Index: head/sys/i386/i386/sys_machdep.c
===================================================================
--- head/sys/i386/i386/sys_machdep.c	(revision 343747)
+++ head/sys/i386/i386/sys_machdep.c	(revision 343748)
@@ -1,809 +1,809 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1990 The Regents of the University of California.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	from: @(#)sys_machdep.c	5.5 (Berkeley) 1/19/91
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_capsicum.h"
 #include "opt_kstack_pages.h"
 
 #include <sys/param.h>
 #include <sys/capsicum.h>
 #include <sys/systm.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mutex.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/smp.h>
 #include <sys/sysproto.h>
 
 #include <vm/vm.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_extern.h>
 
 #include <machine/atomic.h>
 #include <machine/cpu.h>
 #include <machine/pcb.h>
 #include <machine/pcb_ext.h>
 #include <machine/proc.h>
 #include <machine/sysarch.h>
 
 #include <security/audit/audit.h>
 
 #include <vm/vm_kern.h>		/* for kernel_map */
 
 #define MAX_LD 8192
 #define LD_PER_PAGE 512
 #define	NEW_MAX_LD(num)  rounddown2(num + LD_PER_PAGE, LD_PER_PAGE)
 #define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3)
 #define	NULL_LDT_BASE	((caddr_t)NULL)
 
 #ifdef SMP
 static void set_user_ldt_rv(void *arg);
 #endif
 static int i386_set_ldt_data(struct thread *, int start, int num,
     union descriptor *descs);
 static int i386_ldt_grow(struct thread *td, int len);
 
 void
 fill_based_sd(struct segment_descriptor *sdp, uint32_t base)
 {
 
 	sdp->sd_lobase = base & 0xffffff;
 	sdp->sd_hibase = (base >> 24) & 0xff;
 	sdp->sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
 	sdp->sd_hilimit = 0xf;
 	sdp->sd_type = SDT_MEMRWA;
 	sdp->sd_dpl = SEL_UPL;
 	sdp->sd_p = 1;
 	sdp->sd_xx = 0;
 	sdp->sd_def32 = 1;
 	sdp->sd_gran = 1;
 }
 
 /*
  * Construct special descriptors for "base" selectors.  Store them in
  * the PCB for later use by cpu_switch().  Store them in the GDT for
  * more immediate use.  The GDT entries are part of the current
  * context.  Callers must load related segment registers to complete
  * setting up the current context.
  */
 void
 set_fsbase(struct thread *td, uint32_t base)
 {
 	struct segment_descriptor sd;
 
 	fill_based_sd(&sd, base);
 	critical_enter();
 	td->td_pcb->pcb_fsd = sd;
 	PCPU_GET(fsgs_gdt)[0] = sd;
 	critical_exit();
 }
 
 void
 set_gsbase(struct thread *td, uint32_t base)
 {
 	struct segment_descriptor sd;
 
 	fill_based_sd(&sd, base);
 	critical_enter();
 	td->td_pcb->pcb_gsd = sd;
 	PCPU_GET(fsgs_gdt)[1] = sd;
 	critical_exit();
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct sysarch_args {
 	int op;
 	char *parms;
 };
 #endif
 
 int
 sysarch(struct thread *td, struct sysarch_args *uap)
 {
 	int error;
 	union descriptor *lp;
 	union {
 		struct i386_ldt_args largs;
 		struct i386_ioperm_args iargs;
 		struct i386_get_xfpustate xfpu;
 	} kargs;
 	uint32_t base;
 	struct segment_descriptor *sdp;
 
 	AUDIT_ARG_CMD(uap->op);
 
 #ifdef CAPABILITY_MODE
 	/*
 	 * When adding new operations, add a new case statement here to
 	 * explicitly indicate whether or not the operation is safe to
 	 * perform in capability mode.
 	 */
 	if (IN_CAPABILITY_MODE(td)) {
 		switch (uap->op) {
 		case I386_GET_LDT:
 		case I386_SET_LDT:
 		case I386_GET_IOPERM:
 		case I386_GET_FSBASE:
 		case I386_SET_FSBASE:
 		case I386_GET_GSBASE:
 		case I386_SET_GSBASE:
 		case I386_GET_XFPUSTATE:
 			break;
 
 		case I386_SET_IOPERM:
 		default:
 #ifdef KTRACE
 			if (KTRPOINT(td, KTR_CAPFAIL))
 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
 #endif
 			return (ECAPMODE);
 		}
 	}
 #endif
 
