Index: head/sys/arm/ti/cpsw/if_cpsw.c
===================================================================
--- head/sys/arm/ti/cpsw/if_cpsw.c	(revision 345854)
+++ head/sys/arm/ti/cpsw/if_cpsw.c	(revision 345855)
@@ -1,2989 +1,2995 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * TI Common Platform Ethernet Switch (CPSW) Driver
  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
  *
  * This controller is documented in the AM335x Technical Reference
  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
  *
  * It is basically a single Ethernet port (port 0) wired internally to
  * a 3-port store-and-forward switch connected to two independent
  * "sliver" controllers (port 1 and port 2).  You can operate the
  * controller in a variety of different ways by suitably configuring
  * the slivers and the Address Lookup Engine (ALE) that routes packets
  * between the ports.
  *
  * This code was developed and tested on a BeagleBone with
  * an AM335x SoC.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_cpsw.h"
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/mbuf.h>
 #include <sys/module.h>
 #include <sys/mutex.h>
 #include <sys/rman.h>
 #include <sys/socket.h>
 #include <sys/sockio.h>
 #include <sys/sysctl.h>
 
 #include <machine/bus.h>
 #include <machine/resource.h>
 #include <machine/stdarg.h>
 
 #include <net/ethernet.h>
 #include <net/bpf.h>
 #include <net/if.h>
 #include <net/if_dl.h>
 #include <net/if_media.h>
 #include <net/if_types.h>
 
 #include <arm/ti/ti_scm.h>
 #include <arm/ti/am335x/am335x_scm.h>
 
 #include <dev/mii/mii.h>
 #include <dev/mii/miivar.h>
 
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/ofw_bus_subr.h>
+
+#include <dev/fdt/fdt_common.h>
  
 #ifdef CPSW_ETHERSWITCH
 #include <dev/etherswitch/etherswitch.h>
 #include "etherswitch_if.h"
 #endif
 
 #include "if_cpswreg.h"
 #include "if_cpswvar.h"
 
 #include "miibus_if.h"
 
 /* Device probe/attach/detach. */
 static int cpsw_probe(device_t);
 static int cpsw_attach(device_t);
 static int cpsw_detach(device_t);
 static int cpswp_probe(device_t);
 static int cpswp_attach(device_t);
 static int cpswp_detach(device_t);
 
 static phandle_t cpsw_get_node(device_t, device_t);
 
 /* Device Init/shutdown. */
 static int cpsw_shutdown(device_t);
 static void cpswp_init(void *);
 static void cpswp_init_locked(void *);
 static void cpswp_stop_locked(struct cpswp_softc *);
 
 /* Device Suspend/Resume. */
 static int cpsw_suspend(device_t);
 static int cpsw_resume(device_t);
 
 /* Ioctl. */
 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
 
 static int cpswp_miibus_readreg(device_t, int phy, int reg);
 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
 static void cpswp_miibus_statchg(device_t);
 
 /* Send/Receive packets. */
 static void cpsw_intr_rx(void *arg);
 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
 static void cpsw_rx_enqueue(struct cpsw_softc *);
 static void cpswp_start(struct ifnet *);
 static void cpsw_intr_tx(void *);
 static void cpswp_tx_enqueue(struct cpswp_softc *);
 static int cpsw_tx_dequeue(struct cpsw_softc *);
 
 /* Misc interrupts and watchdog. */
 static void cpsw_intr_rx_thresh(void *);
 static void cpsw_intr_misc(void *);
 static void cpswp_tick(void *);
 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
 static int cpswp_ifmedia_upd(struct ifnet *);
 static void cpsw_tx_watchdog(void *);
 
 /* ALE support */
 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
 static void cpsw_ale_dump_table(struct cpsw_softc *);
 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
 	int);
 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
 
 /* Statistics and sysctls. */
 static void cpsw_add_sysctls(struct cpsw_softc *);
 static void cpsw_stats_collect(struct cpsw_softc *);
 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
 
 #ifdef CPSW_ETHERSWITCH
 static etherswitch_info_t *cpsw_getinfo(device_t);
 static int cpsw_getport(device_t, etherswitch_port_t *);
 static int cpsw_setport(device_t, etherswitch_port_t *);
 static int cpsw_getconf(device_t, etherswitch_conf_t *);
 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
 static int cpsw_readreg(device_t, int);
 static int cpsw_writereg(device_t, int, int);
 static int cpsw_readphy(device_t, int, int);
 static int cpsw_writephy(device_t, int, int, int);
 #endif
 
 /*
  * Arbitrary limit on number of segments in an mbuf to be transmitted.
  * Packets with more segments than this will be defragmented before
  * they are queued.
  */
 #define	CPSW_TXFRAGS		16
 
 /* Shared resources. */
 static device_method_t cpsw_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		cpsw_probe),
 	DEVMETHOD(device_attach,	cpsw_attach),
 	DEVMETHOD(device_detach,	cpsw_detach),
 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
 	DEVMETHOD(device_suspend,	cpsw_suspend),
 	DEVMETHOD(device_resume,	cpsw_resume),
 	/* Bus interface */
 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
 	/* OFW methods */
 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
 #ifdef CPSW_ETHERSWITCH
 	/* etherswitch interface */
 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
 #endif
 	DEVMETHOD_END
 };
 
 static driver_t cpsw_driver = {
 	"cpswss",
 	cpsw_methods,
 	sizeof(struct cpsw_softc),
 };
 
 static devclass_t cpsw_devclass;
 
 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
 
 /* Port/Slave resources. */
 static device_method_t cpswp_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		cpswp_probe),
 	DEVMETHOD(device_attach,	cpswp_attach),
 	DEVMETHOD(device_detach,	cpswp_detach),
 	/* MII interface */
 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
 	DEVMETHOD_END
 };
 
 static driver_t cpswp_driver = {
 	"cpsw",
 	cpswp_methods,
 	sizeof(struct cpswp_softc),
 };
 
 static devclass_t cpswp_devclass;
 
 #ifdef CPSW_ETHERSWITCH
 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
 #endif
 
 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
 
 #ifdef CPSW_ETHERSWITCH
 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
 #endif
 
 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
 
 static struct resource_spec irq_res_spec[] = {
 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
 	{ -1, 0 }
 };
 
 static struct {
 	void (*cb)(void *);
 } cpsw_intr_cb[] = {
 	{ cpsw_intr_rx_thresh },
 	{ cpsw_intr_rx },
 	{ cpsw_intr_tx },
 	{ cpsw_intr_misc },
 };
 
 /* Number of entries here must match size of stats
  * array in struct cpswp_softc. */
 static struct cpsw_stat {
 	int	reg;
 	char *oid;
 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
 	{0x00, "GoodRxFrames"},
 	{0x04, "BroadcastRxFrames"},
 	{0x08, "MulticastRxFrames"},
 	{0x0C, "PauseRxFrames"},
 	{0x10, "RxCrcErrors"},
 	{0x14, "RxAlignErrors"},
 	{0x18, "OversizeRxFrames"},
 	{0x1c, "RxJabbers"},
 	{0x20, "ShortRxFrames"},
 	{0x24, "RxFragments"},
 	{0x30, "RxOctets"},
 	{0x34, "GoodTxFrames"},
 	{0x38, "BroadcastTxFrames"},
 	{0x3c, "MulticastTxFrames"},
 	{0x40, "PauseTxFrames"},
 	{0x44, "DeferredTxFrames"},
 	{0x48, "CollisionsTxFrames"},
 	{0x4c, "SingleCollisionTxFrames"},
 	{0x50, "MultipleCollisionTxFrames"},
 	{0x54, "ExcessiveCollisions"},
 	{0x58, "LateCollisions"},
 	{0x5c, "TxUnderrun"},
 	{0x60, "CarrierSenseErrors"},
 	{0x64, "TxOctets"},
 	{0x68, "RxTx64OctetFrames"},
 	{0x6c, "RxTx65to127OctetFrames"},
 	{0x70, "RxTx128to255OctetFrames"},
 	{0x74, "RxTx256to511OctetFrames"},
 	{0x78, "RxTx512to1024OctetFrames"},
 	{0x7c, "RxTx1024upOctetFrames"},
 	{0x80, "NetOctets"},
 	{0x84, "RxStartOfFrameOverruns"},
 	{0x88, "RxMiddleOfFrameOverruns"},
 	{0x8c, "RxDmaOverruns"}
 };
 
 /*
  * Basic debug support.
  */
 
 static void
 cpsw_debugf_head(const char *funcname)
 {
 	int t = (int)(time_second % (24 * 60 * 60));
 
 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
 }
 
 static void
 cpsw_debugf(const char *fmt, ...)
 {
 	va_list ap;
 
 	va_start(ap, fmt);
 	vprintf(fmt, ap);
 	va_end(ap);
 	printf("\n");
 
 }
 
 #define	CPSW_DEBUGF(_sc, a) do {					\
 	if ((_sc)->debug) {						\
 		cpsw_debugf_head(__func__);				\
 		cpsw_debugf a;						\
 	}								\
 } while (0)
 
 /*
  * Locking macros
  */
 #define	CPSW_TX_LOCK(sc) do {						\
 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
 		mtx_lock(&(sc)->tx.lock);				\
 } while (0)
 
 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
 
 #define	CPSW_RX_LOCK(sc) do {						\
 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
 		mtx_lock(&(sc)->rx.lock);				\
 } while (0)
 
 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
 
 #define CPSW_PORT_LOCK(_sc) do {					\
 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
 		mtx_lock(&(_sc)->lock);					\
 } while (0)
 
 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
 
 /*
  * Read/Write macros
  */
 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
 #define	cpsw_write_4(_sc, _reg, _val)					\
 	bus_write_4((_sc)->mem_res, (_reg), (_val))
 
 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
 
 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
 #define	cpsw_read_cp(sc, queue)						\
 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET) 
 #define	cpsw_write_cp(sc, queue, val)					\
 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
 #define	cpsw_write_cp_slot(sc, queue, slot)				\
 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
 
 #if 0
 /* XXX temporary function versions for debugging. */
 static void
 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
 {
 	uint32_t reg = queue->hdp_offset;
 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
 	cpsw_write_4(sc, reg, v);
 }
 
 static void
 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
 {
 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
 	cpsw_write_cp(sc, queue, v);
 }
 #endif
 
 /*
  * Expanded dump routines for verbose debugging.
  */
 static void
 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
 {
 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
 	    "Port0"};
 	struct cpsw_cpdma_bd bd;
 	const char *sep;
 	int i;
 
 	cpsw_cpdma_read_bd(sc, slot, &bd);
 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
 	printf("  Flags: ");
 	sep = "";
 	for (i = 0; i < 16; ++i) {
 		if (bd.flags & (1 << (15 - i))) {
 			printf("%s%s", sep, flags[i]);
 			sep = ",";
 		}
 	}
 	printf("\n");
 	if (slot->mbuf) {
 		printf("  Ether:  %14D\n",
 		    (char *)(slot->mbuf->m_data), " ");
 		printf("  Packet: %16D\n",
 		    (char *)(slot->mbuf->m_data) + 14, " ");
 	}
 }
 
