is NOT set to * autoclose */ return; } to_ticks = stcb->asoc.sctp_autoclose_ticks; tmr = &stcb->asoc.autoclose_timer; break; default: SCTPDBG(SCTP_DEBUG_TIMER1, "%s: Unknown timer type %d\n", __func__, t_type); return; break; } if ((to_ticks <= 0) || (tmr == NULL)) { SCTPDBG(SCTP_DEBUG_TIMER1, "%s: %d:software error to_ticks:%d tmr:%p not set ??\n", __func__, t_type, to_ticks, (void *)tmr); return; } if (SCTP_OS_TIMER_PENDING(&tmr->timer)) { /* * we do NOT allow you to have it already running. if it is * we leave the current one up unchanged */ return; } /* At this point we can proceed */ if (t_type == SCTP_TIMER_TYPE_SEND) { stcb->asoc.num_send_timers_up++; } tmr->stopped_from = 0; tmr->type = t_type; tmr->ep = (void *)inp; tmr->tcb = (void *)stcb; tmr->net = (void *)net; tmr->self = (void *)tmr; tmr->vnet = (void *)curvnet; tmr->ticks = sctp_get_tick_count(); (void)SCTP_OS_TIMER_START(&tmr->timer, to_ticks, sctp_timeout_handler, tmr); return; } void sctp_timer_stop(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t from) { struct sctp_timer *tmr; if ((t_type != SCTP_TIMER_TYPE_ADDR_WQ) && (inp == NULL)) return; tmr = NULL; if (stcb) { SCTP_TCB_LOCK_ASSERT(stcb); } switch (t_type) { case SCTP_TIMER_TYPE_ADDR_WQ: tmr = &SCTP_BASE_INFO(addr_wq_timer); break; case SCTP_TIMER_TYPE_SEND: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_INIT: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_RECV: if (stcb == NULL) { return; } tmr = &stcb->asoc.dack_timer; break; case SCTP_TIMER_TYPE_SHUTDOWN: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_HEARTBEAT: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->hb_timer; break; case SCTP_TIMER_TYPE_COOKIE: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_NEWCOOKIE: /* nothing needed but the endpoint here */ tmr = &inp->sctp_ep.signature_change; /* * We re-use the newcookie timer for the INP kill timer. We * must assure that we do not kill it by accident. */ break; case SCTP_TIMER_TYPE_ASOCKILL: /* * Stop the asoc kill timer. */ if (stcb == NULL) { return; } tmr = &stcb->asoc.strreset_timer; break; case SCTP_TIMER_TYPE_INPKILL: /* * The inp is setup to die. We re-use the signature_chage * timer since that has stopped and we are in the GONE * state. */ tmr = &inp->sctp_ep.signature_change; break; case SCTP_TIMER_TYPE_PATHMTURAISE: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->pmtu_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: if ((stcb == NULL) || (net == NULL)) { return; } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: if (stcb == NULL) { return; } tmr = &stcb->asoc.shut_guard_timer; break; case SCTP_TIMER_TYPE_STRRESET: if (stcb == NULL) { return; } tmr = &stcb->asoc.strreset_timer; break; case SCTP_TIMER_TYPE_ASCONF: if (stcb == NULL) { return; } tmr = &stcb->asoc.asconf_timer; break; case SCTP_TIMER_TYPE_PRIM_DELETED: if (stcb == NULL) { return; } tmr = &stcb->asoc.delete_prim_timer; break; case SCTP_TIMER_TYPE_AUTOCLOSE: if (stcb == NULL) { return; } tmr = &stcb->asoc.autoclose_timer; break; default: SCTPDBG(SCTP_DEBUG_TIMER1, "%s: Unknown timer type %d\n", __func__, t_type); break; } if (tmr == NULL) { return; } if ((tmr->type != t_type) && tmr->type) { /* * Ok we have a timer that is under joint use. Cookie timer * per chance with the SEND timer. We therefore are NOT * running the timer that the caller wants stopped. So just * return. */ return; } if ((t_type == SCTP_TIMER_TYPE_SEND) && (stcb != NULL)) { stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } } tmr->self = NULL; tmr->stopped_from = from; (void)SCTP_OS_TIMER_STOP(&tmr->timer); return; } uint32_t sctp_calculate_len(struct mbuf *m) { uint32_t tlen = 0; struct mbuf *at; at = m; while (at) { tlen += SCTP_BUF_LEN(at); at = SCTP_BUF_NEXT(at); } return (tlen); } void sctp_mtu_size_reset(struct sctp_inpcb *inp, struct sctp_association *asoc, uint32_t mtu) { /* * Reset the P-MTU size on this association, this involves changing * the asoc MTU, going through ANY chunk+overhead larger than mtu to * allow the DF flag to be cleared. */ struct sctp_tmit_chunk *chk; unsigned int eff_mtu, ovh; asoc->smallest_mtu = mtu; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MIN_OVERHEAD; } else { ovh = SCTP_MIN_V4_OVERHEAD; } eff_mtu = mtu - ovh; TAILQ_FOREACH(chk, &asoc->send_queue, sctp_next) { if (chk->send_size > eff_mtu) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } } TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) { if (chk->send_size > eff_mtu) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } } } /* * given an association and starting time of the current RTT period return * RTO in number of msecs net should point to the current network */ uint32_t sctp_calculate_rto(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_nets *net, struct timeval *old, int rtt_from_sack) { /*- * given an association and the starting time of the current RTT * period (in value1/value2) return RTO in number of msecs. */ int32_t rtt; /* RTT in ms */ uint32_t new_rto; int first_measure = 0; struct timeval now; /************************/ /* 1. calculate new RTT */ /************************/ /* get the current time */ if (stcb->asoc.use_precise_time) { (void)SCTP_GETPTIME_TIMEVAL(&now); } else { (void)SCTP_GETTIME_TIMEVAL(&now); } timevalsub(&now, old); /* store the current RTT in us */ - net->rtt = (uint64_t)1000000 *(uint64_t)now.tv_sec + - (uint64_t)now.tv_usec; - + net->rtt = (uint64_t)1000000 * (uint64_t)now.tv_sec + + (uint64_t)now.tv_usec; /* compute rtt in ms */ rtt = (int32_t)(net->rtt / 1000); if ((asoc->cc_functions.sctp_rtt_calculated) && (rtt_from_sack == SCTP_RTT_FROM_DATA)) { /* * Tell the CC module that a new update has just occurred * from a sack */ (*asoc->cc_functions.sctp_rtt_calculated) (stcb, net, &now); } /* * Do we need to determine the lan? We do this only on sacks i.e. * RTT being determined from data not non-data (HB/INIT->INITACK). */ if ((rtt_from_sack == SCTP_RTT_FROM_DATA) && (net->lan_type == SCTP_LAN_UNKNOWN)) { if (net->rtt > SCTP_LOCAL_LAN_RTT) { net->lan_type = SCTP_LAN_INTERNET; } else { net->lan_type = SCTP_LAN_LOCAL; } } + /***************************/ /* 2. update RTTVAR & SRTT */ /***************************/ /*- * Compute the scaled average lastsa and the * scaled variance lastsv as described in van Jacobson * Paper "Congestion Avoidance and Control", Annex A. * * (net->lastsa >> SCTP_RTT_SHIFT) is the srtt * (net->lastsa >> SCTP_RTT_VAR_SHIFT) is the rttvar */ if (net->RTO_measured) { rtt -= (net->lastsa >> SCTP_RTT_SHIFT); net->lastsa += rtt; if (rtt < 0) { rtt = -rtt; } rtt -= (net->lastsv >> SCTP_RTT_VAR_SHIFT); net->lastsv += rtt; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) { rto_logging(net, SCTP_LOG_RTTVAR); } } else { /* First RTO measurment */ net->RTO_measured = 1; first_measure = 1; net->lastsa = rtt << SCTP_RTT_SHIFT; net->lastsv = (rtt / 2) << SCTP_RTT_VAR_SHIFT; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) { rto_logging(net, SCTP_LOG_INITIAL_RTT); } } if (net->lastsv == 0) { net->lastsv = SCTP_CLOCK_GRANULARITY; } new_rto = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv; if ((new_rto > SCTP_SAT_NETWORK_MIN) && (stcb->asoc.sat_network_lockout == 0)) { stcb->asoc.sat_network = 1; } else if ((!first_measure) && stcb->asoc.sat_network) { stcb->asoc.sat_network = 0; stcb->asoc.sat_network_lockout = 1; } /* bound it, per C6/C7 in Section 5.3.1 */ if (new_rto < stcb->asoc.minrto) { new_rto = stcb->asoc.minrto; } if (new_rto > stcb->asoc.maxrto) { new_rto = stcb->asoc.maxrto; } /* we are now returning the RTO */ return (new_rto); } /* * return a pointer to a contiguous piece of data from the given mbuf chain * starting at 'off' for 'len' bytes. If the desired piece spans more than * one mbuf, a copy is made at 'ptr'. caller must ensure that the buffer size * is >= 'len' returns NULL if there there isn't 'len' bytes in the chain. */ caddr_t sctp_m_getptr(struct mbuf *m, int off, int len, uint8_t *in_ptr) { uint32_t count; uint8_t *ptr; ptr = in_ptr; if ((off < 0) || (len <= 0)) return (NULL); /* find the desired start location */ while ((m != NULL) && (off > 0)) { if (off < SCTP_BUF_LEN(m)) break; off -= SCTP_BUF_LEN(m); m = SCTP_BUF_NEXT(m); } if (m == NULL) return (NULL); /* is the current mbuf large enough (eg. contiguous)? */ if ((SCTP_BUF_LEN(m) - off) >= len) { return (mtod(m, caddr_t)+off); } else { /* else, it spans more than one mbuf, so save a temp copy... */ while ((m != NULL) && (len > 0)) { count = min(SCTP_BUF_LEN(m) - off, len); memcpy(ptr, mtod(m, caddr_t)+off, count); len -= count; ptr += count; off = 0; m = SCTP_BUF_NEXT(m); } if ((m == NULL) && (len > 0)) return (NULL); else return ((caddr_t)in_ptr); } } struct sctp_paramhdr * sctp_get_next_param(struct mbuf *m, int offset, struct sctp_paramhdr *pull, int pull_limit) { /* This just provides a typed signature to Peter's Pull routine */ return ((struct sctp_paramhdr *)sctp_m_getptr(m, offset, pull_limit, (uint8_t *)pull)); } struct mbuf * sctp_add_pad_tombuf(struct mbuf *m, int padlen) { struct mbuf *m_last; caddr_t dp; if (padlen > 3) { return (NULL); } if (padlen <= M_TRAILINGSPACE(m)) { /* * The easy way. We hope the majority of the time we hit * here :) */ m_last = m; } else { /* Hard way we must grow the mbuf chain */ m_last = sctp_get_mbuf_for_msg(padlen, 0, M_NOWAIT, 1, MT_DATA); if (m_last == NULL) { return (NULL); } SCTP_BUF_LEN(m_last) = 0; SCTP_BUF_NEXT(m_last) = NULL; SCTP_BUF_NEXT(m) = m_last; } dp = mtod(m_last, caddr_t)+SCTP_BUF_LEN(m_last); SCTP_BUF_LEN(m_last) += padlen; memset(dp, 0, padlen); return (m_last); } struct mbuf * sctp_pad_lastmbuf(struct mbuf *m, int padval, struct mbuf *last_mbuf) { /* find the last mbuf in chain and pad it */ struct mbuf *m_at; if (last_mbuf != NULL) { return (sctp_add_pad_tombuf(last_mbuf, padval)); } else { for (m_at = m; m_at; m_at = SCTP_BUF_NEXT(m_at)) { if (SCTP_BUF_NEXT(m_at) == NULL) { return (sctp_add_pad_tombuf(m_at, padval)); } } } return (NULL); } static void sctp_notify_assoc_change(uint16_t state, struct sctp_tcb *stcb, uint16_t error, struct sctp_abort_chunk *abort, uint8_t from_peer, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_assoc_change *sac; struct sctp_queued_to_read *control; unsigned int notif_len; uint16_t abort_len; unsigned int i; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif if (stcb == NULL) { return; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVASSOCEVNT)) { notif_len = (unsigned int)sizeof(struct sctp_assoc_change); if (abort != NULL) { abort_len = ntohs(abort->ch.chunk_length); /* * Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be * contiguous. */ if (abort_len > SCTP_CHUNK_BUFFER_SIZE) { abort_len = SCTP_CHUNK_BUFFER_SIZE; } } else { abort_len = 0; } if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) { notif_len += SCTP_ASSOC_SUPPORTS_MAX; } else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) { notif_len += abort_len; } m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* Retry with smaller value. */ notif_len = (unsigned int)sizeof(struct sctp_assoc_change); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { goto set_error; } } SCTP_BUF_NEXT(m_notify) = NULL; sac = mtod(m_notify, struct sctp_assoc_change *); memset(sac, 0, notif_len); sac->sac_type = SCTP_ASSOC_CHANGE; sac->sac_flags = 0; sac->sac_length = sizeof(struct sctp_assoc_change); sac->sac_state = state; sac->sac_error = error; /* XXX verify these stream counts */ sac->sac_outbound_streams = stcb->asoc.streamoutcnt; sac->sac_inbound_streams = stcb->asoc.streamincnt; sac->sac_assoc_id = sctp_get_associd(stcb); if (notif_len > sizeof(struct sctp_assoc_change)) { if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) { i = 0; if (stcb->asoc.prsctp_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_PR; } if (stcb->asoc.auth_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_AUTH; } if (stcb->asoc.asconf_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_ASCONF; } if (stcb->asoc.idata_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_INTERLEAVING; } sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_MULTIBUF; if (stcb->asoc.reconfig_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_RE_CONFIG; } sac->sac_length += i; } else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) { memcpy(sac->sac_info, abort, abort_len); sac->sac_length += abort_len; } } SCTP_BUF_LEN(m_notify) = sac->sac_length; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control != NULL) { control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } else { sctp_m_freem(m_notify); } } /* * For 1-to-1 style sockets, we send up and error when an ABORT * comes in. */ set_error: if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) { SOCK_LOCK(stcb->sctp_socket); if (from_peer) { if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_WAIT) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNREFUSED); stcb->sctp_socket->so_error = ECONNREFUSED; } else { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET); stcb->sctp_socket->so_error = ECONNRESET; } } else { if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_ECHOED)) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ETIMEDOUT); stcb->sctp_socket->so_error = ETIMEDOUT; } else { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNABORTED); stcb->sctp_socket->so_error = ECONNABORTED; } } } /* Wake ANY sleepers */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(stcb->sctp_ep); if (!so_locked) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { SCTP_SOCKET_UNLOCK(so, 1); return; } } #endif if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) { socantrcvmore_locked(stcb->sctp_socket); } sorwakeup(stcb->sctp_socket); sowwakeup(stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { SCTP_SOCKET_UNLOCK(so, 1); } #endif } static void sctp_notify_peer_addr_change(struct sctp_tcb *stcb, uint32_t state, struct sockaddr *sa, uint32_t error, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_paddr_change *spc; struct sctp_queued_to_read *control; if ((stcb == NULL) || sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPADDREVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_paddr_change), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) return; SCTP_BUF_LEN(m_notify) = 0; spc = mtod(m_notify, struct sctp_paddr_change *); memset(spc, 0, sizeof(struct sctp_paddr_change)); spc->spc_type = SCTP_PEER_ADDR_CHANGE; spc->spc_flags = 0; spc->spc_length = sizeof(struct sctp_paddr_change); switch (sa->sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { in6_sin_2_v4mapsin6((struct sockaddr_in *)sa, (struct sockaddr_in6 *)&spc->spc_aaddr); } else { memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in)); } #else memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in)); #endif break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in6)); sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { if (sin6->sin6_scope_id == 0) { /* recover scope_id for user */ (void)sa6_recoverscope(sin6); } else { /* clear embedded scope_id for user */ in6_clearscope(&sin6->sin6_addr); } } break; } #endif default: /* TSNH */ break; } spc->spc_state = state; spc->spc_error = error; spc->spc_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_paddr_change); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } static void sctp_notify_send_failed(struct sctp_tcb *stcb, uint8_t sent, uint32_t error, struct sctp_tmit_chunk *chk, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_send_failed *ssf; struct sctp_send_failed_event *ssfe; struct sctp_queued_to_read *control; struct sctp_chunkhdr *chkhdr; int notifhdr_len, chk_len, chkhdr_len, padding_len, payload_len; if ((stcb == NULL) || (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) && sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT))) { /* event not enabled */ return; } + if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { notifhdr_len = sizeof(struct sctp_send_failed_event); } else { notifhdr_len = sizeof(struct sctp_send_failed); } m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = notifhdr_len; if (stcb->asoc.idata_supported) { chkhdr_len = sizeof(struct sctp_idata_chunk); } else { chkhdr_len = sizeof(struct sctp_data_chunk); } /* Use some defaults in case we can't access the chunk header */ if (chk->send_size >= chkhdr_len) { payload_len = chk->send_size - chkhdr_len; } else { payload_len = 0; } padding_len = 0; if (chk->data != NULL) { chkhdr = mtod(chk->data, struct sctp_chunkhdr *); if (chkhdr != NULL) { chk_len = ntohs(chkhdr->chunk_length); if ((chk_len >= chkhdr_len) && (chk->send_size >= chk_len) && (chk->send_size - chk_len < 4)) { padding_len = chk->send_size - chk_len; payload_len = chk->send_size - chkhdr_len - padding_len; } } } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { ssfe = mtod(m_notify, struct sctp_send_failed_event *); memset(ssfe, 0, notifhdr_len); ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT; if (sent) { ssfe->ssfe_flags = SCTP_DATA_SENT; } else { ssfe->ssfe_flags = SCTP_DATA_UNSENT; } ssfe->ssfe_length = (uint32_t)(notifhdr_len + payload_len); ssfe->ssfe_error = error; /* not exactly what the user sent in, but should be close :) */ ssfe->ssfe_info.snd_sid = chk->rec.data.sid; ssfe->ssfe_info.snd_flags = chk->rec.data.rcv_flags; ssfe->ssfe_info.snd_ppid = chk->rec.data.ppid; ssfe->ssfe_info.snd_context = chk->rec.data.context; ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb); ssfe->ssfe_assoc_id = sctp_get_associd(stcb); } else { ssf = mtod(m_notify, struct sctp_send_failed *); memset(ssf, 0, notifhdr_len); ssf->ssf_type = SCTP_SEND_FAILED; if (sent) { ssf->ssf_flags = SCTP_DATA_SENT; } else { ssf->ssf_flags = SCTP_DATA_UNSENT; } ssf->ssf_length = (uint32_t)(notifhdr_len + payload_len); ssf->ssf_error = error; /* not exactly what the user sent in, but should be close :) */ ssf->ssf_info.sinfo_stream = chk->rec.data.sid; ssf->ssf_info.sinfo_ssn = (uint16_t)chk->rec.data.mid; ssf->ssf_info.sinfo_flags = chk->rec.data.rcv_flags; ssf->ssf_info.sinfo_ppid = chk->rec.data.ppid; ssf->ssf_info.sinfo_context = chk->rec.data.context; ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb); ssf->ssf_assoc_id = sctp_get_associd(stcb); } if (chk->data != NULL) { /* Trim off the sctp chunk header (it should be there) */ if (chk->send_size == chkhdr_len + payload_len + padding_len) { m_adj(chk->data, chkhdr_len); m_adj(chk->data, -padding_len); sctp_mbuf_crush(chk->data); chk->send_size -= (chkhdr_len + padding_len); } } SCTP_BUF_NEXT(m_notify) = chk->data; /* Steal off the mbuf */ chk->data = NULL; /* * For this case, we check the actual socket buffer, since the assoc * is going away we don't want to overfill the socket buffer for a * non-reader */ if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } static void sctp_notify_send_failed2(struct sctp_tcb *stcb, uint32_t error, struct sctp_stream_queue_pending *sp, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_send_failed *ssf; struct sctp_send_failed_event *ssfe; struct sctp_queued_to_read *control; int notifhdr_len; if ((stcb == NULL) || (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) && sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT))) { /* event not enabled */ return; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { notifhdr_len = sizeof(struct sctp_send_failed_event); } else { notifhdr_len = sizeof(struct sctp_send_failed); } m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* no space left */ return; } SCTP_BUF_LEN(m_notify) = notifhdr_len; if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { ssfe = mtod(m_notify, struct sctp_send_failed_event *); memset(ssfe, 0, notifhdr_len); ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT; ssfe->ssfe_flags = SCTP_DATA_UNSENT; ssfe->ssfe_length = (uint32_t)(notifhdr_len + sp->length); ssfe->ssfe_error = error; /* not exactly what the user sent in, but should be close :) */ ssfe->ssfe_info.snd_sid = sp->sid; if (sp->some_taken) { ssfe->ssfe_info.snd_flags = SCTP_DATA_LAST_FRAG; } else { ssfe->ssfe_info.snd_flags = SCTP_DATA_NOT_FRAG; } ssfe->ssfe_info.snd_ppid = sp->ppid; ssfe->ssfe_info.snd_context = sp->context; ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb); ssfe->ssfe_assoc_id = sctp_get_associd(stcb); } else { ssf = mtod(m_notify, struct sctp_send_failed *); memset(ssf, 0, notifhdr_len); ssf->ssf_type = SCTP_SEND_FAILED; ssf->ssf_flags = SCTP_DATA_UNSENT; ssf->ssf_length = (uint32_t)(notifhdr_len + sp->length); ssf->ssf_error = error; /* not exactly what the user sent in, but should be close :) */ ssf->ssf_info.sinfo_stream = sp->sid; ssf->ssf_info.sinfo_ssn = 0; if (sp->some_taken) { ssf->ssf_info.sinfo_flags = SCTP_DATA_LAST_FRAG; } else { ssf->ssf_info.sinfo_flags = SCTP_DATA_NOT_FRAG; } ssf->ssf_info.sinfo_ppid = sp->ppid; ssf->ssf_info.sinfo_context = sp->context; ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb); ssf->ssf_assoc_id = sctp_get_associd(stcb); } SCTP_BUF_NEXT(m_notify) = sp->data; /* Steal off the mbuf */ sp->data = NULL; /* * For this case, we check the actual socket buffer, since the assoc * is going away we don't want to overfill the socket buffer for a * non-reader */ if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } static void sctp_notify_adaptation_layer(struct sctp_tcb *stcb) { struct mbuf *m_notify; struct sctp_adaptation_event *sai; struct sctp_queued_to_read *control; if ((stcb == NULL) || sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ADAPTATIONEVNT)) { /* event not enabled */ return; } + m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_adaption_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; sai = mtod(m_notify, struct sctp_adaptation_event *); memset(sai, 0, sizeof(struct sctp_adaptation_event)); sai->sai_type = SCTP_ADAPTATION_INDICATION; sai->sai_flags = 0; sai->sai_length = sizeof(struct sctp_adaptation_event); sai->sai_adaptation_ind = stcb->asoc.peers_adaptation; sai->sai_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_adaptation_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } /* This always must be called with the read-queue LOCKED in the INP */ static void sctp_notify_partial_delivery_indication(struct sctp_tcb *stcb, uint32_t error, uint32_t val, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_pdapi_event *pdapi; struct sctp_queued_to_read *control; struct sockbuf *sb; if ((stcb == NULL) || sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_PDAPIEVNT)) { /* event not enabled */ return; } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ) { return; } + m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_pdapi_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; pdapi = mtod(m_notify, struct sctp_pdapi_event *); memset(pdapi, 0, sizeof(struct sctp_pdapi_event)); pdapi->pdapi_type = SCTP_PARTIAL_DELIVERY_EVENT; pdapi->pdapi_flags = 0; pdapi->pdapi_length = sizeof(struct sctp_pdapi_event); pdapi->pdapi_indication = error; pdapi->pdapi_stream = (val >> 16); pdapi->pdapi_seq = (val & 0x0000ffff); pdapi->pdapi_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_pdapi_event); SCTP_BUF_NEXT(m_notify) = NULL; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sb = &stcb->sctp_socket->so_rcv; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m_notify)); } sctp_sballoc(stcb, sb, m_notify); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } control->end_added = 1; if (stcb->asoc.control_pdapi) TAILQ_INSERT_AFTER(&stcb->sctp_ep->read_queue, stcb->asoc.control_pdapi, control, next); else { /* we really should not see this case */ TAILQ_INSERT_TAIL(&stcb->sctp_ep->read_queue, control, next); } if (stcb->sctp_ep && stcb->sctp_socket) { /* This should always be the case */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); if (!so_locked) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { SCTP_SOCKET_UNLOCK(so, 1); return; } } #endif sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { SCTP_SOCKET_UNLOCK(so, 1); } #endif } } static void sctp_notify_shutdown_event(struct sctp_tcb *stcb) { struct mbuf *m_notify; struct sctp_shutdown_event *sse; struct sctp_queued_to_read *control; /* * For TCP model AND UDP connected sockets we will send an error up * when an SHUTDOWN completes */ if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* mark socket closed for read/write and wakeup! */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { SCTP_SOCKET_UNLOCK(so, 1); return; } #endif socantsendmore(stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)) { /* event not enabled */ return; } + m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_shutdown_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; sse = mtod(m_notify, struct sctp_shutdown_event *); memset(sse, 0, sizeof(struct sctp_shutdown_event)); sse->sse_type = SCTP_SHUTDOWN_EVENT; sse->sse_flags = 0; sse->sse_length = sizeof(struct sctp_shutdown_event); sse->sse_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_shutdown_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } static void sctp_notify_sender_dry_event(struct sctp_tcb *stcb, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct mbuf *m_notify; struct sctp_sender_dry_event *event; struct sctp_queued_to_read *control; if ((stcb == NULL) || sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DRYEVNT)) { /* event not enabled */ return; } + m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_sender_dry_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* no space left */ return; } SCTP_BUF_LEN(m_notify) = 0; event = mtod(m_notify, struct sctp_sender_dry_event *); memset(event, 0, sizeof(struct sctp_sender_dry_event)); event->sender_dry_type = SCTP_SENDER_DRY_EVENT; event->sender_dry_flags = 0; event->sender_dry_length = sizeof(struct sctp_sender_dry_event); event->sender_dry_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_sender_dry_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); } void sctp_notify_stream_reset_add(struct sctp_tcb *stcb, uint16_t numberin, uint16_t numberout, int flag) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_stream_change_event *stradd; if ((stcb == NULL) || (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_CHANGEEVNT))) { /* event not enabled */ return; } if ((stcb->asoc.peer_req_out) && flag) { /* Peer made the request, don't tell the local user */ stcb->asoc.peer_req_out = 0; return; } stcb->asoc.peer_req_out = 0; m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_stream_change_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; stradd = mtod(m_notify, struct sctp_stream_change_event *); memset(stradd, 0, sizeof(struct sctp_stream_change_event)); stradd->strchange_type = SCTP_STREAM_CHANGE_EVENT; stradd->strchange_flags = flag; stradd->strchange_length = sizeof(struct sctp_stream_change_event); stradd->strchange_assoc_id = sctp_get_associd(stcb); stradd->strchange_instrms = numberin; stradd->strchange_outstrms = numberout; SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_stream_change_event); SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } void sctp_notify_stream_reset_tsn(struct sctp_tcb *stcb, uint32_t sending_tsn, uint32_t recv_tsn, int flag) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_assoc_reset_event *strasoc; if ((stcb == NULL) || (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ASSOC_RESETEVNT))) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_assoc_reset_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; strasoc = mtod(m_notify, struct sctp_assoc_reset_event *); memset(strasoc, 0, sizeof(struct sctp_assoc_reset_event)); strasoc->assocreset_type = SCTP_ASSOC_RESET_EVENT; strasoc->assocreset_flags = flag; strasoc->assocreset_length = sizeof(struct sctp_assoc_reset_event); strasoc->assocreset_assoc_id = sctp_get_associd(stcb); strasoc->assocreset_local_tsn = sending_tsn; strasoc->assocreset_remote_tsn = recv_tsn; SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_assoc_reset_event); SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } static void sctp_notify_stream_reset(struct sctp_tcb *stcb, int number_entries, uint16_t *list, int flag) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_stream_reset_event *strreset; int len; if ((stcb == NULL) || (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_RESETEVNT))) { /* event not enabled */ return; } + m_notify = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; len = sizeof(struct sctp_stream_reset_event) + (number_entries * sizeof(uint16_t)); if (len > M_TRAILINGSPACE(m_notify)) { /* never enough room */ sctp_m_freem(m_notify); return; } strreset = mtod(m_notify, struct sctp_stream_reset_event *); memset(strreset, 0, len); strreset->strreset_type = SCTP_STREAM_RESET_EVENT; strreset->strreset_flags = flag; strreset->strreset_length = len; strreset->strreset_assoc_id = sctp_get_associd(stcb); if (number_entries) { int i; for (i = 0; i < number_entries; i++) { strreset->strreset_stream_list[i] = ntohs(list[i]); } } SCTP_BUF_LEN(m_notify) = len; SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } static void sctp_notify_remote_error(struct sctp_tcb *stcb, uint16_t error, struct sctp_error_chunk *chunk) { struct mbuf *m_notify; struct sctp_remote_error *sre; struct sctp_queued_to_read *control; unsigned int notif_len; uint16_t chunk_len; if ((stcb == NULL) || sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPEERERR)) { return; } if (chunk != NULL) { chunk_len = ntohs(chunk->ch.chunk_length); /* * Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be * contiguous. */ if (chunk_len > SCTP_CHUNK_BUFFER_SIZE) { chunk_len = SCTP_CHUNK_BUFFER_SIZE; } } else { chunk_len = 0; } notif_len = (unsigned int)(sizeof(struct sctp_remote_error) + chunk_len); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* Retry with smaller value. */ notif_len = (unsigned int)sizeof(struct sctp_remote_error); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { return; } } SCTP_BUF_NEXT(m_notify) = NULL; sre = mtod(m_notify, struct sctp_remote_error *); memset(sre, 0, notif_len); sre->sre_type = SCTP_REMOTE_ERROR; sre->sre_flags = 0; sre->sre_length = sizeof(struct sctp_remote_error); sre->sre_error = error; sre->sre_assoc_id = sctp_get_associd(stcb); if (notif_len > sizeof(struct sctp_remote_error)) { memcpy(sre->sre_data, chunk, chunk_len); sre->sre_length += chunk_len; } SCTP_BUF_LEN(m_notify) = sre->sre_length; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control != NULL) { control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED); } else { sctp_m_freem(m_notify); } } void sctp_ulp_notify(uint32_t notification, struct sctp_tcb *stcb, uint32_t error, void *data, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { if ((stcb == NULL) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) { /* If the socket is gone we are out of here */ return; } if (stcb->sctp_socket->so_rcv.sb_state & SBS_CANTRCVMORE) { return; } if ((stcb->asoc.state & SCTP_STATE_COOKIE_WAIT) || (stcb->asoc.state & SCTP_STATE_COOKIE_ECHOED)) { if ((notification == SCTP_NOTIFY_INTERFACE_DOWN) || (notification == SCTP_NOTIFY_INTERFACE_UP) || (notification == SCTP_NOTIFY_INTERFACE_CONFIRMED)) { /* Don't report these in front states */ return; } } switch (notification) { case SCTP_NOTIFY_ASSOC_UP: if (stcb->asoc.assoc_up_sent == 0) { sctp_notify_assoc_change(SCTP_COMM_UP, stcb, error, NULL, 0, so_locked); stcb->asoc.assoc_up_sent = 1; } if (stcb->asoc.adaptation_needed && (stcb->asoc.adaptation_sent == 0)) { sctp_notify_adaptation_layer(stcb); } if (stcb->asoc.auth_supported == 0) { sctp_ulp_notify(SCTP_NOTIFY_NO_PEER_AUTH, stcb, 0, NULL, so_locked); } break; case SCTP_NOTIFY_ASSOC_DOWN: sctp_notify_assoc_change(SCTP_SHUTDOWN_COMP, stcb, error, NULL, 0, so_locked); break; case SCTP_NOTIFY_INTERFACE_DOWN: { struct sctp_nets *net; net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_UNREACHABLE, (struct sockaddr *)&net->ro._l_addr, error, so_locked); break; } case SCTP_NOTIFY_INTERFACE_UP: { struct sctp_nets *net; net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_AVAILABLE, (struct sockaddr *)&net->ro._l_addr, error, so_locked); break; } case SCTP_NOTIFY_INTERFACE_CONFIRMED: { struct sctp_nets *net; net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_CONFIRMED, (struct sockaddr *)&net->ro._l_addr, error, so_locked); break; } case SCTP_NOTIFY_SPECIAL_SP_FAIL: sctp_notify_send_failed2(stcb, error, (struct sctp_stream_queue_pending *)data, so_locked); break; case SCTP_NOTIFY_SENT_DG_FAIL: sctp_notify_send_failed(stcb, 1, error, (struct sctp_tmit_chunk *)data, so_locked); break; case SCTP_NOTIFY_UNSENT_DG_FAIL: sctp_notify_send_failed(stcb, 0, error, (struct sctp_tmit_chunk *)data, so_locked); break; case SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION: { uint32_t val; val = *((uint32_t *)data); sctp_notify_partial_delivery_indication(stcb, error, val, so_locked); break; } case SCTP_NOTIFY_ASSOC_LOC_ABORTED: if (((stcb->asoc.state & SCTP_STATE_MASK) == SCTP_STATE_COOKIE_WAIT) || ((stcb->asoc.state & SCTP_STATE_MASK) == SCTP_STATE_COOKIE_ECHOED)) { sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, 0, so_locked); } else { sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, 0, so_locked); } break; case SCTP_NOTIFY_ASSOC_REM_ABORTED: if (((stcb->asoc.state & SCTP_STATE_MASK) == SCTP_STATE_COOKIE_WAIT) || ((stcb->asoc.state & SCTP_STATE_MASK) == SCTP_STATE_COOKIE_ECHOED)) { sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, 1, so_locked); } else { sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, 1, so_locked); } break; case SCTP_NOTIFY_ASSOC_RESTART: sctp_notify_assoc_change(SCTP_RESTART, stcb, error, NULL, 0, so_locked); if (stcb->asoc.auth_supported == 0) { sctp_ulp_notify(SCTP_NOTIFY_NO_PEER_AUTH, stcb, 0, NULL, so_locked); } break; case SCTP_NOTIFY_STR_RESET_SEND: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_OUTGOING_SSN); break; case SCTP_NOTIFY_STR_RESET_RECV: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_INCOMING); break; case SCTP_NOTIFY_STR_RESET_FAILED_OUT: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_FAILED)); break; case SCTP_NOTIFY_STR_RESET_DENIED_OUT: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_DENIED)); break; case SCTP_NOTIFY_STR_RESET_FAILED_IN: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_FAILED)); break; case SCTP_NOTIFY_STR_RESET_DENIED_IN: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_DENIED)); break; case SCTP_NOTIFY_ASCONF_ADD_IP: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_ADDED, data, error, so_locked); break; case SCTP_NOTIFY_ASCONF_DELETE_IP: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_REMOVED, data, error, so_locked); break; case SCTP_NOTIFY_ASCONF_SET_PRIMARY: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_MADE_PRIM, data, error, so_locked); break; case SCTP_NOTIFY_PEER_SHUTDOWN: sctp_notify_shutdown_event(stcb); break; case SCTP_NOTIFY_AUTH_NEW_KEY: sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, error, (uint16_t)(uintptr_t)data, so_locked); break; case SCTP_NOTIFY_AUTH_FREE_KEY: sctp_notify_authentication(stcb, SCTP_AUTH_FREE_KEY, error, (uint16_t)(uintptr_t)data, so_locked); break; case SCTP_NOTIFY_NO_PEER_AUTH: sctp_notify_authentication(stcb, SCTP_AUTH_NO_AUTH, error, (uint16_t)(uintptr_t)data, so_locked); break; case SCTP_NOTIFY_SENDER_DRY: sctp_notify_sender_dry_event(stcb, so_locked); break; case SCTP_NOTIFY_REMOTE_ERROR: sctp_notify_remote_error(stcb, error, data); break; default: SCTPDBG(SCTP_DEBUG_UTIL1, "%s: unknown notification %xh (%u)\n", __func__, notification, notification); break; } /* end switch */ } void sctp_report_all_outbound(struct sctp_tcb *stcb, uint16_t error, int holds_lock, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct sctp_association *asoc; struct sctp_stream_out *outs; struct sctp_tmit_chunk *chk, *nchk; struct