 	switch (uap->op) {
 	case I386_GET_IOPERM:
 	case I386_SET_IOPERM:
 		if ((error = copyin(uap->parms, &kargs.iargs,
 		    sizeof(struct i386_ioperm_args))) != 0)
 			return (error);
 		break;
 	case I386_GET_LDT:
 	case I386_SET_LDT:
 		if ((error = copyin(uap->parms, &kargs.largs,
 		    sizeof(struct i386_ldt_args))) != 0)
 			return (error);
 		break;
 	case I386_GET_XFPUSTATE:
 		if ((error = copyin(uap->parms, &kargs.xfpu,
 		    sizeof(struct i386_get_xfpustate))) != 0)
 			return (error);
 		break;
 	default:
 		break;
 	}
 
 	switch (uap->op) {
 	case I386_GET_LDT:
 		error = i386_get_ldt(td, &kargs.largs);
 		break;
 	case I386_SET_LDT:
 		if (kargs.largs.descs != NULL) {
 			if (kargs.largs.num > MAX_LD)
 				return (EINVAL);
 			lp = malloc(kargs.largs.num * sizeof(union descriptor),
 			    M_TEMP, M_WAITOK);
 			error = copyin(kargs.largs.descs, lp,
 			    kargs.largs.num * sizeof(union descriptor));
 			if (error == 0)
 				error = i386_set_ldt(td, &kargs.largs, lp);
 			free(lp, M_TEMP);
 		} else {
 			error = i386_set_ldt(td, &kargs.largs, NULL);
 		}
 		break;
 	case I386_GET_IOPERM:
 		error = i386_get_ioperm(td, &kargs.iargs);
 		if (error == 0)
 			error = copyout(&kargs.iargs, uap->parms,
 			    sizeof(struct i386_ioperm_args));
 		break;
 	case I386_SET_IOPERM:
 		error = i386_set_ioperm(td, &kargs.iargs);
 		break;
 	case I386_VM86:
 		error = vm86_sysarch(td, uap->parms);
 		break;
 	case I386_GET_FSBASE:
 		sdp = &td->td_pcb->pcb_fsd;
 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
 		error = copyout(&base, uap->parms, sizeof(base));
 		break;
 	case I386_SET_FSBASE:
 		error = copyin(uap->parms, &base, sizeof(base));
 		if (error == 0) {
 			/*
 			 * Construct the special descriptor for fsbase
 			 * and arrange for doreti to load its selector
 			 * soon enough.
 			 */
 			set_fsbase(td, base);
 			td->td_frame->tf_fs = GSEL(GUFS_SEL, SEL_UPL);
 		}
 		break;
 	case I386_GET_GSBASE:
 		sdp = &td->td_pcb->pcb_gsd;
 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
 		error = copyout(&base, uap->parms, sizeof(base));
 		break;
 	case I386_SET_GSBASE:
 		error = copyin(uap->parms, &base, sizeof(base));
 		if (error == 0) {
 			/*
 			 * Construct the special descriptor for gsbase.
 			 * The selector is loaded immediately, since we
 			 * normally only reload %gs on context switches.
 			 */
 			set_gsbase(td, base);
 			load_gs(GSEL(GUGS_SEL, SEL_UPL));
 		}
 		break;
 	case I386_GET_XFPUSTATE:
 		if (kargs.xfpu.len > cpu_max_ext_state_size -
 		    sizeof(union savefpu))
 			return (EINVAL);
 		npxgetregs(td);
 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
 		    kargs.xfpu.addr, kargs.xfpu.len);
 		break;
 	default:
 		error = EINVAL;
 		break;
 	}
 	return (error);
 }
 
 int
 i386_extend_pcb(struct thread *td)
 {
 	int i, offset;
 	u_long *addr;
 	struct pcb_ext *ext;
 	struct soft_segment_descriptor ssd = {
 		0,			/* segment base address (overwritten) */
 		ctob(IOPAGES + 1) - 1,	/* length */
 		SDT_SYS386TSS,		/* segment type */
 		0,			/* priority level */
 		1,			/* descriptor present */
 		0, 0,
 		0,			/* default 32 size */
 		0			/* granularity */
 	};
 
