Index: head/sys/dev/sfxge/common/efx.h =================================================================== --- head/sys/dev/sfxge/common/efx.h (revision 341311) +++ head/sys/dev/sfxge/common/efx.h (revision 341312) @@ -1,3264 +1,3285 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_H #define _SYS_EFX_H #include "efx_annote.h" #include "efsys.h" #include "efx_check.h" #include "efx_phy_ids.h" #ifdef __cplusplus extern "C" { #endif #define EFX_STATIC_ASSERT(_cond) \ ((void)sizeof (char[(_cond) ? 1 : -1])) #define EFX_ARRAY_SIZE(_array) \ (sizeof (_array) / sizeof ((_array)[0])) #define EFX_FIELD_OFFSET(_type, _field) \ ((size_t)&(((_type *)0)->_field)) /* The macro expands divider twice */ #define EFX_DIV_ROUND_UP(_n, _d) (((_n) + (_d) - 1) / (_d)) /* Return codes */ typedef __success(return == 0) int efx_rc_t; /* Chip families */ typedef enum efx_family_e { EFX_FAMILY_INVALID, EFX_FAMILY_FALCON, /* Obsolete and not supported */ EFX_FAMILY_SIENA, EFX_FAMILY_HUNTINGTON, EFX_FAMILY_MEDFORD, EFX_FAMILY_MEDFORD2, EFX_FAMILY_NTYPES } efx_family_t; extern __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp, __out unsigned int *membarp); #define EFX_PCI_VENID_SFC 0x1924 #define EFX_PCI_DEVID_FALCON 0x0710 /* SFC4000 */ #define EFX_PCI_DEVID_BETHPAGE 0x0803 /* SFC9020 */ #define EFX_PCI_DEVID_SIENA 0x0813 /* SFL9021 */ #define EFX_PCI_DEVID_SIENA_F1_UNINIT 0x0810 #define EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT 0x0901 #define EFX_PCI_DEVID_FARMINGDALE 0x0903 /* SFC9120 PF */ #define EFX_PCI_DEVID_GREENPORT 0x0923 /* SFC9140 PF */ #define EFX_PCI_DEVID_FARMINGDALE_VF 0x1903 /* SFC9120 VF */ #define EFX_PCI_DEVID_GREENPORT_VF 0x1923 /* SFC9140 VF */ #define EFX_PCI_DEVID_MEDFORD_PF_UNINIT 0x0913 #define EFX_PCI_DEVID_MEDFORD 0x0A03 /* SFC9240 PF */ #define EFX_PCI_DEVID_MEDFORD_VF 0x1A03 /* SFC9240 VF */ #define EFX_PCI_DEVID_MEDFORD2_PF_UNINIT 0x0B13 #define EFX_PCI_DEVID_MEDFORD2 0x0B03 /* SFC9250 PF */ #define EFX_PCI_DEVID_MEDFORD2_VF 0x1B03 /* SFC9250 VF */ #define EFX_MEM_BAR_SIENA 2 #define EFX_MEM_BAR_HUNTINGTON_PF 2 #define EFX_MEM_BAR_HUNTINGTON_VF 0 #define EFX_MEM_BAR_MEDFORD_PF 2 #define EFX_MEM_BAR_MEDFORD_VF 0 #define EFX_MEM_BAR_MEDFORD2 0 /* Error codes */ enum { EFX_ERR_INVALID, EFX_ERR_SRAM_OOB, EFX_ERR_BUFID_DC_OOB, EFX_ERR_MEM_PERR, EFX_ERR_RBUF_OWN, EFX_ERR_TBUF_OWN, EFX_ERR_RDESQ_OWN, EFX_ERR_TDESQ_OWN, EFX_ERR_EVQ_OWN, EFX_ERR_EVFF_OFLO, EFX_ERR_ILL_ADDR, EFX_ERR_SRAM_PERR, EFX_ERR_NCODES }; /* Calculate the IEEE 802.3 CRC32 of a MAC addr */ extern __checkReturn uint32_t efx_crc32_calculate( __in uint32_t crc_init, __in_ecount(length) uint8_t const *input, __in int length); /* Type prototypes */ typedef struct efx_rxq_s efx_rxq_t; /* NIC */ typedef struct efx_nic_s efx_nic_t; extern __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp); /* EFX_FW_VARIANT codes map one to one on MC_CMD_FW codes */ typedef enum efx_fw_variant_e { EFX_FW_VARIANT_FULL_FEATURED, EFX_FW_VARIANT_LOW_LATENCY, EFX_FW_VARIANT_PACKED_STREAM, EFX_FW_VARIANT_HIGH_TX_RATE, EFX_FW_VARIANT_PACKED_STREAM_HASH_MODE_1, EFX_FW_VARIANT_RULES_ENGINE, EFX_FW_VARIANT_DPDK, EFX_FW_VARIANT_DONT_CARE = 0xffffffff } efx_fw_variant_t; extern __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp, __in efx_fw_variant_t efv); extern __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_nic_hw_unavailable( __in efx_nic_t *enp); extern void efx_nic_set_hw_unavailable( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void efx_nic_fini( __in efx_nic_t *enp); extern void efx_nic_unprobe( __in efx_nic_t *enp); extern void efx_nic_destroy( __in efx_nic_t *enp); #define EFX_PCIE_LINK_SPEED_GEN1 1 #define EFX_PCIE_LINK_SPEED_GEN2 2 #define EFX_PCIE_LINK_SPEED_GEN3 3 typedef enum efx_pcie_link_performance_e { EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY, EFX_PCIE_LINK_PERFORMANCE_OPTIMAL } efx_pcie_link_performance_t; extern __checkReturn efx_rc_t efx_nic_calculate_pcie_link_bandwidth( __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out uint32_t *bandwidth_mbpsp); extern __checkReturn efx_rc_t efx_nic_check_pcie_link_speed( __in efx_nic_t *enp, __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out efx_pcie_link_performance_t *resultp); #if EFSYS_OPT_MCDI #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 /* Huntington and Medford require MCDIv2 commands */ #define WITH_MCDI_V2 1 #endif typedef struct efx_mcdi_req_s efx_mcdi_req_t; typedef enum efx_mcdi_exception_e { EFX_MCDI_EXCEPTION_MC_REBOOT, EFX_MCDI_EXCEPTION_MC_BADASSERT, } efx_mcdi_exception_t; #if EFSYS_OPT_MCDI_LOGGING typedef enum efx_log_msg_e { EFX_LOG_INVALID, EFX_LOG_MCDI_REQUEST, EFX_LOG_MCDI_RESPONSE, } efx_log_msg_t; #endif /* EFSYS_OPT_MCDI_LOGGING */ typedef struct efx_mcdi_transport_s { void *emt_context; efsys_mem_t *emt_dma_mem; void (*emt_execute)(void *, efx_mcdi_req_t *); void (*emt_ev_cpl)(void *); void (*emt_exception)(void *, efx_mcdi_exception_t); #if EFSYS_OPT_MCDI_LOGGING void (*emt_logger)(void *, efx_log_msg_t, void *, size_t, void *, size_t); #endif /* EFSYS_OPT_MCDI_LOGGING */ #if EFSYS_OPT_MCDI_PROXY_AUTH void (*emt_ev_proxy_response)(void *, uint32_t, efx_rc_t); #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ } efx_mcdi_transport_t; extern __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp); void efx_mcdi_new_epoch( __in efx_nic_t *enp); extern void efx_mcdi_get_timeout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *usec_timeoutp); extern void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl); extern __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp); extern void efx_mcdi_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_MCDI */ /* INTR */ #define EFX_NINTR_SIENA 1024 typedef enum efx_intr_type_e { EFX_INTR_INVALID = 0, EFX_INTR_LINE, EFX_INTR_MESSAGE, EFX_INTR_NTYPES } efx_intr_type_t; #define EFX_INTR_SIZE (sizeof (efx_oword_t)) extern __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); extern void efx_intr_enable( __in efx_nic_t *enp); extern void efx_intr_disable( __in efx_nic_t *enp); extern void efx_intr_disable_unlocked( __in efx_nic_t *enp); #define EFX_INTR_NEVQS 32 extern __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); extern void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *maskp); extern void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); extern void efx_intr_fatal( __in efx_nic_t *enp); extern void efx_intr_fini( __in efx_nic_t *enp); /* MAC */ #if EFSYS_OPT_MAC_STATS /* START MKCONFIG GENERATED EfxHeaderMacBlock ea466a9bc8789994 */ typedef enum efx_mac_stat_e { EFX_MAC_RX_OCTETS, EFX_MAC_RX_PKTS, EFX_MAC_RX_UNICST_PKTS, EFX_MAC_RX_MULTICST_PKTS, EFX_MAC_RX_BRDCST_PKTS, EFX_MAC_RX_PAUSE_PKTS, EFX_MAC_RX_LE_64_PKTS, EFX_MAC_RX_65_TO_127_PKTS, EFX_MAC_RX_128_TO_255_PKTS, EFX_MAC_RX_256_TO_511_PKTS, EFX_MAC_RX_512_TO_1023_PKTS, EFX_MAC_RX_1024_TO_15XX_PKTS, EFX_MAC_RX_GE_15XX_PKTS, EFX_MAC_RX_ERRORS, EFX_MAC_RX_FCS_ERRORS, EFX_MAC_RX_DROP_EVENTS, EFX_MAC_RX_FALSE_CARRIER_ERRORS, EFX_MAC_RX_SYMBOL_ERRORS, EFX_MAC_RX_ALIGN_ERRORS, EFX_MAC_RX_INTERNAL_ERRORS, EFX_MAC_RX_JABBER_PKTS, EFX_MAC_RX_LANE0_CHAR_ERR, EFX_MAC_RX_LANE1_CHAR_ERR, EFX_MAC_RX_LANE2_CHAR_ERR, EFX_MAC_RX_LANE3_CHAR_ERR, EFX_MAC_RX_LANE0_DISP_ERR, EFX_MAC_RX_LANE1_DISP_ERR, EFX_MAC_RX_LANE2_DISP_ERR, EFX_MAC_RX_LANE3_DISP_ERR, EFX_MAC_RX_MATCH_FAULT, EFX_MAC_RX_NODESC_DROP_CNT, EFX_MAC_TX_OCTETS, EFX_MAC_TX_PKTS, EFX_MAC_TX_UNICST_PKTS, EFX_MAC_TX_MULTICST_PKTS, EFX_MAC_TX_BRDCST_PKTS, EFX_MAC_TX_PAUSE_PKTS, EFX_MAC_TX_LE_64_PKTS, EFX_MAC_TX_65_TO_127_PKTS, EFX_MAC_TX_128_TO_255_PKTS, EFX_MAC_TX_256_TO_511_PKTS, EFX_MAC_TX_512_TO_1023_PKTS, EFX_MAC_TX_1024_TO_15XX_PKTS, EFX_MAC_TX_GE_15XX_PKTS, EFX_MAC_TX_ERRORS, EFX_MAC_TX_SGL_COL_PKTS, EFX_MAC_TX_MULT_COL_PKTS, EFX_MAC_TX_EX_COL_PKTS, EFX_MAC_TX_LATE_COL_PKTS, EFX_MAC_TX_DEF_PKTS, EFX_MAC_TX_EX_DEF_PKTS, EFX_MAC_PM_TRUNC_BB_OVERFLOW, EFX_MAC_PM_DISCARD_BB_OVERFLOW, EFX_MAC_PM_TRUNC_VFIFO_FULL, EFX_MAC_PM_DISCARD_VFIFO_FULL, EFX_MAC_PM_TRUNC_QBB, EFX_MAC_PM_DISCARD_QBB, EFX_MAC_PM_DISCARD_MAPPING, EFX_MAC_RXDP_Q_DISABLED_PKTS, EFX_MAC_RXDP_DI_DROPPED_PKTS, EFX_MAC_RXDP_STREAMING_PKTS, EFX_MAC_RXDP_HLB_FETCH, EFX_MAC_RXDP_HLB_WAIT, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS, EFX_MAC_VADAPTER_RX_UNICAST_BYTES, EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_RX_MULTICAST_BYTES, EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_RX_BROADCAST_BYTES, EFX_MAC_VADAPTER_RX_BAD_PACKETS, EFX_MAC_VADAPTER_RX_BAD_BYTES, EFX_MAC_VADAPTER_RX_OVERFLOW, EFX_MAC_VADAPTER_TX_UNICAST_PACKETS, EFX_MAC_VADAPTER_TX_UNICAST_BYTES, EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_TX_MULTICAST_BYTES, EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_TX_BROADCAST_BYTES, EFX_MAC_VADAPTER_TX_BAD_PACKETS, EFX_MAC_VADAPTER_TX_BAD_BYTES, EFX_MAC_VADAPTER_TX_OVERFLOW, EFX_MAC_FEC_UNCORRECTED_ERRORS, EFX_MAC_FEC_CORRECTED_ERRORS, EFX_MAC_FEC_CORRECTED_SYMBOLS_LANE0, EFX_MAC_FEC_CORRECTED_SYMBOLS_LANE1, EFX_MAC_FEC_CORRECTED_SYMBOLS_LANE2, EFX_MAC_FEC_CORRECTED_SYMBOLS_LANE3, EFX_MAC_CTPIO_VI_BUSY_FALLBACK, EFX_MAC_CTPIO_LONG_WRITE_SUCCESS, EFX_MAC_CTPIO_MISSING_DBELL_FAIL, EFX_MAC_CTPIO_OVERFLOW_FAIL, EFX_MAC_CTPIO_UNDERFLOW_FAIL, EFX_MAC_CTPIO_TIMEOUT_FAIL, EFX_MAC_CTPIO_NONCONTIG_WR_FAIL, EFX_MAC_CTPIO_FRM_CLOBBER_FAIL, EFX_MAC_CTPIO_INVALID_WR_FAIL, EFX_MAC_CTPIO_VI_CLOBBER_FALLBACK, EFX_MAC_CTPIO_UNQUALIFIED_FALLBACK, EFX_MAC_CTPIO_RUNT_FALLBACK, EFX_MAC_CTPIO_SUCCESS, EFX_MAC_CTPIO_FALLBACK, EFX_MAC_CTPIO_POISON, EFX_MAC_CTPIO_ERASE, EFX_MAC_RXDP_SCATTER_DISABLED_TRUNC, EFX_MAC_RXDP_HLB_IDLE, EFX_MAC_RXDP_HLB_TIMEOUT, EFX_MAC_NSTATS } efx_mac_stat_t; /* END MKCONFIG GENERATED EfxHeaderMacBlock */ #endif /* EFSYS_OPT_MAC_STATS */ typedef enum efx_link_mode_e { EFX_LINK_UNKNOWN = 0, EFX_LINK_DOWN, EFX_LINK_10HDX, EFX_LINK_10FDX, EFX_LINK_100HDX, EFX_LINK_100FDX, EFX_LINK_1000HDX, EFX_LINK_1000FDX, EFX_LINK_10000FDX, EFX_LINK_40000FDX, EFX_LINK_25000FDX, EFX_LINK_50000FDX, EFX_LINK_100000FDX, EFX_LINK_NMODES } efx_link_mode_t; #define EFX_MAC_ADDR_LEN 6 #define EFX_VNI_OR_VSID_LEN 3 #define EFX_MAC_ADDR_IS_MULTICAST(_address) (((uint8_t *)_address)[0] & 0x01) #define EFX_MAC_MULTICAST_LIST_MAX 256 #define EFX_MAC_SDU_MAX 9202 #define EFX_MAC_PDU_ADJUSTMENT \ (/* EtherII */ 14 \ + /* VLAN */ 4 \ + /* CRC */ 4 \ + /* bug16011 */ 16) \ #define EFX_MAC_PDU(_sdu) \ P2ROUNDUP((_sdu) + EFX_MAC_PDU_ADJUSTMENT, 8) /* * Due to the P2ROUNDUP in EFX_MAC_PDU(), EFX_MAC_SDU_FROM_PDU() may give * the SDU rounded up slightly. */ #define EFX_MAC_SDU_FROM_PDU(_pdu) ((_pdu) - EFX_MAC_PDU_ADJUSTMENT) #define EFX_MAC_PDU_MIN 60 #define EFX_MAC_PDU_MAX EFX_MAC_PDU(EFX_MAC_SDU_MAX) extern __checkReturn efx_rc_t efx_mac_pdu_get( __in efx_nic_t *enp, __out size_t *pdu); extern __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu); extern __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr); extern __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled); extern __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); #define EFX_FCNTL_RESPOND 0x00000001 #define EFX_FCNTL_GENERATE 0x00000002 extern __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg); extern void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp); #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_MAC_STATS_MASK_BITS_PER_PAGE (8 * sizeof (uint32_t)) #define EFX_MAC_STATS_MASK_NPAGES \ (P2ROUNDUP(EFX_MAC_NSTATS, EFX_MAC_STATS_MASK_BITS_PER_PAGE) / \ EFX_MAC_STATS_MASK_BITS_PER_PAGE) /* * Get mask of MAC statistics supported by the hardware. * * If mask_size is insufficient to return the mask, EINVAL error is * returned. EFX_MAC_STATS_MASK_NPAGES multiplied by size of the page * (which is sizeof (uint32_t)) is sufficient. */ extern __checkReturn efx_rc_t efx_mac_stats_get_mask( __in efx_nic_t *enp, __out_bcount(mask_size) uint32_t *maskp, __in size_t mask_size); #define EFX_MAC_STAT_SUPPORTED(_mask, _stat) \ ((_mask)[(_stat) / EFX_MAC_STATS_MASK_BITS_PER_PAGE] & \ (1ULL << ((_stat) & (EFX_MAC_STATS_MASK_BITS_PER_PAGE - 1)))) extern __checkReturn efx_rc_t efx_mac_stats_clear( __in efx_nic_t *enp); /* * Upload mac statistics supported by the hardware into the given buffer. * * The DMA buffer must be 4Kbyte aligned and sized to hold at least * efx_nic_cfg_t::enc_mac_stats_nstats 64bit counters. * * The hardware will only DMA statistics that it understands (of course). * Drivers should not make any assumptions about which statistics are * supported, especially when the statistics are generated by firmware. * * Thus, drivers should zero this buffer before use, so that not-understood * statistics read back as zero. */ extern __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); extern __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MON */ typedef enum efx_mon_type_e { EFX_MON_INVALID = 0, EFX_MON_SFC90X0, EFX_MON_SFC91X0, EFX_MON_SFC92X0, EFX_MON_NTYPES } efx_mon_type_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_name( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_init( __in efx_nic_t *enp); #if EFSYS_OPT_MON_STATS #define EFX_MON_STATS_PAGE_SIZE 0x100 #define EFX_MON_MASK_ELEMENT_SIZE 32 /* START MKCONFIG GENERATED MonitorHeaderStatsBlock 78b65c8d5af9747b */ typedef enum efx_mon_stat_e { EFX_MON_STAT_CONTROLLER_TEMP, EFX_MON_STAT_PHY_COMMON_TEMP, EFX_MON_STAT_CONTROLLER_COOLING, EFX_MON_STAT_PHY0_TEMP, EFX_MON_STAT_PHY0_COOLING, EFX_MON_STAT_PHY1_TEMP, EFX_MON_STAT_PHY1_COOLING, EFX_MON_STAT_IN_1V0, EFX_MON_STAT_IN_1V2, EFX_MON_STAT_IN_1V8, EFX_MON_STAT_IN_2V5, EFX_MON_STAT_IN_3V3, EFX_MON_STAT_IN_12V0, EFX_MON_STAT_IN_1V2A, EFX_MON_STAT_IN_VREF, EFX_MON_STAT_OUT_VAOE, EFX_MON_STAT_AOE_TEMP, EFX_MON_STAT_PSU_AOE_TEMP, EFX_MON_STAT_PSU_TEMP, EFX_MON_STAT_FAN_0, EFX_MON_STAT_FAN_1, EFX_MON_STAT_FAN_2, EFX_MON_STAT_FAN_3, EFX_MON_STAT_FAN_4, EFX_MON_STAT_IN_VAOE, EFX_MON_STAT_OUT_IAOE, EFX_MON_STAT_IN_IAOE, EFX_MON_STAT_NIC_POWER, EFX_MON_STAT_IN_0V9, EFX_MON_STAT_IN_I0V9, EFX_MON_STAT_IN_I1V2, EFX_MON_STAT_IN_0V9_ADC, EFX_MON_STAT_CONTROLLER_2_TEMP, EFX_MON_STAT_VREG_INTERNAL_TEMP, EFX_MON_STAT_VREG_0V9_TEMP, EFX_MON_STAT_VREG_1V2_TEMP, EFX_MON_STAT_CONTROLLER_VPTAT, EFX_MON_STAT_CONTROLLER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_VPTAT_EXTADC, EFX_MON_STAT_CONTROLLER_INTERNAL_TEMP_EXTADC, EFX_MON_STAT_AMBIENT_TEMP, EFX_MON_STAT_AIRFLOW, EFX_MON_STAT_VDD08D_VSS08D_CSR, EFX_MON_STAT_VDD08D_VSS08D_CSR_EXTADC, EFX_MON_STAT_HOTPOINT_TEMP, EFX_MON_STAT_PHY_POWER_PORT0, EFX_MON_STAT_PHY_POWER_PORT1, EFX_MON_STAT_MUM_VCC, EFX_MON_STAT_IN_0V9_A, EFX_MON_STAT_IN_I0V9_A, EFX_MON_STAT_VREG_0V9_A_TEMP, EFX_MON_STAT_IN_0V9_B, EFX_MON_STAT_IN_I0V9_B, EFX_MON_STAT_VREG_0V9_B_TEMP, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY_EXTADC, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY_EXTADC, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT_EXTADC, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP_EXTADC, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT_EXTADC, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP_EXTADC, EFX_MON_STAT_SODIMM_VOUT, EFX_MON_STAT_SODIMM_0_TEMP, EFX_MON_STAT_SODIMM_1_TEMP, EFX_MON_STAT_PHY0_VCC, EFX_MON_STAT_PHY1_VCC, EFX_MON_STAT_CONTROLLER_TDIODE_TEMP, EFX_MON_STAT_BOARD_FRONT_TEMP, EFX_MON_STAT_BOARD_BACK_TEMP, EFX_MON_STAT_IN_I1V8, EFX_MON_STAT_IN_I2V5, EFX_MON_STAT_IN_I3V3, EFX_MON_STAT_IN_I12V0, EFX_MON_STAT_IN_1V3, EFX_MON_STAT_IN_I1V3, EFX_MON_NSTATS } efx_mon_stat_t; /* END MKCONFIG GENERATED MonitorHeaderStatsBlock */ typedef enum efx_mon_stat_state_e { EFX_MON_STAT_STATE_OK = 0, EFX_MON_STAT_STATE_WARNING = 1, EFX_MON_STAT_STATE_FATAL = 2, EFX_MON_STAT_STATE_BROKEN = 3, EFX_MON_STAT_STATE_NO_READING = 4, } efx_mon_stat_state_t; typedef enum efx_mon_stat_unit_e { EFX_MON_STAT_UNIT_UNKNOWN = 0, EFX_MON_STAT_UNIT_BOOL, EFX_MON_STAT_UNIT_TEMP_C, EFX_MON_STAT_UNIT_VOLTAGE_MV, EFX_MON_STAT_UNIT_CURRENT_MA, EFX_MON_STAT_UNIT_POWER_W, EFX_MON_STAT_UNIT_RPM, EFX_MON_NUNITS } efx_mon_stat_unit_t; typedef struct efx_mon_stat_value_s { uint16_t emsv_value; efx_mon_stat_state_t emsv_state; efx_mon_stat_unit_t emsv_unit; } efx_mon_stat_value_t; typedef struct efx_mon_limit_value_s { uint16_t emlv_warning_min; uint16_t emlv_warning_max; uint16_t emlv_fatal_min; uint16_t emlv_fatal_max; } efx_mon_stat_limits_t; typedef enum efx_mon_stat_portmask_e { EFX_MON_STAT_PORTMAP_NONE = 0, EFX_MON_STAT_PORTMAP_PORT0 = 1, EFX_MON_STAT_PORTMAP_PORT1 = 2, EFX_MON_STAT_PORTMAP_PORT2 = 3, EFX_MON_STAT_PORTMAP_PORT3 = 4, EFX_MON_STAT_PORTMAP_ALL = (-1), EFX_MON_STAT_PORTMAP_UNKNOWN = (-2) } efx_mon_stat_portmask_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_stat_name( __in efx_nic_t *enp, __in efx_mon_stat_t id); extern const char * efx_mon_stat_description( __in efx_nic_t *enp, __in efx_mon_stat_t id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn boolean_t efx_mon_mcdi_to_efx_stat( __in int mcdi_index, __out efx_mon_stat_t *statp); extern __checkReturn boolean_t efx_mon_get_stat_unit( __in efx_mon_stat_t stat, __out efx_mon_stat_unit_t *unitp); extern __checkReturn boolean_t efx_mon_get_stat_portmap( __in efx_mon_stat_t stat, __out efx_mon_stat_portmask_t *maskp); extern __checkReturn efx_rc_t efx_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values); extern __checkReturn efx_rc_t efx_mon_limits_update( __in efx_nic_t *enp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_limits_t *values); #endif /* EFSYS_OPT_MON_STATS */ extern void efx_mon_fini( __in efx_nic_t *enp); /* PHY */ extern __checkReturn efx_rc_t efx_phy_verify( __in efx_nic_t *enp); #if EFSYS_OPT_PHY_LED_CONTROL typedef enum efx_phy_led_mode_e { EFX_PHY_LED_DEFAULT = 0, EFX_PHY_LED_OFF, EFX_PHY_LED_ON, EFX_PHY_LED_FLASH, EFX_PHY_LED_NMODES } efx_phy_led_mode_t; extern __checkReturn efx_rc_t efx_phy_led_set( __in efx_nic_t *enp, __in efx_phy_led_mode_t mode); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ extern __checkReturn efx_rc_t efx_port_init( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK typedef enum efx_loopback_type_e { EFX_LOOPBACK_OFF = 0, EFX_LOOPBACK_DATA = 1, EFX_LOOPBACK_GMAC = 2, EFX_LOOPBACK_XGMII = 3, EFX_LOOPBACK_XGXS = 4, EFX_LOOPBACK_XAUI = 5, EFX_LOOPBACK_GMII = 6, EFX_LOOPBACK_SGMII = 7, EFX_LOOPBACK_XGBR = 8, EFX_LOOPBACK_XFI = 9, EFX_LOOPBACK_XAUI_FAR = 10, EFX_LOOPBACK_GMII_FAR = 11, EFX_LOOPBACK_SGMII_FAR = 12, EFX_LOOPBACK_XFI_FAR = 13, EFX_LOOPBACK_GPHY = 14, EFX_LOOPBACK_PHY_XS = 15, EFX_LOOPBACK_PCS = 16, EFX_LOOPBACK_PMA_PMD = 17, EFX_LOOPBACK_XPORT = 18, EFX_LOOPBACK_XGMII_WS = 19, EFX_LOOPBACK_XAUI_WS = 20, EFX_LOOPBACK_XAUI_WS_FAR = 21, EFX_LOOPBACK_XAUI_WS_NEAR = 22, EFX_LOOPBACK_GMII_WS = 23, EFX_LOOPBACK_XFI_WS = 24, EFX_LOOPBACK_XFI_WS_FAR = 25, EFX_LOOPBACK_PHYXS_WS = 26, EFX_LOOPBACK_PMA_INT = 27, EFX_LOOPBACK_SD_NEAR = 28, EFX_LOOPBACK_SD_FAR = 29, EFX_LOOPBACK_PMA_INT_WS = 30, EFX_LOOPBACK_SD_FEP2_WS = 31, EFX_LOOPBACK_SD_FEP1_5_WS = 32, EFX_LOOPBACK_SD_FEP_WS = 33, EFX_LOOPBACK_SD_FES_WS = 34, EFX_LOOPBACK_AOE_INT_NEAR = 35, EFX_LOOPBACK_DATA_WS = 36, EFX_LOOPBACK_FORCE_EXT_LINK = 37, EFX_LOOPBACK_NTYPES } efx_loopback_type_t; typedef enum efx_loopback_kind_e { EFX_LOOPBACK_KIND_OFF = 0, EFX_LOOPBACK_KIND_ALL, EFX_LOOPBACK_KIND_MAC, EFX_LOOPBACK_KIND_PHY, EFX_LOOPBACK_NKINDS } efx_loopback_kind_t; extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp); extern __checkReturn efx_rc_t efx_port_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t type); #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_loopback_type_name( __in efx_nic_t *enp, __in efx_loopback_type_t type); #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_port_poll( __in efx_nic_t *enp, __out_opt efx_link_mode_t *link_modep); extern void efx_port_fini( __in efx_nic_t *enp); typedef enum efx_phy_cap_type_e { EFX_PHY_CAP_INVALID = 0, EFX_PHY_CAP_10HDX, EFX_PHY_CAP_10FDX, EFX_PHY_CAP_100HDX, EFX_PHY_CAP_100FDX, EFX_PHY_CAP_1000HDX, EFX_PHY_CAP_1000FDX, EFX_PHY_CAP_10000FDX, EFX_PHY_CAP_PAUSE, EFX_PHY_CAP_ASYM, EFX_PHY_CAP_AN, EFX_PHY_CAP_40000FDX, EFX_PHY_CAP_DDM, EFX_PHY_CAP_100000FDX, EFX_PHY_CAP_25000FDX, EFX_PHY_CAP_50000FDX, EFX_PHY_CAP_BASER_FEC, EFX_PHY_CAP_BASER_FEC_REQUESTED, EFX_PHY_CAP_RS_FEC, EFX_PHY_CAP_RS_FEC_REQUESTED, EFX_PHY_CAP_25G_BASER_FEC, EFX_PHY_CAP_25G_BASER_FEC_REQUESTED, EFX_PHY_CAP_NTYPES } efx_phy_cap_type_t; #define EFX_PHY_CAP_CURRENT 0x00000000 #define EFX_PHY_CAP_DEFAULT 0x00000001 #define EFX_PHY_CAP_PERM 0x00000002 extern void efx_phy_adv_cap_get( __in efx_nic_t *enp, __in uint32_t flag, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_adv_cap_set( __in efx_nic_t *enp, __in uint32_t mask); extern void efx_phy_lp_cap_get( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); typedef enum efx_phy_media_type_e { EFX_PHY_MEDIA_INVALID = 0, EFX_PHY_MEDIA_XAUI, EFX_PHY_MEDIA_CX4, EFX_PHY_MEDIA_KX4, EFX_PHY_MEDIA_XFP, EFX_PHY_MEDIA_SFP_PLUS, EFX_PHY_MEDIA_BASE_T, EFX_PHY_MEDIA_QSFP_PLUS, EFX_PHY_MEDIA_NTYPES } efx_phy_media_type_t; /* * Get the type of medium currently used. If the board has ports for * modules, a module is present, and we recognise the media type of * the module, then this will be the media type of the module. * Otherwise it will be the media type of the port. */ extern void efx_phy_media_type_get( __in efx_nic_t *enp, __out efx_phy_media_type_t *typep); +/* + * 2-wire device address of the base information in accordance with SFF-8472 + * Diagnostic Monitoring Interface for Optical Transceivers section + * 4 Memory Organization. + */ +#define EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE 0xA0 + +/* + * 2-wire device address of the digital diagnostics monitoring interface + * in accordance with SFF-8472 Diagnostic Monitoring Interface for Optical + * Transceivers section 4 Memory Organization. + */ +#define EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM 0xA2 + +/* + * Hard wired 2-wire device address for QSFP+ in accordance with SFF-8436 + * QSFP+ 10 Gbs 4X PLUGGABLE TRANSCEIVER section 7.4 Device Addressing and + * Operation. + */ +#define EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP 0xA0 + extern __checkReturn efx_rc_t efx_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data); #if EFSYS_OPT_PHY_STATS /* START MKCONFIG GENERATED PhyHeaderStatsBlock 30ed56ad501f8e36 */ typedef enum efx_phy_stat_e { EFX_PHY_STAT_OUI, EFX_PHY_STAT_PMA_PMD_LINK_UP, EFX_PHY_STAT_PMA_PMD_RX_FAULT, EFX_PHY_STAT_PMA_PMD_TX_FAULT, EFX_PHY_STAT_PMA_PMD_REV_A, EFX_PHY_STAT_PMA_PMD_REV_B, EFX_PHY_STAT_PMA_PMD_REV_C, EFX_PHY_STAT_PMA_PMD_REV_D, EFX_PHY_STAT_PCS_LINK_UP, EFX_PHY_STAT_PCS_RX_FAULT, EFX_PHY_STAT_PCS_TX_FAULT, EFX_PHY_STAT_PCS_BER, EFX_PHY_STAT_PCS_BLOCK_ERRORS, EFX_PHY_STAT_PHY_XS_LINK_UP, EFX_PHY_STAT_PHY_XS_RX_FAULT, EFX_PHY_STAT_PHY_XS_TX_FAULT, EFX_PHY_STAT_PHY_XS_ALIGN, EFX_PHY_STAT_PHY_XS_SYNC_A, EFX_PHY_STAT_PHY_XS_SYNC_B, EFX_PHY_STAT_PHY_XS_SYNC_C, EFX_PHY_STAT_PHY_XS_SYNC_D, EFX_PHY_STAT_AN_LINK_UP, EFX_PHY_STAT_AN_MASTER, EFX_PHY_STAT_AN_LOCAL_RX_OK, EFX_PHY_STAT_AN_REMOTE_RX_OK, EFX_PHY_STAT_CL22EXT_LINK_UP, EFX_PHY_STAT_SNR_A, EFX_PHY_STAT_SNR_B, EFX_PHY_STAT_SNR_C, EFX_PHY_STAT_SNR_D, EFX_PHY_STAT_PMA_PMD_SIGNAL_A, EFX_PHY_STAT_PMA_PMD_SIGNAL_B, EFX_PHY_STAT_PMA_PMD_SIGNAL_C, EFX_PHY_STAT_PMA_PMD_SIGNAL_D, EFX_PHY_STAT_AN_COMPLETE, EFX_PHY_STAT_PMA_PMD_REV_MAJOR, EFX_PHY_STAT_PMA_PMD_REV_MINOR, EFX_PHY_STAT_PMA_PMD_REV_MICRO, EFX_PHY_STAT_PCS_FW_VERSION_0, EFX_PHY_STAT_PCS_FW_VERSION_1, EFX_PHY_STAT_PCS_FW_VERSION_2, EFX_PHY_STAT_PCS_FW_VERSION_3, EFX_PHY_STAT_PCS_FW_BUILD_YY, EFX_PHY_STAT_PCS_FW_BUILD_MM, EFX_PHY_STAT_PCS_FW_BUILD_DD, EFX_PHY_STAT_PCS_OP_MODE, EFX_PHY_NSTATS } efx_phy_stat_t; /* END MKCONFIG GENERATED PhyHeaderStatsBlock */ #if EFSYS_OPT_NAMES extern const char * efx_phy_stat_name( __in efx_nic_t *enp, __in efx_phy_stat_t stat); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_STATS_SIZE 0x100 extern __checkReturn efx_rc_t efx_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST typedef enum efx_bist_type_e { EFX_BIST_TYPE_UNKNOWN, EFX_BIST_TYPE_PHY_NORMAL, EFX_BIST_TYPE_PHY_CABLE_SHORT, EFX_BIST_TYPE_PHY_CABLE_LONG, EFX_BIST_TYPE_MC_MEM, /* Test the MC DMEM and IMEM */ EFX_BIST_TYPE_SAT_MEM, /* Test the DMEM and IMEM of satellite cpus */ EFX_BIST_TYPE_REG, /* Test the register memories */ EFX_BIST_TYPE_NTYPES, } efx_bist_type_t; typedef enum efx_bist_result_e { EFX_BIST_RESULT_UNKNOWN, EFX_BIST_RESULT_RUNNING, EFX_BIST_RESULT_PASSED, EFX_BIST_RESULT_FAILED, } efx_bist_result_t; typedef enum efx_phy_cable_status_e { EFX_PHY_CABLE_STATUS_OK, EFX_PHY_CABLE_STATUS_INVALID, EFX_PHY_CABLE_STATUS_OPEN, EFX_PHY_CABLE_STATUS_INTRAPAIRSHORT, EFX_PHY_CABLE_STATUS_INTERPAIRSHORT, EFX_PHY_CABLE_STATUS_BUSY, } efx_phy_cable_status_t; typedef enum efx_bist_value_e { EFX_BIST_PHY_CABLE_LENGTH_A, EFX_BIST_PHY_CABLE_LENGTH_B, EFX_BIST_PHY_CABLE_LENGTH_C, EFX_BIST_PHY_CABLE_LENGTH_D, EFX_BIST_PHY_CABLE_STATUS_A, EFX_BIST_PHY_CABLE_STATUS_B, EFX_BIST_PHY_CABLE_STATUS_C, EFX_BIST_PHY_CABLE_STATUS_D, EFX_BIST_FAULT_CODE, /* * Memory BIST specific values. These match to the MC_CMD_BIST_POLL * response. */ EFX_BIST_MEM_TEST, EFX_BIST_MEM_ADDR, EFX_BIST_MEM_BUS, EFX_BIST_MEM_EXPECT, EFX_BIST_MEM_ACTUAL, EFX_BIST_MEM_ECC, EFX_BIST_MEM_ECC_PARITY, EFX_BIST_MEM_ECC_FATAL, EFX_BIST_NVALUES, } efx_bist_value_t; extern __checkReturn efx_rc_t efx_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t efx_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt uint32_t *value_maskp, __out_ecount_opt(count) unsigned long *valuesp, __in size_t count); extern void efx_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ #define EFX_FEATURE_IPV6 0x00000001 #define EFX_FEATURE_LFSR_HASH_INSERT 0x00000002 #define EFX_FEATURE_LINK_EVENTS 0x00000004 #define EFX_FEATURE_PERIODIC_MAC_STATS 0x00000008 #define EFX_FEATURE_MCDI 0x00000020 #define EFX_FEATURE_LOOKAHEAD_SPLIT 0x00000040 #define EFX_FEATURE_MAC_HEADER_FILTERS 0x00000080 #define EFX_FEATURE_TURBO 0x00000100 #define EFX_FEATURE_MCDI_DMA 0x00000200 #define EFX_FEATURE_TX_SRC_FILTERS 0x00000400 #define EFX_FEATURE_PIO_BUFFERS 0x00000800 #define EFX_FEATURE_FW_ASSISTED_TSO 0x00001000 #define EFX_FEATURE_FW_ASSISTED_TSO_V2 0x00002000 #define EFX_FEATURE_PACKED_STREAM 0x00004000 typedef enum efx_tunnel_protocol_e { EFX_TUNNEL_PROTOCOL_NONE = 0, EFX_TUNNEL_PROTOCOL_VXLAN, EFX_TUNNEL_PROTOCOL_GENEVE, EFX_TUNNEL_PROTOCOL_NVGRE, EFX_TUNNEL_NPROTOS } efx_tunnel_protocol_t; typedef enum efx_vi_window_shift_e { EFX_VI_WINDOW_SHIFT_INVALID = 0, EFX_VI_WINDOW_SHIFT_8K = 13, EFX_VI_WINDOW_SHIFT_16K = 14, EFX_VI_WINDOW_SHIFT_64K = 16, } efx_vi_window_shift_t; typedef struct efx_nic_cfg_s { uint32_t enc_board_type; uint32_t enc_phy_type; #if EFSYS_OPT_NAMES char enc_phy_name[21]; #endif char enc_phy_revision[21]; efx_mon_type_t enc_mon_type; #if EFSYS_OPT_MON_STATS uint32_t enc_mon_stat_dma_buf_size; uint32_t