Index: stable/11/sys/arm/arm/mpcore_timer.c =================================================================== --- stable/11/sys/arm/arm/mpcore_timer.c (revision 346550) +++ stable/11/sys/arm/arm/mpcore_timer.c (revision 346551) @@ -1,546 +1,546 @@ /*- * Copyright (c) 2011 The FreeBSD Foundation * All rights reserved. * * Developed by Ben Gray * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /** * The ARM Cortex-A9 core can support a global timer plus a private and * watchdog timer per core. This driver reserves memory and interrupt * resources for accessing both timer register sets, these resources are * stored globally and used to setup the timecount and eventtimer. * * The timecount timer uses the global 64-bit counter, whereas the * per-CPU eventtimer uses the private 32-bit counters. * * * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2) */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Private (per-CPU) timer register map */ #define PRV_TIMER_LOAD 0x0000 #define PRV_TIMER_COUNT 0x0004 #define PRV_TIMER_CTRL 0x0008 #define PRV_TIMER_INTR 0x000C #define PRV_TIMER_CTR_PRESCALER_SHIFT 8 #define PRV_TIMER_CTRL_IRQ_ENABLE (1UL << 2) #define PRV_TIMER_CTRL_AUTO_RELOAD (1UL << 1) #define PRV_TIMER_CTRL_TIMER_ENABLE (1UL << 0) #define PRV_TIMER_INTR_EVENT (1UL << 0) /* Global timer register map */ #define GBL_TIMER_COUNT_LOW 0x0000 #define GBL_TIMER_COUNT_HIGH 0x0004 #define GBL_TIMER_CTRL 0x0008 #define GBL_TIMER_INTR 0x000C #define GBL_TIMER_CTR_PRESCALER_SHIFT 8 #define GBL_TIMER_CTRL_AUTO_INC (1UL << 3) #define GBL_TIMER_CTRL_IRQ_ENABLE (1UL << 2) #define GBL_TIMER_CTRL_COMP_ENABLE (1UL << 1) #define GBL_TIMER_CTRL_TIMER_ENABLE (1UL << 0) #define GBL_TIMER_INTR_EVENT (1UL << 0) struct arm_tmr_softc { device_t dev; int irqrid; int memrid; struct resource * gbl_mem; struct resource * prv_mem; struct resource * prv_irq; uint64_t clkfreq; struct eventtimer et; }; static struct eventtimer *arm_tmr_et; static struct timecounter *arm_tmr_tc; static uint64_t arm_tmr_freq; static boolean_t arm_tmr_freq_varies; #define tmr_prv_read_4(sc, reg) bus_read_4((sc)->prv_mem, reg) #define tmr_prv_write_4(sc, reg, val) bus_write_4((sc)->prv_mem, reg, val) #define tmr_gbl_read_4(sc, reg) bus_read_4((sc)->gbl_mem, reg) #define tmr_gbl_write_4(sc, reg, val) bus_write_4((sc)->gbl_mem, reg, val) static timecounter_get_t arm_tmr_get_timecount; static struct timecounter arm_tmr_timecount = { .tc_name = "MPCore", .tc_get_timecount = arm_tmr_get_timecount, .tc_poll_pps = NULL, .tc_counter_mask = ~0u, .tc_frequency = 0, .tc_quality = 800, }; #define TMR_GBL 0x01 #define TMR_PRV 0x02 #define TMR_BOTH (TMR_GBL | TMR_PRV) #define TMR_NONE 0 static struct ofw_compat_data compat_data[] = { {"arm,mpcore-timers", TMR_BOTH}, /* Non-standard, FreeBSD. */ {"arm,cortex-a9-global-timer", TMR_GBL}, {"arm,cortex-a5-global-timer", TMR_GBL}, {"arm,cortex-a9-twd-timer", TMR_PRV}, {"arm,cortex-a5-twd-timer", TMR_PRV}, {"arm,arm11mp-twd-timer", TMR_PRV}, {NULL, TMR_NONE} }; /** * arm_tmr_get_timecount - reads the timecount (global) timer * @tc: pointer to arm_tmr_timecount struct * * We only read the lower 32-bits, the timecount stuff only uses 32-bits * so (for now?) ignore the upper 32-bits. * * RETURNS * The lower 32-bits of the counter. */ static unsigned arm_tmr_get_timecount(struct timecounter *tc) { struct arm_tmr_softc *sc; sc = tc->tc_priv; return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW)); } /** * arm_tmr_start - starts the eventtimer (private) timer * @et: pointer to eventtimer struct * @first: the number of seconds and fractional sections to trigger in * @period: the period (in seconds and fractional sections) to set * * If the eventtimer is required to be in oneshot mode, period will be * NULL and first will point to the time to trigger. If in periodic mode * period will contain the time period and first may optionally contain * the time for the first period. * * RETURNS * Always returns 0 */ static int arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { struct arm_tmr_softc *sc; uint32_t load, count; uint32_t ctrl; sc = et->et_priv; tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0); tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT); ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE; if (period != 0) { load = ((uint32_t)et->et_frequency * period) >> 32; ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD; } else load = 0; if (first != 0) count = (uint32_t)((et->et_frequency * first) >> 32); else count = load; tmr_prv_write_4(sc, PRV_TIMER_LOAD, load); tmr_prv_write_4(sc, PRV_TIMER_COUNT, count); tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl); return (0); } /** * arm_tmr_stop - stops the eventtimer (private) timer * @et: pointer to eventtimer struct * * Simply stops the private timer by clearing all bits in the ctrl register. * * RETURNS * Always returns 0 */ static int arm_tmr_stop(struct eventtimer *et) { struct arm_tmr_softc *sc; sc = et->et_priv; tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0); tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT); return (0); } /** * arm_tmr_intr - ISR for the eventtimer (private) timer * @arg: pointer to arm_tmr_softc struct * * Clears the event register and then calls the eventtimer callback. * * RETURNS * Always returns FILTER_HANDLED */ static int arm_tmr_intr(void *arg) { struct arm_tmr_softc *sc; sc = arg; tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT); if (sc->et.et_active) sc->et.et_event_cb(&sc->et, sc->et.et_arg); return (FILTER_HANDLED); } /** * arm_tmr_probe - timer probe routine * @dev: new device * * The probe function returns success when probed with the fdt compatible * string set to "arm,mpcore-timers". * * RETURNS * BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO. */ static int arm_tmr_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE) return (ENXIO); device_set_desc(dev, "ARM MPCore Timers"); return (BUS_PROBE_DEFAULT); } static int attach_tc(struct arm_tmr_softc *sc) { int rid; if (arm_tmr_tc != NULL) return (EBUSY); rid = sc->memrid; sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->gbl_mem == NULL) { device_printf(sc->dev, "could not allocate gbl mem resources\n"); return (ENXIO); } tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000); arm_tmr_timecount.tc_frequency = sc->clkfreq; arm_tmr_timecount.tc_priv = sc; tc_init(&arm_tmr_timecount); arm_tmr_tc = &arm_tmr_timecount; tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE); return (0); } static int attach_et(struct arm_tmr_softc *sc) { void *ihl; int irid, mrid; if (arm_tmr_et != NULL) return (EBUSY); mrid = sc->memrid; sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid, RF_ACTIVE); if (sc->prv_mem == NULL) { device_printf(sc->dev, "could not allocate prv mem resources\n"); return (ENXIO); } tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000); irid = sc->irqrid; sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE); if (sc->prv_irq == NULL) { bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem); device_printf(sc->dev, "could not allocate prv irq resources\n"); return (ENXIO); } if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr, NULL, sc, &ihl) != 0) { bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem); bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq); device_printf(sc->dev, "unable to setup the et irq handler.\n"); return (ENXIO); } /* * Setup and register the eventtimer. Most event timers set their min * and max period values to some value calculated from the clock * frequency. We might not know yet what our runtime clock frequency * will be, so we just use some safe values. A max of 2 seconds ensures * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU), * we won't overflow our 32-bit timer count register. A min of 20 * nanoseconds is pretty much completely arbitrary. */ sc->et.et_name = "MPCore"; sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU; sc->et.et_quality = 1000; sc->et.et_frequency = sc->clkfreq; sc->et.et_min_period = nstosbt(20); sc->et.et_max_period = 2 * SBT_1S; sc->et.et_start = arm_tmr_start; sc->et.et_stop = arm_tmr_stop; sc->et.et_priv = sc; et_register(&sc->et); arm_tmr_et = &sc->et; return (0); } /** * arm_tmr_attach - attaches the timer to the simplebus * @dev: new device * * Reserves memory and interrupt resources, stores the softc structure * globally and registers both the timecount and eventtimer objects. * * RETURNS * Zero on success or ENXIO if an error occuried. */ static int arm_tmr_attach(device_t dev) { struct arm_tmr_softc *sc; phandle_t node; pcell_t clock; int et_err, tc_err, tmrtype; sc = device_get_softc(dev); sc->dev = dev; if (arm_tmr_freq_varies) { sc->clkfreq = arm_tmr_freq; } else { if (arm_tmr_freq != 0) { sc->clkfreq = arm_tmr_freq; } else { /* Get the base clock frequency */ node = ofw_bus_get_node(dev); if ((OF_getencprop(node, "clock-frequency", &clock, sizeof(clock))) <= 