Index: head/sys/vm/vm_phys.c =================================================================== --- head/sys/vm/vm_phys.c (revision 343144) +++ head/sys/vm/vm_phys.c (revision 343145) @@ -1,1441 +1,1442 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2006 Rice University * Copyright (c) 2007 Alan L. Cox * All rights reserved. * * This software was developed for the FreeBSD Project by Alan L. Cox, * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Physical memory system implementation * * Any external functions defined by this module are only to be used by the * virtual memory system. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, "Too many physsegs."); #ifdef NUMA struct mem_affinity __read_mostly *mem_affinity; int __read_mostly *mem_locality; #endif int __read_mostly vm_ndomains = 1; domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1); struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX]; int __read_mostly vm_phys_nsegs; struct vm_phys_fictitious_seg; static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, struct vm_phys_fictitious_seg *); RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = RB_INITIALIZER(_vm_phys_fictitious_tree); struct vm_phys_fictitious_seg { RB_ENTRY(vm_phys_fictitious_seg) node; /* Memory region data */ vm_paddr_t start; vm_paddr_t end; vm_page_t first_page; }; RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, vm_phys_fictitious_cmp); static struct rwlock_padalign vm_phys_fictitious_reg_lock; MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); static struct vm_freelist __aligned(CACHE_LINE_SIZE) - vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; + vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL] + [VM_NFREEORDER_MAX]; static int __read_mostly vm_nfreelists; /* * Provides the mapping from VM_FREELIST_* to free list indices (flind). */ static int __read_mostly vm_freelist_to_flind[VM_NFREELIST]; CTASSERT(VM_FREELIST_DEFAULT == 0); #ifdef VM_FREELIST_DMA32 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32) #endif /* * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about * the ordering of the free list boundaries. */ #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY) CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY); #endif static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); #ifdef NUMA static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS); SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info"); #endif SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, &vm_ndomains, 0, "Number of physical memory domains available."); static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain); static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end); static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order, int tail); /* * Red-black tree helpers for vm fictitious range management. */ static inline int vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, struct vm_phys_fictitious_seg *range) { KASSERT(range->start != 0 && range->end != 0, ("Invalid range passed on search for vm_fictitious page")); if (p->start >= range->end) return (1); if (p->start < range->start) return (-1); return (0); } static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, struct vm_phys_fictitious_seg *p2) { /* Check if this is a search for a page */ if (p1->end == 0) return (vm_phys_fictitious_in_range(p1, p2)); KASSERT(p2->end != 0, ("Invalid range passed as second parameter to vm fictitious comparison")); /* Searching to add a new range */ if (p1->end <= p2->start) return (-1); if (p1->start >= p2->end) return (1); panic("Trying to add overlapping vm fictitious ranges:\n" "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); } int vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high) { #ifdef NUMA domainset_t mask; int i; if (vm_ndomains == 1 || mem_affinity == NULL) return (0); DOMAINSET_ZERO(&mask); /* * Check for any memory that overlaps low, high. */ for (i = 0; mem_affinity[i].end != 0; i++) if (mem_affinity[i].start <= high && mem_affinity[i].end >= low) DOMAINSET_SET(mem_affinity[i].domain, &mask); if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask)) return (prefer); if (DOMAINSET_EMPTY(&mask)) panic("vm_phys_domain_match: Impossible constraint"); return (DOMAINSET_FFS(&mask) - 1); #else return (0); #endif } /* * Outputs the state of the physical memory allocator, specifically, * the amount of physical memory in each free list. */ static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; struct vm_freelist *fl; int dom, error, flind, oind, pind; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); for (dom = 0; dom < vm_ndomains; dom++) { sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); for (flind = 0; flind < vm_nfreelists; flind++) { sbuf_printf(&sbuf, "\nFREE LIST %d:\n" "\n ORDER (SIZE) | NUMBER" "\n ", flind); for (pind = 0; pind < VM_NFREEPOOL; pind++) sbuf_printf(&sbuf, " | POOL %d", pind); sbuf_printf(&sbuf, "\n-- "); for (pind = 0; pind < VM_NFREEPOOL; pind++) sbuf_printf(&sbuf, "-- -- "); sbuf_printf(&sbuf, "--\n"); for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { sbuf_printf(&sbuf, " %2d (%6dK)", oind, 1 << (PAGE_SHIFT - 10 + oind)); for (pind = 0; pind < VM_NFREEPOOL; pind++) { fl = vm_phys_free_queues[dom][flind][pind]; sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt); } sbuf_printf(&sbuf, "\n"); } } } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } /* * Outputs the set of physical memory segments. */ static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; struct vm_phys_seg *seg; int error, segind; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); for (segind = 0; segind < vm_phys_nsegs; segind++) { sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); seg = &vm_phys_segs[segind]; sbuf_printf(&sbuf, "start: %#jx\n", (uintmax_t)seg->start); sbuf_printf(&sbuf, "end: %#jx\n", (uintmax_t)seg->end); sbuf_printf(&sbuf, "domain: %d\n", seg->domain); sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } /* * Return affinity, or -1 if there's no affinity information. */ int vm_phys_mem_affinity(int f, int t) { #ifdef NUMA if (mem_locality == NULL) return (-1); if (f >= vm_ndomains || t >= vm_ndomains) return (-1); return (mem_locality[f * vm_ndomains + t]); #else return (-1); #endif } #ifdef NUMA /* * Outputs the VM locality table. */ static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; int error, i, j; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_printf(&sbuf, "\n"); for (i = 0; i < vm_ndomains; i++) { sbuf_printf(&sbuf, "%d: ", i); for (j = 0; j < vm_ndomains; j++) { sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j)); } sbuf_printf(&sbuf, "\n"); } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } #endif static void vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) { m->order = order; if (tail) TAILQ_INSERT_TAIL(&fl[order].pl, m, listq); else TAILQ_INSERT_HEAD(&fl[order].pl, m, listq); fl[order].lcnt++; } static void vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) { TAILQ_REMOVE(&fl[order].pl, m, listq); fl[order].lcnt--; m->order = VM_NFREEORDER; } /* * Create a physical memory segment. */ static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain) { struct vm_phys_seg *seg; KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); KASSERT(domain >= 0 && domain < vm_ndomains, ("vm_phys_create_seg: invalid domain provided")); seg = &vm_phys_segs[vm_phys_nsegs++]; while (seg > vm_phys_segs && (seg - 1)->start >= end) { *seg = *(seg - 1); seg--; } seg->start = start; seg->end = end; seg->domain = domain; } static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end) { #ifdef NUMA int i; if (mem_affinity == NULL) { _vm_phys_create_seg(start, end, 0); return; } for (i = 0;; i++) { if (mem_affinity[i].end == 0) panic("Reached end of affinity info"); if (mem_affinity[i].end <= start) continue; if (mem_affinity[i].start > start) panic("No affinity info for start %jx", (uintmax_t)start); if (mem_affinity[i].end >= end) { _vm_phys_create_seg(start, end, mem_affinity[i].domain); break; } _vm_phys_create_seg(start, mem_affinity[i].end, mem_affinity[i].domain); start = mem_affinity[i].end; } #else _vm_phys_create_seg(start, end, 0); #endif } /* * Add a physical memory segment. */ void vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end) { vm_paddr_t paddr; KASSERT((start & PAGE_MASK) == 0, ("vm_phys_define_seg: start is not page aligned")); KASSERT((end & PAGE_MASK) == 0, ("vm_phys_define_seg: end is not page aligned")); /* * Split the physical memory segment if it spans two or more free * list boundaries. */ paddr = start; #ifdef VM_FREELIST_LOWMEM if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) { vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY); paddr = VM_LOWMEM_BOUNDARY; } #endif #ifdef VM_FREELIST_DMA32 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) { vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY); paddr = VM_DMA32_BOUNDARY; } #endif vm_phys_create_seg(paddr, end); } /* * Initialize the physical memory allocator. * * Requires that vm_page_array is initialized! */ void vm_phys_init(void) { struct vm_freelist *fl; struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg; u_long npages; int