Index: head/sys/dev/cxgbe/adapter.h =================================================================== --- head/sys/dev/cxgbe/adapter.h (revision 345659) +++ head/sys/dev/cxgbe/adapter.h (revision 345660) @@ -1,1313 +1,1315 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #ifndef __T4_ADAPTER_H__ #define __T4_ADAPTER_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "offload.h" #include "t4_ioctl.h" #include "common/t4_msg.h" #include "firmware/t4fw_interface.h" #define KTR_CXGBE KTR_SPARE3 MALLOC_DECLARE(M_CXGBE); #define CXGBE_UNIMPLEMENTED(s) \ panic("%s (%s, line %d) not implemented yet.", s, __FILE__, __LINE__) #if defined(__i386__) || defined(__amd64__) static __inline void prefetch(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); } #else #define prefetch(x) __builtin_prefetch(x) #endif #ifndef SYSCTL_ADD_UQUAD #define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD #define sysctl_handle_64 sysctl_handle_quad #define CTLTYPE_U64 CTLTYPE_QUAD #endif SYSCTL_DECL(_hw_cxgbe); struct adapter; typedef struct adapter adapter_t; enum { /* * All ingress queues use this entry size. Note that the firmware event * queue and any iq expecting CPL_RX_PKT in the descriptor needs this to * be at least 64. */ IQ_ESIZE = 64, /* Default queue sizes for all kinds of ingress queues */ FW_IQ_QSIZE = 256, RX_IQ_QSIZE = 1024, /* All egress queues use this entry size */ EQ_ESIZE = 64, /* Default queue sizes for all kinds of egress queues */ CTRL_EQ_QSIZE = 1024, TX_EQ_QSIZE = 1024, #if MJUMPAGESIZE != MCLBYTES SW_ZONE_SIZES = 4, /* cluster, jumbop, jumbo9k, jumbo16k */ #else SW_ZONE_SIZES = 3, /* cluster, jumbo9k, jumbo16k */ #endif CL_METADATA_SIZE = CACHE_LINE_SIZE, SGE_MAX_WR_NDESC = SGE_MAX_WR_LEN / EQ_ESIZE, /* max WR size in desc */ TX_SGL_SEGS = 39, TX_SGL_SEGS_TSO = 38, TX_SGL_SEGS_EO_TSO = 30, /* XXX: lower for IPv6. */ TX_WR_FLITS = SGE_MAX_WR_LEN / 8 }; enum { /* adapter intr_type */ INTR_INTX = (1 << 0), INTR_MSI = (1 << 1), INTR_MSIX = (1 << 2) }; enum { XGMAC_MTU = (1 << 0), XGMAC_PROMISC = (1 << 1), XGMAC_ALLMULTI = (1 << 2), XGMAC_VLANEX = (1 << 3), XGMAC_UCADDR = (1 << 4), XGMAC_MCADDRS = (1 << 5), XGMAC_ALL = 0xffff }; enum { /* flags understood by begin_synchronized_op */ HOLD_LOCK = (1 << 0), SLEEP_OK = (1 << 1), INTR_OK = (1 << 2), /* flags understood by end_synchronized_op */ LOCK_HELD = HOLD_LOCK, }; enum { /* adapter flags */ FULL_INIT_DONE = (1 << 0), FW_OK = (1 << 1), CHK_MBOX_ACCESS = (1 << 2), MASTER_PF = (1 << 3), ADAP_SYSCTL_CTX = (1 << 4), ADAP_ERR = (1 << 5), BUF_PACKING_OK = (1 << 6), IS_VF = (1 << 7), CXGBE_BUSY = (1 << 9), /* port flags */ HAS_TRACEQ = (1 << 3), FIXED_IFMEDIA = (1 << 4), /* ifmedia list doesn't change. */ /* VI flags */ DOOMED = (1 << 0), VI_INIT_DONE = (1 << 1), VI_SYSCTL_CTX = (1 << 2), /* adapter debug_flags */ DF_DUMP_MBOX = (1 << 0), /* Log all mbox cmd/rpl. */ DF_LOAD_FW_ANYTIME = (1 << 1), /* Allow LOAD_FW after init */ DF_DISABLE_TCB_CACHE = (1 << 2), /* Disable TCB cache (T6+) */ DF_DISABLE_CFG_RETRY = (1 << 3), /* Disable fallback config */ DF_VERBOSE_SLOWINTR = (1 << 4), /* Chatty slow intr handler */ }; #define IS_DOOMED(vi) ((vi)->flags & DOOMED) #define SET_DOOMED(vi) do {(vi)->flags |= DOOMED;} while (0) #define IS_BUSY(sc) ((sc)->flags & CXGBE_BUSY) #define SET_BUSY(sc) do {(sc)->flags |= CXGBE_BUSY;} while (0) #define CLR_BUSY(sc) do {(sc)->flags &= ~CXGBE_BUSY;} while (0) struct vi_info { device_t dev; struct port_info *pi; struct ifnet *ifp; unsigned long flags; int if_flags; uint16_t *rss, *nm_rss; uint16_t viid; /* opaque VI identifier */ uint16_t smt_idx; uint16_t vin; uint8_t vfvld; int16_t xact_addr_filt;/* index of exact MAC address filter */ uint16_t rss_size; /* size of VI's RSS table slice */ uint16_t rss_base; /* start of VI's RSS table slice */ int hashen; int nintr; int first_intr; /* These need to be int as they are used in sysctl */ int ntxq; /* # of tx queues */ int first_txq; /* index of first tx queue */ int rsrv_noflowq; /* Reserve queue 0 for non-flowid packets */ int nrxq; /* # of rx queues */ int first_rxq; /* index of first rx queue */ int nofldtxq; /* # of offload tx queues */ int first_ofld_txq; /* index of first offload tx queue */ int nofldrxq; /* # of offload rx queues */ int first_ofld_rxq; /* index of first offload rx queue */ int nnmtxq; int first_nm_txq; int nnmrxq; int first_nm_rxq; int tmr_idx; int ofld_tmr_idx; int pktc_idx; int ofld_pktc_idx; int qsize_rxq; int qsize_txq; struct timeval last_refreshed; struct fw_vi_stats_vf stats; struct callout tick; struct sysctl_ctx_list ctx; /* from ifconfig up to driver detach */ uint8_t hw_addr[ETHER_ADDR_LEN]; /* factory MAC address, won't change */ }; struct tx_ch_rl_params { enum fw_sched_params_rate ratemode; /* %port (REL) or kbps (ABS) */ uint32_t maxrate; }; enum { CLRL_USER = (1 << 0), /* allocated manually. */ CLRL_SYNC = (1 << 1), /* sync hw update in progress. */ CLRL_ASYNC = (1 << 2), /* async hw update requested. */ CLRL_ERR = (1 << 3), /* last hw setup ended in error. */ }; struct tx_cl_rl_params { int refcount; uint8_t flags; enum fw_sched_params_rate ratemode; /* %port REL or ABS value */ enum fw_sched_params_unit rateunit; /* kbps or pps (when ABS) */ enum fw_sched_params_mode mode; /* aggr or per-flow */ uint32_t maxrate; uint16_t pktsize; uint16_t burstsize; }; /* Tx scheduler parameters for a channel/port */ struct tx_sched_params { /* Channel Rate Limiter */ struct tx_ch_rl_params ch_rl; /* Class WRR */ /* XXX */ /* Class Rate Limiter (including the default pktsize and burstsize). */ int pktsize; int burstsize; struct tx_cl_rl_params cl_rl[]; }; struct port_info { device_t dev; struct adapter *adapter; struct vi_info *vi; int nvi; int up_vis; int uld_vis; struct tx_sched_params *sched_params; struct mtx pi_lock; char lockname[16]; unsigned long flags; uint8_t lport; /* associated offload logical port */ int8_t mdio_addr; uint8_t port_type; uint8_t mod_type; uint8_t port_id; uint8_t tx_chan; uint8_t mps_bg_map; /* rx MPS buffer group bitmap */ uint8_t rx_e_chan_map; /* rx TP e-channel bitmap */ struct link_config link_cfg; struct ifmedia media; struct timeval last_refreshed; struct port_stats stats; u_int tnl_cong_drops; u_int tx_parse_error; u_long tx_tls_records; u_long tx_tls_octets; u_long rx_tls_records; u_long rx_tls_octets; struct callout tick; }; #define IS_MAIN_VI(vi) ((vi) == &((vi)->pi->vi[0])) /* Where the cluster came from, how it has been carved up. */ struct cluster_layout { int8_t zidx; int8_t hwidx; uint16_t region1; /* mbufs laid out within this region */ /* region2 is the DMA region */ uint16_t region3; /* cluster_metadata within this region */ }; struct cluster_metadata { u_int refcount; struct fl_sdesc *sd; /* For debug only. Could easily be stale */ }; struct fl_sdesc { caddr_t cl; uint16_t nmbuf; /* # of driver originated mbufs with ref on cluster */ struct cluster_layout cll; }; struct tx_desc { __be64 flit[8]; }; struct tx_sdesc { struct mbuf *m; /* m_nextpkt linked chain of frames */ uint8_t desc_used; /* # of hardware descriptors used by the WR */ }; #define IQ_PAD (IQ_ESIZE - sizeof(struct rsp_ctrl) - sizeof(struct rss_header)) struct iq_desc { struct rss_header rss; uint8_t cpl[IQ_PAD]; struct rsp_ctrl rsp; }; #undef IQ_PAD CTASSERT(sizeof(struct iq_desc) == IQ_ESIZE); enum { /* iq flags */ IQ_ALLOCATED = (1 << 0), /* firmware resources allocated */ IQ_HAS_FL = (1 << 1), /* iq associated with a freelist */ IQ_RX_TIMESTAMP = (1 << 2), /* provide the SGE rx timestamp */ IQ_LRO_ENABLED = (1 << 3), /* iq is an eth rxq with LRO enabled */ IQ_ADJ_CREDIT = (1 << 4), /* hw is off by 1 credit for this iq */ /* iq state */ IQS_DISABLED = 0, IQS_BUSY = 1, IQS_IDLE = 2, /* netmap related flags */ NM_OFF = 0, NM_ON = 1, NM_BUSY = 2, }; enum { CPL_COOKIE_RESERVED = 0, CPL_COOKIE_FILTER, CPL_COOKIE_DDP0, CPL_COOKIE_DDP1, CPL_COOKIE_TOM, CPL_COOKIE_HASHFILTER, CPL_COOKIE_ETHOFLD, CPL_COOKIE_AVAILABLE3, NUM_CPL_COOKIES = 8 /* Limited by M_COOKIE. Do not increase. */ }; struct sge_iq; struct rss_header; typedef int (*cpl_handler_t)(struct sge_iq *, const struct rss_header *, struct mbuf *); typedef int (*an_handler_t)(struct sge_iq *, const struct rsp_ctrl *); typedef int (*fw_msg_handler_t)(struct adapter *, const __be64 *); /* * Ingress Queue: T4 is producer, driver is consumer. */ struct sge_iq { uint32_t flags; volatile int state; struct adapter *adapter; struct iq_desc *desc; /* KVA of descriptor ring */ int8_t intr_pktc_idx; /* packet count threshold index */ uint8_t gen; /* generation bit */ uint8_t intr_params; /* interrupt holdoff parameters */ uint8_t intr_next; /* XXX: holdoff for next interrupt */ uint16_t qsize; /* size (# of entries) of the queue */ uint16_t sidx; /* index of the entry with the status page */ uint16_t cidx; /* consumer index */ uint16_t cntxt_id; /* SGE context id for the iq */ uint16_t abs_id; /* absolute SGE id for the iq */ STAILQ_ENTRY(sge_iq) link; bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; /* bus address of descriptor ring */ }; enum { EQ_CTRL = 1, EQ_ETH = 2, EQ_OFLD = 3, /* eq flags */ EQ_TYPEMASK = 0x3, /* 2 lsbits hold the type (see above) */ EQ_ALLOCATED = (1 << 2), /* firmware resources allocated */ EQ_ENABLED = (1 << 3), /* open for business */ EQ_QFLUSH = (1 << 4), /* if_qflush in progress */ }; /* Listed in order of preference. Update t4_sysctls too if you change these */ enum {DOORBELL_UDB, DOORBELL_WCWR, DOORBELL_UDBWC, DOORBELL_KDB}; /* * Egress Queue: driver is producer, T4 is consumer. * * Note: A free list is an egress queue (driver produces the buffers and T4 * consumes them) but it's special enough to have its own struct (see sge_fl). */ struct sge_eq { unsigned int flags; /* MUST be first */ unsigned int cntxt_id; /* SGE context id for the eq */ unsigned int abs_id; /* absolute SGE id for the eq */ struct mtx eq_lock; struct tx_desc *desc; /* KVA of descriptor ring */ uint8_t doorbells; volatile uint32_t *udb; /* KVA of doorbell (lies within BAR2) */ u_int udb_qid; /* relative qid within the doorbell page */ uint16_t sidx; /* index of the entry with the status page */ uint16_t cidx; /* consumer idx (desc idx) */ uint16_t pidx; /* producer idx (desc idx) */ uint16_t equeqidx; /* EQUEQ last requested at this pidx */ uint16_t dbidx; /* pidx of the most recent doorbell */ uint16_t iqid; /* iq that gets egr_update for the eq */ uint8_t tx_chan; /* tx channel used by the eq */ volatile u_int equiq; /* EQUIQ outstanding */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; /* bus address of descriptor ring */ char lockname[16]; }; struct sw_zone_info { uma_zone_t zone; /* zone that this cluster comes from */ int size; /* size of cluster: 2K, 4K, 9K, 16K, etc. */ int type; /* EXT_xxx type of the cluster */ int8_t head_hwidx; int8_t tail_hwidx; }; struct hw_buf_info { int8_t zidx; /* backpointer to zone; -ve means unused */ int8_t next; /* next hwidx for this zone; -1 means no more */ int size; }; enum { NUM_MEMWIN = 3, MEMWIN0_APERTURE = 2048, MEMWIN0_BASE = 0x1b800, MEMWIN1_APERTURE = 32768, MEMWIN1_BASE = 0x28000, MEMWIN2_APERTURE_T4 = 65536, MEMWIN2_BASE_T4 = 0x30000, MEMWIN2_APERTURE_T5 = 128 * 1024, MEMWIN2_BASE_T5 = 0x60000, }; struct memwin { struct rwlock mw_lock __aligned(CACHE_LINE_SIZE); uint32_t mw_base; /* constant after setup_memwin */ uint32_t mw_aperture; /* ditto */ uint32_t mw_curpos; /* protected by mw_lock */ }; enum { FL_STARVING = (1 << 0), /* on the adapter's list of starving fl's */ FL_DOOMED = (1 << 1), /* about to be destroyed */ FL_BUF_PACKING = (1 << 2), /* buffer packing enabled */ FL_BUF_RESUME = (1 << 3), /* resume from the middle of the frame */ }; #define FL_RUNNING_LOW(fl) \ (IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) <= fl->lowat) #define FL_NOT_RUNNING_LOW(fl) \ (IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) >= 2 * fl->lowat) struct sge_fl { struct mtx fl_lock; __be64 *desc; /* KVA of descriptor ring, ptr to addresses */ struct fl_sdesc *sdesc; /* KVA of software descriptor ring */ struct cluster_layout cll_def; /* default refill zone, layout */ uint16_t lowat; /* # of buffers <= this means fl needs help */ int flags; uint16_t buf_boundary; /* The 16b idx all deal with hw descriptors */ uint16_t dbidx; /* hw pidx after last doorbell */ uint16_t sidx; /* index of status page */ volatile uint16_t hw_cidx; /* The 32b idx are all buffer idx, not hardware descriptor idx */ uint32_t cidx; /* consumer index */ uint32_t pidx; /* producer index */ uint32_t dbval; u_int rx_offset; /* offset in fl buf (when buffer packing) */ volatile uint32_t *udb; uint64_t mbuf_allocated;/* # of mbuf allocated from zone_mbuf */ uint64_t mbuf_inlined; /* # of mbuf created within clusters */ uint64_t cl_allocated; /* # of clusters allocated */ uint64_t cl_recycled; /* # of clusters recycled */ uint64_t cl_fast_recycled; /* # of clusters recycled (fast) */ /* These 3 are valid when FL_BUF_RESUME is set, stale otherwise. */ struct mbuf *m0; struct mbuf **pnext; u_int remaining; uint16_t qsize; /* # of hw descriptors (status page included) */ uint16_t cntxt_id; /* SGE context id for the freelist */ TAILQ_ENTRY(sge_fl) link; /* All starving freelists */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; char lockname[16]; bus_addr_t ba; /* bus address of descriptor ring */ struct cluster_layout cll_alt; /* alternate refill zone, layout */ }; struct mp_ring; /* txq: SGE egress queue + what's needed for Ethernet NIC */ struct sge_txq { struct sge_eq eq; /* MUST be first */ struct ifnet *ifp; /* the interface this txq belongs to */ struct mp_ring *r; /* tx software ring */ struct tx_sdesc *sdesc; /* KVA of software descriptor ring */ struct sglist *gl; __be32 cpl_ctrl0; /* for convenience */ int tc_idx; /* traffic class */ struct task tx_reclaim_task; /* stats for common events first */ uint64_t txcsum; /* # of times hardware assisted with checksum */ uint64_t tso_wrs; /* # of TSO work requests */ uint64_t vlan_insertion;/* # of times VLAN tag was inserted */ uint64_t imm_wrs; /* # of work requests with immediate data */ uint64_t sgl_wrs; /* # of work requests with direct SGL */ uint64_t txpkt_wrs; /* # of txpkt work requests (not coalesced) */ uint64_t txpkts0_wrs; /* # of type0 coalesced tx work requests */ uint64_t txpkts1_wrs; /* # of type1 coalesced tx work requests */ uint64_t txpkts0_pkts; /* # of frames in type0 coalesced tx WRs */ uint64_t txpkts1_pkts; /* # of frames in type1 coalesced tx WRs */ uint64_t raw_wrs; /* # of raw work requests (alloc_wr_mbuf) */ /* stats for not-that-common events */ } __aligned(CACHE_LINE_SIZE); /* rxq: SGE ingress queue + SGE free list + miscellaneous items */ struct sge_rxq { struct sge_iq iq; /* MUST be first */ struct sge_fl fl; /* MUST follow iq */ struct ifnet *ifp; /* the interface this rxq belongs to */ #if defined(INET) || defined(INET6) struct lro_ctrl lro; /* LRO state */ #endif /* stats for common events first */ uint64_t rxcsum; /* # of times hardware assisted with checksum */ uint64_t vlan_extraction;/* # of times VLAN tag was extracted */ /* stats for not-that-common events */ } __aligned(CACHE_LINE_SIZE); static inline struct sge_rxq * iq_to_rxq(struct sge_iq *iq) { return (__containerof(iq, struct sge_rxq, iq)); } /* ofld_rxq: SGE ingress queue + SGE free list + miscellaneous items */ struct sge_ofld_rxq { struct sge_iq iq; /* MUST be first */ struct sge_fl fl; /* MUST follow iq */ } __aligned(CACHE_LINE_SIZE); static inline struct sge_ofld_rxq * iq_to_ofld_rxq(struct sge_iq *iq) { return (__containerof(iq, struct sge_ofld_rxq, iq)); } struct wrqe { STAILQ_ENTRY(wrqe) link; struct sge_wrq *wrq; int wr_len; char wr[] __aligned(16); }; struct wrq_cookie { TAILQ_ENTRY(wrq_cookie) link; int ndesc; int pidx; }; /* * wrq: SGE egress queue that is given prebuilt work requests. Both the control * and offload tx queues are of this type. */ struct sge_wrq { struct sge_eq eq; /* MUST be first */ struct adapter *adapter; struct task wrq_tx_task; /* Tx desc reserved but WR not "committed" yet. */ TAILQ_HEAD(wrq_incomplete_wrs , wrq_cookie) incomplete_wrs; /* List of WRs ready to go out as soon as descriptors are available. */ STAILQ_HEAD(, wrqe) wr_list; u_int nwr_pending; u_int ndesc_needed; /* stats for common events first */ uint64_t tx_wrs_direct; /* # of WRs written directly to desc ring. */ uint64_t tx_wrs_ss; /* # of WRs copied from scratch space. */ uint64_t tx_wrs_copied; /* # of WRs queued and copied to desc ring. */ /* stats for not-that-common events */ /* * Scratch space for work requests that wrap around after reaching the * status page, and some information about the last WR that used it. */ uint16_t ss_pidx; uint16_t ss_len; uint8_t ss[SGE_MAX_WR_LEN]; } __aligned(CACHE_LINE_SIZE); #define INVALID_NM_RXQ_CNTXT_ID ((uint16_t)(-1)) struct sge_nm_rxq { volatile int nm_state; /* NM_OFF, NM_ON, or NM_BUSY */ struct vi_info *vi; struct iq_desc *iq_desc; uint16_t iq_abs_id; uint16_t iq_cntxt_id; uint16_t iq_cidx; uint16_t iq_sidx; uint8_t iq_gen; __be64 *fl_desc; uint16_t fl_cntxt_id; uint32_t fl_cidx; uint32_t fl_pidx; uint32_t fl_sidx; uint32_t fl_db_val; u_int fl_hwidx:4; u_int fl_db_saved; u_int nid; /* netmap ring # for this queue */ /* infrequently used items after this */ bus_dma_tag_t iq_desc_tag; bus_dmamap_t iq_desc_map; bus_addr_t iq_ba; int intr_idx; bus_dma_tag_t fl_desc_tag; bus_dmamap_t fl_desc_map; bus_addr_t fl_ba; } __aligned(CACHE_LINE_SIZE); #define INVALID_NM_TXQ_CNTXT_ID ((u_int)(-1)) struct sge_nm_txq { struct tx_desc *desc; uint16_t cidx; uint16_t pidx; uint16_t sidx; uint16_t equiqidx; /* EQUIQ last requested at this pidx */ uint16_t equeqidx; /* EQUEQ last requested at this pidx */ uint16_t dbidx; /* pidx of the most recent doorbell */ uint8_t doorbells; volatile uint32_t *udb; u_int udb_qid; u_int cntxt_id; __be32 cpl_ctrl0; /* for convenience */ u_int nid; /* netmap ring # for this queue */ /* infrequently used items after this */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; int iqidx; } __aligned(CACHE_LINE_SIZE); struct sge { int nrxq; /* total # of Ethernet rx queues */ int ntxq; /* total # of Ethernet tx queues */ int nofldrxq; /* total # of TOE rx queues */ int nofldtxq; /* total # of TOE tx queues */ int nnmrxq; /* total # of netmap rx queues */ int nnmtxq; /* total # of netmap tx queues */ int niq; /* total # of ingress queues */ int neq; /* total # of egress queues */ struct sge_iq fwq; /* Firmware event queue */ struct sge_wrq *ctrlq; /* Control queues */ struct sge_txq *txq; /* NIC tx queues */ struct sge_rxq *rxq; /* NIC rx queues */ struct sge_wrq *ofld_txq; /* TOE tx queues */ struct sge_ofld_rxq *ofld_rxq; /* TOE rx queues */ struct sge_nm_txq *nm_txq; /* netmap tx queues */ struct sge_nm_rxq *nm_rxq; /* netmap rx queues */ uint16_t iq_start; /* first cntxt_id */ uint16_t iq_base; /* first abs_id */ int eq_start; /* first cntxt_id */ int eq_base; /* first abs_id */ struct sge_iq **iqmap; /* iq->cntxt_id to iq mapping */ struct sge_eq **eqmap; /* eq->cntxt_id to eq mapping */ int8_t safe_hwidx1; /* may not have room for metadata */ int8_t safe_hwidx2; /* with room for metadata and maybe more */ struct sw_zone_info sw_zone_info[SW_ZONE_SIZES]; struct hw_buf_info hw_buf_info[SGE_FLBUF_SIZES]; }; struct devnames { const char *nexus_name; const char *ifnet_name; const char *vi_ifnet_name; const char *pf03_drv_name; const char *vf_nexus_name; const char *vf_ifnet_name; }; struct clip_entry; struct adapter { SLIST_ENTRY(adapter) link; device_t dev; struct cdev *cdev; const struct devnames *names; /* PCIe register resources */ int regs_rid; struct resource *regs_res; int msix_rid; struct resource *msix_res; bus_space_handle_t bh; bus_space_tag_t bt; bus_size_t mmio_len; int udbs_rid; struct resource *udbs_res; volatile uint8_t *udbs_base; unsigned int pf; unsigned int mbox; unsigned int vpd_busy; unsigned int vpd_flag; /* Interrupt information */ int intr_type; int intr_count; struct irq { struct resource *res; int rid; void *tag; struct sge_rxq *rxq; struct sge_nm_rxq *nm_rxq; } __aligned(CACHE_LINE_SIZE) *irq; int sge_gts_reg; int sge_kdoorbell_reg; bus_dma_tag_t dmat; /* Parent DMA tag */ struct sge sge; int lro_timeout; int sc_do_rxcopy; struct taskqueue *tq[MAX_NCHAN]; /* General purpose taskqueues */ struct port_info *port[MAX_NPORTS]; uint8_t chan_map[MAX_NCHAN]; /* channel -> port */ struct mtx clip_table_lock; TAILQ_HEAD(, clip_entry) clip_table; int clip_gen; void *tom_softc; /* (struct tom_data *) */ struct tom_tunables tt; struct t4_offload_policy *policy; struct rwlock policy_lock; void *iwarp_softc; /* (struct c4iw_dev *) */ struct iw_tunables iwt; void *iscsi_ulp_softc; /* (struct cxgbei_data *) */ void *ccr_softc; /* (struct ccr_softc *) */ struct l2t_data *l2t; /* L2 table */ struct smt_data *smt; /* Source MAC Table */ struct tid_info tids; vmem_t *key_map; uint8_t doorbells; int offload_map; /* ports with IFCAP_TOE enabled */ int active_ulds; /* ULDs activated on this adapter */ int flags; int debug_flags; char ifp_lockname[16]; struct mtx ifp_lock; struct ifnet *ifp; /* tracer ifp */ struct ifmedia media; int traceq; /* iq used by all tracers, -1 if none */ int tracer_valid; /* bitmap of valid tracers */ int tracer_enabled; /* bitmap of enabled tracers */ char fw_version[16]; char tp_version[16]; char er_version[16]; char bs_version[16]; char cfg_file[32]; u_int cfcsum; struct adapter_params params; const struct chip_params *chip_params; struct t4_virt_res vres; uint16_t nbmcaps; uint16_t linkcaps; uint16_t switchcaps; uint16_t niccaps; uint16_t toecaps; uint16_t rdmacaps; uint16_t cryptocaps; uint16_t iscsicaps; uint16_t fcoecaps; struct sysctl_ctx_list ctx; /* from adapter_full_init to full_uninit */ struct mtx sc_lock; char lockname[16]; /* Starving free lists */ struct mtx sfl_lock; /* same cache-line as sc_lock? but that's ok */ TAILQ_HEAD(, sge_fl) sfl; struct callout sfl_callout; struct mtx reg_lock; /* for indirect register access */ struct memwin memwin[NUM_MEMWIN]; /* memory windows */ struct mtx tc_lock; struct task tc_task; const char *last_op; const void *last_op_thr; int last_op_flags; + + int swintr; }; #define ADAPTER_LOCK(sc) mtx_lock(&(sc)->sc_lock) #define ADAPTER_UNLOCK(sc) mtx_unlock(&(sc)->sc_lock) #define ADAPTER_LOCK_ASSERT_OWNED(sc) mtx_assert(&(sc)->sc_lock, MA_OWNED) #define ADAPTER_LOCK_ASSERT_NOTOWNED(sc) mtx_assert(&(sc)->sc_lock, MA_NOTOWNED) #define ASSERT_SYNCHRONIZED_OP(sc) \ KASSERT(IS_BUSY(sc) && \ (mtx_owned(&(sc)->sc_lock) || sc->last_op_thr == curthread), \ ("%s: operation not synchronized.", __func__)) #define PORT_LOCK(pi) mtx_lock(&(pi)->pi_lock) #define PORT_UNLOCK(pi) mtx_unlock(&(pi)->pi_lock) #define PORT_LOCK_ASSERT_OWNED(pi) mtx_assert(&(pi)->pi_lock, MA_OWNED) #define PORT_LOCK_ASSERT_NOTOWNED(pi) mtx_assert(&(pi)->pi_lock, MA_NOTOWNED) #define FL_LOCK(fl) mtx_lock(&(fl)->fl_lock) #define FL_TRYLOCK(fl) mtx_trylock(&(fl)->fl_lock) #define FL_UNLOCK(fl) mtx_unlock(&(fl)->fl_lock) #define FL_LOCK_ASSERT_OWNED(fl) mtx_assert(&(fl)->fl_lock, MA_OWNED) #define FL_LOCK_ASSERT_NOTOWNED(fl) mtx_assert(&(fl)->fl_lock, MA_NOTOWNED) #define RXQ_FL_LOCK(rxq) FL_LOCK(&(rxq)->fl) #define RXQ_FL_UNLOCK(rxq) FL_UNLOCK(&(rxq)->fl) #define RXQ_FL_LOCK_ASSERT_OWNED(rxq) FL_LOCK_ASSERT_OWNED(&(rxq)->fl) #define RXQ_FL_LOCK_ASSERT_NOTOWNED(rxq) FL_LOCK_ASSERT_NOTOWNED(&(rxq)->fl) #define EQ_LOCK(eq) mtx_lock(&(eq)->eq_lock) #define EQ_TRYLOCK(eq) mtx_trylock(&(eq)->eq_lock) #define EQ_UNLOCK(eq) mtx_unlock(&(eq)->eq_lock) #define EQ_LOCK_ASSERT_OWNED(eq) mtx_assert(&(eq)->eq_lock, MA_OWNED) #define EQ_LOCK_ASSERT_NOTOWNED(eq) mtx_assert(&(eq)->eq_lock, MA_NOTOWNED) #define TXQ_LOCK(txq) EQ_LOCK(&(txq)->eq) #define TXQ_TRYLOCK(txq) EQ_TRYLOCK(&(txq)->eq) #define TXQ_UNLOCK(txq) EQ_UNLOCK(&(txq)->eq) #define TXQ_LOCK_ASSERT_OWNED(txq) EQ_LOCK_ASSERT_OWNED(&(txq)->eq) #define TXQ_LOCK_ASSERT_NOTOWNED(txq) EQ_LOCK_ASSERT_NOTOWNED(&(txq)->eq) #define for_each_txq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.txq[vi->first_txq], iter = 0; \ iter < vi->ntxq; ++iter, ++q) #define for_each_rxq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.rxq[vi->first_rxq], iter = 0; \ iter < vi->nrxq; ++iter, ++q) #define for_each_ofld_txq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.ofld_txq[vi->first_ofld_txq], iter = 0; \ iter < vi->nofldtxq; ++iter, ++q) #define for_each_ofld_rxq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.ofld_rxq[vi->first_ofld_rxq], iter = 0; \ iter < vi->nofldrxq; ++iter, ++q) #define for_each_nm_txq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.nm_txq[vi->first_nm_txq], iter = 0; \ iter < vi->nnmtxq; ++iter, ++q) #define for_each_nm_rxq(vi, iter, q) \ for (q = &vi->pi->adapter->sge.nm_rxq[vi->first_nm_rxq], iter = 0; \ iter < vi->nnmrxq; ++iter, ++q) #define for_each_vi(_pi, _iter, _vi) \ for ((_vi) = (_pi)->vi, (_iter) = 0; (_iter) < (_pi)->nvi; \ ++(_iter), ++(_vi)) #define IDXINCR(idx, incr, wrap) do { \ idx = wrap - idx > incr ? idx + incr : incr - (wrap - idx); \ } while (0) #define IDXDIFF(head, tail, wrap) \ ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) /* One for errors, one for firmware events */ #define T4_EXTRA_INTR 2 /* One for firmware events */ #define T4VF_EXTRA_INTR 1 static inline int forwarding_intr_to_fwq(struct adapter *sc) { return (sc->intr_count == 1); } static inline uint32_t t4_read_reg(struct adapter *sc, uint32_t reg) { return bus_space_read_4(sc->bt, sc->bh, reg); } static inline void t4_write_reg(struct adapter *sc, uint32_t reg, uint32_t val) { bus_space_write_4(sc->bt, sc->bh, reg, val); } static inline uint64_t t4_read_reg64(struct adapter *sc, uint32_t reg) { #ifdef __LP64__ return bus_space_read_8(sc->bt, sc->bh, reg); #else return (uint64_t)bus_space_read_4(sc->bt, sc->bh, reg) + ((uint64_t)bus_space_read_4(sc->bt, sc->bh, reg + 4) << 32); #endif } static inline void t4_write_reg64(struct adapter *sc, uint32_t reg, uint64_t val) { #ifdef __LP64__ bus_space_write_8(sc->bt, sc->bh, reg, val); #else bus_space_write_4(sc->bt, sc->bh, reg, val); bus_space_write_4(sc->bt, sc->bh, reg + 4, val>> 32); #endif } static inline void t4_os_pci_read_cfg1(struct adapter *sc, int reg, uint8_t *val) { *val = pci_read_config(sc->dev, reg, 1); } static inline void t4_os_pci_write_cfg1(struct adapter *sc, int reg, uint8_t val) { pci_write_config(sc->dev, reg, val, 1); } static inline void t4_os_pci_read_cfg2(struct adapter *sc, int reg, uint16_t *val) { *val = pci_read_config(sc->dev, reg, 2); } static inline void t4_os_pci_write_cfg2(struct adapter *sc, int reg, uint16_t val) { pci_write_config(sc->dev, reg, val, 2); } static inline void t4_os_pci_read_cfg4(struct adapter *sc, int reg, uint32_t *val) { *val = pci_read_config(sc->dev, reg, 4); } static inline void t4_os_pci_write_cfg4(struct adapter *sc, int reg, uint32_t val) { pci_write_config(sc->dev, reg, val, 4); } static inline struct port_info * adap2pinfo(struct adapter *sc, int idx) { return (sc->port[idx]); } static inline void t4_os_set_hw_addr(struct port_info *pi, uint8_t hw_addr[]) { bcopy(hw_addr, pi->vi[0].hw_addr, ETHER_ADDR_LEN); } static inline int tx_resume_threshold(struct sge_eq *eq) { /* not quite the same as qsize / 4, but this will do. */ return (eq->sidx / 4); } static inline int t4_use_ldst(struct adapter *sc) { #ifdef notyet return (sc->flags & FW_OK || !sc->use_bd); #else return (0); #endif } static inline void CH_DUMP_MBOX(struct adapter *sc, int mbox, const int reg, const char *msg, const __be64 *const p, const bool err) { if (!(sc->debug_flags & DF_DUMP_MBOX) && !err) return; if (p != NULL) { log(err ? LOG_ERR : LOG_DEBUG, "%s: mbox %u %s %016llx %016llx %016llx %016llx " "%016llx %016llx %016llx %016llx\n", device_get_nameunit(sc->dev), mbox, msg, (long long)be64_to_cpu(p[0]), (long long)be64_to_cpu(p[1]), (long long)be64_to_cpu(p[2]), (long long)be64_to_cpu(p[3]), (long long)be64_to_cpu(p[4]), (long long)be64_to_cpu(p[5]), (long long)be64_to_cpu(p[6]), (long long)be64_to_cpu(p[7])); } else { log(err ? LOG_ERR : LOG_DEBUG, "%s: mbox %u %s %016llx %016llx %016llx %016llx " "%016llx %016llx %016llx %016llx\n", device_get_nameunit(sc->dev), mbox, msg, (long long)t4_read_reg64(sc, reg), (long long)t4_read_reg64(sc, reg + 8), (long long)t4_read_reg64(sc, reg + 16), (long long)t4_read_reg64(sc, reg + 24), (long long)t4_read_reg64(sc, reg + 32), (long long)t4_read_reg64(sc, reg + 40), (long long)t4_read_reg64(sc, reg + 48), (long long)t4_read_reg64(sc, reg + 56)); } } /* t4_main.c */ extern int t4_ntxq; extern int t4_nrxq; extern int t4_intr_types; extern int t4_tmr_idx; extern int t4_pktc_idx; extern unsigned int t4_qsize_rxq; extern unsigned int t4_qsize_txq; extern device_method_t cxgbe_methods[]; int t4_os_find_pci_capability(struct adapter *, int); int t4_os_pci_save_state(struct adapter *); int t4_os_pci_restore_state(struct adapter *); void t4_os_portmod_changed(struct port_info *); void t4_os_link_changed(struct port_info *); void t4_iterate(void (*)(struct adapter *, void *), void *); void t4_init_devnames(struct adapter *); void t4_add_adapter(struct adapter *); void t4_aes_getdeckey(void *, const void *, unsigned int); int t4_detach_common(device_t); int t4_map_bars_0_and_4(struct adapter *); int t4_map_bar_2(struct adapter *); int t4_setup_intr_handlers(struct adapter *); void t4_sysctls(struct adapter *); int begin_synchronized_op(struct adapter *, struct vi_info *, int, char *); void doom_vi(struct adapter *, struct vi_info *); void end_synchronized_op(struct adapter *, int); int update_mac_settings(struct ifnet *, int); int adapter_full_init(struct adapter *); int adapter_full_uninit(struct adapter *); uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); int vi_full_init(struct vi_info *); int vi_full_uninit(struct vi_info *); void vi_sysctls(struct vi_info *); void vi_tick(void *); int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int); int alloc_atid_tab(struct tid_info *, int); void free_atid_tab(struct tid_info *); int alloc_atid(struct adapter *, void *); void *lookup_atid(struct adapter *, int); void free_atid(struct adapter *, int); void release_tid(struct adapter *, int, struct sge_wrq *); int cxgbe_media_change(struct ifnet *); void cxgbe_media_status(struct ifnet *, struct ifmediareq *); bool t4_os_dump_cimla(struct adapter *, int, bool); void t4_os_dump_devlog(struct adapter *); #ifdef DEV_NETMAP /* t4_netmap.c */ struct sge_nm_rxq; void cxgbe_nm_attach(struct vi_info *); void cxgbe_nm_detach(struct vi_info *); void service_nm_rxq(struct sge_nm_rxq *); #endif /* t4_sge.c */ void t4_sge_modload(void); void t4_sge_modunload(void); uint64_t t4_sge_extfree_refs(void); void t4_tweak_chip_settings(struct adapter *); int t4_read_chip_settings(struct adapter *); int t4_create_dma_tag(struct adapter *); void t4_sge_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid_list *); int t4_destroy_dma_tag(struct adapter *); int t4_setup_adapter_queues(struct adapter *); int t4_teardown_adapter_queues(struct adapter *); int t4_setup_vi_queues(struct vi_info *); int t4_teardown_vi_queues(struct vi_info *); void t4_intr_all(void *); void t4_intr(void *); #ifdef DEV_NETMAP void t4_nm_intr(void *); void t4_vi_intr(void *); #endif void t4_intr_err(void *); void t4_intr_evt(void *); void t4_wrq_tx_locked(struct adapter *, struct sge_wrq *, struct wrqe *); void t4_update_fl_bufsize(struct ifnet *); struct mbuf *alloc_wr_mbuf(int, int); int parse_pkt(struct adapter *, struct mbuf **); void *start_wrq_wr(struct sge_wrq *, int, struct wrq_cookie *); void commit_wrq_wr(struct sge_wrq *, void *, struct wrq_cookie *); int tnl_cong(struct port_info *, int); void t4_register_an_handler(an_handler_t); void t4_register_fw_msg_handler(int, fw_msg_handler_t); void t4_register_cpl_handler(int, cpl_handler_t); void t4_register_shared_cpl_handler(int, cpl_handler_t, int); #ifdef RATELIMIT int ethofld_transmit(struct ifnet *, struct mbuf *); void send_etid_flush_wr(struct cxgbe_snd_tag *); #endif /* t4_tracer.c */ struct t4_tracer; void t4_tracer_modload(void); void t4_tracer_modunload(void); void t4_tracer_port_detach(struct adapter *); int t4_get_tracer(struct adapter *, struct t4_tracer *); int t4_set_tracer(struct adapter *, struct t4_tracer *); int t4_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *); int t5_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *); /* t4_sched.c */ int t4_set_sched_class(struct adapter *, struct t4_sched_params *); int t4_set_sched_queue(struct adapter *, struct t4_sched_queue *); int t4_init_tx_sched(struct adapter *); int t4_free_tx_sched(struct adapter *); void t4_update_tx_sched(struct adapter *); int t4_reserve_cl_rl_kbps(struct adapter *, int, u_int, int *); void t4_release_cl_rl(struct adapter *, int, int); int sysctl_tc(SYSCTL_HANDLER_ARGS); int sysctl_tc_params(SYSCTL_HANDLER_ARGS); #ifdef RATELIMIT void t4_init_etid_table(struct adapter *); void t4_free_etid_table(struct adapter *); struct cxgbe_snd_tag *lookup_etid(struct adapter *, int); int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); int cxgbe_snd_tag_modify(struct m_snd_tag *, union if_snd_tag_modify_params *); int cxgbe_snd_tag_query(struct m_snd_tag *, union if_snd_tag_query_params *); void cxgbe_snd_tag_free(struct m_snd_tag *); void cxgbe_snd_tag_free_locked(struct cxgbe_snd_tag *); #endif /* t4_filter.c */ int get_filter_mode(struct adapter *, uint32_t *); int set_filter_mode(struct adapter *, uint32_t); int get_filter(struct adapter *, struct t4_filter *); int set_filter(struct adapter *, struct t4_filter *); int del_filter(struct adapter *, struct t4_filter *); int t4_filter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_hashfilter_ao_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_hashfilter_tcb_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_del_hashfilter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); void free_hftid_hash(struct tid_info *); static inline struct wrqe * alloc_wrqe(int wr_len, struct sge_wrq *wrq) { int len = offsetof(struct wrqe, wr) + wr_len; struct wrqe *wr; wr = malloc(len, M_CXGBE, M_NOWAIT); if (__predict_false(wr == NULL)) return (NULL); wr->wr_len = wr_len; wr->wrq = wrq; return (wr); } static inline void * wrtod(struct wrqe *wr) { return (&wr->wr[0]); } static inline void free_wrqe(struct wrqe *wr) { free(wr, M_CXGBE); } static inline void t4_wrq_tx(struct adapter *sc, struct wrqe *wr) { struct sge_wrq *wrq = wr->wrq; TXQ_LOCK(wrq); t4_wrq_tx_locked(sc, wrq, wr); TXQ_UNLOCK(wrq); } static inline int read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, int len) { return (rw_via_memwin(sc, idx, addr, val, len, 0)); } static inline int write_via_memwin(struct adapter *sc, int idx, uint32_t addr, const uint32_t *val, int len) { return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1)); } #endif Index: head/sys/dev/cxgbe/t4_main.c =================================================================== --- head/sys/dev/cxgbe/t4_main.c (revision 345659) +++ head/sys/dev/cxgbe/t4_main.c (revision 345660) @@ -1,10841 +1,10844 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #endif #include #include #if defined(__i386__) || defined(__amd64__) #include #include #include #include #endif #include #ifdef DDB #include #include #endif #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "cudbg/cudbg.h" #include "t4_clip.h" #include "t4_ioctl.h" #include "t4_l2t.h" #include "t4_mp_ring.h" #include "t4_if.h" #include "t4_smt.h" /* T4 bus driver interface */ static int t4_probe(device_t); static int t4_attach(device_t); static int t4_detach(device_t); static int t4_child_location_str(device_t, device_t, char *, size_t); static int t4_ready(device_t); static int t4_read_port_device(device_t, int, device_t *); static device_method_t t4_methods[] = { DEVMETHOD(device_probe, t4_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t4_driver = { "t4nex", t4_methods, sizeof(struct adapter) }; /* T4 port (cxgbe) interface */ static int cxgbe_probe(device_t); static int cxgbe_attach(device_t); static int cxgbe_detach(device_t); device_method_t cxgbe_methods[] = { DEVMETHOD(device_probe, cxgbe_probe), DEVMETHOD(device_attach, cxgbe_attach), DEVMETHOD(device_detach, cxgbe_detach), { 0, 0 } }; static driver_t cxgbe_driver = { "cxgbe", cxgbe_methods, sizeof(struct port_info) }; /* T4 VI (vcxgbe) interface */ static int vcxgbe_probe(device_t); static int vcxgbe_attach(device_t); static int vcxgbe_detach(device_t); static device_method_t vcxgbe_methods[] = { DEVMETHOD(device_probe, vcxgbe_probe), DEVMETHOD(device_attach, vcxgbe_attach), DEVMETHOD(device_detach, vcxgbe_detach), { 0, 0 } }; static driver_t vcxgbe_driver = { "vcxgbe", vcxgbe_methods, sizeof(struct vi_info) }; static d_ioctl_t t4_ioctl; static struct cdevsw t4_cdevsw = { .d_version = D_VERSION, .d_ioctl = t4_ioctl, .d_name = "t4nex", }; /* T5 bus driver interface */ static int t5_probe(device_t); static device_method_t t5_methods[] = { DEVMETHOD(device_probe, t5_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t5_driver = { "t5nex", t5_methods, sizeof(struct adapter) }; /* T5 port (cxl) interface */ static driver_t cxl_driver = { "cxl", cxgbe_methods, sizeof(struct port_info) }; /* T5 VI (vcxl) interface */ static driver_t vcxl_driver = { "vcxl", vcxgbe_methods, sizeof(struct vi_info) }; /* T6 bus driver interface */ static int t6_probe(device_t); static device_method_t t6_methods[] = { DEVMETHOD(device_probe, t6_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD(bus_child_location_str, t4_child_location_str), DEVMETHOD(t4_is_main_ready, t4_ready), DEVMETHOD(t4_read_port_device, t4_read_port_device), DEVMETHOD_END }; static driver_t t6_driver = { "t6nex", t6_methods, sizeof(struct adapter) }; /* T6 port (cc) interface */ static driver_t cc_driver = { "cc", cxgbe_methods, sizeof(struct port_info) }; /* T6 VI (vcc) interface */ static driver_t vcc_driver = { "vcc", vcxgbe_methods, sizeof(struct vi_info) }; /* ifnet interface */ static void cxgbe_init(void *); static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); static int cxgbe_transmit(struct ifnet *, struct mbuf *); static void cxgbe_qflush(struct ifnet *); MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); /* * Correct lock order when you need to acquire multiple locks is t4_list_lock, * then ADAPTER_LOCK, then t4_uld_list_lock. */ static struct sx t4_list_lock; SLIST_HEAD(, adapter) t4_list; #ifdef TCP_OFFLOAD static struct sx t4_uld_list_lock; SLIST_HEAD(, uld_info) t4_uld_list; #endif /* * Tunables. See tweak_tunables() too. * * Each tunable is set to a default value here if it's known at compile-time. * Otherwise it is set to -n as an indication to tweak_tunables() that it should * provide a reasonable default (upto n) when the driver is loaded. * * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to * T5 are under hw.cxl. */ SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters"); SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters"); SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters"); /* * Number of queues for tx and rx, NIC and offload. */ #define NTXQ 16 int t4_ntxq = -NTXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, "Number of TX queues per port"); TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ #define NRXQ 8 int t4_nrxq = -NRXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, "Number of RX queues per port"); TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ #define NTXQ_VI 1 static int t4_ntxq_vi = -NTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, "Number of TX queues per VI"); #define NRXQ_VI 1 static int t4_nrxq_vi = -NRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, "Number of RX queues per VI"); static int t4_rsrv_noflowq = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 0, "Reserve TX queue 0 of each VI for non-flowid packets"); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) #define NOFLDTXQ 8 static int t4_nofldtxq = -NOFLDTXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, "Number of offload TX queues per port"); #define NOFLDRXQ 2 static int t4_nofldrxq = -NOFLDRXQ; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, "Number of offload RX queues per port"); #define NOFLDTXQ_VI 1 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, "Number of offload TX queues per VI"); #define NOFLDRXQ_VI 1 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, "Number of offload RX queues per VI"); #define TMR_IDX_OFLD 1 int t4_tmr_idx_ofld = TMR_IDX_OFLD; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); #define PKTC_IDX_OFLD (-1) int t4_pktc_idx_ofld = PKTC_IDX_OFLD; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_keepalive_idle = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_keepalive_interval = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ static int t4_toe_keepalive_count = 0; SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_rexmt_min = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); /* 0 means chip/fw default, non-zero number is value in microseconds */ static u_long t4_toe_rexmt_max = 0; SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ static int t4_toe_rexmt_count = 0; SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); /* -1 means chip/fw default, other values are raw backoff values to use */ static int t4_toe_rexmt_backoff[16] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0, "cxgbe(4) TOE retransmit backoff values"); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[0], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[1], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[2], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[3], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[4], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[5], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[6], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[7], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[8], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[9], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[10], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[11], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[12], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[13], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[14], 0, ""); SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, &t4_toe_rexmt_backoff[15], 0, ""); #endif #ifdef DEV_NETMAP #define NNMTXQ_VI 2 static int t4_nnmtxq_vi = -NNMTXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, "Number of netmap TX queues per VI"); #define NNMRXQ_VI 2 static int t4_nnmrxq_vi = -NNMRXQ_VI; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, "Number of netmap RX queues per VI"); #endif /* * Holdoff parameters for ports. */ #define TMR_IDX 1 int t4_tmr_idx = TMR_IDX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 0, "Holdoff timer index"); TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ #define PKTC_IDX (-1) int t4_pktc_idx = PKTC_IDX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 0, "Holdoff packet counter index"); TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ /* * Size (# of entries) of each tx and rx queue. */ unsigned int t4_qsize_txq = TX_EQ_QSIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, "Number of descriptors in each TX queue"); unsigned int t4_qsize_rxq = RX_IQ_QSIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, "Number of descriptors in each RX queue"); /* * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). */ int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); /* * Configuration file. All the _CF names here are special. */ #define DEFAULT_CF "default" #define BUILTIN_CF "built-in" #define FLASH_CF "flash" #define UWIRE_CF "uwire" #define FPGA_CF "fpga" static char t4_cfg_file[32] = DEFAULT_CF; SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, sizeof(t4_cfg_file), "Firmware configuration file"); /* * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water * mark or when signalled to do so, 0 to never emit PAUSE. * pause_autoneg = 1 means PAUSE will be negotiated if possible and the * negotiated settings will override rx_pause/tx_pause. * Otherwise rx_pause/tx_pause are applied forcibly. */ static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, &t4_pause_settings, 0, "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); /* * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) * 0 to disable FEC. */ static int t4_fec = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); /* * Link autonegotiation. * -1 to run with the firmware default. * 0 to disable. * 1 to enable. */ static int t4_autoneg = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, "Link autonegotiation"); /* * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, * encouraged respectively). '-n' is the same as 'n' except the firmware * version