Index: head/sys/compat/linuxkpi/common/src/linux_tasklet.c =================================================================== --- head/sys/compat/linuxkpi/common/src/linux_tasklet.c (revision 344061) +++ head/sys/compat/linuxkpi/common/src/linux_tasklet.c (revision 344062) @@ -1,217 +1,217 @@ /*- * Copyright (c) 2017 Hans Petter Selasky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #define TASKLET_ST_IDLE 0 #define TASKLET_ST_BUSY 1 #define TASKLET_ST_EXEC 2 #define TASKLET_ST_LOOP 3 #define TASKLET_ST_PAUSED 4 #define TASKLET_ST_CMPSET(ts, old, new) \ atomic_cmpset_ptr((volatile uintptr_t *)&(ts)->entry.tqe_prev, old, new) #define TASKLET_ST_SET(ts, new) \ WRITE_ONCE(*(volatile uintptr_t *)&(ts)->entry.tqe_prev, new) #define TASKLET_ST_GET(ts) \ READ_ONCE(*(volatile uintptr_t *)&(ts)->entry.tqe_prev) struct tasklet_worker { struct mtx mtx; TAILQ_HEAD(, tasklet_struct) head; struct grouptask gtask; } __aligned(CACHE_LINE_SIZE); #define TASKLET_WORKER_LOCK(tw) mtx_lock(&(tw)->mtx) #define TASKLET_WORKER_UNLOCK(tw) mtx_unlock(&(tw)->mtx) DPCPU_DEFINE_STATIC(struct tasklet_worker, tasklet_worker); static void tasklet_handler(void *arg) { struct tasklet_worker *tw = (struct tasklet_worker *)arg; struct tasklet_struct *ts; linux_set_current(curthread); TASKLET_WORKER_LOCK(tw); while (1) { ts = TAILQ_FIRST(&tw->head); if (ts == NULL) break; TAILQ_REMOVE(&tw->head, ts, entry); TASKLET_WORKER_UNLOCK(tw); do { /* reset executing state */ TASKLET_ST_SET(ts, TASKLET_ST_EXEC); ts->func(ts->data); } while (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC, TASKLET_ST_IDLE) == 0); TASKLET_WORKER_LOCK(tw); } TASKLET_WORKER_UNLOCK(tw); } static void tasklet_subsystem_init(void *arg __unused) { struct tasklet_worker *tw; char buf[32]; int i; CPU_FOREACH(i) { if (CPU_ABSENT(i)) continue; tw = DPCPU_ID_PTR(i, tasklet_worker); mtx_init(&tw->mtx, "linux_tasklet", NULL, MTX_DEF); TAILQ_INIT(&tw->head); GROUPTASK_INIT(&tw->gtask, 0, tasklet_handler, tw); snprintf(buf, sizeof(buf), "softirq%d", i); taskqgroup_attach_cpu(qgroup_softirq, &tw->gtask, - "tasklet", i, -1, buf); + "tasklet", i, NULL, NULL, buf); } } SYSINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_init, NULL); static void tasklet_subsystem_uninit(void *arg __unused) { struct tasklet_worker *tw; int i; CPU_FOREACH(i) { if (CPU_ABSENT(i)) continue; tw = DPCPU_ID_PTR(i, tasklet_worker); taskqgroup_detach(qgroup_softirq, &tw->gtask); mtx_destroy(&tw->mtx); } } SYSUNINIT(linux_tasklet, SI_SUB_TASKQ, SI_ORDER_THIRD, tasklet_subsystem_uninit, NULL); void tasklet_init(struct tasklet_struct *ts, tasklet_func_t *func, unsigned long data) { ts->entry.tqe_prev = NULL; ts->entry.tqe_next = NULL; ts->func = func; ts->data = data; } void local_bh_enable(void) { sched_unpin(); } void local_bh_disable(void) { sched_pin(); } void tasklet_schedule(struct tasklet_struct *ts) { if (TASKLET_ST_CMPSET(ts, TASKLET_ST_EXEC, TASKLET_ST_LOOP)) { /* tasklet_handler() will loop */ } else if (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_BUSY)) { struct tasklet_worker *tw; tw = &DPCPU_GET(tasklet_worker); /* tasklet_handler() was not queued */ TASKLET_WORKER_LOCK(tw); /* enqueue tasklet */ TAILQ_INSERT_TAIL(&tw->head, ts, entry); /* schedule worker */ GROUPTASK_ENQUEUE(&tw->gtask); TASKLET_WORKER_UNLOCK(tw); } else { /* * tasklet_handler() is already executing * * If the state is neither EXEC nor IDLE, it is either * LOOP or BUSY. If the state changed between the two * CMPSET's above the only possible transitions by * elimination are LOOP->EXEC and BUSY->EXEC. If a * EXEC->LOOP transition was missed that is not a * problem because the callback function is then * already about to be called again. */ } } void tasklet_kill(struct tasklet_struct *ts) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "tasklet_kill() can sleep"); /* wait until tasklet is no longer busy */ while (TASKLET_ST_GET(ts) != TASKLET_ST_IDLE) pause("W", 1); } void tasklet_enable(struct tasklet_struct *ts) { (void) TASKLET_ST_CMPSET(ts, TASKLET_ST_PAUSED, TASKLET_ST_IDLE); } void tasklet_disable(struct tasklet_struct *ts) { while (1) { if (TASKLET_ST_GET(ts) == TASKLET_ST_PAUSED) break; if (TASKLET_ST_CMPSET(ts, TASKLET_ST_IDLE, TASKLET_ST_PAUSED)) break; pause("W", 1); } } Index: head/sys/kern/subr_epoch.c =================================================================== --- head/sys/kern/subr_epoch.c (revision 344061) +++ head/sys/kern/subr_epoch.c (revision 344062) @@ -1,672 +1,672 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018, Matthew Macy * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation"); #ifdef __amd64__ #define EPOCH_ALIGN CACHE_LINE_SIZE*2 #else #define EPOCH_ALIGN CACHE_LINE_SIZE #endif TAILQ_HEAD (epoch_tdlist, epoch_tracker); typedef struct epoch_record { ck_epoch_record_t er_record; volatile struct epoch_tdlist er_tdlist; volatile uint32_t er_gen; uint32_t er_cpuid; } __aligned(EPOCH_ALIGN) *epoch_record_t; struct epoch { struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); epoch_record_t e_pcpu_record; int e_idx; int e_flags; }; /* arbitrary --- needs benchmarking */ #define MAX_ADAPTIVE_SPIN 100 #define MAX_EPOCHS 64 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context)); SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information"); SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats"); /* Stats. */ static counter_u64_t block_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, &block_count, "# of times a thread was in an epoch when epoch_wait was called"); static counter_u64_t migrate_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); static counter_u64_t turnstile_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); static counter_u64_t switch_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); static counter_u64_t epoch_call_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW, &epoch_call_count, "# of times a callback was deferred"); static counter_u64_t epoch_call_task_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW, &epoch_call_task_count, "# of times a callback task was run"); TAILQ_HEAD (threadlist, thread); CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, ck_epoch_entry_container) epoch_t allepochs[MAX_EPOCHS]; DPCPU_DEFINE(struct grouptask, epoch_cb_task); DPCPU_DEFINE(int, epoch_cb_count); static __read_mostly int inited; static __read_mostly int epoch_count; __read_mostly epoch_t global_epoch; __read_mostly epoch_t global_epoch_preempt; static void epoch_call_task(void *context __unused); static uma_zone_t pcpu_zone_record; static void epoch_init(void *arg __unused) { int cpu; block_count = counter_u64_alloc(M_WAITOK); migrate_count = counter_u64_alloc(M_WAITOK); turnstile_count = counter_u64_alloc(M_WAITOK); switch_count = counter_u64_alloc(M_WAITOK); epoch_call_count = counter_u64_alloc(M_WAITOK); epoch_call_task_count = counter_u64_alloc(M_WAITOK); pcpu_zone_record = uma_zcreate("epoch_record pcpu", sizeof(struct epoch_record), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); CPU_FOREACH(cpu) { GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL); taskqgroup_attach_cpu(qgroup_softirq, - DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, + DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL, "epoch call task"); } inited = 1; global_epoch = epoch_alloc(0); global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT); } SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL); #if !defined(EARLY_AP_STARTUP) static void epoch_init_smp(void *dummy __unused) { inited = 2; } SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL); #endif static void epoch_ctor(epoch_t epoch) { epoch_record_t er; int cpu; epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK); CPU_FOREACH(cpu) { er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); bzero(er, sizeof(*er)); ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); er->er_cpuid = cpu; } } static void epoch_adjust_prio(struct thread *td, u_char prio) { thread_lock(td); sched_prio(td, prio); thread_unlock(td); } epoch_t epoch_alloc(int flags) { epoch_t epoch; if (__predict_false(!inited)) panic("%s called too early in boot", __func__); epoch = malloc(sizeof(struct epoch), M_EPOCH, M_ZERO | M_WAITOK); ck_epoch_init(&epoch->e_epoch); epoch_ctor(epoch); MPASS(epoch_count < MAX_EPOCHS - 2); epoch->e_flags = flags; epoch->e_idx = epoch_count; allepochs[epoch_count++] = epoch; return (epoch); } void epoch_free(epoch_t epoch) { #ifdef INVARIANTS struct epoch_record *er; int cpu; CPU_FOREACH(cpu) { er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); MPASS(TAILQ_EMPTY(&er->er_tdlist)); } #endif allepochs[epoch->e_idx] = NULL; epoch_wait(global_epoch); uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record); free(epoch, M_EPOCH); } static epoch_record_t epoch_currecord(epoch_t epoch) { return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu)); } #define INIT_CHECK(epoch) \ do { \ if (__predict_false((epoch) == NULL)) \ return; \ } while (0) void epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et) { struct epoch_record *er; struct thread *td; MPASS(cold || epoch != NULL); INIT_CHECK(epoch); MPASS(epoch->e_flags & EPOCH_PREEMPT); #ifdef EPOCH_TRACKER_DEBUG et->et_magic_pre = EPOCH_MAGIC0; et->et_magic_post = EPOCH_MAGIC1; #endif td = curthread; et->et_td = td; td->td_epochnest++; critical_enter(); sched_pin(); td->td_pre_epoch_prio = td->td_priority; er = epoch_currecord(epoch); TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link); ck_epoch_begin(&er->er_record, &et->et_section); critical_exit(); } void epoch_enter(epoch_t epoch) { struct thread *td; epoch_record_t er; MPASS(cold || epoch != NULL); INIT_CHECK(epoch); td = curthread; td->td_epochnest++; critical_enter(); er = epoch_currecord(epoch); ck_epoch_begin(&er->er_record, NULL); } void epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et) { struct epoch_record *er; struct thread *td; INIT_CHECK(epoch); td = curthread; critical_enter(); sched_unpin(); MPASS(td->td_epochnest); td->td_epochnest--; er = epoch_currecord(epoch); MPASS(epoch->e_flags & EPOCH_PREEMPT); MPASS(et != NULL); MPASS(et->et_td == td); #ifdef EPOCH_TRACKER_DEBUG MPASS(et->et_magic_pre == EPOCH_MAGIC0); MPASS(et->et_magic_post == EPOCH_MAGIC1); et->et_magic_pre = 0; et->et_magic_post = 0; #endif #ifdef INVARIANTS et->et_td = (void*)0xDEADBEEF; #endif ck_epoch_end(&er->er_record, &et->et_section); TAILQ_REMOVE(&er->er_tdlist, et, et_link); er->er_gen++; if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) epoch_adjust_prio(td, td->td_pre_epoch_prio); critical_exit(); } void epoch_exit(epoch_t epoch) { struct thread *td; epoch_record_t er; INIT_CHECK(epoch); td = curthread; MPASS(td->td_epochnest); td->td_epochnest--; er = epoch_currecord(epoch); ck_epoch_end(&er->er_record, NULL); critical_exit(); } /* * epoch_block_handler_preempt() is a callback from the CK code when another * thread is currently in an epoch section. */ static void epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr, void *arg __unused) { epoch_record_t record; struct thread *td, *owner, *curwaittd; struct epoch_tracker *tdwait; struct turnstile *ts; struct lock_object *lock; int spincount, gen; int locksheld __unused; record = __containerof(cr, struct epoch_record, er_record); td = curthread; locksheld = td->td_locks; spincount = 0; counter_u64_add(block_count, 1); /* * We lost a race and there's no longer any threads * on the CPU in an epoch section. */ if (TAILQ_EMPTY(&record->er_tdlist)) return; if (record->er_cpuid != curcpu) { /* * If the head of the list is running, we can wait for it * to remove itself from the list and thus save us the * overhead of a migration */ gen = record->er_gen; thread_unlock(td); /* * We can't actually check if the waiting thread is running * so we simply poll for it to exit before giving up and * migrating. */ do { cpu_spinwait(); } while (!TAILQ_EMPTY(&record->er_tdlist) && gen == record->er_gen && spincount++ < MAX_ADAPTIVE_SPIN); thread_lock(td); /* * If the generation has changed we can poll again * otherwise we need to migrate. */ if (gen != record->er_gen) return; /* * Being on the same CPU as that of the record on which * we need to wait allows us access to the thread * list associated with that CPU. We can then examine the * oldest thread in the queue and wait on its turnstile * until it resumes and so on until a grace period * elapses. * */ counter_u64_add(migrate_count, 1); sched_bind(td, record->er_cpuid); /* * At this point we need to return to the ck code * to scan to see if a grace period has elapsed. * We can't move on to check the thread list, because * in the meantime new threads may have arrived that * in fact belong to a different epoch. */ return; } /* * Try to find a thread in an epoch section on this CPU * waiting on a turnstile. Otherwise find the lowest * priority thread (highest prio value) and drop our priority * to match to allow it to run. */ TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) { /* * Propagate our priority to any other waiters to prevent us * from starving them. They will have their original priority * restore on exit from epoch_wait(). */ curwaittd = tdwait->et_td; if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) { critical_enter(); thread_unlock(td); thread_lock(curwaittd); sched_prio(curwaittd, td->td_priority); thread_unlock(curwaittd); thread_lock(td); critical_exit(); } if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) && ((ts = curwaittd->td_blocked) != NULL)) { /* * We unlock td to allow turnstile_wait to reacquire * the thread lock. Before unlocking it we enter a * critical section to prevent preemption after we * reenable interrupts by dropping the thread lock in * order to prevent curwaittd from getting to run. */ critical_enter(); thread_unlock(td); owner = turnstile_lock(ts, &lock); /* * The owner pointer indicates that the lock succeeded. * Only in case we hold the lock and the turnstile we * locked is still the one that curwaittd is blocked on * can we continue. Otherwise the turnstile pointer has * been changed out from underneath us, as in the case * where the lock holder has signalled curwaittd, * and we need to continue. */ if (owner != NULL && ts == curwaittd->td_blocked) { MPASS(TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd)); critical_exit(); turnstile_wait(ts, owner, curwaittd->td_tsqueue); counter_u64_add(turnstile_count, 1); thread_lock(td); return; } else if (owner != NULL) turnstile_unlock(ts, lock); thread_lock(td); critical_exit(); KASSERT(td->td_locks == locksheld, ("%d extra locks held", td->td_locks - locksheld)); } } /* * We didn't find any threads actually blocked on a lock * so we have nothing to do except context switch away. */ counter_u64_add(switch_count, 1); mi_switch(SW_VOL | SWT_RELINQUISH, NULL); /* * Release the thread lock while yielding to * allow other threads to acquire the lock * pointed to by TDQ_LOCKPTR(td). Else a * deadlock like situation might happen. (HPS) */ thread_unlock(td); thread_lock(td); } void epoch_wait_preempt(epoch_t epoch) { struct thread *td; int was_bound; int old_cpu; int old_pinned; u_char old_prio; int locks __unused; MPASS(cold || epoch != NULL); INIT_CHECK(epoch); td = curthread; #ifdef INVARIANTS locks = curthread->td_locks; MPASS(epoch->e_flags & EPOCH_PREEMPT); if ((epoch->e_flags & EPOCH_LOCKED) == 0) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "epoch_wait() can be long running"); KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle " "of an epoch section of the same epoch")); #endif thread_lock(td); DROP_GIANT(); old_cpu = PCPU_GET(cpuid); old_pinned = td->td_pinned; old_prio = td->td_priority; was_bound = sched_is_bound(td); sched_unbind(td); td->td_pinned = 0; sched_bind(td, old_cpu); ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL); /* restore CPU binding, if any */ if (was_bound != 0) { sched_bind(td, old_cpu); } else { /* get thread back to initial CPU, if any */ if (old_pinned != 0) sched_bind(td, old_cpu); sched_unbind(td); } /* restore pinned after bind */ td->td_pinned = old_pinned; /* restore thread priority */ sched_prio(td, old_prio); thread_unlock(td); PICKUP_GIANT(); KASSERT(td->td_locks == locks, ("%d residual locks held", td->td_locks - locks)); } static void epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, void *arg __unused) { cpu_spinwait(); } void epoch_wait(epoch_t epoch) { MPASS(cold || epoch != NULL); INIT_CHECK(epoch); MPASS(epoch->e_flags == 0); critical_enter(); ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); critical_exit(); } void epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t)) { epoch_record_t er; ck_epoch_entry_t *cb; cb = (void *)ctx; MPASS(callback); /* too early in boot to have epoch set up */ if (__predict_false(epoch == NULL)) goto boottime; #if !defined(EARLY_AP_STARTUP) if (__predict_false(inited < 2)) goto boottime; #endif critical_enter(); *DPCPU_PTR(epoch_cb_count) += 1; er = epoch_currecord(epoch); ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback); critical_exit(); return; boottime: callback(ctx); } static void epoch_call_task(void *arg __unused) { ck_stack_entry_t *cursor, *head, *next; ck_epoch_record_t *record; epoch_record_t er; epoch_t epoch; ck_stack_t cb_stack; int i, npending, total; ck_stack_init(&cb_stack); critical_enter(); epoch_enter(global_epoch); for (total = i = 0; i < epoch_count; i++) { if (__predict_false((epoch = allepochs[i]) == NULL)) continue; er = epoch_currecord(epoch); record = &er->er_record; if ((npending = record->n_pending) == 0) continue; ck_epoch_poll_deferred(record, &cb_stack); total += npending - record->n_pending; } epoch_exit(global_epoch); *DPCPU_PTR(epoch_cb_count) -= total; critical_exit(); counter_u64_add(epoch_call_count, total); counter_u64_add(epoch_call_task_count, 1); head = ck_stack_batch_pop_npsc(&cb_stack); for (cursor = head; cursor != NULL; cursor = next) { struct ck_epoch_entry *entry = ck_epoch_entry_container(cursor); next = CK_STACK_NEXT(cursor); entry->function(entry); } } int in_epoch_verbose(epoch_t epoch, int dump_onfail) { struct epoch_tracker *tdwait; struct thread *td; epoch_record_t er; td = curthread; if (td->td_epochnest == 0) return (0); if (__predict_false((epoch) == NULL)) return (0); critical_enter(); er = epoch_currecord(epoch); TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) if (tdwait->et_td == td) { critical_exit(); return (1); } #ifdef INVARIANTS if (dump_onfail) { MPASS(td->td_pinned); printf("cpu: %d id: %d\n", curcpu, td->td_tid); TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) printf("td_tid: %d ", tdwait->et_td->td_tid); printf("\n"); } #endif critical_exit(); return (0); } int in_epoch(epoch_t epoch) { return (in_epoch_verbose(epoch, 0)); } void epoch_thread_init(struct thread *td) { td->td_et = malloc(sizeof(struct epoch_tracker), M_EPOCH, M_WAITOK); } void epoch_thread_fini(struct thread *td) { free(td->td_et, M_EPOCH); } Index: head/sys/kern/subr_gtaskqueue.c =================================================================== --- head/sys/kern/subr_gtaskqueue.c (revision 344061) +++ head/sys/kern/subr_gtaskqueue.c (revision 344062) @@ -1,1065 +1,1060 @@ /*- * Copyright (c) 2000 Doug Rabson * Copyright (c) 2014 Jeff Roberson * Copyright (c) 2016 Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); static void gtaskqueue_thread_enqueue(void *); static void gtaskqueue_thread_loop(void *arg); static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); TASKQGROUP_DEFINE(config, 1, 1); struct gtaskqueue_busy { struct gtask *tb_running; TAILQ_ENTRY(gtaskqueue_busy) tb_link; }; static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1; +typedef void (*gtaskqueue_enqueue_fn)(void *context); + struct gtaskqueue { STAILQ_HEAD(, gtask) tq_queue; gtaskqueue_enqueue_fn tq_enqueue; void *tq_context; char *tq_name; TAILQ_HEAD(, gtaskqueue_busy) tq_active; struct mtx tq_mutex; struct thread **tq_threads; int tq_tcount; int tq_spin; int tq_flags; int tq_callouts; taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; }; #define TQ_FLAGS_ACTIVE (1 << 0) #define TQ_FLAGS_BLOCKED (1 << 1) #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) #define DT_CALLOUT_ARMED (1 << 0) #define TQ_LOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_lock_spin(&(tq)->tq_mutex); \ else \ mtx_lock(&(tq)->tq_mutex); \ } while (0) #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) #define TQ_UNLOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_unlock_spin(&(tq)->tq_mutex); \ else \ mtx_unlock(&(tq)->tq_mutex); \ } while (0) #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) #ifdef INVARIANTS static void gtask_dump(struct gtask *gtask) { printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); } #endif static __inline int TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, int t) { if (tq->tq_spin) return (msleep_spin(p, m, wm, t)); return (msleep(p, m, pri, wm, t)); } static struct gtaskqueue * _gtaskqueue_create(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context, int mtxflags, const char *mtxname __unused) { struct gtaskqueue *queue; char *tq_name; tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); if (!tq_name) return (NULL); snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); if (!queue) { free(tq_name, M_GTASKQUEUE); return (NULL); } STAILQ_INIT(&queue->tq_queue); TAILQ_INIT(&queue->tq_active); queue->tq_enqueue = enqueue; queue->tq_context = context; queue->tq_name = tq_name; queue->tq_spin = (mtxflags & MTX_SPIN) != 0; queue->tq_flags |= TQ_FLAGS_ACTIVE; if (enqueue == gtaskqueue_thread_enqueue) queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); return (queue); } /* * Signal a taskqueue thread to terminate. */ static void gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) { while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { wakeup(tq); TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); } } static void gtaskqueue_free(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_ACTIVE; gtaskqueue_terminate(queue->tq_threads, queue); KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); mtx_destroy(&queue->tq_mutex); free(queue->tq_threads, M_GTASKQUEUE); free(queue->tq_name, M_GTASKQUEUE); free(queue, M_GTASKQUEUE); } /* * Wait for all to complete, then prevent it from being enqueued */ void grouptask_block(struct grouptask *grouptask) { struct gtaskqueue *queue = grouptask->gt_taskqueue; struct gtask *gtask = &grouptask->gt_task; #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); gtask->ta_flags |= TASK_NOENQUEUE; gtaskqueue_drain_locked(queue, gtask); TQ_UNLOCK(queue); } void grouptask_unblock(struct grouptask *grouptask) { struct gtaskqueue *queue = grouptask->gt_taskqueue; struct gtask *gtask = &grouptask->gt_task; #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); gtask->ta_flags &= ~TASK_NOENQUEUE; TQ_UNLOCK(queue); } int grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) { #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); if (gtask->ta_flags & TASK_ENQUEUED) { TQ_UNLOCK(queue); return (0); } if (gtask->ta_flags & TASK_NOENQUEUE) { TQ_UNLOCK(queue); return (EAGAIN); } STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); gtask->ta_flags |= TASK_ENQUEUED; TQ_UNLOCK(queue); if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) queue->tq_enqueue(queue->tq_context); return (0); } static void gtaskqueue_task_nop_fn(void *context) { } /* * Block until all currently queued tasks in this taskqueue * have begun execution. Tasks queued during execution of * this function are ignored. */ static void gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) { struct gtask t_barrier; if (STAILQ_EMPTY(&queue->tq_queue)) return; /* * Enqueue our barrier after all current tasks, but with * the highest priority so that newly queued tasks cannot * pass it. Because of the high priority, we can not use * taskqueue_enqueue_locked directly (which drops the lock * anyway) so just insert it at tail while we have the * queue lock. */ GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); t_barrier.ta_flags |= TASK_ENQUEUED; /* * Once the barrier has executed, all previously queued tasks * have completed or are currently executing. */ while (t_barrier.ta_flags & TASK_ENQUEUED) TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); } /* * Block until all currently executing tasks for this taskqueue * complete. Tasks that begin execution during the execution * of this function are ignored. */ static void gtaskqueue_drain_tq_active(struct gtaskqueue *queue) { struct gtaskqueue_busy tb_marker, *tb_first; if (TAILQ_EMPTY(&queue->tq_active)) return; /* Block taskq_terminate().