sctp_stream_queue_pending *sp, *nsp; int i; if (stcb == NULL) { return; } asoc = &stcb->asoc; if (asoc->state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* already being freed */ return; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (asoc->state & SCTP_STATE_CLOSED_SOCKET)) { return; } /* now through all the gunk freeing chunks */ if (holds_lock == 0) { SCTP_TCB_SEND_LOCK(stcb); } /* sent queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); asoc->sent_queue_cnt--; if (chk->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } } if (chk->data != NULL) { sctp_free_bufspace(stcb, asoc, chk, 1); sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, error, chk, so_locked); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } sctp_free_a_chunk(stcb, chk, so_locked); /* sa_ignore FREED_MEMORY */ } /* pending send queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); asoc->send_queue_cnt--; if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } if (chk->data != NULL) { sctp_free_bufspace(stcb, asoc, chk, 1); sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, error, chk, so_locked); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } sctp_free_a_chunk(stcb, chk, so_locked); /* sa_ignore FREED_MEMORY */ } for (i = 0; i < asoc->streamoutcnt; i++) { /* For each stream */ outs = &asoc->strmout[i]; /* clean up any sends there */ TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { atomic_subtract_int(&asoc->stream_queue_cnt, 1); TAILQ_REMOVE(&outs->outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp, holds_lock); sctp_free_spbufspace(stcb, asoc, sp); if (sp->data) { sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, error, (void *)sp, so_locked); if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } /* Free the chunk */ sctp_free_a_strmoq(stcb, sp, so_locked); /* sa_ignore FREED_MEMORY */ } } if (holds_lock == 0) { SCTP_TCB_SEND_UNLOCK(stcb); } } void sctp_abort_notification(struct sctp_tcb *stcb, uint8_t from_peer, uint16_t error, struct sctp_abort_chunk *abort, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { if (stcb == NULL) { return; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_WAS_ABORTED; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) { return; } /* Tell them we lost the asoc */ sctp_report_all_outbound(stcb, error, 1, so_locked); if (from_peer) { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_REM_ABORTED, stcb, error, abort, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_LOC_ABORTED, stcb, error, abort, so_locked); } } void sctp_abort_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct mbuf *m, int iphlen, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct mbuf *op_err, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { uint32_t vtag; #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif vtag = 0; if (stcb != NULL) { vtag = stcb->asoc.peer_vtag; vrf_id = stcb->asoc.vrf_id; } sctp_send_abort(m, iphlen, src, dst, sh, vtag, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); if (stcb != NULL) { /* We have a TCB to abort, send notification too */ sctp_abort_notification(stcb, 0, 0, NULL, SCTP_SO_NOT_LOCKED); stcb->asoc.state |= SCTP_STATE_WAS_ABORTED; /* Ok, now lets free it */ #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_4); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } } #ifdef SCTP_ASOCLOG_OF_TSNS void sctp_print_out_track_log(struct sctp_tcb *stcb) { #ifdef NOSIY_PRINTS int i; SCTP_PRINTF("Last ep reason:%x\n", stcb->sctp_ep->last_abort_code); SCTP_PRINTF("IN bound TSN log-aaa\n"); if ((stcb->asoc.tsn_in_at == 0) && (stcb->asoc.tsn_in_wrapped == 0)) { SCTP_PRINTF("None rcvd\n"); goto none_in; } if (stcb->asoc.tsn_in_wrapped) { for (i = stcb->asoc.tsn_in_at; i < SCTP_TSN_LOG_SIZE; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.in_tsnlog[i].tsn, stcb->asoc.in_tsnlog[i].strm, stcb->asoc.in_tsnlog[i].seq, stcb->asoc.in_tsnlog[i].flgs, stcb->asoc.in_tsnlog[i].sz); } } if (stcb->asoc.tsn_in_at) { for (i = 0; i < stcb->asoc.tsn_in_at; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.in_tsnlog[i].tsn, stcb->asoc.in_tsnlog[i].strm, stcb->asoc.in_tsnlog[i].seq, stcb->asoc.in_tsnlog[i].flgs, stcb->asoc.in_tsnlog[i].sz); } } none_in: SCTP_PRINTF("OUT bound TSN log-aaa\n"); if ((stcb->asoc.tsn_out_at == 0) && (stcb->asoc.tsn_out_wrapped == 0)) { SCTP_PRINTF("None sent\n"); } if (stcb->asoc.tsn_out_wrapped) { for (i = stcb->asoc.tsn_out_at; i < SCTP_TSN_LOG_SIZE; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.out_tsnlog[i].tsn, stcb->asoc.out_tsnlog[i].strm, stcb->asoc.out_tsnlog[i].seq, stcb->asoc.out_tsnlog[i].flgs, stcb->asoc.out_tsnlog[i].sz); } } if (stcb->asoc.tsn_out_at) { for (i = 0; i < stcb->asoc.tsn_out_at; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.out_tsnlog[i].tsn, stcb->asoc.out_tsnlog[i].strm, stcb->asoc.out_tsnlog[i].seq, stcb->asoc.out_tsnlog[i].flgs, stcb->asoc.out_tsnlog[i].sz); } } #endif } #endif void sctp_abort_an_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct mbuf *op_err, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); #endif if (stcb == NULL) { /* Got to have a TCB */ if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_DIRECTLY_NOCMPSET); } } return; } else { stcb->asoc.state |= SCTP_STATE_WAS_ABORTED; } /* notify the peer */ sctp_send_abort_tcb(stcb, op_err, so_locked); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } /* notify the ulp */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { sctp_abort_notification(stcb, 0, 0, NULL, so_locked); } /* now free the asoc */ #ifdef SCTP_ASOCLOG_OF_TSNS sctp_print_out_track_log(stcb); #endif #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); } #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_5); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { SCTP_SOCKET_UNLOCK(so, 1); } #endif } void sctp_handle_ootb(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_inpcb *inp, struct mbuf *cause, uint8_t mflowtype, uint32_t mflowid, uint16_t fibnum, uint32_t vrf_id, uint16_t port) { struct sctp_chunkhdr *ch, chunk_buf; unsigned int chk_length; int contains_init_chunk; SCTP_STAT_INCR_COUNTER32(sctps_outoftheblue); /* Generate a TO address for future reference */ if (inp && (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_DIRECTLY_NOCMPSET); } } contains_init_chunk = 0; ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); while (ch != NULL) { chk_length = ntohs(ch->chunk_length); if (chk_length < sizeof(*ch)) { /* break to abort land */ break; } switch (ch->chunk_type) { case SCTP_INIT: contains_init_chunk = 1; break; case SCTP_PACKET_DROPPED: /* we don't respond to pkt-dropped */ return; case SCTP_ABORT_ASSOCIATION: /* we don't respond with an ABORT to an ABORT */ return; case SCTP_SHUTDOWN_COMPLETE: /* * we ignore it since we are not waiting for it and * peer is gone */ return; case SCTP_SHUTDOWN_ACK: sctp_send_shutdown_complete2(src, dst, sh, mflowtype, mflowid, fibnum, vrf_id, port); return; default: break; } offset += SCTP_SIZE32(chk_length); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); } if ((SCTP_BASE_SYSCTL(sctp_blackhole) == 0) || ((SCTP_BASE_SYSCTL(sctp_blackhole) == 1) && (contains_init_chunk == 0))) { sctp_send_abort(m, iphlen, src, dst, sh, 0, cause, mflowtype, mflowid, fibnum, vrf_id, port); } } /* * check the inbound datagram to make sure there is not an abort inside it, * if there is return 1, else return 0. */ int sctp_is_there_an_abort_here(struct mbuf *m, int iphlen, uint32_t *vtagfill) { struct sctp_chunkhdr *ch; struct sctp_init_chunk *init_chk, chunk_buf; int offset; unsigned int chk_length; offset = iphlen + sizeof(struct sctphdr); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); while (ch != NULL) { chk_length = ntohs(ch->chunk_length); if (chk_length < sizeof(*ch)) { /* packet is probably corrupt */ break; } /* we seem to be ok, is it an abort? */ if (ch->chunk_type == SCTP_ABORT_ASSOCIATION) { /* yep, tell them */ return (1); } if (ch->chunk_type == SCTP_INITIATION) { /* need to update the Vtag */ init_chk = (struct sctp_init_chunk *)sctp_m_getptr(m, offset, sizeof(*init_chk), (uint8_t *)&chunk_buf); if (init_chk != NULL) { *vtagfill = ntohl(init_chk->init.initiate_tag); } } /* Nope, move to the next chunk */ offset += SCTP_SIZE32(chk_length); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); } return (0); } /* * currently (2/02), ifa_addr embeds scope_id's and don't have sin6_scope_id * set (i.e. it's 0) so, create this function to compare link local scopes */ #ifdef INET6 uint32_t sctp_is_same_scope(struct sockaddr_in6 *addr1, struct sockaddr_in6 *addr2) { struct sockaddr_in6 a, b; /* save copies */ a = *addr1; b = *addr2; if (a.sin6_scope_id == 0) if (sa6_recoverscope(&a)) { /* can't get scope, so can't match */ return (0); } if (b.sin6_scope_id == 0) if (sa6_recoverscope(&b)) { /* can't get scope, so can't match */ return (0); } if (a.sin6_scope_id != b.sin6_scope_id) return (0); return (1); } /* * returns a sockaddr_in6 with embedded scope recovered and removed */ struct sockaddr_in6 * sctp_recover_scope(struct sockaddr_in6 *addr, struct sockaddr_in6 *store) { /* check and strip embedded scope junk */ if (addr->sin6_family == AF_INET6) { if (IN6_IS_SCOPE_LINKLOCAL(&addr->sin6_addr)) { if (addr->sin6_scope_id == 0) { *store = *addr; if (!sa6_recoverscope(store)) { /* use the recovered scope */ addr = store; } } else { /* else, return the original "to" addr */ in6_clearscope(&addr->sin6_addr); } } } return (addr); } #endif /* * are the two addresses the same? currently a "scopeless" check returns: 1 * if same, 0 if not */ int sctp_cmpaddr(struct sockaddr *sa1, struct sockaddr *sa2) { /* must be valid */ if (sa1 == NULL || sa2 == NULL) return (0); /* must be the same family */ if (sa1->sa_family != sa2->sa_family) return (0); switch (sa1->sa_family) { #ifdef INET6 case AF_INET6: { /* IPv6 addresses */ struct sockaddr_in6 *sin6_1, *sin6_2; sin6_1 = (struct sockaddr_in6 *)sa1; sin6_2 = (struct sockaddr_in6 *)sa2; return (SCTP6_ARE_ADDR_EQUAL(sin6_1, sin6_2)); } #endif #ifdef INET case AF_INET: { /* IPv4 addresses */ struct sockaddr_in *sin_1, *sin_2; sin_1 = (struct sockaddr_in *)sa1; sin_2 = (struct sockaddr_in *)sa2; return (sin_1->sin_addr.s_addr == sin_2->sin_addr.s_addr); } #endif default: /* we don't do these... */ return (0); } } void sctp_print_address(struct sockaddr *sa) { #ifdef INET6 char ip6buf[INET6_ADDRSTRLEN]; #endif switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; SCTP_PRINTF("IPv6 address: %s:port:%d scope:%u\n", ip6_sprintf(ip6buf, &sin6->sin6_addr), ntohs(sin6->sin6_port), sin6->sin6_scope_id); break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; unsigned char *p; sin = (struct sockaddr_in *)sa; p = (unsigned char *)&sin->sin_addr; SCTP_PRINTF("IPv4 address: %u.%u.%u.%u:%d\n", p[0], p[1], p[2], p[3], ntohs(sin->sin_port)); break; } #endif default: SCTP_PRINTF("?\n"); break; } } void sctp_pull_off_control_to_new_inp(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb, int waitflags) { /* * go through our old INP and pull off any control structures that * belong to stcb and move then to the new inp. */ struct socket *old_so, *new_so; struct sctp_queued_to_read *control, *nctl; struct sctp_readhead tmp_queue; struct mbuf *m; int error = 0; old_so = old_inp->sctp_socket; new_so = new_inp->sctp_socket; TAILQ_INIT(&tmp_queue); error = sblock(&old_so->so_rcv, waitflags); if (error) { /* * Gak, can't get sblock, we have a problem. data will be * left stranded.. and we don't dare look at it since the * other thread may be reading something. Oh well, its a * screwed up app that does a peeloff OR a accept while * reading from the main socket... actually its only the * peeloff() case, since I think read will fail on a * listening socket.. */ return; } /* lock the socket buffers */ SCTP_INP_READ_LOCK(old_inp); TAILQ_FOREACH_SAFE(control, &old_inp->read_queue, next, nctl) { /* Pull off all for out target stcb */ if (control->stcb == stcb) { /* remove it we want it */ TAILQ_REMOVE(&old_inp->read_queue, control, next); TAILQ_INSERT_TAIL(&tmp_queue, control, next); m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &old_so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } } } SCTP_INP_READ_UNLOCK(old_inp); /* Remove the sb-lock on the old socket */ sbunlock(&old_so->so_rcv); /* Now we move them over to the new socket buffer */ SCTP_INP_READ_LOCK(new_inp); TAILQ_FOREACH_SAFE(control, &tmp_queue, next, nctl) { TAILQ_INSERT_TAIL(&new_inp->read_queue, control, next); m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m)); } sctp_sballoc(stcb, &new_so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } } SCTP_INP_READ_UNLOCK(new_inp); } void sctp_wakeup_the_read_socket(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { if ((inp != NULL) && (inp->sctp_socket != NULL)) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(inp); if (!so_locked) { if (stcb) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); } SCTP_SOCKET_LOCK(so, 1); if (stcb) { SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { SCTP_SOCKET_UNLOCK(so, 1); return; } } #endif sctp_sorwakeup(inp, inp->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { SCTP_SOCKET_UNLOCK(so, 1); } #endif } } void sctp_add_to_readq(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_queued_to_read *control, struct sockbuf *sb, int end, int inp_read_lock_held, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { /* * Here we must place the control on the end of the socket read * queue AND increment sb_cc so that select will work properly on * read. */ struct mbuf *m, *prev = NULL; if (inp == NULL) { /* Gak, TSNH!! */ #ifdef INVARIANTS panic("Gak, inp NULL on add_to_readq"); #endif return; } if (inp_read_lock_held == 0) SCTP_INP_READ_LOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ) { sctp_free_remote_addr(control->whoFrom); if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_a_readq(stcb, control); if (inp_read_lock_held == 0) SCTP_INP_READ_UNLOCK(inp); return; } if (!(control->spec_flags & M_NOTIFICATION)) { atomic_add_int(&inp->total_recvs, 1); if (!control->do_not_ref_stcb) { atomic_add_int(&stcb->total_recvs, 1); } } m = control->data; control->held_length = 0; control->length = 0; while (m) { if (SCTP_BUF_LEN(m) == 0) { /* Skip mbufs with NO length */ if (prev == NULL) { /* First one */ control->data = sctp_m_free(m); m = control->data; } else { SCTP_BUF_NEXT(prev) = sctp_m_free(m); m = SCTP_BUF_NEXT(prev); } if (m == NULL) { control->tail_mbuf = prev; } continue; } prev = m; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m)); } sctp_sballoc(stcb, sb, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } atomic_add_int(&control->length, SCTP_BUF_LEN(m)); m = SCTP_BUF_NEXT(m); } if (prev != NULL) { control->tail_mbuf = prev; } else { /* Everything got collapsed out?? */ sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); if (inp_read_lock_held == 0) SCTP_INP_READ_UNLOCK(inp); return; } if (end) { control->end_added = 1; } TAILQ_INSERT_TAIL(&inp->read_queue, control, next); control->on_read_q = 1; if (inp_read_lock_held == 0) SCTP_INP_READ_UNLOCK(inp); if (inp && inp->sctp_socket) { sctp_wakeup_the_read_socket(inp, stcb, so_locked); } } /*************HOLD THIS COMMENT FOR PATCH FILE OF *************ALTERNATE ROUTING CODE */ /*************HOLD THIS COMMENT FOR END OF PATCH FILE OF *************ALTERNATE ROUTING CODE */ struct mbuf * sctp_generate_cause(uint16_t code, char *info) { struct mbuf *m; struct sctp_gen_error_cause *cause; size_t info_len; uint16_t len; if ((code == 0) || (info == NULL)) { return (NULL); } info_len = strlen(info); if (info_len > (SCTP_MAX_CAUSE_LENGTH - sizeof(struct sctp_paramhdr))) { return (NULL); } len = (uint16_t)(sizeof(struct sctp_paramhdr) + info_len); m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (m != NULL) { SCTP_BUF_LEN(m) = len; cause = mtod(m, struct sctp_gen_error_cause *); cause->code = htons(code); cause->length = htons(len); memcpy(cause->info, info, info_len); } return (m); } struct mbuf * sctp_generate_no_user_data_cause(uint32_t tsn) { struct mbuf *m; struct sctp_error_no_user_data *no_user_data_cause; uint16_t len; len = (uint16_t)sizeof(struct sctp_error_no_user_data); m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (m != NULL) { SCTP_BUF_LEN(m) = len; no_user_data_cause = mtod(m, struct sctp_error_no_user_data *); no_user_data_cause->cause.code = htons(SCTP_CAUSE_NO_USER_DATA); no_user_data_cause->cause.length = htons(len); no_user_data_cause->tsn = htonl(tsn); } return (m); } #ifdef SCTP_MBCNT_LOGGING void sctp_free_bufspace(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_tmit_chunk *tp1, int chk_cnt) { if (tp1->data == NULL) { return; } asoc->chunks_on_out_queue -= chk_cnt; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBCNT_LOGGING_ENABLE) { sctp_log_mbcnt(SCTP_LOG_MBCNT_DECREASE, asoc->total_output_queue_size, tp1->book_size, 0, tp1->mbcnt); } if (asoc->total_output_queue_size >= tp1->book_size) { atomic_add_int(&asoc->total_output_queue_size, -tp1->book_size); } else { asoc->total_output_queue_size = 0; } if (stcb->sctp_socket && (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) || ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)))) { if (stcb->sctp_socket->so_snd.sb_cc >= tp1->book_size) { stcb->sctp_socket->so_snd.sb_cc -= tp1->book_size; } else { stcb->sctp_socket->so_snd.sb_cc = 0; } } } #endif int sctp_release_pr_sctp_chunk(struct sctp_tcb *stcb, struct sctp_tmit_chunk *tp1, uint8_t sent, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ) { struct sctp_stream_out *strq; struct sctp_tmit_chunk *chk = NULL, *tp2; struct sctp_stream_queue_pending *sp; uint32_t mid; uint16_t sid; uint8_t foundeom = 0; int ret_sz = 0; int notdone; int do_wakeup_routine = 0; sid = tp1->rec.data.sid; mid = tp1->rec.data.mid; if (sent || !