used in the checks is read from the firmware bundled with the driver. */ static int t4_fw_install = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); /* * ASIC features that will be used. Disable the ones you don't want so that the * chip resources aren't wasted on features that will not be used. */ static int t4_nbmcaps_allowed = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, &t4_linkcaps_allowed, 0, "Default link capabilities"); static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | FW_CAPS_CONFIG_SWITCH_EGRESS; SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, &t4_switchcaps_allowed, 0, "Default switch capabilities"); #ifdef RATELIMIT static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; #else static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | FW_CAPS_CONFIG_NIC_HASHFILTER; #endif SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, &t4_niccaps_allowed, 0, "Default NIC capabilities"); static int t4_toecaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); static int t4_rdmacaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); static int t4_cryptocaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); static int t4_iscsicaps_allowed = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); static int t4_fcoecaps_allowed = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); static int t5_write_combine = 0; SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 0, "Use WC instead of UC for BAR2"); static int t4_num_vis = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, "Number of VIs per port"); /* * PCIe Relaxed Ordering. * -1: driver should figure out a good value. * 0: disable RO. * 1: enable RO. * 2: leave RO alone. */ static int pcie_relaxed_ordering = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, &pcie_relaxed_ordering, 0, "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); static int t4_panic_on_fatal_err = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN, &t4_panic_on_fatal_err, 0, "panic on fatal errors"); #ifdef TCP_OFFLOAD /* * TOE tunables. */ static int t4_cop_managed_offloading = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, &t4_cop_managed_offloading, 0, "COP (Connection Offload Policy) controls all TOE offload"); #endif /* Functions used by VIs to obtain unique MAC addresses for each VI. */ static int vi_mac_funcs[] = { FW_VI_FUNC_ETH, FW_VI_FUNC_OFLD, FW_VI_FUNC_IWARP, FW_VI_FUNC_OPENISCSI, FW_VI_FUNC_OPENFCOE, FW_VI_FUNC_FOISCSI, FW_VI_FUNC_FOFCOE, }; struct intrs_and_queues { uint16_t intr_type; /* INTx, MSI, or MSI-X */ uint16_t num_vis; /* number of VIs for each port */ uint16_t nirq; /* Total # of vectors */ uint16_t ntxq; /* # of NIC txq's for each port */ uint16_t nrxq; /* # of NIC rxq's for each port */ uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ uint16_t nofldrxq; /* # of TOE rxq's for each port */ /* The vcxgbe/vcxl interfaces use these and not the ones above. */ uint16_t ntxq_vi; /* # of NIC txq's */ uint16_t nrxq_vi; /* # of NIC rxq's */ uint16_t nofldtxq_vi; /* # of TOE txq's */ uint16_t nofldrxq_vi; /* # of TOE rxq's */ uint16_t nnmtxq_vi; /* # of netmap txq's */ uint16_t nnmrxq_vi; /* # of netmap rxq's */ }; static void setup_memwin(struct adapter *); static void position_memwin(struct adapter *, int, uint32_t); static int validate_mem_range(struct adapter *, uint32_t, uint32_t); static int fwmtype_to_hwmtype(int); static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, uint32_t *); static int fixup_devlog_params(struct adapter *); static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); static int contact_firmware(struct adapter *); static int partition_resources(struct adapter *); static int get_params__pre_init(struct adapter *); static int set_params__pre_init(struct adapter *); static int get_params__post_init(struct adapter *); static int set_params__post_init(struct adapter *); static void t4_set_desc(struct adapter *); static bool fixed_ifmedia(struct port_info *); static void build_medialist(struct port_info *); static void init_link_config(struct port_info *); static int fixup_link_config(struct port_info *); static int apply_link_config(struct port_info *); static int cxgbe_init_synchronized(struct vi_info *); static int cxgbe_uninit_synchronized(struct vi_info *); static void quiesce_txq(struct adapter *, struct sge_txq *); static void quiesce_wrq(struct adapter *, struct sge_wrq *); static void quiesce_iq(struct adapter *, struct sge_iq *); static void quiesce_fl(struct adapter *, struct sge_fl *); static int t4_alloc_irq(struct adapter *, struct irq *, int rid, driver_intr_t *, void *, char *); static int t4_free_irq(struct adapter *, struct irq *); static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); static void vi_refresh_stats(struct adapter *, struct vi_info *); static void cxgbe_refresh_stats(struct adapter *, struct port_info *); static void cxgbe_tick(void *); static void cxgbe_sysctls(struct port_info *); static int sysctl_int_array(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); static int sysctl_btphy(SYSCTL_HANDLER_ARGS); static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); static int sysctl_fec(SYSCTL_HANDLER_ARGS); static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); static int sysctl_temperature(SYSCTL_HANDLER_ARGS); static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_devlog(SYSCTL_HANDLER_ARGS); static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tids(SYSCTL_HANDLER_ARGS); static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); static int sysctl_cpus(SYSCTL_HANDLER_ARGS); #ifdef TCP_OFFLOAD static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); #endif static int get_sge_context(struct adapter *, struct t4_sge_context *); static int load_fw(struct adapter *, struct t4_data *); static int load_cfg(struct adapter *, struct t4_data *); static int load_boot(struct adapter *, struct t4_bootrom *); static int load_bootcfg(struct adapter *, struct t4_data *); static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); static void free_offload_policy(struct t4_offload_policy *); static int set_offload_policy(struct adapter *, struct t4_offload_policy *); static int read_card_mem(struct adapter *, int, struct t4_mem_range *); static int read_i2c(struct adapter *, struct t4_i2c_data *); #ifdef TCP_OFFLOAD static int toe_capability(struct vi_info *, int); #endif static int mod_event(module_t, int, void *); static int notify_siblings(device_t, int); struct { uint16_t device; char *desc; } t4_pciids[] = { {0xa000, "Chelsio Terminator 4 FPGA"}, {0x4400, "Chelsio T440-dbg"}, {0x4401, "Chelsio T420-CR"}, {0x4402, "Chelsio T422-CR"}, {0x4403, "Chelsio T440-CR"}, {0x4404, "Chelsio T420-BCH"}, {0x4405, "Chelsio T440-BCH"}, {0x4406, "Chelsio T440-CH"}, {0x4407, "Chelsio T420-SO"}, {0x4408, "Chelsio T420-CX"}, {0x4409, "Chelsio T420-BT"}, {0x440a, "Chelsio T404-BT"}, {0x440e, "Chelsio T440-LP-CR"}, }, t5_pciids[] = { {0xb000, "Chelsio Terminator 5 FPGA"}, {0x5400, "Chelsio T580-dbg"}, {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ /* Custom */ {0x5483, "Custom T540-CR"}, {0x5484, "Custom T540-BT"}, }, t6_pciids[] = { {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ /* Custom */ {0x6480, "Custom T6225-CR"}, {0x6481, "Custom T62100-CR"}, {0x6482, "Custom T6225-CR"}, {0x6483, "Custom T62100-CR"}, {0x6484, "Custom T64100-CR"}, {0x6485, "Custom T6240-SO"}, {0x6486, "Custom T6225-SO-CR"}, {0x6487, "Custom T6225-CR"}, }; #ifdef TCP_OFFLOAD /* * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should * be exactly the same for both rxq and ofld_rxq. */ CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); #endif CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); static int t4_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xa000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t4_pciids); i++) { if (d == t4_pciids[i].device) { device_set_desc(dev, t4_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t5_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xb000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t5_pciids); i++) { if (d == t5_pciids[i].device) { device_set_desc(dev, t5_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t6_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); for (i = 0; i < nitems(t6_pciids); i++) { if (d == t6_pciids[i].device) { device_set_desc(dev, t6_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static void t5_attribute_workaround(device_t dev) { device_t root_port; uint32_t v; /* * The T5 chips do not properly echo the No Snoop and Relaxed * Ordering attributes when replying to a TLP from a Root * Port. As a workaround, find the parent Root Port and * disable No Snoop and Relaxed Ordering. Note that this * affects all devices under this root port. */ root_port = pci_find_pcie_root_port(dev); if (root_port == NULL) { device_printf(dev, "Unable to find parent root port\n"); return; } v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 0) device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", device_get_nameunit(root_port)); } static const struct devnames devnames[] = { { .nexus_name = "t4nex", .ifnet_name = "cxgbe", .vi_ifnet_name = "vcxgbe", .pf03_drv_name = "t4iov", .vf_nexus_name = "t4vf", .vf_ifnet_name = "cxgbev" }, { .nexus_name = "t5nex", .ifnet_name = "cxl", .vi_ifnet_name = "vcxl", .pf03_drv_name = "t5iov", .vf_nexus_name = "t5vf", .vf_ifnet_name = "cxlv" }, { .nexus_name = "t6nex", .ifnet_name = "cc", .vi_ifnet_name = "vcc", .pf03_drv_name = "t6iov", .vf_nexus_name = "t6vf", .vf_ifnet_name = "ccv" } }; void t4_init_devnames(struct adapter *sc) { int id; id = chip_id(sc); if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) sc->names = &devnames[id - CHELSIO_T4]; else { device_printf(sc->dev, "chip id %d is not supported.\n", id); sc->names = NULL; } } static int t4_ifnet_unit(struct adapter *sc, struct port_info *pi) { const char *parent, *name; long value; int line, unit; line = 0; parent = device_get_nameunit(sc->dev); name = sc->names->ifnet_name; while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { if (resource_long_value(name, unit, "port", &value) == 0 && value == pi->port_id) return (unit); } return (-1); } static int t4_attach(device_t dev) { struct adapter *sc; int rc = 0, i, j, rqidx, tqidx, nports; struct make_dev_args mda; struct intrs_and_queues iaq; struct sge *s; uint32_t *buf; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) int ofld_tqidx; #endif #ifdef TCP_OFFLOAD int ofld_rqidx; #endif #ifdef DEV_NETMAP int nm_rqidx, nm_tqidx; #endif int num_vis; sc = device_get_softc(dev); sc->dev = dev; TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); if ((pci_get_device(dev) & 0xff00) == 0x5400) t5_attribute_workaround(dev); pci_enable_busmaster(dev); if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { uint32_t v; pci_set_max_read_req(dev, 4096); v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); if (pcie_relaxed_ordering == 0 && (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); } else if (pcie_relaxed_ordering == 1 && (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { v |= PCIEM_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); } } sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); sc->traceq = -1; mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", device_get_nameunit(dev)); snprintf(sc->lockname, sizeof(sc->lockname), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); t4_add_adapter(sc); mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); TAILQ_INIT(&sc->sfl); callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); sc->policy = NULL; rw_init(&sc->policy_lock, "connection offload policy"); rc = t4_map_bars_0_and_4(sc); if (rc != 0) goto done; /* error message displayed already */ memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); /* Prepare the adapter for operation. */ buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); rc = -t4_prep_adapter(sc, buf); free(buf, M_CXGBE); if (rc != 0) { device_printf(dev, "failed to prepare adapter: %d.\n", rc); goto done; } /* * This is the real PF# to which we're attaching. Works from within PCI * passthrough environments too, where pci_get_function() could return a * different PF# depending on the passthrough configuration. We need to * use the real PF# in all our communication with the firmware. */ j = t4_read_reg(sc, A_PL_WHOAMI); sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); sc->mbox = sc->pf; t4_init_devnames(sc); if (sc->names == NULL) { rc = ENOTSUP; goto done; /* error message displayed already */ } /* * Do this really early, with the memory windows set up even before the * character device. The userland tool's register i/o and mem read * will work even in "recovery mode". */ setup_memwin(sc); if (t4_init_devlog_params(sc, 0) == 0) fixup_devlog_params(sc); make_dev_args_init(&mda); mda.mda_devsw = &t4_cdevsw; mda.mda_uid = UID_ROOT; mda.mda_gid = GID_WHEEL; mda.mda_mode = 0600; mda.mda_si_drv1 = sc; rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); if (rc != 0) device_printf(dev, "failed to create nexus char device: %d.\n", rc); /* Go no further if recovery mode has been requested. */ if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { device_printf(dev, "recovery mode.\n"); goto done; } #if defined(__i386__) if ((cpu_feature & CPUID_CX8) == 0) { device_printf(dev, "64 bit atomics not available.\n"); rc = ENOTSUP; goto done; } #endif /* Contact the firmware and try to become the master driver. */ rc = contact_firmware(sc); if (rc != 0) goto done; /* error message displayed already */ MPASS(sc->flags & FW_OK); rc = get_params__pre_init(sc); if (rc != 0) goto done; /* error message displayed already */ if (sc->flags & MASTER_PF) { rc = partition_resources(sc); if (rc != 0) goto done; /* error message displayed already */ t4_intr_clear(sc); } rc = get_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = set_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_map_bar_2(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_create_dma_tag(sc); if (rc != 0) goto done; /* error message displayed already */ /* * First pass over all the ports - allocate VIs and initialize some * basic parameters like mac address, port type, etc. */ for_each_port(sc, i) { struct port_info *pi; pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); sc->port[i] = pi; /* These must be set before t4_port_init */ pi->adapter = sc; pi->port_id = i; /* * XXX: vi[0] is special so we can't delay this allocation until * pi->nvi's final value is known. */ pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, M_ZERO | M_WAITOK); /* * Allocate the "main" VI and initialize parameters * like mac addr. */ rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); if (rc != 0) { device_printf(dev, "unable to initialize port %d: %d\n", i, rc); free(pi->vi, M_CXGBE); free(pi, M_CXGBE); sc->port[i] = NULL; goto done; } snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", device_get_nameunit(dev), i); mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); sc->chan_map[pi->tx_chan] = i; /* All VIs on this port share this media. */ ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, cxgbe_media_status); PORT_LOCK(pi); init_link_config(pi); fixup_link_config(pi); build_medialist(pi); if (fixed_ifmedia(pi)) pi->flags |= FIXED_IFMEDIA; PORT_UNLOCK(pi); pi->dev = device_add_child(dev, sc->names->ifnet_name, t4_ifnet_unit(sc, pi)); if (pi->dev == NULL) { device_printf(dev, "failed to add device for port %d.\n", i); rc = ENXIO; goto done; } pi->vi[0].dev = pi->dev; device_set_softc(pi->dev, pi); } /* * Interrupt type, # of interrupts, # of rx/tx queues, etc. */ nports = sc->params.nports; rc = cfg_itype_and_nqueues(sc, &iaq); if (rc != 0) goto done; /* error message displayed already */ num_vis = iaq.num_vis; sc->intr_type = iaq.intr_type; sc->intr_count = iaq.nirq; s = &sc->sge; s->nrxq = nports * iaq.nrxq; s->ntxq = nports * iaq.ntxq; if (num_vis > 1) { s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; } s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ s->neq += nports; /* ctrl queues: 1 per port */ s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (is_offload(sc) || is_ethoffload(sc)) { s->nofldtxq = nports * iaq.nofldtxq; if (num_vis > 1) s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; s->neq += s->nofldtxq; s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); } #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { s->nofldrxq = nports * iaq.nofldrxq; if (num_vis > 1) s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; s->neq += s->nofldrxq; /* free list */ s->niq += s->nofldrxq; s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), M_CXGBE, M_ZERO | M_WAITOK); } #endif #ifdef DEV_NETMAP if (num_vis > 1) { s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi; s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi; } s->neq += s->nnmtxq + s->nnmrxq; s->niq += s->nnmrxq; s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), M_CXGBE, M_ZERO | M_WAITOK); #endif s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, M_ZERO | M_WAITOK); s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, M_ZERO | M_WAITOK); s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, M_ZERO | M_WAITOK); sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, M_ZERO | M_WAITOK); t4_init_l2t(sc, M_WAITOK); t4_init_smt(sc, M_WAITOK); t4_init_tx_sched(sc); #ifdef RATELIMIT t4_init_etid_table(sc); #endif #ifdef INET6 t4_init_clip_table(sc); #endif if (sc->vres.key.size != 0) sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); /* * Second pass over the ports. This time we know the number of rx and * tx queues that each port should get. */ rqidx = tqidx = 0; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) ofld_tqidx = 0; #endif #ifdef TCP_OFFLOAD ofld_rqidx = 0; #endif #ifdef DEV_NETMAP nm_rqidx = nm_tqidx = 0; #endif for_each_port(sc, i) { struct port_info *pi = sc->port[i]; struct vi_info *vi; if (pi == NULL) continue; pi->nvi = num_vis; for_each_vi(pi, j, vi) { vi->pi = pi; vi->qsize_rxq = t4_qsize_rxq; vi->qsize_txq = t4_qsize_txq; vi->first_rxq = rqidx; vi->first_txq = tqidx; vi->tmr_idx = t4_tmr_idx; vi->pktc_idx = t4_pktc_idx; vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; rqidx += vi->nrxq; tqidx += vi->ntxq; if (j == 0 && vi->ntxq > 1) vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; else vi->rsrv_noflowq = 0; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) vi->first_ofld_txq = ofld_tqidx; vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; ofld_tqidx += vi->nofldtxq; #endif #ifdef TCP_OFFLOAD vi->ofld_tmr_idx = t4_tmr_idx_ofld; vi->ofld_pktc_idx = t4_pktc_idx_ofld; vi->first_ofld_rxq = ofld_rqidx; vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; ofld_rqidx += vi->nofldrxq; #endif #ifdef DEV_NETMAP if (j > 0) { vi->first_nm_rxq = nm_rqidx; vi->first_nm_txq = nm_tqidx; vi->nnmrxq = iaq.nnmrxq_vi; vi->nnmtxq = iaq.nnmtxq_vi; nm_rqidx += vi->nnmrxq; nm_tqidx += vi->nnmtxq; } #endif } } rc = t4_setup_intr_handlers(sc); if (rc != 0) { device_printf(dev, "failed to setup interrupt handlers: %d\n", rc); goto done; } rc = bus_generic_probe(dev); if (rc != 0) { device_printf(dev, "failed to probe child drivers: %d\n", rc); goto done; } /* * Ensure thread-safe mailbox access (in debug builds). * * So far this was the only thread accessing the mailbox but various * ifnets and sysctls are about to be created and their handlers/ioctls * will access the mailbox from different threads. */ sc->flags |= CHK_MBOX_ACCESS; rc = bus_generic_attach(dev); if (rc != 0) { device_printf(dev, "failed to attach all child ports: %d\n", rc); goto done; } device_printf(dev, "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", sc->params.pci.speed, sc->params.pci.width, sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); t4_set_desc(sc); notify_siblings(dev, 0); done: if (rc != 0 && sc->cdev) { /* cdev was created and so cxgbetool works; recover that way. */ device_printf(dev, "error during attach, adapter is now in recovery mode.\n"); rc = 0; } if (rc != 0) t4_detach_common(dev); else t4_sysctls(sc); return (rc); } static int t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) { struct adapter *sc; struct port_info *pi; int i; sc = device_get_softc(bus); buf[0] = '\0'; for_each_port(sc, i) { pi = sc->port[i]; if (pi != NULL && pi->dev == dev) { snprintf(buf, buflen, "port=%d", pi->port_id); break; } } return (0); } static int t4_ready(device_t dev) { struct adapter *sc; sc = device_get_softc(dev); if (sc->flags & FW_OK) return (0); return (ENXIO); } static int t4_read_port_device(device_t dev, int port, device_t *child) { struct adapter *sc; struct port_info *pi; sc = device_get_softc(dev); if (port < 0 || port >= MAX_NPORTS) return (EINVAL); pi = sc->port[port]; if (pi == NULL || pi->dev == NULL) return (ENXIO); *child = pi->dev; return (0); } static int notify_siblings(device_t dev, int detaching) { device_t sibling; int error, i; error = 0; for (i = 0; i < PCI_FUNCMAX; i++) { if (i == pci_get_function(dev)) continue; sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), i); if (sibling == NULL || !device_is_attached(sibling)) continue; if (detaching) error = T4_DETACH_CHILD(sibling); else (void)T4_ATTACH_CHILD(sibling); if (error) break; } return (error); } /* * Idempotent */ static int t4_detach(device_t dev) { struct adapter *sc; int rc; sc = device_get_softc(dev); rc = notify_siblings(dev, 1); if (rc) { device_printf(dev, "failed to detach sibling devices: %d\n", rc); return (rc); } return (t4_detach_common(dev)); } int t4_detach_common(device_t dev) { struct adapter *sc; struct port_info *pi; int i, rc; sc = device_get_softc(dev); if (sc->cdev) { destroy_dev(sc->cdev); sc->cdev = NULL; } sc->flags &= ~CHK_MBOX_ACCESS; if (sc->flags & FULL_INIT_DONE) { if (!(sc->flags & IS_VF)) t4_intr_disable(sc); } if (device_is_attached(dev)) { rc = bus_generic_detach(dev); if (rc) { device_printf(dev, "failed to detach child devices: %d\n", rc); return (rc); } } for (i = 0; i < sc->intr_count; i++) t4_free_irq(sc, &sc->irq[i]); if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) t4_free_tx_sched(sc); for (i = 0; i < MAX_NPORTS; i++) { pi = sc->port[i]; if (pi) { t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); if (pi->dev) device_delete_child(dev, pi->dev); mtx_destroy(&pi->pi_lock); free(pi->vi, M_CXGBE); free(pi, M_CXGBE); } } device_delete_children(dev); if (sc->flags & FULL_INIT_DONE) adapter_full_uninit(sc); if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) t4_fw_bye(sc, sc->mbox); if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) pci_release_msi(dev); if (sc->regs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, sc->regs_res); if (sc->udbs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, sc->udbs_res); if (sc->msix_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, sc->msix_res); if (sc->l2t) t4_free_l2t(sc->l2t); if (sc->smt) t4_free_smt(sc->smt); #ifdef RATELIMIT t4_free_etid_table(sc); #endif if (sc->key_map) vmem_destroy(sc->key_map); #ifdef INET6 t4_destroy_clip_table(sc); #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) free(sc->sge.ofld_txq, M_CXGBE); #endif #ifdef TCP_OFFLOAD free(sc->sge.ofld_rxq, M_CXGBE); #endif #ifdef DEV_NETMAP free(sc->sge.nm_rxq, M_CXGBE); free(sc->sge.nm_txq, M_CXGBE); #endif free(sc->irq, M_CXGBE); free(sc->sge.rxq, M_CXGBE); free(sc->sge.txq, M_CXGBE); free(sc->sge.ctrlq, M_CXGBE); free(sc->sge.iqmap, M_CXGBE); free(sc->sge.eqmap, M_CXGBE); free(sc->tids.ftid_tab, M_CXGBE); free(sc->tids.hpftid_tab, M_CXGBE); free_hftid_hash(&sc->tids); free(sc->tids.atid_tab, M_CXGBE); free(sc->tids.tid_tab, M_CXGBE); free(sc->tt.tls_rx_ports, M_CXGBE); t4_destroy_dma_tag(sc); if (mtx_initialized(&sc->sc_lock)) { sx_xlock(&t4_list_lock); SLIST_REMOVE(&t4_list, sc, adapter, link); sx_xunlock(&t4_list_lock); mtx_destroy(&sc->sc_lock); } callout_drain(&sc->sfl_callout); if (mtx_initialized(&sc->tids.ftid_lock)) { mtx_destroy(&sc->tids.ftid_lock); cv_destroy(&sc->tids.ftid_cv); } if (mtx_initialized(&sc->tids.atid_lock)) mtx_destroy(&sc->tids.atid_lock); if (mtx_initialized(&sc->sfl_lock)) mtx_destroy(&sc->sfl_lock); if (mtx_initialized(&sc->ifp_lock)) mtx_destroy(&sc->ifp_lock); if (mtx_initialized(&sc->reg_lock)) mtx_destroy(&sc->reg_lock); if (rw_initialized(&sc->policy_lock)) { rw_destroy(&sc->policy_lock); #ifdef TCP_OFFLOAD if (sc->policy != NULL) free_offload_policy(sc->policy); #endif } for (i = 0; i < NUM_MEMWIN; i++) { struct memwin *mw = &sc->memwin[i]; if (rw_initialized(&mw->mw_lock)) rw_destroy(&mw->mw_lock); } bzero(sc, sizeof(*sc)); return (0); } static int cxgbe_probe(device_t dev) { char buf[128]; struct port_info *pi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d", pi->port_id); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ IFCAP_HWRXTSTMP) #define T4_CAP_ENABLE (T4_CAP) static int cxgbe_vi_attach(device_t dev, struct vi_info *vi) { struct ifnet *ifp; struct sbuf *sb; vi->xact_addr_filt = -1; callout_init(&vi->tick, 1); /* Allocate an ifnet and set it up */ ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Cannot allocate ifnet\n"); return (ENOMEM); } vi->ifp = ifp; ifp->if_softc = vi; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = cxgbe_init; ifp->if_ioctl = cxgbe_ioctl; ifp->if_transmit = cxgbe_transmit; ifp->if_qflush = cxgbe_qflush; ifp->if_get_counter = cxgbe_get_counter; #ifdef RATELIMIT ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; ifp->if_snd_tag_query = cxgbe_snd_tag_query; ifp->if_snd_tag_free = cxgbe_snd_tag_free; #endif ifp->if_capabilities = T4_CAP; ifp->if_capenable = T4_CAP_ENABLE; #ifdef TCP_OFFLOAD if (vi->nofldrxq != 0) ifp->if_capabilities |= IFCAP_TOE; #endif #ifdef RATELIMIT if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) { ifp->if_capabilities |= IFCAP_TXRTLMT; ifp->if_capenable |= IFCAP_TXRTLMT; } #endif ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6; ifp->if_hw_tsomax = IP_MAXPACKET; ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; #ifdef RATELIMIT if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; #endif ifp->if_hw_tsomaxsegsize = 65536; ether_ifattach(ifp, vi->hw_addr); #ifdef DEV_NETMAP if (vi->nnmrxq != 0) cxgbe_nm_attach(vi); #endif sb = sbuf_new_auto(); sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { case IFCAP_TOE: sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); break; case IFCAP_TOE | IFCAP_TXRTLMT: sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); break; case IFCAP_TXRTLMT: sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); break; } #endif #ifdef TCP_OFFLOAD if (ifp->if_capabilities & IFCAP_TOE) sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); #endif #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) sbuf_printf(sb, "; %d txq, %d rxq (netmap)", vi->nnmtxq, vi->nnmrxq); #endif sbuf_finish(sb); device_printf(dev, "%s\n", sbuf_data(sb)); sbuf_delete(sb); vi_sysctls(vi); return (0); } static int cxgbe_attach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; struct vi_info *vi; int i, rc; callout_init_mtx(&pi->tick, &pi->pi_lock, 0); rc = cxgbe_vi_attach(dev, &pi->vi[0]); if (rc) return (rc); for_each_vi(pi, i, vi) { if (i == 0) continue; vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); if (vi->dev == NULL) { device_printf(dev, "failed to add VI %d\n", i); continue; } device_set_softc(vi->dev, vi); } cxgbe_sysctls(pi); bus_generic_attach(dev); return (0); } static void cxgbe_vi_detach(struct vi_info *vi) { struct ifnet *ifp = vi->ifp; ether_ifdetach(ifp); /* Let detach proceed even if these fail. */ #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) cxgbe_nm_detach(vi); #endif cxgbe_uninit_synchronized(vi); callout_drain(&vi->tick); vi_full_uninit(vi); if_free(vi->ifp); vi->ifp = NULL; } static int cxgbe_detach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; int rc; /* Detach the extra VIs first. */ rc = bus_generic_detach(dev); if (rc) return (rc); device_delete_children(dev); doom_vi(sc, &pi->vi[0]); if (pi->flags & HAS_TRACEQ) { sc->traceq = -1; /* cloner should not create ifnet */ t4_tracer_port_detach(sc); } cxgbe_vi_detach(&pi->vi[0]); callout_drain(&pi->tick); ifmedia_removeall(&pi->media); end_synchronized_op(sc, 0); return (0); } static void cxgbe_init(void *arg) { struct vi_info *vi = arg; struct adapter *sc = vi->pi->adapter; if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) return; cxgbe_init_synchronized(vi); end_synchronized_op(sc, 0); } static int cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) { int rc = 0, mtu, flags; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifreq *ifr = (struct ifreq *)data; uint32_t mask; switch (cmd) { case SIOCSIFMTU: mtu = ifr->ifr_mtu; if (mtu < ETHERMIN || mtu > MAX_MTU) return (EINVAL); rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); if (rc) return (rc); ifp->if_mtu = mtu; if (vi->flags & VI_INIT_DONE) { t4_update_fl_bufsize(ifp); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_MTU); } end_synchronized_op(sc, 0); break; case SIOCSIFFLAGS: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); if (rc) return (rc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = vi->if_flags; if ((ifp->if_flags ^ flags) & (IFF_PROMISC | IFF_ALLMULTI)) { rc = update_mac_settings(ifp, XGMAC_PROMISC | XGMAC_ALLMULTI); } } else { rc = cxgbe_init_synchronized(vi); } vi->if_flags = ifp->if_flags; } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { rc = cxgbe_uninit_synchronized(vi); } end_synchronized_op(sc, 0); break; case SIOCADDMULTI: case SIOCDELMULTI: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); if (rc) return (rc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_MCADDRS); end_synchronized_op(sc, 0); break; case SIOCSIFCAP: rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); if (rc) return (rc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO4 & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO4; if_printf(ifp, "tso4 disabled due to -txcsum.\n"); } } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); if (IFCAP_TSO6 & ifp->if_capenable && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO6; if_printf(ifp, "tso6 disabled due to -txcsum6.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; /* * Note that we leave CSUM_TSO alone (it is always set). The * kernel takes both IFCAP_TSOx and CSUM_TSO into account before * sending a TSO request our way, so it's sufficient to toggle * IFCAP_TSOx only. */ if (mask & IFCAP_TSO4) { if (!(IFCAP_TSO4 & ifp->if_capenable) && !(IFCAP_TXCSUM & ifp->if_capenable)) { if_printf(ifp, "enable txcsum first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO4; } if (mask & IFCAP_TSO6) { if (!(IFCAP_TSO6 & ifp->if_capenable) && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { if_printf(ifp, "enable txcsum6 first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO6; } if (mask & IFCAP_LRO) { #if defined(INET) || defined(INET6) int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_LRO; for_each_rxq(vi, i, rxq) { if (ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; else rxq->iq.flags &= ~IQ_LRO_ENABLED; } #endif } #ifdef TCP_OFFLOAD if (mask & IFCAP_TOE) { int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; rc = toe_capability(vi, enable); if (rc != 0) goto fail; ifp->if_capenable ^= mask; } #endif if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(ifp, XGMAC_VLANEX); } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; /* Need to find out how to disable auto-mtu-inflation */ } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; #ifdef RATELIMIT if (mask & IFCAP_TXRTLMT) ifp->if_capenable ^= IFCAP_TXRTLMT; #endif if (mask & IFCAP_HWRXTSTMP) { int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_HWRXTSTMP; for_each_rxq(vi, i, rxq) { if (ifp->if_capenable & IFCAP_HWRXTSTMP) rxq->iq.flags |= IQ_RX_TIMESTAMP; else rxq->iq.flags &= ~IQ_RX_TIMESTAMP; } } #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif fail: end_synchronized_op(sc, 0); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: ifmedia_ioctl(ifp, ifr, &pi->media, cmd); break; case SIOCGI2C: { struct ifi2creq i2c; rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); if (rc != 0) break; if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { rc = EPERM; break; } if (i2c.len > sizeof(i2c.data)) { rc = EINVAL; break; } rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); if (rc) return (rc); rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, i2c.offset, i2c.len, &i2c.data[0]); end_synchronized_op(sc, 0); if (rc == 0) rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); break; } default: rc = ether_ioctl(ifp, cmd, data); } return (rc); } static int cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_txq *txq; void *items[1]; int rc; M_ASSERTPKTHDR(m); MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ if (__predict_false(pi->link_cfg.link_ok == false)) { m_freem(m); return (ENETDOWN); } rc = parse_pkt(sc, &m); if (__predict_false(rc != 0)) { MPASS(m == NULL); /* was freed already */ atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ return (rc); } #ifdef RATELIMIT if (m->m_pkthdr.snd_tag != NULL) { /* EAGAIN tells the stack we are not the correct interface. */ if (__predict_false(ifp != m->m_pkthdr.snd_tag->ifp)) { m_freem(m); return (EAGAIN); } return (ethofld_transmit(ifp, m)); } #endif /* Select a txq. */ txq = &sc->sge.txq[vi->first_txq]; if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + vi->rsrv_noflowq); items[0] = m; rc = mp_ring_enqueue(txq->r, items, 1, 4096); if (__predict_false(rc != 0)) m_freem(m); return (rc); } static void cxgbe_qflush(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct sge_txq *txq; int i; /* queues do not exist if !VI_INIT_DONE. */ if (vi->flags & VI_INIT_DONE) { for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags |= EQ_QFLUSH; TXQ_UNLOCK(txq); while (!mp_ring_is_idle(txq->r)) { mp_ring_check_drainage(txq->r, 0); pause("qflush", 1); } TXQ_LOCK(txq); txq->eq.flags &= ~EQ_QFLUSH; TXQ_UNLOCK(txq); } } if_qflush(ifp); } static uint64_t vi_get_counter(struct ifnet *ifp, ift_counter c) { struct vi_info *vi = ifp->if_softc; struct fw_vi_stats_vf *s = &vi->stats; vi_refresh_stats(vi->pi->adapter, vi); switch (c) { case IFCOUNTER_IPACKETS: return (s->rx_bcast_frames + s->rx_mcast_frames + s->rx_ucast_frames); case IFCOUNTER_IERRORS: return (s->rx_err_frames); case IFCOUNTER_OPACKETS: return (s->tx_bcast_frames + s->tx_mcast_frames + s->tx_ucast_frames + s->tx_offload_frames); case IFCOUNTER_OERRORS: return (s->tx_drop_frames); case IFCOUNTER_IBYTES: return (s->rx_bcast_bytes + s->rx_mcast_bytes + s->rx_ucast_bytes); case IFCOUNTER_OBYTES: return (s->tx_bcast_bytes + s->tx_mcast_bytes + s->tx_ucast_bytes + s->tx_offload_bytes); case IFCOUNTER_IMCASTS: return (s->rx_mcast_frames); case IFCOUNTER_OMCASTS: return (s->tx_mcast_frames); case IFCOUNTER_OQDROPS: { uint64_t drops; drops = 0; if (vi->flags & VI_INIT_DONE) { int i; struct sge_txq *txq; for_each_txq(vi, i, txq) drops += counter_u64_fetch(txq->r->drops); } return (drops); } default: return (if_get_counter_default(ifp, c)); } } uint64_t cxgbe_get_counter(struct ifnet *ifp, ift_counter c) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct port_stats *s = &pi->stats; if (pi->nvi > 1 || sc->flags & IS_VF) return (vi_get_counter(ifp, c)); cxgbe_refresh_stats(sc, pi); switch (c) { case IFCOUNTER_IPACKETS: return (s->rx_frames); case IFCOUNTER_IERRORS: return (s->rx_jabber + s->rx_runt + s->rx_too_long + s->rx_fcs_err + s->rx_len_err); case IFCOUNTER_OPACKETS: return (s->tx_frames); case IFCOUNTER_OERRORS: return (s->tx_error_frames); case IFCOUNTER_IBYTES: return (s->rx_octets); case IFCOUNTER_OBYTES: return (s->tx_octets); case IFCOUNTER_IMCASTS: return (s->rx_mcast_frames); case IFCOUNTER_OMCASTS: return (s->tx_mcast_frames); case IFCOUNTER_IQDROPS: return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + s->rx_trunc3 + pi->tnl_cong_drops); case IFCOUNTER_OQDROPS: { uint64_t drops; drops = s->tx_drop; if (vi->flags & VI_INIT_DONE) { int i; struct sge_txq *txq; for_each_txq(vi, i, txq) drops += counter_u64_fetch(txq->r->drops); } return (drops); } default: return (if_get_counter_default(ifp, c)); } } /* * The kernel picks a media from the list we had provided but we still validate * the requeste. */ int cxgbe_media_change(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct ifmedia *ifm = &pi->media; struct link_config *lc = &pi->link_cfg; struct adapter *sc = pi->adapter; int rc; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); if (rc != 0) return (rc); PORT_LOCK(pi); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { /* ifconfig .. media autoselect */ if (!(lc->supported & FW_PORT_CAP32_ANEG)) { rc = ENOTSUP; /* AN not supported by transceiver */ goto done; } lc->requested_aneg = AUTONEG_ENABLE; lc->requested_speed = 0; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->requested_aneg = AUTONEG_DISABLE; lc->requested_speed = ifmedia_baudrate(ifm->ifm_media) / 1000000; lc->requested_fc = 0; if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) lc->requested_fc |= PAUSE_RX; if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) lc->requested_fc |= PAUSE_TX; } if (pi->up_vis > 0) { fixup_link_config(pi); rc = apply_link_config(pi); } done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); return (rc); } /* * Base media word (without ETHER, pause, link active, etc.) for the port at the * given speed. */ static int port_mword(struct port_info *pi, uint32_t speed) { MPASS(speed & M_FW_PORT_CAP32_SPEED); MPASS(powerof2(speed)); switch(pi->port_type) { case FW_PORT_TYPE_BT_SGMII: case FW_PORT_TYPE_BT_XFI: case FW_PORT_TYPE_BT_XAUI: /* BaseT */ switch (speed) { case FW_PORT_CAP32_SPEED_100M: return (IFM_100_T); case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_T); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_T); } break; case FW_PORT_TYPE_KX4: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_KX4); break; case FW_PORT_TYPE_CX4: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_CX4); break; case FW_PORT_TYPE_KX: if (speed == FW_PORT_CAP32_SPEED_1G) return (IFM_1000_KX); break; case FW_PORT_TYPE_KR: case FW_PORT_TYPE_BP_AP: case FW_PORT_TYPE_BP4_AP: case FW_PORT_TYPE_BP40_BA: case FW_PORT_TYPE_KR4_100G: case FW_PORT_TYPE_KR_SFP28: case FW_PORT_TYPE_KR_XLAUI: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_KX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_KR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_KR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_KR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_KR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_KR4); } break; case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_QSFP_10G: case FW_PORT_TYPE_QSA: case FW_PORT_TYPE_QSFP: case FW_PORT_TYPE_CR4_QSFP: case FW_PORT_TYPE_CR_QSFP: case FW_PORT_TYPE_CR2_QSFP: case FW_PORT_TYPE_SFP28: /* Pluggable transceiver */ switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_LX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_LR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_LR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_LR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_LR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_LR4); } break; case FW_PORT_MOD_TYPE_SR: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_SX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_SR); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_SR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_SR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_SR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_SR4); } break; case FW_PORT_MOD_TYPE_ER: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_ER); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: switch (speed) { case FW_PORT_CAP32_SPEED_1G: return (IFM_1000_CX); case FW_PORT_CAP32_SPEED_10G: return (IFM_10G_TWINAX); case FW_PORT_CAP32_SPEED_25G: return (IFM_25G_CR); case FW_PORT_CAP32_SPEED_40G: return (IFM_40G_CR4); case FW_PORT_CAP32_SPEED_50G: return (IFM_50G_CR2); case FW_PORT_CAP32_SPEED_100G: return (IFM_100G_CR4); } break; case FW_PORT_MOD_TYPE_LRM: if (speed == FW_PORT_CAP32_SPEED_10G) return (IFM_10G_LRM); break; case FW_PORT_MOD_TYPE_NA: MPASS(0); /* Not pluggable? */ /* fall throough */ case FW_PORT_MOD_TYPE_ERROR: case FW_PORT_MOD_TYPE_UNKNOWN: case FW_PORT_MOD_TYPE_NOTSUPPORTED: break; case FW_PORT_MOD_TYPE_NONE: return (IFM_NONE); } break; case FW_PORT_TYPE_NONE: return (IFM_NONE); } return (IFM_UNKNOWN); } void cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) return; PORT_LOCK(pi); if (pi->up_vis == 0) { /* * If all the interfaces are administratively down the firmware * does not report transceiver changes. Refresh port info here * so that ifconfig displays accurate ifmedia at all times. * This is the only reason we have a synchronized op in this * function. Just PORT_LOCK would have been enough otherwise. */ t4_update_port_info(pi); build_medialist(pi); } /* ifm_status */ ifmr->ifm_status = IFM_AVALID; if (lc->link_ok == false) goto done; ifmr->ifm_status |= IFM_ACTIVE; /* ifm_active */ ifmr->ifm_active = IFM_ETHER | IFM_FDX; ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); if (lc->fc & PAUSE_RX) ifmr->ifm_active |= IFM_ETH_RXPAUSE; if (lc->fc & PAUSE_TX) ifmr->ifm_active |= IFM_ETH_TXPAUSE; ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } static int vcxgbe_probe(device_t dev) { char buf[128]; struct vi_info *vi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, vi - vi->pi->vi); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } static int alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) { int func, index, rc; uint32_t param, val; ASSERT_SYNCHRONIZED_OP(sc); index = vi - pi->vi; MPASS(index > 0); /* This function deals with _extra_ VIs only */ KASSERT(index < nitems(vi_mac_funcs), ("%s: VI %s doesn't have a MAC func", __func__, device_get_nameunit(vi->dev))); func = vi_mac_funcs[index]; rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); if (rc < 0) { device_printf(vi->dev, "failed to allocate virtual interface %d" "for port %d: %d\n", index, pi->port_id, -rc); return (-rc); } vi->viid = rc; if (vi->rss_size == 1) { /* * This VI didn't get a slice of the RSS table. Reduce the * number of VIs being created (hw.cxgbe.num_vis) or modify the * configuration file (nvi, rssnvi for this PF) if this is a * problem. */ device_printf(vi->dev, "RSS table not available.\n"); vi->rss_base = 0xffff; return (0); } param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | V_FW_PARAMS_PARAM_YZ(vi->viid); rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc) vi->rss_base = 0xffff; else { MPASS((val >> 16) == vi->rss_size); vi->rss_base = val & 0xffff; } return (0); } static int vcxgbe_attach(device_t dev) { struct vi_info *vi; struct port_info *pi; struct adapter *sc; int rc; vi = device_get_softc(dev); pi = vi->pi; sc = pi->adapter; rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); if (rc) return (rc); rc = alloc_extra_vi(sc, pi, vi); end_synchronized_op(sc, 0); if (rc) return (rc); rc = cxgbe_vi_attach(dev, vi); if (rc) { t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); return (rc); } return (0); } static int vcxgbe_detach(device_t dev) { struct vi_info *vi; struct adapter *sc; vi = device_get_softc(dev); sc = vi->pi->adapter; doom_vi(sc, vi); cxgbe_vi_detach(vi); t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); end_synchronized_op(sc, 0); return (0); } static struct callout fatal_callout; static void delayed_panic(void *arg) { struct adapter *sc = arg; panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); } void t4_fatal_err(struct adapter *sc, bool fw_error) { t4_shutdown_adapter(sc); log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", device_get_nameunit(sc->dev)); if (fw_error) { ASSERT_SYNCHRONIZED_OP(sc); sc->flags |= ADAP_ERR; } else { ADAPTER_LOCK(sc); sc->flags |= ADAP_ERR; ADAPTER_UNLOCK(sc); } if (t4_panic_on_fatal_err) { log(LOG_ALERT, "%s: panic on fatal error after 30s", device_get_nameunit(sc->dev)); callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); } } void t4_add_adapter(struct adapter *sc) { sx_xlock(&t4_list_lock); SLIST_INSERT_HEAD(&t4_list, sc, link); sx_xunlock(&t4_list_lock); } int t4_map_bars_0_and_4(struct adapter *sc) { sc->regs_rid = PCIR_BAR(0); sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->regs_rid, RF_ACTIVE); if (sc->regs_res == NULL) { device_printf(sc->dev, "cannot map registers.\n"); return (ENXIO); } sc->bt = rman_get_bustag(sc->regs_res); sc->bh = rman_get_bushandle(sc->regs_res); sc->mmio_len = rman_get_size(sc->regs_res); setbit(&sc->doorbells, DOORBELL_KDB); sc->msix_rid = PCIR_BAR(4); sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->msix_rid, RF_ACTIVE); if (sc->msix_res == NULL) { device_printf(sc->dev, "cannot map MSI-X BAR.