Index: head/sys/cam/nvme/nvme_da.c =================================================================== --- head/sys/cam/nvme/nvme_da.c (revision 342045) +++ head/sys/cam/nvme/nvme_da.c (revision 342046) @@ -1,1228 +1,1228 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2015 Netflix, Inc * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Derived from ata_da.c: * Copyright (c) 2009 Alexander Motin */ #include __FBSDID("$FreeBSD$"); #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #ifndef _KERNEL #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #include typedef enum { NDA_STATE_NORMAL } nda_state; typedef enum { NDA_FLAG_OPEN = 0x0001, NDA_FLAG_DIRTY = 0x0002, NDA_FLAG_SCTX_INIT = 0x0004, } nda_flags; typedef enum { NDA_Q_4K = 0x01, NDA_Q_NONE = 0x00, } nda_quirks; #define NDA_Q_BIT_STRING \ "\020" \ "\001Bit 0" typedef enum { NDA_CCB_BUFFER_IO = 0x01, NDA_CCB_DUMP = 0x02, NDA_CCB_TRIM = 0x03, NDA_CCB_TYPE_MASK = 0x0F, } nda_ccb_state; /* Offsets into our private area for storing information */ #define ccb_state ccb_h.ppriv_field0 #define ccb_bp ccb_h.ppriv_ptr1 /* For NDA_CCB_BUFFER_IO */ #define ccb_trim ccb_h.ppriv_ptr1 /* For NDA_CCB_TRIM */ struct nda_softc { struct cam_iosched_softc *cam_iosched; int outstanding_cmds; /* Number of active commands */ int refcount; /* Active xpt_action() calls */ nda_state state; nda_flags flags; nda_quirks quirks; int unmappedio; quad_t deletes; uint32_t nsid; /* Namespace ID for this nda device */ struct disk *disk; struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; uint64_t trim_count; uint64_t trim_ranges; uint64_t trim_lbas; #ifdef CAM_TEST_FAILURE int force_read_error; int force_write_error; int periodic_read_error; int periodic_read_count; #endif #ifdef CAM_IO_STATS struct sysctl_ctx_list sysctl_stats_ctx; struct sysctl_oid *sysctl_stats_tree; u_int timeouts; u_int errors; u_int invalidations; #endif }; struct nda_trim_request { union { struct nvme_dsm_range dsm; uint8_t data[NVME_MAX_DSM_TRIM]; }; TAILQ_HEAD(, bio) bps; }; /* Need quirk table */ static disk_strategy_t ndastrategy; static dumper_t ndadump; static periph_init_t ndainit; static void ndaasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void ndasysctlinit(void *context, int pending); static periph_ctor_t ndaregister; static periph_dtor_t ndacleanup; static periph_start_t ndastart; static periph_oninv_t ndaoninvalidate; static void ndadone(struct cam_periph *periph, union ccb *done_ccb); static int ndaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static void ndashutdown(void *arg, int howto); static void ndasuspend(void *arg); #ifndef NDA_DEFAULT_SEND_ORDERED #define NDA_DEFAULT_SEND_ORDERED 1 #endif #ifndef NDA_DEFAULT_TIMEOUT #define NDA_DEFAULT_TIMEOUT 30 /* Timeout in seconds */ #endif #ifndef NDA_DEFAULT_RETRY #define NDA_DEFAULT_RETRY 4 #endif #ifndef NDA_MAX_TRIM_ENTRIES #define NDA_MAX_TRIM_ENTRIES (NVME_MAX_DSM_TRIM / sizeof(struct nvme_dsm_range))/* Number of DSM trims to use, max 256 */ #endif static SYSCTL_NODE(_kern_cam, OID_AUTO, nda, CTLFLAG_RD, 0, "CAM Direct Access Disk driver"); //static int nda_retry_count = NDA_DEFAULT_RETRY; static int nda_send_ordered = NDA_DEFAULT_SEND_ORDERED; static int nda_default_timeout = NDA_DEFAULT_TIMEOUT; static int nda_max_trim_entries = NDA_MAX_TRIM_ENTRIES; SYSCTL_INT(_kern_cam_nda, OID_AUTO, max_trim, CTLFLAG_RDTUN, &nda_max_trim_entries, NDA_MAX_TRIM_ENTRIES, "Maximum number of BIO_DELETE to send down as a DSM TRIM."); /* * All NVMe media is non-rotational, so all nvme device instances * share this to implement the sysctl. */ static int nda_rotating_media = 0; static struct periph_driver ndadriver = { ndainit, "nda", TAILQ_HEAD_INITIALIZER(ndadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(nda, ndadriver); static MALLOC_DEFINE(M_NVMEDA, "nvme_da", "nvme_da buffers"); /* * nice wrappers. Maybe these belong in nvme_all.c instead of * here, but this is the only place that uses these. Should * we ever grow another NVME periph, we should move them * all there wholesale. */ static void nda_nvme_flush(struct nda_softc *softc, struct ccb_nvmeio *nvmeio) { cam_fill_nvmeio(nvmeio, 0, /* retries */ ndadone, /* cbfcnp */ CAM_DIR_NONE, /* flags */ NULL, /* data_ptr */ 0, /* dxfer_len */ nda_default_timeout * 1000); /* timeout 30s */ nvme_ns_flush_cmd(&nvmeio->cmd, softc->nsid); } static void nda_nvme_trim(struct nda_softc *softc, struct ccb_nvmeio *nvmeio, void *payload, uint32_t num_ranges) { cam_fill_nvmeio(nvmeio, 0, /* retries */ ndadone, /* cbfcnp */ CAM_DIR_OUT, /* flags */ payload, /* data_ptr */ num_ranges * sizeof(struct nvme_dsm_range), /* dxfer_len */ nda_default_timeout * 1000); /* timeout 30s */ nvme_ns_trim_cmd(&nvmeio->cmd, softc->nsid, num_ranges); } static void nda_nvme_write(struct nda_softc *softc, struct ccb_nvmeio *nvmeio, void *payload, uint64_t lba, uint32_t len, uint32_t count) { cam_fill_nvmeio(nvmeio, 0, /* retries */ ndadone, /* cbfcnp */ CAM_DIR_OUT, /* flags */ payload, /* data_ptr */ len, /* dxfer_len */ nda_default_timeout * 1000); /* timeout 30s */ nvme_ns_write_cmd(&nvmeio->cmd, softc->nsid, lba, count); } static void nda_nvme_rw_bio(struct nda_softc *softc, struct ccb_nvmeio *nvmeio, struct bio *bp, uint32_t rwcmd) { int flags = rwcmd == NVME_OPC_READ ? CAM_DIR_IN : CAM_DIR_OUT; void *payload; uint64_t lba; uint32_t count; if (bp->bio_flags & BIO_UNMAPPED) { flags |= CAM_DATA_BIO; payload = bp; } else { payload = bp->bio_data; } lba = bp->bio_pblkno; count = bp->bio_bcount / softc->disk->d_sectorsize; cam_fill_nvmeio(nvmeio, 0, /* retries */ ndadone, /* cbfcnp */ flags, /* flags */ payload, /* data_ptr */ bp->bio_bcount, /* dxfer_len */ nda_default_timeout * 1000); /* timeout 30s */ nvme_ns_rw_cmd(&nvmeio->cmd, rwcmd, softc->nsid, lba, count); } static int ndaopen(struct disk *dp) { struct cam_periph *periph; struct nda_softc *softc; int error; periph = (struct cam_periph *)dp->d_drv1; if (cam_periph_acquire(periph) != 0) { return(ENXIO); } cam_periph_lock(periph); if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("ndaopen\n")); softc = (struct nda_softc *)periph->softc; softc->flags |= NDA_FLAG_OPEN; cam_periph_unhold(periph); cam_periph_unlock(periph); return (0); } static int ndaclose(struct disk *dp) { struct cam_periph *periph; struct nda_softc *softc; union ccb *ccb; int error; periph = (struct cam_periph *)dp->d_drv1; softc = (struct nda_softc *)periph->softc; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("ndaclose\n")); if ((softc->flags & NDA_FLAG_DIRTY) != 0 && (periph->flags & CAM_PERIPH_INVALID) == 0 && cam_periph_hold(periph, PRIBIO) == 0) { ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); nda_nvme_flush(softc, &ccb->nvmeio); error = cam_periph_runccb(ccb, ndaerror, /*cam_flags*/0, /*sense_flags*/0, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); else softc->flags &= ~NDA_FLAG_DIRTY; xpt_release_ccb(ccb); cam_periph_unhold(periph); } softc->flags &= ~NDA_FLAG_OPEN; while (softc->refcount != 0) cam_periph_sleep(periph, &softc->refcount, PRIBIO, "ndaclose", 1); KASSERT(softc->outstanding_cmds == 0, ("nda %d outstanding commands", softc->outstanding_cmds)); cam_periph_unlock(periph); cam_periph_release(periph); return (0); } static void ndaschedule(struct cam_periph *periph) { struct nda_softc *softc = (struct nda_softc *)periph->softc; if (softc->state != NDA_STATE_NORMAL) return; cam_iosched_schedule(softc->cam_iosched, periph); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void ndastrategy(struct bio *bp) { struct cam_periph *periph; struct nda_softc *softc; periph = (struct cam_periph *)bp->bio_disk->d_drv1; softc = (struct nda_softc *)periph->softc; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("ndastrategy(%p)\n", bp)); /* * If the device has been made invalid, error out */ if ((periph->flags & CAM_PERIPH_INVALID) != 0) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } if (bp->bio_cmd == BIO_DELETE) softc->deletes++; /* * Place it in the queue of disk activities for this disk */ cam_iosched_queue_work(softc->cam_iosched, bp); /* * Schedule ourselves for performing the work. */ ndaschedule(periph); cam_periph_unlock(periph); return; } static int ndadump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct cam_periph *periph; struct nda_softc *softc; u_int secsize; struct ccb_nvmeio nvmeio; struct disk *dp; uint64_t lba; uint32_t count; int error = 0; dp = arg; periph = dp->d_drv1; softc = (struct nda_softc *)periph->softc; secsize = softc->disk->d_sectorsize; lba = offset / secsize; count = length / secsize; if ((periph->flags & CAM_PERIPH_INVALID) != 0) return (ENXIO); /* xpt_get_ccb returns a zero'd allocation for the ccb, mimic that here */ memset(&nvmeio, 0, sizeof(nvmeio)); if (length > 0) { xpt_setup_ccb(&nvmeio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); nvmeio.ccb_state = NDA_CCB_DUMP; nda_nvme_write(softc, &nvmeio, virtual, lba, length, count); error = cam_periph_runccb((union ccb *)&nvmeio, cam_periph_error, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if (error != 0) printf("Aborting dump due to I/O error %d.\n", error); return (error); } /* Flush */ xpt_setup_ccb(&nvmeio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); nvmeio.ccb_state = NDA_CCB_DUMP; nda_nvme_flush(softc, &nvmeio); error = cam_periph_runccb((union ccb *)&nvmeio, cam_periph_error, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if (error != 0) xpt_print(periph->path, "flush cmd failed\n"); return (error); } static void ndainit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, ndaasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("nda: Failed to attach master async callback " "due to status 0x%x!\n", status); } else if (nda_send_ordered) { /* Register our event handlers */ if ((EVENTHANDLER_REGISTER(power_suspend, ndasuspend, NULL, EVENTHANDLER_PRI_LAST)) == NULL) printf("ndainit: power event registration failed!\n"); if ((EVENTHANDLER_REGISTER(shutdown_post_sync, ndashutdown, NULL, SHUTDOWN_PRI_DEFAULT)) == NULL) printf("ndainit: shutdown event registration failed!