(tp1->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG)) { stcb->asoc.abandoned_sent[0]++; stcb->asoc.abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++; stcb->asoc.strmout[sid].abandoned_sent[0]++; #if defined(SCTP_DETAILED_STR_STATS) stcb->asoc.strmout[stream].abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++; #endif } else { stcb->asoc.abandoned_unsent[0]++; stcb->asoc.abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++; stcb->asoc.strmout[sid].abandoned_unsent[0]++; #if defined(SCTP_DETAILED_STR_STATS) stcb->asoc.strmout[stream].abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++; #endif } do { ret_sz += tp1->book_size; if (tp1->data != NULL) { if (tp1->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_decrease(tp1); sctp_total_flight_decrease(stcb, tp1); } sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1); stcb->asoc.peers_rwnd += tp1->send_size; stcb->asoc.peers_rwnd += SCTP_BASE_SYSCTL(sctp_peer_chunk_oh); if (sent) { sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked); } if (tp1->data) { sctp_m_freem(tp1->data); tp1->data = NULL; } do_wakeup_routine = 1; if (PR_SCTP_BUF_ENABLED(tp1->flags)) { stcb->asoc.sent_queue_cnt_removeable--; } } tp1->sent = SCTP_FORWARD_TSN_SKIP; if ((tp1->rec.data.rcv_flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { /* not frag'ed we ae done */ notdone = 0; foundeom = 1; } else if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { /* end of frag, we are done */ notdone = 0; foundeom = 1; } else { /* * Its a begin or middle piece, we must mark all of * it */ notdone = 1; tp1 = TAILQ_NEXT(tp1, sctp_next); } } while (tp1 && notdone); if (foundeom == 0) { /* * The multi-part message was scattered across the send and * sent queue. */ TAILQ_FOREACH_SAFE(tp1, &stcb->asoc.send_queue, sctp_next, tp2) { if ((tp1->rec.data.sid != sid) || (!SCTP_MID_EQ(stcb->asoc.idata_supported, tp1->rec.data.mid, mid))) { break; } /* * save to chk in case we have some on stream out * queue. If so and we have an un-transmitted one we * don't have to fudge the TSN. */ chk = tp1; ret_sz += tp1->book_size; sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1); if (sent) { sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked); } if (tp1->data) { sctp_m_freem(tp1->data); tp1->data = NULL; } /* No flight involved here book the size to 0 */ tp1->book_size = 0; if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { foundeom = 1; } do_wakeup_routine = 1; tp1->sent = SCTP_FORWARD_TSN_SKIP; TAILQ_REMOVE(&stcb->asoc.send_queue, tp1, sctp_next); /* * on to the sent queue so we can wait for it to be * passed by. */ TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, tp1, sctp_next); stcb->asoc.send_queue_cnt--; stcb->asoc.sent_queue_cnt++; } } if (foundeom == 0) { /* * Still no eom found. That means there is stuff left on the * stream out queue.. yuck. */ SCTP_TCB_SEND_LOCK(stcb); strq = &stcb->asoc.strmout[sid]; sp = TAILQ_FIRST(&strq->outqueue); if (sp != NULL) { sp->discard_rest = 1; /* * We may need to put a chunk on the queue that * holds the TSN that would have been sent with the * LAST bit. */ if (chk == NULL) { /* Yep, we have to */ sctp_alloc_a_chunk(stcb, chk); if (chk == NULL) { /* * we are hosed. All we can do is * nothing.. which will cause an * abort if the peer is paying * attention. */ goto oh_well; } memset(chk, 0, sizeof(*chk)); chk->rec.data.rcv_flags = 0; chk->sent = SCTP_FORWARD_TSN_SKIP; chk->asoc = &stcb->asoc; if (stcb->asoc.idata_supported == 0) { if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.mid = 0; } else { chk->rec.data.mid = strq->next_mid_ordered; } } else { if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.mid = strq->next_mid_unordered; } else { chk->rec.data.mid = strq->next_mid_ordered; } } chk->rec.data.sid = sp->sid; chk->rec.data.ppid = sp->ppid; chk->rec.data.context = sp->context; chk->flags = sp->act_flags; chk->whoTo = NULL; chk->rec.data.tsn = atomic_fetchadd_int(&stcb->asoc.sending_seq, 1); strq->chunks_on_queues++; TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, chk, sctp_next); stcb->asoc.sent_queue_cnt++; stcb->asoc.pr_sctp_cnt++; } chk->rec.data.rcv_flags |= SCTP_DATA_LAST_FRAG; if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.rcv_flags |= SCTP_DATA_UNORDERED; } if (stcb->asoc.idata_supported == 0) { if ((sp->sinfo_flags & SCTP_UNORDERED) == 0) { strq->next_mid_ordered++; } } else { if (sp->sinfo_flags & SCTP_UNORDERED) { strq->next_mid_unordered++; } else { strq->next_mid_ordered++; } } oh_well: if (sp->data) { /* * Pull any data to free up the SB and allow * sender to "add more" while we will throw * away :-) */ sctp_free_spbufspace(stcb, &stcb->asoc, sp); ret_sz += sp->length; do_wakeup_routine = 1; sp->some_taken = 1; sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } SCTP_TCB_SEND_UNLOCK(stcb); } if (do_wakeup_routine) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; so = SCTP_INP_SO(stcb->sctp_ep); if (!so_locked) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { /* assoc was freed while we were unlocked */ SCTP_SOCKET_UNLOCK(so, 1); return (ret_sz); } } #endif sctp_sowwakeup(stcb->sctp_ep, stcb->sctp_socket); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) if (!so_locked) { SCTP_SOCKET_UNLOCK(so, 1); } #endif } return (ret_sz); } /* * checks to see if the given address, sa, is one that is currently known by * the kernel note: can't distinguish the same address on multiple interfaces * and doesn't handle multiple addresses with different zone/scope id's note: * ifa_ifwithaddr() compares the entire sockaddr struct */ struct sctp_ifa * sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr, int holds_lock) { struct sctp_laddr *laddr; if (holds_lock == 0) { SCTP_INP_RLOCK(inp); } + LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) continue; if (addr->sa_family != laddr->ifa->address.sa.sa_family) continue; #ifdef INET if (addr->sa_family == AF_INET) { if (((struct sockaddr_in *)addr)->sin_addr.s_addr == laddr->ifa->address.sin.sin_addr.s_addr) { /* found him. */ if (holds_lock == 0) { SCTP_INP_RUNLOCK(inp); } return (laddr->ifa); break; } } #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr, &laddr->ifa->address.sin6)) { /* found him. */ if (holds_lock == 0) { SCTP_INP_RUNLOCK(inp); } return (laddr->ifa); break; } } #endif } if (holds_lock == 0) { SCTP_INP_RUNLOCK(inp); } return (NULL); } uint32_t sctp_get_ifa_hash_val(struct sockaddr *addr) { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; return (sin->sin_addr.s_addr ^ (sin->sin_addr.s_addr >> 16)); } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; uint32_t hash_of_addr; sin6 = (struct sockaddr_in6 *)addr; hash_of_addr = (sin6->sin6_addr.s6_addr32[0] + sin6->sin6_addr.s6_addr32[1] + sin6->sin6_addr.s6_addr32[2] + sin6->sin6_addr.s6_addr32[3]); hash_of_addr = (hash_of_addr ^ (hash_of_addr >> 16)); return (hash_of_addr); } #endif default: break; } return (0); } struct sctp_ifa * sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock) { struct sctp_ifa *sctp_ifap; struct sctp_vrf *vrf; struct sctp_ifalist *hash_head; uint32_t hash_of_addr; if (holds_lock == 0) SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } + hash_of_addr = sctp_get_ifa_hash_val(addr); hash_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)]; if (hash_head == NULL) { SCTP_PRINTF("hash_of_addr:%x mask:%x table:%x - ", hash_of_addr, (uint32_t)vrf->vrf_addr_hashmark, (uint32_t)(hash_of_addr & vrf->vrf_addr_hashmark)); sctp_print_address(addr); SCTP_PRINTF("No such bucket for address\n"); if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } LIST_FOREACH(sctp_ifap, hash_head, next_bucket) { if (addr->sa_family != sctp_ifap->address.sa.sa_family) continue; #ifdef INET if (addr->sa_family == AF_INET) { if (((struct sockaddr_in *)addr)->sin_addr.s_addr == sctp_ifap->address.sin.sin_addr.s_addr) { /* found him. */ if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (sctp_ifap); break; } } #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr, &sctp_ifap->address.sin6)) { /* found him. */ if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (sctp_ifap); break; } } #endif } if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } static void sctp_user_rcvd(struct sctp_tcb *stcb, uint32_t *freed_so_far, int hold_rlock, uint32_t rwnd_req) { /* User pulled some data, do we need a rwnd update? */ int r_unlocked = 0; uint32_t dif, rwnd; struct socket *so = NULL; if (stcb == NULL) return; atomic_add_int(&stcb->asoc.refcnt, 1); if (stcb->asoc.state & (SCTP_STATE_ABOUT_TO_BE_FREED | SCTP_STATE_SHUTDOWN_RECEIVED | SCTP_STATE_SHUTDOWN_ACK_SENT)) { /* Pre-check If we are freeing no update */ goto no_lock; } SCTP_INP_INCR_REF(stcb->sctp_ep); if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { goto out; } so = stcb->sctp_socket; if (so == NULL) { goto out; } atomic_add_int(&stcb->freed_by_sorcv_sincelast, *freed_so_far); /* Have you have freed enough to look */ *freed_so_far = 0; /* Yep, its worth a look and the lock overhead */ /* Figure out what the rwnd would be */ rwnd = sctp_calc_rwnd(stcb, &stcb->asoc); if (rwnd >= stcb->asoc.my_last_reported_rwnd) { dif = rwnd - stcb->asoc.my_last_reported_rwnd; } else { dif = 0; } if (dif >= rwnd_req) { if (hold_rlock) { SCTP_INP_READ_UNLOCK(stcb->sctp_ep); r_unlocked = 1; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* * One last check before we allow the guy possibly * to get in. There is a race, where the guy has not * reached the gate. In that case */ goto out; } SCTP_TCB_LOCK(stcb); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* No reports here */ SCTP_TCB_UNLOCK(stcb); goto out; } SCTP_STAT_INCR(sctps_wu_sacks_sent); sctp_send_sack(stcb, SCTP_SO_LOCKED); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_USR_RCVD, SCTP_SO_LOCKED); /* make sure no timer is running */ sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_6); SCTP_TCB_UNLOCK(stcb); } else { /* Update how much we have pending */ stcb->freed_by_sorcv_sincelast = dif; } out: if (so && r_unlocked && hold_rlock) { SCTP_INP_READ_LOCK(stcb->sctp_ep); } + SCTP_INP_DECR_REF(stcb->sctp_ep); no_lock: atomic_add_int(&stcb->asoc.refcnt, -1); return; } int sctp_sorecvmsg(struct socket *so, struct uio *uio, struct mbuf **mp, struct sockaddr *from, int fromlen, int *msg_flags, struct sctp_sndrcvinfo *sinfo, int filling_sinfo) { /* * MSG flags we will look at MSG_DONTWAIT - non-blocking IO. * MSG_PEEK - Look don't touch :-D (only valid with OUT mbuf copy * mp=NULL thus uio is the copy method to userland) MSG_WAITALL - ?? * On the way out we may send out any combination of: * MSG_NOTIFICATION MSG_EOR * */ struct sctp_inpcb *inp = NULL; int my_len = 0; int cp_len = 0, error = 0; struct sctp_queued_to_read *control = NULL, *ctl = NULL, *nxt = NULL; struct mbuf *m = NULL; struct sctp_tcb *stcb = NULL; int wakeup_read_socket = 0; int freecnt_applied = 0; int out_flags = 0, in_flags = 0; int block_allowed = 1; uint32_t freed_so_far = 0; uint32_t copied_so_far = 0; int in_eeor_mode = 0; int no_rcv_needed = 0; uint32_t rwnd_req = 0; int hold_sblock = 0; int hold_rlock = 0; ssize_t slen = 0; uint32_t held_length = 0; int sockbuf_lock = 0; if (uio == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } + if (msg_flags) { in_flags = *msg_flags; if (in_flags & MSG_PEEK) SCTP_STAT_INCR(sctps_read_peeks); } else { in_flags = 0; } slen = uio->uio_resid; /* Pull in and set up our int flags */ if (in_flags & MSG_OOB) { /* Out of band's NOT supported */ return (EOPNOTSUPP); } if ((in_flags & MSG_PEEK) && (mp != NULL)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } if ((in_flags & (MSG_DONTWAIT | MSG_NBIO )) || SCTP_SO_IS_NBIO(so)) { block_allowed = 0; } /* setup the endpoint */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EFAULT); return (EFAULT); } rwnd_req = (SCTP_SB_LIMIT_RCV(so) >> SCTP_RWND_HIWAT_SHIFT); /* Must be at least a MTU's worth */ if (rwnd_req < SCTP_MIN_RWND) rwnd_req = SCTP_MIN_RWND; in_eeor_mode = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SORECV_ENTER, rwnd_req, in_eeor_mode, so->so_rcv.sb_cc, (uint32_t)uio->uio_resid); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SORECV_ENTERPL, rwnd_req, block_allowed, so->so_rcv.sb_cc, (uint32_t)uio->uio_resid); } + + error = sblock(&so->so_rcv, (block_allowed ? SBL_WAIT : 0)); if (error) { goto release_unlocked; } sockbuf_lock = 1; restart: restart_nosblocks: if (hold_sblock == 0) { SOCKBUF_LOCK(&so->so_rcv); hold_sblock = 1; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { goto out; } if ((so->so_rcv.sb_state & SBS_CANTRCVMORE) && (so->so_rcv.sb_cc == 0)) { if (so->so_error) { error = so->so_error; if ((in_flags & MSG_PEEK) == 0) so->so_error = 0; goto out; } else { if (so->so_rcv.sb_cc == 0) { /* indicate EOF */ error = 0; goto out; } } } if (so->so_rcv.sb_cc <= held_length) { if (so->so_error) { error = so->so_error; if ((in_flags & MSG_PEEK) == 0) { so->so_error = 0; } goto out; } if ((so->so_rcv.sb_cc == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0) { /* * For active open side clear flags for * re-use passive open is blocked by * connect. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED) { /* * You were aborted, passive side * always hits here */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET); error = ECONNRESET; } so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING | SS_ISCONNECTED); if (error == 0) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) == 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOTCONN); error = ENOTCONN; } } goto out; } } if (block_allowed) { error = sbwait(&so->so_rcv); if (error) { goto out; } held_length = 0; goto restart_nosblocks; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EWOULDBLOCK); error = EWOULDBLOCK; goto out; } } if (hold_sblock == 1) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } /* we possibly have data we can read */ /* sa_ignore FREED_MEMORY */ control = TAILQ_FIRST(&inp->read_queue); if (control == NULL) { /* * This could be happening since the appender did the * increment but as not yet did the tailq insert onto the * read_queue */ if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); } control = TAILQ_FIRST(&inp->read_queue); if ((control == NULL) && (so->so_rcv.sb_cc != 0)) { #ifdef INVARIANTS panic("Huh, its non zero and nothing on control?"); #endif so->so_rcv.sb_cc = 0; } SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; goto restart; } + if ((control->length == 0) && (control->do_not_ref_stcb)) { /* * Clean up code for freeing assoc that left behind a * pdapi.. maybe a peer in EEOR that just closed after * sending and never indicated a EOR. */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } control->held_length = 0; if (control->data) { /* Hmm there is data here .. fix */ struct mbuf *m_tmp; int cnt = 0; m_tmp = control->data; while (m_tmp) { cnt += SCTP_BUF_LEN(m_tmp); if (SCTP_BUF_NEXT(m_tmp) == NULL) { control->tail_mbuf = m_tmp; control->end_added = 1; } m_tmp = SCTP_BUF_NEXT(m_tmp); } control->length = cnt; } else { /* remove it */ TAILQ_REMOVE(&inp->read_queue, control, next); /* Add back any hiddend data */ sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); } if (hold_rlock) { hold_rlock = 0; SCTP_INP_READ_UNLOCK(inp); } goto restart; } if ((control->length == 0) && (control->end_added == 1)) { /* * Do we also need to check for (control->pdapi_aborted == * 1)? */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } TAILQ_REMOVE(&inp->read_queue, control, next); if (control->data) { #ifdef INVARIANTS panic("control->data not null but control->length == 0"); #else SCTP_PRINTF("Strange, data left in the control buffer. Cleaning up.\n"); sctp_m_freem(control->data); control->data = NULL; #endif } if (control->aux_data) { sctp_m_free(control->aux_data); control->aux_data = NULL; } #ifdef INVARIANTS if (control->on_strm_q) { panic("About to free ctl:%p so:%p and its in %d", control, so, control->on_strm_q); } #endif sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); if (hold_rlock) { hold_rlock = 0; SCTP_INP_READ_UNLOCK(inp); } goto restart; } if (control->length == 0) { if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) && (filling_sinfo)) { /* find a more suitable one then this */ ctl = TAILQ_NEXT(control, next); while (ctl) { if ((ctl->stcb != control->stcb) && (ctl->length) && (ctl->some_taken || (ctl->spec_flags & M_NOTIFICATION) || ((ctl->do_not_ref_stcb == 0) && (ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0))) ) { /*- * If we have a different TCB next, and there is data * present. If we have already taken some (pdapi), OR we can * ref the tcb and no delivery as started on this stream, we * take it. Note we allow a notification on a different * assoc to be delivered.. */ control = ctl; goto found_one; } else if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS)) && (ctl->length) && ((ctl->some_taken) || ((ctl->do_not_ref_stcb == 0) && ((ctl->spec_flags & M_NOTIFICATION) == 0) && (ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0)))) { /*- * If we have the same tcb, and there is data present, and we * have the strm interleave feature present. Then if we have * taken some (pdapi) or we can refer to tht tcb AND we have * not started a delivery for this stream, we can take it. * Note we do NOT allow a notificaiton on the same assoc to * be delivered. */ control = ctl; goto found_one; } ctl = TAILQ_NEXT(ctl, next); } } /* * if we reach here, not suitable replacement is available * fragment interleave is NOT on. So stuff the sb_cc * into the our held count, and its time to sleep again. */ held_length = so->so_rcv.sb_cc; control->held_length = so->so_rcv.sb_cc; goto restart; } /* Clear the held length since there is something to read */ control->held_length = 0; found_one: /* * If we reach here, control has a some data for us to read off. * Note that stcb COULD be NULL. */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } control->some_taken++; stcb = control->stcb; if (stcb) { if ((control->do_not_ref_stcb == 0) && (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED)) { if (freecnt_applied == 0) stcb = NULL; } else if (control->do_not_ref_stcb == 0) { /* you can't free it on me please */ /* * The lock on the socket buffer protects us so the * free code will stop. But since we used the * socketbuf lock and the sender uses the tcb_lock * to increment, we need to use the atomic add to * the refcnt */ if (freecnt_applied) { #ifdef INVARIANTS panic("refcnt already incremented"); #else SCTP_PRINTF("refcnt already incremented?