\n"); return (ENXIO); } return (0); } int t4_map_bar_2(struct adapter *sc) { /* * T4: only iWARP driver uses the userspace doorbells. There is no need * to map it if RDMA is disabled. */ if (is_t4(sc) && sc->rdmacaps == 0) return (0); sc->udbs_rid = PCIR_BAR(2); sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->udbs_rid, RF_ACTIVE); if (sc->udbs_res == NULL) { device_printf(sc->dev, "cannot map doorbell BAR.\n"); return (ENXIO); } sc->udbs_base = rman_get_virtual(sc->udbs_res); if (chip_id(sc) >= CHELSIO_T5) { setbit(&sc->doorbells, DOORBELL_UDB); #if defined(__i386__) || defined(__amd64__) if (t5_write_combine) { int rc, mode; /* * Enable write combining on BAR2. This is the * userspace doorbell BAR and is split into 128B * (UDBS_SEG_SIZE) doorbell regions, each associated * with an egress queue. The first 64B has the doorbell * and the second 64B can be used to submit a tx work * request with an implicit doorbell. */ rc = pmap_change_attr((vm_offset_t)sc->udbs_base, rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); if (rc == 0) { clrbit(&sc->doorbells, DOORBELL_UDB); setbit(&sc->doorbells, DOORBELL_WCWR); setbit(&sc->doorbells, DOORBELL_UDBWC); } else { device_printf(sc->dev, "couldn't enable write combining: %d\n", rc); } mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); t4_write_reg(sc, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) | mode); } #endif } sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; return (0); } struct memwin_init { uint32_t base; uint32_t aperture; }; static const struct memwin_init t4_memwin[NUM_MEMWIN] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } }; static const struct memwin_init t5_memwin[NUM_MEMWIN] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, }; static void setup_memwin(struct adapter *sc) { const struct memwin_init *mw_init; struct memwin *mw; int i; uint32_t bar0; if (is_t4(sc)) { /* * Read low 32b of bar0 indirectly via the hardware backdoor * mechanism. Works from within PCI passthrough environments * too, where rman_get_start() can return a different value. We * need to program the T4 memory window decoders with the actual * addresses that will be coming across the PCIe link. */ bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; mw_init = &t4_memwin[0]; } else { /* T5+ use the relative offset inside the PCIe BAR */ bar0 = 0; mw_init = &t5_memwin[0]; } for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { rw_init(&mw->mw_lock, "memory window access"); mw->mw_base = mw_init->base; mw->mw_aperture = mw_init->aperture; mw->mw_curpos = 0; t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), (mw->mw_base + bar0) | V_BIR(0) | V_WINDOW(ilog2(mw->mw_aperture) - 10)); rw_wlock(&mw->mw_lock); position_memwin(sc, i, 0); rw_wunlock(&mw->mw_lock); } /* flush */ t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); } /* * Positions the memory window at the given address in the card's address space. * There are some alignment requirements and the actual position may be at an * address prior to the requested address. mw->mw_curpos always has the actual * position of the window. */ static void position_memwin(struct adapter *sc, int idx, uint32_t addr) { struct memwin *mw; uint32_t pf; uint32_t reg; MPASS(idx >= 0 && idx < NUM_MEMWIN); mw = &sc->memwin[idx]; rw_assert(&mw->mw_lock, RA_WLOCKED); if (is_t4(sc)) { pf = 0; mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ } else { pf = V_PFNUM(sc->pf); mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ } reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); t4_write_reg(sc, reg, mw->mw_curpos | pf); t4_read_reg(sc, reg); /* flush */ } int rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, int len, int rw) { struct memwin *mw; uint32_t mw_end, v; MPASS(idx >= 0 && idx < NUM_MEMWIN); /* Memory can only be accessed in naturally aligned 4 byte units */ if (addr & 3 || len & 3 || len <= 0) return (EINVAL); mw = &sc->memwin[idx]; while (len > 0) { rw_rlock(&mw->mw_lock); mw_end = mw->mw_curpos + mw->mw_aperture; if (addr >= mw_end || addr < mw->mw_curpos) { /* Will need to reposition the window */ if (!rw_try_upgrade(&mw->mw_lock)) { rw_runlock(&mw->mw_lock); rw_wlock(&mw->mw_lock); } rw_assert(&mw->mw_lock, RA_WLOCKED); position_memwin(sc, idx, addr); rw_downgrade(&mw->mw_lock); mw_end = mw->mw_curpos + mw->mw_aperture; } rw_assert(&mw->mw_lock, RA_RLOCKED); while (addr < mw_end && len > 0) { if (rw == 0) { v = t4_read_reg(sc, mw->mw_base + addr - mw->mw_curpos); *val++ = le32toh(v); } else { v = *val++; t4_write_reg(sc, mw->mw_base + addr - mw->mw_curpos, htole32(v)); } addr += 4; len -= 4; } rw_runlock(&mw->mw_lock); } return (0); } int alloc_atid_tab(struct tid_info *t, int flags) { int i; MPASS(t->natids > 0); MPASS(t->atid_tab == NULL); t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, M_ZERO | flags); if (t->atid_tab == NULL) return (ENOMEM); mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); t->afree = t->atid_tab; t->atids_in_use = 0; for (i = 1; i < t->natids; i++) t->atid_tab[i - 1].next = &t->atid_tab[i]; t->atid_tab[t->natids - 1].next = NULL; return (0); } void free_atid_tab(struct tid_info *t) { KASSERT(t->atids_in_use == 0, ("%s: %d atids still in use.", __func__, t->atids_in_use)); if (mtx_initialized(&t->atid_lock)) mtx_destroy(&t->atid_lock); free(t->atid_tab, M_CXGBE); t->atid_tab = NULL; } int alloc_atid(struct adapter *sc, void *ctx) { struct tid_info *t = &sc->tids; int atid = -1; mtx_lock(&t->atid_lock); if (t->afree) { union aopen_entry *p = t->afree; atid = p - t->atid_tab; MPASS(atid <= M_TID_TID); t->afree = p->next; p->data = ctx; t->atids_in_use++; } mtx_unlock(&t->atid_lock); return (atid); } void * lookup_atid(struct adapter *sc, int atid) { struct tid_info *t = &sc->tids; return (t->atid_tab[atid].data); } void free_atid(struct adapter *sc, int atid) { struct tid_info *t = &sc->tids; union aopen_entry *p = &t->atid_tab[atid]; mtx_lock(&t->atid_lock); p->next = t->afree; t->afree = p; t->atids_in_use--; mtx_unlock(&t->atid_lock); } static void queue_tid_release(struct adapter *sc, int tid) { CXGBE_UNIMPLEMENTED("deferred tid release"); } void release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) { struct wrqe *wr; struct cpl_tid_release *req; wr = alloc_wrqe(sizeof(*req), ctrlq); if (wr == NULL) { queue_tid_release(sc, tid); /* defer */ return; } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); t4_wrq_tx(sc, wr); } static int t4_range_cmp(const void *a, const void *b) { return ((const struct t4_range *)a)->start - ((const struct t4_range *)b)->start; } /* * Verify that the memory range specified by the addr/len pair is valid within * the card's address space. */ static int validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) { struct t4_range mem_ranges[4], *r, *next; uint32_t em, addr_len; int i, n, remaining; /* Memory can only be accessed in naturally aligned 4 byte units */ if (addr & 3 || len & 3 || len == 0) return (EINVAL); /* Enabled memories */ em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); r = &mem_ranges[0]; n = 0; bzero(r, sizeof(mem_ranges)); if (em & F_EDRAM0_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); r->size = G_EDRAM0_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EDRAM0_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (em & F_EDRAM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); r->size = G_EDRAM1_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EDRAM1_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (em & F_EXT_MEM_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); r->size = G_EXT_MEM_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EXT_MEM_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); r->size = G_EXT_MEM1_SIZE(addr_len) << 20; if (r->size > 0) { r->start = G_EXT_MEM1_BASE(addr_len) << 20; if (addr >= r->start && addr + len <= r->start + r->size) return (0); r++; n++; } } MPASS(n <= nitems(mem_ranges)); if (n > 1) { /* Sort and merge the ranges. */ qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); /* Start from index 0 and examine the next n - 1 entries. */ r = &mem_ranges[0]; for (remaining = n - 1; remaining > 0; remaining--, r++) { MPASS(r->size > 0); /* r is a valid entry. */ next = r + 1; MPASS(next->size > 0); /* and so is the next one. */ while (r->start + r->size >= next->start) { /* Merge the next one into the current entry. */ r->size = max(r->start + r->size, next->start + next->size) - r->start; n--; /* One fewer entry in total. */ if (--remaining == 0) goto done; /* short circuit */ next++; } if (next != r + 1) { /* * Some entries were merged into r and next * points to the first valid entry that couldn't * be merged. */ MPASS(next->size > 0); /* must be valid */ memcpy(r + 1, next, remaining * sizeof(*r)); #ifdef INVARIANTS /* * This so that the foo->size assertion in the * next iteration of the loop do the right * thing for entries that were pulled up and are * no longer valid. */ MPASS(n < nitems(mem_ranges)); bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * sizeof(struct t4_range)); #endif } } done: /* Done merging the ranges. */ MPASS(n > 0); r = &mem_ranges[0]; for (i = 0; i < n; i++, r++) { if (addr >= r->start && addr + len <= r->start + r->size) return (0); } } return (EFAULT); } static int fwmtype_to_hwmtype(int mtype) { switch (mtype) { case FW_MEMTYPE_EDC0: return (MEM_EDC0); case FW_MEMTYPE_EDC1: return (MEM_EDC1); case FW_MEMTYPE_EXTMEM: return (MEM_MC0); case FW_MEMTYPE_EXTMEM1: return (MEM_MC1); default: panic("%s: cannot translate fw mtype %d.", __func__, mtype); } } /* * Verify that the memory range specified by the memtype/offset/len pair is * valid and lies entirely within the memtype specified. The global address of * the start of the range is returned in addr. */ static int validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, uint32_t *addr) { uint32_t em, addr_len, maddr; /* Memory can only be accessed in naturally aligned 4 byte units */ if (off & 3 || len & 3 || len == 0) return (EINVAL); em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); switch (fwmtype_to_hwmtype(mtype)) { case MEM_EDC0: if (!(em & F_EDRAM0_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); maddr = G_EDRAM0_BASE(addr_len) << 20; break; case MEM_EDC1: if (!(em & F_EDRAM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); maddr = G_EDRAM1_BASE(addr_len) << 20; break; case MEM_MC: if (!(em & F_EXT_MEM_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); maddr = G_EXT_MEM_BASE(addr_len) << 20; break; case MEM_MC1: if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); maddr = G_EXT_MEM1_BASE(addr_len) << 20; break; default: return (EINVAL); } *addr = maddr + off; /* global address */ return (validate_mem_range(sc, *addr, len)); } static int fixup_devlog_params(struct adapter *sc) { struct devlog_params *dparams = &sc->params.devlog; int rc; rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, dparams->size, &dparams->addr); return (rc); } static void update_nirq(struct intrs_and_queues *iaq, int nports) { int extra = T4_EXTRA_INTR; iaq->nirq = extra; iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq); iaq->nirq += nports * (iaq->num_vis - 1) * max(iaq->nrxq_vi, iaq->nnmrxq_vi); iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; } /* * Adjust requirements to fit the number of interrupts available. */ static void calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, int navail) { int old_nirq; const int nports = sc->params.nports; MPASS(nports > 0); MPASS(navail > 0); bzero(iaq, sizeof(*iaq)); iaq->intr_type = itype; iaq->num_vis = t4_num_vis; iaq->ntxq = t4_ntxq; iaq->ntxq_vi = t4_ntxq_vi; iaq->nrxq = t4_nrxq; iaq->nrxq_vi = t4_nrxq_vi; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (is_offload(sc) || is_ethoffload(sc)) { iaq->nofldtxq = t4_nofldtxq; iaq->nofldtxq_vi = t4_nofldtxq_vi; } #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { iaq->nofldrxq = t4_nofldrxq; iaq->nofldrxq_vi = t4_nofldrxq_vi; } #endif #ifdef DEV_NETMAP iaq->nnmtxq_vi = t4_nnmtxq_vi; iaq->nnmrxq_vi = t4_nnmrxq_vi; #endif update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { /* * This is the normal case -- there are enough interrupts for * everything. */ goto done; } /* * If extra VIs have been configured try reducing their count and see if * that works. */ while (iaq->num_vis > 1) { iaq->num_vis--; update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { device_printf(sc->dev, "virtual interfaces per port " "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " "itype %d, navail %u, nirq %d.\n", iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, itype, navail, iaq->nirq); goto done; } } /* * Extra VIs will not be created. Log a message if they were requested. */ MPASS(iaq->num_vis == 1); iaq->ntxq_vi = iaq->nrxq_vi = 0; iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; if (iaq->num_vis != t4_num_vis) { device_printf(sc->dev, "extra virtual interfaces disabled. " "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, itype, navail, iaq->nirq); } /* * Keep reducing the number of NIC rx queues to the next lower power of * 2 (for even RSS distribution) and halving the TOE rx queues and see * if that works. */ do { if (iaq->nrxq > 1) { do { iaq->nrxq--; } while (!powerof2(iaq->nrxq)); } if (iaq->nofldrxq > 1) iaq->nofldrxq >>= 1; old_nirq = iaq->nirq; update_nirq(iaq, nports); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { device_printf(sc->dev, "running with reduced number of " "rx queues because of shortage of interrupts. " "nrxq=%u, nofldrxq=%u. " "itype %d, navail %u, nirq %d.\n", iaq->nrxq, iaq->nofldrxq, itype, navail, iaq->nirq); goto done; } } while (old_nirq != iaq->nirq); /* One interrupt for everything. Ugh. */ device_printf(sc->dev, "running with minimal number of queues. " "itype %d, navail %u.\n", itype, navail); iaq->nirq = 1; MPASS(iaq->nrxq == 1); iaq->ntxq = 1; if (iaq->nofldrxq > 1) iaq->nofldtxq = 1; done: MPASS(iaq->num_vis > 0); if (iaq->num_vis > 1) { MPASS(iaq->nrxq_vi > 0); MPASS(iaq->ntxq_vi > 0); } MPASS(iaq->nirq > 0); MPASS(iaq->nrxq > 0); MPASS(iaq->ntxq > 0); if (itype == INTR_MSI) { MPASS(powerof2(iaq->nirq)); } } static int cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) { int rc, itype, navail, nalloc; for (itype = INTR_MSIX; itype; itype >>= 1) { if ((itype & t4_intr_types) == 0) continue; /* not allowed */ if (itype == INTR_MSIX) navail = pci_msix_count(sc->dev); else if (itype == INTR_MSI) navail = pci_msi_count(sc->dev); else navail = 1; restart: if (navail == 0) continue; calculate_iaq(sc, iaq, itype, navail); nalloc = iaq->nirq; rc = 0; if (itype == INTR_MSIX) rc = pci_alloc_msix(sc->dev, &nalloc); else if (itype == INTR_MSI) rc = pci_alloc_msi(sc->dev, &nalloc); if (rc == 0 && nalloc > 0) { if (nalloc == iaq->nirq) return (0); /* * Didn't get the number requested. Use whatever number * the kernel is willing to allocate. */ device_printf(sc->dev, "fewer vectors than requested, " "type=%d, req=%d, rcvd=%d; will downshift req.\n", itype, iaq->nirq, nalloc); pci_release_msi(sc->dev); navail = nalloc; goto restart; } device_printf(sc->dev, "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", itype, rc, iaq->nirq, nalloc); } device_printf(sc->dev, "failed to find a usable interrupt type. " "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, pci_msix_count(sc->dev), pci_msi_count(sc->dev)); return (ENXIO); } #define FW_VERSION(chip) ( \ V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) /* Just enough of fw_hdr to cover all version info. */ struct fw_h { __u8 ver; __u8 chip; __be16 len512; __be32 fw_ver; __be32 tp_microcode_ver; __u8 intfver_nic; __u8 intfver_vnic; __u8 intfver_ofld; __u8 intfver_ri; __u8 intfver_iscsipdu; __u8 intfver_iscsi; __u8 intfver_fcoepdu; __u8 intfver_fcoe; }; /* Spot check a couple of fields. */ CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); struct fw_info { uint8_t chip; char *kld_name; char *fw_mod_name; struct fw_h fw_h; } fw_info[] = { { .chip = CHELSIO_T4, .kld_name = "t4fw_cfg", .fw_mod_name = "t4fw", .fw_h = { .chip = FW_HDR_CHIP_T4, .fw_ver = htobe32(FW_VERSION(T4)), .intfver_nic = FW_INTFVER(T4, NIC), .intfver_vnic = FW_INTFVER(T4, VNIC), .intfver_ofld = FW_INTFVER(T4, OFLD), .intfver_ri = FW_INTFVER(T4, RI), .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T4, ISCSI), .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), .intfver_fcoe = FW_INTFVER(T4, FCOE), }, }, { .chip = CHELSIO_T5, .kld_name = "t5fw_cfg", .fw_mod_name = "t5fw", .fw_h = { .chip = FW_HDR_CHIP_T5, .fw_ver = htobe32(FW_VERSION(T5)), .intfver_nic = FW_INTFVER(T5, NIC), .intfver_vnic = FW_INTFVER(T5, VNIC), .intfver_ofld = FW_INTFVER(T5, OFLD), .intfver_ri = FW_INTFVER(T5, RI), .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T5, ISCSI), .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), .intfver_fcoe = FW_INTFVER(T5, FCOE), }, }, { .chip = CHELSIO_T6, .kld_name = "t6fw_cfg", .fw_mod_name = "t6fw", .fw_h = { .chip = FW_HDR_CHIP_T6, .fw_ver = htobe32(FW_VERSION(T6)), .intfver_nic = FW_INTFVER(T6, NIC), .intfver_vnic = FW_INTFVER(T6, VNIC), .intfver_ofld = FW_INTFVER(T6, OFLD), .intfver_ri = FW_INTFVER(T6, RI), .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T6, ISCSI), .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), .intfver_fcoe = FW_INTFVER(T6, FCOE), }, } }; static struct fw_info * find_fw_info(int chip) { int i; for (i = 0; i < nitems(fw_info); i++) { if (fw_info[i].chip == chip) return (&fw_info[i]); } return (NULL); } /* * Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return (1); /* * XXX: Is this too conservative? Perhaps I should limit this to the * features that are supported in the driver. */ #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) return (1); #undef SAME_INTF return (0); } static int load_fw_module(struct adapter *sc, const struct firmware **dcfg, const struct firmware **fw) { struct fw_info *fw_info; *dcfg = NULL; if (fw != NULL) *fw = NULL; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); return (EINVAL); } *dcfg = firmware_get(fw_info->kld_name); if (*dcfg != NULL) { if (fw != NULL) *fw = firmware_get(fw_info->fw_mod_name); return (0); } return (ENOENT); } static void unload_fw_module(struct adapter *sc, const struct firmware *dcfg, const struct firmware *fw) { if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); if (dcfg != NULL) firmware_put(dcfg, FIRMWARE_UNLOAD); } /* * Return values: * 0 means no firmware install attempted. * ERESTART means a firmware install was attempted and was successful. * +ve errno means a firmware install was attempted but failed. */ static int install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, const struct fw_h *drv_fw, const char *reason, int *already) { const struct firmware *cfg, *fw; const uint32_t c = be32toh(card_fw->fw_ver); uint32_t d, k; int rc, fw_install; struct fw_h bundled_fw; bool load_attempted; cfg = fw = NULL; load_attempted = false; fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; if (reason != NULL) goto install; if ((sc->flags & FW_OK) == 0) { if (c == 0xffffffff) { reason = "missing"; goto install; } return (0); } memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); if (t4_fw_install < 0) { rc = load_fw_module(sc, &cfg, &fw); if (rc != 0 || fw == NULL) { device_printf(sc->dev, "failed to load firmware module: %d. cfg %p, fw %p;" " will use compiled-in firmware version for" "hw.cxgbe.fw_install checks.\n", rc, cfg, fw); } else { memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); } load_attempted = true; } d = be32toh(bundled_fw.fw_ver); if (!fw_compatible(card_fw, &bundled_fw)) { reason = "incompatible or unusable"; goto install; } if (d > c) { reason = "older than the version bundled with this driver"; goto install; } if (fw_install == 2 && d != c) { reason = "different than the version bundled with this driver"; goto install; } /* No reason to do anything to the firmware already on the card. */ rc = 0; goto done; install: rc = 0; if ((*already)++) goto done; if (fw_install == 0) { device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "but the driver is prohibited from installing a firmware " "on the card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); goto done; } /* * We'll attempt to install a firmware. Load the module first (if it * hasn't been loaded already). */ if (!load_attempted) { rc = load_fw_module(sc, &cfg, &fw); if (rc != 0 || fw == NULL) { device_printf(sc->dev, "failed to load firmware module: %d. cfg %p, fw %p\n", rc, cfg, fw); /* carry on */ } } if (fw == NULL) { device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "but the driver cannot take corrective action because it " "is unable to load the firmware module.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); rc = sc->flags & FW_OK ? 0 : ENOENT; goto done; } k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); if (k != d) { MPASS(t4_fw_install > 0); device_printf(sc->dev, "firmware in KLD (%u.%u.%u.%u) is not what the driver was " "expecting (%u.%u.%u.%u) and will not be used.\n", G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); rc = sc->flags & FW_OK ? 0 : EINVAL; goto done; } device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); if (rc != 0) { device_printf(sc->dev, "failed to install firmware: %d\n", rc); } else { /* Installed successfully, update the cached header too. */ rc = ERESTART; memcpy(card_fw, fw->data, sizeof(*card_fw)); } done: unload_fw_module(sc, cfg, fw); return (rc); } /* * Establish contact with the firmware and attempt to become the master driver. * * A firmware will be installed to the card if needed (if the driver is allowed * to do so). */ static int contact_firmware(struct adapter *sc) { int rc, already = 0; enum dev_state state; struct fw_info *fw_info; struct fw_hdr *card_fw; /* fw on the card */ const struct fw_h *drv_fw; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); return (EINVAL); } drv_fw = &fw_info->fw_h; /* Read the header of the firmware on the card */ card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); restart: rc = -t4_get_fw_hdr(sc, card_fw); if (rc != 0) { device_printf(sc->dev, "unable to read firmware header from card's flash: %d\n", rc); goto done; } rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, &already); if (rc == ERESTART) goto restart; if (rc != 0) goto done; rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); if (rc < 0 || state == DEV_STATE_ERR) { rc = -rc; device_printf(sc->dev, "failed to connect to the firmware: %d, %d. " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); #if 0 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, "not responding properly to HELLO", &already) == ERESTART) goto restart; #endif goto done; } MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ if (rc == sc->pf) { sc->flags |= MASTER_PF; rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, &already); if (rc == ERESTART) rc = 0; else if (rc != 0) goto done; } else if (state == DEV_STATE_UNINIT) { /* * We didn't get to be the master so we definitely won't be * configuring the chip. It's a bug if someone else hasn't * configured it already. */ device_printf(sc->dev, "couldn't be master(%d), " "device not already initialized either(%d). " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); rc = EPROTO; goto done; } else { /* * Some other PF is the master and has configured the chip. * This is allowed but untested. */ device_printf(sc->dev, "PF%d is master, device state %d. " "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); sc->cfcsum = 0; rc = 0; } done: if (rc != 0 && sc->flags & FW_OK) { t4_fw_bye(sc, sc->mbox); sc->flags &= ~FW_OK; } free(card_fw, M_CXGBE); return (rc); } static int copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, uint32_t mtype, uint32_t moff) { struct fw_info *fw_info; const struct firmware *dcfg, *rcfg = NULL; const uint32_t *cfdata; uint32_t cflen, addr; int rc; load_fw_module(sc, &dcfg, NULL); /* Card specific interpretation of "default". */ if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { if (pci_get_device(sc->dev) == 0x440a) snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); if (is_fpga(sc)) snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); } if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { if (dcfg == NULL) { device_printf(sc->dev, "KLD with default config is not available.\n"); rc = ENOENT; goto done; } cfdata = dcfg->data; cflen = dcfg->datasize & ~3; } else { char s[32]; fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); rc = EINVAL; goto done; } snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); rcfg = firmware_get(s); if (rcfg == NULL) { device_printf(sc->dev, "unable to load module \"%s\" for configuration " "profile \"%s\".\n", s, cfg_file); rc = ENOENT; goto done; } cfdata = rcfg->data; cflen = rcfg->datasize & ~3; } if (cflen > FLASH_CFG_MAX_SIZE) { device_printf(sc->dev, "config file too long (%d, max allowed is %d).\n", cflen, FLASH_CFG_MAX_SIZE); rc = EINVAL; goto done; } rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); if (rc != 0) { device_printf(sc->dev, "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", __func__, mtype, moff, cflen, rc); rc = EINVAL; goto done; } write_via_memwin(sc, 2, addr, cfdata, cflen); done: if (rcfg != NULL) firmware_put(rcfg, FIRMWARE_UNLOAD); unload_fw_module(sc, dcfg, NULL); return (rc); } struct caps_allowed { uint16_t nbmcaps; uint16_t linkcaps; uint16_t switchcaps; uint16_t niccaps; uint16_t toecaps; uint16_t rdmacaps; uint16_t cryptocaps; uint16_t iscsicaps; uint16_t fcoecaps; }; #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) /* * Provide a configuration profile to the firmware and have it initialize the * chip accordingly. This may involve uploading a configuration file to the * card. */ static int apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, const struct caps_allowed *caps_allowed) { int rc; struct fw_caps_config_cmd caps; uint32_t mtype, moff, finicsum, cfcsum, param, val; rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); if (rc != 0) { device_printf(sc->dev, "firmware reset failed: %d.\n", rc); return (rc); } bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { mtype = 0; moff = 0; caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { mtype = FW_MEMTYPE_FLASH; moff = t4_flash_cfg_addr(sc); caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); } else { /* * Ask the firmware where it wants us to upload the config file. */ param = FW_PARAM_DEV(CF); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* No support for config file? Shouldn't happen. */ device_printf(sc->dev, "failed to query config file location: %d.\n", rc); goto done; } mtype = G_FW_PARAMS_PARAM_Y(val); moff = G_FW_PARAMS_PARAM_Z(val) << 16; caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); if (rc != 0) { device_printf(sc->dev, "failed to upload config file to card: %d.\n", rc); goto done; } } rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to pre-process config file: %d " "(mtype %d, moff 0x%x).\n", rc, mtype, moff); goto done; } finicsum = be32toh(caps.finicsum); cfcsum = be32toh(caps.cfcsum); /* actual */ if (finicsum != cfcsum) { device_printf(sc->dev, "WARNING: config file checksum mismatch: %08x %08x\n", finicsum, cfcsum); } sc->cfcsum = cfcsum; snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); /* * Let the firmware know what features will (not) be used so it can tune * things accordingly. */ #define LIMIT_CAPS(x) do { \ caps.x##caps &= htobe16(caps_allowed->x##caps); \ } while (0) LIMIT_CAPS(nbm); LIMIT_CAPS(link); LIMIT_CAPS(switch); LIMIT_CAPS(nic); LIMIT_CAPS(toe); LIMIT_CAPS(rdma); LIMIT_CAPS(crypto); LIMIT_CAPS(iscsi); LIMIT_CAPS(fcoe); #undef LIMIT_CAPS if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { /* * TOE and hashfilters are mutually exclusive. It is a config * file or firmware bug if both are reported as available. Try * to cope with the situation in non-debug builds by disabling * TOE. */ MPASS(caps.toecaps == 0); caps.toecaps = 0; caps.rdmacaps = 0; caps.iscsicaps = 0; } caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); if (rc != 0) { device_printf(sc->dev, "failed to process config file: %d.\n", rc); goto done; } t4_tweak_chip_settings(sc); set_params__pre_init(sc); /* get basic stuff going */ rc = -t4_fw_initialize(sc, sc->mbox); if (rc != 0) { device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); goto done; } done: return (rc); } /* * Partition chip resources for use between various PFs, VFs, etc. */ static int partition_resources(struct adapter *sc) { char cfg_file[sizeof(t4_cfg_file)]; struct caps_allowed caps_allowed; int rc; bool fallback; /* Only the master driver gets to configure the chip resources. */ MPASS(sc->flags & MASTER_PF); #define COPY_CAPS(x) do { \ caps_allowed.x##caps = t4_##x##caps_allowed; \ } while (0) bzero(&caps_allowed, sizeof(caps_allowed)); COPY_CAPS(nbm); COPY_CAPS(link); COPY_CAPS(switch); COPY_CAPS(nic); COPY_CAPS(toe); COPY_CAPS(rdma); COPY_CAPS(crypto); COPY_CAPS(iscsi); COPY_CAPS(fcoe); fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); retry: rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); if (rc != 0 && fallback) { device_printf(sc->dev, "failed (%d) to configure card with \"%s\" profile, " "will fall back to a basic configuration and retry.\n", rc, cfg_file); snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); bzero(&caps_allowed, sizeof(caps_allowed)); COPY_CAPS(nbm); COPY_CAPS(link); COPY_CAPS(switch); COPY_CAPS(nic); fallback = false; goto retry; } #undef COPY_CAPS return (rc); } /* * Retrieve parameters that are needed (or nice to have) very early. */ static int get_params__pre_init(struct adapter *sc) { int rc; uint32_t param[2], val[2]; t4_get_version_info(sc); snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); param[0] = FW_PARAM_DEV(PORTVEC); param[1] = FW_PARAM_DEV(CCLK); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (pre_init): %d.\n", rc); return (rc); } sc->params.portvec = val[0]; sc->params.nports = bitcount32(val[0]); sc->params.vpd.cclk = val[1]; /* Read device log parameters. */ rc = -t4_init_devlog_params(sc, 1); if (rc == 0) fixup_devlog_params(sc); else { device_printf(sc->dev, "failed to get devlog parameters: %d.\n", rc); rc = 0; /* devlog isn't critical for device operation */ } return (rc); } /* * Any params that need to be set before FW_INITIALIZE. */ static int set_params__pre_init(struct adapter *sc) { int rc = 0; uint32_t param, val; if (chip_id(sc) >= CHELSIO_T6) { param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); val = 1; rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); /* firmwares < 1.20.1.0 do not have this param. */ if (rc == FW_EINVAL && sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) { rc = 0; } if (rc != 0) { device_printf(sc->dev, "failed to enable high priority filters :%d.\n", rc); } } /* Enable opaque VIIDs with firmwares that support it. */ param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); val = 1; rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc == 0 && val == 1) sc->params.viid_smt_extn_support = true; else sc->params.viid_smt_extn_support = false; return (rc); } /* * Retrieve various parameters that are of interest to the driver. The device * has been initialized by the firmware at this point. */ static int get_params__post_init(struct adapter *sc) { int rc; uint32_t param[7], val[7]; struct fw_caps_config_cmd caps; param[0] = FW_PARAM_PFVF(IQFLINT_START); param[1] = FW_PARAM_PFVF(EQ_START); param[2] = FW_PARAM_PFVF(FILTER_START); param[3] = FW_PARAM_PFVF(FILTER_END); param[4] = FW_PARAM_PFVF(L2T_START); param[5] = FW_PARAM_PFVF(L2T_END); param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (post_init): %d.\n", rc); return (rc); } sc->sge.iq_start = val[0]; sc->sge.eq_start = val[1]; if ((int)val[3] > (int)val[2]) { sc->tids.ftid_base = val[2]; sc->tids.ftid_end = val[3]; sc->tids.nftids = val[3] - val[2] + 1; } sc->vres.l2t.start = val[4]; sc->vres.l2t.size = val[5] - val[4] + 1; KASSERT(sc->vres.l2t.size <= L2T_SIZE, ("%s: L2 table size (%u) larger than expected (%u)", __func__, sc->vres.l2t.size, L2T_SIZE)); sc->params.core_vdd = val[6]; if (chip_id(sc) >= CHELSIO_T6) { sc->tids.tid_base = t4_read_reg(sc, A_LE_DB_ACTIVE_TABLE_START_INDEX); param[0] = FW_PARAM_PFVF(HPFILTER_START); param[1] = FW_PARAM_PFVF(HPFILTER_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query hpfilter parameters: %d.\n", rc); return (rc); } if ((int)val[1] > (int)val[0]) { sc->tids.hpftid_base = val[0]; sc->tids.hpftid_end = val[1]; sc->tids.nhpftids = val[1] - val[0] + 1; /* * These should go off if the layout changes and the * driver needs to catch up. */ MPASS(sc->tids.hpftid_base == 0); MPASS(sc->tids.tid_base == sc->tids.nhpftids); } } /* * MPSBGMAP is queried separately because only recent firmwares support * it as a parameter and we don't want the compound query above to fail * on older firmwares. */ param[0] = FW_PARAM_DEV(MPSBGMAP); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.mps_bg_map = val[0]; else sc->params.mps_bg_map = 0; /* * Determine whether the firmware supports the filter2 work request. * This is queried separately for the same reason as MPSBGMAP above. */ param[0] = FW_PARAM_DEV(FILTER2_WR); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.filter2_wr_support = val[0] != 0; else sc->params.filter2_wr_support = 0; /* * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. * This is queried separately for the same reason as other params above. */ param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); val[0] = 0; rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc == 0) sc->params.ulptx_memwrite_dsgl = val[0] != 0; else sc->params.ulptx_memwrite_dsgl = false; /* get capabilites */ bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to get card capabilities: %d.\n", rc); return (rc); } #define READ_CAPS(x) do { \ sc->x = htobe16(caps.x); \ } while (0) READ_CAPS(nbmcaps); READ_CAPS(linkcaps); READ_CAPS(switchcaps); READ_CAPS(niccaps); READ_CAPS(toecaps); READ_CAPS(rdmacaps); READ_CAPS(cryptocaps); READ_CAPS(iscsicaps); READ_CAPS(fcoecaps); if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { MPASS(chip_id(sc) > CHELSIO_T4); MPASS(sc->toecaps == 0); sc->toecaps = 0; param[0] = FW_PARAM_DEV(NTID); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query HASHFILTER parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; if (sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { MPASS(sc->tids.ntids >= sc->tids.nhpftids); sc->tids.ntids -= sc->tids.nhpftids; } sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); sc->params.hash_filter = 1; } if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { param[0] = FW_PARAM_PFVF(ETHOFLD_START); param[1] = FW_PARAM_PFVF(ETHOFLD_END); param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query NIC parameters: %d.\n", rc); return (rc); } if ((int)val[1] > (int)val[0]) { sc->tids.etid_base = val[0]; sc->tids.etid_end = val[1]; sc->tids.netids = val[1] - val[0] + 1; sc->params.eo_wr_cred = val[2]; sc->params.ethoffload = 1; } } if (sc->toecaps) { /* query offload-related parameters */ param[0] = FW_PARAM_DEV(NTID); param[1] = FW_PARAM_PFVF(SERVER_START); param[2] = FW_PARAM_PFVF(SERVER_END); param[3] = FW_PARAM_PFVF(TDDP_START); param[4] = FW_PARAM_PFVF(TDDP_END); param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TOE parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; if (sc->params.fw_vers < (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { MPASS(sc->tids.ntids >= sc->tids.nhpftids); sc->tids.ntids -= sc->tids.nhpftids; } sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); if ((int)val[2] > (int)val[1]) { sc->tids.stid_base = val[1]; sc->tids.nstids = val[2] - val[1] + 1; } sc->vres.ddp.start = val[3]; sc->vres.ddp.size = val[4] - val[3] + 1; sc->params.ofldq_wr_cred = val[5]; sc->params.offload = 1; } else { /* * The firmware attempts memfree TOE configuration for -SO cards * and will report toecaps=0 if it runs out of resources (this * depends on the config file). It may not report 0 for other * capabilities dependent on the TOE in this case. Set them to * 0 here so that the driver doesn't bother tracking resources * that will never be used. */ sc->iscsicaps = 0; sc->rdmacaps = 0; } if (sc->rdmacaps) { param[0] = FW_PARAM_PFVF(STAG_START); param[1] = FW_PARAM_PFVF(STAG_END); param[2] = FW_PARAM_PFVF(RQ_START); param[3] = FW_PARAM_PFVF(RQ_END); param[4] = FW_PARAM_PFVF(PBL_START); param[5] = FW_PARAM_PFVF(PBL_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(1): %d.\n", rc); return (rc); } sc->vres.stag.start = val[0]; sc->vres.stag.size = val[1] - val[0] + 1; sc->vres.rq.start = val[2]; sc->vres.rq.size = val[3] - val[2] + 1; sc->vres.pbl.start = val[4]; sc->vres.pbl.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SQRQ_START); param[1] = FW_PARAM_PFVF(SQRQ_END); param[2] = FW_PARAM_PFVF(CQ_START); param[3] = FW_PARAM_PFVF(CQ_END); param[4] = FW_PARAM_PFVF(OCQ_START); param[5] = FW_PARAM_PFVF(OCQ_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(2): %d.\n", rc); return (rc); } sc->vres.qp.start = val[0]; sc->vres.qp.size = val[1] - val[0] + 1; sc->vres.cq.start = val[2]; sc->vres.cq.size = val[3] - val[2] + 1; sc->vres.ocq.start = val[4]; sc->vres.ocq.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SRQ_START); param[1] = FW_PARAM_PFVF(SRQ_END); param[2] = FW_PARAM_DEV(MAXORDIRD_QP); param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(3): %d.\n", rc); return (rc); } sc->vres.srq.start = val[0]; sc->vres.srq.size = val[1] - val[0] + 1; sc->params.max_ordird_qp = val[2]; sc->params.max_ird_adapter = val[3]; } if (sc->iscsicaps) { param[0] = FW_PARAM_PFVF(ISCSI_START); param[1] = FW_PARAM_PFVF(ISCSI_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query iSCSI parameters: %d.\n", rc); return (rc); } sc->vres.iscsi.start = val[0]; sc->vres.iscsi.size = val[1] - val[0] + 1; } if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { param[0] = FW_PARAM_PFVF(TLS_START); param[1] = FW_PARAM_PFVF(TLS_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TLS parameters: %d.\n", rc); return (rc); } sc->vres.key.start = val[0]; sc->vres.key.size = val[1] - val[0] + 1; } t4_init_sge_params(sc); /* * We've got the params we wanted to query via the firmware. Now grab * some others directly from the chip. */ rc = t4_read_chip_settings(sc); return (rc); } static int set_params__post_init(struct adapter *sc) { uint32_t param, val; #ifdef TCP_OFFLOAD int i, v, shift; #endif /* ask for encapsulated CPLs */ param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); val = 1; (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); /* Enable 32b port caps if the firmware supports it. */ param = FW_PARAM_PFVF(PORT_CAPS32); val = 1; if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) sc->params.port_caps32 = 1; /* Let filter + maskhash steer to a part of the VI's RSS region. */ val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), V_MASKFILTER(val - 1)); #ifdef TCP_OFFLOAD /* * Override the TOE timers with user provided tunables. This is not the * recommended way to change the timers (the firmware config file is) so * these tunables are not documented. * * All the timer tunables are in microseconds. */ if (t4_toe_keepalive_idle != 0) { v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); v &= M_KEEPALIVEIDLE; t4_set_reg_field(sc, A_TP_KEEP_IDLE, V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); } if (t4_toe_keepalive_interval != 0) { v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); v &= M_KEEPALIVEINTVL; t4_set_reg_field(sc, A_TP_KEEP_INTVL, V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); } if (t4_toe_keepalive_count != 0) { v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; t4_set_reg_field(sc, A_TP_SHIFT_CNT, V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); } if (t4_toe_rexmt_min != 0) { v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); v &= M_RXTMIN; t4_set_reg_field(sc, A_TP_RXT_MIN, V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); } if (t4_toe_rexmt_max != 0) { v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); v &= M_RXTMAX; t4_set_reg_field(sc, A_TP_RXT_MAX, V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); } if (t4_toe_rexmt_count != 0) { v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; t4_set_reg_field(sc, A_TP_SHIFT_CNT, V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); } for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { if (t4_toe_rexmt_backoff[i] != -1) { v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; shift = (i & 3) << 3; t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), M_TIMERBACKOFFINDEX0 << shift, v << shift); } } #endif return (0); } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV static void t4_set_desc(struct adapter *sc) { char buf[128]; struct adapter_params *p = &sc->params; snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); device_set_desc_copy(sc->dev, buf); } static inline void ifmedia_add4(struct ifmedia *ifm, int m) { ifmedia_add(ifm, m, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); } /* * This is the selected media, which is not quite the same as the active media. * The media line in ifconfig is "media: Ethernet selected (active)" if selected * and active are not the same, and "media: Ethernet selected" otherwise. */ static void set_current_media(struct port_info *pi) { struct link_config *lc; struct ifmedia *ifm; int mword; u_int speed; PORT_LOCK_ASSERT_OWNED(pi); /* Leave current media alone if it's already set to IFM_NONE. */ ifm = &pi->media; if (ifm->ifm_cur != NULL && IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) return; lc = &pi->link_cfg; if (lc->requested_aneg != AUTONEG_DISABLE && lc->supported & FW_PORT_CAP32_ANEG) { ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); return; } mword = IFM_ETHER | IFM_FDX; if (lc->requested_fc & PAUSE_TX) mword |= IFM_ETH_TXPAUSE; if (lc->requested_fc & PAUSE_RX) mword |= IFM_ETH_RXPAUSE; if (lc->requested_speed == 0) speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ else speed = lc->requested_speed; mword |= port_mword(pi, speed_to_fwcap(speed)); ifmedia_set(ifm, mword); } /* * Returns true if the ifmedia list for the port cannot change. */ static bool fixed_ifmedia(struct port_info *pi) { return (pi->port_type == FW_PORT_TYPE_BT_SGMII || pi->port_type == FW_PORT_TYPE_BT_XFI || pi->port_type == FW_PORT_TYPE_BT_XAUI || pi->port_type == FW_PORT_TYPE_KX4 || pi->port_type == FW_PORT_TYPE_KX || pi->port_type == FW_PORT_TYPE_KR || pi->port_type == FW_PORT_TYPE_BP_AP || pi->port_type == FW_PORT_TYPE_BP4_AP || pi->port_type == FW_PORT_TYPE_BP40_BA || pi->port_type == FW_PORT_TYPE_KR4_100G || pi->port_type == FW_PORT_TYPE_KR_SFP28 || pi->port_type == FW_PORT_TYPE_KR_XLAUI); } static void build_medialist(struct port_info *pi) { uint32_t ss, speed; int unknown, mword, bit; struct link_config *lc; struct ifmedia *ifm; PORT_LOCK_ASSERT_OWNED(pi); if (pi->flags & FIXED_IFMEDIA) return; /* * Rebuild the ifmedia list. */ ifm = &pi->media; ifmedia_removeall(ifm); lc = &pi->link_cfg; ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */ if (__predict_false(ss == 0)) { /* not supposed to happen. */ MPASS(ss != 0); no_media: MPASS(LIST_EMPTY(&ifm->ifm_list)); ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_NONE); return; } unknown = 0; for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { speed = 1 << bit; MPASS(speed & M_FW_PORT_CAP32_SPEED); if (ss & speed) { mword = port_mword(pi, speed); if (mword == IFM_NONE) { goto no_media; } else if (mword == IFM_UNKNOWN) unknown++; else ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); } } if (unknown > 0) /* Add one unknown for all unknown media types. */ ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); if (lc->supported & FW_PORT_CAP32_ANEG) ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); set_current_media(pi); } /* * Initialize the requested fields in the link config based on driver tunables. */ static void init_link_config(struct port_info *pi) { struct link_config *lc = &pi->link_cfg; PORT_LOCK_ASSERT_OWNED(pi); lc->requested_speed = 0; if (t4_autoneg == 0) lc->requested_aneg = AUTONEG_DISABLE; else if (t4_autoneg == 1) lc->requested_aneg = AUTONEG_ENABLE; else lc->requested_aneg = AUTONEG_AUTO; lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG); if (t4_fec == -1 || t4_fec & FEC_AUTO) lc->requested_fec = FEC_AUTO; else { lc->requested_fec = FEC_NONE; if (t4_fec & FEC_RS) lc->requested_fec |= FEC_RS; if (t4_fec & FEC_BASER_RS) lc->requested_fec |= FEC_BASER_RS; } } /* * Makes sure that all requested settings comply with what's supported by the * port. Returns the number of settings that were invalid and had to be fixed. */ static int fixup_link_config(struct port_info *pi) { int n = 0; struct link_config *lc = &pi->link_cfg; uint32_t fwspeed; PORT_LOCK_ASSERT_OWNED(pi); /* Speed (when not autonegotiating) */ if (lc->requested_speed != 0) { fwspeed = speed_to_fwcap(lc->requested_speed); if ((fwspeed & lc->supported) == 0) { n++; lc->requested_speed = 0; } } /* Link autonegotiation */ MPASS(lc->requested_aneg == AUTONEG_ENABLE || lc->requested_aneg == AUTONEG_DISABLE || lc->requested_aneg == AUTONEG_AUTO); if (lc->requested_aneg == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) { n++; lc->requested_aneg = AUTONEG_AUTO; } /* Flow control */ MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); if (lc->requested_fc & PAUSE_TX && !