\n"); } } /* * Callback from GEOM, called when it has finished cleaning up its * resources. */ static void ndadiskgonecb(struct disk *dp) { struct cam_periph *periph; periph = (struct cam_periph *)dp->d_drv1; cam_periph_release(periph); } static void ndaoninvalidate(struct cam_periph *periph) { struct nda_softc *softc; softc = (struct nda_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, ndaasync, periph, periph->path); #ifdef CAM_IO_STATS softc->invalidations++; #endif /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ cam_iosched_flush(softc->cam_iosched, NULL, ENXIO); disk_gone(softc->disk); } static void ndacleanup(struct cam_periph *periph) { struct nda_softc *softc; softc = (struct nda_softc *)periph->softc; cam_periph_unlock(periph); cam_iosched_fini(softc->cam_iosched); /* * If we can't free the sysctl tree, oh well... */ if ((softc->flags & NDA_FLAG_SCTX_INIT) != 0) { #ifdef CAM_IO_STATS if (sysctl_ctx_free(&softc->sysctl_stats_ctx) != 0) xpt_print(periph->path, "can't remove sysctl stats context\n"); #endif if (sysctl_ctx_free(&softc->sysctl_ctx) != 0) xpt_print(periph->path, "can't remove sysctl context\n"); } disk_destroy(softc->disk); free(softc, M_DEVBUF); cam_periph_lock(periph); } static void ndaasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_NVME) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(ndaregister, ndaoninvalidate, ndacleanup, ndastart, "nda", CAM_PERIPH_BIO, path, ndaasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("ndaasync: Unable to attach to new device " "due to status 0x%x\n", status); break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct nda_softc *softc; softc = periph->softc; disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); } break; } case AC_LOST_DEVICE: default: cam_periph_async(periph, code, path, arg); break; } } static void ndasysctlinit(void *context, int pending) { struct cam_periph *periph; struct nda_softc *softc; char tmpstr[32], tmpstr2[16]; periph = (struct cam_periph *)context; /* periph was held for us when this task was enqueued */ if ((periph->flags & CAM_PERIPH_INVALID) != 0) { cam_periph_release(periph); return; } softc = (struct nda_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM NDA unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); softc->flags |= NDA_FLAG_SCTX_INIT; softc->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_nda), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr, "device_index"); if (softc->sysctl_tree == NULL) { printf("ndasysctlinit: unable to allocate sysctl tree\n"); cam_periph_release(periph); return; } SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "unmapped_io", CTLFLAG_RD, &softc->unmappedio, 0, "Unmapped I/O leaf"); SYSCTL_ADD_QUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "deletes", CTLFLAG_RD, &softc->deletes, "Number of BIO_DELETE requests"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_count", CTLFLAG_RD, &softc->trim_count, "Total number of unmap/dsm commands sent"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_ranges", CTLFLAG_RD, &softc->trim_ranges, "Total number of ranges in unmap/dsm commands"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_lbas", CTLFLAG_RD, &softc->trim_lbas, "Total lbas in the unmap/dsm commands sent"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "rotating", CTLFLAG_RD, &nda_rotating_media, 1, "Rotating media"); #ifdef CAM_IO_STATS softc->sysctl_stats_tree = SYSCTL_ADD_NODE(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "stats", CTLFLAG_RD, 0, "Statistics"); if (softc->sysctl_stats_tree == NULL) { printf("ndasysctlinit: unable to allocate sysctl tree for stats\n"); cam_periph_release(periph); return; } SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "timeouts", CTLFLAG_RD, &softc->timeouts, 0, "Device timeouts reported by the SIM"); SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "errors", CTLFLAG_RD, &softc->errors, 0, "Transport errors reported by the SIM."); SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "pack_invalidations", CTLFLAG_RD, &softc->invalidations, 0, "Device pack invalidations."); #endif #ifdef CAM_TEST_FAILURE SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "invalidate", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, periph, 0, cam_periph_invalidate_sysctl, "I", "Write 1 to invalidate the drive immediately"); #endif cam_iosched_sysctl_init(softc->cam_iosched, &softc->sysctl_ctx, softc->sysctl_tree); cam_periph_release(periph); } static int ndagetattr(struct bio *bp) { int ret; struct cam_periph *periph; periph = (struct cam_periph *)bp->bio_disk->d_drv1; cam_periph_lock(periph); ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute, periph->path); cam_periph_unlock(periph); if (ret == 0) bp->bio_completed = bp->bio_length; return ret; } static cam_status ndaregister(struct cam_periph *periph, void *arg) { struct nda_softc *softc; struct disk *disk; struct ccb_pathinq cpi; const struct nvme_namespace_data *nsd; const struct nvme_controller_data *cd; char announce_buf[80]; uint8_t flbas_fmt, lbads, vwc_present; u_int maxio; int quirks; nsd = nvme_get_identify_ns(periph); cd = nvme_get_identify_cntrl(periph); softc = (struct nda_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT | M_ZERO); if (softc == NULL) { printf("ndaregister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } if (cam_iosched_init(&softc->cam_iosched, periph) != 0) { printf("ndaregister: Unable to probe new device. " "Unable to allocate iosched memory\n"); free(softc, M_DEVBUF); return(CAM_REQ_CMP_ERR); } /* ident_data parsing */ periph->softc = softc; softc->quirks = NDA_Q_NONE; xpt_path_inq(&cpi, periph->path); TASK_INIT(&softc->sysctl_task, 0, ndasysctlinit, periph); /* * The name space ID is the lun, save it for later I/O */ softc->nsid = (uint32_t)xpt_path_lun_id(periph->path); /* * Register this media as a disk */ (void)cam_periph_hold(periph, PRIBIO); cam_periph_unlock(periph); snprintf(announce_buf, sizeof(announce_buf), "kern.cam.nda.%d.quirks", periph->unit_number); quirks = softc->quirks; TUNABLE_INT_FETCH(announce_buf, &quirks); softc->quirks = quirks; cam_iosched_set_sort_queue(softc->cam_iosched, 0); softc->disk = disk = disk_alloc(); strlcpy(softc->disk->d_descr, cd->mn, MIN(sizeof(softc->disk->d_descr), sizeof(cd->mn))); strlcpy(softc->disk->d_ident, cd->sn, MIN(sizeof(softc->disk->d_ident), sizeof(cd->sn))); disk->d_rotation_rate = DISK_RR_NON_ROTATING; disk->d_open = ndaopen; disk->d_close = ndaclose; disk->d_strategy = ndastrategy; disk->d_getattr = ndagetattr; disk->d_dump = ndadump; disk->d_gone = ndadiskgonecb; disk->d_name = "nda"; disk->d_drv1 = periph; disk->d_unit = periph->unit_number; maxio = cpi.maxio; /* Honor max I/O size of SIM */ if (maxio == 0) maxio = DFLTPHYS; /* traditional default */ else if (maxio > MAXPHYS) maxio = MAXPHYS; /* for safety */ disk->d_maxsize = maxio; flbas_fmt = (nsd->flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & NVME_NS_DATA_FLBAS_FORMAT_MASK; lbads = (nsd->lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & NVME_NS_DATA_LBAF_LBADS_MASK; disk->d_sectorsize = 1 << lbads; disk->d_mediasize = (off_t)(disk->d_sectorsize * nsd->nsze); disk->d_delmaxsize = disk->d_mediasize; disk->d_flags = DISKFLAG_DIRECT_COMPLETION; -// if (cd->oncs.dsm) // XXX broken? + if (nvme_ctrlr_has_dataset_mgmt(cd)) disk->d_flags |= DISKFLAG_CANDELETE; vwc_present = (cd->vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & NVME_CTRLR_DATA_VWC_PRESENT_MASK; if (vwc_present) disk->d_flags |= DISKFLAG_CANFLUSHCACHE; if ((cpi.hba_misc & PIM_UNMAPPED) != 0) { disk->d_flags |= DISKFLAG_UNMAPPED_BIO; softc->unmappedio = 1; } /* * d_ident and d_descr are both far bigger than the length of either * the serial or model number strings. */ nvme_strvis(disk->d_descr, cd->mn, sizeof(disk->d_descr), NVME_MODEL_NUMBER_LENGTH); nvme_strvis(disk->d_ident, cd->sn, sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); disk->d_hba_vendor = cpi.hba_vendor; disk->d_hba_device = cpi.hba_device; disk->d_hba_subvendor = cpi.hba_subvendor; disk->d_hba_subdevice = cpi.hba_subdevice; disk->d_stripesize = disk->d_sectorsize; disk->d_stripeoffset = 0; disk->d_devstat = devstat_new_entry(periph->periph_name, periph->unit_number, disk->d_sectorsize, DEVSTAT_ALL_SUPPORTED, DEVSTAT_TYPE_DIRECT | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_DISK); /* * Add alias for older nvd drives to ease transition. */ /* disk_add_alias(disk, "nvd"); Have reports of this causing problems */ /* * Acquire a reference to the periph before we register with GEOM. * We'll release this reference once GEOM calls us back (via * ndadiskgonecb()) telling us that our provider has been freed. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } disk_create(softc->disk, DISK_VERSION); cam_periph_lock(periph); cam_periph_unhold(periph); snprintf(announce_buf, sizeof(announce_buf), "%juMB (%ju %u byte sectors)", (uintmax_t)((uintmax_t)disk->d_mediasize / (1024*1024)), (uintmax_t)disk->d_mediasize / disk->d_sectorsize, disk->d_sectorsize); xpt_announce_periph(periph, announce_buf); xpt_announce_quirks(periph, softc->quirks, NDA_Q_BIT_STRING); /* * Create our sysctl variables, now that we know * we have successfully attached. */ if (cam_periph_acquire(periph) == 0) taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task); /* * Register for device going away and info about the drive * changing (though with NVMe, it can't) */ xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, ndaasync, periph, periph->path); softc->state = NDA_STATE_NORMAL; return(CAM_REQ_CMP); } static void ndastart(struct cam_periph *periph, union ccb *start_ccb) { struct nda_softc *softc = (struct nda_softc *)periph->softc; struct ccb_nvmeio *nvmeio = &start_ccb->nvmeio; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("ndastart\n")); switch (softc->state) { case NDA_STATE_NORMAL: { struct bio *bp; bp = cam_iosched_next_bio(softc->cam_iosched); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("ndastart: bio %p\n", bp)); if (bp == NULL) { xpt_release_ccb(start_ccb); break; } switch (bp->bio_cmd) { case BIO_WRITE: softc->flags |= NDA_FLAG_DIRTY; /* FALLTHROUGH */ case BIO_READ: { #ifdef CAM_TEST_FAILURE int fail = 0; /* * Support the failure ioctls. If the command is a * read, and there are pending forced read errors, or * if a write and pending write errors, then fail this * operation with EIO. This is useful for testing * purposes. Also, support having every Nth read fail. * * This is a rather blunt tool. */ if (bp->bio_cmd == BIO_READ) { if (softc->force_read_error) { softc->force_read_error--; fail = 1; } if (softc->periodic_read_error > 0) { if (++softc->periodic_read_count >= softc->periodic_read_error) { softc->periodic_read_count = 0; fail = 1; } } } else { if (softc->force_write_error) { softc->force_write_error--; fail = 1; } } if (fail) { biofinish(bp, NULL, EIO); xpt_release_ccb(start_ccb); ndaschedule(periph); return; } #endif KASSERT((bp->bio_flags & BIO_UNMAPPED) == 0 || round_page(bp->bio_bcount + bp->bio_ma_offset) / PAGE_SIZE == bp->bio_ma_n, ("Short bio %p", bp)); nda_nvme_rw_bio(softc, &start_ccb->nvmeio, bp, bp->bio_cmd == BIO_READ ? NVME_OPC_READ : NVME_OPC_WRITE); break; } case BIO_DELETE: { struct nvme_dsm_range *dsm_range, *dsm_end; struct nda_trim_request *trim; struct bio *bp1; int ents; uint32_t totalcount = 0, ranges = 0; trim = malloc(sizeof(*trim), M_NVMEDA, M_ZERO | M_NOWAIT); if (trim == NULL) { biofinish(bp, NULL, ENOMEM); xpt_release_ccb(start_ccb); ndaschedule(periph); return; } TAILQ_INIT(&trim->bps); bp1 = bp; ents = sizeof(trim->data) / sizeof(struct nvme_dsm_range); ents = min(ents, nda_max_trim_entries); dsm_range = &trim->dsm; dsm_end = dsm_range + ents; do { TAILQ_INSERT_TAIL(&trim->bps, bp1, bio_queue); dsm_range->length = htole32(bp1->bio_bcount / softc->disk->d_sectorsize); dsm_range->starting_lba = htole64(bp1->bio_offset / softc->disk->d_sectorsize); ranges++; totalcount += dsm_range->length; dsm_range++; if (dsm_range >= dsm_end) break; bp1 = cam_iosched_next_trim(softc->cam_iosched); /* XXX -- Could collapse adjacent ranges, but we don't for now */ /* XXX -- Could limit based on total payload size */ } while (bp1 != NULL); start_ccb->ccb_trim = trim; nda_nvme_trim(softc, &start_ccb->nvmeio, &trim->dsm, dsm_range - &trim->dsm); start_ccb->ccb_state = NDA_CCB_TRIM; softc->trim_count++; softc->trim_ranges += ranges; softc->trim_lbas += totalcount; /* * Note: We can have multiple TRIMs in flight, so we don't call * cam_iosched_submit_trim(softc->cam_iosched); * since that forces the I/O scheduler to only schedule one at a time. * On NVMe drives, this is a performance disaster. */ goto out; } case BIO_FLUSH: nda_nvme_flush(softc, nvmeio); break; } start_ccb->ccb_state = NDA_CCB_BUFFER_IO; start_ccb->ccb_bp = bp; out: start_ccb->ccb_h.flags |= CAM_UNLOCKED; softc->outstanding_cmds++; softc->refcount++; /* For submission only */ cam_periph_unlock(periph); xpt_action(start_ccb); cam_periph_lock(periph); softc->refcount--; /* Submission done */ /* May have more work to do, so ensure we stay scheduled */ ndaschedule(periph); break; } } } static void ndadone(struct cam_periph *periph, union ccb *done_ccb) { struct nda_softc *softc; struct ccb_nvmeio *nvmeio = &done_ccb->nvmeio; struct cam_path *path; int state; softc = (struct nda_softc *)periph->softc; path = done_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("ndadone\n")); state = nvmeio->ccb_state & NDA_CCB_TYPE_MASK; switch (state) { case NDA_CCB_BUFFER_IO: case NDA_CCB_TRIM: { int error; cam_periph_lock(periph); if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = ndaerror(done_ccb, 0, 0); if (error == ERESTART) { /* A retry was scheduled, so just return. */ cam_periph_unlock(periph); return; } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } else { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) panic("REQ_CMP with QFRZN"); error = 0; } if (state == NDA_CCB_BUFFER_IO) { struct bio *bp; bp = (struct bio *)done_ccb->ccb_bp; bp->bio_error = error; if (error != 0) { bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; } else { bp->bio_resid = 0; } softc->outstanding_cmds--; /* * We need to call cam_iosched before we call biodone so that we * don't measure any activity that happens in the completion * routine, which in the case of sendfile can be quite * extensive. */ cam_iosched_bio_complete(softc->cam_iosched, bp, done_ccb); xpt_release_ccb(done_ccb); ndaschedule(periph); cam_periph_unlock(periph); biodone(bp); } else { /* state == NDA_CCB_TRIM */ struct nda_trim_request *trim; struct bio *bp1, *bp2; TAILQ_HEAD(, bio) queue; trim = nvmeio->ccb_trim; TAILQ_INIT(&queue); TAILQ_CONCAT(&queue, &trim->bps, bio_queue); free(trim, M_NVMEDA); /* * Since we can have multiple trims in flight, we don't * need to call this here. * cam_iosched_trim_done(softc->cam_iosched); */ /* * The the I/O scheduler that we're finishing the I/O * so we can keep book. The first one we pass in the CCB * which has the timing information. The rest we pass in NULL * so we can keep proper counts. */ bp1 = TAILQ_FIRST(&queue); cam_iosched_bio_complete(softc->cam_iosched, bp1, done_ccb); xpt_release_ccb(done_ccb); softc->outstanding_cmds--; ndaschedule(periph); cam_periph_unlock(periph); while ((bp2 = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, bp2, bio_queue); bp2->bio_error = error; if (error != 0) { bp2->bio_flags |= BIO_ERROR; bp2->bio_resid = bp1->bio_bcount; } else bp2->bio_resid = 0; if (bp1 != bp2) cam_iosched_bio_complete(softc->cam_iosched, bp2, NULL); biodone(bp2); } } return; } case NDA_CCB_DUMP: /* No-op. We're polling */ return; default: break; } xpt_release_ccb(done_ccb); } static int ndaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct nda_softc *softc; struct cam_periph *periph; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct nda_softc *)periph->softc; switch (ccb->ccb_h.status & CAM_STATUS_MASK) { case CAM_CMD_TIMEOUT: #ifdef CAM_IO_STATS softc->timeouts++; #endif break; case CAM_REQ_ABORTED: case CAM_REQ_CMP_ERR: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_DATA_RUN_ERR: case CAM_ATA_STATUS_ERROR: #ifdef CAM_IO_STATS softc->errors++; #endif break; default: break; } return(cam_periph_error(ccb, cam_flags, sense_flags)); } /* * Step through all NDA peripheral drivers, and if the device is still open, * sync the disk cache to physical media. */ static void ndaflush(void) { struct cam_periph *periph; struct nda_softc *softc; union ccb *ccb; int error; CAM_PERIPH_FOREACH(periph, &ndadriver) { softc = (struct nda_softc *)periph->softc; if (SCHEDULER_STOPPED()) { /* * If we paniced with the lock held or the periph is not * open, do not recurse. Otherwise, call ndadump since * that avoids the sleeping cam_periph_getccb does if no * CCBs are available. */ if (!cam_periph_owned(periph) && (softc->flags & NDA_FLAG_OPEN)) { ndadump(softc->disk, NULL, 0, 0, 0); } continue; } /* * We only sync the cache if the drive is still open */ cam_periph_lock(periph); if ((softc->flags & NDA_FLAG_OPEN) == 0) { cam_periph_unlock(periph); continue; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); nda_nvme_flush(softc, &ccb->nvmeio); error = cam_periph_runccb(ccb, ndaerror, /*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); xpt_release_ccb(ccb); cam_periph_unlock(periph); } } static void ndashutdown(void *arg, int howto) { ndaflush(); } static void ndasuspend(void *arg) { ndaflush(); } Index: head/sys/dev/nvme/nvme.h =================================================================== --- head/sys/dev/nvme/nvme.h (revision 342045) +++ head/sys/dev/nvme/nvme.h (revision 342046) @@ -1,1499 +1,1506 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2013 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __NVME_H__ #define __NVME_H__ #ifdef _KERNEL #include #endif #include #include #define NVME_PASSTHROUGH_CMD _IOWR('n', 0, struct nvme_pt_command) #define NVME_RESET_CONTROLLER _IO('n', 1) #define NVME_IO_TEST _IOWR('n', 100, struct nvme_io_test) #define NVME_BIO_TEST _IOWR('n', 101, struct nvme_io_test) /* * Macros to deal with NVME revisions, as defined VS register */ #define NVME_REV(x, y) (((x) << 16) | ((y) << 8)) #define NVME_MAJOR(r) (((r) >> 16) & 0xffff) #define NVME_MINOR(r) (((r) >> 8) & 0xff) /* * Use to mark a command to apply to all namespaces, or to retrieve global * log pages. */ #define NVME_GLOBAL_NAMESPACE_TAG ((uint32_t)0xFFFFFFFF) /* Cap nvme to 1MB transfers driver explodes with larger sizes */ #define NVME_MAX_XFER_SIZE (MAXPHYS < (1<<20) ? MAXPHYS : (1<<20)) /* Register field definitions */ #define NVME_CAP_LO_REG_MQES_SHIFT (0) #define NVME_CAP_LO_REG_MQES_MASK (0xFFFF) #define NVME_CAP_LO_REG_CQR_SHIFT (16) #define NVME_CAP_LO_REG_CQR_MASK (0x1) #define NVME_CAP_LO_REG_AMS_SHIFT (17) #define NVME_CAP_LO_REG_AMS_MASK (0x3) #define NVME_CAP_LO_REG_TO_SHIFT (24) #define NVME_CAP_LO_REG_TO_MASK (0xFF) #define NVME_CAP_HI_REG_DSTRD_SHIFT (0) #define NVME_CAP_HI_REG_DSTRD_MASK (0xF) #define NVME_CAP_HI_REG_CSS_NVM_SHIFT (5) #define NVME_CAP_HI_REG_CSS_NVM_MASK (0x1) #define NVME_CAP_HI_REG_MPSMIN_SHIFT (16) #define NVME_CAP_HI_REG_MPSMIN_MASK (0xF) #define NVME_CAP_HI_REG_MPSMAX_SHIFT (20) #define NVME_CAP_HI_REG_MPSMAX_MASK (0xF) #define NVME_CC_REG_EN_SHIFT (0) #define NVME_CC_REG_EN_MASK (0x1) #define NVME_CC_REG_CSS_SHIFT (4) #define NVME_CC_REG_CSS_MASK (0x7) #define NVME_CC_REG_MPS_SHIFT (7) #define NVME_CC_REG_MPS_MASK (0xF) #define NVME_CC_REG_AMS_SHIFT (11) #define NVME_CC_REG_AMS_MASK (0x7) #define NVME_CC_REG_SHN_SHIFT (14) #define NVME_CC_REG_SHN_MASK (0x3) #define NVME_CC_REG_IOSQES_SHIFT (16) #define NVME_CC_REG_IOSQES_MASK (0xF) #define NVME_CC_REG_IOCQES_SHIFT (20) #define NVME_CC_REG_IOCQES_MASK (0xF) #define NVME_CSTS_REG_RDY_SHIFT (0) #define NVME_CSTS_REG_RDY_MASK (0x1) #define NVME_CSTS_REG_CFS_SHIFT (1) #define NVME_CSTS_REG_CFS_MASK (0x1) #define NVME_CSTS_REG_SHST_SHIFT (2) #define NVME_CSTS_REG_SHST_MASK (0x3) #define NVME_CSTS_GET_SHST(csts) (((csts) >> NVME_CSTS_REG_SHST_SHIFT) & NVME_CSTS_REG_SHST_MASK) #define