 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
 	IF_DEBUG(sc) {						\
 		cpsw_dump_slot(sc, slot);			\
 	}							\
 } while (0)
 
 static void
 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
 {
 	struct cpsw_slot *slot;
 	int i = 0;
 	int others = 0;
 
 	STAILQ_FOREACH(slot, q, next) {
 		if (i > CPSW_TXFRAGS)
 			++others;
 		else
 			cpsw_dump_slot(sc, slot);
 		++i;
 	}
 	if (others)
 		printf(" ... and %d more.\n", others);
 	printf("\n");
 }
 
 #define CPSW_DUMP_QUEUE(sc, q) do {				\
 	IF_DEBUG(sc) {						\
 		cpsw_dump_queue(sc, q);				\
 	}							\
 } while (0)
 
 static void
 cpsw_init_slots(struct cpsw_softc *sc)
 {
 	struct cpsw_slot *slot;
 	int i;
 
 	STAILQ_INIT(&sc->avail);
 
 	/* Put the slot descriptors onto the global avail list. */
 	for (i = 0; i < nitems(sc->_slots); i++) {
 		slot = &sc->_slots[i];
 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
 	}
 }
 
 static int
 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
 {
 	const int max_slots = nitems(sc->_slots);
 	struct cpsw_slot *slot;
 	int i;
 
 	if (requested < 0)
 		requested = max_slots;
 
 	for (i = 0; i < requested; ++i) {
 		slot = STAILQ_FIRST(&sc->avail);
 		if (slot == NULL)
 			return (0);
 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
 			device_printf(sc->dev, "failed to create dmamap\n");
 			return (ENOMEM);
 		}
 		STAILQ_REMOVE_HEAD(&sc->avail, next);
 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
 		++queue->avail_queue_len;
 		++queue->queue_slots;
 	}
 	return (0);
 }
 
 static void
 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
 {
 	int error;
 
 	if (slot->dmamap) {
 		if (slot->mbuf)
 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
 		KASSERT(error == 0, ("Mapping still active"));
 		slot->dmamap = NULL;
 	}
 	if (slot->mbuf) {
 		m_freem(slot->mbuf);
 		slot->mbuf = NULL;
 	}
 }
 
 static void
 cpsw_reset(struct cpsw_softc *sc)
 {
 	int i;
 
 	callout_stop(&sc->watchdog.callout);
 
 	/* Reset RMII/RGMII wrapper. */
 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
 		;
 
 	/* Disable TX and RX interrupts for all cores. */
 	for (i = 0; i < 3; ++i) {
 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
 	}
 
 	/* Reset CPSW subsystem. */
 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
 		;
 
 	/* Reset Sliver port 1 and 2 */
 	for (i = 0; i < 2; i++) {
 		/* Reset */
 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
 			;
 	}
 
 	/* Reset DMA controller. */
 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
 		;
 
 	/* Disable TX & RX DMA */
 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
 
 	/* Clear all queues. */
 	for (i = 0; i < 8; i++) {
 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
 	}
 
 	/* Clear all interrupt Masks */
 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
 }
 
 static void
 cpsw_init(struct cpsw_softc *sc)
 {
 	struct cpsw_slot *slot;
 	uint32_t reg;
 
 	/* Disable the interrupt pacing. */
 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
 
 	/* Clear ALE */
 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
 
 	/* Enable ALE */
 	reg = CPSW_ALE_CTL_ENABLE;
 	if (sc->dualemac)
 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
 
 	/* Set Host Port Mapping. */
 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
 
 	/* Initialize ALE: set host port to forwarding(3). */
 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
 
 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
 
 	/* Enable statistics for ports 0, 1 and 2 */
 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
 
 	/* Turn off flow control. */
 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
 
 	/* Make IP hdr aligned with 4 */
 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
 
 	/* Initialize RX Buffer Descriptors */
 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
 
 	/* Enable TX & RX DMA */
 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
 
 	/* Enable Interrupts for core 0 */
 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
 
 	/* Enable host Error Interrupt */
 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
 
 	/* Enable interrupts for RX and TX on Channel 0 */
 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
 
 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
 
 	/* Select MII in GMII_SEL, Internal Delay mode */
 	//ti_scm_reg_write_4(0x650, 0);
 
 	/* Initialize active queues. */
 	slot = STAILQ_FIRST(&sc->tx.active);
 	if (slot != NULL)
 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
 	slot = STAILQ_FIRST(&sc->rx.active);
 	if (slot != NULL)
 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
 	cpsw_rx_enqueue(sc);
 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
 
 	/* Activate network interface. */
 	sc->rx.running = 1;
 	sc->tx.running = 1;
 	sc->watchdog.timer = 0;
 	callout_init(&sc->watchdog.callout, 0);
 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
 }
 
 /*
  *
  * Device Probe, Attach, Detach.
  *
  */
 
 static int
 cpsw_probe(device_t dev)
 {
 
 	if (!ofw_bus_status_okay(dev))
 		return (ENXIO);
 
 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
 		return (ENXIO);
 
 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
 	return (BUS_PROBE_DEFAULT);
 }
 
 static int
 cpsw_intr_attach(struct cpsw_softc *sc)
 {
 	int i;
 
 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
 			return (-1);
 		}
 	}
 
 	return (0);
 }
 
 static void
 cpsw_intr_detach(struct cpsw_softc *sc)
 {
 	int i;
 
 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
 		if (sc->ih_cookie[i]) {
 			bus_teardown_intr(sc->dev, sc->irq_res[i],
 			    sc->ih_cookie[i]);
 		}
 	}
 }
 
 static int
 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
 {
 	char *name;
 	int len, phy, vlan;
 	pcell_t phy_id[3], vlan_id;
 	phandle_t child;
 	unsigned long mdio_child_addr;
 
-	/* Find any slave with phy_id */
+	/* Find any slave with phy-handle/phy_id */
 	phy = -1;
 	vlan = -1;
 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
 			continue;
 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
 			OF_prop_free(name);
 			continue;
 		}
 		OF_prop_free(name);
 		if (mdio_child_addr != slave_mdio_addr[port])
 			continue;
 
-		len = OF_getproplen(child, "phy_id");
-		if (len / sizeof(pcell_t) == 2) {
-			/* Get phy address from fdt */
-			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
-				phy = phy_id[1];
+		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
+			/* Users with old DTB will have phy_id instead */
+			phy = -1;
+			len = OF_getproplen(child, "phy_id");
+			if (len / sizeof(pcell_t) == 2) {
+				/* Get phy address from fdt */
+				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
+					phy = phy_id[1];
+			}
 		}
 
 		len = OF_getproplen(child, "dual_emac_res_vlan");
 		if (len / sizeof(pcell_t) == 1) {
 			/* Get phy address from fdt */
 			if (OF_getencprop(child, "dual_emac_res_vlan",
 			    &vlan_id, len) > 0) {
 				vlan = vlan_id;
 			}
 		}
 
 		break;
 	}
 	if (phy == -1)
 		return (ENXIO);
 	sc->port[port].phy = phy;
 	sc->port[port].vlan = vlan;
 
 	return (0);
 }
 
 static int
 cpsw_attach(device_t dev)
 {
 	int error, i;
 	struct cpsw_softc *sc;
 	uint32_t reg;
 
 	sc = device_get_softc(dev);
 	sc->dev = dev;
 	sc->node = ofw_bus_get_node(dev);
 	getbinuptime(&sc->attach_uptime);
 
 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
 	    sizeof(sc->active_slave)) <= 0) {
 		sc->active_slave = 0;
 	}
 	if (sc->active_slave > 1)
 		sc->active_slave = 1;
 
 	if (OF_hasprop(sc->node, "dual_emac"))
 		sc->dualemac = 1;
 
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		if (cpsw_get_fdt_data(sc, i) != 0) {
 			device_printf(dev,
 			    "failed to get PHY address from FDT\n");
 			return (ENXIO);
 		}
 	}
 
 	/* Initialize mutexes */
 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
 	    "cpsw TX lock", MTX_DEF);
 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
 	    "cpsw RX lock", MTX_DEF);
 
 	/* Allocate IRQ resources */
 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
 	if (error) {
 		device_printf(dev, "could not allocate IRQ resources\n");
 		cpsw_detach(dev);
 		return (ENXIO);
 	}
 
 	sc->mem_rid = 0;
 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 
 	    &sc->mem_rid, RF_ACTIVE);
 	if (sc->mem_res == NULL) {
 		device_printf(sc->dev, "failed to allocate memory resource\n");
 		cpsw_detach(dev);
 		return (ENXIO);
 	}
 
 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
 		reg & 0xFF, (reg >> 11) & 0x1F);
 
 	cpsw_add_sysctls(sc);
 
 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
 	error = bus_dma_tag_create(
 		bus_get_dma_tag(sc->dev),	/* parent */
 		1, 0,				/* alignment, boundary */
 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
 		BUS_SPACE_MAXADDR,		/* highaddr */
 		NULL, NULL,			/* filtfunc, filtfuncarg */
 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
 		MCLBYTES, 0,			/* maxsegsz, flags */
 		NULL, NULL,			/* lockfunc, lockfuncarg */
 		&sc->mbuf_dtag);		/* dmatag */
 	if (error) {
 		device_printf(dev, "bus_dma_tag_create failed\n");
 		cpsw_detach(dev);
 		return (error);
 	}
 
 	/* Allocate a NULL buffer for padding. */
 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
 
 	cpsw_init_slots(sc);
 
 	/* Allocate slots to TX and RX queues. */
 	STAILQ_INIT(&sc->rx.avail);
 	STAILQ_INIT(&sc->rx.active);
 	STAILQ_INIT(&sc->tx.avail);
 	STAILQ_INIT(&sc->tx.active);
 	// For now:  128 slots to TX, rest to RX.
 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
 	    cpsw_add_slots(sc, &sc->rx, -1)) {
 		device_printf(dev, "failed to allocate dmamaps\n");
 		cpsw_detach(dev);
 		return (ENOMEM);
 	}
 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
 	    sc->tx.queue_slots, sc->rx.queue_slots);
 
 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
 
 	if (cpsw_intr_attach(sc) == -1) {
 		device_printf(dev, "failed to setup interrupts\n");
 		cpsw_detach(dev);
 		return (ENXIO);
 	}
 
