Index: stable/11/contrib/netbsd-tests/kernel/t_sysv.c =================================================================== --- stable/11/contrib/netbsd-tests/kernel/t_sysv.c (revision 343425) +++ stable/11/contrib/netbsd-tests/kernel/t_sysv.c (revision 343426) @@ -1,851 +1,901 @@ /* $NetBSD: t_sysv.c,v 1.4 2014/03/02 20:13:12 jmmv Exp $ */ /*- * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Test the SVID-compatible Message Queue facility. */ #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include volatile int did_sigsys, did_sigchild; volatile int child_status, child_count; void sigsys_handler(int); void sigchld_handler(int); key_t get_ftok(int); void print_msqid_ds(struct msqid_ds *, mode_t); void receiver(void); void print_semid_ds(struct semid_ds *, mode_t); void waiter(void); void print_shmid_ds(struct shmid_ds *, mode_t); void sharer(void); #define MESSAGE_TEXT_LEN 256 struct testmsg { long mtype; char mtext[MESSAGE_TEXT_LEN]; }; const char *m1_str = "California is overrated."; const char *m2_str = "The quick brown fox jumped over the lazy dog."; size_t pgsize; #define MTYPE_1 1 #define MTYPE_1_ACK 2 #define MTYPE_2 3 #define MTYPE_2_ACK 4 pid_t child_pid; key_t msgkey, semkey, shmkey; int maxloop = 1; #ifndef __FreeBSD__ union semun { int val; /* value for SETVAL */ struct semid_ds *buf; /* buffer for IPC_{STAT,SET} */ u_short *array; /* array for GETALL & SETALL */ }; #endif /* Writes an integer to a file. To be used from the body of the test * cases below to pass any global identifiers to the cleanup routine. */ static void write_int(const char *path, const int value) { int output; output = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0600); ATF_REQUIRE_MSG(output != -1, "Failed to create %s", path); write(output, &value, sizeof(value)); close(output); } /* Reads an integer from a file. To be used from the cleanup routines * of the test cases below. */ static int read_int(const char *path) { int input; input = open(path, O_RDONLY); if (input == -1) return -1; else { int value; ATF_REQUIRE_EQ(read(input, &value, sizeof(value)), sizeof(value)); close(input); return value; } } void sigsys_handler(int signo) { did_sigsys = 1; } void sigchld_handler(int signo) { int c_status; did_sigchild = 1; /* * Reap the child and return its status */ if (wait(&c_status) == -1) child_status = -errno; else child_status = c_status; child_count--; } key_t get_ftok(int id) { int fd; char token_key[64], token_dir[64]; char *tmpdir; key_t key; strlcpy(token_key, "/tmp/t_sysv.XXXXXX", sizeof(token_key)); tmpdir = mkdtemp(token_key); ATF_REQUIRE_MSG(tmpdir != NULL, "mkdtemp() failed: %d", errno); strlcpy(token_dir, tmpdir, sizeof(token_dir)); strlcpy(token_key, tmpdir, sizeof(token_key)); strlcat(token_key, "/token_key", sizeof(token_key)); /* Create the file, since ftok() requires it to exist! */ fd = open(token_key, O_RDWR | O_CREAT | O_EXCL, 0600); if (fd == -1) { rmdir(tmpdir); atf_tc_fail("open() of temp file failed: %d", errno); return (key_t)-1; } else close(fd); key = ftok(token_key, id); ATF_REQUIRE_MSG(unlink(token_key) != -1, "unlink() failed: %d", errno); ATF_REQUIRE_MSG(rmdir(token_dir) != -1, "rmdir() failed: %d", errno); return key; } ATF_TC_WITH_CLEANUP(msg); ATF_TC_HEAD(msg, tc) { atf_tc_set_md_var(tc, "timeout", "3"); atf_tc_set_md_var(tc, "descr", "Checks sysvmsg passing"); } ATF_TC_BODY(msg, tc) { struct sigaction sa; struct msqid_ds m_ds; struct testmsg m; sigset_t sigmask; int sender_msqid; int loop; int c_status; /* * Install a SIGSYS handler so that we can exit gracefully if * System V Message Queue support isn't in the kernel. */ did_sigsys = 0; sa.sa_handler = sigsys_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGSYS, &sa, NULL) != -1, "sigaction SIGSYS: %d", errno); /* * Install a SIGCHLD handler to deal with all possible exit * conditions of the receiver. */ did_sigchild = 0; child_count = 0; sa.sa_handler = sigchld_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGCHLD, &sa, NULL) != -1, "sigaction SIGCHLD: %d", errno); msgkey = get_ftok(4160); ATF_REQUIRE_MSG(msgkey != (key_t)-1, "get_ftok failed"); sender_msqid = msgget(msgkey, IPC_CREAT | 0640); ATF_REQUIRE_MSG(sender_msqid != -1, "msgget: %d", errno); write_int("sender_msqid", sender_msqid); if (did_sigsys) { atf_tc_skip("SYSV Message Queue not supported"); return; } ATF_REQUIRE_MSG(msgctl(sender_msqid, IPC_STAT, &m_ds) != -1, "msgctl IPC_STAT 1: %d", errno); print_msqid_ds(&m_ds, 0640); m_ds.msg_perm.mode = (m_ds.msg_perm.mode & ~0777) | 0600; ATF_REQUIRE_MSG(msgctl(sender_msqid, IPC_SET, &m_ds) != -1, "msgctl IPC_SET: %d", errno); memset(&m_ds, 0, sizeof(m_ds)); ATF_REQUIRE_MSG(msgctl(sender_msqid, IPC_STAT, &m_ds) != -1, "msgctl IPC_STAT 2: %d", errno); ATF_REQUIRE_MSG((m_ds.msg_perm.mode & 0777) == 0600, "IPC_SET of mode didn't hold"); print_msqid_ds(&m_ds, 0600); switch ((child_pid = fork())) { case -1: atf_tc_fail("fork: %d", errno); return; case 0: child_count++; receiver(); break; default: break; } for (loop = 0; loop < maxloop; loop++) { /* * Send the first message to the receiver and wait for the ACK. */ m.mtype = MTYPE_1; strlcpy(m.mtext, m1_str, sizeof(m.mtext)); ATF_REQUIRE_MSG(msgsnd(sender_msqid, &m, MESSAGE_TEXT_LEN, 0) != -1, "sender: msgsnd 1: %d", errno); ATF_REQUIRE_MSG(msgrcv(sender_msqid, &m, MESSAGE_TEXT_LEN, MTYPE_1_ACK, 0) == MESSAGE_TEXT_LEN, "sender: msgrcv 1 ack: %d", errno); print_msqid_ds(&m_ds, 0600); /* * Send the second message to the receiver and wait for the ACK. */ m.mtype = MTYPE_2; strlcpy(m.mtext, m2_str, sizeof(m.mtext)); ATF_REQUIRE_MSG(msgsnd(sender_msqid, &m, MESSAGE_TEXT_LEN, 0) != -1, "sender: msgsnd 2: %d", errno); ATF_REQUIRE_MSG(msgrcv(sender_msqid, &m, MESSAGE_TEXT_LEN, MTYPE_2_ACK, 0) == MESSAGE_TEXT_LEN, "sender: msgrcv 2 ack: %d", errno); } /* * Wait for child to finish */ sigemptyset(&sigmask); (void) sigsuspend(&sigmask); /* * ...and any other signal is an unexpected error. */ if (did_sigchild) { c_status = child_status; if (c_status < 0) atf_tc_fail("waitpid: %d", -c_status); else if (WIFEXITED(c_status) == 0) atf_tc_fail("child abnormal exit: %d", c_status); else if (WEXITSTATUS(c_status) != 0) atf_tc_fail("c status: %d", WEXITSTATUS(c_status)); else { ATF_REQUIRE_MSG(msgctl(sender_msqid, IPC_STAT, &m_ds) != -1, "msgctl IPC_STAT: %d", errno); print_msqid_ds(&m_ds, 0600); atf_tc_pass(); } } else atf_tc_fail("sender: received unexpected signal"); } ATF_TC_CLEANUP(msg, tc) { int sender_msqid; /* * Remove the message queue if it exists. */ sender_msqid = read_int("sender_msqid"); if (sender_msqid != -1) if (msgctl(sender_msqid, IPC_RMID, NULL) == -1) err(1, "msgctl IPC_RMID"); } void print_msqid_ds(struct msqid_ds *mp, mode_t mode) { uid_t uid = geteuid(); gid_t gid = getegid(); printf("PERM: uid %d, gid %d, cuid %d, cgid %d, mode 0%o\n", mp->msg_perm.uid, mp->msg_perm.gid, mp->msg_perm.cuid, mp->msg_perm.cgid, mp->msg_perm.mode & 0777); printf("qnum %lu, qbytes %lu, lspid %d, lrpid %d\n", mp->msg_qnum, (u_long)mp->msg_qbytes, mp->msg_lspid, mp->msg_lrpid); printf("stime: %s", ctime(&mp->msg_stime)); printf("rtime: %s", ctime(&mp->msg_rtime)); printf("ctime: %s", ctime(&mp->msg_ctime)); /* * Sanity check a few things. */ ATF_REQUIRE_MSG(mp->msg_perm.uid == uid && mp->msg_perm.cuid == uid, "uid mismatch"); ATF_REQUIRE_MSG(mp->msg_perm.gid == gid && mp->msg_perm.cgid == gid, "gid mismatch"); ATF_REQUIRE_MSG((mp->msg_perm.mode & 0777) == mode, "mode mismatch"); } void receiver(void) { struct testmsg m; int msqid, loop; if ((msqid = msgget(msgkey, 0)) == -1) err(1, "receiver: msgget"); for (loop = 0; loop < maxloop; loop++) { /* * Receive the first message, print it, and send an ACK. */ if (msgrcv(msqid, &m, MESSAGE_TEXT_LEN, MTYPE_1, 0) != MESSAGE_TEXT_LEN) err(1, "receiver: msgrcv 1"); printf("%s\n", m.mtext); if (strcmp(m.mtext, m1_str) != 0) err(1, "receiver: message 1 data isn't correct"); m.mtype = MTYPE_1_ACK; if (msgsnd(msqid, &m, MESSAGE_TEXT_LEN, 0) == -1) err(1, "receiver: msgsnd ack 1"); /* * Receive the second message, print it, and send an ACK. */ if (msgrcv(msqid, &m, MESSAGE_TEXT_LEN, MTYPE_2, 0) != MESSAGE_TEXT_LEN) err(1, "receiver: msgrcv 2"); printf("%s\n", m.mtext); if (strcmp(m.mtext, m2_str) != 0) err(1, "receiver: message 2 data isn't correct"); m.mtype = MTYPE_2_ACK; if (msgsnd(msqid, &m, MESSAGE_TEXT_LEN, 0) == -1) err(1, "receiver: msgsnd ack 2"); } exit(0); } /* * Test the SVID-compatible Semaphore facility. */ ATF_TC_WITH_CLEANUP(sem); ATF_TC_HEAD(sem, tc) { atf_tc_set_md_var(tc, "timeout", "3"); atf_tc_set_md_var(tc, "descr", "Checks sysvmsg passing"); } ATF_TC_BODY(sem, tc) { struct sigaction sa; union semun sun; struct semid_ds s_ds; sigset_t sigmask; int sender_semid; int i; int c_status; /* * Install a SIGSYS handler so that we can exit gracefully if * System V Semaphore support isn't in the kernel. */ did_sigsys = 0; sa.sa_handler = sigsys_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGSYS, &sa, NULL) != -1, "sigaction SIGSYS: %d", errno); /* * Install a SIGCHLD handler to deal with all possible exit * conditions of the receiver. */ did_sigchild = 0; child_count = 0; sa.sa_handler = sigchld_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGCHLD, &sa, NULL) != -1, "sigaction SIGCHLD: %d", errno); semkey = get_ftok(4160); ATF_REQUIRE_MSG(semkey != (key_t)-1, "get_ftok failed"); sender_semid = semget(semkey, 1, IPC_CREAT | 0640); ATF_REQUIRE_MSG(sender_semid != -1, "semget: %d", errno); write_int("sender_semid", sender_semid); if (did_sigsys) { atf_tc_skip("SYSV Semaphore not supported"); return; } sun.buf = &s_ds; ATF_REQUIRE_MSG(semctl(sender_semid, 0, IPC_STAT, sun) != -1, "semctl IPC_STAT: %d", errno); print_semid_ds(&s_ds, 0640); s_ds.sem_perm.mode = (s_ds.sem_perm.mode & ~0777) | 0600; sun.buf = &s_ds; ATF_REQUIRE_MSG(semctl(sender_semid, 0, IPC_SET, sun) != -1, "semctl IPC_SET: %d", errno); memset(&s_ds, 0, sizeof(s_ds)); sun.buf = &s_ds; ATF_REQUIRE_MSG(semctl(sender_semid, 0, IPC_STAT, sun) != -1, "semctl IPC_STAT: %d", errno); ATF_REQUIRE_MSG((s_ds.sem_perm.mode & 0777) == 0600, "IPC_SET of mode didn't hold"); print_semid_ds(&s_ds, 0600); for (child_count = 0; child_count < 5; child_count++) { switch ((child_pid = fork())) { case -1: atf_tc_fail("fork: %d", errno); return; case 0: waiter(); break; default: break; } } /* * Wait for all of the waiters to be attempting to acquire the * semaphore. */ for (;;) { i = semctl(sender_semid, 0, GETNCNT); if (i == -1) atf_tc_fail("semctl GETNCNT: %d", i); if (i == 5) break; } /* * Now set the thundering herd in motion by initializing the * semaphore to the value 1. */ sun.val = 1; ATF_REQUIRE_MSG(semctl(sender_semid, 0, SETVAL, sun) != -1, "sender: semctl SETVAL to 1: %d", errno); /* * Wait for all children to finish */ sigemptyset(&sigmask); for (;;) { (void) sigsuspend(&sigmask); if (did_sigchild) { c_status = child_status; if (c_status < 0) atf_tc_fail("waitpid: %d", -c_status); else if (WIFEXITED(c_status) == 0) atf_tc_fail("c abnormal exit: %d", c_status); else if (WEXITSTATUS(c_status) != 0) atf_tc_fail("c status: %d", WEXITSTATUS(c_status)); else { sun.buf = &s_ds; ATF_REQUIRE_MSG(semctl(sender_semid, 0, IPC_STAT, sun) != -1, "semctl IPC_STAT: %d", errno); print_semid_ds(&s_ds, 0600); atf_tc_pass(); } if (child_count <= 0) break; did_sigchild = 0; } else { atf_tc_fail("sender: received unexpected signal"); break; } } } ATF_TC_CLEANUP(sem, tc) { int sender_semid; /* * Remove the semaphore if it exists */ sender_semid = read_int("sender_semid"); if (sender_semid != -1) if (semctl(sender_semid, 0, IPC_RMID) == -1) err(1, "semctl IPC_RMID"); } void print_semid_ds(struct semid_ds *sp, mode_t mode) { uid_t uid = geteuid(); gid_t gid = getegid(); printf("PERM: uid %d, gid %d, cuid %d, cgid %d, mode 0%o\n", sp->sem_perm.uid, sp->sem_perm.gid, sp->sem_perm.cuid, sp->sem_perm.cgid, sp->sem_perm.mode & 0777); printf("nsems %u\n", sp->sem_nsems); printf("otime: %s", ctime(&sp->sem_otime)); printf("ctime: %s", ctime(&sp->sem_ctime)); /* * Sanity check a few things. */ ATF_REQUIRE_MSG(sp->sem_perm.uid == uid && sp->sem_perm.cuid == uid, "uid mismatch"); ATF_REQUIRE_MSG(sp->sem_perm.gid == gid && sp->sem_perm.cgid == gid, "gid mismatch"); ATF_REQUIRE_MSG((sp->sem_perm.mode & 0777) == mode, "mode mismatch %o != %o", (sp->sem_perm.mode & 0777), mode); } void waiter(void) { struct sembuf s; int semid; if ((semid = semget(semkey, 1, 0)) == -1) err(1, "waiter: semget"); /* * Attempt to acquire the semaphore. */ s.sem_num = 0; s.sem_op = -1; s.sem_flg = SEM_UNDO; if (semop(semid, &s, 1) == -1) err(1, "waiter: semop -1"); printf("WOO! GOT THE SEMAPHORE!\n"); sleep(1); /* * Release the semaphore and exit. */ s.sem_num = 0; s.sem_op = 1; s.sem_flg = SEM_UNDO; if (semop(semid, &s, 1) == -1) err(1, "waiter: semop +1"); exit(0); } /* * Test the SVID-compatible Shared Memory facility. */ ATF_TC_WITH_CLEANUP(shm); ATF_TC_HEAD(shm, tc) { atf_tc_set_md_var(tc, "timeout", "3"); atf_tc_set_md_var(tc, "descr", "Checks sysv shared memory"); } ATF_TC_BODY(shm, tc) { struct sigaction sa; struct shmid_ds s_ds; sigset_t sigmask; char *shm_buf; int sender_shmid; int c_status; /* * Install a SIGSYS handler so that we can exit gracefully if * System V Shared Memory support isn't in the kernel. */ did_sigsys = 0; sa.sa_handler = sigsys_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGSYS, &sa, NULL) != -1, "sigaction SIGSYS: %d", errno); /* * Install a SIGCHLD handler to deal with all possible exit * conditions of the sharer. */ did_sigchild = 0; child_count = 0; sa.sa_handler = sigchld_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; ATF_REQUIRE_MSG(sigaction(SIGCHLD, &sa, NULL) != -1, "sigaction SIGCHLD: %d", errno); pgsize = sysconf(_SC_PAGESIZE); shmkey = get_ftok(4160); ATF_REQUIRE_MSG(shmkey != (key_t)-1, "get_ftok failed"); ATF_REQUIRE_MSG((sender_shmid = shmget(shmkey, pgsize, IPC_CREAT | 0640)) != -1, "shmget: %d", errno); write_int("sender_shmid", sender_shmid); ATF_REQUIRE_MSG(shmctl(sender_shmid, IPC_STAT, &s_ds) != -1, "shmctl IPC_STAT: %d", errno); print_shmid_ds(&s_ds, 0640); s_ds.shm_perm.mode = (s_ds.shm_perm.mode & ~0777) | 0600; ATF_REQUIRE_MSG(shmctl(sender_shmid, IPC_SET, &s_ds) != -1, "shmctl IPC_SET: %d", errno); memset(&s_ds, 0, sizeof(s_ds)); ATF_REQUIRE_MSG(shmctl(sender_shmid, IPC_STAT, &s_ds) != -1, "shmctl IPC_STAT: %d", errno); ATF_REQUIRE_MSG((s_ds.shm_perm.mode & 0777) == 0600, "IPC_SET of mode didn't hold"); print_shmid_ds(&s_ds, 0600); shm_buf = shmat(sender_shmid, NULL, 0); ATF_REQUIRE_MSG(shm_buf != (void *) -1, "sender: shmat: %d", errno); /* * Write the test pattern into the shared memory buffer. */ strcpy(shm_buf, m2_str); switch ((child_pid = fork())) { case -1: atf_tc_fail("fork: %d", errno); return; case 0: sharer(); break; default: break; } /* * Wait for child to finish */ sigemptyset(&sigmask); (void) sigsuspend(&sigmask); if (did_sigchild) { c_status = child_status; if (c_status < 0) atf_tc_fail("waitpid: %d", -c_status); else if (WIFEXITED(c_status) == 0) atf_tc_fail("c abnormal exit: %d", c_status); else if (WEXITSTATUS(c_status) != 0) atf_tc_fail("c status: %d", WEXITSTATUS(c_status)); else { ATF_REQUIRE_MSG(shmctl(sender_shmid, IPC_STAT, &s_ds) != -1, "shmctl IPC_STAT: %d", errno); print_shmid_ds(&s_ds, 0600); atf_tc_pass(); } } else atf_tc_fail("sender: received unexpected signal"); } -ATF_TC_CLEANUP(shm, tc) +static void +shmid_cleanup(const char *name) { - int sender_shmid; + int shmid; /* * Remove the shared memory area if it exists. */ - sender_shmid = read_int("sender_shmid"); - if (sender_shmid != -1) - if (shmctl(sender_shmid, IPC_RMID, NULL) == -1) + shmid = read_int(name); + if (shmid != -1) { + if (shmctl(shmid, IPC_RMID, NULL) == -1) err(1, "shmctl IPC_RMID"); + } } +ATF_TC_CLEANUP(shm, tc) +{ + + shmid_cleanup("sender_shmid"); +} + void print_shmid_ds(struct shmid_ds *sp, mode_t mode) { uid_t uid = geteuid(); gid_t gid = getegid(); printf("PERM: uid %d, gid %d, cuid %d, cgid %d, mode 0%o\n", sp->shm_perm.uid, sp->shm_perm.gid, sp->shm_perm.cuid, sp->shm_perm.cgid, sp->shm_perm.mode & 0777); printf("segsz %lu, lpid %d, cpid %d, nattch %u\n", (u_long)sp->shm_segsz, sp->shm_lpid, sp->shm_cpid, sp->shm_nattch); printf("atime: %s", ctime(&sp->shm_atime)); printf("dtime: %s", ctime(&sp->shm_dtime)); printf("ctime: %s", ctime(&sp->shm_ctime)); /* * Sanity check a few things. */ ATF_REQUIRE_MSG(sp->shm_perm.uid == uid && sp->shm_perm.cuid == uid, "uid mismatch"); ATF_REQUIRE_MSG(sp->shm_perm.gid == gid && sp->shm_perm.cgid == gid, "gid mismatch"); ATF_REQUIRE_MSG((sp->shm_perm.mode & 0777) == mode, "mode mismatch"); } void sharer(void) { int shmid; void *shm_buf; shmid = shmget(shmkey, pgsize, 0); ATF_REQUIRE_MSG(shmid != -1, "receiver: shmget:%d", errno); shm_buf = shmat(shmid, NULL, 0); ATF_REQUIRE_MSG(shm_buf != (void *) -1, "receiver: shmat: %d", errno); printf("%s\n", (const char *)shm_buf); ATF_REQUIRE_MSG(strcmp((const char *)shm_buf, m2_str) == 0, "receiver: data isn't correct"); exit(0); } +#ifdef SHM_REMAP +ATF_TC_WITH_CLEANUP(shm_remap); +ATF_TC_HEAD(shm_remap, tc) +{ + + atf_tc_set_md_var(tc, "descr", "Checks SHM_REMAP"); +} + +ATF_TC_BODY(shm_remap, tc) +{ + char *shm_buf; + int shmid_remap; + + pgsize = sysconf(_SC_PAGESIZE); + + shmkey = get_ftok(4160); + ATF_REQUIRE_MSG(shmkey != (key_t)-1, "get_ftok failed"); + + ATF_REQUIRE_MSG((shmid_remap = shmget(shmkey, pgsize, + IPC_CREAT | 0640)) != -1, "shmget: %d", errno); + write_int("shmid_remap", shmid_remap); + + ATF_REQUIRE_MSG((shm_buf = mmap(NULL, pgsize, PROT_READ | PROT_WRITE, + MAP_ANON | MAP_PRIVATE, -1, 0)) != MAP_FAILED, "mmap: %d", errno); + + ATF_REQUIRE_MSG(shmat(shmid_remap, shm_buf, 0) == (void *)-1, + "shmat without MAP_REMAP succeeded"); + ATF_REQUIRE_MSG(shmat(shmid_remap, shm_buf, SHM_REMAP) == shm_buf, + "shmat(SHM_REMAP): %d", errno); +} + +ATF_TC_CLEANUP(shm_remap, tc) +{ + + shmid_cleanup("shmid_remap"); +} +#endif /* SHM_REMAP */ + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, msg); ATF_TP_ADD_TC(tp, sem); ATF_TP_ADD_TC(tp, shm); +#ifdef SHM_REMAP + ATF_TP_ADD_TC(tp, shm_remap); +#endif return atf_no_error(); } Index: stable/11/lib/libc/sys/shmat.2 =================================================================== --- stable/11/lib/libc/sys/shmat.2 (revision 343425) +++ stable/11/lib/libc/sys/shmat.2 (revision 343426) @@ -1,127 +1,156 @@ .\" .\" Copyright (c) 1995 David Hovemeyer .\" .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES .\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. .\" IN NO EVENT SHALL THE DEVELOPERS BE LIABLE FOR ANY DIRECT, INDIRECT, .\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT .\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, .\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd January 25, 2018 +.Dd January 14, 2019 .Dt SHMAT 2 .Os .Sh NAME .Nm shmat , .Nm shmdt .Nd attach or detach shared memory .Sh LIBRARY .Lb libc .Sh SYNOPSIS .In sys/types.h .In sys/ipc.h .In sys/shm.h .Ft void * .Fn shmat "int shmid" "const void *addr" "int flag" .Ft int .Fn shmdt "const void *addr" .Sh DESCRIPTION The .Fn shmat system call attaches the shared memory segment identified by .Fa shmid to the calling process's address space. The address where the segment is attached is determined as follows: .\" .\" These are cribbed almost exactly from Stevens, _Advanced Programming in .\" the UNIX Environment_. .\" .Bl -bullet .It If .Fa addr is 0, the segment is attached at an address selected by the kernel. .It If .Fa addr -is nonzero and SHM_RND is not specified in +is nonzero and +.Va SHM_RND +is not specified in .Fa flag , the segment is attached the specified address. .It If .Fa addr -is specified and SHM_RND is specified, +is specified and +.Va SHM_RND +is specified, .Fa addr is rounded down to the nearest multiple of SHMLBA. .El .Pp +If the +.Va SHM_REMAP +flag is specified and the passed +.Fa addr +is not +.Dv NULL , +any existing mappings in the virtual addresses range are +cleared before the segment is attached. +If the flag is not specified, +.Fa addr +is not +.Dv NULL , +and the virtual address range contains +some pre-existing mappings, the +.Fn shmat +call fails. +.Pp The .Fn shmdt system call detaches the shared memory segment at the address specified by .Fa addr from the calling process's address space. .Sh RETURN VALUES Upon success, .Fn shmat returns the address where the segment is attached; otherwise, -1 is returned and .Va errno is set to indicate the error. .Pp .Rv -std shmdt .Sh ERRORS The .Fn shmat system call will fail if: .Bl -tag -width Er .It Bq Er EINVAL No shared memory segment was found corresponding to .Fa shmid . .It Bq Er EINVAL The .Fa addr argument was not an acceptable address. +.It Bq Er ENOMEM +The specified +.Fa addr +cannot be used for mapping, for instance due to the amount of available +space being smaller than the segment size, +or because pre-existing mappings are in the range and no +.Va SHM_REMAP +flag was provided. .It Bq Er EMFILE Failed to attach the shared memory segment because the per-process .Va kern.ipc.shmseg .Xr sysctl 3 limit was reached. .El .Pp The .Fn shmdt system call will fail if: .Bl -tag -width Er .It Bq Er EINVAL The .Fa addr argument does not point to a shared memory segment. .El .Sh "SEE ALSO" .Xr shmctl 2 , .Xr shmget 2 Index: stable/11/sys/kern/sysv_shm.c =================================================================== --- stable/11/sys/kern/sysv_shm.c (revision 343425) +++ stable/11/sys/kern/sysv_shm.c (revision 343426) @@ -1,1675 +1,1679 @@ /* $NetBSD: sysv_shm.c,v 1.23 1994/07/04 23:25:12 glass Exp $ */ /*- * Copyright (c) 1994 Adam Glass and Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Adam Glass and Charles * Hannum. * 4. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2003-2005 McAfee, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project in part by McAfee * Research, the Security Research Division of McAfee, Inc under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS research * program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_sysvipc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(sysv_shm, "System V shared memory segments support"); static MALLOC_DEFINE(M_SHM, "shm", "SVID compatible shared memory segments"); static int shmget_allocate_segment(struct thread *td, struct shmget_args *uap, int mode); static int shmget_existing(struct thread *td, struct shmget_args *uap, int mode, int segnum); #define SHMSEG_FREE 0x0200 #define SHMSEG_REMOVED 0x0400 #define SHMSEG_ALLOCATED 0x0800 static int shm_last_free, shm_nused, shmalloced; vm_size_t shm_committed; static struct shmid_kernel *shmsegs; static unsigned shm_prison_slot; struct shmmap_state { vm_offset_t va; int shmid; }; static void shm_deallocate_segment(struct shmid_kernel *); static int shm_find_segment_by_key(struct prison *, key_t); static struct shmid_kernel *shm_find_segment(struct prison *, int, bool); static int shm_delete_mapping(struct vmspace *vm, struct shmmap_state *); static void shmrealloc(void); static int shminit(void); static int sysvshm_modload(struct module *, int, void *); static int shmunload(void); static void shmexit_myhook(struct vmspace *vm); static void shmfork_myhook(struct proc *p1, struct proc *p2); static int sysctl_shmsegs(SYSCTL_HANDLER_ARGS); static void shm_remove(struct shmid_kernel *, int); static struct prison *shm_find_prison(struct ucred *); static int shm_prison_cansee(struct prison *, struct shmid_kernel *); static int shm_prison_check(void *, void *); static int shm_prison_set(void *, void *); static int shm_prison_get(void *, void *); static int shm_prison_remove(void *, void *); static void shm_prison_cleanup(struct prison *); /* * Tuneable values. */ #ifndef SHMMAXPGS #define SHMMAXPGS 131072 /* Note: sysv shared memory is swap backed. */ #endif #ifndef SHMMAX #define SHMMAX (SHMMAXPGS*PAGE_SIZE) #endif #ifndef SHMMIN #define SHMMIN 1 #endif #ifndef SHMMNI #define SHMMNI 192 #endif #ifndef SHMSEG #define SHMSEG 128 #endif #ifndef SHMALL #define SHMALL (SHMMAXPGS) #endif struct shminfo shminfo = { .shmmax = SHMMAX, .shmmin = SHMMIN, .shmmni = SHMMNI, .shmseg = SHMSEG, .shmall = SHMALL }; static int shm_use_phys; static int shm_allow_removed = 1; SYSCTL_ULONG(_kern_ipc, OID_AUTO, shmmax, CTLFLAG_RWTUN, &shminfo.shmmax, 0, "Maximum shared memory segment size"); SYSCTL_ULONG(_kern_ipc, OID_AUTO, shmmin, CTLFLAG_RWTUN, &shminfo.shmmin, 0, "Minimum shared memory segment size"); SYSCTL_ULONG(_kern_ipc, OID_AUTO, shmmni, CTLFLAG_RDTUN, &shminfo.shmmni, 0, "Number of shared memory identifiers"); SYSCTL_ULONG(_kern_ipc, OID_AUTO, shmseg, CTLFLAG_RDTUN, &shminfo.shmseg, 0, "Number of segments per process"); SYSCTL_ULONG(_kern_ipc, OID_AUTO, shmall, CTLFLAG_RWTUN, &shminfo.shmall, 0, "Maximum number of pages available for shared memory"); SYSCTL_INT(_kern_ipc, OID_AUTO, shm_use_phys, CTLFLAG_RWTUN, &shm_use_phys, 0, "Enable/Disable locking of shared memory pages in core"); SYSCTL_INT(_kern_ipc, OID_AUTO, shm_allow_removed, CTLFLAG_RWTUN, &shm_allow_removed, 0, "Enable/Disable attachment to attached segments marked for removal"); SYSCTL_PROC(_kern_ipc, OID_AUTO, shmsegs, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_shmsegs, "", "Array of struct shmid_kernel for each potential shared memory segment"); static struct sx sysvshmsx; #define SYSVSHM_LOCK() sx_xlock(&sysvshmsx) #define SYSVSHM_UNLOCK() sx_xunlock(&sysvshmsx) #define SYSVSHM_ASSERT_LOCKED() sx_assert(&sysvshmsx, SA_XLOCKED) static int shm_find_segment_by_key(struct prison *pr, key_t key) { int i; for (i = 0; i < shmalloced; i++) if ((shmsegs[i].u.shm_perm.mode & SHMSEG_ALLOCATED) && shmsegs[i].cred != NULL && shmsegs[i].cred->cr_prison == pr && shmsegs[i].u.shm_perm.key == key) return (i); return (-1); } /* * Finds segment either by shmid if is_shmid is true, or by segnum if * is_shmid is false. */ static struct shmid_kernel * shm_find_segment(struct prison *rpr, int arg, bool is_shmid) { struct shmid_kernel *shmseg; int segnum; segnum = is_shmid ? IPCID_TO_IX(arg) : arg; if (segnum < 0 || segnum >= shmalloced) return (NULL); shmseg = &shmsegs[segnum]; if ((shmseg->u.shm_perm.mode & SHMSEG_ALLOCATED) == 0 || (!shm_allow_removed && (shmseg->u.shm_perm.mode & SHMSEG_REMOVED) != 0) || (is_shmid && shmseg->u.shm_perm.seq != IPCID_TO_SEQ(arg)) || shm_prison_cansee(rpr, shmseg) != 0) return (NULL); return (shmseg); } static void shm_deallocate_segment(struct shmid_kernel *shmseg) { vm_size_t size; SYSVSHM_ASSERT_LOCKED(); vm_object_deallocate(shmseg->object); shmseg->object = NULL; size = round_page(shmseg->u.shm_segsz); shm_committed -= btoc(size); shm_nused--; shmseg->u.shm_perm.mode = SHMSEG_FREE; #ifdef MAC mac_sysvshm_cleanup(shmseg); #endif racct_sub_cred(shmseg->cred, RACCT_NSHM, 1); racct_sub_cred(shmseg->cred, RACCT_SHMSIZE, size); crfree(shmseg->cred); shmseg->cred = NULL; } static int shm_delete_mapping(struct vmspace *vm, struct shmmap_state *shmmap_s) { struct shmid_kernel *shmseg; int segnum, result; vm_size_t size; SYSVSHM_ASSERT_LOCKED(); segnum = IPCID_TO_IX(shmmap_s->shmid); KASSERT(segnum >= 0 && segnum < shmalloced, ("segnum %d shmalloced %d", segnum, shmalloced)); shmseg = &shmsegs[segnum]; size = round_page(shmseg->u.shm_segsz); result = vm_map_remove(&vm->vm_map, shmmap_s->va, shmmap_s->va + size); if (result != KERN_SUCCESS) return (EINVAL); shmmap_s->shmid = -1; shmseg->u.shm_dtime = time_second; if ((--shmseg->u.shm_nattch <= 0) && (shmseg->u.shm_perm.mode & SHMSEG_REMOVED)) { shm_deallocate_segment(shmseg); shm_last_free = segnum; } return (0); } static void shm_remove(struct shmid_kernel *shmseg, int segnum) { shmseg->u.shm_perm.key = IPC_PRIVATE; shmseg->u.shm_perm.mode |= SHMSEG_REMOVED; if (shmseg->u.shm_nattch <= 0) { shm_deallocate_segment(shmseg); shm_last_free = segnum; } } static struct prison * shm_find_prison(struct ucred *cred) { struct prison *pr, *rpr; pr = cred->cr_prison; prison_lock(pr); rpr = osd_jail_get(pr, shm_prison_slot); prison_unlock(pr); return rpr; } static int shm_prison_cansee(struct prison *rpr, struct shmid_kernel *shmseg) { if (shmseg->cred == NULL || !(rpr == shmseg->cred->cr_prison || prison_ischild(rpr, shmseg->cred->cr_prison))) return (EINVAL); return (0); } static int kern_shmdt_locked(struct thread *td, const void *shmaddr) { struct proc *p = td->td_proc; struct shmmap_state *shmmap_s; #ifdef MAC struct shmid_kernel *shmsegptr; int error; #endif int i; SYSVSHM_ASSERT_LOCKED(); if (shm_find_prison(td->td_ucred) == NULL) return (ENOSYS); shmmap_s = p->p_vmspace->vm_shm; if (shmmap_s == NULL) return (EINVAL); for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) { if (shmmap_s->shmid != -1 && shmmap_s->va == (vm_offset_t)shmaddr) { break; } } if (i == shminfo.shmseg) return (EINVAL); #ifdef MAC shmsegptr = &shmsegs[IPCID_TO_IX(shmmap_s->shmid)]; error = mac_sysvshm_check_shmdt(td->td_ucred, shmsegptr); if (error != 0) return (error); #endif return (shm_delete_mapping(p->p_vmspace, shmmap_s)); } #ifndef _SYS_SYSPROTO_H_ struct shmdt_args { const void *shmaddr; }; #endif int sys_shmdt(struct thread *td, struct shmdt_args *uap) { int error; SYSVSHM_LOCK(); error = kern_shmdt_locked(td, uap->shmaddr); SYSVSHM_UNLOCK(); return (error); } static int kern_shmat_locked(struct thread *td, int shmid, const void *shmaddr, int shmflg) { struct prison *rpr; struct proc *p = td->td_proc; struct shmid_kernel *shmseg; struct shmmap_state *shmmap_s; vm_offset_t attach_va; vm_prot_t prot; vm_size_t size; - int error, i, rv; + int cow, error, find_space, i, rv; SYSVSHM_ASSERT_LOCKED(); rpr = shm_find_prison(td->td_ucred); if (rpr == NULL) return (ENOSYS); shmmap_s = p->p_vmspace->vm_shm; if (shmmap_s == NULL) { shmmap_s = malloc(shminfo.shmseg * sizeof(struct shmmap_state), M_SHM, M_WAITOK); for (i = 0; i < shminfo.shmseg; i++) shmmap_s[i].shmid = -1; KASSERT(p->p_vmspace->vm_shm == NULL, ("raced")); p->p_vmspace->vm_shm = shmmap_s; } shmseg = shm_find_segment(rpr, shmid, true); if (shmseg == NULL) return (EINVAL); error = ipcperm(td, &shmseg->u.shm_perm, (shmflg & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W); if (error != 0) return (error); #ifdef MAC error = mac_sysvshm_check_shmat(td->td_ucred, shmseg, shmflg); if (error != 0) return (error); #endif for (i = 0; i < shminfo.shmseg; i++) { if (shmmap_s->shmid == -1) break; shmmap_s++; } if (i >= shminfo.shmseg) return (EMFILE); size = round_page(shmseg->u.shm_segsz); prot = VM_PROT_READ; + cow = MAP_INHERIT_SHARE | MAP_PREFAULT_PARTIAL; if ((shmflg & SHM_RDONLY) == 0) prot |= VM_PROT_WRITE; if (shmaddr != NULL) { if ((shmflg & SHM_RND) != 0) attach_va = rounddown2((vm_offset_t)shmaddr, SHMLBA); else if (((vm_offset_t)shmaddr & (SHMLBA-1)) == 0) attach_va = (vm_offset_t)shmaddr; else return (EINVAL); + if ((shmflg & SHM_REMAP) != 0) + cow |= MAP_REMAP; + find_space = VMFS_NO_SPACE; } else { /* * This is just a hint to vm_map_find() about where to * put it. */ attach_va = round_page((vm_offset_t)p->p_vmspace->vm_daddr + lim_max(td, RLIMIT_DATA)); + find_space = VMFS_OPTIMAL_SPACE; } vm_object_reference(shmseg->object); rv = vm_map_find(&p->p_vmspace->vm_map, shmseg->object, 0, &attach_va, - size, 0, shmaddr != NULL ? VMFS_NO_SPACE : VMFS_OPTIMAL_SPACE, - prot, prot, MAP_INHERIT_SHARE | MAP_PREFAULT_PARTIAL); + size, 0, find_space, prot, prot, cow); if (rv != KERN_SUCCESS) { vm_object_deallocate(shmseg->object); return (ENOMEM); } shmmap_s->va = attach_va; shmmap_s->shmid = shmid; shmseg->u.shm_lpid = p->p_pid; shmseg->u.shm_atime = time_second; shmseg->u.shm_nattch++; td->td_retval[0] = attach_va; return (error); } int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg) { int error; SYSVSHM_LOCK(); error = kern_shmat_locked(td, shmid, shmaddr, shmflg); SYSVSHM_UNLOCK(); return (error); } #ifndef _SYS_SYSPROTO_H_ struct shmat_args { int shmid; const void *shmaddr; int shmflg; }; #endif int sys_shmat(struct thread *td, struct shmat_args *uap) { return (kern_shmat(td, uap->shmid, uap->shmaddr, uap->shmflg)); } static int kern_shmctl_locked(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz) { struct prison *rpr; struct shmid_kernel *shmseg; struct shmid_ds *shmidp; struct shm_info shm_info; int error; SYSVSHM_ASSERT_LOCKED(); rpr = shm_find_prison(td->td_ucred); if (rpr == NULL) return (ENOSYS); switch (cmd) { /* * It is possible that kern_shmctl is being called from the Linux ABI * layer, in which case, we will need to implement IPC_INFO. It should * be noted that other shmctl calls will be funneled through here for * Linix binaries as well. * * NB: The Linux ABI layer will convert this data to structure(s) more * consistent with the Linux ABI. */ case IPC_INFO: memcpy(buf, &shminfo, sizeof(shminfo)); if (bufsz) *bufsz = sizeof(shminfo); td->td_retval[0] = shmalloced; return (0); case SHM_INFO: { shm_info.used_ids = shm_nused; shm_info.shm_rss = 0; /*XXX where to get from ? */ shm_info.shm_tot = 0; /*XXX where to get from ? */ shm_info.shm_swp = 0; /*XXX where to get from ? */ shm_info.swap_attempts = 0; /*XXX where to get from ? */ shm_info.swap_successes = 0; /*XXX where to get from ? */ memcpy(buf, &shm_info, sizeof(shm_info)); if (bufsz != NULL) *bufsz = sizeof(shm_info); td->td_retval[0] = shmalloced; return (0); } } shmseg = shm_find_segment(rpr, shmid, cmd != SHM_STAT); if (shmseg == NULL) return (EINVAL); #ifdef MAC error = mac_sysvshm_check_shmctl(td->td_ucred, shmseg, cmd); if (error != 0) return (error); #endif switch (cmd) { case SHM_STAT: case IPC_STAT: shmidp = (struct shmid_ds *)buf; error = ipcperm(td, &shmseg->u.shm_perm, IPC_R); if (error != 0) return (error); memcpy(shmidp, &shmseg->u, sizeof(struct shmid_ds)); if (td->td_ucred->cr_prison != shmseg->cred->cr_prison) shmidp->shm_perm.key = IPC_PRIVATE; if (bufsz != NULL) *bufsz = sizeof(struct shmid_ds); if (cmd == SHM_STAT) { td->td_retval[0] = IXSEQ_TO_IPCID(shmid, shmseg->u.shm_perm); } break; case IPC_SET: shmidp = (struct shmid_ds *)buf; error = ipcperm(td, &shmseg->u.shm_perm, IPC_M); if (error != 0) return (error); shmseg->u.shm_perm.uid = shmidp->shm_perm.uid; shmseg->u.shm_perm.gid = shmidp->shm_perm.gid; shmseg->u.shm_perm.mode = (shmseg->u.shm_perm.mode & ~ACCESSPERMS) | (shmidp->shm_perm.mode & ACCESSPERMS); shmseg->u.shm_ctime = time_second; break; case IPC_RMID: error = ipcperm(td, &shmseg->u.shm_perm, IPC_M); if (error != 0) return (error); shm_remove(shmseg, IPCID_TO_IX(shmid)); break; #if 0 case SHM_LOCK: case SHM_UNLOCK: #endif default: error = EINVAL; break; } return (error); } int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz) { int error; SYSVSHM_LOCK(); error = kern_shmctl_locked(td, shmid, cmd, buf, bufsz); SYSVSHM_UNLOCK(); return (error); } #ifndef _SYS_SYSPROTO_H_ struct shmctl_args { int shmid; int cmd; struct shmid_ds *buf; }; #endif int sys_shmctl(struct thread *td, struct shmctl_args *uap) { int error; struct shmid_ds buf; size_t bufsz; /* * The only reason IPC_INFO, SHM_INFO, SHM_STAT exists is to support * Linux binaries. If we see the call come through the FreeBSD ABI, * return an error back to the user since we do not to support this. */ if (uap->cmd == IPC_INFO || uap->cmd == SHM_INFO || uap->cmd == SHM_STAT) return (EINVAL); /* IPC_SET needs to copyin the buffer before calling kern_shmctl */ if (uap->cmd == IPC_SET) { if ((error = copyin(uap->buf, &buf, sizeof(struct shmid_ds)))) goto done; } error = kern_shmctl(td, uap->shmid, uap->cmd, (void *)&buf, &bufsz); if (error) goto done; /* Cases in which we need to copyout */ switch (uap->cmd) { case IPC_STAT: error = copyout(&buf, uap->buf, bufsz); break; } done: if (error) { /* Invalidate the return value */ td->td_retval[0] = -1; } return (error); } static int shmget_existing(struct thread *td, struct shmget_args *uap, int mode, int segnum) { struct shmid_kernel *shmseg; #ifdef MAC int error; #endif SYSVSHM_ASSERT_LOCKED(); KASSERT(segnum >= 0 && segnum < shmalloced, ("segnum %d shmalloced %d", segnum, shmalloced)); shmseg = &shmsegs[segnum]; if ((uap->shmflg & (IPC_CREAT | IPC_EXCL)) == (IPC_CREAT | IPC_EXCL)) return (EEXIST); #ifdef MAC error = mac_sysvshm_check_shmget(td->td_ucred, shmseg, uap->shmflg); if (error != 0) return (error); #endif if (uap->size != 0 && uap->size > shmseg->u.shm_segsz) return (EINVAL); td->td_retval[0] = IXSEQ_TO_IPCID(segnum, shmseg->u.shm_perm); return (0); } static int shmget_allocate_segment(struct thread *td, struct shmget_args *uap, int mode) { struct ucred *cred = td->td_ucred; struct shmid_kernel *shmseg; vm_object_t shm_object; int i, segnum; size_t size; SYSVSHM_ASSERT_LOCKED(); if (uap->size < shminfo.shmmin || uap->size > shminfo.shmmax) return (EINVAL); if (shm_nused >= shminfo.shmmni) /* Any shmids left? */ return (ENOSPC); size = round_page(uap->size); if (shm_committed + btoc(size) > shminfo.shmall) return (ENOMEM); if (shm_last_free < 0) { shmrealloc(); /* Maybe expand the shmsegs[] array. */ for (i = 0; i < shmalloced; i++) if (shmsegs[i].u.shm_perm.mode & SHMSEG_FREE) break; if (i == shmalloced) return (ENOSPC); segnum = i; } else { segnum = shm_last_free; shm_last_free = -1; } KASSERT(segnum >= 0 && segnum < shmalloced, ("segnum %d shmalloced %d", segnum, shmalloced)); shmseg = &shmsegs[segnum]; #ifdef RACCT if (racct_enable) { PROC_LOCK(td->td_proc); if (racct_add(td->td_proc, RACCT_NSHM, 1)) { PROC_UNLOCK(td->td_proc); return (ENOSPC); } if (racct_add(td->td_proc, RACCT_SHMSIZE, size)) { racct_sub(td->td_proc, RACCT_NSHM, 1); PROC_UNLOCK(td->td_proc); return (ENOMEM); } PROC_UNLOCK(td->td_proc); } #endif /* * We make sure that we have allocated a pager before we need * to. */ shm_object = vm_pager_allocate(shm_use_phys ? OBJT_PHYS : OBJT_SWAP, 0, size, VM_PROT_DEFAULT, 0, cred); if (shm_object == NULL) { #ifdef RACCT if (racct_enable) { PROC_LOCK(td->td_proc); racct_sub(td->td_proc, RACCT_NSHM, 1); racct_sub(td->td_proc, RACCT_SHMSIZE, size); PROC_UNLOCK(td->td_proc); } #endif return (ENOMEM); } shm_object->pg_color = 0; VM_OBJECT_WLOCK(shm_object); vm_object_clear_flag(shm_object, OBJ_ONEMAPPING); vm_object_set_flag(shm_object, OBJ_COLORED | OBJ_NOSPLIT); VM_OBJECT_WUNLOCK(shm_object); shmseg->object = shm_object; shmseg->u.shm_perm.cuid = shmseg->u.shm_perm.uid = cred->cr_uid; shmseg->u.shm_perm.cgid = shmseg->u.shm_perm.gid = cred->cr_gid; shmseg->u.shm_perm.mode = (mode & ACCESSPERMS) | SHMSEG_ALLOCATED; shmseg->u.shm_perm.key = uap->key; shmseg->u.shm_perm.seq = (shmseg->u.shm_perm.seq + 1) & 0x7fff; shmseg->cred = crhold(cred); shmseg->u.shm_segsz = uap->size; shmseg->u.shm_cpid = td->td_proc->p_pid; shmseg->u.shm_lpid = shmseg->u.shm_nattch = 0; shmseg->u.shm_atime = shmseg->u.shm_dtime = 0; #ifdef MAC mac_sysvshm_create(cred, shmseg); #endif shmseg->u.shm_ctime = time_second; shm_committed += btoc(size); shm_nused++; td->td_retval[0] = IXSEQ_TO_IPCID(segnum, shmseg->u.shm_perm); return (0); } #ifndef _SYS_SYSPROTO_H_ struct shmget_args { key_t key; size_t size; int shmflg; }; #endif int sys_shmget(struct thread *td, struct shmget_args *uap) { int segnum, mode; int error; if (shm_find_prison(td->td_ucred) == NULL) return (ENOSYS); mode = uap->shmflg & ACCESSPERMS; SYSVSHM_LOCK(); if (uap->key == IPC_PRIVATE) { error = shmget_allocate_segment(td, uap, mode); } else { segnum = shm_find_segment_by_key(td->td_ucred->cr_prison, uap->key); if (segnum >= 0) error = shmget_existing(td, uap, mode, segnum); else if ((uap->shmflg & IPC_CREAT) == 0) error = ENOENT; else error = shmget_allocate_segment(td, uap, mode); } SYSVSHM_UNLOCK(); return (error); } static void shmfork_myhook(struct proc *p1, struct proc *p2) { struct shmmap_state *shmmap_s; size_t size; int i; SYSVSHM_LOCK(); size = shminfo.shmseg * sizeof(struct shmmap_state); shmmap_s = malloc(size, M_SHM, M_WAITOK); bcopy(p1->p_vmspace->vm_shm, shmmap_s, size); p2->p_vmspace->vm_shm = shmmap_s; for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) { if (shmmap_s->shmid != -1) { KASSERT(IPCID_TO_IX(shmmap_s->shmid) >= 0 && IPCID_TO_IX(shmmap_s->shmid) < shmalloced, ("segnum %d shmalloced %d", IPCID_TO_IX(shmmap_s->shmid), shmalloced)); shmsegs[IPCID_TO_IX(shmmap_s->shmid)].u.shm_nattch++; } } SYSVSHM_UNLOCK(); } static void shmexit_myhook(struct vmspace *vm) { struct shmmap_state *base, *shm; int i; base = vm->vm_shm; if (base != NULL) { vm->vm_shm = NULL; SYSVSHM_LOCK(); for (i = 0, shm = base; i < shminfo.shmseg; i++, shm++) { if (shm->shmid != -1) shm_delete_mapping(vm, shm); } SYSVSHM_UNLOCK(); free(base, M_SHM); } } static void shmrealloc(void) { struct shmid_kernel *newsegs; int i; SYSVSHM_ASSERT_LOCKED(); if (shmalloced >= shminfo.shmmni) return; newsegs = malloc(shminfo.shmmni * sizeof(*newsegs), M_SHM, M_WAITOK | M_ZERO); for (i = 0; i < shmalloced; i++) bcopy(&shmsegs[i], &newsegs[i], sizeof(newsegs[0])); for (; i < shminfo.shmmni; i++) { newsegs[i].u.shm_perm.mode = SHMSEG_FREE; newsegs[i].u.shm_perm.seq = 0; #ifdef MAC mac_sysvshm_init(&newsegs[i]); #endif } free(shmsegs, M_SHM); shmsegs = newsegs; shmalloced = shminfo.shmmni; } static struct syscall_helper_data shm_syscalls[] = { SYSCALL_INIT_HELPER(shmat), SYSCALL_INIT_HELPER(shmctl), SYSCALL_INIT_HELPER(shmdt), SYSCALL_INIT_HELPER(shmget), #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) SYSCALL_INIT_HELPER_COMPAT(freebsd7_shmctl), #endif #if defined(__i386__) && (defined(COMPAT_FREEBSD4) || defined(COMPAT_43)) SYSCALL_INIT_HELPER(shmsys), #endif SYSCALL_INIT_LAST }; #ifdef COMPAT_FREEBSD32 #include #include #include #include #include #include static struct syscall_helper_data shm32_syscalls[] = { SYSCALL32_INIT_HELPER_COMPAT(shmat), SYSCALL32_INIT_HELPER_COMPAT(shmdt), SYSCALL32_INIT_HELPER_COMPAT(shmget), SYSCALL32_INIT_HELPER(freebsd32_shmsys), SYSCALL32_INIT_HELPER(freebsd32_shmctl), #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) SYSCALL32_INIT_HELPER(freebsd7_freebsd32_shmctl), #endif SYSCALL_INIT_LAST }; #endif static int shminit(void) { struct prison *pr; void **rsv; int i, error; osd_method_t methods[PR_MAXMETHOD] = { [PR_METHOD_CHECK] = shm_prison_check, [PR_METHOD_SET] = shm_prison_set, [PR_METHOD_GET] = shm_prison_get, [PR_METHOD_REMOVE] = shm_prison_remove, }; #ifndef BURN_BRIDGES if (TUNABLE_ULONG_FETCH("kern.ipc.shmmaxpgs", &shminfo.shmall) != 0) printf("kern.ipc.shmmaxpgs is now called kern.ipc.shmall!