NVME_AQA_REG_ASQS_SHIFT (0) #define NVME_AQA_REG_ASQS_MASK (0xFFF) #define NVME_AQA_REG_ACQS_SHIFT (16) #define NVME_AQA_REG_ACQS_MASK (0xFFF) /* Command field definitions */ #define NVME_CMD_FUSE_SHIFT (8) #define NVME_CMD_FUSE_MASK (0x3) #define NVME_STATUS_P_SHIFT (0) #define NVME_STATUS_P_MASK (0x1) #define NVME_STATUS_SC_SHIFT (1) #define NVME_STATUS_SC_MASK (0xFF) #define NVME_STATUS_SCT_SHIFT (9) #define NVME_STATUS_SCT_MASK (0x7) #define NVME_STATUS_M_SHIFT (14) #define NVME_STATUS_M_MASK (0x1) #define NVME_STATUS_DNR_SHIFT (15) #define NVME_STATUS_DNR_MASK (0x1) #define NVME_STATUS_GET_P(st) (((st) >> NVME_STATUS_P_SHIFT) & NVME_STATUS_P_MASK) #define NVME_STATUS_GET_SC(st) (((st) >> NVME_STATUS_SC_SHIFT) & NVME_STATUS_SC_MASK) #define NVME_STATUS_GET_SCT(st) (((st) >> NVME_STATUS_SCT_SHIFT) & NVME_STATUS_SCT_MASK) #define NVME_STATUS_GET_M(st) (((st) >> NVME_STATUS_M_SHIFT) & NVME_STATUS_M_MASK) #define NVME_STATUS_GET_DNR(st) (((st) >> NVME_STATUS_DNR_SHIFT) & NVME_STATUS_DNR_MASK) #define NVME_PWR_ST_MPS_SHIFT (0) #define NVME_PWR_ST_MPS_MASK (0x1) #define NVME_PWR_ST_NOPS_SHIFT (1) #define NVME_PWR_ST_NOPS_MASK (0x1) #define NVME_PWR_ST_RRT_SHIFT (0) #define NVME_PWR_ST_RRT_MASK (0x1F) #define NVME_PWR_ST_RRL_SHIFT (0) #define NVME_PWR_ST_RRL_MASK (0x1F) #define NVME_PWR_ST_RWT_SHIFT (0) #define NVME_PWR_ST_RWT_MASK (0x1F) #define NVME_PWR_ST_RWL_SHIFT (0) #define NVME_PWR_ST_RWL_MASK (0x1F) #define NVME_PWR_ST_IPS_SHIFT (6) #define NVME_PWR_ST_IPS_MASK (0x3) #define NVME_PWR_ST_APW_SHIFT (0) #define NVME_PWR_ST_APW_MASK (0x7) #define NVME_PWR_ST_APS_SHIFT (6) #define NVME_PWR_ST_APS_MASK (0x3) /** Controller Multi-path I/O and Namespace Sharing Capabilities */ /* More then one port */ #define NVME_CTRLR_DATA_MIC_MPORTS_SHIFT (0) #define NVME_CTRLR_DATA_MIC_MPORTS_MASK (0x1) /* More then one controller */ #define NVME_CTRLR_DATA_MIC_MCTRLRS_SHIFT (1) #define NVME_CTRLR_DATA_MIC_MCTRLRS_MASK (0x1) /* SR-IOV Virtual Function */ #define NVME_CTRLR_DATA_MIC_SRIOVVF_SHIFT (2) #define NVME_CTRLR_DATA_MIC_SRIOVVF_MASK (0x1) /** OACS - optional admin command support */ /* supports security send/receive commands */ #define NVME_CTRLR_DATA_OACS_SECURITY_SHIFT (0) #define NVME_CTRLR_DATA_OACS_SECURITY_MASK (0x1) /* supports format nvm command */ #define NVME_CTRLR_DATA_OACS_FORMAT_SHIFT (1) #define NVME_CTRLR_DATA_OACS_FORMAT_MASK (0x1) /* supports firmware activate/download commands */ #define NVME_CTRLR_DATA_OACS_FIRMWARE_SHIFT (2) #define NVME_CTRLR_DATA_OACS_FIRMWARE_MASK (0x1) /* supports namespace management commands */ #define NVME_CTRLR_DATA_OACS_NSMGMT_SHIFT (3) #define NVME_CTRLR_DATA_OACS_NSMGMT_MASK (0x1) /* supports Device Self-test command */ #define NVME_CTRLR_DATA_OACS_SELFTEST_SHIFT (4) #define NVME_CTRLR_DATA_OACS_SELFTEST_MASK (0x1) /* supports Directives */ #define NVME_CTRLR_DATA_OACS_DIRECTIVES_SHIFT (5) #define NVME_CTRLR_DATA_OACS_DIRECTIVES_MASK (0x1) /* supports NVMe-MI Send/Receive */ #define NVME_CTRLR_DATA_OACS_NVMEMI_SHIFT (6) #define NVME_CTRLR_DATA_OACS_NVMEMI_MASK (0x1) /* supports Virtualization Management */ #define NVME_CTRLR_DATA_OACS_VM_SHIFT (7) #define NVME_CTRLR_DATA_OACS_VM_MASK (0x1) /* supports Doorbell Buffer Config */ #define NVME_CTRLR_DATA_OACS_DBBUFFER_SHIFT (8) #define NVME_CTRLR_DATA_OACS_DBBUFFER_MASK (0x1) /** firmware updates */ /* first slot is read-only */ #define NVME_CTRLR_DATA_FRMW_SLOT1_RO_SHIFT (0) #define NVME_CTRLR_DATA_FRMW_SLOT1_RO_MASK (0x1) /* number of firmware slots */ #define NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT (1) #define NVME_CTRLR_DATA_FRMW_NUM_SLOTS_MASK (0x7) /** log page attributes */ /* per namespace smart/health log page */ #define NVME_CTRLR_DATA_LPA_NS_SMART_SHIFT (0) #define NVME_CTRLR_DATA_LPA_NS_SMART_MASK (0x1) /** AVSCC - admin vendor specific command configuration */ /* admin vendor specific commands use spec format */ #define NVME_CTRLR_DATA_AVSCC_SPEC_FORMAT_SHIFT (0) #define NVME_CTRLR_DATA_AVSCC_SPEC_FORMAT_MASK (0x1) /** Autonomous Power State Transition Attributes */ /* Autonomous Power State Transitions supported */ #define NVME_CTRLR_DATA_APSTA_APST_SUPP_SHIFT (0) #define NVME_CTRLR_DATA_APSTA_APST_SUPP_MASK (0x1) /** submission queue entry size */ #define NVME_CTRLR_DATA_SQES_MIN_SHIFT (0) #define NVME_CTRLR_DATA_SQES_MIN_MASK (0xF) #define NVME_CTRLR_DATA_SQES_MAX_SHIFT (4) #define NVME_CTRLR_DATA_SQES_MAX_MASK (0xF) /** completion queue entry size */ #define NVME_CTRLR_DATA_CQES_MIN_SHIFT (0) #define NVME_CTRLR_DATA_CQES_MIN_MASK (0xF) #define NVME_CTRLR_DATA_CQES_MAX_SHIFT (4) #define NVME_CTRLR_DATA_CQES_MAX_MASK (0xF) /** optional nvm command support */ #define NVME_CTRLR_DATA_ONCS_COMPARE_SHIFT (0) #define NVME_CTRLR_DATA_ONCS_COMPARE_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_WRITE_UNC_SHIFT (1) #define NVME_CTRLR_DATA_ONCS_WRITE_UNC_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_DSM_SHIFT (2) #define NVME_CTRLR_DATA_ONCS_DSM_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_WRZERO_SHIFT (3) #define NVME_CTRLR_DATA_ONCS_WRZERO_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_SAVEFEAT_SHIFT (4) #define NVME_CTRLR_DATA_ONCS_SAVEFEAT_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_RESERV_SHIFT (5) #define NVME_CTRLR_DATA_ONCS_RESERV_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_TIMESTAMP_SHIFT (6) #define NVME_CTRLR_DATA_ONCS_TIMESTAMP_MASK (0x1) /** Fused Operation Support */ #define NVME_CTRLR_DATA_FUSES_CNW_SHIFT (0) #define NVME_CTRLR_DATA_FUSES_CNW_MASK (0x1) /** Format NVM Attributes */ #define NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT (0) #define NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK (0x1) #define NVME_CTRLR_DATA_FNA_ERASE_ALL_SHIFT (1) #define NVME_CTRLR_DATA_FNA_ERASE_ALL_MASK (0x1) #define NVME_CTRLR_DATA_FNA_CRYPTO_ERASE_SHIFT (2) #define NVME_CTRLR_DATA_FNA_CRYPTO_ERASE_MASK (0x1) /** volatile write cache */ #define NVME_CTRLR_DATA_VWC_PRESENT_SHIFT (0) #define NVME_CTRLR_DATA_VWC_PRESENT_MASK (0x1) /** namespace features */ /* thin provisioning */ #define NVME_NS_DATA_NSFEAT_THIN_PROV_SHIFT (0) #define NVME_NS_DATA_NSFEAT_THIN_PROV_MASK (0x1) /* NAWUN, NAWUPF, and NACWU fields are valid */ #define NVME_NS_DATA_NSFEAT_NA_FIELDS_SHIFT (1) #define NVME_NS_DATA_NSFEAT_NA_FIELDS_MASK (0x1) /* Deallocated or Unwritten Logical Block errors supported */ #define NVME_NS_DATA_NSFEAT_DEALLOC_SHIFT (2) #define NVME_NS_DATA_NSFEAT_DEALLOC_MASK (0x1) /* NGUID and EUI64 fields are not reusable */ #define NVME_NS_DATA_NSFEAT_NO_ID_REUSE_SHIFT (3) #define NVME_NS_DATA_NSFEAT_NO_ID_REUSE_MASK (0x1) /** formatted lba size */ #define NVME_NS_DATA_FLBAS_FORMAT_SHIFT (0) #define NVME_NS_DATA_FLBAS_FORMAT_MASK (0xF) #define NVME_NS_DATA_FLBAS_EXTENDED_SHIFT (4) #define NVME_NS_DATA_FLBAS_EXTENDED_MASK (0x1) /** metadata capabilities */ /* metadata can be transferred as part of data prp list */ #define NVME_NS_DATA_MC_EXTENDED_SHIFT (0) #define NVME_NS_DATA_MC_EXTENDED_MASK (0x1) /* metadata can be transferred with separate metadata pointer */ #define NVME_NS_DATA_MC_POINTER_SHIFT (1) #define NVME_NS_DATA_MC_POINTER_MASK (0x1) /** end-to-end data protection capabilities */ /* protection information type 1 */ #define NVME_NS_DATA_DPC_PIT1_SHIFT (0) #define NVME_NS_DATA_DPC_PIT1_MASK (0x1) /* protection information type 2 */ #define NVME_NS_DATA_DPC_PIT2_SHIFT (1) #define NVME_NS_DATA_DPC_PIT2_MASK (0x1) /* protection information type 3 */ #define NVME_NS_DATA_DPC_PIT3_SHIFT (2) #define NVME_NS_DATA_DPC_PIT3_MASK (0x1) /* first eight bytes of metadata */ #define NVME_NS_DATA_DPC_MD_START_SHIFT (3) #define NVME_NS_DATA_DPC_MD_START_MASK (0x1) /* last eight bytes of metadata */ #define NVME_NS_DATA_DPC_MD_END_SHIFT (4) #define NVME_NS_DATA_DPC_MD_END_MASK (0x1) /** end-to-end data protection type settings */ /* protection information type */ #define NVME_NS_DATA_DPS_PIT_SHIFT (0) #define NVME_NS_DATA_DPS_PIT_MASK (0x7) /* 1 == protection info transferred at start of metadata */ /* 0 == protection info transferred at end of metadata */ #define NVME_NS_DATA_DPS_MD_START_SHIFT (3) #define NVME_NS_DATA_DPS_MD_START_MASK (0x1) /** Namespace Multi-path I/O and Namespace Sharing Capabilities */ /* the namespace may be attached to two or more controllers */ #define NVME_NS_DATA_NMIC_MAY_BE_SHARED_SHIFT (0) #define NVME_NS_DATA_NMIC_MAY_BE_SHARED_MASK (0x1) /** Reservation Capabilities */ /* Persist Through Power Loss */ #define NVME_NS_DATA_RESCAP_PTPL_SHIFT (0) #define NVME_NS_DATA_RESCAP_PTPL_MASK (0x1) /* supports the Write Exclusive */ #define NVME_NS_DATA_RESCAP_WR_EX_SHIFT (1) #define NVME_NS_DATA_RESCAP_WR_EX_MASK (0x1) /* supports the Exclusive Access */ #define NVME_NS_DATA_RESCAP_EX_AC_SHIFT (2) #define NVME_NS_DATA_RESCAP_EX_AC_MASK (0x1) /* supports the Write Exclusive – Registrants Only */ #define NVME_NS_DATA_RESCAP_WR_EX_RO_SHIFT (3) #define NVME_NS_DATA_RESCAP_WR_EX_RO_MASK (0x1) /* supports the Exclusive Access - Registrants Only */ #define NVME_NS_DATA_RESCAP_EX_AC_RO_SHIFT (4) #define NVME_NS_DATA_RESCAP_EX_AC_RO_MASK (0x1) /* supports the Write Exclusive – All Registrants */ #define NVME_NS_DATA_RESCAP_WR_EX_AR_SHIFT (5) #define NVME_NS_DATA_RESCAP_WR_EX_AR_MASK (0x1) /* supports the Exclusive Access - All Registrants */ #define NVME_NS_DATA_RESCAP_EX_AC_AR_SHIFT (6) #define NVME_NS_DATA_RESCAP_EX_AC_AR_MASK (0x1) /* Ignore Existing Key is used as defined in revision 1.3 or later */ #define NVME_NS_DATA_RESCAP_IEKEY13_SHIFT (7) #define NVME_NS_DATA_RESCAP_IEKEY13_MASK (0x1) /** Format Progress Indicator */ /* percentage of the Format NVM command that remains to be completed */ #define NVME_NS_DATA_FPI_PERC_SHIFT (0) #define NVME_NS_DATA_FPI_PERC_MASK (0x7f) /* namespace supports the Format Progress Indicator */ #define NVME_NS_DATA_FPI_SUPP_SHIFT (7) #define NVME_NS_DATA_FPI_SUPP_MASK (0x1) /** lba format support */ /* metadata size */ #define NVME_NS_DATA_LBAF_MS_SHIFT (0) #define NVME_NS_DATA_LBAF_MS_MASK (0xFFFF) /* lba data size */ #define NVME_NS_DATA_LBAF_LBADS_SHIFT (16) #define NVME_NS_DATA_LBAF_LBADS_MASK (0xFF) /* relative performance */ #define NVME_NS_DATA_LBAF_RP_SHIFT (24) #define NVME_NS_DATA_LBAF_RP_MASK (0x3) enum nvme_critical_warning_state { NVME_CRIT_WARN_ST_AVAILABLE_SPARE = 0x1, NVME_CRIT_WARN_ST_TEMPERATURE = 0x2, NVME_CRIT_WARN_ST_DEVICE_RELIABILITY = 0x4, NVME_CRIT_WARN_ST_READ_ONLY = 0x8, NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP = 0x10, }; #define NVME_CRIT_WARN_ST_RESERVED_MASK (0xE0) /* slot for current FW */ #define NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT (0) #define NVME_FIRMWARE_PAGE_AFI_SLOT_MASK (0x7) /* CC register SHN field values */ enum shn_value { NVME_SHN_NORMAL = 0x1, NVME_SHN_ABRUPT = 0x2, }; /* CSTS register SHST field values */ enum shst_value { NVME_SHST_NORMAL = 0x0, NVME_SHST_OCCURRING = 0x1, NVME_SHST_COMPLETE = 0x2, }; struct nvme_registers { /** controller capabilities */ uint32_t cap_lo; uint32_t cap_hi; uint32_t vs; /* version */ uint32_t intms; /* interrupt mask set */ uint32_t intmc; /* interrupt mask clear */ /** controller configuration */ uint32_t cc; uint32_t reserved1; /** controller status */ uint32_t csts; uint32_t reserved2; /** admin queue attributes */ uint32_t aqa; uint64_t asq; /* admin submission queue base addr */ uint64_t acq; /* admin completion queue base addr */ uint32_t reserved3[0x3f2]; struct { uint32_t sq_tdbl; /* submission queue tail doorbell */ uint32_t cq_hdbl; /* completion queue head doorbell */ } doorbell[1] __packed; } __packed; _Static_assert(sizeof(struct nvme_registers) == 0x1008, "bad size for nvme_registers"); struct nvme_command { /* dword 0 */ uint8_t opc; /* opcode */ uint8_t fuse; /* fused operation */ uint16_t cid; /* command identifier */ /* dword 1 */ uint32_t nsid; /* namespace identifier */ /* dword 2-3 */ uint32_t rsvd2; uint32_t rsvd3; /* dword 4-5 */ uint64_t mptr; /* metadata pointer */ /* dword 6-7 */ uint64_t prp1; /* prp entry 1 */ /* dword 8-9 */ uint64_t prp2; /* prp entry 2 */ /* dword 10-15 */ uint32_t cdw10; /* command-specific */ uint32_t cdw11; /* command-specific */ uint32_t cdw12; /* command-specific */ uint32_t cdw13; /* command-specific */ uint32_t cdw14; /* command-specific */ uint32_t cdw15; /* command-specific */ } __packed; _Static_assert(sizeof(struct nvme_command) == 16 * 4, "bad size for nvme_command"); struct nvme_completion { /* dword 0 */ uint32_t cdw0; /* command-specific */ /* dword 1 */ uint32_t rsvd1; /* dword 2 */ uint16_t sqhd; /* submission queue head pointer */ uint16_t sqid; /* submission queue identifier */ /* dword 3 */ uint16_t cid; /* command identifier */ uint16_t status; } __packed; _Static_assert(sizeof(struct nvme_completion) == 4 * 4, "bad size for nvme_completion"); struct nvme_dsm_range { uint32_t attributes; uint32_t length; uint64_t starting_lba; } __packed; /* Largest DSM Trim that can be done */ #define NVME_MAX_DSM_TRIM 4096 _Static_assert(sizeof(struct nvme_dsm_range) == 16, "bad size for nvme_dsm_ranage"); /* status code types */ enum nvme_status_code_type { NVME_SCT_GENERIC = 0x0, NVME_SCT_COMMAND_SPECIFIC = 0x1, NVME_SCT_MEDIA_ERROR = 0x2, /* 0x3-0x6 - reserved */ NVME_SCT_VENDOR_SPECIFIC = 0x7, }; /* generic command status codes */ enum nvme_generic_command_status_code { NVME_SC_SUCCESS = 0x00, NVME_SC_INVALID_OPCODE = 0x01, NVME_SC_INVALID_FIELD = 0x02, NVME_SC_COMMAND_ID_CONFLICT = 0x03, NVME_SC_DATA_TRANSFER_ERROR = 0x04, NVME_SC_ABORTED_POWER_LOSS = 0x05, NVME_SC_INTERNAL_DEVICE_ERROR = 0x06, NVME_SC_ABORTED_BY_REQUEST = 0x07, NVME_SC_ABORTED_SQ_DELETION = 0x08, NVME_SC_ABORTED_FAILED_FUSED = 0x09, NVME_SC_ABORTED_MISSING_FUSED = 0x0a, NVME_SC_INVALID_NAMESPACE_OR_FORMAT = 0x0b, NVME_SC_COMMAND_SEQUENCE_ERROR = 0x0c, NVME_SC_INVALID_SGL_SEGMENT_DESCR = 0x0d, NVME_SC_INVALID_NUMBER_OF_SGL_DESCR = 0x0e, NVME_SC_DATA_SGL_LENGTH_INVALID = 0x0f, NVME_SC_METADATA_SGL_LENGTH_INVALID = 0x10, NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID = 0x11, NVME_SC_INVALID_USE_OF_CMB = 0x12, NVME_SC_PRP_OFFET_INVALID = 0x13, NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED = 0x14, NVME_SC_OPERATION_DENIED = 0x15, NVME_SC_SGL_OFFSET_INVALID = 0x16, /* 0x17 - reserved */ NVME_SC_HOST_ID_INCONSISTENT_FORMAT = 0x18, NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED = 0x19, NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID = 0x1a, NVME_SC_ABORTED_DUE_TO_PREEMPT = 0x1b, NVME_SC_SANITIZE_FAILED = 0x1c, NVME_SC_SANITIZE_IN_PROGRESS = 0x1d, NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID = 0x1e, NVME_SC_NOT_SUPPORTED_IN_CMB = 0x1f, NVME_SC_LBA_OUT_OF_RANGE = 0x80, NVME_SC_CAPACITY_EXCEEDED = 0x81, NVME_SC_NAMESPACE_NOT_READY = 0x82, NVME_SC_RESERVATION_CONFLICT = 0x83, NVME_SC_FORMAT_IN_PROGRESS = 0x84, }; /* command specific status codes */ enum nvme_command_specific_status_code { NVME_SC_COMPLETION_QUEUE_INVALID = 0x00, NVME_SC_INVALID_QUEUE_IDENTIFIER = 0x01, NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED = 0x02, NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED = 0x03, /* 0x04 - reserved */ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED = 0x05, NVME_SC_INVALID_FIRMWARE_SLOT = 0x06, NVME_SC_INVALID_FIRMWARE_IMAGE = 0x07, NVME_SC_INVALID_INTERRUPT_VECTOR = 0x08, NVME_SC_INVALID_LOG_PAGE = 0x09, NVME_SC_INVALID_FORMAT = 0x0a, NVME_SC_FIRMWARE_REQUIRES_RESET = 0x0b, NVME_SC_INVALID_QUEUE_DELETION = 0x0c, NVME_SC_FEATURE_NOT_SAVEABLE = 0x0d, NVME_SC_FEATURE_NOT_CHANGEABLE = 0x0e, NVME_SC_FEATURE_NOT_NS_SPECIFIC = 0x0f, NVME_SC_FW_ACT_REQUIRES_NVMS_RESET = 0x10, NVME_SC_FW_ACT_REQUIRES_RESET = 0x11, NVME_SC_FW_ACT_REQUIRES_TIME = 0x12, NVME_SC_FW_ACT_PROHIBITED = 0x13, NVME_SC_OVERLAPPING_RANGE = 0x14, NVME_SC_NS_INSUFFICIENT_CAPACITY = 0x15, NVME_SC_NS_ID_UNAVAILABLE = 0x16, /* 0x17 - reserved */ NVME_SC_NS_ALREADY_ATTACHED = 0x18, NVME_SC_NS_IS_PRIVATE = 0x19, NVME_SC_NS_NOT_ATTACHED = 0x1a, NVME_SC_THIN_PROV_NOT_SUPPORTED = 0x1b, NVME_SC_CTRLR_LIST_INVALID = 0x1c, NVME_SC_SELT_TEST_IN_PROGRESS = 0x1d, NVME_SC_BOOT_PART_WRITE_PROHIB = 0x1e, NVME_SC_INVALID_CTRLR_ID = 0x1f, NVME_SC_INVALID_SEC_CTRLR_STATE = 0x20, NVME_SC_INVALID_NUM_OF_CTRLR_RESRC = 0x21, NVME_SC_INVALID_RESOURCE_ID = 0x22, NVME_SC_CONFLICTING_ATTRIBUTES = 0x80, NVME_SC_INVALID_PROTECTION_INFO = 0x81, NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE = 0x82, }; /* media error status codes */ enum nvme_media_error_status_code { NVME_SC_WRITE_FAULTS = 0x80, NVME_SC_UNRECOVERED_READ_ERROR = 0x81, NVME_SC_GUARD_CHECK_ERROR = 0x82, NVME_SC_APPLICATION_TAG_CHECK_ERROR = 0x83, NVME_SC_REFERENCE_TAG_CHECK_ERROR = 0x84, NVME_SC_COMPARE_FAILURE = 0x85, NVME_SC_ACCESS_DENIED = 0x86, NVME_SC_DEALLOCATED_OR_UNWRITTEN = 0x87, }; /* admin opcodes */ enum nvme_admin_opcode { NVME_OPC_DELETE_IO_SQ = 0x00, NVME_OPC_CREATE_IO_SQ = 0x01, NVME_OPC_GET_LOG_PAGE = 0x02, /* 0x03 - reserved */ NVME_OPC_DELETE_IO_CQ = 0x04, NVME_OPC_CREATE_IO_CQ = 0x05, NVME_OPC_IDENTIFY = 0x06, /* 0x07 - reserved */ NVME_OPC_ABORT = 0x08, NVME_OPC_SET_FEATURES = 0x09, NVME_OPC_GET_FEATURES = 0x0a, /* 0x0b - reserved */ NVME_OPC_ASYNC_EVENT_REQUEST = 0x0c, NVME_OPC_NAMESPACE_MANAGEMENT = 0x0d, /* 0x0e-0x0f - reserved */ NVME_OPC_FIRMWARE_ACTIVATE = 0x10, NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD = 0x11, NVME_OPC_DEVICE_SELF_TEST = 0x14, NVME_OPC_NAMESPACE_ATTACHMENT = 0x15, NVME_OPC_KEEP_ALIVE = 0x18, NVME_OPC_DIRECTIVE_SEND = 0x19, NVME_OPC_DIRECTIVE_RECEIVE = 0x1a, NVME_OPC_VIRTUALIZATION_MANAGEMENT = 0x1c, NVME_OPC_NVME_MI_SEND = 0x1d, NVME_OPC_NVME_MI_RECEIVE = 0x1e, NVME_OPC_DOORBELL_BUFFER_CONFIG = 0x7c, NVME_OPC_FORMAT_NVM = 0x80, NVME_OPC_SECURITY_SEND = 0x81, NVME_OPC_SECURITY_RECEIVE = 0x82, NVME_OPC_SANITIZE = 0x84, }; /* nvme nvm opcodes */ enum nvme_nvm_opcode { NVME_OPC_FLUSH = 0x00, NVME_OPC_WRITE = 0x01, NVME_OPC_READ = 0x02, /* 0x03 - reserved */ NVME_OPC_WRITE_UNCORRECTABLE = 0x04, NVME_OPC_COMPARE = 0x05, /* 0x06 - reserved */ NVME_OPC_WRITE_ZEROES = 0x08, /* 0x07 - reserved */ NVME_OPC_DATASET_MANAGEMENT = 0x09, /* 0x0a-0x0c - reserved */ NVME_OPC_RESERVATION_REGISTER = 0x0d, NVME_OPC_RESERVATION_REPORT = 0x0e, /* 0x0f-0x10 - reserved */ NVME_OPC_RESERVATION_ACQUIRE = 0x11, /* 0x12-0x14 - reserved */ NVME_OPC_RESERVATION_RELEASE = 0x15, }; enum nvme_feature { /* 0x00 - reserved */ NVME_FEAT_ARBITRATION = 0x01, NVME_FEAT_POWER_MANAGEMENT = 0x02, NVME_FEAT_LBA_RANGE_TYPE = 0x03, NVME_FEAT_TEMPERATURE_THRESHOLD = 0x04, NVME_FEAT_ERROR_RECOVERY = 0x05, NVME_FEAT_VOLATILE_WRITE_CACHE = 0x06, NVME_FEAT_NUMBER_OF_QUEUES = 0x07, NVME_FEAT_INTERRUPT_COALESCING = 0x08, NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION = 0x09, NVME_FEAT_WRITE_ATOMICITY = 0x0A, NVME_FEAT_ASYNC_EVENT_CONFIGURATION = 0x0B, NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C, NVME_FEAT_HOST_MEMORY_BUFFER = 0x0D, NVME_FEAT_TIMESTAMP = 0x0E, NVME_FEAT_KEEP_ALIVE_TIMER = 0x0F, NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT = 0x10, NVME_FEAT_NON_OP_POWER_STATE_CONFIG = 0x11, /* 0x12-0x77 - reserved */ /* 0x78-0x7f - NVMe Management Interface */ NVME_FEAT_SOFTWARE_PROGRESS_MARKER = 0x80, /* 0x81-0xBF - command set specific (reserved) */ /* 0xC0-0xFF - vendor specific */ }; enum nvme_dsm_attribute { NVME_DSM_ATTR_INTEGRAL_READ = 0x1, NVME_DSM_ATTR_INTEGRAL_WRITE = 0x2, NVME_DSM_ATTR_DEALLOCATE = 0x4, }; enum nvme_activate_action { NVME_AA_REPLACE_NO_ACTIVATE = 0x0, NVME_AA_REPLACE_ACTIVATE = 0x1, NVME_AA_ACTIVATE = 0x2, }; struct nvme_power_state { /** Maximum Power */ uint16_t mp; /* Maximum Power */ uint8_t ps_rsvd1; uint8_t mps_nops; /* Max Power Scale, Non-Operational State */ uint32_t enlat; /* Entry Latency */ uint32_t exlat; /* Exit Latency */ uint8_t rrt; /* Relative Read Throughput */ uint8_t rrl; /* Relative Read Latency */ uint8_t rwt; /* Relative Write Throughput */ uint8_t rwl; /* Relative Write Latency */ uint16_t idlp; /* Idle Power */ uint8_t ips; /* Idle Power Scale */ uint8_t ps_rsvd8; uint16_t actp; /* Active Power */ uint8_t apw_aps; /* Active Power