 #ifdef CPSW_ETHERSWITCH
 	for (i = 0; i < CPSW_VLANS; i++)
 		cpsw_vgroups[i].vid = -1;
 #endif
 
 	/* Reset the controller. */
 	cpsw_reset(sc);
 	cpsw_init(sc);
 
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
 		if (sc->port[i].dev == NULL) {
 			cpsw_detach(dev);
 			return (ENXIO);
 		}
 	}
 	bus_generic_probe(dev);
 	bus_generic_attach(dev);
 
 	return (0);
 }
 
 static int
 cpsw_detach(device_t dev)
 {
 	struct cpsw_softc *sc;
 	int error, i;
 
 	bus_generic_detach(dev);
  	sc = device_get_softc(dev);
 
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (sc->port[i].dev)
 			device_delete_child(dev, sc->port[i].dev);
 	}
 
 	if (device_is_attached(dev)) {
 		callout_stop(&sc->watchdog.callout);
 		callout_drain(&sc->watchdog.callout);
 	}
 
 	/* Stop and release all interrupts */
 	cpsw_intr_detach(sc);
 
 	/* Free dmamaps and mbufs */
 	for (i = 0; i < nitems(sc->_slots); ++i)
 		cpsw_free_slot(sc, &sc->_slots[i]);
 
 	/* Free null padding buffer. */
 	if (sc->nullpad)
 		free(sc->nullpad, M_DEVBUF);
 
 	/* Free DMA tag */
 	if (sc->mbuf_dtag) {
 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
 	}
 
 	/* Free IO memory handler */
 	if (sc->mem_res != NULL)
 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
 
 	/* Destroy mutexes */
 	mtx_destroy(&sc->rx.lock);
 	mtx_destroy(&sc->tx.lock);
 
 	/* Detach the switch device, if present. */
 	error = bus_generic_detach(dev);
 	if (error != 0)
 		return (error);
         
 	return (device_delete_children(dev));
 }
 
 static phandle_t
 cpsw_get_node(device_t bus, device_t dev)
 {
 
 	/* Share controller node with port device. */
 	return (ofw_bus_get_node(bus));
 }
 
 static int
 cpswp_probe(device_t dev)
 {
 
 	if (device_get_unit(dev) > 1) {
 		device_printf(dev, "Only two ports are supported.\n");
 		return (ENXIO);
 	}
 	device_set_desc(dev, "Ethernet Switch Port");
 
 	return (BUS_PROBE_DEFAULT);
 }
 
 static int
 cpswp_attach(device_t dev)
 {
 	int error;
 	struct ifnet *ifp;
 	struct cpswp_softc *sc;
 	uint32_t reg;
 	uint8_t mac_addr[ETHER_ADDR_LEN];
 
 	sc = device_get_softc(dev);
 	sc->dev = dev;
 	sc->pdev = device_get_parent(dev);
 	sc->swsc = device_get_softc(sc->pdev);
 	sc->unit = device_get_unit(dev);
 	sc->phy = sc->swsc->port[sc->unit].phy;
 	sc->vlan = sc->swsc->port[sc->unit].vlan;
 	if (sc->swsc->dualemac && sc->vlan == -1)
 		sc->vlan = sc->unit + 1;
 
 	if (sc->unit == 0) {
 		sc->physel = MDIOUSERPHYSEL0;
 		sc->phyaccess = MDIOUSERACCESS0;
 	} else {
 		sc->physel = MDIOUSERPHYSEL1;
 		sc->phyaccess = MDIOUSERACCESS1;
 	}
 
 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
 	    MTX_DEF);
 
 	/* Allocate network interface */
 	ifp = sc->ifp = if_alloc(IFT_ETHER);
 	if (ifp == NULL) {
 		cpswp_detach(dev);
 		return (ENXIO);
 	}
 
 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
 	ifp->if_softc = sc;
 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
 	ifp->if_capenable = ifp->if_capabilities;
 
 	ifp->if_init = cpswp_init;
 	ifp->if_start = cpswp_start;
 	ifp->if_ioctl = cpswp_ioctl;
 
 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 	IFQ_SET_READY(&ifp->if_snd);
 
 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
 	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
 	mac_addr[0] = reg & 0xFF;
 	mac_addr[1] = (reg >>  8) & 0xFF;
 	mac_addr[2] = (reg >> 16) & 0xFF;
 	mac_addr[3] = (reg >> 24) & 0xFF;
 
 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
 	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
 	mac_addr[4] = reg & 0xFF;
 	mac_addr[5] = (reg >>  8) & 0xFF;
 
 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
 	if (error) {
 		device_printf(dev, "attaching PHYs failed\n");
 		cpswp_detach(dev);
 		return (error);
 	}
 	sc->mii = device_get_softc(sc->miibus);
 
 	/* Select PHY and enable interrupts */
 	cpsw_write_4(sc->swsc, sc->physel,
 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
 
 	ether_ifattach(sc->ifp, mac_addr);
 	callout_init(&sc->mii_callout, 0);
 
 	return (0);
 }
 
 static int
 cpswp_detach(device_t dev)
 {
 	struct cpswp_softc *sc;
 
 	sc = device_get_softc(dev);
 	CPSW_DEBUGF(sc->swsc, (""));
 	if (device_is_attached(dev)) {
 		ether_ifdetach(sc->ifp);
 		CPSW_PORT_LOCK(sc);
 		cpswp_stop_locked(sc);
 		CPSW_PORT_UNLOCK(sc);
 		callout_drain(&sc->mii_callout);
 	}
 
 	bus_generic_detach(dev);
 
 	if_free(sc->ifp);
 	mtx_destroy(&sc->lock);
 
 	return (0);
 }
 
 /*
  *
  * Init/Shutdown.
  *
  */
 
 static int
 cpsw_ports_down(struct cpsw_softc *sc)
 {
 	struct cpswp_softc *psc;
 	struct ifnet *ifp1, *ifp2;
 
 	if (!sc->dualemac)
 		return (1);
 	psc = device_get_softc(sc->port[0].dev);
 	ifp1 = psc->ifp;
 	psc = device_get_softc(sc->port[1].dev);
 	ifp2 = psc->ifp;
 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
 		return (1);
 
 	return (0);
 }
 
 static void
 cpswp_init(void *arg)
 {
 	struct cpswp_softc *sc = arg;
 
 	CPSW_DEBUGF(sc->swsc, (""));
 	CPSW_PORT_LOCK(sc);
 	cpswp_init_locked(arg);
 	CPSW_PORT_UNLOCK(sc);
 }
 
 static void
 cpswp_init_locked(void *arg)
 {
 #ifdef CPSW_ETHERSWITCH
 	int i;
 #endif
 	struct cpswp_softc *sc = arg;
 	struct ifnet *ifp;
 	uint32_t reg;
 
 	CPSW_DEBUGF(sc->swsc, (""));
 	CPSW_PORT_LOCK_ASSERT(sc);
 	ifp = sc->ifp;
 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 		return;
 
 	getbinuptime(&sc->init_uptime);
 
 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
 		/* Reset the controller. */
 		cpsw_reset(sc->swsc);
 		cpsw_init(sc->swsc);
 	}
 
 	/* Set Slave Mapping. */
 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
 	    0x33221100);
 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
 	/* Enable MAC RX/TX modules. */
 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
 
 	/* Initialize ALE: set port to forwarding, initialize addrs */
 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
 	cpswp_ale_update_addresses(sc, 1);
 
 	if (sc->swsc->dualemac) {
 		/* Set Port VID. */
 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
 		    sc->vlan & 0xfff);
 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
 #ifdef CPSW_ETHERSWITCH
 		for (i = 0; i < CPSW_VLANS; i++) {
 			if (cpsw_vgroups[i].vid != -1)
 				continue;
 			cpsw_vgroups[i].vid = sc->vlan;
 			break;
 		}
 #endif
 	}
 
 	mii_mediachg(sc->mii);
 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 }
 
 static int
 cpsw_shutdown(device_t dev)
 {
 	struct cpsw_softc *sc;
 	struct cpswp_softc *psc;
 	int i;
 
  	sc = device_get_softc(dev);
 	CPSW_DEBUGF(sc, (""));
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		psc = device_get_softc(sc->port[i].dev);
 		CPSW_PORT_LOCK(psc);
 		cpswp_stop_locked(psc);
 		CPSW_PORT_UNLOCK(psc);
 	}
 
 	return (0);
 }
 
 static void
 cpsw_rx_teardown(struct cpsw_softc *sc)
 {
 	int i = 0;
 
 	CPSW_RX_LOCK(sc);
 	CPSW_DEBUGF(sc, ("starting RX teardown"));
 	sc->rx.teardown = 1;
 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
 	CPSW_RX_UNLOCK(sc);
 	while (sc->rx.running) {
 		if (++i > 10) {
 			device_printf(sc->dev,
 			    "Unable to cleanly shutdown receiver\n");
 			return;
 		}
 		DELAY(200);
 	}
 	if (!sc->rx.running)
 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
 }
 
 static void
 cpsw_tx_teardown(struct cpsw_softc *sc)
 {
 	int i = 0;
 
 	CPSW_TX_LOCK(sc);
 	CPSW_DEBUGF(sc, ("starting TX teardown"));
 	/* Start the TX queue teardown if queue is not empty. */
 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
 	else
 		sc->tx.teardown = 1;
 	cpsw_tx_dequeue(sc);
 	while (sc->tx.running && ++i < 10) {
 		DELAY(200);
 		cpsw_tx_dequeue(sc);
 	}
 	if (sc->tx.running) {
 		device_printf(sc->dev,
 		    "Unable to cleanly shutdown transmitter\n");
 	}
 	CPSW_DEBUGF(sc,
 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
 	     sc->tx.active_queue_len));
 	CPSW_TX_UNLOCK(sc);
 }
 
 static void
 cpswp_stop_locked(struct cpswp_softc *sc)
 {
 	struct ifnet *ifp;
 	uint32_t reg;
 
 	ifp = sc->ifp;
 	CPSW_DEBUGF(sc->swsc, (""));
 	CPSW_PORT_LOCK_ASSERT(sc);
 
 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 		return;
 
 	/* Disable interface */
 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 
 	/* Stop ticker */
 	callout_stop(&sc->mii_callout);
 
 	/* Tear down the RX/TX queues. */
 	if (cpsw_ports_down(sc->swsc)) {
 		cpsw_rx_teardown(sc->swsc);
 		cpsw_tx_teardown(sc->swsc);
 	}
 