enc_mon_stat_mask[(EFX_MON_NSTATS + 31) / 32]; #endif unsigned int enc_features; efx_vi_window_shift_t enc_vi_window_shift; uint8_t enc_mac_addr[6]; uint8_t enc_port; /* PHY port number */ uint32_t enc_intr_vec_base; uint32_t enc_intr_limit; uint32_t enc_evq_limit; uint32_t enc_txq_limit; uint32_t enc_rxq_limit; uint32_t enc_txq_max_ndescs; uint32_t enc_buftbl_limit; uint32_t enc_piobuf_limit; uint32_t enc_piobuf_size; uint32_t enc_piobuf_min_alloc_size; uint32_t enc_evq_timer_quantum_ns; uint32_t enc_evq_timer_max_us; uint32_t enc_clk_mult; uint32_t enc_rx_prefix_size; uint32_t enc_rx_buf_align_start; uint32_t enc_rx_buf_align_end; uint32_t enc_rx_scale_max_exclusive_contexts; /* * Mask of supported hash algorithms. * Hash algorithm types are used as the bit indices. */ uint32_t enc_rx_scale_hash_alg_mask; /* * Indicates whether port numbers can be included to the * input data for hash computation. */ boolean_t enc_rx_scale_l4_hash_supported; boolean_t enc_rx_scale_additional_modes_supported; #if EFSYS_OPT_LOOPBACK efx_qword_t enc_loopback_types[EFX_LINK_NMODES]; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t enc_phy_flags_mask; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL uint32_t enc_led_mask; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_STATS uint64_t enc_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_MCDI uint8_t enc_mcdi_mdio_channel; #if EFSYS_OPT_PHY_STATS uint32_t enc_mcdi_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_MON_STATS uint32_t *enc_mcdi_sensor_maskp; uint32_t enc_mcdi_sensor_mask_size; #endif /* EFSYS_OPT_MON_STATS */ #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_BIST uint32_t enc_bist_mask; #endif /* EFSYS_OPT_BIST */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 uint32_t enc_pf; uint32_t enc_vf; uint32_t enc_privilege_mask; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */ boolean_t enc_bug26807_workaround; boolean_t enc_bug35388_workaround; boolean_t enc_bug41750_workaround; boolean_t enc_bug61265_workaround; boolean_t enc_bug61297_workaround; boolean_t enc_rx_batching_enabled; /* Maximum number of descriptors completed in an rx event. */ uint32_t enc_rx_batch_max; /* Number of rx descriptors the hardware requires for a push. */ uint32_t enc_rx_push_align; /* Maximum amount of data in DMA descriptor */ uint32_t enc_tx_dma_desc_size_max; /* * Boundary which DMA descriptor data must not cross or 0 if no * limitation. */ uint32_t enc_tx_dma_desc_boundary; /* * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint32_t enc_tx_tso_tcp_header_offset_limit; boolean_t enc_fw_assisted_tso_enabled; boolean_t enc_fw_assisted_tso_v2_enabled; boolean_t enc_fw_assisted_tso_v2_encap_enabled; /* Number of TSO contexts on the NIC (FATSOv2) */ uint32_t enc_fw_assisted_tso_v2_n_contexts; boolean_t enc_hw_tx_insert_vlan_enabled; /* Number of PFs on the NIC */ uint32_t enc_hw_pf_count; /* Datapath firmware vadapter/vport/vswitch support */ boolean_t enc_datapath_cap_evb; boolean_t enc_rx_disable_scatter_supported; boolean_t enc_allow_set_mac_with_installed_filters; boolean_t enc_enhanced_set_mac_supported; boolean_t enc_init_evq_v2_supported; boolean_t enc_rx_packed_stream_supported; boolean_t enc_rx_var_packed_stream_supported; boolean_t enc_rx_es_super_buffer_supported; boolean_t enc_fw_subvariant_no_tx_csum_supported; boolean_t enc_pm_and_rxdp_counters; boolean_t enc_mac_stats_40g_tx_size_bins; uint32_t enc_tunnel_encapsulations_supported; /* * NIC global maximum for unique UDP tunnel ports shared by all * functions. */ uint32_t enc_tunnel_config_udp_entries_max; /* External port identifier */ uint8_t enc_external_port; uint32_t enc_mcdi_max_payload_length; /* VPD may be per-PF or global */ boolean_t enc_vpd_is_global; /* Minimum unidirectional bandwidth in Mb/s to max out all ports */ uint32_t enc_required_pcie_bandwidth_mbps; uint32_t enc_max_pcie_link_gen; /* Firmware verifies integrity of NVRAM updates */ uint32_t enc_nvram_update_verify_result_supported; /* Firmware support for extended MAC_STATS buffer */ uint32_t enc_mac_stats_nstats; boolean_t enc_fec_counters; boolean_t enc_hlb_counters; /* Firmware support for "FLAG" and "MARK" filter actions */ boolean_t enc_filter_action_flag_supported; boolean_t enc_filter_action_mark_supported; uint32_t enc_filter_action_mark_max; } efx_nic_cfg_t; #define EFX_PCI_FUNCTION_IS_PF(_encp) ((_encp)->enc_vf == 0xffff) #define EFX_PCI_FUNCTION_IS_VF(_encp) ((_encp)->enc_vf != 0xffff) #define EFX_PCI_FUNCTION(_encp) \ (EFX_PCI_FUNCTION_IS_PF(_encp) ? (_encp)->enc_pf : (_encp)->enc_vf) #define EFX_PCI_VF_PARENT(_encp) ((_encp)->enc_pf) extern const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp); /* RxDPCPU firmware id values by which FW variant can be identified */ #define EFX_RXDP_FULL_FEATURED_FW_ID 0x0 #define EFX_RXDP_LOW_LATENCY_FW_ID 0x1 #define EFX_RXDP_PACKED_STREAM_FW_ID 0x2 #define EFX_RXDP_RULES_ENGINE_FW_ID 0x5 #define EFX_RXDP_DPDK_FW_ID 0x6 typedef struct efx_nic_fw_info_s { /* Basic FW version information */ uint16_t enfi_mc_fw_version[4]; /* * If datapath capabilities can be detected, * additional FW information is to be shown */ boolean_t enfi_dpcpu_fw_ids_valid; /* Rx and Tx datapath CPU FW IDs */ uint16_t enfi_rx_dpcpu_fw_id; uint16_t enfi_tx_dpcpu_fw_id; } efx_nic_fw_info_t; extern __checkReturn efx_rc_t efx_nic_get_fw_version( __in efx_nic_t *enp, __out efx_nic_fw_info_t *enfip); /* Driver resource limits (minimum required/maximum usable). */ typedef struct efx_drv_limits_s { uint32_t edl_min_evq_count; uint32_t edl_max_evq_count; uint32_t edl_min_rxq_count; uint32_t edl_max_rxq_count; uint32_t edl_min_txq_count; uint32_t edl_max_txq_count; /* PIO blocks (sub-allocated from piobuf) */ uint32_t edl_min_pio_alloc_size; uint32_t edl_max_pio_alloc_count; } efx_drv_limits_t; extern __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); typedef enum efx_nic_region_e { EFX_REGION_VI, /* Memory BAR UC mapping */ EFX_REGION_PIO_WRITE_VI, /* Memory BAR WC mapping */ } efx_nic_region_t; extern __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp); #if EFSYS_OPT_VPD typedef enum efx_vpd_tag_e { EFX_VPD_ID = 0x02, EFX_VPD_END = 0x0f, EFX_VPD_RO = 0x10, EFX_VPD_RW = 0x11, } efx_vpd_tag_t; typedef uint16_t efx_vpd_keyword_t; typedef struct efx_vpd_value_s { efx_vpd_tag_t evv_tag; efx_vpd_keyword_t evv_keyword; uint8_t evv_length; uint8_t evv_value[0x100]; } efx_vpd_value_t; #define EFX_VPD_KEYWORD(x, y) ((x) | ((y) << 8)) extern __checkReturn efx_rc_t efx_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_set( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_next( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* NVRAM */ #if EFSYS_OPT_NVRAM typedef enum efx_nvram_type_e { EFX_NVRAM_INVALID = 0, EFX_NVRAM_BOOTROM, EFX_NVRAM_BOOTROM_CFG, EFX_NVRAM_MC_FIRMWARE, EFX_NVRAM_MC_GOLDEN, EFX_NVRAM_PHY, EFX_NVRAM_NULLPHY, EFX_NVRAM_FPGA, EFX_NVRAM_FCFW, EFX_NVRAM_CPLD, EFX_NVRAM_FPGA_BACKUP, EFX_NVRAM_DYNAMIC_CFG, EFX_NVRAM_LICENSE, EFX_NVRAM_UEFIROM, EFX_NVRAM_MUM_FIRMWARE, EFX_NVRAM_DYNCONFIG_DEFAULTS, EFX_NVRAM_ROMCONFIG_DEFAULTS, EFX_NVRAM_NTYPES, } efx_nvram_type_t; extern __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *pref_chunkp); extern __checkReturn efx_rc_t efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt uint32_t *verify_resultp); extern __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_read_backup( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_validate( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size); extern __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_nvram_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_BOOTCFG /* Report size and offset of bootcfg sector in NVRAM partition. */ extern __checkReturn efx_rc_t efx_bootcfg_sector_info( __in efx_nic_t *enp, __in uint32_t pf, __out_opt uint32_t *sector_countp, __out size_t *offsetp, __out size_t *max_sizep); /* * Copy bootcfg sector data to a target buffer which may differ in size. * Optionally corrects format errors in source buffer. */ extern efx_rc_t efx_bootcfg_copy_sector( __in efx_nic_t *enp, __inout_bcount(sector_length) uint8_t *sector, __in size_t sector_length, __out_bcount(data_size) uint8_t *data, __in size_t data_size, __in boolean_t handle_format_errors); extern efx_rc_t efx_bootcfg_read( __in efx_nic_t *enp, __out_bcount(size) uint8_t *data, __in size_t size); extern efx_rc_t efx_bootcfg_write( __in efx_nic_t *enp, __in_bcount(size) uint8_t *data, __in size_t size); /* * Processing routines for buffers arranged in the DHCP/BOOTP option format * (see https://tools.ietf.org/html/rfc1533) * * Summarising the format: the buffer is a sequence of options. All options * begin with a tag octet, which uniquely identifies the option. Fixed- * length options without data consist of only a tag octet. Only options PAD * (0) and END (255) are fixed length. All other options are variable-length * with a length octet following the tag octet. The value of the length * octet does not include the two octets specifying the tag and length. The * length octet is followed by "length" octets of data. * * Option data may be a sequence of sub-options in the same format. The data * content of the encapsulating option is one or more encapsulated sub-options, * with no terminating END tag is required. * * To be valid, the top-level sequence of options should be terminated by an * END tag. The buffer should be padded with the PAD byte. * * When stored to NVRAM, the DHCP option format buffer is preceded by a * checksum octet. The full buffer (including after the END tag) contributes * to the checksum, hence the need to fill the buffer to the end with PAD. */ #define EFX_DHCP_END ((uint8_t)0xff) #define EFX_DHCP_PAD ((uint8_t)0) #define EFX_DHCP_ENCAP_OPT(encapsulator, encapsulated) \ (uint16_t)(((encapsulator) << 8) | (encapsulated)) extern __checkReturn uint8_t efx_dhcp_csum( __in_bcount(size) uint8_t const *data, __in size_t size); extern __checkReturn efx_rc_t efx_dhcp_verify( __in_bcount(size) uint8_t const *data, __in size_t size, __out_opt size_t *usedp); extern __checkReturn efx_rc_t efx_dhcp_find_tag( __in_bcount(buffer_length) uint8_t *bufferp, __in size_t buffer_length, __in uint16_t opt, __deref_out uint8_t **valuepp, __out size_t *value_lengthp); extern __checkReturn efx_rc_t efx_dhcp_find_end( __in_bcount(buffer_length) uint8_t *bufferp, __in size_t buffer_length, __deref_out uint8_t **endpp); extern __checkReturn efx_rc_t efx_dhcp_delete_tag( __inout_bcount(buffer_length) uint8_t *bufferp, __in size_t buffer_length, __in uint16_t opt); extern __checkReturn efx_rc_t efx_dhcp_add_tag( __inout_bcount(buffer_length) uint8_t *bufferp, __in size_t buffer_length, __in uint16_t opt, __in_bcount_opt(value_length) uint8_t *valuep, __in size_t value_length); extern __checkReturn efx_rc_t efx_dhcp_update_tag( __inout_bcount(buffer_length) uint8_t *bufferp, __in size_t buffer_length, __in uint16_t opt, __in uint8_t *value_locationp, __in_bcount_opt(value_length) uint8_t *valuep, __in size_t value_length); #endif /* EFSYS_OPT_BOOTCFG */ #if EFSYS_OPT_IMAGE_LAYOUT #include "ef10_signed_image_layout.h" /* * Image header used in unsigned and signed image layouts (see SF-102785-PS). * * NOTE: * The image header format is extensible. However, older drivers require an * exact match of image header version and header length when validating and * writing firmware images. * * To avoid breaking backward compatibility, we use the upper bits of the * controller version fields to contain an extra version number used for * combined bootROM and UEFI ROM images on EF10 and later (to hold the UEFI ROM * version). See bug39254 and SF-102785-PS for details. */ typedef struct efx_image_header_s { uint32_t eih_magic; uint32_t eih_version; uint32_t eih_type; uint32_t eih_subtype; uint32_t eih_code_size; uint32_t eih_size; union { uint32_t eih_controller_version_min; struct { uint16_t eih_controller_version_min_short; uint8_t eih_extra_version_a; uint8_t eih_extra_version_b; }; }; union { uint32_t eih_controller_version_max; struct { uint16_t eih_controller_version_max_short; uint8_t eih_extra_version_c; uint8_t eih_extra_version_d; }; }; uint16_t eih_code_version_a; uint16_t eih_code_version_b; uint16_t eih_code_version_c; uint16_t eih_code_version_d; } efx_image_header_t; #define EFX_IMAGE_HEADER_SIZE (40) #define EFX_IMAGE_HEADER_VERSION (4) #define EFX_IMAGE_HEADER_MAGIC (0x106F1A5) typedef struct efx_image_trailer_s { uint32_t eit_crc; } efx_image_trailer_t; #define EFX_IMAGE_TRAILER_SIZE (4) typedef enum efx_image_format_e { EFX_IMAGE_FORMAT_NO_IMAGE, EFX_IMAGE_FORMAT_INVALID, EFX_IMAGE_FORMAT_UNSIGNED, EFX_IMAGE_FORMAT_SIGNED, } efx_image_format_t; typedef struct efx_image_info_s { efx_image_format_t eii_format; uint8_t * eii_imagep; size_t eii_image_size; efx_image_header_t * eii_headerp; } efx_image_info_t; extern __checkReturn efx_rc_t efx_check_reflash_image( __in void *bufferp, __in uint32_t buffer_size, __out efx_image_info_t *infop); extern __checkReturn efx_rc_t efx_build_signed_image_write_buffer( __out_bcount(buffer_size) uint8_t *bufferp, __in uint32_t buffer_size, __in efx_image_info_t *infop, __out efx_image_header_t **headerpp); #endif /* EFSYS_OPT_IMAGE_LAYOUT */ #if EFSYS_OPT_DIAG typedef enum efx_pattern_type_t { EFX_PATTERN_BYTE_INCREMENT = 0, EFX_PATTERN_ALL_THE_SAME, EFX_PATTERN_BIT_ALTERNATE, EFX_PATTERN_BYTE_ALTERNATE, EFX_PATTERN_BYTE_CHANGING, EFX_PATTERN_BIT_SWEEP, EFX_PATTERN_NTYPES } efx_pattern_type_t; typedef void (*efx_sram_pattern_fn_t)( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp); extern __checkReturn efx_rc_t efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n); extern void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n); #define EFX_BUF_TBL_SIZE 0x20000 #define EFX_BUF_SIZE 4096 /* EV */ typedef struct efx_evq_s efx_evq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderEventQueueBlock 6f3843f5fe7cc843 */ typedef enum efx_ev_qstat_e { EV_ALL, EV_RX, EV_RX_OK, EV_RX_FRM_TRUNC, EV_RX_TOBE_DISC, EV_RX_PAUSE_FRM_ERR, EV_RX_BUF_OWNER_ID_ERR, EV_RX_IPV4_HDR_CHKSUM_ERR, EV_RX_TCP_UDP_CHKSUM_ERR, EV_RX_ETH_CRC_ERR, EV_RX_IP_FRAG_ERR, EV_RX_MCAST_PKT, EV_RX_MCAST_HASH_MATCH, EV_RX_TCP_IPV4, EV_RX_TCP_IPV6, EV_RX_UDP_IPV4, EV_RX_UDP_IPV6, EV_RX_OTHER_IPV4, EV_RX_OTHER_IPV6, EV_RX_NON_IP, EV_RX_BATCH, EV_TX, EV_TX_WQ_FF_FULL, EV_TX_PKT_ERR, EV_TX_PKT_TOO_BIG, EV_TX_UNEXPECTED, EV_GLOBAL, EV_GLOBAL_MNT, EV_DRIVER, EV_DRIVER_SRM_UPD_DONE, EV_DRIVER_TX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_FAILED, EV_DRIVER_RX_DSC_ERROR, EV_DRIVER_TX_DSC_ERROR, EV_DRV_GEN, EV_MCDI_RESPONSE, EV_NQSTATS } efx_ev_qstat_t; /* END MKCONFIG GENERATED EfxHeaderEventQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp); extern void efx_ev_fini( __in efx_nic_t *enp); #define EFX_EVQ_MAXNEVS 32768 #define EFX_EVQ_MINNEVS 512 #define EFX_EVQ_SIZE(_nevs) ((_nevs) * sizeof (efx_qword_t)) #define EFX_EVQ_NBUFS(_nevs) (EFX_EVQ_SIZE(_nevs) / EFX_BUF_SIZE) #define EFX_EVQ_FLAGS_TYPE_MASK (0x3) #define EFX_EVQ_FLAGS_TYPE_AUTO (0x0) #define EFX_EVQ_FLAGS_TYPE_THROUGHPUT (0x1) #define EFX_EVQ_FLAGS_TYPE_LOW_LATENCY (0x2) #define EFX_EVQ_FLAGS_NOTIFY_MASK (0xC) #define EFX_EVQ_FLAGS_NOTIFY_INTERRUPT (0x0) /* Interrupting (default) */ #define EFX_EVQ_FLAGS_NOTIFY_DISABLED (0x4) /* Non-interrupting */ extern __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in uint32_t us, __in uint32_t flags, __deref_out efx_evq_t **eepp); extern void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); typedef __checkReturn boolean_t (*efx_initialized_ev_t)( __in_opt void *arg); #define EFX_PKT_UNICAST 0x0004 #define EFX_PKT_START 0x0008 #define EFX_PKT_VLAN_TAGGED 0x0010 #define EFX_CKSUM_TCPUDP 0x0020 #define EFX_CKSUM_IPV4 0x0040 #define EFX_PKT_CONT 0x0080 #define EFX_CHECK_VLAN 0x0100 #define EFX_PKT_TCP 0x0200 #define EFX_PKT_UDP 0x0400 #define EFX_PKT_IPV4 0x0800 #define EFX_PKT_IPV6 0x1000 #define EFX_PKT_PREFIX_LEN 0x2000 #define EFX_ADDR_MISMATCH 0x4000 #define EFX_DISCARD 0x8000 /* * The following flags are used only for packed stream * mode. The values for the flags are reused to fit into 16 bit, * since EFX_PKT_START and EFX_PKT_CONT are never used in * packed stream mode */ #define EFX_PKT_PACKED_STREAM_NEW_BUFFER EFX_PKT_START #define EFX_PKT_PACKED_STREAM_PARSE_INCOMPLETE EFX_PKT_CONT #define EFX_EV_RX_NLABELS 32 #define EFX_EV_TX_NLABELS 32 typedef __checkReturn boolean_t (*efx_rx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t size, __in uint16_t flags); #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER /* * Packed stream mode is documented in SF-112241-TC. * The general idea is that, instead of putting each incoming * packet into a separate buffer which is specified in a RX * descriptor, a large buffer is provided to the hardware and * packets are put there in a continuous stream. * The main advantage of such an approach is that RX queue refilling * happens much less frequently. * * Equal stride packed stream mode is documented in SF-119419-TC. * The general idea is to utilize advantages of the packed stream, * but avoid indirection in packets representation. * The main advantage of such an approach is that RX queue refilling * happens much less frequently and packets buffers are independent * from upper layers point of view. */ typedef __checkReturn boolean_t (*efx_rx_ps_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t pkt_count, __in uint16_t flags); #endif typedef __checkReturn boolean_t (*efx_tx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id); #define EFX_EXCEPTION_RX_RECOVERY 0x00000001 #define EFX_EXCEPTION_RX_DSC_ERROR 0x00000002 #define EFX_EXCEPTION_TX_DSC_ERROR 0x00000003 #define EFX_EXCEPTION_UNKNOWN_SENSOREVT 0x00000004 #define EFX_EXCEPTION_FWALERT_SRAM 0x00000005 #define EFX_EXCEPTION_UNKNOWN_FWALERT 0x00000006 #define EFX_EXCEPTION_RX_ERROR 0x00000007 #define EFX_EXCEPTION_TX_ERROR 0x00000008 #define EFX_EXCEPTION_EV_ERROR 0x00000009 typedef __checkReturn boolean_t (*efx_exception_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t data); typedef __checkReturn boolean_t (*efx_rxq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_rxq_flush_failed_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_txq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t txq_index); typedef __checkReturn boolean_t (*efx_software_ev_t)( __in_opt void *arg, __in uint16_t magic); typedef __checkReturn boolean_t (*efx_sram_ev_t)( __in_opt void *arg, __in uint32_t code); #define EFX_SRAM_CLEAR 0 #define EFX_SRAM_UPDATE 1 #define EFX_SRAM_ILLEGAL_CLEAR 2 typedef __checkReturn boolean_t (*efx_wake_up_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_timer_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_link_change_ev_t)( __in_opt void *arg, __in efx_link_mode_t link_mode); #if EFSYS_OPT_MON_STATS typedef __checkReturn boolean_t (*efx_monitor_ev_t)( __in_opt void *arg, __in efx_mon_stat_t id, __in efx_mon_stat_value_t value); #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS typedef __checkReturn boolean_t (*efx_mac_stats_ev_t)( __in_opt void *arg, __in uint32_t generation); #endif /* EFSYS_OPT_MAC_STATS */ typedef struct efx_ev_callbacks_s { efx_initialized_ev_t eec_initialized; efx_rx_ev_t eec_rx; #if EFSYS_OPT_RX_PACKED_STREAM || EFSYS_OPT_RX_ES_SUPER_BUFFER efx_rx_ps_ev_t eec_rx_ps; #endif efx_tx_ev_t eec_tx; efx_exception_ev_t eec_exception; efx_rxq_flush_done_ev_t eec_rxq_flush_done; efx_rxq_flush_failed_ev_t eec_rxq_flush_failed; efx_txq_flush_done_ev_t eec_txq_flush_done; efx_software_ev_t eec_software; efx_sram_ev_t eec_sram; efx_wake_up_ev_t eec_wake_up; efx_timer_ev_t eec_timer; efx_link_change_ev_t eec_link_change; #if EFSYS_OPT_MON_STATS efx_monitor_ev_t eec_monitor; #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS efx_mac_stats_ev_t eec_mac_stats; #endif /* EFSYS_OPT_MAC_STATS */ } efx_ev_callbacks_t; extern __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_EV_PREFETCH extern void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count); #endif /* EFSYS_OPT_EV_PREFETCH */ extern void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); extern __checkReturn efx_rc_t efx_ev_usecs_to_ticks( __in efx_nic_t *enp, __in unsigned int usecs, __out unsigned int *ticksp); extern __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); extern __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_ev_qdestroy( __in efx_evq_t *eep); /* RX */ extern __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp); extern void efx_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ /* Handle to represent use of the default RSS context. */ #define EFX_RSS_CONTEXT_DEFAULT 0xffffffff #if EFSYS_OPT_RX_SCALE typedef enum efx_rx_hash_alg_e { EFX_RX_HASHALG_LFSR = 0, EFX_RX_HASHALG_TOEPLITZ, EFX_RX_HASHALG_PACKED_STREAM, EFX_RX_NHASHALGS } efx_rx_hash_alg_t; /* * Legacy hash type flags. * * They represent standard tuples for distinct traffic classes. */ #define EFX_RX_HASH_IPV4 (1U << 0) #define EFX_RX_HASH_TCPIPV4 (1U << 1) #define EFX_RX_HASH_IPV6 (1U << 2) #define EFX_RX_HASH_TCPIPV6 (1U << 3) #define EFX_RX_HASH_LEGACY_MASK \ (EFX_RX_HASH_IPV4 | \ EFX_RX_HASH_TCPIPV4 | \ EFX_RX_HASH_IPV6 | \ EFX_RX_HASH_TCPIPV6) /* * The type of the argument used by efx_rx_scale_mode_set() to * provide a means for the client drivers to configure hashing. * * A properly constructed value can either be: * - a combination of legacy flags * - a combination of EFX_RX_HASH() flags */ typedef uint32_t efx_rx_hash_type_t; typedef enum efx_rx_hash_support_e { EFX_RX_HASH_UNAVAILABLE = 0, /* Hardware hash not inserted */ EFX_RX_HASH_AVAILABLE /* Insert hash with/without RSS */ } efx_rx_hash_support_t; #define EFX_RSS_KEY_SIZE 40 /* RSS key size (bytes) */ #define EFX_RSS_TBL_SIZE 128 /* Rows in RX indirection table */ #define EFX_MAXRSS 64 /* RX indirection entry range */ #define EFX_MAXRSS_LEGACY 16 /* See bug16611 and bug17213 */ typedef enum efx_rx_scale_context_type_e { EFX_RX_SCALE_UNAVAILABLE = 0, /* No RX scale context */ EFX_RX_SCALE_EXCLUSIVE, /* Writable key/indirection table */ EFX_RX_SCALE_SHARED /* Read-only key/indirection table */ } efx_rx_scale_context_type_t; /* * Traffic classes eligible for hash computation. * * Select packet headers used in computing the receive hash. * This uses the same encoding as the RSS_MODES field of * MC_CMD_RSS_CONTEXT_SET_FLAGS. */ #define EFX_RX_CLASS_IPV4_TCP_LBN 8 #define EFX_RX_CLASS_IPV4_TCP_WIDTH 4 #define EFX_RX_CLASS_IPV4_UDP_LBN 12 #define EFX_RX_CLASS_IPV4_UDP_WIDTH 4 #define EFX_RX_CLASS_IPV4_LBN 16 #define EFX_RX_CLASS_IPV4_WIDTH 4 #define EFX_RX_CLASS_IPV6_TCP_LBN 20 #define EFX_RX_CLASS_IPV6_TCP_WIDTH 4 #define EFX_RX_CLASS_IPV6_UDP_LBN 24 #define EFX_RX_CLASS_IPV6_UDP_WIDTH 4 #define EFX_RX_CLASS_IPV6_LBN 28 #define EFX_RX_CLASS_IPV6_WIDTH 4 #define EFX_RX_NCLASSES 6 /* * Ancillary flags used to construct generic hash tuples. * This uses the same encoding as RSS_MODE_HASH_SELECTOR. */ #define EFX_RX_CLASS_HASH_SRC_ADDR (1U << 0) #define EFX_RX_CLASS_HASH_DST_ADDR (1U << 1) #define EFX_RX_CLASS_HASH_SRC_PORT (1U << 2) #define EFX_RX_CLASS_HASH_DST_PORT (1U << 3) /* * Generic hash tuples. * * They express combinations of packet fields * which can contribute to the hash value for * a particular traffic class. */ #define EFX_RX_CLASS_HASH_DISABLE 0 #define EFX_RX_CLASS_HASH_1TUPLE_SRC EFX_RX_CLASS_HASH_SRC_ADDR #define EFX_RX_CLASS_HASH_1TUPLE_DST EFX_RX_CLASS_HASH_DST_ADDR #define EFX_RX_CLASS_HASH_2TUPLE \ (EFX_RX_CLASS_HASH_SRC_ADDR | \ EFX_RX_CLASS_HASH_DST_ADDR) #define EFX_RX_CLASS_HASH_2TUPLE_SRC \ (EFX_RX_CLASS_HASH_SRC_ADDR | \ EFX_RX_CLASS_HASH_SRC_PORT) #define EFX_RX_CLASS_HASH_2TUPLE_DST \ (EFX_RX_CLASS_HASH_DST_ADDR | \ EFX_RX_CLASS_HASH_DST_PORT) #define EFX_RX_CLASS_HASH_4TUPLE \ (EFX_RX_CLASS_HASH_SRC_ADDR | \ EFX_RX_CLASS_HASH_DST_ADDR | \ EFX_RX_CLASS_HASH_SRC_PORT | \ EFX_RX_CLASS_HASH_DST_PORT) #define EFX_RX_CLASS_HASH_NTUPLES 7 /* * Hash flag constructor. * * Resulting flags encode hash tuples for specific traffic classes. * The client drivers are encouraged to use these flags to form * a hash type value. */ #define EFX_RX_HASH(_class, _tuple) \ EFX_INSERT_FIELD_NATIVE32(0, 31, \ EFX_RX_CLASS_##_class, EFX_RX_CLASS_HASH_##_tuple) /* * The maximum number of EFX_RX_HASH() flags. */ #define EFX_RX_HASH_NFLAGS (EFX_RX_NCLASSES * EFX_RX_CLASS_HASH_NTUPLES) extern __checkReturn efx_rc_t efx_rx_scale_hash_flags_get( __in efx_nic_t *enp, __in efx_rx_hash_alg_t hash_alg, __out_ecount_part(max_nflags, *nflagsp) unsigned int *flagsp, __in unsigned int max_nflags, __out unsigned int *nflagsp); extern __checkReturn efx_rc_t efx_rx_hash_default_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_default_support_get( __in efx_nic_t *enp, __out efx_rx_scale_context_type_t *typep); extern __checkReturn efx_rc_t efx_rx_scale_context_alloc( __in efx_nic_t *enp, __in efx_rx_scale_context_type_t type, __in uint32_t num_queues, __out uint32_t *rss_contextp); extern __checkReturn efx_rc_t efx_rx_scale_context_free( __in efx_nic_t *enp, __in uint32_t rss_context); extern __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) uint8_t *key, __in size_t n); extern __checkReturn uint32_t efx_pseudo_hdr_hash_get( __in efx_rxq_t *erp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t efx_pseudo_hdr_pkt_length_get( __in efx_rxq_t *erp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp); #define EFX_RXQ_MAXNDESCS 4096 #define EFX_RXQ_MINNDESCS 512 #define EFX_RXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_RXQ_NBUFS(_ndescs) (EFX_RXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_RXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_RXQ_DC_NDESCS(_dcsize) (8 << _dcsize) typedef enum efx_rxq_type_e { EFX_RXQ_TYPE_DEFAULT, EFX_RXQ_TYPE_PACKED_STREAM, EFX_RXQ_TYPE_ES_SUPER_BUFFER, EFX_RXQ_NTYPES } efx_rxq_type_t; /* * Dummy flag to be used instead of 0 to make it clear that the argument * is receive queue flags. */ #define EFX_RXQ_FLAG_NONE 0x0 #define EFX_RXQ_FLAG_SCATTER 0x1 /* * If tunnels are supported and Rx event can provide information about * either outer or inner packet classes (e.g. SFN8xxx adapters with * full-feature firmware variant running), outer classes are requested by * default. However, if the driver supports tunnels, the flag allows to * request inner classes which are required to be able to interpret inner * Rx checksum offload results. */ #define EFX_RXQ_FLAG_INNER_CLASSES 0x2 extern __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in unsigned int flags, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); #if EFSYS_OPT_RX_PACKED_STREAM #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_1M (1U * 1024 * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_512K (512U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_256K (256U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_128K (128U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_64K (64U * 1024) extern __checkReturn efx_rc_t efx_rx_qcreate_packed_stream( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in uint32_t ps_buf_size, __in efsys_mem_t *esmp, __in size_t ndescs, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); #endif #if EFSYS_OPT_RX_ES_SUPER_BUFFER /* Maximum head-of-line block timeout in nanoseconds */ #define EFX_RXQ_ES_SUPER_BUFFER_HOL_BLOCK_MAX (400U * 1000 * 1000) extern __checkReturn efx_rc_t efx_rx_qcreate_es_super_buffer( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in uint32_t n_bufs_per_desc, __in uint32_t max_dma_len, __in uint32_t buf_stride, __in uint32_t hol_block_timeout, __in efsys_mem_t *esmp, __in size_t ndescs, __in unsigned int flags, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); #endif typedef struct efx_buffer_s { efsys_dma_addr_t eb_addr; size_t eb_size; boolean_t eb_eop; } efx_buffer_t; typedef struct efx_desc_s { efx_qword_t ed_eq; } efx_desc_t; extern void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(ndescs) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int ndescs, __in unsigned int completed, __in unsigned int added); extern void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); #if EFSYS_OPT_RX_PACKED_STREAM extern void efx_rx_qpush_ps_credits( __in efx_rxq_t *erp); extern __checkReturn uint8_t * efx_rx_qps_packet_info( __in efx_rxq_t *erp, __in uint8_t *buffer, __in uint32_t buffer_length, __in uint32_t current_offset, __out uint16_t *lengthp, __out uint32_t *next_offsetp, __out uint32_t *timestamp); #endif extern __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp); extern void efx_rx_qenable( __in efx_rxq_t *erp); extern void efx_rx_qdestroy( __in efx_rxq_t *erp); /* TX */ typedef struct efx_txq_s efx_txq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderTransmitQueueBlock 12dff8778598b2db */ typedef enum efx_tx_qstat_e { TX_POST, TX_POST_PIO, TX_NQSTATS } efx_tx_qstat_t; /* END MKCONFIG GENERATED EfxHeaderTransmitQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_tx_init( __in efx_nic_t *enp); extern void efx_tx_fini( __in efx_nic_t *enp); #define EFX_TXQ_MINNDESCS 512 #define EFX_TXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_TXQ_NBUFS(_ndescs) (EFX_TXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_TXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_TXQ_MAX_BUFS 8 /* Maximum independent of EFX_BUG35388_WORKAROUND. */ #define EFX_TXQ_CKSUM_IPV4 0x0001 #define EFX_TXQ_CKSUM_TCPUDP 0x0002 #define EFX_TXQ_FATSOV2 0x0004 #define EFX_TXQ_CKSUM_INNER_IPV4 0x0008 #define EFX_TXQ_CKSUM_INNER_TCPUDP 0x0010 extern __checkReturn efx_rc_t efx_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __deref_out efx_txq_t **etpp, __out unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpost( __in efx_txq_t *etp, __in_ecount(ndescs) efx_buffer_t *eb, __in unsigned int ndescs, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern void efx_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t efx_tx_qflush( __in efx_txq_t *etp); extern void efx_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_enable( __in efx_txq_t *etp); extern void efx_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t efx_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void efx_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void efx_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); /* Number of FATSOv2 option descriptors */ #define EFX_TX_FATSOV2_OPT_NDESCS 2 /* Maximum number of DMA segments per TSO packet (not superframe) */ #define EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX 24 extern void efx_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint16_t outer_ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count); extern void efx_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp); extern void efx_tx_qdesc_checksum_create( __in efx_txq_t *etp, __in uint16_t flags, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_tx_qstat_name( __in efx_nic_t *etp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_tx_qdestroy( __in efx_txq_t *etp); /* FILTER */ #if EFSYS_OPT_FILTER #define EFX_ETHER_TYPE_IPV4 0x0800 #define EFX_ETHER_TYPE_IPV6 0x86DD #define EFX_IPPROTO_TCP 6 #define EFX_IPPROTO_UDP 17 #define EFX_IPPROTO_GRE 47 /* Use RSS to spread across multiple queues */ #define EFX_FILTER_FLAG_RX_RSS 0x01 /* Enable RX scatter */ #define EFX_FILTER_FLAG_RX_SCATTER 0x02 /* * Override an automatic filter (priority EFX_FILTER_PRI_AUTO). * May only be set by the filter implementation for each type. * A removal request will restore the automatic filter in its place. */ #define EFX_FILTER_FLAG_RX_OVER_AUTO 0x04 /* Filter is for RX */ #define EFX_FILTER_FLAG_RX 0x08 /* Filter is for TX */ #define EFX_FILTER_FLAG_TX 0x10 /* Set match flag on the received packet */ #define EFX_FILTER_FLAG_ACTION_FLAG 0x20 /* Set match mark on the received packet */ #define EFX_FILTER_FLAG_ACTION_MARK 0x40 typedef uint8_t efx_filter_flags_t; /* * Flags which specify the fields to match on. The values are the same as in the * MC_CMD_FILTER_OP/MC_CMD_FILTER_OP_EXT commands. */ /* Match by remote IP host address */ #define EFX_FILTER_MATCH_REM_HOST 0x00000001 /* Match by local IP host address */ #define EFX_FILTER_MATCH_LOC_HOST 0x00000002 /* Match by remote MAC address */ #define EFX_FILTER_MATCH_REM_MAC 0x00000004 /* Match by remote TCP/UDP port */ #define EFX_FILTER_MATCH_REM_PORT 0x00000008 /* Match by remote TCP/UDP port */ #define EFX_FILTER_MATCH_LOC_MAC 0x00000010 /* Match by local TCP/UDP port */ #define EFX_FILTER_MATCH_LOC_PORT 0x00000020 /* Match by Ether-type */ #define EFX_FILTER_MATCH_ETHER_TYPE 0x00000040 /* Match by inner VLAN ID */ #define EFX_FILTER_MATCH_INNER_VID 0x00000080 /* Match by outer VLAN ID */ #define EFX_FILTER_MATCH_OUTER_VID 0x00000100 /* Match by IP transport protocol */ #define EFX_FILTER_MATCH_IP_PROTO 0x00000200 /* Match by VNI or VSID */ #define EFX_FILTER_MATCH_VNI_OR_VSID 0x00000800 /* For encapsulated packets, match by inner frame local MAC address */ #define EFX_FILTER_MATCH_IFRM_LOC_MAC 0x00010000 /* For encapsulated packets, match all multicast inner frames */ #define EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 0x01000000 /* For encapsulated packets, match all unicast inner frames */ #define EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST 0x02000000 /* * Match by encap type, this flag does not correspond to * the MCDI match flags and any unoccupied value may be used */ #define EFX_FILTER_MATCH_ENCAP_TYPE 0x20000000 /* Match otherwise-unmatched multicast and broadcast packets */ #define EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 0x40000000 /* Match otherwise-unmatched unicast packets */ #define EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 0x80000000 typedef uint32_t efx_filter_match_flags_t; typedef enum efx_filter_priority_s { EFX_FILTER_PRI_HINT = 0, /* Performance hint */ EFX_FILTER_PRI_AUTO, /* Automatic filter based on device * address list or hardware * requirements. This may only be used * by the filter implementation for * each NIC type. */ EFX_FILTER_PRI_MANUAL, /* Manually configured filter */ EFX_FILTER_PRI_REQUIRED, /* Required for correct behaviour of the * client (e.g. SR-IOV, HyperV VMQ etc.) */ } efx_filter_priority_t; /* * FIXME: All these fields are assumed to be in little-endian byte order. * It may be better for some to be big-endian. See bug42804. */ typedef struct efx_filter_spec_s { efx_filter_match_flags_t efs_match_flags; uint8_t efs_priority; efx_filter_flags_t efs_flags; uint16_t efs_dmaq_id; uint32_t efs_rss_context; uint32_t efs_mark; /* Fields below here are hashed for software filter lookup */ uint16_t efs_outer_vid; uint16_t efs_inner_vid; uint8_t efs_loc_mac[EFX_MAC_ADDR_LEN]; uint8_t efs_rem_mac[EFX_MAC_ADDR_LEN]; uint16_t efs_ether_type; uint8_t efs_ip_proto; efx_tunnel_protocol_t efs_encap_type; uint16_t efs_loc_port; uint16_t efs_rem_port; efx_oword_t efs_rem_host; efx_oword_t efs_loc_host; uint8_t efs_vni_or_vsid[EFX_VNI_OR_VSID_LEN]; uint8_t efs_ifrm_loc_mac[EFX_MAC_ADDR_LEN]; } efx_filter_spec_t; /* Default values for use in filter specifications */ #define EFX_FILTER_SPEC_RX_DMAQ_ID_DROP 0xfff #define EFX_FILTER_SPEC_VID_UNSPEC 0xffff extern __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp); extern void efx_filter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out_ecount(buffer_length) uint32_t *buffer, __in size_t buffer_length, __out size_t *list_lengthp); extern void efx_filter_spec_init_rx( __out efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flags_t flags, __in efx_rxq_t *erp); extern void efx_filter_spec_init_tx( __out efx_filter_spec_t *spec, __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport); extern __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr); extern void efx_filter_spec_set_ether_type( __inout efx_filter_spec_t *spec, __in uint16_t ether_type); extern __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec); typedef enum efx_filter_inner_frame_match_e { EFX_FILTER_INNER_FRAME_MATCH_OTHER = 0, EFX_FILTER_INNER_FRAME_MATCH_UNKNOWN_MCAST_DST, EFX_FILTER_INNER_FRAME_MATCH_UNKNOWN_UCAST_DST } efx_filter_inner_frame_match_t; extern __checkReturn efx_rc_t efx_filter_spec_set_encap_type( __inout efx_filter_spec_t *spec, __in efx_tunnel_protocol_t encap_type, __in efx_filter_inner_frame_match_t inner_frame_match); extern __checkReturn efx_rc_t efx_filter_spec_set_vxlan( __inout efx_filter_spec_t *spec, __in const uint8_t *vni, __in const uint8_t *inner_addr, __in const uint8_t *outer_addr); extern __checkReturn efx_rc_t efx_filter_spec_set_geneve( __inout efx_filter_spec_t *spec, __in const uint8_t *vni, __in const uint8_t *inner_addr, __in const uint8_t *outer_addr); extern __checkReturn efx_rc_t efx_filter_spec_set_nvgre( __inout efx_filter_spec_t *spec, __in const uint8_t *vsid, __in const uint8_t *inner_addr, __in const uint8_t *outer_addr); #if EFSYS_OPT_RX_SCALE extern __checkReturn efx_rc_t efx_filter_spec_set_rss_context( __inout efx_filter_spec_t *spec, __in uint32_t rss_context); #endif #endif /* EFSYS_OPT_FILTER */ /* HASH */ extern __checkReturn uint32_t efx_hash_dwords( __in_ecount(count) uint32_t const *input, __in size_t count, __in uint32_t init); extern __checkReturn uint32_t efx_hash_bytes( __in_ecount(length) uint8_t const *input, __in size_t length, __in uint32_t init); #if EFSYS_OPT_LICENSING /* LICENSING */ typedef struct efx_key_stats_s { uint32_t eks_valid; uint32_t eks_invalid; uint32_t eks_blacklisted; uint32_t eks_unverifiable; uint32_t eks_wrong_node; uint32_t eks_licensed_apps_lo; uint32_t eks_licensed_apps_hi; uint32_t eks_licensed_features_lo; uint32_t eks_licensed_features_hi; } efx_key_stats_t; extern __checkReturn efx_rc_t efx_lic_init( __in efx_nic_t *enp); extern void efx_lic_fini( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_lic_check_support( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_update_licenses( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_get_key_stats( __in efx_nic_t *enp, __out efx_key_stats_t *ksp); extern __checkReturn efx_rc_t efx_lic_app_state( __in efx_nic_t *enp, __in uint64_t app_id, __out boolean_t *licensedp); extern __checkReturn efx_rc_t efx_lic_get_id( __in efx_nic_t *enp, __in size_t buffer_size, __out uint32_t *typep, __out size_t *lengthp, __out_opt uint8_t *bufferp); extern __checkReturn efx_rc_t efx_lic_find_start( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __out uint32_t *startp); extern __checkReturn efx_rc_t efx_lic_find_end( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *endp); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_find_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *startp, __out uint32_t *lengthp); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_validate_key( __in efx_nic_t *enp, __in_bcount(length) caddr_t keyp, __in uint32_t length); extern __checkReturn efx_rc_t efx_lic_read_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __out_bcount_part(key_max_size, *lengthp) caddr_t keyp, __in size_t key_max_size, __out uint32_t *lengthp); extern __checkReturn efx_rc_t efx_lic_write_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in_bcount(length) caddr_t keyp, __in uint32_t length, __out uint32_t *lengthp); __checkReturn efx_rc_t efx_lic_delete_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __in uint32_t end, __out uint32_t *deltap); extern __checkReturn efx_rc_t efx_lic_create_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); extern __checkReturn efx_rc_t efx_lic_finish_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); #endif /* EFSYS_OPT_LICENSING */ /* TUNNEL */ #if EFSYS_OPT_TUNNEL extern __checkReturn efx_rc_t efx_tunnel_init( __in efx_nic_t *enp); extern void efx_tunnel_fini( __in efx_nic_t *enp); /* * For overlay network encapsulation using UDP, the firmware needs to know * the configured UDP port for the overlay so it can decode encapsulated * frames correctly. * The UDP port/protocol list is global. */ extern __checkReturn efx_rc_t efx_tunnel_config_udp_add( __in efx_nic_t *enp, __in uint16_t port /* host/cpu-endian */, __in efx_tunnel_protocol_t protocol); extern __checkReturn efx_rc_t efx_tunnel_config_udp_remove( __in efx_nic_t *enp, __in