Index: head/sys/fs/ext2fs/ext2_alloc.c =================================================================== --- head/sys/fs/ext2fs/ext2_alloc.c (revision 344750) +++ head/sys/fs/ext2fs/ext2_alloc.c (revision 344751) @@ -1,1486 +1,1486 @@ /*- * modified for Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int); static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int); static u_long ext2_dirpref(struct inode *); static e4fs_daddr_t ext2_hashalloc(struct inode *, int, long, int, daddr_t (*)(struct inode *, int, daddr_t, int)); static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int); static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t); /* * Allocate a block in the filesystem. * * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following hierarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ int ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size, struct ucred *cred, e4fs_daddr_t *bnp) { struct m_ext2fs *fs; struct ext2mount *ump; e4fs_daddr_t bno; int cg; *bnp = 0; fs = ip->i_e2fs; ump = ip->i_ump; mtx_assert(EXT2_MTX(ump), MA_OWNED); #ifdef INVARIANTS if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) { vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n", (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt); panic("ext2_alloc: bad size"); } if (cred == NOCRED) panic("ext2_alloc: missing credential"); #endif /* INVARIANTS */ if (size == fs->e2fs_bsize && fs->e2fs_fbcount == 0) goto nospace; if (cred->cr_uid != 0 && fs->e2fs_fbcount < fs->e2fs_rbcount) goto nospace; if (bpref >= fs->e2fs_bcount) bpref = 0; if (bpref == 0) cg = ino_to_cg(fs, ip->i_number); else cg = dtog(fs, bpref); bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize, ext2_alloccg); if (bno > 0) { /* set next_alloc fields as done in block_getblk */ ip->i_next_alloc_block = lbn; ip->i_next_alloc_goal = bno; ip->i_blocks += btodb(fs->e2fs_bsize); ip->i_flag |= IN_CHANGE | IN_UPDATE; *bnp = bno; return (0); } nospace: EXT2_UNLOCK(ump); ext2_fserr(fs, cred->cr_uid, "filesystem full"); uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt); return (ENOSPC); } /* * Allocate EA's block for inode. */ e4fs_daddr_t ext2_alloc_meta(struct inode *ip) { struct m_ext2fs *fs; daddr_t blk; fs = ip->i_e2fs; EXT2_LOCK(ip->i_ump); blk = ext2_hashalloc(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize, ext2_alloccg); if (0 == blk) EXT2_UNLOCK(ip->i_ump); return (blk); } /* * Reallocate a sequence of blocks into a contiguous sequence of blocks. * * The vnode and an array of buffer pointers for a range of sequential * logical blocks to be made contiguous is given. The allocator attempts * to find a range of sequential blocks starting as close as possible to * an fs_rotdelay offset from the end of the allocation for the logical * block immediately preceding the current range. If successful, the * physical block numbers in the buffer pointers and in the inode are * changed to reflect the new allocation. If unsuccessful, the allocation * is left unchanged. The success in doing the reallocation is returned. * Note that the error return is not reflected back to the user. Rather * the previous block allocation will be used. */ static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem"); static int doasyncfree = 1; SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "Use asychronous writes to update block pointers when freeing blocks"); static int doreallocblks = 0; SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); int ext2_reallocblks(struct vop_reallocblks_args *ap) { struct m_ext2fs *fs; struct inode *ip; struct vnode *vp; struct buf *sbp, *ebp; uint32_t *bap, *sbap, *ebap; struct ext2mount *ump; struct cluster_save *buflist; struct indir start_ap[EXT2_NIADDR + 1], end_ap[EXT2_NIADDR + 1], *idp; e2fs_lbn_t start_lbn, end_lbn; int soff; e2fs_daddr_t newblk, blkno; int i, len, start_lvl, end_lvl, pref, ssize; if (doreallocblks == 0) return (ENOSPC); vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_e2fs; ump = ip->i_ump; if (fs->e2fs_contigsumsize <= 0 || ip->i_flag & IN_E4EXTENTS) return (ENOSPC); buflist = ap->a_buflist; len = buflist->bs_nchildren; start_lbn = buflist->bs_children[0]->b_lblkno; end_lbn = start_lbn + len - 1; #ifdef INVARIANTS for (i = 1; i < len; i++) if (buflist->bs_children[i]->b_lblkno != start_lbn + i) panic("ext2_reallocblks: non-cluster"); #endif /* * If the cluster crosses the boundary for the first indirect * block, leave space for the indirect block. Indirect blocks * are initially laid out in a position after the last direct * block. Block reallocation would usually destroy locality by * moving the indirect block out of the way to make room for * data blocks if we didn't compensate here. We should also do * this for other indirect block boundaries, but it is only * important for the first one. */ if (start_lbn < EXT2_NDADDR && end_lbn >= EXT2_NDADDR) return (ENOSPC); /* * If the latest allocation is in a new cylinder group, assume that * the filesystem has decided to move and do not force it back to * the previous cylinder group. */ if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) return (ENOSPC); if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) || ext2_getlbns(vp, end_lbn, end_ap, &end_lvl)) return (ENOSPC); /* * Get the starting offset and block map for the first block. */ if (start_lvl == 0) { sbap = &ip->i_db[0]; soff = start_lbn; } else { idp = &start_ap[start_lvl - 1]; if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) { brelse(sbp); return (ENOSPC); } sbap = (u_int *)sbp->b_data; soff = idp->in_off; } /* * If the block range spans two block maps, get the second map. */ ebap = NULL; if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { ssize = len; } else { #ifdef INVARIANTS if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn) panic("ext2_reallocblks: start == end"); #endif ssize = len - (idp->in_off + 1); if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp)) goto fail; ebap = (u_int *)ebp->b_data; } /* * Find the preferred location for the cluster. */ EXT2_LOCK(ump); pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0); /* * Search the block map looking for an allocation of the desired size. */ if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref, len, ext2_clusteralloc)) == 0) { EXT2_UNLOCK(ump); goto fail; } /* * We have found a new contiguous block. * * First we have to replace the old block pointers with the new * block pointers in the inode and indirect blocks associated * with the file. */ #ifdef DEBUG printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); #endif /* DEBUG */ blkno = newblk; for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) { if (i == ssize) { bap = ebap; soff = -i; } #ifdef INVARIANTS if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) panic("ext2_reallocblks: alloc mismatch"); #endif #ifdef DEBUG printf(" %d,", *bap); #endif /* DEBUG */ *bap++ = blkno; } /* * Next we must write out the modified inode and indirect blocks. * For strict correctness, the writes should be synchronous since * the old block values may have been written to disk. In practise * they are almost never written, but if we are concerned about * strict correctness, the `doasyncfree' flag should be set to zero. * * The test on `doasyncfree' should be changed to test a flag * that shows whether the associated buffers and inodes have * been written. The flag should be set when the cluster is * started and cleared whenever the buffer or inode is flushed. * We can then check below to see if it is set, and do the * synchronous write only when it has been cleared. */ if (sbap != &ip->i_db[0]) { if (doasyncfree) bdwrite(sbp); else bwrite(sbp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (!doasyncfree) ext2_update(vp, 1); } if (ssize < len) { if (doasyncfree) bdwrite(ebp); else bwrite(ebp); } /* * Last, free the old blocks and assign the new blocks to the buffers. */ #ifdef DEBUG printf("\n\tnew:"); #endif /* DEBUG */ for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) { ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->e2fs_bsize); buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); #ifdef DEBUG printf(" %d,", blkno); #endif /* DEBUG */ } #ifdef DEBUG printf("\n"); #endif /* DEBUG */ return (0); fail: if (ssize < len) brelse(ebp); if (sbap != &ip->i_db[0]) brelse(sbp); return (ENOSPC); } /* * Allocate an inode in the filesystem. * */ int ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) { struct timespec ts; struct inode *pip; struct m_ext2fs *fs; struct inode *ip; struct ext2mount *ump; ino_t ino, ipref; int error, cg; *vpp = NULL; pip = VTOI(pvp); fs = pip->i_e2fs; ump = pip->i_ump; EXT2_LOCK(ump); if (fs->e2fs->e2fs_ficount == 0) goto noinodes; /* * If it is a directory then obtain a cylinder group based on * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is * always the next inode. */ if ((mode & IFMT) == IFDIR) { cg = ext2_dirpref(pip); if (fs->e2fs_contigdirs[cg] < 255) fs->e2fs_contigdirs[cg]++; } else { cg = ino_to_cg(fs, pip->i_number); if (fs->e2fs_contigdirs[cg] > 0) fs->e2fs_contigdirs[cg]--; } ipref = cg * fs->e2fs->e2fs_ipg + 1; ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg); if (ino == 0) goto noinodes; error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); if (error) { ext2_vfree(pvp, ino, mode); return (error); } ip = VTOI(*vpp); /* * The question is whether using VGET was such good idea at all: * Linux doesn't read the old inode in when it is allocating a * new one. I will set at least i_size and i_blocks to zero. */ ip->i_flag = 0; ip->i_size = 0; ip->i_blocks = 0; ip->i_mode = 0; ip->i_flags = 0; if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_EXTENTS) && (S_ISREG(mode) || S_ISDIR(mode))) ext4_ext_tree_init(ip); else memset(ip->i_data, 0, sizeof(ip->i_data)); /* * Set up a new generation number for this inode. * Avoid zero values. */ do { ip->i_gen = arc4random(); } while (ip->i_gen == 0); vfs_timestamp(&ts); ip->i_birthtime = ts.tv_sec; ip->i_birthnsec = ts.tv_nsec; /* printf("ext2_valloc: allocated inode %d\n", ino); */ return (0); noinodes: EXT2_UNLOCK(ump); ext2_fserr(fs, cred->cr_uid, "out of inodes"); uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt); return (ENOSPC); } /* * 64-bit compatible getters and setters for struct ext2_gd from ext2fs.h */ -static uint64_t +uint64_t e2fs_gd_get_b_bitmap(struct ext2_gd *gd) { return (((uint64_t)(gd->ext4bgd_b_bitmap_hi) << 32) | gd->ext2bgd_b_bitmap); } -static uint64_t +uint64_t e2fs_gd_get_i_bitmap(struct ext2_gd *gd) { return (((uint64_t)(gd->ext4bgd_i_bitmap_hi) << 32) | gd->ext2bgd_i_bitmap); } uint64_t e2fs_gd_get_i_tables(struct ext2_gd *gd) { return (((uint64_t)(gd->ext4bgd_i_tables_hi) << 32) | gd->ext2bgd_i_tables); } static uint32_t e2fs_gd_get_nbfree(struct ext2_gd *gd) { return (((uint32_t)(gd->ext4bgd_nbfree_hi) << 16) | gd->ext2bgd_nbfree); } static void e2fs_gd_set_nbfree(struct ext2_gd *gd, uint32_t val) { gd->ext2bgd_nbfree = val & 0xffff; gd->ext4bgd_nbfree_hi = val >> 16; } static uint32_t e2fs_gd_get_nifree(struct