(lc->supported & FW_PORT_CAP32_FC_TX)) { n++; lc->requested_fc &= ~PAUSE_TX; } if (lc->requested_fc & PAUSE_RX && !(lc->supported & FW_PORT_CAP32_FC_RX)) { n++; lc->requested_fc &= ~PAUSE_RX; } if (!(lc->requested_fc & PAUSE_AUTONEG) && !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) { n++; lc->requested_fc |= PAUSE_AUTONEG; } /* FEC */ if ((lc->requested_fec & FEC_RS && !(lc->supported & FW_PORT_CAP32_FEC_RS)) || (lc->requested_fec & FEC_BASER_RS && !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) { n++; lc->requested_fec = FEC_AUTO; } return (n); } /* * Apply the requested L1 settings, which are expected to be valid, to the * hardware. */ static int apply_link_config(struct port_info *pi) { struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; #ifdef INVARIANTS ASSERT_SYNCHRONIZED_OP(sc); PORT_LOCK_ASSERT_OWNED(pi); if (lc->requested_aneg == AUTONEG_ENABLE) MPASS(lc->supported & FW_PORT_CAP32_ANEG); if (!(lc->requested_fc & PAUSE_AUTONEG)) MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE); if (lc->requested_fc & PAUSE_TX) MPASS(lc->supported & FW_PORT_CAP32_FC_TX); if (lc->requested_fc & PAUSE_RX) MPASS(lc->supported & FW_PORT_CAP32_FC_RX); if (lc->requested_fec & FEC_RS) MPASS(lc->supported & FW_PORT_CAP32_FEC_RS); if (lc->requested_fec & FEC_BASER_RS) MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS); #endif rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); if (rc != 0) { /* Don't complain if the VF driver gets back an EPERM. */ if (!(sc->flags & IS_VF) || rc != FW_EPERM) device_printf(pi->dev, "l1cfg failed: %d\n", rc); } else { /* * An L1_CFG will almost always result in a link-change event if * the link is up, and the driver will refresh the actual * fec/fc/etc. when the notification is processed. If the link * is down then the actual settings are meaningless. * * This takes care of the case where a change in the L1 settings * may not result in a notification. */ if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); } return (rc); } #define FW_MAC_EXACT_CHUNK 7 /* * Program the port's XGMAC based on parameters in ifnet. The caller also * indicates which parameters should be programmed (the rest are left alone). */ int update_mac_settings(struct ifnet *ifp, int flags) { int rc = 0; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; ASSERT_SYNCHRONIZED_OP(sc); KASSERT(flags, ("%s: not told what to update.", __func__)); if (flags & XGMAC_MTU) mtu = ifp->if_mtu; if (flags & XGMAC_PROMISC) promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; if (flags & XGMAC_ALLMULTI) allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; if (flags & XGMAC_VLANEX) vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, allmulti, 1, vlanex, false); if (rc) { if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); return (rc); } } if (flags & XGMAC_UCADDR) { uint8_t ucaddr[ETHER_ADDR_LEN]; bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, ucaddr, true, &vi->smt_idx); if (rc < 0) { rc = -rc; if_printf(ifp, "change_mac failed: %d\n", rc); return (rc); } else { vi->xact_addr_filt = rc; rc = 0; } } if (flags & XGMAC_MCADDRS) { const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; int del = 1; uint64_t hash = 0; struct ifmultiaddr *ifma; int i = 0, j; if_maddr_rlock(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mcaddr[i] = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); MPASS(ETHER_IS_MULTICAST(mcaddr[i])); i++; if (i == FW_MAC_EXACT_CHUNK) { rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } del = 0; i = 0; } } if (i > 0) { rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } } rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0); if (rc != 0) if_printf(ifp, "failed to set mc address hash: %d", rc); mcfail: if_maddr_runlock(ifp); } return (rc); } /* * {begin|end}_synchronized_op must be called from the same thread. */ int begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, char *wmesg) { int rc, pri; #ifdef WITNESS /* the caller thinks it's ok to sleep, but is it really? */ if (flags & SLEEP_OK) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "begin_synchronized_op"); #endif if (INTR_OK) pri = PCATCH; else pri = 0; ADAPTER_LOCK(sc); for (;;) { if (vi && IS_DOOMED(vi)) { rc = ENXIO; goto done; } if (!IS_BUSY(sc)) { rc = 0; break; } if (!(flags & SLEEP_OK)) { rc = EBUSY; goto done; } if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { rc = EINTR; goto done; } } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = wmesg; sc->last_op_thr = curthread; sc->last_op_flags = flags; #endif done: if (!(flags & HOLD_LOCK) || rc) ADAPTER_UNLOCK(sc); return (rc); } /* * Tell if_ioctl and if_init that the VI is going away. This is * special variant of begin_synchronized_op and must be paired with a * call to end_synchronized_op. */ void doom_vi(struct adapter *sc, struct vi_info *vi) { ADAPTER_LOCK(sc); SET_DOOMED(vi); wakeup(&sc->flags); while (IS_BUSY(sc)) mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = "t4detach"; sc->last_op_thr = curthread; sc->last_op_flags = 0; #endif ADAPTER_UNLOCK(sc); } /* * {begin|end}_synchronized_op must be called from the same thread. */ void end_synchronized_op(struct adapter *sc, int flags) { if (flags & LOCK_HELD) ADAPTER_LOCK_ASSERT_OWNED(sc); else ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup(&sc->flags); ADAPTER_UNLOCK(sc); } static int cxgbe_init_synchronized(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; int rc = 0, i; struct sge_txq *txq; ASSERT_SYNCHRONIZED_OP(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return (0); /* already running */ if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_full_init(sc)) != 0)) return (rc); /* error message displayed already */ if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_full_init(vi)) != 0)) return (rc); /* error message displayed already */ rc = update_mac_settings(ifp, XGMAC_ALL); if (rc) goto done; /* error message displayed already */ PORT_LOCK(pi); if (pi->up_vis == 0) { t4_update_port_info(pi); fixup_link_config(pi); build_medialist(pi); apply_link_config(pi); } rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); if (rc != 0) { if_printf(ifp, "enable_vi failed: %d\n", rc); PORT_UNLOCK(pi); goto done; } /* * Can't fail from this point onwards. Review cxgbe_uninit_synchronized * if this changes. */ for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags |= EQ_ENABLED; TXQ_UNLOCK(txq); } /* * The first iq of the first port to come up is used for tracing. */ if (sc->traceq < 0 && IS_MAIN_VI(vi)) { sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | V_QUEUENUMBER(sc->traceq)); pi->flags |= HAS_TRACEQ; } /* all ok */ pi->up_vis++; ifp->if_drv_flags |= IFF_DRV_RUNNING; if (pi->nvi > 1 || sc->flags & IS_VF) callout_reset(&vi->tick, hz, vi_tick, vi); else callout_reset(&pi->tick, hz, cxgbe_tick, pi); if (pi->link_cfg.link_ok) t4_os_link_changed(pi); PORT_UNLOCK(pi); done: if (rc != 0) cxgbe_uninit_synchronized(vi); return (rc); } /* * Idempotent. */ static int cxgbe_uninit_synchronized(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; int rc, i; struct sge_txq *txq; ASSERT_SYNCHRONIZED_OP(sc); if (!(vi->flags & VI_INIT_DONE)) { if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { KASSERT(0, ("uninited VI is running")); if_printf(ifp, "uninited VI with running ifnet. " "vi->flags 0x%016lx, if_flags 0x%08x, " "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, ifp->if_drv_flags); } return (0); } /* * Disable the VI so that all its data in either direction is discarded * by the MPS. Leave everything else (the queues, interrupts, and 1Hz * tick) intact as the TP can deliver negative advice or data that it's * holding in its RAM (for an offloaded connection) even after the VI is * disabled. */ rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); if (rc) { if_printf(ifp, "disable_vi failed: %d\n", rc); return (rc); } for_each_txq(vi, i, txq) { TXQ_LOCK(txq); txq->eq.flags &= ~EQ_ENABLED; TXQ_UNLOCK(txq); } PORT_LOCK(pi); if (pi->nvi > 1 || sc->flags & IS_VF) callout_stop(&vi->tick); else callout_stop(&pi->tick); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { PORT_UNLOCK(pi); return (0); } ifp->if_drv_flags &= ~IFF_DRV_RUNNING; pi->up_vis--; if (pi->up_vis > 0) { PORT_UNLOCK(pi); return (0); } pi->link_cfg.link_ok = false; pi->link_cfg.speed = 0; pi->link_cfg.link_down_rc = 255; t4_os_link_changed(pi); PORT_UNLOCK(pi); return (0); } /* * It is ok for this function to fail midway and return right away. t4_detach * will walk the entire sc->irq list and clean up whatever is valid. */ int t4_setup_intr_handlers(struct adapter *sc) { int rc, rid, p, q, v; char s[8]; struct irq *irq; struct port_info *pi; struct vi_info *vi; struct sge *sge = &sc->sge; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #ifdef DEV_NETMAP struct sge_nm_rxq *nm_rxq; #endif #ifdef RSS int nbuckets = rss_getnumbuckets(); #endif /* * Setup interrupts. */ irq = &sc->irq[0]; rid = sc->intr_type == INTR_INTX ? 0 : 1; if (forwarding_intr_to_fwq(sc)) return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); /* Multiple interrupts. */ if (sc->flags & IS_VF) KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); else KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); /* The first one is always error intr on PFs */ if (!(sc->flags & IS_VF)) { rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); if (rc != 0) return (rc); irq++; rid++; } /* The second one is always the firmware event queue (first on VFs) */ rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); if (rc != 0) return (rc); irq++; rid++; for_each_port(sc, p) { pi = sc->port[p]; for_each_vi(pi, v, vi) { vi->first_intr = rid - 1; if (vi->nnmrxq > 0) { int n = max(vi->nrxq, vi->nnmrxq); rxq = &sge->rxq[vi->first_rxq]; #ifdef DEV_NETMAP nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; #endif for (q = 0; q < n; q++) { snprintf(s, sizeof(s), "%x%c%x", p, 'a' + v, q); if (q < vi->nrxq) irq->rxq = rxq++; #ifdef DEV_NETMAP if (q < vi->nnmrxq) irq->nm_rxq = nm_rxq++; if (irq->nm_rxq != NULL && irq->rxq == NULL) { /* Netmap rx only */ rc = t4_alloc_irq(sc, irq, rid, t4_nm_intr, irq->nm_rxq, s); } if (irq->nm_rxq != NULL && irq->rxq != NULL) { /* NIC and Netmap rx */ rc = t4_alloc_irq(sc, irq, rid, t4_vi_intr, irq, s); } #endif if (irq->rxq != NULL && irq->nm_rxq == NULL) { /* NIC rx only */ rc = t4_alloc_irq(sc, irq, rid, t4_intr, irq->rxq, s); } if (rc != 0) return (rc); #ifdef RSS if (q < vi->nrxq) { bus_bind_intr(sc->dev, irq->res, rss_getcpu(q % nbuckets)); } #endif irq++; rid++; vi->nintr++; } } else { for_each_rxq(vi, q, rxq) { snprintf(s, sizeof(s), "%x%c%x", p, 'a' + v, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, rxq, s); if (rc != 0) return (rc); #ifdef RSS bus_bind_intr(sc->dev, irq->res, rss_getcpu(q % nbuckets)); #endif irq++; rid++; vi->nintr++; } } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, q, ofld_rxq) { snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, ofld_rxq, s); if (rc != 0) return (rc); irq++; rid++; vi->nintr++; } #endif } } MPASS(irq == &sc->irq[sc->intr_count]); return (0); } int adapter_full_init(struct adapter *sc) { int rc, i; #ifdef RSS uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; #endif ASSERT_SYNCHRONIZED_OP(sc); ADAPTER_LOCK_ASSERT_NOTOWNED(sc); KASSERT((sc->flags & FULL_INIT_DONE) == 0, ("%s: FULL_INIT_DONE already", __func__)); /* * queues that belong to the adapter (not any particular port). */ rc = t4_setup_adapter_queues(sc); if (rc != 0) goto done; for (i = 0; i < nitems(sc->tq); i++) { sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->tq[i]); if (sc->tq[i] == NULL) { device_printf(sc->dev, "failed to allocate task queue %d\n", i); rc = ENOMEM; goto done; } taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", device_get_nameunit(sc->dev), i); } #ifdef RSS MPASS(RSS_KEYSIZE == 40); rss_getkey((void *)&raw_rss_key[0]); for (i = 0; i < nitems(rss_key); i++) { rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); } t4_write_rss_key(sc, &rss_key[0], -1, 1); #endif if (!(sc->flags & IS_VF)) t4_intr_enable(sc); sc->flags |= FULL_INIT_DONE; done: if (rc != 0) adapter_full_uninit(sc); return (rc); } int adapter_full_uninit(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); t4_teardown_adapter_queues(sc); for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { taskqueue_free(sc->tq[i]); sc->tq[i] = NULL; } sc->flags &= ~FULL_INIT_DONE; return (0); } #ifdef RSS #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ RSS_HASHTYPE_RSS_UDP_IPV6) /* Translates kernel hash types to hardware. */ static int hashconfig_to_hashen(int hashconfig) { int hashen = 0; if (hashconfig & RSS_HASHTYPE_RSS_IPV4) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_IPV6) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; } if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; } if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; return (hashen); } /* Translates hardware hash types to kernel. */ static int hashen_to_hashconfig(int hashen) { int hashconfig = 0; if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { /* * If UDP hashing was enabled it must have been enabled for * either IPv4 or IPv6 (inclusive or). Enabling UDP without * enabling any 4-tuple hash is nonsense configuration. */ MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; } if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) hashconfig |= RSS_HASHTYPE_RSS_IPV4; if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) hashconfig |= RSS_HASHTYPE_RSS_IPV6; return (hashconfig); } #endif int vi_full_init(struct vi_info *vi) { struct adapter *sc = vi->pi->adapter; struct ifnet *ifp = vi->ifp; uint16_t *rss; struct sge_rxq *rxq; int rc, i, j; #ifdef RSS int nbuckets = rss_getnumbuckets(); int hashconfig = rss_gethashconfig(); int extra; #endif ASSERT_SYNCHRONIZED_OP(sc); KASSERT((vi->flags & VI_INIT_DONE) == 0, ("%s: VI_INIT_DONE already", __func__)); sysctl_ctx_init(&vi->ctx); vi->flags |= VI_SYSCTL_CTX; /* * Allocate tx/rx/fl queues for this VI. */ rc = t4_setup_vi_queues(vi); if (rc != 0) goto done; /* error message displayed already */ /* * Setup RSS for this VI. Save a copy of the RSS table for later use. */ if (vi->nrxq > vi->rss_size) { if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " "some queues will never receive traffic.\n", vi->nrxq, vi->rss_size); } else if (vi->rss_size % vi->nrxq) { if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " "expect uneven traffic distribution.\n", vi->nrxq, vi->rss_size); } #ifdef RSS if (vi->nrxq != nbuckets) { if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" "performance will be impacted.\n", vi->nrxq, nbuckets); } #endif rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); for (i = 0; i < vi->rss_size;) { #ifdef RSS j = rss_get_indirection_to_bucket(i); j %= vi->nrxq; rxq = &sc->sge.rxq[vi->first_rxq + j]; rss[i++] = rxq->iq.abs_id; #else for_each_rxq(vi, j, rxq) { rss[i++] = rxq->iq.abs_id; if (i == vi->rss_size) break; } #endif } rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, vi->rss_size); if (rc != 0) { free(rss, M_CXGBE); if_printf(ifp, "rss_config failed: %d\n", rc); goto done; } #ifdef RSS vi->hashen = hashconfig_to_hashen(hashconfig); /* * We may have had to enable some hashes even though the global config * wants them disabled. This is a potential problem that must be * reported to the user. */ extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; /* * If we consider only the supported hash types, then the enabled hashes * are a superset of the requested hashes. In other words, there cannot * be any supported hash that was requested but not enabled, but there * can be hashes that were not requested but had to be enabled. */ extra &= SUPPORTED_RSS_HASHTYPES; MPASS((extra & hashconfig) == 0); if (extra) { if_printf(ifp, "global RSS config (0x%x) cannot be accommodated.\n", hashconfig); } if (extra & RSS_HASHTYPE_RSS_IPV4) if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_IPV6) if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); #else vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; #endif rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0); if (rc != 0) { free(rss, M_CXGBE); if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); goto done; } vi->rss = rss; vi->flags |= VI_INIT_DONE; done: if (rc != 0) vi_full_uninit(vi); return (rc); } /* * Idempotent. */ int vi_full_uninit(struct vi_info *vi) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; int i; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct sge_wrq *ofld_txq; #endif if (vi->flags & VI_INIT_DONE) { /* Need to quiesce queues. */ /* XXX: Only for the first VI? */ if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); for_each_txq(vi, i, txq) { quiesce_txq(sc, txq); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, ofld_txq) { quiesce_wrq(sc, ofld_txq); } #endif for_each_rxq(vi, i, rxq) { quiesce_iq(sc, &rxq->iq); quiesce_fl(sc, &rxq->fl); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { quiesce_iq(sc, &ofld_rxq->iq); quiesce_fl(sc, &ofld_rxq->fl); } #endif free(vi->rss, M_CXGBE); free(vi->nm_rss, M_CXGBE); } t4_teardown_vi_queues(vi); vi->flags &= ~VI_INIT_DONE; return (0); } static void quiesce_txq(struct adapter *sc, struct sge_txq *txq) { struct sge_eq *eq = &txq->eq; struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; (void) sc; /* unused */ #ifdef INVARIANTS TXQ_LOCK(txq); MPASS((eq->flags & EQ_ENABLED) == 0); TXQ_UNLOCK(txq); #endif /* Wait for the mp_ring to empty. */ while (!mp_ring_is_idle(txq->r)) { mp_ring_check_drainage(txq->r, 0); pause("rquiesce", 1); } /* Then wait for the hardware to finish. */ while (spg->cidx != htobe16(eq->pidx)) pause("equiesce", 1); /* Finally, wait for the driver to reclaim all descriptors. */ while (eq->cidx != eq->pidx) pause("dquiesce", 1); } static void quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) { /* XXXTX */ } static void quiesce_iq(struct adapter *sc, struct sge_iq *iq) { (void) sc; /* unused */ /* Synchronize with the interrupt handler */ while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) pause("iqfree", 1); } static void quiesce_fl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); fl->flags |= FL_DOOMED; FL_UNLOCK(fl); callout_stop(&sc->sfl_callout); mtx_unlock(&sc->sfl_lock); KASSERT((fl->flags & FL_STARVING) == 0, ("%s: still starving", __func__)); } static int t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, driver_intr_t *handler, void *arg, char *name) { int rc; irq->rid = rid; irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, RF_SHAREABLE | RF_ACTIVE); if (irq->res == NULL) { device_printf(sc->dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, arg, &irq->tag); if (rc != 0) { device_printf(sc->dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name, rc); } else if (name) bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); return (rc); } static int t4_free_irq(struct adapter *sc, struct irq *irq) { if (irq->tag) bus_teardown_intr(sc->dev, irq->res, irq->tag); if (irq->res) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); bzero(irq, sizeof(*irq)); return (0); } static void get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) { regs->version = chip_id(sc) | chip_rev(sc) << 10; t4_get_regs(sc, buf, regs->len); } #define A_PL_INDIR_CMD 0x1f8 #define S_PL_AUTOINC 31 #define M_PL_AUTOINC 0x1U #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) #define S_PL_VFID 20 #define M_PL_VFID 0xffU #define V_PL_VFID(x) ((x) << S_PL_VFID) #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) #define S_PL_ADDR 0 #define M_PL_ADDR 0xfffffU #define V_PL_ADDR(x) ((x) << S_PL_ADDR) #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) #define A_PL_INDIR_DATA 0x1fc static uint64_t read_vf_stat(struct adapter *sc, u_int vin, int reg) { u32 stats[2]; mtx_assert(&sc->reg_lock, MA_OWNED); if (sc->flags & IS_VF) { stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); } else { t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); } return (((uint64_t)stats[1]) << 32 | stats[0]); } static void t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) { #define GET_STAT(name) \ read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); #undef GET_STAT } static void t4_clr_vi_stats(struct adapter *sc, u_int vin) { int reg; t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) t4_write_reg(sc, A_PL_INDIR_DATA, 0); } static void vi_refresh_stats(struct adapter *sc, struct vi_info *vi) { struct timeval tv; const struct timeval interval = {0, 250000}; /* 250ms */ if (!(vi->flags & VI_INIT_DONE)) return; getmicrotime(&tv); timevalsub(&tv, &interval); if (timevalcmp(&tv, &vi->last_refreshed, <)) return; mtx_lock(&sc->reg_lock); t4_get_vi_stats(sc, vi->vin, &vi->stats); getmicrotime(&vi->last_refreshed); mtx_unlock(&sc->reg_lock); } static void cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) { u_int i, v, tnl_cong_drops, bg_map; struct timeval tv; const struct timeval interval = {0, 250000}; /* 250ms */ getmicrotime(&tv); timevalsub(&tv, &interval); if (timevalcmp(&tv, &pi->last_refreshed, <)) return; tnl_cong_drops = 0; t4_get_port_stats(sc, pi->tx_chan, &pi->stats); bg_map = pi->mps_bg_map; while (bg_map) { i = ffs(bg_map) - 1; mtx_lock(&sc->reg_lock); t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, A_TP_MIB_TNL_CNG_DROP_0 + i); mtx_unlock(&sc->reg_lock); tnl_cong_drops += v; bg_map &= ~(1 << i); } pi->tnl_cong_drops = tnl_cong_drops; getmicrotime(&pi->last_refreshed); } static void cxgbe_tick(void *arg) { struct port_info *pi = arg; struct adapter *sc = pi->adapter; PORT_LOCK_ASSERT_OWNED(pi); cxgbe_refresh_stats(sc, pi); callout_schedule(&pi->tick, hz); } void vi_tick(void *arg) { struct vi_info *vi = arg; struct adapter *sc = vi->pi->adapter; vi_refresh_stats(sc, vi); callout_schedule(&vi->tick, hz); } /* * Should match fw_caps_config_ enums in t4fw_interface.h */ static char *caps_decoder[] = { "\20\001IPMI\002NCSI", /* 0: NBM */ "\20\001PPP\002QFC\003DCBX", /* 1: link */ "\20\001INGRESS\002EGRESS", /* 2: switch */ "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ "\006HASHFILTER\007ETHOFLD", "\20\001TOE", /* 4: TOE */ "\20\001RDDP\002RDMAC", /* 5: RDMA */ "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" "\007T10DIF" "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ "\004PO_INITIATOR\005PO_TARGET", }; void t4_sysctls(struct adapter *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *c0; static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; ctx = device_get_sysctl_ctx(sc->dev); /* * dev.t4nex.X. */ oid = device_get_sysctl_tree(sc->dev); c0 = children = SYSCTL_CHILDREN(oid); sc->sc_do_rxcopy = 1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, sc->params.nports, "# of ports"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", "available doorbells"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, sc->params.vpd.cclk, "core clock frequency (in KHz)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", "interrupt holdoff timer values (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", "interrupt holdoff packet counter values"); t4_sge_sysctls(sc, ctx, children); sc->lro_timeout = 100; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, &sc->debug_flags, 0, "flags to enable runtime debugging"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 0, "firmware version"); if (sc->flags & IS_VF) return; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, NULL, chip_rev(sc), "chip hardware revision"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, sc->er_version, 0, "expansion ROM version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, sc->bs_version, 0, "bootstrap firmware version"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, NULL, sc->params.scfg_vers, "serial config version"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, NULL, sc->params.vpd_vers, "VPD version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, sc->cfcsum, "config file checksum"); #define SYSCTL_CAP(name, n, text) \ SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \ sysctl_bitfield_16b, "A", "available " text " capabilities") SYSCTL_CAP(nbmcaps, 0, "NBM"); SYSCTL_CAP(linkcaps, 1, "link"); SYSCTL_CAP(switchcaps, 2, "switch"); SYSCTL_CAP(niccaps, 3, "NIC"); SYSCTL_CAP(toecaps, 4, "TCP offload"); SYSCTL_CAP(rdmacaps, 5, "RDMA"); SYSCTL_CAP(iscsicaps, 6, "iSCSI"); SYSCTL_CAP(cryptocaps, 7, "crypto"); SYSCTL_CAP(fcoecaps, 8, "FCoE"); #undef SYSCTL_CAP SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, NULL, sc->tids.nftids, "number of filters"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0, sysctl_temperature, "I", "chip temperature (in Celsius)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_loadavg, "A", "microprocessor load averages (debug firmwares only)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD, &sc->params.core_vdd, 0, "core Vdd (in mV)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS, sysctl_cpus, "A", "local CPUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS, sysctl_cpus, "A", "preferred CPUs for interrupts"); + SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, + &sc->swintr, 0, "software triggered interrupts"); + /* * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", CTLFLAG_RD | CTLFLAG_SKIP, NULL, "logs and miscellaneous information"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cctrl, "A", "congestion control"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", CTLTYPE_STRING | CTLFLAG_RD, sc, 3, sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", CTLTYPE_STRING | CTLFLAG_RD, sc, 4, sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5, sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la, "A", "CIM logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); if (chip_id(sc) > CHELSIO_T4) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_qcfg, "A", "CIM queue configuration"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cpl_stats, "A", "CPL statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ddp_stats, "A", "non-TCP DDP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_devlog, "A", "firmware's device log"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_fcoe_stats, "A", "FCoE statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_hw_sched, "A", "hardware scheduler "); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_l2t, "A", "hardware L2 table"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_smt, "A", "hardware source MAC table"); #ifdef INET6 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_clip, "A", "active CLIP table entries"); #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_lb_stats, "A", "loopback statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_meminfo, "A", "memory regions"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, "A", "MPS TCAM entries"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_path_mtus, "A", "path MTUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_pm_stats, "A", "PM statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_rdma_stats, "A", "RDMA statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tcp_stats, "A", "TCP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tids, "A", "TID information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_err_stats, "A", "TP error statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_la, "A", "TP logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tx_rate, "A", "Tx rate"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ulprx_la, "A", "ULPRX logic analyzer"); if (chip_id(sc) >= CHELSIO_T5) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_wcwr_stats, "A", "write combined work requests"); } #ifdef TCP_OFFLOAD if (is_offload(sc)) { int i; char s[4]; /* * dev.t4nex.X.toe. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, NULL, "TOE parameters"); children = SYSCTL_CHILDREN(oid); sc->tt.cong_algorithm = -1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " "3 = highspeed)"); sc->tt.sndbuf = 256 * 1024; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, &sc->tt.sndbuf, 0, "max hardware send buffer size"); sc->tt.ddp = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, &sc->tt.ddp, 0, "DDP allowed"); sc->tt.rx_coalesce = 1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); sc->tt.tls = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW, &sc->tt.tls, 0, "Inline TLS allowed"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports, "I", "TCP ports that use inline TLS+TOE RX"); sc->tt.tx_align = 1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); sc->tt.tx_zcopy = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", CTLFLAG_RW, &sc->tt.tx_zcopy, 0, "Enable zero-copy aio_write(2)"); sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cop_managed_offloading", CTLFLAG_RW, &sc->tt.cop_managed_offloading, 0, "COP (Connection Offload Policy) controls all TOE offload"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", "TP timer tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", "TCP timestamp tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", "DACK tick (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, "IU", "DACK timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, sysctl_tp_timer, "LU", "Persist timer min (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, sysctl_tp_timer, "LU", "Persist timer max (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", "Number of SYN retransmissions before abort"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", "Number of retransmissions before abort"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", "Number of keepalive probes before abort"); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", CTLFLAG_RD, NULL, "TOE retransmit backoffs"); children = SYSCTL_CHILDREN(oid); for (i = 0; i < 16; i++) { snprintf(s, sizeof(s), "%u", i); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, "IU", "TOE retransmit backoff"); } } #endif } void vi_sysctls(struct vi_info *vi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(vi->dev); /* * dev.v?(cxgbe|cxl).X. */ oid = device_get_sysctl_tree(vi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, vi->viid, "VI identifer"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, &vi->nrxq, 0, "# of rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, &vi->ntxq, 0, "# of tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, &vi->first_rxq, 0, "index of first rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, &vi->first_txq, 0, "index of first tx queue"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, vi->rss_base, "start of RSS indirection table"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, vi->rss_size, "size of RSS indirection table"); if (IS_MAIN_VI(vi)) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", "Reserve queue 0 for non-flowid packets"); } #ifdef TCP_OFFLOAD if (vi->nofldrxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, &vi->nofldrxq, 0, "# of rx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", CTLFLAG_RD, &vi->first_ofld_rxq, 0, "index of first TOE rx queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx_ofld, "I", "holdoff timer index for TOE queues"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx_ofld, "I", "holdoff packet counter index for TOE queues"); } #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) if (vi->nofldtxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, &vi->nofldtxq, 0, "# of tx queues for TOE/ETHOFLD"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", CTLFLAG_RD, &vi->first_ofld_txq, 0, "index of first TOE/ETHOFLD tx queue"); } #endif #ifdef DEV_NETMAP if (vi->nnmrxq != 0) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, &vi->nnmrxq, 0, "# of netmap rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, &vi->nnmtxq, 0, "# of netmap tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", CTLFLAG_RD, &vi->first_nm_rxq, 0, "index of first netmap rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", CTLFLAG_RD, &vi->first_nm_txq, 0, "index of first netmap tx queue"); } #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", "rx queue size"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", "tx queue size"); } static void cxgbe_sysctls(struct port_info *pi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *children2; struct adapter *sc = pi->adapter; int i; char name[16]; static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; ctx = device_get_sysctl_ctx(pi->dev); /* * dev.cxgbe.X. */ oid = device_get_sysctl_tree(pi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", "PHY temperature (in Celsius)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", "PHY firmware version"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", "autonegotiation (-1 = not supported)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, port_top_speed(pi), "max speed (in Gbps)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, pi->mps_bg_map, "MPS buffer group map"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, NULL, pi->rx_e_chan_map, "TP rx e-channel map"); if (sc->flags & IS_VF) return; /* * dev.(cxgbe|cxl).X.tc. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, "Tx scheduler traffic classes (cl_rl)"); children2 = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", CTLFLAG_RW, &pi->sched_params->pktsize, 0, "pktsize for per-flow cl-rl (0 means up to the driver )"); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", CTLFLAG_RW, &pi->sched_params->burstsize, 0, "burstsize for per-flow cl-rl (0 means up to the driver)"); for (i = 0; i < sc->chip_params->nsched_cls; i++) { struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; snprintf(name, sizeof(name), "%d", i); children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, "traffic class")); SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", CTLFLAG_RD, &tc->refcount, 0, "references to this class"); SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, sysctl_tc_params, "A", "traffic class parameters"); } /* * dev.cxgbe.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "port statistics"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, &pi->tx_parse_error, 0, "# of tx packets with invalid length or # of segments"); #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ sysctl_handle_t4_reg64, "QU", desc) SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", "# of frames received with bad FCS", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_len_err", "# of frames received with length error", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); #undef SYSCTL_ADD_T4_REG64 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ &pi->stats.name, desc) /* We get these from port_stats and they may be stale by up to 1s */ SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); #undef SYSCTL_ADD_T4_PORTSTAT SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records", CTLFLAG_RD, &pi->tx_tls_records, "# of TLS records transmitted"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets", CTLFLAG_RD, &pi->tx_tls_octets, "# of payload octets in transmitted TLS records"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records", CTLFLAG_RD, &pi->rx_tls_records, "# of TLS records received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets", CTLFLAG_RD, &pi->rx_tls_octets, "# of payload octets in received TLS records"); } static int sysctl_int_array(SYSCTL_HANDLER_ARGS) { int rc, *i, space = 0; struct sbuf sb; sbuf_new_for_sysctl(&sb, NULL, 64, req); for (i = arg1; arg2; arg2 -= sizeof(int), i++) { if (space) sbuf_printf(&sb, " "); sbuf_printf(&sb, "%d", *i); space = 1; } rc = sbuf_finish(&sb); sbuf_delete(&sb); return (rc); } static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_btphy(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; int op = arg2; struct adapter *sc = pi->adapter; u_int v; int rc; rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); if (rc) return (rc); /* XXX: magic numbers */ rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, &v); end_synchronized_op(sc, 0); if (rc) return (rc); if (op == 0) v /= 256; rc = sysctl_handle_int(oidp, &v, 0, req); return (rc); } static int sysctl_noflowq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; int rc, val; val = vi->rsrv_noflowq; rc = sysctl_handle_int(oidp, &val, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if ((val >= 1) && (vi->ntxq > 1)) vi->rsrv_noflowq = 1; else vi->rsrv_noflowq = 0; return (rc); } static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc, i; struct sge_rxq *rxq; uint8_t v; idx = vi->tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4tmr"); if (rc) return (rc); v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); for_each_rxq(vi, i, rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&rxq->iq.intr_params, v); #else rxq->iq.intr_params = v; #endif } vi->tmr_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (0); } static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc; idx = vi->pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4pktc"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->pktc_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int qsize, rc; qsize = vi->qsize_rxq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || (qsize & 7)) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4rxqs"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->qsize_rxq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int qsize, rc; qsize = vi->qsize_txq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || qsize > 65536) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4txqs"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->qsize_txq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; if (req->newptr == NULL) { struct sbuf *sb; static char *bits = "\20\1RX\2TX\3AUTO"; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); if (lc->link_ok) { sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | (lc->requested_fc & PAUSE_AUTONEG), bits); } else { sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG), bits); } rc = sbuf_finish(sb); sbuf_delete(sb); } else { char s[2]; int n; s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)); s[1] = 0; rc = sysctl_handle_string(oidp, s, sizeof(s), req); if (rc != 0) return(rc); if (s[1] != 0) return (EINVAL); if (s[0] < '0' || s[0] > '9') return (EINVAL); /* not a number */ n = s[0] - '0'; if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) return (EINVAL); /* some other bit is set too */ rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4PAUSE"); if (rc) return (rc); PORT_LOCK(pi); lc->requested_fc = n; fixup_link_config(pi); if (pi->up_vis > 0) rc = apply_link_config(pi); set_current_media(pi); PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } return (rc); } static int sysctl_fec(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc; int8_t old; if (req->newptr == NULL) { struct sbuf *sb; static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO"; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); /* * Display the requested_fec when the link is down -- the actual * FEC makes sense only when the link is up. */ if (lc->link_ok) { sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | (lc->requested_fec & FEC_AUTO), bits); } else { sbuf_printf(sb, "%b", lc->requested_fec, bits); } rc = sbuf_finish(sb); sbuf_delete(sb); } else { char s[3]; int n; snprintf(s, sizeof(s), "%d", lc->requested_fec == FEC_AUTO ? -1 : lc->requested_fec & M_FW_PORT_CAP32_FEC); rc = sysctl_handle_string(oidp, s, sizeof(s), req); if (rc != 0) return(rc); n = strtol(&s[0], NULL, 0); if (n < 0 || n & FEC_AUTO) n = FEC_AUTO; else { if (n & ~M_FW_PORT_CAP32_FEC) return (EINVAL);/* some other bit is set too */ if (!powerof2(n)) return (EINVAL);/* one bit can be set at most */ } rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4fec"); if (rc) return (rc); PORT_LOCK(pi); old = lc->requested_fec; if (n == FEC_AUTO) lc->requested_fec = FEC_AUTO; else if (n == 0) lc->requested_fec = FEC_NONE; else { if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) != lc->supported) { rc = ENOTSUP; goto done; } lc->requested_fec = n; } fixup_link_config(pi); if (pi->up_vis > 0) { rc = apply_link_config(pi); if (rc != 0) { lc->requested_fec = old; if (rc == FW_EPROTO) rc = ENOTSUP; } } done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); } return (rc); } static int sysctl_autoneg(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct link_config *lc = &pi->link_cfg; int rc, val; if (lc->supported & FW_PORT_CAP32_ANEG) val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; else val = -1; rc = sysctl_handle_int(oidp, &val, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (val == 0) val = AUTONEG_DISABLE; else if (val == 1) val = AUTONEG_ENABLE; else val = AUTONEG_AUTO; rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4aneg"); if (rc) return (rc); PORT_LOCK(pi); if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) { rc = ENOTSUP; goto done; } lc->requested_aneg = val; fixup_link_config(pi); if (pi->up_vis > 0) rc = apply_link_config(pi); set_current_media(pi); done: PORT_UNLOCK(pi); end_synchronized_op(sc, 0); return (rc); } static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; uint64_t val; val = t4_read_reg64(sc, reg); return (sysctl_handle_64(oidp, &val, 0, req)); } static int sysctl_temperature(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int rc, t; uint32_t param, val; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); if (rc) return (rc); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); end_synchronized_op(sc, 0); if (rc) return (rc); /* unknown is returned as 0 but we display -1 in that case */ t = val == 0 ? -1 : val; rc = sysctl_handle_int(oidp, &t, 0, req); return (rc); } static int sysctl_loadavg(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint32_t param, val; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); if (rc) return (rc); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); end_synchronized_op(sc, 0); if (rc) return (rc); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); if (val == 0xffffffff) { /* Only debug and custom firmwares report load averages. */ sbuf_printf(sb, "not available"); } else { sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cctrl(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t incr[NMTUS][NCCTRL_WIN]; static const char *dec_fac[] = { "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", "0.9375" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); t4_read_cong_tbl(sc, incr); for (i = 0; i < NCCTRL_WIN; ++i) { sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], incr[5][i], incr[6][i], incr[7][i]); sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", incr[8][i], incr[9][i], incr[10][i], incr[11][i], incr[12][i], incr[13][i], incr[14][i], incr[15][i], sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ }; static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n, qid = arg2; uint32_t *buf, *p; char *qtype; u_int cim_num_obq = sc->chip_params->cim_num_obq; KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, ("%s: bad qid %d\n", __func__, qid)); if (qid < CIM_NUM_IBQ) { /* inbound queue */ qtype = "IBQ"; n = 4 * CIM_IBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_ibq(sc, qid, buf, n); } else { /* outbound queue */ qtype = "OBQ"; qid -= CIM_NUM_IBQ; n = 4 * cim_num_obq * CIM_OBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_obq(sc, qid, buf, n); } if (rc < 0) { rc = -rc; goto done; } n = rc * sizeof(uint32_t); /* rc has # of words actually read */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) { rc = ENOMEM; goto done; } sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); for (i = 0, p = buf; i < n; i += 16, p += 4) sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], p[2], p[3]); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static void sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) { uint32_t *p; sbuf_printf(sb, "Status Data PC%s", cfg & F_UPDBGLACAPTPCONLY ? "" : " LS0Stat LS0Addr LS0Data"); for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { if (cfg & F_UPDBGLACAPTPCONLY) { sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, p[6], p[7]); sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, p[4] & 0xff, p[5] >> 8); sbuf_printf(sb, "\n %02x %x%07x %x%07x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); } else { sbuf_printf(sb, "\n %02x %x%07x %x%07x %08x %08x " "%08x%08x%08x%08x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], p[6], p[7]); } } } static void sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) { uint32_t *p; sbuf_printf(sb, "Status Inst Data PC%s", cfg & F_UPDBGLACAPTPCONLY ? "" : " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { if (cfg & F_UPDBGLACAPTPCONLY) { sbuf_printf(sb, "\n %02x %08x %08x %08x", p[3] & 0xff, p[2], p[1], p[0]); sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, p[6] >> 16); } else { sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " "%08x %08x %08x %08x %08x %08x", (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, p[6] >> 16, p[2], p[1], p[0], p[5], p[4], p[3]); } } } static int sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) { uint32_t cfg, *buf; int rc; rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (rc != 0) return (rc); MPASS(flags == M_WAITOK || flags == M_NOWAIT); buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, M_ZERO | flags); if (buf == NULL) return (ENOMEM); rc = -t4_cim_read_la(sc, buf, NULL); if (rc != 0) goto done; if (chip_id(sc) < CHELSIO_T6) sbuf_cim_la4(sc, sb, buf, cfg); else sbuf_cim_la6(sc, sb, buf, cfg); done: free(buf, M_CXGBE); return (rc); } static int sysctl_cim_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); rc = sbuf_cim_la(sc, sb, M_WAITOK); if (rc == 0) rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } bool t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) { struct sbuf sb; int rc; if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) return (false); rc = sbuf_cim_la(sc, &sb, M_NOWAIT); if (rc == 0) { rc = sbuf_finish(&sb); if (rc == 0) { log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", device_get_nameunit(sc->dev), sbuf_data(&sb)); } } sbuf_delete(&sb); return (false); } static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); p = buf; for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, (p[1] >> 2) | ((p[2] & 3) << 30), (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, p[0] & 1); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); p = buf; sbuf_printf(sb, "Cntl ID DataBE Addr Data"); for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCntl ID Data"); for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t thres[CIM_NUM_IBQ]; uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; cim_num_obq = sc->chip_params->cim_num_obq; if (is_t4(sc)) { ibq_rdaddr = A_UP_IBQ_0_RDADDR; obq_rdaddr = A_UP_OBQ_0_REALADDR; } else { ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; } nq = CIM_NUM_IBQ + cim_num_obq; rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); if (rc == 0) rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); if (rc != 0) return (rc); t4_read_cimq_cfg(sc, base, size, thres); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); for ( ; i < nq; i++, p += 4, wr += 2) sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_cpl_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_cpl_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3"); sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", stats.req[0], stats.req[1], stats.req[2], stats.req[3]); sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); } else { sbuf_printf(sb, " channel 0 channel 1"); sbuf_printf(sb, "\nCPL requests: %10u %10u", stats.req[0], stats.req[1]); sbuf_printf(sb, "\nCPL responses: %10u %10u", stats.rsp[0], stats.rsp[1]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_usm_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_usm_stats(sc, &stats, 1); sbuf_printf(sb, "Frames: %u\n", stats.frames); sbuf_printf(sb, "Octets: %ju\n", stats.octets); sbuf_printf(sb, "Drops: %u", stats.drops); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static const char * const devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; static const char * const devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_CF] = "CF", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", [FW_DEVLOG_FACILITY_CHNET] = "CHNET", }; static int sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) { int i, j, rc, nentries, first = 0; struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e *buf, *e; uint64_t ftstamp = UINT64_MAX; if (dparams->addr == 0) return (ENXIO); MPASS(flags == M_WAITOK || flags == M_NOWAIT); buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); if (buf == NULL) return (ENOMEM); rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); if (rc != 0) goto done; nentries = dparams->size / sizeof(struct fw_devlog_e); for (i = 0; i < nentries; i++) { e = &buf[i]; if (e->timestamp == 0) break; /* end */ e->timestamp = be64toh(e->timestamp); e->seqno = be32toh(e->seqno); for (j = 0; j < 8; j++) e->params[j] = be32toh(e->params[j]); if (e->timestamp < ftstamp) { ftstamp = e->timestamp; first = i; } } if (buf[first].timestamp == 0) goto done; /* nothing in the log */ sbuf_printf(sb, "%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); i = first; do { e = &buf[i]; if (e->timestamp == 0) break; /* end */ sbuf_printf(sb, "%10d %15ju %8s %8s ", e->seqno, e->timestamp, (e->level < nitems(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < nitems(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); sbuf_printf(sb, e->fmt, e->params[0], e->params[1], e->params[2], e->params[3], e->params[4], e->params[5], e->params[6], e->params[7]); if (++i == nentries) i = 0; } while (i != first); done: free(buf, M_CXGBE); return (rc); } static int sysctl_devlog(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); rc = sbuf_devlog(sc, sb, M_WAITOK); if (rc == 0) rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } void t4_os_dump_devlog(struct adapter *sc) { int rc; struct sbuf sb; if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) return; rc = sbuf_devlog(sc, &sb, M_NOWAIT); if (rc == 0) { rc = sbuf_finish(&sb); if (rc == 0) { log(LOG_DEBUG, "%s: device log follows.