*/ queue->tq_callouts++; /* * Wait for all currently executing taskqueue threads * to go idle. */ tb_marker.tb_running = TB_DRAIN_WAITER; TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); /* * Wakeup any other drain waiter that happened to queue up * without any intervening active thread. */ tb_first = TAILQ_FIRST(&queue->tq_active); if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) wakeup(tb_first); /* Release taskqueue_terminate(). */ queue->tq_callouts--; if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) wakeup_one(queue->tq_threads); } void gtaskqueue_block(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags |= TQ_FLAGS_BLOCKED; TQ_UNLOCK(queue); } void gtaskqueue_unblock(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_BLOCKED; if (!STAILQ_EMPTY(&queue->tq_queue)) queue->tq_enqueue(queue->tq_context); TQ_UNLOCK(queue); } static void gtaskqueue_run_locked(struct gtaskqueue *queue) { struct gtaskqueue_busy tb; struct gtaskqueue_busy *tb_first; struct gtask *gtask; KASSERT(queue != NULL, ("tq is NULL")); TQ_ASSERT_LOCKED(queue); tb.tb_running = NULL; while (STAILQ_FIRST(&queue->tq_queue)) { TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); /* * Carefully remove the first task from the queue and * clear its TASK_ENQUEUED flag */ gtask = STAILQ_FIRST(&queue->tq_queue); KASSERT(gtask != NULL, ("task is NULL")); STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); gtask->ta_flags &= ~TASK_ENQUEUED; tb.tb_running = gtask; TQ_UNLOCK(queue); KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); gtask->ta_func(gtask->ta_context); TQ_LOCK(queue); tb.tb_running = NULL; wakeup(gtask); TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); tb_first = TAILQ_FIRST(&queue->tq_active); if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) wakeup(tb_first); } } static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask) { struct gtaskqueue_busy *tb; TQ_ASSERT_LOCKED(queue); TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { if (tb->tb_running == gtask) return (1); } return (0); } static int gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) { if (gtask->ta_flags & TASK_ENQUEUED) STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); gtask->ta_flags &= ~TASK_ENQUEUED; return (task_is_running(queue, gtask) ? EBUSY : 0); } int gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) { int error; TQ_LOCK(queue); error = gtaskqueue_cancel_locked(queue, gtask); TQ_UNLOCK(queue); return (error); } static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) { while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0); } void gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) { if (!queue->tq_spin) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); TQ_LOCK(queue); gtaskqueue_drain_locked(queue, gtask); TQ_UNLOCK(queue); } void gtaskqueue_drain_all(struct gtaskqueue *queue) { if (!queue->tq_spin) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); TQ_LOCK(queue); gtaskqueue_drain_tq_queue(queue); gtaskqueue_drain_tq_active(queue); TQ_UNLOCK(queue); } static int _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, cpuset_t *mask, const char *name, va_list ap) { char ktname[MAXCOMLEN + 1]; struct thread *td; struct gtaskqueue *tq; int i, error; if (count <= 0) return (EINVAL); vsnprintf(ktname, sizeof(ktname), name, ap); tq = *tqp; tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, M_NOWAIT | M_ZERO); if (tq->tq_threads == NULL) { printf("%s: no memory for %s threads\n", __func__, ktname); return (ENOMEM); } for (i = 0; i < count; i++) { if (count == 1) error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); else error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s_%d", ktname, i); if (error) { /* should be ok to continue, taskqueue_free will dtrt */ printf("%s: kthread_add(%s): error %d", __func__, ktname, error); tq->tq_threads[i] = NULL; /* paranoid */ } else tq->tq_tcount++; } for (i = 0; i < count; i++) { if (tq->tq_threads[i] == NULL) continue; td = tq->tq_threads[i]; if (mask) { error = cpuset_setthread(td->td_tid, mask); /* * Failing to pin is rarely an actual fatal error; * it'll just affect performance. */ if (error) printf("%s: curthread=%llu: can't pin; " "error=%d\n", __func__, (unsigned long long) td->td_tid, error); } thread_lock(td); sched_prio(td, pri); sched_add(td, SRQ_BORING); thread_unlock(td); } return (0); } static int gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, const char *name, ...) { va_list ap; int error; va_start(ap, name); error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); va_end(ap); return (error); } static inline void gtaskqueue_run_callback(struct gtaskqueue *tq, enum taskqueue_callback_type cb_type) { taskqueue_callback_fn tq_callback; TQ_ASSERT_UNLOCKED(tq); tq_callback = tq->tq_callbacks[cb_type]; if (tq_callback != NULL) tq_callback(tq->tq_cb_contexts[cb_type]); } static void gtaskqueue_thread_loop(void *arg) { struct gtaskqueue **tqp, *tq; tqp = arg; tq = *tqp; gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); TQ_LOCK(tq); while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { /* XXX ? */ gtaskqueue_run_locked(tq); /* * Because taskqueue_run() can drop tq_mutex, we need to * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the * meantime, which means we missed a wakeup. */ if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) break; TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); } gtaskqueue_run_locked(tq); /* * This thread is on its way out, so just drop the lock temporarily * in order to call the shutdown callback. This allows the callback * to look at the taskqueue, even just before it dies. */ TQ_UNLOCK(tq); gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); TQ_LOCK(tq); /* rendezvous with thread that asked us to terminate */ tq->tq_tcount--; wakeup_one(tq->tq_threads); TQ_UNLOCK(tq); kthread_exit(); } static void gtaskqueue_thread_enqueue(void *context) { struct gtaskqueue **tqp, *tq; tqp = context; tq = *tqp; wakeup_one(tq); } static struct gtaskqueue * gtaskqueue_create_fast(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context) { return _gtaskqueue_create(name, mflags, enqueue, context, MTX_SPIN, "fast_taskqueue"); } struct taskqgroup_cpu { LIST_HEAD(, grouptask) tgc_tasks; struct gtaskqueue *tgc_taskq; int tgc_cnt; int tgc_cpu; }; struct taskqgroup { struct taskqgroup_cpu tqg_queue[MAXCPU]; struct mtx tqg_lock; const char * tqg_name; int tqg_adjusting; int tqg_stride; int tqg_cnt; }; struct taskq_bind_task { struct gtask bt_task; int bt_cpuid; }; static void taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) { struct taskqgroup_cpu *qcpu; qcpu = &qgroup->tqg_queue[idx]; LIST_INIT(&qcpu->tgc_tasks); qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, taskqueue_thread_enqueue, &qcpu->tgc_taskq); gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, "%s_%d", qgroup->tqg_name, idx); qcpu->tgc_cpu = cpu; } static void taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) { gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); } /* * Find the taskq with least # of tasks that doesn't currently have any * other queues from the uniq identifier. */ static int taskqgroup_find(struct taskqgroup *qgroup, void *uniq) { struct grouptask *n; int i, idx, mincnt; int strict; mtx_assert(&qgroup->tqg_lock, MA_OWNED); if (qgroup->tqg_cnt == 0) return (0); idx = -1; mincnt = INT_MAX; /* * Two passes; First scan for a queue with the least tasks that * does not already service this uniq id. If that fails simply find * the queue with the least total tasks; */ for (strict = 1; mincnt == INT_MAX; strict = 0) { for (i = 0; i < qgroup->tqg_cnt; i++) { if (qgroup->tqg_queue[i].tgc_cnt > mincnt) continue; if (strict) { LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks, gt_list) if (n->gt_uniq == uniq) break; if (n != NULL) continue; } mincnt = qgroup->tqg_queue[i].tgc_cnt; idx = i; } } if (idx == -1) - panic("taskqgroup_find: Failed to pick a qid."); + panic("%s: failed to pick a qid.", __func__); return (idx); } /* * smp_started is unusable since it is not set for UP kernels or even for * SMP kernels when there is 1 CPU. This is usually handled by adding a * (mp_ncpus == 1) test, but that would be broken here since we need to * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. * * So maintain our own flag. It must be set after all CPUs are started * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before * SI_ORDER_ANY and unclearly after the CPUs are started. It would be * simpler for adjustment to pass a flag indicating if it is delayed. */ static int tqg_smp_started; static void tqg_record_smp_started(void *arg) { tqg_smp_started = 1; } SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, tqg_record_smp_started, NULL); void taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, - void *uniq, int irq, const char *name) + void *uniq, device_t dev, struct resource *irq, const char *name) { - cpuset_t mask; - int qid, error; + int cpu, qid, error; gtask->gt_uniq = uniq; snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); + gtask->gt_dev = dev; gtask->gt_irq = irq; gtask->gt_cpu = -1; mtx_lock(&qgroup->tqg_lock); qid = taskqgroup_find(qgroup, uniq); qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; - if (irq != -1 && tqg_smp_started) { - gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu; - CPU_ZERO(&mask); - CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); + if (dev != NULL && irq != NULL && tqg_smp_started) { + cpu = qgroup->tqg_queue[qid].tgc_cpu; + gtask->gt_cpu = cpu; mtx_unlock(&qgroup->tqg_lock); - error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); + error = bus_bind_intr(dev, irq, cpu); if (error) - printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error); + printf("%s: binding interrupt failed for %s: %d\n", + __func__, gtask->gt_name, error); } else mtx_unlock(&qgroup->tqg_lock); } static void taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) { - cpuset_t mask; int qid, cpu, error; mtx_lock(&qgroup->tqg_lock); qid = taskqgroup_find(qgroup, gtask->gt_uniq); cpu = qgroup->tqg_queue[qid].tgc_cpu; - if (gtask->gt_irq != -1) { + if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) { mtx_unlock(&qgroup->tqg_lock); - - CPU_ZERO(&mask); - CPU_SET(cpu, &mask); - error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask); + error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu); mtx_lock(&qgroup->tqg_lock); if (error) - printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error); + printf("%s: binding interrupt failed for %s: %d\n", + __func__, gtask->gt_name, error); } qgroup->tqg_queue[qid].tgc_cnt++; - - LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, - gt_list); + LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; mtx_unlock(&qgroup->tqg_lock); } int taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, - void *uniq, int cpu, int irq, const char *name) + void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) { - cpuset_t mask; int i, qid, error; qid = -1; gtask->gt_uniq = uniq; snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); + gtask->gt_dev = dev; gtask->gt_irq = irq; gtask->gt_cpu = cpu; mtx_lock(&qgroup->tqg_lock); if (tqg_smp_started) { for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_cpu == cpu) { qid = i; break; } if (qid == -1) { mtx_unlock(&qgroup->tqg_lock); printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); return (EINVAL); } } else qid = 0; qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; cpu = qgroup->tqg_queue[qid].tgc_cpu; mtx_unlock(&qgroup->tqg_lock); - CPU_ZERO(&mask); - CPU_SET(cpu, &mask); - if (irq != -1 && tqg_smp_started) { - error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); + if (dev != NULL && irq != NULL && tqg_smp_started) { + error = bus_bind_intr(dev, irq, cpu); if (error) - printf("%s: setaffinity failed: %d\n", __func__, error); + printf("%s: binding interrupt failed for %s: %d\n", + __func__, gtask->gt_name, error); } return (0); } static int taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) { - cpuset_t mask; - int i, qid, irq, cpu, error; + device_t dev; + struct resource *irq; + int cpu, error, i, qid; qid = -1; + dev = gtask->gt_dev; irq = gtask->gt_irq; cpu = gtask->gt_cpu; MPASS(tqg_smp_started); mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_cpu == cpu) { qid = i; break; } if (qid == -1) { mtx_unlock(&qgroup->tqg_lock); printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); return (EINVAL); } qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; mtx_unlock(&qgroup->tqg_lock); - CPU_ZERO(&mask); - CPU_SET(cpu, &mask); - - if (irq != -1) { - error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); + if (dev != NULL && irq != NULL) { + error = bus_bind_intr(dev, irq, cpu); if (error) - printf("%s: setaffinity failed: %d\n", __func__, error); + printf("%s: binding interrupt failed for %s: %d\n", + __func__, gtask->gt_name, error); } return (0); } void taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) { int i; grouptask_block(gtask); mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) break; if (i == qgroup->tqg_cnt) - panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name); + panic("%s: task %s not in group", __func__, gtask->gt_name); qgroup->tqg_queue[i].tgc_cnt--; LIST_REMOVE(gtask, gt_list); mtx_unlock(&qgroup->tqg_lock); gtask->gt_taskqueue = NULL; gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; } static void taskqgroup_binder(void *ctx) { struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; cpuset_t mask; int error; CPU_ZERO(&mask); CPU_SET(gtask->bt_cpuid, &mask); error = cpuset_setthread(curthread->td_tid, &mask); thread_lock(curthread); sched_bind(curthread, gtask->bt_cpuid); thread_unlock(curthread); if (error) - printf("%s: setaffinity failed: %d\n", __func__, - error); + printf("%s: binding curthread failed: %d\n", __func__, error); free(gtask, M_DEVBUF); } static void taskqgroup_bind(struct taskqgroup *qgroup) { struct taskq_bind_task *gtask; int i; /* * Bind taskqueue threads to specific CPUs, if they have been assigned * one. */ if (qgroup->tqg_cnt == 1) return; for (i = 0; i < qgroup->tqg_cnt; i++) { gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, >ask->bt_task); } } static void taskqgroup_config_init(void *arg) { struct taskqgroup *qgroup = qgroup_config; LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, grouptask, gt_list); qgroup->tqg_queue[0].tgc_cnt = 0; taskqgroup_cpu_create(qgroup, 0, 0); qgroup->tqg_cnt = 1; qgroup->tqg_stride = 1; } SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND, taskqgroup_config_init, NULL); static int _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) { LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); struct grouptask *gtask; int i, k, old_cnt, old_cpu, cpu; mtx_assert(&qgroup->tqg_lock, MA_OWNED); if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { printf("%s: failed cnt: %d stride: %d " "mp_ncpus: %d tqg_smp_started: %d\n", __func__, cnt, stride, mp_ncpus, tqg_smp_started); return (EINVAL); } if (qgroup->tqg_adjusting) { printf("%s failed: adjusting\n", __func__); return (EBUSY); } qgroup->tqg_adjusting = 1; old_cnt = qgroup->tqg_cnt; old_cpu = 0; if (old_cnt < cnt) old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; mtx_unlock(&qgroup->tqg_lock); /* * Set up queue for tasks added before boot. */ if (old_cnt == 0) { LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, grouptask, gt_list); qgroup->tqg_queue[0].tgc_cnt = 0; } /* * If new taskq threads have been added. */ cpu = old_cpu; for (i = old_cnt; i < cnt; i++) { taskqgroup_cpu_create(qgroup, i, cpu); for (k = 0; k < stride; k++) cpu = CPU_NEXT(cpu); } mtx_lock(&qgroup->tqg_lock); qgroup->tqg_cnt = cnt; qgroup->tqg_stride = stride; /* * Adjust drivers to use new taskqs. */ for (i = 0; i < old_cnt; i++) { while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { LIST_REMOVE(gtask, gt_list); qgroup->tqg_queue[i].tgc_cnt--; LIST_INSERT_HEAD(>ask_head, gtask, gt_list); } } mtx_unlock(&qgroup->tqg_lock); while ((gtask = LIST_FIRST(>ask_head))) { LIST_REMOVE(gtask, gt_list); if (gtask->gt_cpu == -1) taskqgroup_attach_deferred(qgroup, gtask); else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) taskqgroup_attach_deferred(qgroup, gtask); } #ifdef INVARIANTS mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) { MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) MPASS(gtask->gt_taskqueue != NULL); } mtx_unlock(&qgroup->tqg_lock); #endif /* * If taskq thread count has been reduced. */ for (i = cnt; i < old_cnt; i++) taskqgroup_cpu_remove(qgroup, i); taskqgroup_bind(qgroup); mtx_lock(&qgroup->tqg_lock); qgroup->tqg_adjusting = 0; return (0); } int taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) { int error; mtx_lock(&qgroup->tqg_lock); error = _taskqgroup_adjust(qgroup, cnt, stride); mtx_unlock(&qgroup->tqg_lock); return (error); } struct taskqgroup * taskqgroup_create(const char *name) { struct taskqgroup *qgroup; qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); qgroup->tqg_name = name; LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); return (qgroup); } void taskqgroup_destroy(struct taskqgroup *qgroup) { } void taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, - const char *name) + const char *name) { GROUPTASK_INIT(gtask, 0, fn, ctx); - taskqgroup_attach(qgroup_config, gtask, gtask, -1, name); + taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name); } void taskqgroup_config_gtask_deinit(struct grouptask *gtask) { + taskqgroup_detach(qgroup_config, gtask); } Index: head/sys/net/iflib.c =================================================================== --- head/sys/net/iflib.c (revision 344061) +++ head/sys/net/iflib.c (revision 344062) @@ -1,6525 +1,6536 @@ /*- * Copyright (c) 2014-2018, Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Neither the name of Matthew Macy nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_acpi.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ifdi_if.h" #ifdef PCI_IOV #include #endif #include /* * enable accounting of every mbuf as it comes in to and goes out of * iflib's software descriptor references */ #define MEMORY_LOGGING 0 /* * Enable mbuf vectors for compressing long mbuf chains */ /* * NB: * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead * we prefetch needs to be determined by the time spent in m_free vis a vis * the cost of a prefetch. This will of course vary based on the workload: * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which * is quite expensive, thus suggesting very little prefetch. * - small packet forwarding which is just returning a single mbuf to * UMA will typically be very fast vis a vis the cost of a memory * access. */ /* * File organization: * - private structures * - iflib private utility functions * - ifnet functions * - vlan registry and other exported functions * - iflib public core functions * * */ MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library"); struct iflib_txq; typedef struct iflib_txq *iflib_txq_t; struct iflib_rxq; typedef struct iflib_rxq *iflib_rxq_t; struct iflib_fl; typedef struct iflib_fl *iflib_fl_t; struct iflib_ctx; static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid); static void iflib_timer(void *arg); typedef struct iflib_filter_info { driver_filter_t *ifi_filter; void *ifi_filter_arg; struct grouptask *ifi_task; void *ifi_ctx; } *iflib_filter_info_t; struct iflib_ctx { KOBJ_FIELDS; /* * Pointer to hardware driver's softc */ void *ifc_softc; device_t ifc_dev; if_t ifc_ifp; cpuset_t ifc_cpus; if_shared_ctx_t ifc_sctx; struct if_softc_ctx ifc_softc_ctx; struct sx ifc_ctx_sx; struct mtx ifc_state_mtx; iflib_txq_t ifc_txqs; iflib_rxq_t ifc_rxqs; uint32_t ifc_if_flags; uint32_t ifc_flags; uint32_t ifc_max_fl_buf_size; int ifc_link_state; int ifc_link_irq; int ifc_watchdog_events; struct cdev *ifc_led_dev; struct resource *ifc_msix_mem; struct if_irq ifc_legacy_irq; struct grouptask ifc_admin_task; struct grouptask ifc_vflr_task; struct iflib_filter_info ifc_filter_info; struct ifmedia ifc_media; struct sysctl_oid *ifc_sysctl_node; uint16_t ifc_sysctl_ntxqs; uint16_t ifc_sysctl_nrxqs; uint16_t ifc_sysctl_qs_eq_override; uint16_t ifc_sysctl_rx_budget; uint16_t ifc_sysctl_tx_abdicate; qidx_t ifc_sysctl_ntxds[8]; qidx_t ifc_sysctl_nrxds[8]; struct if_txrx ifc_txrx; #define isc_txd_encap ifc_txrx.ift_txd_encap #define isc_txd_flush ifc_txrx.ift_txd_flush #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update #define isc_rxd_available ifc_txrx.ift_rxd_available #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_rxd_flush ifc_txrx.ift_rxd_flush #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_legacy_intr ifc_txrx.ift_legacy_intr eventhandler_tag ifc_vlan_attach_event; eventhandler_tag ifc_vlan_detach_event; uint8_t ifc_mac[ETHER_ADDR_LEN]; char ifc_mtx_name[16]; }; void * iflib_get_softc(if_ctx_t ctx) { return (ctx->ifc_softc); } device_t iflib_get_dev(if_ctx_t ctx) { return (ctx->ifc_dev); } if_t iflib_get_ifp(if_ctx_t ctx) { return (ctx->ifc_ifp); } struct ifmedia * iflib_get_media(if_ctx_t ctx) { return (&ctx->ifc_media); } uint32_t iflib_get_flags(if_ctx_t ctx) { return (ctx->ifc_flags); } void iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN]) { bcopy(mac, ctx->ifc_mac, ETHER_ADDR_LEN); } if_softc_ctx_t iflib_get_softc_ctx(if_ctx_t ctx) { return (&ctx->ifc_softc_ctx); } if_shared_ctx_t iflib_get_sctx(if_ctx_t ctx) { return (ctx->ifc_sctx); } #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2) #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*)) #define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr)+CACHE_LINE_SIZE-1) & (CACHE_LINE_SIZE-1))) #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP) #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF) typedef struct iflib_sw_rx_desc_array { bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ struct mbuf **ifsd_m; /* pkthdr mbufs */ caddr_t *ifsd_cl; /* direct cluster pointer for rx */ bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */ } iflib_rxsd_array_t; typedef struct iflib_sw_tx_desc_array { bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */ struct mbuf **ifsd_m; /* pkthdr mbufs */ } if_txsd_vec_t; /* magic number that should be high enough for any hardware */ #define IFLIB_MAX_TX_SEGS 128 #define IFLIB_RX_COPY_THRESH 128 #define IFLIB_MAX_RX_REFRESH 32 /* The minimum descriptors per second before we start coalescing */ #define IFLIB_MIN_DESC_SEC 16384 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16 #define IFLIB_QUEUE_IDLE 0 #define IFLIB_QUEUE_HUNG 1 #define IFLIB_QUEUE_WORKING 2 /* maximum number of txqs that can share an rx interrupt */ #define IFLIB_MAX_TX_SHARED_INTR 4 /* this should really scale with ring size - this is a fairly arbitrary value */ #define TX_BATCH_SIZE 32 #define IFLIB_RESTART_BUDGET 8 #define CSUM_OFFLOAD (CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \ CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \ CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP) struct iflib_txq { qidx_t ift_in_use; qidx_t ift_cidx; qidx_t ift_cidx_processed; qidx_t ift_pidx; uint8_t ift_gen; uint8_t ift_br_offset; uint16_t ift_npending; uint16_t ift_db_pending; uint16_t ift_rs_pending; /* implicit pad */ uint8_t ift_txd_size[8]; uint64_t ift_processed; uint64_t ift_cleaned; uint64_t ift_cleaned_prev; #if MEMORY_LOGGING uint64_t ift_enqueued; uint64_t ift_dequeued; #endif uint64_t ift_no_tx_dma_setup; uint64_t ift_no_desc_avail; uint64_t ift_mbuf_defrag_failed; uint64_t ift_mbuf_defrag; uint64_t ift_map_failed; uint64_t ift_txd_encap_efbig; uint64_t ift_pullups; uint64_t ift_last_timer_tick; struct mtx ift_mtx; struct mtx ift_db_mtx; /* constant values */ if_ctx_t ift_ctx; struct ifmp_ring *ift_br; struct grouptask ift_task; qidx_t ift_size; uint16_t ift_id; struct callout ift_timer; if_txsd_vec_t ift_sds; uint8_t ift_qstatus; uint8_t ift_closed; uint8_t ift_update_freq; struct iflib_filter_info ift_filter_info; bus_dma_tag_t ift_buf_tag; bus_dma_tag_t ift_tso_buf_tag; iflib_dma_info_t ift_ifdi; #define MTX_NAME_LEN 16 char ift_mtx_name[MTX_NAME_LEN]; char ift_db_mtx_name[MTX_NAME_LEN]; bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE); #ifdef IFLIB_DIAGNOSTICS uint64_t ift_cpu_exec_count[256]; #endif } __aligned(CACHE_LINE_SIZE); struct iflib_fl { qidx_t ifl_cidx; qidx_t ifl_pidx; qidx_t ifl_credits; uint8_t ifl_gen; uint8_t ifl_rxd_size; #if MEMORY_LOGGING uint64_t ifl_m_enqueued; uint64_t ifl_m_dequeued; uint64_t ifl_cl_enqueued; uint64_t ifl_cl_dequeued; #endif /* implicit pad */ bitstr_t *ifl_rx_bitmap; qidx_t ifl_fragidx; /* constant */ qidx_t ifl_size; uint16_t ifl_buf_size; uint16_t ifl_cltype; uma_zone_t ifl_zone; iflib_rxsd_array_t ifl_sds; iflib_rxq_t ifl_rxq; uint8_t ifl_id; bus_dma_tag_t ifl_buf_tag; iflib_dma_info_t ifl_ifdi; uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE); caddr_t ifl_vm_addrs[IFLIB_MAX_RX_REFRESH]; qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH]; } __aligned(CACHE_LINE_SIZE); static inline qidx_t get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen) { qidx_t used; if (pidx > cidx) used = pidx - cidx; else if (pidx < cidx) used = size - cidx + pidx; else if (gen == 0 && pidx == cidx) used = 0; else if (gen == 1 && pidx == cidx) used = size; else panic("bad state"); return (used); } #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen)) #define IDXDIFF(head, tail, wrap) \ ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) struct iflib_rxq { /* If there is a separate completion queue - * these are the cq cidx and pidx. Otherwise * these are unused. */ qidx_t ifr_size; qidx_t ifr_cq_cidx; qidx_t ifr_cq_pidx; uint8_t ifr_cq_gen; uint8_t ifr_fl_offset; if_ctx_t ifr_ctx; iflib_fl_t ifr_fl; uint64_t ifr_rx_irq; uint16_t ifr_id; uint8_t ifr_lro_enabled; uint8_t ifr_nfl; uint8_t ifr_ntxqirq; uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR]; struct lro_ctrl ifr_lc; struct grouptask ifr_task; struct iflib_filter_info ifr_filter_info; iflib_dma_info_t ifr_ifdi; /* dynamically allocate if any