ext2_gd *gd) { return (((uint32_t)(gd->ext4bgd_nifree_hi) << 16) | gd->ext2bgd_nifree); } static void e2fs_gd_set_nifree(struct ext2_gd *gd, uint32_t val) { gd->ext2bgd_nifree = val & 0xffff; gd->ext4bgd_nifree_hi = val >> 16; } uint32_t e2fs_gd_get_ndirs(struct ext2_gd *gd) { return (((uint32_t)(gd->ext4bgd_ndirs_hi) << 16) | gd->ext2bgd_ndirs); } static void e2fs_gd_set_ndirs(struct ext2_gd *gd, uint32_t val) { gd->ext2bgd_ndirs = val & 0xffff; gd->ext4bgd_ndirs_hi = val >> 16; } static uint32_t e2fs_gd_get_i_unused(struct ext2_gd *gd) { return (((uint32_t)(gd->ext4bgd_i_unused_hi) << 16) | gd->ext4bgd_i_unused); } static void e2fs_gd_set_i_unused(struct ext2_gd *gd, uint32_t val) { gd->ext4bgd_i_unused = val & 0xffff; gd->ext4bgd_i_unused_hi = val >> 16; } /* * Find a cylinder to place a directory. * * The policy implemented by this algorithm is to allocate a * directory inode in the same cylinder group as its parent * directory, but also to reserve space for its files inodes * and data. Restrict the number of directories which may be * allocated one after another in the same cylinder group * without intervening allocation of files. * * If we allocate a first level directory then force allocation * in another cylinder group. * */ static u_long ext2_dirpref(struct inode *pip) { struct m_ext2fs *fs; int cg, prefcg, cgsize; uint64_t avgbfree, minbfree; u_int avgifree, avgndir, curdirsize; u_int minifree, maxndir; u_int mincg, minndir; u_int dirsize, maxcontigdirs; mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED); fs = pip->i_e2fs; avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount; avgbfree = fs->e2fs_fbcount / fs->e2fs_gcount; avgndir = fs->e2fs_total_dir / fs->e2fs_gcount; /* * Force allocation in another cg if creating a first level dir. */ ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref"); if (ITOV(pip)->v_vflag & VV_ROOT) { prefcg = arc4random() % fs->e2fs_gcount; mincg = prefcg; minndir = fs->e2fs_ipg; for (cg = prefcg; cg < fs->e2fs_gcount; cg++) if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir && e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree && e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) { mincg = cg; minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]); } for (cg = 0; cg < prefcg; cg++) if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir && e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree && e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) { mincg = cg; minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]); } return (mincg); } /* * Count various limits which used for * optimal allocation of a directory inode. */ maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg); minifree = avgifree - avgifree / 4; if (minifree < 1) minifree = 1; minbfree = avgbfree - avgbfree / 4; if (minbfree < 1) minbfree = 1; cgsize = fs->e2fs_fsize * fs->e2fs_fpg; dirsize = AVGDIRSIZE; curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0; if (dirsize < curdirsize) dirsize = curdirsize; maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255); maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR); if (maxcontigdirs == 0) maxcontigdirs = 1; /* * Limit number of dirs in one cg and reserve space for * regular files, but only if we have no deficit in * inodes or space. */ prefcg = ino_to_cg(fs, pip->i_number); for (cg = prefcg; cg < fs->e2fs_gcount; cg++) if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir && e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree && e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) { if (fs->e2fs_contigdirs[cg] < maxcontigdirs) return (cg); } for (cg = 0; cg < prefcg; cg++) if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir && e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree && e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) { if (fs->e2fs_contigdirs[cg] < maxcontigdirs) return (cg); } /* * This is a backstop when we have deficit in space. */ for (cg = prefcg; cg < fs->e2fs_gcount; cg++) if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree) return (cg); for (cg = 0; cg < prefcg; cg++) if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree) break; return (cg); } /* * Select the desired position for the next block in a file. * * we try to mimic what Remy does in inode_getblk/block_getblk * * we note: blocknr == 0 means that we're about to allocate either * a direct block or a pointer block at the first level of indirection * (In other words, stuff that will go in i_db[] or i_ib[]) * * blocknr != 0 means that we're allocating a block that is none * of the above. Then, blocknr tells us the number of the block * that will hold the pointer */ e4fs_daddr_t ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap, e2fs_daddr_t blocknr) { struct m_ext2fs *fs; int tmp; fs = ip->i_e2fs; mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); /* * If the next block is actually what we thought it is, then set the * goal to what we thought it should be. */ if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0) return ip->i_next_alloc_goal; /* * Now check whether we were provided with an array that basically * tells us previous blocks to which we want to stay close. */ if (bap) for (tmp = indx - 1; tmp >= 0; tmp--) if (bap[tmp]) return bap[tmp]; /* * Else lets fall back to the blocknr or, if there is none, follow * the rule that a block should be allocated near its inode. */ return (blocknr ? blocknr : (e2fs_daddr_t)(ip->i_block_group * EXT2_BLOCKS_PER_GROUP(fs)) + fs->e2fs->e2fs_first_dblock); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. */ static e4fs_daddr_t ext2_hashalloc(struct inode *ip, int cg, long pref, int size, daddr_t (*allocator) (struct inode *, int, daddr_t, int)) { struct m_ext2fs *fs; e4fs_daddr_t result; int i, icg = cg; mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); fs = ip->i_e2fs; /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->e2fs_gcount; i *= 2) { cg += i; if (cg >= fs->e2fs_gcount) cg -= fs->e2fs_gcount; result = (*allocator)(ip, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->e2fs_gcount; for (i = 2; i < fs->e2fs_gcount; i++) { result = (*allocator)(ip, cg, 0, size); if (result) return (result); cg++; if (cg == fs->e2fs_gcount) cg = 0; } return (0); } -static unsigned long +static uint64_t ext2_cg_number_gdb_nometa(struct m_ext2fs *fs, int cg) { if (!ext2_cg_has_sb(fs, cg)) return (0); if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG)) return (fs->e2fs->e3fs_first_meta_bg); return ((fs->e2fs_gcount + EXT2_DESCS_PER_BLOCK(fs) - 1) / EXT2_DESCS_PER_BLOCK(fs)); } -static unsigned long +static uint64_t ext2_cg_number_gdb_meta(struct m_ext2fs *fs, int cg) { unsigned long metagroup; int first, last; metagroup = cg / EXT2_DESCS_PER_BLOCK(fs); first = metagroup * EXT2_DESCS_PER_BLOCK(fs); last = first + EXT2_DESCS_PER_BLOCK(fs) - 1; if (cg == first || cg == first + 1 || cg == last) return (1); return (0); } -static unsigned long +uint64_t ext2_cg_number_gdb(struct m_ext2fs *fs, int cg) { unsigned long first_meta_bg, metagroup; first_meta_bg = fs->e2fs->e3fs_first_meta_bg; metagroup = cg / EXT2_DESCS_PER_BLOCK(fs); if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || metagroup < first_meta_bg) return (ext2_cg_number_gdb_nometa(fs, cg)); return ext2_cg_number_gdb_meta(fs, cg); } static int ext2_number_base_meta_blocks(struct m_ext2fs *fs, int cg) { int number; number = ext2_cg_has_sb(fs, cg); if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || cg < fs->e2fs->e3fs_first_meta_bg * EXT2_DESCS_PER_BLOCK(fs)) { if (number) { number += ext2_cg_number_gdb(fs, cg); number += fs->e2fs->e2fs_reserved_ngdb; } } else { number += ext2_cg_number_gdb(fs, cg); } return (number); } static void ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) { int i; if (start_bit >= end_bit) return; for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) setbit(bitmap, i); if (i < end_bit) memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); } static int ext2_get_group_number(struct m_ext2fs *fs, e4fs_daddr_t block) { return ((block - fs->e2fs->e2fs_first_dblock) / fs->e2fs_bsize); } static int ext2_block_in_group(struct m_ext2fs *fs, e4fs_daddr_t block, int cg) { return ((ext2_get_group_number(fs, block) == cg) ? 1 : 0); } static int ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp) { int bit, bit_max, inodes_per_block; uint64_t start, tmp; if (!(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT)) return (0); memset(bp->b_data, 0, fs->e2fs_bsize); bit_max = ext2_number_base_meta_blocks(fs, cg); if ((bit_max >> 3) >= fs->e2fs_bsize) return (EINVAL); for (bit = 0; bit < bit_max; bit++) setbit(bp->b_data, bit); start = (uint64_t)cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock; /* Set bits for block and inode bitmaps, and inode table. */ tmp = e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg]); if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || ext2_block_in_group(fs, tmp, cg)) setbit(bp->b_data, tmp - start); tmp = e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg]); if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || ext2_block_in_group(fs, tmp, cg)) setbit(bp->b_data, tmp - start); tmp = e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]); inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs); while( tmp < e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + fs->e2fs->e2fs_ipg / inodes_per_block ) { if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || ext2_block_in_group(fs, tmp, cg)) setbit(bp->b_data, tmp - start); tmp++; } /* * Also if the number of blocks within the group is less than * the blocksize * 8 ( which is the size of bitmap ), set rest * of the block bitmap to 1 */ ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8, bp->b_data); /* Clean the flag */ fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT; return (0); } /* * Determine whether a block can be allocated. * * Check to see if a block of the appropriate size is available, * and if it is, allocate it. */ static daddr_t ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) { struct m_ext2fs *fs; struct buf *bp; struct ext2mount *ump; daddr_t bno, runstart, runlen; int bit, loc, end, error, start; char *bbp; /* XXX ondisk32 */ fs = ip->i_e2fs; ump = ip->i_ump; if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0) return (0); EXT2_UNLOCK(ump); error = bread(ip->i_devvp, fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { error = ext2_cg_block_bitmap_init(fs, cg, bp); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } ext2_gd_b_bitmap_csum_set(fs, cg, bp); } error = ext2_gd_b_bitmap_csum_verify(fs, cg, bp); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0) { /* * Another thread allocated the last block in this * group while we were waiting for the buffer. */ brelse(bp); EXT2_LOCK(ump); return (0); } bbp = (char *)bp->b_data; if (dtog(fs, bpref) != cg) bpref = 0; if (bpref != 0) { bpref = dtogd(fs, bpref); /* * if the requested block is available, use it */ if (isclr(bbp, bpref)) { bno = bpref; goto