 	ext = pmap_trm_alloc(ctob(IOPAGES + 1), M_WAITOK | M_ZERO);
 	/* -16 is so we can convert a trapframe into vm86trapframe inplace */
 	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
 	/*
 	 * The last byte of the i/o map must be followed by an 0xff byte.
 	 * We arbitrarily allocate 16 bytes here, to keep the starting
 	 * address on a doubleword boundary.
 	 */
 	offset = PAGE_SIZE - 16;
 	ext->ext_tss.tss_ioopt = 
 	    (offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16;
 	ext->ext_iomap = (caddr_t)ext + offset;
 	ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32;
 
 	addr = (u_long *)ext->ext_vm86.vm86_intmap;
 	for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++)
 		*addr++ = ~0;
 
 	ssd.ssd_base = (unsigned)&ext->ext_tss;
 	ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext);
 	ssdtosd(&ssd, &ext->ext_tssd);
 
 	KASSERT(td == curthread, ("giving TSS to !curthread"));
 	KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!"));
 
 	/* Switch to the new TSS. */
 	critical_enter();
 	ext->ext_tss.tss_esp0 = PCPU_GET(trampstk);
 	td->td_pcb->pcb_ext = ext;
 	PCPU_SET(private_tss, 1);
 	*PCPU_GET(tss_gdt) = ext->ext_tssd;
 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
 	critical_exit();
 
 	return 0;
 }
 
 int
 i386_set_ioperm(td, uap)
 	struct thread *td;
 	struct i386_ioperm_args *uap;
 {
 	char *iomap;
 	u_int i;
 	int error;
 
 	if ((error = priv_check(td, PRIV_IO)) != 0)
 		return (error);
 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
 		return (error);
 	/*
 	 * XXX 
 	 * While this is restricted to root, we should probably figure out
 	 * whether any other driver is using this i/o address, as so not to
 	 * cause confusion.  This probably requires a global 'usage registry'.
 	 */
 
 	if (td->td_pcb->pcb_ext == 0)
 		if ((error = i386_extend_pcb(td)) != 0)
 			return (error);
 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
 
 	if (uap->start > uap->start + uap->length ||
 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
 		return (EINVAL);
 
 	for (i = uap->start; i < uap->start + uap->length; i++) {
 		if (uap->enable)
 			iomap[i >> 3] &= ~(1 << (i & 7));
 		else
 			iomap[i >> 3] |= (1 << (i & 7));
 	}
 	return (error);
 }
 
 int
 i386_get_ioperm(td, uap)
 	struct thread *td;
 	struct i386_ioperm_args *uap;
 {
 	int i, state;
 	char *iomap;
 
 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
 		return (EINVAL);
 
 	if (td->td_pcb->pcb_ext == 0) {
 		uap->length = 0;
 		goto done;
 	}
 
 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
 
 	i = uap->start;
 	state = (iomap[i >> 3] >> (i & 7)) & 1;
 	uap->enable = !state;
 	uap->length = 1;
 
 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
 			break;
 		uap->length++;
 	}
 
 done:
 	return (0);
 }
 
 /*
  * Update the GDT entry pointing to the LDT to point to the LDT of the
  * current process. Manage dt_lock holding/unholding autonomously.
  */   
 static void
 set_user_ldt_locked(struct mdproc *mdp)
 {
 	struct proc_ldt *pldt;
 	int gdt_idx;
 
 	mtx_assert(&dt_lock, MA_OWNED);
 
 	pldt = mdp->md_ldt;
 	gdt_idx = GUSERLDT_SEL;
 	gdt_idx += PCPU_GET(cpuid) * NGDT;	/* always 0 on UP */
 	gdt[gdt_idx].sd = pldt->ldt_sd;
 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
 	PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL));
 }
 
 void
 set_user_ldt(struct mdproc *mdp)
 {
 
 	mtx_lock_spin(&dt_lock);
 	set_user_ldt_locked(mdp);
 	mtx_unlock_spin(&dt_lock);
 }
 
 #ifdef SMP
 static void
 set_user_ldt_rv(void *arg)
 {
 	struct proc *p;
 
 	p = curproc;
 	if (arg == p->p_vmspace)
 		set_user_ldt(&p->p_md);
 }
 #endif
 
 /*
  * dt_lock must be held. Returns with dt_lock held.
  */
 struct proc_ldt *
 user_ldt_alloc(struct mdproc *mdp, int len)
 {
 	struct proc_ldt *pldt, *new_ldt;
 
 	mtx_assert(&dt_lock, MA_OWNED);
 	mtx_unlock_spin(&dt_lock);
 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
 