 	/* Stop MAC RX/TX modules. */
 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
 
 	if (cpsw_ports_down(sc->swsc)) {
 		/* Capture stats before we reset controller. */
 		cpsw_stats_collect(sc->swsc);
 
 		cpsw_reset(sc->swsc);
 		cpsw_init(sc->swsc);
 	}
 }
 
 /*
  *  Suspend/Resume.
  */
 
 static int
 cpsw_suspend(device_t dev)
 {
 	struct cpsw_softc *sc;
 	struct cpswp_softc *psc;
 	int i;
 
 	sc = device_get_softc(dev);
 	CPSW_DEBUGF(sc, (""));
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		psc = device_get_softc(sc->port[i].dev);
 		CPSW_PORT_LOCK(psc);
 		cpswp_stop_locked(psc);
 		CPSW_PORT_UNLOCK(psc);
 	}
 
 	return (0);
 }
 
 static int
 cpsw_resume(device_t dev)
 {
 	struct cpsw_softc *sc;
 
 	sc  = device_get_softc(dev);
 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
 
 	return (0);
 }
 
 /*
  *
  *  IOCTL
  *
  */
 
 static void
 cpsw_set_promisc(struct cpswp_softc *sc, int set)
 {
 	uint32_t reg;
 
 	/*
 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
 	 * That disables the ALE forwarding logic and causes every
 	 * packet to be sent only to the host port.  In bypass mode,
 	 * the ALE processes host port transmit packets the same as in
 	 * normal mode.
 	 */
 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
 	reg &= ~CPSW_ALE_CTL_BYPASS;
 	if (set)
 		reg |= CPSW_ALE_CTL_BYPASS;
 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
 }
 
 static void
 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
 {
 	if (set) {
 		printf("All-multicast mode unimplemented\n");
 	}
 }
 
 static int
 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 {
 	struct cpswp_softc *sc;
 	struct ifreq *ifr;
 	int error;
 	uint32_t changed;
 
 	error = 0;
 	sc = ifp->if_softc;
 	ifr = (struct ifreq *)data;
 
 	switch (command) {
 	case SIOCSIFCAP:
 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
 		if (changed & IFCAP_HWCSUM) {
 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
 				ifp->if_capenable |= IFCAP_HWCSUM;
 			else
 				ifp->if_capenable &= ~IFCAP_HWCSUM;
 		}
 		error = 0;
 		break;
 	case SIOCSIFFLAGS:
 		CPSW_PORT_LOCK(sc);
 		if (ifp->if_flags & IFF_UP) {
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 				changed = ifp->if_flags ^ sc->if_flags;
 				CPSW_DEBUGF(sc->swsc,
 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
 				    changed));
 				if (changed & IFF_PROMISC)
 					cpsw_set_promisc(sc,
 					    ifp->if_flags & IFF_PROMISC);
 				if (changed & IFF_ALLMULTI)
 					cpsw_set_allmulti(sc,
 					    ifp->if_flags & IFF_ALLMULTI);
 			} else {
 				CPSW_DEBUGF(sc->swsc,
 				    ("SIOCSIFFLAGS: starting up"));
 				cpswp_init_locked(sc);
 			}
 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
 			cpswp_stop_locked(sc);
 		}
 
 		sc->if_flags = ifp->if_flags;
 		CPSW_PORT_UNLOCK(sc);
 		break;
 	case SIOCADDMULTI:
 		cpswp_ale_update_addresses(sc, 0);
 		break;
 	case SIOCDELMULTI:
 		/* Ugh.  DELMULTI doesn't provide the specific address
 		   being removed, so the best we can do is remove
 		   everything and rebuild it all. */
 		cpswp_ale_update_addresses(sc, 1);
 		break;
 	case SIOCGIFMEDIA:
 	case SIOCSIFMEDIA:
 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
 		break;
 	default:
 		error = ether_ioctl(ifp, command, data);
 	}
 	return (error);
 }
 
 /*
  *
  * MIIBUS
  *
  */
 static int
 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
 {
 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
 
 	while (--retries) {
 		r = cpsw_read_4(sc, reg);
 		if ((r & MDIO_PHYACCESS_GO) == 0)
 			return (1);
 		DELAY(CPSW_MIIBUS_DELAY);
 	}
 
 	return (0);
 }
 
 static int
 cpswp_miibus_readreg(device_t dev, int phy, int reg)
 {
 	struct cpswp_softc *sc;
 	uint32_t cmd, r;
 
 	sc = device_get_softc(dev);
 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
 		device_printf(dev, "MDIO not ready to read\n");
 		return (0);
 	}
 
 	/* Set GO, reg, phy */
 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
 
 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
 		device_printf(dev, "MDIO timed out during read\n");
 		return (0);
 	}
 
 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
 		device_printf(dev, "Failed to read from PHY.\n");
 		r = 0;
 	}
 	return (r & 0xFFFF);
 }
 
 static int
 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
 {
 	struct cpswp_softc *sc;
 	uint32_t cmd;
 
 	sc = device_get_softc(dev);
 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
 		device_printf(dev, "MDIO not ready to write\n");
 		return (0);
 	}
 
 	/* Set GO, WRITE, reg, phy, and value */
 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
 
 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
 		device_printf(dev, "MDIO timed out during write\n");
 		return (0);
 	}
 
 	return (0);
 }
 
 static void
 cpswp_miibus_statchg(device_t dev)
 {
 	struct cpswp_softc *sc;
 	uint32_t mac_control, reg;
 
 	sc = device_get_softc(dev);
 	CPSW_DEBUGF(sc->swsc, (""));
 
 	reg = CPSW_SL_MACCONTROL(sc->unit);
 	mac_control = cpsw_read_4(sc->swsc, reg);
 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
 
 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
 	case IFM_1000_SX:
 	case IFM_1000_LX:
 	case IFM_1000_CX:
 	case IFM_1000_T:
 		mac_control |= CPSW_SL_MACTL_GIG;
 		break;
 
 	case IFM_100_TX:
 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
 		break;
 	}
 	if (sc->mii->mii_media_active & IFM_FDX)
 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
 
 	cpsw_write_4(sc->swsc, reg, mac_control);
 }
 
 /*
  *
  * Transmit/Receive Packets.
  *
  */
 static void
 cpsw_intr_rx(void *arg)
 {
 	struct cpsw_softc *sc;
 	struct ifnet *ifp;
 	struct mbuf *received, *next;
 
 	sc = (struct cpsw_softc *)arg;
 	CPSW_RX_LOCK(sc);
 	if (sc->rx.teardown) {
 		sc->rx.running = 0;
 		sc->rx.teardown = 0;
 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
 	}
 	received = cpsw_rx_dequeue(sc);
 	cpsw_rx_enqueue(sc);
 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
 	CPSW_RX_UNLOCK(sc);
 
 	while (received != NULL) {
 		next = received->m_nextpkt;
 		received->m_nextpkt = NULL;
 		ifp = received->m_pkthdr.rcvif;
 		(*ifp->if_input)(ifp, received);
 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 		received = next;
 	}
 }
 
 static struct mbuf *
 cpsw_rx_dequeue(struct cpsw_softc *sc)
 {
 	int nsegs, port, removed;
 	struct cpsw_cpdma_bd bd;
 	struct cpsw_slot *last, *slot;
 	struct cpswp_softc *psc;
 	struct mbuf *m, *m0, *mb_head, *mb_tail;
 	uint16_t m0_flags;
 
 	nsegs = 0;
 	m0 = NULL;
 	last = NULL;
 	mb_head = NULL;
 	mb_tail = NULL;
 	removed = 0;
 
 	/* Pull completed packets off hardware RX queue. */
 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
 		cpsw_cpdma_read_bd(sc, slot, &bd);
 
 		/*
 		 * Stop on packets still in use by hardware, but do not stop
 		 * on packets with the teardown complete flag, they will be
 		 * discarded later.
 		 */
 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
 		    CPDMA_BD_OWNER)
 			break;
 
 		last = slot;
 		++removed;
 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
 
 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
 
 		m = slot->mbuf;
 		slot->mbuf = NULL;
 
 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
 			m_freem(m);
 			sc->rx.running = 0;
 			sc->rx.teardown = 0;
 			break;
 		}
 
 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
 		KASSERT(port >= 0 && port <= 1,
 		    ("patcket received with invalid port: %d", port));
 		psc = device_get_softc(sc->port[port].dev);
 
 		/* Set up mbuf */
 		m->m_data += bd.bufoff;
 		m->m_len = bd.buflen;
 		if (bd.flags & CPDMA_BD_SOP) {
 			m->m_pkthdr.len = bd.pktlen;
 			m->m_pkthdr.rcvif = psc->ifp;
 			m->m_flags |= M_PKTHDR;
 			m0_flags = bd.flags;
 			m0 = m;
 		}
 		nsegs++;
 		m->m_next = NULL;
 		m->m_nextpkt = NULL;
 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
 			if (m0_flags & CPDMA_BD_PASS_CRC)
 				m_adj(m0, -ETHER_CRC_LEN);
 			m0_flags = 0;
 			m0 = NULL;
 			if (nsegs > sc->rx.longest_chain)
 				sc->rx.longest_chain = nsegs;
 			nsegs = 0;
 		}
 
 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
 			/* check for valid CRC by looking into pkt_err[5:4] */
 			if ((bd.flags &
 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
 			    CPDMA_BD_SOP) {
 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 				m->m_pkthdr.csum_data = 0xffff;
 			}
 		}
 
 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
 			cpsw_write_hdp_slot(sc, &sc->rx,
 			    STAILQ_FIRST(&sc->rx.active));
 			sc->rx.queue_restart++;
 		}
 
 		/* Add mbuf to packet list to be returned. */
 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
 			mb_tail->m_nextpkt = m;
 		} else if (mb_tail != NULL) {
 			mb_tail->m_next = m;
 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
 			if (bootverbose)
 				printf(
 				    "%s: %s: discanding fragment packet w/o header\n",
 				    __func__, psc->ifp->if_xname);
 			m_freem(m);
 			continue;
 		} else {
 			mb_head = m;
 		}
 		mb_tail = m;
 	}
 
 	if (removed != 0) {
 		cpsw_write_cp_slot(sc, &sc->rx, last);
 		sc->rx.queue_removes += removed;
 		sc->rx.avail_queue_len += removed;
 		sc->rx.active_queue_len -= removed;
 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
 	}
 
 	return (mb_head);
 }
 
 static void
 cpsw_rx_enqueue(struct cpsw_softc *sc)
 {
 	bus_dma_segment_t seg[1];
 	struct cpsw_cpdma_bd bd;
 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
 	int error, nsegs, added = 0;
 
 	/* Register new mbufs with hardware. */
 	first_new_slot = NULL;
 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
 		if (first_new_slot == NULL)
 			first_new_slot = slot;
 		if (slot->mbuf == NULL) {
 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 			if (slot->mbuf == NULL) {
 				device_printf(sc->dev,
 				    "Unable to fill RX queue\n");
 				break;
 			}
 			slot->mbuf->m_len =
 			    slot->mbuf->m_pkthdr.len =
 			    slot->mbuf->m_ext.ext_size;
 		}
 