gotit; } } /* * no blocks in the requested cylinder, so take next * available one in this cylinder group. * first try to get 8 contigous blocks, then fall back to a single * block. */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = 0; end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; retry: runlen = 0; runstart = 0; for (loc = start; loc < end; loc++) { if (bbp[loc] == (char)0xff) { runlen = 0; continue; } /* Start of a run, find the number of high clear bits. */ if (runlen == 0) { bit = fls(bbp[loc]); runlen = NBBY - bit; runstart = loc * NBBY + bit; } else if (bbp[loc] == 0) { /* Continue a run. */ runlen += NBBY; } else { /* * Finish the current run. If it isn't long * enough, start a new one. */ bit = ffs(bbp[loc]) - 1; runlen += bit; if (runlen >= 8) { bno = runstart; goto gotit; } /* Run was too short, start a new one. */ bit = fls(bbp[loc]); runlen = NBBY - bit; runstart = loc * NBBY + bit; } /* If the current run is long enough, use it. */ if (runlen >= 8) { bno = runstart; goto gotit; } } if (start != 0) { end = start; start = 0; goto retry; } bno = ext2_mapsearch(fs, bbp, bpref); if (bno < 0) { brelse(bp); EXT2_LOCK(ump); return (0); } gotit: #ifdef INVARIANTS if (isset(bbp, bno)) { printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n", cg, (intmax_t)bno, fs->e2fs_fsmnt); panic("ext2fs_alloccg: dup alloc"); } #endif setbit(bbp, bno); EXT2_LOCK(ump); ext2_clusteracct(fs, bbp, cg, bno, -1); fs->e2fs_fbcount--; e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1); fs->e2fs_fmod = 1; EXT2_UNLOCK(ump); ext2_gd_b_bitmap_csum_set(fs, cg, bp); bdwrite(bp); return (((uint64_t)cg) * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); } /* * Determine whether a cluster can be allocated. */ static daddr_t ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) { struct m_ext2fs *fs; struct ext2mount *ump; struct buf *bp; char *bbp; int bit, error, got, i, loc, run; int32_t *lp; daddr_t bno; fs = ip->i_e2fs; ump = ip->i_ump; if (fs->e2fs_maxcluster[cg] < len) return (0); EXT2_UNLOCK(ump); error = bread(ip->i_devvp, fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) goto fail_lock; bbp = (char *)bp->b_data; EXT2_LOCK(ump); /* * Check to see if a cluster of the needed size (or bigger) is * available in this cylinder group. */ lp = &fs->e2fs_clustersum[cg].cs_sum[len]; for (i = len; i <= fs->e2fs_contigsumsize; i++) if (*lp++ > 0) break; if (i > fs->e2fs_contigsumsize) { /* * Update the cluster summary information to reflect * the true maximum-sized cluster so that future cluster * allocation requests can avoid reading the bitmap only * to find no cluster. */ lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1]; for (i = len - 1; i > 0; i--) if (*lp-- > 0) break; fs->e2fs_maxcluster[cg] = i; goto fail; } EXT2_UNLOCK(ump); /* Search the bitmap to find a big enough cluster like in FFS. */ if (dtog(fs, bpref) != cg) bpref = 0; if (bpref != 0) bpref = dtogd(fs, bpref); loc = bpref / NBBY; bit = 1 << (bpref % NBBY); for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) { if ((bbp[loc] & bit) != 0) run = 0; else { run++; if (run == len) break; } if ((got & (NBBY - 1)) != (NBBY - 1)) bit <<= 1; else { loc++; bit = 1; } } if (got >= fs->e2fs->e2fs_fpg) goto fail_lock; /* Allocate the cluster that we found. */ for (i = 1; i < len; i++) if (!isclr(bbp, got - run + i)) panic("ext2_clusteralloc: map mismatch"); bno = got - run + 1; if (bno >= fs->e2fs->e2fs_fpg) panic("ext2_clusteralloc: allocated out of group"); EXT2_LOCK(ump); for (i = 0; i < len; i += fs->e2fs_fpb) { setbit(bbp, bno + i); ext2_clusteracct(fs, bbp, cg, bno + i, -1); fs->e2fs_fbcount--; e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1); } fs->e2fs_fmod = 1; EXT2_UNLOCK(ump); bdwrite(bp); return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); fail_lock: EXT2_LOCK(ump); fail: brelse(bp); return (0); } static int ext2_zero_inode_table(struct inode *ip, int cg) { struct m_ext2fs *fs; struct buf *bp; int i, all_blks, used_blks; fs = ip->i_e2fs; if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED) return (0); all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg / fs->e2fs_bsize; used_blks = howmany(fs->e2fs->e2fs_ipg - e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]), fs->e2fs_bsize / EXT2_INODE_SIZE(fs)); for (i = 0; i < all_blks - used_blks; i++) { bp = getblk(ip->i_devvp, fsbtodb(fs, e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + used_blks + i), fs->e2fs_bsize, 0, 0, 0); if (!bp) return (EIO); vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize); bawrite(bp); } fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED; return (0); } /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using tode in the specified cylinder group. */ static daddr_t ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) { struct m_ext2fs *fs; struct buf *bp; struct ext2mount *ump; int error, start, len, ifree; char *ibp, *loc; ipref--; /* to avoid a lot of (ipref -1) */ if (ipref == -1) ipref = 0; fs = ip->i_e2fs; ump = ip->i_ump; if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) return (0); EXT2_UNLOCK(ump); error = bread(ip->i_devvp, fsbtodb(fs, e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) { memset(bp->b_data, 0, fs->e2fs_bsize); fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT; } ext2_gd_i_bitmap_csum_set(fs, cg, bp); error = ext2_zero_inode_table(ip, cg); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } } error = ext2_gd_i_bitmap_csum_verify(fs, cg, bp); if (error) { brelse(bp); EXT2_LOCK(ump); return (0); } if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) { /* * Another thread allocated the last i-node in this * group while we were waiting for the buffer. */ brelse(bp); EXT2_LOCK(ump); return (0); } ibp = (char *)bp->b_data; if (ipref) { ipref %= fs->e2fs->e2fs_ipg; if (isclr(ibp, ipref)) goto gotit; } start = ipref / NBBY; len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY); loc = memcchr(&ibp[start], 0xff, len); if (loc == NULL) { len = start + 1; start = 0; loc = memcchr(&ibp[start], 0xff, len); if (loc == NULL) { printf("cg = %d, ipref = %lld, fs = %s\n", cg, (long long)ipref, fs->e2fs_fsmnt); panic("ext2fs_nodealloccg: map corrupted"); /* NOTREACHED */ } } ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1; gotit: setbit(ibp, ipref); EXT2_LOCK(ump); e2fs_gd_set_nifree(&fs->e2fs_gd[cg], e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) - 1); if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { ifree = fs->e2fs->e2fs_ipg - e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]); if (ipref + 1 > ifree) e2fs_gd_set_i_unused(&fs->e2fs_gd[cg], fs->e2fs->e2fs_ipg - (ipref + 1)); } fs->e2fs->e2fs_ficount--; fs->e2fs_fmod = 1; if ((mode & IFMT) == IFDIR) { e2fs_gd_set_ndirs(&fs->e2fs_gd[cg], e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) + 1); fs->e2fs_total_dir++; } EXT2_UNLOCK(ump); ext2_gd_i_bitmap_csum_set(fs, cg, bp); bdwrite(bp); return ((uint64_t)cg * fs->e2fs_ipg + ipref + 1); } /* * Free a block or fragment. * */ void ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size) { struct m_ext2fs *fs; struct buf *bp; struct ext2mount *ump; int cg, error; char *bbp; fs = ip->i_e2fs; ump = ip->i_ump; cg = dtog(fs, bno); if (bno >= fs->e2fs_bcount) { printf("bad block %lld, ino %ju\n", (long long)bno, (uintmax_t)ip->i_number); ext2_fserr(fs, ip->i_uid, "bad block"); return; } error = bread(ip->i_devvp, fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return; } bbp = (char *)bp->b_data; bno = dtogd(fs, bno); if (isclr(bbp, bno)) { printf("block = %lld, fs = %s\n", (long long)bno, fs->e2fs_fsmnt); panic("ext2_blkfree: freeing free block"); } clrbit(bbp, bno); EXT2_LOCK(ump); ext2_clusteracct(fs, bbp, cg, bno, 1); fs->e2fs_fbcount++; e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) + 1); fs->e2fs_fmod = 1; EXT2_UNLOCK(ump); ext2_gd_b_bitmap_csum_set(fs, cg, bp); bdwrite(bp); } /* * Free an inode. * */ int ext2_vfree(struct vnode *pvp, ino_t ino, int mode) { struct m_ext2fs *fs; struct inode *pip; struct buf *bp; struct ext2mount *ump; int error, cg; char *ibp; pip = VTOI(pvp); fs = pip->i_e2fs; ump = pip->i_ump; if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount) panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s", pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt); cg = ino_to_cg(fs, ino); error = bread(pip->i_devvp, fsbtodb(fs, e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (0); } ibp = (char *)bp->b_data; ino = (ino - 1) % fs->e2fs->e2fs_ipg; if (isclr(ibp, ino)) { printf("ino = %ju, fs = %s\n", ino, fs->e2fs_fsmnt); if (fs->e2fs_ronly == 0) panic("ext2_vfree: freeing free inode"); } clrbit(ibp, ino); EXT2_LOCK(ump); fs->e2fs->e2fs_ficount++; e2fs_gd_set_nifree(&fs->e2fs_gd[cg], e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) + 1); if ((mode & IFMT) == IFDIR) { e2fs_gd_set_ndirs(&fs->e2fs_gd[cg], e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) - 1); fs->e2fs_total_dir--; } fs->e2fs_fmod = 1; EXT2_UNLOCK(ump); ext2_gd_i_bitmap_csum_set(fs, cg, bp); bdwrite(bp); return (0); } /* * Find a block in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static daddr_t ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref) { char *loc; int start, len; /* * find the fragment by searching through the free block * map for an appropriate bit pattern */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = 0; len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; loc = memcchr(&bbp[start], 0xff, len); if (loc == NULL) { len = start + 1; start = 0; loc = memcchr(&bbp[start], 0xff, len); if (loc == NULL) { printf("start = %d, len = %d, fs = %s\n", start, len, fs->e2fs_fsmnt); panic("ext2_mapsearch: map corrupted"); /* NOTREACHED */ } } return ((loc - bbp) * NBBY + ffs(~*loc) - 1); } /* * Fserr prints the name of a filesystem with an error diagnostic. * * The form of the error message is: * fs: error message */ void ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp) { log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp); } int ext2_cg_has_sb(struct m_ext2fs *fs, int cg) { int a3, a5, a7; if (cg == 0) return (1); if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) { if (cg == fs->e2fs->e4fs_backup_bgs[0] || cg == fs->e2fs->e4fs_backup_bgs[1]) return (1); return (0); } if ((cg <= 1) || !EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER)) return (1); if (!