0) { device_printf(dev, "missing clock-frequency " "attribute in FDT\n"); return (ENXIO); } sc->clkfreq = clock; } } tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; tc_err = ENXIO; et_err = ENXIO; /* * If we're handling the global timer and it is fixed-frequency, set it * up to use as a timecounter. If it's variable frequency it won't work * as a timecounter. We also can't use it for DELAY(), so hopefully the * platform provides its own implementation. If it doesn't, ours will * get used, but since the frequency isn't set, it will only use the * bogus loop counter. */ if (tmrtype & TMR_GBL) { if (!arm_tmr_freq_varies) tc_err = attach_tc(sc); else if (bootverbose) device_printf(sc->dev, - "not using variable-frequency device as timecounter"); + "not using variable-frequency device as timecounter\n"); sc->memrid++; sc->irqrid++; } /* If we are handling the private timer, set it up as an eventtimer. */ if (tmrtype & TMR_PRV) { et_err = attach_et(sc); } /* * If we didn't successfully set up a timecounter or eventtimer then we * didn't actually attach at all, return error. */ if (tc_err != 0 && et_err != 0) { return (ENXIO); } return (0); } static device_method_t arm_tmr_methods[] = { DEVMETHOD(device_probe, arm_tmr_probe), DEVMETHOD(device_attach, arm_tmr_attach), { 0, 0 } }; static driver_t arm_tmr_driver = { "mp_tmr", arm_tmr_methods, sizeof(struct arm_tmr_softc), }; static devclass_t arm_tmr_devclass; EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); /* * Handle a change in clock frequency. The mpcore timer runs at half the CPU * frequency. When the CPU frequency changes due to power-saving or thermal * management, the platform-specific code that causes the frequency change calls * this routine to inform the clock driver, and we in turn inform the event * timer system, which actually updates the value in et->frequency for us and * reschedules the current event(s) in a way that's atomic with respect to * start/stop/intr code that may be running on various CPUs at the time of the * call. * * This routine can also be called by a platform's early init code. If the * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code * to register as an eventtimer, but not a timecounter. If the value passed in * is any other non-zero value it is used as the fixed frequency for the timer. */ void arm_tmr_change_frequency(uint64_t newfreq) { if (newfreq == ARM_TMR_FREQUENCY_VARIES) { arm_tmr_freq_varies = true; return; } arm_tmr_freq = newfreq; if (arm_tmr_et != NULL) et_change_frequency(arm_tmr_et, newfreq); } /** * DELAY - Delay for at least usec microseconds. * @usec: number of microseconds to delay by * * This function is called all over the kernel and is suppose to provide a * consistent delay. This function may also be called before the console * is setup so no printf's can be called here. * * RETURNS: * nothing */ static void __used /* Must emit function code for the weak ref below. */ arm_tmr_DELAY(int usec) { struct arm_tmr_softc *sc; int32_t counts_per_usec; int32_t counts; uint32_t first, last; /* Check the timers are setup, if not just use a for loop for the meantime */ if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) { for (; usec > 0; usec--) for (counts = 200; counts > 0; counts--) cpufunc_nullop(); /* Prevent gcc from optimizing * out the loop */ return; } sc = arm_tmr_tc->tc_priv; /* Get the number of times to count */ counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1); /* * Clamp the timeout at a maximum value (about 32 seconds with * a 66MHz clock). *Nobody* should be delay()ing for anywhere * near that length of time and if they are, they should be hung * out to dry. */ if (usec >= (0x80000000U / counts_per_usec)) counts = (0x80000000U / counts_per_usec) - 1; else counts = usec * counts_per_usec; first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW); while (counts > 0) { last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW); counts -= (int32_t)(last - first); first = last; } } /* * Supply a DELAY() implementation via weak linkage. A platform may want to use * the mpcore per-cpu eventtimers but provide its own DELAY() routine, * especially when the core frequency can change on the fly. */ __weak_reference(arm_tmr_DELAY, DELAY); Index: stable/11 =================================================================== --- stable/11 (revision 346550) +++ stable/11 (revision 346551) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r342850