 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
 
 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
 		KASSERT(error == 0, ("DMA error (error=%d)", error));
 		if (error != 0 || nsegs != 1) {
 			device_printf(sc->dev,
 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
 			    __func__, nsegs, error);
 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
 			m_freem(slot->mbuf);
 			slot->mbuf = NULL;
 			break;
 		}
 
 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
 
 		/* Create and submit new rx descriptor. */
 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
 		else
 			bd.next = 0;
 		bd.bufptr = seg->ds_addr;
 		bd.bufoff = 0;
 		bd.buflen = MCLBYTES - 1;
 		bd.pktlen = bd.buflen;
 		bd.flags = CPDMA_BD_OWNER;
 		cpsw_cpdma_write_bd(sc, slot, &bd);
 		++added;
 
 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
 	}
 
 	if (added == 0 || first_new_slot == NULL)
 		return;
 
 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
 
 	/* Link new entries to hardware RX queue. */
 	if (last_old_slot == NULL) {
 		/* Start a fresh queue. */
 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
 	} else {
 		/* Add buffers to end of current queue. */
 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
 	}
 	sc->rx.queue_adds += added;
 	sc->rx.avail_queue_len -= added;
 	sc->rx.active_queue_len += added;
 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
 }
 
 static void
 cpswp_start(struct ifnet *ifp)
 {
 	struct cpswp_softc *sc;
 
 	sc = ifp->if_softc;
 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
 	    sc->swsc->tx.running == 0) {
 		return;
 	}
 	CPSW_TX_LOCK(sc->swsc);
 	cpswp_tx_enqueue(sc);
 	cpsw_tx_dequeue(sc->swsc);
 	CPSW_TX_UNLOCK(sc->swsc);
 }
 
 static void
 cpsw_intr_tx(void *arg)
 {
 	struct cpsw_softc *sc;
 
 	sc = (struct cpsw_softc *)arg;
 	CPSW_TX_LOCK(sc);
 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
 	cpsw_tx_dequeue(sc);
 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
 	CPSW_TX_UNLOCK(sc);
 }
 
 static void
 cpswp_tx_enqueue(struct cpswp_softc *sc)
 {
 	bus_dma_segment_t segs[CPSW_TXFRAGS];
 	struct cpsw_cpdma_bd bd;
 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
 	struct mbuf *m0;
 	int error, nsegs, seg, added = 0, padlen;
 
 	/* Pull pending packets from IF queue and prep them for DMA. */
 	last = NULL;
 	first_new_slot = NULL;
 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
 		if (m0 == NULL)
 			break;
 
 		slot->mbuf = m0;
 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
 		if (padlen < 0)
 			padlen = 0;
 		else if (padlen > 0)
 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
 
 		/* Create mapping in DMA memory */
 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
 		/* If the packet is too fragmented, try to simplify. */
 		if (error == EFBIG ||
 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
 			if (m0 == NULL) {
 				device_printf(sc->dev,
 				    "Can't defragment packet; dropping\n");
 				m_freem(slot->mbuf);
 			} else {
 				CPSW_DEBUGF(sc->swsc,
 				    ("Requeueing defragmented packet"));
 				IF_PREPEND(&sc->ifp->if_snd, m0);
 			}
 			slot->mbuf = NULL;
 			continue;
 		}
 		if (error != 0) {
 			device_printf(sc->dev,
 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
 			    __func__, error);
 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
 			m_freem(slot->mbuf);
 			slot->mbuf = NULL;
 			break;
 		}
 
 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
 				BUS_DMASYNC_PREWRITE);
 
 		CPSW_DEBUGF(sc->swsc,
 		    ("Queueing TX packet: %d segments + %d pad bytes",
 		    nsegs, padlen));
 
 		if (first_new_slot == NULL)
 			first_new_slot = slot;
 
 		/* Link from the previous descriptor. */
 		if (last != NULL)
 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
 
 		slot->ifp = sc->ifp;
 
 		/* If there is only one segment, the for() loop
 		 * gets skipped and the single buffer gets set up
 		 * as both SOP and EOP. */
 		if (nsegs > 1) {
 			next = STAILQ_NEXT(slot, next);
 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
 		} else
 			bd.next = 0;
 		/* Start by setting up the first buffer. */
 		bd.bufptr = segs[0].ds_addr;
 		bd.bufoff = 0;
 		bd.buflen = segs[0].ds_len;
 		bd.pktlen = m_length(slot->mbuf, NULL);
 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
 		if (sc->swsc->dualemac) {
 			bd.flags |= CPDMA_BD_TO_PORT;
 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
 		}
 		for (seg = 1; seg < nsegs; ++seg) {
 			/* Save the previous buffer (which isn't EOP) */
 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
 
 			/* Setup next buffer (which isn't SOP) */
 			if (nsegs > seg + 1) {
 				next = STAILQ_NEXT(slot, next);
 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
 			} else
 				bd.next = 0;
 			bd.bufptr = segs[seg].ds_addr;
 			bd.bufoff = 0;
 			bd.buflen = segs[seg].ds_len;
 			bd.pktlen = 0;
 			bd.flags = CPDMA_BD_OWNER;
 		}
 
 		/* Save the final buffer. */
 		bd.flags |= CPDMA_BD_EOP;
 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
 
 		last = slot;
 		added += nsegs;
 		if (nsegs > sc->swsc->tx.longest_chain)
 			sc->swsc->tx.longest_chain = nsegs;
 
 		BPF_MTAP(sc->ifp, m0);
 	}
 
 	if (first_new_slot == NULL)
 		return;
 
 	/* Attach the list of new buffers to the hardware TX queue. */
 	if (last_old_slot != NULL &&
 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
 	     CPDMA_BD_EOQ) == 0) {
 		/* Add buffers to end of current queue. */
 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
 		    first_new_slot);
 	} else {
 		/* Start a fresh queue. */
 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
 	}
 	sc->swsc->tx.queue_adds += added;
 	sc->swsc->tx.avail_queue_len -= added;
 	sc->swsc->tx.active_queue_len += added;
 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
 	}
 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
 }
 
 static int
 cpsw_tx_dequeue(struct cpsw_softc *sc)
 {
 	struct cpsw_slot *slot, *last_removed_slot = NULL;
 	struct cpsw_cpdma_bd bd;
 	uint32_t flags, removed = 0;
 
 	/* Pull completed buffers off the hardware TX queue. */
 	slot = STAILQ_FIRST(&sc->tx.active);
 	while (slot != NULL) {
 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
 
 		/* TearDown complete is only marked on the SOP for the packet. */
 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
 			sc->tx.teardown = 1;
 		}
 
 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
 			break; /* Hardware is still using this packet. */
 
 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
 		m_freem(slot->mbuf);
 		slot->mbuf = NULL;
 
 		if (slot->ifp) {
 			if (sc->tx.teardown == 0)
 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
 			else
 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
 		}
 
 		/* Dequeue any additional buffers used by this packet. */
 		while (slot != NULL && slot->mbuf == NULL) {
 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
 			++removed;
 			last_removed_slot = slot;
 			slot = STAILQ_FIRST(&sc->tx.active);
 		}
 
 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
 
 		/* Restart the TX queue if necessary. */
 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
 		if (slot != NULL && bd.next != 0 && (bd.flags &
 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
 			sc->tx.queue_restart++;
 			break;
 		}
 	}
 
 	if (removed != 0) {
 		sc->tx.queue_removes += removed;
 		sc->tx.active_queue_len -= removed;
 		sc->tx.avail_queue_len += removed;
 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
 	}
 
 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
 		sc->tx.teardown = 0;
 		sc->tx.running = 0;
 	}
 
 	return (removed);
 }
 
 /*
  *
  * Miscellaneous interrupts.
  *
  */
 
 static void
 cpsw_intr_rx_thresh(void *arg)
 {
 	struct cpsw_softc *sc;
 	struct ifnet *ifp;
 	struct mbuf *received, *next;
 
 	sc = (struct cpsw_softc *)arg;
 	CPSW_RX_LOCK(sc);
 	received = cpsw_rx_dequeue(sc);
 	cpsw_rx_enqueue(sc);
 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
 	CPSW_RX_UNLOCK(sc);
 
 	while (received != NULL) {
 		next = received->m_nextpkt;
 		received->m_nextpkt = NULL;
 		ifp = received->m_pkthdr.rcvif;
 		(*ifp->if_input)(ifp, received);
 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 		received = next;
 	}
 }
 
 static void
 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
 {
 	uint32_t intstat;
 	uint32_t dmastat;
 	int txerr, rxerr, txchan, rxchan;
 
 	printf("\n\n");
 	device_printf(sc->dev,
 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
 	printf("\n\n");
 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
 
 	txerr = (dmastat >> 20) & 15;
 	txchan = (dmastat >> 16) & 7;
 	rxerr = (dmastat >> 12) & 15;
 	rxchan = (dmastat >> 8) & 7;
 
 	switch (txerr) {
 	case 0: break;
 	case 1:	printf("SOP error on TX channel %d\n", txchan);
 		break;
 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
 		break;
 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
 		break;
 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
 		break;
 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
 		break;
 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
 		break;
 	default: printf("Unknown error on TX channel %d\n", txchan);
 		break;
 	}
 
 	if (txerr != 0) {
 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
 		cpsw_dump_queue(sc, &sc->tx.active);
 	}
 
 	switch (rxerr) {
 	case 0: break;
 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
 		break;
 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
 		break;
 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
 		break;
 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
 		break;
 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
 		break;
 	}
 
 	if (rxerr != 0) {
 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
 		cpsw_dump_queue(sc, &sc->rx.active);
 	}
 
 	printf("\nALE Table\n");
 	cpsw_ale_dump_table(sc);
 
 	// XXX do something useful here??
 	panic("CPSW HOST ERROR INTERRUPT");
 
 	// Suppress this interrupt in the future.
 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
 	// The watchdog will probably reset the controller
 	// in a little while.  It will probably fail again.
 }
 
 static void
 cpsw_intr_misc(void *arg)
 {
 	struct cpsw_softc *sc = arg;
 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
 
 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
 		cpsw_stats_collect(sc);
 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
 		cpsw_intr_misc_host_error(sc);
 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
 		cpsw_write_4(sc, MDIOLINKINTMASKED,
 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
 	}
 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
 		CPSW_DEBUGF(sc,
 		    ("MDIO operation completed interrupt unimplemented"));
 	}
 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
 }
 
 /*
  *
  * Periodic Checks and Watchdog.
  *
  */
 
 static void
 cpswp_tick(void *msc)
 {
 	struct cpswp_softc *sc = msc;
 