(cg & 1)) return (0); for (a3 = 3, a5 = 5, a7 = 7; a3 <= cg || a5 <= cg || a7 <= cg; a3 *= 3, a5 *= 5, a7 *= 7) if (cg == a3 || cg == a5 || cg == a7) return (1); return (0); } Index: head/sys/fs/ext2fs/ext2_extern.h =================================================================== --- head/sys/fs/ext2fs/ext2_extern.h (revision 344750) +++ head/sys/fs/ext2fs/ext2_extern.h (revision 344751) @@ -1,144 +1,147 @@ /*- * modified for EXT2FS support in Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_extern.h 8.3 (Berkeley) 4/16/94 * $FreeBSD$ */ #ifndef _FS_EXT2FS_EXT2_EXTERN_H_ #define _FS_EXT2FS_EXT2_EXTERN_H_ struct ext2fs_dinode; struct ext2fs_direct_2; struct ext2fs_direct_tail; struct ext2fs_searchslot; struct indir; struct inode; struct mount; struct vfsconf; struct vnode; int ext2_add_entry(struct vnode *, struct ext2fs_direct_2 *); int ext2_alloc(struct inode *, daddr_t, e4fs_daddr_t, int, struct ucred *, e4fs_daddr_t *); e4fs_daddr_t ext2_alloc_meta(struct inode *ip); int ext2_balloc(struct inode *, e2fs_lbn_t, int, struct ucred *, struct buf **, int); int ext2_blkatoff(struct vnode *, off_t, char **, struct buf **); void ext2_blkfree(struct inode *, e4fs_daddr_t, long); e4fs_daddr_t ext2_blkpref(struct inode *, e2fs_lbn_t, int, e2fs_daddr_t *, e2fs_daddr_t); int ext2_bmap(struct vop_bmap_args *); int ext2_bmaparray(struct vnode *, daddr_t, daddr_t *, int *, int *); int ext4_bmapext(struct vnode *, int32_t, int64_t *, int *, int *); void ext2_clusteracct(struct m_ext2fs *, char *, int, e4fs_daddr_t, int); void ext2_dirbad(struct inode *ip, doff_t offset, char *how); void ext2_fserr(struct m_ext2fs *, uid_t, char *); int ext2_ei2i(struct ext2fs_dinode *, struct inode *); int ext2_getlbns(struct vnode *, daddr_t, struct indir *, int *); int ext2_i2ei(struct inode *, struct ext2fs_dinode *); void ext2_itimes(struct vnode *vp); int ext2_reallocblks(struct vop_reallocblks_args *); int ext2_reclaim(struct vop_reclaim_args *); int ext2_truncate(struct vnode *, off_t, int, struct ucred *, struct thread *); int ext2_update(struct vnode *, int); int ext2_valloc(struct vnode *, int, struct ucred *, struct vnode **); int ext2_vfree(struct vnode *, ino_t, int); int ext2_vinit(struct mount *, struct vop_vector *, struct vnode **vpp); int ext2_lookup(struct vop_cachedlookup_args *); int ext2_readdir(struct vop_readdir_args *); #ifdef EXT2FS_DEBUG void ext2_print_inode(struct inode *); #endif int ext2_direnter(struct inode *, struct vnode *, struct componentname *); int ext2_dirremove(struct vnode *, struct componentname *); int ext2_dirrewrite(struct inode *, struct inode *, struct componentname *); int ext2_dirempty(struct inode *, ino_t, struct ucred *); int ext2_checkpath(struct inode *, struct inode *, struct ucred *); int ext2_cg_has_sb(struct m_ext2fs *fs, int cg); +uint64_t ext2_cg_number_gdb(struct m_ext2fs *fs, int cg); int ext2_inactive(struct vop_inactive_args *); int ext2_htree_add_entry(struct vnode *, struct ext2fs_direct_2 *, struct componentname *); int ext2_htree_create_index(struct vnode *, struct componentname *, struct ext2fs_direct_2 *); int ext2_htree_has_idx(struct inode *); int ext2_htree_hash(const char *, int, uint32_t *, int, uint32_t *, uint32_t *); int ext2_htree_lookup(struct inode *, const char *, int, struct buf **, int *, doff_t *, doff_t *, doff_t *, struct ext2fs_searchslot *); int ext2_search_dirblock(struct inode *, void *, int *, const char *, int, int *, doff_t *, doff_t *, doff_t *, struct ext2fs_searchslot *); uint32_t e2fs_gd_get_ndirs(struct ext2_gd *gd); +uint64_t e2fs_gd_get_b_bitmap(struct ext2_gd *); +uint64_t e2fs_gd_get_i_bitmap(struct ext2_gd *); uint64_t e2fs_gd_get_i_tables(struct ext2_gd *); void ext2_sb_csum_set_seed(struct m_ext2fs *); int ext2_sb_csum_verify(struct m_ext2fs *); void ext2_sb_csum_set(struct m_ext2fs *); int ext2_extattr_blk_csum_verify(struct inode *, struct buf *); void ext2_extattr_blk_csum_set(struct inode *, struct buf *); int ext2_dir_blk_csum_verify(struct inode *, struct buf *); struct ext2fs_direct_tail *ext2_dirent_get_tail(struct inode *ip, struct ext2fs_direct_2 *ep); void ext2_dirent_csum_set(struct inode *, struct ext2fs_direct_2 *); int ext2_dirent_csum_verify(struct inode *ip, struct ext2fs_direct_2 *ep); void ext2_dx_csum_set(struct inode *, struct ext2fs_direct_2 *); int ext2_dx_csum_verify(struct inode *ip, struct ext2fs_direct_2 *ep); int ext2_extent_blk_csum_verify(struct inode *, void *); void ext2_extent_blk_csum_set(struct inode *, void *); void ext2_init_dirent_tail(struct ext2fs_direct_tail *); int ext2_is_dirent_tail(struct inode *, struct ext2fs_direct_2 *); int ext2_gd_i_bitmap_csum_verify(struct m_ext2fs *, int, struct buf *); void ext2_gd_i_bitmap_csum_set(struct m_ext2fs *, int, struct buf *); int ext2_gd_b_bitmap_csum_verify(struct m_ext2fs *, int, struct buf *); void ext2_gd_b_bitmap_csum_set(struct m_ext2fs *, int, struct buf *); int ext2_ei_csum_verify(struct inode *, struct ext2fs_dinode *); void ext2_ei_csum_set(struct inode *, struct ext2fs_dinode *); int ext2_gd_csum_verify(struct m_ext2fs *, struct cdev *); void ext2_gd_csum_set(struct m_ext2fs *); /* Flags to low-level allocation routines. * The low 16-bits are reserved for IO_ flags from vnode.h. */ #define BA_CLRBUF 0x00010000 /* Clear invalid areas of buffer. */ #define BA_SEQMASK 0x7F000000 /* Bits holding seq heuristic. */ #define BA_SEQSHIFT 24 #define BA_SEQMAX 0x7F extern struct vop_vector ext2_vnodeops; extern struct vop_vector ext2_fifoops; #endif /* !_FS_EXT2FS_EXT2_EXTERN_H_ */ Index: head/sys/fs/ext2fs/ext2_vfsops.c =================================================================== --- head/sys/fs/ext2fs/ext2_vfsops.c (revision 344750) +++ head/sys/fs/ext2fs/ext2_vfsops.c (revision 344751) @@ -1,1244 +1,1392 @@ /*- * modified for EXT2FS support in Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.8 (Berkeley) 4/18/94 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ext2_flushfiles(struct mount *mp, int flags, struct thread *td); static int ext2_mountfs(struct vnode *, struct mount *); static int ext2_reload(struct mount *mp, struct thread *td); static int ext2_sbupdate(struct ext2mount *, int); static int ext2_cgupdate(struct ext2mount *, int); static vfs_unmount_t ext2_unmount; static vfs_root_t ext2_root; static vfs_statfs_t ext2_statfs; static vfs_sync_t ext2_sync; static vfs_vget_t ext2_vget; static vfs_fhtovp_t ext2_fhtovp; static vfs_mount_t ext2_mount; MALLOC_DEFINE(M_EXT2NODE, "ext2_node", "EXT2 vnode private part"); static MALLOC_DEFINE(M_EXT2MNT, "ext2_mount", "EXT2 mount structure"); static struct vfsops ext2fs_vfsops = { .vfs_fhtovp = ext2_fhtovp, .vfs_mount = ext2_mount, .vfs_root = ext2_root, /* root inode via vget */ .vfs_statfs = ext2_statfs, .vfs_sync = ext2_sync, .vfs_unmount = ext2_unmount, .vfs_vget = ext2_vget, }; VFS_SET(ext2fs_vfsops, ext2fs, 0); static int ext2_check_sb_compat(struct ext2fs *es, struct cdev *dev, int ronly); -static int compute_sb_data(struct vnode * devvp, +static int ext2_compute_sb_data(struct vnode * devvp, struct ext2fs * es, struct m_ext2fs * fs); static const char *ext2_opts[] = { "acls", "async", "noatime", "noclusterr", "noclusterw", "noexec", "export", "force", "from", "multilabel", "suiddir", "nosymfollow", "sync", "union", NULL }; /* * VFS Operations. * * mount system call */ static int ext2_mount(struct mount *mp) { struct vfsoptlist *opts; struct vnode *devvp; struct thread *td; struct ext2mount *ump = NULL; struct m_ext2fs *fs; struct nameidata nd, *ndp = &nd; accmode_t accmode; char *path, *fspec; int error, flags, len; td = curthread; opts = mp->mnt_optnew; if (vfs_filteropt(opts, ext2_opts)) return (EINVAL); vfs_getopt(opts, "fspath", (void **)&path, NULL); /* Double-check the length of path.. */ if (strlen(path) >= MAXMNTLEN) return (ENAMETOOLONG); fspec = NULL; error = vfs_getopt(opts, "from", (void **)&fspec, &len); if (!error && fspec[len - 1] != '\0') return (EINVAL); /* * If updating, check whether changing from read-only to * read/write; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOEXT2(mp); fs = ump->um_e2fs; error = 0; if (fs->e2fs_ronly == 0 && vfs_flagopt(opts, "ro", NULL, 0)) { error = VFS_SYNC(mp, MNT_WAIT); if (error) return (error); flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = ext2_flushfiles(mp, flags, td); if (error == 0 && fs->e2fs_wasvalid && ext2_cgupdate(ump, MNT_WAIT) == 0) { fs->e2fs->e2fs_state |= E2FS_ISCLEAN; ext2_sbupdate(ump, MNT_WAIT); } fs->e2fs_ronly = 1; vfs_flagopt(opts, "ro", &mp->mnt_flag, MNT_RDONLY); g_topology_lock(); g_access(ump->um_cp, 0, -1, 0); g_topology_unlock(); } if (!error && (mp->mnt_flag & MNT_RELOAD)) error = ext2_reload(mp, td); if (error) return (error); devvp = ump->um_devvp; if (fs->e2fs_ronly && !vfs_flagopt(opts, "ro", NULL, 0)) { if (ext2_check_sb_compat(fs->e2fs, devvp->v_rdev, 0)) return (EPERM); /* * If upgrade to read-write by non-root, then verify * that user has necessary permissions on the device. */ vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_ACCESS(devvp, VREAD | VWRITE, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); if (error) { VOP_UNLOCK(devvp, 0); return (error); } VOP_UNLOCK(devvp, 0); g_topology_lock(); error = g_access(ump->um_cp, 0, 1, 0); g_topology_unlock(); if (error) return (error); if ((fs->e2fs->e2fs_state & E2FS_ISCLEAN) == 0 || (fs->e2fs->e2fs_state & E2FS_ERRORS)) { if (mp->mnt_flag & MNT_FORCE) { printf( "WARNING: %s was not properly dismounted\n", fs->e2fs_fsmnt); } else { printf( "WARNING: R/W mount of %s denied. Filesystem is not clean - run fsck\n", fs->e2fs_fsmnt); return (EPERM); } } fs->e2fs->e2fs_state &= ~E2FS_ISCLEAN; (void)ext2_cgupdate(ump, MNT_WAIT); fs->e2fs_ronly = 0; MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_RDONLY; MNT_IUNLOCK(mp); } if (vfs_flagopt(opts, "export", NULL, 0)) { /* Process export requests in vfs_mount.c. */ return (error); } } /* * Not an update, or updating the name: look up the name * and verify that it refers to a sensible disk device. */ if (fspec == NULL) return (EINVAL); NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); if ((error = namei(ndp)) != 0) return (error); NDFREE(ndp, NDF_ONLY_PNBUF); devvp = ndp->ni_vp; if (!vn_isdisk(devvp, &error)) { vput(devvp); return (error); } /* * If mount by non-root, then verify that user has necessary * permissions on the device. * * XXXRW: VOP_ACCESS() enough? */ accmode = VREAD; if ((mp->mnt_flag & MNT_RDONLY) == 0) accmode |= VWRITE; error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); if (error) { vput(devvp); return (error); } if ((mp->mnt_flag & MNT_UPDATE) == 0) { error = ext2_mountfs(devvp, mp); } else { if (devvp != ump->um_devvp) { vput(devvp); return (EINVAL); /* needs translation */ } else vput(devvp); } if (error) { vrele(devvp); return (error); } ump = VFSTOEXT2(mp); fs = ump->um_e2fs; /* * Note that this strncpy() is ok because of a check at the start * of ext2_mount(). */ strncpy(fs->e2fs_fsmnt, path, MAXMNTLEN); fs->e2fs_fsmnt[MAXMNTLEN - 1] = '\0'; vfs_mountedfrom(mp, fspec); return (0); } static int ext2_check_sb_compat(struct ext2fs *es, struct cdev *dev, int ronly) { uint32_t i, mask; if (es->e2fs_magic != E2FS_MAGIC) { printf("ext2fs: %s: wrong magic number %#x (expected %#x)\n", devtoname(dev), es->e2fs_magic, E2FS_MAGIC); return (1); } if (es->e2fs_rev > E2FS_REV0) { mask = es->e2fs_features_incompat & ~(EXT2F_INCOMPAT_SUPP); if (mask) { printf("WARNING: mount of %s denied due to " "unsupported optional features:\n", devtoname(dev)); for (i = 0; i < sizeof(incompat)/sizeof(struct ext2_feature); i++) if (mask & incompat[i].mask) printf("%s ", incompat[i].name); printf("\n"); return (1); } mask = es->e2fs_features_rocompat & ~EXT2F_ROCOMPAT_SUPP; if (!ronly && mask) { printf("WARNING: R/W mount of %s denied due to " "unsupported optional features:\n", devtoname(dev)); for (i = 0; i < sizeof(ro_compat)/sizeof(struct ext2_feature); i++) if (mask & ro_compat[i].mask) printf("%s ", ro_compat[i].name); printf("\n"); return (1); } } return (0); } static e4fs_daddr_t -cg_location(struct m_ext2fs *fs, int number) +ext2_cg_location(struct m_ext2fs *fs, int number) { int cg, descpb, logical_sb, has_super = 0; /* * Adjust logical superblock block number. * Godmar thinks: if the blocksize is greater than 1024, then * the superblock is logically part of block zero. */ logical_sb = fs->e2fs_bsize > SBSIZE ? 