Workload, Active Power Scale */ uint8_t ps_rsvd10[9]; } __packed; _Static_assert(sizeof(struct nvme_power_state) == 32, "bad size for nvme_power_state"); #define NVME_SERIAL_NUMBER_LENGTH 20 #define NVME_MODEL_NUMBER_LENGTH 40 #define NVME_FIRMWARE_REVISION_LENGTH 8 struct nvme_controller_data { /* bytes 0-255: controller capabilities and features */ /** pci vendor id */ uint16_t vid; /** pci subsystem vendor id */ uint16_t ssvid; /** serial number */ uint8_t sn[NVME_SERIAL_NUMBER_LENGTH]; /** model number */ uint8_t mn[NVME_MODEL_NUMBER_LENGTH]; /** firmware revision */ uint8_t fr[NVME_FIRMWARE_REVISION_LENGTH]; /** recommended arbitration burst */ uint8_t rab; /** ieee oui identifier */ uint8_t ieee[3]; /** multi-interface capabilities */ uint8_t mic; /** maximum data transfer size */ uint8_t mdts; /** Controller ID */ uint16_t ctrlr_id; /** Version */ uint32_t ver; /** RTD3 Resume Latency */ uint32_t rtd3r; /** RTD3 Enter Latency */ uint32_t rtd3e; /** Optional Asynchronous Events Supported */ uint32_t oaes; /* bitfield really */ /** Controller Attributes */ uint32_t ctratt; /* bitfield really */ uint8_t reserved1[12]; /** FRU Globally Unique Identifier */ uint8_t fguid[16]; uint8_t reserved2[128]; /* bytes 256-511: admin command set attributes */ /** optional admin command support */ uint16_t oacs; /** abort command limit */ uint8_t acl; /** asynchronous event request limit */ uint8_t aerl; /** firmware updates */ uint8_t frmw; /** log page attributes */ uint8_t lpa; /** error log page entries */ uint8_t elpe; /** number of power states supported */ uint8_t npss; /** admin vendor specific command configuration */ uint8_t avscc; /** Autonomous Power State Transition Attributes */ uint8_t apsta; /** Warning Composite Temperature Threshold */ uint16_t wctemp; /** Critical Composite Temperature Threshold */ uint16_t cctemp; /** Maximum Time for Firmware Activation */ uint16_t mtfa; /** Host Memory Buffer Preferred Size */ uint32_t hmpre; /** Host Memory Buffer Minimum Size */ uint32_t hmmin; /** Name space capabilities */ struct { /* if nsmgmt, report tnvmcap and unvmcap */ uint8_t tnvmcap[16]; uint8_t unvmcap[16]; } __packed untncap; /** Replay Protected Memory Block Support */ uint32_t rpmbs; /* Really a bitfield */ /** Extended Device Self-test Time */ uint16_t edstt; /** Device Self-test Options */ uint8_t dsto; /* Really a bitfield */ /** Firmware Update Granularity */ uint8_t fwug; /** Keep Alive Support */ uint16_t kas; /** Host Controlled Thermal Management Attributes */ uint16_t hctma; /* Really a bitfield */ /** Minimum Thermal Management Temperature */ uint16_t mntmt; /** Maximum Thermal Management Temperature */ uint16_t mxtmt; /** Sanitize Capabilities */ uint32_t sanicap; /* Really a bitfield */ uint8_t reserved3[180]; /* bytes 512-703: nvm command set attributes */ /** submission queue entry size */ uint8_t sqes; /** completion queue entry size */ uint8_t cqes; /** Maximum Outstanding Commands */ uint16_t maxcmd; /** number of namespaces */ uint32_t nn; /** optional nvm command support */ uint16_t oncs; /** fused operation support */ uint16_t fuses; /** format nvm attributes */ uint8_t fna; /** volatile write cache */ uint8_t vwc; /** Atomic Write Unit Normal */ uint16_t awun; /** Atomic Write Unit Power Fail */ uint16_t awupf; /** NVM Vendor Specific Command Configuration */ uint8_t nvscc; uint8_t reserved5; /** Atomic Compare & Write Unit */ uint16_t acwu; uint16_t reserved6; /** SGL Support */ uint32_t sgls; /* bytes 540-767: Reserved */ uint8_t reserved7[228]; /** NVM Subsystem NVMe Qualified Name */ uint8_t subnqn[256]; /* bytes 1024-1791: Reserved */ uint8_t reserved8[768]; /* bytes 1792-2047: NVMe over Fabrics specification */ uint8_t reserved9[256]; /* bytes 2048-3071: power state descriptors */ struct nvme_power_state power_state[32]; /* bytes 3072-4095: vendor specific */ uint8_t vs[1024]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_controller_data) == 4096, "bad size for nvme_controller_data"); struct nvme_namespace_data { /** namespace size */ uint64_t nsze; /** namespace capacity */ uint64_t ncap; /** namespace utilization */ uint64_t nuse; /** namespace features */ uint8_t nsfeat; /** number of lba formats */ uint8_t nlbaf; /** formatted lba size */ uint8_t flbas; /** metadata capabilities */ uint8_t mc; /** end-to-end data protection capabilities */ uint8_t dpc; /** end-to-end data protection type settings */ uint8_t dps; /** Namespace Multi-path I/O and Namespace Sharing Capabilities */ uint8_t nmic; /** Reservation Capabilities */ uint8_t rescap; /** Format Progress Indicator */ uint8_t fpi; /** Deallocate Logical Block Features */ uint8_t dlfeat; /** Namespace Atomic Write Unit Normal */ uint16_t nawun; /** Namespace Atomic Write Unit Power Fail */ uint16_t nawupf; /** Namespace Atomic Compare & Write Unit */ uint16_t nacwu; /** Namespace Atomic Boundary Size Normal */ uint16_t nabsn; /** Namespace Atomic Boundary Offset */ uint16_t nabo; /** Namespace Atomic Boundary Size Power Fail */ uint16_t nabspf; /** Namespace Optimal IO Boundary */ uint16_t noiob; /** NVM Capacity */ uint8_t nvmcap[16]; /* bytes 64-103: Reserved */ uint8_t reserved5[40]; /** Namespace Globally Unique Identifier */ uint8_t nguid[16]; /** IEEE Extended Unique Identifier */ uint8_t eui64[8]; /** lba format support */ uint32_t lbaf[16]; uint8_t reserved6[192]; uint8_t vendor_specific[3712]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_namespace_data) == 4096, "bad size for nvme_namepsace_data"); enum nvme_log_page { /* 0x00 - reserved */ NVME_LOG_ERROR = 0x01, NVME_LOG_HEALTH_INFORMATION = 0x02, NVME_LOG_FIRMWARE_SLOT = 0x03, NVME_LOG_CHANGED_NAMESPACE = 0x04, NVME_LOG_COMMAND_EFFECT = 0x05, /* 0x06-0x7F - reserved */ /* 0x80-0xBF - I/O command set specific */ NVME_LOG_RES_NOTIFICATION = 0x80, /* 0xC0-0xFF - vendor specific */ /* * The following are Intel Specific log pages, but they seem * to be widely implemented. */ INTEL_LOG_READ_LAT_LOG = 0xc1, INTEL_LOG_WRITE_LAT_LOG = 0xc2, INTEL_LOG_TEMP_STATS = 0xc5, INTEL_LOG_ADD_SMART = 0xca, INTEL_LOG_DRIVE_MKT_NAME = 0xdd, /* * HGST log page, with lots ofs sub pages. */ HGST_INFO_LOG = 0xc1, }; struct nvme_error_information_entry { uint64_t error_count; uint16_t sqid; uint16_t cid; uint16_t status; uint16_t error_location; uint64_t lba; uint32_t nsid; uint8_t vendor_specific; uint8_t reserved[35]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_error_information_entry) == 64, "bad size for nvme_error_information_entry"); struct nvme_health_information_page { uint8_t critical_warning; uint16_t temperature; uint8_t available_spare; uint8_t available_spare_threshold; uint8_t percentage_used; uint8_t reserved[26]; /* * Note that the following are 128-bit values, but are * defined as an array of 2 64-bit values. */ /* Data Units Read is always in 512-byte units. */ uint64_t data_units_read[2]; /* Data Units Written is always in 512-byte units. */ uint64_t data_units_written[2]; /* For NVM command set, this includes Compare commands. */ uint64_t host_read_commands[2]; uint64_t host_write_commands[2]; /* Controller Busy Time is reported in minutes. */ uint64_t controller_busy_time[2]; uint64_t power_cycles[2]; uint64_t power_on_hours[2]; uint64_t unsafe_shutdowns[2]; uint64_t media_errors[2]; uint64_t num_error_info_log_entries[2]; uint32_t warning_temp_time; uint32_t error_temp_time; uint16_t temp_sensor[8]; uint8_t reserved2[296]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_health_information_page) == 512, "bad size for nvme_health_information_page"); struct nvme_firmware_page { uint8_t afi; uint8_t reserved[7]; uint64_t revision[7]; /* revisions for 7 slots */ uint8_t reserved2[448]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_firmware_page) == 512, "bad size for nvme_firmware_page"); struct nvme_ns_list { uint32_t ns[1024]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_ns_list) == 4096, "bad size for nvme_ns_list"); struct intel_log_temp_stats { uint64_t current; uint64_t overtemp_flag_last; uint64_t overtemp_flag_life; uint64_t max_temp; uint64_t min_temp; uint64_t _rsvd[5]; uint64_t max_oper_temp; uint64_t min_oper_temp; uint64_t est_offset; } __packed __aligned(4); _Static_assert(sizeof(struct intel_log_temp_stats) == 13 * 8, "bad size for intel_log_temp_stats"); #define NVME_TEST_MAX_THREADS 128 struct nvme_io_test { enum nvme_nvm_opcode opc; uint32_t size; uint32_t time; /* in seconds */ uint32_t num_threads; uint32_t flags; uint64_t io_completed[NVME_TEST_MAX_THREADS]; }; enum nvme_io_test_flags { /* * Specifies whether dev_refthread/dev_relthread should be * called during NVME_BIO_TEST. Ignored for other test * types. */ NVME_TEST_FLAG_REFTHREAD = 0x1, }; struct nvme_pt_command { /* * cmd is used to specify a passthrough command to a controller or * namespace. * * The following fields from cmd may be specified by the caller: * * opc (opcode) * * nsid (namespace id) - for admin commands only * * cdw10-cdw15 * * Remaining fields must be set to 0 by the caller. */ struct nvme_command cmd; /* * cpl returns completion status for the passthrough command * specified by cmd. * * The following fields will be filled out by the driver, for * consumption by the caller: * * cdw0 * * status (except for phase) * * Remaining fields will be set to 0 by the driver. */ struct nvme_completion cpl; /* buf is the data buffer associated with this passthrough command. */ void * buf; /* * len is the length of the data buffer associated with this * passthrough command. */ uint32_t len; /* * is_read = 1 if the passthrough command will read data into the * supplied buffer from the controller. * * is_read = 0 if the passthrough command will write data from the * supplied buffer to the controller. */ uint32_t is_read; /* * driver_lock is used by the driver only. It must be set to 0 * by the caller. */ struct mtx * driver_lock; }; #define nvme_completion_is_error(cpl) \ (NVME_STATUS_GET_SC((cpl)->status) != 0 || NVME_STATUS_GET_SCT((cpl)->status) != 0) void nvme_strvis(uint8_t *dst, const uint8_t *src, int dstlen, int srclen); #ifdef _KERNEL struct bio; struct nvme_namespace; struct nvme_controller; struct nvme_consumer; typedef void (*nvme_cb_fn_t)(void *, const struct nvme_completion *); typedef void *(*nvme_cons_ns_fn_t)(struct nvme_namespace *, void *); typedef void *(*nvme_cons_ctrlr_fn_t)(struct nvme_controller *); typedef void (*nvme_cons_async_fn_t)(void *, const struct nvme_completion *, uint32_t, void *, uint32_t); typedef void (*nvme_cons_fail_fn_t)(void *); enum nvme_namespace_flags { NVME_NS_DEALLOCATE_SUPPORTED = 0x1, NVME_NS_FLUSH_SUPPORTED = 0x2, }; int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, int is_admin_cmd); /* Admin functions */ void nvme_ctrlr_cmd_set_feature(struct nvme_controller *ctrlr, uint8_t feature, uint32_t cdw11, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); void nvme_ctrlr_cmd_get_feature(struct nvme_controller *ctrlr, uint8_t feature, uint32_t cdw11, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); void nvme_ctrlr_cmd_get_log_page(struct nvme_controller *ctrlr, uint8_t log_page, uint32_t nsid, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); /* NVM I/O functions */ int nvme_ns_cmd_write(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_write_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_read_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload, uint8_t num_ranges, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_dump(struct nvme_namespace *ns, void *virt, off_t offset, size_t len); /* Registration functions */ struct nvme_consumer * nvme_register_consumer(nvme_cons_ns_fn_t ns_fn, nvme_cons_ctrlr_fn_t ctrlr_fn, nvme_cons_async_fn_t async_fn, nvme_cons_fail_fn_t fail_fn); void nvme_unregister_consumer(struct nvme_consumer *consumer); /* Controller helper functions */ device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr); const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr); +static inline bool +nvme_ctrlr_has_dataset_mgmt(const struct nvme_controller_data *cd) +{ + /* Assumes cd was byte swapped by nvme_controller_data_swapbytes() */ + return ((cd->oncs >> NVME_CTRLR_DATA_ONCS_DSM_SHIFT) & + NVME_CTRLR_DATA_ONCS_DSM_MASK); +} /* Namespace helper functions */ uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns); uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns); uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns); uint64_t nvme_ns_get_size(struct nvme_namespace *ns); uint32_t nvme_ns_get_flags(struct nvme_namespace *ns); const char * nvme_ns_get_serial_number(struct nvme_namespace *ns); const char * nvme_ns_get_model_number(struct nvme_namespace *ns); const struct nvme_namespace_data * nvme_ns_get_data(struct nvme_namespace *ns); uint32_t nvme_ns_get_stripesize(struct nvme_namespace *ns); int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn); /* * Command building helper functions -- shared with CAM * These functions assume allocator zeros out cmd structure * CAM's xpt_get_ccb and the request allocator for nvme both * do zero'd allocations. */ static inline void nvme_ns_flush_cmd(struct nvme_command *cmd, uint32_t nsid) { cmd->opc = NVME_OPC_FLUSH; cmd->nsid = htole32(nsid); } static inline void nvme_ns_rw_cmd(struct nvme_command *cmd, uint32_t rwcmd, uint32_t nsid, uint64_t lba, uint32_t count) { cmd->opc = rwcmd; cmd->nsid = htole32(nsid); cmd->cdw10 = htole32(lba & 0xffffffffu); cmd->cdw11 = htole32(lba >> 32); cmd->cdw12 = htole32(count-1); } static inline void nvme_ns_write_cmd(struct nvme_command *cmd, uint32_t nsid, uint64_t lba, uint32_t count) { nvme_ns_rw_cmd(cmd, NVME_OPC_WRITE, nsid, lba, count); } static inline void nvme_ns_read_cmd(struct nvme_command *cmd, uint32_t nsid, uint64_t lba, uint32_t count) { nvme_ns_rw_cmd(cmd, NVME_OPC_READ, nsid, lba, count); } static inline void nvme_ns_trim_cmd(struct nvme_command *cmd, uint32_t nsid, uint32_t num_ranges) { cmd->opc = NVME_OPC_DATASET_MANAGEMENT; cmd->nsid = htole32(nsid); cmd->cdw10 = htole32(num_ranges - 1); cmd->cdw11 = htole32(NVME_DSM_ATTR_DEALLOCATE); } extern int nvme_use_nvd; #endif /* _KERNEL */ /* Endianess conversion functions for NVMe structs */ static inline void nvme_completion_swapbytes(struct nvme_completion *s) { s->cdw0 = le32toh(s->cdw0); /* omit rsvd1 */ s->sqhd = le16toh(s->sqhd); s->sqid = le16toh(s->sqid); /* omit cid */ s->status = le16toh(s->status); } static inline void nvme_power_state_swapbytes(struct nvme_power_state *s) { s->mp = le16toh(s->mp); s->enlat = le32toh(s->enlat); s->exlat = le32toh(s->exlat); s->idlp = le16toh(s->idlp); s->actp = le16toh(s->actp); } static inline void nvme_controller_data_swapbytes(struct nvme_controller_data *s) { int i; s->vid = le16toh(s->vid); s->ssvid = le16toh(s->ssvid); s->ctrlr_id = le16toh(s->ctrlr_id); s->ver = le32toh(s->ver); s->rtd3r = le32toh(s->rtd3r); s->rtd3e = le32toh(s->rtd3e); s->oaes = le32toh(s->oaes); s->ctratt = le32toh(s->ctratt); s->oacs = le16toh(s->oacs); s->wctemp = le16toh(s->wctemp); s->cctemp = le16toh(s->cctemp); s->mtfa = le16toh(s->mtfa); s->hmpre = le32toh(s->hmpre); s->hmmin = le32toh(s->hmmin); s->rpmbs = le32toh(s->rpmbs); s->edstt = le16toh(s->edstt); s->kas = le16toh(s->kas); s->hctma = le16toh(s->hctma); s->mntmt = le16toh(s->mntmt); s->mxtmt = le16toh(s->mxtmt); s->sanicap = le32toh(s->sanicap); s->maxcmd = le16toh(s->maxcmd); s->nn = le32toh(s->nn); s->oncs = le16toh(s->oncs); s->fuses = le16toh(s->fuses); s->awun = le16toh(s->awun); s->awupf = le16toh(s->awupf); s->acwu = le16toh(s->acwu); s->sgls = le32toh(s->sgls); for (i = 0; i < 32; i++) nvme_power_state_swapbytes(&s->power_state[i]); } static inline void nvme_namespace_data_swapbytes(struct nvme_namespace_data *s) { int i; s->nsze = le64toh(s->nsze); s->ncap = le64toh(s->ncap); s->nuse = le64toh(s->nuse); s->nawun = le16toh(s->nawun); s->nawupf = le16toh(s->nawupf); s->nacwu = le16toh(s->nacwu); s->nabsn = le16toh(s->nabsn); s->nabo = le16toh(s->nabo); s->nabspf = le16toh(s->nabspf); s->noiob = le16toh(s->noiob); for (i = 0; i < 16; i++) s->lbaf[i] = le32toh(s->lbaf[i]); } static inline void nvme_error_information_entry_swapbytes(struct nvme_error_information_entry *s) { s->error_count = le64toh(s->error_count); s->sqid = le16toh(s->sqid); s->cid = le16toh(s->cid); s->status = le16toh(s->status); s->error_location = le16toh(s->error_location); s->lba = le64toh(s->lba); s->nsid = le32toh(s->nsid); } static inline void nvme_le128toh(void *p) { #if _BYTE_ORDER != _LITTLE_ENDIAN /* Swap 16 bytes in place */ char *tmp = (char*)p; char b; int i; for (i = 0; i < 8; i++) { b = tmp[i]; tmp[i] = tmp[15-i]; tmp[15-i] = b; } #else (void)p; #endif } static inline void nvme_health_information_page_swapbytes(struct nvme_health_information_page *s) { int i; s->temperature = le16toh(s->temperature); nvme_le128toh((void *)s->data_units_read); nvme_le128toh((void *)s->data_units_written); nvme_le128toh((void *)s->host_read_commands); nvme_le128toh((void *)s->host_write_commands); nvme_le128toh((void *)s->controller_busy_time); nvme_le128toh((void *)s->power_cycles); nvme_le128toh((void *)s->power_on_hours); nvme_le128toh((void *)s->unsafe_shutdowns); nvme_le128toh((void *)s->media_errors); nvme_le128toh((void *)s->num_error_info_log_entries); s->warning_temp_time = le32toh(s->warning_temp_time); s->error_temp_time = le32toh(s->error_temp_time); for (i = 0; i < 8; i++) s->temp_sensor[i] = le16toh(s->temp_sensor[i]); } static inline void nvme_firmware_page_swapbytes(struct nvme_firmware_page *s) { int i; for (i = 0; i < 7; i++) s->revision[i] = le64toh(s->revision[i]); } static inline void nvme_ns_list_swapbytes(struct nvme_ns_list *s) { int i; for (i = 0; i < 1024; i++) s->ns[i] = le32toh(s->ns[i]); } static inline void intel_log_temp_stats_swapbytes(struct intel_log_temp_stats *s) { s->current = le64toh(s->current); s->overtemp_flag_last = le64toh(s->overtemp_flag_last); s->overtemp_flag_life = le64toh(s->overtemp_flag_life); s->max_temp = le64toh(s->max_temp); s->min_temp = le64toh(s->min_temp); /* omit _rsvd[] */ s->max_oper_temp = le64toh(s->max_oper_temp); s->min_oper_temp = le64toh(s->min_oper_temp); s->est_offset = le64toh(s->est_offset); } #endif /* __NVME_H__ */ Index: head/sys/dev/nvme/nvme_ns.c =================================================================== --- head/sys/dev/nvme/nvme_ns.c (revision 342045) +++ head/sys/dev/nvme/nvme_ns.c (revision 342046) @@ -1,617 +1,613 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2013 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" static void nvme_bio_child_inbed(struct bio *parent, int bio_error); static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl); static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t alignment); static void nvme_free_child_bios(int num_bios, struct bio **child_bios); static struct bio ** nvme_allocate_child_bios(int num_bios); static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios); static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment); static int nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_namespace *ns; struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ns = cdev->si_drv1; ctrlr = ns->ctrlr; switch (cmd) { case NVME_IO_TEST: case NVME_BIO_TEST: nvme_ns_test(ns, cmd, arg); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); case DIOCGMEDIASIZE: *(off_t *)arg = (off_t)nvme_ns_get_size(ns); break; case DIOCGSECTORSIZE: *(u_int *)arg = nvme_ns_get_sector_size(ns); break; default: return (ENOTTY); } return (0); } static int nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { int error = 0; if (flags & FWRITE) error = securelevel_gt(td->td_ucred, 0); return (error); } static int nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { return (0); } static void nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) { struct bio *bp = arg; /* * TODO: add more extensive translation of NVMe status codes * to different bio error codes (i.e. EIO, EINVAL, etc.) */ if (nvme_completion_is_error(cpl)) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; } else