\n"); #endif } else { atomic_add_int(&stcb->asoc.refcnt, 1); freecnt_applied = 1; } /* * Setup to remember how much we have not yet told * the peer our rwnd has opened up. Note we grab the * value from the tcb from last time. Note too that * sack sending clears this when a sack is sent, * which is fine. Once we hit the rwnd_req, we then * will go to the sctp_user_rcvd() that will not * lock until it KNOWs it MUST send a WUP-SACK. */ freed_so_far = stcb->freed_by_sorcv_sincelast; stcb->freed_by_sorcv_sincelast = 0; } } if (stcb && ((control->spec_flags & M_NOTIFICATION) == 0) && control->do_not_ref_stcb == 0) { stcb->asoc.strmin[control->sinfo_stream].delivery_started = 1; } + /* First lets get off the sinfo and sockaddr info */ if ((sinfo != NULL) && (filling_sinfo != 0)) { sinfo->sinfo_stream = control->sinfo_stream; sinfo->sinfo_ssn = (uint16_t)control->mid; sinfo->sinfo_flags = control->sinfo_flags; sinfo->sinfo_ppid = control->sinfo_ppid; sinfo->sinfo_context = control->sinfo_context; sinfo->sinfo_timetolive = control->sinfo_timetolive; sinfo->sinfo_tsn = control->sinfo_tsn; sinfo->sinfo_cumtsn = control->sinfo_cumtsn; sinfo->sinfo_assoc_id = control->sinfo_assoc_id; nxt = TAILQ_NEXT(control, next); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) || sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) { struct sctp_extrcvinfo *s_extra; s_extra = (struct sctp_extrcvinfo *)sinfo; if ((nxt) && (nxt->length)) { s_extra->serinfo_next_flags = SCTP_NEXT_MSG_AVAIL; if (nxt->sinfo_flags & SCTP_UNORDERED) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_UNORDERED; } if (nxt->spec_flags & M_NOTIFICATION) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_NOTIFICATION; } s_extra->serinfo_next_aid = nxt->sinfo_assoc_id; s_extra->serinfo_next_length = nxt->length; s_extra->serinfo_next_ppid = nxt->sinfo_ppid; s_extra->serinfo_next_stream = nxt->sinfo_stream; if (nxt->tail_mbuf != NULL) { if (nxt->end_added) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_ISCOMPLETE; } } } else { /* * we explicitly 0 this, since the memcpy * got some other things beyond the older * sinfo_ that is on the control's structure * :-D */ nxt = NULL; s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG; s_extra->serinfo_next_aid = 0; s_extra->serinfo_next_length = 0; s_extra->serinfo_next_ppid = 0; s_extra->serinfo_next_stream = 0; } } /* * update off the real current cum-ack, if we have an stcb. */ if ((control->do_not_ref_stcb == 0) && stcb) sinfo->sinfo_cumtsn = stcb->asoc.cumulative_tsn; /* * mask off the high bits, we keep the actual chunk bits in * there. */ sinfo->sinfo_flags &= 0x00ff; if ((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED) { sinfo->sinfo_flags |= SCTP_UNORDERED; } } #ifdef SCTP_ASOCLOG_OF_TSNS { int index, newindex; struct sctp_pcbtsn_rlog *entry; do { index = inp->readlog_index; newindex = index + 1; if (newindex >= SCTP_READ_LOG_SIZE) { newindex = 0; } } while (atomic_cmpset_int(&inp->readlog_index, index, newindex) == 0); entry = &inp->readlog[index]; entry->vtag = control->sinfo_assoc_id; entry->strm = control->sinfo_stream; entry->seq = (uint16_t)control->mid; entry->sz = control->length; entry->flgs = control->sinfo_flags; } #endif if ((fromlen > 0) && (from != NULL)) { union sctp_sockstore store; size_t len; switch (control->whoFrom->ro._l_addr.sa.sa_family) { #ifdef INET6 case AF_INET6: len = sizeof(struct sockaddr_in6); store.sin6 = control->whoFrom->ro._l_addr.sin6; store.sin6.sin6_port = control->port_from; break; #endif #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { len = sizeof(struct sockaddr_in6); in6_sin_2_v4mapsin6(&control->whoFrom->ro._l_addr.sin, &store.sin6); store.sin6.sin6_port = control->port_from; } else { len = sizeof(struct sockaddr_in); store.sin = control->whoFrom->ro._l_addr.sin; store.sin.sin_port = control->port_from; } #else len = sizeof(struct sockaddr_in); store.sin = control->whoFrom->ro._l_addr.sin; store.sin.sin_port = control->port_from; #endif break; #endif default: len = 0; break; } memcpy(from, &store, min((size_t)fromlen, len)); #ifdef INET6 { struct sockaddr_in6 lsa6, *from6; from6 = (struct sockaddr_in6 *)from; sctp_recover_scope_mac(from6, (&lsa6)); } #endif } if (hold_rlock) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } /* now copy out what data we can */ if (mp == NULL) { /* copy out each mbuf in the chain up to length */ get_more_data: m = control->data; while (m) { /* Move out all we can */ cp_len = (int)uio->uio_resid; my_len = (int)SCTP_BUF_LEN(m); if (cp_len > my_len) { /* not enough in this buf */ cp_len = my_len; } if (hold_rlock) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (cp_len > 0) error = uiomove(mtod(m, char *), cp_len, uio); /* re-read */ if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { goto release; } + if ((control->do_not_ref_stcb == 0) && stcb && stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { no_rcv_needed = 1; } if (error) { /* error we are out of here */ goto release; } SCTP_INP_READ_LOCK(inp); hold_rlock = 1; if (cp_len == SCTP_BUF_LEN(m)) { if ((SCTP_BUF_NEXT(m) == NULL) && (control->end_added)) { out_flags |= MSG_EOR; if ((control->do_not_ref_stcb == 0) && (control->stcb != NULL) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } /* we ate up the mbuf */ if (in_flags & MSG_PEEK) { /* just looking */ m = SCTP_BUF_NEXT(m); copied_so_far += cp_len; } else { /* dispose of the mbuf */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } copied_so_far += cp_len; freed_so_far += cp_len; freed_so_far += MSIZE; atomic_subtract_int(&control->length, cp_len); control->data = sctp_m_free(m); m = control->data; /* * been through it all, must hold sb * lock ok to null tail */ if (control->data == NULL) { #ifdef INVARIANTS if ((control->end_added == 0) || (TAILQ_NEXT(control, next) == NULL)) { /* * If the end is not * added, OR the * next is NOT null * we MUST have the * lock. */ if (mtx_owned(&inp->inp_rdata_mtx) == 0) { panic("Hmm we don't own the lock?"); } } #endif control->tail_mbuf = NULL; #ifdef INVARIANTS if ((control->end_added) && ((out_flags & MSG_EOR) == 0)) { panic("end_added, nothing left and no MSG_EOR"); } #endif } } } else { /* Do we need to trim the mbuf? */ if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } if ((in_flags & MSG_PEEK) == 0) { SCTP_BUF_RESV_UF(m, cp_len); SCTP_BUF_LEN(m) -= cp_len; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, cp_len); } atomic_subtract_int(&so->so_rcv.sb_cc, cp_len); if ((control->do_not_ref_stcb == 0) && stcb) { atomic_subtract_int(&stcb->asoc.sb_cc, cp_len); } copied_so_far += cp_len; freed_so_far += cp_len; freed_so_far += MSIZE; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } atomic_subtract_int(&control->length, cp_len); } else { copied_so_far += cp_len; } } if ((out_flags & MSG_EOR) || (uio->uio_resid == 0)) { break; } if (((stcb) && (in_flags & MSG_PEEK) == 0) && (control->do_not_ref_stcb == 0) && (freed_so_far >= rwnd_req)) { sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } } /* end while(m) */ /* * At this point we have looked at it all and we either have * a MSG_EOR/or read all the user wants... * control->length == 0. */ if ((out_flags & MSG_EOR) && ((in_flags & MSG_PEEK) == 0)) { /* we are done with this control */ if (control->length == 0) { if (control->data) { #ifdef INVARIANTS panic("control->data not null at read eor?"); #else SCTP_PRINTF("Strange, data left in the control buffer .. invarients would panic?\n"); sctp_m_freem(control->data); control->data = NULL; #endif } done_with_control: if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); hold_rlock = 1; } TAILQ_REMOVE(&inp->read_queue, control, next); /* Add back any hiddend data */ if (control->held_length) { held_length = 0; control->held_length = 0; wakeup_read_socket = 1; } if (control->aux_data) { sctp_m_free(control->aux_data); control->aux_data = NULL; } no_rcv_needed = control->do_not_ref_stcb; sctp_free_remote_addr(control->whoFrom); control->data = NULL; #ifdef INVARIANTS if (control->on_strm_q) { panic("About to free ctl:%p so:%p and its in %d", control, so, control->on_strm_q); } #endif sctp_free_a_readq(stcb, control); control = NULL; if ((freed_so_far >= rwnd_req) && (no_rcv_needed == 0)) sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } else { /* * The user did not read all of this * message, turn off the returned MSG_EOR * since we are leaving more behind on the * control to read. */ #ifdef INVARIANTS if (control->end_added && (control->data == NULL) && (control->tail_mbuf == NULL)) { panic("Gak, control->length is corrupt?"); } #endif no_rcv_needed = control->do_not_ref_stcb; out_flags &= ~MSG_EOR; } } if (out_flags & MSG_EOR) { goto release; } if ((uio->uio_resid == 0) || ((in_eeor_mode) && (copied_so_far >= (uint32_t)max(so->so_rcv.sb_lowat, 1)))) { goto release; } /* * If I hit here the receiver wants more and this message is * NOT done (pd-api). So two questions. Can we block? if not * we are done. Did the user NOT set MSG_WAITALL? */ if (block_allowed == 0) { goto release; } /* * We need to wait for more data a few things: - We don't * sbunlock() so we don't get someone else reading. - We * must be sure to account for the case where what is added * is NOT to our control when we wakeup. */ /* * Do we need to tell the transport a rwnd update might be * needed before we go to sleep? */ if (((stcb) && (in_flags & MSG_PEEK) == 0) && ((freed_so_far >= rwnd_req) && (control->do_not_ref_stcb == 0) && (no_rcv_needed == 0))) { sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } wait_some_more: if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { goto release; } + if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) goto release; if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock == 0) { SOCKBUF_LOCK(&so->so_rcv); hold_sblock = 1; } if ((copied_so_far) && (control->length == 0) && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE))) { goto release; } if (so->so_rcv.sb_cc <= control->held_length) { error = sbwait(&so->so_rcv); if (error) { goto release; } control->held_length = 0; } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } if (control->length == 0) { /* still nothing here */ if (control->end_added == 1) { /* he aborted, or is done i.e.did a shutdown */ out_flags |= MSG_EOR; if (control->pdapi_aborted) { if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; out_flags |= MSG_TRUNC; } else { if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } goto done_with_control; } if (so->so_rcv.sb_cc > held_length) { control->held_length = so->so_rcv.sb_cc; held_length = 0; } goto wait_some_more; } else if (control->data == NULL) { /* * we must re-sync since data is probably being * added */ SCTP_INP_READ_LOCK(inp); if ((control->length > 0) && (control->data == NULL)) { /* * big trouble.. we have the lock and its * corrupt? */ #ifdef INVARIANTS panic("Impossible data==NULL length !=0"); #endif out_flags |= MSG_EOR; out_flags |= MSG_TRUNC; control->length = 0; SCTP_INP_READ_UNLOCK(inp); goto done_with_control; } SCTP_INP_READ_UNLOCK(inp); /* We will fall around to get more data */ } goto get_more_data; } else { /*- * Give caller back the mbuf chain, * store in uio_resid the length */ wakeup_read_socket = 0; if ((control->end_added == 0) || (TAILQ_NEXT(control, next) == NULL)) { /* Need to get rlock */ if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); hold_rlock = 1; } } if (control->end_added) { out_flags |= MSG_EOR; if ((control->do_not_ref_stcb == 0) && (control->stcb != NULL) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } uio->uio_resid = control->length; *mp = control->data; m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &so->so_rcv, m); freed_so_far += SCTP_BUF_LEN(m); freed_so_far += MSIZE; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } control->data = control->tail_mbuf = NULL; control->length = 0; if (out_flags & MSG_EOR) { /* Done with this control */ goto done_with_control; } } release: if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock == 1) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } + sbunlock(&so->so_rcv); sockbuf_lock = 0; release_unlocked: if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } if ((stcb) && (in_flags & MSG_PEEK) == 0) { if ((freed_so_far >= rwnd_req) && (control && (control->do_not_ref_stcb == 0)) && (no_rcv_needed == 0)) sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } out: if (msg_flags) { *msg_flags = out_flags; } if (((out_flags & MSG_EOR) == 0) && ((in_flags & MSG_PEEK) == 0) && (sinfo) && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) || sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO))) { struct sctp_extrcvinfo *s_extra; s_extra = (struct sctp_extrcvinfo *)sinfo; s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG; } if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); } if (sockbuf_lock) { sbunlock(&so->so_rcv); } + if (freecnt_applied) { /* * The lock on the socket buffer protects us so the free * code will stop. But since we used the socketbuf lock and * the sender uses the tcb_lock to increment, we need to use * the atomic add to the refcnt. */ if (stcb == NULL) { #ifdef INVARIANTS panic("stcb for refcnt has gone NULL?"); goto stage_left; #else goto stage_left; #endif } /* Save the value back for next time */ stcb->freed_by_sorcv_sincelast = freed_so_far; atomic_add_int(&stcb->asoc.refcnt, -1); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { if (stcb) { sctp_misc_ints(SCTP_SORECV_DONE, freed_so_far, (uint32_t)((uio) ? (slen - uio->uio_resid) : slen), stcb->asoc.my_rwnd, so->so_rcv.sb_cc); } else { sctp_misc_ints(SCTP_SORECV_DONE, freed_so_far, (uint32_t)((uio) ? (slen - uio->uio_resid) : slen), 0, so->so_rcv.sb_cc); } } stage_left: if (wakeup_read_socket) { sctp_sorwakeup(inp, so); } return (error); } #ifdef SCTP_MBUF_LOGGING struct mbuf * sctp_m_free(struct mbuf *m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mb(m, SCTP_MBUF_IFREE); } return (m_free(m)); } void sctp_m_freem(struct mbuf *mb) { while (mb != NULL) mb = sctp_m_free(mb); } #endif int sctp_dynamic_set_primary(struct sockaddr *sa, uint32_t vrf_id) { /* * Given a local address. For all associations that holds the * address, request a peer-set-primary. */ struct sctp_ifa *ifa; struct sctp_laddr *wi; ifa = sctp_find_ifa_by_addr(sa, vrf_id, 0); if (ifa == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } /* * Now that we have the ifa we must awaken the iterator with this * message. */ wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } /* Now incr the count and int wi structure */ SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = ifa; wi->action = SCTP_SET_PRIM_ADDR; atomic_add_int(&ifa->refcount, 1); /* Now add it to the work queue */ SCTP_WQ_ADDR_LOCK(); /* * Should this really be a tailq? As it is we will process the * newest first :-0 */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); return (0); } int sctp_soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int error, fromlen; uint8_t sockbuf[256]; struct sockaddr *from; struct sctp_extrcvinfo sinfo; int filling_sinfo = 1; int flags; struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; /* pickup the assoc we are reading from */ if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } if ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVRCVINFO) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) || (controlp == NULL)) { /* user does not want the sndrcv ctl */ filling_sinfo = 0; } if (psa) { from = (struct sockaddr *)sockbuf; fromlen = sizeof(sockbuf); from->sa_len = 0; } else { from = NULL; fromlen = 0; } if (filling_sinfo) { memset(&sinfo, 0, sizeof(struct sctp_extrcvinfo)); } if (flagsp != NULL) { flags = *flagsp; } else { flags = 0; } error = sctp_sorecvmsg(so, uio, mp0, from, fromlen, &flags, (struct sctp_sndrcvinfo *)&sinfo, filling_sinfo); if (flagsp != NULL) { *flagsp = flags; } if (controlp != NULL) { /* copy back the sinfo in a CMSG format */ if (filling_sinfo && ((flags & MSG_NOTIFICATION) == 0)) { *controlp = sctp_build_ctl_nchunk(inp, (struct sctp_sndrcvinfo *)&sinfo); } else { *controlp = NULL; } } if (psa) { /* copy back the address info */ if (from && from->sa_len) { *psa = sodupsockaddr(from, M_NOWAIT); } else { *psa = NULL; } } return (error); } int sctp_connectx_helper_add(struct sctp_tcb *stcb, struct sockaddr *addr, int totaddr, int *error) { int added = 0; int i; struct sctp_inpcb *inp; struct sockaddr *sa; size_t incr = 0; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif sa = addr; inp = stcb->sctp_ep; *error = 0; for (i = 0; i < totaddr; i++) { switch (sa->sa_family) { #ifdef INET case AF_INET: incr = sizeof(struct sockaddr_in); sin = (struct sockaddr_in *)sa; if ((sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_7); *error = EINVAL; goto out_now; } if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_8); *error = ENOBUFS; goto out_now; } added++; break; #endif #ifdef INET6 case AF_INET6: incr = sizeof(struct sockaddr_in6); sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_9); *error = EINVAL; goto out_now; } if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_10); *error = ENOBUFS; goto out_now; } added++; break; #endif default: break; } sa = (struct sockaddr *)((caddr_t)sa + incr); } out_now: return (added); } struct sctp_tcb * sctp_connectx_helper_find(struct