Index: head/sys/netinet6/in6_ifattach.c =================================================================== --- head/sys/netinet6/in6_ifattach.c (revision 343393) +++ head/sys/netinet6/in6_ifattach.c (revision 343394) @@ -1,913 +1,920 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_ifattach.c,v 1.118 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(unsigned long, in6_maxmtu) = 0; #ifdef IP6_AUTO_LINKLOCAL VNET_DEFINE(int, ip6_auto_linklocal) = IP6_AUTO_LINKLOCAL; #else VNET_DEFINE(int, ip6_auto_linklocal) = 1; /* enabled by default */ #endif VNET_DEFINE(struct callout, in6_tmpaddrtimer_ch); #define V_in6_tmpaddrtimer_ch VNET(in6_tmpaddrtimer_ch) VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static int get_rand_ifid(struct ifnet *, struct in6_addr *); static int generate_tmp_ifid(u_int8_t *, const u_int8_t *, u_int8_t *); static int get_ifid(struct ifnet *, struct ifnet *, struct in6_addr *); static int in6_ifattach_linklocal(struct ifnet *, struct ifnet *); static int in6_ifattach_loopback(struct ifnet *); static void in6_purgemaddrs(struct ifnet *); #define EUI64_GBIT 0x01 #define EUI64_UBIT 0x02 #define EUI64_TO_IFID(in6) do {(in6)->s6_addr[8] ^= EUI64_UBIT; } while (0) #define EUI64_GROUP(in6) ((in6)->s6_addr[8] & EUI64_GBIT) #define EUI64_INDIVIDUAL(in6) (!EUI64_GROUP(in6)) #define EUI64_LOCAL(in6) ((in6)->s6_addr[8] & EUI64_UBIT) #define EUI64_UNIVERSAL(in6) (!EUI64_LOCAL(in6)) #define IFID_LOCAL(in6) (!EUI64_LOCAL(in6)) #define IFID_UNIVERSAL(in6) (!EUI64_UNIVERSAL(in6)) /* * Generate a last-resort interface identifier, when the machine has no * IEEE802/EUI64 address sources. * The goal here is to get an interface identifier that is * (1) random enough and (2) does not change across reboot. * We currently use MD5(hostname) for it. * * in6 - upper 64bits are preserved */ static int get_rand_ifid(struct ifnet *ifp, struct in6_addr *in6) { MD5_CTX ctxt; struct prison *pr; u_int8_t digest[16]; int hostnamelen; pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); hostnamelen = strlen(pr->pr_hostname); #if 0 /* we need at least several letters as seed for ifid */ if (hostnamelen < 3) { mtx_unlock(&pr->pr_mtx); return -1; } #endif /* generate 8 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, pr->pr_hostname, hostnamelen); mtx_unlock(&pr->pr_mtx); MD5Final(digest, &ctxt); /* assumes sizeof(digest) > sizeof(ifid) */ bcopy(digest, &in6->s6_addr[8], 8); /* make sure to set "u" bit to local, and "g" bit to individual. */ in6->s6_addr[8] &= ~EUI64_GBIT; /* g bit to "individual" */ in6->s6_addr[8] |= EUI64_UBIT; /* u bit to "local" */ /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); return 0; } static int generate_tmp_ifid(u_int8_t *seed0, const u_int8_t *seed1, u_int8_t *ret) { MD5_CTX ctxt; u_int8_t seed[16], digest[16], nullbuf[8]; u_int32_t val32; /* If there's no history, start with a random seed. */ bzero(nullbuf, sizeof(nullbuf)); if (bcmp(nullbuf, seed0, sizeof(nullbuf)) == 0) { int i; for (i = 0; i < 2; i++) { val32 = arc4random(); bcopy(&val32, seed + sizeof(val32) * i, sizeof(val32)); } } else bcopy(seed0, seed, 8); /* copy the right-most 64-bits of the given address */ /* XXX assumption on the size of IFID */ bcopy(seed1, &seed[8], 8); if (0) { /* for debugging purposes only */ int i; printf("generate_tmp_ifid: new randomized ID from: "); for (i = 0; i < 16; i++) printf("%02x", seed[i]); printf(" "); } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, seed, sizeof(seed)); MD5Final(digest, &ctxt); /* * RFC 3041 3.2.1. (3) * Take the left-most 64-bits of the MD5 digest and set bit 6 (the * left-most bit is numbered 0) to zero. */ bcopy(digest, ret, 8); ret[0] &= ~EUI64_UBIT; /* * XXX: we'd like to ensure that the generated value is not zero * for simplicity. If the caclculated digest happens to be zero, * use a random non-zero value as the last resort. */ if (bcmp(nullbuf, ret, sizeof(nullbuf)) == 0) { nd6log((LOG_INFO, "generate_tmp_ifid: computed MD5 value is zero.\n")); val32 = arc4random(); val32 = 1 + (val32 % (0xffffffff - 1)); } /* * RFC 3041 3.2.1. (4) * Take the rightmost 64-bits of the MD5 digest and save them in * stable storage as the history value to be used in the next * iteration of the algorithm. */ bcopy(&digest[8], seed0, 8); if (0) { /* for debugging purposes only */ int i; printf("to: "); for (i = 0; i < 16; i++) printf("%02x", digest[i]); printf("\n"); } return 0; } /* * Get interface identifier for the specified interface. * XXX assumes single sockaddr_dl (AF_LINK address) per an interface * * in6 - upper 64bits are preserved */ int in6_get_hw_ifid(struct ifnet *ifp, struct in6_addr *in6) { struct epoch_tracker et; struct ifaddr *ifa; struct sockaddr_dl *sdl; u_int8_t *addr; size_t addrlen; static u_int8_t allzero[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static u_int8_t allone[8] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) continue; if (sdl->sdl_alen == 0) continue; goto found; } NET_EPOCH_EXIT(et); return -1; found: IF_ADDR_LOCK_ASSERT(ifp); addr = LLADDR(sdl); addrlen = sdl->sdl_alen; /* get EUI64 */ switch (ifp->if_type) { case IFT_BRIDGE: case IFT_ETHER: case IFT_L2VLAN: case IFT_ATM: case IFT_IEEE1394: /* IEEE802/EUI64 cases - what others? */ /* IEEE1394 uses 16byte length address starting with EUI64 */ if (addrlen > 8) addrlen = 8; /* look at IEEE802/EUI64 only */ if (addrlen != 8 && addrlen != 6) { NET_EPOCH_EXIT(et); return -1; } /* * check for invalid MAC address - on bsdi, we see it a lot * since wildboar configures all-zero MAC on pccard before * card insertion. */ if (bcmp(addr, allzero, addrlen) == 0) { NET_EPOCH_EXIT(et); return -1; } if (bcmp(addr, allone, addrlen) == 0) { NET_EPOCH_EXIT(et); return -1; } /* make EUI64 address */ if (addrlen == 8) bcopy(addr, &in6->s6_addr[8], 8); else if (addrlen == 6) { in6->s6_addr[8] = addr[0]; in6->s6_addr[9] = addr[1]; in6->s6_addr[10] = addr[2]; in6->s6_addr[11] = 0xff; in6->s6_addr[12] = 0xfe; in6->s6_addr[13] = addr[3]; in6->s6_addr[14] = addr[4]; in6->s6_addr[15] = addr[5]; } break; case IFT_GIF: case IFT_STF: /* * RFC2893 says: "SHOULD use IPv4 address as ifid source". * however, IPv4 address is not very suitable as unique * identifier source (can be renumbered). * we don't do this. */ NET_EPOCH_EXIT(et); return -1; default: NET_EPOCH_EXIT(et); return -1; } /* sanity check: g bit must not indicate "group" */ if (EUI64_GROUP(in6)) { NET_EPOCH_EXIT(et); return -1; } /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); /* * sanity check: ifid must not be all zero, avoid conflict with * subnet router anycast */ if ((in6->s6_addr[8] & ~(EUI64_GBIT | EUI64_UBIT)) == 0x00 && bcmp(&in6->s6_addr[9], allzero, 7) == 0) { NET_EPOCH_EXIT(et); return -1; } NET_EPOCH_EXIT(et); return 0; } /* * Get interface identifier for the specified interface. If it is not * available on ifp0, borrow interface identifier from other information * sources. * * altifp - secondary EUI64 source */ static int get_ifid(struct ifnet *ifp0, struct ifnet *altifp, struct in6_addr *in6) { struct epoch_tracker et; struct ifnet *ifp; /* first, try to get it from the interface itself */ if (in6_get_hw_ifid(ifp0, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from itself\n", if_name(ifp0))); goto success; } /* try secondary EUI64 source. this basically is for ATM PVC */ if (altifp && in6_get_hw_ifid(altifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from %s\n", if_name(ifp0), if_name(altifp))); goto success; } /* next, try to get it from some other hardware interface */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp == ifp0) continue; if (in6_get_hw_ifid(ifp, in6) != 0) continue; /* * to borrow ifid from other interface, ifid needs to be * globally unique */ if (IFID_UNIVERSAL(in6)) { nd6log((LOG_DEBUG, "%s: borrow interface identifier from %s\n", if_name(ifp0), if_name(ifp))); NET_EPOCH_EXIT(et); goto success; } } NET_EPOCH_EXIT(et); /* last resort: get from random number source */ if (get_rand_ifid(ifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: interface identifier generated by random number\n", if_name(ifp0))); goto success; } printf("%s: failed to get interface identifier\n", if_name(ifp0)); return -1; success: nd6log((LOG_INFO, "%s: ifid: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", if_name(ifp0), in6->s6_addr[8], in6->s6_addr[9], in6->s6_addr[10], in6->s6_addr[11], in6->s6_addr[12], in6->s6_addr[13], in6->s6_addr[14], in6->s6_addr[15])); return 0; } /* * altifp - secondary EUI64 source */ static int in6_ifattach_linklocal(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; struct in6_aliasreq ifra; struct nd_prefixctl pr0; struct nd_prefix *pr; int error; /* * configure link-local address. */ in6_prepare_ifra(&ifra, NULL, &in6mask64); ifra.ifra_addr.sin6_addr.s6_addr32[0] = htonl(0xfe800000); ifra.ifra_addr.sin6_addr.s6_addr32[1] = 0; if ((ifp->if_flags & IFF_LOOPBACK) != 0) { ifra.ifra_addr.sin6_addr.s6_addr32[2] = 0; ifra.ifra_addr.sin6_addr.s6_addr32[3] = htonl(1); } else { if (get_ifid(ifp, altifp, &ifra.ifra_addr.sin6_addr) != 0) { nd6log((LOG_ERR, "%s: no ifid available\n", if_name(ifp))); return (-1); } } if (in6_setscope(&ifra.ifra_addr.sin6_addr, ifp, NULL)) return (-1); /* link-local addresses should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * Now call in6_update_ifa() to do a bunch of procedures to configure * a link-local address. We can set the 3rd argument to NULL, because * we know there's no other link-local address on the interface * and therefore we are adding one (instead of updating one). */ if ((error = in6_update_ifa(ifp, &ifra, NULL, IN6_IFAUPDATE_DADDELAY)) != 0) { /* * XXX: When the interface does not support IPv6, this call * would fail in the SIOCSIFADDR ioctl. I believe the * notification is rather confusing in this case, so just * suppress it. (jinmei@kame.net 20010130) */ if (error != EAFNOSUPPORT) nd6log((LOG_NOTICE, "in6_ifattach_linklocal: failed to " "configure a link-local address on %s " "(errno=%d)\n", if_name(ifp), error)); return (-1); } ia = in6ifa_ifpforlinklocal(ifp, 0); if (ia == NULL) { /* * Another thread removed the address that we just added. * This should be rare, but it happens. */ nd6log((LOG_NOTICE, "%s: %s: new link-local address " "disappeared\n", __func__, if_name(ifp))); return (-1); } ifa_free(&ia->ia_ifa); /* * Make the link-local prefix (fe80::%link/64) as on-link. * Since we'd like to manage prefixes separately from addresses, * we make an ND6 prefix structure for the link-local prefix, * and add it to the prefix list as a never-expire prefix. * XXX: this change might affect some existing code base... */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; /* this should be 64 at this moment. */ pr0.ndpr_plen = in6_mask2len(&ifra.ifra_prefixmask.sin6_addr, NULL); pr0.ndpr_prefix = ifra.ifra_addr; /* apply the mask for safety. (nd6_prelist_add will apply it again) */ IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, &in6mask64); /* * Initialize parameters. The link-local prefix must always be * on-link, and its lifetimes never expire. */ pr0.ndpr_raf_onlink = 1; pr0.ndpr_raf_auto = 1; /* probably meaningless */ pr0.ndpr_vltime = ND6_INFINITE_LIFETIME; pr0.ndpr_pltime = ND6_INFINITE_LIFETIME; /* * Since there is no other link-local addresses, nd6_prefix_lookup() * probably returns NULL. However, we cannot always expect the result. * For example, if we first remove the (only) existing link-local * address, and then reconfigure another one, the prefix is still * valid with referring to the old link-local address. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { if ((error = nd6_prelist_add(&pr0, NULL, NULL)) != 0) return (error); } else nd6_prefix_rele(pr); return 0; } /* * ifp - must be IFT_LOOP */ static int in6_ifattach_loopback(struct ifnet *ifp) { struct in6_aliasreq ifra; int error; in6_prepare_ifra(&ifra, &in6addr_loopback, &in6mask128); /* * Always initialize ia_dstaddr (= broadcast address) to loopback * address. Follows IPv4 practice - see in_ifinit(). */ ifra.ifra_dstaddr.sin6_len = sizeof(struct sockaddr_in6); ifra.ifra_dstaddr.sin6_family = AF_INET6; ifra.ifra_dstaddr.sin6_addr = in6addr_loopback; /* the loopback address should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * We are sure that this is a newly assigned address, so we can set * NULL to the 3rd arg. */ if ((error = in6_update_ifa(ifp, &ifra, NULL, 0)) != 0) { nd6log((LOG_ERR, "in6_ifattach_loopback: failed to configure " "the loopback address on %s (errno=%d)\n", if_name(ifp), error)); return (-1); } return 0; } /* * compute NI group address, based on the current hostname setting. * see RFC 4620. * * when ifp == NULL, the caller is responsible for filling scopeid. * * If oldmcprefix == 1, FF02:0:0:0:0:2::/96 is used for NI group address * while it is FF02:0:0:0:0:2:FF00::/104 in RFC 4620. */ static int in6_nigroup0(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6, int oldmcprefix) { struct prison *pr; const char *p; u_char *q; MD5_CTX ctxt; u_int8_t digest[16]; char l; char n[64]; /* a single label must not exceed 63 chars */ /* * If no name is given and namelen is -1, * we try to do the hostname lookup ourselves. */ if (!name && namelen == -1) { pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); name = pr->pr_hostname; namelen = strlen(name); } else pr = NULL; if (!name || !namelen) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; } p = name; while (p && *p && *p != '.' && p - name < namelen) p++; if (p == name || p - name > sizeof(n) - 1) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; /* label too long */ } l = p - name; strncpy(n, name, l); if (pr != NULL) mtx_unlock(&pr->pr_mtx); n[(int)l] = '\0'; for (q = n; *q; q++) { if ('A' <= *q && *q <= 'Z') *q = *q - 'A' + 'a'; } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, &l, sizeof(l)); MD5Update(&ctxt, n, l); MD5Final(digest, &ctxt); bzero(in6, sizeof(*in6)); in6->s6_addr16[0] = IPV6_ADDR_INT16_MLL; in6->s6_addr8[11] = 2; if (oldmcprefix == 0) { in6->s6_addr8[12] = 0xff; /* Copy the first 24 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr8[13], 3); } else { /* Copy the first 32 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr32[3], sizeof(in6->s6_addr32[3])); } if (in6_setscope(in6, ifp, NULL)) return (-1); /* XXX: should not fail */ return 0; } int in6_nigroup(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 0)); } int in6_nigroup_oldmcprefix(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 1)); } /* * XXX multiple loopback interface needs more care. for instance, * nodelocal address needs to be configured onto only one of them. * XXX multiple link-local address case * * altifp - secondary EUI64 source */ void in6_ifattach(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; if (ifp->if_afdata[AF_INET6] == NULL) return; /* * quirks based on interface type */ switch (ifp->if_type) { case IFT_STF: /* * 6to4 interface is a very special kind of beast. * no multicast, no linklocal. RFC2529 specifies how to make * linklocals for 6to4 interface, but there's no use and * it is rather harmful to have one. */ ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL; break; default: break; } /* * usually, we require multicast capability to the interface */ if ((ifp->if_flags & IFF_MULTICAST) == 0) { nd6log((LOG_INFO, "in6_ifattach: " "%s is not multicast capable, IPv6 not enabled\n", if_name(ifp))); return; } /* * assign loopback address for loopback interface. */ if ((ifp->if_flags & IFF_LOOPBACK) != 0) { /* * check that loopback address doesn't exist yet. */ ia = in6ifa_ifwithaddr(&in6addr_loopback, 0); if (ia == NULL) in6_ifattach_loopback(ifp); else ifa_free(&ia->ia_ifa); } /* * assign a link-local address, if there's none. */ if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL) { ia = in6ifa_ifpforlinklocal(ifp, 0); if (ia == NULL) in6_ifattach_linklocal(ifp, altifp); else ifa_free(&ia->ia_ifa); } /* update dynamically. */ if (V_in6_maxmtu < ifp->if_mtu) V_in6_maxmtu = ifp->if_mtu; } /* * NOTE: in6_ifdetach() does not support loopback if at this moment. * * When shutting down a VNET we clean up layers top-down. In that case * upper layer protocols (ulp) are cleaned up already and locks are destroyed * and we must not call into these cleanup functions anymore, thus purgeulp * is set to 0 in that case by in6_ifdetach_destroy(). * The normal case of destroying a (cloned) interface still needs to cleanup * everything related to the interface and will have purgeulp set to 1. */ static void _in6_ifdetach(struct ifnet *ifp, int purgeulp) { struct ifaddr *ifa, *next; if (ifp->if_afdata[AF_INET6] == NULL) return; /* * nuke any of IPv6 addresses we have */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6_purgeaddr(ifa); } if (purgeulp) { in6_pcbpurgeif0(&V_udbinfo, ifp); in6_pcbpurgeif0(&V_ulitecbinfo, ifp); in6_pcbpurgeif0(&V_ripcbinfo, ifp); } /* leave from all multicast groups joined */ in6_purgemaddrs(ifp); /* * Remove neighbor management table. * Enabling the nd6_purge will panic on vmove for interfaces on VNET * teardown as the IPv6 layer is cleaned up already and the locks * are destroyed. */ if (purgeulp) nd6_purge(ifp); } void in6_ifdetach(struct ifnet *ifp) { _in6_ifdetach(ifp, 1); } void in6_ifdetach_destroy(struct ifnet *ifp) { _in6_ifdetach(ifp, 0); } int in6_get_tmpifid(struct ifnet *ifp, u_int8_t *retbuf, const u_int8_t *baseid, int generate) { u_int8_t nullbuf[8]; struct nd_ifinfo *ndi = ND_IFINFO(ifp); bzero(nullbuf, sizeof(nullbuf)); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) == 0) { /* we've never created a random ID. Create a new one. */ generate = 1; } if (generate) { bcopy(baseid, ndi->randomseed1, sizeof(ndi->randomseed1)); /* generate_tmp_ifid will update seedn and buf */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } bcopy(ndi->randomid, retbuf, 8); return (0); } void in6_tmpaddrtimer(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *ndi; u_int8_t nullbuf[8]; struct ifnet *ifp; callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); bzero(nullbuf, sizeof(nullbuf)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; ndi = ND_IFINFO(ifp); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) != 0) { /* * We've been generating a random ID on this interface. * Create a new one. */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } } CURVNET_RESTORE(); } static void in6_purgemaddrs(struct ifnet *ifp) { struct in6_multi_head purgeinms; struct in6_multi *inm; struct ifmultiaddr *ifma, *next; SLIST_INIT(&purgeinms); IN6_MULTI_LOCK(); IN6_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * Extract list of in6_multi associated with the detaching ifp * which the PF_INET6 layer is about to release. */ restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; in6m_disconnect(inm); in6m_rele_locked(&purgeinms, inm); if (__predict_false(ifma6_restart)) { ifma6_restart = false; goto restart; } } IF_ADDR_WUNLOCK(ifp); mld_ifdetach(ifp); IN6_MULTI_LIST_UNLOCK(); IN6_MULTI_UNLOCK(); in6m_release_list_deferred(&purgeinms); + + /* + * Make sure all multicast deletions invoking if_ioctl() are + * completed before returning. Else we risk accessing a freed + * ifnet structure pointer. + */ + in6m_release_wait(); } void in6_ifattach_destroy(void) { callout_drain(&V_in6_tmpaddrtimer_ch); } static void in6_ifattach_init(void *dummy) { /* Timer for regeneranation of temporary addresses randomize ID. */ callout_init(&V_in6_tmpaddrtimer_ch, 0); callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); } /* * Cheat. * This must be after route_init(), which is now SI_ORDER_THIRD. */ SYSINIT(in6_ifattach_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, in6_ifattach_init, NULL); Index: head/sys/netinet6/in6_mcast.c =================================================================== --- head/sys/netinet6/in6_mcast.c (revision 343393) +++ head/sys/netinet6/in6_mcast.c (revision 343394) @@ -1,2991 +1,2999 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009 Bruce Simpson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv6 multicast socket, group, and socket option processing module. * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_MLD #define KTR_MLD KTR_INET6 #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in6 sin6; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", "IPv6 multicast PCB-layer source filter"); MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", "IPv6 multicast MLD-layer source filter"); RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * Locking: * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. * * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly * any need for in6_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in6_multi_list_mtx; MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); struct mtx in6_multi_free_mtx; MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); struct sx in6_multi_sx; SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); static void im6f_commit(struct in6_mfilter *); static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **); static struct in6_msource * im6f_graft(struct in6_mfilter *, const uint8_t, const struct sockaddr_in6 *); static void im6f_leave(struct in6_mfilter *); static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); static void im6f_purge(struct in6_mfilter *); static void im6f_rollback(struct in6_mfilter *); static void im6f_reap(struct in6_mfilter *); static int im6o_grow(struct ip6_moptions *); static size_t im6o_match_group(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *); static struct in6_msource * im6o_match_source(const struct ip6_moptions *, const size_t, const struct sockaddr *); static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback); static int in6_getmulti(struct ifnet *, const struct in6_addr *, struct in6_multi **); static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims); #ifdef KTR static int in6m_is_ifp_detached(const struct in6_multi *); #endif static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); static void in6m_purge(struct in6_multi *); static void in6m_reap(struct in6_multi *); static struct ip6_moptions * in6p_findmoptions(struct