0 : 1; if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || number < fs->e2fs->e3fs_first_meta_bg) return (logical_sb + number + 1); if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) descpb = fs->e2fs_bsize / sizeof(struct ext2_gd); else descpb = fs->e2fs_bsize / E2FS_REV0_GD_SIZE; cg = descpb * number; if (ext2_cg_has_sb(fs, cg)) has_super = 1; return (has_super + cg * (e4fs_daddr_t)EXT2_BLOCKS_PER_GROUP(fs) + fs->e2fs->e2fs_first_dblock); } +static int +ext2_cg_validate(struct m_ext2fs *fs) +{ + uint64_t b_bitmap; + uint64_t i_bitmap; + uint64_t i_tables; + uint64_t first_block, last_block, last_cg_block; + struct ext2_gd *gd; + unsigned int i, cg_count; + + first_block = fs->e2fs->e2fs_first_dblock; + last_cg_block = ext2_cg_number_gdb(fs, 0); + cg_count = fs->e2fs_gcount; + + for (i = 0; i < fs->e2fs_gcount; i++) { + gd = &fs->e2fs_gd[i]; + + if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || + i == fs->e2fs_gcount - 1) { + last_block = fs->e2fs_bcount - 1; + } else { + last_block = first_block + + (EXT2_BLOCKS_PER_GROUP(fs) - 1); + } + + if ((cg_count == fs->e2fs_gcount) && + !(gd->ext4bgd_flags & EXT2_BG_INODE_ZEROED)) + cg_count = i; + + b_bitmap = e2fs_gd_get_b_bitmap(gd); + if (b_bitmap == 0) { + printf("ext2fs: cg %u: block bitmap is zero\n", i); + return (EINVAL); + + } + if (b_bitmap <= last_cg_block) { + printf("ext2fs: cg %u: block bitmap overlaps gds\n", i); + return (EINVAL); + } + if (b_bitmap < first_block || b_bitmap > last_block) { + printf("ext2fs: cg %u: block bitmap not in group, blk=%ju\n", + i, b_bitmap); + return (EINVAL); + } + + i_bitmap = e2fs_gd_get_i_bitmap(gd); + if (i_bitmap == 0) { + printf("ext2fs: cg %u: inode bitmap is zero\n", i); + return (EINVAL); + } + if (i_bitmap <= last_cg_block) { + printf("ext2fs: cg %u: inode bitmap overlaps gds\n", i); + return (EINVAL); + } + if (i_bitmap < first_block || i_bitmap > last_block) { + printf("ext2fs: cg %u: inode bitmap not in group blk=%ju\n", + i, i_bitmap); + return (EINVAL); + } + + i_tables = e2fs_gd_get_i_tables(gd); + if (i_tables == 0) { + printf("ext2fs: cg %u: inode table is zero\n", i); + return (EINVAL); + } + if (i_tables <= last_cg_block) { + printf("ext2fs: cg %u: inode talbes overlaps gds\n", i); + return (EINVAL); + } + if (i_tables < first_block || + i_tables + fs->e2fs_itpg - 1 > last_block) { + printf("ext2fs: cg %u: inode tables not in group blk=%ju\n", + i, i_tables); + return (EINVAL); + } + + if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG)) + first_block += EXT2_BLOCKS_PER_GROUP(fs); + } + + return (0); +} + /* * This computes the fields of the m_ext2fs structure from the * data in the ext2fs structure read in. */ static int -compute_sb_data(struct vnode *devvp, struct ext2fs *es, +ext2_compute_sb_data(struct vnode *devvp, struct ext2fs *es, struct m_ext2fs *fs) { - int g_count = 0, error; - int i, j; struct buf *bp; uint32_t e2fs_descpb, e2fs_gdbcount_alloc; + int i, j; + int g_count = 0; + int error; - fs->e2fs_bcount = es->e2fs_bcount; - fs->e2fs_rbcount = es->e2fs_rbcount; - fs->e2fs_fbcount = es->e2fs_fbcount; - if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { - fs->e2fs_bcount |= (uint64_t)(es->e4fs_bcount_hi) << 32; - fs->e2fs_rbcount |= (uint64_t)(es->e4fs_rbcount_hi) << 32; - fs->e2fs_fbcount |= (uint64_t)(es->e4fs_fbcount_hi) << 32; + /* Check checksum features */ + if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) && + EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { + printf("ext2fs: incorrect checksum features combination\n"); + return (EINVAL); } + + /* Precompute checksum seed for all metadata */ + ext2_sb_csum_set_seed(fs); + + /* Verify sb csum if possible */ + if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { + error = ext2_sb_csum_verify(fs); + if (error) { + return (error); + } + } + + /* Check for block size = 1K|2K|4K */ + if (es->e2fs_log_bsize > 2) { + printf("ext2fs: bad block size: %d\n", es->e2fs_log_bsize); + return (EINVAL); + } + fs->e2fs_bshift = EXT2_MIN_BLOCK_LOG_SIZE + es->e2fs_log_bsize; fs->e2fs_bsize = 1U << fs->e2fs_bshift; fs->e2fs_fsbtodb = es->e2fs_log_bsize + 1; fs->e2fs_qbmask = fs->e2fs_bsize - 1; + + /* Check for fragment size */ + if (es->e2fs_log_fsize > + (EXT2_MAX_FRAG_LOG_SIZE - EXT2_MIN_BLOCK_LOG_SIZE)) { + printf("ext2fs: invalid log cluster size: %u\n", + es->e2fs_log_fsize); + return (EINVAL); + } + fs->e2fs_fsize = EXT2_MIN_FRAG_SIZE << es->e2fs_log_fsize; - if (fs->e2fs_fsize) - fs->e2fs_fpb = fs->e2fs_bsize / fs->e2fs_fsize; - fs->e2fs_bpg = es->e2fs_bpg; - fs->e2fs_fpg = es->e2fs_fpg; - fs->e2fs_ipg = es->e2fs_ipg; + if (fs->e2fs_fsize != fs->e2fs_bsize) { + printf("ext2fs: fragment size (%u) != block size %u\n", + fs->e2fs_fsize, fs->e2fs_bsize); + return (EINVAL); + } + + fs->e2fs_fpb = fs->e2fs_bsize / fs->e2fs_fsize; + + /* Check reserved gdt blocks for future filesystem expansion */ + if (es->e2fs_reserved_ngdb > (fs->e2fs_bsize / 4)) { + printf("ext2fs: number of reserved GDT blocks too large: %u\n", + es->e2fs_reserved_ngdb); + return (EINVAL); + } + if (es->e2fs_rev == E2FS_REV0) { fs->e2fs_isize = E2FS_REV0_INODE_SIZE; } else { fs->e2fs_isize = es->e2fs_inode_size; /* + * Check first ino. + */ + if (es->e2fs_first_ino < EXT2_FIRSTINO) { + printf("ext2fs: invalid first ino: %u\n", + es->e2fs_first_ino); + return (EINVAL); + } + + /* * Simple sanity check for superblock inode size value. */ if (EXT2_INODE_SIZE(fs) < E2FS_REV0_INODE_SIZE || EXT2_INODE_SIZE(fs) > fs->e2fs_bsize || (fs->e2fs_isize & (fs->e2fs_isize - 1)) != 0) { - printf("ext2fs: invalid inode size %d\n", + printf("ext2fs: invalid inode size %u\n", fs->e2fs_isize); - return (EIO); + return (EINVAL); } } - /* Check for extra isize in big inodes. */ - if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_EXTRA_ISIZE) && - EXT2_INODE_SIZE(fs) < sizeof(struct ext2fs_dinode)) { - printf("ext2fs: no space for extra inode timestamps\n"); - return (EINVAL); - } - /* Check checksum features */ - if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) && - EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { - printf("ext2fs: incorrect checksum features combination\n"); - return (EINVAL); - } - /* Check for group descriptor size */ + + /* Check group descriptors */ if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT) && - (es->e3fs_desc_size != sizeof(struct ext2_gd))) { - printf("ext2fs: group descriptor size unsupported %d\n", - es->e3fs_desc_size); - return (EINVAL); + es->e3fs_desc_size != E2FS_64BIT_GD_SIZE) { + printf("ext2fs: unsupported 64bit descriptor size %u\n", + es->e3fs_desc_size); + return (EINVAL); } - /* Check for block size = 1K|2K|4K */ - if (es->e2fs_log_bsize > 2) { - printf("ext2fs: bad block size: %d\n", es->e2fs_log_bsize); + + fs->e2fs_bpg = es->e2fs_bpg; + fs->e2fs_fpg = es->e2fs_fpg; + if (fs->e2fs_bpg == 0 || fs->e2fs_fpg == 0) { + printf("ext2fs: zero blocks/fragments per group\n"); return (EINVAL); } - /* Check for group size */ - if (fs->e2fs_bpg == 0) { - printf("ext2fs: zero blocks per group\n"); - return (EINVAL); - } if (fs->e2fs_bpg != fs->e2fs_bsize * 8) { printf("ext2fs: non-standard group size unsupported %d\n", fs->e2fs_bpg); return (EINVAL); } fs->e2fs_ipb = fs->e2fs_bsize / EXT2_INODE_SIZE(fs); - if (fs->e2fs_ipg == 0) { - printf("ext2fs: zero inodes per group\n"); + if (fs->e2fs_ipb == 0 || + fs->e2fs_ipb > fs->e2fs_bsize / E2FS_REV0_INODE_SIZE) { + printf("ext2fs: bad inodes per block size\n"); return (EINVAL); } - fs->e2fs_itpg = fs->e2fs_ipg / fs->e2fs_ipb; - /* Check for block consistency */ - if (es->e2fs_first_dblock >= fs->e2fs_bcount) { - printf("ext2fs: invalid first data block\n"); + + fs->e2fs_ipg = es->e2fs_ipg; + if (fs->e2fs_ipg < fs->e2fs_ipb || fs->e2fs_ipg > fs->e2fs_bsize * 8) { + printf("ext2fs: invalid inodes per group: %u\n", fs->e2fs_ipb); return (EINVAL); } + + fs->e2fs_itpg = fs->e2fs_ipg / fs->e2fs_ipb; + + fs->e2fs_bcount = es->e2fs_bcount; + fs->e2fs_rbcount = es->e2fs_rbcount; + fs->e2fs_fbcount = es->e2fs_fbcount; + if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { + fs->e2fs_bcount |= (uint64_t)(es->e4fs_bcount_hi) << 32; + fs->e2fs_rbcount |= (uint64_t)(es->e4fs_rbcount_hi) << 32; + fs->e2fs_fbcount |= (uint64_t)(es->e4fs_fbcount_hi) << 32; + } if (fs->e2fs_rbcount > fs->e2fs_bcount || fs->e2fs_fbcount > fs->e2fs_bcount) { printf("ext2fs: invalid block count\n"); return (EINVAL); } - /* s_resuid / s_resgid ? */ + if (es->e2fs_first_dblock >= fs->e2fs_bcount) { + printf("ext2fs: first data block out of range\n"); + return (EINVAL); + } + fs->e2fs_gcount = howmany(fs->e2fs_bcount - es->e2fs_first_dblock, EXT2_BLOCKS_PER_GROUP(fs)); + if (fs->e2fs_gcount > ((uint64_t)1 << 32) - EXT2_DESCS_PER_BLOCK(fs)) { + printf("ext2fs: groups count too large: %u\n", fs->e2fs_gcount); + return (EINVAL); + } + + /* Check for extra isize in big inodes. */ + if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_EXTRA_ISIZE) && + EXT2_INODE_SIZE(fs) < sizeof(struct ext2fs_dinode)) { + printf("ext2fs: no space for extra inode timestamps\n"); + return (EINVAL); + } + + /* s_resuid / s_resgid ? */ + if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { - e2fs_descpb = fs->e2fs_bsize / sizeof(struct ext2_gd); + e2fs_descpb = fs->e2fs_bsize / E2FS_64BIT_GD_SIZE; e2fs_gdbcount_alloc = howmany(fs->e2fs_gcount, e2fs_descpb); } else { e2fs_descpb = fs->e2fs_bsize / E2FS_REV0_GD_SIZE; e2fs_gdbcount_alloc = howmany(fs->e2fs_gcount, fs->e2fs_bsize / sizeof(struct ext2_gd)); } fs->e2fs_gdbcount = howmany(fs->e2fs_gcount, e2fs_descpb); fs->e2fs_gd = malloc(e2fs_gdbcount_alloc * fs->e2fs_bsize, M_EXT2MNT, M_WAITOK | M_ZERO); fs->e2fs_contigdirs = malloc(fs->e2fs_gcount * sizeof(*fs->e2fs_contigdirs), M_EXT2MNT, M_WAITOK | M_ZERO); for (i = 0; i < fs->e2fs_gdbcount; i++) { error = bread(devvp, - fsbtodb(fs, cg_location(fs, i)), + fsbtodb(fs, ext2_cg_location(fs, i)), fs->e2fs_bsize, NOCRED, &bp); if (error) { free(fs->e2fs_contigdirs, M_EXT2MNT); free(fs->e2fs_gd, M_EXT2MNT); brelse(bp); return (error); } if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { memcpy(&fs->e2fs_gd[ i * fs->e2fs_bsize / sizeof(struct ext2_gd)], bp->b_data, fs->e2fs_bsize); } else { for (j = 0; j < e2fs_descpb && g_count < fs->e2fs_gcount; j++, g_count++) memcpy(&fs->e2fs_gd[g_count], bp->b_data + j * E2FS_REV0_GD_SIZE, E2FS_REV0_GD_SIZE); } brelse(bp); bp = NULL; } - /* Precompute checksum seed for all metadata */ - ext2_sb_csum_set_seed(fs); - /* Verfy cg csum */ + + /* Validate cgs consistency */ + error = ext2_cg_validate(fs); + if (error) + return (error); + + /* Verfy cgs csum */ if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { error = ext2_gd_csum_verify(fs, devvp->v_rdev); if (error) return (error); } /* Initialization for the ext2 Orlov allocator variant. */ fs->e2fs_total_dir = 0; for (i = 0; i < fs->e2fs_gcount; i++) fs->e2fs_total_dir += e2fs_gd_get_ndirs(&fs->e2fs_gd[i]); if (es->e2fs_rev == E2FS_REV0 || !EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_LARGEFILE)) fs->e2fs_maxfilesize = 0x7fffffff; else { fs->e2fs_maxfilesize = 0xffffffffffff; if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_HUGE_FILE)) fs->e2fs_maxfilesize = 0x7fffffffffffffff; } if (es->e4fs_flags & E2FS_UNSIGNED_HASH) { fs->e2fs_uhash = 3; } else if ((es->e4fs_flags & E2FS_SIGNED_HASH) == 0) { #ifdef __CHAR_UNSIGNED__ es->e4fs_flags |= E2FS_UNSIGNED_HASH; fs->e2fs_uhash = 3; #else es->e4fs_flags |= E2FS_SIGNED_HASH; #endif } if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) error = ext2_sb_csum_verify(fs); return (error); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) invalidate all cluster summary information. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. * XXX we are missing some steps, in particular # 3, this has to be reviewed. */ static int ext2_reload(struct mount *mp, struct thread *td) { struct vnode *vp, *mvp, *devvp; struct inode *ip; struct buf *bp; struct ext2fs *es; struct m_ext2fs *fs; struct csum *sump; int error, i; int32_t *lp; if ((mp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); /* * Step 1: invalidate all cached meta-data. */ devvp = VFSTOEXT2(mp)->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); if (vinvalbuf(devvp, 0, 0, 0) != 0) panic("ext2_reload: dirty1"); VOP_UNLOCK(devvp, 0); /* * Step 2: re-read superblock from disk. * constants have been adjusted for ext2 */ if ((error = bread(devvp, SBLOCK, SBSIZE, NOCRED, &bp)) != 0) return (error); es = (struct ext2fs *)bp->b_data; if (ext2_check_sb_compat(es, devvp->v_rdev, 0) != 0) { brelse(bp); return (EIO); /* XXX needs translation */ } fs = VFSTOEXT2(mp)->um_e2fs; bcopy(bp->b_data, fs->e2fs, sizeof(struct ext2fs)); - if ((error = compute_sb_data(devvp, es, fs)) != 0) { + if ((error = ext2_compute_sb_data(devvp, es, fs)) != 0) { brelse(bp); return (error); } #ifdef UNKLAR if (fs->fs_sbsize < SBSIZE) bp->b_flags |= B_INVAL; #endif brelse(bp); /* * Step 3: invalidate all cluster summary information. */ if (fs->e2fs_contigsumsize > 0) { lp = fs->e2fs_maxcluster; sump = fs->e2fs_clustersum; for (i = 0; i < fs->e2fs_gcount; i++, sump++) { *lp++ = fs->e2fs_contigsumsize; sump->cs_init = 0; bzero(sump->cs_sum, fs->e2fs_contigsumsize + 1); } } loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* * Step 4: invalidate all cached file data. */ if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } if (vinvalbuf(vp, 0, 0, 0)) panic("ext2_reload: dirty2"); /* * Step 5: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { VOP_UNLOCK(vp, 0); vrele(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); return (error); } ext2_ei2i((struct ext2fs_dinode *)((char *)bp->b_data + EXT2_INODE_SIZE(fs) * ino_to_fsbo(fs, ip->i_number)), ip); brelse(bp); VOP_UNLOCK(vp, 0); vrele(vp); } return (0); } /* * Common code for mount and mountroot. */ static int ext2_mountfs(struct vnode *devvp, struct mount *mp) { struct ext2mount *ump; struct buf *bp; struct m_ext2fs *fs; struct ext2fs *es; struct cdev *dev = devvp->v_rdev; struct g_consumer *cp; struct bufobj *bo; struct csum *sump; int error; int ronly; int i; u_long size; int32_t *lp; int32_t e2fs_maxcontig; ronly = vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0); /* XXX: use VOP_ACESS to check FS perms */ g_topology_lock(); error = g_vfs_open(devvp, &cp, "ext2fs", ronly ? 0 : 1); g_topology_unlock(); VOP_UNLOCK(devvp, 0); if (error) return (error); /* XXX: should we check for some sectorsize or 512 instead? */ if (((SBSIZE % cp->provider->sectorsize) != 0) || (SBSIZE < cp->provider->sectorsize)) { g_topology_lock(); g_vfs_close(cp); g_topology_unlock(); return (EINVAL); } bo = &devvp->v_bufobj; bo->bo_private = cp; bo->bo_ops = g_vfs_bufops; if (devvp->v_rdev->si_iosize_max != 0) mp->mnt_iosize_max = devvp->v_rdev->si_iosize_max; if (mp->mnt_iosize_max > MAXPHYS) mp->mnt_iosize_max = MAXPHYS; bp = NULL; ump = NULL; if ((error = bread(devvp, SBLOCK, SBSIZE, NOCRED, &bp)) != 0) goto out; es = (struct ext2fs *)bp->b_data; if (ext2_check_sb_compat(es, dev, ronly) != 0) { error = EINVAL; /* XXX needs translation */ goto out; } if ((es->e2fs_state & E2FS_ISCLEAN) == 0 || (es->e2fs_state & E2FS_ERRORS)) { if (ronly || (mp->mnt_flag & MNT_FORCE)) { printf( "WARNING: Filesystem was not properly dismounted\n"); } else { printf( "WARNING: R/W mount denied. Filesystem is not clean - run fsck\n"); error = EPERM; goto out; } } ump = malloc(sizeof(*ump), M_EXT2MNT, M_WAITOK | M_ZERO); /* * I don't know whether this is the right strategy. Note that * we dynamically allocate both an m_ext2fs and an ext2fs * while Linux keeps the super block in a locked buffer. */ ump->um_e2fs = malloc(sizeof(struct m_ext2fs), M_EXT2MNT, M_WAITOK | M_ZERO); ump->um_e2fs->e2fs = malloc(sizeof(struct ext2fs), M_EXT2MNT, M_WAITOK); mtx_init(EXT2_MTX(ump), "EXT2FS", "EXT2FS Lock", MTX_DEF); bcopy(es, ump->um_e2fs->e2fs, (u_int)sizeof(struct ext2fs)); - if ((error = compute_sb_data(devvp, ump->um_e2fs->e2fs, ump->um_e2fs))) + if ((error = ext2_compute_sb_data(devvp, ump->um_e2fs->e2fs, ump->um_e2fs))) goto out; /* * Calculate the maximum contiguous blocks and size of cluster summary * array. In FFS this is done by newfs; however, the superblock * in ext2fs doesn't have these variables, so we can calculate * them here. */ e2fs_maxcontig = MAX(1, MAXPHYS / ump->um_e2fs->e2fs_bsize); ump->um_e2fs->e2fs_contigsumsize = MIN(e2fs_maxcontig, EXT2_MAXCONTIG); if (ump->um_e2fs->e2fs_contigsumsize > 0) { size = ump->um_e2fs->e2fs_gcount * sizeof(int32_t); ump->um_e2fs->e2fs_maxcluster = malloc(size, M_EXT2MNT, M_WAITOK); size = ump->um_e2fs->e2fs_gcount * sizeof(struct csum); ump->um_e2fs->e2fs_clustersum = malloc(size, M_EXT2MNT, M_WAITOK); lp = ump->um_e2fs->e2fs_maxcluster; sump = ump->um_e2fs->e2fs_clustersum; for (i = 0; i < ump->um_e2fs->e2fs_gcount; i++, sump++) { *lp++ = ump->um_e2fs->e2fs_contigsumsize; sump->cs_init = 0; sump->cs_sum = malloc((ump->um_e2fs->e2fs_contigsumsize + 1) * sizeof(int32_t), M_EXT2MNT, M_WAITOK | M_ZERO); } } brelse(bp); bp = NULL; fs = ump->um_e2fs; fs->e2fs_ronly = ronly; /* ronly is set according to mnt_flags */ /* * If the fs is not mounted read-only, make sure the super block is * always written back on a sync(). */ fs->e2fs_wasvalid = fs->e2fs->e2fs_state & E2FS_ISCLEAN ? 1 : 0; if (ronly == 0) { fs->e2fs_fmod = 1; /* mark it modified */ fs->e2fs->e2fs_state &= ~E2FS_ISCLEAN; /* set fs invalid */ } mp->mnt_data = ump; mp->mnt_stat.f_fsid.val[0] = dev2udev(dev); mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum; mp->mnt_maxsymlinklen = EXT2_MAXSYMLINKLEN; MNT_ILOCK(mp); mp->mnt_flag |= MNT_LOCAL; MNT_IUNLOCK(mp); ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_bo = &devvp->v_bufobj; ump->um_cp = cp; /* * Setting those two parameters allowed us to use * ufs_bmap w/o changse! */ ump->um_nindir = EXT2_ADDR_PER_BLOCK(fs); ump->um_bptrtodb = fs->e2fs->e2fs_log_bsize + 1; ump->um_seqinc = EXT2_FRAGS_PER_BLOCK(fs); if (ronly == 0) ext2_sbupdate(ump, MNT_WAIT); /* * Initialize filesystem stat information in mount struct. */ MNT_ILOCK(mp); mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | MNTK_USES_BCACHE; MNT_IUNLOCK(mp); return (0); out: if (bp) brelse(bp); if (cp != NULL) { g_topology_lock(); g_vfs_close(cp); g_topology_unlock(); } if (ump) { mtx_destroy(EXT2_MTX(ump)); free(ump->um_e2fs->e2fs_gd, M_EXT2MNT); free(ump->um_e2fs->e2fs_contigdirs, M_EXT2MNT); free(ump->um_e2fs->e2fs, M_EXT2MNT); free(ump->um_e2fs, M_EXT2MNT); free(ump, M_EXT2MNT); mp->mnt_data = NULL; } return (error); } /* * Unmount system call. */ static int ext2_unmount(struct mount *mp, int mntflags) { struct ext2mount *ump; struct m_ext2fs *fs; struct csum *sump; int error, flags, i, ronly; flags = 0; if (mntflags & MNT_FORCE) { if (mp->mnt_flag & MNT_ROOTFS) return (EINVAL); flags |= FORCECLOSE; } if ((error = ext2_flushfiles(mp, flags, curthread)) != 0) return (error); ump = VFSTOEXT2(mp); fs = ump->um_e2fs; ronly = fs->e2fs_ronly; if (ronly == 0 && ext2_cgupdate(ump, MNT_WAIT) == 0) { if (fs->e2fs_wasvalid) fs->e2fs->e2fs_state |= E2FS_ISCLEAN; ext2_sbupdate(ump, MNT_WAIT); } g_topology_lock(); g_vfs_close(ump->um_cp); g_topology_unlock(); vrele(ump->um_devvp); sump = fs->e2fs_clustersum; for (i = 0; i < fs->e2fs_gcount; i++, sump++) free(sump->cs_sum, M_EXT2MNT); free(fs->e2fs_clustersum, M_EXT2MNT); free(fs->e2fs_maxcluster, M_EXT2MNT); free(fs->e2fs_gd, M_EXT2MNT); free(fs->e2fs_contigdirs, M_EXT2MNT); free(fs->e2fs, M_EXT2MNT); free(fs, M_EXT2MNT); free(ump, M_EXT2MNT); mp->mnt_data = NULL; MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_LOCAL; MNT_IUNLOCK(mp); return (error); } /* * Flush out all the files in a filesystem. */ static int ext2_flushfiles(struct mount *mp, int flags, struct thread *td) { int error; error = vflush(mp, 0, flags, td); return (error); } /* * Get filesystem statistics. */ int ext2_statfs(struct mount *mp, struct statfs *sbp) { struct ext2mount *ump; struct m_ext2fs *fs; uint32_t overhead, overhead_per_group, ngdb; int i, ngroups; ump = VFSTOEXT2(mp); fs = ump->um_e2fs; if (fs->e2fs->e2fs_magic != E2FS_MAGIC) panic("ext2_statfs"); /* * Compute the overhead (FS structures) */ overhead_per_group = 1 /* block bitmap */ + 1 /* inode bitmap */ + fs->e2fs_itpg; overhead = fs->e2fs->e2fs_first_dblock + fs->e2fs_gcount * overhead_per_group; if (fs->e2fs->e2fs_rev > E2FS_REV0 && fs->e2fs->e2fs_features_rocompat & EXT2F_ROCOMPAT_SPARSESUPER) { for (i = 0, ngroups = 0; i < fs->e2fs_gcount; i++) { if (ext2_cg_has_sb(fs, i)) ngroups++; } } else { ngroups = fs->e2fs_gcount; } ngdb = fs->e2fs_gdbcount; if (fs->e2fs->e2fs_rev > E2FS_REV0 && fs->e2fs->e2fs_features_compat & EXT2F_COMPAT_RESIZE) ngdb += fs->e2fs->e2fs_reserved_ngdb; overhead += ngroups * (1 /* superblock */ + ngdb); sbp->f_bsize = EXT2_FRAG_SIZE(fs); sbp->f_iosize = EXT2_BLOCK_SIZE(fs); sbp->f_blocks = fs->e2fs_bcount - overhead; sbp->f_bfree = fs->e2fs_fbcount; sbp->f_bavail = sbp->f_bfree - fs->e2fs_rbcount; sbp->f_files = fs->e2fs->e2fs_icount; sbp->f_ffree = fs->e2fs->e2fs_ficount; return (0); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked `MPBUSY'. */ static int ext2_sync(struct mount *mp, int waitfor) { struct vnode *mvp, *vp; struct thread *td; struct inode *ip; struct ext2mount *ump = VFSTOEXT2(mp); struct m_ext2fs *fs; int error, allerror = 0; td = curthread; fs = ump->um_e2fs; if (fs->e2fs_fmod != 0 && fs->e2fs_ronly != 0) { /* XXX */ printf("fs = %s\n", fs->e2fs_fsmnt); panic("ext2_sync: rofs mod"); } /* * Write back each (modified) inode. */ loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && (vp->v_bufobj.bo_dirty.bv_cnt == 0 || waitfor == MNT_LAZY)) { VI_UNLOCK(vp); continue; } error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, td); if (error) { if (error == ENOENT) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } continue; } if ((error = VOP_FSYNC(vp, waitfor, td)) != 0) allerror = error; VOP_UNLOCK(vp, 0); vrele(vp); } /* * Force stale filesystem control information to be flushed. */ if (waitfor != MNT_LAZY) { vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); if ((error = VOP_FSYNC(ump->um_devvp, waitfor, td)) != 0) allerror = error; VOP_UNLOCK(ump->um_devvp, 0); } /* * Write back modified superblock. */ if (fs->e2fs_fmod != 0) { fs->e2fs_fmod = 0; fs->e2fs->e2fs_wtime = time_second; if ((error = ext2_cgupdate(ump, waitfor)) != 0) allerror = error; } return (allerror); } /* * Look up an EXT2FS dinode number to find its incore vnode, otherwise read it * in from disk. If it is in core, wait for the lock bit to clear, then * return the inode locked. Detection and handling of mount points must be * done by the calling routine. */ static int ext2_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp) { struct m_ext2fs *fs; struct inode *ip; struct ext2mount *ump; struct buf *bp; struct vnode *vp; struct thread *td; int i, error; int used_blocks; td = curthread; error = vfs_hash_get(mp, ino, flags, td, vpp, NULL, NULL); if (error || *vpp != NULL) return (error); ump = VFSTOEXT2(mp); ip = malloc(sizeof(struct inode), M_EXT2NODE, M_WAITOK | M_ZERO); /* Allocate a new vnode/inode. */ if ((error = getnewvnode("ext2fs", mp, &ext2_vnodeops, &vp)) != 0) { *vpp = NULL; free(ip, M_EXT2NODE); return (error); } vp->v_data = ip; ip->i_vnode = vp; ip->i_e2fs = fs = ump->um_e2fs; ip->i_ump = ump; ip->i_number = ino; lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); error = insmntque(vp, mp); if (error != 0) { free(ip, M_EXT2NODE); *vpp = NULL; return (error); } error = vfs_hash_insert(vp, ino, flags, td, vpp, NULL, NULL); if (error || *vpp != NULL) return (error); /* Read in the disk contents for the inode, copy into the inode. */ if ((error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)), (int)fs->e2fs_bsize, NOCRED, &bp)) != 0) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ brelse(bp); vput(vp); *vpp = NULL; return (error); } /* convert ext2 inode to dinode */ error = ext2_ei2i((struct ext2fs_dinode *)((char *)bp->b_data + EXT2_INODE_SIZE(fs) * ino_to_fsbo(fs, ino)), ip); if (error) { printf("ext2fs: Bad inode %lu csum - run fsck\n", (unsigned long)ino); brelse(bp); vput(vp); *vpp = NULL; return (error); } ip->i_block_group = ino_to_cg(fs, ino); ip->i_next_alloc_block = 0; ip->i_next_alloc_goal = 0; /* * Now we want to make sure that block pointers for unused * blocks are zeroed out - ext2_balloc depends on this * although for regular files and directories only * * If IN_E4EXTENTS is enabled, unused blocks are not zeroed * out because we could corrupt the extent tree. */ if (!(ip->i_flag & IN_E4EXTENTS) && (S_ISDIR(ip->i_mode) || S_ISREG(ip->i_mode))) { used_blocks = howmany(ip->i_size, fs->e2fs_bsize); for (i = used_blocks; i < EXT2_NDIR_BLOCKS; i++) ip->i_db[i] = 0; } #ifdef EXT2FS_DEBUG ext2_print_inode(ip); ext4_ext_print_extent_tree_status(ip); #endif bqrelse(bp); /* * Initialize the vnode from the inode, check for aliases. * Note that the underlying vnode may have changed. */ if ((error = ext2_vinit(mp, &ext2_fifoops, &vp)) != 0) { vput(vp); *vpp = NULL; return (error); } /* * Finish inode initialization. */ *vpp = vp; return (0); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call ext2_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ static int ext2_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp) { struct inode *ip; struct ufid *ufhp; struct vnode *nvp; struct m_ext2fs *fs; int error; ufhp = (struct ufid *)fhp; fs = VFSTOEXT2(mp)->um_e2fs; if (ufhp->ufid_ino < EXT2_ROOTINO || ufhp->ufid_ino > fs->e2fs_gcount * fs->e2fs->e2fs_ipg) return (ESTALE); error = VFS_VGET(mp, ufhp->ufid_ino, LK_EXCLUSIVE, &nvp); if (error) { *vpp = NULLVP; return (error); } ip = VTOI(nvp); if (ip->i_mode == 0 || ip->i_gen != ufhp->ufid_gen || ip->i_nlink <= 0) { vput(nvp); *vpp = NULLVP; return (ESTALE); } *vpp = nvp; vnode_create_vobject(*vpp, 0, curthread); return (0); } /* * Write a superblock and associated information back to disk. */ static int ext2_sbupdate(struct ext2mount *mp, int waitfor) { struct m_ext2fs *fs = mp->um_e2fs; struct ext2fs *es = fs->e2fs; struct buf *bp; int error = 0; es->e2fs_bcount = fs->e2fs_bcount & 0xffffffff; es->e2fs_rbcount = fs->e2fs_rbcount & 0xffffffff; es->e2fs_fbcount = fs->e2fs_fbcount & 0xffffffff; if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { es->e4fs_bcount_hi = fs->e2fs_bcount >> 32; es->e4fs_rbcount_hi = fs->e2fs_rbcount >> 32; es->e4fs_fbcount_hi = fs->e2fs_fbcount >> 32; } if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) ext2_sb_csum_set(fs); bp = getblk(mp->um_devvp, SBLOCK, SBSIZE, 0, 0, 0); bcopy((caddr_t)es, bp->b_data, (u_int)sizeof(struct ext2fs)); if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); /* * The buffers for group descriptors, inode bitmaps and block bitmaps * are not busy at this point and are (hopefully) written by the * usual sync mechanism. No need to write them here. */ return (error); } int ext2_cgupdate(struct ext2mount *mp, int waitfor) { struct m_ext2fs *fs = mp->um_e2fs; struct buf *bp; int i, j, g_count = 0, error = 0, allerror = 0; allerror = ext2_sbupdate(mp, waitfor); /* Update gd csums */ if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) ext2_gd_csum_set(fs); for (i = 0; i < fs->e2fs_gdbcount; i++) { bp = getblk(mp->um_devvp, fsbtodb(fs, - cg_location(fs, i)), + ext2_cg_location(fs, i)), fs->e2fs_bsize, 0, 0, 0); if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT)) { memcpy(bp->b_data, &fs->e2fs_gd[ i * fs->e2fs_bsize / sizeof(struct ext2_gd)], fs->e2fs_bsize); } else { for (j = 0; j < fs->e2fs_bsize / E2FS_REV0_GD_SIZE && g_count < fs->e2fs_gcount; j++, g_count++) memcpy(bp->b_data + j * E2FS_REV0_GD_SIZE, &fs->e2fs_gd[g_count], E2FS_REV0_GD_SIZE); } if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); } if (!allerror && error) allerror = error; return (allerror); } /* * Return the root of a filesystem. */ static int ext2_root(struct mount *mp, int flags, struct vnode **vpp) { struct vnode *nvp; int error; error = VFS_VGET(mp, EXT2_ROOTINO, LK_EXCLUSIVE, &nvp); if (error) return (error); *vpp = nvp; return (0); } Index: head/sys/fs/ext2fs/ext2fs.h =================================================================== --- head/sys/fs/ext2fs/ext2fs.h (revision 344750) +++ head/sys/fs/ext2fs/ext2fs.h (revision 344751) @@ -1,424 +1,425 @@ /*- * modified for EXT2FS support in Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science * * $FreeBSD$ */ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Aditya Sarawgi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * */ #ifndef _FS_EXT2FS_EXT2FS_H_ #define _FS_EXT2FS_EXT2FS_H_ #include /* * Super block for an ext2fs file system. */ struct ext2fs { uint32_t e2fs_icount; /* Inode count */ uint32_t e2fs_bcount; /* blocks count */ uint32_t e2fs_rbcount; /* reserved blocks count */ uint32_t e2fs_fbcount; /* free blocks count */ uint32_t e2fs_ficount; /* free inodes count */ uint32_t e2fs_first_dblock; /* first data block */ uint32_t e2fs_log_bsize; /* block size = 1024*(2^e2fs_log_bsize) */ uint32_t e2fs_log_fsize; /* fragment size */ uint32_t e2fs_bpg; /* blocks per group */ uint32_t e2fs_fpg; /* frags per group */ uint32_t e2fs_ipg; /* inodes per group */ uint32_t e2fs_mtime; /* mount time */ uint32_t e2fs_wtime; /* write time */ uint16_t e2fs_mnt_count; /* mount count */ uint16_t e2fs_max_mnt_count; /* max mount count */ uint16_t e2fs_magic; /* magic number */ uint16_t e2fs_state; /* file system state */ uint16_t e2fs_beh; /* behavior on errors */ uint16_t e2fs_minrev; /* minor revision level */ uint32_t e2fs_lastfsck; /* time of last fsck */ uint32_t e2fs_fsckintv; /* max time between fscks */ uint32_t e2fs_creator; /* creator OS */ uint32_t e2fs_rev; /* revision level */ uint16_t e2fs_ruid; /* default uid for reserved blocks */ uint16_t e2fs_rgid; /* default gid for reserved blocks */ /* EXT2_DYNAMIC_REV superblocks */ uint32_t e2fs_first_ino; /* first non-reserved inode */ uint16_t e2fs_inode_size; /* size of inode structure */ uint16_t e2fs_block_group_nr; /* block grp number of this sblk*/ uint32_t e2fs_features_compat; /* compatible feature set */ uint32_t e2fs_features_incompat; /* incompatible feature set */ uint32_t e2fs_features_rocompat; /* RO-compatible feature set */ uint8_t e2fs_uuid[16]; /* 128-bit uuid for volume */ char e2fs_vname[16]; /* volume name */ char e2fs_fsmnt[64]; /* name mounted on */ uint32_t e2fs_algo; /* For compression */ uint8_t e2fs_prealloc; /* # of blocks for old prealloc */ uint8_t e2fs_dir_prealloc; /* # of blocks for old prealloc dirs */ uint16_t e2fs_reserved_ngdb; /* # of reserved gd blocks for resize */ char e3fs_journal_uuid[16]; /* uuid of journal superblock */ uint32_t e3fs_journal_inum; /* inode number of journal file */ uint32_t e3fs_journal_dev; /* device number of journal file */ uint32_t e3fs_last_orphan; /* start of list of inodes to delete */ uint32_t e3fs_hash_seed[4]; /* HTREE hash seed */ char e3fs_def_hash_version;/* Default hash version to use */ char e3fs_jnl_backup_type; uint16_t e3fs_desc_size; /* size of group descriptor */ uint32_t e3fs_default_mount_opts; uint32_t e3fs_first_meta_bg; /* First metablock block group */ uint32_t e3fs_mkfs_time; /* when the fs was created */ uint32_t e3fs_jnl_blks[17]; /* backup of the journal inode */ uint32_t e4fs_bcount_hi; /* high bits of blocks count */ uint32_t e4fs_rbcount_hi; /* high bits of reserved blocks count */ uint32_t e4fs_fbcount_hi; /* high bits of free blocks count */ uint16_t e4fs_min_extra_isize; /* all inodes have some bytes */ uint16_t e4fs_want_extra_isize;/* inodes must reserve some bytes */ uint32_t e4fs_flags; /* miscellaneous flags */ uint16_t e4fs_raid_stride; /* RAID stride */ uint16_t e4fs_mmpintv; /* seconds to wait in MMP checking */ uint64_t e4fs_mmpblk; /* block for multi-mount protection */ uint32_t e4fs_raid_stripe_wid; /* blocks on data disks (N * stride) */ uint8_t e4fs_log_gpf; /* FLEX_BG group size */ uint8_t e4fs_chksum_type; /* metadata checksum algorithm used */ uint8_t e4fs_encrypt; /* versioning level for encryption */ uint8_t e4fs_reserved_pad; uint64_t e4fs_kbytes_written; /* number of lifetime kilobytes */ uint32_t e4fs_snapinum; /* inode number of active snapshot */ uint32_t e4fs_snapid; /* sequential ID of active snapshot */ uint64_t e4fs_snaprbcount; /* reserved blocks for active snapshot */ uint32_t e4fs_snaplist; /* inode number for on-disk snapshot */ uint32_t e4fs_errcount; /* number of file system errors */ uint32_t e4fs_first_errtime; /* first time an error happened */ uint32_t e4fs_first_errino; /* inode involved in first error */ uint64_t