\n%s", device_get_nameunit(sc->dev), sbuf_data(&sb)); } } sbuf_delete(&sb); } static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_fcoe_stats stats[MAX_NCHAN]; int i, nchan = sc->chip_params->nchan; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < nchan; i++) t4_get_fcoe_stats(sc, i, &stats[i], 1); if (nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3"); sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", stats[0].octets_ddp, stats[1].octets_ddp, stats[2].octets_ddp, stats[3].octets_ddp); sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", stats[0].frames_ddp, stats[1].frames_ddp, stats[2].frames_ddp, stats[3].frames_ddp); sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", stats[0].frames_drop, stats[1].frames_drop, stats[2].frames_drop, stats[3].frames_drop); } else { sbuf_printf(sb, " channel 0 channel 1"); sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", stats[0].octets_ddp, stats[1].octets_ddp); sbuf_printf(sb, "\nframesDDP: %16u %16u", stats[0].frames_ddp, stats[1].frames_ddp); sbuf_printf(sb, "\nframesDrop: %16u %16u", stats[0].frames_drop, stats[1].frames_drop); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; unsigned int map, kbps, ipg, mode; unsigned int pace_tab[NTX_SCHED]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); t4_read_pace_tbl(sc, pace_tab); sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " "Class IPG (0.1 ns) Flow IPG (us)"); for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { t4_get_tx_sched(sc, i, &kbps, &ipg, 1); sbuf_printf(sb, "\n %u %-5s %u ", i, (mode & (1 << i)) ? "flow" : "class", map & 3); if (kbps) sbuf_printf(sb, "%9u ", kbps); else sbuf_printf(sb, " disabled "); if (ipg) sbuf_printf(sb, "%13u ", ipg); else sbuf_printf(sb, " disabled "); if (pace_tab[i]) sbuf_printf(sb, "%10u", pace_tab[i]); else sbuf_printf(sb, " disabled"); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, j; uint64_t *p0, *p1; struct lb_port_stats s[2]; static const char *stat_name[] = { "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", "Frames128To255:", "Frames256To511:", "Frames512To1023:", "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", "BG2FramesTrunc:", "BG3FramesTrunc:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); memset(s, 0, sizeof(s)); for (i = 0; i < sc->chip_params->nchan; i += 2) { t4_get_lb_stats(sc, i, &s[0]); t4_get_lb_stats(sc, i + 1, &s[1]); p0 = &s[0].octets; p1 = &s[1].octets; sbuf_printf(sb, "%s Loopback %u" " Loopback %u", i == 0 ? "" : "\n", i, i + 1); for (j = 0; j < nitems(stat_name); j++) sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], *p0++, *p1++); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) { int rc = 0; struct port_info *pi = arg1; struct link_config *lc = &pi->link_cfg; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); if (sb == NULL) return (ENOMEM); if (lc->link_ok || lc->link_down_rc == 255) sbuf_printf(sb, "n/a"); else sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } struct mem_desc { unsigned int base; unsigned int limit; unsigned int idx; }; static int mem_desc_cmp(const void *a, const void *b) { return ((const struct mem_desc *)a)->base - ((const struct mem_desc *)b)->base; } static void mem_region_show(struct sbuf *sb, const char *name, unsigned int from, unsigned int to) { unsigned int size; if (from == to) return; size = to - from + 1; if (size == 0) return; /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); } static int sysctl_meminfo(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n; uint32_t lo, hi, used, alloc; static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; static const char *region[] = { "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", "TDDP region:", "TPT region:", "STAG region:", "RQ region:", "RQUDP region:", "PBL region:", "TXPBL region:", "DBVFIFO region:", "ULPRX state:", "ULPTX state:", "On-chip queues:", "TLS keys:", }; struct mem_desc avail[4]; struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ struct mem_desc *md = mem; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < nitems(mem); i++) { mem[i].limit = 0; mem[i].idx = i; } /* Find and sort the populated memory ranges */ i = 0; lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (lo & F_EDRAM0_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); avail[i].base = G_EDRAM0_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); avail[i].idx = 0; i++; } if (lo & F_EDRAM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); avail[i].base = G_EDRAM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); avail[i].idx = 1; i++; } if (lo & F_EXT_MEM_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); avail[i].base = G_EXT_MEM_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ i++; } if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); avail[i].base = G_EXT_MEM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); avail[i].idx = 4; i++; } if (!i) /* no memory available */ return 0; qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); /* the next few have explicit upper bounds */ md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); md++; md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); md++; if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { if (chip_id(sc) <= CHELSIO_T5) md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); else md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); md->limit = 0; } else { md->base = 0; md->idx = nitems(region); /* hide it */ } md++; #define ulp_region(reg) \ md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) ulp_region(RX_ISCSI); ulp_region(RX_TDDP); ulp_region(TX_TPT); ulp_region(RX_STAG); ulp_region(RX_RQ); ulp_region(RX_RQUDP); ulp_region(RX_PBL); ulp_region(TX_PBL); #undef ulp_region md->base = 0; md->idx = nitems(region); if (!is_t4(sc)) { uint32_t size = 0; uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); if (is_t5(sc)) { if (sge_ctrl & F_VFIFO_ENABLE) size = G_DBVFIFO_SIZE(fifo_size); } else size = G_T6_DBVFIFO_SIZE(fifo_size); if (size) { md->base = G_BASEADDR(t4_read_reg(sc, A_SGE_DBVFIFO_BADDR)); md->limit = md->base + (size << 2) - 1; } } md++; md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); md->limit = 0; md++; md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); md->limit = 0; md++; md->base = sc->vres.ocq.start; if (sc->vres.ocq.size) md->limit = md->base + sc->vres.ocq.size - 1; else md->idx = nitems(region); /* hide it */ md++; md->base = sc->vres.key.start; if (sc->vres.key.size) md->limit = md->base + sc->vres.key.size - 1; else md->idx = nitems(region); /* hide it */ md++; /* add any address-space holes, there can be up to 3 */ for (n = 0; n < i - 1; n++) if (avail[n].limit < avail[n + 1].base) (md++)->base = avail[n].limit; if (avail[n].limit) (md++)->base = avail[n].limit; n = md - mem; qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); for (lo = 0; lo < i; lo++) mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, avail[lo].limit - 1); sbuf_printf(sb, "\n"); for (i = 0; i < n; i++) { if (mem[i].idx >= nitems(region)) continue; /* skip holes */ if (!mem[i].limit) mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; mem_region_show(sb, region[mem[i].idx], mem[i].base, mem[i].limit); } sbuf_printf(sb, "\n"); lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP RAM:", lo, hi); lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP Extmem2:", lo, hi); lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", G_PMRXMAXPAGE(lo), t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, (lo & F_PMRXNUMCHN) ? 2 : 1); lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", G_PMTXMAXPAGE(lo), hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); sbuf_printf(sb, "%u p-structs\n", t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); for (i = 0; i < 4; i++) { if (chip_id(sc) > CHELSIO_T5) lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); else lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); if (is_t5(sc)) { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } else { used = G_USED(lo); alloc = G_ALLOC(lo); } /* For T6 these are MAC buffer groups */ sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", i, used, alloc); } for (i = 0; i < sc->chip_params->nchan; i++) { if (chip_id(sc) > CHELSIO_T5) lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); else lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); if (is_t5(sc)) { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } else { used = G_USED(lo); alloc = G_ALLOC(lo); } /* For T6 these are MAC buffer groups */ sbuf_printf(sb, "\nLoopback %d using %u pages out of %u allocated", i, used, alloc); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static inline void tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) { *mask = x | y; y = htobe64(y); memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); } static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; MPASS(chip_id(sc) <= CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Idx Ethernet address Mask Vld Ports PF" " VF Replication P0 P1 P2 P3 ML"); for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { uint64_t tcamx, tcamy, mask; uint32_t cls_lo, cls_hi; uint8_t addr[ETHER_ADDR_LEN]; tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); if (tcamx & tcamy) continue; tcamxy2valmask(tcamx, tcamy, addr, &mask); cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask, (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', G_PORTMAP(cls_hi), G_PF(cls_lo), (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); if (cls_lo & F_REPLICATE) { struct fw_ldst_cmd ldst_cmd; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htobe32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | V_FW_LDST_CMD_IDX(i)); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mps"); if (rc) break; rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); end_synchronized_op(sc, 0); if (rc != 0) { sbuf_printf(sb, "%36d", rc); rc = 0; } else { sbuf_printf(sb, " %08x %08x %08x %08x", be32toh(ldst_cmd.u.mps.rplc.rplc127_96), be32toh(ldst_cmd.u.mps.rplc.rplc95_64), be32toh(ldst_cmd.u.mps.rplc.rplc63_32), be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); } } else sbuf_printf(sb, "%36s", ""); sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); } if (rc) (void) sbuf_finish(sb); else rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; MPASS(chip_id(sc) > CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" " Replication" " P0 P1 P2 P3 ML\n"); for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { uint8_t dip_hit, vlan_vld, lookup_type, port_num; uint16_t ivlan; uint64_t tcamx, tcamy, val, mask; uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; uint8_t addr[ETHER_ADDR_LEN]; ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); if (i < 256) ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); else ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); tcamy = G_DMACH(val) << 32; tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); lookup_type = G_DATALKPTYPE(data2); port_num = G_DATAPORTNUM(data2); if (lookup_type && lookup_type != M_DATALKPTYPE) { /* Inner header VNI */ vniy = ((data2 & F_DATAVIDH2) << 23) | (G_DATAVIDH1(data2) << 16) | G_VIDL(val); dip_hit = data2 & F_DATADIPHIT; vlan_vld = 0; } else { vniy = 0; dip_hit = 0; vlan_vld = data2 & F_DATAVIDH2; ivlan = G_VIDL(val); } ctl |= V_CTLXYBITSEL(1); t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); tcamx = G_DMACH(val) << 32; tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); if (lookup_type && lookup_type != M_DATALKPTYPE) { /* Inner header VNI mask */ vnix = ((data2 & F_DATAVIDH2) << 23) | (G_DATAVIDH1(data2) << 16) | G_VIDL(val); } else vnix = 0; if (tcamx & tcamy) continue; tcamxy2valmask(tcamx, tcamy, addr, &mask); cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); if (lookup_type && lookup_type != M_DATALKPTYPE) { sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " "%012jx %06x %06x - - %3c" " 'I' %4x %3c %#x%4u%4d", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', G_PORTMAP(cls_hi), G_T6_PF(cls_lo), cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); } else { sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " "%012jx - - ", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask); if (vlan_vld) sbuf_printf(sb, "%4u Y ", ivlan); else sbuf_printf(sb, " - N "); sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", lookup_type ? 'I' : 'O', port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', G_PORTMAP(cls_hi), G_T6_PF(cls_lo), cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); } if (cls_lo & F_T6_REPLICATE) { struct fw_ldst_cmd ldst_cmd; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htobe32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | V_FW_LDST_CMD_IDX(i)); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t6mps"); if (rc) break; rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); end_synchronized_op(sc, 0); if (rc != 0) { sbuf_printf(sb, "%72d", rc); rc = 0; } else { sbuf_printf(sb, " %08x %08x %08x %08x" " %08x %08x %08x %08x", be32toh(ldst_cmd.u.mps.rplc.rplc255_224), be32toh(ldst_cmd.u.mps.rplc.rplc223_192), be32toh(ldst_cmd.u.mps.rplc.rplc191_160), be32toh(ldst_cmd.u.mps.rplc.rplc159_128), be32toh(ldst_cmd.u.mps.rplc.rplc127_96), be32toh(ldst_cmd.u.mps.rplc.rplc95_64), be32toh(ldst_cmd.u.mps.rplc.rplc63_32), be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); } } else sbuf_printf(sb, "%72s", ""); sbuf_printf(sb, "%4u%3u%3u%3u %#x", G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), (cls_lo >> S_T6_MULTILISTEN0) & 0xf); } if (rc) (void) sbuf_finish(sb); else rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint16_t mtus[NMTUS]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_read_mtu_tbl(sc, mtus, NULL); sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], mtus[14], mtus[15]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; static const char *tx_stats[MAX_PM_NSTATS] = { "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", "Tx FIFO wait", NULL, "Tx latency" }; static const char *rx_stats[MAX_PM_NSTATS] = { "Read:", "Write bypass:", "Write mem:", "Flush:", "Rx FIFO wait", NULL, "Rx latency" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); sbuf_printf(sb, " Tx pcmds Tx bytes"); for (i = 0; i < 4; i++) { sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); } sbuf_printf(sb, "\n Rx pcmds Rx bytes"); for (i = 0; i < 4; i++) { sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); } if (chip_id(sc) > CHELSIO_T5) { sbuf_printf(sb, "\n Total wait Total occupancy"); sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); i += 2; MPASS(i < nitems(tx_stats)); sbuf_printf(sb, "\n Reads Total wait"); sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], tx_cyc[i]); sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], rx_cyc[i]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_rdma_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_rdma_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_tcp_stats v4, v6; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_tcp_stats(sc, &v4, &v6, 0); mtx_unlock(&sc->reg_lock); sbuf_printf(sb, " IP IPv6\n"); sbuf_printf(sb, "OutRsts: %20u %20u\n", v4.tcp_out_rsts, v6.tcp_out_rsts); sbuf_printf(sb, "InSegs: %20ju %20ju\n", v4.tcp_in_segs, v6.tcp_in_segs); sbuf_printf(sb, "OutSegs: %20ju %20ju\n", v4.tcp_out_segs, v6.tcp_out_segs); sbuf_printf(sb, "RetransSegs: %20ju %20ju", v4.tcp_retrans_segs, v6.tcp_retrans_segs); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tids(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tid_info *t = &sc->tids; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); if (t->natids) { sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, t->atids_in_use); } if (t->nhpftids) { sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", t->hpftid_base, t->hpftid_end, t->hpftids_in_use); } if (t->ntids) { sbuf_printf(sb, "TID range: "); if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { uint32_t b, hb; if (chip_id(sc) <= CHELSIO_T5) { b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; } else { b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); } if (b) sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1); sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); } else sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1); sbuf_printf(sb, ", in use: %u\n", atomic_load_acq_int(&t->tids_in_use)); } if (t->nstids) { sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, t->stid_base + t->nstids - 1, t->stids_in_use); } if (t->nftids) { sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, t->ftid_end, t->ftids_in_use); } if (t->netids) { sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, t->etid_base + t->netids - 1, t->etids_in_use); } sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_err_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); mtx_lock(&sc->reg_lock); t4_tp_get_err_stats(sc, &stats, 0); mtx_unlock(&sc->reg_lock); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3\n"); sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", stats.mac_in_errs[0], stats.mac_in_errs[1], stats.mac_in_errs[2], stats.mac_in_errs[3]); sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", stats.hdr_in_errs[0], stats.hdr_in_errs[1], stats.hdr_in_errs[2], stats.hdr_in_errs[3]); sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", stats.tcp_in_errs[0], stats.tcp_in_errs[1], stats.tcp_in_errs[2], stats.tcp_in_errs[3]); sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); } else { sbuf_printf(sb, " channel 0 channel 1\n"); sbuf_printf(sb, "macInErrs: %10u %10u\n", stats.mac_in_errs[0], stats.mac_in_errs[1]); sbuf_printf(sb, "hdrInErrs: %10u %10u\n", stats.hdr_in_errs[0], stats.hdr_in_errs[1]); sbuf_printf(sb, "tcpInErrs: %10u %10u\n", stats.tcp_in_errs[0], stats.tcp_in_errs[1]); sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); } sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", stats.ofld_no_neigh, stats.ofld_cong_defer); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct tp_params *tpp = &sc->params.tp; u_int mask; int rc; mask = tpp->la_mask >> 16; rc = sysctl_handle_int(oidp, &mask, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (mask > 0xffff) return (EINVAL); tpp->la_mask = mask << 16; t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); return (0); } struct field_desc { const char *name; u_int start; u_int width; }; static void field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) { char buf[32]; int line_size = 0; while (f->name) { uint64_t mask = (1ULL << f->width) - 1; int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, ((uintmax_t)v >> f->start) & mask); if (line_size + len >= 79) { line_size = 8; sbuf_printf(sb, "\n "); } sbuf_printf(sb, "%s ", buf); line_size += len + 1; f++; } sbuf_printf(sb, "\n"); } static const struct field_desc tp_la0[] = { { "RcfOpCodeOut", 60, 4 }, { "State", 56, 4 }, { "WcfState", 52, 4 }, { "RcfOpcSrcOut", 50, 2 }, { "CRxError", 49, 1 }, { "ERxError", 48, 1 }, { "SanityFailed", 47, 1 }, { "SpuriousMsg", 46, 1 }, { "FlushInputMsg", 45, 1 }, { "FlushInputCpl", 44, 1 }, { "RssUpBit", 43, 1 }, { "RssFilterHit", 42, 1 }, { "Tid", 32, 10 }, { "InitTcb", 31, 1 }, { "LineNumber", 24, 7 }, { "Emsg", 23, 1 }, { "EdataOut", 22, 1 }, { "Cmsg", 21, 1 }, { "CdataOut", 20, 1 }, { "EreadPdu", 19, 1 }, { "CreadPdu", 18, 1 }, { "TunnelPkt", 17, 1 }, { "RcfPeerFin", 16, 1 }, { "RcfReasonOut", 12, 4 }, { "TxCchannel", 10, 2 }, { "RcfTxChannel", 8, 2 }, { "RxEchannel", 6, 2 }, { "RcfRxChannel", 5, 1 }, { "RcfDataOutSrdy", 4, 1 }, { "RxDvld", 3, 1 }, { "RxOoDvld", 2, 1 }, { "RxCongestion", 1, 1 }, { "TxCongestion", 0, 1 }, { NULL } }; static const struct field_desc tp_la1[] = { { "CplCmdIn", 56, 8 }, { "CplCmdOut", 48, 8 }, { "ESynOut", 47, 1 }, { "EAckOut", 46, 1 }, { "EFinOut", 45, 1 }, { "ERstOut", 44, 1 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static const struct field_desc tp_la2[] = { { "CplCmdIn", 56, 8 }, { "MpsVfVld", 55, 1 }, { "MpsPf", 52, 3 }, { "MpsVf", 44, 8 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static void tp_la_show(struct sbuf *sb, uint64_t *p, int idx) { field_desc_show(sb, *p, tp_la0); } static void tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], tp_la0); } static void tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); } static int sysctl_tp_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint64_t *buf, *p; int rc; u_int i, inc; void (*show_func)(struct sbuf *, uint64_t *, int); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); t4_tp_read_la(sc, buf, NULL); p = buf; switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { case 2: inc = 2; show_func = tp_la_show2; break; case 3: inc = 2; show_func = tp_la_show3; break; default: inc = 1; show_func = tp_la_show; } for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) (*show_func)(sb, p, i); rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_chan_txrate(sc, nrate, orate); if (sc->chip_params->nchan > 2) { sbuf_printf(sb, " channel 0 channel 1" " channel 2 channel 3\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", nrate[0], nrate[1], nrate[2], nrate[3]); sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", orate[0], orate[1], orate[2], orate[3]); } else { sbuf_printf(sb, " channel 0 channel 1\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", nrate[0], nrate[1]); sbuf_printf(sb, "Offload B/s: %10ju %10ju", orate[0], orate[1]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint32_t *buf, *p; int rc, i; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_ulprx_read_la(sc, buf); p = buf; sbuf_printf(sb, " Pcmd Type Message" " Data"); for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, v; MPASS(chip_id(sc) >= CHELSIO_T5); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); v = t4_read_reg(sc, A_SGE_STAT_CFG); if (G_STATSOURCE_T5(v) == 7) { int mode; mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); if (mode == 0) { sbuf_printf(sb, "total %d, incomplete %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } else if (mode == 1) { sbuf_printf(sb, "total %d, data overflow %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } else { sbuf_printf(sb, "unknown mode %d", mode); } } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; enum cpu_sets op = arg2; cpuset_t cpuset; struct sbuf *sb; int i, rc; MPASS(op == LOCAL_CPUS || op == INTR_CPUS); CPU_ZERO(&cpuset); rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); if (rc != 0) return (rc); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); CPU_FOREACH(i) sbuf_printf(sb, "%d ", i); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } #ifdef TCP_OFFLOAD static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int *old_ports, *new_ports; int i, new_count, rc; if (req->newptr == NULL && req->oldptr == NULL) return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * sizeof(sc->tt.tls_rx_ports[0]))); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); if (rc) return (rc); if (sc->tt.num_tls_rx_ports == 0) { i = -1; rc = SYSCTL_OUT(req, &i, sizeof(i)); } else rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); if (rc == 0 && req->newptr != NULL) { new_count = req->newlen / sizeof(new_ports[0]); new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, M_WAITOK); rc = SYSCTL_IN(req, new_ports, new_count * sizeof(new_ports[0])); if (rc) goto err; /* Allow setting to a single '-1' to clear the list. */ if (new_count == 1 && new_ports[0] == -1) { ADAPTER_LOCK(sc); old_ports = sc->tt.tls_rx_ports; sc->tt.tls_rx_ports = NULL; sc->tt.num_tls_rx_ports = 0; ADAPTER_UNLOCK(sc); free(old_ports, M_CXGBE); } else { for (i = 0; i < new_count; i++) { if (new_ports[i] < 1 || new_ports[i] > IPPORT_MAX) { rc = EINVAL; goto err; } } ADAPTER_LOCK(sc); old_ports = sc->tt.tls_rx_ports; sc->tt.tls_rx_ports = new_ports; sc->tt.num_tls_rx_ports = new_count; ADAPTER_UNLOCK(sc); free(old_ports, M_CXGBE); new_ports = NULL; } err: free(new_ports, M_CXGBE); } end_synchronized_op(sc, 0); return (rc); } static void unit_conv(char *buf, size_t len, u_int val, u_int factor) { u_int rem = val % factor; if (rem == 0) snprintf(buf, len, "%u", val / factor); else { while (rem % 10 == 0) rem /= 10; snprintf(buf, len, "%u.%u", val / factor, rem); } } static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; char buf[16]; u_int res, re; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); switch (arg2) { case 0: /* timer_tick */ re = G_TIMERRESOLUTION(res); break; case 1: /* TCP timestamp tick */ re = G_TIMESTAMPRESOLUTION(res); break; case 2: /* DACK tick */ re = G_DELAYEDACKRESOLUTION(res); break; default: return (EDOOFUS); } unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); } static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int res, dack_re, v; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); dack_re = G_DELAYEDACKRESOLUTION(res); v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; u_int tre; u_long tp_tick_us, v; u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); tp_tick_us = (cclk_ps << tre) / 1000000; if (reg == A_TP_INIT_SRTT) v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); else v = tp_tick_us * t4_read_reg(sc, reg); return (sysctl_handle_long(oidp, &v, 0, req)); } /* * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is * passed to this function. */ static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int idx = arg2; u_int v; MPASS(idx >= 0 && idx <= 24); v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int idx = arg2; u_int shift, v, r; MPASS(idx >= 0 && idx < 16); r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); shift = (idx & 3) << 3; v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; return (sysctl_handle_int(oidp, &v, 0, req)); } static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc, i; struct sge_ofld_rxq *ofld_rxq; uint8_t v; idx = vi->ofld_tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4otmr"); if (rc) return (rc); v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); for_each_ofld_rxq(vi, i, ofld_rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); #else ofld_rxq->iq.intr_params = v; #endif } vi->ofld_tmr_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (0); } static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct adapter *sc = vi->pi->adapter; int idx, rc; idx = vi->ofld_pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4opktc"); if (rc) return (rc); if (vi->flags & VI_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else vi->ofld_pktc_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (rc); } #endif static int get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) { int rc; if (cntxt->cid > M_CTXTQID) return (EINVAL); if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) return (EINVAL); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); if (rc) return (rc); if (sc->flags & FW_OK) { rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); if (rc == 0) goto done; } /* * Read via firmware failed or wasn't even attempted. Read directly via * the backdoor. */ rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); done: end_synchronized_op(sc, 0); return (rc); } static int load_fw(struct adapter *sc, struct t4_data *fw) { int rc; uint8_t *fw_data; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); if (rc) return (rc); /* * The firmware, with the sole exception of the memory parity error * handler, runs from memory and not flash. It is almost always safe to * install a new firmware on a running system. Just set bit 1 in * hw.cxgbe.dflags or dev...dflags first. */ if (sc->flags & FULL_INIT_DONE && (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { rc = EBUSY; goto done; } fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); if (fw_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(fw->data, fw_data, fw->len); if (rc == 0) rc = -t4_load_fw(sc, fw_data, fw->len); free(fw_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_cfg(struct adapter *sc, struct t4_data *cfg) { int rc; uint8_t *cfg_data = NULL; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); if (rc) return (rc); if (cfg->len == 0) { /* clear */ rc = -t4_load_cfg(sc, NULL, 0); goto done; } cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); if (cfg_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(cfg->data, cfg_data, cfg->len); if (rc == 0) rc = -t4_load_cfg(sc, cfg_data, cfg->len); free(cfg_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_boot(struct adapter *sc, struct t4_bootrom *br) { int rc; uint8_t *br_data = NULL; u_int offset; if (br->len > 1024 * 1024) return (EFBIG); if (br->pf_offset == 0) { /* pfidx */ if (br->pfidx_addr > 7) return (EINVAL); offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, A_PCIE_PF_EXPROM_OFST))); } else if (br->pf_offset == 1) { /* offset */ offset = G_OFFSET(br->pfidx_addr); } else { return (EINVAL); } rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); if (rc) return (rc); if (br->len == 0) { /* clear */ rc = -t4_load_boot(sc, NULL, offset, 0); goto done; } br_data = malloc(br->len, M_CXGBE, M_WAITOK); if (br_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(br->data, br_data, br->len); if (rc == 0) rc = -t4_load_boot(sc, br_data, offset, br->len); free(br_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int load_bootcfg(struct adapter *sc, struct t4_data *bc) { int rc; uint8_t *bc_data = NULL; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); if (rc) return (rc); if (bc->len == 0) { /* clear */ rc = -t4_load_bootcfg(sc, NULL, 0); goto done; } bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); if (bc_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(bc->data, bc_data, bc->len); if (rc == 0) rc = -t4_load_bootcfg(sc, bc_data, bc->len); free(bc_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) { int rc; struct cudbg_init *cudbg; void *handle, *buf; /* buf is large, don't block if no memory is available */ buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); if (buf == NULL) return (ENOMEM); handle = cudbg_alloc_handle(); if (handle == NULL) { rc = ENOMEM; goto done; } cudbg = cudbg_get_init(handle); cudbg->adap = sc; cudbg->print = (cudbg_print_cb)printf; #ifndef notyet device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", __func__, dump->wr_flash, dump->len, dump->data); #endif if (dump->wr_flash) cudbg->use_flash = 1; MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); rc = cudbg_collect(handle, buf, &dump->len); if (rc != 0) goto done; rc = copyout(buf, dump->data, dump->len); done: cudbg_free_handle(handle); free(buf, M_CXGBE); return (rc); } static void free_offload_policy(struct t4_offload_policy *op) { struct offload_rule *r; int i; if (op == NULL) return; r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { free(r->bpf_prog.bf_insns, M_CXGBE); } free(op->rule, M_CXGBE); free(op, M_CXGBE); } static int set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) { int i, rc, len; struct t4_offload_policy *op, *old; struct bpf_program *bf; const struct offload_settings *s; struct offload_rule *r; void *u; if (!is_offload(sc)) return (ENODEV); if (uop->nrules == 0) { /* Delete installed policies. */ op = NULL; goto set_policy; } if (uop->nrules > 256) { /* arbitrary */ return (E2BIG); } /* Copy userspace offload policy to kernel */ op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); op->nrules = uop->nrules; len = op->nrules * sizeof(struct offload_rule); op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); rc = copyin(uop->rule, op->rule, len); if (rc) { free(op->rule, M_CXGBE); free(op, M_CXGBE); return (rc); } r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { /* Validate open_type */ if (r->open_type != OPEN_TYPE_LISTEN && r->open_type != OPEN_TYPE_ACTIVE && r->open_type != OPEN_TYPE_PASSIVE && r->open_type != OPEN_TYPE_DONTCARE) { error: /* * Rules 0 to i have malloc'd filters that need to be * freed. Rules i+1 to nrules have userspace pointers * and should be left alone. */ op->nrules = i; free_offload_policy(op); return (rc); } /* Validate settings */ s = &r->settings; if ((s->offload != 0 && s->offload != 1) || s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || s->sched_class < -1 || s->sched_class >= sc->chip_params->nsched_cls) { rc = EINVAL; goto error; } bf = &r->bpf_prog; u = bf->bf_insns; /* userspace ptr */ bf->bf_insns = NULL; if (bf->bf_len == 0) { /* legal, matches everything */ continue; } len = bf->bf_len * sizeof(*bf->bf_insns); bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); rc = copyin(u, bf->bf_insns, len); if (rc != 0) goto error; if (!bpf_validate(bf->bf_insns, bf->bf_len)) { rc = EINVAL; goto error; } } set_policy: rw_wlock(&sc->policy_lock); old = sc->policy; sc->policy = op; rw_wunlock(&sc->policy_lock); free_offload_policy(old); return (0); } #define MAX_READ_BUF_SIZE (128 * 1024) static int read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) { uint32_t addr, remaining, n; uint32_t *buf; int rc; uint8_t *dst; rc = validate_mem_range(sc, mr->addr, mr->len); if (rc != 0) return (rc); buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); addr = mr->addr; remaining = mr->len; dst = (void *)mr->data; while (remaining) { n = min(remaining, MAX_READ_BUF_SIZE); read_via_memwin(sc, 2, addr, buf, n); rc = copyout(buf, dst, n); if (rc != 0) break; dst += n; remaining -= n; addr += n; } free(buf, M_CXGBE); return (rc); } #undef MAX_READ_BUF_SIZE static int read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) { int rc; if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) return (EINVAL); if (i2cd->len > sizeof(i2cd->data)) return (EFBIG); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); if (rc) return (rc); rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, i2cd->offset, i2cd->len, &i2cd->data[0]); end_synchronized_op(sc, 0); return (rc); } int t4_os_find_pci_capability(struct adapter *sc, int cap) { int i; return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); } int t4_os_pci_save_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); return (0); } int t4_os_pci_restore_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); return (0); } void t4_os_portmod_changed(struct port_info *pi) { struct adapter *sc = pi->adapter; struct vi_info *vi; struct ifnet *ifp; static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" }; KASSERT((pi->flags & FIXED_IFMEDIA) == 0, ("%s: port_type %u", __func__, pi->port_type)); vi = &pi->vi[0]; if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { PORT_LOCK(pi); build_medialist(pi); if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { fixup_link_config(pi); apply_link_config(pi); } PORT_UNLOCK(pi); end_synchronized_op(sc, LOCK_HELD); } ifp = vi->ifp; if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) if_printf(ifp, "transceiver unplugged.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) if_printf(ifp, "unknown transceiver inserted.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) if_printf(ifp, "unsupported transceiver inserted.\n"); else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { if_printf(ifp, "%dGbps %s transceiver inserted.\n", port_top_speed(pi), mod_str[pi->mod_type]); } else { if_printf(ifp, "transceiver (type %d) inserted.\n", pi->mod_type); } } void t4_os_link_changed(struct port_info *pi) { struct vi_info *vi; struct ifnet *ifp; struct link_config *lc; int v; PORT_LOCK_ASSERT_OWNED(pi); for_each_vi(pi, v, vi) { ifp = vi->ifp; if (ifp == NULL) continue; lc = &pi->link_cfg; if (lc->link_ok) { ifp->if_baudrate = IF_Mbps(lc->speed); if_link_state_change(ifp, LINK_STATE_UP); } else { if_link_state_change(ifp, LINK_STATE_DOWN); } } } void t4_iterate(void (*func)(struct adapter *, void *), void *arg) { struct adapter *sc; sx_slock(&t4_list_lock); SLIST_FOREACH(sc, &t4_list, link) { /* * func should not make any assumptions about what state sc is * in - the only guarantee is that sc->sc_lock is a valid lock. */ func(sc, arg); } sx_sunlock(&t4_list_lock); } static int t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct adapter *sc = dev->si_drv1; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (rc); switch (cmd) { case CHELSIO_T4_GETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) edata->val = t4_read_reg(sc, edata->addr); else if (edata->size == 8) edata->val = t4_read_reg64(sc, edata->addr); else return (EINVAL); break; } case CHELSIO_T4_SETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) { if (edata->val & 0xffffffff00000000) return (EINVAL); t4_write_reg(sc, edata->addr, (uint32_t) edata->val); } else if (edata->size == 8) t4_write_reg64(sc, edata->addr, edata->val); else return (EINVAL); break; } case CHELSIO_T4_REGDUMP: { struct t4_regdump *regs = (struct t4_regdump *)data; int reglen = t4_get_regs_len(sc); uint8_t *buf; if (regs->len < reglen) { regs->len = reglen; /* hint to the caller */ return (ENOBUFS); } regs->len = reglen; buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); get_regs(sc, regs, buf); rc = copyout(buf, regs->data, reglen); free(buf, M_CXGBE); break; } case CHELSIO_T4_GET_FILTER_MODE: rc = get_filter_mode(sc, (uint32_t *)data); break; case CHELSIO_T4_SET_FILTER_MODE: rc = set_filter_mode(sc, *(uint32_t *)data); break; case CHELSIO_T4_GET_FILTER: rc = get_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_SET_FILTER: rc = set_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_DEL_FILTER: rc = del_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_GET_SGE_CONTEXT: rc = get_sge_context(sc, (struct t4_sge_context *)data); break; case CHELSIO_T4_LOAD_FW: rc = load_fw(sc, (struct t4_data *)data); break; case CHELSIO_T4_GET_MEM: rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); break; case CHELSIO_T4_GET_I2C: rc = read_i2c(sc, (struct t4_i2c_data *)data); break; case CHELSIO_T4_CLEAR_STATS: { int i, v, bg_map; u_int port_id = *(uint32_t *)data; struct port_info *pi; struct vi_info *vi; if (port_id >= sc->params.nports) return (EINVAL); pi = sc->port[port_id]; if (pi == NULL) return (EIO); /* MAC stats */ t4_clr_port_stats(sc, pi->tx_chan); pi->tx_parse_error = 0; pi->tnl_cong_drops = 0; mtx_lock(&sc->reg_lock); for_each_vi(pi, v, vi) { if (vi->flags & VI_INIT_DONE) t4_clr_vi_stats(sc, vi->vin); } bg_map = pi->mps_bg_map; v = 0; /* reuse */ while (bg_map) { i = ffs(bg_map) - 1; t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, A_TP_MIB_TNL_CNG_DROP_0 + i); bg_map &= ~(1 << i); } mtx_unlock(&sc->reg_lock); /* * Since this command accepts a port, clear stats for * all VIs on this port. */ for_each_vi(pi, v, vi) { if (vi->flags & VI_INIT_DONE) { struct sge_rxq *rxq; struct sge_txq *txq; struct sge_wrq *wrq; for_each_rxq(vi, i, rxq) { #if defined(INET) || defined(INET6) rxq->lro.lro_queued = 0; rxq->lro.lro_flushed = 0; #endif rxq->rxcsum = 0; rxq->vlan_extraction = 0; } for_each_txq(vi, i, txq) { txq->txcsum = 0; txq->tso_wrs = 0; txq->vlan_insertion = 0; txq->imm_wrs = 0; txq->sgl_wrs = 0; txq->txpkt_wrs = 0; txq->txpkts0_wrs = 0; txq->txpkts1_wrs = 0; txq->txpkts0_pkts = 0; txq->txpkts1_pkts = 0; txq->raw_wrs = 0; mp_ring_reset_stats(txq->r); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) /* nothing to clear for each ofld_rxq */ for_each_ofld_txq(vi, i, wrq) { wrq->tx_wrs_direct = 0; wrq->tx_wrs_copied = 0; } #endif if (IS_MAIN_VI(vi)) { wrq = &sc->sge.ctrlq[pi->port_id]; wrq->tx_wrs_direct = 0; wrq->tx_wrs_copied = 0; } } } break; } case CHELSIO_T4_SCHED_CLASS: rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); break; case CHELSIO_T4_SCHED_QUEUE: rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); break; case CHELSIO_T4_GET_TRACER: rc = t4_get_tracer(sc, (struct t4_tracer *)data); break; case CHELSIO_T4_SET_TRACER: rc = t4_set_tracer(sc, (struct t4_tracer *)data); break; case CHELSIO_T4_LOAD_CFG: rc = load_cfg(sc, (struct t4_data *)data); break; case CHELSIO_T4_LOAD_BOOT: rc = load_boot(sc, (struct t4_bootrom *)data); break; case CHELSIO_T4_LOAD_BOOTCFG: rc = load_bootcfg(sc, (struct t4_data *)data); break; case CHELSIO_T4_CUDBG_DUMP: rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); break; case CHELSIO_T4_SET_OFLD_POLICY: rc = set_offload_policy(sc, (struct t4_offload_policy *)data); break; default: rc = ENOTTY; } return (rc); } #ifdef TCP_OFFLOAD static int toe_capability(struct vi_info *vi, int enable) { int rc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; ASSERT_SYNCHRONIZED_OP(sc); if (!is_offload(sc)) return (ENODEV); if (enable) { if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { /* TOE is already enabled. */ return (0); } /* * We need the port's queues around so that we're able to send * and receive CPLs to/from the TOE even if the ifnet for this * port has never been UP'd administratively. */ if (!