dom, flind, freelist, oind, pind, segind; /* * Compute the number of free lists, and generate the mapping from the * manifest constants VM_FREELIST_* to the free list indices. * * Initially, the entries of vm_freelist_to_flind[] are set to either * 0 or 1 to indicate which free lists should be created. */ npages = 0; for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { seg = &vm_phys_segs[segind]; #ifdef VM_FREELIST_LOWMEM if (seg->end <= VM_LOWMEM_BOUNDARY) vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1; else #endif #ifdef VM_FREELIST_DMA32 if ( #ifdef VM_DMA32_NPAGES_THRESHOLD /* * Create the DMA32 free list only if the amount of * physical memory above physical address 4G exceeds the * given threshold. */ npages > VM_DMA32_NPAGES_THRESHOLD && #endif seg->end <= VM_DMA32_BOUNDARY) vm_freelist_to_flind[VM_FREELIST_DMA32] = 1; else #endif { npages += atop(seg->end - seg->start); vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1; } } /* Change each entry into a running total of the free lists. */ for (freelist = 1; freelist < VM_NFREELIST; freelist++) { vm_freelist_to_flind[freelist] += vm_freelist_to_flind[freelist - 1]; } vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1]; KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists")); /* Change each entry into a free list index. */ for (freelist = 0; freelist < VM_NFREELIST; freelist++) vm_freelist_to_flind[freelist]--; /* * Initialize the first_page and free_queues fields of each physical * memory segment. */ #ifdef VM_PHYSSEG_SPARSE npages = 0; #endif for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; #ifdef VM_PHYSSEG_SPARSE seg->first_page = &vm_page_array[npages]; npages += atop(seg->end - seg->start); #else seg->first_page = PHYS_TO_VM_PAGE(seg->start); #endif #ifdef VM_FREELIST_LOWMEM if (seg->end <= VM_LOWMEM_BOUNDARY) { flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM]; KASSERT(flind >= 0, ("vm_phys_init: LOWMEM flind < 0")); } else #endif #ifdef VM_FREELIST_DMA32 if (seg->end <= VM_DMA32_BOUNDARY) { flind = vm_freelist_to_flind[VM_FREELIST_DMA32]; KASSERT(flind >= 0, ("vm_phys_init: DMA32 flind < 0")); } else #endif { flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT]; KASSERT(flind >= 0, ("vm_phys_init: DEFAULT flind < 0")); } seg->free_queues = &vm_phys_free_queues[seg->domain][flind]; } /* * Coalesce physical memory segments that are contiguous and share the * same per-domain free queues. */ prev_seg = vm_phys_segs; seg = &vm_phys_segs[1]; end_seg = &vm_phys_segs[vm_phys_nsegs]; while (seg < end_seg) { if (prev_seg->end == seg->start && prev_seg->free_queues == seg->free_queues) { prev_seg->end = seg->end; KASSERT(prev_seg->domain == seg->domain, ("vm_phys_init: free queues cannot span domains")); vm_phys_nsegs--; end_seg--; for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++) *tmp_seg = *(tmp_seg + 1); } else { prev_seg = seg; seg++; } } /* * Initialize the free queues. */ for (dom = 0; dom < vm_ndomains; dom++) { for (flind = 0; flind < vm_nfreelists; flind++) { for (pind = 0; pind < VM_NFREEPOOL; pind++) { fl = vm_phys_free_queues[dom][flind][pind]; for (oind = 0; oind < VM_NFREEORDER; oind++) TAILQ_INIT(&fl[oind].pl); } } } rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); } /* * Register info about the NUMA topology of the system. * * Invoked by platform-dependent code prior to vm_phys_init(). */ void vm_phys_register_domains(int ndomains, struct mem_affinity *affinity, int *locality) { #ifdef NUMA int d, i; /* * For now the only override value that we support is 1, which * effectively disables NUMA-awareness in the allocators. */ d = 0; TUNABLE_INT_FETCH("vm.numa.disabled", &d); if (d) ndomains = 1; if (ndomains > 1) { vm_ndomains = ndomains; mem_affinity = affinity; mem_locality = locality; } for (i = 0; i < vm_ndomains; i++) DOMAINSET_SET(i, &all_domains); #else (void)ndomains; (void)affinity; (void)locality; #endif } /* * Split a contiguous, power of two-sized set of physical pages. * * When this function is called by a page allocation function, the caller * should request insertion at the head unless the order [order, oind) queues * are known to be empty. The objective being to reduce the likelihood of * long-term fragmentation by promoting contemporaneous allocation and * (hopefully) deallocation. */ static __inline void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order, int tail) { vm_page_t m_buddy; while (oind > order) { oind--; m_buddy = &m[1 << oind]; KASSERT(m_buddy->order == VM_NFREEORDER, ("vm_phys_split_pages: page %p has unexpected order %d", m_buddy, m_buddy->order)); vm_freelist_add(fl, m_buddy, oind, tail); } } /* * Add the physical pages [m, m + npages) at the end of a power-of-two aligned * and sized set to the specified free list. * * When this function is called by a page allocation function, the caller * should request insertion at the head unless the lower-order queues are * known to be empty. The objective being to reduce the likelihood of long- * term fragmentation by promoting contemporaneous allocation and (hopefully) * deallocation. * * The physical page m's buddy must not be free. */ static void vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail) { u_int n; int order; KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0")); KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) & ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0, ("vm_phys_enq_range: page %p and npages %u are misaligned", m, npages)); do { KASSERT(m->order == VM_NFREEORDER, ("vm_phys_enq_range: page %p has unexpected order %d", m, m->order)); order = ffs(npages) - 1; KASSERT(order < VM_NFREEORDER, ("vm_phys_enq_range: order %d is out of range", order)); vm_freelist_add(fl, m, order, tail); n = 1 << order; m += n; npages -= n; } while (npages > 0); } /* * Tries to allocate the specified number of pages from the specified pool * within the specified domain. Returns the actual number of allocated pages * and a pointer to each page through the array ma[]. * * The returned pages may not be physically contiguous. However, in contrast * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0), * calling this function once to allocate the desired number of pages will * avoid wasted time in vm_phys_split_pages(). * * The free page queues for the specified domain must be locked. */ int vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[]) { struct vm_freelist *alt, *fl; vm_page_t m; int avail, end, flind, freelist, i, need, oind, pind; KASSERT(domain >= 0 && domain < vm_ndomains, ("vm_phys_alloc_npages: domain %d is out of range", domain)); KASSERT(pool < VM_NFREEPOOL, ("vm_phys_alloc_npages: pool %d is out of range", pool)); KASSERT(npages <= 1 << (VM_NFREEORDER - 1), ("vm_phys_alloc_npages: npages %d is out of range", npages)); vm_domain_free_assert_locked(VM_DOMAIN(domain)); i = 0; for (freelist = 0; freelist < VM_NFREELIST; freelist++) { flind = vm_freelist_to_flind[freelist]; if (flind < 0) continue; fl = vm_phys_free_queues[domain][flind][pool]; for (oind = 0; oind < VM_NFREEORDER; oind++) { while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) { vm_freelist_rem(fl, m, oind); avail = 1 << oind; need = imin(npages - i, avail); for (end = i + need; i < end;) ma[i++] = m++; if (need < avail) { /* * Return excess pages to fl. Its * order [0, oind) queues are empty. */ vm_phys_enq_range(m, avail - need, fl, 1); return (npages); } else if (i == npages) return (npages); } } for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { for (pind = 0; pind < VM_NFREEPOOL; pind++) { alt = vm_phys_free_queues[domain][flind][pind]; while ((m = TAILQ_FIRST(&alt[oind].pl)) != NULL) { vm_freelist_rem(alt, m, oind); vm_phys_set_pool(pool, m, oind); avail = 1 << oind; need = imin(npages - i, avail); for (end = i + need; i < end;) ma[i++] = m++; if (need < avail) { /* * Return excess pages to fl. * Its order [0, oind) queues * are empty. */ vm_phys_enq_range(m, avail - need, fl, 1); return (npages); } else if (i == npages) return (npages); } } } } return (i); } /* * Allocate a contiguous, power of two-sized set of physical pages * from the free lists. * * The free page queues must be locked. */ vm_page_t vm_phys_alloc_pages(int domain, int pool, int order) { vm_page_t m; int freelist; for (freelist = 0; freelist < VM_NFREELIST; freelist++) { m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order); if (m != NULL) return (m); } return (NULL); } /* * Allocate a contiguous, power of two-sized set of physical pages from the * specified free list. The free list must be specified using one of the * manifest constants VM_FREELIST_*. * * The free page queues must be locked. */ vm_page_t vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order) { struct vm_freelist *alt, *fl; vm_page_t m; int oind, pind, flind; KASSERT(domain >= 0 && domain < vm_ndomains, ("vm_phys_alloc_freelist_pages: domain %d is out of range", domain)); KASSERT(freelist < VM_NFREELIST, ("vm_phys_alloc_freelist_pages: freelist %d is out of range", freelist)); KASSERT(pool < VM_NFREEPOOL, ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); KASSERT(order < VM_NFREEORDER, ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); flind = vm_freelist_to_flind[freelist]; /* Check if