uint16_t port /* host/cpu-endian */, __in efx_tunnel_protocol_t protocol); extern void efx_tunnel_config_clear( __in efx_nic_t *enp); /** * Apply tunnel UDP ports configuration to hardware. * * EAGAIN is returned if hardware will be reset (datapath and management CPU * reboot). */ extern __checkReturn efx_rc_t efx_tunnel_reconfigure( __in efx_nic_t *enp); #endif /* EFSYS_OPT_TUNNEL */ #if EFSYS_OPT_FW_SUBVARIANT_AWARE /** * Firmware subvariant choice options. * * It may be switched to no Tx checksum if attached drivers are either * preboot or firmware subvariant aware and no VIS are allocated. * If may be always switched to default explicitly using set request or * implicitly if unaware driver is attaching. If switching is done when * a driver is attached, it gets MC_REBOOT event and should recreate its * datapath. * * See SF-119419-TC DPDK Firmware Driver Interface and * SF-109306-TC EF10 for Driver Writers for details. */ typedef enum efx_nic_fw_subvariant_e { EFX_NIC_FW_SUBVARIANT_DEFAULT = 0, EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM = 1, EFX_NIC_FW_SUBVARIANT_NTYPES } efx_nic_fw_subvariant_t; extern __checkReturn efx_rc_t efx_nic_get_fw_subvariant( __in efx_nic_t *enp, __out efx_nic_fw_subvariant_t *subvariantp); extern __checkReturn efx_rc_t efx_nic_set_fw_subvariant( __in efx_nic_t *enp, __in efx_nic_fw_subvariant_t subvariant); #endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */ typedef enum efx_phy_fec_type_e { EFX_PHY_FEC_NONE = 0, EFX_PHY_FEC_BASER, EFX_PHY_FEC_RS } efx_phy_fec_type_t; extern __checkReturn efx_rc_t efx_phy_fec_type_get( __in efx_nic_t *enp, __out efx_phy_fec_type_t *typep); #ifdef __cplusplus } #endif #endif /* _SYS_EFX_H */ Index: head/sys/dev/sfxge/common/efx_mcdi.c =================================================================== --- head/sys/dev/sfxge/common/efx_mcdi.c (revision 341311) +++ head/sys/dev/sfxge/common/efx_mcdi.c (revision 341312) @@ -1,2388 +1,2367 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MCDI /* * There are three versions of the MCDI interface: * - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers. * - MCDIv1: Siena firmware and Huntington BootROM. * - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM. * Transport uses MCDIv2 headers. * * MCDIv2 Header NOT_EPOCH flag * ---------------------------- * A new epoch begins at initial startup or after an MC reboot, and defines when * the MC should reject stale MCDI requests. * * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1. * * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0. */ #if EFSYS_OPT_SIENA static const efx_mcdi_ops_t __efx_mcdi_siena_ops = { siena_mcdi_init, /* emco_init */ siena_mcdi_send_request, /* emco_send_request */ siena_mcdi_poll_reboot, /* emco_poll_reboot */ siena_mcdi_poll_response, /* emco_poll_response */ siena_mcdi_read_response, /* emco_read_response */ siena_mcdi_fini, /* emco_fini */ siena_mcdi_feature_supported, /* emco_feature_supported */ siena_mcdi_get_timeout, /* emco_get_timeout */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 static const efx_mcdi_ops_t __efx_mcdi_ef10_ops = { ef10_mcdi_init, /* emco_init */ ef10_mcdi_send_request, /* emco_send_request */ ef10_mcdi_poll_reboot, /* emco_poll_reboot */ ef10_mcdi_poll_response, /* emco_poll_response */ ef10_mcdi_read_response, /* emco_read_response */ ef10_mcdi_fini, /* emco_fini */ ef10_mcdi_feature_supported, /* emco_feature_supported */ ef10_mcdi_get_timeout, /* emco_get_timeout */ }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */ __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { const efx_mcdi_ops_t *emcop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: emcop = &__efx_mcdi_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ #if EFSYS_OPT_MEDFORD2 case EFX_FAMILY_MEDFORD2: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD2 */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } if (enp->en_features & EFX_FEATURE_MCDI_DMA) { /* MCDI requires a DMA buffer in host memory */ if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) { rc = EINVAL; goto fail2; } } enp->en_mcdi.em_emtp = emtp; if (emcop != NULL && emcop->emco_init != NULL) { if ((rc = emcop->emco_init(enp, emtp)) != 0) goto fail3; } enp->en_mcdi.em_emcop = emcop; enp->en_mod_flags |= EFX_MOD_MCDI; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_mcdi.em_emcop = NULL; enp->en_mcdi.em_emtp = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; return (rc); } void efx_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI); if (emcop != NULL && emcop->emco_fini != NULL) emcop->emco_fini(enp); emip->emi_port = 0; emip->emi_aborted = 0; enp->en_mcdi.em_emcop = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; } void efx_mcdi_new_epoch( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efsys_lock_state_t state; /* Start a new epoch (allow fresh MCDI requests to succeed) */ EFSYS_LOCK(enp->en_eslp, state); emip->emi_new_epoch = B_TRUE; EFSYS_UNLOCK(enp->en_eslp, state); } static void efx_mcdi_send_request( __in efx_nic_t *enp, __in void *hdrp, __in size_t hdr_len, __in void *sdup, __in size_t sdu_len) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len); } static efx_rc_t efx_mcdi_poll_reboot( __in efx_nic_t *enp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; rc = emcop->emco_poll_reboot(enp); return (rc); } static boolean_t efx_mcdi_poll_response( __in efx_nic_t *enp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; boolean_t available; available = emcop->emco_poll_response(enp); return (available); } static void efx_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_read_response(enp, bufferp, offset, length); } void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr[2]; size_t hdr_len; unsigned int max_version; unsigned int seq; unsigned int xflags; boolean_t new_epoch; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_request_start() is naturally serialised against both * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(), * by virtue of there only being one outstanding MCDI request. * Unfortunately, upper layers may also call efx_mcdi_request_abort() * at any time, to timeout a pending mcdi request, That request may * then subsequently complete, meaning efx_mcdi_ev_cpl() or * efx_mcdi_ev_death() may end up running in parallel with * efx_mcdi_request_start(). This race is handled by ensuring that * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the * en_eslp lock. */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req == NULL); emip->emi_pending_req = emrp; emip->emi_ev_cpl = ev_cpl; emip->emi_poll_cnt = 0; seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ); new_epoch = emip->emi_new_epoch; max_version = emip->emi_max_version; EFSYS_UNLOCK(enp->en_eslp, state); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; /* * Huntington firmware supports MCDIv2, but the Huntington BootROM only * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where * possible to support this. */ if ((max_version >= 2) && ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) || (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) || (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) { /* Construct MCDI v2 header */ hdr_len = sizeof (hdr); EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, MC_CMD_V2_EXTN, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, 0, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFX_POPULATE_DWORD_2(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd, MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length); } else { /* Construct MCDI v1 header */ hdr_len = sizeof (hdr[0]); EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr, hdr_len, emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_mcdi_send_request(enp, &hdr[0], hdr_len, emrp->emr_in_buf, emrp->emr_in_length); } static void efx_mcdi_read_response_header( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr[2]; unsigned int hdr_len; unsigned int data_len; unsigned int seq; unsigned int cmd; unsigned int error; efx_rc_t rc; EFSYS_ASSERT(emrp != NULL); efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0])); hdr_len = sizeof (hdr[0]); cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE); seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ); error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR); if (cmd != MC_CMD_V2_EXTN) { data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN); } else { efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD); data_len = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } if (error && (data_len == 0)) { /* The MC has rebooted since the request was sent. */ EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); efx_mcdi_poll_reboot(enp); rc = EIO; goto fail1; } if ((cmd != emrp->emr_cmd) || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { /* Response is for a different request */ rc = EIO; goto fail2; } if (error) { efx_dword_t err[2]; unsigned int err_len = MIN(data_len, sizeof (err)); int err_code = MC_CMD_ERR_EPROTO; int err_arg = 0; /* Read error code (and arg num for MCDI v2 commands) */ efx_mcdi_read_response(enp, &err, hdr_len, err_len); if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t))) err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0); #ifdef WITH_MCDI_V2 if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t))) err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0); #endif emrp->emr_err_code = err_code; emrp->emr_err_arg = err_arg; #if EFSYS_OPT_MCDI_PROXY_AUTH if ((err_code == MC_CMD_ERR_PROXY_PENDING) && (err_len == sizeof (err))) { /* * The MCDI request would normally fail with EPERM, but * firmware has forwarded it to an authorization agent * attached to a privileged PF. * * Save the authorization request handle. The client * must wait for a PROXY_RESPONSE event, or timeout. */ emrp->emr_proxy_handle = err_arg; } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, hdr_len, &err, err_len); } #endif /* EFSYS_OPT_MCDI_LOGGING */ if (!emrp->emr_quiet) { EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd, int, err_code, int, err_arg); } rc = efx_mcdi_request_errcode(err_code); goto fail3; } emrp->emr_rc = 0; emrp->emr_out_length_used = data_len; #if EFSYS_OPT_MCDI_PROXY_AUTH emrp->emr_proxy_handle = 0; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ return; fail3: fail2: fail1: emrp->emr_rc = rc; emrp->emr_out_length_used = 0; } static void efx_mcdi_finish_response( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_dword_t hdr[2]; unsigned int hdr_len; size_t bytes; if (emrp->emr_out_buf == NULL) return; /* Read the command header to detect MCDI response format */ hdr_len = sizeof (hdr[0]); efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len); if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) { /* * Read the actual payload length. The length given in the event * is only correct for responses with the V1 format. */ efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } /* Copy payload out into caller supplied buffer */ bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); efx_mcdi_read_response(enp, emrp->emr_out_buf, hdr_len, bytes); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, hdr_len, emrp->emr_out_buf, bytes); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; efsys_lock_state_t state; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* Serialise against post-watchdog efx_mcdi_ev* */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req != NULL); EFSYS_ASSERT(!emip->emi_ev_cpl); emrp = emip->emi_pending_req; /* Check if hardware is unavailable */ if (efx_nic_hw_unavailable(enp)) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } /* Check for reboot atomically w.r.t efx_mcdi_request_start */ if (emip->emi_poll_cnt++ == 0) { if ((rc = efx_mcdi_poll_reboot(enp)) != 0) { emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); /* Reboot/Assertion */ if (rc == EIO || rc == EINTR) efx_mcdi_raise_exception(enp, emrp, rc); goto fail1; } } /* Check if a response is available */ if (efx_mcdi_poll_response(enp) == B_FALSE) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } /* Read the response header */ efx_mcdi_read_response_header(enp, emrp); /* Request complete */ emip->emi_pending_req = NULL; /* Ensure stale MCDI requests fail after an MC reboot. */ emip->emi_new_epoch = B_FALSE; EFSYS_UNLOCK(enp->en_eslp, state); if ((rc = emrp->emr_rc) != 0) goto fail2; efx_mcdi_finish_response(enp, emrp); return (B_TRUE); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); return (B_TRUE); } __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; boolean_t aborted; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_ev_* may have already completed this event, and be * spinning/blocked on the upper layer lock. So it *is* legitimate * to for emi_pending_req to be NULL. If there is a pending event * completed request, then provide a "credit" to allow * efx_mcdi_ev_cpl() to accept a single spurious completion. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; aborted = (emrp != NULL); if (aborted) { emip->emi_pending_req = NULL; /* Error the request */ emrp->emr_out_length_used = 0; emrp->emr_rc = ETIMEDOUT; /* Provide a credit for seqno/emr_pending_req mismatches */ if (emip->emi_ev_cpl) ++emip->emi_aborted; /* * The upper layer has called us, so we don't * need to complete the request. */ } EFSYS_UNLOCK(enp->en_eslp, state); return (aborted); } void efx_mcdi_get_timeout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *timeoutp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_get_timeout(enp, emrp, timeoutp); } __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err) { switch (err) { /* MCDI v1 */ case MC_CMD_ERR_EPERM: return (EACCES); case MC_CMD_ERR_ENOENT: return (ENOENT); case MC_CMD_ERR_EINTR: return (EINTR); case MC_CMD_ERR_EACCES: return (EACCES); case MC_CMD_ERR_EBUSY: return (EBUSY); case MC_CMD_ERR_EINVAL: return (EINVAL); case MC_CMD_ERR_EDEADLK: return (EDEADLK); case MC_CMD_ERR_ENOSYS: return (ENOTSUP); case MC_CMD_ERR_ETIME: return (ETIMEDOUT); case MC_CMD_ERR_ENOTSUP: return (ENOTSUP); case MC_CMD_ERR_EALREADY: return (EALREADY); /* MCDI v2 */ case MC_CMD_ERR_EEXIST: return (EEXIST); #ifdef MC_CMD_ERR_EAGAIN case MC_CMD_ERR_EAGAIN: return (EAGAIN); #endif #ifdef MC_CMD_ERR_ENOSPC case MC_CMD_ERR_ENOSPC: return (ENOSPC); #endif case MC_CMD_ERR_ERANGE: return (ERANGE); case MC_CMD_ERR_ALLOC_FAIL: return (ENOMEM); case MC_CMD_ERR_NO_VADAPTOR: return (ENOENT); case MC_CMD_ERR_NO_EVB_PORT: return (ENOENT); case MC_CMD_ERR_NO_VSWITCH: return (ENODEV); case MC_CMD_ERR_VLAN_LIMIT: return (EINVAL); case MC_CMD_ERR_BAD_PCI_FUNC: return (ENODEV); case MC_CMD_ERR_BAD_VLAN_MODE: return (EINVAL); case MC_CMD_ERR_BAD_VSWITCH_TYPE: return (EINVAL); case MC_CMD_ERR_BAD_VPORT_TYPE: return (EINVAL); case MC_CMD_ERR_MAC_EXIST: return (EEXIST); case MC_CMD_ERR_PROXY_PENDING: return (EAGAIN); default: EFSYS_PROBE1(mc_pcol_error, int, err); return (EIO); } } void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_exception_t exception; /* Reboot or Assertion failure only */ EFSYS_ASSERT(rc == EIO || rc == EINTR); /* * If MC_CMD_REBOOT causes a reboot (dependent on parameters), * then the EIO is not worthy of an exception. */ if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO) return; exception = (rc == EIO) ? EFX_MCDI_EXCEPTION_MC_REBOOT : EFX_MCDI_EXCEPTION_MC_BADASSERT; emtp->emt_exception(emtp->emt_context, exception); } void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_FALSE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_TRUE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start() * when we're completing an aborted request. */ EFSYS_LOCK(enp->en_eslp, state); if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { EFSYS_ASSERT(emip->emi_aborted > 0); if (emip->emi_aborted > 0) --emip->emi_aborted; EFSYS_UNLOCK(enp->en_eslp, state); return; } emrp = emip->emi_pending_req; emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); if (emip->emi_max_version >= 2) { /* MCDIv2 response details do not fit into an event. */ efx_mcdi_read_response_header(enp, emrp); } else { if (errcode != 0) { if (!emrp->emr_quiet) { EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd, int, errcode); } emrp->emr_out_length_used = 0; emrp->emr_rc = efx_mcdi_request_errcode(errcode); } else { emrp->emr_out_length_used = outlen; emrp->emr_rc = 0; } } if (emrp->emr_rc == 0) efx_mcdi_finish_response(enp, emrp); emtp->emt_ev_cpl(emtp->emt_context); } #if EFSYS_OPT_MCDI_PROXY_AUTH __checkReturn efx_rc_t efx_mcdi_get_proxy_handle( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *handlep) { efx_rc_t rc; _NOTE(ARGUNUSED(enp)) /* * Return proxy handle from MCDI request that returned with error * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching * PROXY_RESPONSE event. */ if ((emrp == NULL) || (handlep == NULL)) { rc = EINVAL; goto fail1; } if ((emrp->emr_rc != 0) && (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) { *handlep = emrp->emr_proxy_handle; rc = 0; } else { *handlep = 0; rc = ENOENT; } return (rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_mcdi_ev_proxy_response( __in efx_nic_t *enp, __in unsigned int handle, __in unsigned int status) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_rc_t rc; /* * Handle results of an authorization request for a privileged MCDI * command. If authorization was granted then we must re-issue the * original MCDI request. If authorization failed or timed out, * then the original MCDI request should be completed with the * result code from this event. */ rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status); emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc); } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp = NULL; boolean_t ev_cpl; efsys_lock_state_t state; /* * The MCDI request (if there is one) has been terminated, either * by a BADASSERT or REBOOT event. * * If there is an outstanding event-completed MCDI operation, then we * will never receive the completion event (because both MCDI * completions and BADASSERT events are sent to the same evq). So * complete this MCDI op. * * This function might run in parallel with efx_mcdi_request_poll() * for poll completed mcdi requests, and also with * efx_mcdi_request_start() for post-watchdog completions. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; ev_cpl = emip->emi_ev_cpl; if (emrp != NULL && emip->emi_ev_cpl) { emip->emi_pending_req = NULL; emrp->emr_out_length_used = 0; emrp->emr_rc = rc; ++emip->emi_aborted; } /* * Since we're running in parallel with a request, consume the * status word before dropping the lock. */ if (rc == EIO || rc == EINTR) { EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); (void) efx_mcdi_poll_reboot(enp); emip->emi_new_epoch = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); efx_mcdi_raise_exception(enp, emrp, rc); if (emrp != NULL && ev_cpl) emtp->emt_ev_cpl(emtp->emt_context); } __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_BOOT_STATUS_IN_LEN), MAX(MC_CMD_GET_VERSION_OUT_LEN, MC_CMD_GET_BOOT_STATUS_OUT_LEN)); efx_word_t *ver_words; uint16_t version[4]; uint32_t build; efx_mcdi_boot_t status; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); req.emr_cmd = MC_CMD_GET_VERSION; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* bootrom support */ if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) { version[0] = version[1] = version[2] = version[3] = 0; build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); goto version; } if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) { rc = EMSGSIZE; goto fail2; } ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION); version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0); version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0); version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0); version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0); build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); version: /* The bootrom doesn't understand BOOT_STATUS */ if (MC_FW_VERSION_IS_BOOTLOADER(build)) { status = EFX_MCDI_BOOT_ROM; goto out; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOOT_STATUS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot access BOOT_STATUS */ status = EFX_MCDI_BOOT_PRIMARY; version[0] = version[1] = version[2] = version[3] = 0; build = 0; goto out; } if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) { rc = EMSGSIZE; goto fail4; } if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS, GET_BOOT_STATUS_OUT_FLAGS_PRIMARY)) status = EFX_MCDI_BOOT_PRIMARY; else status = EFX_MCDI_BOOT_SECONDARY; out: if (versionp != NULL) memcpy(versionp, version, sizeof (version)); if (buildp != NULL) *buildp = build; if (statusp != NULL) *statusp = status; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_capabilities( __in efx_nic_t *enp, __out_opt uint32_t *flagsp, __out_opt uint16_t *rx_dpcpu_fw_idp, __out_opt uint16_t *tx_dpcpu_fw_idp, __out_opt uint32_t *flags2p, __out_opt uint32_t *tso2ncp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN); boolean_t v2_capable; efx_rc_t rc; req.emr_cmd = MC_CMD_GET_CAPABILITIES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (flagsp != NULL) *flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1); if (rx_dpcpu_fw_idp != NULL) *rx_dpcpu_fw_idp = MCDI_OUT_WORD(req, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); if (tx_dpcpu_fw_idp != NULL) *tx_dpcpu_fw_idp = MCDI_OUT_WORD(req, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) v2_capable = B_FALSE; else v2_capable = B_TRUE; if (flags2p != NULL) { *flags2p = (v2_capable) ? MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) : 0; } if (tso2ncp != NULL) { *tso2ncp = (v2_capable) ? MCDI_OUT_WORD(req, GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) : 0; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_do_reboot( __in efx_nic_t *enp, __in boolean_t after_assertion) { EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN); efx_mcdi_req_t req; efx_rc_t rc; /* * We could require the caller to have caused en_mod_flags=0 to * call this function. This doesn't help the other port though, * who's about to get the MC ripped out from underneath them. * Since they have to cope with the subsequent fallout of MCDI * failures, we should as well. */ EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); req.emr_cmd = MC_CMD_REBOOT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_REBOOT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_REBOOT_OUT_LEN; MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS, (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0)); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot reboot the MC. */ goto out; } /* A successful reboot request returns EIO. */ if (req.emr_rc != 0 && req.emr_rc != EIO) { rc = req.emr_rc; goto fail1; } out: return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_FALSE)); } __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_TRUE)); } __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN, MC_CMD_GET_ASSERTS_OUT_LEN); const char *reason; unsigned int flags; unsigned int index; unsigned int ofst; int retry; efx_rc_t rc; /* * Before we attempt to chat to the MC, we should verify that the MC * isn't in its assertion handler, either due to a previous reboot, * or because we're reinitializing due to an eec_exception(). * * Use GET_ASSERTS to read any assertion state that may be present. * Retry this command twice. Once because a boot-time assertion failure * might cause the 1st MCDI request to fail. And once again because * we might race with efx_mcdi_exit_assertion_handler() running on * partner port(s) on the same NIC. */ retry = 2; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_ASSERTS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1); efx_mcdi_execute_quiet(enp, &req); } while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0); if (req.emr_rc != 0) { if (req.emr_rc == EACCES) { /* Unprivileged functions cannot clear assertions. */ goto out; } rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* Print out any assertion state recorded */ flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return (0); reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP) ? "illegal address trap" : "unknown assertion"; EFSYS_PROBE3(mcpu_assertion, const char *, reason, unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS), unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers (r1 ... r31) */ ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; for (index = 1; index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; index++) { EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int, EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst), EFX_DWORD_0)); ofst += sizeof (efx_dword_t); } EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN); out: return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Internal routines for for specific MCDI requests. */ __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_LEN, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_DRV_ATTACH; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN; /* * Typically, client drivers use DONT_CARE for the datapath firmware * type to ensure that the driver can attach to an unprivileged * function. The datapath firmware type to use is controlled by the * 'sfboot' utility. * If a client driver wishes to attach with a specific datapath firmware * type, that can be passed in second argument of efx_nic_probe API. One * such example is the ESXi native driver that attempts attaching with * FULL_FEATURED datapath firmware type first and fall backs to * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails. */ MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE, DRV_ATTACH_IN_ATTACH, attach ? 