sctp_inpcb *inp, struct sockaddr *addr, unsigned int *totaddr, unsigned int *num_v4, unsigned int *num_v6, int *error, unsigned int limit, int *bad_addr) { struct sockaddr *sa; struct sctp_tcb *stcb = NULL; unsigned int incr, at, i; at = 0; sa = addr; *error = *num_v6 = *num_v4 = 0; /* account and validate addresses */ for (i = 0; i < *totaddr; i++) { switch (sa->sa_family) { #ifdef INET case AF_INET: incr = (unsigned int)sizeof(struct sockaddr_in); if (sa->sa_len != incr) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; *bad_addr = 1; return (NULL); } (*num_v4) += 1; break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* Must be non-mapped for connectx */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; *bad_addr = 1; return (NULL); } incr = (unsigned int)sizeof(struct sockaddr_in6); if (sa->sa_len != incr) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; *bad_addr = 1; return (NULL); } (*num_v6) += 1; break; } #endif default: *totaddr = i; incr = 0; /* we are done */ break; } if (i == *totaddr) { break; } SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL); if (stcb != NULL) { /* Already have or am bring up an association */ return (stcb); } else { SCTP_INP_DECR_REF(inp); } if ((at + incr) > limit) { *totaddr = i; break; } sa = (struct sockaddr *)((caddr_t)sa + incr); } return ((struct sctp_tcb *)NULL); } /* * sctp_bindx(ADD) for one address. * assumes all arguments are valid/checked by caller. */ void sctp_bindx_add_address(struct socket *so, struct sctp_inpcb *inp, struct sockaddr *sa, sctp_assoc_t assoc_id, uint32_t vrf_id, int *error, void *p) { struct sockaddr *addr_touse; #if defined(INET) && defined(INET6) struct sockaddr_in sin; #endif /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } addr_touse = sa; #ifdef INET6 if (sa->sa_family == AF_INET6) { #ifdef INET struct sockaddr_in6 *sin6; #endif if (sa->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { /* can only bind v6 on PF_INET6 sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } #ifdef INET sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4-mapped on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } #endif } #endif #ifdef INET if (sa->sa_family == AF_INET) { if (sa->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } } #endif if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { if (p == NULL) { /* Can't get proc for Net/Open BSD */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } *error = sctp_inpcb_bind(so, addr_touse, NULL, p); return; } /* * No locks required here since bind and mgmt_ep_sa all do their own * locking. If we do something for the FIX: below we may need to * lock in that case. */ if (assoc_id == 0) { /* add the address */ struct sctp_inpcb *lep; struct sockaddr_in *lsin = (struct sockaddr_in *)addr_touse; /* validate the incoming port */ if ((lsin->sin_port != 0) && (lsin->sin_port != inp->sctp_lport)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } else { /* user specified 0 port, set it to existing port */ lsin->sin_port = inp->sctp_lport; } lep = sctp_pcb_findep(addr_touse, 1, 0, vrf_id); if (lep != NULL) { /* * We must decrement the refcount since we have the * ep already and are binding. No remove going on * here. */ SCTP_INP_DECR_REF(lep); } if (lep == inp) { /* already bound to it.. ok */ return; } else if (lep == NULL) { ((struct sockaddr_in *)addr_touse)->sin_port = 0; *error = sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_ADD_IP_ADDRESS, vrf_id, NULL); } else { *error = EADDRINUSE; } if (*error) return; } else { /* * FIX: decide whether we allow assoc based bindx */ } } /* * sctp_bindx(DELETE) for one address. * assumes all arguments are valid/checked by caller. */ void sctp_bindx_delete_address(struct sctp_inpcb *inp, struct sockaddr *sa, sctp_assoc_t assoc_id, uint32_t vrf_id, int *error) { struct sockaddr *addr_touse; #if defined(INET) && defined(INET6) struct sockaddr_in sin; #endif /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } addr_touse = sa; #ifdef INET6 if (sa->sa_family == AF_INET6) { #ifdef INET struct sockaddr_in6 *sin6; #endif if (sa->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { /* can only bind v6 on PF_INET6 sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } #ifdef INET sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind mapped-v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } #endif } #endif #ifdef INET if (sa->sa_family == AF_INET) { if (sa->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } } #endif /* * No lock required mgmt_ep_sa does its own locking. If the FIX: * below is ever changed we may need to lock before calling * association level binding. */ if (assoc_id == 0) { /* delete the address */ *error = sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_DEL_IP_ADDRESS, vrf_id, NULL); } else { /* * FIX: decide whether we allow assoc based bindx */ } } /* * returns the valid local address count for an assoc, taking into account * all scoping rules */ int sctp_local_addr_count(struct sctp_tcb *stcb) { int loopback_scope; #if defined(INET) int ipv4_local_scope, ipv4_addr_legal; #endif #if defined (INET6) int local_scope, site_scope, ipv6_addr_legal; #endif struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; int count = 0; /* Turn on all the appropriate scopes */ loopback_scope = stcb->asoc.scope.loopback_scope; #if defined(INET) ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope; ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal; #endif #if defined(INET6) local_scope = stcb->asoc.scope.local_scope; site_scope = stcb->asoc.scope.site_scope; ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal; #endif SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { /* no vrf, no addresses */ SCTP_IPI_ADDR_RUNLOCK(); return (0); } + if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* * bound all case: go through all ifns on the vrf */ LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (sctp_is_addr_restricted(stcb, sctp_ifa)) continue; switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin; sin = &sctp_ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* * skip unspecified * addrs */ continue; } if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if ((ipv4_local_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { continue; } /* count this one */ count++; } else { continue; } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6; sin6 = &sctp_ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { continue; } if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) /* * * bad * link * * local * * address */ continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } /* count this one */ count++; } break; #endif default: /* TSNH */ break; } } } } else { /* * subset bound case */ struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (sctp_is_addr_restricted(stcb, laddr->ifa)) { continue; } /* count this one */ count++; } } SCTP_IPI_ADDR_RUNLOCK(); return (count); } #if defined(SCTP_LOCAL_TRACE_BUF) void sctp_log_trace(uint32_t subsys, const char *str SCTP_UNUSED, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f) { uint32_t saveindex, newindex; do { saveindex = SCTP_BASE_SYSCTL(sctp_log).index; if (saveindex >= SCTP_MAX_LOGGING_SIZE) { newindex = 1; } else { newindex = saveindex + 1; } } while (atomic_cmpset_int(&SCTP_BASE_SYSCTL(sctp_log).index, saveindex, newindex) == 0); if (saveindex >= SCTP_MAX_LOGGING_SIZE) { saveindex = 0; } SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].timestamp = SCTP_GET_CYCLECOUNT; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].subsys = subsys; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[0] = a; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[1] = b; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[2] = c; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[3] = d; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[4] = e; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[5] = f; } #endif static void sctp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, const struct sockaddr *sa SCTP_UNUSED, void *ctx SCTP_UNUSED) { struct ip *iph; #ifdef INET6 struct ip6_hdr *ip6; #endif struct mbuf *sp, *last; struct udphdr *uhdr; uint16_t port; if ((m->m_flags & M_PKTHDR) == 0) { /* Can't handle one that is not a pkt hdr */ goto out; } /* Pull the src port */ iph = mtod(m, struct ip *); uhdr = (struct udphdr *)((caddr_t)iph + off); port = uhdr->uh_sport; /* * Split out the mbuf chain. Leave the IP header in m, place the * rest in the sp. */ sp = m_split(m, off, M_NOWAIT); if (sp == NULL) { /* Gak, drop packet, we can't do a split */ goto out; } if (sp->m_pkthdr.len < sizeof(struct udphdr) + sizeof(struct sctphdr)) { /* Gak, packet can't have an SCTP header in it - too small */ m_freem(sp); goto out; } /* Now pull up the UDP header and SCTP header together */ sp = m_pullup(sp, sizeof(struct udphdr) + sizeof(struct sctphdr)); if (sp == NULL) { /* Gak pullup failed */ goto out; } /* Trim out the UDP header */ m_adj(sp, sizeof(struct udphdr)); /* Now reconstruct the mbuf chain */ for (last = m; last->m_next; last = last->m_next); last->m_next = sp; m->m_pkthdr.len += sp->m_pkthdr.len; /* * The CSUM_DATA_VALID flags indicates that the HW checked the UDP * checksum and it was valid. Since CSUM_DATA_VALID == * CSUM_SCTP_VALID this would imply that the HW also verified the * SCTP checksum. Therefore, clear the bit. */ SCTPDBG(SCTP_DEBUG_CRCOFFLOAD, "sctp_recv_udp_tunneled_packet(): Packet of length %d received on %s with csum_flags 0x%b.\n", m->m_pkthdr.len, if_name(m->m_pkthdr.rcvif), (int)m->m_pkthdr.csum_flags, CSUM_BITS); m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); sctp_input_with_port(m, off, port); break; #endif #ifdef INET6 case IPV6_VERSION >> 4: ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); sctp6_input_with_port(&m, &off, port); break; #endif default: goto out; break; } return; out: m_freem(m); } #ifdef INET static void sctp_recv_icmp_tunneled_packet(int cmd, struct sockaddr *sa, void *vip, void *ctx SCTP_UNUSED) { struct ip *outer_ip, *inner_ip; struct sctphdr *sh; struct icmp *icmp; struct udphdr *udp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_init_chunk *ch; struct sockaddr_in src, dst; uint8_t type, code; inner_ip = (struct ip *)vip; icmp = (struct icmp *)((caddr_t)inner_ip - (sizeof(struct icmp) - sizeof(struct ip))); outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); if (ntohs(outer_ip->ip_len) < sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + sizeof(struct udphdr) + 8) { return; } udp = (struct udphdr *)((caddr_t)inner_ip + (inner_ip->ip_hl << 2)); sh = (struct sctphdr *)(udp + 1); memset(&src, 0, sizeof(struct sockaddr_in)); src.sin_family = AF_INET; src.sin_len = sizeof(struct sockaddr_in); src.sin_port = sh->src_port; src.sin_addr = inner_ip->ip_src; memset(&dst, 0, sizeof(struct sockaddr_in)); dst.sin_family = AF_INET; dst.sin_len = sizeof(struct sockaddr_in); dst.sin_port = sh->dest_port; dst.sin_addr = inner_ip->ip_dst; /* * 'dst' holds the dest of the packet that failed to be sent. 'src' * holds our local endpoint address. Thus we reverse the dst and the * src in the lookup. */ inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the UDP port numbers */ if ((udp->uh_dport != net->port) || (udp->uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) { SCTP_TCB_UNLOCK(stcb); return; } /* Check the verification tag */ if (ntohl(sh->v_tag) != 0) { /* * This must be the verification tag used for * sending out packets. We don't consider packets * reflecting the verification tag. */ if (ntohl(sh->v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ntohs(outer_ip->ip_len) >= sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + 8 + 20) { /* * In this case we can check if we got an * INIT chunk and if the initiate tag * matches. */ ch = (struct sctp_init_chunk *)(sh + 1); if ((ch->ch.chunk_type != SCTP_INITIATION) || (ntohl(ch->init.initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } type = icmp->icmp_type; code = icmp->icmp_code; if ((type == ICMP_UNREACH) && (code == ICMP_UNREACH_PORT)) { code = ICMP_UNREACH_PROTOCOL; } sctp_notify(inp, stcb, net, type, code, ntohs(inner_ip->ip_len), (uint32_t)ntohs(icmp->icmp_nextmtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } return; } #endif #ifdef INET6 static void sctp_recv_icmp6_tunneled_packet(int cmd, struct sockaddr *sa, void *d, void *ctx SCTP_UNUSED) { struct ip6ctlparam *ip6cp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctphdr sh; struct udphdr udp; struct sockaddr_in6 src, dst; uint8_t type, code; ip6cp = (struct ip6ctlparam *)d; /* * XXX: We assume that when IPV6 is non NULL, M and OFF are valid. */ if (ip6cp->ip6c_m == NULL) { return; } /* * Check if we can safely examine the ports and the verification tag * of the SCTP common header. */ if (ip6cp->ip6c_m->m_pkthdr.len < ip6cp->ip6c_off + sizeof(struct udphdr) + offsetof(struct sctphdr, checksum)) { return; } /* Copy out the UDP header. */ memset(&udp, 0, sizeof(struct udphdr)); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), (caddr_t)&udp); /* Copy out the port numbers and the verification tag. */ memset(&sh, 0, sizeof(struct sctphdr)); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t), (caddr_t)&sh); memset(&src, 0, sizeof(struct sockaddr_in6)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_port = sh.src_port; src.sin6_addr = ip6cp->ip6c_ip6->ip6_src; if (in6_setscope(&src.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } memset(&dst, 0, sizeof(struct sockaddr_in6)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_port = sh.dest_port; dst.sin6_addr = ip6cp->ip6c_ip6->ip6_dst; if (in6_setscope(&dst.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the UDP port numbers */ if ((udp.uh_dport != net->port) || (udp.uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) { SCTP_TCB_UNLOCK(stcb); return; } /* Check the verification tag */ if (ntohl(sh.v_tag) != 0) { /* * This must be the verification tag used for * sending out packets. We don't consider packets * reflecting the verification tag. */ if (ntohl(sh.v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ip6cp->ip6c_m->m_pkthdr.len >= ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)) { /* * In this case we can check if we got an * INIT chunk and if the initiate tag * matches. */ uint32_t initiate_tag; uint8_t chunk_type; m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr), sizeof(uint8_t), (caddr_t)&chunk_type); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr), sizeof(uint32_t), (caddr_t)&initiate_tag); if ((chunk_type != SCTP_INITIATION) || (ntohl(initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } type = ip6cp->ip6c_icmp6->icmp6_type; code = ip6cp->ip6c_icmp6->icmp6_code; if ((type == ICMP6_DST_UNREACH) && (code == ICMP6_DST_UNREACH_NOPORT)) { type = ICMP6_PARAM_PROB; code = ICMP6_PARAMPROB_NEXTHEADER; } sctp6_notify(inp, stcb, net, type, code, ntohl(ip6cp->ip6c_icmp6->icmp6_mtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce inp's ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } } #endif void sctp_over_udp_stop(void) { /* * This function assumes sysctl caller holds sctp_sysctl_info_lock() * for writting! */ #ifdef INET if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) { soclose(SCTP_BASE_INFO(udp4_tun_socket)); SCTP_BASE_INFO(udp4_tun_socket) = NULL; } #endif #ifdef INET6 if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) { soclose(SCTP_BASE_INFO(udp6_tun_socket)); SCTP_BASE_INFO(udp6_tun_socket) = NULL; } #endif } int sctp_over_udp_start(void) { uint16_t port; int ret; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif /* * This function assumes sysctl caller holds sctp_sysctl_info_lock() * for writting! */ port = SCTP_BASE_SYSCTL(sctp_udp_tunneling_port); if (ntohs(port) == 0) { /* Must have a port set */ return (EINVAL); } #ifdef INET if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) { /* Already running -- must stop first */ return (EALREADY); } #endif #ifdef INET6 if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) { /* Already running -- must stop first */ return (EALREADY); } #endif #ifdef INET if ((ret = socreate(PF_INET, &SCTP_BASE_INFO(udp4_tun_socket), SOCK_DGRAM, IPPROTO_UDP, curthread->td_ucred, curthread))) { sctp_over_udp_stop(); return (ret); } /* Call the special UDP hook. */ if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp4_tun_socket), sctp_recv_udp_tunneled_packet, sctp_recv_icmp_tunneled_packet, NULL))) { sctp_over_udp_stop(); return (ret); } /* Ok, we have a socket, bind it to the port. */ memset(&sin, 0, sizeof(struct sockaddr_in)); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_port = htons(port); if ((ret = sobind(SCTP_BASE_INFO(udp4_tun_socket), (struct sockaddr *)&sin, curthread))) { sctp_over_udp_stop(); return (ret); } #endif #ifdef INET6 if ((ret = socreate(PF_INET6, &SCTP_BASE_INFO(udp6_tun_socket), SOCK_DGRAM, IPPROTO_UDP, curthread->td_ucred, curthread))) { sctp_over_udp_stop(); return (ret); } /* Call the special UDP hook. */ if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp6_tun_socket), sctp_recv_udp_tunneled_packet, sctp_recv_icmp6_tunneled_packet, NULL))) { sctp_over_udp_stop(); return (ret); } /* Ok, we have a socket, bind it to the port. */ memset(&sin6, 0, sizeof(struct sockaddr_in6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_port = htons(port); if ((ret = sobind(SCTP_BASE_INFO(udp6_tun_socket), (struct sockaddr *)&sin6, curthread))) { sctp_over_udp_stop(); return (ret); } #endif return (0); } #if defined(INET6) || defined(INET) /* * sctp_min_mtu ()returns the minimum of all non-zero arguments. * If all arguments are zero, zero is returned. */ uint32_t sctp_min_mtu(uint32_t mtu1, uint32_t mtu2, uint32_t mtu3) { if (mtu1 > 0) { if (mtu2 > 0) { if (mtu3 > 0) { return (min(mtu1, min(mtu2, mtu3))); } else { return (min(mtu1, mtu2)); } } else { if (mtu3 > 0) { return (min(mtu1, mtu3)); } else { return (mtu1); } } } else { if (mtu2 > 0) { if (mtu3 > 0) { return (min(mtu2, mtu3)); } else { return (mtu2); } } else { return (mtu3); } } } void sctp_hc_set_mtu(union sctp_sockstore *addr, uint16_t fibnum, uint32_t mtu) { struct in_conninfo inc; memset(&inc, 0, sizeof(struct in_conninfo)); inc.inc_fibnum = fibnum; switch (addr->sa.sa_family) { #ifdef INET case AF_INET: inc.inc_faddr = addr->sin.sin_addr; break; #endif #ifdef INET6 case AF_INET6: inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = addr->sin6.sin6_addr; break; #endif default: return; } tcp_hc_updatemtu(&inc, (u_long)mtu); } uint32_t sctp_hc_get_mtu(union sctp_sockstore *addr, uint16_t fibnum) { struct in_conninfo inc; memset(&inc, 0, sizeof(struct in_conninfo)); inc.inc_fibnum = fibnum; switch (addr->sa.sa_family) { #ifdef INET case AF_INET: inc.inc_faddr = addr->sin.sin_addr; break; #endif #ifdef INET6 case AF_INET6: inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = addr->sin6.sin6_addr; break; #endif default: return (0); } return ((uint32_t)tcp_hc_getmtu(&inc)); } #endif Index: stable/11/sys/netinet/sctputil.h =================================================================== --- stable/11/sys/netinet/sctputil.h (revision 347153) +++ stable/11/sys/netinet/sctputil.h (revision 347154) @@ -1,397 +1,392 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET_SCTP_UTIL_H_ #define _NETINET_SCTP_UTIL_H_ #if defined(_KERNEL) || defined(__Userspace__) #define SCTP_READ_LOCK_HELD 1 #define SCTP_READ_LOCK_NOT_HELD 0 #ifdef SCTP_ASOCLOG_OF_TSNS void sctp_print_out_track_log(struct sctp_tcb *stcb); #endif #ifdef SCTP_MBUF_LOGGING struct mbuf *sctp_m_free(struct mbuf *m); void sctp_m_freem(struct mbuf *m); #else #define sctp_m_free m_free #define sctp_m_freem m_freem #endif #if defined(SCTP_LOCAL_TRACE_BUF) || defined(__APPLE__) void sctp_log_trace(uint32_t fr, const char *str SCTP_UNUSED, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f); #endif #define sctp_get_associd(stcb) ((sctp_assoc_t)stcb->asoc.assoc_id) /* * Function prototypes */ int32_t sctp_map_assoc_state(int); uint32_t sctp_get_ifa_hash_val(struct sockaddr *addr); -struct sctp_ifa * - sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr, int hold_lock); +struct sctp_ifa *sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr, int hold_lock); -struct sctp_ifa * - sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock); +struct sctp_ifa *sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock); uint32_t sctp_select_initial_TSN(struct sctp_pcb *); uint32_t sctp_select_a_tag(struct sctp_inpcb *, uint16_t lport, uint16_t rport, int); int sctp_init_asoc(struct sctp_inpcb *, struct sctp_tcb *, uint32_t, uint32_t, uint16_t); void sctp_fill_random_store(struct sctp_pcb *); void sctp_notify_stream_reset_add(struct sctp_tcb *stcb, uint16_t numberin, uint16_t numberout, int flag); void sctp_notify_stream_reset_tsn(struct sctp_tcb *stcb, uint32_t sending_tsn, uint32_t recv_tsn, int flag); void sctp_timer_start(int, struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *); void sctp_timer_stop(int, struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *, uint32_t); int sctp_dynamic_set_primary(struct sockaddr *sa, uint32_t vrf_id); void sctp_mtu_size_reset(struct sctp_inpcb *, struct sctp_association *, uint32_t); void sctp_wakeup_the_read_socket(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); void sctp_add_to_readq(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_queued_to_read *control, struct sockbuf *sb, int end, int inpread_locked, int so_locked #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); void sctp_iterator_worker(void); uint32_t sctp_get_prev_mtu(uint32_t); uint32_t sctp_get_next_mtu(uint32_t); void sctp_timeout_handler(void *); uint32_t sctp_calculate_rto(struct sctp_tcb *, struct sctp_association *, struct sctp_nets *, struct timeval *, int); uint32_t sctp_calculate_len(struct mbuf *); caddr_t sctp_m_getptr(struct mbuf *, int, int, uint8_t *); struct sctp_paramhdr * sctp_get_next_param(struct mbuf *, int, struct sctp_paramhdr *, int); -struct mbuf * - sctp_add_pad_tombuf(struct mbuf *, int); +struct mbuf *sctp_add_pad_tombuf(struct mbuf *, int); -struct mbuf * - sctp_pad_lastmbuf(struct mbuf *, int, struct mbuf *); +struct mbuf *sctp_pad_lastmbuf(struct mbuf *, int, struct mbuf *); -void +void sctp_ulp_notify(uint32_t, struct sctp_tcb *, uint32_t, void *, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); void sctp_pull_off_control_to_new_inp(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb, int waitflags); void sctp_stop_timers_for_shutdown(struct sctp_tcb *); -void +void sctp_report_all_outbound(struct sctp_tcb *, uint16_t, int, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); int sctp_expand_mapping_array(struct sctp_association *, uint32_t); -void +void sctp_abort_notification(struct sctp_tcb *, uint8_t, uint16_t, struct sctp_abort_chunk *, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); /* We abort responding to an IP packet for some reason */ void sctp_abort_association(struct sctp_inpcb *, struct sctp_tcb *, struct mbuf *, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, struct mbuf *, uint8_t, uint32_t, uint32_t, uint16_t); /* We choose to abort via user input */ void sctp_abort_an_association(struct sctp_inpcb *, struct sctp_tcb *, struct mbuf *, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); -void +void sctp_handle_ootb(struct mbuf *, int, int, struct sockaddr *, struct sockaddr *, struct sctphdr *, struct sctp_inpcb *, struct mbuf *, uint8_t, uint32_t, uint16_t, uint32_t, uint16_t); -int +int sctp_connectx_helper_add(struct sctp_tcb *stcb, struct sockaddr *addr, int totaddr, int *error); struct sctp_tcb * sctp_connectx_helper_find(struct sctp_inpcb *inp, struct sockaddr *addr, unsigned int *totaddr, unsigned int *num_v4, unsigned int *num_v6, int *error, unsigned int limit, int *bad_addr); int sctp_is_there_an_abort_here(struct mbuf *, int, uint32_t *); #ifdef INET6 uint32_t sctp_is_same_scope(struct sockaddr_in6 *, struct sockaddr_in6 *); -struct sockaddr_in6 * - sctp_recover_scope(struct sockaddr_in6 *, struct sockaddr_in6 *); +struct sockaddr_in6 *sctp_recover_scope(struct sockaddr_in6 *, struct sockaddr_in6 *); #define sctp_recover_scope_mac(addr, store) do { \ if ((addr->sin6_family == AF_INET6) && \ (IN6_IS_SCOPE_LINKLOCAL(&addr->sin6_addr))) { \ *store = *addr; \ if (addr->sin6_scope_id == 0) { \ if (!sa6_recoverscope(store)) { \ addr = store; \ } \ } else { \ in6_clearscope(&addr->sin6_addr); \ addr = store; \ } \ } \ } while (0) #endif int sctp_cmpaddr(struct sockaddr *, struct sockaddr *); void sctp_print_address(struct sockaddr *); int sctp_release_pr_sctp_chunk(struct sctp_tcb *, struct sctp_tmit_chunk *, uint8_t, int #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) SCTP_UNUSED #endif ); struct mbuf *sctp_generate_cause(uint16_t, char *); struct mbuf *sctp_generate_no_user_data_cause(uint32_t); -void +void sctp_bindx_add_address(struct socket *so, struct sctp_inpcb *inp, struct sockaddr *sa, sctp_assoc_t assoc_id, uint32_t vrf_id, int *error, void *p); -void +void sctp_bindx_delete_address(struct sctp_inpcb *inp, struct sockaddr *sa, sctp_assoc_t assoc_id, uint32_t vrf_id, int *error); int sctp_local_addr_count(struct sctp_tcb *stcb); #ifdef SCTP_MBCNT_LOGGING void sctp_free_bufspace(struct sctp_tcb *, struct sctp_association *, struct sctp_tmit_chunk *, int); #else #define sctp_free_bufspace(stcb, asoc, tp1, chk_cnt) \ do { \ if (tp1->data != NULL) { \ atomic_subtract_int(&((asoc)->chunks_on_out_queue), chk_cnt); \ if ((asoc)->total_output_queue_size >= tp1->book_size) { \ atomic_subtract_int(&((asoc)->total_output_queue_size), tp1->book_size); \ } else { \ (asoc)->total_output_queue_size = 0; \ } \ if (stcb->sctp_socket && ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || \ (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { \ if (stcb->sctp_socket->so_snd.sb_cc >= tp1->book_size) { \ atomic_subtract_int(&((stcb)->sctp_socket->so_snd.sb_cc), tp1->book_size); \ } else { \ stcb->sctp_socket->so_snd.sb_cc = 0; \ } \ } \ } \ } while (0) #endif #define sctp_free_spbufspace(stcb, asoc, sp) \ do { \ if (sp->data != NULL) { \ if ((asoc)->total_output_queue_size >= sp->length) { \ atomic_subtract_int(&(asoc)->total_output_queue_size, sp->length); \ } else { \ (asoc)->total_output_queue_size = 0; \ } \ if (stcb->sctp_socket && ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || \ (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { \ if (stcb->sctp_socket->so_snd.sb_cc >= sp->length) { \ atomic_subtract_int(&stcb->sctp_socket->so_snd.sb_cc,sp->length); \ } else { \ stcb->sctp_socket->so_snd.sb_cc = 0; \ } \ } \ } \ } while (0) #define sctp_snd_sb_alloc(stcb, sz) \ do { \ atomic_add_int(&stcb->asoc.total_output_queue_size,sz); \ if ((stcb->sctp_socket != NULL) && \ ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || \ (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { \ atomic_add_int(&stcb->sctp_socket->so_snd.sb_cc,sz); \ } \ } while (0) /* functions to start/stop udp tunneling */ void sctp_over_udp_stop(void); int sctp_over_udp_start(void); int sctp_soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); void sctp_misc_ints(uint8_t from, uint32_t a, uint32_t b, uint32_t c, uint32_t d); void sctp_wakeup_log(struct sctp_tcb *stcb, uint32_t wake_cnt, int from); void sctp_log_strm_del_alt(struct sctp_tcb *stcb, uint32_t, uint16_t, uint16_t, int); void sctp_log_nagle_event(struct sctp_tcb *stcb, int action); #ifdef SCTP_MBUF_LOGGING void sctp_log_mb(struct mbuf *m, int from); void sctp_log_mbc(struct mbuf *m, int from); #endif void sctp_sblog(struct sockbuf *sb, struct sctp_tcb *stcb, int from, int incr); void sctp_log_strm_del(struct sctp_queued_to_read *control, struct sctp_queued_to_read *poschk, int from); void sctp_log_cwnd(struct sctp_tcb *stcb, struct sctp_nets *, int, uint8_t); void rto_logging(struct sctp_nets *net, int from); void sctp_log_closing(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int16_t loc); void sctp_log_lock(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint8_t from); void sctp_log_maxburst(struct sctp_tcb *stcb, struct sctp_nets *, int, int, uint8_t); void sctp_log_block(uint8_t, struct sctp_association *, size_t); void sctp_log_rwnd(uint8_t, uint32_t, uint32_t, uint32_t); void sctp_log_rwnd_set(uint8_t, uint32_t, uint32_t, uint32_t, uint32_t); int sctp_fill_stat_log(void *, size_t *); void sctp_log_fr(uint32_t, uint32_t, uint32_t, int); void sctp_log_sack(uint32_t, uint32_t, uint32_t, uint16_t, uint16_t, int); void sctp_log_map(uint32_t, uint32_t, uint32_t, int); void sctp_print_mapping_array(struct sctp_association *asoc); void sctp_clr_stat_log(void); #ifdef SCTP_AUDITING_ENABLED void sctp_auditing(int, struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *); void sctp_audit_log(uint8_t, uint8_t); #endif #if defined(INET6) || defined(INET) uint32_t sctp_min_mtu(uint32_t, uint32_t, uint32_t); void sctp_hc_set_mtu(union sctp_sockstore *, uint16_t, uint32_t); uint32_t sctp_hc_get_mtu(union sctp_sockstore *, uint16_t); #endif #endif /* _KERNEL */ #endif Index: stable/11/sys/netinet6/sctp6_usrreq.c =================================================================== --- stable/11/sys/netinet6/sctp6_usrreq.c (revision 347153) +++ stable/11/sys/netinet6/sctp6_usrreq.c (revision 347154) @@ -1,1189 +1,1196 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #ifdef INET6 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct protosw inetsw[]; int sctp6_input_with_port(struct mbuf **i_pak, int *offp, uint16_t port) { struct mbuf *m; int iphlen; uint32_t vrf_id; uint8_t ecn_bits; struct sockaddr_in6 src, dst; struct ip6_hdr *ip6; struct sctphdr *sh; struct sctp_chunkhdr *ch; int length, offset; uint8_t compute_crc; uint32_t mflowid; uint8_t mflowtype; uint16_t fibnum; iphlen = *offp; if (SCTP_GET_PKT_VRFID(*i_pak, vrf_id)) { SCTP_RELEASE_PKT(*i_pak); return (IPPROTO_DONE); } m = SCTP_HEADER_TO_CHAIN(*i_pak); #ifdef SCTP_MBUF_LOGGING /* Log in any input mbufs */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mbc(m, SCTP_MBUF_INPUT); } #endif #ifdef SCTP_PACKET_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LAST_PACKET_TRACING) { sctp_packet_log(m); } #endif SCTPDBG(SCTP_DEBUG_CRCOFFLOAD, "sctp6_input(): Packet of length %d received on %s with csum_flags 0x%b.\n", m->m_pkthdr.len, if_name(m->m_pkthdr.rcvif), (int)m->m_pkthdr.csum_flags, CSUM_BITS); mflowid = m->m_pkthdr.flowid; mflowtype = M_HASHTYPE_GET(m); fibnum = M_GETFIB(m); SCTP_STAT_INCR(sctps_recvpackets); SCTP_STAT_INCR_COUNTER64(sctps_inpackets); /* Get IP, SCTP, and first chunk header together in the first mbuf. */ offset = iphlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr); ip6 = mtod(m, struct ip6_hdr *); IP6_EXTHDR_GET(sh, struct sctphdr *, m, iphlen, (int)(sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr))); if (sh == NULL) { SCTP_STAT_INCR(sctps_hdrops); return (IPPROTO_DONE); } ch = (struct sctp_chunkhdr *)((caddr_t)sh + sizeof(struct sctphdr)); offset -= sizeof(struct sctp_chunkhdr); memset(&src, 0, sizeof(struct sockaddr_in6)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_port = sh->src_port; src.sin6_addr = ip6->ip6_src; if (in6_setscope(&src.sin6_addr, m->m_pkthdr.rcvif, NULL) != 0) { goto out; } memset(&dst, 0, sizeof(struct sockaddr_in6)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_port = sh->dest_port; dst.sin6_addr = ip6->ip6_dst; if (in6_setscope(&dst.sin6_addr, m->m_pkthdr.rcvif, NULL) != 0) { goto out; } length = ntohs(ip6->ip6_plen) + iphlen; /* Validate mbuf chain length with IP payload length. */ if (SCTP_HEADER_LEN(m) != length) { SCTPDBG(SCTP_DEBUG_INPUT1, "sctp6_input() length:%d reported length:%d\n", length, SCTP_HEADER_LEN(m)); SCTP_STAT_INCR(sctps_hdrops); goto out; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { goto out; } ecn_bits = ((ntohl(ip6->ip6_flow) >> 20) & 0x000000ff); if (m->m_pkthdr.csum_flags & CSUM_SCTP_VALID) { SCTP_STAT_INCR(sctps_recvhwcrc); compute_crc = 0; } else { SCTP_STAT_INCR(sctps_recvswcrc); compute_crc = 1; } sctp_common_input_processing(&m, iphlen, offset, length, (struct sockaddr *)&src, (struct sockaddr *)&dst, sh, ch, compute_crc, ecn_bits, mflowtype, mflowid, fibnum, vrf_id, port); out: if (m) { sctp_m_freem(m); } return (IPPROTO_DONE); } int sctp6_input(struct mbuf **i_pak, int *offp, int proto SCTP_UNUSED) { return (sctp6_input_with_port(i_pak, offp, 0)); } void sctp6_notify(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint8_t icmp6_type, uint8_t icmp6_code, uint32_t next_mtu) { #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) struct socket *so; #endif int timer_stopped; switch (icmp6_type) { case ICMP6_DST_UNREACH: if ((icmp6_code == ICMP6_DST_UNREACH_NOROUTE) || (icmp6_code == ICMP6_DST_UNREACH_ADMIN) || (icmp6_code == ICMP6_DST_UNREACH_BEYONDSCOPE) || (icmp6_code == ICMP6_DST_UNREACH_ADDR)) { /* Mark the net unreachable. */ if (net->dest_state & SCTP_ADDR_REACHABLE) { /* Ok that destination is not reachable */ net->dest_state &= ~SCTP_ADDR_REACHABLE; net->dest_state &= ~SCTP_ADDR_PF; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED); } } SCTP_TCB_UNLOCK(stcb); break; case ICMP6_PARAM_PROB: /* Treat it like an ABORT. */ if (icmp6_code == ICMP6_PARAMPROB_NEXTHEADER) { sctp_abort_notification(stcb, 1, 0, NULL, SCTP_SO_NOT_LOCKED); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) so = SCTP_INP_SO(inp); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_SOCKET_LOCK(so, 1); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_2); #if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING) SCTP_SOCKET_UNLOCK(so, 1); #endif } else { SCTP_TCB_UNLOCK(stcb); } break; case ICMP6_PACKET_TOO_BIG: if (net->dest_state & SCTP_ADDR_NO_PMTUD) { SCTP_TCB_UNLOCK(stcb); break; } if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { timer_stopped = 1; sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_1); } else { timer_stopped = 0; } /* Update the path MTU. */ if (net->port) { next_mtu -= sizeof(struct udphdr); } if (net->mtu > next_mtu) { net->mtu = next_mtu; } /* Update the association MTU */ if (stcb->asoc.smallest_mtu > next_mtu) { sctp_pathmtu_adjustment(stcb, next_mtu); } /* Finally, start the PMTU timer if it was running before. */ if (timer_stopped) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } SCTP_TCB_UNLOCK(stcb); break; default: SCTP_TCB_UNLOCK(stcb); break; } } void sctp6_ctlinput(int cmd, struct sockaddr *pktdst, void *d) { struct ip6ctlparam *ip6cp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctphdr sh; struct sockaddr_in6 src, dst; if (pktdst->sa_family != AF_INET6 || pktdst->sa_len != sizeof(struct sockaddr_in6)) { return; } + if ((unsigned)cmd >= PRC_NCMDS) { return; } if (PRC_IS_REDIRECT(cmd)) { d = NULL; } else if (inet6ctlerrmap[cmd] == 0) { return; } /* If the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; } else { ip6cp = (struct ip6ctlparam *)NULL; } if (ip6cp != NULL) { /* * XXX: We assume that when IPV6 is non NULL, M and OFF are * valid. */ if (ip6cp->ip6c_m == NULL) { return; } + /* * Check if we can safely examine the ports and the * verification tag of the SCTP common header. */ if (ip6cp->ip6c_m->m_pkthdr.len < (int32_t)(ip6cp->ip6c_off + offsetof(struct sctphdr, checksum))) { return; } + /* Copy out the port numbers and the verification tag. */ memset(&sh, 0, sizeof(sh)); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t), (caddr_t)&sh); memset(&src, 0, sizeof(struct sockaddr_in6)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_port = sh.src_port; src.sin6_addr = ip6cp->ip6c_ip6->ip6_src; if (in6_setscope(&src.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } memset(&dst, 0, sizeof(struct sockaddr_in6)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_port = sh.dest_port; dst.sin6_addr = ip6cp->ip6c_ip6->ip6_dst; if (in6_setscope(&dst.