 	/* Check for media type change */
 	mii_tick(sc->mii);
 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
 		printf("%s: media type changed (ifm_media=%x)\n", __func__, 
 			sc->mii->mii_media.ifm_media);
 		cpswp_ifmedia_upd(sc->ifp);
 	}
 
 	/* Schedule another timeout one second from now */
 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
 }
 
 static void
 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 {
 	struct cpswp_softc *sc;
 	struct mii_data *mii;
 
 	sc = ifp->if_softc;
 	CPSW_DEBUGF(sc->swsc, (""));
 	CPSW_PORT_LOCK(sc);
 
 	mii = sc->mii;
 	mii_pollstat(mii);
 
 	ifmr->ifm_active = mii->mii_media_active;
 	ifmr->ifm_status = mii->mii_media_status;
 	CPSW_PORT_UNLOCK(sc);
 }
 
 static int
 cpswp_ifmedia_upd(struct ifnet *ifp)
 {
 	struct cpswp_softc *sc;
 
 	sc = ifp->if_softc;
 	CPSW_DEBUGF(sc->swsc, (""));
 	CPSW_PORT_LOCK(sc);
 	mii_mediachg(sc->mii);
 	sc->media_status = sc->mii->mii_media.ifm_media;
 	CPSW_PORT_UNLOCK(sc);
 
 	return (0);
 }
 
 static void
 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
 {
 	struct cpswp_softc *psc;
 	int i;
 
 	cpsw_debugf_head("CPSW watchdog");
 	device_printf(sc->dev, "watchdog timeout\n");
 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
 	cpsw_dump_queue(sc, &sc->tx.active);
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		psc = device_get_softc(sc->port[i].dev);
 		CPSW_PORT_LOCK(psc);
 		cpswp_stop_locked(psc);
 		CPSW_PORT_UNLOCK(psc);
 	}
 }
 
 static void
 cpsw_tx_watchdog(void *msc)
 {
 	struct cpsw_softc *sc;
 
 	sc = msc;
 	CPSW_TX_LOCK(sc);
 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
 		sc->watchdog.timer = 0; /* Nothing to do. */
 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
 	} else if (cpsw_tx_dequeue(sc) > 0) {
 		sc->watchdog.timer = 0;  /* We just did something. */
 	} else {
 		/* There was something to do but it didn't get done. */
 		++sc->watchdog.timer;
 		if (sc->watchdog.timer > 5) {
 			sc->watchdog.timer = 0;
 			++sc->watchdog.resets;
 			cpsw_tx_watchdog_full_reset(sc);
 		}
 	}
 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
 	CPSW_TX_UNLOCK(sc);
 
 	/* Schedule another timeout one second from now */
 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
 }
 
 /*
  *
  * ALE support routines.
  *
  */
 
 static void
 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
 {
 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
 }
 
 static void
 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
 {
 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
 }
 
 static void
 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
 {
 	int i;
 	uint32_t ale_entry[3];
 
 	/* First four entries are link address and broadcast. */
 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
 			cpsw_ale_write_entry(sc, i, ale_entry);
 		}
 	}
 }
 
 static int
 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
 	uint8_t *mac)
 {
 	int free_index = -1, matching_index = -1, i;
 	uint32_t ale_entry[3], ale_type;
 
 	/* Find a matching entry or a free entry. */
 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 
 		/* Entry Type[61:60] is 0 for free entry */ 
 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
 			free_index = i;
 
 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
 			matching_index = i;
 			break;
 		}
 	}
 
 	if (matching_index < 0) {
 		if (free_index < 0)
 			return (ENOMEM);
 		i = free_index;
 	}
 
 	if (vlan != -1)
 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
 	else
 		ale_type = ALE_TYPE_ADDR << 28;
 
 	/* Set MAC address */
 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 	ale_entry[1] = mac[0] << 8 | mac[1];
 
 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
 
 	/* Set portmask [68:66] */
 	ale_entry[2] = (portmap & 7) << 2;
 
 	cpsw_ale_write_entry(sc, i, ale_entry);
 
 	return 0;
 }
 
 static void
 cpsw_ale_dump_table(struct cpsw_softc *sc) {
 	int i;
 	uint32_t ale_entry[3];
 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 		switch (ALE_TYPE(ale_entry)) {
 		case ALE_TYPE_VLAN:
 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
 				ale_entry[1], ale_entry[0]);
 			printf("type: %u ", ALE_TYPE(ale_entry));
 			printf("vlan: %u ", ALE_VLAN(ale_entry));
 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
 			printf("\n");
 			break;
 		case ALE_TYPE_ADDR:
 		case ALE_TYPE_VLAN_ADDR:
 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
 				ale_entry[1], ale_entry[0]);
 			printf("type: %u ", ALE_TYPE(ale_entry));
 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
 				(ale_entry[1] >> 8) & 0xFF,
 				(ale_entry[1] >> 0) & 0xFF,
 				(ale_entry[0] >>24) & 0xFF,
 				(ale_entry[0] >>16) & 0xFF,
 				(ale_entry[0] >> 8) & 0xFF,
 				(ale_entry[0] >> 0) & 0xFF);
 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
 				printf("vlan: %u ", ALE_VLAN(ale_entry));
 			printf("port: %u ", ALE_PORTS(ale_entry));
 			printf("\n");
 			break;
 		}
 	}
 	printf("\n");
 }
 
 static int
 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
 {
 	uint8_t *mac;
 	uint32_t ale_entry[3], ale_type, portmask;
 	struct ifmultiaddr *ifma;
 
 	if (sc->swsc->dualemac) {
 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
 		portmask = 1 << (sc->unit + 1) | 1 << 0;
 	} else {
 		ale_type = ALE_TYPE_ADDR << 28;
 		portmask = 7;
 	}
 
 	/*
 	 * Route incoming packets for our MAC address to Port 0 (host).
 	 * For simplicity, keep this entry at table index 0 for port 1 and
 	 * at index 2 for port 2 in the ALE.
 	 */
         if_addr_rlock(sc->ifp);
 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
 	ale_entry[2] = 0; /* port = 0 */
 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
 
 	/* Set outgoing MAC Address for slave port. */
 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
 	    mac[5] << 8 | mac[4]);
         if_addr_runlock(sc->ifp);
 
 	/* Keep the broadcast address at table entry 1 (or 3). */
 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */ 
 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
 	ale_entry[2] = portmask << 2;
 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
 
 	/* SIOCDELMULTI doesn't specify the particular address
 	   being removed, so we have to remove all and rebuild. */
 	if (purge)
 		cpsw_ale_remove_all_mc_entries(sc->swsc);
 
         /* Set other multicast addrs desired. */
         if_maddr_rlock(sc->ifp);
         CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
                 if (ifma->ifma_addr->sa_family != AF_LINK)
                         continue;
 		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
         }
         if_maddr_runlock(sc->ifp);
 
 	return (0);
 }
 
 static int
 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
 	int untag, int mcregflood, int mcunregflood)
 {
 	int free_index, i, matching_index;
 	uint32_t ale_entry[3];
 
 	free_index = matching_index = -1;
 	/* Find a matching entry or a free entry. */
 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 
 		/* Entry Type[61:60] is 0 for free entry */ 
 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
 			free_index = i;
 
 		if (ALE_VLAN(ale_entry) == vlan) {
 			matching_index = i;
 			break;
 		}
 	}
 
 	if (matching_index < 0) {
 		if (free_index < 0)
 			return (-1);
 		i = free_index;
 	}
 
 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
 	    (mcunregflood & 7) << 8 | (ports & 7);
 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
 	ale_entry[2] = 0;
 	cpsw_ale_write_entry(sc, i, ale_entry);
 
 	return (0);
 }
 
 /*
  *
  * Statistics and Sysctls.
  *
  */
 
 #if 0
 static void
 cpsw_stats_dump(struct cpsw_softc *sc)
 {
 	int i;
 	uint32_t r;
 
 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
 		    cpsw_stat_sysctls[i].reg);
 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
 		    (intmax_t)sc->shadow_stats[i], r,
 		    (intmax_t)sc->shadow_stats[i] + r));
 	}
 }
 #endif
 
 static void
 cpsw_stats_collect(struct cpsw_softc *sc)
 {
 	int i;
 	uint32_t r;
 
 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
 
 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
 		    cpsw_stat_sysctls[i].reg);
 		sc->shadow_stats[i] += r;
 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
 		    r);
 	}
 }
 
 static int
 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
 {
 	struct cpsw_softc *sc;
 	struct cpsw_stat *stat;
 	uint64_t result;
 
 	sc = (struct cpsw_softc *)arg1;
 	stat = &cpsw_stat_sysctls[oidp->oid_number];
 	result = sc->shadow_stats[oidp->oid_number];
 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
 	return (sysctl_handle_64(oidp, &result, 0, req));
 }
 
 static int
 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
 {
 	struct cpsw_softc *sc;
 	struct bintime t;
 	unsigned result;
 
 	sc = (struct cpsw_softc *)arg1;
 	getbinuptime(&t);
 	bintime_sub(&t, &sc->attach_uptime);
 	result = t.sec;
 	return (sysctl_handle_int(oidp, &result, 0, req));
 }
 
 static int
 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	struct cpsw_softc *sc;
 	uint32_t ctrl, intr_per_ms;
 
 	sc = (struct cpsw_softc *)arg1;
 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
 	if (sc->coal_us == 0) {
 		/* Disable the interrupt pace hardware. */
 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
 		return (0);
 	}
 
 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
 	intr_per_ms = 1000 / sc->coal_us;
 	/* Just to make sure... */
 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
 
 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
 
 	/* Enable the interrupt pace hardware. */
 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
 
 	return (0);
 }
 
 static int
 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
 {
 	struct cpsw_softc *swsc;
 	struct cpswp_softc *sc;
 	struct bintime t;
 	unsigned result;
 
 	swsc = arg1;
 	sc = device_get_softc(swsc->port[arg2].dev);
 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
 		getbinuptime(&t);
 		bintime_sub(&t, &sc->init_uptime);
 		result = t.sec;
 	} else
 		result = 0;
 	return (sysctl_handle_int(oidp, &result, 0, req));
 }
 
 static void
 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
 	struct cpsw_queue *queue)
 {
 	struct sysctl_oid_list *parent;
 
 	parent = SYSCTL_CHILDREN(node);
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
 	    CTLFLAG_RD, &queue->queue_slots, 0,
 	    "Total buffers currently assigned to this queue");
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
 	    CTLFLAG_RD, &queue->active_queue_len, 0,
 	    "Buffers currently registered with hardware controller");
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
 	    "Max value of activeBuffers since last driver reset");
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
 	    "Buffers allocated to this queue but not currently "
 	    "registered with hardware controller");
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
 	    "Max value of availBuffers since last driver reset");
 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
 	    CTLFLAG_RD, &queue->queue_adds, 0,
 	    "Total buffers added to queue");
 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
 	    CTLFLAG_RD, &queue->queue_removes, 0,
 	    "Total buffers removed from queue");
 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
 	    CTLFLAG_RD, &queue->queue_restart, 0,
 	    "Total times the queue has been restarted");
 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
 	    CTLFLAG_RD, &queue->longest_chain, 0,
 	    "Max buffers used for a single packet");
 }
 
 static void
 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
 	struct cpsw_softc *sc)
 {
 	struct sysctl_oid_list *parent;
 
 	parent = SYSCTL_CHILDREN(node);
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
 	    "Total number of watchdog resets");
 }
 
 static void
 cpsw_add_sysctls(struct cpsw_softc *sc)
 {
 	struct sysctl_ctx_list *ctx;
 	struct sysctl_oid *stats_node, *queue_node, *node;
 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
 	struct sysctl_oid_list *ports_parent, *port_parent;
 	char port[16];
 	int i;
 
 	ctx = device_get_sysctl_ctx(sc->dev);
 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
 