\n"); #endif if (shminfo.shmmax == SHMMAX) { /* Initialize shmmax dealing with possible overflow. */ for (i = PAGE_SIZE; i != 0; i--) { shminfo.shmmax = shminfo.shmall * i; if ((shminfo.shmmax / shminfo.shmall) == (u_long)i) break; } } shmalloced = shminfo.shmmni; shmsegs = malloc(shmalloced * sizeof(shmsegs[0]), M_SHM, M_WAITOK|M_ZERO); for (i = 0; i < shmalloced; i++) { shmsegs[i].u.shm_perm.mode = SHMSEG_FREE; shmsegs[i].u.shm_perm.seq = 0; #ifdef MAC mac_sysvshm_init(&shmsegs[i]); #endif } shm_last_free = 0; shm_nused = 0; shm_committed = 0; sx_init(&sysvshmsx, "sysvshmsx"); shmexit_hook = &shmexit_myhook; shmfork_hook = &shmfork_myhook; /* Set current prisons according to their allow.sysvipc. */ shm_prison_slot = osd_jail_register(NULL, methods); rsv = osd_reserve(shm_prison_slot); prison_lock(&prison0); (void)osd_jail_set_reserved(&prison0, shm_prison_slot, rsv, &prison0); prison_unlock(&prison0); rsv = NULL; sx_slock(&allprison_lock); TAILQ_FOREACH(pr, &allprison, pr_list) { if (rsv == NULL) rsv = osd_reserve(shm_prison_slot); prison_lock(pr); if ((pr->pr_allow & PR_ALLOW_SYSVIPC) && pr->pr_ref > 0) { (void)osd_jail_set_reserved(pr, shm_prison_slot, rsv, &prison0); rsv = NULL; } prison_unlock(pr); } if (rsv != NULL) osd_free_reserved(rsv); sx_sunlock(&allprison_lock); error = syscall_helper_register(shm_syscalls, SY_THR_STATIC_KLD); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 error = syscall32_helper_register(shm32_syscalls, SY_THR_STATIC_KLD); if (error != 0) return (error); #endif return (0); } static int shmunload(void) { int i; if (shm_nused > 0) return (EBUSY); #ifdef COMPAT_FREEBSD32 syscall32_helper_unregister(shm32_syscalls); #endif syscall_helper_unregister(shm_syscalls); if (shm_prison_slot != 0) osd_jail_deregister(shm_prison_slot); for (i = 0; i < shmalloced; i++) { #ifdef MAC mac_sysvshm_destroy(&shmsegs[i]); #endif /* * Objects might be still mapped into the processes * address spaces. Actual free would happen on the * last mapping destruction. */ if (shmsegs[i].u.shm_perm.mode != SHMSEG_FREE) vm_object_deallocate(shmsegs[i].object); } free(shmsegs, M_SHM); shmexit_hook = NULL; shmfork_hook = NULL; sx_destroy(&sysvshmsx); return (0); } static int sysctl_shmsegs(SYSCTL_HANDLER_ARGS) { struct shmid_kernel tshmseg; #ifdef COMPAT_FREEBSD32 struct shmid_kernel32 tshmseg32; #endif struct prison *pr, *rpr; void *outaddr; size_t outsize; int error, i; SYSVSHM_LOCK(); pr = req->td->td_ucred->cr_prison; rpr = shm_find_prison(req->td->td_ucred); error = 0; for (i = 0; i < shmalloced; i++) { if ((shmsegs[i].u.shm_perm.mode & SHMSEG_ALLOCATED) == 0 || rpr == NULL || shm_prison_cansee(rpr, &shmsegs[i]) != 0) { bzero(&tshmseg, sizeof(tshmseg)); tshmseg.u.shm_perm.mode = SHMSEG_FREE; } else { tshmseg = shmsegs[i]; if (tshmseg.cred->cr_prison != pr) tshmseg.u.shm_perm.key = IPC_PRIVATE; } #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { bzero(&tshmseg32, sizeof(tshmseg32)); freebsd32_ipcperm_out(&tshmseg.u.shm_perm, &tshmseg32.u.shm_perm); CP(tshmseg, tshmseg32, u.shm_segsz); CP(tshmseg, tshmseg32, u.shm_lpid); CP(tshmseg, tshmseg32, u.shm_cpid); CP(tshmseg, tshmseg32, u.shm_nattch); CP(tshmseg, tshmseg32, u.shm_atime); CP(tshmseg, tshmseg32, u.shm_dtime); CP(tshmseg, tshmseg32, u.shm_ctime); /* Don't copy object, label, or cred */ outaddr = &tshmseg32; outsize = sizeof(tshmseg32); } else #endif { tshmseg.object = NULL; tshmseg.label = NULL; tshmseg.cred = NULL; outaddr = &tshmseg; outsize = sizeof(tshmseg); } error = SYSCTL_OUT(req, outaddr, outsize); if (error != 0) break; } SYSVSHM_UNLOCK(); return (error); } static int shm_prison_check(void *obj, void *data) { struct prison *pr = obj; struct prison *prpr; struct vfsoptlist *opts = data; int error, jsys; /* * sysvshm is a jailsys integer. * It must be "disable" if the parent jail is disabled. */ error = vfs_copyopt(opts, "sysvshm", &jsys, sizeof(jsys)); if (error != ENOENT) { if (error != 0) return (error); switch (jsys) { case JAIL_SYS_DISABLE: break; case JAIL_SYS_NEW: case JAIL_SYS_INHERIT: prison_lock(pr->pr_parent); prpr = osd_jail_get(pr->pr_parent, shm_prison_slot); prison_unlock(pr->pr_parent); if (prpr == NULL) return (EPERM); break; default: return (EINVAL); } } return (0); } static int shm_prison_set(void *obj, void *data) { struct prison *pr = obj; struct prison *tpr, *orpr, *nrpr, *trpr; struct vfsoptlist *opts = data; void *rsv; int jsys, descend; /* * sysvshm controls which jail is the root of the associated segments * (this jail or same as the parent), or if the feature is available * at all. */ if (vfs_copyopt(opts, "sysvshm", &jsys, sizeof(jsys)) == ENOENT) jsys = vfs_flagopt(opts, "allow.sysvipc", NULL, 0) ? JAIL_SYS_INHERIT : vfs_flagopt(opts, "allow.nosysvipc", NULL, 0) ? JAIL_SYS_DISABLE : -1; if (jsys == JAIL_SYS_DISABLE) { prison_lock(pr); orpr = osd_jail_get(pr, shm_prison_slot); if (orpr != NULL) osd_jail_del(pr, shm_prison_slot); prison_unlock(pr); if (orpr != NULL) { if (orpr == pr) shm_prison_cleanup(pr); /* Disable all child jails as well. */ FOREACH_PRISON_DESCENDANT(pr, tpr, descend) { prison_lock(tpr); trpr = osd_jail_get(tpr, shm_prison_slot); if (trpr != NULL) { osd_jail_del(tpr, shm_prison_slot); prison_unlock(tpr); if (trpr == tpr) shm_prison_cleanup(tpr); } else { prison_unlock(tpr); descend = 0; } } } } else if (jsys != -1) { if (jsys == JAIL_SYS_NEW) nrpr = pr; else { prison_lock(pr->pr_parent); nrpr = osd_jail_get(pr->pr_parent, shm_prison_slot); prison_unlock(pr->pr_parent); } rsv = osd_reserve(shm_prison_slot); prison_lock(pr); orpr = osd_jail_get(pr, shm_prison_slot); if (orpr != nrpr) (void)osd_jail_set_reserved(pr, shm_prison_slot, rsv, nrpr); else osd_free_reserved(rsv); prison_unlock(pr); if (orpr != nrpr) { if (orpr == pr) shm_prison_cleanup(pr); if (orpr != NULL) { /* Change child jails matching the old root, */ FOREACH_PRISON_DESCENDANT(pr, tpr, descend) { prison_lock(tpr); trpr = osd_jail_get(tpr, shm_prison_slot); if (trpr == orpr) { (void)osd_jail_set(tpr, shm_prison_slot, nrpr); prison_unlock(tpr); if (trpr == tpr) shm_prison_cleanup(tpr); } else { prison_unlock(tpr); descend = 0; } } } } } return (0); } static int shm_prison_get(void *obj, void *data) { struct prison *pr = obj; struct prison *rpr; struct vfsoptlist *opts = data; int error, jsys; /* Set sysvshm based on the jail's root prison. */ prison_lock(pr); rpr = osd_jail_get(pr, shm_prison_slot); prison_unlock(pr); jsys = rpr == NULL ? JAIL_SYS_DISABLE : rpr == pr ? JAIL_SYS_NEW : JAIL_SYS_INHERIT; error = vfs_setopt(opts, "sysvshm", &jsys, sizeof(jsys)); if (error == ENOENT) error = 0; return (error); } static int shm_prison_remove(void *obj, void *data __unused) { struct prison *pr = obj; struct prison *rpr; SYSVSHM_LOCK(); prison_lock(pr); rpr = osd_jail_get(pr, shm_prison_slot); prison_unlock(pr); if (rpr == pr) shm_prison_cleanup(pr); SYSVSHM_UNLOCK(); return (0); } static void shm_prison_cleanup(struct prison *pr) { struct shmid_kernel *shmseg; int i; /* Remove any segments that belong to this jail. */ for (i = 0; i < shmalloced; i++) { shmseg = &shmsegs[i]; if ((shmseg->u.shm_perm.mode & SHMSEG_ALLOCATED) && shmseg->cred != NULL && shmseg->cred->cr_prison == pr) { shm_remove(shmseg, i); } } } SYSCTL_JAIL_PARAM_SYS_NODE(sysvshm, CTLFLAG_RW, "SYSV shared memory"); #if defined(__i386__) && (defined(COMPAT_FREEBSD4) || defined(COMPAT_43)) struct oshmid_ds { struct ipc_perm_old shm_perm; /* operation perms */ int shm_segsz; /* size of segment (bytes) */ u_short shm_cpid; /* pid, creator */ u_short shm_lpid; /* pid, last operation */ short shm_nattch; /* no. of current attaches */ time_t shm_atime; /* last attach time */ time_t shm_dtime; /* last detach time */ time_t shm_ctime; /* last change time */ void *shm_handle; /* internal handle for shm segment */ }; struct oshmctl_args { int shmid; int cmd; struct oshmid_ds *ubuf; }; static int oshmctl(struct thread *td, struct oshmctl_args *uap) { #ifdef COMPAT_43 int error = 0; struct prison *rpr; struct shmid_kernel *shmseg; struct oshmid_ds outbuf; rpr = shm_find_prison(td->td_ucred); if (rpr == NULL) return (ENOSYS); if (uap->cmd != IPC_STAT) { return (freebsd7_shmctl(td, (struct freebsd7_shmctl_args *)uap)); } SYSVSHM_LOCK(); shmseg = shm_find_segment(rpr, uap->shmid, true); if (shmseg == NULL) { SYSVSHM_UNLOCK(); return (EINVAL); } error = ipcperm(td, &shmseg->u.shm_perm, IPC_R); if (error != 0) { SYSVSHM_UNLOCK(); return (error); } #ifdef MAC error = mac_sysvshm_check_shmctl(td->td_ucred, shmseg, uap->cmd); if (error != 0) { SYSVSHM_UNLOCK(); return (error); } #endif ipcperm_new2old(&shmseg->u.shm_perm, &outbuf.shm_perm); outbuf.shm_segsz = shmseg->u.shm_segsz; outbuf.shm_cpid = shmseg->u.shm_cpid; outbuf.shm_lpid = shmseg->u.shm_lpid; outbuf.shm_nattch = shmseg->u.shm_nattch; outbuf.shm_atime = shmseg->u.shm_atime; outbuf.shm_dtime = shmseg->u.shm_dtime; outbuf.shm_ctime = shmseg->u.shm_ctime; outbuf.shm_handle = shmseg->object; SYSVSHM_UNLOCK(); return (copyout(&outbuf, uap->ubuf, sizeof(outbuf))); #else return (EINVAL); #endif } /* XXX casting to (sy_call_t *) is bogus, as usual. */ static sy_call_t *shmcalls[] = { (sy_call_t *)sys_shmat, (sy_call_t *)oshmctl, (sy_call_t *)sys_shmdt, (sy_call_t *)sys_shmget, (sy_call_t *)freebsd7_shmctl }; #ifndef _SYS_SYSPROTO_H_ /* XXX actually varargs. */ struct shmsys_args { int which; int a2; int a3; int a4; }; #endif int sys_shmsys(struct thread *td, struct shmsys_args *uap) { if (uap->which < 0 || uap->which >= nitems(shmcalls)) return (EINVAL); return ((*shmcalls[uap->which])(td, &uap->a2)); } #endif /* i386 && (COMPAT_FREEBSD4 || COMPAT_43) */ #ifdef COMPAT_FREEBSD32 int freebsd32_shmsys(struct thread *td, struct freebsd32_shmsys_args *uap) { #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) switch (uap->which) { case 0: { /* shmat */ struct shmat_args ap; ap.shmid = uap->a2; ap.shmaddr = PTRIN(uap->a3); ap.shmflg = uap->a4; return (sysent[SYS_shmat].sy_call(td, &ap)); } case 2: { /* shmdt */ struct shmdt_args ap; ap.shmaddr = PTRIN(uap->a2); return (sysent[SYS_shmdt].sy_call(td, &ap)); } case 3: { /* shmget */ struct shmget_args ap; ap.key = uap->a2; ap.size = uap->a3; ap.shmflg = uap->a4; return (sysent[SYS_shmget].sy_call(td, &ap)); } case 4: { /* shmctl */ struct freebsd7_freebsd32_shmctl_args ap; ap.shmid = uap->a2; ap.cmd = uap->a3; ap.buf = PTRIN(uap->a4); return (freebsd7_freebsd32_shmctl(td, &ap)); } case 1: /* oshmctl */ default: return (EINVAL); } #else return (nosys(td, NULL)); #endif } #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) int freebsd7_freebsd32_shmctl(struct thread *td, struct freebsd7_freebsd32_shmctl_args *uap) { int error; union { struct shmid_ds shmid_ds; struct shm_info shm_info; struct shminfo shminfo; } u; union { struct shmid_ds32_old shmid_ds32; struct shm_info32 shm_info32; struct shminfo32 shminfo32; } u32; size_t sz; if (uap->cmd == IPC_SET) { if ((error = copyin(uap->buf, &u32.shmid_ds32, sizeof(u32.shmid_ds32)))) goto done; freebsd32_ipcperm_old_in(&u32.shmid_ds32.shm_perm, &u.shmid_ds.shm_perm); CP(u32.shmid_ds32, u.shmid_ds, shm_segsz); CP(u32.shmid_ds32, u.shmid_ds, shm_lpid); CP(u32.shmid_ds32, u.shmid_ds, shm_cpid); CP(u32.shmid_ds32, u.shmid_ds, shm_nattch); CP(u32.shmid_ds32, u.shmid_ds, shm_atime); CP(u32.shmid_ds32, u.shmid_ds, shm_dtime); CP(u32.shmid_ds32, u.shmid_ds, shm_ctime); } error = kern_shmctl(td, uap->shmid, uap->cmd, (void *)&u, &sz); if (error) goto done; /* Cases in which we need to copyout */ switch (uap->cmd) { case IPC_INFO: CP(u.shminfo, u32.shminfo32, shmmax); CP(u.shminfo, u32.shminfo32, shmmin); CP(u.shminfo, u32.shminfo32, shmmni); CP(u.shminfo, u32.shminfo32, shmseg); CP(u.shminfo, u32.shminfo32, shmall); error = copyout(&u32.shminfo32, uap->buf, sizeof(u32.shminfo32)); break; case SHM_INFO: CP(u.shm_info, u32.shm_info32, used_ids); CP(u.shm_info, u32.shm_info32, shm_rss); CP(u.shm_info, u32.shm_info32, shm_tot); CP(u.shm_info, u32.shm_info32, shm_swp); CP(u.shm_info, u32.shm_info32, swap_attempts); CP(u.shm_info, u32.shm_info32, swap_successes); error = copyout(&u32.shm_info32, uap->buf, sizeof(u32.shm_info32)); break; case SHM_STAT: case IPC_STAT: memset(&u32.shmid_ds32, 0, sizeof(u32.shmid_ds32)); freebsd32_ipcperm_old_out(&u.shmid_ds.shm_perm, &u32.shmid_ds32.shm_perm); if (u.shmid_ds.shm_segsz > INT32_MAX) u32.shmid_ds32.shm_segsz = INT32_MAX; else CP(u.shmid_ds, u32.shmid_ds32, shm_segsz); CP(u.shmid_ds, u32.shmid_ds32, shm_lpid); CP(u.shmid_ds, u32.shmid_ds32, shm_cpid); CP(u.shmid_ds, u32.shmid_ds32, shm_nattch); CP(u.shmid_ds, u32.shmid_ds32, shm_atime); CP(u.shmid_ds, u32.shmid_ds32, shm_dtime); CP(u.shmid_ds, u32.shmid_ds32, shm_ctime); u32.shmid_ds32.shm_internal = 0; error = copyout(&u32.shmid_ds32, uap->buf, sizeof(u32.shmid_ds32)); break; } done: if (error) { /* Invalidate the return value */ td->td_retval[0] = -1; } return (error); } #endif int freebsd32_shmctl(struct thread *td, struct freebsd32_shmctl_args *uap) { int error; union { struct shmid_ds shmid_ds; struct shm_info shm_info; struct shminfo shminfo; } u; union { struct shmid_ds32 shmid_ds32; struct shm_info32 shm_info32; struct shminfo32 shminfo32; } u32; size_t sz; if (uap->cmd == IPC_SET) { if ((error = copyin(uap->buf, &u32.shmid_ds32, sizeof(u32.shmid_ds32)))) goto done; freebsd32_ipcperm_in(&u32.shmid_ds32.shm_perm, &u.shmid_ds.shm_perm); CP(u32.shmid_ds32, u.shmid_ds, shm_segsz); CP(u32.shmid_ds32, u.shmid_ds, shm_lpid); CP(u32.shmid_ds32, u.shmid_ds, shm_cpid); CP(u32.shmid_ds32, u.shmid_ds, shm_nattch); CP(u32.shmid_ds32, u.shmid_ds, shm_atime); CP(u32.shmid_ds32, u.shmid_ds, shm_dtime); CP(u32.shmid_ds32, u.shmid_ds, shm_ctime); } error = kern_shmctl(td, uap->shmid, uap->cmd, (void *)&u, &sz); if (error) goto done; /* Cases in which we need to copyout */ switch (uap->cmd) { case IPC_INFO: CP(u.shminfo, u32.shminfo32, shmmax); CP(u.shminfo, u32.shminfo32, shmmin); CP(u.shminfo, u32.shminfo32, shmmni); CP(u.shminfo, u32.shminfo32, shmseg); CP(u.shminfo, u32.shminfo32, shmall); error = copyout(&u32.shminfo32, uap->buf, sizeof(u32.shminfo32)); break; case SHM_INFO: CP(u.shm_info, u32.shm_info32, used_ids); CP(u.shm_info, u32.shm_info32, shm_rss); CP(u.shm_info, u32.shm_info32, shm_tot); CP(u.shm_info, u32.shm_info32, shm_swp); CP(u.shm_info, u32.shm_info32, swap_attempts); CP(u.shm_info, u32.shm_info32, swap_successes); error = copyout(&u32.shm_info32, uap->buf, sizeof(u32.shm_info32)); break; case SHM_STAT: case IPC_STAT: freebsd32_ipcperm_out(&u.shmid_ds.shm_perm, &u32.shmid_ds32.shm_perm); if (u.shmid_ds.shm_segsz > INT32_MAX) u32.shmid_ds32.shm_segsz = INT32_MAX; else CP(u.shmid_ds, u32.shmid_ds32, shm_segsz); CP(u.shmid_ds, u32.shmid_ds32, shm_lpid); CP(u.shmid_ds, u32.shmid_ds32, shm_cpid); CP(u.shmid_ds, u32.shmid_ds32, shm_nattch); CP(u.shmid_ds, u32.shmid_ds32, shm_atime); CP(u.shmid_ds, u32.shmid_ds32, shm_dtime); CP(u.shmid_ds, u32.shmid_ds32, shm_ctime); error = copyout(&u32.shmid_ds32, uap->buf, sizeof(u32.shmid_ds32)); break; } done: if (error) { /* Invalidate the return value */ td->td_retval[0] = -1; } return (error); } #endif #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) #ifndef CP #define CP(src, dst, fld) do { (dst).fld = (src).fld; } while (0) #endif #ifndef _SYS_SYSPROTO_H_ struct freebsd7_shmctl_args { int shmid; int cmd; struct shmid_ds_old *buf; }; #endif int freebsd7_shmctl(struct thread *td, struct freebsd7_shmctl_args *uap) { int error; struct shmid_ds_old old; struct shmid_ds buf; size_t bufsz; /* * The only reason IPC_INFO, SHM_INFO, SHM_STAT exists is to support * Linux binaries. If we see the call come through the FreeBSD ABI, * return an error back to the user since we do not to support this. */ if (uap->cmd == IPC_INFO || uap->cmd == SHM_INFO || uap->cmd == SHM_STAT) return (EINVAL); /* IPC_SET needs to copyin the buffer before calling kern_shmctl */ if (uap->cmd == IPC_SET) { if ((error = copyin(uap->buf, &old, sizeof(old)))) goto done; ipcperm_old2new(&old.shm_perm, &buf.shm_perm); CP(old, buf, shm_segsz); CP(old, buf, shm_lpid); CP(old, buf, shm_cpid); CP(old, buf, shm_nattch); CP(old, buf, shm_atime); CP(old, buf, shm_dtime); CP(old, buf, shm_ctime); } error = kern_shmctl(td, uap->shmid, uap->cmd, (void *)&buf, &bufsz); if (error) goto done; /* Cases in which we need to copyout */ switch (uap->cmd) { case IPC_STAT: memset(&old, 0, sizeof(old)); ipcperm_new2old(&buf.shm_perm, &old.shm_perm); if (buf.shm_segsz > INT_MAX) old.shm_segsz = INT_MAX; else CP(buf, old, shm_segsz); CP(buf, old, shm_lpid); CP(buf, old, shm_cpid); if (buf.shm_nattch > SHRT_MAX) old.shm_nattch = SHRT_MAX; else CP(buf, old, shm_nattch); CP(buf, old, shm_atime); CP(buf, old, shm_dtime); CP(buf, old, shm_ctime); old.shm_internal = NULL; error = copyout(&old, uap->buf, sizeof(old)); break; } done: if (error) { /* Invalidate the return value */ td->td_retval[0] = -1; } return (error); } #endif /* COMPAT_FREEBSD4 || COMPAT_FREEBSD5 || COMPAT_FREEBSD6 || COMPAT_FREEBSD7 */ static int sysvshm_modload(struct module *module, int cmd, void *arg) { int error = 0; switch (cmd) { case MOD_LOAD: error = shminit(); if (error != 0) shmunload(); break; case MOD_UNLOAD: error = shmunload(); break; case MOD_SHUTDOWN: break; default: error = EINVAL; break; } return (error); } static moduledata_t sysvshm_mod = { "sysvshm", &sysvshm_modload, NULL }; DECLARE_MODULE(sysvshm, sysvshm_mod, SI_SUB_SYSV_SHM, SI_ORDER_FIRST); MODULE_VERSION(sysvshm, 1); Index: stable/11/sys/sys/shm.h =================================================================== --- stable/11/sys/sys/shm.h (revision 343425) +++ stable/11/sys/sys/shm.h (revision 343426) @@ -1,171 +1,172 @@ /* $FreeBSD$ */ /* $NetBSD: shm.h,v 1.15 1994/06/29 06:45:17 cgd Exp $ */ /*- * Copyright (c) 1994 Adam Glass * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Adam Glass. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * As defined+described in "X/Open System Interfaces and Headers" * Issue 4, p. XXX */ #ifndef _SYS_SHM_H_ #define _SYS_SHM_H_ #include #include #include #include #define SHM_RDONLY 010000 /* Attach read-only (else read-write) */ #define SHM_RND 020000 /* Round attach address to SHMLBA */ +#define SHM_REMAP 030000 /* Unmap before mapping */ #define SHMLBA PAGE_SIZE /* Segment low boundary address multiple */ /* "official" access mode definitions; somewhat braindead since you have to specify (SHM_* >> 3) for group and (SHM_* >> 6) for world permissions */ #define SHM_R (IPC_R) #define SHM_W (IPC_W) /* predefine tbd *LOCK shmctl commands */ #define SHM_LOCK 11 #define SHM_UNLOCK 12 /* ipcs shmctl commands for Linux compatibility */ #define SHM_STAT 13 #define SHM_INFO 14 #ifndef _PID_T_DECLARED typedef __pid_t pid_t; #define _PID_T_DECLARED #endif #ifndef _TIME_T_DECLARED typedef __time_t time_t; #define _TIME_T_DECLARED #endif #ifndef _SIZE_T_DECLARED typedef __size_t size_t; #define _SIZE_T_DECLARED #endif #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) struct shmid_ds_old { struct ipc_perm_old shm_perm; /* operation permission structure */ int shm_segsz; /* size of segment in bytes */ pid_t shm_lpid; /* process ID of last shared memory op */ pid_t shm_cpid; /* process ID of creator */ short shm_nattch; /* number of current attaches */ time_t shm_atime; /* time of last shmat() */ time_t shm_dtime; /* time of last shmdt() */ time_t shm_ctime; /* time of last change by shmctl() */ void *shm_internal; /* sysv stupidity */ }; #endif struct shmid_ds { struct ipc_perm shm_perm; /* operation permission structure */ size_t shm_segsz; /* size of segment in bytes */ pid_t shm_lpid; /* process ID of last shared memory op */ pid_t shm_cpid; /* process ID of creator */ int shm_nattch; /* number of current attaches */ time_t shm_atime; /* time of last shmat() */ time_t shm_dtime; /* time of last shmdt() */ time_t shm_ctime; /* time of last change by shmctl() */ }; #ifdef _KERNEL #include /* * System 5 style catch-all structure for shared memory constants that * might be of interest to user programs. Do we really want/need this? */ struct shminfo { u_long shmmax; /* max shared memory segment size (bytes) */ u_long shmmin; /* max shared memory segment size (bytes) */ u_long shmmni; /* max number of shared memory identifiers */ u_long shmseg; /* max shared memory segments per process */ u_long shmall; /* max amount of shared memory (pages) */ }; /* * Add a kernel wrapper to the shmid_ds struct so that private info (like the * MAC label) can be added to it, without changing the user interface. */ struct shmid_kernel { struct shmid_ds u; vm_object_t object; struct label *label; /* MAC label */ struct ucred *cred; /* creator's credendials */ }; extern struct shminfo shminfo; struct shm_info { int used_ids; unsigned long shm_tot; unsigned long shm_rss; unsigned long shm_swp; unsigned long swap_attempts; unsigned long swap_successes; }; struct thread; struct proc; struct vmspace; void shmexit(struct vmspace *); void shmfork(struct proc *, struct proc *); #endif /* _KERNEL */ #if !defined(_KERNEL) || defined(_WANT_SHM_PROTOTYPES) #include #ifndef _SIZE_T_DECLARED typedef __size_t size_t; #define _SIZE_T_DECLARED #endif __BEGIN_DECLS #if __BSD_VISIBLE int shmsys(int, ...); #endif void *shmat(int, const void *, int); int shmget(key_t, size_t, int); int shmctl(int, int, struct shmid_ds *); int shmdt(const void *); __END_DECLS #endif /* _KERNEL || _WANT_SHM_PROTOTYPES */ #endif /* !_SYS_SHM_H_ */ Index: stable/11/sys/vm/vm_map.c =================================================================== --- stable/11/sys/vm/vm_map.c (revision 343425) +++ stable/11/sys/vm/vm_map.c (revision 343426) @@ -1,4382 +1,4392 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Virtual memory mapping module. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual memory maps provide for the mapping, protection, * and sharing of virtual memory objects. In addition, * this module provides for an efficient virtual copy of * memory from one map to another. * * Synchronization is required prior to most operations. * * Maps consist of an ordered doubly-linked list of simple * entries; a self-adjusting binary search tree of these * entries is used to speed up lookups. * * Since portions of maps are specified by start/end addresses, * which may not align with existing map entries, all * routines merely "clip" entries to these start/end values. * [That is, an entry is split into two, bordering at a * start or end value.] Note that these clippings may not * always be necessary (as the two resulting entries are then * not changed); however, the clipping is done for convenience. * * As mentioned above, virtual copy operations are performed * by copying VM object references from one map to * another, and then marking both regions as copy-on-write. */ static struct mtx map_sleep_mtx; static uma_zone_t mapentzone; static uma_zone_t kmapentzone; static uma_zone_t mapzone; static uma_zone_t vmspace_zone; static int vmspace_zinit(void *mem, int size, int flags); static int vm_map_zinit(void *mem, int ize, int flags); static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max); static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); static int vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry); static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); #ifdef INVARIANTS static void vm_map_zdtor(void *mem, int size, void *arg); static void vmspace_zdtor(void *mem, int size, void *arg); #endif static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow); static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, vm_offset_t failed_addr); #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) /* * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type * stable. */ #define PROC_VMSPACE_LOCK(p) do { } while (0) #define PROC_VMSPACE_UNLOCK(p) do { } while (0) /* * VM_MAP_RANGE_CHECK: [ internal use only ] * * Asserts that the starting and ending region * addresses fall within the valid range of the map. */ #define VM_MAP_RANGE_CHECK(map, start, end) \ { \ if (start < vm_map_min(map)) \ start = vm_map_min(map); \ if (end > vm_map_max(map)) \ end = vm_map_max(map); \ if (start > end) \ start = end; \ } /* * vm_map_startup: * * Initialize the vm_map module. Must be called before * any other vm_map routines. * * Map and entry structures are allocated from the general * purpose memory pool with some exceptions: * * - The kernel map and kmem submap are allocated statically. * - Kernel map entries are allocated out of a static pool. * * These restrictions are necessary since malloc() uses the * maps and requires map entries. */ void vm_map_startup(void) { mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, #ifdef INVARIANTS vm_map_zdtor, #else NULL, #endif vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_prealloc(mapzone, MAX_KMAP); kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS | UMA_ZONE_VM); mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, #ifdef INVARIANTS vmspace_zdtor, #else NULL, #endif vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); } static int vmspace_zinit(void *mem, int size, int flags) { struct vmspace *vm; vm = (struct vmspace *)mem; vm->vm_map.pmap = NULL; (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); PMAP_LOCK_INIT(vmspace_pmap(vm)); return (0); } static int vm_map_zinit(void *mem, int size, int flags) { vm_map_t map; map = (vm_map_t)mem; memset(map, 0, sizeof(*map)); mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); sx_init(&map->lock, "vm map (user)"); return (0); } #ifdef INVARIANTS static void vmspace_zdtor(void *mem, int size, void *arg) { struct vmspace *vm; vm = (struct vmspace *)mem; vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); } static void vm_map_zdtor(void *mem, int size, void *arg) { vm_map_t map; map = (vm_map_t)mem; KASSERT(map->nentries == 0, ("map %p nentries == %d on free.", map, map->nentries)); KASSERT(map->size == 0, ("map %p size == %lu on free.", map, (unsigned long)map->size)); } #endif /* INVARIANTS */ /* * Allocate a vmspace structure, including a vm_map and pmap, * and initialize those structures. The refcnt is set to 1. * * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). */ struct vmspace * vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) { struct vmspace *vm; vm = uma_zalloc(vmspace_zone, M_WAITOK); KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); if (!pinit(vmspace_pmap(vm))) { uma_zfree(vmspace_zone, vm); return (NULL); } CTR1(KTR_VM, "vmspace_alloc: %p", vm); _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); vm->vm_refcnt = 1; vm->vm_shm = NULL; vm->vm_swrss = 0; vm->vm_tsize = 0; vm->vm_dsize = 0; vm->vm_ssize = 0; vm->vm_taddr = 0; vm->vm_daddr = 0; vm->vm_maxsaddr = 0; return (vm); } #ifdef RACCT static void vmspace_container_reset(struct proc *p) { PROC_LOCK(p); racct_set(p, RACCT_DATA, 0); racct_set(p, RACCT_STACK, 0); racct_set(p, RACCT_RSS, 0); racct_set(p, RACCT_MEMLOCK, 0); racct_set(p, RACCT_VMEM, 0); PROC_UNLOCK(p); } #endif static inline void vmspace_dofree(struct vmspace *vm) { CTR1(KTR_VM, "vmspace_free: %p", vm); /* * Make sure any SysV shm is freed, it might not have been in * exit1(). */ shmexit(vm); /* * Lock the map, to wait out all other references to it. * Delete all of the mappings and pages they hold, then call * the pmap module to reclaim anything left. */ (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), vm_map_max(&vm->vm_map)); pmap_release(vmspace_pmap(vm)); vm->vm_map.pmap = NULL; uma_zfree(vmspace_zone, vm); } void vmspace_free(struct vmspace *vm) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmspace_free() called"); if (vm->vm_refcnt == 0) panic("vmspace_free: attempt to free already freed vmspace"); if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) vmspace_dofree(vm); } void vmspace_exitfree(struct proc *p) { struct vmspace *vm; PROC_VMSPACE_LOCK(p); vm = p->p_vmspace; p->p_vmspace = NULL; PROC_VMSPACE_UNLOCK(p); KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); vmspace_free(vm); } void vmspace_exit(struct thread *td) { int refcnt; struct vmspace *vm; struct proc *p; /* * Release user portion of address space. * This releases references to vnodes, * which could cause I/O if the file has been unlinked. * Need to do this early enough that we can still sleep. * * The last exiting process to reach this point releases as * much of the environment as it can. vmspace_dofree() is the * slower fallback in case another process had a temporary * reference to the vmspace. */ p = td->td_proc; vm = p->p_vmspace; atomic_add_int(&vmspace0.vm_refcnt, 1); do { refcnt = vm->vm_refcnt; if (refcnt > 1 && p->p_vmspace != &vmspace0) { /* Switch now since other proc might free vmspace */ PROC_VMSPACE_LOCK(p); p->p_vmspace = &vmspace0; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); } } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); if (refcnt == 1) { if (p->p_vmspace != vm) { /* vmspace not yet freed, switch back */ PROC_VMSPACE_LOCK(p); p->p_vmspace = vm; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); } pmap_remove_pages(vmspace_pmap(vm)); /* Switch now since this proc will free vmspace */ PROC_VMSPACE_LOCK(p); p->p_vmspace = &vmspace0; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); vmspace_dofree(vm); } #ifdef RACCT if (racct_enable) vmspace_container_reset(p); #endif } /* Acquire reference to vmspace owned by another process. */ struct vmspace * vmspace_acquire_ref(struct proc *p) { struct vmspace *vm; int refcnt; PROC_VMSPACE_LOCK(p); vm = p->p_vmspace; if (vm == NULL) { PROC_VMSPACE_UNLOCK(p); return (NULL); } do { refcnt = vm->vm_refcnt; if (refcnt <= 0) { /* Avoid 0->1 transition */ PROC_VMSPACE_UNLOCK(p); return (NULL); } } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); if (vm != p->p_vmspace) { PROC_VMSPACE_UNLOCK(p); vmspace_free(vm); return (NULL); } PROC_VMSPACE_UNLOCK(p); return (vm); } /* * Switch between vmspaces in an AIO kernel process. * * The AIO kernel processes switch to and from a user process's * vmspace while performing an I/O operation on behalf of a user * process. The new vmspace is either the vmspace of a user process * obtained from an active AIO request or the initial vmspace of the * AIO kernel process (when it is idling). Because user processes * will block to drain any active AIO requests before proceeding in * exit() or execve(), the vmspace reference count for these vmspaces * can never be 0. This allows for a much simpler implementation than * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel * processes hold an extra reference on their initial vmspace for the * life of the process so that this guarantee is true for any vmspace * passed as 'newvm'. */ void vmspace_switch_aio(struct vmspace *newvm) { struct vmspace *oldvm; /* XXX: Need some way to assert that this is an aio daemon. */ KASSERT(newvm->vm_refcnt > 0, ("vmspace_switch_aio: newvm unreferenced")); oldvm = curproc->p_vmspace; if (oldvm == newvm) return; /* * Point to the new address space and refer to it. */ curproc->p_vmspace = newvm; atomic_add_int(&newvm->vm_refcnt, 1); /* Activate the new mapping. */ pmap_activate(curthread); /* Remove the daemon's reference to the old address space. */ KASSERT(oldvm->vm_refcnt > 1, ("vmspace_switch_aio: oldvm dropping last reference")); vmspace_free(oldvm); } void _vm_map_lock(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_lock_flags_(&map->system_mtx, 0, file, line); else sx_xlock_(&map->lock, file, line); map->timestamp++; } static void vm_map_process_deferred(void) { struct thread *td; vm_map_entry_t entry, next; vm_object_t object; td = curthread; entry = td->td_map_def_user; td->td_map_def_user = NULL; while (entry != NULL) { next = entry->next; if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { /* * Decrement the object's writemappings and * possibly the vnode's v_writecount. */ KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, ("Submap with writecount")); object = entry->object.vm_object; KASSERT(object != NULL, ("No object for writecount")); vnode_pager_release_writecount(object, entry->start, entry->end); } vm_map_entry_deallocate(entry, FALSE); entry = next; } } void _vm_map_unlock(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_unlock_flags_(&map->system_mtx, 0, file, line); else { sx_xunlock_(&map->lock, file, line); vm_map_process_deferred(); } } void _vm_map_lock_read(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_lock_flags_(&map->system_mtx, 0, file, line); else sx_slock_(&map->lock, file, line); } void _vm_map_unlock_read(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_unlock_flags_(&map->system_mtx, 0, file, line); else { sx_sunlock_(&map->lock, file, line); vm_map_process_deferred(); } } int _vm_map_trylock(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : !sx_try_xlock_(&map->lock, file, line); if (error == 0) map->timestamp++; return (error == 0); } int _vm_map_trylock_read(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : !sx_try_slock_(&map->lock, file, line); return (error == 0); } /* * _vm_map_lock_upgrade: [ internal use only ] * * Tries to upgrade a read (shared) lock on the specified map to a write * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a * non-zero value if the upgrade fails. If the upgrade fails, the map is * returned without a read or write lock held. * * Requires that the map be read locked. */ int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) { unsigned int last_timestamp; if (map->system_map) { mtx_assert_(&map->system_mtx, MA_OWNED, file, line); } else { if (!sx_try_upgrade_(&map->lock, file, line)) { last_timestamp = map->timestamp; sx_sunlock_(&map->lock, file, line); vm_map_process_deferred(); /* * If the map's timestamp does not change while the * map is unlocked, then the upgrade succeeds. */ sx_xlock_(&map->lock, file, line); if (last_timestamp != map->timestamp) { sx_xunlock_(&map->lock, file, line); return (1); } } } map->timestamp++; return (0); } void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) { if (map->system_map) { mtx_assert_(&map->system_mtx, MA_OWNED, file, line); } else sx_downgrade_(&map->lock, file, line); } /* * vm_map_locked: * * Returns a non-zero value if the caller holds a write (exclusive) lock * on the specified map and the value "0" otherwise. */ int vm_map_locked(vm_map_t map) { if (map->system_map) return (mtx_owned(&map->system_mtx)); else return (sx_xlocked(&map->lock)); } #ifdef INVARIANTS static void _vm_map_assert_locked(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_assert_(&map->system_mtx, MA_OWNED, file, line); else sx_assert_(&map->lock, SA_XLOCKED, file, line); } #define VM_MAP_ASSERT_LOCKED(map) \ _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) #else #define VM_MAP_ASSERT_LOCKED(map) #endif /* * _vm_map_unlock_and_wait: * * Atomically releases the lock on the specified map and puts the calling * thread to sleep. The calling thread will remain asleep until either * vm_map_wakeup() is performed on the map or the specified timeout is * exceeded. * * WARNING! This function does not perform deferred deallocations of * objects and map entries. Therefore, the calling thread is expected to * reacquire the map lock after reawakening and later perform an ordinary * unlock operation, such as vm_map_unlock(), before completing its * operation on the map. */ int _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) { mtx_lock(&map_sleep_mtx); if (map->system_map) mtx_unlock_flags_(&map->system_mtx, 0, file, line); else sx_xunlock_(&map->lock, file, line); return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo)); } /* * vm_map_wakeup: * * Awaken any threads that have slept on the map using * vm_map_unlock_and_wait(). */ void vm_map_wakeup(vm_map_t map) { /* * Acquire and release map_sleep_mtx to prevent a wakeup() * from being performed (and lost) between the map unlock * and the msleep() in _vm_map_unlock_and_wait(). */ mtx_lock(&map_sleep_mtx); mtx_unlock(&map_sleep_mtx); wakeup(&map->root); } void vm_map_busy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); map->busy++; } void vm_map_unbusy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); KASSERT(map->busy, ("vm_map_unbusy: not busy")); if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); wakeup(&map->busy); } } void vm_map_wait_busy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); while (map->busy) { vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); if (map->system_map) msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); else sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); } map->timestamp++; } long vmspace_resident_count(struct vmspace *vmspace) { return pmap_resident_count(vmspace_pmap(vmspace)); } /* * vm_map_create: * * Creates and returns a new empty VM map with * the given physical map structure, and having * the given lower and upper address bounds. */ vm_map_t vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) { vm_map_t result; result = uma_zalloc(mapzone, M_WAITOK); CTR1(KTR_VM, "vm_map_create: %p", result); _vm_map_init(result, pmap, min, max); return (result); } /* * Initialize an existing vm_map structure * such as that in the vmspace structure. */ static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) { map->header.next = map->header.prev = &map->header; map->needs_wakeup = FALSE; map->system_map = 0; map->pmap = pmap; map->header.end = min; map->header.start = max; map->flags = 0; map->root = NULL; map->timestamp = 0; map->busy = 0; } void vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) { _vm_map_init(map, pmap, min, max); mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); sx_init(&map->lock, "user map"); } /* * vm_map_entry_dispose: [ internal use only ] * * Inverse of vm_map_entry_create. */ static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) { uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); } /* * vm_map_entry_create: [ internal use only ] * * Allocates a VM map entry for insertion. * No entry fields are filled in. */ static vm_map_entry_t vm_map_entry_create(vm_map_t map) { vm_map_entry_t new_entry; if (map->system_map) new_entry = uma_zalloc(kmapentzone, M_NOWAIT); else new_entry = uma_zalloc(mapentzone, M_WAITOK); if (new_entry == NULL) panic("vm_map_entry_create: kernel resources exhausted"); return (new_entry); } /* * vm_map_entry_set_behavior: * * Set the expected access behavior, either normal, random, or * sequential. */ static inline void vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) { entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | (behavior & MAP_ENTRY_BEHAV_MASK); } /* * vm_map_entry_set_max_free: * * Set the max_free field in a vm_map_entry. */ static inline void vm_map_entry_set_max_free(vm_map_entry_t entry) { entry->max_free = entry->adj_free; if (entry->left != NULL && entry->left->max_free > entry->max_free) entry->max_free = entry->left->max_free; if (entry->right != NULL && entry->right->max_free > entry->max_free) entry->max_free = entry->right->max_free; } /* * vm_map_entry_splay: * * The Sleator and Tarjan top-down splay algorithm with the * following variation. Max_free must be computed bottom-up, so * on the downward pass, maintain the left and right spines in * reverse order. Then, make a second pass up each side to fix * the pointers and compute max_free. The time bound is O(log n) * amortized. * * The new root is the vm_map_entry containing "addr", or else an * adjacent entry (lower or higher) if addr is not in the tree. * * The map must be locked, and leaves it so. * * Returns: the new root. */ static vm_map_entry_t vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) { vm_map_entry_t llist, rlist; vm_map_entry_t ltree, rtree; vm_map_entry_t y; /* Special case of empty tree. */ if (root == NULL) return (root); /* * Pass One: Splay down the tree until we find addr or a NULL * pointer where addr would go. llist and rlist are the two * sides in reverse order (bottom-up), with llist linked by * the right pointer and rlist linked by the left pointer in * the vm_map_entry. Wait until Pass Two to set max_free on * the two spines. */ llist = NULL; rlist = NULL; for (;;) { /* root is never NULL in here. */ if (addr < root->start) { y = root->left; if (y == NULL) break; if (addr < y->start && y->left != NULL) { /* Rotate right and put y on rlist. */ root->left = y->right; y->right = root; vm_map_entry_set_max_free(root); root = y->left; y->left = rlist; rlist = y; } else { /* Put root on rlist. */ root->left = rlist; rlist = root; root = y; } } else if (addr >= root->end) { y = root->right; if (y == NULL) break; if (addr >= y->end && y->right != NULL) { /* Rotate left and put y on llist. */ root->right = y->left; y->left = root; vm_map_entry_set_max_free(root); root = y->right; y->right = llist; llist = y; } else { /* Put root on llist. */ root->right = llist; llist = root; root = y; } } else break; } /* * Pass Two: Walk back up the two spines, flip the pointers * and set max_free. The subtrees of the root go at the * bottom of llist and rlist. */ ltree = root->left; while (llist != NULL) { y = llist->right; llist->right = ltree; vm_map_entry_set_max_free(llist); ltree = llist; llist = y; } rtree = root->right; while (rlist != NULL) { y = rlist->left; rlist->left = rtree; vm_map_entry_set_max_free(rlist); rtree = rlist; rlist = y; } /* * Final assembly: add ltree and rtree as subtrees of root. */ root->left = ltree; root->right = rtree; vm_map_entry_set_max_free(root); return (root); } /* * vm_map_entry_{un,}link: * * Insert/remove entries from maps. */ static void vm_map_entry_link(vm_map_t map, vm_map_entry_t after_where, vm_map_entry_t entry) { CTR4(KTR_VM, "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, map->nentries, entry, after_where); VM_MAP_ASSERT_LOCKED(map); KASSERT(after_where->end <= entry->start, ("vm_map_entry_link: prev end %jx new start %jx overlap", (uintmax_t)after_where->end, (uintmax_t)entry->start)); KASSERT(entry->end <= after_where->next->start, ("vm_map_entry_link: new end %jx next start %jx overlap", (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); map->nentries++; entry->prev = after_where; entry->next = after_where->next; entry->next->prev = entry; after_where->next = entry; if (after_where != &map->header) { if (after_where != map->root) vm_map_entry_splay(after_where->start, map->root); entry->right = after_where->right; entry->left = after_where; after_where->right = NULL; after_where->adj_free = entry->start - after_where->end; vm_map_entry_set_max_free(after_where); } else { entry->right = map->root; entry->left = NULL; } entry->adj_free = entry->next->start - entry->end; vm_map_entry_set_max_free(entry); map->root = entry; } static void vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t next, prev, root; VM_MAP_ASSERT_LOCKED(map); if (entry != map->root) vm_map_entry_splay(entry->start, map->root); if (entry->left == NULL) root = entry->right; else { root = vm_map_entry_splay(entry->start, entry->left); root->right = entry->right; root->adj_free = entry->next->start - root->end; vm_map_entry_set_max_free(root); } map->root = root; prev = entry->prev; next = entry->next; next->prev = prev; prev->next = next; map->nentries--; CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, map->nentries, entry); } /* * vm_map_entry_resize_free: * * Recompute the amount of free space following a vm_map_entry * and propagate that value up the tree. Call this function after * resizing a map entry in-place, that is, without a call to * vm_map_entry_link() or _unlink(). * * The map must be locked, and leaves it so. */ static void vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) { /* * Using splay trees without parent pointers, propagating * max_free up the tree is done by moving the entry to the * root and making the change there. */ if (entry != map->root) map->root = vm_map_entry_splay(entry->start, map->root); entry->adj_free = entry->next->start - entry->end; vm_map_entry_set_max_free(entry); } /* * vm_map_lookup_entry: [ internal use only ] * * Finds the map entry containing (or * immediately preceding) the specified address * in the given map; the entry is returned * in the "entry" parameter. The boolean * result indicates whether the address is * actually contained in the map. */ boolean_t vm_map_lookup_entry( vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) /* OUT */ { vm_map_entry_t cur; boolean_t locked; /* * If the map is empty, then the map entry immediately preceding * "address" is the map's header. */ cur = map->root; if (cur == NULL) *entry = &map->header; else if (address >= cur->start && cur->end > address) { *entry = cur; return (TRUE); } else if ((locked = vm_map_locked(map)) || sx_try_upgrade(&map->lock)) { /* * Splay requires a write lock on the map. However, it only * restructures the binary search tree; it does not otherwise * change the map. Thus, the map's timestamp need not change * on a temporary upgrade. */ map->root = cur = vm_map_entry_splay(address, cur); if (!locked) sx_downgrade(&map->lock); /* * If "address" is contained within a map entry, the new root * is that map entry. Otherwise, the new root is a map entry * immediately before or after "address". */ if (address >= cur->start) { *entry = cur; if (cur->end > address) return (TRUE); } else *entry = cur->prev; } else /* * Since the map is only locked for read access, perform a * standard binary search tree lookup for "address". */ for (;;) { if (address < cur->start) { if (cur->left == NULL) { *entry = cur->prev; break; } cur = cur->left; } else if (cur->end > address) { *entry = cur; return (TRUE); } else { if (cur->right == NULL) { *entry = cur; break; } cur = cur->right; } } return (FALSE); } /* * vm_map_insert: * * Inserts the given whole VM object into the target * map at the specified address range. The object's * size should match that of the address range. * * Requires that the map be locked, and leaves it so. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t new_entry, prev_entry, temp_entry; struct ucred *cred; vm_eflags_t protoeflags; vm_inherit_t inheritance; VM_MAP_ASSERT_LOCKED(map); KASSERT((object != kmem_object && object != kernel_object) || (cow & MAP_COPY_ON_WRITE) == 0, ("vm_map_insert: kmem or kernel object and COW")); KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, ("vm_map_insert: paradoxical MAP_NOFAULT request")); KASSERT((prot & ~max) == 0, ("prot %#x is not subset of max_prot %#x", prot, max)); /* * Check that the start and end points are not bogus. */ if (start < vm_map_min(map) || end > vm_map_max(map) || start >= end) return (KERN_INVALID_ADDRESS); /* * Find the entry prior to the proposed starting address; if it's part * of an existing entry, this range is bogus. */ if (vm_map_lookup_entry(map, start, &temp_entry)) return (KERN_NO_SPACE); prev_entry = temp_entry; /* * Assert that the next entry doesn't overlap the end point. */ if (prev_entry->next->start < end) return (KERN_NO_SPACE); if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || max != VM_PROT_NONE)) return (KERN_INVALID_ARGUMENT); protoeflags = 0; if (cow & MAP_COPY_ON_WRITE) protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; if (cow & MAP_NOFAULT) protoeflags |= MAP_ENTRY_NOFAULT; if (cow & MAP_DISABLE_SYNCER) protoeflags |= MAP_ENTRY_NOSYNC; if (cow & MAP_DISABLE_COREDUMP) protoeflags |= MAP_ENTRY_NOCOREDUMP; if (cow & MAP_STACK_GROWS_DOWN) protoeflags |= MAP_ENTRY_GROWS_DOWN; if (cow & MAP_STACK_GROWS_UP) protoeflags |= MAP_ENTRY_GROWS_UP; if (cow & MAP_VN_WRITECOUNT) protoeflags |= MAP_ENTRY_VN_WRITECNT; if ((cow & MAP_CREATE_GUARD) != 0) protoeflags |= MAP_ENTRY_GUARD; if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) protoeflags |= MAP_ENTRY_STACK_GAP_DN; if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) protoeflags |= MAP_ENTRY_STACK_GAP_UP; if (cow & MAP_INHERIT_SHARE) inheritance = VM_INHERIT_SHARE; else inheritance = VM_INHERIT_DEFAULT; cred = NULL; if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) goto charged; if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) return (KERN_RESOURCE_SHORTAGE); KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || object->cred == NULL, ("overcommit: vm_map_insert o %p", object)); cred = curthread->td_ucred; } charged: /* Expand the kernel pmap, if necessary. */ if (map == kernel_map && end > kernel_vm_end) pmap_growkernel(end); if (object != NULL) { /* * OBJ_ONEMAPPING must be cleared unless this mapping * is trivially proven to be the only mapping for any * of the object's pages. (Object granularity * reference counting is insufficient to recognize * aliases with precision.) */ VM_OBJECT_WLOCK(object); if (object->ref_count > 1 || object->shadow_count != 0) vm_object_clear_flag(object, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(object); } else if (prev_entry != &map->header && prev_entry->eflags == protoeflags && (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && prev_entry->end == start && prev_entry->wired_count == 0 && (prev_entry->cred == cred || (prev_entry->object.vm_object != NULL && prev_entry->object.vm_object->cred == cred)) && vm_object_coalesce(prev_entry->object.vm_object, prev_entry->offset, (vm_size_t)(prev_entry->end - prev_entry->start), (vm_size_t)(end - prev_entry->end), cred != NULL && (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { /* * We were able to extend the object. Determine if we * can extend the previous map entry to include the * new range as well. */ if (prev_entry->inheritance == inheritance && prev_entry->protection == prot && prev_entry->max_protection == max) { if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) map->size += end - prev_entry->end; prev_entry->end = end; vm_map_entry_resize_free(map, prev_entry); vm_map_simplify_entry(map, prev_entry); return (KERN_SUCCESS); } /* * If we can extend the object but cannot extend the * map entry, we have to create a new map entry. We * must bump the ref count on the extended object to * account for it. object may be NULL. */ object = prev_entry->object.vm_object; offset = prev_entry->offset + (prev_entry->end - prev_entry->start); vm_object_reference(object); if (cred != NULL && object != NULL && object->cred != NULL && !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { /* Object already accounts for this uid. */ cred = NULL; } } if (cred != NULL) crhold(cred); /* * Create a new entry */ new_entry = vm_map_entry_create(map); new_entry->start = start; new_entry->end = end; new_entry->cred = NULL; new_entry->eflags = protoeflags; new_entry->object.vm_object = object; new_entry->offset = offset; new_entry->inheritance = inheritance; new_entry->protection = prot; new_entry->max_protection = max; new_entry->wired_count = 0; new_entry->wiring_thread = NULL; new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; new_entry->next_read = start; KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); new_entry->cred = cred; /* * Insert the new entry into the list */ vm_map_entry_link(map, prev_entry, new_entry); if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) map->size += new_entry->end - new_entry->start; /* * Try to coalesce the new entry with both the previous and next * entries in the list. Previously, we only attempted to coalesce * with the previous entry when object is NULL. Here, we handle the * other cases, which are less common. */ vm_map_simplify_entry(map, new_entry); if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), end - start, cow & MAP_PREFAULT_PARTIAL); } return (KERN_SUCCESS); } /* * vm_map_findspace: * * Find the first fit (lowest VM address) for "length" free bytes * beginning at address >= start in the given map. * * In a vm_map_entry, "adj_free" is the amount of free space * adjacent (higher address) to this entry, and "max_free" is the * maximum amount of contiguous free space in its subtree. This * allows finding a free region in one path down the tree, so * O(log n) amortized with splay trees. * * The map must be locked, and leaves it so. * * Returns: 0 on success, and starting address in *addr, * 1 if insufficient space. */ int vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, vm_offset_t *addr) /* OUT */ { vm_map_entry_t entry; vm_offset_t st; /* * Request must fit within min/max VM address and must avoid * address wrap. */ start = MAX(start, vm_map_min(map)); if (start + length > vm_map_max(map) || start + length < start) return (1); /* Empty tree means wide open address space. */ if (map->root == NULL) { *addr = start; return (0); } /* * After splay, if start comes before root node, then there * must be a gap from start to the root. */ map->root = vm_map_entry_splay(start, map->root); if (start + length <= map->root->start) { *addr = start; return (0); } /* * Root is the last node that might begin its gap before * start, and this is the last comparison where address * wrap might be a problem. */ st = (start > map->root->end) ? start : map->root->end; if (length <= map->root->end + map->root->adj_free - st) { *addr = st; return (0); } /* With max_free, can immediately tell if no solution. */ entry = map->root->right; if (entry == NULL || length > entry->max_free) return (1); /* * Search the right subtree in the order: left subtree, root, * right subtree (first fit). The previous splay implies that * all regions in the right subtree have addresses > start. */ while (entry != NULL) { if (entry->left != NULL && entry->left->max_free >= length) entry = entry->left; else if (entry->adj_free >= length) { *addr = entry->end; return (0); } else entry = entry->right; } /* Can't get here, so panic if we do. */ panic("vm_map_findspace: max_free corrupt"); } int vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_size_t length, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t end; int result; end = start + length; KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || object == NULL, ("vm_map_fixed: non-NULL backing object for stack")); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if ((cow & MAP_CHECK_EXCL) == 0) vm_map_delete(map, start, end); if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { result = vm_map_stack_locked(map, start, length, sgrowsiz, prot, max, cow); } else { result = vm_map_insert(map, object, offset, start, end, prot, max, cow); } vm_map_unlock(map); return (result); } /* * vm_map_find finds an unallocated region in the target address * map with the given length. The search is defined to be * first-fit from the specified address; the region found is * returned in the same parameter. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, /* IN/OUT */ vm_size_t length, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t alignment, initial_addr, start; int result; KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || object == NULL, ("vm_map_find: non-NULL backing object for stack")); + MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && + (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || (object->flags & OBJ_COLORED) == 0)) find_space = VMFS_ANY_SPACE; if (find_space >> 8 != 0) { KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); alignment = (vm_offset_t)1 << (find_space >> 8); } else alignment = 0; initial_addr = *addr; again: start = initial_addr; vm_map_lock(map); do { if (find_space != VMFS_NO_SPACE) { if (vm_map_findspace(map, start, length, addr) || (max_addr != 0 && *addr + length > max_addr)) { vm_map_unlock(map); if (find_space == VMFS_OPTIMAL_SPACE) { find_space = VMFS_ANY_SPACE; goto again; } return (KERN_NO_SPACE); } switch (find_space) { case VMFS_SUPER_SPACE: case VMFS_OPTIMAL_SPACE: pmap_align_superpage(object, offset, addr, length); break; case VMFS_ANY_SPACE: break; default: if ((*addr & (alignment - 1)) != 0) { *addr &= ~(alignment - 1); *addr += alignment; } break; } start = *addr; + } else if ((cow & MAP_REMAP) != 0) { + if (start < vm_map_min(map) || + start + length > vm_map_max(map) || + start + length <= length) { + result = KERN_INVALID_ADDRESS; + break; + } + vm_map_delete(map, start, start + length); } if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { result = vm_map_stack_locked(map, start, length, sgrowsiz, prot, max, cow); } else { result = vm_map_insert(map, object, offset, start, start + length, prot, max, cow); } } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && find_space != VMFS_ANY_SPACE); vm_map_unlock(map); return (result); } /* * vm_map_find_min() is a variant of vm_map_find() that takes an * additional parameter (min_addr) and treats the given address * (*addr) differently. Specifically, it treats *addr as a hint * and not as the minimum address where the mapping is created. * * This function works in two phases. First, it tries to * allocate above the hint. If that fails and the hint is * greater than min_addr, it performs a second pass, replacing * the hint with min_addr as the minimum address for the * allocation. */ int vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t hint; int rv; hint = *addr; for (;;) { rv = vm_map_find(map, object, offset, addr, length, max_addr, find_space, prot, max, cow); if (rv == KERN_SUCCESS || min_addr >= hint) return (rv); *addr = hint = min_addr; } } /* * vm_map_simplify_entry: * * Simplify the given map entry by merging with either neighbor. This * routine also has the ability to merge with both neighbors. * * The map must be locked. * * This routine guarantees that the passed entry remains valid (though * possibly extended). When merging, this routine may delete one or * both neighbors. */ void vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t next, prev; vm_size_t prevsize, esize; if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) return; prev = entry->prev; if (prev != &map->header) { prevsize = prev->end - prev->start; if ( (prev->end == entry->start) && (prev->object.vm_object == entry->object.vm_object) && (!prev->object.vm_object || (prev->offset + prevsize == entry->offset)) && (prev->eflags == entry->eflags) && (prev->protection == entry->protection) && (prev->max_protection == entry->max_protection) && (prev->inheritance == entry->inheritance) && (prev->wired_count == entry->wired_count) && (prev->cred == entry->cred)) { vm_map_entry_unlink(map, prev); entry->start = prev->start; entry->offset = prev->offset; if (entry->prev != &map->header) vm_map_entry_resize_free(map, entry->prev); /* * If the backing object is a vnode object, * vm_object_deallocate() calls vrele(). * However, vrele() does not lock the vnode * because the vnode has additional * references. Thus, the map lock can be kept * without causing a lock-order reversal with * the vnode lock. * * Since we count the number of virtual page * mappings in object->un_pager.vnp.writemappings, * the writemappings value should not be adjusted * when the entry is disposed of. */ if (prev->object.vm_object) vm_object_deallocate(prev->object.vm_object); if (prev->cred != NULL) crfree(prev->cred); vm_map_entry_dispose(map, prev); } } next = entry->next; if (next != &map->header) { esize = entry->end - entry->start; if ((entry->end == next->start) && (next->object.vm_object == entry->object.vm_object) && (!entry->object.vm_object || (entry->offset + esize == next->offset)) && (next->eflags == entry->eflags) && (next->protection == entry->protection) && (next->max_protection == entry->max_protection) && (next->inheritance == entry->inheritance) && (next->wired_count == entry->wired_count) && (next->cred == entry->cred)) { vm_map_entry_unlink(map, next); entry->end = next->end; vm_map_entry_resize_free(map, entry); /* * See comment above. */ if (next->object.vm_object) vm_object_deallocate(next->object.vm_object); if (next->cred != NULL) crfree(next->cred); vm_map_entry_dispose(map, next); } } } /* * vm_map_clip_start: [ internal use only ] * * Asserts that the given entry begins at or after * the specified address; if necessary, * it splits the entry into two. */ #define vm_map_clip_start(map, entry, startaddr) \ { \ if (startaddr > entry->start) \ _vm_map_clip_start(map, entry, startaddr); \ } /* * This routine is called only when it is known that * the entry must be split. */ static void _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) { vm_map_entry_t new_entry; VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->end > start && entry->start < start, ("_vm_map_clip_start: invalid clip of entry %p", entry)); /* * Split off the front portion -- note that we must insert the new * entry BEFORE this one, so that this entry has the specified * starting address. */ vm_map_simplify_entry(map, entry); /* * If there is no object backing this entry, we might as well create * one now. If we defer it, an object can get created after the map * is clipped, and individual objects will be created for the split-up * map. This is a bit of a hack, but is also about the best place to * put this improvement. */ if (entry->object.vm_object == NULL && !map->system_map && (entry->eflags & MAP_ENTRY_GUARD) == 0) { vm_object_t object; object = vm_object_allocate(OBJT_DEFAULT, atop(entry->end - entry->start)); entry->object.vm_object = object; entry->offset = 0; if (entry->cred != NULL) { object->cred = entry->cred; object->charge = entry->end - entry->start; entry->cred = NULL; } } else if (entry->object.vm_object != NULL && ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && entry->cred != NULL) { VM_OBJECT_WLOCK(entry->object.vm_object); KASSERT(entry->object.vm_object->cred == NULL, ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); entry->object.vm_object->cred = entry->cred; entry->object.vm_object->charge = entry->end - entry->start; VM_OBJECT_WUNLOCK(entry->object.vm_object); entry->cred = NULL; } new_entry = vm_map_entry_create(map); *new_entry = *entry; new_entry->end = start; entry->offset += (start - entry->start); entry->start = start; if (new_entry->cred != NULL) crhold(entry->cred); vm_map_entry_link(map, entry->prev, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); /* * The object->un_pager.vnp.writemappings for the * object of MAP_ENTRY_VN_WRITECNT type entry shall be * kept as is here. The virtual pages are * re-distributed among the clipped entries, so the sum is * left the same. */ } } /* * vm_map_clip_end: [ internal use only ] * * Asserts that the given entry ends at or before * the specified address; if necessary, * it splits the entry into two. */ #define vm_map_clip_end(map, entry, endaddr) \ { \ if ((endaddr) < (entry->end)) \ _vm_map_clip_end((map), (entry), (endaddr)); \ } /* * This routine is called only when it is known that * the entry must be split. */ static void _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) { vm_map_entry_t new_entry; VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->start < end && entry->end > end, ("_vm_map_clip_end: invalid clip of entry %p", entry)); /* * If there is no object backing this entry, we might as well create * one now. If we defer it, an object can get created after the map * is clipped, and individual objects will be created for the split-up * map. This is a bit of a hack, but is also about the best place to * put this improvement. */ if (entry->object.vm_object == NULL && !map->system_map && (entry->eflags & MAP_ENTRY_GUARD) == 0) { vm_object_t object; object = vm_object_allocate(OBJT_DEFAULT, atop(entry->end - entry->start)); entry->object.vm_object = object; entry->offset = 0; if (entry->cred != NULL) { object->cred = entry->cred; object->charge = entry->end - entry->start; entry->cred = NULL; } } else if (entry->object.vm_object != NULL && ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && entry->cred != NULL) { VM_OBJECT_WLOCK(entry->object.vm_object); KASSERT(entry->object.vm_object->cred == NULL, ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); entry->object.vm_object->cred = entry->cred; entry->object.vm_object->charge = entry->end - entry->start; VM_OBJECT_WUNLOCK(entry->object.vm_object); entry->cred = NULL; } /* * Create a new entry and insert it AFTER the specified entry */ new_entry = vm_map_entry_create(map); *new_entry = *entry; new_entry->start = entry->end = end; new_entry->offset += (end - entry->start); if (new_entry->cred != NULL) crhold(entry->cred); vm_map_entry_link(map, entry, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); } } /* * vm_map_submap: [ kernel use only ] * * Mark the given range as handled by a subordinate map. * * This range must have been created with vm_map_find, * and no other operations may have been performed on this * range prior to calling vm_map_submap. * * Only a limited number of operations can be performed * within this rage after calling vm_map_submap: * vm_fault * [Don't try vm_map_copy!] * * To remove a submapping, one must first remove the * range from the superior map, and then destroy the * submap (if desired). [Better yet, don't try it.] */ int vm_map_submap( vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) { vm_map_entry_t entry; int result = KERN_INVALID_ARGUMENT; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { vm_map_clip_start(map, entry, start); } else entry = entry->next; vm_map_clip_end(map, entry, end); if ((entry->start == start) && (entry->end == end) && ((entry->eflags & MAP_ENTRY_COW) == 0) && (entry->object.vm_object == NULL)) { entry->object.sub_map = submap; entry->eflags |= MAP_ENTRY_IS_SUB_MAP; result = KERN_SUCCESS; } vm_map_unlock(map); return (result); } /* * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified */ #define MAX_INIT_PT 96 /* * vm_map_pmap_enter: * * Preload the specified map's pmap with mappings to the specified * object's memory-resident pages. No further physical pages are * allocated, and no further virtual pages are retrieved from secondary * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a * limited number of page mappings are created at the low-end of the * specified address range. (For this purpose, a superpage mapping * counts as one page mapping.) Otherwise, all resident pages within * the specified address range are mapped. */ static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) { vm_offset_t start; vm_page_t p, p_start; vm_pindex_t mask, psize, threshold, tmpidx; if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) return; VM_OBJECT_RLOCK(object); if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { VM_OBJECT_RUNLOCK(object); VM_OBJECT_WLOCK(object); if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { pmap_object_init_pt(map->pmap, addr, object, pindex, size); VM_OBJECT_WUNLOCK(object); return; } VM_OBJECT_LOCK_DOWNGRADE(object); } psize = atop(size); if (psize + pindex > object->size) { if (object->size < pindex) { VM_OBJECT_RUNLOCK(object); return; } psize = object->size - pindex; } start = 0; p_start = NULL; threshold = MAX_INIT_PT; p = vm_page_find_least(object, pindex); /* * Assert: the variable p is either (1) the page with the * least pindex greater than or equal to the parameter pindex * or (2) NULL. */ for (; p != NULL && (tmpidx = p->pindex - pindex) < psize; p = TAILQ_NEXT(p, listq)) { /* * don't allow an madvise to blow away our really * free pages allocating pv entries. */ if (((flags & MAP_PREFAULT_MADVISE) != 0 && vm_cnt.v_free_count < vm_cnt.v_free_reserved) || ((flags & MAP_PREFAULT_PARTIAL) != 0 && tmpidx >= threshold)) { psize = tmpidx; break; } if (p->valid == VM_PAGE_BITS_ALL) { if (p_start == NULL) { start = addr + ptoa(tmpidx); p_start = p; } /* Jump ahead if a superpage mapping is possible. */ if (p->psind > 0 && ((addr + ptoa(tmpidx)) & (pagesizes[p->psind] - 1)) == 0) { mask = atop(pagesizes[p->psind]) - 1; if (tmpidx + mask < psize && vm_page_ps_test(p, PS_ALL_VALID, NULL)) { p += mask; threshold += mask; } } } else if (p_start != NULL) { pmap_enter_object(map->pmap, start, addr + ptoa(tmpidx), p_start, prot); p_start = NULL; } } if (p_start != NULL) pmap_enter_object(map->pmap, start, addr + ptoa(psize), p_start, prot); VM_OBJECT_RUNLOCK(object); } /* * vm_map_protect: * * Sets the protection of the specified address * region in the target map. If "set_max" is * specified, the maximum protection is to be set; * otherwise, only the current protection is affected. */ int vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t new_prot, boolean_t set_max) { vm_map_entry_t current, entry; vm_object_t obj; struct ucred *cred; vm_prot_t old_prot; if (start == end) return (KERN_SUCCESS); vm_map_lock(map); /* * Ensure that we are not concurrently wiring pages. vm_map_wire() may * need to fault pages into the map and will drop the map lock while * doing so, and the VM object may end up in an inconsistent state if we * update the protection on the map entry in between faults. */ vm_map_wait_busy(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { vm_map_clip_start(map, entry, start); } else { entry = entry->next; } /* * Make a first pass to check for protection violations. */ for (current = entry; current->start < end; current = current->next) { if ((current->eflags & MAP_ENTRY_GUARD) != 0) continue; if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_unlock(map); return (KERN_INVALID_ARGUMENT); } if ((new_prot & current->max_protection) != new_prot) { vm_map_unlock(map); return (KERN_PROTECTION_FAILURE); } } /* * Do an accounting pass for private read-only mappings that * now will do cow due to allowed write (e.g. debugger sets * breakpoint on text segment) */ for (current = entry; current->start < end; current = current->next) { vm_map_clip_end(map, current, end); if (set_max || ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || ENTRY_CHARGED(current) || (current->eflags & MAP_ENTRY_GUARD) != 0) { continue; } cred = curthread->td_ucred; obj = current->object.vm_object; if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { if (!swap_reserve(current->end - current->start)) { vm_map_unlock(map); return (KERN_RESOURCE_SHORTAGE); } crhold(cred); current->cred = cred; continue; } VM_OBJECT_WLOCK(obj); if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { VM_OBJECT_WUNLOCK(obj); continue; } /* * Charge for the whole object allocation now, since * we cannot