(vi->flags & VI_INIT_DONE)) { rc = vi_full_init(vi); if (rc) return (rc); } if (!(pi->vi[0].flags & VI_INIT_DONE)) { rc = vi_full_init(&pi->vi[0]); if (rc) return (rc); } if (isset(&sc->offload_map, pi->port_id)) { /* TOE is enabled on another VI of this port. */ pi->uld_vis++; return (0); } if (!uld_active(sc, ULD_TOM)) { rc = t4_activate_uld(sc, ULD_TOM); if (rc == EAGAIN) { log(LOG_WARNING, "You must kldload t4_tom.ko before trying " "to enable TOE on a cxgbe interface.\n"); } if (rc != 0) return (rc); KASSERT(sc->tom_softc != NULL, ("%s: TOM activated but softc NULL", __func__)); KASSERT(uld_active(sc, ULD_TOM), ("%s: TOM activated but flag not set", __func__)); } /* Activate iWARP and iSCSI too, if the modules are loaded. */ if (!uld_active(sc, ULD_IWARP)) (void) t4_activate_uld(sc, ULD_IWARP); if (!uld_active(sc, ULD_ISCSI)) (void) t4_activate_uld(sc, ULD_ISCSI); pi->uld_vis++; setbit(&sc->offload_map, pi->port_id); } else { pi->uld_vis--; if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) return (0); KASSERT(uld_active(sc, ULD_TOM), ("%s: TOM never initialized?", __func__)); clrbit(&sc->offload_map, pi->port_id); } return (0); } /* * Add an upper layer driver to the global list. */ int t4_register_uld(struct uld_info *ui) { int rc = 0; struct uld_info *u; sx_xlock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u->uld_id == ui->uld_id) { rc = EEXIST; goto done; } } SLIST_INSERT_HEAD(&t4_uld_list, ui, link); ui->refcount = 0; done: sx_xunlock(&t4_uld_list_lock); return (rc); } int t4_unregister_uld(struct uld_info *ui) { int rc = EINVAL; struct uld_info *u; sx_xlock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u == ui) { if (ui->refcount > 0) { rc = EBUSY; goto done; } SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); rc = 0; goto done; } } done: sx_xunlock(&t4_uld_list_lock); return (rc); } int t4_activate_uld(struct adapter *sc, int id) { int rc; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); if (id < 0 || id > ULD_MAX) return (EINVAL); rc = EAGAIN; /* kldoad the module with this ULD and try again. */ sx_slock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { if (!(sc->flags & FULL_INIT_DONE)) { rc = adapter_full_init(sc); if (rc != 0) break; } rc = ui->activate(sc); if (rc == 0) { setbit(&sc->active_ulds, id); ui->refcount++; } break; } } sx_sunlock(&t4_uld_list_lock); return (rc); } int t4_deactivate_uld(struct adapter *sc, int id) { int rc; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); if (id < 0 || id > ULD_MAX) return (EINVAL); rc = ENXIO; sx_slock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->deactivate(sc); if (rc == 0) { clrbit(&sc->active_ulds, id); ui->refcount--; } break; } } sx_sunlock(&t4_uld_list_lock); return (rc); } int uld_active(struct adapter *sc, int uld_id) { MPASS(uld_id >= 0 && uld_id <= ULD_MAX); return (isset(&sc->active_ulds, uld_id)); } #endif /* * t = ptr to tunable. * nc = number of CPUs. * c = compiled in default for that tunable. */ static void calculate_nqueues(int *t, int nc, const int c) { int nq; if (*t > 0) return; nq = *t < 0 ? -*t : c; *t = min(nc, nq); } /* * Come up with reasonable defaults for some of the tunables, provided they're * not set by the user (in which case we'll use the values as is). */ static void tweak_tunables(void) { int nc = mp_ncpus; /* our snapshot of the number of CPUs */ if (t4_ntxq < 1) { #ifdef RSS t4_ntxq = rss_getnumbuckets(); #else calculate_nqueues(&t4_ntxq, nc, NTXQ); #endif } calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); if (t4_nrxq < 1) { #ifdef RSS t4_nrxq = rss_getnumbuckets(); #else calculate_nqueues(&t4_nrxq, nc, NRXQ); #endif } calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); #endif #ifdef TCP_OFFLOAD calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); if (t4_toecaps_allowed == -1) t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; if (t4_rdmacaps_allowed == -1) { t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | FW_CAPS_CONFIG_RDMA_RDMAC; } if (t4_iscsicaps_allowed == -1) { t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | FW_CAPS_CONFIG_ISCSI_TARGET_PDU | FW_CAPS_CONFIG_ISCSI_T10DIF; } if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) t4_tmr_idx_ofld = TMR_IDX_OFLD; if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) t4_pktc_idx_ofld = PKTC_IDX_OFLD; #else if (t4_toecaps_allowed == -1) t4_toecaps_allowed = 0; if (t4_rdmacaps_allowed == -1) t4_rdmacaps_allowed = 0; if (t4_iscsicaps_allowed == -1) t4_iscsicaps_allowed = 0; #endif #ifdef DEV_NETMAP calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); #endif if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) t4_tmr_idx = TMR_IDX; if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) t4_pktc_idx = PKTC_IDX; if (t4_qsize_txq < 128) t4_qsize_txq = 128; if (t4_qsize_rxq < 128) t4_qsize_rxq = 128; while (t4_qsize_rxq & 7) t4_qsize_rxq++; t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; /* * Number of VIs to create per-port. The first VI is the "main" regular * VI for the port. The rest are additional virtual interfaces on the * same physical port. Note that the main VI does not have native * netmap support but the extra VIs do. * * Limit the number of VIs per port to the number of available * MAC addresses per port. */ if (t4_num_vis < 1) t4_num_vis = 1; if (t4_num_vis > nitems(vi_mac_funcs)) { t4_num_vis = nitems(vi_mac_funcs); printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); } if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { pcie_relaxed_ordering = 1; #if defined(__i386__) || defined(__amd64__) if (cpu_vendor_id == CPU_VENDOR_INTEL) pcie_relaxed_ordering = 0; #endif } } #ifdef DDB static void t4_dump_tcb(struct adapter *sc, int tid) { uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); save = t4_read_reg(sc, reg); base = sc->memwin[2].mw_base; /* Dump TCB for the tid */ tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); tcb_addr += tid * TCB_SIZE; if (is_t4(sc)) { pf = 0; win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ } else { pf = V_PFNUM(sc->pf); win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ } t4_write_reg(sc, reg, win_pos | pf); t4_read_reg(sc, reg); off = tcb_addr - win_pos; for (i = 0; i < 4; i++) { uint32_t buf[8]; for (j = 0; j < 8; j++, off += 4) buf[j] = htonl(t4_read_reg(sc, base + off)); db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); } t4_write_reg(sc, reg, save); t4_read_reg(sc, reg); } static void t4_dump_devlog(struct adapter *sc) { struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e e; int i, first, j, m, nentries, rc; uint64_t ftstamp = UINT64_MAX; if (dparams->start == 0) { db_printf("devlog params not valid\n"); return; } nentries = dparams->size / sizeof(struct fw_devlog_e); m = fwmtype_to_hwmtype(dparams->memtype); /* Find the first entry. */ first = -1; for (i = 0; i < nentries && !db_pager_quit; i++) { rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), sizeof(e), (void *)&e); if (rc != 0) break; if (e.timestamp == 0) break; e.timestamp = be64toh(e.timestamp); if (e.timestamp < ftstamp) { ftstamp = e.timestamp; first = i; } } if (first == -1) return; i = first; do { rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), sizeof(e), (void *)&e); if (rc != 0) return; if (e.timestamp == 0) return; e.timestamp = be64toh(e.timestamp); e.seqno = be32toh(e.seqno); for (j = 0; j < 8; j++) e.params[j] = be32toh(e.params[j]); db_printf("%10d %15ju %8s %8s ", e.seqno, e.timestamp, (e.level < nitems(devlog_level_strings) ? devlog_level_strings[e.level] : "UNKNOWN"), (e.facility < nitems(devlog_facility_strings) ? devlog_facility_strings[e.facility] : "UNKNOWN")); db_printf(e.fmt, e.params[0], e.params[1], e.params[2], e.params[3], e.params[4], e.params[5], e.params[6], e.params[7]); if (++i == nentries) i = 0; } while (i != first && !db_pager_quit); } static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) { device_t dev; int t; bool valid; valid = false; t = db_read_token(); if (t == tIDENT) { dev = device_lookup_by_name(db_tok_string); valid = true; } db_skip_to_eol(); if (!valid) { db_printf("usage: show t4 devlog \n"); return; } if (dev == NULL) { db_printf("device not found\n"); return; } t4_dump_devlog(device_get_softc(dev)); } DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) { device_t dev; int radix, tid, t; bool valid; valid = false; radix = db_radix; db_radix = 10; t = db_read_token(); if (t == tIDENT) { dev = device_lookup_by_name(db_tok_string); t = db_read_token(); if (t == tNUMBER) { tid = db_tok_number; valid = true; } } db_radix = radix; db_skip_to_eol(); if (!valid) { db_printf("usage: show t4 tcb \n"); return; } if (dev == NULL) { db_printf("device not found\n"); return; } if (tid < 0) { db_printf("invalid tid\n"); return; } t4_dump_tcb(device_get_softc(dev), tid); } #endif /* * Borrowed from cesa_prep_aes_key(). * * NB: The crypto engine wants the words in the decryption key in reverse * order. */ void t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits) { uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)]; uint32_t *dkey; int i; rijndaelKeySetupEnc(ek, enc_key, kbits); dkey = dec_key; dkey += (kbits / 8) / 4; switch (kbits) { case 128: for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 10 + i]); break; case 192: for (i = 0; i < 2; i++) *--dkey = htobe32(ek[4 * 11 + 2 + i]); for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 12 + i]); break; case 256: for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 13 + i]); for (i = 0; i < 4; i++) *--dkey = htobe32(ek[4 * 14 + i]); break; } MPASS(dkey == dec_key); } static struct sx mlu; /* mod load unload */ SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); static int mod_event(module_t mod, int cmd, void *arg) { int rc = 0; static int loaded = 0; switch (cmd) { case MOD_LOAD: sx_xlock(&mlu); if (loaded++ == 0) { t4_sge_modload(); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, t4_filter_rpl, CPL_COOKIE_FILTER); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl, CPL_COOKIE_FILTER); t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); t4_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); sx_init(&t4_list_lock, "T4/T5 adapters"); SLIST_INIT(&t4_list); callout_init(&fatal_callout, 1); #ifdef TCP_OFFLOAD sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); SLIST_INIT(&t4_uld_list); #endif #ifdef INET6 t4_clip_modload(); #endif t4_tracer_modload(); tweak_tunables(); } sx_xunlock(&mlu); break; case MOD_UNLOAD: sx_xlock(&mlu); if (--loaded == 0) { int tries; sx_slock(&t4_list_lock); if (!SLIST_EMPTY(&t4_list)) { rc = EBUSY; sx_sunlock(&t4_list_lock); goto done_unload; } #ifdef TCP_OFFLOAD sx_slock(&t4_uld_list_lock); if (!SLIST_EMPTY(&t4_uld_list)) { rc = EBUSY; sx_sunlock(&t4_uld_list_lock); sx_sunlock(&t4_list_lock); goto done_unload; } #endif tries = 0; while (tries++ < 5 && t4_sge_extfree_refs() != 0) { uprintf("%ju clusters with custom free routine " "still is use.\n", t4_sge_extfree_refs()); pause("t4unload", 2 * hz); } #ifdef TCP_OFFLOAD sx_sunlock(&t4_uld_list_lock); #endif sx_sunlock(&t4_list_lock); if (t4_sge_extfree_refs() == 0) { t4_tracer_modunload(); #ifdef INET6 t4_clip_modunload(); #endif #ifdef TCP_OFFLOAD sx_destroy(&t4_uld_list_lock); #endif sx_destroy(&t4_list_lock); t4_sge_modunload(); loaded = 0; } else { rc = EBUSY; loaded++; /* undo earlier decrement */ } } done_unload: sx_xunlock(&mlu); break; } return (rc); } static devclass_t t4_devclass, t5_devclass, t6_devclass; static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); MODULE_VERSION(t4nex, 1); MODULE_DEPEND(t4nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t4nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); MODULE_VERSION(t5nex, 1); MODULE_DEPEND(t5nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t5nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); MODULE_VERSION(t6nex, 1); MODULE_DEPEND(t6nex, firmware, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(t6nex, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); MODULE_VERSION(cxgbe, 1); DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); MODULE_VERSION(cxl, 1); DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); MODULE_VERSION(cc, 1); DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); MODULE_VERSION(vcxgbe, 1); DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); MODULE_VERSION(vcxl, 1); DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); MODULE_VERSION(vcc, 1); Index: head/sys/dev/cxgbe/t4_sge.c =================================================================== --- head/sys/dev/cxgbe/t4_sge.c (revision 345659) +++ head/sys/dev/cxgbe/t4_sge.c (revision 345660) @@ -1,6044 +1,6051 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_NETMAP #include #include #include #include #include #endif #include "common/common.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_msg.h" #include "t4_l2t.h" #include "t4_mp_ring.h" #ifdef T4_PKT_TIMESTAMP #define RX_COPY_THRESHOLD (MINCLSIZE - 8) #else #define RX_COPY_THRESHOLD MINCLSIZE #endif /* Internal mbuf flags stored in PH_loc.eight[1]. */ #define MC_RAW_WR 0x02 /* * Ethernet frames are DMA'd at this byte offset into the freelist buffer. * 0-7 are valid values. */ static int fl_pktshift = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0, "payload DMA offset in rx buffer (bytes)"); /* * Pad ethernet payload up to this boundary. * -1: driver should figure out a good value. * 0: disable padding. * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. */ int fl_pad = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0, "payload pad boundary (bytes)"); /* * Status page length. * -1: driver should figure out a good value. * 64 or 128 are the only other valid values. */ static int spg_len = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0, "status page size (bytes)"); /* * Congestion drops. * -1: no congestion feedback (not recommended). * 0: backpressure the channel instead of dropping packets right away. * 1: no backpressure, drop packets for the congested queue immediately. */ static int cong_drop = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0, "Congestion control for RX queues (0 = backpressure, 1 = drop"); /* * Deliver multiple frames in the same free list buffer if they fit. * -1: let the driver decide whether to enable buffer packing or not. * 0: disable buffer packing. * 1: enable buffer packing. */ static int buffer_packing = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing, 0, "Enable buffer packing"); /* * Start next frame in a packed buffer at this boundary. * -1: driver should figure out a good value. * T4: driver will ignore this and use the same value as fl_pad above. * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. */ static int fl_pack = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0, "payload pack boundary (bytes)"); /* * Allow the driver to create mbuf(s) in a cluster allocated for rx. * 0: never; always allocate mbufs from the zone_mbuf UMA zone. * 1: ok to create mbuf(s) within a cluster if there is room. */ static int allow_mbufs_in_cluster = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, allow_mbufs_in_cluster, CTLFLAG_RDTUN, &allow_mbufs_in_cluster, 0, "Allow driver to create mbufs within a rx cluster"); /* * Largest rx cluster size that the driver is allowed to allocate. */ static int largest_rx_cluster = MJUM16BYTES; SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN, &largest_rx_cluster, 0, "Largest rx cluster (bytes)"); /* * Size of cluster allocation that's most likely to succeed. The driver will * fall back to this size if it fails to allocate clusters larger than this. */ static int safest_rx_cluster = PAGE_SIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN, &safest_rx_cluster, 0, "Safe rx cluster (bytes)"); #ifdef RATELIMIT /* * Knob to control TCP timestamp rewriting, and the granularity of the tick used * for rewriting. -1 and 0-3 are all valid values. * -1: hardware should leave the TCP timestamps alone. * 0: 1ms * 1: 100us * 2: 10us * 3: 1us */ static int tsclk = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0, "Control TCP timestamp rewriting when using pacing"); static int eo_max_backlog = 1024 * 1024; SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog, 0, "Maximum backlog of ratelimited data per flow"); #endif /* * The interrupt holdoff timers are multiplied by this value on T6+. * 1 and 3-17 (both inclusive) are legal values. */ static int tscale = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0, "Interrupt holdoff timer scale on T6+"); /* * Number of LRO entries in the lro_ctrl structure per rx queue. */ static int lro_entries = TCP_LRO_ENTRIES; SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0, "Number of LRO entries per RX queue"); /* * This enables presorting of frames before they're fed into tcp_lro_rx. */ static int lro_mbufs = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0, "Enable presorting of LRO frames"); struct txpkts { u_int wr_type; /* type 0 or type 1 */ u_int npkt; /* # of packets in this work request */ u_int plen; /* total payload (sum of all packets) */ u_int len16; /* # of 16B pieces used by this work request */ }; /* A packet's SGL. This + m_pkthdr has all info needed for tx */ struct sgl { struct sglist sg; struct sglist_seg seg[TX_SGL_SEGS]; }; static int service_iq(struct sge_iq *, int); static int service_iq_fl(struct sge_iq *, int); static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, uint16_t, char *); static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, bus_addr_t *, void **); static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, void *); static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, int, int); static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_iq *); static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_fl *); static int alloc_fwq(struct adapter *); static int free_fwq(struct adapter *); static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int, struct sysctl_oid *); static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, struct sysctl_oid *); static int free_rxq(struct vi_info *, struct sge_rxq *); #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, struct sysctl_oid *); static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); #endif #ifdef DEV_NETMAP static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, struct sysctl_oid *); static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, struct sysctl_oid *); static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); #endif static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #endif static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); static int free_eq(struct adapter *, struct sge_eq *); static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, struct sysctl_oid *); static int free_wrq(struct adapter *, struct sge_wrq *); static int alloc_txq(struct vi_info *, struct sge_txq *, int, struct sysctl_oid *); static int free_txq(struct vi_info *, struct sge_txq *); static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); static inline void ring_fl_db(struct adapter *, struct sge_fl *); static int refill_fl(struct adapter *, struct sge_fl *, int); static void refill_sfl(void *); static int alloc_fl_sdesc(struct sge_fl *); static void free_fl_sdesc(struct adapter *, struct sge_fl *); static void find_best_refill_source(struct adapter *, struct sge_fl *, int); static void find_safe_refill_source(struct adapter *, struct sge_fl *); static void add_fl_to_sfl(struct adapter *, struct sge_fl *); static inline void get_pkt_gl(struct mbuf *, struct sglist *); static inline u_int txpkt_len16(u_int, u_int); static inline u_int txpkt_vm_len16(u_int, u_int); static inline u_int txpkts0_len16(u_int); static inline u_int txpkts1_len16(void); static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int); static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, struct mbuf *, u_int); static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, struct mbuf *, const struct txpkts *, u_int); static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); static inline uint16_t read_hw_cidx(struct sge_eq *); static inline u_int reclaimable_tx_desc(struct sge_eq *); static inline u_int total_available_tx_desc(struct sge_eq *); static u_int reclaim_tx_descs(struct sge_txq *, u_int); static void tx_reclaim(void *, int); static __be64 get_flit(struct sglist_seg *, int, int); static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, struct mbuf *); static int handle_fw_msg(struct sge_iq *, const struct rss_header *, struct mbuf *); static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); static void wrq_tx_drain(void *, int); static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); static int sysctl_uint16(SYSCTL_HANDLER_ARGS); static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); #ifdef RATELIMIT static inline u_int txpkt_eo_len16(u_int, u_int, u_int); static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *, struct mbuf *); #endif static counter_u64_t extfree_refs; static counter_u64_t extfree_rels; an_handler_t t4_an_handler; fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES]; cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES]; void t4_register_an_handler(an_handler_t h) { uintptr_t *loc; MPASS(h == NULL || t4_an_handler == NULL); loc = (uintptr_t *)&t4_an_handler; atomic_store_rel_ptr(loc, (uintptr_t)h); } void t4_register_fw_msg_handler(int type, fw_msg_handler_t h) { uintptr_t *loc; MPASS(type < nitems(t4_fw_msg_handler)); MPASS(h == NULL || t4_fw_msg_handler[type] == NULL); /* * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL * handler dispatch table. Reject any attempt to install a handler for * this subtype. */ MPASS(type != FW_TYPE_RSSCPL); MPASS(type != FW6_TYPE_RSSCPL); loc = (uintptr_t *)&t4_fw_msg_handler[type]; atomic_store_rel_ptr(loc, (uintptr_t)h); } void t4_register_cpl_handler(int opcode, cpl_handler_t h) { uintptr_t *loc; MPASS(opcode < nitems(t4_cpl_handler)); MPASS(h == NULL || t4_cpl_handler[opcode] == NULL); loc = (uintptr_t *)&t4_cpl_handler[opcode]; atomic_store_rel_ptr(loc, (uintptr_t)h); } static int set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); u_int tid; int cookie; MPASS(m == NULL); tid = GET_TID(cpl); if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) { /* * The return code for filter-write is put in the CPL cookie so * we have to rely on the hardware tid (is_ftid) to determine * that this is a response to a filter. */ cookie = CPL_COOKIE_FILTER; } else { cookie = G_COOKIE(cpl->cookie); } MPASS(cookie > CPL_COOKIE_RESERVED); MPASS(cookie < nitems(set_tcb_rpl_handlers)); return (set_tcb_rpl_handlers[cookie](iq, rss, m)); } static int l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); unsigned int cookie; MPASS(m == NULL); cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER; return (l2t_write_rpl_handlers[cookie](iq, rss, m)); } static int act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status))); MPASS(m == NULL); MPASS(cookie != CPL_COOKIE_RESERVED); return (act_open_rpl_handlers[cookie](iq, rss, m)); } static int abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; u_int cookie; MPASS(m == NULL); if (is_hashfilter(sc)) cookie = CPL_COOKIE_HASHFILTER; else cookie = CPL_COOKIE_TOM; return (abort_rpl_rss_handlers[cookie](iq, rss, m)); } static int fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); u_int cookie; MPASS(m == NULL); if (is_etid(sc, tid)) cookie = CPL_COOKIE_ETHOFLD; else cookie = CPL_COOKIE_TOM; return (fw4_ack_handlers[cookie](iq, rss, m)); } static void t4_init_shared_cpl_handlers(void) { t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler); t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler); t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler); t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler); t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler); } void t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie) { uintptr_t *loc; MPASS(opcode < nitems(t4_cpl_handler)); MPASS(cookie > CPL_COOKIE_RESERVED); MPASS(cookie < NUM_CPL_COOKIES); MPASS(t4_cpl_handler[opcode] != NULL); switch (opcode) { case CPL_SET_TCB_RPL: loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie]; break; case CPL_L2T_WRITE_RPL: loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie]; break; case CPL_ACT_OPEN_RPL: loc = (uintptr_t *)&act_open_rpl_handlers[cookie]; break; case CPL_ABORT_RPL_RSS: loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie]; break; case CPL_FW4_ACK: loc = (uintptr_t *)&fw4_ack_handlers[cookie]; break; default: MPASS(0); return; } MPASS(h == NULL || *loc == (uintptr_t)NULL); atomic_store_rel_ptr(loc, (uintptr_t)h); } /* * Called on MOD_LOAD. Validates and calculates the SGE tunables. */ void t4_sge_modload(void) { if (fl_pktshift < 0 || fl_pktshift > 7) { printf("Invalid hw.cxgbe.fl_pktshift value (%d)," " using 0 instead.\n", fl_pktshift); fl_pktshift = 0; } if (spg_len != 64 && spg_len != 128) { int len; #if defined(__i386__) || defined(__amd64__) len = cpu_clflush_line_size > 64 ? 128 : 64; #else len = 64; #endif if (spg_len != -1) { printf("Invalid hw.cxgbe.spg_len value (%d)," " using %d instead.\n", spg_len, len); } spg_len = len; } if (cong_drop < -1 || cong_drop > 1) { printf("Invalid hw.cxgbe.cong_drop value (%d)," " using 0 instead.\n", cong_drop); cong_drop = 0; } if (tscale != 1 && (tscale < 3 || tscale > 17)) { printf("Invalid hw.cxgbe.tscale value (%d)," " using 1 instead.\n", tscale); tscale = 1; } extfree_refs = counter_u64_alloc(M_WAITOK); extfree_rels = counter_u64_alloc(M_WAITOK); counter_u64_zero(extfree_refs); counter_u64_zero(extfree_rels); t4_init_shared_cpl_handlers(); t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); #ifdef RATELIMIT t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack, CPL_COOKIE_ETHOFLD); #endif t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); } void t4_sge_modunload(void) { counter_u64_free(extfree_refs); counter_u64_free(extfree_rels); } uint64_t t4_sge_extfree_refs(void) { uint64_t refs, rels; rels = counter_u64_fetch(extfree_rels); refs = counter_u64_fetch(extfree_refs); return (refs - rels); } static inline void setup_pad_and_pack_boundaries(struct adapter *sc) { uint32_t v, m; int pad, pack, pad_shift; pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : X_INGPADBOUNDARY_SHIFT; pad = fl_pad; if (fl_pad < (1 << pad_shift) || fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || !powerof2(fl_pad)) { /* * If there is any chance that we might use buffer packing and * the chip is a T4, then pick 64 as the pad/pack boundary. Set * it to the minimum allowed in all other cases. */ pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; /* * For fl_pad = 0 we'll still write a reasonable value to the * register but all the freelists will opt out of padding. * We'll complain here only if the user tried to set it to a * value greater than 0 that was invalid. */ if (fl_pad > 0) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" " (%d), using %d instead.\n", fl_pad, pad); } } m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); if (is_t4(sc)) { if (fl_pack != -1 && fl_pack != pad) { /* Complain but carry on. */ device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," " using %d instead.\n", fl_pack, pad); } return; } pack = fl_pack; if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || !powerof2(fl_pack)) { pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); MPASS(powerof2(pack)); if (pack < 16) pack = 16; if (pack == 32) pack = 64; if (pack > 4096) pack = 4096; if (fl_pack != -1) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" " (%d), using %d instead.\n", fl_pack, pack); } } m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); if (pack == 16) v = V_INGPACKBOUNDARY(0); else v = V_INGPACKBOUNDARY(ilog2(pack) - 5); MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); } /* * adap->params.vpd.cclk must be set up before this is called. */ void t4_tweak_chip_settings(struct adapter *sc) { int i; uint32_t v, m; int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); static int sge_flbuf_sizes[] = { MCLBYTES, #if MJUMPAGESIZE != MCLBYTES MJUMPAGESIZE, MJUMPAGESIZE - CL_METADATA_SIZE, MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, #endif MJUM9BYTES, MJUM16BYTES, MCLBYTES - MSIZE - CL_METADATA_SIZE, MJUM9BYTES - CL_METADATA_SIZE, MJUM16BYTES - CL_METADATA_SIZE, }; KASSERT(sc->flags & MASTER_PF, ("%s: trying to change chip settings when not master.", __func__)); m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | V_EGRSTATUSPAGESIZE(spg_len == 128); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); setup_pad_and_pack_boundaries(sc); v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, ("%s: hw buffer size table too big", __func__)); t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096); t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536); for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE15 - (4 * i), sge_flbuf_sizes[i]); } v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); KASSERT(intr_timer[0] <= timer_max, ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], timer_max)); for (i = 1; i < nitems(intr_timer); i++) { KASSERT(intr_timer[i] >= intr_timer[i - 1], ("%s: timers not listed in increasing order (%d)", __func__, i)); while (intr_timer[i] > timer_max) { if (i == nitems(intr_timer) - 1) { intr_timer[i] = timer_max; break; } intr_timer[i] += intr_timer[i - 1]; intr_timer[i] /= 2; } } v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); if (chip_id(sc) >= CHELSIO_T6) { m = V_TSCALE(M_TSCALE); if (tscale == 1) v = 0; else v = V_TSCALE(tscale - 2); t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | V_WRTHRTHRESH(M_WRTHRTHRESH); t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); v &= ~m; v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | V_WRTHRTHRESH(16); t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); } } /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); /* * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we * may have to deal with is MAXPHYS + 1 page. */ v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); } /* * SGE wants the buffer to be at least 64B and then a multiple of 16. If * padding is in use, the buffer's start and end need to be aligned to the pad * boundary as well. We'll just make sure that the size is a multiple of the * boundary here, it is up to the buffer allocation code to make sure the start * of the buffer is aligned as well. */ static inline int hwsz_ok(struct adapter *sc, int hwsz) { int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; return (hwsz >= 64 && (hwsz & mask) == 0); } /* * XXX: driver really should be able to deal with unexpected settings. */ int t4_read_chip_settings(struct adapter *sc) { struct sge *s = &sc->sge; struct sge_params *sp = &sc->params.sge; int i, j, n, rc = 0; uint32_t m, v, r; uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); static int sw_buf_sizes[] = { /* Sorted by size */ MCLBYTES, #if MJUMPAGESIZE != MCLBYTES MJUMPAGESIZE, #endif MJUM9BYTES, MJUM16BYTES }; struct sw_zone_info *swz, *safe_swz; struct hw_buf_info *hwb; m = F_RXPKTCPLMODE; v = F_RXPKTCPLMODE; r = sc->params.sge.sge_control; if ((r & m) != v) { device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); rc = EINVAL; } /* * If this changes then every single use of PAGE_SHIFT in the driver * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. */ if (sp->page_shift != PAGE_SHIFT) { device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); rc = EINVAL; } /* Filter out unusable hw buffer sizes entirely (mark with -2). */ hwb = &s->hw_buf_info[0]; for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { r = sc->params.sge.sge_fl_buffer_size[i]; hwb->size = r; hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; hwb->next = -1; } /* * Create a sorted list in decreasing order of hw buffer sizes (and so * increasing order of spare area) for each software zone. * * If padding is enabled then the start and end of the buffer must align * to the pad boundary; if packing is enabled then they must align with * the pack boundary as well. Allocations from the cluster zones are * aligned to min(size, 4K), so the buffer starts at that alignment and * ends at hwb->size alignment. If mbuf inlining is allowed the * starting alignment will be reduced to MSIZE and the driver will * exercise appropriate caution when deciding on the best buffer layout * to use. */ n = 0; /* no usable buffer size to begin with */ swz = &s->sw_zone_info[0]; safe_swz = NULL; for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { int8_t head = -1, tail = -1; swz->size = sw_buf_sizes[i]; swz->zone = m_getzone(swz->size); swz->type = m_gettype(swz->size); if (swz->size < PAGE_SIZE) { MPASS(powerof2(swz->size)); if (fl_pad && (swz->size % sp->pad_boundary != 0)) continue; } if (swz->size == safest_rx_cluster) safe_swz = swz; hwb = &s->hw_buf_info[0]; for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { if (hwb->zidx != -1 || hwb->size > swz->size) continue; #ifdef INVARIANTS if (fl_pad) MPASS(hwb->size % sp->pad_boundary == 0); #endif hwb->zidx = i; if (head == -1) head = tail = j; else if (hwb->size < s->hw_buf_info[tail].size) { s->hw_buf_info[tail].next = j; tail = j; } else { int8_t *cur; struct hw_buf_info *t; for (cur = &head; *cur != -1; cur = &t->next) { t = &s->hw_buf_info[*cur]; if (hwb->size == t->size) { hwb->zidx = -2; break; } if (hwb->size > t->size) { hwb->next = *cur; *cur = j; break; } } } } swz->head_hwidx = head; swz->tail_hwidx = tail; if (tail != -1) { n++; if (swz->size - s->hw_buf_info[tail].size >= CL_METADATA_SIZE) sc->flags |= BUF_PACKING_OK; } } if (n == 0) { device_printf(sc->dev, "no usable SGE FL buffer size.\n"); rc = EINVAL; } s->safe_hwidx1 = -1; s->safe_hwidx2 = -1; if (safe_swz != NULL) { s->safe_hwidx1 = safe_swz->head_hwidx; for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { int spare; hwb = &s->hw_buf_info[i]; #ifdef INVARIANTS if (fl_pad) MPASS(hwb->size % sp->pad_boundary == 0); #endif spare = safe_swz->size - hwb->size; if (spare >= CL_METADATA_SIZE) { s->safe_hwidx2 = i; break; } } } if (sc->flags & IS_VF) return (0); v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); if (r != v) { device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); rc = EINVAL; } m = v = F_TDDPTAGTCB; r = t4_read_reg(sc, A_ULP_RX_CTL); if ((r & m) != v) { device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); rc = EINVAL; } m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; r = t4_read_reg(sc, A_TP_PARA_REG5); if ((r & m) != v) { device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); rc = EINVAL; } t4_init_tp_params(sc, 1); t4_read_mtu_tbl(sc, sc->params.mtus, NULL); t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); return (rc); } int t4_create_dma_tag(struct adapter *sc) { int rc; rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->dmat); if (rc != 0) { device_printf(sc->dev, "failed to create main DMA tag: %d\n", rc); } return (rc); } void t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid_list *children) { struct sge_params *sp = &sc->params.sge; SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", "freelist buffer sizes"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, NULL, sp->pad_boundary, "payload pad boundary (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, NULL, sp->spg_len, "status page size (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, NULL, cong_drop, "congestion drop setting"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, NULL, sp->pack_boundary, "payload pack boundary (bytes)"); } int t4_destroy_dma_tag(struct adapter *sc) { if (sc->dmat) bus_dma_tag_destroy(sc->dmat); return (0); } /* * Allocate and initialize the firmware event queue, control queues, and special * purpose rx queues owned by the adapter. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ int t4_setup_adapter_queues(struct adapter *sc) { struct sysctl_oid *oid; struct sysctl_oid_list *children; int rc, i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); sysctl_ctx_init(&sc->ctx); sc->flags |= ADAP_SYSCTL_CTX; /* * Firmware event queue */ rc = alloc_fwq(sc); if (rc != 0) return (rc); /* * That's all for the VF driver. */ if (sc->flags & IS_VF) return (rc); oid = device_get_sysctl_tree(sc->dev); children = SYSCTL_CHILDREN(oid); /* * XXX: General purpose rx queues, one per port. */ /* * Control queues, one per port. */ oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, NULL, "control queues"); for_each_port(sc, i) { struct sge_wrq *ctrlq = &sc->sge.ctrlq[i]; rc = alloc_ctrlq(sc, ctrlq, i, oid); if (rc != 0) return (rc); } return (rc); } /* * Idempotent */ int t4_teardown_adapter_queues(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* Do this before freeing the queue */ if (sc->flags & ADAP_SYSCTL_CTX) { sysctl_ctx_free(&sc->ctx); sc->flags &= ~ADAP_SYSCTL_CTX; } if (!