 	new_ldt->ldt_len = len = NEW_MAX_LD(len);
 	new_ldt->ldt_base = pmap_trm_alloc(len * sizeof(union descriptor),
 	    M_WAITOK | M_ZERO);
 	new_ldt->ldt_refcnt = 1;
 	new_ldt->ldt_active = 0;
 
 	mtx_lock_spin(&dt_lock);
 	gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base;
 	gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1;
 	ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd);
 
 	if ((pldt = mdp->md_ldt) != NULL) {
 		if (len > pldt->ldt_len)
 			len = pldt->ldt_len;
 		bcopy(pldt->ldt_base, new_ldt->ldt_base,
 		    len * sizeof(union descriptor));
 	} else
 		bcopy(ldt, new_ldt->ldt_base, sizeof(union descriptor) * NLDT);
 	
 	return (new_ldt);
 }
 
 /*
  * Must be called with dt_lock held.  Returns with dt_lock unheld.
  */
 void
 user_ldt_free(struct thread *td)
 {
 	struct mdproc *mdp;
 	struct proc_ldt *pldt;
 
 	mtx_assert(&dt_lock, MA_OWNED);
 	mdp = &td->td_proc->p_md;
 	if ((pldt = mdp->md_ldt) == NULL) {
 		mtx_unlock_spin(&dt_lock);
 		return;
 	}
 
 	if (td == curthread) {
 		lldt(_default_ldt);
 		PCPU_SET(currentldt, _default_ldt);
 	}
 
 	mdp->md_ldt = NULL;
 	user_ldt_deref(pldt);
 }
 
 void
 user_ldt_deref(struct proc_ldt *pldt)
 {
 
 	mtx_assert(&dt_lock, MA_OWNED);
 	if (--pldt->ldt_refcnt == 0) {
 		mtx_unlock_spin(&dt_lock);
 		pmap_trm_free(pldt->ldt_base, pldt->ldt_len *
 		    sizeof(union descriptor));
 		free(pldt, M_SUBPROC);
 	} else
 		mtx_unlock_spin(&dt_lock);
 }
 
 /*
  * Note for the authors of compat layers (linux, etc): copyout() in
  * the function below is not a problem since it presents data in
  * arch-specific format (i.e. i386-specific in this case), not in
  * the OS-specific one.
  */
 int
 i386_get_ldt(struct thread *td, struct i386_ldt_args *uap)
 {
 	struct proc_ldt *pldt;
 	char *data;
 	u_int nldt, num;
 	int error;
 
 #ifdef DEBUG
 	printf("i386_get_ldt: start=%u num=%u descs=%p\n",
 	    uap->start, uap->num, (void *)uap->descs);
 #endif
 
 	num = min(uap->num, MAX_LD);
 	data = malloc(num * sizeof(union descriptor), M_TEMP, M_WAITOK);
 	mtx_lock_spin(&dt_lock);
 	pldt = td->td_proc->p_md.md_ldt;
-	nldt = pldt != NULL ? pldt->ldt_len : nitems(ldt);
+	nldt = pldt != NULL ? pldt->ldt_len : NLDT;
 	if (uap->start >= nldt) {
 		num = 0;
 	} else {
 		num = min(num, nldt - uap->start);
 		bcopy(pldt != NULL ?
 		    &((union descriptor *)(pldt->ldt_base))[uap->start] :
 		    &ldt[uap->start], data, num * sizeof(union descriptor));
 	}
 	mtx_unlock_spin(&dt_lock);
 	error = copyout(data, uap->descs, num * sizeof(union descriptor));
 	if (error == 0)
 		td->td_retval[0] = num;
 	free(data, M_TEMP);
 	return (error);
 }
 
 int
 i386_set_ldt(struct thread *td, struct i386_ldt_args *uap,
     union descriptor *descs)
 {
 	struct mdproc *mdp;
 	struct proc_ldt *pldt;
 	union descriptor *dp;
 	u_int largest_ld, i;
 	int error;
 