 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
 
 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
 	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
 	    "Time since driver attach");
 
 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
 	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
 	    "minimum time between interrupts");
 
 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
 	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
 	ports_parent = SYSCTL_CHILDREN(node);
 	for (i = 0; i < CPSW_PORTS; i++) {
 		if (!sc->dualemac && i != sc->active_slave)
 			continue;
 		port[0] = '0' + i;
 		port[1] = '\0';
 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
 		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
 		port_parent = SYSCTL_CHILDREN(node);
 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
 		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
 	}
 
 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
 				     CTLFLAG_RD, NULL, "CPSW Statistics");
 	stats_parent = SYSCTL_CHILDREN(stats_node);
 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
 				cpsw_stat_sysctls[i].oid,
 				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
 				cpsw_stats_sysctl, "IU",
 				cpsw_stat_sysctls[i].oid);
 	}
 
 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
 	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
 	queue_parent = SYSCTL_CHILDREN(queue_node);
 
 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
 	    CTLFLAG_RD, NULL, "TX Queue Statistics");
 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
 
 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
 	    CTLFLAG_RD, NULL, "RX Queue Statistics");
 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
 
 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
 	    CTLFLAG_RD, NULL, "Watchdog Statistics");
 	cpsw_add_watchdog_sysctls(ctx, node, sc);
 }
 
 #ifdef CPSW_ETHERSWITCH
 static etherswitch_info_t etherswitch_info = {
 	.es_nports =		CPSW_PORTS + 1,
 	.es_nvlangroups =	CPSW_VLANS,
 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
 };
 
 static etherswitch_info_t *
 cpsw_getinfo(device_t dev)
 {
 	return (&etherswitch_info);
 }
 
 static int
 cpsw_getport(device_t dev, etherswitch_port_t *p)
 {
 	int err;
 	struct cpsw_softc *sc;
 	struct cpswp_softc *psc;
 	struct ifmediareq *ifmr;
 	uint32_t reg;
 
 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
 		return (ENXIO);
 
 	err = 0;
 	sc = device_get_softc(dev);
 	if (p->es_port == CPSW_CPU_PORT) {
 		p->es_flags |= ETHERSWITCH_PORT_CPU;
  		ifmr = &p->es_ifmr;
 		ifmr->ifm_current = ifmr->ifm_active =
 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
 		ifmr->ifm_mask = 0;
 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
 		ifmr->ifm_count = 0;
 	} else {
 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
 		    &psc->mii->mii_media, SIOCGIFMEDIA);
 	}
 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
 
 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
 	if (reg & ALE_PORTCTL_INGRESS)
 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
 
 	return (err);
 }
 
 static int
 cpsw_setport(device_t dev, etherswitch_port_t *p)
 {
 	struct cpsw_softc *sc;
 	struct cpswp_softc *psc;
 	struct ifmedia *ifm;
 	uint32_t reg;
 
 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
 		return (ENXIO);
 
 	sc = device_get_softc(dev);
 	if (p->es_pvid != 0) {
 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
 		    p->es_pvid & ETHERSWITCH_VID_MASK);
 	}
 
 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
 	else
 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
 		reg |= ALE_PORTCTL_INGRESS;
 	else
 		reg &= ~ALE_PORTCTL_INGRESS;
 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
 
 	/* CPU port does not allow media settings. */
 	if (p->es_port == CPSW_CPU_PORT)
 		return (0);
 
 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
 	ifm = &psc->mii->mii_media;
 
 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
 }
 
 static int
 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
 {
 
 	/* Return the VLAN mode. */
 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
 
 	return (0);
 }
 
 static int
 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
 {
 	int i, vid;
 	uint32_t ale_entry[3];
 	struct cpsw_softc *sc;
 
 	sc = device_get_softc(dev);
 
 	if (vg->es_vlangroup >= CPSW_VLANS)
 		return (EINVAL);
 
 	vg->es_vid = 0;
 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
 	if (vid == -1)
 		return (0);
 
 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
 			continue;
 		if (vid != ALE_VLAN(ale_entry))
 			continue;
 
 		vg->es_fid = 0;
 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
 	}
 
 	return (0);
 }
 
 static void
 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
 {
 	int i;
 	uint32_t ale_entry[3];
 
 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
 		cpsw_ale_read_entry(sc, i, ale_entry);
 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
 			continue;
 		if (vlan != ALE_VLAN(ale_entry))
 			continue;
 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
 		cpsw_ale_write_entry(sc, i, ale_entry);
 		break;
 	}
 }
 
 static int
 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
 {
 	int i;
 	struct cpsw_softc *sc;
 
 	sc = device_get_softc(dev);
 
 	for (i = 0; i < CPSW_VLANS; i++) {
 		/* Is this Vlan ID in use by another vlangroup ? */
 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
 			return (EINVAL);
 	}
 
 	if (vg->es_vid == 0) {
 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
 			return (0);
 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
 		vg->es_untagged_ports = 0;
 		vg->es_member_ports = 0;
 		vg->es_vid = 0;
 		return (0);
 	}
 
 	vg->es_vid &= ETHERSWITCH_VID_MASK;
 	vg->es_member_ports &= CPSW_PORTS_MASK;
 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
 
 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
 		return (EINVAL);
 
 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
 	    vg->es_untagged_ports, vg->es_member_ports, 0);
 
 	return (0);
 }
 
 static int
 cpsw_readreg(device_t dev, int addr)
 {
 
 	/* Not supported. */
 	return (0);
 }
 
 static int
 cpsw_writereg(device_t dev, int addr, int value)
 {
 
 	/* Not supported. */
 	return (0);
 }
 
 static int
 cpsw_readphy(device_t dev, int phy, int reg)
 {
 
 	/* Not supported. */
 	return (0);
 }
 
 static int
 cpsw_writephy(device_t dev, int phy, int reg, int data)
 {
 
 	/* Not supported. */
 	return (0);
 }
 #endif
Index: head/sys/dev/fdt/fdt_common.c
===================================================================
--- head/sys/dev/fdt/fdt_common.c	(revision 345854)
+++ head/sys/dev/fdt/fdt_common.c	(revision 345855)
@@ -1,619 +1,622 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2009-2014 The FreeBSD Foundation
  * All rights reserved.
  *
  * This software was developed by Andrew Turner under sponsorship from
  * the FreeBSD Foundation.
  * This software was developed by Semihalf under sponsorship from
  * the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/bus.h>
 #include <sys/limits.h>
 #include <sys/sysctl.h>
 
 #include <machine/resource.h>
 
 #include <dev/fdt/fdt_common.h>
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/ofw_bus_subr.h>
 #include <dev/ofw/openfirm.h>
 
 #include "ofw_bus_if.h"
 
 #ifdef DEBUG
 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
     printf(fmt,##args); } while (0)
 #else
 #define debugf(fmt, args...)
 #endif
 
 #define FDT_COMPAT_LEN	255
 
 #define FDT_REG_CELLS	4
 #define FDT_RANGES_SIZE 48
 
 SYSCTL_NODE(_hw, OID_AUTO, fdt, CTLFLAG_RD, 0, "Flattened Device Tree");
 
 vm_paddr_t fdt_immr_pa;
 vm_offset_t fdt_immr_va;
 vm_offset_t fdt_immr_size;
 
 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
 
 static int
 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
     u_long *size)
 {
 	pcell_t ranges[32], *rangesptr;
 	pcell_t addr_cells, size_cells, par_addr_cells;
 	u_long bus_addr, par_bus_addr, pbase, psize;
 	int err, i, len, tuple_size, tuples;
 
 	if (node == 0) {
 		*base = 0;
 		*size = ULONG_MAX;
 		return (0);
 	}
 
 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
 		return (ENXIO);
 	/*
 	 * Process 'ranges' property.
 	 */
 	par_addr_cells = fdt_parent_addr_cells(node);
 	if (par_addr_cells > 2) {
 		return (ERANGE);
 	}
 
 	len = OF_getproplen(node, "ranges");
 	if (len < 0)
 		return (-1);
 	if (len > sizeof(ranges))
 		return (ENOMEM);
 	if (len == 0) {
 		return (fdt_get_range_by_busaddr(OF_parent(node), addr,
 		    base, size));
 	}
 
 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
 		return (EINVAL);
 
 	tuple_size = addr_cells + par_addr_cells + size_cells;
 	tuples = len / (tuple_size * sizeof(cell_t));
 
 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
 		return (ERANGE);
 
 	*base = 0;
 	*size = 0;
 
 	for (i = 0; i < tuples; i++) {
 		rangesptr = &ranges[i * tuple_size];
 
 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
 		if (bus_addr != addr)
 			continue;
 		rangesptr += addr_cells;
 
 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
 		rangesptr += par_addr_cells;
 
 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
 		    &pbase, &psize);
 		if (err > 0)
 			return (err);
 		if (err == 0)
 			*base = pbase;
 		else
 			*base = par_bus_addr;
 
 		*size = fdt_data_get((void *)rangesptr, size_cells);
 
 		return (0);
 	}
 
 	return (EINVAL);
 }
 
 int
 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
 {
 	pcell_t ranges[FDT_RANGES_SIZE], *rangesptr;
 	pcell_t addr_cells, size_cells, par_addr_cells;
 	u_long par_bus_addr, pbase, psize;
 	int err, len;
 
 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
 		return (ENXIO);
 	/*
 	 * Process 'ranges' property.
 	 */
 	par_addr_cells = fdt_parent_addr_cells(node);
 	if (par_addr_cells > 2)
 		return (ERANGE);
 
 	len = OF_getproplen(node, "ranges");
 	if (len > sizeof(ranges))
 		return (ENOMEM);
 	if (len == 0) {
 		*base = 0;
 		*size = ULONG_MAX;
 		return (0);
 	}
 
 	if (!(range_id < len))
 		return (ERANGE);
 