(sc->flags & IS_VF)) { for_each_port(sc, i) free_wrq(sc, &sc->sge.ctrlq[i]); } free_fwq(sc); return (0); } /* Maximum payload that can be delivered with a single iq descriptor */ static inline int mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) { int payload; #ifdef TCP_OFFLOAD if (toe) { int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); /* Note that COP can set rx_coalesce on/off per connection. */ payload = max(mtu, rxcs); } else { #endif /* large enough even when hw VLAN extraction is disabled */ payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu; #ifdef TCP_OFFLOAD } #endif return (payload); } int t4_setup_vi_queues(struct vi_info *vi) { int rc = 0, i, intr_idx, iqidx; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct sge_wrq *ofld_txq; #endif #ifdef DEV_NETMAP int saved_idx; struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif char name[16]; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); int maxp, mtu = ifp->if_mtu; /* Interrupt vector to start from (when using multiple vectors) */ intr_idx = vi->first_intr; #ifdef DEV_NETMAP saved_idx = intr_idx; if (ifp->if_capabilities & IFCAP_NETMAP) { /* netmap is supported with direct interrupts only. */ MPASS(!forwarding_intr_to_fwq(sc)); /* * We don't have buffers to back the netmap rx queues * right now so we create the queues in a way that * doesn't set off any congestion signal in the chip. */ oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", CTLFLAG_RD, NULL, "rx queues"); for_each_nm_rxq(vi, i, nm_rxq) { rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", CTLFLAG_RD, NULL, "tx queues"); for_each_nm_txq(vi, i, nm_txq) { iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid); if (rc != 0) goto done; } } /* Normal rx queues and netmap rx queues share the same interrupts. */ intr_idx = saved_idx; #endif /* * Allocate rx queues first because a default iqid is required when * creating a tx queue. */ maxp = mtu_to_max_payload(sc, mtu, 0); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, NULL, "rx queues"); for_each_rxq(vi, i, rxq) { init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); snprintf(name, sizeof(name), "%s rxq%d-fl", device_get_nameunit(vi->dev), i); init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); rc = alloc_rxq(vi, rxq, forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); #endif #ifdef TCP_OFFLOAD maxp = mtu_to_max_payload(sc, mtu, 1); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); for_each_ofld_rxq(vi, i, ofld_rxq) { init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, vi->qsize_rxq); snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", device_get_nameunit(vi->dev), i); init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); rc = alloc_ofld_rxq(vi, ofld_rxq, forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } #endif /* * Now the tx queues. */ oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, NULL, "tx queues"); for_each_txq(vi, i, txq) { iqidx = vi->first_rxq + (i % vi->nrxq); snprintf(name, sizeof(name), "%s txq%d", device_get_nameunit(vi->dev), i); init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name); rc = alloc_txq(vi, txq, i, oid); if (rc != 0) goto done; } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD"); for_each_ofld_txq(vi, i, ofld_txq) { struct sysctl_oid *oid2; snprintf(name, sizeof(name), "%s ofld_txq%d", device_get_nameunit(vi->dev), i); if (vi->nofldrxq > 0) { iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq); init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name); } else { iqidx = vi->first_rxq + (i % vi->nrxq); init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name); } snprintf(name, sizeof(name), "%d", i); oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, "offload tx queue"); rc = alloc_wrq(sc, vi, ofld_txq, oid2); if (rc != 0) goto done; } #endif done: if (rc) t4_teardown_vi_queues(vi); return (rc); } /* * Idempotent */ int t4_teardown_vi_queues(struct vi_info *vi) { int i; struct sge_rxq *rxq; struct sge_txq *txq; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_wrq *ofld_txq; #endif #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #ifdef DEV_NETMAP struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif /* Do this before freeing the queues */ if (vi->flags & VI_SYSCTL_CTX) { sysctl_ctx_free(&vi->ctx); vi->flags &= ~VI_SYSCTL_CTX; } #ifdef DEV_NETMAP if (vi->ifp->if_capabilities & IFCAP_NETMAP) { for_each_nm_txq(vi, i, nm_txq) { free_nm_txq(vi, nm_txq); } for_each_nm_rxq(vi, i, nm_rxq) { free_nm_rxq(vi, nm_rxq); } } #endif /* * Take down all the tx queues first, as they reference the rx queues * (for egress updates, etc.). */ for_each_txq(vi, i, txq) { free_txq(vi, txq); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, ofld_txq) { free_wrq(sc, ofld_txq); } #endif /* * Then take down the rx queues. */ for_each_rxq(vi, i, rxq) { free_rxq(vi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { free_ofld_rxq(vi, ofld_rxq); } #endif return (0); } /* * Interrupt handler when the driver is using only 1 interrupt. This is a very * unusual scenario. * * a) Deals with errors, if any. * b) Services firmware event queue, which is taking interrupts for all other * queues. */ void t4_intr_all(void *arg) { struct adapter *sc = arg; struct sge_iq *fwq = &sc->sge.fwq; MPASS(sc->intr_count == 1); if (sc->intr_type == INTR_INTX) t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); t4_intr_err(arg); t4_intr_evt(fwq); } /* * Interrupt handler for errors (installed directly when multiple interrupts are * being used, or called by t4_intr_all). */ void t4_intr_err(void *arg) { struct adapter *sc = arg; + uint32_t v; const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; if (sc->flags & ADAP_ERR) return; + + v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE)); + if (v & F_PFSW) { + sc->swintr++; + t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v); + } t4_slow_intr_handler(sc, verbose); } /* * Interrupt handler for iq-only queues. The firmware event queue is the only * such queue right now. */ void t4_intr_evt(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } /* * Interrupt handler for iq+fl queues. */ void t4_intr(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq_fl(iq, 0); (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } #ifdef DEV_NETMAP /* * Interrupt handler for netmap rx queues. */ void t4_nm_intr(void *arg) { struct sge_nm_rxq *nm_rxq = arg; if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) { service_nm_rxq(nm_rxq); (void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON); } } /* * Interrupt handler for vectors shared between NIC and netmap rx queues. */ void t4_vi_intr(void *arg) { struct irq *irq = arg; MPASS(irq->nm_rxq != NULL); t4_nm_intr(irq->nm_rxq); MPASS(irq->rxq != NULL); t4_intr(irq->rxq); } #endif /* * Deals with interrupts on an iq-only (no freelist) queue. */ static int service_iq(struct sge_iq *iq, int budget) { struct sge_iq *q; struct adapter *sc = iq->adapter; struct iq_desc *d = &iq->desc[iq->cidx]; int ndescs = 0, limit; int rsp_type; uint32_t lq; STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); KASSERT((iq->flags & IQ_HAS_FL) == 0, ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq, iq->flags)); MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); MPASS((iq->flags & IQ_LRO_ENABLED) == 0); limit = budget ? budget : iq->qsize / 16; /* * We always come back and check the descriptor ring for new indirect * interrupts and other responses after running a single handler. */ for (;;) { while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { rmb(); rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); lq = be32toh(d->rsp.pldbuflen_qid); switch (rsp_type) { case X_RSPD_TYPE_FLBUF: panic("%s: data for an iq (%p) with no freelist", __func__, iq); /* NOTREACHED */ case X_RSPD_TYPE_CPL: KASSERT(d->rss.opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, d->rss.opcode)); t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL); break; case X_RSPD_TYPE_INTR: /* * There are 1K interrupt-capable queues (qids 0 * through 1023). A response type indicating a * forwarded interrupt with a qid >= 1K is an * iWARP async notification. */ if (__predict_true(lq >= 1024)) { t4_an_handler(iq, &d->rsp); break; } q = sc->sge.iqmap[lq - sc->sge.iq_start - sc->sge.iq_base]; if (atomic_cmpset_int(&q->state, IQS_IDLE, IQS_BUSY)) { if (service_iq_fl(q, q->qsize / 16) == 0) { (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); } else { STAILQ_INSERT_TAIL(&iql, q, link); } } break; default: KASSERT(0, ("%s: illegal response type %d on iq %p", __func__, rsp_type, iq)); log(LOG_ERR, "%s: illegal response type %d on iq %p", device_get_nameunit(sc->dev), rsp_type, iq); break; } d++; if (__predict_false(++iq->cidx == iq->sidx)) { iq->cidx = 0; iq->gen ^= F_RSPD_GEN; d = &iq->desc[0]; } if (__predict_false(++ndescs == limit)) { t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; if (budget) { return (EINPROGRESS); } } } if (STAILQ_EMPTY(&iql)) break; /* * Process the head only, and send it to the back of the list if * it's still not done. */ q = STAILQ_FIRST(&iql); STAILQ_REMOVE_HEAD(&iql, link); if (service_iq_fl(q, q->qsize / 8) == 0) (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); else STAILQ_INSERT_TAIL(&iql, q, link); } t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); return (0); } static inline int sort_before_lro(struct lro_ctrl *lro) { return (lro->lro_mbuf_max != 0); } static inline uint64_t last_flit_to_ns(struct adapter *sc, uint64_t lf) { uint64_t n = be64toh(lf) & 0xfffffffffffffff; /* 60b, not 64b. */ if (n > UINT64_MAX / 1000000) return (n / sc->params.vpd.cclk * 1000000); else return (n * 1000000 / sc->params.vpd.cclk); } /* * Deals with interrupts on an iq+fl queue. */ static int service_iq_fl(struct sge_iq *iq, int budget) { struct sge_rxq *rxq = iq_to_rxq(iq); struct sge_fl *fl; struct adapter *sc = iq->adapter; struct iq_desc *d = &iq->desc[iq->cidx]; int ndescs = 0, limit; int rsp_type, refill, starved; uint32_t lq; uint16_t fl_hw_cidx; struct mbuf *m0; #if defined(INET) || defined(INET6) const struct timeval lro_timeout = {0, sc->lro_timeout}; struct lro_ctrl *lro = &rxq->lro; #endif KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); MPASS(iq->flags & IQ_HAS_FL); limit = budget ? budget : iq->qsize / 16; fl = &rxq->fl; fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ #if defined(INET) || defined(INET6) if (iq->flags & IQ_ADJ_CREDIT) { MPASS(sort_before_lro(lro)); iq->flags &= ~IQ_ADJ_CREDIT; if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { tcp_lro_flush_all(lro); t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); return (0); } ndescs = 1; } #else MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); #endif while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { rmb(); refill = 0; m0 = NULL; rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); lq = be32toh(d->rsp.pldbuflen_qid); switch (rsp_type) { case X_RSPD_TYPE_FLBUF: m0 = get_fl_payload(sc, fl, lq); if (__predict_false(m0 == NULL)) goto out; refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; if (iq->flags & IQ_RX_TIMESTAMP) { /* * Fill up rcv_tstmp but do not set M_TSTMP. * rcv_tstmp is not in the format that the * kernel expects and we don't want to mislead * it. For now this is only for custom code * that knows how to interpret cxgbe's stamp. */ m0->m_pkthdr.rcv_tstmp = last_flit_to_ns(sc, d->rsp.u.last_flit); #ifdef notyet m0->m_flags |= M_TSTMP; #endif } /* fall through */ case X_RSPD_TYPE_CPL: KASSERT(d->rss.opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, d->rss.opcode)); t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); break; case X_RSPD_TYPE_INTR: /* * There are 1K interrupt-capable queues (qids 0 * through 1023). A response type indicating a * forwarded interrupt with a qid >= 1K is an * iWARP async notification. That is the only * acceptable indirect interrupt on this queue. */ if (__predict_false(lq < 1024)) { panic("%s: indirect interrupt on iq_fl %p " "with qid %u", __func__, iq, lq); } t4_an_handler(iq, &d->rsp); break; default: KASSERT(0, ("%s: illegal response type %d on iq %p", __func__, rsp_type, iq)); log(LOG_ERR, "%s: illegal response type %d on iq %p", device_get_nameunit(sc->dev), rsp_type, iq); break; } d++; if (__predict_false(++iq->cidx == iq->sidx)) { iq->cidx = 0; iq->gen ^= F_RSPD_GEN; d = &iq->desc[0]; } if (__predict_false(++ndescs == limit)) { t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED && !sort_before_lro(lro) && sc->lro_timeout != 0) { tcp_lro_flush_inactive(lro, &lro_timeout); } #endif if (budget) { FL_LOCK(fl); refill_fl(sc, fl, 32); FL_UNLOCK(fl); return (EINPROGRESS); } } if (refill) { FL_LOCK(fl); refill_fl(sc, fl, 32); FL_UNLOCK(fl); fl_hw_cidx = fl->hw_cidx; } } out: #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED) { if (ndescs > 0 && lro->lro_mbuf_count > 8) { MPASS(sort_before_lro(lro)); /* hold back one credit and don't flush LRO state */ iq->flags |= IQ_ADJ_CREDIT; ndescs--; } else { tcp_lro_flush_all(lro); } } #endif t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); FL_LOCK(fl); starved = refill_fl(sc, fl, 64); FL_UNLOCK(fl); if (__predict_false(starved != 0)) add_fl_to_sfl(sc, fl); return (0); } static inline int cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) { int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; if (rc) MPASS(cll->region3 >= CL_METADATA_SIZE); return (rc); } static inline struct cluster_metadata * cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, caddr_t cl) { if (cl_has_metadata(fl, cll)) { struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; return ((struct cluster_metadata *)(cl + swz->size) - 1); } return (NULL); } static void rxb_free(struct mbuf *m) { uma_zone_t zone = m->m_ext.ext_arg1; void *cl = m->m_ext.ext_arg2; uma_zfree(zone, cl); counter_u64_add(extfree_rels, 1); } /* * The mbuf returned by this function could be allocated from zone_mbuf or * constructed in spare room in the cluster. * * The mbuf carries the payload in one of these ways * a) frame inside the mbuf (mbuf from zone_mbuf) * b) m_cljset (for clusters without metadata) zone_mbuf * c) m_extaddref (cluster with metadata) inline mbuf * d) m_extaddref (cluster with metadata) zone_mbuf */ static struct mbuf * get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, int remaining) { struct mbuf *m; struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; struct cluster_layout *cll = &sd->cll; struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); int len, blen; caddr_t payload; blen = hwb->size - fl->rx_offset; /* max possible in this buf */ len = min(remaining, blen); payload = sd->cl + cll->region1 + fl->rx_offset; if (fl->flags & FL_BUF_PACKING) { const u_int l = fr_offset + len; const u_int pad = roundup2(l, fl->buf_boundary) - l; if (fl->rx_offset + len + pad < hwb->size) blen = len + pad; MPASS(fl->rx_offset + blen <= hwb->size); } else { MPASS(fl->rx_offset == 0); /* not packing */ } if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { /* * Copy payload into a freshly allocated mbuf. */ m = fr_offset == 0 ? m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); fl->mbuf_allocated++; /* copy data to mbuf */ bcopy(payload, mtod(m, caddr_t), len); } else if (sd->nmbuf * MSIZE < cll->region1) { /* * There's spare room in the cluster for an mbuf. Create one * and associate it with the payload that's in the cluster. */ MPASS(clm != NULL); m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); /* No bzero required */ if (m_init(m, M_NOWAIT, MT_DATA, fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) return (NULL); fl->mbuf_inlined++; m_extaddref(m, payload, blen, &clm->refcount, rxb_free, swz->zone, sd->cl); if (sd->nmbuf++ == 0) counter_u64_add(extfree_refs, 1); } else { /* * Grab an mbuf from zone_mbuf and associate it with the * payload in the cluster. */ m = fr_offset == 0 ? m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); fl->mbuf_allocated++; if (clm != NULL) { m_extaddref(m, payload, blen, &clm->refcount, rxb_free, swz->zone, sd->cl); if (sd->nmbuf++ == 0) counter_u64_add(extfree_refs, 1); } else { m_cljset(m, sd->cl, swz->type); sd->cl = NULL; /* consumed, not a recycle candidate */ } } if (fr_offset == 0) m->m_pkthdr.len = remaining; m->m_len = len; if (fl->flags & FL_BUF_PACKING) { fl->rx_offset += blen; MPASS(fl->rx_offset <= hwb->size); if (fl->rx_offset < hwb->size) return (m); /* without advancing the cidx */ } if (__predict_false(++fl->cidx % 8 == 0)) { uint16_t cidx = fl->cidx / 8; if (__predict_false(cidx == fl->sidx)) fl->cidx = cidx = 0; fl->hw_cidx = cidx; } fl->rx_offset = 0; return (m); } static struct mbuf * get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) { struct mbuf *m0, *m, **pnext; u_int remaining; const u_int total = G_RSPD_LEN(len_newbuf); if (__predict_false(fl->flags & FL_BUF_RESUME)) { M_ASSERTPKTHDR(fl->m0); MPASS(fl->m0->m_pkthdr.len == total); MPASS(fl->remaining < total); m0 = fl->m0; pnext = fl->pnext; remaining = fl->remaining; fl->flags &= ~FL_BUF_RESUME; goto get_segment; } if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { fl->rx_offset = 0; if (__predict_false(++fl->cidx % 8 == 0)) { uint16_t cidx = fl->cidx / 8; if (__predict_false(cidx == fl->sidx)) fl->cidx = cidx = 0; fl->hw_cidx = cidx; } } /* * Payload starts at rx_offset in the current hw buffer. Its length is * 'len' and it may span multiple hw buffers. */ m0 = get_scatter_segment(sc, fl, 0, total); if (m0 == NULL) return (NULL); remaining = total - m0->m_len; pnext = &m0->m_next; while (remaining > 0) { get_segment: MPASS(fl->rx_offset == 0); m = get_scatter_segment(sc, fl, total - remaining, remaining); if (__predict_false(m == NULL)) { fl->m0 = m0; fl->pnext = pnext; fl->remaining = remaining; fl->flags |= FL_BUF_RESUME; return (NULL); } *pnext = m; pnext = &m->m_next; remaining -= m->m_len; } *pnext = NULL; M_ASSERTPKTHDR(m0); return (m0); } static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) { struct sge_rxq *rxq = iq_to_rxq(iq); struct ifnet *ifp = rxq->ifp; struct adapter *sc = iq->adapter; const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxq->lro; #endif static const int sw_hashtype[4][2] = { {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, }; KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, rss->opcode)); m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; m0->m_len -= sc->params.sge.fl_pktshift; m0->m_data += sc->params.sge.fl_pktshift; m0->m_pkthdr.rcvif = ifp; M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); m0->m_pkthdr.flowid = be32toh(rss->hash_val); if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { if (ifp->if_capenable & IFCAP_RXCSUM && cpl->l2info & htobe32(F_RXF_IP)) { m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); rxq->rxcsum++; } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && cpl->l2info & htobe32(F_RXF_IP6)) { m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR); rxq->rxcsum++; } if (__predict_false(cpl->ip_frag)) m0->m_pkthdr.csum_data = be16toh(cpl->csum); else m0->m_pkthdr.csum_data = 0xffff; } if (cpl->vlan_ex) { m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); m0->m_flags |= M_VLANTAG; rxq->vlan_extraction++; } #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED) { if (sort_before_lro(lro)) { tcp_lro_queue_mbuf(lro, m0); return (0); /* queued for sort, then LRO */ } if (tcp_lro_rx(lro, m0, 0) == 0) return (0); /* queued for LRO */ } #endif ifp->if_input(ifp, m0); return (0); } /* * Must drain the wrq or make sure that someone else will. */ static void wrq_tx_drain(void *arg, int n) { struct sge_wrq *wrq = arg; struct sge_eq *eq = &wrq->eq; EQ_LOCK(eq); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(wrq->adapter, wrq); EQ_UNLOCK(eq); } static void drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) { struct sge_eq *eq = &wrq->eq; u_int available, dbdiff; /* # of hardware descriptors */ u_int n; struct wrqe *wr; struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ EQ_LOCK_ASSERT_OWNED(eq); MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); wr = STAILQ_FIRST(&wrq->wr_list); MPASS(wr != NULL); /* Must be called with something useful to do */ MPASS(eq->pidx == eq->dbidx); dbdiff = 0; do { eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; MPASS(wr->wrq == wrq); n = howmany(wr->wr_len, EQ_ESIZE); if (available < n) break; dst = (void *)&eq->desc[eq->pidx]; if (__predict_true(eq->sidx - eq->pidx > n)) { /* Won't wrap, won't end exactly at the status page. */ bcopy(&wr->wr[0], dst, wr->wr_len); eq->pidx += n; } else { int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; bcopy(&wr->wr[0], dst, first_portion); if (wr->wr_len > first_portion) { bcopy(&wr->wr[first_portion], &eq->desc[0], wr->wr_len - first_portion); } eq->pidx = n - (eq->sidx - eq->pidx); } wrq->tx_wrs_copied++; if (available < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { /* * XXX: This is not 100% reliable with some * types of WRs. But this is a very unusual * situation for an ofld/ctrl queue anyway. */ dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); } dbdiff += n; if (dbdiff >= 16) { ring_eq_db(sc, eq, dbdiff); dbdiff = 0; } STAILQ_REMOVE_HEAD(&wrq->wr_list, link); free_wrqe(wr); MPASS(wrq->nwr_pending > 0); wrq->nwr_pending--; MPASS(wrq->ndesc_needed >= n); wrq->ndesc_needed -= n; } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); if (dbdiff) ring_eq_db(sc, eq, dbdiff); } /* * Doesn't fail. Holds on to work requests it can't send right away. */ void t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) { #ifdef INVARIANTS struct sge_eq *eq = &wrq->eq; #endif EQ_LOCK_ASSERT_OWNED(eq); MPASS(wr != NULL); MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); MPASS((wr->wr_len & 0x7) == 0); STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); wrq->nwr_pending++; wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) return; /* commit_wrq_wr will drain wr_list as well. */ drain_wrq_wr_list(sc, wrq); /* Doorbell must have caught up to the pidx. */ MPASS(eq->pidx == eq->dbidx); } void t4_update_fl_bufsize(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct adapter *sc = vi->pi->adapter; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif struct sge_fl *fl; int i, maxp, mtu = ifp->if_mtu; maxp = mtu_to_max_payload(sc, mtu, 0); for_each_rxq(vi, i, rxq) { fl = &rxq->fl; FL_LOCK(fl); find_best_refill_source(sc, fl, maxp); FL_UNLOCK(fl); } #ifdef TCP_OFFLOAD maxp = mtu_to_max_payload(sc, mtu, 1); for_each_ofld_rxq(vi, i, ofld_rxq) { fl = &ofld_rxq->fl; FL_LOCK(fl); find_best_refill_source(sc, fl, maxp); FL_UNLOCK(fl); } #endif } static inline int mbuf_nsegs(struct mbuf *m) { M_ASSERTPKTHDR(m); KASSERT(m->m_pkthdr.l5hlen > 0, ("%s: mbuf %p missing information on # of segments.", __func__, m)); return (m->m_pkthdr.l5hlen); } static inline void set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) { M_ASSERTPKTHDR(m); m->m_pkthdr.l5hlen = nsegs; } static inline int mbuf_cflags(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_loc.eight[4]); } static inline void set_mbuf_cflags(struct mbuf *m, uint8_t flags) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[4] = flags; } static inline int mbuf_len16(struct mbuf *m) { int n; M_ASSERTPKTHDR(m); n = m->m_pkthdr.PH_loc.eight[0]; MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); return (n); } static inline void set_mbuf_len16(struct mbuf *m, uint8_t len16) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[0] = len16; } #ifdef RATELIMIT static inline int mbuf_eo_nsegs(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_loc.eight[1]); } static inline void set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[1] = nsegs; } static inline int mbuf_eo_len16(struct mbuf *m) { int n; M_ASSERTPKTHDR(m); n = m->m_pkthdr.PH_loc.eight[2]; MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); return (n); } static inline void set_mbuf_eo_len16(struct mbuf *m, uint8_t len16) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[2] = len16; } static inline int mbuf_eo_tsclk_tsoff(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_loc.eight[3]); } static inline void set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff; } static inline int needs_eo(struct mbuf *m) { return (m->m_pkthdr.snd_tag != NULL); } #endif /* * Try to allocate an mbuf to contain a raw work request. To make it * easy to construct the work request, don't allocate a chain but a * single mbuf. */ struct mbuf * alloc_wr_mbuf(int len, int how) { struct mbuf *m; if (len <= MHLEN) m = m_gethdr(how, MT_DATA); else if (len <= MCLBYTES) m = m_getcl(how, MT_DATA, M_PKTHDR); else m = NULL; if (m == NULL) return (NULL); m->m_pkthdr.len = len; m->m_len = len; set_mbuf_cflags(m, MC_RAW_WR); set_mbuf_len16(m, howmany(len, 16)); return (m); } static inline int needs_tso(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & CSUM_TSO); } static inline int needs_l3_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)); } static inline int needs_l4_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)); } static inline int needs_tcp_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO)); } #ifdef RATELIMIT static inline int needs_udp_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)); } #endif static inline int needs_vlan_insertion(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_flags & M_VLANTAG); } static void * m_advance(struct mbuf **pm, int *poffset, int len) { struct mbuf *m = *pm; int offset = *poffset; uintptr_t p = 0; MPASS(len > 0); for (;;) { if (offset + len < m->m_len) { offset += len; p = mtod(m, uintptr_t) + offset; break; } len -= m->m_len - offset; m = m->m_next; offset = 0; MPASS(m != NULL); } *poffset = offset; *pm = m; return ((void *)p); } /* * Can deal with empty mbufs in the chain that have m_len = 0, but the chain * must have at least one mbuf that's not empty. It is possible for this * routine to return 0 if skip accounts for all the contents of the mbuf chain. */ static inline int count_mbuf_nsegs(struct mbuf *m, int skip) { vm_paddr_t lastb, next; vm_offset_t va; int len, nsegs; M_ASSERTPKTHDR(m); MPASS(m->m_pkthdr.len > 0); MPASS(m->m_pkthdr.len >= skip); nsegs = 0; lastb = 0; for (; m; m = m->m_next) { len = m->m_len; if (__predict_false(len == 0)) continue; if (skip >= len) { skip -= len; continue; } va = mtod(m, vm_offset_t) + skip; len -= skip; skip = 0; next = pmap_kextract(va); nsegs += sglist_count((void *)(uintptr_t)va, len); if (lastb + 1 == next) nsegs--; lastb = pmap_kextract(va + len - 1); } return (nsegs); } /* * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: * a) caller can assume it's been freed if this function returns with an error. * b) it may get defragged up if the gather list is too long for the hardware. */ int parse_pkt(struct adapter *sc, struct mbuf **mp) { struct mbuf *m0 = *mp, *m; int rc, nsegs, defragged = 0, offset; struct ether_header *eh; void *l3hdr; #if defined(INET) || defined(INET6) struct tcphdr *tcp; #endif uint16_t eh_type; M_ASSERTPKTHDR(m0); if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { rc = EINVAL; fail: m_freem(m0); *mp = NULL; return (rc); } restart: /* * First count the number of gather list segments in the payload. * Defrag the mbuf if nsegs exceeds the hardware limit. */ M_ASSERTPKTHDR(m0); MPASS(m0->m_pkthdr.len > 0); nsegs = count_mbuf_nsegs(m0, 0); if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { rc = EFBIG; goto fail; } *mp = m0 = m; /* update caller's copy after defrag */ goto restart; } if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { m0 = m_pullup(m0, m0->m_pkthdr.len); if (m0 == NULL) { /* Should have left well enough alone. */ rc = EFBIG; goto fail; } *mp = m0; /* update caller's copy after pullup */ goto restart; } set_mbuf_nsegs(m0, nsegs); set_mbuf_cflags(m0, 0); if (sc->flags & IS_VF) set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); else set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); #ifdef RATELIMIT /* * Ethofld is limited to TCP and UDP for now, and only when L4 hw * checksumming is enabled. needs_l4_csum happens to check for all the * right things. */ if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0))) m0->m_pkthdr.snd_tag = NULL; #endif if (!needs_tso(m0) && #ifdef RATELIMIT !needs_eo(m0) && #endif !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) return (0); m = m0; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); if (eh_type == ETHERTYPE_VLAN) { struct ether_vlan_header *evh = (void *)eh; eh_type = ntohs(evh->evl_proto); m0->m_pkthdr.l2hlen = sizeof(*evh); } else m0->m_pkthdr.l2hlen = sizeof(*eh); offset = 0; l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); switch (eh_type) { #ifdef INET6 case ETHERTYPE_IPV6: { struct ip6_hdr *ip6 = l3hdr; MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); m0->m_pkthdr.l3hlen = sizeof(*ip6); break; } #endif #ifdef INET case ETHERTYPE_IP: { struct ip *ip = l3hdr; m0->m_pkthdr.l3hlen = ip->ip_hl * 4; break; } #endif default: panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" " with the same INET/INET6 options as the kernel.", __func__, eh_type); } #if defined(INET) || defined(INET6) if (needs_tcp_csum(m0)) { tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); m0->m_pkthdr.l4hlen = tcp->th_off * 4; #ifdef RATELIMIT if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) { set_mbuf_eo_tsclk_tsoff(m0, V_FW_ETH_TX_EO_WR_TSCLK(tsclk) | V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1)); } else set_mbuf_eo_tsclk_tsoff(m0, 0); } else if (needs_udp_csum(m)) { m0->m_pkthdr.l4hlen = sizeof(struct udphdr); #endif } #ifdef RATELIMIT if (needs_eo(m0)) { u_int immhdrs; /* EO WRs have the headers in the WR and not the GL. */ immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; nsegs = count_mbuf_nsegs(m0, immhdrs); set_mbuf_eo_nsegs(m0, nsegs); set_mbuf_eo_len16(m0, txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0))); } #endif #endif MPASS(m0 == *mp); return (0); } void * start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, available; struct wrqe *wr; void *w; MPASS(len16 > 0); ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); EQ_LOCK(eq); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); if (!STAILQ_EMPTY(&wrq->wr_list)) { slowpath: EQ_UNLOCK(eq); wr = alloc_wrqe(len16 * 16, wrq); if (__predict_false(wr == NULL)) return (NULL); cookie->pidx = -1; cookie->ndesc = ndesc; return (&wr->wr); } eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; if (available < ndesc) goto slowpath; cookie->pidx = eq->pidx; cookie->ndesc = ndesc; TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); w = &eq->desc[eq->pidx]; IDXINCR(eq->pidx, ndesc, eq->sidx); if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { w = &wrq->ss[0]; wrq->ss_pidx = cookie->pidx; wrq->ss_len = len16 * 16; } EQ_UNLOCK(eq); return (w); } void commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, pidx; struct wrq_cookie *prev, *next; if (cookie->pidx == -1) { struct wrqe *wr = __containerof(w, struct wrqe, wr); t4_wrq_tx(sc, wr); return; } if (__predict_false(w == &wrq->ss[0])) { int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; MPASS(wrq->ss_len > n); /* WR had better wrap around. */ bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); wrq->tx_wrs_ss++; } else wrq->tx_wrs_direct++; EQ_LOCK(eq); ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ pidx = cookie->pidx; MPASS(pidx >= 0 && pidx < eq->sidx); prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); next = TAILQ_NEXT(cookie, link); if (prev == NULL) { MPASS(pidx == eq->dbidx); if (next == NULL || ndesc >= 16) { int available; struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ /* * Note that the WR via which we'll request tx updates * is at pidx and not eq->pidx, which has moved on * already. */ dst = (void *)&eq->desc[pidx]; available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; if (available < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { /* * XXX: This is not 100% reliable with some * types of WRs. But this is a very unusual * situation for an ofld/ctrl queue anyway. */ dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); } ring_eq_db(wrq->adapter, eq, ndesc); } else { MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); next->pidx = pidx; next->ndesc += ndesc; } } else { MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); prev->ndesc += ndesc; } TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); #ifdef INVARIANTS if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { /* Doorbell must have caught up to the pidx. */ MPASS(wrq->eq.pidx == wrq->eq.dbidx); } #endif EQ_UNLOCK(eq); } static u_int can_resume_eth_tx(struct mp_ring *r) { struct sge_eq *eq = r->cookie; return (total_available_tx_desc(eq) > eq->sidx / 8); } static inline int cannot_use_txpkts(struct mbuf *m) { /* maybe put a GL limit too, to avoid silliness? */ return (needs_tso(m) || (mbuf_cflags(m) & MC_RAW_WR) != 0); } static inline int discard_tx(struct sge_eq *eq) { return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); } static inline int wr_can_update_eq(struct fw_eth_tx_pkts_wr *wr) { switch (G_FW_WR_OP(be32toh(wr->op_pkd))) { case FW_ULPTX_WR: case FW_ETH_TX_PKT_WR: case FW_ETH_TX_PKTS_WR: case FW_ETH_TX_PKT_VM_WR: return (1); default: return (0); } } /* * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to * be consumed. Return the actual number consumed. 0 indicates a stall. */ static u_int eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) { struct sge_txq *txq = r->cookie; struct sge_eq *eq = &txq->eq; struct ifnet *ifp = txq->ifp; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; u_int total, remaining; /* # of packets */ u_int available, dbdiff; /* # of hardware descriptors */ u_int n, next_cidx; struct mbuf *m0, *tail; struct txpkts txp; struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ remaining = IDXDIFF(pidx, cidx, r->size); MPASS(remaining > 0); /* Must not be called without work to do. */ total = 0; TXQ_LOCK(txq); if (__predict_false(discard_tx(eq))) { while (cidx != pidx) { m0 = r->items[cidx]; m_freem(m0); if (++cidx == r->size) cidx = 0; } reclaim_tx_descs(txq, 2048); total = remaining; goto done; } /* How many hardware descriptors do we have readily available. */ if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); while (remaining > 0) { m0 = r->items[cidx]; M_ASSERTPKTHDR(m0); MPASS(m0->m_nextpkt == NULL); if (available < SGE_MAX_WR_NDESC) { available += reclaim_tx_descs(txq, 64); if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) break; /* out of descriptors */ } next_cidx = cidx + 1; if (__predict_false(next_cidx == r->size)) next_cidx = 0; wr = (void *)&eq->desc[eq->pidx]; if (sc->flags & IS_VF) { total++; remaining--; ETHER_BPF_MTAP(ifp, m0); n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, available); } else if (remaining > 1 && try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { /* pkts at cidx, next_cidx should both be in txp. */ MPASS(txp.npkt == 2); tail = r->items[next_cidx]; MPASS(tail->m_nextpkt == NULL); ETHER_BPF_MTAP(ifp, m0); ETHER_BPF_MTAP(ifp, tail); m0->m_nextpkt = tail; if (__predict_false(++next_cidx == r->size)) next_cidx = 0; while (next_cidx != pidx) { if (add_to_txpkts(r->items[next_cidx], &txp, available) != 0) break; tail->m_nextpkt = r->items[next_cidx]; tail = tail->m_nextpkt; ETHER_BPF_MTAP(ifp, tail); if (__predict_false(++next_cidx == r->size)) next_cidx = 0; } n = write_txpkts_wr(txq, wr, m0, &txp, available); total += txp.npkt; remaining -= txp.npkt; } else if (mbuf_cflags(m0) & MC_RAW_WR) { total++; remaining--; n = write_raw_wr(txq, (void *)wr, m0, available); } else { total++; remaining--; ETHER_BPF_MTAP(ifp, m0); n = write_txpkt_wr(txq, (void *)wr, m0, available); } MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); available -= n; dbdiff += n; IDXINCR(eq->pidx, n, eq->sidx); if (wr_can_update_eq(wr)) { if (total_available_tx_desc(eq) < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } } if (dbdiff >= 16 && remaining >= 4) { ring_eq_db(sc, eq, dbdiff); available += reclaim_tx_descs(txq, 4 * dbdiff); dbdiff = 0; } cidx = next_cidx; } if (dbdiff != 0) { ring_eq_db(sc, eq, dbdiff); reclaim_tx_descs(txq, 32); } done: TXQ_UNLOCK(txq); return (total); } static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, int qsize) { KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, ("%s: bad tmr_idx %d", __func__, tmr_idx)); KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ ("%s: bad pktc_idx %d", __func__, pktc_idx)); iq->flags = 0; iq->adapter = sc; iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); iq->intr_pktc_idx = SGE_NCOUNTERS - 1; if (pktc_idx >= 0) { iq->intr_params |= F_QINTR_CNT_EN; iq->intr_pktc_idx = pktc_idx; } iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; } static inline void init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) { fl->qsize = qsize; fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(fl->lockname, name, sizeof(fl->lockname)); if (sc->flags & BUF_PACKING_OK && ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ fl->flags |= FL_BUF_PACKING; find_best_refill_source(sc, fl, maxp); find_safe_refill_source(sc, fl); } static inline void init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, uint16_t iqid, char *name) { KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); eq->flags = eqtype & EQ_TYPEMASK; eq->tx_chan = tx_chan; eq->iqid = iqid; eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(eq->lockname, name, sizeof(eq->lockname)); } static int alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, bus_dmamap_t *map, bus_addr_t *pa, void **va) { int rc; rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); goto done; } rc = bus_dmamem_alloc(*tag, va, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); goto done; } rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); if (rc != 0) { device_printf(sc->dev, "cannot load DMA map: %d\n", rc); goto done; } done: if (rc) free_ring(sc, *tag, *map, *pa, *va); return (rc); } static int free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t pa, void *va) { if (pa) bus_dmamap_unload(tag, map); if (va) bus_dmamem_free(tag, va, map); if (tag) bus_dma_tag_destroy(tag); return (0); } /* * Allocates the ring for an ingress queue and an optional freelist. If the * freelist is specified it will be allocated and then associated with the * ingress queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. * * If the ingress queue will take interrupts directly then the intr_idx * specifies the vector, starting from 0. -1 means the interrupts for this * queue should be forwarded to the fwq. */ static int alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, int intr_idx, int cong) { int rc, i, cntxt_id; size_t len; struct fw_iq_cmd c; struct port_info *pi = vi->pi; struct adapter *sc = iq->adapter; struct sge_params *sp = &sc->params.sge; __be32 v = 0; len = iq->qsize * IQ_ESIZE; rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, (void **)&iq->desc); if (rc != 0) return (rc); bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | V_FW_IQ_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | FW_LEN16(c)); /* Special handling for firmware event queue */ if (iq == &sc->sge.fwq) v |= F_FW_IQ_CMD_IQASYNCH; if (intr_idx < 0) { /* Forwarded interrupts, all headed to fwq */ v |= F_FW_IQ_CMD_IQANDST; v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); } else { KASSERT(intr_idx < sc->intr_count, ("%s: invalid direct intr_idx %d", __func__, intr_idx)); v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); } c.type_to_iqandstindex = htobe32(v | V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | V_FW_IQ_CMD_VIID(vi->viid) | V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | F_FW_IQ_CMD_IQGTSMODE | V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); c.iqsize = htobe16(iq->qsize); c.iqaddr = htobe64(iq->ba); if (cong >= 0) c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); if (fl) { mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); len = fl->qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, &fl->ba, (void **)&fl->desc); if (rc) return (rc); /* Allocate space for one software descriptor per buffer. */ rc = alloc_fl_sdesc(fl); if (rc != 0) { device_printf(sc->dev, "failed to setup fl software descriptors: %d\n", rc); return (rc); } if (fl->flags & FL_BUF_PACKING) { fl->lowat = roundup2(sp->fl_starve_threshold2, 8); fl->buf_boundary = sp->pack_boundary; } else { fl->lowat = roundup2(sp->fl_starve_threshold, 8); fl->buf_boundary = 16; } if (fl_pad && fl->buf_boundary < sp->pad_boundary) fl->buf_boundary = sp->pad_boundary; c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 0)); if (cong >= 0) { c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | F_FW_IQ_CMD_FL0CONGCIF | F_FW_IQ_CMD_FL0CONGEN); } c.fl0dcaen_to_fl0cidxfthresh = htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); c.fl0size = htobe16(fl->qsize); c.fl0addr = htobe64(fl->ba); } rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create ingress queue: %d\n", rc); return (rc); } iq->cidx = 0; iq->gen = F_RSPD_GEN; iq->intr_next = iq->intr_params; iq->cntxt_id = be16toh(c.iqid); iq->abs_id = be16toh(c.physiqid); iq->flags |= IQ_ALLOCATED; cntxt_id = iq->cntxt_id - sc->sge.iq_start; if (cntxt_id >= sc->sge.niq) { panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.niq - 1); } sc->sge.iqmap[cntxt_id] = iq; if (fl) { u_int qid; iq->flags |= IQ_HAS_FL; fl->cntxt_id = be16toh(c.fl0id); fl->pidx = fl->cidx = 0; cntxt_id = fl->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) { panic("%s: fl->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); } sc->sge.eqmap[cntxt_id] = (void *)fl; qid = fl->cntxt_id; if (isset(&sc->doorbells, DOORBELL_UDB)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (qid >> s_qpp) << PAGE_SHIFT; qid &= mask; if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { udb += qid << UDBS_SEG_SHIFT; qid = 0; } fl->udb = (volatile void *)udb; } fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; FL_LOCK(fl); /* Enough to make sure the SGE doesn't think it's starved */ refill_fl(sc, fl, fl->lowat); FL_UNLOCK(fl); } if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { uint32_t param, val; param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); if (cong == 0) val = 1 << 19; else { val = 2 << 19; for (i = 0; i < 4; i++) { if (cong & (1 << i)) val |= 1 << (i << 2); } } rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* report error but carry on */ device_printf(sc->dev, "failed to set congestion manager context for " "ingress queue %d: %d\n", iq->cntxt_id, rc); } } /* Enable IQ interrupts */ atomic_store_rel_int(&iq->state, IQS_IDLE); t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id)); return (0); } static int free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) { int rc; struct adapter *sc = iq->adapter; device_t dev; if (sc == NULL) return (0); /* nothing to do */ dev = vi ? vi->dev : sc->dev; if (iq->flags & IQ_ALLOCATED) { rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { device_printf(dev, "failed to free queue %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_ALLOCATED; } free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); bzero(iq, sizeof(*iq)); if (fl) { free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc); if (fl->sdesc) free_fl_sdesc(sc, fl); if (mtx_initialized(&fl->fl_lock)) mtx_destroy(&fl->fl_lock); bzero(fl, sizeof(*fl)); } return (0); } static void add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_iq *iq) { struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I", "consumer index"); } static void add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_fl *fl) { struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &fl->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the freelist"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, fl_pad ? 1 : 0, "padding enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 0, "consumer index"); if (fl->flags & FL_BUF_PACKING) { SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); } SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 0, "producer index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); } static int alloc_fwq(struct adapter *sc) { int rc, intr_idx; struct sge_iq *fwq = &sc->sge.fwq; struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); if (sc->flags & IS_VF) intr_idx = 0; else intr_idx = sc->intr_count > 1 ? 1 : 0; rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); if (rc != 0) { device_printf(sc->dev, "failed to create firmware event queue: %d\n", rc); return (rc); } oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, NULL, "firmware event queue"); add_iq_sysctls(&sc->ctx, oid, fwq); return (0); } static int free_fwq(struct adapter *sc) { return free_iq_fl(NULL, &sc->sge.fwq, NULL); } static int alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx, struct sysctl_oid *oid) { int rc; char name[16]; struct sysctl_oid_list *children; snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev), idx); init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan, sc->sge.fwq.cntxt_id, name); children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "ctrl queue"); rc = alloc_wrq(sc, NULL, ctrlq, oid); return (rc); } int tnl_cong(struct port_info *pi, int drop) { if (drop == -1) return (-1); else if (drop == 1) return (0); else return (pi->rx_e_chan_map); } static int alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct adapter *sc = vi->pi->adapter; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(vi->pi, cong_drop)); if (rc != 0) return (rc); if (idx == 0) sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; else KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, ("iq_base mismatch")); KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, ("PF with non-zero iq_base")); /* * The freelist is just barely above the starvation threshold right now, * fill it up a bit more. */ FL_LOCK(&rxq->fl); refill_fl(sc, &rxq->fl, 128); FL_UNLOCK(&rxq->fl); #if defined(INET) || defined(INET6) rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); if (rc != 0) return (rc); MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ if (vi->ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; #endif if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP) rxq->iq.flags |= IQ_RX_TIMESTAMP; rxq->ifp = vi->ifp; children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); add_iq_sysctls(&vi->ctx, oid, &rxq->iq); #if defined(INET) || defined(INET6) SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, &rxq->lro.lro_queued, 0, NULL); SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, &rxq->lro.lro_flushed, 0, NULL); #endif SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, &rxq->rxcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD, &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag"); add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); return (rc); } static int free_rxq(struct vi_info *vi, struct sge_rxq *rxq) { int rc; #if defined(INET) || defined(INET6) if (rxq->lro.ifp) { tcp_lro_free(&rxq->lro); rxq->lro.ifp = NULL; } #endif rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); if (rc == 0) bzero(rxq, sizeof(*rxq)); return (rc); } #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int intr_idx, int idx, struct sysctl_oid *oid) { struct port_info *pi = vi->pi; int rc; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0); if (rc != 0) return (rc); children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq); add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); return (rc); } static int free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) { int rc; rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); if (rc == 0) bzero(ofld_rxq, sizeof(*ofld_rxq)); return (rc); } #endif #ifdef DEV_NETMAP static int alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct sysctl_oid_list *children; struct sysctl_ctx_list *ctx; char name[16]; size_t len; struct adapter *sc = vi->pi->adapter; struct netmap_adapter *na = NA(vi->ifp); MPASS(na != NULL); len = vi->qsize_rxq * IQ_ESIZE; rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); if (rc != 0) return (rc); len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); if (rc != 0) return (rc); nm_rxq->vi = vi; nm_rxq->nid = idx; nm_rxq->iq_cidx = 0; nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; nm_rxq->iq_gen = F_RSPD_GEN; nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; nm_rxq->fl_sidx = na->num_rx_desc; nm_rxq->intr_idx = intr_idx; nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID; ctx = &vi->ctx; children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", "consumer index"); children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the freelist"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &nm_rxq->fl_cidx, 0, "consumer index"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &nm_rxq->fl_pidx, 0, "producer index"); return (rc); } static int free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) { struct adapter *sc = vi->pi->adapter; if (vi->flags & VI_INIT_DONE) MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID); else MPASS(nm_rxq->iq_cntxt_id == 0); free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, nm_rxq->iq_desc); free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, nm_rxq->fl_desc); return (0); } static int alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, struct sysctl_oid *oid) { int rc; size_t len; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct netmap_adapter *na = NA(vi->ifp); char name[16]; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, &nm_txq->ba, (void **)&nm_txq->desc); if (rc) return (rc); nm_txq->pidx = nm_txq->cidx = 0; nm_txq->sidx = na->num_tx_desc; nm_txq->nid = idx; nm_txq->iqidx = iqidx; nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID; snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "netmap tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &nm_txq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", "producer index"); return (rc); } static int free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) { struct adapter *sc = vi->pi->adapter; if (vi->flags & VI_INIT_DONE) MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID); else MPASS(nm_txq->cntxt_id == 0); free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, nm_txq->desc); return (0); } #endif /* * Returns a reasonable automatic cidx flush threshold for a given queue size. */ static u_int qsize_to_fthresh(int qsize) { u_int fthresh; while (!powerof2(qsize)) qsize++; fthresh = ilog2(qsize); if (fthresh > X_CIDXFLUSHTHRESH_128) fthresh = X_CIDXFLUSHTHRESH_128; return (fthresh); } static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ctrl_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | V_FW_EQ_CTRL_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); c.physeqid_pkd = htobe32(0); c.fetchszm_to_iqid = htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create control queue %d: %d\n", eq->tx_chan, rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } static int eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_eth_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | V_FW_EQ_ETH_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); c.fetchszm_to_iqid = htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_ETH_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create Ethernet egress queue: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) static int ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ofld_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | V_FW_EQ_OFLD_CMD_VFN(0)); c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create egress queue for TCP offload: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #endif static int alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, qsize; size_t len; mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; len = qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba, (void **)&eq->desc); if (rc) return (rc); eq->pidx = eq->cidx = eq->dbidx = 0; /* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */ eq->equeqidx = 0; eq->doorbells = sc->doorbells; switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = ctrl_eq_alloc(sc, eq); break; case EQ_ETH: rc = eth_eq_alloc(sc, vi, eq); break; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) case EQ_OFLD: rc = ofld_eq_alloc(sc, vi, eq); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to allocate egress queue(%d): %d\n", eq->flags & EQ_TYPEMASK, rc); } if (isset(&eq->doorbells, DOORBELL_UDB) || isset(&eq->doorbells, DOORBELL_UDBWC) || isset(&eq->doorbells, DOORBELL_WCWR)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ eq->udb_qid = eq->cntxt_id & mask; /* id in page */ if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) clrbit(&eq->doorbells, DOORBELL_WCWR); else { udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ eq->udb_qid = 0; } eq->udb = (volatile void *)udb; } return (rc); } static int free_eq(struct adapter *sc, struct sge_eq *eq) { int rc; if (eq->flags & EQ_ALLOCATED) { switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; case EQ_ETH: rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) case EQ_OFLD: rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to free egress queue (%d): %d\n", eq->flags & EQ_TYPEMASK, rc); return (rc); } eq->flags &= ~EQ_ALLOCATED; } free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); if (mtx_initialized(&eq->eq_lock)) mtx_destroy(&eq->eq_lock); bzero(eq, sizeof(*eq)); return (0); } static int alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, struct sysctl_oid *oid) { int rc; struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = alloc_eq(sc, vi, &wrq->eq); if (rc) return (rc); wrq->adapter = sc; TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); TAILQ_INIT(&wrq->incomplete_wrs); STAILQ_INIT(&wrq->wr_list); wrq->nwr_pending = 0; wrq->ndesc_needed = 0; SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &wrq->eq.ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, wrq->eq.sidx, "status page index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, &wrq->tx_wrs_direct, "# of work requests (direct)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, &wrq->tx_wrs_copied, "# of work requests (copied)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); return (rc); } static int free_wrq(struct adapter *sc, struct sge_wrq *wrq) { int rc; rc = free_eq(sc, &wrq->eq); if (rc) return (rc); bzero(wrq, sizeof(*wrq)); return (0); } static int alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, struct sysctl_oid *oid) { int rc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; char name[16]; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, M_CXGBE, M_WAITOK); if (rc != 0) { device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); return (rc); } rc = alloc_eq(sc, vi, eq); if (rc != 0) { mp_ring_free(txq->r); txq->r = NULL; return (rc); } /* Can't fail after this point. */ if (idx == 0) sc->sge.eq_base = eq->abs_id - eq->cntxt_id; else KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, ("eq_base mismatch")); KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, ("PF with non-zero eq_base")); TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); txq->ifp = vi->ifp; txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); if (sc->flags & IS_VF) txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | V_TXPKT_INTF(pi->tx_chan)); else txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); txq->tc_idx = -1; txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, M_ZERO | M_WAITOK); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, &eq->abs_id, 0, "absolute id of the queue"); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &eq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, eq->sidx, "status page index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", "traffic class (-1 means none)"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, &txq->txcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD, &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, &txq->tso_wrs, "# of TSO work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, &txq->imm_wrs, "# of work requests with immediate data"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, &txq->sgl_wrs, "# of work requests with direct SGL"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD, &txq->txpkts0_wrs, "# of txpkts (type 0) work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD, &txq->txpkts1_wrs, "# of txpkts (type 1) work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD, &txq->txpkts0_pkts, "# of frames tx'd using type0 txpkts work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD, &txq->txpkts1_pkts, "# of frames tx'd using type1 txpkts work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD, &txq->raw_wrs, "# of raw work requests (non-packets)"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", CTLFLAG_RD, &txq->r->enqueues, "# of enqueues to the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", CTLFLAG_RD, &txq->r->drops, "# of drops in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", CTLFLAG_RD, &txq->r->starts, "# of normal consumer starts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", CTLFLAG_RD, &txq->r->stalls, "# of consumer stalls in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", CTLFLAG_RD, &txq->r->restarts, "# of consumer restarts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", CTLFLAG_RD, &txq->r->abdications, "# of consumer abdications in the mp_ring for this queue"); return (0); } static int free_txq(struct vi_info *vi, struct sge_txq *txq) { int rc; struct adapter *sc = vi->pi->adapter; struct sge_eq *eq = &txq->eq; rc = free_eq(sc, eq); if (rc) return (rc); sglist_free(txq->gl); free(txq->sdesc, M_CXGBE); mp_ring_free(txq->r); bzero(txq, sizeof(*txq)); return (0); } static void oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *ba = arg; KASSERT(nseg == 1, ("%s meant for single segment mappings only.", __func__)); *ba = error ? 0 : segs->ds_addr; } static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl) { uint32_t n, v; n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); MPASS(n > 0); wmb(); v = fl->dbval | V_PIDX(n); if (fl->udb) *fl->udb = htole32(v); else t4_write_reg(sc, sc->sge_kdoorbell_reg, v); IDXINCR(fl->dbidx, n, fl->sidx); } /* * Fills up the freelist by allocating up to 'n' buffers. Buffers that are * recycled do not count towards this allocation budget. * * Returns non-zero to indicate that this freelist should be added to the list * of starving freelists. */ static int refill_fl(struct adapter *sc, struct sge_fl *fl, int n) { __be64 *d; struct fl_sdesc *sd; uintptr_t pa; caddr_t cl; struct cluster_layout *cll; struct sw_zone_info *swz; struct cluster_metadata *clm; uint16_t max_pidx; uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ FL_LOCK_ASSERT_OWNED(fl); /* * We always stop at the beginning of the hardware descriptor that's just * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, * which would mean an empty freelist to the chip. */ max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; if (fl->pidx == max_pidx * 8) return (0); d = &fl->desc[fl->pidx]; sd = &fl->sdesc[fl->pidx]; cll = &fl->cll_def; /* default layout */ swz = &sc->sge.sw_zone_info[cll->zidx]; while (n > 0) { if (sd->cl != NULL) { if (sd->nmbuf == 0) { /* * Fast recycle without involving any atomics on * the cluster's metadata (if the cluster has * metadata). This happens when all frames * received in the cluster were small enough to * fit within a single mbuf each. */ fl->cl_fast_recycled++; #ifdef INVARIANTS clm = cl_metadata(sc, fl, &sd->cll, sd->cl); if (clm != NULL) MPASS(clm->refcount == 1); #endif goto recycled_fast; } /* * Cluster is guaranteed to have metadata. Clusters * without metadata always take the fast recycle path * when they're recycled. */ clm = cl_metadata(sc, fl, &sd->cll, sd->cl); MPASS(clm != NULL); if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { fl->cl_recycled++; counter_u64_add(extfree_rels, 1); goto recycled; } sd->cl = NULL; /* gave up my reference */ } MPASS(sd->cl == NULL); alloc: cl = uma_zalloc(swz->zone, M_NOWAIT); if (__predict_false(cl == NULL)) { if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || fl->cll_def.zidx == fl->cll_alt.zidx) break; /* fall back to the safe zone */ cll = &fl->cll_alt; swz = &sc->sge.sw_zone_info[cll->zidx]; goto alloc; } fl->cl_allocated++; n--; pa = pmap_kextract((vm_offset_t)cl); pa += cll->region1; sd->cl = cl; sd->cll = *cll; *d = htobe64(pa | cll->hwidx); clm = cl_metadata(sc, fl, cll, cl); if (clm != NULL) { recycled: #ifdef INVARIANTS clm->sd = sd; #endif clm->refcount = 1; } sd->nmbuf = 0; recycled_fast: d++; sd++; if (__predict_false(++fl->pidx % 8 == 0)) { uint16_t pidx = fl->pidx / 8; if (__predict_false(pidx == fl->sidx)) { fl->pidx = 0; pidx = 0; sd = fl->sdesc; d = fl->desc; } if (pidx == max_pidx) break; if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) ring_fl_db(sc, fl); } } if (fl->pidx / 8 != fl->dbidx) ring_fl_db(sc, fl); return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); } /* * Attempt to refill all starving freelists. */ static void refill_sfl(void *arg) { struct adapter *sc = arg; struct sge_fl *fl, *fl_temp; mtx_assert(&sc->sfl_lock, MA_OWNED); TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { FL_LOCK(fl); refill_fl(sc, fl, 64); if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { TAILQ_REMOVE(&sc->sfl, fl, link); fl->flags &= ~FL_STARVING; } FL_UNLOCK(fl); } if (!TAILQ_EMPTY(&sc->sfl)) callout_schedule(&sc->sfl_callout, hz / 5); } static int alloc_fl_sdesc(struct sge_fl *fl) { fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, M_ZERO | M_WAITOK); return (0); } static void free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) { struct fl_sdesc *sd; struct cluster_metadata *clm; struct cluster_layout *cll; int i; sd = fl->sdesc; for (i = 0; i < fl->sidx * 8; i++, sd++) { if (sd->cl == NULL) continue; cll = &sd->cll; clm = cl_metadata(sc, fl, cll, sd->cl); if (sd->nmbuf == 0) uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); counter_u64_add(extfree_rels, 1); } sd->cl = NULL; } free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; } static inline void get_pkt_gl(struct mbuf *m, struct sglist *gl) { int rc; M_ASSERTPKTHDR(m); sglist_reset(gl); rc = sglist_append_mbuf(gl, m); if (__predict_false(rc != 0)) { panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " "with %d.", __func__, m, mbuf_nsegs(m), rc); } KASSERT(gl->sg_nseg == mbuf_nsegs(m), ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, mbuf_nsegs(m), gl->sg_nseg)); KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); } /* * len16 for a txpkt WR with a GL. Includes the firmware work request header. */ static inline u_int txpkt_len16(u_int nsegs, u_int tso) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); return (howmany(n, 16)); } /* * len16 for a txpkt_vm WR with a GL. Includes the firmware work * request header. */ static inline u_int txpkt_vm_len16(u_int nsegs, u_int tso) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); return (howmany(n, 16)); } /* * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts0_len16(u_int nsegs) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (howmany(n, 16)); } /* * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts1_len16(void) { u_int n; n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); return (howmany(n, 16)); } static inline u_int imm_payload(u_int ndesc) { u_int n; n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - sizeof(struct cpl_tx_pkt_core); return (n); } /* * Write a VM txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int csum_type, len16, ndesc, pktlen, nsegs; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); MPASS(available > 0 && available < eq->sidx); len16 = mbuf_len16(m0); nsegs = mbuf_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc <= available); /* Firmware work request header */ MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3[0] = 0; wr->r3[1] = 0; /* * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. * vlantci is ignored unless the ethtype is 0x8100, so it's * simpler to always copy it rather than making it * conditional. Also, it seems that we do not have to set * vlantci or fake the ethtype when doing VLAN tag insertion. */ m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); csum_type = -1; if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: mbuf %p needs TSO but missing header lengths", __func__, m0)); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) ctrl |= V_LSO_ETHHDR_LEN(1); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) csum_type = TX_CSUM_TCPIP6; else csum_type = TX_CSUM_TCPIP; cpl = (void *)(lso + 1); txq->tso_wrs++; } else { if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) csum_type = TX_CSUM_TCPIP; else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) csum_type = TX_CSUM_UDPIP; else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) csum_type = TX_CSUM_TCPIP6; else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) csum_type = TX_CSUM_UDPIP6; #if defined(INET) else if (m0->m_pkthdr.csum_flags & CSUM_IP) { /* * XXX: The firmware appears to stomp on the * fragment/flags field of the IP header when * using TX_CSUM_IP. Fall back to doing * software checksums. */ u_short *sump; struct mbuf *m; int offset; m = m0; offset = 0; sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + offsetof(struct ip, ip_sum)); *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } #endif cpl = (void *)(wr + 1); } /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m0) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (csum_type >= 0) { KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, ("%s: mbuf %p needs checksum offload but missing header lengths", __func__, m0)); if (chip_id(sc) <= CHELSIO_T5) { ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN); } else { ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN); } ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); } else ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); /* * A packet using TSO will use up an entire descriptor for the * firmware work request header, LSO CPL, and TX_PKT_XT CPL. * If this descriptor is the last descriptor in the ring, wrap * around to the front of the ring explicitly for the start of * the sgl. */ if (dst == (void *)&eq->desc[eq->sidx]) { dst = (void *)&eq->desc[0]; write_gl_to_txd(txq, m0, &dst, 0); } else write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * Write a raw WR to the hardware descriptors, update the software * descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct mbuf *m; caddr_t dst; int len16, ndesc; len16 = mbuf_len16(m0); ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc <= available); dst = wr; for (m = m0; m != NULL; m = m->m_next) copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); txq->raw_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * Write a txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int len16, ndesc, pktlen, nsegs; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); MPASS(available > 0 && available < eq->sidx); len16 = mbuf_len16(m0); nsegs = mbuf_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); else if (pktlen <= imm_payload(2) && available >= 2) { /* Immediate data. Recalculate len16 and set nsegs to 0. */ ctrl += pktlen; len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + pktlen, 16); nsegs = 0; } ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc <= available); /* Firmware work request header */ MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3 = 0; if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: mbuf %p needs TSO but missing header lengths", __func__, m0)); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) ctrl |= V_LSO_ETHHDR_LEN(1); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); cpl = (void *)(lso + 1); txq->tso_wrs++; } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m0) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (needs_l4_csum(m0) == 0) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); if (nsegs > 0) { write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; } else { struct mbuf *m; for (m = m0; m != NULL; m = m->m_next) { copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); #ifdef INVARIANTS pktlen -= m->m_len; #endif } #ifdef INVARIANTS KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); #endif txq->imm_wrs++; } txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } static int try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) { u_int needed, nsegs1, nsegs2, l1, l2; if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) return (1); nsegs1 = mbuf_nsegs(m); nsegs2 = mbuf_nsegs(n); if (nsegs1 + nsegs2 == 2) { txp->wr_type = 1; l1 = l2 = txpkts1_len16(); } else { txp->wr_type = 0; l1 = txpkts0_len16(nsegs1); l2 = txpkts0_len16(nsegs2); } txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; needed = howmany(txp->len16, EQ_ESIZE / 16); if (needed > SGE_MAX_WR_NDESC || needed > available) return (1); txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; if (txp->plen > 65535) return (1); txp->npkt = 2; set_mbuf_len16(m, l1); set_mbuf_len16(n, l2); return (0); } static int add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) { u_int plen, len16, needed, nsegs; MPASS(txp->wr_type == 0 || txp->wr_type == 1); if (cannot_use_txpkts(m)) return (1); nsegs = mbuf_nsegs(m); if (txp->wr_type == 1 && nsegs != 1) return (1); plen = txp->plen + m->m_pkthdr.len; if (plen > 65535) return (1); if (txp->wr_type == 0) len16 = txpkts0_len16(nsegs); else len16 = txpkts1_len16(); needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); if (needed > SGE_MAX_WR_NDESC || needed > available) return (1); txp->npkt++; txp->plen = plen; txp->len16 += len16; set_mbuf_len16(m, len16); return (0); } /* * Write a txpkts WR for the packets in txp to the hardware descriptors, update * the software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, struct mbuf *m0, const struct txpkts *txp, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; uint64_t ctrl1; int ndesc, checkwrap; struct mbuf *m; void *flitp; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(txp->npkt > 0); MPASS(txp->plen < 65536); MPASS(m0 != NULL); MPASS(m0->m_nextpkt != NULL); MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); MPASS(available > 0 && available < eq->sidx); ndesc = howmany(txp->len16, EQ_ESIZE / 16); MPASS(ndesc <= available); MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); ctrl = V_FW_WR_LEN16(txp->len16); wr->equiq_to_len16 = htobe32(ctrl); wr->plen = htobe16(txp->plen); wr->npkt = txp->npkt; wr->r3 = 0; wr->type = txp->wr_type; flitp = wr + 1; /* * At this point we are 16B into a hardware descriptor. If checkwrap is * set then we know the WR is going to wrap around somewhere. We'll * check for that at appropriate points. */ checkwrap = eq->sidx - ndesc < eq->pidx; for (m = m0; m != NULL; m = m->m_nextpkt) { if (txp->wr_type == 0) { struct ulp_txpkt *ulpmc; struct ulptx_idata *ulpsc; /* ULP master command */ ulpmc = flitp; ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); ulpmc->len = htobe32(mbuf_len16(m)); /* ULP subcommand */ ulpsc = (void *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE); ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); cpl = (void *)(ulpsc + 1); if (checkwrap && (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) cpl = (void *)&eq->desc[0]; } else { cpl = flitp; } /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (needs_l4_csum(m) == 0) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl1); flitp = cpl + 1; if (checkwrap && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) flitp = (void *)&eq->desc[0]; write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); } if (txp->wr_type == 0) { txq->txpkts0_pkts += txp->npkt; txq->txpkts0_wrs++; } else { txq->txpkts1_pkts += txp->npkt; txq->txpkts1_wrs++; } txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * If the SGL ends on an address that is not 16 byte aligned, this function will * add a 0 filled flit at the end. */ static void write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) { struct sge_eq *eq = &txq->eq; struct sglist *gl = txq->gl; struct sglist_seg *seg; __be64 *flitp, *wrap; struct ulptx_sgl *usgl; int i, nflits, nsegs; KASSERT(((uintptr_t)(*to) & 0xf) == 0, ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); get_pkt_gl(m, gl); nsegs = gl->sg_nseg; MPASS(nsegs > 0); nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; flitp = (__be64 *)(*to); wrap = (__be64 *)(&eq->desc[eq->sidx]); seg = &gl->sg_segs[0]; usgl = (void *)flitp; /* * We start at a 16 byte boundary somewhere inside the tx descriptor * ring, so we're at least 16 bytes away from the status page. There is * no chance of a wrap around in the middle of usgl (which is 16 bytes). */ usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); usgl->len0 = htobe32(seg->ss_len); usgl->addr0 = htobe64(seg->ss_paddr); seg++; if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { /* Won't wrap around at all */ for (i = 0; i < nsegs - 1; i++, seg++) { usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); flitp += nflits; } else { /* Will wrap somewhere in the rest of the SGL */ /* 2 flits already written, write the rest flit by flit */ flitp = (void *)(usgl + 1); for (i = 0; i < nflits - 2; i++) { if (flitp == wrap) flitp = (void *)eq->desc; *flitp++ = get_flit(seg, nsegs - 1, i); } } if (nflits & 1) { MPASS(((uintptr_t)flitp) & 0xf); *flitp++ = 0; } MPASS((((uintptr_t)flitp) & 0xf) == 0); if (__predict_false(flitp == wrap)) *to = (void *)eq->desc; else *to = (void *)flitp; } static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) { MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)&eq->desc[eq->sidx])) { bcopy(from, *to, len); (*to) += len; } else { int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); bcopy(from, *to, portion); from += portion; portion = len - portion; /* remaining */ bcopy(from, (void *)eq->desc, portion); (*to) = (caddr_t)eq->desc + portion; } } static inline void ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) { u_int db; MPASS(n > 0); db = eq->doorbells; if (n > 1) clrbit(&db, DOORBELL_WCWR); wmb(); switch (ffs(db) - 1) { case DOORBELL_UDB: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); break; case DOORBELL_WCWR: { volatile uint64_t *dst, *src; int i; /* * Queues whose 128B doorbell segment fits in the page do not * use relative qid (udb_qid is always 0). Only queues with * doorbell segments can do WCWR. */ KASSERT(eq->udb_qid == 0 && n == 1, ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", __func__, eq->doorbells, n, eq->dbidx, eq)); dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - UDBS_DB_OFFSET); i = eq->dbidx; src = (void *)&eq->desc[i]; while (src != (void *)&eq->desc[i + 1]) *dst++ = *src++; wmb(); break; } case DOORBELL_UDBWC: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); wmb(); break; case DOORBELL_KDB: t4_write_reg(sc, sc->sge_kdoorbell_reg, V_QID(eq->cntxt_id) | V_PIDX(n)); break; } IDXINCR(eq->dbidx, n, eq->sidx); } static inline u_int reclaimable_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx; hw_cidx = read_hw_cidx(eq); return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); } static inline u_int total_available_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx, pidx; hw_cidx = read_hw_cidx(eq); pidx = eq->pidx; if (pidx == hw_cidx) return (eq->sidx - 1); else return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); } static inline uint16_t read_hw_cidx(struct sge_eq *eq) { struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; uint16_t cidx = spg->cidx; /* stable snapshot */ return (be16toh(cidx)); } /* * Reclaim 'n' descriptors approximately. */ static u_int reclaim_tx_descs(struct sge_txq *txq, u_int n) { struct tx_sdesc *txsd; struct sge_eq *eq = &txq->eq; u_int can_reclaim, reclaimed; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(n > 0); reclaimed = 0; can_reclaim = reclaimable_tx_desc(eq); while (can_reclaim && reclaimed < n) { int ndesc; struct mbuf *m, *nextpkt; txsd = &txq->sdesc[eq->cidx]; ndesc = txsd->desc_used; /* Firmware doesn't return "partial" credits. */ KASSERT(can_reclaim >= ndesc, ("%s: unexpected number of credits: %d, %d", __func__, can_reclaim, ndesc)); KASSERT(ndesc != 0, ("%s: descriptor with no credits: cidx %d", __func__, eq->cidx)); for (m = txsd->m; m != NULL; m = nextpkt) { nextpkt = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } reclaimed += ndesc; can_reclaim -= ndesc; IDXINCR(eq->cidx, ndesc, eq->sidx); } return (reclaimed); } static void tx_reclaim(void *arg, int n) { struct sge_txq *txq = arg; struct sge_eq *eq = &txq->eq; do { if (TXQ_TRYLOCK(txq) == 0) break; n = reclaim_tx_descs(txq, 32); if (eq->cidx == eq->pidx) eq->equeqidx = eq->pidx; TXQ_UNLOCK(txq); } while (n > 0); } static __be64 get_flit(struct sglist_seg *segs, int nsegs, int idx) { int i = (idx / 3) * 2; switch (idx % 3) { case 0: { uint64_t rc; rc = (uint64_t)segs[i].ss_len << 32; if (i + 1 < nsegs) rc |= (uint64_t)(segs[i + 1].ss_len); return (htobe64(rc)); } case 1: return (htobe64(segs[i].ss_paddr)); case 2: return (htobe64(segs[i + 1].ss_paddr)); } return (0); } static void find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) { int8_t zidx, hwidx, idx; uint16_t region1, region3; int spare, spare_needed, n; struct sw_zone_info *swz; struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; /* * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize * large enough for the max payload and cluster metadata. Otherwise * settle for the largest bufsize that leaves enough room in the cluster * for metadata. * * Without buffer packing: Look for the smallest zone which has a * bufsize large enough for the max payload. Settle for the largest * bufsize available if there's nothing big enough for max payload. */ spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; swz = &sc->sge.sw_zone_info[0]; hwidx = -1; for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { if (swz->size > largest_rx_cluster) { if (__predict_true(hwidx != -1)) break; /* * This is a misconfiguration. largest_rx_cluster is * preventing us from finding a refill source. See * dev.t5nex..buffer_sizes to figure out why. */ device_printf(sc->dev, "largest_rx_cluster=%u leaves no" " refill source for fl %p (dma %u). Ignored.\n", largest_rx_cluster, fl, maxp); } for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { hwb = &hwb_list[idx]; spare = swz->size - hwb->size; if (spare < spare_needed) continue; hwidx = idx; /* best option so far */ if (hwb->size >= maxp) { if ((fl->flags & FL_BUF_PACKING) == 0) goto done; /* stop looking (not packing) */ if (swz->size >= safest_rx_cluster) goto done; /* stop looking (packing) */ } break; /* keep looking, next zone */ } } done: /* A usable hwidx has been located. */ MPASS(hwidx != -1); hwb = &hwb_list[hwidx]; zidx = hwb->zidx; swz = &sc->sge.sw_zone_info[zidx]; region1 = 0; region3 = swz->size - hwb->size; /* * Stay within this zone and see if there is a better match when mbuf * inlining is allowed. Remember that the hwidx's are sorted in * decreasing order of size (so in increasing order of spare area). */ for (idx = hwidx; idx != -1; idx = hwb->next) { hwb = &hwb_list[idx]; spare = swz->size - hwb->size; if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) break; /* * Do not inline mbufs if doing so would violate the pad/pack * boundary alignment requirement. */ if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) continue; if (fl->flags & FL_BUF_PACKING && (MSIZE % sc->params.sge.pack_boundary) != 0) continue; if (spare < CL_METADATA_SIZE + MSIZE) continue; n = (spare - CL_METADATA_SIZE) / MSIZE; if (n > howmany(hwb->size, maxp)) break; hwidx = idx; if (fl->flags & FL_BUF_PACKING) { region1 = n * MSIZE; region3 = spare - region1; } else { region1 = MSIZE; region3 = spare - region1; break; } } KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == sc->sge.sw_zone_info[zidx].size, ("%s: bad buffer layout for fl %p, maxp %d. " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); if (fl->flags & FL_BUF_PACKING || region1 > 0) { KASSERT(region3 >= CL_METADATA_SIZE, ("%s: no room for metadata. fl %p, maxp %d; " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); KASSERT(region1 % MSIZE == 0, ("%s: bad mbuf region for fl %p, maxp %d. " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); } fl->cll_def.zidx = zidx; fl->cll_def.hwidx = hwidx; fl->cll_def.region1 = region1; fl->cll_def.region3 = region3; } static void find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) { struct sge *s = &sc->sge; struct hw_buf_info *hwb; struct sw_zone_info *swz; int spare; int8_t hwidx; if (fl->flags & FL_BUF_PACKING) hwidx = s->safe_hwidx2; /* with room for metadata */ else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { hwidx = s->safe_hwidx2; hwb = &s->hw_buf_info[hwidx]; swz = &s->sw_zone_info[hwb->zidx]; spare = swz->size - hwb->size; /* no good if there isn't room for an mbuf as well */ if (spare < CL_METADATA_SIZE + MSIZE) hwidx = s->safe_hwidx1; } else hwidx = s->safe_hwidx1; if (hwidx == -1) { /* No fallback source */ fl->cll_alt.hwidx = -1; fl->cll_alt.zidx = -1; return; } hwb = &s->hw_buf_info[hwidx]; swz = &s->sw_zone_info[hwb->zidx]; spare = swz->size - hwb->size; fl->cll_alt.hwidx = hwidx; fl->cll_alt.zidx = hwb->zidx; if (allow_mbufs_in_cluster && (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; else fl->cll_alt.region1 = 0; fl->cll_alt.region3 = spare - fl->cll_alt.region1; } static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); if ((fl->flags & FL_DOOMED) == 0) { fl->flags |= FL_STARVING; TAILQ_INSERT_TAIL(&sc->sfl, fl, link); callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); } FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); } static void handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_wrq *wrq = (void *)eq; atomic_readandclear_int(&eq->equiq); taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); } static void handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_txq *txq = (void *)eq; MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); atomic_readandclear_int(&eq->equiq); mp_ring_check_drainage(txq->r, 0); taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); } static int handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); struct adapter *sc = iq->adapter; struct sge *s = &sc->sge; struct sge_eq *eq; static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, &handle_wrq_egr_update, &handle_eth_egr_update, &handle_wrq_egr_update}; KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); eq = s->eqmap[qid - s->eq_start - s->eq_base]; (*h[eq->flags & EQ_TYPEMASK])(sc, eq); return (0); } /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ offsetof(struct cpl_fw6_msg, data)); static int handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { const struct rss_header *rss2; rss2 = (const struct rss_header *)&cpl->data[0]; return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); } return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); } /** * t4_handle_wrerr_rpl - process a FW work request error message * @adap: the adapter * @rpl: start of the FW message */ static int t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_error_cmd *e = (const void *)rpl; unsigned int i; if (opcode != FW_ERROR_CMD) { log(LOG_ERR, "%s: Received WRERR_RPL message with opcode %#x\n", device_get_nameunit(adap->dev), opcode); return (EINVAL); } log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : "non-fatal"); switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { case FW_ERROR_TYPE_EXCEPTION: log(LOG_ERR, "exception info:\n"); for (i = 0; i < nitems(e->u.exception.info); i++) log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", be32toh(e->u.exception.info[i])); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_HWMODULE: log(LOG_ERR, "HW module regaddr %08x regval %08x\n", be32toh(e->u.hwmodule.regaddr), be32toh(e->u.hwmodule.regval)); break; case FW_ERROR_TYPE_WR: log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", be16toh(e->u.wr.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), be32toh(e->u.wr.eqid)); for (i = 0; i < nitems(e->u.wr.wrhdr); i++) log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", e->u.wr.wrhdr[i]); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_ACL: log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", be16toh(e->u.acl.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), be32toh(e->u.acl.eqid), G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : "MAC"); for (i = 0; i < nitems(e->u.acl.val); i++) log(LOG_ERR, " %02x", e->u.acl.val[i]); log(LOG_ERR, "\n"); break; default: log(LOG_ERR, "type %#x\n", G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); return (EINVAL); } return (0); } static int sysctl_uint16(SYSCTL_HANDLER_ARGS) { uint16_t *id = arg1; int i = *id; return sysctl_handle_int(oidp, &i, 0, req); } static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS) { struct sge *s = arg1; struct hw_buf_info *hwb = &s->hw_buf_info[0]; struct sw_zone_info *swz = &s->sw_zone_info[0]; int i, rc; struct sbuf sb; char c; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) c = '*'; else c = '\0'; sbuf_printf(&sb, "%u%c ", hwb->size, c); } sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } #ifdef RATELIMIT /* * len16 for a txpkt WR with a GL. Includes the firmware work request header. */ static inline u_int txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso) { u_int n; MPASS(immhdrs > 0); n = roundup2(sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core) + immhdrs, 16); if (__predict_false(nsegs == 0)) goto done; nsegs--; /* first segment is part of ulptx_sgl */ n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); done: return (howmany(n, 16)); } #define ETID_FLOWC_NPARAMS 6 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \ ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16)) #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16)) static int send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi, struct vi_info *vi) { struct wrq_cookie cookie; u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN; struct fw_flowc_wr *flowc; mtx_assert(&cst->lock, MA_OWNED); MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) == EO_FLOWC_PENDING); flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie); if (__predict_false(flowc == NULL)) return (ENOMEM); bzero(flowc, ETID_FLOWC_LEN); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) | V_FW_WR_FLOWID(cst->etid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = htobe32(pfvf); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = htobe32(pi->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = htobe32(pi->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = htobe32(cst->iqid); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE; flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; flowc->mnemval[5].val = htobe32(cst->schedcl); commit_wrq_wr(cst->eo_txq, flowc, &cookie); cst->flags &= ~EO_FLOWC_PENDING; cst->flags |= EO_FLOWC_RPL_PENDING; MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */ cst->tx_credits -= ETID_FLOWC_LEN16; return (0); } #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16)) void send_etid_flush_wr(struct cxgbe_snd_tag *cst) { struct fw_flowc_wr *flowc; struct wrq_cookie cookie; mtx_assert(&cst->lock, MA_OWNED); flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie); if (__predict_false(flowc == NULL)) CXGBE_UNIMPLEMENTED(__func__); bzero(flowc, ETID_FLUSH_LEN16 * 16); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL); flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) | V_FW_WR_FLOWID(cst->etid)); commit_wrq_wr(cst->eo_txq, flowc, &cookie); cst->flags |= EO_FLUSH_RPL_PENDING; MPASS(cst->tx_credits >= ETID_FLUSH_LEN16); cst->tx_credits -= ETID_FLUSH_LEN16; cst->ncompl++; } static void write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr, struct mbuf *m0, int compl) { struct cpl_tx_pkt_core *cpl; uint64_t ctrl1; uint32_t ctrl; /* used in many unrelated places */ int len16, pktlen, nsegs, immhdrs; caddr_t dst; uintptr_t p; struct ulptx_sgl *usgl; struct sglist sg; struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */ mtx_assert(&cst->lock, MA_OWNED); M_ASSERTPKTHDR(m0); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: ethofld mbuf %p is missing header lengths", __func__, m0)); len16 = mbuf_eo_len16(m0); nsegs = mbuf_eo_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; ctrl += immhdrs; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) | V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl)); wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) | V_FW_WR_FLOWID(cst->etid)); wr->r3 = 0; if (needs_udp_csum(m0)) { wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen; wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen; wr->u.udpseg.rtplen = 0; wr->u.udpseg.r4 = 0; wr->u.udpseg.mss = htobe16(pktlen - immhdrs); wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; wr->u.udpseg.plen = htobe32(pktlen - immhdrs); cpl = (void *)(wr + 1); } else { MPASS(needs_tcp_csum(m0)); wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen; wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen; wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0); wr->u.tcpseg.r4 = 0; wr->u.tcpseg.r5 = 0; wr->u.tcpseg.plen = htobe32(pktlen - immhdrs); if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) ctrl |= V_LSO_ETHHDR_LEN(1); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); cpl = (void *)(lso + 1); } else { wr->u.tcpseg.mss = htobe16(0xffff); cpl = (void *)(wr + 1); } } /* Checksum offload must be requested for ethofld. */ ctrl1 = 0; MPASS(needs_l4_csum(m0)); /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); } /* CPL header */ cpl->ctrl0 = cst->ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */ p = (uintptr_t)(cpl + 1); m_copydata(m0, 0, immhdrs, (void *)p); /* SGL */ dst = (void *)(cpl + 1); if (nsegs > 0) { int i, pad; /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */ p += immhdrs; pad = 16 - (immhdrs & 0xf); bzero((void *)p, pad); usgl = (void *)(p + pad); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); sglist_init(&sg, nitems(segs), segs); for (; m0 != NULL; m0 = m0->m_next) { if (__predict_false(m0->m_len == 0)) continue; if (immhdrs >= m0->m_len) { immhdrs -= m0->m_len; continue; } sglist_append(&sg, mtod(m0, char *) + immhdrs, m0->m_len - immhdrs); immhdrs = 0; } MPASS(sg.sg_nseg == nsegs); /* * Zero pad last 8B in case the WR doesn't end on a 16B * boundary. */ *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0; usgl->len0 = htobe32(segs[0].ss_len); usgl->addr0 = htobe64(segs[0].ss_paddr); for (i = 0; i < nsegs - 1; i++) { usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); } } static void ethofld_tx(struct cxgbe_snd_tag *cst) { struct mbuf *m; struct wrq_cookie cookie; int next_credits, compl; struct fw_eth_tx_eo_wr *wr; mtx_assert(&cst->lock, MA_OWNED); while ((m = mbufq_first(&cst->pending_tx)) != NULL) { M_ASSERTPKTHDR(m); /* How many len16 credits do we need to send this mbuf. */ next_credits = mbuf_eo_len16(m); MPASS(next_credits > 0); if (next_credits > cst->tx_credits) { /* * Tx will make progress eventually because there is at * least one outstanding fw4_ack that will return * credits and kick the tx. */ MPASS(cst->ncompl > 0); return; } wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie); if (__predict_false(wr == NULL)) { /* XXX: wishful thinking, not a real assertion. */ MPASS(cst->ncompl > 0); return; } cst->tx_credits -= next_credits; cst->tx_nocompl += next_credits; compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2; ETHER_BPF_MTAP(cst->com.ifp, m); write_ethofld_wr(cst, wr, m, compl); commit_wrq_wr(cst->eo_txq, wr, &cookie); if (compl) { cst->ncompl++; cst->tx_nocompl = 0; } (void) mbufq_dequeue(&cst->pending_tx); mbufq_enqueue(&cst->pending_fwack, m); } } int ethofld_transmit(struct ifnet *ifp, struct mbuf *m0) { struct cxgbe_snd_tag *cst; int rc; MPASS(m0->m_nextpkt == NULL); MPASS(m0->m_pkthdr.snd_tag != NULL); cst = mst_to_cst(m0->m_pkthdr.snd_tag); mtx_lock(&cst->lock); MPASS(cst->flags & EO_SND_TAG_REF); if (__predict_false(cst->flags & EO_FLOWC_PENDING)) { struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; const uint32_t rss_mask = vi->rss_size - 1; uint32_t rss_hash; cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq]; if (M_HASHTYPE_ISHASH(m0)) rss_hash = m0->m_pkthdr.flowid; else rss_hash = arc4random(); /* We assume RSS hashing */ cst->iqid = vi->rss[rss_hash & rss_mask]; cst->eo_txq += rss_hash % vi->nofldtxq; rc = send_etid_flowc_wr(cst, pi, vi); if (rc != 0) goto done; } if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) { rc = ENOBUFS; goto done; } mbufq_enqueue(&cst->pending_tx, m0); cst->plen += m0->m_pkthdr.len; ethofld_tx(cst); rc = 0; done: mtx_unlock(&cst->lock); if (__predict_false(rc != 0)) m_freem(m0); return (rc); } static int ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); struct mbuf *m; u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); struct cxgbe_snd_tag *cst; uint8_t credits = cpl->credits; cst = lookup_etid(sc, etid); mtx_lock(&cst->lock); if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) { MPASS(credits >= ETID_FLOWC_LEN16); credits -= ETID_FLOWC_LEN16; cst->flags &= ~EO_FLOWC_RPL_PENDING; } KASSERT(cst->ncompl > 0, ("%s: etid %u (%p) wasn't expecting completion.", __func__, etid, cst)); cst->ncompl--; while (credits > 0) { m = mbufq_dequeue(&cst->pending_fwack); if (__predict_false(m == NULL)) { /* * The remaining credits are for the final flush that * was issued when the tag was freed by the kernel. */ MPASS((cst->flags & (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) == EO_FLUSH_RPL_PENDING); MPASS(credits == ETID_FLUSH_LEN16); MPASS(cst->tx_credits + cpl->credits == cst->tx_total); MPASS(cst->ncompl == 0); cst->flags &= ~EO_FLUSH_RPL_PENDING; cst->tx_credits += cpl->credits; freetag: cxgbe_snd_tag_free_locked(cst); return (0); /* cst is gone. */ } KASSERT(m != NULL, ("%s: too many credits (%u, %u)", __func__, cpl->credits, credits)); KASSERT(credits >= mbuf_eo_len16(m), ("%s: too few credits (%u, %u, %u)", __func__, cpl->credits, credits, mbuf_eo_len16(m))); credits -= mbuf_eo_len16(m); cst->plen -= m->m_pkthdr.len; m_freem(m); } cst->tx_credits += cpl->credits; MPASS(cst->tx_credits <= cst->tx_total); m = mbufq_first(&cst->pending_tx); if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m)) ethofld_tx(cst); if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) && cst->ncompl == 0) { if (cst->tx_credits == cst->tx_total) goto freetag; else { MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0); send_etid_flush_wr(cst); } } mtx_unlock(&cst->lock); return (0); } #endif