 #ifdef DEBUG
 	printf("i386_set_ldt: start=%u num=%u descs=%p\n",
 	    uap->start, uap->num, (void *)uap->descs);
 #endif
 	error = 0;
 	mdp = &td->td_proc->p_md;
 
 	if (descs == NULL) {
 		/* Free descriptors */
 		if (uap->start == 0 && uap->num == 0) {
 			/*
 			 * Treat this as a special case, so userland needn't
 			 * know magic number NLDT.
 			 */
 			uap->start = NLDT;
 			uap->num = MAX_LD - NLDT;
 		}
 		mtx_lock_spin(&dt_lock);
 		if ((pldt = mdp->md_ldt) == NULL ||
 		    uap->start >= pldt->ldt_len) {
 			mtx_unlock_spin(&dt_lock);
 			return (0);
 		}
 		largest_ld = uap->start + uap->num;
 		if (largest_ld > pldt->ldt_len)
 			largest_ld = pldt->ldt_len;
 		for (i = uap->start; i < largest_ld; i++)
 			atomic_store_rel_64(&((uint64_t *)(pldt->ldt_base))[i],
 			    0);
 		mtx_unlock_spin(&dt_lock);
 		return (0);
 	}
 
 	if (uap->start != LDT_AUTO_ALLOC || uap->num != 1) {
 		/* verify range of descriptors to modify */
 		largest_ld = uap->start + uap->num;
 		if (uap->start >= MAX_LD || largest_ld > MAX_LD)
 			return (EINVAL);
 	}
 
 	/* Check descriptors for access violations */
 	for (i = 0; i < uap->num; i++) {
 		dp = &descs[i];
 
 		switch (dp->sd.sd_type) {
 		case SDT_SYSNULL:	/* system null */ 
 			dp->sd.sd_p = 0;
 			break;
 		case SDT_SYS286TSS: /* system 286 TSS available */
 		case SDT_SYSLDT:    /* system local descriptor table */
 		case SDT_SYS286BSY: /* system 286 TSS busy */
 		case SDT_SYSTASKGT: /* system task gate */
 		case SDT_SYS286IGT: /* system 286 interrupt gate */
 		case SDT_SYS286TGT: /* system 286 trap gate */
 		case SDT_SYSNULL2:  /* undefined by Intel */ 
 		case SDT_SYS386TSS: /* system 386 TSS available */
 		case SDT_SYSNULL3:  /* undefined by Intel */
 		case SDT_SYS386BSY: /* system 386 TSS busy */
 		case SDT_SYSNULL4:  /* undefined by Intel */ 
 		case SDT_SYS386IGT: /* system 386 interrupt gate */
 		case SDT_SYS386TGT: /* system 386 trap gate */
 		case SDT_SYS286CGT: /* system 286 call gate */ 
 		case SDT_SYS386CGT: /* system 386 call gate */
 			return (EACCES);
 
 		/* memory segment types */
 		case SDT_MEMEC:   /* memory execute only conforming */
 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
 		case SDT_MEMERC:  /* memory execute read conforming */
 		case SDT_MEMERAC: /* memory execute read accessed conforming */
 			 /* Must be "present" if executable and conforming. */
 			if (dp->sd.sd_p == 0)
 				return (EACCES);
 			break;
 		case SDT_MEMRO:   /* memory read only */
 		case SDT_MEMROA:  /* memory read only accessed */
 		case SDT_MEMRW:   /* memory read write */
 		case SDT_MEMRWA:  /* memory read write accessed */
 		case SDT_MEMROD:  /* memory read only expand dwn limit */
 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
 		case SDT_MEMRWD:  /* memory read write expand dwn limit */  
 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
 		case SDT_MEME:    /* memory execute only */ 
 		case SDT_MEMEA:   /* memory execute only accessed */
 		case SDT_MEMER:   /* memory execute read */
 		case SDT_MEMERA:  /* memory execute read accessed */
 			break;
 		default:
 			return (EINVAL);
 		}
 
 		/* Only user (ring-3) descriptors may be present. */
 		if (dp->sd.sd_p != 0 && dp->sd.sd_dpl != SEL_UPL)
 			return (EACCES);
 	}
 
 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
 		/* Allocate a free slot */
 		mtx_lock_spin(&dt_lock);
 		if ((pldt = mdp->md_ldt) == NULL) {
 			if ((error = i386_ldt_grow(td, NLDT + 1))) {
 				mtx_unlock_spin(&dt_lock);
 				return (error);
 			}
 			pldt = mdp->md_ldt;
 		}
 again:
 		/*
 		 * start scanning a bit up to leave room for NVidia and
 		 * Wine, which still user the "Blat" method of allocation.
 		 */
 		dp = &((union descriptor *)(pldt->ldt_base))[NLDT];
 		for (i = NLDT; i < pldt->ldt_len; ++i) {
 			if (dp->sd.sd_type == SDT_SYSNULL)
 				break;
 			dp++;
 		}
 		if (i >= pldt->ldt_len) {
 			if ((error = i386_ldt_grow(td, pldt->ldt_len+1))) {
 				mtx_unlock_spin(&dt_lock);
 				return (error);
 			}
 			goto again;
 		}
 		uap->start = i;
 		error = i386_set_ldt_data(td, i, 1, descs);
 		mtx_unlock_spin(&dt_lock);
 	} else {
 		largest_ld = uap->start + uap->num;
 		mtx_lock_spin(&dt_lock);
 		if (!(error = i386_ldt_grow(td, largest_ld))) {
 			error = i386_set_ldt_data(td, uap->start, uap->num,
 			    descs);
 		}
 		mtx_unlock_spin(&dt_lock);
 	}
 	if (error == 0)
 		td->td_retval[0] = uap->start;
 	return (error);
 }
 