distinguish between non-charged and * charged clipped mapping of the same object later. */ KASSERT(obj->charge == 0, ("vm_map_protect: object %p overcharged (entry %p)", obj, current)); if (!swap_reserve(ptoa(obj->size))) { VM_OBJECT_WUNLOCK(obj); vm_map_unlock(map); return (KERN_RESOURCE_SHORTAGE); } crhold(cred); obj->cred = cred; obj->charge = ptoa(obj->size); VM_OBJECT_WUNLOCK(obj); } /* * Go back and fix up protections. [Note that clipping is not * necessary the second time.] */ for (current = entry; current->start < end; current = current->next) { if ((current->eflags & MAP_ENTRY_GUARD) != 0) continue; old_prot = current->protection; if (set_max) current->protection = (current->max_protection = new_prot) & old_prot; else current->protection = new_prot; /* * For user wired map entries, the normal lazy evaluation of * write access upgrades through soft page faults is * undesirable. Instead, immediately copy any pages that are * copy-on-write and enable write access in the physical map. */ if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && (current->protection & VM_PROT_WRITE) != 0 && (old_prot & VM_PROT_WRITE) == 0) vm_fault_copy_entry(map, map, current, current, NULL); /* * When restricting access, update the physical map. Worry * about copy-on-write here. */ if ((old_prot & ~current->protection) != 0) { #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ VM_PROT_ALL) pmap_protect(map->pmap, current->start, current->end, current->protection & MASK(current)); #undef MASK } vm_map_simplify_entry(map, current); } vm_map_unlock(map); return (KERN_SUCCESS); } /* * vm_map_madvise: * * This routine traverses a processes map handling the madvise * system call. Advisories are classified as either those effecting * the vm_map_entry structure, or those effecting the underlying * objects. */ int vm_map_madvise( vm_map_t map, vm_offset_t start, vm_offset_t end, int behav) { vm_map_entry_t current, entry; int modify_map = 0; /* * Some madvise calls directly modify the vm_map_entry, in which case * we need to use an exclusive lock on the map and we need to perform * various clipping operations. Otherwise we only need a read-lock * on the map. */ switch(behav) { case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: case MADV_NOSYNC: case MADV_AUTOSYNC: case MADV_NOCORE: case MADV_CORE: if (start == end) return (KERN_SUCCESS); modify_map = 1; vm_map_lock(map); break; case MADV_WILLNEED: case MADV_DONTNEED: case MADV_FREE: if (start == end) return (KERN_SUCCESS); vm_map_lock_read(map); break; default: return (KERN_INVALID_ARGUMENT); } /* * Locate starting entry and clip if necessary. */ VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { if (modify_map) vm_map_clip_start(map, entry, start); } else { entry = entry->next; } if (modify_map) { /* * madvise behaviors that are implemented in the vm_map_entry. * * We clip the vm_map_entry so that behavioral changes are * limited to the specified address range. */ for (current = entry; current->start < end; current = current->next) { if (current->eflags & MAP_ENTRY_IS_SUB_MAP) continue; vm_map_clip_end(map, current, end); switch (behav) { case MADV_NORMAL: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); break; case MADV_SEQUENTIAL: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); break; case MADV_RANDOM: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); break; case MADV_NOSYNC: current->eflags |= MAP_ENTRY_NOSYNC; break; case MADV_AUTOSYNC: current->eflags &= ~MAP_ENTRY_NOSYNC; break; case MADV_NOCORE: current->eflags |= MAP_ENTRY_NOCOREDUMP; break; case MADV_CORE: current->eflags &= ~MAP_ENTRY_NOCOREDUMP; break; default: break; } vm_map_simplify_entry(map, current); } vm_map_unlock(map); } else { vm_pindex_t pstart, pend; /* * madvise behaviors that are implemented in the underlying * vm_object. * * Since we don't clip the vm_map_entry, we have to clip * the vm_object pindex and count. */ for (current = entry; current->start < end; current = current->next) { vm_offset_t useEnd, useStart; if (current->eflags & MAP_ENTRY_IS_SUB_MAP) continue; pstart = OFF_TO_IDX(current->offset); pend = pstart + atop(current->end - current->start); useStart = current->start; useEnd = current->end; if (current->start < start) { pstart += atop(start - current->start); useStart = start; } if (current->end > end) { pend -= atop(current->end - end); useEnd = end; } if (pstart >= pend) continue; /* * Perform the pmap_advise() before clearing * PGA_REFERENCED in vm_page_advise(). Otherwise, a * concurrent pmap operation, such as pmap_remove(), * could clear a reference in the pmap and set * PGA_REFERENCED on the page before the pmap_advise() * had completed. Consequently, the page would appear * referenced based upon an old reference that * occurred before this pmap_advise() ran. */ if (behav == MADV_DONTNEED || behav == MADV_FREE) pmap_advise(map->pmap, useStart, useEnd, behav); vm_object_madvise(current->object.vm_object, pstart, pend, behav); /* * Pre-populate paging structures in the * WILLNEED case. For wired entries, the * paging structures are already populated. */ if (behav == MADV_WILLNEED && current->wired_count == 0) { vm_map_pmap_enter(map, useStart, current->protection, current->object.vm_object, pstart, ptoa(pend - pstart), MAP_PREFAULT_MADVISE ); } } vm_map_unlock_read(map); } return (0); } /* * vm_map_inherit: * * Sets the inheritance of the specified address * range in the target map. Inheritance * affects how the map will be shared with * child maps at the time of vmspace_fork. */ int vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_inherit_t new_inheritance) { vm_map_entry_t entry; vm_map_entry_t temp_entry; switch (new_inheritance) { case VM_INHERIT_NONE: case VM_INHERIT_COPY: case VM_INHERIT_SHARE: case VM_INHERIT_ZERO: break; default: return (KERN_INVALID_ARGUMENT); } if (start == end) return (KERN_SUCCESS); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &temp_entry)) { entry = temp_entry; vm_map_clip_start(map, entry, start); } else entry = temp_entry->next; while (entry->start < end) { vm_map_clip_end(map, entry, end); if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || new_inheritance != VM_INHERIT_ZERO) entry->inheritance = new_inheritance; vm_map_simplify_entry(map, entry); entry = entry->next; } vm_map_unlock(map); return (KERN_SUCCESS); } /* * vm_map_unwire: * * Implements both kernel and user unwiring. */ int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) { vm_map_entry_t entry, first_entry, tmp_entry; vm_offset_t saved_start; unsigned int last_timestamp; int rv; boolean_t need_wakeup, result, user_unwire; if (start == end) return (KERN_SUCCESS); user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { if (flags & VM_MAP_WIRE_HOLESOK) first_entry = first_entry->next; else { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } } last_timestamp = map->timestamp; entry = first_entry; while (entry->start < end) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ saved_start = (start >= entry->start) ? start : entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; if (vm_map_unlock_and_wait(map, 0)) { /* * Allow interruption of user unwiring? */ } vm_map_lock(map); if (last_timestamp+1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) { if (flags & VM_MAP_WIRE_HOLESOK) tmp_entry = tmp_entry->next; else { if (saved_start == start) { /* * First_entry has been deleted. */ vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } end = saved_start; rv = KERN_INVALID_ADDRESS; goto done; } } if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; } last_timestamp = map->timestamp; continue; } vm_map_clip_start(map, entry, start); vm_map_clip_end(map, entry, end); /* * Mark the entry in case the map lock is released. (See * above.) */ KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && entry->wiring_thread == NULL, ("owned map entry %p", entry)); entry->eflags |= MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = curthread; /* * Check the map for holes in the specified region. * If VM_MAP_WIRE_HOLESOK was specified, skip this check. */ if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && (entry->end < end && entry->next->start > entry->end)) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } /* * If system unwiring, require that the entry is system wired. */ if (!user_unwire && vm_map_entry_system_wired_count(entry) == 0) { end = entry->end; rv = KERN_INVALID_ARGUMENT; goto done; } entry = entry->next; } rv = KERN_SUCCESS; done: need_wakeup = FALSE; if (first_entry == NULL) { result = vm_map_lookup_entry(map, start, &first_entry); if (!result && (flags & VM_MAP_WIRE_HOLESOK)) first_entry = first_entry->next; else KASSERT(result, ("vm_map_unwire: lookup failed")); } for (entry = first_entry; entry->start < end; entry = entry->next) { /* * If VM_MAP_WIRE_HOLESOK was specified, an empty * space in the unwired region could have been mapped * while the map lock was dropped for draining * MAP_ENTRY_IN_TRANSITION. Moreover, another thread * could be simultaneously wiring this new mapping * entry. Detect these cases and skip any entries * marked as in transition by us. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || entry->wiring_thread != curthread) { KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, ("vm_map_unwire: !HOLESOK and new/changed entry")); continue; } if (rv == KERN_SUCCESS && (!user_unwire || (entry->eflags & MAP_ENTRY_USER_WIRED))) { if (user_unwire) entry->eflags &= ~MAP_ENTRY_USER_WIRED; if (entry->wired_count == 1) vm_map_entry_unwire(map, entry); else entry->wired_count--; } KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, ("vm_map_unwire: in-transition flag missing %p", entry)); KASSERT(entry->wiring_thread == curthread, ("vm_map_unwire: alien wire %p", entry)); entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = NULL; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = TRUE; } vm_map_simplify_entry(map, entry); } vm_map_unlock(map); if (need_wakeup) vm_map_wakeup(map); return (rv); } /* * vm_map_wire_entry_failure: * * Handle a wiring failure on the given entry. * * The map should be locked. */ static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, vm_offset_t failed_addr) { VM_MAP_ASSERT_LOCKED(map); KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && entry->wired_count == 1, ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); KASSERT(failed_addr < entry->end, ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); /* * If any pages at the start of this entry were successfully wired, * then unwire them. */ if (failed_addr > entry->start) { pmap_unwire(map->pmap, entry->start, failed_addr); vm_object_unwire(entry->object.vm_object, entry->offset, failed_addr - entry->start, PQ_ACTIVE); } /* * Assign an out-of-range value to represent the failure to wire this * entry. */ entry->wired_count = -1; } /* * vm_map_wire: * * Implements both kernel and user wiring. */ int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) { vm_map_entry_t entry, first_entry, tmp_entry; vm_offset_t faddr, saved_end, saved_start; unsigned int last_timestamp; int rv; boolean_t need_wakeup, result, user_wire; vm_prot_t prot; if (start == end) return (KERN_SUCCESS); prot = 0; if (flags & VM_MAP_WIRE_WRITE) prot |= VM_PROT_WRITE; user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { if (flags & VM_MAP_WIRE_HOLESOK) first_entry = first_entry->next; else { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } } last_timestamp = map->timestamp; entry = first_entry; while (entry->start < end) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ saved_start = (start >= entry->start) ? start : entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; if (vm_map_unlock_and_wait(map, 0)) { /* * Allow interruption of user wiring? */ } vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) { if (flags & VM_MAP_WIRE_HOLESOK) tmp_entry = tmp_entry->next; else { if (saved_start == start) { /* * first_entry has been deleted. */ vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } end = saved_start; rv = KERN_INVALID_ADDRESS; goto done; } } if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; } last_timestamp = map->timestamp; continue; } vm_map_clip_start(map, entry, start); vm_map_clip_end(map, entry, end); /* * Mark the entry in case the map lock is released. (See * above.) */ KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && entry->wiring_thread == NULL, ("owned map entry %p", entry)); entry->eflags |= MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = curthread; if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || (entry->protection & prot) != prot) { entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } goto next_entry; } if (entry->wired_count == 0) { entry->wired_count++; saved_start = entry->start; saved_end = entry->end; /* * Release the map lock, relying on the in-transition * mark. Mark the map busy for fork. */ vm_map_busy(map); vm_map_unlock(map); faddr = saved_start; do { /* * Simulate a fault to get the page and enter * it into the physical map. */ if ((rv = vm_fault(map, faddr, VM_PROT_NONE, VM_FAULT_WIRE)) != KERN_SUCCESS) break; } while ((faddr += PAGE_SIZE) < saved_end); vm_map_lock(map); vm_map_unbusy(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. The entry * may have been clipped, but NOT merged or * deleted. */ result = vm_map_lookup_entry(map, saved_start, &tmp_entry); KASSERT(result, ("vm_map_wire: lookup failed")); if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; while (entry->end < saved_end) { /* * In case of failure, handle entries * that were not fully wired here; * fully wired entries are handled * later. */ if (rv != KERN_SUCCESS && faddr < entry->end) vm_map_wire_entry_failure(map, entry, faddr); entry = entry->next; } } last_timestamp = map->timestamp; if (rv != KERN_SUCCESS) { vm_map_wire_entry_failure(map, entry, faddr); end = entry->end; goto done; } } else if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { entry->wired_count++; } /* * Check the map for holes in the specified region. * If VM_MAP_WIRE_HOLESOK was specified, skip this check. */ next_entry: if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && entry->end < end && entry->next->start > entry->end) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } entry = entry->next; } rv = KERN_SUCCESS; done: need_wakeup = FALSE; if (first_entry == NULL) { result = vm_map_lookup_entry(map, start, &first_entry); if (!result && (flags & VM_MAP_WIRE_HOLESOK)) first_entry = first_entry->next; else KASSERT(result, ("vm_map_wire: lookup failed")); } for (entry = first_entry; entry->start < end; entry = entry->next) { /* * If VM_MAP_WIRE_HOLESOK was specified, an empty * space in the unwired region could have been mapped * while the map lock was dropped for faulting in the * pages or draining MAP_ENTRY_IN_TRANSITION. * Moreover, another thread could be simultaneously * wiring this new mapping entry. Detect these cases * and skip any entries marked as in transition not by us. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || entry->wiring_thread != curthread) { KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, ("vm_map_wire: !HOLESOK and new/changed entry")); continue; } if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) goto next_entry_done; if (rv == KERN_SUCCESS) { if (user_wire) entry->eflags |= MAP_ENTRY_USER_WIRED; } else if (entry->wired_count == -1) { /* * Wiring failed on this entry. Thus, unwiring is * unnecessary. */ entry->wired_count = 0; } else if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { /* * Undo the wiring. Wiring succeeded on this entry * but failed on a later entry. */ if (entry->wired_count == 1) vm_map_entry_unwire(map, entry); else entry->wired_count--; } next_entry_done: KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, ("vm_map_wire: in-transition flag missing %p", entry)); KASSERT(entry->wiring_thread == curthread, ("vm_map_wire: alien wire %p", entry)); entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WIRE_SKIPPED); entry->wiring_thread = NULL; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = TRUE; } vm_map_simplify_entry(map, entry); } vm_map_unlock(map); if (need_wakeup) vm_map_wakeup(map); return (rv); } /* * vm_map_sync * * Push any dirty cached pages in the address range to their pager. * If syncio is TRUE, dirty pages are written synchronously. * If invalidate is TRUE, any cached pages are freed as well. * * If the size of the region from start to end is zero, we are * supposed to flush all modified pages within the region containing * start. Unfortunately, a region can be split or coalesced with * neighboring regions, making it difficult to determine what the * original region was. Therefore, we approximate this requirement by * flushing the current region containing start. * * Returns an error if any part of the specified range is not mapped. */ int vm_map_sync( vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, boolean_t invalidate) { vm_map_entry_t current; vm_map_entry_t entry; vm_size_t size; vm_object_t object; vm_ooffset_t offset; unsigned int last_timestamp; boolean_t failed; vm_map_lock_read(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &entry)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } else if (start == end) { start = entry->start; end = entry->end; } /* * Make a first pass to check for user-wired memory and holes. */ for (current = entry; current->start < end; current = current->next) { if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { vm_map_unlock_read(map); return (KERN_INVALID_ARGUMENT); } if (end > current->end && current->end != current->next->start) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } } if (invalidate) pmap_remove(map->pmap, start, end); failed = FALSE; /* * Make a second pass, cleaning/uncaching pages from the indicated * objects as we go. */ for (current = entry; current->start < end;) { offset = current->offset + (start - current->start); size = (end <= current->end ? end : current->end) - start; if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_t smap; vm_map_entry_t tentry; vm_size_t tsize; smap = current->object.sub_map; vm_map_lock_read(smap); (void) vm_map_lookup_entry(smap, offset, &tentry); tsize = tentry->end - offset; if (tsize < size) size = tsize; object = tentry->object.vm_object; offset = tentry->offset + (offset - tentry->start); vm_map_unlock_read(smap); } else { object = current->object.vm_object; } vm_object_reference(object); last_timestamp = map->timestamp; vm_map_unlock_read(map); if (!vm_object_sync(object, offset, size, syncio, invalidate)) failed = TRUE; start += size; vm_object_deallocate(object); vm_map_lock_read(map); if (last_timestamp == map->timestamp || !vm_map_lookup_entry(map, start, ¤t)) current = current->next; } vm_map_unlock_read(map); return (failed ? KERN_FAILURE : KERN_SUCCESS); } /* * vm_map_entry_unwire: [ internal use only ] * * Make the region specified by this entry pageable. * * The map in question should be locked. * [This is the reason for this routine's existence.] */ static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) { VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->wired_count > 0, ("vm_map_entry_unwire: entry %p isn't wired", entry)); pmap_unwire(map->pmap, entry->start, entry->end); vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - entry->start, PQ_ACTIVE); entry->wired_count = 0; } static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) { if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) vm_object_deallocate(entry->object.vm_object); uma_zfree(system_map ? kmapentzone : mapentzone, entry); } /* * vm_map_entry_delete: [ internal use only ] * * Deallocate the given entry from the target map. */ static void vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) { vm_object_t object; vm_pindex_t offidxstart, offidxend, count, size1; vm_size_t size; vm_map_entry_unlink(map, entry); object = entry->object.vm_object; if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { MPASS(entry->cred == NULL); MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); MPASS(object == NULL); vm_map_entry_deallocate(entry, map->system_map); return; } size = entry->end - entry->start; map->size -= size; if (entry->cred != NULL) { swap_release_by_cred(size, entry->cred); crfree(entry->cred); } if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && (object != NULL)) { KASSERT(entry->cred == NULL || object->cred == NULL || (entry->eflags & MAP_ENTRY_NEEDS_COPY), ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); count = atop(size); offidxstart = OFF_TO_IDX(entry->offset); offidxend = offidxstart + count; VM_OBJECT_WLOCK(object); if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || object == kernel_object || object == kmem_object)) { vm_object_collapse(object); /* * The option OBJPR_NOTMAPPED can be passed here * because vm_map_delete() already performed * pmap_remove() on the only mapping to this range * of pages. */ vm_object_page_remove(object, offidxstart, offidxend, OBJPR_NOTMAPPED); if (object->type == OBJT_SWAP) swap_pager_freespace(object, offidxstart, count); if (offidxend >= object->size && offidxstart < object->size) { size1 = object->size; object->size = offidxstart; if (object->cred != NULL) { size1 -= object->size; KASSERT(object->charge >= ptoa(size1), ("object %p charge < 0", object)); swap_release_by_cred(ptoa(size1), object->cred); object->charge -= ptoa(size1); } } } VM_OBJECT_WUNLOCK(object); } else entry->object.vm_object = NULL; if (map->system_map) vm_map_entry_deallocate(entry, TRUE); else { entry->next = curthread->td_map_def_user; curthread->td_map_def_user = entry; } } /* * vm_map_delete: [ internal use only ] * * Deallocates the given address range from the target * map. */ int vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) { vm_map_entry_t entry; vm_map_entry_t first_entry; VM_MAP_ASSERT_LOCKED(map); if (start == end) return (KERN_SUCCESS); /* * Find the start of the region, and clip it */ if (!vm_map_lookup_entry(map, start, &first_entry)) entry = first_entry->next; else { entry = first_entry; vm_map_clip_start(map, entry, start); } /* * Step through all entries in this region */ while (entry->start < end) { vm_map_entry_t next; /* * Wait for wiring or unwiring of an entry to complete. * Also wait for any system wirings to disappear on * user maps. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || (vm_map_pmap(map) != kernel_pmap && vm_map_entry_system_wired_count(entry) != 0)) { unsigned int last_timestamp; vm_offset_t saved_start; vm_map_entry_t tmp_entry; saved_start = entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; last_timestamp = map->timestamp; (void) vm_map_unlock_and_wait(map, 0); vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) entry = tmp_entry->next; else { entry = tmp_entry; vm_map_clip_start(map, entry, saved_start); } } continue; } vm_map_clip_end(map, entry, end); next = entry->next; /* * Unwire before removing addresses from the pmap; otherwise, * unwiring will put the entries back in the pmap. */ if (entry->wired_count != 0) vm_map_entry_unwire(map, entry); /* * Remove mappings for the pages, but only if the * mappings could exist. For instance, it does not * make sense to call pmap_remove() for guard entries. */ if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || entry->object.vm_object != NULL) pmap_remove(map->pmap, entry->start, entry->end); /* * Delete the entry only after removing all pmap * entries pointing to its pages. (Otherwise, its * page frames may be reallocated, and any modify bits * will be set in the wrong object!) */ vm_map_entry_delete(map, entry); entry = next; } return (KERN_SUCCESS); } /* * vm_map_remove: * * Remove the given address range from the target map. * This is the exported form of vm_map_delete. */ int vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) { int result; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); result = vm_map_delete(map, start, end); vm_map_unlock(map); return (result); } /* * vm_map_check_protection: * * Assert that the target map allows the specified privilege on the * entire address region given. The entire region must be allocated. * * WARNING! This code does not and should not check whether the * contents of the region is accessible. For example a smaller file * might be mapped into a larger address space. * * NOTE! This code is also called by munmap(). * * The map must be locked. A read lock is sufficient. */ boolean_t vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t protection) { vm_map_entry_t entry; vm_map_entry_t tmp_entry; if (!vm_map_lookup_entry(map, start, &tmp_entry)) return (FALSE); entry = tmp_entry; while (start < end) { /* * No holes allowed! */ if (start < entry->start) return (FALSE); /* * Check protection associated with entry. */ if ((entry->protection & protection) != protection) return (FALSE); /* go to next entry */ start = entry->end; entry = entry->next; } return (TRUE); } /* * vm_map_copy_entry: * * Copies the contents of the source entry to the destination * entry. The entries *must* be aligned properly. */ static void vm_map_copy_entry( vm_map_t src_map, vm_map_t dst_map, vm_map_entry_t src_entry, vm_map_entry_t dst_entry, vm_ooffset_t *fork_charge) { vm_object_t src_object; vm_map_entry_t fake_entry; vm_offset_t size; struct ucred *cred; int charged; VM_MAP_ASSERT_LOCKED(dst_map); if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) return; if (src_entry->wired_count == 0 || (src_entry->protection & VM_PROT_WRITE) == 0) { /* * If the source entry is marked needs_copy, it is already * write-protected. */ if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && (src_entry->protection & VM_PROT_WRITE) != 0) { pmap_protect(src_map->pmap, src_entry->start, src_entry->end, src_entry->protection & ~VM_PROT_WRITE); } /* * Make a copy of the object. */ size = src_entry->end - src_entry->start; if ((src_object = src_entry->object.vm_object) != NULL) { VM_OBJECT_WLOCK(src_object); charged = ENTRY_CHARGED(src_entry); if (src_object->handle == NULL && (src_object->type == OBJT_DEFAULT || src_object->type == OBJT_SWAP)) { vm_object_collapse(src_object); if ((src_object->flags & (OBJ_NOSPLIT | OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { vm_object_split(src_entry); src_object = src_entry->object.vm_object; } } vm_object_reference_locked(src_object); vm_object_clear_flag(src_object, OBJ_ONEMAPPING); if (src_entry->cred != NULL && !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { KASSERT(src_object->cred == NULL, ("OVERCOMMIT: vm_map_copy_entry: cred %p", src_object)); src_object->cred = src_entry->cred; src_object->charge = size; } VM_OBJECT_WUNLOCK(src_object); dst_entry->object.vm_object = src_object; if (charged) { cred = curthread->td_ucred; crhold(cred); dst_entry->cred = cred; *fork_charge += size; if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { crhold(cred); src_entry->cred = cred; *fork_charge += size; } } src_entry->eflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; dst_entry->eflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; dst_entry->offset = src_entry->offset; if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { /* * MAP_ENTRY_VN_WRITECNT cannot * indicate write reference from * src_entry, since the entry is * marked as needs copy. Allocate a * fake entry that is used to * decrement object->un_pager.vnp.writecount * at the appropriate time. Attach * fake_entry to the deferred list. */ fake_entry = vm_map_entry_create(dst_map); fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; vm_object_reference(src_object); fake_entry->object.vm_object = src_object; fake_entry->start = src_entry->start; fake_entry->end = src_entry->end; fake_entry->next = curthread->td_map_def_user; curthread->td_map_def_user = fake_entry; } pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, dst_entry->end - dst_entry->start, src_entry->start); } else { dst_entry->object.vm_object = NULL; dst_entry->offset = 0; if (src_entry->cred != NULL) { dst_entry->cred = curthread->td_ucred; crhold(dst_entry->cred); *fork_charge += size; } } } else { /* * We don't want to make writeable wired pages copy-on-write. * Immediately copy these pages into the new map by simulating * page faults. The new pages are pageable. */ vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, fork_charge); } } /* * vmspace_map_entry_forked: * Update the newly-forked vmspace each time a map entry is inherited * or copied. The values for vm_dsize and vm_tsize are approximate * (and mostly-obsolete ideas in the face of mmap(2) et al.) */ static void vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, vm_map_entry_t entry) { vm_size_t entrysize; vm_offset_t newend; if ((entry->eflags & MAP_ENTRY_GUARD) != 0) return; entrysize = entry->end - entry->start; vm2->vm_map.size += entrysize; if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { vm2->vm_ssize += btoc(entrysize); } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { newend = MIN(entry->end, (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); vm2->vm_dsize += btoc(newend - entry->start); } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { newend = MIN(entry->end, (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); vm2->vm_tsize += btoc(newend - entry->start); } } /* * vmspace_fork: * Create a new process vmspace structure and vm_map * based on those of an existing process. The new map * is based on the old map, according to the inheritance * values on the regions in that map. * * XXX It might be worth coalescing the entries added to the new vmspace. * * The source map must not be locked. */ struct vmspace * vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) { struct vmspace *vm2; vm_map_t new_map, old_map; vm_map_entry_t new_entry, old_entry; vm_object_t object; int locked; vm_inherit_t inh; old_map = &vm1->vm_map; /* Copy immutable fields of vm1 to vm2. */ vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), pmap_pinit); if (vm2 == NULL) return (NULL); vm2->vm_taddr = vm1->vm_taddr; vm2->vm_daddr = vm1->vm_daddr; vm2->vm_maxsaddr = vm1->vm_maxsaddr; vm_map_lock(old_map); if (old_map->busy) vm_map_wait_busy(old_map); new_map = &vm2->vm_map; locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ KASSERT(locked, ("vmspace_fork: lock failed")); old_entry = old_map->header.next; while (old_entry != &old_map->header) { if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) panic("vm_map_fork: encountered a submap"); inh = old_entry->inheritance; if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && inh != VM_INHERIT_NONE) inh = VM_INHERIT_COPY; switch (inh) { case VM_INHERIT_NONE: break; case VM_INHERIT_SHARE: /* * Clone the entry, creating the shared object if necessary. */ object = old_entry->object.vm_object; if (object == NULL) { object = vm_object_allocate(OBJT_DEFAULT, atop(old_entry->end - old_entry->start)); old_entry->object.vm_object = object; old_entry->offset = 0; if (old_entry->cred != NULL) { object->cred = old_entry->cred; object->charge = old_entry->end - old_entry->start; old_entry->cred = NULL; } } /* * Add the reference before calling vm_object_shadow * to insure that a shadow object is created. */ vm_object_reference(object); if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { vm_object_shadow(&old_entry->object.vm_object, &old_entry->offset, old_entry->end - old_entry->start); old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; /* Transfer the second reference too. */ vm_object_reference( old_entry->object.vm_object); /* * As in vm_map_simplify_entry(), the * vnode lock will not be acquired in * this call to vm_object_deallocate(). */ vm_object_deallocate(object); object = old_entry->object.vm_object; } VM_OBJECT_WLOCK(object); vm_object_clear_flag(object, OBJ_ONEMAPPING); if (old_entry->cred != NULL) { KASSERT(object->cred == NULL, ("vmspace_fork both cred")); object->cred = old_entry->cred; object->charge = old_entry->end - old_entry->start; old_entry->cred = NULL; } /* * Assert the correct state of the vnode * v_writecount while the object is locked, to * not relock it later for the assertion * correctness. */ if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && object->type == OBJT_VNODE) { KASSERT(((struct vnode *)object->handle)-> v_writecount > 0, ("vmspace_fork: v_writecount %p", object)); KASSERT(object->un_pager.vnp.writemappings > 0, ("vmspace_fork: vnp.writecount %p", object)); } VM_OBJECT_WUNLOCK(object); /* * Clone the entry, referencing the shared object. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION); new_entry->wiring_thread = NULL; new_entry->wired_count = 0; if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { vnode_pager_update_writecount(object, new_entry->start, new_entry->end); } /* * Insert the entry into the new map -- we know we're * inserting at the end of the new map. */ vm_map_entry_link(new_map, new_map->header.prev, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); /* * Update the physical map */ pmap_copy(new_map->pmap, old_map->pmap, new_entry->start, (old_entry->end - old_entry->start), old_entry->start); break; case VM_INHERIT_COPY: /* * Clone the entry and link into the map. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; /* * Copied entry is COW over the old object. */ new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); new_entry->wiring_thread = NULL; new_entry->wired_count = 0; new_entry->object.vm_object = NULL; new_entry->cred = NULL; vm_map_entry_link(new_map, new_map->header.prev, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); vm_map_copy_entry(old_map, new_map, old_entry, new_entry, fork_charge); break; case VM_INHERIT_ZERO: /* * Create a new anonymous mapping entry modelled from * the old one. */ new_entry = vm_map_entry_create(new_map); memset(new_entry, 0, sizeof(*new_entry)); new_entry->start = old_entry->start; new_entry->end = old_entry->end; new_entry->eflags = old_entry->eflags & ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); new_entry->protection = old_entry->protection; new_entry->max_protection = old_entry->max_protection; new_entry->inheritance = VM_INHERIT_ZERO; vm_map_entry_link(new_map, new_map->header.prev, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); new_entry->cred = curthread->td_ucred; crhold(new_entry->cred); *fork_charge += (new_entry->end - new_entry->start); break; } old_entry = old_entry->next; } /* * Use inlined vm_map_unlock() to postpone handling the deferred * map entries, which cannot be done until both old_map and * new_map locks are released. */ sx_xunlock(&old_map->lock); sx_xunlock(&new_map->lock); vm_map_process_deferred(); return (vm2); } /* * Create a process's stack for exec_new_vmspace(). This function is never * asked to wire the newly created stack. */ int vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_prot_t prot, vm_prot_t max, int cow) { vm_size_t growsize, init_ssize; rlim_t vmemlim; int rv; MPASS((map->flags & MAP_WIREFUTURE) == 0); growsize = sgrowsiz; init_ssize = (max_ssize < growsize) ? max_ssize : growsize; vm_map_lock(map); vmemlim = lim_cur(curthread, RLIMIT_VMEM); /* If we would blow our VMEM resource limit, no go */ if (map->size + init_ssize > vmemlim) { rv = KERN_NO_SPACE; goto out; } rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, max, cow); out: vm_map_unlock(map); return (rv); } static int stack_guard_page = 1; SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, &stack_guard_page, 0, "Specifies the number of guard pages for a stack that grows"); static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t new_entry, prev_entry; vm_offset_t bot, gap_bot, gap_top, top; vm_size_t init_ssize, sgp; int orient, rv; /* * The stack orientation is piggybacked with the cow argument. * Extract it into orient and mask the cow argument so that we * don't pass it around further. */ orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); KASSERT(orient != 0, ("No stack grow direction")); KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), ("bi-dir stack")); if (addrbos < vm_map_min(map) || addrbos + max_ssize > vm_map_max(map) || addrbos + max_ssize <= addrbos) return (KERN_INVALID_ADDRESS); sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; if (sgp >= max_ssize) return (KERN_INVALID_ARGUMENT); init_ssize = growsize; if (max_ssize < init_ssize + sgp) init_ssize = max_ssize - sgp; /* If addr is already mapped, no go */ if (vm_map_lookup_entry(map, addrbos, &prev_entry)) return (KERN_NO_SPACE); /* * If we can't accommodate max_ssize in the current mapping, no go. */ if (prev_entry->next->start < addrbos + max_ssize) return (KERN_NO_SPACE); /* * We initially map a stack of only init_ssize. We will grow as * needed later. Depending on the orientation of the stack (i.e. * the grow direction) we either map at the top of the range, the * bottom of the range or in the middle. * * Note: we would normally expect prot and max to be VM_PROT_ALL, * and cow to be 0. Possibly we should eliminate these as input * parameters, and just pass these values here in the insert call. */ if (orient == MAP_STACK_GROWS_DOWN) { bot = addrbos + max_ssize - init_ssize; top = bot + init_ssize; gap_bot = addrbos; gap_top = bot; } else /* if (orient == MAP_STACK_GROWS_UP) */ { bot = addrbos; top = bot + init_ssize; gap_bot = top; gap_top = addrbos + max_ssize; } rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); if (rv != KERN_SUCCESS) return (rv); new_entry = prev_entry->next; KASSERT(new_entry->end == top || new_entry->start == bot, ("Bad entry start/end for new stack entry")); KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, ("new entry lacks MAP_ENTRY_GROWS_UP")); rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); if (rv != KERN_SUCCESS) (void)vm_map_delete(map, bot, top); return (rv); } /* * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we * successfully grow the stack. */ static int vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) { vm_map_entry_t stack_entry; struct proc *p; struct vmspace *vm; struct ucred *cred; vm_offset_t gap_end, gap_start, grow_start; size_t grow_amount, guard, max_grow; rlim_t lmemlim, stacklim, vmemlim; int rv, rv1; bool gap_deleted, grow_down, is_procstack; #ifdef notyet uint64_t limit; #endif #ifdef RACCT int error; #endif p = curproc; vm = p->p_vmspace; /* * Disallow stack growth when the access is performed by a * debugger or AIO daemon. The reason is that the wrong * resource limits are applied. */ if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) return (KERN_FAILURE); MPASS(!map->system_map); guard = stack_guard_page * PAGE_SIZE; lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); stacklim = lim_cur(curthread, RLIMIT_STACK); vmemlim = lim_cur(curthread, RLIMIT_VMEM); retry: /* If addr is not in a hole for a stack grow area, no need to grow. */ if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) return (KERN_FAILURE); if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) return (KERN_SUCCESS); if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { stack_entry = gap_entry->next; if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || stack_entry->start != gap_entry->end) return (KERN_FAILURE); grow_amount = round_page(stack_entry->start - addr); grow_down = true; } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { stack_entry = gap_entry->prev; if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || stack_entry->end != gap_entry->start) return (KERN_FAILURE); grow_amount = round_page(addr + 1 - stack_entry->end); grow_down = false; } else { return (KERN_FAILURE); } max_grow = gap_entry->end - gap_entry->start; if (guard > max_grow) return (KERN_NO_SPACE); max_grow -= guard; if (grow_amount > max_grow) return (KERN_NO_SPACE); /* * If this is the main process stack, see if we're over the stack * limit. */ is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && addr < (vm_offset_t)p->p_sysent->sv_usrstack; if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) return (KERN_NO_SPACE); #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (is_procstack && racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { PROC_UNLOCK(p); return (KERN_NO_SPACE); } PROC_UNLOCK(p); } #endif grow_amount = roundup(grow_amount, sgrowsiz); if (grow_amount > max_grow) grow_amount = max_grow; if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { grow_amount = trunc_page((vm_size_t)stacklim) - ctob(vm->vm_ssize); } #ifdef notyet PROC_LOCK(p); limit = racct_get_available(p, RACCT_STACK); PROC_UNLOCK(p); if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) grow_amount = limit - ctob(vm->vm_ssize); #endif if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { rv = KERN_NO_SPACE; goto out; } #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (racct_set(p, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { PROC_UNLOCK(p); rv = KERN_NO_SPACE; goto out; } PROC_UNLOCK(p); } #endif } /* If we would blow our VMEM resource limit, no go */ if (map->size + grow_amount > vmemlim) { rv = KERN_NO_SPACE; goto out; } #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { PROC_UNLOCK(p); rv = KERN_NO_SPACE; goto out; } PROC_UNLOCK(p); } #endif if (vm_map_lock_upgrade(map)) { gap_entry = NULL; vm_map_lock_read(map); goto retry; } if (grow_down) { grow_start = gap_entry->end - grow_amount; if (gap_entry->start + grow_amount == gap_entry->end) { gap_start = gap_entry->start; gap_end = gap_entry->end; vm_map_entry_delete(map, gap_entry); gap_deleted = true; } else { MPASS(gap_entry->start < gap_entry->end - grow_amount); gap_entry->end -= grow_amount; vm_map_entry_resize_free(map, gap_entry); gap_deleted = false; } rv = vm_map_insert(map, NULL, 0, grow_start, grow_start + grow_amount, stack_entry->protection, stack_entry->max_protection, MAP_STACK_GROWS_DOWN); if (rv != KERN_SUCCESS) { if (gap_deleted) { rv1 = vm_map_insert(map, NULL, 0, gap_start, gap_end, VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); MPASS(rv1 == KERN_SUCCESS); } else { gap_entry->end += grow_amount; vm_map_entry_resize_free(map, gap_entry); } } } else { grow_start = stack_entry->end; cred = stack_entry->cred; if (cred == NULL && stack_entry->object.vm_object != NULL) cred = stack_entry->object.vm_object->cred; if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) rv = KERN_NO_SPACE; /* Grow the underlying object if applicable. */ else if (stack_entry->object.vm_object == NULL || vm_object_coalesce(stack_entry->object.vm_object, stack_entry->offset, (vm_size_t)(stack_entry->end - stack_entry->start), (vm_size_t)grow_amount, cred != NULL)) { if (gap_entry->start + grow_amount == gap_entry->end) vm_map_entry_delete(map, gap_entry); else gap_entry->start += grow_amount; stack_entry->end += grow_amount; map->size += grow_amount; vm_map_entry_resize_free(map, stack_entry); rv = KERN_SUCCESS; } else rv = KERN_FAILURE; } if (rv == KERN_SUCCESS && is_procstack) vm->vm_ssize += btoc(grow_amount); /* * Heed the MAP_WIREFUTURE flag if it was set for this process. */ if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { vm_map_unlock(map); vm_map_wire(map, grow_start, grow_start + grow_amount, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); vm_map_lock_read(map); } else vm_map_lock_downgrade(map); out: #ifdef RACCT if (racct_enable && rv != KERN_SUCCESS) { PROC_LOCK(p); error = racct_set(p, RACCT_VMEM, map->size); KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); if (!old_mlock) { error = racct_set(p, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap))); KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); } error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); KASSERT(error == 0, ("decreasing RACCT_STACK failed")); PROC_UNLOCK(p); } #endif return (rv); } /* * Unshare the specified VM space for exec. If other processes are * mapped to it, then create a new one. The new vmspace is null. */ int vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, ("vmspace_exec recursed")); newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); if (newvmspace == NULL) return (ENOMEM); newvmspace->vm_swrss = oldvmspace->vm_swrss; /* * This code is written like this for prototype purposes. The * goal is to avoid running down the vmspace here, but let the * other process's that are still using the vmspace to finally * run it down. Even though there is little or no chance of blocking * here, it is a good idea to keep this form for future mods. */ PROC_VMSPACE_LOCK(p); p->p_vmspace = newvmspace; PROC_VMSPACE_UNLOCK(p); if (p == curthread->td_proc) pmap_activate(curthread); curthread->td_pflags |= TDP_EXECVMSPC; return (0); } /* * Unshare the specified VM space for forcing COW. This * is called by rfork, for the (RFMEM|RFPROC) == 0 case. */ int vmspace_unshare(struct proc *p) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; vm_ooffset_t fork_charge; if (oldvmspace->vm_refcnt == 1) return (0); fork_charge = 0; newvmspace = vmspace_fork(oldvmspace, &fork_charge); if (newvmspace == NULL) return (ENOMEM); if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { vmspace_free(newvmspace); return (ENOMEM); } PROC_VMSPACE_LOCK(p); p->p_vmspace = newvmspace; PROC_VMSPACE_UNLOCK(p); if (p == curthread->td_proc) pmap_activate(curthread); vmspace_free(oldvmspace); return (0); } /* * vm_map_lookup: * * Finds the VM object, offset, and * protection for a given virtual address in the * specified map, assuming a page fault of the * type specified. * * Leaves the map in question locked for read; return * values are guaranteed until a vm_map_lookup_done * call is performed. Note that the map argument * is in/out; the returned map must be used in * the call to vm_map_lookup_done. * * A handle (out_entry) is returned for use in * vm_map_lookup_done, to make that fast. * * If a lookup is requested with "write protection" * specified, the map may be changed to perform virtual * copying operations, although the data referenced will * remain the same. */ int vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, /* OUT */ vm_object_t *object, /* OUT */ vm_pindex_t *pindex, /* OUT */ vm_prot_t *out_prot, /* OUT */ boolean_t *wired) /* OUT */ { vm_map_entry_t entry; vm_map_t map = *var_map; vm_prot_t prot; vm_prot_t fault_type = fault_typea; vm_object_t eobject; vm_size_t size; struct ucred *cred; RetryLookup: vm_map_lock_read(map); RetryLookupLocked: /* * Lookup the faulting address. */ if (!vm_map_lookup_entry(map, vaddr, out_entry)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } entry = *out_entry; /* * Handle submaps. */ if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_t old_map = map; *var_map = map = entry->object.sub_map; vm_map_unlock_read(old_map); goto RetryLookup; } /* * Check whether this task is allowed to have this page. */ prot = entry->protection; if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { fault_typea &= ~VM_PROT_FAULT_LOOKUP; if (prot == VM_PROT_NONE && map != kernel_map && (entry->eflags & MAP_ENTRY_GUARD) != 0 && (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) != 0 && vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) goto RetryLookupLocked; } fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { vm_map_unlock_read(map); return (KERN_PROTECTION_FAILURE); } KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), ("entry %p flags %x", entry, entry->eflags)); if ((fault_typea & VM_PROT_COPY) != 0 && (entry->max_protection & VM_PROT_WRITE) == 0 && (entry->eflags & MAP_ENTRY_COW) == 0) { vm_map_unlock_read(map); return (KERN_PROTECTION_FAILURE); } /* * If this page is not pageable, we have to get it for all possible * accesses. */ *wired = (entry->wired_count != 0); if (*wired) fault_type = entry->protection; size = entry->end - entry->start; /* * If the entry was copy-on-write, we either ... */ if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { /* * If we want to write the page, we may as well handle that * now since we've got the map locked. * * If we don't need to write the page, we just demote the * permissions allowed. */ if ((fault_type & VM_PROT_WRITE) != 0 || (fault_typea & VM_PROT_COPY) != 0) { /* * Make a new object, and place it in the object * chain. Note that no new references have appeared * -- one just moved from the map to the new * object. */ if (vm_map_lock_upgrade(map)) goto RetryLookup; if (entry->cred == NULL) { /* * The debugger owner is charged for * the memory. */ cred = curthread->td_ucred; crhold(cred); if (!swap_reserve_by_cred(size, cred)) { crfree(cred); vm_map_unlock(map); return (KERN_RESOURCE_SHORTAGE); } entry->cred = cred; } vm_object_shadow(&entry->object.vm_object, &entry->offset, size); entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; eobject = entry->object.vm_object; if (eobject->cred != NULL) { /* * The object was not shadowed. */ swap_release_by_cred(size, entry->cred); crfree(entry->cred); entry->cred = NULL; } else if (entry->cred != NULL) { VM_OBJECT_WLOCK(eobject); eobject->cred = entry->cred; eobject->charge = size; VM_OBJECT_WUNLOCK(eobject); entry->cred = NULL; } vm_map_lock_downgrade(map); } else { /* * We're attempting to read a copy-on-write page -- * don't allow writes. */ prot &= ~VM_PROT_WRITE; } } /* * Create an object if necessary. */ if (entry->object.vm_object == NULL && !map->system_map) { if (vm_map_lock_upgrade(map)) goto RetryLookup; entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, atop(size)); entry->offset = 0; if (entry->cred != NULL) { VM_OBJECT_WLOCK(entry->object.vm_object); entry->object.vm_object->cred = entry->cred; entry->object.vm_object->charge = size; VM_OBJECT_WUNLOCK(entry->object.vm_object); entry->cred = NULL; } vm_map_lock_downgrade(map); } /* * Return the object/offset from this entry. If the entry was * copy-on-write or empty, it has been fixed up. */ *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); *object = entry->object.vm_object; *out_prot = prot; return (KERN_SUCCESS); } /* * vm_map_lookup_locked: * * Lookup the faulting address. A version of vm_map_lookup that returns * KERN_FAILURE instead of blocking on map lock or memory allocation. */ int vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, /* OUT */ vm_object_t *object, /* OUT */ vm_pindex_t *pindex, /* OUT */ vm_prot_t *out_prot, /* OUT */ boolean_t *wired) /* OUT */ { vm_map_entry_t entry; vm_map_t map = *var_map; vm_prot_t prot; vm_prot_t fault_type = fault_typea; /* * Lookup the faulting address. */ if (!vm_map_lookup_entry(map, vaddr, out_entry)) return (KERN_INVALID_ADDRESS); entry = *out_entry; /* * Fail if the entry refers to a submap. */ if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) return (KERN_FAILURE); /* * Check whether this task is allowed to have this page. */ prot = entry->protection; fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; if ((fault_type & prot) != fault_type) return (KERN_PROTECTION_FAILURE); /* * If this page is not pageable, we have to get it for all possible * accesses. */ *wired = (entry->wired_count != 0); if (*wired) fault_type = entry->protection; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { /* * Fail if the entry was copy-on-write for a write fault. */ if (fault_type & VM_PROT_WRITE) return (KERN_FAILURE); /* * We're attempting to read a copy-on-write page -- * don't allow writes. */ prot &= ~VM_PROT_WRITE; } /* * Fail if an object should be created. */ if (entry->object.vm_object == NULL && !map->system_map) return (KERN_FAILURE); /* * Return the object/offset from this entry. If the entry was * copy-on-write or empty, it has been fixed up. */ *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset); *object = entry->object.vm_object; *out_prot = prot; return (KERN_SUCCESS); } /* * vm_map_lookup_done: * * Releases locks acquired by a vm_map_lookup * (according to the handle returned by that lookup). */ void vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) { /* * Unlock the main-level map */ vm_map_unlock_read(map); } vm_offset_t vm_map_max_KBI(const struct vm_map *map) { return (vm_map_max(map)); } vm_offset_t vm_map_min_KBI(const struct vm_map *map) { return (vm_map_min(map)); } pmap_t vm_map_pmap_KBI(vm_map_t map) { return (map->pmap); } #include "opt_ddb.h" #ifdef DDB #include #include static void vm_map_print(vm_map_t map) { vm_map_entry_t entry; db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", (void *)map, (void *)map->pmap, map->nentries, map->timestamp); db_indent += 2; for (entry = map->header.next; entry != &map->header; entry = entry->next) { db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", (void *)entry, (void *)entry->start, (void *)entry->end, entry->eflags); { static char *inheritance_name[4] = {"share", "copy", "none", "donate_copy"}; db_iprintf(" prot=%x/%x/%s", entry->protection, entry->max_protection, inheritance_name[(int)(unsigned char)entry->inheritance]); if (entry->wired_count != 0) db_printf(", wired"); } if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { db_printf(", share=%p, offset=0x%jx\n", (void *)entry->object.sub_map, (uintmax_t)entry->offset); if ((entry->prev == &map->header) || (entry->prev->object.sub_map != entry->object.sub_map)) { db_indent += 2; vm_map_print((vm_map_t)entry->object.sub_map); db_indent -= 2; } } else { if (entry->cred != NULL) db_printf(", ruid %d", entry->cred->cr_ruid); db_printf(", object=%p, offset=0x%jx", (void *)entry->object.vm_object, (uintmax_t)entry->offset); if (entry->object.vm_object && entry->object.vm_object->cred) db_printf(", obj ruid %d charge %jx", entry->object.vm_object->cred->cr_ruid, (uintmax_t)entry->object.vm_object->charge); if (entry->eflags & MAP_ENTRY_COW) db_printf(", copy (%s)", (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); db_printf("\n"); if ((entry->prev == &map->header) || (entry->prev->object.vm_object != entry->object.vm_object)) { db_indent += 2; vm_object_print((db_expr_t)(intptr_t) entry->object.vm_object, 0, 0, (char *)0); db_indent -= 2; } } } db_indent -= 2; } DB_SHOW_COMMAND(map, map) { if (!have_addr) { db_printf("usage: show map \n"); return; } vm_map_print((vm_map_t)addr); } DB_SHOW_COMMAND(procvm, procvm) { struct proc *p; if (have_addr) { p = db_lookup_proc(addr); } else { p = curproc; } db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, (void *)vmspace_pmap(p->p_vmspace)); vm_map_print((vm_map_t)&p->p_vmspace->vm_map); } #endif /* DDB */ Index: stable/11/sys/vm/vm_map.h =================================================================== --- stable/11/sys/vm/vm_map.h (revision 343425) +++ stable/11/sys/vm/vm_map.h (revision 343426) @@ -1,424 +1,425 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_map.h 8.9 (Berkeley) 5/17/95 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $FreeBSD$ */ /* * Virtual memory map module definitions. */ #ifndef _VM_MAP_ #define _VM_MAP_ #include #include #include /* * Types defined: * * vm_map_t the high-level address map data structure. * vm_map_entry_t an entry in an address map. */ typedef u_char vm_flags_t; typedef u_int vm_eflags_t; /* * Objects which live in maps may be either VM objects, or * another map (called a "sharing map") which denotes read-write * sharing with other maps. */ union vm_map_object { struct vm_object *vm_object; /* object object */ struct vm_map *sub_map; /* belongs to another map */ }; /* * Address map entries consist of start and end addresses, * a VM object (or sharing map) and offset into that object, * and user-exported inheritance and protection information. * Also included is control information for virtual copy operations. */ struct vm_map_entry { struct vm_map_entry *prev; /* previous entry */ struct vm_map_entry *next; /* next entry */ struct vm_map_entry *left; /* left child in binary search tree */ struct vm_map_entry *right; /* right child in binary search tree */ vm_offset_t start; /* start address */ vm_offset_t end; /* end address */ vm_offset_t pad0; vm_offset_t next_read; /* vaddr of the next sequential read */ vm_size_t adj_free; /* amount of adjacent free space */ vm_size_t max_free; /* max free space in subtree */ union vm_map_object object; /* object I point to */ vm_ooffset_t offset; /* offset into object */ vm_eflags_t eflags; /* map entry flags */ vm_prot_t protection; /* protection code */ vm_prot_t max_protection; /* maximum protection */ vm_inherit_t inheritance; /* inheritance */ uint8_t read_ahead; /* pages in the read-ahead window */ int wired_count; /* can be paged if = 0 */ struct ucred *cred; /* tmp storage for creator ref */ struct thread *wiring_thread; }; #define MAP_ENTRY_NOSYNC 0x0001 #define MAP_ENTRY_IS_SUB_MAP 0x0002 #define MAP_ENTRY_COW 0x0004 #define MAP_ENTRY_NEEDS_COPY 0x0008 #define MAP_ENTRY_NOFAULT 0x0010 #define MAP_ENTRY_USER_WIRED 0x0020 #define MAP_ENTRY_BEHAV_NORMAL 0x0000 /* default behavior */ #define MAP_ENTRY_BEHAV_SEQUENTIAL 0x0040 /* expect sequential access */ #define MAP_ENTRY_BEHAV_RANDOM 0x0080 /* expect random access */ #define MAP_ENTRY_BEHAV_RESERVED 0x00C0 /* future use */ #define MAP_ENTRY_BEHAV_MASK 0x00C0 #define MAP_ENTRY_IN_TRANSITION 0x0100 /* entry being changed */ #define MAP_ENTRY_NEEDS_WAKEUP 0x0200 /* waiters in transition */ #define MAP_ENTRY_NOCOREDUMP 0x0400 /* don't include in a core */ #define MAP_ENTRY_GROWS_DOWN 0x1000 /* Top-down stacks */ #define MAP_ENTRY_GROWS_UP 0x2000 /* Bottom-up stacks */ #define MAP_ENTRY_WIRE_SKIPPED 0x4000 #define MAP_ENTRY_VN_WRITECNT 0x8000 /* writeable vnode mapping */ #define MAP_ENTRY_GUARD 0x10000 #define MAP_ENTRY_STACK_GAP_DN 0x20000 #define MAP_ENTRY_STACK_GAP_UP 0x40000 #ifdef _KERNEL static __inline u_char vm_map_entry_behavior(vm_map_entry_t entry) { return (entry->eflags & MAP_ENTRY_BEHAV_MASK); } static __inline int vm_map_entry_user_wired_count(vm_map_entry_t entry) { if (entry->eflags & MAP_ENTRY_USER_WIRED) return (1); return (0); } static __inline int vm_map_entry_system_wired_count(vm_map_entry_t entry) { return (entry->wired_count - vm_map_entry_user_wired_count(entry)); } #endif /* _KERNEL */ /* * A map is a set of map entries. These map entries are * organized both as a binary search tree and as a doubly-linked * list. Both structures are ordered based upon the start and * end addresses contained within each map entry. * * Counterintuitively, the map's min offset value is stored in * map->header.end, and its max offset value is stored in * map->header.start. * * The list header has max start value and min end value to act * as sentinels for sequential search of the doubly-linked list. * Sleator and Tarjan's top-down splay algorithm is employed to * control height imbalance in the binary search tree. * * List of locks * (c) const until freed */ struct vm_map { struct vm_map_entry header; /* List of entries */ /* map min_offset header.end (c) map max_offset header.start (c) */ struct sx lock; /* Lock for map data */ struct mtx system_mtx; int nentries; /* Number of entries */ vm_size_t size; /* virtual size */ u_int timestamp; /* Version number */ u_char needs_wakeup; u_char system_map; /* (c) Am I a system map? */ vm_flags_t flags; /* flags for this vm_map */ vm_map_entry_t root; /* Root of a binary search tree */ pmap_t pmap; /* (c) Physical map */ int busy; }; /* * vm_flags_t values */ #define MAP_WIREFUTURE 0x01 /* wire all future pages */ #define MAP_BUSY_WAKEUP 0x02 #ifdef _KERNEL #ifdef KLD_MODULE #define vm_map_max(map) vm_map_max_KBI((map)) #define vm_map_min(map) vm_map_min_KBI((map)) #define vm_map_pmap(map) vm_map_pmap_KBI((map)) #else static __inline vm_offset_t vm_map_max(const struct vm_map *map) { return (map->header.start); } static __inline vm_offset_t vm_map_min(const struct vm_map *map) { return (map->header.end); } static __inline pmap_t vm_map_pmap(vm_map_t map) { return (map->pmap); } static __inline void vm_map_modflags(vm_map_t map, vm_flags_t set, vm_flags_t clear) { map->flags = (map->flags | set) & ~clear; } #endif /* KLD_MODULE */ #endif /* _KERNEL */ /* * Shareable process virtual address space. * * List of locks * (c) const until freed */ struct vmspace { struct vm_map vm_map; /* VM address map */ struct shmmap_state *vm_shm; /* SYS5 shared memory private data XXX */ segsz_t vm_swrss; /* resident set size before last swap */ segsz_t vm_tsize; /* text size (pages) XXX */ segsz_t vm_dsize; /* data size (pages) XXX */ segsz_t vm_ssize; /* stack size (pages) */ caddr_t vm_taddr; /* (c) user virtual address of text */ caddr_t vm_daddr; /* (c) user virtual address of data */ caddr_t vm_maxsaddr; /* user VA at max stack growth */ volatile int vm_refcnt; /* number of references */ /* * Keep the PMAP last, so that CPU-specific variations of that * structure on a single architecture don't result in offset * variations of the machine-independent fields in the vmspace. */ struct pmap vm_pmap; /* private physical map */ }; #ifdef _KERNEL static __inline pmap_t vmspace_pmap(struct vmspace *vmspace) { return &vmspace->vm_pmap; } #endif /* _KERNEL */ #ifdef _KERNEL /* * Macros: vm_map_lock, etc. * Function: * Perform locking on the data portion of a map. Note that * these macros mimic procedure calls returning void. The * semicolon is supplied by the user of these macros, not * by the macros themselves. The macros can safely be used * as unbraced elements in a higher level statement. */ void _vm_map_lock(vm_map_t map, const char *file, int line); void _vm_map_unlock(vm_map_t map, const char *file, int line); int _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line); void _vm_map_lock_read(vm_map_t map, const char *file, int line); void _vm_map_unlock_read(vm_map_t map, const char *file, int line); int _vm_map_trylock(vm_map_t map, const char *file, int line); int _vm_map_trylock_read(vm_map_t map, const char *file, int line); int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line); void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line); int vm_map_locked(vm_map_t map); void vm_map_wakeup(vm_map_t map); void vm_map_busy(vm_map_t map); void vm_map_unbusy(vm_map_t map); void vm_map_wait_busy(vm_map_t map); vm_offset_t vm_map_max_KBI(const struct vm_map *map); vm_offset_t vm_map_min_KBI(const struct vm_map *map); pmap_t vm_map_pmap_KBI(vm_map_t map); #define vm_map_lock(map) _vm_map_lock(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock(map) _vm_map_unlock(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock_and_wait(map, timo) \ _vm_map_unlock_and_wait(map, timo, LOCK_FILE, LOCK_LINE) #define vm_map_lock_read(map) _vm_map_lock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock_read(map) _vm_map_unlock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_trylock(map) _vm_map_trylock(map, LOCK_FILE, LOCK_LINE) #define vm_map_trylock_read(map) \ _vm_map_trylock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_lock_upgrade(map) \ _vm_map_lock_upgrade(map, LOCK_FILE, LOCK_LINE) #define vm_map_lock_downgrade(map) \ _vm_map_lock_downgrade(map, LOCK_FILE, LOCK_LINE) long vmspace_resident_count(struct vmspace *vmspace); #endif /* _KERNEL */ /* XXX: number of kernel maps to statically allocate */ #define MAX_KMAP 10 /* * Copy-on-write flags for vm_map operations */ #define MAP_INHERIT_SHARE 0x0001 #define MAP_COPY_ON_WRITE 0x0002 #define MAP_NOFAULT 0x0004 #define MAP_PREFAULT 0x0008 #define MAP_PREFAULT_PARTIAL 0x0010 #define MAP_DISABLE_SYNCER 0x0020 #define MAP_CHECK_EXCL 0x0040 #define MAP_CREATE_GUARD 0x0080 #define MAP_DISABLE_COREDUMP 0x0100 #define MAP_PREFAULT_MADVISE 0x0200 /* from (user) madvise request */ #define MAP_VN_WRITECOUNT 0x0400 +#define MAP_REMAP 0x0800 #define MAP_STACK_GROWS_DOWN 0x1000 #define MAP_STACK_GROWS_UP 0x2000 #define MAP_ACC_CHARGED 0x4000 #define MAP_ACC_NO_CHARGE 0x8000 #define MAP_CREATE_STACK_GAP_UP 0x10000 #define MAP_CREATE_STACK_GAP_DN 0x20000 /* * vm_fault option flags */ #define VM_FAULT_NORMAL 0 /* Nothing special */ #define VM_FAULT_WIRE 1 /* Wire the mapped page */ #define VM_FAULT_DIRTY 2 /* Dirty the page; use w/VM_PROT_COPY */ /* * Initially, mappings are slightly sequential. The maximum window size must * account for the map entry's "read_ahead" field being defined as an uint8_t. */ #define VM_FAULT_READ_AHEAD_MIN 7 #define VM_FAULT_READ_AHEAD_INIT 15 #define VM_FAULT_READ_AHEAD_MAX min(atop(MAXPHYS) - 1, UINT8_MAX) /* * The following "find_space" options are supported by vm_map_find(). * * For VMFS_ALIGNED_SPACE, the desired alignment is specified to * the macro argument as log base 2 of the desired alignment. */ #define VMFS_NO_SPACE 0 /* don't find; use the given range */ #define VMFS_ANY_SPACE 1 /* find a range with any alignment */ #define VMFS_OPTIMAL_SPACE 2 /* find a range with optimal alignment*/ #define VMFS_SUPER_SPACE 3 /* find a superpage-aligned range */ #define VMFS_ALIGNED_SPACE(x) ((x) << 8) /* find a range with fixed alignment */ /* * vm_map_wire and vm_map_unwire option flags */ #define VM_MAP_WIRE_SYSTEM 0 /* wiring in a kernel map */ #define VM_MAP_WIRE_USER 1 /* wiring in a user map */ #define VM_MAP_WIRE_NOHOLES 0 /* region must not have holes */ #define VM_MAP_WIRE_HOLESOK 2 /* region may have holes */ #define VM_MAP_WIRE_WRITE 4 /* Validate writable. */ #ifdef _KERNEL boolean_t vm_map_check_protection (vm_map_t, vm_offset_t, vm_offset_t, vm_prot_t); vm_map_t vm_map_create(pmap_t, vm_offset_t, vm_offset_t); int vm_map_delete(vm_map_t, vm_offset_t, vm_offset_t); int vm_map_find(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t, vm_offset_t, int, vm_prot_t, vm_prot_t, int); int vm_map_find_min(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t, vm_offset_t, vm_offset_t, int, vm_prot_t, vm_prot_t, int); int vm_map_fixed(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t, vm_size_t, vm_prot_t, vm_prot_t, int); int vm_map_findspace (vm_map_t, vm_offset_t, vm_size_t, vm_offset_t *); int vm_map_inherit (vm_map_t, vm_offset_t, vm_offset_t, vm_inherit_t); void vm_map_init(vm_map_t, pmap_t, vm_offset_t, vm_offset_t); int vm_map_insert (vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t, vm_offset_t, vm_prot_t, vm_prot_t, int); int vm_map_lookup (vm_map_t *, vm_offset_t, vm_prot_t, vm_map_entry_t *, vm_object_t *, vm_pindex_t *, vm_prot_t *, boolean_t *); int vm_map_lookup_locked(vm_map_t *, vm_offset_t, vm_prot_t, vm_map_entry_t *, vm_object_t *, vm_pindex_t *, vm_prot_t *, boolean_t *); void vm_map_lookup_done (vm_map_t, vm_map_entry_t); boolean_t vm_map_lookup_entry (vm_map_t, vm_offset_t, vm_map_entry_t *); int vm_map_protect (vm_map_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t); int vm_map_remove (vm_map_t, vm_offset_t, vm_offset_t); void vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry); void vm_map_startup (void); int vm_map_submap (vm_map_t, vm_offset_t, vm_offset_t, vm_map_t); int vm_map_sync(vm_map_t, vm_offset_t, vm_offset_t, boolean_t, boolean_t); int vm_map_madvise (vm_map_t, vm_offset_t, vm_offset_t, int); int vm_map_stack (vm_map_t, vm_offset_t, vm_size_t, vm_prot_t, vm_prot_t, int); int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags); int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags); long vmspace_swap_count(struct vmspace *vmspace); #endif /* _KERNEL */ #endif /* _VM_MAP_ */ Index: stable/11 =================================================================== --- stable/11 (revision 343425) +++ stable/11 (revision 343426) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r343082