freelist is present */ if (flind < 0) return (NULL); vm_domain_free_assert_locked(VM_DOMAIN(domain)); fl = &vm_phys_free_queues[domain][flind][pool][0]; for (oind = order; oind < VM_NFREEORDER; oind++) { m = TAILQ_FIRST(&fl[oind].pl); if (m != NULL) { vm_freelist_rem(fl, m, oind); /* The order [order, oind) queues are empty. */ vm_phys_split_pages(m, oind, fl, order, 1); return (m); } } /* * The given pool was empty. Find the largest * contiguous, power-of-two-sized set of pages in any * pool. Transfer these pages to the given pool, and * use them to satisfy the allocation. */ for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { for (pind = 0; pind < VM_NFREEPOOL; pind++) { alt = &vm_phys_free_queues[domain][flind][pind][0]; m = TAILQ_FIRST(&alt[oind].pl); if (m != NULL) { vm_freelist_rem(alt, m, oind); vm_phys_set_pool(pool, m, oind); /* The order [order, oind) queues are empty. */ vm_phys_split_pages(m, oind, fl, order, 1); return (m); } } } return (NULL); } /* * Find the vm_page corresponding to the given physical address. */ vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa) { struct vm_phys_seg *seg; int segind; for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; if (pa >= seg->start && pa < seg->end) return (&seg->first_page[atop(pa - seg->start)]); } return (NULL); } vm_page_t vm_phys_fictitious_to_vm_page(vm_paddr_t pa) { struct vm_phys_fictitious_seg tmp, *seg; vm_page_t m; m = NULL; tmp.start = pa; tmp.end = 0; rw_rlock(&vm_phys_fictitious_reg_lock); seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); rw_runlock(&vm_phys_fictitious_reg_lock); if (seg == NULL) return (NULL); m = &seg->first_page[atop(pa - seg->start)]; KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); return (m); } static inline void vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start, long page_count, vm_memattr_t memattr) { long i; bzero(range, page_count * sizeof(*range)); for (i = 0; i < page_count; i++) { vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr); range[i].oflags &= ~VPO_UNMANAGED; range[i].busy_lock = VPB_UNBUSIED; } } int vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, vm_memattr_t memattr) { struct vm_phys_fictitious_seg *seg; vm_page_t fp; long page_count; #ifdef VM_PHYSSEG_DENSE long pi, pe; long dpage_count; #endif KASSERT(start < end, ("Start of segment isn't less than end (start: %jx end: %jx)", (uintmax_t)start, (uintmax_t)end)); page_count = (end - start) / PAGE_SIZE; #ifdef VM_PHYSSEG_DENSE pi = atop(start); pe = atop(end); if (pi >= first_page && (pi - first_page) < vm_page_array_size) { fp = &vm_page_array[pi - first_page]; if ((pe - first_page) > vm_page_array_size) { /* * We have a segment that starts inside * of vm_page_array, but ends outside of it. * * Use vm_page_array pages for those that are * inside of the vm_page_array range, and * allocate the remaining ones. */ dpage_count = vm_page_array_size - (pi - first_page); vm_phys_fictitious_init_range(fp, start, dpage_count, memattr); page_count -= dpage_count; start += ptoa(dpage_count); goto alloc; } /* * We can allocate the full range from vm_page_array, * so there's no need to register the range in the tree. */ vm_phys_fictitious_init_range(fp, start, page_count, memattr); return (0); } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { /* * We have a segment that ends inside of vm_page_array, * but starts outside of it. */ fp = &vm_page_array[0]; dpage_count = pe - first_page; vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count, memattr); end -= ptoa(dpage_count); page_count -= dpage_count; goto alloc; } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { /* * Trying to register a fictitious range that expands before * and after vm_page_array. */ return (EINVAL); } else { alloc: #endif fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, M_WAITOK); #ifdef VM_PHYSSEG_DENSE } #endif vm_phys_fictitious_init_range(fp, start, page_count, memattr); seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); seg->start = start; seg->end = end; seg->first_page = fp; rw_wlock(&vm_phys_fictitious_reg_lock); RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); rw_wunlock(&vm_phys_fictitious_reg_lock); return (0); } void vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) { struct vm_phys_fictitious_seg *seg, tmp; #ifdef VM_PHYSSEG_DENSE long pi, pe; #endif KASSERT(start < end, ("Start of segment isn't less than end (start: %jx end: %jx)", (uintmax_t)start, (uintmax_t)end)); #ifdef VM_PHYSSEG_DENSE pi = atop(start); pe = atop(end); if (pi >= first_page && (pi - first_page) < vm_page_array_size) { if ((pe - first_page) <= vm_page_array_size) { /* * This segment was allocated using vm_page_array * only, there's nothing to do since those pages * were never added to the tree. */ return; } /* * We have a segment that starts inside * of vm_page_array, but ends outside of it. * * Calculate how many pages were added to the * tree and free them. */ start = ptoa(first_page + vm_page_array_size); } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { /* * We have a segment that ends inside of vm_page_array, * but starts outside of it. */ end = ptoa(first_page); } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { /* Since it's not possible to register such a range, panic. */ panic( "Unregistering not registered fictitious range [%#jx:%#jx]", (uintmax_t)start, (uintmax_t)end); } #endif tmp.start = start; tmp.end = 0; rw_wlock(&vm_phys_fictitious_reg_lock); seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); if (seg->start != start || seg->end != end) { rw_wunlock(&vm_phys_fictitious_reg_lock); panic( "Unregistering not registered fictitious range [%#jx:%#jx]", (uintmax_t)start, (uintmax_t)end); } RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); rw_wunlock(&vm_phys_fictitious_reg_lock); free(seg->first_page, M_FICT_PAGES); free(seg, M_FICT_PAGES); } /* * Free a contiguous, power of two-sized set of physical pages. * * The free page queues must be locked. */ void vm_phys_free_pages(vm_page_t m, int order) { struct vm_freelist *fl; struct vm_phys_seg *seg; vm_paddr_t pa; vm_page_t m_buddy; KASSERT(m->order == VM_NFREEORDER, ("vm_phys_free_pages: page %p has unexpected order %d", m, m->order)); KASSERT(m->pool < VM_NFREEPOOL, ("vm_phys_free_pages: page %p has unexpected pool %d", m, m->pool)); KASSERT(order < VM_NFREEORDER, ("vm_phys_free_pages: order %d is out of range", order)); seg = &vm_phys_segs[m->segind]; vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); if (order < VM_NFREEORDER - 1) { pa = VM_PAGE_TO_PHYS(m); do { pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); if (pa < seg->start || pa >= seg->end) break; m_buddy = &seg->first_page[atop(pa - seg->start)]; if (m_buddy->order != order) break; fl = (*seg->free_queues)[m_buddy->pool]; vm_freelist_rem(fl, m_buddy, order); if (m_buddy->pool != m->pool) vm_phys_set_pool(m->pool, m_buddy, order); order++; pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); m = &seg->first_page[atop(pa - seg->start)]; } while (order < VM_NFREEORDER - 1); } fl = (*seg->free_queues)[m->pool]; vm_freelist_add(fl, m, order, 1); } /* * Free a contiguous, arbitrarily sized set of physical pages. * * The free page queues must be locked. */ void vm_phys_free_contig(vm_page_t m, u_long npages) { u_int n; int order; /* * Avoid unnecessary coalescing by freeing the pages in the largest * possible power-of-two-sized subsets. */ vm_domain_free_assert_locked(vm_pagequeue_domain(m)); for (;; npages -= n) { /* * Unsigned "min" is used here so that "order" is assigned * "VM_NFREEORDER - 1" when "m"'s physical address is zero * or the low-order bits of its physical address are zero * because the size of a physical address exceeds the size of * a long. */ order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, VM_NFREEORDER - 1); n = 1 << order; if (npages < n) break; vm_phys_free_pages(m, order); m += n; } /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ for (; npages > 0; npages -= n) { order = flsl(npages) - 1; n = 1 << order; vm_phys_free_pages(m, order); m += n; } } /* * Scan physical memory between the specified addresses "low" and "high" for a * run of contiguous physical pages that satisfy the specified conditions, and * return the lowest page in the run. The specified "alignment" determines * the alignment of the lowest physical page in the run. If the specified * "boundary" is non-zero, then the run of physical pages cannot span a * physical address that is a multiple of "boundary". * * "npages" must be greater than zero. Both "alignment" and "boundary" must * be a power of two. */ vm_page_t vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, int options) { vm_paddr_t pa_end; vm_page_t m_end, m_run, m_start; struct vm_phys_seg *seg; int segind; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); if (low >= high) return (NULL); for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; if (seg->domain != domain) continue; if (seg->start >= high) break; if (low >= seg->end) continue; if (low <= seg->start) m_start = seg->first_page; else m_start = &seg->first_page[atop(low - seg->start)]; if (high < seg->end) pa_end = high; else pa_end = seg->end; if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages)) continue; m_end = &seg->first_page[atop(pa_end - seg->start)]; m_run = vm_page_scan_contig(npages, m_start, m_end, alignment, boundary, options); if (m_run != NULL) return (m_run); } return (NULL); } /* * Set the pool for a contiguous, power of two-sized set of physical pages. */ void vm_phys_set_pool(int pool, vm_page_t m, int order) { vm_page_t m_tmp; for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) m_tmp->pool = pool; } /* * Search for the given physical page "m" in the free lists. If the search * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return * FALSE, indicating that "m" is not in the free lists. * * The free page queues must be locked. */ boolean_t vm_phys_unfree_page(vm_page_t m) { struct vm_freelist *fl; struct vm_phys_seg *seg; vm_paddr_t pa, pa_half; vm_page_t m_set, m_tmp; int order; /* * First, find the contiguous, power of two-sized set of free * physical pages containing the given physical page "m" and * assign it to "m_set". */ seg = &vm_phys_segs[m->segind]; vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && order < VM_NFREEORDER - 1; ) { order++; pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); if (pa >= seg->start) m_set = &seg->first_page[atop(pa - seg->start)]; else return (FALSE); } if (m_set->order < order) return (FALSE); if (m_set->order == VM_NFREEORDER) return (FALSE); KASSERT(m_set->order < VM_NFREEORDER, ("vm_phys_unfree_page: page %p has unexpected order %d", m_set, m_set->order)); /* * Next, remove "m_set" from the free lists. Finally, extract * "m" from "m_set" using an iterative algorithm: While "m_set" * is larger than a page, shrink "m_set" by returning the half * of "m_set" that does not contain "m" to the free lists. */ fl = (*seg->free_queues)[m_set->pool]; order = m_set->order; vm_freelist_rem(fl, m_set, order); while (order > 0) { order--; pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); if (m->phys_addr < pa_half) m_tmp = &seg->first_page[atop(pa_half - seg->start)]; else { m_tmp = m_set; m_set = &seg->first_page[atop(pa_half - seg->start)]; } vm_freelist_add(fl, m_tmp, order, 0); } KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); return (TRUE); } /* * Allocate a contiguous set of physical pages of the given size * "npages" from the free lists. All of the physical pages must be at * or above the given physical address "low" and below the given * physical address "high". The given value "alignment" determines the * alignment of the first physical page in the set. If the given value * "boundary" is non-zero, then the set of physical pages cannot cross * any physical address boundary that is a multiple of that value. Both * "alignment" and "boundary" must be a power of two. */ vm_page_t vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { vm_paddr_t pa_end, pa_start; vm_page_t m_run; struct vm_phys_seg *seg; int segind; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); vm_domain_free_assert_locked(VM_DOMAIN(domain)); if (low >= high) return (NULL); m_run = NULL; for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { seg = &vm_phys_segs[segind]; if (seg->start >= high || seg->domain != domain) continue; if (low >= seg->end) break; if (low <= seg->start) pa_start = seg->start; else pa_start = low; if (high < seg->end) pa_end = high; else pa_end = seg->end; if (pa_end - pa_start < ptoa(npages)) continue; m_run = vm_phys_alloc_seg_contig(seg, npages, low, high, alignment, boundary); if (m_run != NULL) break; } return (m_run); } /* * Allocate a run of contiguous physical pages from the free list for the * specified segment. */ static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { struct vm_freelist *fl; vm_paddr_t pa, pa_end, size; vm_page_t m, m_ret; u_long npages_end; int oind, order, pind; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); /* Compute the queue that is the best fit for npages. */ order = flsl(npages - 1); /* Search for a run satisfying the specified conditions. */ size = npages << PAGE_SHIFT; for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { for (pind = 0; pind < VM_NFREEPOOL; pind++) { fl = (*seg->free_queues)[pind]; TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) { /* * Is the size of this allocation request * larger than the largest block size? */ if (order >= VM_NFREEORDER) { /* * Determine if a sufficient number of * subsequent blocks to satisfy the * allocation request are free. */ pa = VM_PAGE_TO_PHYS(m_ret); pa_end = pa + size; if (pa_end < pa) continue; for (;;) { pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); if (pa >= pa_end || pa < seg->start || pa >= seg->end) break; m = &seg->first_page[atop(pa - seg->start)]; if (m->order != VM_NFREEORDER - 1) break; } /* If not, go to the next block. */ if (pa < pa_end) continue; } /* * Determine if the blocks are within the * given range, satisfy the given alignment, * and do not cross the given boundary. */ pa = VM_PAGE_TO_PHYS(m_ret); pa_end = pa + size; if (pa >= low && pa_end <= high && (pa & (alignment - 1)) == 0 && rounddown2(pa ^ (pa_end - 1), boundary) == 0) goto done; } } } return (NULL); done: for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { fl = (*seg->free_queues)[m->pool]; vm_freelist_rem(fl, m, oind); if (m->pool != VM_FREEPOOL_DEFAULT) vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind); } /* Return excess pages to the free lists. */ npages_end = roundup2(npages, 1 << oind); if (npages < npages_end) { fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT]; vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0); } return (m_ret); } #ifdef DDB /* * Show the number of physical pages in each of the free lists. */ DB_SHOW_COMMAND(freepages, db_show_freepages) { struct vm_freelist *fl; int flind, oind, pind, dom; for (dom = 0; dom < vm_ndomains; dom++) { db_printf("DOMAIN: %d\n", dom); for (flind = 0; flind < vm_nfreelists; flind++) { db_printf("FREE LIST %d:\n" "\n ORDER (SIZE) | NUMBER" "\n ", flind); for (pind = 0; pind < VM_NFREEPOOL; pind++) db_printf(" | POOL %d", pind); db_printf("\n-- "); for (pind = 0; pind < VM_NFREEPOOL; pind++) db_printf("-- -- "); db_printf("--\n"); for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { db_printf(" %2.2d (%6.6dK)", oind, 1 << (PAGE_SHIFT - 10 + oind)); for (pind = 0; pind < VM_NFREEPOOL; pind++) { fl = vm_phys_free_queues[dom][flind][pind]; db_printf(" | %6.6d", fl[oind].lcnt); } db_printf("\n"); } db_printf("\n"); } db_printf("\n"); } } #endif Index: head/sys/vm/vm_phys.h =================================================================== --- head/sys/vm/vm_phys.h (revision 343144) +++ head/sys/vm/vm_phys.h (revision 343145) @@ -1,123 +1,127 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2006 Rice University * Copyright (c) 2007 Alan L. Cox * All rights reserved. * * This software was developed for the FreeBSD Project by Alan L. Cox, * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Physical memory system definitions */ #ifndef _VM_PHYS_H_ #define _VM_PHYS_H_ #ifdef _KERNEL +#ifndef VM_NFREEORDER_MAX +#define VM_NFREEORDER_MAX VM_NFREEORDER +#endif + /* Domains must be dense (non-sparse) and zero-based. */ struct mem_affinity { vm_paddr_t start; vm_paddr_t end; int domain; }; #ifdef NUMA extern struct mem_affinity *mem_affinity; extern int *mem_locality; #endif struct vm_freelist { struct pglist pl; int lcnt; }; struct vm_phys_seg { vm_paddr_t start; vm_paddr_t end; vm_page_t first_page; int domain; - struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER]; + struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX]; }; extern struct vm_phys_seg vm_phys_segs[]; extern int vm_phys_nsegs; /* * The following functions are only to be used by the virtual memory system. */ void vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end); vm_page_t vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); vm_page_t vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order); int vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[]); vm_page_t vm_phys_alloc_pages(int domain, int pool, int order); int vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high); int vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, vm_memattr_t memattr); void vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end); vm_page_t vm_phys_fictitious_to_vm_page(vm_paddr_t pa); void vm_phys_free_contig(vm_page_t m, u_long npages); void vm_phys_free_pages(vm_page_t m, int order); void vm_phys_init(void); vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa); void vm_phys_register_domains(int ndomains, struct mem_affinity *affinity, int *locality); vm_page_t vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, int options); void vm_phys_set_pool(int pool, vm_page_t m, int order); boolean_t vm_phys_unfree_page(vm_page_t m); int vm_phys_mem_affinity(int f, int t); /* * * vm_phys_domain: * * Return the index of the domain the page belongs to. */ static inline int vm_phys_domain(vm_page_t m) { #ifdef NUMA int domn, segind; /* XXXKIB try to assert that the page is managed */ segind = m->segind; KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m)); domn = vm_phys_segs[segind].domain; KASSERT(domn < vm_ndomains, ("domain %d m %p", domn, m)); return (domn); #else return (0); #endif } #endif /* _KERNEL */ #endif /* !_VM_PHYS_H_ */ Index: head/sys/vm/vm_reserv.c =================================================================== --- head/sys/vm/vm_reserv.c (revision 343144) +++ head/sys/vm/vm_reserv.c (revision 343145) @@ -1,1503 +1,1509 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2006 Rice University * Copyright (c) 2007-2011 Alan L. Cox * All rights reserved. * * This software was developed for the FreeBSD Project by Alan L. Cox, * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Superpage reservation management module * * Any external functions defined by this module are only to be used by the * virtual memory system. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The reservation system supports the speculative allocation of large physical * pages ("superpages"). Speculative allocation enables the fully automatic * utilization of superpages by the virtual memory system. In other words, no * programmatic directives are required to use superpages. */ #if VM_NRESERVLEVEL > 0 +#ifndef VM_LEVEL_0_ORDER_MAX +#define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER +#endif + /* * The number of small pages that are contained in a level 0 reservation */ #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) +#define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) /* * The number of bits by which a physical address is shifted to obtain the * reservation number */ #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) /* * The size of a level 0 reservation in bytes */ #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) /* * Computes the index of the small page underlying the given (object, pindex) * within the reservation's array of small pages. */ #define VM_RESERV_INDEX(object, pindex) \ (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) /* * The size of a population map entry */ typedef u_long popmap_t; /* * The number of bits in a population map entry */ #define NBPOPMAP (NBBY * sizeof(popmap_t)) /* * The number of population map entries in a reservation */ #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) +#define NPOPMAP_MAX howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP) /* * Number of elapsed ticks before we update the LRU queue position. Used * to reduce contention and churn on the list. */ #define PARTPOPSLOP 1 /* * Clear a bit in the population map. */ static __inline void popmap_clear(popmap_t popmap[], int i) { popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); } /* * Set a bit in the population map. */ static __inline void popmap_set(popmap_t popmap[], int i) { popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); } /* * Is a bit in the population map clear? */ static __inline boolean_t popmap_is_clear(popmap_t popmap[], int i) { return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); } /* * Is a bit in the population map set? */ static __inline boolean_t popmap_is_set(popmap_t popmap[], int i) { return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); } /* * The reservation structure * * A reservation structure is constructed whenever a large physical page is * speculatively allocated to an object. The reservation provides the small * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets * within that object. The reservation's "popcnt" tracks the number of these * small physical pages that are in use at any given time. When and if the * reservation is not fully utilized, it appears in the queue of partially * populated reservations. The reservation always appears on the containing * object's list of reservations. * * A partially populated reservation can be broken and reclaimed at any time. * * r - vm_reserv_lock * d - vm_reserv_domain_lock * o - vm_reserv_object_lock * c - constant after boot */ struct vm_reserv { struct mtx lock; /* reservation lock. */ TAILQ_ENTRY(vm_reserv) partpopq; /* (d) per-domain queue. */ LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ vm_object_t object; /* (o, r) containing object */ vm_pindex_t pindex; /* (o, r) offset in object */ vm_page_t pages; /* (c) first page */ uint16_t domain; /* (c) NUMA domain. */ uint16_t popcnt; /* (r) # of pages in use */ int lasttick; /* (r) last pop update tick. */ char inpartpopq; /* (d) */ - popmap_t popmap[NPOPMAP]; /* (r) bit vector, used pages */ + popmap_t popmap[NPOPMAP_MAX]; /* (r) bit vector, used pages */ }; #define vm_reserv_lockptr(rv) (&(rv)->lock) #define vm_reserv_assert_locked(rv) \ mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM]; #define vm_reserv_domain_lockptr(d) &vm_reserv_domain_locks[(d)] #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) /* * The reservation array * * This array is analoguous in function to vm_page_array. It differs in the * respect that it may contain a greater number of useful reservation * structures than there are (physical) superpages. These "invalid" * reservation structures exist to trade-off space for time in the * implementation of vm_reserv_from_page(). Invalid reservation structures are * distinguishable from "valid" reservation structures by inspecting the * reservation's "pages" field. Invalid reservation structures have a NULL * "pages" field. * * vm_reserv_from_page() maps a small (physical) page to an element of this * array by computing a physical reservation number from the page's physical * address. The physical reservation number is used as the array index. * * An "active" reservation is a valid reservation structure that has a non-NULL * "object" field and a non-zero "popcnt" field. In other words, every active * reservation belongs to a particular object. Moreover, every active * reservation has an entry in the containing object's list of reservations. */ static vm_reserv_t vm_reserv_array; /* * The partially populated reservation queue * * This queue enables the fast recovery of an unused free small page from a * partially populated reservation. The reservation at the head of this queue * is the least recently changed, partially populated reservation. * * Access to this queue is synchronized by the free page queue lock. */ static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM]; static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); static counter_u64_t vm_reserv_broken = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, &vm_reserv_broken, "Cumulative number of broken reservations"); static counter_u64_t vm_reserv_freed = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, &vm_reserv_freed, "Cumulative number of freed reservations"); static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); /* * The object lock pool is used to synchronize the rvq. We can not use a * pool mutex because it is required before malloc works. * * The "hash" function could be made faster without divide and modulo. */ #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; #define vm_reserv_object_lock_idx(object) \ (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) #define vm_reserv_object_lock_ptr(object) \ &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] #define vm_reserv_object_lock(object) \ mtx_lock(vm_reserv_object_lock_ptr((object))) #define vm_reserv_object_unlock(object) \ mtx_unlock(vm_reserv_object_lock_ptr((object))) static void vm_reserv_break(vm_reserv_t rv); static void vm_reserv_depopulate(vm_reserv_t rv, int index); static vm_reserv_t vm_reserv_from_page(vm_page_t m); static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex); static void vm_reserv_populate(vm_reserv_t rv, int index); static void vm_reserv_reclaim(vm_reserv_t rv); /* * Returns the current number of full reservations. * * Since the number of full reservations is computed without acquiring the * free page queue lock, the returned value may be inexact. */ static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) { vm_paddr_t paddr; struct vm_phys_seg *seg; vm_reserv_t rv; int fullpop, segind; fullpop = 0; for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); while (paddr + VM_LEVEL_0_SIZE <= seg->end) { rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; paddr += VM_LEVEL_0_SIZE; } } return (sysctl_handle_int(oidp, &fullpop, 0, req)); } /* * Describes the current state of the partially populated reservation queue. */ static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; vm_reserv_t rv; int counter, error, domain, level, unused_pages; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); for (domain = 0; domain < vm_ndomains; domain++) { for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { counter = 0; unused_pages = 0; vm_reserv_domain_lock(domain); TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) { counter++; unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; } vm_reserv_domain_unlock(domain); sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", domain, level, unused_pages * ((int)PAGE_SIZE / 1024), counter); } } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } /* * Remove a reservation from the object's objq. */ static void vm_reserv_remove(vm_reserv_t rv) { vm_object_t object; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_remove: reserv %p is free", rv)); KASSERT(!rv->inpartpopq, ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); object = rv->object; vm_reserv_object_lock(object); LIST_REMOVE(rv, objq); rv->object = NULL; vm_reserv_object_unlock(object); } /* * Insert a new reservation into the object's objq. */ static void vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) { int i; vm_reserv_assert_locked(rv); CTR6(KTR_VM, "%s: rv %p(%p) object %p new %p popcnt %d", __FUNCTION__, rv, rv->pages, rv->object, object, rv->popcnt); KASSERT(rv->object == NULL, ("vm_reserv_insert: reserv %p isn't free", rv)); KASSERT(rv->popcnt == 0, ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); KASSERT(!rv->inpartpopq, ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); for (i = 0; i < NPOPMAP; i++) KASSERT(rv->popmap[i] == 0, ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); vm_reserv_object_lock(object); rv->pindex = pindex; rv->object = object; rv->lasttick = ticks; LIST_INSERT_HEAD(&object->rvq, rv, objq); vm_reserv_object_unlock(object); } /* * Reduces the given reservation's population count. If the population count * becomes zero, the reservation is destroyed. Additionally, moves the * reservation to the tail of the partially populated reservation queue if the * population count is non-zero. */ static void vm_reserv_depopulate(vm_reserv_t rv, int index) { struct vm_domain *vmd; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_depopulate: reserv %p is free", rv)); KASSERT(popmap_is_set(rv->popmap, index), ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, index)); KASSERT(rv->popcnt > 0, ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", rv, rv->domain)); if (rv->popcnt == VM_LEVEL_0_NPAGES) { KASSERT(rv->pages->psind == 1, ("vm_reserv_depopulate: reserv %p is already demoted", rv)); rv->pages->psind = 0; } popmap_clear(rv->popmap, index); rv->popcnt--; if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || rv->popcnt == 0) { vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } if (rv->popcnt != 0) { rv->inpartpopq = TRUE; TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); } vm_reserv_domain_unlock(rv->domain); rv->lasttick = ticks; } vmd = VM_DOMAIN(rv->domain); if (rv->popcnt == 0) { vm_reserv_remove(rv); vm_domain_free_lock(vmd); vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); vm_domain_free_unlock(vmd); counter_u64_add(vm_reserv_freed, 1); } vm_domain_freecnt_inc(vmd, 1); } /* * Returns the reservation to which the given page might belong. */ static __inline vm_reserv_t vm_reserv_from_page(vm_page_t m) { return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); } /* * Returns an existing reservation or NULL and initialized successor pointer. */ static vm_reserv_t vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred, vm_page_t *msuccp) { vm_reserv_t rv; vm_page_t msucc; msucc = NULL; if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_reserv_from_object: object doesn't contain mpred")); KASSERT(mpred->pindex < pindex, ("vm_reserv_from_object: mpred doesn't precede pindex")); rv = vm_reserv_from_page(mpred); if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) goto found; msucc = TAILQ_NEXT(mpred, listq); } else msucc = TAILQ_FIRST(&object->memq); if (msucc != NULL) { KASSERT(msucc->pindex > pindex, ("vm_reserv_from_object: msucc doesn't succeed pindex")); rv = vm_reserv_from_page(msucc); if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) goto found; } rv = NULL; found: *msuccp = msucc; return (rv); } /* * Returns TRUE if the given reservation contains the given page index and * FALSE otherwise. */ static __inline boolean_t vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) { return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); } /* * Increases the given reservation's population count. Moves the reservation * to the tail of the partially populated reservation queue. * * The free page queue must be locked. */ static void vm_reserv_populate(vm_reserv_t rv, int index) { vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); KASSERT(rv->object != NULL, ("vm_reserv_populate: reserv %p is free", rv)); KASSERT(popmap_is_clear(rv->popmap, index), ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, index)); KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, ("vm_reserv_populate: reserv %p is already full", rv)); KASSERT(rv->pages->psind == 0, ("vm_reserv_populate: reserv %p is already promoted", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_populate: reserv %p's domain is corrupted %d", rv, rv->domain)); popmap_set(rv->popmap, index); rv->popcnt++; if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) return; rv->lasttick = ticks; vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } if (rv->popcnt < VM_LEVEL_0_NPAGES) { rv->inpartpopq = TRUE; TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); } else { KASSERT(rv->pages->psind == 0, ("vm_reserv_populate: reserv %p is already promoted", rv)); rv->pages->psind = 1; } vm_reserv_domain_unlock(rv->domain); } /* * Attempts to allocate a contiguous set of physical pages from existing * reservations. See vm_reserv_alloc_contig() for a description of the * function's parameters. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object must be locked. */ vm_page_t vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_page_t mpred) { struct vm_domain *vmd; vm_paddr_t pa, size; vm_page_t m, msucc; vm_reserv_t rv; int i, index; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex + npages > object->size || object->resident_page_count == 0) return (NULL); /* * All reservations of a particular size have the same alignment. * Assuming that the first page is allocated from a reservation, the * least significant bits of its physical address can be determined * from its offset from the beginning of the reservation and the size * of the reservation. * * Could the specified index within a reservation of the smallest * possible size satisfy the alignment and boundary requirements? */ pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; if ((pa & (alignment - 1)) != 0) return (NULL); size = npages << PAGE_SHIFT; if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) return (NULL); /* * Look for an existing reservation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv == NULL) return (NULL); KASSERT(object != kernel_object || rv->domain == domain, ("vm_reserv_extend_contig: Domain mismatch from reservation.")); index = VM_RESERV_INDEX(object, pindex); /* Does the allocation fit within the reservation? */ if (index + npages > VM_LEVEL_0_NPAGES) return (NULL); domain = rv->domain; vmd = VM_DOMAIN(domain); vm_reserv_lock(rv); if (rv->object != object) goto out; m = &rv->pages[index]; pa = VM_PAGE_TO_PHYS(m); if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) goto out; /* Handle vm_page_rename(m, new_object, ...). */ for (i = 0; i < npages; i++) { if (popmap_is_set(rv->popmap, index + i)) goto out; } if (!vm_domain_allocate(vmd, req, npages)) goto out; for (i = 0; i < npages; i++) vm_reserv_populate(rv, index + i); vm_reserv_unlock(rv); return (m); out: vm_reserv_unlock(rv); return (NULL); } /* * Allocates a contiguous set of physical pages of the given size "npages" * from newly created reservations. All of the physical pages * must be at or above the given physical address "low" and below the given * physical address "high". The given value "alignment" determines the * alignment of the first physical page in the set. If the given value * "boundary" is non-zero, then the set of physical pages cannot cross any * physical address boundary that is a multiple of that value. Both * "alignment" and "boundary" must be a power of two. * * Callers should first invoke vm_reserv_extend_contig() to attempt an * allocation from existing reservations. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object and free page queue must be locked. */ vm_page_t vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_page_t mpred) { struct vm_domain *vmd; vm_paddr_t pa, size; vm_page_t m, m_ret, msucc; vm_pindex_t first, leftcap, rightcap; vm_reserv_t rv; u_long allocpages, maxpages, minpages; int i, index, n; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex + npages > object->size) return (NULL); /* * All reservations of a particular size have the same alignment. * Assuming that the first page is allocated from a reservation, the * least significant bits of its physical address can be determined * from its offset from the beginning of the reservation and the size * of the reservation. * * Could the specified index within a reservation of the smallest * possible size satisfy the alignment and boundary requirements? */ pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; if ((pa & (alignment - 1)) != 0) return (NULL); size = npages << PAGE_SHIFT; if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) return (NULL); /* * Callers should've extended an existing reservation prior to * calling this function. If a reservation exists it is * incompatible with the allocation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv != NULL) return (NULL); /* * Could at least one reservation fit between the first index to the * left that can be used ("leftcap") and the first index to the right * that cannot be used ("rightcap")? * * We must synchronize with the reserv object lock to protect the * pindex/object of the resulting