 static int
 i386_set_ldt_data(struct thread *td, int start, int num,
     union descriptor *descs)
 {
 	struct mdproc *mdp;
 	struct proc_ldt *pldt;
 	uint64_t *dst, *src;
 	int i;
 
 	mtx_assert(&dt_lock, MA_OWNED);
 
 	mdp = &td->td_proc->p_md;
 	pldt = mdp->md_ldt;
 	dst = (uint64_t *)(pldt->ldt_base);
 	src = (uint64_t *)descs;
 
 	/*
 	 * Atomic(9) is used only to get 64bit atomic store with
 	 * cmpxchg8b when available.  There is no op without release
 	 * semantic.
 	 */
 	for (i = 0; i < num; i++)
 		atomic_store_rel_64(&dst[start + i], src[i]);
 	return (0);
 }
 
 static int
 i386_ldt_grow(struct thread *td, int len) 
 {
 	struct mdproc *mdp;
 	struct proc_ldt *new_ldt, *pldt;
 	caddr_t old_ldt_base;
 	int old_ldt_len;
 
 	mtx_assert(&dt_lock, MA_OWNED);
 
 	if (len > MAX_LD)
 		return (ENOMEM);
 	if (len < NLDT + 1)
 		len = NLDT + 1;
 
 	mdp = &td->td_proc->p_md;
 	old_ldt_base = NULL_LDT_BASE;
 	old_ldt_len = 0;
 
 	/* Allocate a user ldt. */
 	if ((pldt = mdp->md_ldt) == NULL || len > pldt->ldt_len) {
 		new_ldt = user_ldt_alloc(mdp, len);
 		if (new_ldt == NULL)
 			return (ENOMEM);
 		pldt = mdp->md_ldt;
 
 		if (pldt != NULL) {
 			if (new_ldt->ldt_len <= pldt->ldt_len) {
 				/*
 				 * We just lost the race for allocation, so
 				 * free the new object and return.
 				 */
 				mtx_unlock_spin(&dt_lock);
 				pmap_trm_free(new_ldt->ldt_base,
 				   new_ldt->ldt_len * sizeof(union descriptor));
 				free(new_ldt, M_SUBPROC);
 				mtx_lock_spin(&dt_lock);
 				return (0);
 			}
 
 			/*
 			 * We have to substitute the current LDT entry for
 			 * curproc with the new one since its size grew.
 			 */
 			old_ldt_base = pldt->ldt_base;
 			old_ldt_len = pldt->ldt_len;
 			pldt->ldt_sd = new_ldt->ldt_sd;
 			pldt->ldt_base = new_ldt->ldt_base;
 			pldt->ldt_len = new_ldt->ldt_len;
 		} else
 			mdp->md_ldt = pldt = new_ldt;
 #ifdef SMP
 		/*
 		 * Signal other cpus to reload ldt.  We need to unlock dt_lock
 		 * here because other CPU will contest on it since their
 		 * curthreads won't hold the lock and will block when trying
 		 * to acquire it.
 		 */
 		mtx_unlock_spin(&dt_lock);
 		smp_rendezvous(NULL, set_user_ldt_rv, NULL,
 		    td->td_proc->p_vmspace);
 #else
 		set_user_ldt_locked(&td->td_proc->p_md);
 		mtx_unlock_spin(&dt_lock);
 #endif
 		if (old_ldt_base != NULL_LDT_BASE) {
 			pmap_trm_free(old_ldt_base, old_ldt_len *
 			    sizeof(union descriptor));
 			free(new_ldt, M_SUBPROC);
 		}
 		mtx_lock_spin(&dt_lock);
 	}
 	return (0);
 }