1 : 0, DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = EMSGSIZE; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN, MC_CMD_GET_BOARD_CFG_OUT_LENMIN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_BOARD_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (mac_addrp != NULL) { uint8_t *addrp; if (emip->emi_port == 1) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0); } else if (emip->emi_port == 2) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1); } else { rc = EINVAL; goto fail3; } EFX_MAC_ADDR_COPY(mac_addrp, addrp); } if (capabilitiesp != NULL) { if (emip->emi_port == 1) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); } else if (emip->emi_port == 2) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); } else { rc = EINVAL; goto fail4; } } if (board_typep != NULL) { *board_typep = MCDI_OUT_DWORD(req, GET_BOARD_CFG_OUT_BOARD_TYPE); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN, MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (nevqp != NULL) *nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ); if (nrxqp != NULL) *nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ); if (ntxqp != NULL) *ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN, MC_CMD_GET_PHY_CFG_OUT_LEN); #if EFSYS_OPT_NAMES const char *namep; size_t namelen; #endif uint32_t phy_media_type; efx_rc_t rc; req.emr_cmd = MC_CMD_GET_PHY_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE); #if EFSYS_OPT_NAMES namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME); namelen = MIN(sizeof (encp->enc_phy_name) - 1, strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN)); (void) memset(encp->enc_phy_name, 0, sizeof (encp->enc_phy_name)); memcpy(encp->enc_phy_name, namep, namelen); #endif /* EFSYS_OPT_NAMES */ (void) memset(encp->enc_phy_revision, 0, sizeof (encp->enc_phy_revision)); memcpy(encp->enc_phy_revision, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION), MIN(sizeof (encp->enc_phy_revision) - 1, MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN)); #if EFSYS_OPT_PHY_LED_CONTROL encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) | (1 << EFX_PHY_LED_OFF) | (1 << EFX_PHY_LED_ON)); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ /* Get the media type of the fixed port, if recognised. */ EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI); EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP); EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS); EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T); EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS); phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE); epp->ep_fixed_port_type = (efx_phy_media_type_t) phy_media_type; if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES) epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID; epp->ep_phy_cap_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP); #if EFSYS_OPT_PHY_FLAGS encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS); #endif /* EFSYS_OPT_PHY_FLAGS */ encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT); /* Populate internal state */ encp->enc_mcdi_mdio_channel = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL); #if EFSYS_OPT_PHY_STATS encp->enc_mcdi_phy_stat_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST encp->enc_bist_mask = 0; if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_SHORT)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_LONG)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL); #endif /* EFSYS_OPT_BIST */ return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported updates */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC changes */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported link control */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_spoofing_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC spoofing */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_BIST #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 /* * Enter bist offline mode. This is a fw mode which puts the NIC into a state * where memory BIST tests can be run and not much else can interfere or happen. * A reboot is required to exit this mode. */ __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0); req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */ __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN, MC_CMD_START_BIST_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_START_BIST; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_START_BIST_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_START_BIST_OUT_LEN; switch (type) { case EFX_BIST_TYPE_PHY_NORMAL: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST); break; case EFX_BIST_TYPE_PHY_CABLE_SHORT: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_SHORT); break; case EFX_BIST_TYPE_PHY_CABLE_LONG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_LONG); break; case EFX_BIST_TYPE_MC_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_MC_MEM_BIST); break; case EFX_BIST_TYPE_SAT_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PORT_MEM_BIST); break; case EFX_BIST_TYPE_REG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_REG_BIST); break; default: EFSYS_ASSERT(0); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_BIST */ /* Enable logging of some events (e.g. link state changes) */ __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN, MC_CMD_LOG_CTRL_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_LOG_CTRL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN; MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST, MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ); MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_MAC_STATS typedef enum efx_stats_action_e { EFX_STATS_CLEAR, EFX_STATS_UPLOAD, EFX_STATS_ENABLE_NOEVENTS, EFX_STATS_ENABLE_EVENTS, EFX_STATS_DISABLE, } efx_stats_action_t; static __checkReturn efx_rc_t efx_mcdi_mac_stats( __in efx_nic_t *enp, __in_opt efsys_mem_t *esmp, __in efx_stats_action_t action, __in uint16_t period_ms) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN, MC_CMD_MAC_STATS_V2_OUT_DMA_LEN); int clear = (action == EFX_STATS_CLEAR); int upload = (action == EFX_STATS_UPLOAD); int enable = (action == EFX_STATS_ENABLE_NOEVENTS); int events = (action == EFX_STATS_ENABLE_EVENTS); int disable = (action == EFX_STATS_DISABLE); efx_rc_t rc; req.emr_cmd = MC_CMD_MAC_STATS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN; MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, upload, MAC_STATS_IN_CLEAR, clear, MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable, MAC_STATS_IN_PERIODIC_ENABLE, enable | events, MAC_STATS_IN_PERIODIC_NOEVENT, !events, MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0); if (enable || events || upload) { const efx_nic_cfg_t *encp = &enp->en_nic_cfg; uint32_t bytes; /* Periodic stats or stats upload require a DMA buffer */ if (esmp == NULL) { rc = EINVAL; goto fail1; } if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) { /* MAC stats count too small for legacy MAC stats */ rc = ENOSPC; goto fail2; } bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t); if (EFSYS_MEM_SIZE(esmp) < bytes) { /* DMA buffer too small */ rc = ENOSPC; goto fail3; } MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO, EFSYS_MEM_ADDR(esmp) & 0xffffffff); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI, EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes); } /* * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats, * as this may fail (and leave periodic DMA enabled) if the * vadapter has already been deleted. */ MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID, (disable ? EVB_PORT_ID_NULL : enp->en_vport_id)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { /* EF10: Expect ENOENT if no DMA queues are initialised */ if ((req.emr_rc != ENOENT) || (enp->en_rx_qcount + enp->en_tx_qcount != 0)) { rc = req.emr_rc; goto fail4; } } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR, 0)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. */ if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD, 0)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. * Huntington uses a fixed 1sec period. * Medford uses a fixed 1sec period before v6.2.1.1033 firmware. */ if (period_ms == 0) rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE, 0); else if (events) rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS, period_ms); else rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS, period_ms); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MAC_STATS */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 /* * This function returns the pf and vf number of a function. If it is a pf the * vf number is 0xffff. The vf number is the index of the vf on that * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0), * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff). */ __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_FUNCTION_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF); if (vfp != NULL) *vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN, MC_CMD_PRIVILEGE_MASK_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_PRIVILEGE_MASK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN; MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION, PRIVILEGE_MASK_IN_FUNCTION_PF, pf, PRIVILEGE_MASK_IN_FUNCTION_VF, vf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */ __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN, MC_CMD_WORKAROUND_EXT_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_WORKAROUND; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN; MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type); MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (flagsp != NULL) { if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN) *flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS); else *flagsp = 0; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_WORKAROUNDS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (implementedp != NULL) { *implementedp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED); } if (enabledp != NULL) { *enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Size of media information page in accordance with SFF-8472 and SFF-8436. * It is used in MCDI interface as well. */ #define EFX_PHY_MEDIA_INFO_PAGE_SIZE 0x80 static __checkReturn efx_rc_t efx_mcdi_get_phy_media_info( __in efx_nic_t *enp, __in uint32_t mcdi_page, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN, MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN( EFX_PHY_MEDIA_INFO_PAGE_SIZE)); efx_rc_t rc; EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE); req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE); MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used != MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) != EFX_PHY_MEDIA_INFO_PAGE_SIZE) { rc = EIO; goto fail3; } memcpy(data, MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset, len); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } -/* - * 2-wire device address of the base information in accordance with SFF-8472 - * Diagnostic Monitoring Interface for Optical Transceivers section - * 4 Memory Organization. - */ -#define EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE 0xA0 - -/* - * 2-wire device address of the digital diagnostics monitoring interface - * in accordance with SFF-8472 Diagnostic Monitoring Interface for Optical - * Transceivers section 4 Memory Organization. - */ -#define EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM 0xA2 - -/* - * Hard wired 2-wire device address for QSFP+ in accordance with SFF-8436 - * QSFP+ 10 Gbs 4X PLUGGABLE TRANSCEIVER section 7.4 Device Addressing and - * Operation. - */ -#define EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP 0xA0 - __checkReturn efx_rc_t efx_mcdi_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data) { efx_port_t *epp = &(enp->en_port); efx_rc_t rc; uint32_t mcdi_lower_page; uint32_t mcdi_upper_page; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); /* * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages. * Offset plus length interface allows to access page 0 only. * I.e. non-zero upper pages are not accessible. * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6 * QSFP+ Memory Map for details on how information is structured * and accessible. */ switch (epp->ep_fixed_port_type) { case EFX_PHY_MEDIA_SFP_PLUS: /* * In accordance with SFF-8472 Diagnostic Monitoring * Interface for Optical Transceivers section 4 Memory * Organization two 2-wire addresses are defined. */ switch (dev_addr) { /* Base information */ case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE: /* * MCDI page 0 should be used to access lower * page 0 (0x00 - 0x7f) at the device address 0xA0. */ mcdi_lower_page = 0; /* * MCDI page 1 should be used to access upper * page 0 (0x80 - 0xff) at the device address 0xA0. */ mcdi_upper_page = 1; break; /* Diagnostics */ case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM: /* * MCDI page 2 should be used to access lower * page 0 (0x00 - 0x7f) at the device address 0xA2. */ mcdi_lower_page = 2; /* * MCDI page 3 should be used to access upper * page 0 (0x80 - 0xff) at the device address 0xA2. */ mcdi_upper_page = 3; break; default: rc = ENOTSUP; goto fail1; } break; case EFX_PHY_MEDIA_QSFP_PLUS: switch (dev_addr) { case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP: /* * MCDI page -1 should be used to access lower page 0 * (0x00 - 0x7f). */ mcdi_lower_page = (uint32_t)-1; /* * MCDI page 0 should be used to access upper page 0 * (0x80h - 0xff). */ mcdi_upper_page = 0; break; default: rc = ENOTSUP; goto fail1; } break; default: rc = ENOTSUP; goto fail1; } if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) { uint8_t read_len = MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset); rc = efx_mcdi_get_phy_media_info(enp, mcdi_lower_page, offset, read_len, data); if (rc != 0) goto fail2; data += read_len; len -= read_len; offset = 0; } else { offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE; } if (len > 0) { EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE); EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE); rc = efx_mcdi_get_phy_media_info(enp, mcdi_upper_page, offset, len, data); if (rc != 0) goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MCDI */