inpcb *); static int in6p_get_source_filters(struct inpcb *, struct sockopt *); static int in6p_join_group(struct inpcb *, struct sockopt *); static int in6p_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in6 *); static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); static int in6p_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv6 multicast"); static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, "Max source filters per socket"); /* TODO Virtualize this switch. */ int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, "Per-interface stack-wide source filters"); int ifma6_restart = 0; #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline in6m_is_ifp_detached(const struct in6_multi *inm) { struct ifnet *ifp; KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->in6m_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that network-layer notion of ifp is the * same as that of link-layer. */ KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif /* * Initialize an in6_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void im6f_init(struct in6_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in6_mfilter)); RB_INIT(&imf->im6f_sources); imf->im6f_st[0] = st0; imf->im6f_st[1] = st1; } /* * Resize the ip6_moptions vector to the next power-of-two minus 1. * May be called with locks held; do not sleep. */ static int im6o_grow(struct ip6_moptions *imo) { struct in6_multi **nmships; struct in6_multi **omships; struct in6_mfilter *nmfilters; struct in6_mfilter *omfilters; size_t idx; size_t newmax; size_t oldmax; nmships = NULL; nmfilters = NULL; omships = imo->im6o_membership; omfilters = imo->im6o_mfilters; oldmax = imo->im6o_max_memberships; newmax = ((oldmax + 1) * 2) - 1; if (newmax <= IPV6_MAX_MEMBERSHIPS) { nmships = (struct in6_multi **)realloc(omships, sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); nmfilters = (struct in6_mfilter *)realloc(omfilters, sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, M_NOWAIT); if (nmships != NULL && nmfilters != NULL) { /* Initialize newly allocated source filter heads. */ for (idx = oldmax; idx < newmax; idx++) { im6f_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } imo->im6o_max_memberships = newmax; imo->im6o_membership = nmships; imo->im6o_mfilters = nmfilters; } } if (nmships == NULL || nmfilters == NULL) { if (nmships != NULL) free(nmships, M_IP6MOPTS); if (nmfilters != NULL) free(nmfilters, M_IN6MFILTER); return (ETOOMANYREFS); } return (0); } /* * Find an IPv6 multicast group entry for this ip6_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static size_t im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in6 *gsin6; struct in6_multi **pinm; int idx; int nmships; gsin6 = (const struct sockaddr_in6 *)group; /* The im6o_membership array may be lazy allocated. */ if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) return (-1); nmships = imo->im6o_num_memberships; pinm = &imo->im6o_membership[0]; for (idx = 0; idx < nmships; idx++, pinm++) { if (*pinm == NULL) continue; if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, &gsin6->sin6_addr)) { break; } } if (idx >= nmships) idx = -1; return (idx); } /* * Find an IPv6 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * XXX TODO: The scope ID, if present in src, is stripped before * any comparison. We SHOULD enforce scope/zone checks where the source * filter entry has a link scope. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in6_msource * im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, const struct sockaddr *src) { struct ip6_msource find; struct in6_mfilter *imf; struct ip6_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, ("%s: invalid index %d\n", __func__, (int)gidx)); /* The im6o_mfilters array may be lazy allocated. */ if (imo->im6o_mfilters == NULL) return (NULL); imf = &imo->im6o_mfilters[gidx]; psa = (const sockunion_t *)src; find.im6s_addr = psa->sin6.sin6_addr; in6_clearscope(&find.im6s_addr); /* XXX */ ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); return ((struct in6_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { size_t gidx; struct in6_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); gidx = im6o_match_group(imo, ifp, group); if (gidx == -1) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at MLD t1 (now) * with socket-layer t0 (since last downcall). */ mode = imo->im6o_mfilters[gidx].im6f_st[1]; ims = im6o_match_source(imo, gidx, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->im6sl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in6_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN6_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, struct in6_multi **pinm) { struct sockaddr_in6 gsin6; struct ifmultiaddr *ifma; struct in6_multi *inm; int error; error = 0; /* * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; * if_addmulti() takes this mutex itself, so we must drop and * re-acquire around the call. */ IN6_MULTI_LOCK_ASSERT(); IN6_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); inm = in6m_lookup_locked(ifp, group); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->in6m_refcount >= 1, ("%s: bad refcount %d", __func__, inm->in6m_refcount)); in6m_acquire_locked(inm); *pinm = inm; goto out_locked; } memset(&gsin6, 0, sizeof(gsin6)); gsin6.sin6_family = AF_INET6; gsin6.sin6_len = sizeof(struct sockaddr_in6); gsin6.sin6_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); if (error != 0) return (error); IN6_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * If something other than netinet6 is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in6_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET6, ("%s: ifma not AF_INET6", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) panic("%s: ifma %p is inconsistent with %p (%p)", __func__, ifma, inm, group); #endif in6m_acquire_locked(inm); *pinm = inm; goto out_locked; } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in6_multi record is needed; allocate and initialize it. * We DO NOT perform an MLD join as the in6_ layer may need to * push an initial source list down to MLD to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. * Pending state-changes per group are subject to a bounds check. */ inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); if_delmulti_ifma(ifma); return (ENOMEM); } inm->in6m_addr = *group; inm->in6m_ifp = ifp; inm->in6m_mli = MLD_IFINFO(ifp); inm->in6m_ifma = ifma; inm->in6m_refcount = 1; inm->in6m_state = MLD_NOT_MEMBER; mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->in6m_srcs); ifma->ifma_protospec = inm; *pinm = inm; out_locked: IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); return (error); } /* * Drop a reference to an in6_multi record. * * If the refcount drops to 0, free the in6_multi record and * delete the underlying link-layer membership. */ static void in6m_release(struct in6_multi *inm) { struct ifmultiaddr *ifma; struct ifnet *ifp; CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); MPASS(inm->in6m_refcount == 0); CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); ifma = inm->in6m_ifma; ifp = inm->in6m_ifp; MPASS(ifma->ifma_llifma == NULL); /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); KASSERT(ifma->ifma_protospec == NULL, ("%s: ifma_protospec != NULL", __func__)); if (ifp == NULL) ifp = ifma->ifma_ifp; if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); in6m_purge(inm); free(inm, M_IP6MADDR); if_delmulti_ifma_flags(ifma, 1); CURVNET_RESTORE(); if_rele(ifp); } else { in6m_purge(inm); free(inm, M_IP6MADDR); if_delmulti_ifma_flags(ifma, 1); } } static struct grouptask free_gtask; static struct in6_multi_head in6m_free_list; static void in6m_release_task(void *arg __unused); static void in6m_init(void) { SLIST_INIT(&in6m_free_list); taskqgroup_config_gtask_init(NULL, &free_gtask, in6m_release_task, "in6m release task"); } #ifdef EARLY_AP_STARTUP SYSINIT(in6m_init, SI_SUB_SMP + 1, SI_ORDER_FIRST, in6m_init, NULL); #else SYSINIT(in6m_init, SI_SUB_ROOT_CONF - 1, SI_ORDER_SECOND, in6m_init, NULL); #endif void in6m_release_list_deferred(struct in6_multi_head *inmh) { if (SLIST_EMPTY(inmh)) return; mtx_lock(&in6_multi_free_mtx); SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); mtx_unlock(&in6_multi_free_mtx); GROUPTASK_ENQUEUE(&free_gtask); } void +in6m_release_wait(void) +{ + + /* Wait for all jobs to complete. */ + gtaskqueue_drain_all(free_gtask.gt_taskqueue); +} + +void in6m_disconnect(struct in6_multi *inm) { struct ifnet *ifp; struct ifaddr *ifa; struct in6_ifaddr *ifa6; struct in6_multi_mship *imm, *imm_tmp; struct ifmultiaddr *ifma, *ll_ifma; ifp = inm->in6m_ifp; if (ifp == NULL) return; inm->in6m_ifp = NULL; IF_ADDR_WLOCK_ASSERT(ifp); ifma = inm->in6m_ifma; if (ifma == NULL) return; if_ref(ifp); if (ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); if ((ll_ifma = ifma->ifma_llifma) != NULL) { MPASS(ifma != ll_ifma); ifma->ifma_llifma = NULL; MPASS(ll_ifma->ifma_llifma == NULL); MPASS(ll_ifma->ifma_ifp == ifp); if (--ll_ifma->ifma_refcount == 0) { ifma6_restart = true; if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); if_freemulti(ll_ifma); } } CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifa6 = (void *)ifa; LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, i6mm_chain, imm_tmp) { if (inm == imm->i6mm_maddr) { LIST_REMOVE(imm, i6mm_chain); free(imm, M_IP6MADDR); } } } } void in6m_release_deferred(struct in6_multi *inm) { struct in6_multi_head tmp; IN6_MULTI_LIST_LOCK_ASSERT(); KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); if (--inm->in6m_refcount == 0) { MPASS(inm->in6m_ifp == NULL); SLIST_INIT(&tmp); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(&tmp, inm, in6m_nrele); in6m_release_list_deferred(&tmp); } } static void in6m_release_task(void *arg __unused) { struct in6_multi_head in6m_free_tmp; struct in6_multi *inm, *tinm; SLIST_INIT(&in6m_free_tmp); mtx_lock(&in6_multi_free_mtx); SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); mtx_unlock(&in6_multi_free_mtx); IN6_MULTI_LOCK(); SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); in6m_release(inm); } IN6_MULTI_UNLOCK(); } /* * Clear recorded source entries for a group. * Used by the MLD code. Caller must hold the IN6_MULTI lock. * FIXME: Should reap. */ void in6m_clear_recorded(struct in6_multi *inm) { struct ip6_msource *ims; IN6_MULTI_LIST_LOCK_ASSERT(); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { if (ims->im6s_stp) { ims->im6s_stp = 0; --inm->in6m_st[1].iss_rec; } } KASSERT(inm->in6m_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group MLDv2 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet6.mld.