 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
 		return (EINVAL);
 
 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
 		return (ERANGE);
 
 	*base = 0;
 	*size = 0;
 	rangesptr = &ranges[range_id];
 
 	*base = fdt_data_get((void *)rangesptr, addr_cells);
 	rangesptr += addr_cells;
 
 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
 	rangesptr += par_addr_cells;
 
 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
 	   &pbase, &psize);
 	if (err == 0)
 		*base += pbase;
 	else
 		*base += par_bus_addr;
 
 	*size = fdt_data_get((void *)rangesptr, size_cells);
 	return (0);
 }
 
 int
 fdt_immr_addr(vm_offset_t immr_va)
 {
 	phandle_t node;
 	u_long base, size;
 	int r;
 
 	/*
 	 * Try to access the SOC node directly i.e. through /aliases/.
 	 */
 	if ((node = OF_finddevice("soc")) != -1)
 		if (ofw_bus_node_is_compatible(node, "simple-bus"))
 			goto moveon;
 	/*
 	 * Find the node the long way.
 	 */
 	if ((node = OF_finddevice("/")) == -1)
 		return (ENXIO);
 
 	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
 		return (ENXIO);
 
 moveon:
 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
 		fdt_immr_pa = base;
 		fdt_immr_va = immr_va;
 		fdt_immr_size = size;
 	}
 
 	return (r);
 }
 
 int
 fdt_is_compatible_strict(phandle_t node, const char *compatible)
 {
 	char compat[FDT_COMPAT_LEN];
 
 	if (OF_getproplen(node, "compatible") <= 0)
 		return (0);
 
 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
 		return (0);
 
 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
 		/* This fits. */
 		return (1);
 
 	return (0);
 }
 
 phandle_t
 fdt_find_compatible(phandle_t start, const char *compat, int strict)
 {
 	phandle_t child;
 
 	/*
 	 * Traverse all children of 'start' node, and find first with
 	 * matching 'compatible' property.
 	 */
 	for (child = OF_child(start); child != 0; child = OF_peer(child))
 		if (ofw_bus_node_is_compatible(child, compat)) {
 			if (strict)
 				if (!fdt_is_compatible_strict(child, compat))
 					continue;
 			return (child);
 		}
 	return (0);
 }
 
 phandle_t
 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
 {
 	phandle_t child, node;
 
 	/*
 	 * Depth-search all descendants of 'start' node, and find first with
 	 * matching 'compatible' property.
 	 */
 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
 		if (ofw_bus_node_is_compatible(node, compat) &&
 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
 			return (node);
 		}
 		child = fdt_depth_search_compatible(node, compat, strict);
 		if (child != 0)
 			return (child);
 	}
 	return (0);
 }
 
 int
 fdt_parent_addr_cells(phandle_t node)
 {
 	pcell_t addr_cells;
 
 	/* Find out #address-cells of the superior bus. */
 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
 	    sizeof(addr_cells)) <= 0)
 		return (2);
 
 	return ((int)fdt32_to_cpu(addr_cells));
 }
 
 u_long
 fdt_data_get(void *data, int cells)
 {
 
 	if (cells == 1)
 		return (fdt32_to_cpu(*((uint32_t *)data)));
 
 	return (fdt64_to_cpu(*((uint64_t *)data)));
 }
 
 int
 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
 {
 	pcell_t cell;
 	int cell_size;
 
 	/*
 	 * Retrieve #{address,size}-cells.
 	 */
 	cell_size = sizeof(cell);
 	if (OF_getencprop(node, "#address-cells", &cell, cell_size) < cell_size)
 		cell = 2;
 	*addr_cells = (int)cell;
 
 	if (OF_getencprop(node, "#size-cells", &cell, cell_size) < cell_size)
 		cell = 1;
 	*size_cells = (int)cell;
 
 	if (*addr_cells > 3 || *size_cells > 2)
 		return (ERANGE);
 	return (0);
 }
 
 int
 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
     u_long *count)
 {
 
 	/* Address portion. */
 	if (addr_cells > 2)
 		return (ERANGE);
 
 	*start = fdt_data_get((void *)data, addr_cells);
 	data += addr_cells;
 
 	/* Size portion. */
 	if (size_cells > 2)
 		return (ERANGE);
 
 	*count = fdt_data_get((void *)data, size_cells);
 	return (0);
 }
 
 int
 fdt_regsize(phandle_t node, u_long *base, u_long *size)
 {
 	pcell_t reg[4];
 	int addr_cells, len, size_cells;
 
 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
 		return (ENXIO);
 
 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
 		return (ENOMEM);
 
 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
 	if (len <= 0)
 		return (EINVAL);
 
 	*base = fdt_data_get(&reg[0], addr_cells);
 	*size = fdt_data_get(&reg[addr_cells], size_cells);
 	return (0);
 }
 
 int
 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
 {
 	phandle_t phy_node;
 	pcell_t phy_handle, phy_reg;
 	uint32_t i;
 	device_t parent, child;
 
 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
 	    sizeof(phy_handle)) <= 0)
 		return (ENXIO);
 
 	phy_node = OF_node_from_xref(phy_handle);
 
 	if (OF_getencprop(phy_node, "reg", (void *)&phy_reg,
 	    sizeof(phy_reg)) <= 0)
 		return (ENXIO);
 
 	*phy_addr = phy_reg;
 
+	if (phy_sc == NULL)
+		return (0);
+
 	/*
 	 * Search for softc used to communicate with phy.
 	 */
 
 	/*
 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
 	 * property set.
 	 */
 	phy_node = OF_parent(phy_node);
 	while (phy_node != 0) {
 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
 		    sizeof(phy_handle)) > 0)
 			break;
 		phy_node = OF_parent(phy_node);
 	}
 	if (phy_node == 0)
 		return (ENXIO);
 
 	/*
 	 * Step 2: For each device with the same parent and name as ours
 	 * compare its node with the one found in step 1, ancestor of phy
 	 * node (stored in phy_node).
 	 */
 	parent = device_get_parent(dev);
 	i = 0;
 	child = device_find_child(parent, device_get_name(dev), i);
 	while (child != NULL) {
 		if (ofw_bus_get_node(child) == phy_node)
 			break;
 		i++;
 		child = device_find_child(parent, device_get_name(dev), i);
 	}
 	if (child == NULL)
 		return (ENXIO);
 
 	/*
 	 * Use softc of the device found.
 	 */
 	*phy_sc = (void *)device_get_softc(child);
 
 	return (0);
 }
 
 int
 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
 {
 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
 	pcell_t *reservep;
 	phandle_t memory, root;
 	int addr_cells, size_cells;
 	int i, res_len, rv, tuple_size, tuples;
 
 	root = OF_finddevice("/");
 	memory = OF_finddevice("/memory");
 	if (memory == -1) {
 		rv = ENXIO;
 		goto out;
 	}
 
 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
 	    &size_cells)) != 0)
 		goto out;
 
 	if (addr_cells > 2) {
 		rv = ERANGE;
 		goto out;
 	}
 
 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
 
 	res_len = OF_getproplen(root, "memreserve");
 	if (res_len <= 0 || res_len > sizeof(reserve)) {
 		rv = ERANGE;
 		goto out;
 	}
 
 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
 		rv = ENXIO;
 		goto out;
 	}
 
 	tuples = res_len / tuple_size;
 	reservep = (pcell_t *)&reserve;
 	for (i = 0; i < tuples; i++) {
 
 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
 
 		if (rv != 0)
 			goto out;
 
 		reservep += addr_cells + size_cells;
 	}
 
 	*mrcnt = i;
 	rv = 0;
 out:
 	return (rv);
 }
 
 int
 fdt_get_reserved_mem(struct mem_region *reserved, int *mreserved)
 {
 	pcell_t reg[FDT_REG_CELLS];
 	phandle_t child, root;
 	int addr_cells, size_cells;
 	int i, rv;
 
 	root = OF_finddevice("/reserved-memory");
 	if (root == -1) {
 		return (ENXIO);
 	}
 
 	if ((rv = fdt_addrsize_cells(root, &addr_cells, &size_cells)) != 0)
 		return (rv);
 
 	if (addr_cells + size_cells > FDT_REG_CELLS)
 		panic("Too many address and size cells %d %d", addr_cells,
 		    size_cells);
 
 	i = 0;
 	for (child = OF_child(root); child != 0; child = OF_peer(child)) {
 		if (!OF_hasprop(child, "no-map"))
 			continue;
 
 		rv = OF_getprop(child, "reg", reg, sizeof(reg));
 		if (rv <= 0)
 			/* XXX: Does a no-map of a dynamic range make sense? */
 			continue;
 
 		fdt_data_to_res(reg, addr_cells, size_cells,
 		    (u_long *)&reserved[i].mr_start,
 		    (u_long *)&reserved[i].mr_size);
 		i++;
 	}
 
 	*mreserved = i;
 
 	return (0);
 }
 
 int
 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint64_t *memsize)
 {
 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
 	pcell_t *regp;
 	phandle_t memory;
 	uint64_t memory_size;
 	int addr_cells, size_cells;
 	int i, reg_len, rv, tuple_size, tuples;
 
 	memory = OF_finddevice("/memory");
 	if (memory == -1) {
 		rv = ENXIO;
 		goto out;
 	}
 
 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
 	    &size_cells)) != 0)
 		goto out;
 
 	if (addr_cells > 2) {
 		rv = ERANGE;
 		goto out;
 	}
 
 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
 	reg_len = OF_getproplen(memory, "reg");
 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
 		rv = ERANGE;
 		goto out;
 	}
 
 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
 		rv = ENXIO;
 		goto out;
 	}
 
 	memory_size = 0;
 	tuples = reg_len / tuple_size;
 	regp = (pcell_t *)&reg;
 	for (i = 0; i < tuples; i++) {
 
 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
 
 		if (rv != 0)
 			goto out;
 
 		regp += addr_cells + size_cells;
 		memory_size += mr[i].mr_size;
 	}
 
 	if (memory_size == 0) {
 		rv = ERANGE;
 		goto out;
 	}
 
 	*mrcnt = i;
 	if (memsize != NULL)
 		*memsize = memory_size;
 	rv = 0;
 out:
 	return (rv);
 }
 
 int
 fdt_get_chosen_bootargs(char *bootargs, size_t max_size)
 {
 	phandle_t chosen;
 
 	chosen = OF_finddevice("/chosen");
 	if (chosen == -1)
 		return (ENXIO);
 	if (OF_getprop(chosen, "bootargs", bootargs, max_size) == -1)
 		return (ENXIO);
 	return (0);
 }