bp->bio_resid = 0; biodone(bp); } static void nvme_ns_strategy(struct bio *bp) { struct nvme_namespace *ns; int err; ns = bp->bio_dev->si_drv1; err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); if (err) { bp->bio_error = err; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); } } static struct cdevsw nvme_ns_cdevsw = { .d_version = D_VERSION, .d_flags = D_DISK, .d_read = physread, .d_write = physwrite, .d_open = nvme_ns_open, .d_close = nvme_ns_close, .d_strategy = nvme_ns_strategy, .d_ioctl = nvme_ns_ioctl }; uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) { return ns->ctrlr->max_xfer_size; } uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns) { uint8_t flbas_fmt, lbads; flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & NVME_NS_DATA_FLBAS_FORMAT_MASK; lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & NVME_NS_DATA_LBAF_LBADS_MASK; return (1 << lbads); } uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns) { return (ns->data.nsze); } uint64_t nvme_ns_get_size(struct nvme_namespace *ns) { return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); } uint32_t nvme_ns_get_flags(struct nvme_namespace *ns) { return (ns->flags); } const char * nvme_ns_get_serial_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.sn); } const char * nvme_ns_get_model_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.mn); } const struct nvme_namespace_data * nvme_ns_get_data(struct nvme_namespace *ns) { return (&ns->data); } uint32_t nvme_ns_get_stripesize(struct nvme_namespace *ns) { return (ns->stripesize); } static void nvme_ns_bio_done(void *arg, const struct nvme_completion *status) { struct bio *bp = arg; nvme_cb_fn_t bp_cb_fn; bp_cb_fn = bp->bio_driver1; if (bp->bio_driver2) free(bp->bio_driver2, M_NVME); if (nvme_completion_is_error(status)) { bp->bio_flags |= BIO_ERROR; if (bp->bio_error == 0) bp->bio_error = EIO; } if ((bp->bio_flags & BIO_ERROR) == 0) bp->bio_resid = 0; else bp->bio_resid = bp->bio_bcount; bp_cb_fn(bp, status); } static void nvme_bio_child_inbed(struct bio *parent, int bio_error) { struct nvme_completion parent_cpl; int children, inbed; if (bio_error != 0) { parent->bio_flags |= BIO_ERROR; parent->bio_error = bio_error; } /* * atomic_fetchadd will return value before adding 1, so we still * must add 1 to get the updated inbed number. Save bio_children * before incrementing to guard against race conditions when * two children bios complete on different queues. */ children = atomic_load_acq_int(&parent->bio_children); inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; if (inbed == children) { bzero(&parent_cpl, sizeof(parent_cpl)); if (parent->bio_flags & BIO_ERROR) { parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT); parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT; } nvme_ns_bio_done(parent, &parent_cpl); } } static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) { struct bio *child = arg; struct bio *parent; int bio_error; parent = child->bio_parent; g_destroy_bio(child); bio_error = nvme_completion_is_error(cpl) ? EIO : 0; nvme_bio_child_inbed(parent, bio_error); } static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) { uint32_t num_segs, offset, remainder; if (align == 0) return (1); KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); num_segs = size / align; remainder = size & (align - 1); offset = addr & (align - 1); if (remainder > 0 || offset > 0) num_segs += 1 + (remainder + offset - 1) / align; return (num_segs); } static void nvme_free_child_bios(int num_bios, struct bio **child_bios) { int i; for (i = 0; i < num_bios; i++) { if (child_bios[i] != NULL) g_destroy_bio(child_bios[i]); } free(child_bios, M_NVME); } static struct bio ** nvme_allocate_child_bios(int num_bios) { struct bio **child_bios; int err = 0, i; child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); if (child_bios == NULL) return (NULL); for (i = 0; i < num_bios; i++) { child_bios[i] = g_new_bio(); if (child_bios[i] == NULL) err = ENOMEM; } if (err == ENOMEM) { nvme_free_child_bios(num_bios, child_bios); return (NULL); } return (child_bios); } static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) { struct bio **child_bios; struct bio *child; uint64_t cur_offset; caddr_t data; uint32_t rem_bcount; int i; #ifdef NVME_UNMAPPED_BIO_SUPPORT struct vm_page **ma; uint32_t ma_offset; #endif *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, alignment); child_bios = nvme_allocate_child_bios(*num_bios); if (child_bios == NULL) return (NULL); bp->bio_children = *num_bios; bp->bio_inbed = 0; cur_offset = bp->bio_offset; rem_bcount = bp->bio_bcount; data = bp->bio_data; #ifdef NVME_UNMAPPED_BIO_SUPPORT ma_offset = bp->bio_ma_offset; ma = bp->bio_ma; #endif for (i = 0; i < *num_bios; i++) { child = child_bios[i]; child->bio_parent = bp; child->bio_cmd = bp->bio_cmd; child->bio_offset = cur_offset; child->bio_bcount = min(rem_bcount, alignment - (cur_offset & (alignment - 1))); child->bio_flags = bp->bio_flags; #ifdef NVME_UNMAPPED_BIO_SUPPORT if (bp->bio_flags & BIO_UNMAPPED) { child->bio_ma_offset = ma_offset; child->bio_ma = ma; child->bio_ma_n = nvme_get_num_segments(child->bio_ma_offset, child->bio_bcount, PAGE_SIZE); ma_offset = (ma_offset + child->bio_bcount) & PAGE_MASK; ma += child->bio_ma_n; if (ma_offset != 0) ma -= 1; } else #endif { child->bio_data = data; data += child->bio_bcount; } cur_offset += child->bio_bcount; rem_bcount -= child->bio_bcount; } return (child_bios); } static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment) { struct bio *child; struct bio **child_bios; int err, i, num_bios; child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); if (child_bios == NULL) return (ENOMEM); for (i = 0; i < num_bios; i++) { child = child_bios[i]; err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); if (err != 0) { nvme_bio_child_inbed(bp, err); g_destroy_bio(child); } } free(child_bios, M_NVME); return (0); } int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn) { struct nvme_dsm_range *dsm_range; uint32_t num_bios; int err; bp->bio_driver1 = cb_fn; if (ns->stripesize > 0 && (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, ns->stripesize); if (num_bios > 1) return (nvme_ns_split_bio(ns, bp, ns->stripesize)); } switch (bp->bio_cmd) { case BIO_READ: err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_WRITE: err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_FLUSH: err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); break; case BIO_DELETE: dsm_range = malloc(sizeof(struct nvme_dsm_range), M_NVME, M_ZERO | M_WAITOK); if (!dsm_range) { err = ENOMEM; break; } dsm_range->length = htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); dsm_range->starting_lba = htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); bp->bio_driver2 = dsm_range; err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, nvme_ns_bio_done, bp); if (err != 0) free(dsm_range, M_NVME); break; default: err = EIO; break; } return (err); } int nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, struct nvme_controller *ctrlr) { struct make_dev_args md_args; struct nvme_completion_poll_status status; int res; int unit; - uint16_t oncs; - uint8_t dsm; uint8_t flbas_fmt; uint8_t vwc_present; ns->ctrlr = ctrlr; ns->id = id; ns->stripesize = 0; /* * Older Intel devices advertise in vendor specific space an alignment * that improves performance. If present use for the stripe size. NVMe * 1.3 standardized this as NOIOB, and newer Intel drives use that. */ switch (pci_get_devid(ctrlr->dev)) { case 0x09538086: /* Intel DC PC3500 */ case 0x0a538086: /* Intel DC PC3520 */ case 0x0a548086: /* Intel DC PC4500 */ if (ctrlr->cdata.vs[3] != 0) ns->stripesize = (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; break; default: break; } /* * Namespaces are reconstructed after a controller reset, so check * to make sure we only call mtx_init once on each mtx. * * TODO: Move this somewhere where it gets called at controller * construction time, which is not invoked as part of each * controller reset. */ if (!mtx_initialized(&ns->lock)) mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); status.done = 0; nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, nvme_completion_poll_cb, &status); while (!atomic_load_acq_int(&status.done)) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); return (ENXIO); } /* Convert data to host endian */ nvme_namespace_data_swapbytes(&ns->data); /* * If the size of is zero, chances are this isn't a valid * namespace (eg one that's not been configured yet). The * standard says the entire id will be zeros, so this is a * cheap way to test for that. */ if (ns->data.nsze == 0) return (ENXIO); flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & NVME_NS_DATA_FLBAS_FORMAT_MASK; /* * Note: format is a 0-based value, so > is appropriate here, * not >=. */ if (flbas_fmt > ns->data.nlbaf) { printf("lba format %d exceeds number supported (%d)\n", flbas_fmt, ns->data.nlbaf + 1); return (ENXIO); } - oncs = ctrlr->cdata.oncs; - dsm = (oncs >> NVME_CTRLR_DATA_ONCS_DSM_SHIFT) & NVME_CTRLR_DATA_ONCS_DSM_MASK; - if (dsm) + if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & NVME_CTRLR_DATA_VWC_PRESENT_MASK; if (vwc_present) ns->flags |= NVME_NS_FLUSH_SUPPORTED; /* * cdev may have already been created, if we are reconstructing the * namespace after a controller-level reset. */ if (ns->cdev != NULL) return (0); /* * Namespace IDs start at 1, so we need to subtract 1 to create a * correct unit number. */ unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; make_dev_args_init(&md_args); md_args.mda_devsw = &nvme_ns_cdevsw; md_args.mda_unit = unit; md_args.mda_mode = 0600; md_args.mda_si_drv1 = ns; res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", device_get_unit(ctrlr->dev), ns->id); if (res != 0) return (ENXIO); #ifdef NVME_UNMAPPED_BIO_SUPPORT ns->cdev->si_flags |= SI_UNMAPPED; #endif return (0); } void nvme_ns_destruct(struct nvme_namespace *ns) { if (ns->cdev != NULL) destroy_dev(ns->cdev); }