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occurred (negated errno code). */ int in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) { struct ip6_msource find; struct ip6_msource *ims, *nims; IN6_MULTI_LIST_LOCK_ASSERT(); find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims && ims->im6s_stp) return (0); if (ims == NULL) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->im6s_addr = find.im6s_addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->im6s_stp; ++inm->in6m_st[1].iss_rec; return (1); } /* * Return a pointer to an in6_msource owned by an in6_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * addr is the source address. * * SMPng: May be called with locks held; malloc must not block. */ static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **plims) { struct ip6_msource find; struct ip6_msource *ims, *nims; struct in6_msource *lims; int error; error = 0; ims = NULL; lims = NULL; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); lims = (struct in6_msource *)ims; if (lims == NULL) { if (imf->im6f_nsrc == in6_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in6_msource *)nims; lims->im6s_addr = find.im6s_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); ++imf->im6f_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in6_msource * im6f_graft(struct in6_mfilter *imf, const uint8_t st1, const struct sockaddr_in6 *psin) { struct ip6_msource *nims; struct in6_msource *lims; nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in6_msource *)nims; lims->im6s_addr = psin->sin6_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; lims->im6sl_st[1] = st1; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); ++imf->im6f_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) { struct ip6_msource find; struct ip6_msource *ims; struct in6_msource *lims; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void im6f_rollback(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) { /* no change at t1 */ continue; } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->im6sl_st[1] = lims->im6sl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } } imf->im6f_st[1] = imf->im6f_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void im6f_leave(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; } imf->im6f_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void im6f_commit(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[0] = lims->im6sl_st[1]; } imf->im6f_st[0] = imf->im6f_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void im6f_reap(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && (lims->im6sl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } } } /* * Purge socket-layer filter set. */ static void im6f_purge(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->im6f_sources), ("%s: im6f_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * addr is the IPv6 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims) { struct ip6_msource find; struct ip6_msource *ims, *nims; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims == NULL && !noalloc) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->im6s_addr = *addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, ip6_sprintf(ip6tbuf, addr), ims); } *pims = ims; return (0); } /* * Merge socket-layer source into MLD-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback) { int n = rollback ? -1 : 1; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; ip6_sprintf(ip6tbuf, &lims->im6s_addr); #endif if (lims->im6sl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].ex -= n; } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].in -= n; } if (lims->im6sl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].ex += n; } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].in += n; } } /* * Atomically update the global in6_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct ip6_msource *ims, *nims; struct in6_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; IN6_MULTI_LIST_LOCK_ASSERT(); /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); ++schanged; if (error) break; im6s_merge(nims, lims, 0); } if (error) { struct ip6_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); if (bims == NULL) continue; im6s_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->im6f_st[0] == imf->im6f_st[1] && imf->im6f_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); --inm->in6m_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->im6f_st[0] != imf->im6f_st[1]) { CTR3(KTR_MLD, "%s: imf transition %d to %d", __func__, imf->im6f_st[0], imf->im6f_st[1]); if (imf->im6f_st[0] == MCAST_EXCLUDE) { CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); --inm->in6m_st[1].iss_ex; } else if (imf->im6f_st[0] == MCAST_INCLUDE) { CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); --inm->in6m_st[1].iss_in; } if (imf->im6f_st[1] == MCAST_EXCLUDE) { CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); inm->in6m_st[1].iss_ex++; } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); inm->in6m_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the MLD lifecycle for this group should finish. */ if (inm->in6m_st[1].iss_ex > 0) { CTR1(KTR_MLD, "%s: transition to EX", __func__); inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->in6m_st[1].iss_in > 0) { CTR1(KTR_MLD, "%s: transition to IN", __func__); inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->im6f_st[1] != MCAST_EXCLUDE) || (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); --inm->in6m_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); inm->in6m_st[1].iss_asm++; } CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); in6m_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); in6m_reap(inm); } return (error); } /* * Mark an in6_multi's filter set deltas as committed. * Called by MLD after a state change has been enqueued. */ void in6m_commit(struct in6_multi *inm) { struct ip6_msource *ims; CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); CTR1(KTR_MLD, "%s: pre commit:", __func__); in6m_print(inm); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { ims->im6s_st[0] = ims->im6s_st[1]; } inm->in6m_st[0] = inm->in6m_st[1]; } /* * Reap unreferenced nodes from an in6_multi's filter set. */ static void in6m_reap(struct in6_multi *inm) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || ims->im6s_stp != 0) continue; CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); free(ims, M_IP6MSOURCE); inm->in6m_nsrc--; } } /* * Purge all source nodes from an in6_multi's filter set. */ static void in6m_purge(struct in6_multi *inm) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); free(ims, M_IP6MSOURCE); inm->in6m_nsrc--; } /* Free state-change requests that might be queued. */ mbufq_drain(&inm->in6m_scq); } /* * Join a multicast address w/o sources. * KAME compatibility entry point. * * SMPng: Assume no mc locks held by caller. */ int in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, const int delay) { int error; IN6_MULTI_LOCK(); error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); IN6_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the MLD downcall fails, the group is not joined, and an error * code is returned. */ int in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, const int delay) { struct in6_mfilter timf; struct in6_multi *inm; struct ifmultiaddr *ifma; int error; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif /* * Sanity: Check scope zone ID was set for ifp, if and * only if group is scoped to an interface. */ KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), ("%s: not a multicast address", __func__)); if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { KASSERT(mcaddr->s6_addr16[1] != 0, ("%s: scope zone ID not set", __func__)); } IN6_MULTI_LOCK_ASSERT(); IN6_MULTI_LIST_UNLOCK_ASSERT(); CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in6_getmulti(ifp, mcaddr, &inm); if (error) { CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); return (error); } IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) { CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); goto out_in6m_release; } CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, delay); if (error) { CTR1(KTR_MLD, "%s: failed to update source", __func__); goto out_in6m_release; } out_in6m_release: if (error) { struct epoch_tracker et; CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_protospec == inm) { ifma->ifma_protospec = NULL; break; } } in6m_disconnect(inm); in6m_release_deferred(inm); NET_EPOCH_EXIT(et); } else { *pinm = inm; } IN6_MULTI_LIST_UNLOCK(); return (error); } /* * Leave a multicast group; unlocked entry point. */ int in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { int error; IN6_MULTI_LOCK(); error = in6_leavegroup_locked(inm, imf); IN6_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as in6m_release(*) as this function also * makes a state change downcall into MLD. */ int in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct in6_mfilter timf; struct ifnet *ifp; int error; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif error = 0; IN6_MULTI_LOCK_ASSERT(); CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at MLD layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ ifp = inm->in6m_ifp; IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = 0; if (ifp) error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); if (ifp) IF_ADDR_WLOCK(ifp); if (inm->in6m_refcount == 1 && inm->in6m_ifp != NULL) in6m_disconnect(inm); in6m_release_deferred(inm); if (ifp) IF_ADDR_WUNLOCK(ifp); IN6_MULTI_LIST_UNLOCK(); return (error); } /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An MLD downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm; size_t idx; uint16_t fmode; int error, doblock; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); /* * Check if we are actually a member of this group. */ imo = in6p_findmoptions(inp); idx = im6o_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->im6o_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_in6p_locked; } KASSERT(imo->im6o_mfilters != NULL, ("%s: im6o_mfilters not allocated", __func__)); imf = &imo->im6o_mfilters[idx]; inm = imo->im6o_membership[idx]; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->im6f_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_in6p_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = im6o_match_source(imo, idx, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_MLD, "%s: source %s %spresent", __func__, ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_in6p_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_MLD, "%s: %s source", __func__, "block"); ims = im6f_graft(imf, fmode, &ssa->sin6); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); error = im6f_prune(imf, &ssa->sin6); } if (error) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); goto out_im6f_rollback; } /* * Begin state merge transaction at MLD layer. */ IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); out_im6f_rollback: if (error) im6f_rollback(imf); else im6f_commit(imf); im6f_reap(imf); out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip6_moptions * in6p_findmoptions(struct inpcb *inp) { struct ip6_moptions *imo; struct in6_multi **immp; struct in6_mfilter *imfp; size_t idx; INP_WLOCK(inp); if (inp->in6p_moptions != NULL) return (inp->in6p_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, M_WAITOK | M_ZERO); imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, M_IN6MFILTER, M_WAITOK); imo->im6o_multicast_ifp = NULL; imo->im6o_multicast_hlim = V_ip6_defmcasthlim; imo->im6o_multicast_loop = in6_mcast_loop; imo->im6o_num_memberships = 0; imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; imo->im6o_membership = immp; /* Initialize per-group source filters. */ for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); imo->im6o_mfilters = imfp; INP_WLOCK(inp); if (inp->in6p_moptions != NULL) { free(imfp, M_IN6MFILTER); free(immp, M_IP6MOPTS); free(imo, M_IP6MOPTS); return (inp->in6p_moptions); } inp->in6p_moptions = imo; return (imo); } /* * Discard the IPv6 multicast options (and source filters). * * SMPng: NOTE: assumes INP write lock is held. * * XXX can all be safely deferred to epoch_call * */ static void inp_gcmoptions(struct ip6_moptions *imo) { struct in6_mfilter *imf; struct in6_multi *inm; struct ifnet *ifp; size_t idx, nmships; nmships = imo->im6o_num_memberships; for (idx = 0; idx < nmships; ++idx) { imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; if (imf) im6f_leave(imf); inm = imo->im6o_membership[idx]; ifp = inm->in6m_ifp; if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); (void)in6_leavegroup(inm, imf); CURVNET_RESTORE(); } else { (void)in6_leavegroup(inm, imf); } if (imf) im6f_purge(imf); } if (imo->im6o_mfilters) free(imo->im6o_mfilters, M_IN6MFILTER); free(imo->im6o_membership, M_IP6MOPTS); free(imo, M_IP6MOPTS); } void ip6_freemoptions(struct ip6_moptions *imo) { if (imo == NULL) return; inp_gcmoptions(imo); } /* * Atomically get source filters on a socket for an IPv6 multicast group. * Called with INP lock held; returns with lock released. */ static int in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip6_moptions *imo; struct in6_mfilter *imf; struct ip6_msource *ims; struct in6_msource *lims; struct sockaddr_in6 *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t idx, nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->in6p_moptions; KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); INP_WLOCK(inp); /* * Lookup group on the socket. */ idx = im6o_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->im6o_mfilters == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } imf = &imo->im6o_mfilters[idx]; /* * Ignore memberships which are in limbo. */ if (imf->im6f_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->im6f_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) msfr.msfr_nsrcs = in6_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == MCAST_UNDEFINED || lims->im6sl_st[0] != imf->im6f_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in6 *)ptss; psin->sin6_family = AF_INET6; psin->sin6_len = sizeof(struct sockaddr_in6); psin->sin6_addr = lims->im6s_addr; psin->sin6_port = 0; --nsrcs; ++ptss; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; u_int optval; INP_WLOCK(inp); im6o = inp->in6p_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { optval = 0; } else { optval = im6o->im6o_multicast_ifp->if_index; } INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_HOPS: if (im6o == NULL) optval = V_ip6_defmcasthlim; else optval = im6o->im6o_multicast_hlim; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_LOOP: if (im6o == NULL) optval = in6_mcast_loop; /* XXX VIMAGE */ else optval = im6o->im6o_multicast_loop; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MSFILTER: if (im6o == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = in6p_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the address of an IPv6 group. * * This routine exists to support legacy IPv6 multicast applications. * * If inp is non-NULL, use this socket's current FIB number for any * required FIB lookup. Look up the group address in the unicast FIB, * and use its ifp; usually, this points to the default next-hop. * If the FIB lookup fails, return NULL. * * FUTURE: Support multiple forwarding tables for IPv6. * * Returns NULL if no ifp could be found. */ static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *in6p, const struct sockaddr_in6 *gsin6) { struct nhop6_basic nh6; struct in6_addr dst; uint32_t scopeid; uint32_t fibnum; KASSERT(in6p->inp_vflag & INP_IPV6, ("%s: not INP_IPV6 inpcb", __func__)); KASSERT(gsin6->sin6_family == AF_INET6, ("%s: not AF_INET6 group", __func__)); in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) return (NULL); return (nh6.nh_ifp); } /* * Join an IPv6 multicast group, possibly with a source. * * FIXME: The KAME use of the unspecified address (::) * to join *all* multicast groups is currently unsupported. */ static int in6p_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *inm; struct in6_msource *lims; size_t idx; int error, is_new; ifp = NULL; imf = NULL; lims = NULL; error = 0; is_new = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; /* * Chew everything into struct group_source_req. * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. * Ignore passed-in scope ID. */ switch (sopt->sopt_name) { case IPV6_JOIN_GROUP: { struct ipv6_mreq mreq; error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) return (error); gsa->sin6.sin6_family = AF_INET6; gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; if (mreq.ipv6mr_interface == 0) { ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); } else { if (V_if_index < mreq.ipv6mr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(mreq.ipv6mr_interface); } CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", __func__, mreq.ipv6mr_interface, ifp); } break; case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) return (EINVAL); /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6.sin6_addr); ssa->sin6.sin6_port = 0; ssa->sin6.sin6_scope_id = 0; } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; /* * Always set the scope zone ID on memberships created from userland. * Use the passed-in ifp to do this. * XXX The in6_setscope() return value is meaningless. * XXX SCOPE6_LOCK() is taken by in6_setscope(). */ (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); imo = in6p_findmoptions(inp); idx = im6o_match_group(imo, ifp, &gsa->sa); if (idx == -1) { is_new = 1; } else { inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->im6f_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_in6p_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in6_msource is transactioned just as for anything * else in SSM -- but note naive use of in6m_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = im6o_match_source(imo, idx, &ssa->sa); if (lims != NULL /*&& lims->im6sl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_in6p_locked; } } else { /* * MCAST_JOIN_GROUP alone, on any existing membership, * is rejected, to stop the same inpcb tying up * multiple refs to the in_multi. * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; goto out_in6p_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); if (is_new) { if (imo->im6o_num_memberships == imo->im6o_max_memberships) { error = im6o_grow(imo); if (error) goto out_in6p_locked; } /* * Allocate the new slot upfront so we can deal with * grafting the new source filter in same code path * as for join-source on existing membership. */ idx = imo->im6o_num_memberships; imo->im6o_membership[idx] = NULL; imo->im6o_num_memberships++; KASSERT(imo->im6o_mfilters != NULL, ("%s: im6f_mfilters vector was not allocated", __func__)); imf = &imo->im6o_mfilters[idx]; KASSERT(RB_EMPTY(&imf->im6f_sources), ("%s: im6f_sources not empty", __func__)); } /* * Graft new source into filter list for this inpcb's * membership of the group. The in6_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_MLD, "%s: new join w/source", __func__); im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); } else { CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); } lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); if (lims == NULL) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_im6o_free; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_MLD, "%s: new join w/o source", __func__); im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); } } /* * Begin state merge transaction at MLD layer. */ in_pcbref(inp); INP_WUNLOCK(inp); IN6_MULTI_LOCK(); if (is_new) { error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, &inm, 0); if (error) { IN6_MULTI_UNLOCK(); goto out_im6o_free; } /* * NOTE: Refcount from in6_joingroup_locked() * is protecting membership. */ imo->im6o_membership[idx] = inm; } else { CTR1(KTR_MLD, "%s: merge inm state", __func__); IN6_MULTI_LIST_LOCK(); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); } IN6_MULTI_UNLOCK(); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (ENXIO); if (error) { im6f_rollback(imf); if (is_new) im6f_purge(imf); else im6f_reap(imf); } else { im6f_commit(imf); } out_im6o_free: if (error && is_new) { inm = imo->im6o_membership[idx]; if (inm != NULL) { IN6_MULTI_LIST_LOCK(); in6m_release_deferred(inm); IN6_MULTI_LIST_UNLOCK(); } imo->im6o_membership[idx] = NULL; --imo->im6o_num_memberships; } out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Leave an IPv6 multicast group on an inpcb, possibly with a source. */ static int in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct ipv6_mreq mreq; struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm; uint32_t ifindex; size_t idx; int error, is_final; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif ifp = NULL; ifindex = 0; error = 0; is_final = 1; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; /* * Chew everything passed in up into a struct group_source_req * as that is easier to process. * Note: Any embedded scope ID in the multicast group passed * in by userland is ignored, the interface index is the recommended * mechanism to specify an interface; see below. */ switch (sopt->sopt_name) { case IPV6_LEAVE_GROUP: error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) return (error); gsa->sin6.sin6_family = AF_INET6; gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; ifindex = mreq.ipv6mr_interface; break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) return (EINVAL); /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6.sin6_addr); } gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; ifindex = gsr.gsr_interface; break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); /* * Validate interface index if provided. If no interface index * was provided separately, attempt to look the membership up * from the default scope as a last resort to disambiguate * the membership we are being asked to leave. * XXX SCOPE6 lock potentially taken here. */ if (ifindex != 0) { if (V_if_index < ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); } else { error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); if (error) return (EADDRNOTAVAIL); /* * Some badly behaved applications don't pass an ifindex * or a scope ID, which is an API violation. In this case, * perform a lookup as per a v6 join. * * XXX For now, stomp on zone ID for the corner case. * This is not the 'KAME way', but we need to see the ifp * directly until such time as this implementation is * refactored, assuming the scope IDs are the way to go. */ ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); if (ifindex == 0) { CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " "ifp for group %s.", __func__, ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); } else { ifp = ifnet_byindex(ifindex); } if (ifp == NULL) return (EADDRNOTAVAIL); } CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); /* * Find the membership in the membership array. */ imo = in6p_findmoptions(inp); idx = im6o_match_group(imo, ifp, &gsa->sa); if (idx == -1) { error = EADDRNOTAVAIL; goto out_in6p_locked; } inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; if (ssa->ss.ss_family != AF_UNSPEC) is_final = 0; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { im6f_leave(imf); } else { if (imf->im6f_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_in6p_locked; } ims = im6o_match_source(imo, idx, &ssa->sa); if (ims == NULL) { CTR3(KTR_MLD, "%s: source %p %spresent", __func__, ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), "not "); error = EADDRNOTAVAIL; goto out_in6p_locked; } CTR2(KTR_MLD, "%s: %s source", __func__, "block"); error = im6f_prune(imf, &ssa->sin6); if (error) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); goto out_in6p_locked; } } /* * Begin state merge transaction at MLD layer. */ in_pcbref(inp); INP_WUNLOCK(inp); IN6_MULTI_LOCK(); if (is_final) { /* * Give up the multicast address record to which * the membership points. */ (void)in6_leavegroup_locked(inm, imf); } else { CTR1(KTR_MLD, "%s: merge inm state", __func__); IN6_MULTI_LIST_LOCK(); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); } IN6_MULTI_UNLOCK(); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (ENXIO); if (error) im6f_rollback(imf); else im6f_commit(imf); im6f_reap(imf); if (is_final) { /* Remove the gap in the membership array. */ for (++idx; idx < imo->im6o_num_memberships; ++idx) { imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; } imo->im6o_num_memberships--; } out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Select the interface for transmitting IPv6 multicast datagrams. * * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn * may be passed to this socket option. An address of in6addr_any or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct ifnet *ifp; struct ip6_moptions *imo; u_int ifindex; int error; if (sopt->sopt_valsize != sizeof(u_int)) return (EINVAL); error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); if (error) return (error); if (V_if_index < ifindex) return (EINVAL); if (ifindex == 0) ifp = NULL; else { ifp = ifnet_byindex(ifindex); if (ifp == NULL) return (EINVAL); if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); } imo = in6p_findmoptions(inp); imo->im6o_multicast_ifp = ifp; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv6 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *inm; size_t idx; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) return (ENOBUFS); if (msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); gsa->sin6.sin6_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = in6p_findmoptions(inp); idx = im6o_match_group(imo, ifp, &gsa->sa); if (idx == -1 || imo->im6o_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_in6p_locked; } inm = imo->im6o_membership[idx]; imf = &imo->im6o_mfilters[idx]; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->im6f_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in6_msource *lims; struct sockaddr_in6 *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_MLD, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as im6f_leave() * will set it to INCLUDE. */ im6f_leave(imf); imf->im6f_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in6 *)pkss; if (psin->sin6_family != AF_INET6) { error = EAFNOSUPPORT; break; } if (psin->sin6_len != sizeof(struct sockaddr_in6)) { error = EINVAL; break; } if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { error = EINVAL; break; } /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&psin->sin6_addr); error = im6f_get_source(imf, psin, &lims); if (error) break; lims->im6sl_st[1] = imf->im6f_st[1]; } free(kss, M_TEMP); } if (error) goto out_im6f_rollback; INP_WLOCK_ASSERT(inp); IN6_MULTI_LIST_LOCK(); /* * Begin state merge transaction at MLD layer. */ CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); out_im6f_rollback: if (error) im6f_rollback(imf); else im6f_commit(imf); im6f_reap(imf); out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv6 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. */ int ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: error = in6p_set_multicast_if(inp, sopt); break; case IPV6_MULTICAST_HOPS: { int hlim; if (sopt->sopt_valsize != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); if (error) break; if (hlim < -1 || hlim > 255) { error = EINVAL; break; } else if (hlim == -1) { hlim = V_ip6_defmcasthlim; } im6o = in6p_findmoptions(inp); im6o->im6o_multicast_hlim = hlim; INP_WUNLOCK(inp); break; } case IPV6_MULTICAST_LOOP: { u_int loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. */ if (sopt->sopt_valsize != sizeof(u_int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); if (error) break; if (loop > 1) { error = EINVAL; break; } im6o = in6p_findmoptions(inp); im6o->im6o_multicast_loop = loop; INP_WUNLOCK(inp); break; } case IPV6_JOIN_GROUP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = in6p_join_group(inp, sopt); break; case IPV6_LEAVE_GROUP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = in6p_leave_group(inp, sopt); break; case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = in6p_block_unblock_source(inp, sopt); break; case IPV6_MSFILTER: error = in6p_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose MLD's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in6_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in6_addr mcaddr; struct in6_addr src; struct epoch_tracker et; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in6_multi *inm; struct ip6_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); /* int: ifindex + 4 * 32 bits of IPv6 address */ if (namelen != 5) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_MLD, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { CTR2(KTR_MLD, "%s: group %s is not multicast", __func__, ip6_sprintf(ip6tbuf, &mcaddr)); return (EINVAL); } ifp = ifnet_byindex(ifindex); if (ifp == NULL) { CTR2(KTR_MLD, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } /* * Internal MLD lookups require that scope/zone ID is set. */ (void)in6_setscope(&mcaddr, ifp, NULL); retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); if (retval) return (retval); IN6_MULTI_LOCK(); IN6_MULTI_LIST_LOCK(); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) continue; fmode = inm->in6m_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); /* * Only copy-out sources which are in-mode. */ if (fmode != im6s_get_mode(inm, ims, 1)) { CTR1(KTR_MLD, "%s: skip non-in-mode", __func__); continue; } src = ims->im6s_addr; retval = SYSCTL_OUT(req, &src, sizeof(struct in6_addr)); if (retval != 0) break; } } NET_EPOCH_EXIT(et); IN6_MULTI_LIST_UNLOCK(); IN6_MULTI_UNLOCK(); return (retval); } #ifdef KTR static const char *in6m_modestrs[] = { "un", "in", "ex" }; static const char * in6m_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (in6m_modestrs[mode]); return ("??"); } static const char *in6m_statestrs[] = { "not-member", "silent", "idle", "lazy", "sleeping", "awakening", "query-pending", "sg-query-pending", "leaving" }; static const char * in6m_state_str(const int state) { if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) return (in6m_statestrs[state]); return ("??"); } /* * Dump an in6_multi structure to the console. */ void in6m_print(const struct in6_multi *inm) { int t; char ip6tbuf[INET6_ADDRSTRLEN]; if ((ktr_mask & KTR_MLD) == 0) return; printf("%s: --- begin in6m %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", ip6_sprintf(ip6tbuf, &inm->in6m_addr), inm->in6m_ifp, if_name(inm->in6m_ifp), inm->in6m_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->in6m_timer, in6m_state_str(inm->in6m_state), inm->in6m_refcount, mbufq_len(&inm->in6m_scq)); printf("mli %p nsrc %lu sctimer %u scrv %u\n", inm->in6m_mli, inm->in6m_nsrc, inm->in6m_sctimer, inm->in6m_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, in6m_mode_str(inm->in6m_st[t].iss_fmode), inm->in6m_st[t].iss_asm, inm->in6m_st[t].iss_ex, inm->in6m_st[t].iss_in, inm->in6m_st[t].iss_rec); } printf("%s: --- end in6m %p ---\n", __func__, inm); } #else /* !KTR */ void in6m_print(const struct in6_multi *inm) { } #endif /* KTR */ Index: head/sys/netinet6/in6_var.h =================================================================== --- head/sys/netinet6/in6_var.h (revision 343393) +++ head/sys/netinet6/in6_var.h (revision 343394) @@ -1,867 +1,868 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_var.h,v 1.56 2001/03/29 05:34:31 itojun Exp $ */ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET6_IN6_VAR_H_ #define _NETINET6_IN6_VAR_H_ #include #include #ifdef _KERNEL #include #include #endif /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ /* * pltime/vltime are just for future reference (required to implements 2 * hour rule for hosts). they should never be modified by nd6_timeout or * anywhere else. * userland -> kernel: accept pltime/vltime * kernel -> userland: throw up everything * in kernel: modify preferred/expire only */ struct in6_addrlifetime { time_t ia6t_expire; /* valid lifetime expiration time */ time_t ia6t_preferred; /* preferred lifetime expiration time */ u_int32_t ia6t_vltime; /* valid lifetime */ u_int32_t ia6t_pltime; /* prefix lifetime */ }; struct nd_ifinfo; struct scope6_id; struct lltable; struct mld_ifsoftc; struct in6_multi; struct in6_ifextra { counter_u64_t *in6_ifstat; counter_u64_t *icmp6_ifstat; struct nd_ifinfo *nd_ifinfo; struct scope6_id *scope6_id; struct lltable *lltable; struct mld_ifsoftc *mld_ifinfo; }; #define LLTABLE6(ifp) (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->lltable) #ifdef _KERNEL SLIST_HEAD(in6_multi_head, in6_multi); MALLOC_DECLARE(M_IP6MADDR); struct in6_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags struct sockaddr_in6 ia_addr; /* interface address */ struct sockaddr_in6 ia_net; /* network number of interface */ struct sockaddr_in6 ia_dstaddr; /* space for destination addr */ struct sockaddr_in6 ia_prefixmask; /* prefix mask */ u_int32_t ia_plen; /* prefix length */ CK_STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ int ia6_flags; struct in6_addrlifetime ia6_lifetime; time_t ia6_createtime; /* the creation time of this address, which is * currently used for temporary addresses only. */ time_t ia6_updatetime; /* back pointer to the ND prefix (for autoconfigured addresses only) */ struct nd_prefix *ia6_ndpr; /* multicast addresses joined from the kernel */ LIST_HEAD(, in6_multi_mship) ia6_memberships; /* entry in bucket of inet6 addresses */ CK_LIST_ENTRY(in6_ifaddr) ia6_hash; }; /* List of in6_ifaddr's. */ CK_STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); CK_LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); #endif /* _KERNEL */ /* control structure to manage address selection policy */ struct in6_addrpolicy { struct sockaddr_in6 addr; /* prefix address */ struct sockaddr_in6 addrmask; /* prefix mask */ int preced; /* precedence */ int label; /* matching label */ u_quad_t use; /* statistics */ }; /* * IPv6 interface statistics, as defined in RFC2465 Ipv6IfStatsEntry (p12). */ struct in6_ifstat { uint64_t ifs6_in_receive; /* # of total input datagram */ uint64_t ifs6_in_hdrerr; /* # of datagrams with invalid hdr */ uint64_t ifs6_in_toobig; /* # of datagrams exceeded MTU */ uint64_t ifs6_in_noroute; /* # of datagrams with no route */ uint64_t ifs6_in_addrerr; /* # of datagrams with invalid dst */ uint64_t ifs6_in_protounknown; /* # of datagrams with unknown proto */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_truncated; /* # of truncated datagrams */ uint64_t ifs6_in_discard; /* # of discarded datagrams */ /* NOTE: fragment timeout is not here */ uint64_t ifs6_in_deliver; /* # of datagrams delivered to ULP */ /* NOTE: increment on final dst if */ uint64_t ifs6_out_forward; /* # of datagrams forwarded */ /* NOTE: increment on outgoing if */ uint64_t ifs6_out_request; /* # of outgoing datagrams from ULP */ /* NOTE: does not include forwrads */ uint64_t ifs6_out_discard; /* # of discarded datagrams */ uint64_t ifs6_out_fragok; /* # of datagrams fragmented */ uint64_t ifs6_out_fragfail; /* # of datagrams failed on fragment */ uint64_t ifs6_out_fragcreat; /* # of fragment datagrams */ /* NOTE: this is # after fragment */ uint64_t ifs6_reass_reqd; /* # of incoming fragmented packets */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_ok; /* # of reassembled packets */ /* NOTE: this is # after reass */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_fail; /* # of reass failures */ /* NOTE: may not be packet count */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_mcast; /* # of inbound multicast datagrams */ uint64_t ifs6_out_mcast; /* # of outbound multicast datagrams */ }; /* * ICMPv6 interface statistics, as defined in RFC2466 Ipv6IfIcmpEntry. * XXX: I'm not sure if this file is the right place for this structure... */ struct icmp6_ifstat { /* * Input statistics */ /* ipv6IfIcmpInMsgs, total # of input messages */ uint64_t ifs6_in_msg; /* ipv6IfIcmpInErrors, # of input error messages */ uint64_t ifs6_in_error; /* ipv6IfIcmpInDestUnreachs, # of input dest unreach errors */ uint64_t ifs6_in_dstunreach; /* ipv6IfIcmpInAdminProhibs, # of input administratively prohibited errs */ uint64_t ifs6_in_adminprohib; /* ipv6IfIcmpInTimeExcds, # of input time exceeded errors */ uint64_t ifs6_in_timeexceed; /* ipv6IfIcmpInParmProblems, # of input parameter problem errors */ uint64_t ifs6_in_paramprob; /* ipv6IfIcmpInPktTooBigs, # of input packet too big errors */ uint64_t ifs6_in_pkttoobig; /* ipv6IfIcmpInEchos, # of input echo requests */ uint64_t ifs6_in_echo; /* ipv6IfIcmpInEchoReplies, # of input echo replies */ uint64_t ifs6_in_echoreply; /* ipv6IfIcmpInRouterSolicits, # of input router solicitations */ uint64_t ifs6_in_routersolicit; /* ipv6IfIcmpInRouterAdvertisements, # of input router advertisements */ uint64_t ifs6_in_routeradvert; /* ipv6IfIcmpInNeighborSolicits, # of input neighbor solicitations */ uint64_t ifs6_in_neighborsolicit; /* ipv6IfIcmpInNeighborAdvertisements, # of input neighbor advertisements */ uint64_t ifs6_in_neighboradvert; /* ipv6IfIcmpInRedirects, # of input redirects */ uint64_t ifs6_in_redirect; /* ipv6IfIcmpInGroupMembQueries, # of input MLD queries */ uint64_t ifs6_in_mldquery; /* ipv6IfIcmpInGroupMembResponses, # of input MLD reports */ uint64_t ifs6_in_mldreport; /* ipv6IfIcmpInGroupMembReductions, # of input MLD done */ uint64_t ifs6_in_mlddone; /* * Output statistics. We should solve unresolved routing problem... */ /* ipv6IfIcmpOutMsgs, total # of output messages */ uint64_t ifs6_out_msg; /* ipv6IfIcmpOutErrors, # of output error messages */ uint64_t ifs6_out_error; /* ipv6IfIcmpOutDestUnreachs, # of output dest unreach errors */ uint64_t ifs6_out_dstunreach; /* ipv6IfIcmpOutAdminProhibs, # of output administratively prohibited errs */ uint64_t ifs6_out_adminprohib; /* ipv6IfIcmpOutTimeExcds, # of output time exceeded errors */ uint64_t ifs6_out_timeexceed; /* ipv6IfIcmpOutParmProblems, # of output parameter problem errors */ uint64_t ifs6_out_paramprob; /* ipv6IfIcmpOutPktTooBigs, # of output packet too big errors */ uint64_t ifs6_out_pkttoobig; /* ipv6IfIcmpOutEchos, # of output echo requests */ uint64_t ifs6_out_echo; /* ipv6IfIcmpOutEchoReplies, # of output echo replies */ uint64_t ifs6_out_echoreply; /* ipv6IfIcmpOutRouterSolicits, # of output router solicitations */ uint64_t ifs6_out_routersolicit; /* ipv6IfIcmpOutRouterAdvertisements, # of output router advertisements */ uint64_t ifs6_out_routeradvert; /* ipv6IfIcmpOutNeighborSolicits, # of output neighbor solicitations */ uint64_t ifs6_out_neighborsolicit; /* ipv6IfIcmpOutNeighborAdvertisements, # of output neighbor advertisements */ uint64_t ifs6_out_neighboradvert; /* ipv6IfIcmpOutRedirects, # of output redirects */ uint64_t ifs6_out_redirect; /* ipv6IfIcmpOutGroupMembQueries, # of output MLD queries */ uint64_t ifs6_out_mldquery; /* ipv6IfIcmpOutGroupMembResponses, # of output MLD reports */ uint64_t ifs6_out_mldreport; /* ipv6IfIcmpOutGroupMembReductions, # of output MLD done */ uint64_t ifs6_out_mlddone; }; struct in6_ifreq { char ifr_name[IFNAMSIZ]; union { struct sockaddr_in6 ifru_addr; struct sockaddr_in6 ifru_dstaddr; int ifru_flags; int ifru_flags6; int ifru_metric; caddr_t ifru_data; struct in6_addrlifetime ifru_lifetime; struct in6_ifstat ifru_stat; struct icmp6_ifstat ifru_icmp6stat; u_int32_t ifru_scope_id[16]; } ifr_ifru; }; struct in6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; int ifra_vhid; }; /* pre-10.x compat */ struct oin6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; }; /* prefix type macro */ #define IN6_PREFIX_ND 1 #define IN6_PREFIX_RR 2 /* * prefix related flags passed between kernel(NDP related part) and * user land command(ifconfig) and daemon(rtadvd). */ struct in6_prflags { struct prf_ra { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } prf_ra; u_char prf_reserved1; u_short prf_reserved2; /* want to put this on 4byte offset */ struct prf_rr { u_char decrvalid : 1; u_char decrprefd : 1; u_char reserved : 6; } prf_rr; u_char prf_reserved3; u_short prf_reserved4; }; struct in6_prefixreq { char ipr_name[IFNAMSIZ]; u_char ipr_origin; u_char ipr_plen; u_int32_t ipr_vltime; u_int32_t ipr_pltime; struct in6_prflags ipr_flags; struct sockaddr_in6 ipr_prefix; }; #define PR_ORIG_RA 0 #define PR_ORIG_RR 1 #define PR_ORIG_STATIC 2 #define PR_ORIG_KERNEL 3 #define ipr_raf_onlink ipr_flags.prf_ra.onlink #define ipr_raf_auto ipr_flags.prf_ra.autonomous #define ipr_statef_onlink ipr_flags.prf_state.onlink #define ipr_rrf_decrvalid ipr_flags.prf_rr.decrvalid #define ipr_rrf_decrprefd ipr_flags.prf_rr.decrprefd struct in6_rrenumreq { char irr_name[IFNAMSIZ]; u_char irr_origin; u_char irr_m_len; /* match len for matchprefix */ u_char irr_m_minlen; /* minlen for matching prefix */ u_char irr_m_maxlen; /* maxlen for matching prefix */ u_char irr_u_uselen; /* uselen for adding prefix */ u_char irr_u_keeplen; /* keeplen from matching prefix */ struct irr_raflagmask { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } irr_raflagmask; u_int32_t irr_vltime; u_int32_t irr_pltime; struct in6_prflags irr_flags; struct sockaddr_in6 irr_matchprefix; struct sockaddr_in6 irr_useprefix; }; #define irr_raf_mask_onlink irr_raflagmask.onlink #define irr_raf_mask_auto irr_raflagmask.autonomous #define irr_raf_mask_reserved irr_raflagmask.reserved #define irr_raf_onlink irr_flags.prf_ra.onlink #define irr_raf_auto irr_flags.prf_ra.autonomous #define irr_statef_onlink irr_flags.prf_state.onlink #define irr_rrf irr_flags.prf_rr #define irr_rrf_decrvalid irr_flags.prf_rr.decrvalid #define irr_rrf_decrprefd irr_flags.prf_rr.decrprefd /* * Given a pointer to an in6_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in6 */ #define IA6_IN6(ia) (&((ia)->ia_addr.sin6_addr)) #define IA6_DSTIN6(ia) (&((ia)->ia_dstaddr.sin6_addr)) #define IA6_MASKIN6(ia) (&((ia)->ia_prefixmask.sin6_addr)) #define IA6_SIN6(ia) (&((ia)->ia_addr)) #define IA6_DSTSIN6(ia) (&((ia)->ia_dstaddr)) #define IFA_IN6(x) (&((struct sockaddr_in6 *)((x)->ifa_addr))->sin6_addr) #define IFA_DSTIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_dstaddr))->sin6_addr) #define IFPR_IN6(x) (&((struct sockaddr_in6 *)((x)->ifpr_prefix))->sin6_addr) #ifdef _KERNEL #define IN6_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((d)->s6_addr32[0] ^ (a)->s6_addr32[0]) & (m)->s6_addr32[0]) == 0 && \ (((d)->s6_addr32[1] ^ (a)->s6_addr32[1]) & (m)->s6_addr32[1]) == 0 && \ (((d)->s6_addr32[2] ^ (a)->s6_addr32[2]) & (m)->s6_addr32[2]) == 0 && \ (((d)->s6_addr32[3] ^ (a)->s6_addr32[3]) & (m)->s6_addr32[3]) == 0 ) #define IN6_MASK_ADDR(a, m) do { \ (a)->s6_addr32[0] &= (m)->s6_addr32[0]; \ (a)->s6_addr32[1] &= (m)->s6_addr32[1]; \ (a)->s6_addr32[2] &= (m)->s6_addr32[2]; \ (a)->s6_addr32[3] &= (m)->s6_addr32[3]; \ } while (0) #endif #define SIOCSIFADDR_IN6 _IOW('i', 12, struct in6_ifreq) #define SIOCGIFADDR_IN6 _IOWR('i', 33, struct in6_ifreq) #ifdef _KERNEL /* * SIOCSxxx ioctls should be unused (see comments in in6.c), but * we do not shift numbers for binary compatibility. */ #define SIOCSIFDSTADDR_IN6 _IOW('i', 14, struct in6_ifreq) #define SIOCSIFNETMASK_IN6 _IOW('i', 22, struct in6_ifreq) #endif #define SIOCGIFDSTADDR_IN6 _IOWR('i', 34, struct in6_ifreq) #define SIOCGIFNETMASK_IN6 _IOWR('i', 37, struct in6_ifreq) #define SIOCDIFADDR_IN6 _IOW('i', 25, struct in6_ifreq) #define OSIOCAIFADDR_IN6 _IOW('i', 26, struct oin6_aliasreq) #define SIOCAIFADDR_IN6 _IOW('i', 27, struct in6_aliasreq) #define SIOCSIFPHYADDR_IN6 _IOW('i', 70, struct in6_aliasreq) #define SIOCGIFPSRCADDR_IN6 _IOWR('i', 71, struct in6_ifreq) #define SIOCGIFPDSTADDR_IN6 _IOWR('i', 72, struct in6_ifreq) #define SIOCGIFAFLAG_IN6 _IOWR('i', 73, struct in6_ifreq) #ifdef _KERNEL #define OSIOCGIFINFO_IN6 _IOWR('i', 76, struct in6_ondireq) #endif #define SIOCGIFINFO_IN6 _IOWR('i', 108, struct in6_ndireq) #define SIOCSIFINFO_IN6 _IOWR('i', 109, struct in6_ndireq) #define SIOCSNDFLUSH_IN6 _IOWR('i', 77, struct in6_ifreq) #define SIOCGNBRINFO_IN6 _IOWR('i', 78, struct in6_nbrinfo) #define SIOCSPFXFLUSH_IN6 _IOWR('i', 79, struct in6_ifreq) #define SIOCSRTRFLUSH_IN6 _IOWR('i', 80, struct in6_ifreq) #define SIOCGIFALIFETIME_IN6 _IOWR('i', 81, struct in6_ifreq) #define SIOCGIFSTAT_IN6 _IOWR('i', 83, struct in6_ifreq) #define SIOCGIFSTAT_ICMP6 _IOWR('i', 84, struct in6_ifreq) #define SIOCSDEFIFACE_IN6 _IOWR('i', 85, struct in6_ndifreq) #define SIOCGDEFIFACE_IN6 _IOWR('i', 86, struct in6_ndifreq) #define SIOCSIFINFO_FLAGS _IOWR('i', 87, struct in6_ndireq) /* XXX */ #define SIOCSSCOPE6 _IOW('i', 88, struct in6_ifreq) #define SIOCGSCOPE6 _IOWR('i', 89, struct in6_ifreq) #define SIOCGSCOPE6DEF _IOWR('i', 90, struct in6_ifreq) #define SIOCSIFPREFIX_IN6 _IOW('i', 100, struct in6_prefixreq) /* set */ #define SIOCGIFPREFIX_IN6 _IOWR('i', 101, struct in6_prefixreq) /* get */ #define SIOCDIFPREFIX_IN6 _IOW('i', 102, struct in6_prefixreq) /* del */ #define SIOCAIFPREFIX_IN6 _IOW('i', 103, struct in6_rrenumreq) /* add */ #define SIOCCIFPREFIX_IN6 _IOW('i', 104, \ struct in6_rrenumreq) /* change */ #define SIOCSGIFPREFIX_IN6 _IOW('i', 105, \ struct in6_rrenumreq) /* set global */ #define SIOCGETSGCNT_IN6 _IOWR('u', 106, \ struct sioc_sg_req6) /* get s,g pkt cnt */ #define SIOCGETMIFCNT_IN6 _IOWR('u', 107, \ struct sioc_mif_req6) /* get pkt cnt per if */ #define SIOCAADDRCTL_POLICY _IOW('u', 108, struct in6_addrpolicy) #define SIOCDADDRCTL_POLICY _IOW('u', 109, struct in6_addrpolicy) #define IN6_IFF_ANYCAST 0x01 /* anycast address */ #define IN6_IFF_TENTATIVE 0x02 /* tentative address */ #define IN6_IFF_DUPLICATED 0x04 /* DAD detected duplicate */ #define IN6_IFF_DETACHED 0x08 /* may be detached from the link */ #define IN6_IFF_DEPRECATED 0x10 /* deprecated address */ #define IN6_IFF_NODAD 0x20 /* don't perform DAD on this address * (obsolete) */ #define IN6_IFF_AUTOCONF 0x40 /* autoconfigurable address. */ #define IN6_IFF_TEMPORARY 0x80 /* temporary (anonymous) address. */ #define IN6_IFF_PREFER_SOURCE 0x0100 /* preferred address for SAS */ /* do not input/output */ #define IN6_IFF_NOTREADY (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED) #ifdef _KERNEL #define IN6_ARE_SCOPE_CMP(a,b) ((a)-(b)) #define IN6_ARE_SCOPE_EQUAL(a,b) ((a)==(b)) #endif #ifdef _KERNEL VNET_DECLARE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DECLARE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DECLARE(u_long, in6_ifaddrhmask); #define V_in6_ifaddrhead VNET(in6_ifaddrhead) #define V_in6_ifaddrhashtbl VNET(in6_ifaddrhashtbl) #define V_in6_ifaddrhmask VNET(in6_ifaddrhmask) #define IN6ADDR_NHASH_LOG2 8 #define IN6ADDR_NHASH (1 << IN6ADDR_NHASH_LOG2) #define IN6ADDR_HASHVAL(x) (in6_addrhash(x)) #define IN6ADDR_HASH(x) \ (&V_in6_ifaddrhashtbl[IN6ADDR_HASHVAL(x) & V_in6_ifaddrhmask]) static __inline uint32_t in6_addrhash(const struct in6_addr *in6) { uint32_t x; x = in6->s6_addr32[0] ^ in6->s6_addr32[1] ^ in6->s6_addr32[2] ^ in6->s6_addr32[3]; return (fnv_32_buf(&x, sizeof(x), FNV1_32_INIT)); } extern struct rmlock in6_ifaddr_lock; #define IN6_IFADDR_LOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_LOCKED) #define IN6_IFADDR_RLOCK(t) rm_rlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_RLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_RLOCKED) #define IN6_IFADDR_RUNLOCK(t) rm_runlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_WLOCK() rm_wlock(&in6_ifaddr_lock) #define IN6_IFADDR_WLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_WLOCKED) #define IN6_IFADDR_WUNLOCK() rm_wunlock(&in6_ifaddr_lock) #define in6_ifstat_inc(ifp, tag) \ do { \ if (ifp) \ counter_u64_add(((struct in6_ifextra *) \ ((ifp)->if_afdata[AF_INET6]))->in6_ifstat[ \ offsetof(struct in6_ifstat, tag) / sizeof(uint64_t)], 1);\ } while (/*CONSTCOND*/ 0) extern u_char inet6ctlerrmap[]; VNET_DECLARE(unsigned long, in6_maxmtu); #define V_in6_maxmtu VNET(in6_maxmtu) #endif /* _KERNEL */ /* * IPv6 multicast MLD-layer source entry. */ struct ip6_msource { RB_ENTRY(ip6_msource) im6s_link; /* RB tree links */ struct in6_addr im6s_addr; struct im6s_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } im6s_st[2]; /* state at t0, t1 */ uint8_t im6s_stp; /* pending query */ }; RB_HEAD(ip6_msource_tree, ip6_msource); /* * IPv6 multicast PCB-layer source entry. * * NOTE: overlapping use of struct ip6_msource fields at start. */ struct in6_msource { RB_ENTRY(ip6_msource) im6s_link; /* Common field */ struct in6_addr im6s_addr; /* Common field */ uint8_t im6sl_st[2]; /* state before/at commit */ }; #ifdef _KERNEL /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return (memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr))); } RB_PROTOTYPE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * IPv6 multicast PCB-layer group filter descriptor. */ struct in6_mfilter { struct ip6_msource_tree im6f_sources; /* source list for (S,G) */ u_long im6f_nsrc; /* # of source entries */ uint8_t im6f_st[2]; /* state before/at commit */ }; /* * Legacy KAME IPv6 multicast membership descriptor. */ struct in6_multi_mship { struct in6_multi *i6mm_maddr; LIST_ENTRY(in6_multi_mship) i6mm_chain; }; /* * IPv6 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When MLDv2 is active, in6m_timer is the response to group query timer. * The state-change timer in6m_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: in6m_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in6_multi { struct in6_addr in6m_addr; /* IPv6 multicast address */ struct ifnet *in6m_ifp; /* back pointer to ifnet */ struct ifmultiaddr *in6m_ifma; /* back pointer to ifmultiaddr */ u_int in6m_refcount; /* reference count */ u_int in6m_state; /* state of the membership */ u_int in6m_timer; /* MLD6 listener report timer */ /* New fields for MLDv2 follow. */ struct mld_ifsoftc *in6m_mli; /* MLD info */ SLIST_ENTRY(in6_multi) in6m_nrele; /* to-be-released by MLD */ struct ip6_msource_tree in6m_srcs; /* tree of sources */ u_long in6m_nsrc; /* # of tree entries */ struct mbufq in6m_scq; /* queue of pending * state-change packets */ struct timeval in6m_lastgsrtv; /* last G-S-R query */ uint16_t in6m_sctimer; /* state-change timer */ uint16_t in6m_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing MLDv2 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct in6m_st { uint16_t iss_fmode; /* MLD filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } in6m_st[2]; /* state at t0, t1 */ }; void in6m_disconnect(struct in6_multi *inm); extern int ifma6_restart; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) return (MCAST_EXCLUDE); else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } /* * Lock macros for IPv6 layer multicast address lists. IPv6 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in6_multi_list_mtx; extern struct sx in6_multi_sx; #define IN6_MULTI_LIST_LOCK() mtx_lock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_UNLOCK() mtx_unlock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_OWNED) #define IN6_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_NOTOWNED) #define IN6_MULTI_LOCK() sx_xlock(&in6_multi_sx) #define IN6_MULTI_UNLOCK() sx_xunlock(&in6_multi_sx) #define IN6_MULTI_LOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XLOCKED) #define IN6_MULTI_UNLOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XUNLOCKED) /* * Look up an in6_multi record for an IPv6 multicast address * on the interface ifp. * If no record found, return NULL. * * SMPng: The IN6_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. */ static __inline struct in6_multi * in6m_lookup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct ifmultiaddr *ifma; struct in6_multi *inm; inm = NULL; CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family == AF_INET6) { inm = (struct in6_multi *)ifma->ifma_protospec; if (inm == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, mcaddr)) break; inm = NULL; } } return (inm); } /* * Wrapper for in6m_lookup_locked(). * * SMPng: Assumes that neithr the IN6_MULTI_LOCK() or IF_ADDR_LOCK() are held. */ static __inline struct in6_multi * in6m_lookup(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct epoch_tracker et; struct in6_multi *inm; IN6_MULTI_LIST_LOCK(); NET_EPOCH_ENTER(et); inm = in6m_lookup_locked(ifp, mcaddr); NET_EPOCH_EXIT(et); IN6_MULTI_LIST_UNLOCK(); return (inm); } /* Acquire an in6_multi record. */ static __inline void in6m_acquire_locked(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK_ASSERT(); ++inm->in6m_refcount; } static __inline void in6m_acquire(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK(); in6m_acquire_locked(inm); IN6_MULTI_LIST_UNLOCK(); } static __inline void in6m_rele_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); IN6_MULTI_LIST_LOCK_ASSERT(); if (--inm->in6m_refcount == 0) { MPASS(inm->in6m_ifp == NULL); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(inmh, inm, in6m_nrele); } } struct ip6_moptions; struct sockopt; struct inpcbinfo; /* Multicast KPIs. */ int im6o_mc_filter(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); int in6_joingroup(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_joingroup_locked(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_leavegroup(struct in6_multi *, struct in6_mfilter *); int in6_leavegroup_locked(struct in6_multi *, struct in6_mfilter *); void in6m_clear_recorded(struct in6_multi *); void in6m_commit(struct in6_multi *); void in6m_print(const struct in6_multi *); int in6m_record_source(struct in6_multi *, const struct in6_addr *); void in6m_release_deferred(struct in6_multi *); void in6m_release_list_deferred(struct in6_multi_head *); +void in6m_release_wait(void); void ip6_freemoptions(struct ip6_moptions *); int ip6_getmoptions(struct inpcb *, struct sockopt *); int ip6_setmoptions(struct inpcb *, struct sockopt *); /* flags to in6_update_ifa */ #define IN6_IFAUPDATE_DADDELAY 0x1 /* first time to configure an address */ int in6_mask2len(struct in6_addr *, u_char *); int in6_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in6_update_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); void in6_prepare_ifra(struct in6_aliasreq *, const struct in6_addr *, const struct in6_addr *); void in6_purgeaddr(struct ifaddr *); int in6if_do_dad(struct ifnet *); void in6_savemkludge(struct in6_ifaddr *); void *in6_domifattach(struct ifnet *); void in6_domifdetach(struct ifnet *, void *); int in6_domifmtu(struct ifnet *); void in6_setmaxmtu(void); int in6_if2idlen(struct ifnet *); struct in6_ifaddr *in6ifa_ifpforlinklocal(struct ifnet *, int); struct in6_ifaddr *in6ifa_ifpwithaddr(struct ifnet *, const struct in6_addr *); struct in6_ifaddr *in6ifa_ifwithaddr(const struct in6_addr *, uint32_t); struct in6_ifaddr *in6ifa_llaonifp(struct ifnet *); int in6_addr2zoneid(struct ifnet *, struct in6_addr *, u_int32_t *); int in6_matchlen(struct in6_addr *, struct in6_addr *); int in6_are_prefix_equal(struct in6_addr *, struct in6_addr *, int); void in6_prefixlen2mask(struct in6_addr *, int); int in6_prefix_ioctl(struct socket *, u_long, caddr_t, struct ifnet *); int in6_prefix_add_ifid(int, struct in6_ifaddr *); void in6_prefix_remove_ifid(int, struct in6_ifaddr *); void in6_purgeprefix(struct ifnet *); int in6_is_addr_deprecated(struct sockaddr_in6 *); int in6_src_ioctl(u_long, caddr_t); void in6_newaddrmsg(struct in6_ifaddr *, int); /* * Extended API for IPv6 FIB support. */ struct mbuf *ip6_tryforward(struct mbuf *); void in6_rtredirect(struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct sockaddr *, u_int); int in6_rtrequest(int, struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct rtentry **, u_int); void in6_rtalloc(struct route_in6 *, u_int); void in6_rtalloc_ign(struct route_in6 *, u_long, u_int); struct rtentry *in6_rtalloc1(struct sockaddr *, int, u_long, u_int); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_VAR_H_ */