drivers need a value substantially larger than this */ struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE); #ifdef IFLIB_DIAGNOSTICS uint64_t ifr_cpu_exec_count[256]; #endif } __aligned(CACHE_LINE_SIZE); typedef struct if_rxsd { caddr_t *ifsd_cl; struct mbuf **ifsd_m; iflib_fl_t ifsd_fl; qidx_t ifsd_cidx; } *if_rxsd_t; /* multiple of word size */ #ifdef __LP64__ #define PKT_INFO_SIZE 6 #define RXD_INFO_SIZE 5 #define PKT_TYPE uint64_t #else #define PKT_INFO_SIZE 11 #define RXD_INFO_SIZE 8 #define PKT_TYPE uint32_t #endif #define PKT_LOOP_BOUND ((PKT_INFO_SIZE/3)*3) #define RXD_LOOP_BOUND ((RXD_INFO_SIZE/4)*4) typedef struct if_pkt_info_pad { PKT_TYPE pkt_val[PKT_INFO_SIZE]; } *if_pkt_info_pad_t; typedef struct if_rxd_info_pad { PKT_TYPE rxd_val[RXD_INFO_SIZE]; } *if_rxd_info_pad_t; CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info)); CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info)); static inline void pkt_info_zero(if_pkt_info_t pi) { if_pkt_info_pad_t pi_pad; pi_pad = (if_pkt_info_pad_t)pi; pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0; pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0; #ifndef __LP64__ pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0; pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0; #endif } static device_method_t iflib_pseudo_methods[] = { DEVMETHOD(device_attach, noop_attach), DEVMETHOD(device_detach, iflib_pseudo_detach), DEVMETHOD_END }; driver_t iflib_pseudodriver = { "iflib_pseudo", iflib_pseudo_methods, sizeof(struct iflib_ctx), }; static inline void rxd_info_zero(if_rxd_info_t ri) { if_rxd_info_pad_t ri_pad; int i; ri_pad = (if_rxd_info_pad_t)ri; for (i = 0; i < RXD_LOOP_BOUND; i += 4) { ri_pad->rxd_val[i] = 0; ri_pad->rxd_val[i+1] = 0; ri_pad->rxd_val[i+2] = 0; ri_pad->rxd_val[i+3] = 0; } #ifdef __LP64__ ri_pad->rxd_val[RXD_INFO_SIZE-1] = 0; #endif } /* * Only allow a single packet to take up most 1/nth of the tx ring */ #define MAX_SINGLE_PACKET_FRACTION 12 #define IF_BAD_DMA (bus_addr_t)-1 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING)) #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock") #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx) #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx) #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx) #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF) #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx) #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx) #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx) #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx) #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx) void iflib_set_detach(if_ctx_t ctx) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_IN_DETACH; STATE_UNLOCK(ctx); } /* Our boot-time initialization hook */ static int iflib_module_event_handler(module_t, int, void *); static moduledata_t iflib_moduledata = { "iflib", iflib_module_event_handler, NULL }; DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(iflib, 1); MODULE_DEPEND(iflib, pci, 1, 1, 1); MODULE_DEPEND(iflib, ether, 1, 1, 1); TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1); TASKQGROUP_DEFINE(if_config_tqg, 1, 1); #ifndef IFLIB_DEBUG_COUNTERS #ifdef INVARIANTS #define IFLIB_DEBUG_COUNTERS 1 #else #define IFLIB_DEBUG_COUNTERS 0 #endif /* !INVARIANTS */ #endif static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD, 0, "iflib driver parameters"); /* * XXX need to ensure that this can't accidentally cause the head to be moved backwards */ static int iflib_min_tx_latency = 0; SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW, &iflib_min_tx_latency, 0, "minimize transmit latency at the possible expense of throughput"); static int iflib_no_tx_batch = 0; SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW, &iflib_no_tx_batch, 0, "minimize transmit latency at the possible expense of throughput"); #if IFLIB_DEBUG_COUNTERS static int iflib_tx_seen; static int iflib_tx_sent; static int iflib_tx_encap; static int iflib_rx_allocs; static int iflib_fl_refills; static int iflib_fl_refills_large; static int iflib_tx_frees; SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0, "# tx mbufs seen"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0, "# tx mbufs sent"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0, "# tx mbufs encapped"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0, "# tx frees"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0, "# rx allocations"); SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0, "# refills"); SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD, &iflib_fl_refills_large, 0, "# large refills"); static int iflib_txq_drain_flushing; static int iflib_txq_drain_oactive; static int iflib_txq_drain_notready; SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD, &iflib_txq_drain_flushing, 0, "# drain flushes"); SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD, &iflib_txq_drain_oactive, 0, "# drain oactives"); SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD, &iflib_txq_drain_notready, 0, "# drain notready"); static int iflib_encap_load_mbuf_fail; static int iflib_encap_pad_mbuf_fail; static int iflib_encap_txq_avail_fail; static int iflib_encap_txd_encap_fail; SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD, &iflib_encap_load_mbuf_fail, 0, "# busdma load failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD, &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD, &iflib_encap_txq_avail_fail, 0, "# txq avail failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD, &iflib_encap_txd_encap_fail, 0, "# driver encap failures"); static int iflib_task_fn_rxs; static int iflib_rx_intr_enables; static int iflib_fast_intrs; static int iflib_rx_unavail; static int iflib_rx_ctx_inactive; static int iflib_rx_if_input; static int iflib_rx_mbuf_null; static int iflib_rxd_flush; static int iflib_verbose_debug; SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0, "# task_fn_rx calls"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD, &iflib_rx_intr_enables, 0, "# rx intr enables"); SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0, "# fast_intr calls"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0, "# times rxeof called with no available data"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD, &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input, 0, "# times rxeof called if_input"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_mbuf_null, CTLFLAG_RD, &iflib_rx_mbuf_null, 0, "# times rxeof got null mbuf"); SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0, "# times rxd_flush called"); SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW, &iflib_verbose_debug, 0, "enable verbose debugging"); #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1) static void iflib_debug_reset(void) { iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs = iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees = iflib_txq_drain_flushing = iflib_txq_drain_oactive = iflib_txq_drain_notready = iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail = iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail = iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs = iflib_rx_unavail = iflib_rx_ctx_inactive = iflib_rx_if_input = iflib_rx_mbuf_null = iflib_rxd_flush = 0; } #else #define DBG_COUNTER_INC(name) static void iflib_debug_reset(void) {} #endif #define IFLIB_DEBUG 0 static void iflib_tx_structures_free(if_ctx_t ctx); static void iflib_rx_structures_free(if_ctx_t ctx); static int iflib_queues_alloc(if_ctx_t ctx); static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq); static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget); static int iflib_qset_structures_setup(if_ctx_t ctx); static int iflib_msix_init(if_ctx_t ctx); static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str); static void iflib_txq_check_drain(iflib_txq_t txq, int budget); static uint32_t iflib_txq_can_drain(struct ifmp_ring *); #ifdef ALTQ static void iflib_altq_if_start(if_t ifp); static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m); #endif static int iflib_register(if_ctx_t); static void iflib_init_locked(if_ctx_t ctx); static void iflib_add_device_sysctl_pre(if_ctx_t ctx); static void iflib_add_device_sysctl_post(if_ctx_t ctx); static void iflib_ifmp_purge(iflib_txq_t txq); static void _iflib_pre_assert(if_softc_ctx_t scctx); static void iflib_if_init_locked(if_ctx_t ctx); static void iflib_free_intr_mem(if_ctx_t ctx); #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * iflib_fixup_rx(struct mbuf *m); #endif NETDUMP_DEFINE(iflib); #ifdef DEV_NETMAP #include #include #include MODULE_DEPEND(iflib, netmap, 1, 1, 1); static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init); /* * device-specific sysctl variables: * * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it. * During regular operations the CRC is stripped, but on some * hardware reception of frames not multiple of 64 is slower, * so using crcstrip=0 helps in benchmarks. * * iflib_rx_miss, iflib_rx_miss_bufs: * count packets that might be missed due to lost interrupts. */ SYSCTL_DECL(_dev_netmap); /* * The xl driver by default strips CRCs and we do not override it. */ int iflib_crcstrip = 1; SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip, CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on rx frames"); int iflib_rx_miss, iflib_rx_miss_bufs; SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss, CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed rx intr"); SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs, CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed rx intr bufs"); /* * Register/unregister. We are already under netmap lock. * Only called on the first register or the last unregister. */ static int iflib_netmap_register(struct netmap_adapter *na, int onoff) { struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; int status; CTX_LOCK(ctx); IFDI_INTR_DISABLE(ctx); /* Tell the stack that the interface is no longer active */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); if (!CTX_IS_VF(ctx)) IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); /* enable or disable flags and callbacks in na and ifp */ if (onoff) { nm_set_native_flags(na); } else { nm_clear_native_flags(na); } iflib_stop(ctx); iflib_init_locked(ctx); IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ? status = ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1; if (status) nm_clear_native_flags(na); CTX_UNLOCK(ctx); return (status); } static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init) { struct netmap_adapter *na = kring->na; u_int const lim = kring->nkr_num_slots - 1; u_int head = kring->rhead; struct netmap_ring *ring = kring->ring; bus_dmamap_t *map; struct if_rxd_update iru; if_ctx_t ctx = rxq->ifr_ctx; iflib_fl_t fl = &rxq->ifr_fl[0]; uint32_t refill_pidx, nic_i; #if IFLIB_DEBUG_COUNTERS int rf_count = 0; #endif if (nm_i == head && __predict_true(!init)) return 0; iru_init(&iru, rxq, 0 /* flid */); map = fl->ifl_sds.ifsd_map; refill_pidx = netmap_idx_k2n(kring, nm_i); /* * IMPORTANT: we must leave one free slot in the ring, * so move head back by one unit */ head = nm_prev(head, lim); nic_i = UINT_MAX; DBG_COUNTER_INC(fl_refills); while (nm_i != head) { #if IFLIB_DEBUG_COUNTERS if (++rf_count == 9) DBG_COUNTER_INC(fl_refills_large); #endif for (int tmp_pidx = 0; tmp_pidx < IFLIB_MAX_RX_REFRESH && nm_i != head; tmp_pidx++) { struct netmap_slot *slot = &ring->slot[nm_i]; void *addr = PNMB(na, slot, &fl->ifl_bus_addrs[tmp_pidx]); uint32_t nic_i_dma = refill_pidx; nic_i = netmap_idx_k2n(kring, nm_i); MPASS(tmp_pidx < IFLIB_MAX_RX_REFRESH); if (addr == NETMAP_BUF_BASE(na)) /* bad buf */ return netmap_ring_reinit(kring); fl->ifl_vm_addrs[tmp_pidx] = addr; if (__predict_false(init)) { netmap_load_map(na, fl->ifl_buf_tag, map[nic_i], addr); } else if (slot->flags & NS_BUF_CHANGED) { /* buffer has changed, reload map */ netmap_reload_map(na, fl->ifl_buf_tag, map[nic_i], addr); } slot->flags &= ~NS_BUF_CHANGED; nm_i = nm_next(nm_i, lim); fl->ifl_rxd_idxs[tmp_pidx] = nic_i = nm_next(nic_i, lim); if (nm_i != head && tmp_pidx < IFLIB_MAX_RX_REFRESH-1) continue; iru.iru_pidx = refill_pidx; iru.iru_count = tmp_pidx+1; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); refill_pidx = nic_i; for (int n = 0; n < iru.iru_count; n++) { bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i_dma], BUS_DMASYNC_PREREAD); /* XXX - change this to not use the netmap func*/ nic_i_dma = nm_next(nic_i_dma, lim); } } } kring->nr_hwcur = head; bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (__predict_true(nic_i != UINT_MAX)) { ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, nic_i); DBG_COUNTER_INC(rxd_flush); } return (0); } /* * Reconcile kernel and user view of the transmit ring. * * All information is in the kring. * Userspace wants to send packets up to the one before kring->rhead, * kernel knows kring->nr_hwcur is the first unsent packet. * * Here we push packets out (as many as possible), and possibly * reclaim buffers from previously completed transmission. * * The caller (netmap) guarantees that there is only one instance * running at any time. Any interference with other driver * methods should be handled by the individual drivers. */ static int iflib_netmap_txsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct ifnet *ifp = na->ifp; struct netmap_ring *ring = kring->ring; u_int nm_i; /* index into the netmap kring */ u_int nic_i; /* index into the NIC ring */ u_int n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; struct if_pkt_info pi; /* * interrupts on every tx packet are expensive so request * them every half ring, or where NS_REPORT is set */ u_int report_frequency = kring->nkr_num_slots >> 1; /* device-specific */ if_ctx_t ctx = ifp->if_softc; iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id]; bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * First part: process new packets to send. * nm_i is the current index in the netmap kring, * nic_i is the corresponding index in the NIC ring. * * If we have packets to send (nm_i != head) * iterate over the netmap ring, fetch length and update * the corresponding slot in the NIC ring. Some drivers also * need to update the buffer's physical address in the NIC slot * even NS_BUF_CHANGED is not set (PNMB computes the addresses). * * The netmap_reload_map() calls is especially expensive, * even when (as in this case) the tag is 0, so do only * when the buffer has actually changed. * * If possible do not set the report/intr bit on all slots, * but only a few times per ring or when NS_REPORT is set. * * Finally, on 10G and faster drivers, it might be useful * to prefetch the next slot and txr entry. */ nm_i = kring->nr_hwcur; if (nm_i != head) { /* we have new packets to send */ pkt_info_zero(&pi); pi.ipi_segs = txq->ift_segs; pi.ipi_qsidx = kring->ring_id; nic_i = netmap_idx_k2n(kring, nm_i); __builtin_prefetch(&ring->slot[nm_i]); __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]); __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]); for (n = 0; nm_i != head; n++) { struct netmap_slot *slot = &ring->slot[nm_i]; u_int len = slot->len; uint64_t paddr; void *addr = PNMB(na, slot, &paddr); int flags = (slot->flags & NS_REPORT || nic_i == 0 || nic_i == report_frequency) ? IPI_TX_INTR : 0; /* device-specific */ pi.ipi_len = len; pi.ipi_segs[0].ds_addr = paddr; pi.ipi_segs[0].ds_len = len; pi.ipi_nsegs = 1; pi.ipi_ndescs = 0; pi.ipi_pidx = nic_i; pi.ipi_flags = flags; /* Fill the slot in the NIC ring. */ ctx->isc_txd_encap(ctx->ifc_softc, &pi); DBG_COUNTER_INC(tx_encap); /* prefetch for next round */ __builtin_prefetch(&ring->slot[nm_i + 1]); __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]); __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]); NM_CHECK_ADDR_LEN(na, addr, len); if (slot->flags & NS_BUF_CHANGED) { /* buffer has changed, reload map */ netmap_reload_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[nic_i], addr); } /* make sure changes to the buffer are synced */ bus_dmamap_sync(txq->ift_buf_tag, txq->ift_sds.ifsd_map[nic_i], BUS_DMASYNC_PREWRITE); slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } kring->nr_hwcur = nm_i; /* synchronize the NIC ring */ bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* (re)start the tx unit up to slot nic_i (excluded) */ ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i); } /* * Second part: reclaim buffers for completed transmissions. * * If there are unclaimed buffers, attempt to reclaim them. * If none are reclaimed, and TX IRQs are not in use, do an initial * minimal delay, then trigger the tx handler which will spin in the * group task queue. */ if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { if (iflib_tx_credits_update(ctx, txq)) { /* some tx completed, increment avail */ nic_i = txq->ift_cidx_processed; kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim); } } if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { callout_reset_on(&txq->ift_timer, hz < 2000 ? 1 : hz / 1000, iflib_timer, txq, txq->ift_timer.c_cpu); } return (0); } /* * Reconcile kernel and user view of the receive ring. * Same as for the txsync, this routine must be efficient. * The caller guarantees a single invocations, but races against * the rest of the driver should be handled here. * * On call, kring->rhead is the first packet that userspace wants * to keep, and kring->rcur is the wakeup point. * The kernel has previously reported packets up to kring->rtail. * * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective * of whether or not we received an interrupt. */ static int iflib_netmap_rxsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct netmap_ring *ring = kring->ring; iflib_fl_t fl; uint32_t nm_i; /* index into the netmap ring */ uint32_t nic_i; /* index into the NIC ring */ u_int i, n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; struct if_rxd_info ri; struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id]; if (head > lim) return netmap_ring_reinit(kring); /* * XXX netmap_fl_refill() only ever (re)fills free list 0 so far. */ for (i = 0, fl = rxq->ifr_fl; i < rxq->ifr_nfl; i++, fl++) { bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } /* * First part: import newly received packets. * * nm_i is the index of the next free slot in the netmap ring, * nic_i is the index of the next received packet in the NIC ring, * and they may differ in case if_init() has been called while * in netmap mode. For the receive ring we have * * nic_i = rxr->next_check; * nm_i = kring->nr_hwtail (previous) * and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size * * rxr->next_check is set to 0 on a ring reinit */ if (netmap_no_pendintr || force_update) { int crclen = iflib_crcstrip ? 0 : 4; int error, avail; for (i = 0; i < rxq->ifr_nfl; i++) { fl = &rxq->ifr_fl[i]; nic_i = fl->ifl_cidx; nm_i = netmap_idx_n2k(kring, nic_i); avail = ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, nic_i, USHRT_MAX); for (n = 0; avail > 0; n++, avail--) { rxd_info_zero(&ri); ri.iri_frags = rxq->ifr_frags; ri.iri_qsidx = kring->ring_id; ri.iri_ifp = ctx->ifc_ifp; ri.iri_cidx = nic_i; error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); ring->slot[nm_i].len = error ? 0 : ri.iri_len - crclen; ring->slot[nm_i].flags = 0; bus_dmamap_sync(fl->ifl_buf_tag, fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } if (n) { /* update the state variables */ if (netmap_no_pendintr && !force_update) { /* diagnostics */ iflib_rx_miss ++; iflib_rx_miss_bufs += n; } fl->ifl_cidx = nic_i; kring->nr_hwtail = nm_i; } kring->nr_kflags &= ~NKR_PENDINTR; } } /* * Second part: skip past packets that userspace has released. * (kring->nr_hwcur to head excluded), * and make the buffers available for reception. * As usual nm_i is the index in the netmap ring, * nic_i is the index in the NIC ring, and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size */ /* XXX not sure how this will work with multiple free lists */ nm_i = kring->nr_hwcur; return (netmap_fl_refill(rxq, kring, nm_i, false)); } static void iflib_netmap_intr(struct netmap_adapter *na, int onoff) { struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; CTX_LOCK(ctx); if (onoff) { IFDI_INTR_ENABLE(ctx); } else { IFDI_INTR_DISABLE(ctx); } CTX_UNLOCK(ctx); } static int iflib_netmap_attach(if_ctx_t ctx) { struct netmap_adapter na; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; bzero(&na, sizeof(na)); na.ifp = ctx->ifc_ifp; na.na_flags = NAF_BDG_MAYSLEEP; MPASS(ctx->ifc_softc_ctx.isc_ntxqsets); MPASS(ctx->ifc_softc_ctx.isc_nrxqsets); na.num_tx_desc = scctx->isc_ntxd[0]; na.num_rx_desc = scctx->isc_nrxd[0]; na.nm_txsync = iflib_netmap_txsync; na.nm_rxsync = iflib_netmap_rxsync; na.nm_register = iflib_netmap_register; na.nm_intr = iflib_netmap_intr; na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; return (netmap_attach(&na)); } static void iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq) { struct netmap_adapter *na = NA(ctx->ifc_ifp); struct netmap_slot *slot; slot = netmap_reset(na, NR_TX, txq->ift_id, 0); if (slot == NULL) return; for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) { /* * In netmap mode, set the map for the packet buffer. * NOTE: Some drivers (not this one) also need to set * the physical buffer address in the NIC ring. * netmap_idx_n2k() maps a nic index, i, into the corresponding * netmap slot index, si */ int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i); netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], NMB(na, slot + si)); } } static void iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq) { struct netmap_adapter *na = NA(ctx->ifc_ifp); struct netmap_kring *kring = na->rx_rings[rxq->ifr_id]; struct netmap_slot *slot; uint32_t nm_i; slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0); if (slot == NULL) return; nm_i = netmap_idx_n2k(kring, 0); netmap_fl_refill(rxq, kring, nm_i, true); } static void iflib_netmap_timer_adjust(if_ctx_t ctx, iflib_txq_t txq, uint32_t *reset_on) { struct netmap_kring *kring; uint16_t txqid; txqid = txq->ift_id; kring = NA(ctx->ifc_ifp)->tx_rings[txqid]; if (kring->nr_hwcur != nm_next(kring->nr_hwtail, kring->nkr_num_slots - 1)) { bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if (ctx->isc_txd_credits_update(ctx->ifc_softc, txqid, false)) netmap_tx_irq(ctx->ifc_ifp, txqid); if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) { if (hz < 2000) *reset_on = 1; else *reset_on = hz / 1000; } } } #define iflib_netmap_detach(ifp) netmap_detach(ifp) #else #define iflib_netmap_txq_init(ctx, txq) #define iflib_netmap_rxq_init(ctx, rxq) #define iflib_netmap_detach(ifp) #define iflib_netmap_attach(ctx) (0) #define netmap_rx_irq(ifp, qid, budget) (0) #define netmap_tx_irq(ifp, qid) do {} while (0) #define iflib_netmap_timer_adjust(ctx, txq, reset_on) #endif #if defined(__i386__) || defined(__amd64__) static __inline void prefetch(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); } static __inline void prefetch2cachelines(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); #if (CACHE_LINE_SIZE < 128) __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x)+CACHE_LINE_SIZE/(sizeof(unsigned long))))); #endif } #else #define prefetch(x) #define prefetch2cachelines(x) #endif static void iflib_gen_mac(if_ctx_t ctx) { struct thread *td; MD5_CTX mdctx; char uuid[HOSTUUIDLEN+1]; char buf[HOSTUUIDLEN+16]; uint8_t *mac; unsigned char digest[16]; td = curthread; mac = ctx->ifc_mac; uuid[HOSTUUIDLEN] = 0; bcopy(td->td_ucred->cr_prison->pr_hostuuid, uuid, HOSTUUIDLEN); snprintf(buf, HOSTUUIDLEN+16, "%s-%s", uuid, device_get_nameunit(ctx->ifc_dev)); /* * Generate a pseudo-random, deterministic MAC * address based on the UUID and unit number. * The FreeBSD Foundation OUI of 58-9C-FC is used. */ MD5Init(&mdctx); MD5Update(&mdctx, buf, strlen(buf)); MD5Final(digest, &mdctx); mac[0] = 0x58; mac[1] = 0x9C; mac[2] = 0xFC; mac[3] = digest[0]; mac[4] = digest[1]; mac[5] = digest[2]; } static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid) { iflib_fl_t fl; fl = &rxq->ifr_fl[flid]; iru->iru_paddrs = fl->ifl_bus_addrs; iru->iru_vaddrs = &fl->ifl_vm_addrs[0]; iru->iru_idxs = fl->ifl_rxd_idxs; iru->iru_qsidx = rxq->ifr_id; iru->iru_buf_size = fl->ifl_buf_size; iru->iru_flidx = fl->ifl_id; } static void _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { if (err) return; *(bus_addr_t *) arg = segs[0].ds_addr; } int iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags) { int err; device_t dev = ctx->ifc_dev; err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ align, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dma->idi_tag); if (err) { device_printf(dev, "%s: bus_dma_tag_create failed: %d\n", __func__, err); goto fail_0; } err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map); if (err) { device_printf(dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n", __func__, (uintmax_t)size, err); goto fail_1; } dma->idi_paddr = IF_BAD_DMA; err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr, size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT); if (err || dma->idi_paddr == IF_BAD_DMA) { device_printf(dev, "%s: bus_dmamap_load failed: %d\n", __func__, err); goto fail_2; } dma->idi_size = size; return (0); fail_2: bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); fail_1: bus_dma_tag_destroy(dma->idi_tag); fail_0: dma->idi_tag = NULL; return (err); } int iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags) { if_shared_ctx_t sctx = ctx->ifc_sctx; KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized")); return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags)); } int iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count) { int i, err; iflib_dma_info_t *dmaiter; dmaiter = dmalist; for (i = 0; i < count; i++, dmaiter++) { if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0) break; } if (err) iflib_dma_free_multi(dmalist, i); return (err); } void iflib_dma_free(iflib_dma_info_t dma) { if (dma->idi_tag == NULL) return; if (dma->idi_paddr != IF_BAD_DMA) { bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->idi_tag, dma->idi_map); dma->idi_paddr = IF_BAD_DMA; } if (dma->idi_vaddr != NULL) { bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); dma->idi_vaddr = NULL; } bus_dma_tag_destroy(dma->idi_tag); dma->idi_tag = NULL; } void iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count) { int i; iflib_dma_info_t *dmaiter = dmalist; for (i = 0; i < count; i++, dmaiter++) iflib_dma_free(*dmaiter); } #ifdef EARLY_AP_STARTUP static const int iflib_started = 1; #else /* * We used to abuse the smp_started flag to decide if the queues have been * fully initialized (by late taskqgroup_adjust() calls in a SYSINIT()). * That gave bad races, since the SYSINIT() runs strictly after smp_started * is set. Run a SYSINIT() strictly after that to just set a usable * completion flag. */ static int iflib_started; static void iflib_record_started(void *arg) { iflib_started = 1; } SYSINIT(iflib_record_started, SI_SUB_SMP + 1, SI_ORDER_FIRST, iflib_record_started, NULL); #endif static int iflib_fast_intr(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; if (!iflib_started) return (FILTER_HANDLED); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL && info->ifi_filter(info->ifi_filter_arg) == FILTER_HANDLED) return (FILTER_HANDLED); GROUPTASK_ENQUEUE(gtask); return (FILTER_HANDLED); } static int iflib_fast_intr_rxtx(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; if_ctx_t ctx; iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx; iflib_txq_t txq; void *sc; int i, cidx; qidx_t txqid; if (!iflib_started) return (FILTER_HANDLED); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL && info->ifi_filter(info->ifi_filter_arg) == FILTER_HANDLED) return (FILTER_HANDLED); ctx = rxq->ifr_ctx; sc = ctx->ifc_softc; MPASS(rxq->ifr_ntxqirq); for (i = 0; i < rxq->ifr_ntxqirq; i++) { txqid = rxq->ifr_txqid[i]; txq = &ctx->ifc_txqs[txqid]; bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if (!ctx->isc_txd_credits_update(sc, txqid, false)) { IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid); continue; } GROUPTASK_ENQUEUE(&txq->ift_task); } if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ) cidx = rxq->ifr_cq_cidx; else cidx = rxq->ifr_fl[0].ifl_cidx; if (iflib_rxd_avail(ctx, rxq, cidx, 1)) GROUPTASK_ENQUEUE(gtask); else { IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); DBG_COUNTER_INC(rx_intr_enables); } return (FILTER_HANDLED); } static int iflib_fast_intr_ctx(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; if (!iflib_started) return (FILTER_HANDLED); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL && info->ifi_filter(info->ifi_filter_arg) == FILTER_HANDLED) return (FILTER_HANDLED); GROUPTASK_ENQUEUE(gtask); return (FILTER_HANDLED); } static int _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, driver_filter_t filter, driver_intr_t handler, void *arg, const char *name) { int rc, flags; struct resource *res; void *tag = NULL; device_t dev = ctx->ifc_dev; flags = RF_ACTIVE; if (ctx->ifc_flags & IFC_LEGACY) flags |= RF_SHAREABLE; MPASS(rid < 512); irq->ii_rid = rid; res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &irq->ii_rid, flags); if (res == NULL) { device_printf(dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } irq->ii_res = res; KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL")); rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET, filter, handler, arg, &tag); if (rc != 0) { device_printf(dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name ? name : "unknown", rc); return (rc); } else if (name) bus_describe_intr(dev, res, tag, "%s", name); irq->ii_tag = tag; return (0); } /********************************************************************* * * Allocate DMA resources for TX buffers as well as memory for the TX * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a * iflib_sw_tx_desc_array structure, storing all the information that * is needed to transmit a packet on the wire. This is called only * once at attach, setup is done every reset. * **********************************************************************/ static int iflib_txsd_alloc(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; bus_size_t tsomaxsize; int err, nsegments, ntsosegments; bool tso; nsegments = scctx->isc_tx_nsegments; ntsosegments = scctx->isc_tx_tso_segments_max; tsomaxsize = scctx->isc_tx_tso_size_max; if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU) tsomaxsize += sizeof(struct ether_vlan_header); MPASS(scctx->isc_ntxd[0] > 0); MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0); MPASS(nsegments > 0); if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) { MPASS(ntsosegments > 0); MPASS(sctx->isc_tso_maxsize >= tsomaxsize); } /* * Set up DMA tags for TX buffers. */ if ((err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sctx->isc_tx_maxsize, /* maxsize */ nsegments, /* nsegments */ sctx->isc_tx_maxsegsize, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txq->ift_buf_tag))) { device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err); device_printf(dev,"maxsize: %ju nsegments: %d maxsegsize: %ju\n", (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize); goto fail; } tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0; if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ tsomaxsize, /* maxsize */ ntsosegments, /* nsegments */ sctx->isc_tso_maxsegsize,/* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txq->ift_tso_buf_tag))) { device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n", err); goto fail; } /* Allocate memory for the TX mbuf map. */ if (!(txq->ift_sds.ifsd_m = (struct mbuf **) malloc(sizeof(struct mbuf *) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate TX mbuf map memory\n"); err = ENOMEM; goto fail; } /* * Create the DMA maps for TX buffers. */ if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc( sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TX buffer DMA map memory\n"); err = ENOMEM; goto fail; } if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc( sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TSO TX buffer map memory\n"); err = ENOMEM; goto fail; } for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) { err = bus_dmamap_create(txq->ift_buf_tag, 0, &txq->ift_sds.ifsd_map[i]); if (err != 0) { device_printf(dev, "Unable to create TX DMA map\n"); goto fail; } if (!tso) continue; err = bus_dmamap_create(txq->ift_tso_buf_tag, 0, &txq->ift_sds.ifsd_tso_map[i]); if (err != 0) { device_printf(dev, "Unable to create TSO TX DMA map\n"); goto fail; } } return (0); fail: /* We free all, it handles case where we are in the middle */ iflib_tx_structures_free(ctx); return (err); } static void iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i) { bus_dmamap_t map; map = NULL; if (txq->ift_sds.ifsd_map != NULL) map = txq->ift_sds.ifsd_map[i]; if (map != NULL) { bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, map); bus_dmamap_destroy(txq->ift_buf_tag, map); txq->ift_sds.ifsd_map[i] = NULL; } map = NULL; if (txq->ift_sds.ifsd_tso_map != NULL) map = txq->ift_sds.ifsd_tso_map[i]; if (map != NULL) { bus_dmamap_sync(txq->ift_tso_buf_tag, map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, map); bus_dmamap_destroy(txq->ift_tso_buf_tag, map); txq->ift_sds.ifsd_tso_map[i] = NULL; } } static void iflib_txq_destroy(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; for (int i = 0; i < txq->ift_size; i++) iflib_txsd_destroy(ctx, txq, i); if (txq->ift_sds.ifsd_map != NULL) { free(txq->ift_sds.ifsd_map, M_IFLIB); txq->ift_sds.ifsd_map = NULL; } if (txq->ift_sds.ifsd_tso_map != NULL) { free(txq->ift_sds.ifsd_tso_map, M_IFLIB); txq->ift_sds.ifsd_tso_map = NULL; } if (txq->ift_sds.ifsd_m != NULL) { free(txq->ift_sds.ifsd_m, M_IFLIB); txq->ift_sds.ifsd_m = NULL; } if (txq->ift_buf_tag != NULL) { bus_dma_tag_destroy(txq->ift_buf_tag); txq->ift_buf_tag = NULL; } if (txq->ift_tso_buf_tag != NULL) { bus_dma_tag_destroy(txq->ift_tso_buf_tag); txq->ift_tso_buf_tag = NULL; } } static void iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i) { struct mbuf **mp; mp = &txq->ift_sds.ifsd_m[i]; if (*mp == NULL) return; if (txq->ift_sds.ifsd_map != NULL) { bus_dmamap_sync(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]); } if (txq->ift_sds.ifsd_tso_map != NULL) { bus_dmamap_sync(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[i]); } m_free(*mp); DBG_COUNTER_INC(tx_frees); *mp = NULL; } static int iflib_txq_setup(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; iflib_dma_info_t di; int i; /* Set number of descriptors available */ txq->ift_qstatus = IFLIB_QUEUE_IDLE; /* XXX make configurable */ txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ; /* Reset indices */ txq->ift_cidx_processed = 0; txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0; txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset]; for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) bzero((void *)di->idi_vaddr, di->idi_size); IFDI_TXQ_SETUP(ctx, txq->ift_id); for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) bus_dmamap_sync(di->idi_tag, di->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /********************************************************************* * * Allocate DMA resources for RX buffers as well as memory for the RX * mbuf map, direct RX cluster pointer map and RX cluster bus address * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and * RX cluster map are kept in a iflib_sw_rx_desc_array structure. * Since we use use one entry in iflib_sw_rx_desc_array per received * packet, the maximum number of entries we'll need is equal to the * number of hardware receive descriptors that we've allocated. * **********************************************************************/ static int iflib_rxsd_alloc(iflib_rxq_t rxq) { if_ctx_t ctx = rxq->ifr_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; iflib_fl_t fl; int err; MPASS(scctx->isc_nrxd[0] > 0); MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0); fl = rxq->ifr_fl; for (int i = 0; i < rxq->ifr_nfl; i++, fl++) { fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */ /* Set up DMA tag for RX buffers. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sctx->isc_rx_maxsize, /* maxsize */ sctx->isc_rx_nsegments, /* nsegments */ sctx->isc_rx_maxsegsize, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &fl->ifl_buf_tag); if (err) { device_printf(dev, "Unable to allocate RX DMA tag: %d\n", err); goto fail; } /* Allocate memory for the RX mbuf map. */ if (!(fl->ifl_sds.ifsd_m = (struct mbuf **) malloc(sizeof(struct mbuf *) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX mbuf map memory\n"); err = ENOMEM; goto fail; } /* Allocate memory for the direct RX cluster pointer map. */ if (!(fl->ifl_sds.ifsd_cl = (caddr_t *) malloc(sizeof(caddr_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX cluster map memory\n"); err = ENOMEM; goto fail; } /* Allocate memory for the RX cluster bus address map. */ if (!(fl->ifl_sds.ifsd_ba = (bus_addr_t *) malloc(sizeof(bus_addr_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX bus address map memory\n"); err = ENOMEM; goto fail; } /* * Create the DMA maps for RX buffers. */ if (!(fl->ifl_sds.ifsd_map = (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX buffer DMA map memory\n"); err = ENOMEM; goto fail; } for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) { err = bus_dmamap_create(fl->ifl_buf_tag, 0, &fl->ifl_sds.ifsd_map[i]); if (err != 0) { device_printf(dev, "Unable to create RX buffer DMA map\n"); goto fail; } } } return (0); fail: iflib_rx_structures_free(ctx); return (err); } /* * Internal service routines */ struct rxq_refill_cb_arg { int error; bus_dma_segment_t seg; int nseg; }; static void _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct rxq_refill_cb_arg *cb_arg = arg; cb_arg->error = error; cb_arg->seg = segs[0]; cb_arg->nseg = nseg; } /** * rxq_refill - refill an rxq free-buffer list * @ctx: the iflib context * @rxq: the free-list to refill * @n: the number of new buffers to allocate * * (Re)populate an rxq free-buffer list with up to @n new packet buffers. * The caller must assure that @n does not exceed the queue's capacity. */ static void _iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count) { struct if_rxd_update iru; struct rxq_refill_cb_arg cb_arg; struct mbuf *m; caddr_t cl, *sd_cl; struct mbuf **sd_m; bus_dmamap_t *sd_map; bus_addr_t bus_addr, *sd_ba; int err, frag_idx, i, idx, n, pidx; qidx_t credits; sd_m = fl->ifl_sds.ifsd_m; sd_map = fl->ifl_sds.ifsd_map; sd_cl = fl->ifl_sds.ifsd_cl; sd_ba = fl->ifl_sds.ifsd_ba; pidx = fl->ifl_pidx; idx = pidx; frag_idx = fl->ifl_fragidx; credits = fl->ifl_credits; i = 0; n = count; MPASS(n > 0); MPASS(credits + n <= fl->ifl_size); if (pidx < fl->ifl_cidx) MPASS(pidx + n <= fl->ifl_cidx); if (pidx == fl->ifl_cidx && (credits < fl->ifl_size)) MPASS(fl->ifl_gen == 0); if (pidx > fl->ifl_cidx) MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx); DBG_COUNTER_INC(fl_refills); if (n > 8) DBG_COUNTER_INC(fl_refills_large); iru_init(&iru, fl->ifl_rxq, fl->ifl_id); while (n--) { /* * We allocate an uninitialized mbuf + cluster, mbuf is * initialized after rx. * * If the cluster is still set then we know a minimum sized packet was received */ bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size, &frag_idx); if (frag_idx < 0) bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx); MPASS(frag_idx >= 0); if ((cl = sd_cl[frag_idx]) == NULL) { if ((cl = m_cljget(NULL, M_NOWAIT, fl->ifl_buf_size)) == NULL) break; cb_arg.error = 0; MPASS(sd_map != NULL); err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx], cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg, BUS_DMA_NOWAIT); if (err != 0 || cb_arg.error) { /* * !zone_pack ? */ if (fl->ifl_zone == zone_pack) uma_zfree(fl->ifl_zone, cl); break; } sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr; sd_cl[frag_idx] = cl; #if MEMORY_LOGGING fl->ifl_cl_enqueued++; #endif } else { bus_addr = sd_ba[frag_idx]; } bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx], BUS_DMASYNC_PREREAD); MPASS(sd_m[frag_idx] == NULL); if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) { break; } sd_m[frag_idx] = m; bit_set(fl->ifl_rx_bitmap, frag_idx); #if MEMORY_LOGGING fl->ifl_m_enqueued++; #endif DBG_COUNTER_INC(rx_allocs); fl->ifl_rxd_idxs[i] = frag_idx; fl->ifl_bus_addrs[i] = bus_addr; fl->ifl_vm_addrs[i] = cl; credits++; i++; MPASS(credits <= fl->ifl_size); if (++idx == fl->ifl_size) { fl->ifl_gen = 1; idx = 0; } if (n == 0 || i == IFLIB_MAX_RX_REFRESH) { iru.iru_pidx = pidx; iru.iru_count = i; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); i = 0; pidx = idx; fl->ifl_pidx = idx; fl->ifl_credits = credits; } } if (i) { iru.iru_pidx = pidx; iru.iru_count = i; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); fl->ifl_pidx = idx; fl->ifl_credits = credits; } DBG_COUNTER_INC(rxd_flush); if (fl->ifl_pidx == 0) pidx = fl->ifl_size - 1; else pidx = fl->ifl_pidx - 1; bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, fl->ifl_id, pidx); fl->ifl_fragidx = frag_idx; } static __inline void __iflib_fl_refill_lt(if_ctx_t ctx, iflib_fl_t fl, int max) { /* we avoid allowing pidx to catch up with cidx as it confuses ixl */ int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1; #ifdef INVARIANTS int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1; #endif MPASS(fl->ifl_credits <= fl->ifl_size); MPASS(reclaimable == delta); if (reclaimable > 0) _iflib_fl_refill(ctx, fl, min(max, reclaimable)); } uint8_t iflib_in_detach(if_ctx_t ctx) { bool in_detach; STATE_LOCK(ctx); in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH); STATE_UNLOCK(ctx); return (in_detach); } static void iflib_fl_bufs_free(iflib_fl_t fl) { iflib_dma_info_t idi = fl->ifl_ifdi; bus_dmamap_t sd_map; uint32_t i; for (i = 0; i < fl->ifl_size; i++) { struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i]; caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i]; if (*sd_cl != NULL) { sd_map = fl->ifl_sds.ifsd_map[i]; bus_dmamap_sync(fl->ifl_buf_tag, sd_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fl->ifl_buf_tag, sd_map); if (*sd_cl != NULL) uma_zfree(fl->ifl_zone, *sd_cl); // XXX: Should this get moved out? if (iflib_in_detach(fl->ifl_rxq->ifr_ctx)) bus_dmamap_destroy(fl->ifl_buf_tag, sd_map); if (*sd_m != NULL) { m_init(*sd_m, M_NOWAIT, MT_DATA, 0); uma_zfree(zone_mbuf, *sd_m); } } else { MPASS(*sd_cl == NULL); MPASS(*sd_m == NULL); } #if MEMORY_LOGGING fl->ifl_m_dequeued++; fl->ifl_cl_dequeued++; #endif *sd_cl = NULL; *sd_m = NULL; } #ifdef INVARIANTS for (i = 0; i < fl->ifl_size; i++) { MPASS(fl->ifl_sds.ifsd_cl[i] == NULL); MPASS(fl->ifl_sds.ifsd_m[i] == NULL); } #endif /* * Reset free list values */ fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0; bzero(idi->idi_vaddr, idi->idi_size); } /********************************************************************* * * Initialize a receive ring and its buffers. * **********************************************************************/ static int iflib_fl_setup(iflib_fl_t fl) { iflib_rxq_t rxq = fl->ifl_rxq; if_ctx_t ctx = rxq->ifr_ctx; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1); /* ** Free current RX buffer structs and their mbufs */ iflib_fl_bufs_free(fl); /* Now replenish the mbufs */ MPASS(fl->ifl_credits == 0); /* * XXX don't set the max_frame_size to larger * than the hardware can handle */ if (sctx->isc_max_frame_size <= 2048) fl->ifl_buf_size = MCLBYTES; #ifndef CONTIGMALLOC_WORKS else fl->ifl_buf_size = MJUMPAGESIZE; #else else if (sctx->isc_max_frame_size <= 4096) fl->ifl_buf_size = MJUMPAGESIZE; else if (sctx->isc_max_frame_size <= 9216) fl->ifl_buf_size = MJUM9BYTES; else fl->ifl_buf_size = MJUM16BYTES; #endif if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size) ctx->ifc_max_fl_buf_size = fl->ifl_buf_size; fl->ifl_cltype = m_gettype(fl->ifl_buf_size); fl->ifl_zone = m_getzone(fl->ifl_buf_size); /* avoid pre-allocating zillions of clusters to an idle card * potentially speeding up attach */ _iflib_fl_refill(ctx, fl, min(128, fl->ifl_size)); MPASS(min(128, fl->ifl_size) == fl->ifl_credits); if (min(128, fl->ifl_size) != fl->ifl_credits) return (ENOBUFS); /* * handle failure */ MPASS(rxq != NULL); MPASS(fl->ifl_ifdi != NULL); bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /********************************************************************* * * Free receive ring data structures * **********************************************************************/ static void iflib_rx_sds_free(iflib_rxq_t rxq) { iflib_fl_t fl; int i, j; if (rxq->ifr_fl != NULL) { for (i = 0; i < rxq->ifr_nfl; i++) { fl = &rxq->ifr_fl[i]; if (fl->ifl_buf_tag != NULL) { if (fl->ifl_sds.ifsd_map != NULL) { for (j = 0; j < fl->ifl_size; j++) { if (fl->ifl_sds.ifsd_map[j] == NULL) continue; bus_dmamap_sync( fl->ifl_buf_tag, fl->ifl_sds.ifsd_map[j], BUS_DMASYNC_POSTREAD); bus_dmamap_unload( fl->ifl_buf_tag, fl->ifl_sds.ifsd_map[j]); } } bus_dma_tag_destroy(fl->ifl_buf_tag); fl->ifl_buf_tag = NULL; } free(fl->ifl_sds.ifsd_m, M_IFLIB); free(fl->ifl_sds.ifsd_cl, M_IFLIB); free(fl->ifl_sds.ifsd_ba, M_IFLIB); free(fl->ifl_sds.ifsd_map, M_IFLIB); fl->ifl_sds.ifsd_m = NULL; fl->ifl_sds.ifsd_cl = NULL; fl->ifl_sds.ifsd_ba = NULL; fl->ifl_sds.ifsd_map = NULL; } free(rxq->ifr_fl, M_IFLIB); rxq->ifr_fl = NULL; rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; } } /* * MI independent logic * */ static void iflib_timer(void *arg) { iflib_txq_t txq = arg; if_ctx_t ctx = txq->ift_ctx; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; uint64_t this_tick = ticks; uint32_t reset_on = hz / 2; if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) return; /* ** Check on the state of the TX queue(s), this ** can be done without the lock because its RO ** and the HUNG state will be static if set. */ if (this_tick - txq->ift_last_timer_tick >= hz / 2) { txq->ift_last_timer_tick = this_tick; IFDI_TIMER(ctx, txq->ift_id); if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) && ((txq->ift_cleaned_prev == txq->ift_cleaned) || (sctx->isc_pause_frames == 0))) goto hung; if (ifmp_ring_is_stalled(txq->ift_br)) txq->ift_qstatus = IFLIB_QUEUE_HUNG; txq->ift_cleaned_prev = txq->ift_cleaned; } #ifdef DEV_NETMAP if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) iflib_netmap_timer_adjust(ctx, txq, &reset_on); #endif /* handle any laggards */ if (txq->ift_db_pending) GROUPTASK_ENQUEUE(&txq->ift_task); sctx->isc_pause_frames = 0; if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu); return; hung: device_printf(ctx->ifc_dev, "TX(%d) desc avail = %d, pidx = %d\n", txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx); STATE_LOCK(ctx); if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); ctx->ifc_flags |= (IFC_DO_WATCHDOG|IFC_DO_RESET); iflib_admin_intr_deferred(ctx); STATE_UNLOCK(ctx); } static void iflib_init_locked(if_ctx_t ctx) { if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_t ifp = ctx->ifc_ifp; iflib_fl_t fl; iflib_txq_t txq; iflib_rxq_t rxq; int i, j, tx_ip_csum_flags, tx_ip6_csum_flags; if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); IFDI_INTR_DISABLE(ctx); tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP); /* Set hardware offload abilities */ if_clearhwassist(ifp); if (if_getcapenable(ifp) & IFCAP_TXCSUM) if_sethwassistbits(ifp, tx_ip_csum_flags, 0); if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) if_sethwassistbits(ifp, tx_ip6_csum_flags, 0); if (if_getcapenable(ifp) & IFCAP_TSO4) if_sethwassistbits(ifp, CSUM_IP_TSO, 0); if (if_getcapenable(ifp) & IFCAP_TSO6) if_sethwassistbits(ifp, CSUM_IP6_TSO, 0); for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) { CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); iflib_netmap_txq_init(ctx, txq); } #ifdef INVARIANTS i = if_getdrvflags(ifp); #endif IFDI_INIT(ctx); MPASS(if_getdrvflags(ifp) == i); for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) { /* XXX this should really be done on a per-queue basis */ if (if_getcapenable(ifp) & IFCAP_NETMAP) { MPASS(rxq->ifr_id == i); iflib_netmap_rxq_init(ctx, rxq); continue; } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { if (iflib_fl_setup(fl)) { device_printf(ctx->ifc_dev, "freelist setup failed - check cluster settings\n"); goto done; } } } done: if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); IFDI_INTR_ENABLE(ctx); txq = ctx->ifc_txqs; for (i = 0; i < sctx->isc_ntxqsets; i++, txq++) callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq, txq->ift_timer.c_cpu); } static int iflib_media_change(if_t ifp) { if_ctx_t ctx = if_getsoftc(ifp); int err; CTX_LOCK(ctx); if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0) iflib_init_locked(ctx); CTX_UNLOCK(ctx); return (err); } static void iflib_media_status(if_t ifp, struct ifmediareq *ifmr) { if_ctx_t ctx = if_getsoftc(ifp); CTX_LOCK(ctx); IFDI_UPDATE_ADMIN_STATUS(ctx); IFDI_MEDIA_STATUS(ctx, ifmr); CTX_UNLOCK(ctx); } void iflib_stop(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; iflib_rxq_t rxq = ctx->ifc_rxqs; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; iflib_dma_info_t di; iflib_fl_t fl; int i, j; /* Tell the stack that the interface is no longer active */ if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); IFDI_INTR_DISABLE(ctx); DELAY(1000); IFDI_STOP(ctx); DELAY(1000); iflib_debug_reset(); /* Wait for current tx queue users to exit to disarm watchdog timer. */ for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) { /* make sure all transmitters have completed before proceeding XXX */ CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); /* clean any enqueued buffers */ iflib_ifmp_purge(txq); /* Free any existing tx buffers. */ for (j = 0; j < txq->ift_size; j++) { iflib_txsd_free(ctx, txq, j); } txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0; txq->ift_in_use = txq->ift_gen = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0; txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0; txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0; txq->ift_pullups = 0; ifmp_ring_reset_stats(txq->ift_br); for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++) bzero((void *)di->idi_vaddr, di->idi_size); } for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) { /* make sure all transmitters have completed before proceeding XXX */ rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++) bzero((void *)di->idi_vaddr, di->idi_size); /* also resets the free lists pidx/cidx */ for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) iflib_fl_bufs_free(fl); } } static inline caddr_t calc_next_rxd(iflib_fl_t fl, int cidx) { qidx_t size; int nrxd; caddr_t start, end, cur, next; nrxd = fl->ifl_size; size = fl->ifl_rxd_size; start = fl->ifl_ifdi->idi_vaddr; if (__predict_false(size == 0)) return (start); cur = start + size*cidx; end = start + size*nrxd; next = CACHE_PTR_NEXT(cur); return (next < end ? next : start); } static inline void prefetch_pkts(iflib_fl_t fl, int cidx) { int nextptr; int nrxd = fl->ifl_size; caddr_t next_rxd; nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd-1); prefetch(&fl->ifl_sds.ifsd_m[nextptr]); prefetch(&fl->ifl_sds.ifsd_cl[nextptr]); next_rxd = calc_next_rxd(fl, cidx); prefetch(next_rxd); prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd-1)]); } static void rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, int unload, if_rxsd_t sd) { int flid, cidx; bus_dmamap_t map; iflib_fl_t fl; int next; map = NULL; flid = irf->irf_flid; cidx = irf->irf_idx; fl = &rxq->ifr_fl[flid]; sd->ifsd_fl = fl; sd->ifsd_cidx = cidx; sd->ifsd_m = &fl->ifl_sds.ifsd_m[cidx]; sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx]; fl->ifl_credits--; #if MEMORY_LOGGING fl->ifl_m_dequeued++; #endif if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH) prefetch_pkts(fl, cidx); next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size-1); prefetch(&fl->ifl_sds.ifsd_map[next]); map = fl->ifl_sds.ifsd_map[cidx]; next = (cidx + CACHE_LINE_SIZE) & (fl->ifl_size-1); /* not valid assert if bxe really does SGE from non-contiguous elements */ MPASS(fl->ifl_cidx == cidx); bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD); if (unload) bus_dmamap_unload(fl->ifl_buf_tag, map); fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size-1); if (__predict_false(fl->ifl_cidx == 0)) fl->ifl_gen = 0; bit_clear(fl->ifl_rx_bitmap, cidx); } static struct mbuf * assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd) { int i, padlen , flags; struct mbuf *m, *mh, *mt; caddr_t cl; i = 0; mh = NULL; do { rxd_frag_to_sd(rxq, &ri->iri_frags[i], TRUE, sd); MPASS(*sd->ifsd_cl != NULL); MPASS(*sd->ifsd_m != NULL); /* Don't include zero-length frags */ if (ri->iri_frags[i].irf_len == 0) { /* XXX we can save the cluster here, but not the mbuf */ m_init(*sd->ifsd_m, M_NOWAIT, MT_DATA, 0); m_free(*sd->ifsd_m); *sd->ifsd_m = NULL; continue; } m = *sd->ifsd_m; *sd->ifsd_m = NULL; if (mh == NULL) { flags = M_PKTHDR|M_EXT; mh = mt = m; padlen = ri->iri_pad; } else { flags = M_EXT; mt->m_next = m; mt = m; /* assuming padding is only on the first fragment */ padlen = 0; } cl = *sd->ifsd_cl; *sd->ifsd_cl = NULL; /* Can these two be made one ? */ m_init(m, M_NOWAIT, MT_DATA, flags); m_cljset(m, cl, sd->ifsd_fl->ifl_cltype); /* * These must follow m_init and m_cljset */ m->m_data += padlen; ri->iri_len -= padlen; m->m_len = ri->iri_frags[i].irf_len; } while (++i < ri->iri_nfrags); return (mh); } /* * Process one software descriptor */ static struct mbuf * iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri) { struct if_rxsd sd; struct mbuf *m; /* should I merge this back in now that the two paths are basically duplicated? */ if (ri->iri_nfrags == 1 && ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) { rxd_frag_to_sd(rxq, &ri->iri_frags[0], FALSE, &sd); m = *sd.ifsd_m; *sd.ifsd_m = NULL; m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); #ifndef __NO_STRICT_ALIGNMENT if (!IP_ALIGNED(m)) m->m_data += 2; #endif memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len); m->m_len = ri->iri_frags[0].irf_len; } else { m = assemble_segments(rxq, ri, &sd); } m->m_pkthdr.len = ri->iri_len; m->m_pkthdr.rcvif = ri->iri_ifp; m->m_flags |= ri->iri_flags; m->m_pkthdr.ether_vtag = ri->iri_vtag; m->m_pkthdr.flowid = ri->iri_flowid; M_HASHTYPE_SET(m, ri->iri_rsstype); m->m_pkthdr.csum_flags = ri->iri_csum_flags; m->m_pkthdr.csum_data = ri->iri_csum_data; return (m); } #if defined(INET6) || defined(INET) static void iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6) { CURVNET_SET(lc->ifp->if_vnet); #if defined(INET6) *v6 = VNET(ip6_forwarding); #endif #if defined(INET) *v4 = VNET(ipforwarding); #endif CURVNET_RESTORE(); } /* * Returns true if it's possible this packet could be LROed. * if it returns false, it is guaranteed that tcp_lro_rx() * would not return zero. */ static bool iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding) { struct ether_header *eh; uint16_t eh_type; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); switch (eh_type) { #if defined(INET6) case ETHERTYPE_IPV6: return !v6_forwarding; #endif #if defined (INET) case ETHERTYPE_IP: return !v4_forwarding; #endif } return false; } #else static void iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused) { } #endif static bool iflib_rxeof(iflib_rxq_t rxq, qidx_t budget) { if_ctx_t ctx = rxq->ifr_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; int avail, i; qidx_t *cidxp; struct if_rxd_info ri; int err, budget_left, rx_bytes, rx_pkts; iflib_fl_t fl; struct ifnet *ifp; int lro_enabled; bool v4_forwarding, v6_forwarding, lro_possible; /* * XXX early demux data packets so that if_input processing only handles * acks in interrupt context */ struct mbuf *m, *mh, *mt, *mf; lro_possible = v4_forwarding = v6_forwarding = false; ifp = ctx->ifc_ifp; mh = mt = NULL; MPASS(budget > 0); rx_pkts = rx_bytes = 0; if (sctx->isc_flags & IFLIB_HAS_RXCQ) cidxp = &rxq->ifr_cq_cidx; else cidxp = &rxq->ifr_fl[0].ifl_cidx; if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) { for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) __iflib_fl_refill_lt(ctx, fl, budget + 8); DBG_COUNTER_INC(rx_unavail); return (false); } for (budget_left = budget; budget_left > 0 && avail > 0;) { if (__predict_false(!CTX_ACTIVE(ctx))) { DBG_COUNTER_INC(rx_ctx_inactive); break; } /* * Reset client set fields to their default values */ rxd_info_zero(&ri); ri.iri_qsidx = rxq->ifr_id; ri.iri_cidx = *cidxp; ri.iri_ifp = ifp; ri.iri_frags = rxq->ifr_frags; err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); if (err) goto err; if (sctx->isc_flags & IFLIB_HAS_RXCQ) { *cidxp = ri.iri_cidx; /* Update our consumer index */ /* XXX NB: shurd - check if this is still safe */ while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0]) { rxq->ifr_cq_cidx -= scctx->isc_nrxd[0]; rxq->ifr_cq_gen = 0; } /* was this only a completion queue message? */ if (__predict_false(ri.iri_nfrags == 0)) continue; } MPASS(ri.iri_nfrags != 0); MPASS(ri.iri_len != 0); /* will advance the cidx on the corresponding free lists */ m = iflib_rxd_pkt_get(rxq, &ri); avail--; budget_left--; if (avail == 0 && budget_left) avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left); if (__predict_false(m == NULL)) { DBG_COUNTER_INC(rx_mbuf_null); continue; } /* imm_pkt: -- cxgb */ if (mh == NULL) mh = mt = m; else { mt->m_nextpkt = m; mt = m; } } /* make sure that we can refill faster than drain */ for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) __iflib_fl_refill_lt(ctx, fl, budget + 8); lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO); if (lro_enabled) iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding); mt = mf = NULL; while (mh != NULL) { m = mh; mh = mh->m_nextpkt; m->m_nextpkt = NULL; #ifndef __NO_STRICT_ALIGNMENT if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL) continue; #endif rx_bytes += m->m_pkthdr.len; rx_pkts++; #if defined(INET6) || defined(INET) if (lro_enabled) { if (!lro_possible) { lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding); if (lro_possible && mf != NULL) { ifp->if_input(ifp, mf); DBG_COUNTER_INC(rx_if_input); mt = mf = NULL; } } if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC|CSUM_L4_VALID)) == (CSUM_L4_CALC|CSUM_L4_VALID)) { if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0) continue; } } #endif if (lro_possible) { ifp->if_input(ifp, m); DBG_COUNTER_INC(rx_if_input); continue; } if (mf == NULL) mf = m; if (mt != NULL) mt->m_nextpkt = m; mt = m; } if (mf != NULL) { ifp->if_input(ifp, mf); DBG_COUNTER_INC(rx_if_input); } if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); /* * Flush any outstanding LRO work */ #if defined(INET6) || defined(INET) tcp_lro_flush_all(&rxq->ifr_lc); #endif if (avail) return true; return (iflib_rxd_avail(ctx, rxq, *cidxp, 1)); err: STATE_LOCK(ctx); ctx->ifc_flags |= IFC_DO_RESET; iflib_admin_intr_deferred(ctx); STATE_UNLOCK(ctx); return (false); } #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq)-1) static inline qidx_t txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use) { qidx_t notify_count = TXD_NOTIFY_COUNT(txq); qidx_t minthresh = txq->ift_size / 8; if (in_use > 4*minthresh) return (notify_count); if (in_use > 2*minthresh) return (notify_count >> 1); if (in_use > minthresh) return (notify_count >> 3); return (0); } static inline qidx_t txq_max_rs_deferred(iflib_txq_t txq) { qidx_t notify_count = TXD_NOTIFY_COUNT(txq); qidx_t minthresh = txq->ift_size / 8; if (txq->ift_in_use > 4*minthresh) return (notify_count); if (txq->ift_in_use > 2*minthresh) return (notify_count >> 1); if (txq->ift_in_use > minthresh) return (notify_count >> 2); return (2); } #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags) #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG) #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use)) #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq) #define TXQ_MAX_DB_CONSUMED(size) (size >> 4) /* forward compatibility for cxgb */ #define FIRST_QSET(ctx) 0 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets) #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets) #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx)) #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments)) /* XXX we should be setting this to something other than zero */ #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh) #define MAX_TX_DESC(ctx) max((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \ (ctx)->ifc_softc_ctx.isc_tx_nsegments) static inline bool iflib_txd_db_check(if_ctx_t ctx, iflib_txq_t txq, int ring, qidx_t in_use) { qidx_t dbval, max; bool rang; rang = false; max = TXQ_MAX_DB_DEFERRED(txq, in_use); if (ring || txq->ift_db_pending >= max) { dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx; bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval); txq->ift_db_pending = txq->ift_npending = 0; rang = true; } return (rang); } #ifdef PKT_DEBUG static void print_pkt(if_pkt_info_t pi) { printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n", pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx); printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n", pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag); printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n", pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto); } #endif #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO) #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO)) #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO) #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO)) static int iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp) { if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx; struct ether_vlan_header *eh; struct mbuf *m; m = *mp; if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) && M_WRITABLE(m) == 0) { if ((m = m_dup(m, M_NOWAIT)) == NULL) { return (ENOMEM); } else { m_freem(*mp); DBG_COUNTER_INC(tx_frees); *mp = m; } } /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ if (__predict_false(m->m_len < sizeof(*eh))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL)) return (ENOMEM); } eh = mtod(m, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { pi->ipi_etype = ntohs(eh->evl_proto); pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { pi->ipi_etype = ntohs(eh->evl_encap_proto); pi->ipi_ehdrlen = ETHER_HDR_LEN; } switch (pi->ipi_etype) { #ifdef INET case ETHERTYPE_IP: { struct mbuf *n; struct ip *ip = NULL; struct tcphdr *th = NULL; int minthlen; minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th)); if (__predict_false(m->m_len < minthlen)) { /* * if this code bloat is causing too much of a hit * move it to a separate function and mark it noinline */ if (m->m_len == pi->ipi_ehdrlen) { n = m->m_next; MPASS(n); if (n->m_len >= sizeof(*ip)) { ip = (struct ip *)n->m_data; if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } else { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) return (ENOMEM); ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); } } else { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) return (ENOMEM); ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } } else { ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } pi->ipi_ip_hlen = ip->ip_hl << 2; pi->ipi_ipproto = ip->ip_p; pi->ipi_flags |= IPI_TX_IPV4; /* TCP checksum offload may require TCP header length */ if (IS_TX_OFFLOAD4(pi)) { if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) { if (__predict_false(th == NULL)) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL)) return (ENOMEM); th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen); } pi->ipi_tcp_hflags = th->th_flags; pi->ipi_tcp_hlen = th->th_off << 2; pi->ipi_tcp_seq = th->th_seq; } if (IS_TSO4(pi)) { if (__predict_false(ip->ip_p != IPPROTO_TCP)) return (ENXIO); /* * TSO always requires hardware checksum offload. */ pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; if (sctx->isc_flags & IFLIB_TSO_INIT_IP) { ip->ip_sum = 0; ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz); } } } if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP)) ip->ip_sum = 0; break; } #endif #ifdef INET6 case ETHERTYPE_IPV6: { struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); struct tcphdr *th; pi->ipi_ip_hlen = sizeof(struct ip6_hdr); if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) return (ENOMEM); } th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen); /* XXX-BZ this will go badly in case of ext hdrs. */ pi->ipi_ipproto = ip6->ip6_nxt; pi->ipi_flags |= IPI_TX_IPV6; /* TCP checksum offload may require TCP header length */ if (IS_TX_OFFLOAD6(pi)) { if (pi->ipi_ipproto == IPPROTO_TCP) { if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL)) return (ENOMEM); } pi->ipi_tcp_hflags = th->th_flags; pi->ipi_tcp_hlen = th->th_off << 2; pi->ipi_tcp_seq = th->th_seq; } if (IS_TSO6(pi)) { if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP)) return (ENXIO); /* * TSO always requires hardware checksum offload. */ pi->ipi_csum_flags |= CSUM_IP6_TCP; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; } } break; } #endif default: pi->ipi_csum_flags &= ~CSUM_OFFLOAD; pi->ipi_ip_hlen = 0; break; } *mp = m; return (0); } /* * If dodgy hardware rejects the scatter gather chain we've handed it * we'll need to remove the mbuf chain from ifsg_m[] before we can add the * m_defrag'd mbufs */ static __noinline struct mbuf * iflib_remove_mbuf(iflib_txq_t txq) { int ntxd, pidx; struct mbuf *m, **ifsd_m; ifsd_m = txq->ift_sds.ifsd_m; ntxd = txq->ift_size; pidx = txq->ift_pidx & (ntxd - 1); ifsd_m = txq->ift_sds.ifsd_m; m = ifsd_m[pidx]; ifsd_m[pidx] = NULL; bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]); if (txq->ift_sds.ifsd_tso_map != NULL) bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[pidx]); #if MEMORY_LOGGING txq->ift_dequeued++; #endif return (m); } static inline caddr_t calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid) { qidx_t size; int ntxd; caddr_t start, end, cur, next; ntxd = txq->ift_size; size = txq->ift_txd_size[qid]; start = txq->ift_ifdi[qid].idi_vaddr; if (__predict_false(size == 0)) return (start); cur = start + size*cidx; end = start + size*ntxd; next = CACHE_PTR_NEXT(cur); return (next < end ? next : start); } /* * Pad an mbuf to ensure a minimum ethernet frame size. * min_frame_size is the frame size (less CRC) to pad the mbuf to */ static __noinline int iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size) { /* * 18 is enough bytes to pad an ARP packet to 46 bytes, and * and ARP message is the smallest common payload I can think of */ static char pad[18]; /* just zeros */ int n; struct mbuf *new_head; if (!M_WRITABLE(*m_head)) { new_head = m_dup(*m_head, M_NOWAIT); if (new_head == NULL) { m_freem(*m_head); device_printf(dev, "cannot pad short frame, m_dup() failed"); DBG_COUNTER_INC(encap_pad_mbuf_fail); DBG_COUNTER_INC(tx_frees); return ENOMEM; } m_freem(*m_head); *m_head = new_head; } for (n = min_frame_size - (*m_head)->m_pkthdr.len; n > 0; n -= sizeof(pad)) if (!m_append(*m_head, min(n, sizeof(pad)), pad)) break; if (n > 0) { m_freem(*m_head); device_printf(dev, "cannot pad short frame\n"); DBG_COUNTER_INC(encap_pad_mbuf_fail); DBG_COUNTER_INC(tx_frees); return (ENOBUFS); } return 0; } static int iflib_encap(iflib_txq_t txq, struct mbuf **m_headp) { if_ctx_t ctx; if_shared_ctx_t sctx; if_softc_ctx_t scctx; bus_dma_tag_t buf_tag; bus_dma_segment_t *segs; struct mbuf *m_head, **ifsd_m; void *next_txd; bus_dmamap_t map; struct if_pkt_info pi; int remap = 0; int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd; ctx = txq->ift_ctx; sctx = ctx->ifc_sctx; scctx = &ctx->ifc_softc_ctx; segs = txq->ift_segs; ntxd = txq->ift_size; m_head = *m_headp; map = NULL; /* * If we're doing TSO the next descriptor to clean may be quite far ahead */ cidx = txq->ift_cidx; pidx = txq->ift_pidx; if (ctx->ifc_flags & IFC_PREFETCH) { next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1); if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) { next_txd = calc_next_txd(txq, cidx, 0); prefetch(next_txd); } /* prefetch the next cache line of mbuf pointers and flags */ prefetch(&txq->ift_sds.ifsd_m[next]); prefetch(&txq->ift_sds.ifsd_map[next]); next = (cidx + CACHE_LINE_SIZE) & (ntxd-1); } map = txq->ift_sds.ifsd_map[pidx]; ifsd_m = txq->ift_sds.ifsd_m; if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { buf_tag = txq->ift_tso_buf_tag; max_segs = scctx->isc_tx_tso_segments_max; map = txq->ift_sds.ifsd_tso_map[pidx]; MPASS(buf_tag != NULL); MPASS(max_segs > 0); } else { buf_tag = txq->ift_buf_tag; max_segs = scctx->isc_tx_nsegments; map = txq->ift_sds.ifsd_map[pidx]; } if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) && __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) { err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size); if (err) { DBG_COUNTER_INC(encap_txd_encap_fail); return err; } } m_head = *m_headp; pkt_info_zero(&pi); pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST)); pi.ipi_pidx = pidx; pi.ipi_qsidx = txq->ift_id; pi.ipi_len = m_head->m_pkthdr.len; pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags; pi.ipi_vtag = (m_head->m_flags & M_VLANTAG) ? m_head->m_pkthdr.ether_vtag : 0; /* deliberate bitwise OR to make one condition */ if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) { if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) { DBG_COUNTER_INC(encap_txd_encap_fail); return (err); } m_head = *m_headp; } retry: err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs, BUS_DMA_NOWAIT); defrag: if (__predict_false(err)) { switch (err) { case EFBIG: /* try collapse once and defrag once */ if (remap == 0) { m_head = m_collapse(*m_headp, M_NOWAIT, max_segs); /* try defrag if collapsing fails */ if (m_head == NULL) remap++; } if (remap == 1) { txq->ift_mbuf_defrag++; m_head = m_defrag(*m_headp, M_NOWAIT); } remap++; if (__predict_false(m_head == NULL)) goto defrag_failed; *m_headp = m_head; goto retry; break; case ENOMEM: txq->ift_no_tx_dma_setup++; break; default: txq->ift_no_tx_dma_setup++; m_freem(*m_headp); DBG_COUNTER_INC(tx_frees); *m_headp = NULL; break; } txq->ift_map_failed++; DBG_COUNTER_INC(encap_load_mbuf_fail); DBG_COUNTER_INC(encap_txd_encap_fail); return (err); } ifsd_m[pidx] = m_head; /* * XXX assumes a 1 to 1 relationship between segments and * descriptors - this does not hold true on all drivers, e.g. * cxgb */ if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) { txq->ift_no_desc_avail++; bus_dmamap_unload(buf_tag, map); DBG_COUNTER_INC(encap_txq_avail_fail); DBG_COUNTER_INC(encap_txd_encap_fail); if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0) GROUPTASK_ENQUEUE(&txq->ift_task); return (ENOBUFS); } /* * On Intel cards we can greatly reduce the number of TX interrupts * we see by only setting report status on every Nth descriptor. * However, this also means that the driver will need to keep track * of the descriptors that RS was set on to check them for the DD bit. */ txq->ift_rs_pending += nsegs + 1; if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) || iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) { pi.ipi_flags |= IPI_TX_INTR; txq->ift_rs_pending = 0; } pi.ipi_segs = segs; pi.ipi_nsegs = nsegs; MPASS(pidx >= 0 && pidx < txq->ift_size); #ifdef PKT_DEBUG print_pkt(&pi); #endif if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) { bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE); DBG_COUNTER_INC(tx_encap); MPASS(pi.ipi_new_pidx < txq->ift_size); ndesc = pi.ipi_new_pidx - pi.ipi_pidx; if (pi.ipi_new_pidx < pi.ipi_pidx) { ndesc += txq->ift_size; txq->ift_gen = 1; } /* * drivers can need as many as * two sentinels */ MPASS(ndesc <= pi.ipi_nsegs + 2); MPASS(pi.ipi_new_pidx != pidx); MPASS(ndesc > 0); txq->ift_in_use += ndesc; /* * We update the last software descriptor again here because there may * be a sentinel and/or there may be more mbufs than segments */ txq->ift_pidx = pi.ipi_new_pidx; txq->ift_npending += pi.ipi_ndescs; } else { *m_headp = m_head = iflib_remove_mbuf(txq); if (err == EFBIG) { txq->ift_txd_encap_efbig++; if (remap < 2) { remap = 1; goto defrag; } } goto defrag_failed; } /* * err can't possibly be non-zero here, so we don't neet to test it * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail). */ return (err); defrag_failed: txq->ift_mbuf_defrag_failed++; txq->ift_map_failed++; m_freem(*m_headp); DBG_COUNTER_INC(tx_frees); *m_headp = NULL; DBG_COUNTER_INC(encap_txd_encap_fail); return (ENOMEM); } static void iflib_tx_desc_free(iflib_txq_t txq, int n) { uint32_t qsize, cidx, mask, gen; struct mbuf *m, **ifsd_m; bool do_prefetch; cidx = txq->ift_cidx; gen = txq->ift_gen; qsize = txq->ift_size; mask = qsize-1; ifsd_m = txq->ift_sds.ifsd_m; do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH); while (n-- > 0) { if (do_prefetch) { prefetch(ifsd_m[(cidx + 3) & mask]); prefetch(ifsd_m[(cidx + 4) & mask]); } if ((m = ifsd_m[cidx]) != NULL) { prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]); if (m->m_pkthdr.csum_flags & CSUM_TSO) { bus_dmamap_sync(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[cidx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[cidx]); } else { bus_dmamap_sync(txq->ift_buf_tag, txq->ift_sds.ifsd_map[cidx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[cidx]); } /* XXX we don't support any drivers that batch packets yet */ MPASS(m->m_nextpkt == NULL); m_freem(m); ifsd_m[cidx] = NULL; #if MEMORY_LOGGING txq->ift_dequeued++; #endif DBG_COUNTER_INC(tx_frees); } if (__predict_false(++cidx == qsize)) { cidx = 0; gen = 0; } } txq->ift_cidx = cidx; txq->ift_gen = gen; } static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh) { int reclaim; if_ctx_t ctx = txq->ift_ctx; KASSERT(thresh >= 0, ("invalid threshold to reclaim")); MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size); /* * Need a rate-limiting check so that this isn't called every time */ iflib_tx_credits_update(ctx, txq); reclaim = DESC_RECLAIMABLE(txq); if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) { #ifdef INVARIANTS if (iflib_verbose_debug) { printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__, txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments, reclaim, thresh); } #endif return (0); } iflib_tx_desc_free(txq, reclaim); txq->ift_cleaned += reclaim; txq->ift_in_use -= reclaim; return (reclaim); } static struct mbuf ** _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining) { int next, size; struct mbuf **items; size = r->size; next = (cidx + CACHE_PTR_INCREMENT) & (size-1); items = __DEVOLATILE(struct mbuf **, &r->items[0]); prefetch(items[(cidx + offset) & (size-1)]); if (remaining > 1) { prefetch2cachelines(&items[next]); prefetch2cachelines(items[(cidx + offset + 1) & (size-1)]); prefetch2cachelines(items[(cidx + offset + 2) & (size-1)]); prefetch2cachelines(items[(cidx + offset + 3) & (size-1)]); } return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size-1)])); } static void iflib_txq_check_drain(iflib_txq_t txq, int budget) { ifmp_ring_check_drainage(txq->ift_br, budget); } static uint32_t iflib_txq_can_drain(struct ifmp_ring *r) { iflib_txq_t txq = r->cookie; if_ctx_t ctx = txq->ift_ctx; if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2) return (1); bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, false)); } static uint32_t iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) { iflib_txq_t txq = r->cookie; if_ctx_t ctx = txq->ift_ctx; struct ifnet *ifp = ctx->ifc_ifp; struct mbuf **mp, *m; int i, count, consumed, pkt_sent, bytes_sent, mcast_sent, avail; int reclaimed, err, in_use_prev, desc_used; bool do_prefetch, ring, rang; if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) || !LINK_ACTIVE(ctx))) { DBG_COUNTER_INC(txq_drain_notready); return (0); } reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); rang = iflib_txd_db_check(ctx, txq, reclaimed, txq->ift_in_use); avail = IDXDIFF(pidx, cidx, r->size); if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) { DBG_COUNTER_INC(txq_drain_flushing); for (i = 0; i < avail; i++) { if (__predict_true(r->items[(cidx + i) & (r->size-1)] != (void *)txq)) m_free(r->items[(cidx + i) & (r->size-1)]); r->items[(cidx + i) & (r->size-1)] = NULL; } return (avail); } if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) { txq->ift_qstatus = IFLIB_QUEUE_IDLE; CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); DBG_COUNTER_INC(txq_drain_oactive); return (0); } if (reclaimed) txq->ift_qstatus = IFLIB_QUEUE_IDLE; consumed = mcast_sent = bytes_sent = pkt_sent = 0; count = MIN(avail, TX_BATCH_SIZE); #ifdef INVARIANTS if (iflib_verbose_debug) printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __FUNCTION__, avail, ctx->ifc_flags, TXQ_AVAIL(txq)); #endif do_prefetch = (ctx->ifc_flags & IFC_PREFETCH); avail = TXQ_AVAIL(txq); err = 0; for (desc_used = i = 0; i < count && avail > MAX_TX_DESC(ctx) + 2; i++) { int rem = do_prefetch ? count - i : 0; mp = _ring_peek_one(r, cidx, i, rem); MPASS(mp != NULL && *mp != NULL); if (__predict_false(*mp == (struct mbuf *)txq)) { consumed++; reclaimed++; continue; } in_use_prev = txq->ift_in_use; err = iflib_encap(txq, mp); if (__predict_false(err)) { /* no room - bail out */ if (err == ENOBUFS) break; consumed++; /* we can't send this packet - skip it */ continue; } consumed++; pkt_sent++; m = *mp; DBG_COUNTER_INC(tx_sent); bytes_sent += m->m_pkthdr.len; mcast_sent += !!