reservations against rename while * we are inspecting. */ first = pindex - VM_RESERV_INDEX(object, pindex); minpages = VM_RESERV_INDEX(object, pindex) + npages; maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); allocpages = maxpages; vm_reserv_object_lock(object); if (mpred != NULL) { if ((rv = vm_reserv_from_page(mpred))->object != object) leftcap = mpred->pindex + 1; else leftcap = rv->pindex + VM_LEVEL_0_NPAGES; if (leftcap > first) { vm_reserv_object_unlock(object); return (NULL); } } if (msucc != NULL) { if ((rv = vm_reserv_from_page(msucc))->object != object) rightcap = msucc->pindex; else rightcap = rv->pindex; if (first + maxpages > rightcap) { if (maxpages == VM_LEVEL_0_NPAGES) { vm_reserv_object_unlock(object); return (NULL); } /* * At least one reservation will fit between "leftcap" * and "rightcap". However, a reservation for the * last of the requested pages will not fit. Reduce * the size of the upcoming allocation accordingly. */ allocpages = minpages; } } vm_reserv_object_unlock(object); /* * Would the last new reservation extend past the end of the object? */ if (first + maxpages > object->size) { /* * Don't allocate the last new reservation if the object is a * vnode or backed by another object that is a vnode. */ if (object->type == OBJT_VNODE || (object->backing_object != NULL && object->backing_object->type == OBJT_VNODE)) { if (maxpages == VM_LEVEL_0_NPAGES) return (NULL); allocpages = minpages; } /* Speculate that the object may grow. */ } /* * Allocate the physical pages. The alignment and boundary specified * for this allocation may be different from the alignment and * boundary specified for the requested pages. For instance, the * specified index may not be the first page within the first new * reservation. */ m = NULL; vmd = VM_DOMAIN(domain); if (vm_domain_allocate(vmd, req, npages)) { vm_domain_free_lock(vmd); m = vm_phys_alloc_contig(domain, allocpages, low, high, ulmax(alignment, VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); vm_domain_free_unlock(vmd); if (m == NULL) { vm_domain_freecnt_inc(vmd, npages); return (NULL); } } else return (NULL); KASSERT(vm_phys_domain(m) == domain, ("vm_reserv_alloc_contig: Page domain does not match requested.")); /* * The allocated physical pages always begin at a reservation * boundary, but they do not always end at a reservation boundary. * Initialize every reservation that is completely covered by the * allocated physical pages. */ m_ret = NULL; index = VM_RESERV_INDEX(object, pindex); do { rv = vm_reserv_from_page(m); KASSERT(rv->pages == m, ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", rv)); vm_reserv_lock(rv); vm_reserv_insert(rv, object, first); n = ulmin(VM_LEVEL_0_NPAGES - index, npages); for (i = 0; i < n; i++) vm_reserv_populate(rv, index + i); npages -= n; if (m_ret == NULL) { m_ret = &rv->pages[index]; index = 0; } vm_reserv_unlock(rv); m += VM_LEVEL_0_NPAGES; first += VM_LEVEL_0_NPAGES; allocpages -= VM_LEVEL_0_NPAGES; } while (allocpages >= VM_LEVEL_0_NPAGES); return (m_ret); } /* * Attempts to extend an existing reservation and allocate the page to the * object. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object must be locked. */ vm_page_t vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain, vm_page_t mpred) { struct vm_domain *vmd; vm_page_t m, msucc; vm_reserv_t rv; int index; VM_OBJECT_ASSERT_WLOCKED(object); /* * Could a reservation currently exist? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex >= object->size || object->resident_page_count == 0) return (NULL); /* * Look for an existing reservation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv == NULL) return (NULL); KASSERT(object != kernel_object || rv->domain == domain, ("vm_reserv_extend: Domain mismatch from reservation.")); domain = rv->domain; vmd = VM_DOMAIN(domain); index = VM_RESERV_INDEX(object, pindex); m = &rv->pages[index]; vm_reserv_lock(rv); /* Handle reclaim race. */ if (rv->object != object || /* Handle vm_page_rename(m, new_object, ...). */ popmap_is_set(rv->popmap, index)) { m = NULL; goto out; } if (vm_domain_allocate(vmd, req, 1) == 0) m = NULL; else vm_reserv_populate(rv, index); out: vm_reserv_unlock(rv); return (m); } /* * Attempts to allocate a new reservation for the object, and allocates a * page from that reservation. Callers should first invoke vm_reserv_extend() * to attempt an allocation from an existing reservation. * * The page "mpred" must immediately precede the offset "pindex" within the * specified object. * * The object and free page queue must be locked. */ vm_page_t vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain, vm_page_t mpred) { struct vm_domain *vmd; vm_page_t m, msucc; vm_pindex_t first, leftcap, rightcap; vm_reserv_t rv; int index; VM_OBJECT_ASSERT_WLOCKED(object); /* * Is a reservation fundamentally impossible? */ if (pindex < VM_RESERV_INDEX(object, pindex) || pindex >= object->size) return (NULL); /* * Callers should've extended an existing reservation prior to * calling this function. If a reservation exists it is * incompatible with the allocation. */ rv = vm_reserv_from_object(object, pindex, mpred, &msucc); if (rv != NULL) return (NULL); /* * Could a reservation fit between the first index to the left that * can be used and the first index to the right that cannot be used? * * We must synchronize with the reserv object lock to protect the * pindex/object of the resulting reservations against rename while * we are inspecting. */ first = pindex - VM_RESERV_INDEX(object, pindex); vm_reserv_object_lock(object); if (mpred != NULL) { if ((rv = vm_reserv_from_page(mpred))->object != object) leftcap = mpred->pindex + 1; else leftcap = rv->pindex + VM_LEVEL_0_NPAGES; if (leftcap > first) { vm_reserv_object_unlock(object); return (NULL); } } if (msucc != NULL) { if ((rv = vm_reserv_from_page(msucc))->object != object) rightcap = msucc->pindex; else rightcap = rv->pindex; if (first + VM_LEVEL_0_NPAGES > rightcap) { vm_reserv_object_unlock(object); return (NULL); } } vm_reserv_object_unlock(object); /* * Would a new reservation extend past the end of the object? */ if (first + VM_LEVEL_0_NPAGES > object->size) { /* * Don't allocate a new reservation if the object is a vnode or * backed by another object that is a vnode. */ if (object->type == OBJT_VNODE || (object->backing_object != NULL && object->backing_object->type == OBJT_VNODE)) return (NULL); /* Speculate that the object may grow. */ } /* * Allocate and populate the new reservation. */ m = NULL; vmd = VM_DOMAIN(domain); if (vm_domain_allocate(vmd, req, 1)) { vm_domain_free_lock(vmd); m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); vm_domain_free_unlock(vmd); if (m == NULL) { vm_domain_freecnt_inc(vmd, 1); return (NULL); } } else return (NULL); rv = vm_reserv_from_page(m); vm_reserv_lock(rv); KASSERT(rv->pages == m, ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); vm_reserv_insert(rv, object, first); index = VM_RESERV_INDEX(object, pindex); vm_reserv_populate(rv, index); vm_reserv_unlock(rv); return (&rv->pages[index]); } /* * Breaks the given reservation. All free pages in the reservation * are returned to the physical memory allocator. The reservation's * population count and map are reset to their initial state. * * The given reservation must not be in the partially populated reservation * queue. The free page queue lock must be held. */ static void vm_reserv_break(vm_reserv_t rv) { int begin_zeroes, hi, i, lo; vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); vm_reserv_remove(rv); rv->pages->psind = 0; i = hi = 0; do { /* Find the next 0 bit. Any previous 0 bits are < "hi". */ lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); if (lo == 0) { /* Redundantly clears bits < "hi". */ rv->popmap[i] = 0; rv->popcnt -= NBPOPMAP - hi; while (++i < NPOPMAP) { lo = ffsl(~rv->popmap[i]); if (lo == 0) { rv->popmap[i] = 0; rv->popcnt -= NBPOPMAP; } else break; } if (i == NPOPMAP) break; hi = 0; } KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); /* Convert from ffsl() to ordinary bit numbering. */ lo--; if (lo > 0) { /* Redundantly clears bits < "hi". */ rv->popmap[i] &= ~((1UL << lo) - 1); rv->popcnt -= lo - hi; } begin_zeroes = NBPOPMAP * i + lo; /* Find the next 1 bit. */ do hi = ffsl(rv->popmap[i]); while (hi == 0 && ++i < NPOPMAP); if (i != NPOPMAP) /* Convert from ffsl() to ordinary bit numbering. */ hi--; vm_domain_free_lock(VM_DOMAIN(rv->domain)); vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + hi - begin_zeroes); vm_domain_free_unlock(VM_DOMAIN(rv->domain)); } while (i < NPOPMAP); KASSERT(rv->popcnt == 0, ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); counter_u64_add(vm_reserv_broken, 1); } /* * Breaks all reservations belonging to the given object. */ void vm_reserv_break_all(vm_object_t object) { vm_reserv_t rv; /* * This access of object->rvq is unsynchronized so that the * object rvq lock can nest after the domain_free lock. We * must check for races in the results. However, the object * lock prevents new additions, so we are guaranteed that when * it returns NULL the object is properly empty. */ while ((rv = LIST_FIRST(&object->rvq)) != NULL) { vm_reserv_lock(rv); /* Reclaim race. */ if (rv->object != object) { vm_reserv_unlock(rv); continue; } vm_reserv_domain_lock(rv->domain); if (rv->inpartpopq) { TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; } vm_reserv_domain_unlock(rv->domain); vm_reserv_break(rv); vm_reserv_unlock(rv); } } /* * Frees the given page if it belongs to a reservation. Returns TRUE if the * page is freed and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_free_page(vm_page_t m) { vm_reserv_t rv; boolean_t ret; rv = vm_reserv_from_page(m); if (rv->object == NULL) return (FALSE); vm_reserv_lock(rv); /* Re-validate after lock. */ if (rv->object != NULL) { vm_reserv_depopulate(rv, m - rv->pages); ret = TRUE; } else ret = FALSE; vm_reserv_unlock(rv); return (ret); } /* * Initializes the reservation management system. Specifically, initializes * the reservation array. * * Requires that vm_page_array and first_page are initialized! */ void vm_reserv_init(void) { vm_paddr_t paddr; struct vm_phys_seg *seg; struct vm_reserv *rv; int i, segind; /* * Initialize the reservation array. Specifically, initialize the * "pages" field for every element that has an underlying superpage. */ for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); while (paddr + VM_LEVEL_0_SIZE <= seg->end) { rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; rv->pages = PHYS_TO_VM_PAGE(paddr); rv->domain = seg->domain; mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); paddr += VM_LEVEL_0_SIZE; } } for (i = 0; i < MAXMEMDOM; i++) { mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL, MTX_DEF); TAILQ_INIT(&vm_rvq_partpop[i]); } for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, MTX_DEF); } /* * Returns true if the given page belongs to a reservation and that page is * free. Otherwise, returns false. */ bool vm_reserv_is_page_free(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); if (rv->object == NULL) return (false); return (popmap_is_clear(rv->popmap, m - rv->pages)); } /* * If the given page belongs to a reservation, returns the level of that * reservation. Otherwise, returns -1. */ int vm_reserv_level(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); return (rv->object != NULL ? 0 : -1); } /* * Returns a reservation level if the given page belongs to a fully populated * reservation and -1 otherwise. */ int vm_reserv_level_iffullpop(vm_page_t m) { vm_reserv_t rv; rv = vm_reserv_from_page(m); return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); } /* * Breaks the given partially populated reservation, releasing its free pages * to the physical memory allocator. * * The free page queue lock must be held. */ static void vm_reserv_reclaim(vm_reserv_t rv) { vm_reserv_assert_locked(rv); CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); vm_reserv_domain_lock(rv->domain); KASSERT(rv->inpartpopq, ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); KASSERT(rv->domain < vm_ndomains, ("vm_reserv_reclaim: reserv %p's domain is corrupted %d", rv, rv->domain)); TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); rv->inpartpopq = FALSE; vm_reserv_domain_unlock(rv->domain); vm_reserv_break(rv); counter_u64_add(vm_reserv_reclaimed, 1); } /* * Breaks the reservation at the head of the partially populated reservation * queue, releasing its free pages to the physical memory allocator. Returns * TRUE if a reservation is broken and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_reclaim_inactive(int domain) { vm_reserv_t rv; while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) { vm_reserv_lock(rv); if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) { vm_reserv_unlock(rv); continue; } vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } return (FALSE); } /* * Searches the partially populated reservation queue for the least recently * changed reservation with free pages that satisfy the given request for * contiguous physical memory. If a satisfactory reservation is found, it is * broken. Returns TRUE if a reservation is broken and FALSE otherwise. * * The free page queue lock must be held. */ boolean_t vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { vm_paddr_t pa, size; vm_reserv_t rv, rvn; int hi, i, lo, low_index, next_free; if (npages > VM_LEVEL_0_NPAGES - 1) return (FALSE); size = npages << PAGE_SHIFT; vm_reserv_domain_lock(domain); again: for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) { rvn = TAILQ_NEXT(rv, partpopq); pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); if (pa + PAGE_SIZE - size < low) { /* This entire reservation is too low; go to next. */ continue; } pa = VM_PAGE_TO_PHYS(&rv->pages[0]); if (pa + size > high) { /* This entire reservation is too high; go to next. */ continue; } if (vm_reserv_trylock(rv) == 0) { vm_reserv_domain_unlock(domain); vm_reserv_lock(rv); if (!rv->inpartpopq) { vm_reserv_domain_lock(domain); if (!rvn->inpartpopq) goto again; continue; } } else vm_reserv_domain_unlock(domain); if (pa < low) { /* Start the search for free pages at "low". */ low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; i = low_index / NBPOPMAP; hi = low_index % NBPOPMAP; } else i = hi = 0; do { /* Find the next free page. */ lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); while (lo == 0 && ++i < NPOPMAP) lo = ffsl(~rv->popmap[i]); if (i == NPOPMAP) break; /* Convert from ffsl() to ordinary bit numbering. */ lo--; next_free = NBPOPMAP * i + lo; pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); KASSERT(pa >= low, ("vm_reserv_reclaim_contig: pa is too low")); if (pa + size > high) { /* The rest of this reservation is too high. */ break; } else if ((pa & (alignment - 1)) != 0 || ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { /* * The current page doesn't meet the alignment * and/or boundary requirements. Continue * searching this reservation until the rest * of its free pages are either excluded or * exhausted. */ hi = lo + 1; if (hi >= NBPOPMAP) { hi = 0; i++; } continue; } /* Find the next used page. */ hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); while (hi == 0 && ++i < NPOPMAP) { if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= size) { vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } hi = ffsl(rv->popmap[i]); } /* Convert from ffsl() to ordinary bit numbering. */ if (i != NPOPMAP) hi--; if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= size) { vm_reserv_reclaim(rv); vm_reserv_unlock(rv); return (TRUE); } } while (i < NPOPMAP); vm_reserv_unlock(rv); vm_reserv_domain_lock(domain); if (rvn != NULL && !rvn->inpartpopq) goto again; } vm_reserv_domain_unlock(domain); return (FALSE); } /* * Transfers the reservation underlying the given page to a new object. * * The object must be locked. */ void vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, vm_pindex_t old_object_offset) { vm_reserv_t rv; VM_OBJECT_ASSERT_WLOCKED(new_object); rv = vm_reserv_from_page(m); if (rv->object == old_object) { vm_reserv_lock(rv); CTR6(KTR_VM, "%s: rv %p object %p new %p popcnt %d inpartpop %d", __FUNCTION__, rv, rv->object, new_object, rv->popcnt, rv->inpartpopq); if (rv->object == old_object) { vm_reserv_object_lock(old_object); rv->object = NULL; LIST_REMOVE(rv, objq); vm_reserv_object_unlock(old_object); vm_reserv_object_lock(new_object); rv->object = new_object; rv->pindex -= old_object_offset; LIST_INSERT_HEAD(&new_object->rvq, rv, objq); vm_reserv_object_unlock(new_object); } vm_reserv_unlock(rv); } } /* * Returns the size (in bytes) of a reservation of the specified level. */ int vm_reserv_size(int level) { switch (level) { case 0: return (VM_LEVEL_0_SIZE); case -1: return (PAGE_SIZE); default: return (0); } } /* * Allocates the virtual and physical memory required by the reservation * management system's data structures, in particular, the reservation array. */ vm_paddr_t vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) { vm_paddr_t new_end; size_t size; /* * Calculate the size (in bytes) of the reservation array. Round up * from "high_water" because every small page is mapped to an element * in the reservation array based on its physical address. Thus, the * number of elements in the reservation array can be greater than the * number of superpages. */ size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); /* * Allocate and map the physical memory for the reservation array. The * next available virtual address is returned by reference. */ new_end = end - round_page(size); vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); bzero(vm_reserv_array, size); /* * Return the next available physical address. */ return (new_end); } /* * Initializes the reservation management system. Specifically, initializes * the reservation counters. */ static void vm_reserv_counter_init(void *unused) { vm_reserv_freed = counter_u64_alloc(M_WAITOK); vm_reserv_broken = counter_u64_alloc(M_WAITOK); vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); } SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY, vm_reserv_counter_init, NULL); /* * Returns the superpage containing the given page. */ vm_page_t vm_reserv_to_superpage(vm_page_t m) { vm_reserv_t rv; VM_OBJECT_ASSERT_LOCKED(m->object); rv = vm_reserv_from_page(m); if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES) m = rv->pages; else m = NULL; return (m); } #endif /* VM_NRESERVLEVEL > 0 */