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the verification tag */ if (ntohl(sh.v_tag) != 0) { /* * This must be the verification tag used * for sending out packets. We don't * consider packets reflecting the * verification tag. */ if (ntohl(sh.v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ip6cp->ip6c_m->m_pkthdr.len >= ip6cp->ip6c_off + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)) { /* * In this case we can check if we * got an INIT chunk and if the * initiate tag matches. */ uint32_t initiate_tag; uint8_t chunk_type; m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct sctphdr), sizeof(uint8_t), (caddr_t)&chunk_type); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr), sizeof(uint32_t), (caddr_t)&initiate_tag); if ((chunk_type != SCTP_INITIATION) || (ntohl(initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } sctp6_notify(inp, stcb, net, ip6cp->ip6c_icmp6->icmp6_type, ip6cp->ip6c_icmp6->icmp6_code, ntohl(ip6cp->ip6c_icmp6->icmp6_mtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce inp's ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } } } /* * this routine can probably be collasped into the one in sctp_userreq.c * since they do the same thing and now we lookup with a sockaddr */ static int sctp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct sctp_inpcb *inp; struct sctp_nets *net; struct sctp_tcb *stcb; int error; uint32_t vrf_id; vrf_id = SCTP_DEFAULT_VRFID; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); if (req->newlen != sizeof(addrs)) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } if (req->oldlen != sizeof(struct ucred)) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); stcb = sctp_findassociation_addr_sa(sin6tosa(&addrs[1]), sin6tosa(&addrs[0]), &inp, &net, 1, vrf_id); if (stcb == NULL || inp == NULL || inp->sctp_socket == NULL) { if ((inp != NULL) && (stcb == NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); goto cred_can_cont; } SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT); error = ENOENT; goto out; } SCTP_TCB_UNLOCK(stcb); /* * We use the write lock here, only since in the error leg we need * it. If we used RLOCK, then we would have to * wlock/decr/unlock/rlock. Which in theory could create a hole. * Better to use higher wlock. */ SCTP_INP_WLOCK(inp); cred_can_cont: error = cr_canseesocket(req->td->td_ucred, inp->sctp_socket); if (error) { SCTP_INP_WUNLOCK(inp); goto out; } cru2x(inp->sctp_socket->so_cred, &xuc); SCTP_INP_WUNLOCK(inp); error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); out: return (error); } SYSCTL_PROC(_net_inet6_sctp6, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW, 0, 0, sctp6_getcred, "S,ucred", "Get the ucred of a SCTP6 connection"); /* This is the same as the sctp_abort() could be made common */ static void sctp6_abort(struct socket *so) { struct sctp_inpcb *inp; uint32_t flags; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return; } sctp_must_try_again: flags = inp->sctp_flags; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 16); #endif sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_AFTER_CMPSET_OFCLOSE); SOCK_LOCK(so); SCTP_SB_CLEAR(so->so_snd); /* * same for the rcv ones, they are only here for the * accounting/select. */ SCTP_SB_CLEAR(so->so_rcv); /* Now null out the reference, we are completely detached. */ so->so_pcb = NULL; SOCK_UNLOCK(so); } else { flags = inp->sctp_flags; if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { goto sctp_must_try_again; } } return; } static int sctp6_attach(struct socket *so, int proto SCTP_UNUSED, struct thread *p SCTP_UNUSED) { struct in6pcb *inp6; int error; struct sctp_inpcb *inp; uint32_t vrf_id = SCTP_DEFAULT_VRFID; inp = (struct sctp_inpcb *)so->so_pcb; if (inp != NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } + if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = SCTP_SORESERVE(so, SCTP_BASE_SYSCTL(sctp_sendspace), SCTP_BASE_SYSCTL(sctp_recvspace)); if (error) return (error); } error = sctp_inpcb_alloc(so, vrf_id); if (error) return (error); inp = (struct sctp_inpcb *)so->so_pcb; SCTP_INP_WLOCK(inp); inp->sctp_flags |= SCTP_PCB_FLAGS_BOUND_V6; /* I'm v6! */ inp6 = (struct in6pcb *)inp; inp6->inp_vflag |= INP_IPV6; inp6->in6p_hops = -1; /* use kernel default */ inp6->in6p_cksum = -1; /* just to be sure */ #ifdef INET /* * XXX: ugly!! IPv4 TTL initialization is necessary for an IPv6 * socket as well, because the socket may be bound to an IPv6 * wildcard address, which may match an IPv4-mapped IPv6 address. */ inp6->inp_ip_ttl = MODULE_GLOBAL(ip_defttl); #endif SCTP_INP_WUNLOCK(inp); return (0); } static int sctp6_bind(struct socket *so, struct sockaddr *addr, struct thread *p) { struct sctp_inpcb *inp; struct in6pcb *inp6; int error; u_char vflagsav; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } + if (addr) { switch (addr->sa_family) { #ifdef INET case AF_INET: if (addr->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } break; #endif #ifdef INET6 case AF_INET6: if (addr->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } break; #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } } inp6 = (struct in6pcb *)inp; vflagsav = inp6->inp_vflag; inp6->inp_vflag &= ~INP_IPV4; inp6->inp_vflag |= INP_IPV6; if ((addr != NULL) && (SCTP_IPV6_V6ONLY(inp6) == 0)) { switch (addr->sa_family) { #ifdef INET case AF_INET: /* binding v4 addr to v6 socket, so reset flags */ inp6->inp_vflag |= INP_IPV4; inp6->inp_vflag &= ~INP_IPV6; break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6_p; sin6_p = (struct sockaddr_in6 *)addr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { inp6->inp_vflag |= INP_IPV4; } #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6_p); inp6->inp_vflag |= INP_IPV4; inp6->inp_vflag &= ~INP_IPV6; error = sctp_inpcb_bind(so, (struct sockaddr *)&sin, NULL, p); goto out; } #endif break; } #endif default: break; } } else if (addr != NULL) { struct sockaddr_in6 *sin6_p; /* IPV6_V6ONLY socket */ #ifdef INET if (addr->sa_family == AF_INET) { /* can't bind v4 addr to v6 only socket! */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); error = EINVAL; goto out; } #endif sin6_p = (struct sockaddr_in6 *)addr; if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { /* can't bind v4-mapped addrs either! */ /* NOTE: we don't support SIIT */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); error = EINVAL; goto out; } } error = sctp_inpcb_bind(so, addr, NULL, p); out: if (error != 0) inp6->inp_vflag = vflagsav; return (error); } static void sctp6_close(struct socket *so) { sctp_close(so); } /* This could be made common with sctp_detach() since they are identical */ static int sctp6_disconnect(struct socket *so) { return (sctp_disconnect(so)); } int sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p); static int sctp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p) { struct sctp_inpcb *inp; struct in6pcb *inp6; #ifdef INET struct sockaddr_in6 *sin6; #endif /* INET */ /* No SPL needed since sctp_output does this */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { if (control) { SCTP_RELEASE_PKT(control); control = NULL; } SCTP_RELEASE_PKT(m); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } inp6 = (struct in6pcb *)inp; /* * For the TCP model we may get a NULL addr, if we are a connected * socket thats ok. */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) && (addr == NULL)) { goto connected_type; } if (addr == NULL) { SCTP_RELEASE_PKT(m); if (control) { SCTP_RELEASE_PKT(control); control = NULL; } SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EDESTADDRREQ); return (EDESTADDRREQ); } #ifdef INET sin6 = (struct sockaddr_in6 *)addr; if (SCTP_IPV6_V6ONLY(inp6)) { /* * if IPV6_V6ONLY flag, we discard datagrams destined to a * v4 addr or v4-mapped addr */ if (addr->sa_family == AF_INET) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; /* convert v4-mapped into v4 addr and send */ in6_sin6_2_sin(&sin, sin6); return (sctp_sendm(so, flags, m, (struct sockaddr *)&sin, control, p)); } #endif /* INET */ connected_type: /* now what about control */ if (control) { if (inp->control) { SCTP_PRINTF("huh? control set?\n"); SCTP_RELEASE_PKT(inp->control); inp->control = NULL; } inp->control = control; } /* Place the data */ if (inp->pkt) { SCTP_BUF_NEXT(inp->pkt_last) = m; inp->pkt_last = m; } else { inp->pkt_last = inp->pkt = m; } if ( /* FreeBSD and MacOSX uses a flag passed */ ((flags & PRUS_MORETOCOME) == 0) ) { /* * note with the current version this code will only be used * by OpenBSD, NetBSD and FreeBSD have methods for * re-defining sosend() to use sctp_sosend(). One can * optionaly switch back to this code (by changing back the * defininitions but this is not advisable. */ int ret; ret = sctp_output(inp, inp->pkt, addr, inp->control, p, flags); inp->pkt = NULL; inp->control = NULL; return (ret); } else { return (0); } } static int sctp6_connect(struct socket *so, struct sockaddr *addr, struct thread *p) { uint32_t vrf_id; int error = 0; struct sctp_inpcb *inp; struct sctp_tcb *stcb; #ifdef INET struct in6pcb *inp6; struct sockaddr_in6 *sin6; union sctp_sockstore store; #endif #ifdef INET inp6 = (struct in6pcb *)so->so_pcb; #endif inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET); return (ECONNRESET); /* I made the same as TCP since we are * not setup? */ } if (addr == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } switch (addr->sa_family) { #ifdef INET case AF_INET: if (addr->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } break; #endif #ifdef INET6 case AF_INET6: if (addr->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } break; #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } vrf_id = inp->def_vrf_id; SCTP_ASOC_CREATE_LOCK(inp); SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ SCTP_INP_RUNLOCK(inp); error = sctp6_bind(so, NULL, p); if (error) { SCTP_ASOC_CREATE_UNLOCK(inp); return (error); } SCTP_INP_RLOCK(inp); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_INP_RUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EADDRINUSE); return (EADDRINUSE); } #ifdef INET sin6 = (struct sockaddr_in6 *)addr; if (SCTP_IPV6_V6ONLY(inp6)) { /* * if IPV6_V6ONLY flag, ignore connections destined to a v4 * addr or v4-mapped addr */ if (addr->sa_family == AF_INET) { SCTP_INP_RUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { SCTP_INP_RUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* convert v4-mapped into v4 addr */ in6_sin6_2_sin(&store.sin, sin6); addr = &store.sa; } #endif /* INET */ /* Now do we connect? */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_RUNLOCK(inp); SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, NULL, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } if (stcb != NULL) { /* Already have or am bring up an association */ SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_TCB_UNLOCK(stcb); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EALREADY); return (EALREADY); } /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, addr, &error, 0, vrf_id, inp->sctp_ep.pre_open_stream_count, inp->sctp_ep.port, p); SCTP_ASOC_CREATE_UNLOCK(inp); if (stcb == NULL) { /* Gak! no memory */ return (error); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } stcb->asoc.state = SCTP_STATE_COOKIE_WAIT; (void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); /* initialize authentication parameters for the assoc */ sctp_initialize_auth_params(inp, stcb); sctp_send_initiate(inp, stcb, SCTP_SO_LOCKED); SCTP_TCB_UNLOCK(stcb); return (error); } static int sctp6_getaddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in6 *sin6; struct sctp_inpcb *inp; uint32_t vrf_id; struct sctp_ifa *sctp_ifa; int error; /* * Do the malloc first in case it blocks. */ SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof(*sin6)); if (sin6 == NULL) return (ENOMEM); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET); return (ECONNRESET); } SCTP_INP_RLOCK(inp); sin6->sin6_port = inp->sctp_lport; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* For the bound all case you get back 0 */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { struct sctp_tcb *stcb; struct sockaddr_in6 *sin_a6; struct sctp_nets *net; int fnd; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT); return (ENOENT); } fnd = 0; sin_a6 = NULL; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a6 = (struct sockaddr_in6 *)&net->ro._l_addr; if (sin_a6 == NULL) /* this will make coverity happy */ continue; if (sin_a6->sin6_family == AF_INET6) { fnd = 1; break; } } if ((!fnd) || (sin_a6 == NULL)) { /* punt */ SCTP_INP_RUNLOCK(inp); SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT); return (ENOENT); } vrf_id = inp->def_vrf_id; sctp_ifa = sctp_source_address_selection(inp, stcb, (sctp_route_t *)&net->ro, net, 0, vrf_id); if (sctp_ifa) { sin6->sin6_addr = sctp_ifa->address.sin6.sin6_addr; } } else { /* For the bound all case you get back 0 */ memset(&sin6->sin6_addr, 0, sizeof(sin6->sin6_addr)); } } else { /* Take the first IPv6 address in the list */ struct sctp_laddr *laddr; int fnd = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->address.sa.sa_family == AF_INET6) { struct sockaddr_in6 *sin_a; sin_a = &laddr->ifa->address.sin6; sin6->sin6_addr = sin_a->sin6_addr; fnd = 1; break; } } if (!fnd) { SCTP_FREE_SONAME(sin6); SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT); return (ENOENT); } } SCTP_INP_RUNLOCK(inp); /* Scoping things for v6 */ if ((error = sa6_recoverscope(sin6)) != 0) { SCTP_FREE_SONAME(sin6); return (error); } (*addr) = (struct sockaddr *)sin6; return (0); } static int sctp6_peeraddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in6 *sin6; int fnd; struct sockaddr_in6 *sin_a6; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; int error; /* Do the malloc first in case it blocks. */ SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6); if (sin6 == NULL) return (ENOMEM); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); inp = (struct sctp_inpcb *)so->so_pcb; if ((inp == NULL) || ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* UDP type and listeners will drop out here */ SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOTCONN); return (ENOTCONN); } SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); if (stcb == NULL) { SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET); return (ECONNRESET); } fnd = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a6 = (struct sockaddr_in6 *)&net->ro._l_addr; if (sin_a6->sin6_family == AF_INET6) { fnd = 1; sin6->sin6_port = stcb->rport; sin6->sin6_addr = sin_a6->sin6_addr; break; } } SCTP_TCB_UNLOCK(stcb); if (!fnd) { /* No IPv4 address */ SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT); return (ENOENT); } if ((error = sa6_recoverscope(sin6)) != 0) { SCTP_FREE_SONAME(sin6); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, error); return (error); } *addr = (struct sockaddr *)sin6; return (0); } static int sctp6_in6getaddr(struct socket *so, struct sockaddr **nam) { struct in6pcb *inp6 = sotoin6pcb(so); int error; if (inp6 == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } + /* allow v6 addresses precedence */ error = sctp6_getaddr(so, nam); #ifdef INET if (error) { struct sockaddr_in6 *sin6; /* try v4 next if v6 failed */ error = sctp_ingetaddr(so, nam); if (error) { return (error); } SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6); if (sin6 == NULL) { SCTP_FREE_SONAME(*nam); return (ENOMEM); } in6_sin_2_v4mapsin6((struct sockaddr_in *)*nam, sin6); SCTP_FREE_SONAME(*nam); *nam = (struct sockaddr *)sin6; } #endif return (error); } static int sctp6_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct in6pcb *inp6 = sotoin6pcb(so); int error; if (inp6 == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL); return (EINVAL); } + /* allow v6 addresses precedence */ error = sctp6_peeraddr(so, nam); #ifdef INET if (error) { struct sockaddr_in6 *sin6; /* try v4 next if v6 failed */ error = sctp_peeraddr(so, nam); if (error) { return (error); } SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6); if (sin6 == NULL) { SCTP_FREE_SONAME(*nam); return (ENOMEM); } in6_sin_2_v4mapsin6((struct sockaddr_in *)*nam, sin6); SCTP_FREE_SONAME(*nam); *nam = (struct sockaddr *)sin6; } #endif return (error); } struct pr_usrreqs sctp6_usrreqs = { .pru_abort = sctp6_abort, .pru_accept = sctp_accept, .pru_attach = sctp6_attach, .pru_bind = sctp6_bind, .pru_connect = sctp6_connect, .pru_control = in6_control, .pru_close = sctp6_close, .pru_detach = sctp6_close, .pru_sopoll = sopoll_generic, .pru_flush = sctp_flush, .pru_disconnect = sctp6_disconnect, .pru_listen = sctp_listen, .pru_peeraddr = sctp6_getpeeraddr, .pru_send = sctp6_send, .pru_shutdown = sctp_shutdown, .pru_sockaddr = sctp6_in6getaddr, .pru_sosend = sctp_sosend, .pru_soreceive = sctp_soreceive }; #endif Index: stable/11/sys/netinet6/sctp6_var.h =================================================================== --- stable/11/sys/netinet6/sctp6_var.h (revision 347153) +++ stable/11/sys/netinet6/sctp6_var.h (revision 347154) @@ -1,54 +1,54 @@ /*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NETINET6_SCTP6_VAR_H_ #define _NETINET6_SCTP6_VAR_H_ #if defined(_KERNEL) SYSCTL_DECL(_net_inet6_sctp6); extern struct pr_usrreqs sctp6_usrreqs; int sctp6_input(struct mbuf **, int *, int); int sctp6_input_with_port(struct mbuf **, int *, uint16_t); -int +int sctp6_output(struct sctp_inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct proc *); void sctp6_ctlinput(int, struct sockaddr *, void *); -void +void sctp6_notify(struct sctp_inpcb *, struct sctp_tcb *, struct sctp_nets *, uint8_t, uint8_t, uint32_t); #endif #endif Index: stable/11 =================================================================== --- stable/11 (revision 347153) +++ stable/11 (revision 347154) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r336511