e4fs_first_errblk; /* block involved of first error */ uint8_t e4fs_first_errfunc[32];/* function where error happened */ uint32_t e4fs_first_errline; /* line number where error happened */ uint32_t e4fs_last_errtime; /* most recent time of an error */ uint32_t e4fs_last_errino; /* inode involved in last error */ uint32_t e4fs_last_errline; /* line number where error happened */ uint64_t e4fs_last_errblk; /* block involved of last error */ uint8_t e4fs_last_errfunc[32]; /* function where error happened */ uint8_t e4fs_mount_opts[64]; uint32_t e4fs_usrquota_inum; /* inode for tracking user quota */ uint32_t e4fs_grpquota_inum; /* inode for tracking group quota */ uint32_t e4fs_overhead_clusters;/* overhead blocks/clusters */ uint32_t e4fs_backup_bgs[2]; /* groups with sparse_super2 SBs */ uint8_t e4fs_encrypt_algos[4];/* encryption algorithms in use */ uint8_t e4fs_encrypt_pw_salt[16];/* salt used for string2key */ uint32_t e4fs_lpf_ino; /* location of the lost+found inode */ uint32_t e4fs_proj_quota_inum; /* inode for tracking project quota */ uint32_t e4fs_chksum_seed; /* checksum seed */ uint32_t e4fs_reserved[98]; /* padding to the end of the block */ uint32_t e4fs_sbchksum; /* superblock checksum */ }; /* * The path name on which the file system is mounted is maintained * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in * the super block for this name. */ #define MAXMNTLEN 512 /* * In-Memory Superblock */ struct m_ext2fs { struct ext2fs * e2fs; char e2fs_fsmnt[MAXMNTLEN];/* name mounted on */ char e2fs_ronly; /* mounted read-only flag */ char e2fs_fmod; /* super block modified flag */ uint64_t e2fs_bcount; /* blocks count */ uint64_t e2fs_rbcount; /* reserved blocks count */ uint64_t e2fs_fbcount; /* free blocks count */ uint32_t e2fs_bsize; /* Block size */ uint32_t e2fs_bshift; /* calc of logical block no */ uint32_t e2fs_bpg; /* Number of blocks per group */ int64_t e2fs_qbmask; /* = s_blocksize -1 */ uint32_t e2fs_fsbtodb; /* Shift to get disk block */ uint32_t e2fs_ipg; /* Number of inodes per group */ uint32_t e2fs_ipb; /* Number of inodes per block */ uint32_t e2fs_itpg; /* Number of inode table per group */ uint32_t e2fs_fsize; /* Size of fragments per block */ uint32_t e2fs_fpb; /* Number of fragments per block */ uint32_t e2fs_fpg; /* Number of fragments per group */ uint32_t e2fs_gdbcount; /* Number of group descriptors */ uint32_t e2fs_gcount; /* Number of groups */ uint32_t e2fs_isize; /* Size of inode */ uint32_t e2fs_total_dir; /* Total number of directories */ uint8_t *e2fs_contigdirs; /* (u) # of contig. allocated dirs */ char e2fs_wasvalid; /* valid at mount time */ off_t e2fs_maxfilesize; struct ext2_gd *e2fs_gd; /* Group Descriptors */ int32_t e2fs_contigsumsize; /* size of cluster summary array */ int32_t *e2fs_maxcluster; /* max cluster in each cyl group */ struct csum *e2fs_clustersum; /* cluster summary in each cyl group */ int32_t e2fs_uhash; /* 3 if hash should be signed, 0 if not */ uint32_t e2fs_csum_seed; /* sb checksum seed */ }; /* cluster summary information */ struct csum { int8_t cs_init; /* cluster summary has been initialized */ int32_t *cs_sum; /* cluster summary array */ }; /* * The second extended file system magic number */ #define E2FS_MAGIC 0xEF53 /* * Revision levels */ #define E2FS_REV0 0 /* The good old (original) format */ #define E2FS_REV1 1 /* V2 format w/ dynamic inode sizes */ #define E2FS_REV0_INODE_SIZE 128 /* * Metadata checksum algorithm codes */ #define EXT4_CRC32C_CHKSUM 1 /* * compatible/incompatible features */ #define EXT2F_COMPAT_PREALLOC 0x0001 #define EXT2F_COMPAT_IMAGIC_INODES 0x0002 #define EXT2F_COMPAT_HASJOURNAL 0x0004 #define EXT2F_COMPAT_EXT_ATTR 0x0008 #define EXT2F_COMPAT_RESIZE 0x0010 #define EXT2F_COMPAT_DIRHASHINDEX 0x0020 #define EXT2F_COMPAT_LAZY_BG 0x0040 #define EXT2F_COMPAT_EXCLUDE_BITMAP 0x0100 #define EXT2F_COMPAT_SPARSESUPER2 0x0200 #define EXT2F_ROCOMPAT_SPARSESUPER 0x0001 #define EXT2F_ROCOMPAT_LARGEFILE 0x0002 #define EXT2F_ROCOMPAT_BTREE_DIR 0x0004 #define EXT2F_ROCOMPAT_HUGE_FILE 0x0008 #define EXT2F_ROCOMPAT_GDT_CSUM 0x0010 #define EXT2F_ROCOMPAT_DIR_NLINK 0x0020 #define EXT2F_ROCOMPAT_EXTRA_ISIZE 0x0040 #define EXT2F_ROCOMPAT_HAS_SNAPSHOT 0x0080 #define EXT2F_ROCOMPAT_QUOTA 0x0100 #define EXT2F_ROCOMPAT_BIGALLOC 0x0200 #define EXT2F_ROCOMPAT_METADATA_CKSUM 0x0400 #define EXT2F_ROCOMPAT_REPLICA 0x0800 #define EXT2F_ROCOMPAT_READONLY 0x1000 #define EXT2F_ROCOMPAT_PROJECT 0x2000 #define EXT2F_INCOMPAT_COMP 0x0001 #define EXT2F_INCOMPAT_FTYPE 0x0002 #define EXT2F_INCOMPAT_RECOVER 0x0004 #define EXT2F_INCOMPAT_JOURNAL_DEV 0x0008 #define EXT2F_INCOMPAT_META_BG 0x0010 #define EXT2F_INCOMPAT_EXTENTS 0x0040 #define EXT2F_INCOMPAT_64BIT 0x0080 #define EXT2F_INCOMPAT_MMP 0x0100 #define EXT2F_INCOMPAT_FLEX_BG 0x0200 #define EXT2F_INCOMPAT_EA_INODE 0x0400 #define EXT2F_INCOMPAT_DIRDATA 0x1000 #define EXT2F_INCOMPAT_CSUM_SEED 0x2000 #define EXT2F_INCOMPAT_LARGEDIR 0x4000 #define EXT2F_INCOMPAT_INLINE_DATA 0x8000 #define EXT2F_INCOMPAT_ENCRYPT 0x10000 struct ext2_feature { int mask; const char *name; }; static const struct ext2_feature compat[] = { { EXT2F_COMPAT_PREALLOC, "dir_prealloc" }, { EXT2F_COMPAT_IMAGIC_INODES, "imagic_inodes" }, { EXT2F_COMPAT_HASJOURNAL, "has_journal" }, { EXT2F_COMPAT_EXT_ATTR, "ext_attr" }, { EXT2F_COMPAT_RESIZE, "resize_inode" }, { EXT2F_COMPAT_DIRHASHINDEX, "dir_index" }, { EXT2F_COMPAT_EXCLUDE_BITMAP, "snapshot_bitmap" }, { EXT2F_COMPAT_SPARSESUPER2, "sparse_super2" } }; static const struct ext2_feature ro_compat[] = { { EXT2F_ROCOMPAT_SPARSESUPER, "sparse_super" }, { EXT2F_ROCOMPAT_LARGEFILE, "large_file" }, { EXT2F_ROCOMPAT_BTREE_DIR, "btree_dir" }, { EXT2F_ROCOMPAT_HUGE_FILE, "huge_file" }, { EXT2F_ROCOMPAT_GDT_CSUM, "uninit_groups" }, { EXT2F_ROCOMPAT_DIR_NLINK, "dir_nlink" }, { EXT2F_ROCOMPAT_EXTRA_ISIZE, "extra_isize" }, { EXT2F_ROCOMPAT_HAS_SNAPSHOT, "snapshot" }, { EXT2F_ROCOMPAT_QUOTA, "quota" }, { EXT2F_ROCOMPAT_BIGALLOC, "bigalloc" }, { EXT2F_ROCOMPAT_METADATA_CKSUM, "metadata_csum" }, { EXT2F_ROCOMPAT_REPLICA, "replica" }, { EXT2F_ROCOMPAT_READONLY, "ro" }, { EXT2F_ROCOMPAT_PROJECT, "project" } }; static const struct ext2_feature incompat[] = { { EXT2F_INCOMPAT_COMP, "compression" }, { EXT2F_INCOMPAT_FTYPE, "filetype" }, { EXT2F_INCOMPAT_RECOVER, "needs_recovery" }, { EXT2F_INCOMPAT_JOURNAL_DEV, "journal_dev" }, { EXT2F_INCOMPAT_META_BG, "meta_bg" }, { EXT2F_INCOMPAT_EXTENTS, "extents" }, { EXT2F_INCOMPAT_64BIT, "64bit" }, { EXT2F_INCOMPAT_MMP, "mmp" }, { EXT2F_INCOMPAT_FLEX_BG, "flex_bg" }, { EXT2F_INCOMPAT_EA_INODE, "ea_inode" }, { EXT2F_INCOMPAT_DIRDATA, "dirdata" }, { EXT2F_INCOMPAT_CSUM_SEED, "metadata_csum_seed" }, { EXT2F_INCOMPAT_LARGEDIR, "large_dir" }, { EXT2F_INCOMPAT_INLINE_DATA, "inline_data" }, { EXT2F_INCOMPAT_ENCRYPT, "encrypt" } }; /* * Features supported in this implementation * * We support the following REV1 features: * - EXT2F_ROCOMPAT_SPARSESUPER * - EXT2F_ROCOMPAT_LARGEFILE * - EXT2F_ROCOMPAT_EXTRA_ISIZE * - EXT2F_INCOMPAT_FTYPE * * We partially (read-only) support the following EXT4 features: * - EXT2F_ROCOMPAT_HUGE_FILE * - EXT2F_INCOMPAT_EXTENTS * */ #define EXT2F_COMPAT_SUPP EXT2F_COMPAT_DIRHASHINDEX #define EXT2F_ROCOMPAT_SUPP (EXT2F_ROCOMPAT_SPARSESUPER | \ EXT2F_ROCOMPAT_LARGEFILE | \ EXT2F_ROCOMPAT_GDT_CSUM | \ EXT2F_ROCOMPAT_METADATA_CKSUM | \ EXT2F_ROCOMPAT_DIR_NLINK | \ EXT2F_ROCOMPAT_HUGE_FILE | \ EXT2F_ROCOMPAT_EXTRA_ISIZE) #define EXT2F_INCOMPAT_SUPP (EXT2F_INCOMPAT_FTYPE | \ EXT2F_INCOMPAT_META_BG | \ EXT2F_INCOMPAT_EXTENTS | \ EXT2F_INCOMPAT_64BIT | \ EXT2F_INCOMPAT_FLEX_BG | \ EXT2F_INCOMPAT_CSUM_SEED) /* Assume that user mode programs are passing in an ext2fs superblock, not * a kernel struct super_block. This will allow us to call the feature-test * macros from user land. */ #define EXT2_SB(sb) (sb) /* * Feature set definitions */ #define EXT2_HAS_COMPAT_FEATURE(sb,mask) \ ( EXT2_SB(sb)->e2fs->e2fs_features_compat & htole32(mask) ) #define EXT2_HAS_RO_COMPAT_FEATURE(sb,mask) \ ( EXT2_SB(sb)->e2fs->e2fs_features_rocompat & htole32(mask) ) #define EXT2_HAS_INCOMPAT_FEATURE(sb,mask) \ ( EXT2_SB(sb)->e2fs->e2fs_features_incompat & htole32(mask) ) /* * File clean flags */ #define E2FS_ISCLEAN 0x0001 /* Unmounted cleanly */ #define E2FS_ERRORS 0x0002 /* Errors detected */ /* * Filesystem miscellaneous flags */ #define E2FS_SIGNED_HASH 0x0001 #define E2FS_UNSIGNED_HASH 0x0002 #define EXT2_BG_INODE_UNINIT 0x0001 /* Inode table/bitmap not in use */ #define EXT2_BG_BLOCK_UNINIT 0x0002 /* Block bitmap not in use */ #define EXT2_BG_INODE_ZEROED 0x0004 /* On-disk itable initialized to zero */ /* ext2 file system block group descriptor */ struct ext2_gd { uint32_t ext2bgd_b_bitmap; /* blocks bitmap block */ uint32_t ext2bgd_i_bitmap; /* inodes bitmap block */ uint32_t ext2bgd_i_tables; /* inodes table block */ uint16_t ext2bgd_nbfree; /* number of free blocks */ uint16_t ext2bgd_nifree; /* number of free inodes */ uint16_t ext2bgd_ndirs; /* number of directories */ uint16_t ext4bgd_flags; /* block group flags */ uint32_t ext4bgd_x_bitmap; /* snapshot exclusion bitmap loc. */ uint16_t ext4bgd_b_bmap_csum; /* block bitmap checksum */ uint16_t ext4bgd_i_bmap_csum; /* inode bitmap checksum */ uint16_t ext4bgd_i_unused; /* unused inode count */ uint16_t ext4bgd_csum; /* group descriptor checksum */ uint32_t ext4bgd_b_bitmap_hi; /* high bits of blocks bitmap block */ uint32_t ext4bgd_i_bitmap_hi; /* high bits of inodes bitmap block */ uint32_t ext4bgd_i_tables_hi; /* high bits of inodes table block */ uint16_t ext4bgd_nbfree_hi; /* high bits of number of free blocks */ uint16_t ext4bgd_nifree_hi; /* high bits of number of free inodes */ uint16_t ext4bgd_ndirs_hi; /* high bits of number of directories */ uint16_t ext4bgd_i_unused_hi; /* high bits of unused inode count */ uint32_t ext4bgd_x_bitmap_hi; /* high bits of snapshot exclusion */ uint16_t ext4bgd_b_bmap_csum_hi;/* high bits of block bitmap checksum */ uint16_t ext4bgd_i_bmap_csum_hi;/* high bits of inode bitmap checksum */ uint32_t ext4bgd_reserved; }; #define E2FS_REV0_GD_SIZE (sizeof(struct ext2_gd) / 2) +#define E2FS_64BIT_GD_SIZE (sizeof(struct ext2_gd)) /* * Macro-instructions used to manage several block sizes */ #define EXT2_MIN_BLOCK_LOG_SIZE 10 #define EXT2_BLOCK_SIZE(s) ((s)->e2fs_bsize) #define EXT2_ADDR_PER_BLOCK(s) (EXT2_BLOCK_SIZE(s) / sizeof(uint32_t)) #define EXT2_INODE_SIZE(s) (EXT2_SB(s)->e2fs_isize) /* * Macro-instructions used to manage fragments */ #define EXT2_MIN_FRAG_SIZE 1024 -#define EXT2_MAX_FRAG_SIZE 4096 -#define EXT2_MIN_FRAG_LOG_SIZE 10 +#define EXT2_MIN_FRAG_LOG_SIZE 10 +#define EXT2_MAX_FRAG_LOG_SIZE 30 #define EXT2_FRAG_SIZE(s) (EXT2_SB(s)->e2fs_fsize) #define EXT2_FRAGS_PER_BLOCK(s) (EXT2_SB(s)->e2fs_fpb) /* * Macro-instructions used to manage group descriptors */ #define EXT2_BLOCKS_PER_GROUP(s) (EXT2_SB(s)->e2fs_bpg) #define EXT2_DESCS_PER_BLOCK(s) (EXT2_HAS_INCOMPAT_FEATURE((s), \ EXT2F_INCOMPAT_64BIT) ? ((s)->e2fs_bsize / sizeof(struct ext2_gd)) : \ ((s)->e2fs_bsize / E2FS_REV0_GD_SIZE)) #endif /* !_FS_EXT2FS_EXT2FS_H_ */