(m->m_flags & M_MCAST); avail = TXQ_AVAIL(txq); txq->ift_db_pending += (txq->ift_in_use - in_use_prev); desc_used += (txq->ift_in_use - in_use_prev); ETHER_BPF_MTAP(ifp, m); if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) break; rang = iflib_txd_db_check(ctx, txq, false, in_use_prev); } /* deliberate use of bitwise or to avoid gratuitous short-circuit */ ring = rang ? false : (iflib_min_tx_latency | err) || (TXQ_AVAIL(txq) < MAX_TX_DESC(ctx)); iflib_txd_db_check(ctx, txq, ring, txq->ift_in_use); if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent); if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent); if (mcast_sent) if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent); #ifdef INVARIANTS if (iflib_verbose_debug) printf("consumed=%d\n", consumed); #endif return (consumed); } static uint32_t iflib_txq_drain_always(struct ifmp_ring *r) { return (1); } static uint32_t iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) { int i, avail; struct mbuf **mp; iflib_txq_t txq; txq = r->cookie; txq->ift_qstatus = IFLIB_QUEUE_IDLE; CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); avail = IDXDIFF(pidx, cidx, r->size); for (i = 0; i < avail; i++) { mp = _ring_peek_one(r, cidx, i, avail - i); if (__predict_false(*mp == (struct mbuf *)txq)) continue; m_freem(*mp); DBG_COUNTER_INC(tx_frees); } MPASS(ifmp_ring_is_stalled(r) == 0); return (avail); } static void iflib_ifmp_purge(iflib_txq_t txq) { struct ifmp_ring *r; r = txq->ift_br; r->drain = iflib_txq_drain_free; r->can_drain = iflib_txq_drain_always; ifmp_ring_check_drainage(r, r->size); r->drain = iflib_txq_drain; r->can_drain = iflib_txq_can_drain; } static void _task_fn_tx(void *context) { iflib_txq_t txq = context; if_ctx_t ctx = txq->ift_ctx; int abdicate = ctx->ifc_sysctl_tx_abdicate; #ifdef IFLIB_DIAGNOSTICS txq->ift_cpu_exec_count[curcpu]++; #endif if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) return; #ifdef DEV_NETMAP if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) { bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, false)) netmap_tx_irq(ctx->ifc_ifp, txq->ift_id); IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); return; } #endif #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) iflib_altq_if_start(ifp); #endif if (txq->ift_db_pending) ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate); else if (!abdicate) ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); /* * When abdicating, we always need to check drainage, not just when we don't enqueue */ if (abdicate) ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); if (ctx->ifc_flags & IFC_LEGACY) IFDI_INTR_ENABLE(ctx); else { #ifdef INVARIANTS int rc = #endif IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); KASSERT(rc != ENOTSUP, ("MSI-X support requires queue_intr_enable, but not implemented in driver")); } } static void _task_fn_rx(void *context) { iflib_rxq_t rxq = context; if_ctx_t ctx = rxq->ifr_ctx; bool more; uint16_t budget; #ifdef IFLIB_DIAGNOSTICS rxq->ifr_cpu_exec_count[curcpu]++; #endif DBG_COUNTER_INC(task_fn_rxs); if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) return; more = true; #ifdef DEV_NETMAP if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) { u_int work = 0; if (netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work)) { more = false; } } #endif budget = ctx->ifc_sysctl_rx_budget; if (budget == 0) budget = 16; /* XXX */ if (more == false || (more = iflib_rxeof(rxq, budget)) == false) { if (ctx->ifc_flags & IFC_LEGACY) IFDI_INTR_ENABLE(ctx); else { #ifdef INVARIANTS int rc = #endif IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); KASSERT(rc != ENOTSUP, ("MSI-X support requires queue_intr_enable, but not implemented in driver")); DBG_COUNTER_INC(rx_intr_enables); } } if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) return; if (more) GROUPTASK_ENQUEUE(&rxq->ifr_task); } static void _task_fn_admin(void *context) { if_ctx_t ctx = context; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; iflib_txq_t txq; int i; bool oactive, running, do_reset, do_watchdog, in_detach; uint32_t reset_on = hz / 2; STATE_LOCK(ctx); running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING); oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE); do_reset = (ctx->ifc_flags & IFC_DO_RESET); do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG); in_detach = (ctx->ifc_flags & IFC_IN_DETACH); ctx->ifc_flags &= ~(IFC_DO_RESET|IFC_DO_WATCHDOG); STATE_UNLOCK(ctx); if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) return; if (in_detach) return; CTX_LOCK(ctx); for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); } if (do_watchdog) { ctx->ifc_watchdog_events++; IFDI_WATCHDOG_RESET(ctx); } IFDI_UPDATE_ADMIN_STATUS(ctx); for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { #ifdef DEV_NETMAP reset_on = hz / 2; if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) iflib_netmap_timer_adjust(ctx, txq, &reset_on); #endif callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu); } IFDI_LINK_INTR_ENABLE(ctx); if (do_reset) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); if (LINK_ACTIVE(ctx) == 0) return; for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); } static void _task_fn_iov(void *context) { if_ctx_t ctx = context; if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) return; CTX_LOCK(ctx); IFDI_VFLR_HANDLE(ctx); CTX_UNLOCK(ctx); } static int iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS) { int err; if_int_delay_info_t info; if_ctx_t ctx; info = (if_int_delay_info_t)arg1; ctx = info->iidi_ctx; info->iidi_req = req; info->iidi_oidp = oidp; CTX_LOCK(ctx); err = IFDI_SYSCTL_INT_DELAY(ctx, info); CTX_UNLOCK(ctx); return (err); } /********************************************************************* * * IFNET FUNCTIONS * **********************************************************************/ static void iflib_if_init_locked(if_ctx_t ctx) { iflib_stop(ctx); iflib_init_locked(ctx); } static void iflib_if_init(void *arg) { if_ctx_t ctx = arg; CTX_LOCK(ctx); iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static int iflib_if_transmit(if_t ifp, struct mbuf *m) { if_ctx_t ctx = if_getsoftc(ifp); iflib_txq_t txq; int err, qidx; int abdicate = ctx->ifc_sysctl_tx_abdicate; if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) { DBG_COUNTER_INC(tx_frees); m_freem(m); return (ENOBUFS); } MPASS(m->m_nextpkt == NULL); /* ALTQ-enabled interfaces always use queue 0. */ qidx = 0; if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !ALTQ_IS_ENABLED(&ifp->if_snd)) qidx = QIDX(ctx, m); /* * XXX calculate buf_ring based on flowid (divvy up bits?) */ txq = &ctx->ifc_txqs[qidx]; #ifdef DRIVER_BACKPRESSURE if (txq->ift_closed) { while (m != NULL) { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); DBG_COUNTER_INC(tx_frees); m = next; } return (ENOBUFS); } #endif #ifdef notyet qidx = count = 0; mp = marr; next = m; do { count++; next = next->m_nextpkt; } while (next != NULL); if (count > nitems(marr)) if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) { /* XXX check nextpkt */ m_freem(m); /* XXX simplify for now */ DBG_COUNTER_INC(tx_frees); return (ENOBUFS); } for (next = m, i = 0; next != NULL; i++) { mp[i] = next; next = next->m_nextpkt; mp[i]->m_nextpkt = NULL; } #endif DBG_COUNTER_INC(tx_seen); err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate); if (abdicate) GROUPTASK_ENQUEUE(&txq->ift_task); if (err) { if (!abdicate) GROUPTASK_ENQUEUE(&txq->ift_task); /* support forthcoming later */ #ifdef DRIVER_BACKPRESSURE txq->ift_closed = TRUE; #endif ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); m_freem(m); DBG_COUNTER_INC(tx_frees); } return (err); } #ifdef ALTQ /* * The overall approach to integrating iflib with ALTQ is to continue to use * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring * is redundant/unnecessary, but doing so minimizes the amount of * ALTQ-specific code required in iflib. It is assumed that the overhead of * redundantly queueing to an intermediate mp_ring is swamped by the * performance limitations inherent in using ALTQ. * * When ALTQ support is compiled in, all iflib drivers will use a transmit * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the * given interface. If ALTQ is enabled for an interface, then all * transmitted packets for that interface will be submitted to the ALTQ * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit() * implementation because it uses IFQ_HANDOFF(), which will duplicatively * update stats that the iflib machinery handles, and which is sensitve to * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start() * will be installed as the start routine for use by ALTQ facilities that * need to trigger queue drains on a scheduled basis. * */ static void iflib_altq_if_start(if_t ifp) { struct ifaltq *ifq = &ifp->if_snd; struct mbuf *m; IFQ_LOCK(ifq); IFQ_DEQUEUE_NOLOCK(ifq, m); while (m != NULL) { iflib_if_transmit(ifp, m); IFQ_DEQUEUE_NOLOCK(ifq, m); } IFQ_UNLOCK(ifq); } static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m) { int err; if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_ENQUEUE(&ifp->if_snd, m, err); if (err == 0) iflib_altq_if_start(ifp); } else err = iflib_if_transmit(ifp, m); return (err); } #endif /* ALTQ */ static void iflib_if_qflush(if_t ifp) { if_ctx_t ctx = if_getsoftc(ifp); iflib_txq_t txq = ctx->ifc_txqs; int i; STATE_LOCK(ctx); ctx->ifc_flags |= IFC_QFLUSH; STATE_UNLOCK(ctx); for (i = 0; i < NTXQSETS(ctx); i++, txq++) while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br))) iflib_txq_check_drain(txq, 0); STATE_LOCK(ctx); ctx->ifc_flags &= ~IFC_QFLUSH; STATE_UNLOCK(ctx); /* * When ALTQ is enabled, this will also take care of purging the * ALTQ queue(s). */ if_qflush(ifp); } #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \ IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \ IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \ IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM) static int iflib_if_ioctl(if_t ifp, u_long command, caddr_t data) { if_ctx_t ctx = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; #if defined(INET) || defined(INET6) struct ifaddr *ifa = (struct ifaddr *)data; #endif bool avoid_reset = FALSE; int err = 0, reinit = 0, bits; switch (command) { case SIOCSIFADDR: #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) avoid_reset = TRUE; #endif #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) avoid_reset = TRUE; #endif /* ** Calling init results in link renegotiation, ** so we avoid doing it when possible. */ if (avoid_reset) { if_setflagbits(ifp, IFF_UP,0); if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) reinit = 1; #ifdef INET if (!(if_getflags(ifp) & IFF_NOARP)) arp_ifinit(ifp, ifa); #endif } else err = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: CTX_LOCK(ctx); if (ifr->ifr_mtu == if_getmtu(ifp)) { CTX_UNLOCK(ctx); break; } bits = if_getdrvflags(ifp); /* stop the driver and free any clusters before proceeding */ iflib_stop(ctx); if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) { STATE_LOCK(ctx); if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size) ctx->ifc_flags |= IFC_MULTISEG; else ctx->ifc_flags &= ~IFC_MULTISEG; STATE_UNLOCK(ctx); err = if_setmtu(ifp, ifr->ifr_mtu); } iflib_init_locked(ctx); STATE_LOCK(ctx); if_setdrvflags(ifp, bits); STATE_UNLOCK(ctx); CTX_UNLOCK(ctx); break; case SIOCSIFFLAGS: CTX_LOCK(ctx); if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { if ((if_getflags(ifp) ^ ctx->ifc_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { err = IFDI_PROMISC_SET(ctx, if_getflags(ifp)); } } else reinit = 1; } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { iflib_stop(ctx); } ctx->ifc_if_flags = if_getflags(ifp); CTX_UNLOCK(ctx); break; case SIOCADDMULTI: case SIOCDELMULTI: if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { CTX_LOCK(ctx); IFDI_INTR_DISABLE(ctx); IFDI_MULTI_SET(ctx); IFDI_INTR_ENABLE(ctx); CTX_UNLOCK(ctx); } break; case SIOCSIFMEDIA: CTX_LOCK(ctx); IFDI_MEDIA_SET(ctx); CTX_UNLOCK(ctx); /* falls thru */ case SIOCGIFMEDIA: case SIOCGIFXMEDIA: err = ifmedia_ioctl(ifp, ifr, &ctx->ifc_media, command); break; case SIOCGI2C: { struct ifi2creq i2c; err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); if (err != 0) break; if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { err = EINVAL; break; } if (i2c.len > sizeof(i2c.data)) { err = EINVAL; break; } if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0) err = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); break; } case SIOCSIFCAP: { int mask, setmask, oldmask; oldmask = if_getcapenable(ifp); mask = ifr->ifr_reqcap ^ oldmask; mask &= ctx->ifc_softc_ctx.isc_capabilities; setmask = 0; #ifdef TCP_OFFLOAD setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6); #endif setmask |= (mask & IFCAP_FLAGS); setmask |= (mask & IFCAP_WOL); /* * If any RX csum has changed, change all the ones that * are supported by the driver. */ if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { setmask |= ctx->ifc_softc_ctx.isc_capabilities & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); } /* * want to ensure that traffic has stopped before we change any of the flags */ if (setmask) { CTX_LOCK(ctx); bits = if_getdrvflags(ifp); if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) iflib_stop(ctx); STATE_LOCK(ctx); if_togglecapenable(ifp, setmask); STATE_UNLOCK(ctx); if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) iflib_init_locked(ctx); STATE_LOCK(ctx); if_setdrvflags(ifp, bits); STATE_UNLOCK(ctx); CTX_UNLOCK(ctx); } if_vlancap(ifp); break; } case SIOCGPRIVATE_0: case SIOCSDRVSPEC: case SIOCGDRVSPEC: CTX_LOCK(ctx); err = IFDI_PRIV_IOCTL(ctx, command, data); CTX_UNLOCK(ctx); break; default: err = ether_ioctl(ifp, command, data); break; } if (reinit) iflib_if_init(ctx); return (err); } static uint64_t iflib_if_get_counter(if_t ifp, ift_counter cnt) { if_ctx_t ctx = if_getsoftc(ifp); return (IFDI_GET_COUNTER(ctx, cnt)); } /********************************************************************* * * OTHER FUNCTIONS EXPORTED TO THE STACK * **********************************************************************/ static void iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag) { if_ctx_t ctx = if_getsoftc(ifp); if ((void *)ctx != arg) return; if ((vtag == 0) || (vtag > 4095)) return; CTX_LOCK(ctx); IFDI_VLAN_REGISTER(ctx, vtag); /* Re-init to load the changes */ if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static void iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag) { if_ctx_t ctx = if_getsoftc(ifp); if ((void *)ctx != arg) return; if ((vtag == 0) || (vtag > 4095)) return; CTX_LOCK(ctx); IFDI_VLAN_UNREGISTER(ctx, vtag); /* Re-init to load the changes */ if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static void iflib_led_func(void *arg, int onoff) { if_ctx_t ctx = arg; CTX_LOCK(ctx); IFDI_LED_FUNC(ctx, onoff); CTX_UNLOCK(ctx); } /********************************************************************* * * BUS FUNCTION DEFINITIONS * **********************************************************************/ int iflib_device_probe(device_t dev) { pci_vendor_info_t *ent; uint16_t pci_vendor_id, pci_device_id; uint16_t pci_subvendor_id, pci_subdevice_id; uint16_t pci_rev_id; if_shared_ctx_t sctx; if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) return (ENOTSUP); pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); pci_subvendor_id = pci_get_subvendor(dev); pci_subdevice_id = pci_get_subdevice(dev); pci_rev_id = pci_get_revid(dev); if (sctx->isc_parse_devinfo != NULL) sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id); ent = sctx->isc_vendor_info; while (ent->pvi_vendor_id != 0) { if (pci_vendor_id != ent->pvi_vendor_id) { ent++; continue; } if ((pci_device_id == ent->pvi_device_id) && ((pci_subvendor_id == ent->pvi_subvendor_id) || (ent->pvi_subvendor_id == 0)) && ((pci_subdevice_id == ent->pvi_subdevice_id) || (ent->pvi_subdevice_id == 0)) && ((pci_rev_id == ent->pvi_rev_id) || (ent->pvi_rev_id == 0))) { device_set_desc_copy(dev, ent->pvi_name); /* this needs to be changed to zero if the bus probing code * ever stops re-probing on best match because the sctx * may have its values over written by register calls * in subsequent probes */ return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } static void iflib_reset_qvalues(if_ctx_t ctx) { if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; device_t dev = ctx->ifc_dev; int i; scctx->isc_txrx_budget_bytes_max = IFLIB_MAX_TX_BYTES; scctx->isc_tx_qdepth = IFLIB_DEFAULT_TX_QDEPTH; /* * XXX sanity check that ntxd & nrxd are a power of 2 */ if (ctx->ifc_sysctl_ntxqs != 0) scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs; if (ctx->ifc_sysctl_nrxqs != 0) scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs; for (i = 0; i < sctx->isc_ntxqs; i++) { if (ctx->ifc_sysctl_ntxds[i] != 0) scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i]; else scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; } for (i = 0; i < sctx->isc_nrxqs; i++) { if (ctx->ifc_sysctl_nrxds[i] != 0) scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i]; else scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; } for (i = 0; i < sctx->isc_nrxqs; i++) { if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) { device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n", i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]); scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i]; } if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) { device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n", i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]); scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i]; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) { device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n", i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]); scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i]; } if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) { device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n", i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]); scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i]; } } } int iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp) { int err, rid, msix; if_ctx_t ctx; if_t ifp; if_softc_ctx_t scctx; int i; uint16_t main_txq; uint16_t main_rxq; ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO); if (sc == NULL) { sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO); device_set_softc(dev, ctx); ctx->ifc_flags |= IFC_SC_ALLOCATED; } ctx->ifc_sctx = sctx; ctx->ifc_dev = dev; ctx->ifc_softc = sc; if ((err = iflib_register(ctx)) != 0) { device_printf(dev, "iflib_register failed %d\n", err); goto fail_ctx_free; } iflib_add_device_sysctl_pre(ctx); scctx = &ctx->ifc_softc_ctx; ifp = ctx->ifc_ifp; iflib_reset_qvalues(ctx); CTX_LOCK(ctx); if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); goto fail_unlock; } _iflib_pre_assert(scctx); ctx->ifc_txrx = *scctx->isc_txrx; #ifdef INVARIANTS MPASS(scctx->isc_capabilities); if (scctx->isc_capabilities & IFCAP_TXCSUM) MPASS(scctx->isc_tx_csum_flags); #endif if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS); if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS); if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; /* XXX change for per-queue sizes */ device_printf(dev, "Using %d tx descriptors and %d rx descriptors\n", scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]); for (i = 0; i < sctx->isc_nrxqs; i++) { if (!powerof2(scctx->isc_nrxd[i])) { /* round down instead? */ device_printf(dev, "# rx descriptors must be a power of 2\n"); err = EINVAL; goto fail_iflib_detach; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (!powerof2(scctx->isc_ntxd[i])) { device_printf(dev, "# tx descriptors must be a power of 2"); err = EINVAL; goto fail_iflib_detach; } } if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_tso_segments_max = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ if (if_getcapabilities(ifp) & IFCAP_TSO) { /* * The stack can't handle a TSO size larger than IP_MAXPACKET, * but some MACs do. */ if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, IP_MAXPACKET)); /* * Take maximum number of m_pullup(9)'s in iflib_parse_header() * into account. In the worst case, each of these calls will * add another mbuf and, thus, the requirement for another DMA * segment. So for best performance, it doesn't make sense to * advertize a maximum of TSO segments that typically will * require defragmentation in iflib_encap(). */ if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); } if (scctx->isc_rss_table_size == 0) scctx->isc_rss_table_size = 64; scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1; GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); /* XXX format name */ - taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, -1, "admin"); + taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, + NULL, NULL, "admin"); /* Set up cpu set. If it fails, use the set of all CPUs. */ if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) { device_printf(dev, "Unable to fetch CPU list\n"); CPU_COPY(&all_cpus, &ctx->ifc_cpus); } MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0); /* ** Now set up MSI or MSI-X, should return us the number of supported ** vectors (will be 1 for a legacy interrupt and MSI). */ if (sctx->isc_flags & IFLIB_SKIP_MSIX) { msix = scctx->isc_vectors; } else if (scctx->isc_msix_bar != 0) /* * The simple fact that isc_msix_bar is not 0 does not mean we * we have a good value there that is known to work. */ msix = iflib_msix_init(ctx); else { scctx->isc_vectors = 1; scctx->isc_ntxqsets = 1; scctx->isc_nrxqsets = 1; scctx->isc_intr = IFLIB_INTR_LEGACY; msix = 0; } /* Get memory for the station queues */ if ((err = iflib_queues_alloc(ctx))) { device_printf(dev, "Unable to allocate queue memory\n"); goto fail_intr_free; } if ((err = iflib_qset_structures_setup(ctx))) goto fail_queues; /* * Group taskqueues aren't properly set up until SMP is started, * so we disable interrupts until we can handle them post * SI_SUB_SMP. * * XXX: disabling interrupts doesn't actually work, at least for * the non-MSI case. When they occur before SI_SUB_SMP completes, * we do null handling and depend on this not causing too large an * interrupt storm. */ IFDI_INTR_DISABLE(ctx); if (msix > 1 && (err = IFDI_MSIX_INTR_ASSIGN(ctx, msix)) != 0) { device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n", err); goto fail_queues; } if (msix <= 1) { rid = 0; if (scctx->isc_intr == IFLIB_INTR_MSI) { MPASS(msix == 1); rid = 1; } if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) { device_printf(dev, "iflib_legacy_setup failed %d\n", err); goto fail_queues; } } ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if ((err = iflib_netmap_attach(ctx))) { device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err); goto fail_detach; } *ctxp = ctx; NETDUMP_SET(ctx->ifc_ifp, iflib); if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; CTX_UNLOCK(ctx); return (0); fail_detach: ether_ifdetach(ctx->ifc_ifp); fail_intr_free: iflib_free_intr_mem(ctx); fail_queues: iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); fail_iflib_detach: IFDI_DETACH(ctx); fail_unlock: CTX_UNLOCK(ctx); fail_ctx_free: if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (err); } int iflib_pseudo_register(device_t dev, if_shared_ctx_t sctx, if_ctx_t *ctxp, struct iflib_cloneattach_ctx *clctx) { int err; if_ctx_t ctx; if_t ifp; if_softc_ctx_t scctx; int i; void *sc; uint16_t main_txq; uint16_t main_rxq; ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK|M_ZERO); sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO); ctx->ifc_flags |= IFC_SC_ALLOCATED; if (sctx->isc_flags & (IFLIB_PSEUDO|IFLIB_VIRTUAL)) ctx->ifc_flags |= IFC_PSEUDO; ctx->ifc_sctx = sctx; ctx->ifc_softc = sc; ctx->ifc_dev = dev; if ((err = iflib_register(ctx)) != 0) { device_printf(dev, "%s: iflib_register failed %d\n", __func__, err); goto fail_ctx_free; } iflib_add_device_sysctl_pre(ctx); scctx = &ctx->ifc_softc_ctx; ifp = ctx->ifc_ifp; /* * XXX sanity check that ntxd & nrxd are a power of 2 */ iflib_reset_qvalues(ctx); if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); goto fail_ctx_free; } if (sctx->isc_flags & IFLIB_GEN_MAC) iflib_gen_mac(ctx); if ((err = IFDI_CLONEATTACH(ctx, clctx->cc_ifc, clctx->cc_name, clctx->cc_params)) != 0) { device_printf(dev, "IFDI_CLONEATTACH failed %d\n", err); goto fail_ctx_free; } ifmedia_add(&ctx->ifc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&ctx->ifc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&ctx->ifc_media, IFM_ETHER | IFM_AUTO); #ifdef INVARIANTS MPASS(scctx->isc_capabilities); if (scctx->isc_capabilities & IFCAP_TXCSUM) MPASS(scctx->isc_tx_csum_flags); #endif if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_LINKSTATE); if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_LINKSTATE); ifp->if_flags |= IFF_NOGROUP; if (sctx->isc_flags & IFLIB_PSEUDO) { ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } *ctxp = ctx; /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; return (0); } _iflib_pre_assert(scctx); ctx->ifc_txrx = *scctx->isc_txrx; if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; /* XXX change for per-queue sizes */ device_printf(dev, "Using %d tx descriptors and %d rx descriptors\n", scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]); for (i = 0; i < sctx->isc_nrxqs; i++) { if (!powerof2(scctx->isc_nrxd[i])) { /* round down instead? */ device_printf(dev, "# rx descriptors must be a power of 2\n"); err = EINVAL; goto fail_iflib_detach; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (!powerof2(scctx->isc_ntxd[i])) { device_printf(dev, "# tx descriptors must be a power of 2"); err = EINVAL; goto fail_iflib_detach; } } if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_tso_segments_max = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ if (if_getcapabilities(ifp) & IFCAP_TSO) { /* * The stack can't handle a TSO size larger than IP_MAXPACKET, * but some MACs do. */ if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, IP_MAXPACKET)); /* * Take maximum number of m_pullup(9)'s in iflib_parse_header() * into account. In the worst case, each of these calls will * add another mbuf and, thus, the requirement for another DMA * segment. So for best performance, it doesn't make sense to * advertize a maximum of TSO segments that typically will * require defragmentation in iflib_encap(). */ if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); } if (scctx->isc_rss_table_size == 0) scctx->isc_rss_table_size = 64; scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1; GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); /* XXX format name */ - taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, -1, "admin"); + taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, + NULL, NULL, "admin"); /* XXX --- can support > 1 -- but keep it simple for now */ scctx->isc_intr = IFLIB_INTR_LEGACY; /* Get memory for the station queues */ if ((err = iflib_queues_alloc(ctx))) { device_printf(dev, "Unable to allocate queue memory\n"); goto fail_iflib_detach; } if ((err = iflib_qset_structures_setup(ctx))) { device_printf(dev, "qset structure setup failed %d\n", err); goto fail_queues; } /* * XXX What if anything do we want to do about interrupts? */ ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); /* XXX handle more than one queue */ for (i = 0; i < scctx->isc_nrxqsets; i++) IFDI_RX_CLSET(ctx, 0, i, ctx->ifc_rxqs[i].ifr_fl[0].ifl_sds.ifsd_cl); *ctxp = ctx; if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; return (0); fail_detach: ether_ifdetach(ctx->ifc_ifp); fail_queues: iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); fail_iflib_detach: IFDI_DETACH(ctx); fail_ctx_free: free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (err); } int iflib_pseudo_deregister(if_ctx_t ctx) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq; iflib_rxq_t rxq; int i, j; struct taskqgroup *tqg; iflib_fl_t fl; /* Unregister VLAN events */ if (ctx->ifc_vlan_attach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); if (ctx->ifc_vlan_detach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); ether_ifdetach(ifp); /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ CTX_LOCK_DESTROY(ctx); /* XXX drain any dependent tasks */ tqg = qgroup_if_io_tqg; for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { callout_drain(&txq->ift_timer); if (txq->ift_task.gt_uniq != NULL) taskqgroup_detach(tqg, &txq->ift_task); } for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { if (rxq->ifr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &rxq->ifr_task); for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) free(fl->ifl_rx_bitmap, M_IFLIB); } tqg = qgroup_if_config_tqg; if (ctx->ifc_admin_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_admin_task); if (ctx->ifc_vflr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_vflr_task); if_free(ifp); iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (0); } int iflib_device_attach(device_t dev) { if_ctx_t ctx; if_shared_ctx_t sctx; if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) return (ENOTSUP); pci_enable_busmaster(dev); return (iflib_device_register(dev, NULL, sctx, &ctx)); } int iflib_device_deregister(if_ctx_t ctx) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq; iflib_rxq_t rxq; device_t dev = ctx->ifc_dev; int i, j; struct taskqgroup *tqg; iflib_fl_t fl; /* Make sure VLANS are not using driver */ if (if_vlantrunkinuse(ifp)) { device_printf(dev, "Vlan in use, detach first\n"); return (EBUSY); } #ifdef PCI_IOV if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) { device_printf(dev, "SR-IOV in use; detach first.\n"); return (EBUSY); } #endif STATE_LOCK(ctx); ctx->ifc_flags |= IFC_IN_DETACH; STATE_UNLOCK(ctx); CTX_LOCK(ctx); iflib_stop(ctx); CTX_UNLOCK(ctx); /* Unregister VLAN events */ if (ctx->ifc_vlan_attach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); if (ctx->ifc_vlan_detach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); iflib_netmap_detach(ifp); ether_ifdetach(ifp); if (ctx->ifc_led_dev != NULL) led_destroy(ctx->ifc_led_dev); /* XXX drain any dependent tasks */ tqg = qgroup_if_io_tqg; for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { callout_drain(&txq->ift_timer); if (txq->ift_task.gt_uniq != NULL) taskqgroup_detach(tqg, &txq->ift_task); } for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { if (rxq->ifr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &rxq->ifr_task); for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) free(fl->ifl_rx_bitmap, M_IFLIB); } tqg = qgroup_if_config_tqg; if (ctx->ifc_admin_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_admin_task); if (ctx->ifc_vflr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_vflr_task); CTX_LOCK(ctx); IFDI_DETACH(ctx); CTX_UNLOCK(ctx); /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ CTX_LOCK_DESTROY(ctx); device_set_softc(ctx->ifc_dev, NULL); iflib_free_intr_mem(ctx); bus_generic_detach(dev); if_free(ifp); iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); STATE_LOCK_DESTROY(ctx); free(ctx, M_IFLIB); return (0); } static void iflib_free_intr_mem(if_ctx_t ctx) { if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) { iflib_irq_free(ctx, &ctx->ifc_legacy_irq); } if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) { pci_release_msi(ctx->ifc_dev); } if (ctx->ifc_msix_mem != NULL) { bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY, rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem); ctx->ifc_msix_mem = NULL; } } int iflib_device_detach(device_t dev) { if_ctx_t ctx = device_get_softc(dev); return (iflib_device_deregister(ctx)); } int iflib_device_suspend(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_SUSPEND(ctx); CTX_UNLOCK(ctx); return bus_generic_suspend(dev); } int iflib_device_shutdown(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_SHUTDOWN(ctx); CTX_UNLOCK(ctx); return bus_generic_suspend(dev); } int iflib_device_resume(device_t dev) { if_ctx_t ctx = device_get_softc(dev); iflib_txq_t txq = ctx->ifc_txqs; CTX_LOCK(ctx); IFDI_RESUME(ctx); iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); for (int i = 0; i < NTXQSETS(ctx); i++, txq++) iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); return (bus_generic_resume(dev)); } int iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) { int error; if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); error = IFDI_IOV_INIT(ctx, num_vfs, params); CTX_UNLOCK(ctx); return (error); } void iflib_device_iov_uninit(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_IOV_UNINIT(ctx); CTX_UNLOCK(ctx); } int iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) { int error; if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); error = IFDI_IOV_VF_ADD(ctx, vfnum, params); CTX_UNLOCK(ctx); return (error); } /********************************************************************* * * MODULE FUNCTION DEFINITIONS * **********************************************************************/ /* * - Start a fast taskqueue thread for each core * - Start a taskqueue for control operations */ static int iflib_module_init(void) { return (0); } static int iflib_module_event_handler(module_t mod, int what, void *arg) { int err; switch (what) { case MOD_LOAD: if ((err = iflib_module_init()) != 0) return (err); break; case MOD_UNLOAD: return (EBUSY); default: return (EOPNOTSUPP); } return (0); } /********************************************************************* * * PUBLIC FUNCTION DEFINITIONS * ordered as in iflib.h * **********************************************************************/ static void _iflib_assert(if_shared_ctx_t sctx) { MPASS(sctx->isc_tx_maxsize); MPASS(sctx->isc_tx_maxsegsize); MPASS(sctx->isc_rx_maxsize); MPASS(sctx->isc_rx_nsegments); MPASS(sctx->isc_rx_maxsegsize); MPASS(sctx->isc_nrxd_min[0]); MPASS(sctx->isc_nrxd_max[0]); MPASS(sctx->isc_nrxd_default[0]); MPASS(sctx->isc_ntxd_min[0]); MPASS(sctx->isc_ntxd_max[0]); MPASS(sctx->isc_ntxd_default[0]); } static void _iflib_pre_assert(if_softc_ctx_t scctx) { MPASS(scctx->isc_txrx->ift_txd_encap); MPASS(scctx->isc_txrx->ift_txd_flush); MPASS(scctx->isc_txrx->ift_txd_credits_update); MPASS(scctx->isc_txrx->ift_rxd_available); MPASS(scctx->isc_txrx->ift_rxd_pkt_get); MPASS(scctx->isc_txrx->ift_rxd_refill); MPASS(scctx->isc_txrx->ift_rxd_flush); } static int iflib_register(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; driver_t *driver = sctx->isc_driver; device_t dev = ctx->ifc_dev; if_t ifp; _iflib_assert(sctx); CTX_LOCK_INIT(ctx); STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev)); ifp = ctx->ifc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not allocate ifnet structure\n"); return (ENOMEM); } /* * Initialize our context's device specific methods */ kobj_init((kobj_t) ctx, (kobj_class_t) driver); kobj_class_compile((kobj_class_t) driver); driver->refs++; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); if_setsoftc(ifp, ctx); if_setdev(ifp, dev); if_setinitfn(ifp, iflib_if_init); if_setioctlfn(ifp, iflib_if_ioctl); #ifdef ALTQ if_setstartfn(ifp, iflib_altq_if_start); if_settransmitfn(ifp, iflib_altq_if_transmit); if_setsendqready(ifp); #else if_settransmitfn(ifp, iflib_if_transmit); #endif if_setqflushfn(ifp, iflib_if_qflush); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); ctx->ifc_vlan_attach_event = EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx, EVENTHANDLER_PRI_FIRST); ctx->ifc_vlan_detach_event = EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx, EVENTHANDLER_PRI_FIRST); ifmedia_init(&ctx->ifc_media, IFM_IMASK, iflib_media_change, iflib_media_status); return (0); } static int iflib_queues_alloc(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; int nrxqsets = scctx->isc_nrxqsets; int ntxqsets = scctx->isc_ntxqsets; iflib_txq_t txq; iflib_rxq_t rxq; iflib_fl_t fl = NULL; int i, j, cpu, err, txconf, rxconf; iflib_dma_info_t ifdip; uint32_t *rxqsizes = scctx->isc_rxqsizes; uint32_t *txqsizes = scctx->isc_txqsizes; uint8_t nrxqs = sctx->isc_nrxqs; uint8_t ntxqs = sctx->isc_ntxqs; int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1; caddr_t *vaddrs; uint64_t *paddrs; KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1")); KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1")); /* Allocate the TX ring struct memory */ if (!(ctx->ifc_txqs = (iflib_txq_t) malloc(sizeof(struct iflib_txq) * ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate TX ring memory\n"); err = ENOMEM; goto fail; } /* Now allocate the RX */ if (!(ctx->ifc_rxqs = (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) * nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX ring memory\n"); err = ENOMEM; goto rx_fail; } txq = ctx->ifc_txqs; rxq = ctx->ifc_rxqs; /* * XXX handle allocation failure */ for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) { /* Set up some basics */ if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs, M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TX DMA info memory\n"); err = ENOMEM; goto err_tx_desc; } txq->ift_ifdi = ifdip; for (j = 0; j < ntxqs; j++, ifdip++) { if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) { device_printf(dev, "Unable to allocate TX descriptors\n"); err = ENOMEM; goto err_tx_desc; } txq->ift_txd_size[j] = scctx->isc_txd_size[j]; bzero((void *)ifdip->idi_vaddr, txqsizes[j]); } txq->ift_ctx = ctx; txq->ift_id = i; if (sctx->isc_flags & IFLIB_HAS_TXCQ) { txq->ift_br_offset = 1; } else { txq->ift_br_offset = 0; } /* XXX fix this */ txq->ift_timer.c_cpu = cpu; if (iflib_txsd_alloc(txq)) { device_printf(dev, "Critical Failure setting up TX buffers\n"); err = ENOMEM; goto err_tx_desc; } /* Initialize the TX lock */ snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:tx(%d):callout", device_get_nameunit(dev), txq->ift_id); mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF); callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0); snprintf(txq->ift_db_mtx_name, MTX_NAME_LEN, "%s:tx(%d):db", device_get_nameunit(dev), txq->ift_id); err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain, iflib_txq_can_drain, M_IFLIB, M_WAITOK); if (err) { /* XXX free any allocated rings */ device_printf(dev, "Unable to allocate buf_ring\n"); goto err_tx_desc; } } for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) { /* Set up some basics */ if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs, M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate RX DMA info memory\n"); err = ENOMEM; goto err_tx_desc; } rxq->ifr_ifdi = ifdip; /* XXX this needs to be changed if #rx queues != #tx queues */ rxq->ifr_ntxqirq = 1; rxq->ifr_txqid[0] = i; for (j = 0; j < nrxqs; j++, ifdip++) { if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) { device_printf(dev, "Unable to allocate RX descriptors\n"); err = ENOMEM; goto err_tx_desc; } bzero((void *)ifdip->idi_vaddr, rxqsizes[j]); } rxq->ifr_ctx = ctx; rxq->ifr_id = i; if (sctx->isc_flags & IFLIB_HAS_RXCQ) { rxq->ifr_fl_offset = 1; } else { rxq->ifr_fl_offset = 0; } rxq->ifr_nfl = nfree_lists; if (!(fl = (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate free list memory\n"); err = ENOMEM; goto err_tx_desc; } rxq->ifr_fl = fl; for (j = 0; j < nfree_lists; j++) { fl[j].ifl_rxq = rxq; fl[j].ifl_id = j; fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset]; fl[j].ifl_rxd_size = scctx->isc_rxd_size[j]; } /* Allocate receive buffers for the ring */ if (iflib_rxsd_alloc(rxq)) { device_printf(dev, "Critical Failure setting up receive buffers\n"); err = ENOMEM; goto err_rx_desc; } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB, M_WAITOK); } /* TXQs */ vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK); paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK); for (i = 0; i < ntxqsets; i++) { iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi; for (j = 0; j < ntxqs; j++, di++) { vaddrs[i*ntxqs + j] = di->idi_vaddr; paddrs[i*ntxqs + j] = di->idi_paddr; } } if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) { device_printf(ctx->ifc_dev, "Unable to allocate device TX queue\n"); iflib_tx_structures_free(ctx); free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); goto err_rx_desc; } free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); /* RXQs */ vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK); paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK); for (i = 0; i < nrxqsets; i++) { iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi; for (j = 0; j < nrxqs; j++, di++) { vaddrs[i*nrxqs + j] = di->idi_vaddr; paddrs[i*nrxqs + j] = di->idi_paddr; } } if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) { device_printf(ctx->ifc_dev, "Unable to allocate device RX queue\n"); iflib_tx_structures_free(ctx); free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); goto err_rx_desc; } free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); return (0); /* XXX handle allocation failure changes */ err_rx_desc: err_tx_desc: rx_fail: if (ctx->ifc_rxqs != NULL) free(ctx->ifc_rxqs, M_IFLIB); ctx->ifc_rxqs = NULL; if (ctx->ifc_txqs != NULL) free(ctx->ifc_txqs, M_IFLIB); ctx->ifc_txqs = NULL; fail: return (err); } static int iflib_tx_structures_setup(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; int i; for (i = 0; i < NTXQSETS(ctx); i++, txq++) iflib_txq_setup(txq); return (0); } static void iflib_tx_structures_free(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; if_shared_ctx_t sctx = ctx->ifc_sctx; int i, j; for (i = 0; i < NTXQSETS(ctx); i++, txq++) { iflib_txq_destroy(txq); for (j = 0; j < sctx->isc_ntxqs; j++) iflib_dma_free(&txq->ift_ifdi[j]); } free(ctx->ifc_txqs, M_IFLIB); ctx->ifc_txqs = NULL; IFDI_QUEUES_FREE(ctx); } /********************************************************************* * * Initialize all receive rings. * **********************************************************************/ static int iflib_rx_structures_setup(if_ctx_t ctx) { iflib_rxq_t rxq = ctx->ifc_rxqs; int q; #if defined(INET6) || defined(INET) int i, err; #endif for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) { #if defined(INET6) || defined(INET) tcp_lro_free(&rxq->ifr_lc); if ((err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp, TCP_LRO_ENTRIES, min(1024, ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]))) != 0) { device_printf(ctx->ifc_dev, "LRO Initialization failed!\n"); goto fail; } rxq->ifr_lro_enabled = TRUE; #endif IFDI_RXQ_SETUP(ctx, rxq->ifr_id); } return (0); #if defined(INET6) || defined(INET) fail: /* * Free RX software descriptors allocated so far, we will only handle * the rings that completed, the failing case will have * cleaned up for itself. 'q' failed, so its the terminus. */ rxq = ctx->ifc_rxqs; for (i = 0; i < q; ++i, rxq++) { iflib_rx_sds_free(rxq); rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; } return (err); #endif } /********************************************************************* * * Free all receive rings. * **********************************************************************/ static void iflib_rx_structures_free(if_ctx_t ctx) { iflib_rxq_t rxq = ctx->ifc_rxqs; for (int i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) { iflib_rx_sds_free(rxq); } free(ctx->ifc_rxqs, M_IFLIB); ctx->ifc_rxqs = NULL; } static int iflib_qset_structures_setup(if_ctx_t ctx) { int err; /* * It is expected that the caller takes care of freeing queues if this * fails. */ if ((err = iflib_tx_structures_setup(ctx)) != 0) { device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err); return (err); } if ((err = iflib_rx_structures_setup(ctx)) != 0) device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err); return (err); } int iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name) { return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name)); } #ifdef SMP static int find_nth(if_ctx_t ctx, int qid) { cpuset_t cpus; int i, cpuid, eqid, count; CPU_COPY(&ctx->ifc_cpus, &cpus); count = CPU_COUNT(&cpus); eqid = qid % count; /* clear up to the qid'th bit */ for (i = 0; i < eqid; i++) { cpuid = CPU_FFS(&cpus); MPASS(cpuid != 0); CPU_CLR(cpuid-1, &cpus); } cpuid = CPU_FFS(&cpus); MPASS(cpuid != 0); return (cpuid-1); } #ifdef SCHED_ULE extern struct cpu_group *cpu_top; /* CPU topology */ static int find_child_with_core(int cpu, struct cpu_group *grp) { int i; if (grp->cg_children == 0) return -1; MPASS(grp->cg_child); for (i = 0; i < grp->cg_children; i++) { if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask)) return i; } return -1; } /* * Find the nth "close" core to the specified core * "close" is defined as the deepest level that shares * at least an L2 cache. With threads, this will be * threads on the same core. If the sahred cache is L3 * or higher, simply returns the same core. */ static int find_close_core(int cpu, int core_offset) { struct cpu_group *grp; int i; int fcpu; cpuset_t cs; grp = cpu_top; if (grp == NULL) return cpu; i = 0; while ((i = find_child_with_core(cpu, grp)) != -1) { /* If the child only has one cpu, don't descend */ if (grp->cg_child[i].cg_count <= 1) break; grp = &grp->cg_child[i]; } /* If they don't share at least an L2 cache, use the same CPU */ if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE) return cpu; /* Now pick one */ CPU_COPY(&grp->cg_mask, &cs); /* Add the selected CPU offset to core offset. */ for (i = 0; (fcpu = CPU_FFS(&cs)) != 0; i++) { if (fcpu - 1 == cpu) break; CPU_CLR(fcpu - 1, &cs); } MPASS(fcpu); core_offset += i; CPU_COPY(&grp->cg_mask, &cs); for (i = core_offset % grp->cg_count; i > 0; i--) { MPASS(CPU_FFS(&cs)); CPU_CLR(CPU_FFS(&cs) - 1, &cs); } MPASS(CPU_FFS(&cs)); return CPU_FFS(&cs) - 1; } #else static int find_close_core(int cpu, int core_offset __unused) { return cpu; } #endif static int get_core_offset(if_ctx_t ctx, iflib_intr_type_t type, int qid) { switch (type) { case IFLIB_INTR_TX: /* TX queues get cores which share at least an L2 cache with the corresponding RX queue */ /* XXX handle multiple RX threads per core and more than two core per L2 group */ return qid / CPU_COUNT(&ctx->ifc_cpus) + 1; case IFLIB_INTR_RX: case IFLIB_INTR_RXTX: /* RX queues get the specified core */ return qid / CPU_COUNT(&ctx->ifc_cpus); default: return -1; } } #else #define get_core_offset(ctx, type, qid) CPU_FIRST() #define find_close_core(cpuid, tid) CPU_FIRST() #define find_nth(ctx, gid) CPU_FIRST() #endif /* Just to avoid copy/paste */ static inline int -iflib_irq_set_affinity(if_ctx_t ctx, int irq, iflib_intr_type_t type, int qid, - struct grouptask *gtask, struct taskqgroup *tqg, void *uniq, const char *name) +iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, + int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq, + const char *name) { - int cpuid; - int err, tid; + device_t dev; + int err, cpuid, tid; + dev = ctx->ifc_dev; cpuid = find_nth(ctx, qid); tid = get_core_offset(ctx, type, qid); MPASS(tid >= 0); cpuid = find_close_core(cpuid, tid); - err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, irq, name); + err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev, irq->ii_res, + name); if (err) { - device_printf(ctx->ifc_dev, "taskqgroup_attach_cpu failed %d\n", err); + device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err); return (err); } #ifdef notyet if (cpuid > ctx->ifc_cpuid_highest) ctx->ifc_cpuid_highest = cpuid; #endif return 0; } int iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid, iflib_intr_type_t type, driver_filter_t *filter, void *filter_arg, int qid, const char *name) { + device_t dev; struct grouptask *gtask; struct taskqgroup *tqg; iflib_filter_info_t info; gtask_fn_t *fn; int tqrid, err; driver_filter_t *intr_fast; void *q; info = &ctx->ifc_filter_info; tqrid = rid; switch (type) { /* XXX merge tx/rx for netmap? */ case IFLIB_INTR_TX: q = &ctx->ifc_txqs[qid]; info = &ctx->ifc_txqs[qid].ift_filter_info; gtask = &ctx->ifc_txqs[qid].ift_task; tqg = qgroup_if_io_tqg; fn = _task_fn_tx; intr_fast = iflib_fast_intr; GROUPTASK_INIT(gtask, 0, fn, q); ctx->ifc_flags |= IFC_NETMAP_TX_IRQ; break; case IFLIB_INTR_RX: q = &ctx->ifc_rxqs[qid]; info = &ctx->ifc_rxqs[qid].ifr_filter_info; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; intr_fast = iflib_fast_intr; GROUPTASK_INIT(gtask, 0, fn, q); break; case IFLIB_INTR_RXTX: q = &ctx->ifc_rxqs[qid]; info = &ctx->ifc_rxqs[qid].ifr_filter_info; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; intr_fast = iflib_fast_intr_rxtx; GROUPTASK_INIT(gtask, 0, fn, q); break; case IFLIB_INTR_ADMIN: q = ctx; tqrid = -1; info = &ctx->ifc_filter_info; gtask = &ctx->ifc_admin_task; tqg = qgroup_if_config_tqg; fn = _task_fn_admin; intr_fast = iflib_fast_intr_ctx; break; default: panic("unknown net intr type"); } info->ifi_filter = filter; info->ifi_filter_arg = filter_arg; info->ifi_task = gtask; info->ifi_ctx = q; + dev = ctx->ifc_dev; err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); if (err != 0) { - device_printf(ctx->ifc_dev, "_iflib_irq_alloc failed %d\n", err); + device_printf(dev, "_iflib_irq_alloc failed %d\n", err); return (err); } if (type == IFLIB_INTR_ADMIN) return (0); if (tqrid != -1) { - err = iflib_irq_set_affinity(ctx, rman_get_start(irq->ii_res), type, qid, gtask, tqg, q, name); + err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, + q, name); if (err) return (err); } else { - taskqgroup_attach(tqg, gtask, q, rman_get_start(irq->ii_res), name); + taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name); } return (0); } void iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, void *arg, int qid, const char *name) { struct grouptask *gtask; struct taskqgroup *tqg; gtask_fn_t *fn; void *q; - int irq_num = -1; int err; switch (type) { case IFLIB_INTR_TX: q = &ctx->ifc_txqs[qid]; gtask = &ctx->ifc_txqs[qid].ift_task; tqg = qgroup_if_io_tqg; fn = _task_fn_tx; - if (irq != NULL) - irq_num = rman_get_start(irq->ii_res); break; case IFLIB_INTR_RX: q = &ctx->ifc_rxqs[qid]; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; - if (irq != NULL) - irq_num = rman_get_start(irq->ii_res); break; case IFLIB_INTR_IOV: q = ctx; gtask = &ctx->ifc_vflr_task; tqg = qgroup_if_config_tqg; fn = _task_fn_iov; break; default: panic("unknown net intr type"); } GROUPTASK_INIT(gtask, 0, fn, q); - if (irq_num != -1) { - err = iflib_irq_set_affinity(ctx, irq_num, type, qid, gtask, tqg, q, name); + if (irq != NULL) { + err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, + q, name); if (err) - taskqgroup_attach(tqg, gtask, q, irq_num, name); + taskqgroup_attach(tqg, gtask, q, ctx->ifc_dev, + irq->ii_res, name); + } else { + taskqgroup_attach(tqg, gtask, q, NULL, NULL, name); } - else { - taskqgroup_attach(tqg, gtask, q, irq_num, name); - } } void iflib_irq_free(if_ctx_t ctx, if_irq_t irq) { if (irq->ii_tag) bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag); if (irq->ii_res) bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ, rman_get_rid(irq->ii_res), irq->ii_res); } static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name) { iflib_txq_t txq = ctx->ifc_txqs; iflib_rxq_t rxq = ctx->ifc_rxqs; if_irq_t irq = &ctx->ifc_legacy_irq; iflib_filter_info_t info; + device_t dev; struct grouptask *gtask; + struct resource *res; struct taskqgroup *tqg; gtask_fn_t *fn; int tqrid; void *q; int err; q = &ctx->ifc_rxqs[0]; info = &rxq[0].ifr_filter_info; gtask = &rxq[0].ifr_task; tqg = qgroup_if_io_tqg; tqrid = irq->ii_rid = *rid; fn = _task_fn_rx; ctx->ifc_flags |= IFC_LEGACY; info->ifi_filter = filter; info->ifi_filter_arg = filter_arg; info->ifi_task = gtask; info->ifi_ctx = ctx; + dev = ctx->ifc_dev; /* We allocate a single interrupt resource */ if ((err = _iflib_irq_alloc(ctx, irq, tqrid, iflib_fast_intr_ctx, NULL, info, name)) != 0) return (err); GROUPTASK_INIT(gtask, 0, fn, q); - taskqgroup_attach(tqg, gtask, q, rman_get_start(irq->ii_res), name); + res = irq->ii_res; + taskqgroup_attach(tqg, gtask, q, dev, res, name); GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq); - taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, rman_get_start(irq->ii_res), "tx"); + taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res, + "tx"); return (0); } void iflib_led_create(if_ctx_t ctx) { ctx->ifc_led_dev = led_create(iflib_led_func, ctx, device_get_nameunit(ctx->ifc_dev)); } void iflib_tx_intr_deferred(if_ctx_t ctx, int txqid) { GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task); } void iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid) { GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task); } void iflib_admin_intr_deferred(if_ctx_t ctx) { #ifdef INVARIANTS struct grouptask *gtask; gtask = &ctx->ifc_admin_task; MPASS(gtask != NULL && gtask->gt_taskqueue != NULL); #endif GROUPTASK_ENQUEUE(&ctx->ifc_admin_task); } void iflib_iov_intr_deferred(if_ctx_t ctx) { GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task); } void iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, char *name) { - taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, -1, name); + taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL, + name); } void iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, const char *name) { GROUPTASK_INIT(gtask, 0, fn, ctx); - taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, -1, name); + taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, NULL, NULL, + name); } void iflib_config_gtask_deinit(struct grouptask *gtask) { taskqgroup_detach(qgroup_if_config_tqg, gtask); } void iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq = ctx->ifc_txqs; if_setbaudrate(ifp, baudrate); if (baudrate >= IF_Gbps(10)) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_PREFETCH; STATE_UNLOCK(ctx); } /* If link down, disable watchdog */ if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) { for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++) txq->ift_qstatus = IFLIB_QUEUE_IDLE; } ctx->ifc_link_state = link_state; if_link_state_change(ifp, link_state); } static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq) { int credits; #ifdef INVARIANTS int credits_pre = txq->ift_cidx_processed; #endif if (ctx->isc_txd_credits_update == NULL) return (0); bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0) return (0); txq->ift_processed += credits; txq->ift_cidx_processed += credits; MPASS(credits_pre + credits == txq->ift_cidx_processed); if (txq->ift_cidx_processed >= txq->ift_size) txq->ift_cidx_processed -= txq->ift_size; return (credits); } static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget) { iflib_fl_t fl; u_int i; for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++) bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx, budget)); } void iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name, const char *description, if_int_delay_info_t info, int offset, int value) { info->iidi_ctx = ctx; info->iidi_offset = offset; info->iidi_value = value; SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, info, 0, iflib_sysctl_int_delay, "I", description); } struct sx * iflib_ctx_lock_get(if_ctx_t ctx) { return (&ctx->ifc_ctx_sx); } static int iflib_msix_init(if_ctx_t ctx) { device_t dev = ctx->ifc_dev; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; int vectors, queues, rx_queues, tx_queues, queuemsgs, msgs; int iflib_num_tx_queues, iflib_num_rx_queues; int err, admincnt, bar; iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs; iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs; if (bootverbose) device_printf(dev, "msix_init qsets capped at %d\n", imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets)); bar = ctx->ifc_softc_ctx.isc_msix_bar; admincnt = sctx->isc_admin_intrcnt; /* Override by tuneable */ if (scctx->isc_disable_msix) goto msi; /* First try MSI-X */ if ((msgs = pci_msix_count(dev)) == 0) { if (bootverbose) device_printf(dev, "MSI-X not supported or disabled\n"); goto msi; } /* * bar == -1 => "trust me I know what I'm doing" * Some drivers are for hardware that is so shoddily * documented that no one knows which bars are which * so the developer has to map all bars. This hack * allows shoddy garbage to use MSI-X in this framework. */ if (bar != -1) { ctx->ifc_msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar, RF_ACTIVE); if (ctx->ifc_msix_mem == NULL) { device_printf(dev, "Unable to map MSI-X table\n"); goto msi; } } #if IFLIB_DEBUG /* use only 1 qset in debug mode */ queuemsgs = min(msgs - admincnt, 1); #else queuemsgs = msgs - admincnt; #endif #ifdef RSS queues = imin(queuemsgs, rss_getnumbuckets()); #else queues = queuemsgs; #endif queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues); if (bootverbose) device_printf(dev, "intr CPUs: %d queue msgs: %d admincnt: %d\n", CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt); #ifdef RSS /* If we're doing RSS, clamp at the number of RSS buckets */ if (queues > rss_getnumbuckets()) queues = rss_getnumbuckets(); #endif if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt) rx_queues = iflib_num_rx_queues; else rx_queues = queues; if (rx_queues > scctx->isc_nrxqsets) rx_queues = scctx->isc_nrxqsets; /* * We want this to be all logical CPUs by default */ if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues) tx_queues = iflib_num_tx_queues; else tx_queues = mp_ncpus; if (tx_queues > scctx->isc_ntxqsets) tx_queues = scctx->isc_ntxqsets; if (ctx->ifc_sysctl_qs_eq_override == 0) { #ifdef INVARIANTS if (tx_queues != rx_queues) device_printf(dev, "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n", min(rx_queues, tx_queues), min(rx_queues, tx_queues)); #endif tx_queues = min(rx_queues, tx_queues); rx_queues = min(rx_queues, tx_queues); } device_printf(dev, "Using %d rx queues %d tx queues\n", rx_queues, tx_queues); vectors = rx_queues + admincnt; if ((err = pci_alloc_msix(dev, &vectors)) == 0) { device_printf(dev, "Using MSI-X interrupts with %d vectors\n", vectors); scctx->isc_vectors = vectors; scctx->isc_nrxqsets = rx_queues; scctx->isc_ntxqsets = tx_queues; scctx->isc_intr = IFLIB_INTR_MSIX; return (vectors); } else { device_printf(dev, "failed to allocate %d MSI-X vectors, err: %d - using MSI\n", vectors, err); bus_release_resource(dev, SYS_RES_MEMORY, bar, ctx->ifc_msix_mem); ctx->ifc_msix_mem = NULL; } msi: vectors = pci_msi_count(dev); scctx->isc_nrxqsets = 1; scctx->isc_ntxqsets = 1; scctx->isc_vectors = vectors; if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) { device_printf(dev,"Using an MSI interrupt\n"); scctx->isc_intr = IFLIB_INTR_MSI; } else { scctx->isc_vectors = 1; device_printf(dev,"Using a Legacy interrupt\n"); scctx->isc_intr = IFLIB_INTR_LEGACY; } return (vectors); } static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" }; static int mp_ring_state_handler(SYSCTL_HANDLER_ARGS) { int rc; uint16_t *state = ((uint16_t *)oidp->oid_arg1); struct sbuf *sb; const char *ring_state = "UNKNOWN"; /* XXX needed ? */ rc = sysctl_wire_old_buffer(req, 0); MPASS(rc == 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 80, req); MPASS(sb != NULL); if (sb == NULL) return (ENOMEM); if (state[3] <= 3) ring_state = ring_states[state[3]]; sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s", state[0], state[1], state[2], ring_state); rc = sbuf_finish(sb); sbuf_delete(sb); return(rc); } enum iflib_ndesc_handler { IFLIB_NTXD_HANDLER, IFLIB_NRXD_HANDLER, }; static int mp_ndesc_handler(SYSCTL_HANDLER_ARGS) { if_ctx_t ctx = (void *)arg1; enum iflib_ndesc_handler type = arg2; char buf[256] = {0}; qidx_t *ndesc; char *p, *next; int nqs, rc, i; MPASS(type == IFLIB_NTXD_HANDLER || type == IFLIB_NRXD_HANDLER); nqs = 8; switch(type) { case IFLIB_NTXD_HANDLER: ndesc = ctx->ifc_sysctl_ntxds; if (ctx->ifc_sctx) nqs = ctx->ifc_sctx->isc_ntxqs; break; case IFLIB_NRXD_HANDLER: ndesc = ctx->ifc_sysctl_nrxds; if (ctx->ifc_sctx) nqs = ctx->ifc_sctx->isc_nrxqs; break; default: panic("unhandled type"); } if (nqs == 0) nqs = 8; for (i=0; i<8; i++) { if (i >= nqs) break; if (i) strcat(buf, ","); sprintf(strchr(buf, 0), "%d", ndesc[i]); } rc = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (rc || req->newptr == NULL) return rc; for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p; i++, p = strsep(&next, " ,")) { ndesc[i] = strtoul(p, NULL, 10); } return(rc); } #define NAME_BUFLEN 32 static void iflib_add_device_sysctl_pre(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct sysctl_oid_list *child, *oid_list; struct sysctl_ctx_list *ctx_list; struct sysctl_oid *node; ctx_list = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib", CTLFLAG_RD, NULL, "IFLIB fields"); oid_list = SYSCTL_CHILDREN(node); SYSCTL_ADD_STRING(ctx_list, oid_list, OID_AUTO, "driver_version", CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, 0, "driver version"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs", CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0, "# of txqs to use, 0 => use default #"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs", CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0, "# of rxqs to use, 0 => use default #"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable", CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0, "permit #txq != #rxq"); SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix", CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0, "disable MSI-X (default 0)"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget", CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the rx budget"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate", CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0, "cause tx to abdicate instead of running to completion"); /* XXX change for per-queue sizes */ SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds", CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A", "list of # of tx descriptors to use, 0 = use default #"); SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds", CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A", "list of # of rx descriptors to use, 0 = use default #"); } static void iflib_add_device_sysctl_post(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = iflib_get_dev(ctx); struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx_list; iflib_fl_t fl; iflib_txq_t txq; iflib_rxq_t rxq; int i, j; char namebuf[NAME_BUFLEN]; char *qfmt; struct sysctl_oid *queue_node, *fl_node, *node; struct sysctl_oid_list *queue_list, *fl_list; ctx_list = device_get_sysctl_ctx(dev); node = ctx->ifc_sysctl_node; child = SYSCTL_CHILDREN(node); if (scctx->isc_ntxqsets > 100) qfmt = "txq%03d"; else if (scctx->isc_ntxqsets > 10) qfmt = "txq%02d"; else qfmt = "txq%d"; for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { snprintf(namebuf, NAME_BUFLEN, qfmt, i); queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); #if MEMORY_LOGGING SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued", CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued", CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued"); #endif SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag", CTLFLAG_RD, &txq->ift_mbuf_defrag, "# of times m_defrag was called"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups", CTLFLAG_RD, &txq->ift_pullups, "# of times m_pullup was called"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed", CTLFLAG_RD, &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail, "# of times no descriptors were available"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed, "# of times dma map failed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx", CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx", CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed, 1, "Consumer Index seen by credit update"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use", CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed", CTLFLAG_RD, &txq->ift_processed, "descriptors procesed for clean"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned", CTLFLAG_RD, &txq->ift_cleaned, "total cleaned"); SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state", CTLTYPE_STRING | CTLFLAG_RD, __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0, mp_ring_state_handler, "A", "soft ring state"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues, "# of enqueues to the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops", CTLFLAG_RD, &txq->ift_br->drops, "# of drops in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts", CTLFLAG_RD, &txq->ift_br->starts, "# of normal consumer starts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls, "# of consumer stalls in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts, "# of consumer restarts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications, "# of consumer abdications in the mp_ring for this queue"); } if (scctx->isc_nrxqsets > 100) qfmt = "rxq%03d"; else if (scctx->isc_nrxqsets > 10) qfmt = "rxq%02d"; else qfmt = "rxq%d"; for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { snprintf(namebuf, NAME_BUFLEN, qfmt, i); queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); if (sctx->isc_flags & IFLIB_HAS_RXCQ) { SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_pidx", CTLFLAG_RD, &rxq->ifr_cq_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1, "Consumer Index"); } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j); fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "freelist Name"); fl_list = SYSCTL_CHILDREN(fl_node); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx", CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx", CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index"); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits", CTLFLAG_RD, &fl->ifl_credits, 1, "credits available"); #if MEMORY_LOGGING SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued, "mbufs allocated"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued, "mbufs freed"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued, "clusters allocated"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued, "clusters freed"); #endif } } } void iflib_request_reset(if_ctx_t ctx) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_DO_RESET; STATE_UNLOCK(ctx); } #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * iflib_fixup_rx(struct mbuf *m) { struct mbuf *n; if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); m->m_data += ETHER_HDR_LEN; n = m; } else { MGETHDR(n, M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return (NULL); } bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); m->m_data += ETHER_HDR_LEN; m->m_len -= ETHER_HDR_LEN; n->m_len = ETHER_HDR_LEN; M_MOVE_PKTHDR(n, m); n->m_next = m; } return (n); } #endif #ifdef NETDUMP static void iflib_netdump_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { if_ctx_t ctx; ctx = if_getsoftc(ifp); CTX_LOCK(ctx); *nrxr = NRXQSETS(ctx); *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size; *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size; CTX_UNLOCK(ctx); } static void iflib_netdump_event(struct ifnet *ifp, enum netdump_ev event) { if_ctx_t ctx; if_softc_ctx_t scctx; iflib_fl_t fl; iflib_rxq_t rxq; int i, j; ctx = if_getsoftc(ifp); scctx = &ctx->ifc_softc_ctx; switch (event) { case NETDUMP_START: for (i = 0; i < scctx->isc_nrxqsets; i++) { rxq = &ctx->ifc_rxqs[i]; for (j = 0; j < rxq->ifr_nfl; j++) { fl = rxq->ifr_fl; fl->ifl_zone = m_getzone(fl->ifl_buf_size); } } iflib_no_tx_batch = 1; break; default: break; } } static int iflib_netdump_transmit(struct ifnet *ifp, struct mbuf *m) { if_ctx_t ctx; iflib_txq_t txq; int error; ctx = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &ctx->ifc_txqs[0]; error = iflib_encap(txq, &m); if (error == 0) (void)iflib_txd_db_check(ctx, txq, true, txq->ift_in_use); return (error); } static int iflib_netdump_poll(struct ifnet *ifp, int count) { if_ctx_t ctx; if_softc_ctx_t scctx; iflib_txq_t txq; int i; ctx = if_getsoftc(ifp); scctx = &ctx->ifc_softc_ctx; if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &ctx->ifc_txqs[0]; (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); for (i = 0; i < scctx->isc_nrxqsets; i++) (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */); return (0); } #endif /* NETDUMP */ Index: head/sys/sys/_task.h =================================================================== --- head/sys/sys/_task.h (revision 344061) +++ head/sys/sys/_task.h (revision 344062) @@ -1,76 +1,70 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS__TASK_H_ #define _SYS__TASK_H_ #include /* * Each task includes a function which is called from * taskqueue_run(). The first argument is taken from the 'ta_context' * field of struct task and the second argument is a count of how many * times the task was enqueued before the call to taskqueue_run(). * - * List of locks - * (c) const after init + * List of locks + * (c) const after init * (q) taskqueue lock */ typedef void task_fn_t(void *context, int pending); -typedef void gtask_fn_t(void *context); struct task { STAILQ_ENTRY(task) ta_link; /* (q) link for queue */ uint16_t ta_pending; /* (q) count times queued */ u_short ta_priority; /* (c) Priority */ task_fn_t *ta_func; /* (c) task handler */ void *ta_context; /* (c) argument for handler */ }; +#ifdef _KERNEL + +typedef void gtask_fn_t(void *context); + struct gtask { STAILQ_ENTRY(gtask) ta_link; /* (q) link for queue */ uint16_t ta_flags; /* (q) state flags */ u_short ta_priority; /* (c) Priority */ gtask_fn_t *ta_func; /* (c) task handler */ void *ta_context; /* (c) argument for handler */ }; -struct grouptask { - struct gtask gt_task; - void *gt_taskqueue; - LIST_ENTRY(grouptask) gt_list; - void *gt_uniq; -#define GROUPTASK_NAMELEN 32 - char gt_name[GROUPTASK_NAMELEN]; - int16_t gt_irq; - int16_t gt_cpu; -}; +#endif /* _KERNEL */ #endif /* !_SYS__TASK_H_ */ Index: head/sys/sys/gtaskqueue.h =================================================================== --- head/sys/sys/gtaskqueue.h (revision 344061) +++ head/sys/sys/gtaskqueue.h (revision 344062) @@ -1,116 +1,132 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2014 Jeffrey Roberson * Copyright (c) 2016 Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_GTASKQUEUE_H_ #define _SYS_GTASKQUEUE_H_ -#include #ifndef _KERNEL #error "no user-serviceable parts inside" #endif +#include +#include +#include +#include + struct gtaskqueue; -typedef void (*gtaskqueue_enqueue_fn)(void *context); /* * Taskqueue groups. Manages dynamic thread groups and irq binding for * device and other tasks. */ +struct grouptask { + struct gtask gt_task; + void *gt_taskqueue; + LIST_ENTRY(grouptask) gt_list; + void *gt_uniq; +#define GROUPTASK_NAMELEN 32 + char gt_name[GROUPTASK_NAMELEN]; + device_t gt_dev; + struct resource *gt_irq; + int gt_cpu; +}; + void gtaskqueue_block(struct gtaskqueue *queue); void gtaskqueue_unblock(struct gtaskqueue *queue); int gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask); void gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *task); void gtaskqueue_drain_all(struct gtaskqueue *queue); void grouptask_block(struct grouptask *grouptask); void grouptask_unblock(struct grouptask *grouptask); int grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *task); + void taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *grptask, - void *uniq, int irq, const char *name); -int taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *grptask, - void *uniq, int cpu, int irq, const char *name); + void *uniq, device_t dev, struct resource *irq, const char *name); +int taskqgroup_attach_cpu(struct taskqgroup *qgroup, + struct grouptask *grptask, void *uniq, int cpu, device_t dev, + struct resource *irq, const char *name); void taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask); struct taskqgroup *taskqgroup_create(const char *name); void taskqgroup_destroy(struct taskqgroup *qgroup); int taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride); -void taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, - const char *name); +void taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, + gtask_fn_t *fn, const char *name); void taskqgroup_config_gtask_deinit(struct grouptask *gtask); #define TASK_ENQUEUED 0x1 #define TASK_SKIP_WAKEUP 0x2 #define TASK_NOENQUEUE 0x4 - -#define GTASK_INIT(task, flags, priority, func, context) do { \ - (task)->ta_flags = flags; \ - (task)->ta_priority = (priority); \ - (task)->ta_func = (func); \ - (task)->ta_context = (context); \ +#define GTASK_INIT(gtask, flags, priority, func, context) do { \ + (gtask)->ta_flags = flags; \ + (gtask)->ta_priority = (priority); \ + (gtask)->ta_func = (func); \ + (gtask)->ta_context = (context); \ } while (0) #define GROUPTASK_INIT(gtask, priority, func, context) \ GTASK_INIT(&(gtask)->gt_task, TASK_SKIP_WAKEUP, priority, func, context) #define GROUPTASK_ENQUEUE(gtask) \ grouptaskqueue_enqueue((gtask)->gt_taskqueue, &(gtask)->gt_task) #define TASKQGROUP_DECLARE(name) \ extern struct taskqgroup *qgroup_##name #define TASKQGROUP_DEFINE(name, cnt, stride) \ \ struct taskqgroup *qgroup_##name; \ \ static void \ taskqgroup_define_##name(void *arg) \ { \ qgroup_##name = taskqgroup_create(#name); \ } \ \ SYSINIT(taskqgroup_##name, SI_SUB_TASKQ, SI_ORDER_FIRST, \ taskqgroup_define_##name, NULL); \ \ static void \ taskqgroup_adjust_##name(void *arg) \ { \ taskqgroup_adjust(qgroup_##name, (cnt), (stride)); \ } \ \ SYSINIT(taskqgroup_adj_##name, SI_SUB_SMP, SI_ORDER_ANY, \ taskqgroup_adjust_##name, NULL) TASKQGROUP_DECLARE(net); TASKQGROUP_DECLARE(softirq); #endif /* !_SYS_GTASKQUEUE_H_ */ Index: head/sys/sys/param.h =================================================================== --- head/sys/sys/param.h (revision 344061) +++ head/sys/sys/param.h (revision 344062) @@ -1,367 +1,367 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * head/en_US.ISO8859-1/books/porters-handbook/versions/chapter.xml * * scheme is: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * X.0-CURRENT before releng/X.0 is created, otherwise 'R' is * in the range 5 to 9. */ #undef __FreeBSD_version -#define __FreeBSD_version 1300011 /* Master, propagated to newvers */ +#define __FreeBSD_version 1300012 /* Master, propagated to newvers */ /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #if defined(_KERNEL) || defined(IN_RTLD) #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAP_FSTRICT 1100036 #define P_OSREL_SHUTDOWN_ENOTCONN 1100077 #define P_OSREL_MAP_GUARD 1200035 #define P_OSREL_WRFSBASE 1200041 #define P_OSREL_CK_CYLGRP 1200046 #define P_OSREL_VMTOTAL64 1200054 #define P_OSREL_CK_SUPERBLOCK 1300000 #define P_OSREL_CK_INODE 1300005 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 255 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL /* Signals. */ #include #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) ((x)&(~((y)-1))) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */