Index: head/sys/dev/sfxge/common/ef10_ev.c =================================================================== --- head/sys/dev/sfxge/common/ef10_ev.c (revision 341041) +++ head/sys/dev/sfxge/common/ef10_ev.c (revision 341042) @@ -1,1419 +1,1454 @@ /*- * Copyright (c) 2012-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_STATS #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif /* * Non-interrupting event queue requires interrrupting event queue to * refer to for wake-up events even if wake ups are never used. * It could be even non-allocated event queue. */ #define EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX (0) static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn efx_rc_t efx_mcdi_set_evq_tmr( __in efx_nic_t *enp, __in uint32_t instance, __in uint32_t mode, __in uint32_t timer_ns) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_SET_EVQ_TMR_IN_LEN, MC_CMD_SET_EVQ_TMR_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SET_EVQ_TMR; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SET_EVQ_TMR_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SET_EVQ_TMR_OUT_LEN; MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, timer_ns); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, timer_ns); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_MODE, mode); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_SET_EVQ_TMR_OUT_LEN) { rc = EMSGSIZE; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_init_evq( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq, __in uint32_t us, __in uint32_t flags, __in boolean_t low_latency) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_OUT_LEN)]; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; boolean_t interrupting; int ev_cut_through; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_IN_LEN(npages) > MC_CMD_INIT_EVQ_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_IRQ_NUM, irq); interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) == EFX_EVQ_FLAGS_NOTIFY_INTERRUPT); /* * On Huntington RX and TX event batching can only be requested together * (even if the datapath firmware doesn't actually support RX * batching). If event cut through is enabled no RX batching will occur. * * So always enable RX and TX event batching, and enable event cut * through if we want low latency operation. */ switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) { case EFX_EVQ_FLAGS_TYPE_AUTO: ev_cut_through = low_latency ? 1 : 0; break; case EFX_EVQ_FLAGS_TYPE_THROUGHPUT: ev_cut_through = 0; break; case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY: ev_cut_through = 1; break; default: rc = EINVAL; goto fail2; } MCDI_IN_POPULATE_DWORD_6(req, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, interrupting, INIT_EVQ_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_IN_FLAG_INT_ARMD, 0, INIT_EVQ_IN_FLAG_CUT_THRU, ev_cut_through, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1); /* If the value is zero then disable the timer */ if (us == 0) { MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, 0); } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) goto fail3; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_INT_HLDOFF); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, ticks); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, ticks); } MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail4; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) { rc = EMSGSIZE; goto fail5; } /* NOTE: ignore the returned IRQ param as firmware does not set it. */ return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_init_evq_v2( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq, __in uint32_t us, __in uint32_t flags) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_V2_OUT_LEN)]; boolean_t interrupting; unsigned int evq_type; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_V2_IN_LEN(npages) > MC_CMD_INIT_EVQ_V2_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq); interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) == EFX_EVQ_FLAGS_NOTIFY_INTERRUPT); switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) { case EFX_EVQ_FLAGS_TYPE_AUTO: evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO; break; case EFX_EVQ_FLAGS_TYPE_THROUGHPUT: evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT; break; case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY: evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY; break; default: rc = EINVAL; goto fail2; } MCDI_IN_POPULATE_DWORD_4(req, INIT_EVQ_V2_IN_FLAGS, INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting, INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0, INIT_EVQ_V2_IN_FLAG_TYPE, evq_type); /* If the value is zero then disable the timer */ if (us == 0) { MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE, MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0); } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) goto fail3; MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE, MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks); } MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE, MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail4; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) { rc = EMSGSIZE; goto fail5; } /* NOTE: ignore the returned IRQ param as firmware does not set it. */ EFSYS_PROBE1(mcdi_evq_flags, uint32_t, MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS)); return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_evq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_EVQ_IN_LEN, MC_CMD_FINI_EVQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: /* * EALREADY is not an error, but indicates that the MC has rebooted and * that the EVQ has already been destroyed. */ if (rc != EALREADY) EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_ev_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in uint32_t us, __in uint32_t flags, __in efx_evq_t *eep) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t irq; efx_rc_t rc; _NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */ EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS)); EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS)); if (!ISP2(ndescs) || (ndescs < EFX_EVQ_MINNEVS) || (ndescs > EFX_EVQ_MAXNEVS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail3; } /* Set up the handler table */ eep->ee_rx = ef10_ev_rx; eep->ee_tx = ef10_ev_tx; eep->ee_driver = ef10_ev_driver; eep->ee_drv_gen = ef10_ev_drv_gen; eep->ee_mcdi = ef10_ev_mcdi; /* Set up the event queue */ /* INIT_EVQ expects function-relative vector number */ if ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) == EFX_EVQ_FLAGS_NOTIFY_INTERRUPT) { irq = index; } else if (index == EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX) { irq = index; flags = (flags & ~EFX_EVQ_FLAGS_NOTIFY_MASK) | EFX_EVQ_FLAGS_NOTIFY_INTERRUPT; } else { irq = EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX; } /* * Interrupts may be raised for events immediately after the queue is * created. See bug58606. */ if (encp->enc_init_evq_v2_supported) { /* * On Medford the low latency license is required to enable RX * and event cut through and to disable RX batching. If event * queue type in flags is auto, we let the firmware decide the * settings to use. If the adapter has a low latency license, * it will choose the best settings for low latency, otherwise * it will choose the best settings for throughput. */ rc = efx_mcdi_init_evq_v2(enp, index, esmp, ndescs, irq, us, flags); if (rc != 0) goto fail4; } else { /* * On Huntington we need to specify the settings to use. * If event queue type in flags is auto, we favour throughput * if the adapter is running virtualization supporting firmware * (i.e. the full featured firmware variant) * and latency otherwise. The Ethernet Virtual Bridging * capability is used to make this decision. (Note though that * the low latency firmware variant is also best for * throughput and corresponding type should be specified * to choose it.) */ boolean_t low_latency = encp->enc_datapath_cap_evb ? 0 : 1; rc = efx_mcdi_init_evq(enp, index, esmp, ndescs, irq, us, flags, low_latency); if (rc != 0) goto fail5; } return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD || enp->en_family == EFX_FAMILY_MEDFORD2); (void) efx_mcdi_fini_evq(enp, eep->ee_index); } __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; rptr = count & eep->ee_mask; if (enp->en_nic_cfg.enc_bug35388_workaround) { EFX_STATIC_ASSERT(EFX_EVQ_MINNEVS > (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_STATIC_ASSERT(EFX_EVQ_MAXNEVS < (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); } else { EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr); EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); } return (0); } static __checkReturn efx_rc_t efx_mcdi_driver_event( __in efx_nic_t *enp, __in uint32_t evq, __in efx_qword_t data) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRIVER_EVENT_IN_LEN, MC_CMD_DRIVER_EVENT_OUT_LEN)]; efx_rc_t rc; req.emr_cmd = MC_CMD_DRIVER_EVENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN; MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO, EFX_QWORD_FIELD(data, EFX_DWORD_0)); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI, EFX_QWORD_FIELD(data, EFX_DWORD_1)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t event; EFX_POPULATE_QWORD_3(event, ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV, ESF_DZ_DRV_SUB_CODE, 0, ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data); (void) efx_mcdi_driver_event(enp, eep->ee_index, event); } __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_dword_t dword; uint32_t mode; efx_rc_t rc; /* Check that hardware and MCDI use the same timer MODE values */ EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_DIS == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_DIS); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_IMMED_START == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_IMMED_START); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_TRIG_START == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_TRIG_START); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_INT_HLDOFF == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_INT_HLDOFF); if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { mode = FFE_CZ_TIMER_MODE_DIS; } else { mode = FFE_CZ_TIMER_MODE_INT_HLDOFF; } if (encp->enc_bug61265_workaround) { uint32_t ns = us * 1000; rc = efx_mcdi_set_evq_tmr(enp, eep->ee_index, mode, ns); if (rc != 0) goto fail2; } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) goto fail3; if (encp->enc_bug35388_workaround) { EFX_POPULATE_DWORD_3(dword, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, ticks); EFX_BAR_VI_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, 0); } else { EFX_POPULATE_DWORD_2(dword, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, ticks); EFX_BAR_VI_WRITED(enp, ER_DZ_EVQ_TMR_REG, eep->ee_index, &dword, 0); } } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ #if EFSYS_OPT_RX_PACKED_STREAM static __checkReturn boolean_t ef10_ev_rx_packed_stream( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t label; uint32_t pkt_count_lbits; uint16_t flags; boolean_t should_abort; efx_evq_rxq_state_t *eersp; unsigned int pkt_count; unsigned int current_id; boolean_t new_buffer; pkt_count_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL); new_buffer = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_EV_ROTATE); flags = 0; eersp = &eep->ee_rxq_state[label]; /* * RX_DSC_PTR_LBITS has least significant bits of the global * (not per-buffer) packet counter. It is guaranteed that * maximum number of completed packets fits in lbits-mask. * So, modulo lbits-mask arithmetic should be used to calculate * packet counter increment. */ pkt_count = (pkt_count_lbits - eersp->eers_rx_stream_npackets) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); eersp->eers_rx_stream_npackets += pkt_count; if (new_buffer) { flags |= EFX_PKT_PACKED_STREAM_NEW_BUFFER; eersp->eers_rx_packed_stream_credits++; eersp->eers_rx_read_ptr++; } current_id = eersp->eers_rx_read_ptr & eersp->eers_rx_mask; /* Check for errors that invalidate checksum and L3/L4 fields */ if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) { /* RX frame truncated (error flag is misnamed) */ EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) { /* Bad Ethernet frame CRC */ EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) { flags |= EFX_PKT_PACKED_STREAM_PARSE_INCOMPLETE; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); deliver: /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); EFSYS_ASSERT(eecp->eec_rx_ps != NULL); should_abort = eecp->eec_rx_ps(arg, label, current_id, pkt_count, flags); return (should_abort); } #endif /* EFSYS_OPT_RX_PACKED_STREAM */ static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t size; uint32_t label; uint32_t mac_class; uint32_t eth_tag_class; uint32_t l3_class; uint32_t l4_class; uint32_t next_read_lbits; uint16_t flags; boolean_t cont; boolean_t should_abort; efx_evq_rxq_state_t *eersp; unsigned int desc_count; unsigned int last_used_id; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); /* Basic packet information */ label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL); eersp = &eep->ee_rxq_state[label]; #if EFSYS_OPT_RX_PACKED_STREAM /* * Packed stream events are very different, * so handle them separately */ if (eersp->eers_rx_packed_stream) return (ef10_ev_rx_packed_stream(eep, eqp, eecp, arg)); #endif size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES); + cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT); next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS); eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS); mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS); l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS); - l4_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L4_CLASS); - cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT); + /* + * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is only + * 2 bits wide on Medford2. Check it is safe to use the Medford2 field + * and values for all EF10 controllers. + */ + EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN == ESF_DE_RX_L4_CLASS_LBN); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN == ESE_DE_L4_CLASS_UNKNOWN); + + l4_class = EFX_QWORD_FIELD(*eqp, ESF_FZ_RX_L4_CLASS); + if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } flags = 0; if (cont != 0) { /* * This may be part of a scattered frame, or it may be a * truncated frame if scatter is disabled on this RXQ. * Overlength frames can be received if e.g. a VF is configured * for 1500 MTU but connected to a port set to 9000 MTU * (see bug56567). * FIXME: There is not yet any driver that supports scatter on * Huntington. Scatter support is required for OSX. */ flags |= EFX_PKT_CONT; } if (mac_class == ESE_DZ_MAC_CLASS_UCAST) flags |= EFX_PKT_UNICAST; /* Increment the count of descriptors read */ desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); eersp->eers_rx_read_ptr += desc_count; /* * FIXME: add error checking to make sure this a batched event. * This could also be an aborted scatter, see Bug36629. */ if (desc_count > 1) { EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH); flags |= EFX_PKT_PREFIX_LEN; } /* Calculate the index of the last descriptor consumed */ last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask; /* Check for errors that invalidate checksum and L3/L4 fields */ if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) { /* RX frame truncated (error flag is misnamed) */ EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) { /* Bad Ethernet frame CRC */ EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) { /* * Hardware parse failed, due to malformed headers * or headers that are too long for the parser. * Headers and checksums must be validated by the host. */ /* TODO: EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE); */ goto deliver; } if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) || (eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) { flags |= EFX_PKT_VLAN_TAGGED; } switch (l3_class) { case ESE_DZ_L3_CLASS_IP4: case ESE_DZ_L3_CLASS_IP4_FRAG: flags |= EFX_PKT_IPV4; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); } else { flags |= EFX_CKSUM_IPV4; } - if (l4_class == ESE_DZ_L4_CLASS_TCP) { + /* + * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is + * only 2 bits wide on Medford2. Check it is safe to use the + * Medford2 field and values for all EF10 controllers. + */ + EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN == + ESF_DE_RX_L4_CLASS_LBN); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN == + ESE_DE_L4_CLASS_UNKNOWN); + + if (l4_class == ESE_FZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4); flags |= EFX_PKT_TCP; - } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { + } else if (l4_class == ESE_FZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4); } break; case ESE_DZ_L3_CLASS_IP6: case ESE_DZ_L3_CLASS_IP6_FRAG: flags |= EFX_PKT_IPV6; - if (l4_class == ESE_DZ_L4_CLASS_TCP) { + /* + * RX_L4_CLASS is 3 bits wide on Huntington and Medford, but is + * only 2 bits wide on Medford2. Check it is safe to use the + * Medford2 field and values for all EF10 controllers. + */ + EFX_STATIC_ASSERT(ESF_FZ_RX_L4_CLASS_LBN == + ESF_DE_RX_L4_CLASS_LBN); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_TCP == ESE_DE_L4_CLASS_TCP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UDP == ESE_DE_L4_CLASS_UDP); + EFX_STATIC_ASSERT(ESE_FZ_L4_CLASS_UNKNOWN == + ESE_DE_L4_CLASS_UNKNOWN); + + if (l4_class == ESE_FZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6); flags |= EFX_PKT_TCP; - } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { + } else if (l4_class == ESE_FZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6); } break; default: EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP); break; } if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) { if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); } else { flags |= EFX_CKSUM_TCPUDP; } } deliver: /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags); return (should_abort); } static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } /* Per-packet TX completion (was per-descriptor for Falcon/Siena) */ id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { unsigned int code; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE); switch (code) { case ESE_DZ_DRV_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case ESE_DZ_DRV_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case ESE_DZ_DRV_START_UP_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); should_abort = B_FALSE; data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned int code; boolean_t should_abort = B_FALSE; EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(eqp, CMDDONE_SEQ), MCDI_EV_FIELD(eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(eqp, CMDDONE_ERRNO)); break; #if EFSYS_OPT_MCDI_PROXY_AUTH case MCDI_EVENT_CODE_PROXY_RESPONSE: /* * This event notifies a function that an authorization request * has been processed. If the request was authorized then the * function can now re-send the original MCDI request. * See SF-113652-SW "SR-IOV Proxied Network Access Control". */ efx_mcdi_ev_proxy_response(enp, MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE), MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC)); break; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; ef10_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; efx_rc_t rc; /* Decode monitor stat for MCDI sensor (if supported) */ if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) { /* Report monitor stat change */ should_abort = eecp->eec_monitor(arg, id, value); } else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else { EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ } #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: /* Falcon/Siena only (should not been seen with Huntington). */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MC_REBOOT: /* MC_REBOOT event is used for Huntington (EF10) and later. */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } case MCDI_EVENT_CODE_TX_ERR: { /* * After a TXQ error is detected, firmware sends a TX_ERR event. * This may be followed by TX completions (which we discard), * and then finally by a TX_FLUSH event. Firmware destroys the * TXQ automatically after sending the TX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_TXQ_ERR; EFSYS_PROBE2(tx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR, MCDI_EV_FIELD(eqp, TX_ERR_DATA)); break; } case MCDI_EVENT_CODE_TX_FLUSH: { uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ); /* * EF10 firmware sends two TX_FLUSH events: one to the txq's * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with TX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, txq_index); break; } case MCDI_EVENT_CODE_RX_ERR: { /* * After an RXQ error is detected, firmware sends an RX_ERR * event. This may be followed by RX events (which we discard), * and then finally by an RX_FLUSH event. Firmware destroys the * RXQ automatically after sending the RX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_RXQ_ERR; EFSYS_PROBE2(rx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR, MCDI_EV_FIELD(eqp, RX_ERR_DATA)); break; } case MCDI_EVENT_CODE_RX_FLUSH: { uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ); /* * EF10 firmware sends two RX_FLUSH events: one to the rxq's * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with RX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); should_abort = eecp->eec_rxq_flush_done(arg, rxq_index); break; } default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label, __in efx_rxq_type_t type) { efx_evq_rxq_state_t *eersp; #if EFSYS_OPT_RX_PACKED_STREAM boolean_t packed_stream = (type == EFX_RXQ_TYPE_PACKED_STREAM); #endif _NOTE(ARGUNUSED(type)) EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0); #if EFSYS_OPT_RX_PACKED_STREAM /* * For packed stream modes, the very first event will * have a new buffer flag set, so it will be incremented, * yielding the correct pointer. That results in a simpler * code than trying to detect start-of-the-world condition * in the event handler. */ eersp->eers_rx_read_ptr = packed_stream ? ~0 : 0; #else eersp->eers_rx_read_ptr = 0; #endif eersp->eers_rx_mask = erp->er_mask; #if EFSYS_OPT_RX_PACKED_STREAM eersp->eers_rx_stream_npackets = 0; eersp->eers_rx_packed_stream = packed_stream; if (packed_stream) { eersp->eers_rx_packed_stream_credits = (eep->ee_mask + 1) / EFX_DIV_ROUND_UP(EFX_RX_PACKED_STREAM_MEM_PER_CREDIT, EFX_RX_PACKED_STREAM_MIN_PACKET_SPACE); EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, !=, 0); /* * A single credit is allocated to the queue when it is started. * It is immediately spent by the first packet which has NEW * BUFFER flag set, though, but still we shall take into * account, as to not wrap around the maximum number of credits * accidentally */ eersp->eers_rx_packed_stream_credits--; EFSYS_ASSERT3U(eersp->eers_rx_packed_stream_credits, <=, EFX_RX_PACKED_STREAM_MAX_CREDITS); } #endif } void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = 0; #if EFSYS_OPT_RX_PACKED_STREAM eersp->eers_rx_stream_npackets = 0; eersp->eers_rx_packed_stream = B_FALSE; eersp->eers_rx_packed_stream_credits = 0; #endif } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */ Index: head/sys/dev/sfxge/common/efx_regs_ef10.h =================================================================== --- head/sys/dev/sfxge/common/efx_regs_ef10.h (revision 341041) +++ head/sys/dev/sfxge/common/efx_regs_ef10.h (revision 341042) @@ -1,575 +1,732 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_EF10_REGS_H #define _SYS_EFX_EF10_REGS_H #ifdef __cplusplus extern "C" { #endif /************************************************************************** * NOTE: the line below marks the start of the autogenerated section * EF10 registers and descriptors * ************************************************************************** */ /* * BIU_HW_REV_ID_REG(32bit): * */ #define ER_DZ_BIU_HW_REV_ID_REG_OFST 0x00000000 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_BIU_HW_REV_ID_REG_RESET 0xeb14face #define ERF_DZ_HW_REV_ID_LBN 0 #define ERF_DZ_HW_REV_ID_WIDTH 32 /* * BIU_MC_SFT_STATUS_REG(32bit): * */ #define ER_DZ_BIU_MC_SFT_STATUS_REG_OFST 0x00000010 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_BIU_MC_SFT_STATUS_REG_STEP 4 #define ER_DZ_BIU_MC_SFT_STATUS_REG_ROWS 8 #define ER_DZ_BIU_MC_SFT_STATUS_REG_RESET 0x1111face #define ERF_DZ_MC_SFT_STATUS_LBN 0 #define ERF_DZ_MC_SFT_STATUS_WIDTH 32 /* * BIU_INT_ISR_REG(32bit): * */ #define ER_DZ_BIU_INT_ISR_REG_OFST 0x00000090 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_BIU_INT_ISR_REG_RESET 0x0 #define ERF_DZ_ISR_REG_LBN 0 #define ERF_DZ_ISR_REG_WIDTH 32 /* * MC_DB_LWRD_REG(32bit): * */ #define ER_DZ_MC_DB_LWRD_REG_OFST 0x00000200 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_MC_DB_LWRD_REG_RESET 0x0 #define ERF_DZ_MC_DOORBELL_L_LBN 0 #define ERF_DZ_MC_DOORBELL_L_WIDTH 32 /* * MC_DB_HWRD_REG(32bit): * */ #define ER_DZ_MC_DB_HWRD_REG_OFST 0x00000204 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_MC_DB_HWRD_REG_RESET 0x0 #define ERF_DZ_MC_DOORBELL_H_LBN 0 #define ERF_DZ_MC_DOORBELL_H_WIDTH 32 /* * EVQ_RPTR_REG(32bit): * */ #define ER_DZ_EVQ_RPTR_REG_OFST 0x00000400 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_EVQ_RPTR_REG_STEP 8192 #define ER_DZ_EVQ_RPTR_REG_ROWS 2048 #define ER_DZ_EVQ_RPTR_REG_RESET 0x0 #define ERF_DZ_EVQ_RPTR_VLD_LBN 15 #define ERF_DZ_EVQ_RPTR_VLD_WIDTH 1 #define ERF_DZ_EVQ_RPTR_LBN 0 #define ERF_DZ_EVQ_RPTR_WIDTH 15 /* + * EVQ_RPTR_REG_64K(32bit): + * + */ + +#define ER_FZ_EVQ_RPTR_REG_64K_OFST 0x00000400 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_EVQ_RPTR_REG_64K_STEP 65536 +#define ER_FZ_EVQ_RPTR_REG_64K_ROWS 2048 +#define ER_FZ_EVQ_RPTR_REG_64K_RESET 0x0 + + +#define ERF_FZ_EVQ_RPTR_VLD_LBN 15 +#define ERF_FZ_EVQ_RPTR_VLD_WIDTH 1 +#define ERF_FZ_EVQ_RPTR_LBN 0 +#define ERF_FZ_EVQ_RPTR_WIDTH 15 + + +/* + * EVQ_RPTR_REG_16K(32bit): + * + */ + +#define ER_FZ_EVQ_RPTR_REG_16K_OFST 0x00000400 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_EVQ_RPTR_REG_16K_STEP 16384 +#define ER_FZ_EVQ_RPTR_REG_16K_ROWS 2048 +#define ER_FZ_EVQ_RPTR_REG_16K_RESET 0x0 + + +/* defined as ERF_FZ_EVQ_RPTR_VLD_LBN 15; */ +/* defined as ERF_FZ_EVQ_RPTR_VLD_WIDTH 1 */ +/* defined as ERF_FZ_EVQ_RPTR_LBN 0; */ +/* defined as ERF_FZ_EVQ_RPTR_WIDTH 15 */ + + +/* + * EVQ_TMR_REG_64K(32bit): + * + */ + +#define ER_FZ_EVQ_TMR_REG_64K_OFST 0x00000420 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_EVQ_TMR_REG_64K_STEP 65536 +#define ER_FZ_EVQ_TMR_REG_64K_ROWS 2048 +#define ER_FZ_EVQ_TMR_REG_64K_RESET 0x0 + + +#define ERF_FZ_TC_TIMER_MODE_LBN 14 +#define ERF_FZ_TC_TIMER_MODE_WIDTH 2 +#define ERF_FZ_TC_TIMER_VAL_LBN 0 +#define ERF_FZ_TC_TIMER_VAL_WIDTH 14 + + +/* + * EVQ_TMR_REG_16K(32bit): + * + */ + +#define ER_FZ_EVQ_TMR_REG_16K_OFST 0x00000420 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_EVQ_TMR_REG_16K_STEP 16384 +#define ER_FZ_EVQ_TMR_REG_16K_ROWS 2048 +#define ER_FZ_EVQ_TMR_REG_16K_RESET 0x0 + + +/* defined as ERF_FZ_TC_TIMER_MODE_LBN 14; */ +/* defined as ERF_FZ_TC_TIMER_MODE_WIDTH 2 */ +/* defined as ERF_FZ_TC_TIMER_VAL_LBN 0; */ +/* defined as ERF_FZ_TC_TIMER_VAL_WIDTH 14 */ + + +/* * EVQ_TMR_REG(32bit): * */ #define ER_DZ_EVQ_TMR_REG_OFST 0x00000420 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_EVQ_TMR_REG_STEP 8192 #define ER_DZ_EVQ_TMR_REG_ROWS 2048 #define ER_DZ_EVQ_TMR_REG_RESET 0x0 #define ERF_DZ_TC_TIMER_MODE_LBN 14 #define ERF_DZ_TC_TIMER_MODE_WIDTH 2 #define ERF_DZ_TC_TIMER_VAL_LBN 0 #define ERF_DZ_TC_TIMER_VAL_WIDTH 14 /* + * RX_DESC_UPD_REG_16K(32bit): + * + */ + +#define ER_FZ_RX_DESC_UPD_REG_16K_OFST 0x00000830 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_RX_DESC_UPD_REG_16K_STEP 16384 +#define ER_FZ_RX_DESC_UPD_REG_16K_ROWS 2048 +#define ER_FZ_RX_DESC_UPD_REG_16K_RESET 0x0 + + +#define ERF_FZ_RX_DESC_WPTR_LBN 0 +#define ERF_FZ_RX_DESC_WPTR_WIDTH 12 + + +/* * RX_DESC_UPD_REG(32bit): * */ #define ER_DZ_RX_DESC_UPD_REG_OFST 0x00000830 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_RX_DESC_UPD_REG_STEP 8192 #define ER_DZ_RX_DESC_UPD_REG_ROWS 2048 #define ER_DZ_RX_DESC_UPD_REG_RESET 0x0 #define ERF_DZ_RX_DESC_WPTR_LBN 0 #define ERF_DZ_RX_DESC_WPTR_WIDTH 12 + /* + * RX_DESC_UPD_REG_64K(32bit): + * + */ + +#define ER_FZ_RX_DESC_UPD_REG_64K_OFST 0x00000830 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_RX_DESC_UPD_REG_64K_STEP 65536 +#define ER_FZ_RX_DESC_UPD_REG_64K_ROWS 2048 +#define ER_FZ_RX_DESC_UPD_REG_64K_RESET 0x0 + + +/* defined as ERF_FZ_RX_DESC_WPTR_LBN 0; */ +/* defined as ERF_FZ_RX_DESC_WPTR_WIDTH 12 */ + + +/* + * TX_DESC_UPD_REG_64K(96bit): + * + */ + +#define ER_FZ_TX_DESC_UPD_REG_64K_OFST 0x00000a10 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_TX_DESC_UPD_REG_64K_STEP 65536 +#define ER_FZ_TX_DESC_UPD_REG_64K_ROWS 2048 +#define ER_FZ_TX_DESC_UPD_REG_64K_RESET 0x0 + + +#define ERF_FZ_RSVD_LBN 76 +#define ERF_FZ_RSVD_WIDTH 20 +#define ERF_FZ_TX_DESC_WPTR_LBN 64 +#define ERF_FZ_TX_DESC_WPTR_WIDTH 12 +#define ERF_FZ_TX_DESC_HWORD_LBN 32 +#define ERF_FZ_TX_DESC_HWORD_WIDTH 32 +#define ERF_FZ_TX_DESC_LWORD_LBN 0 +#define ERF_FZ_TX_DESC_LWORD_WIDTH 32 + + +/* + * TX_DESC_UPD_REG_16K(96bit): + * + */ + +#define ER_FZ_TX_DESC_UPD_REG_16K_OFST 0x00000a10 +/* medford2a0=pf_dbell_bar */ +#define ER_FZ_TX_DESC_UPD_REG_16K_STEP 16384 +#define ER_FZ_TX_DESC_UPD_REG_16K_ROWS 2048 +#define ER_FZ_TX_DESC_UPD_REG_16K_RESET 0x0 + + +/* defined as ERF_FZ_RSVD_LBN 76; */ +/* defined as ERF_FZ_RSVD_WIDTH 20 */ +/* defined as ERF_FZ_TX_DESC_WPTR_LBN 64; */ +/* defined as ERF_FZ_TX_DESC_WPTR_WIDTH 12 */ +/* defined as ERF_FZ_TX_DESC_HWORD_LBN 32; */ +/* defined as ERF_FZ_TX_DESC_HWORD_WIDTH 32 */ +/* defined as ERF_FZ_TX_DESC_LWORD_LBN 0; */ +/* defined as ERF_FZ_TX_DESC_LWORD_WIDTH 32 */ + + +/* * TX_DESC_UPD_REG(96bit): * */ #define ER_DZ_TX_DESC_UPD_REG_OFST 0x00000a10 -/* hunta0,medforda0=pcie_pf_bar2 */ +/* hunta0,medforda0,medford2a0=pf_dbell_bar */ #define ER_DZ_TX_DESC_UPD_REG_STEP 8192 #define ER_DZ_TX_DESC_UPD_REG_ROWS 2048 #define ER_DZ_TX_DESC_UPD_REG_RESET 0x0 #define ERF_DZ_RSVD_LBN 76 #define ERF_DZ_RSVD_WIDTH 20 #define ERF_DZ_TX_DESC_WPTR_LBN 64 #define ERF_DZ_TX_DESC_WPTR_WIDTH 12 #define ERF_DZ_TX_DESC_HWORD_LBN 32 #define ERF_DZ_TX_DESC_HWORD_WIDTH 32 #define ERF_DZ_TX_DESC_LWORD_LBN 0 #define ERF_DZ_TX_DESC_LWORD_WIDTH 32 /* ES_DRIVER_EV */ #define ESF_DZ_DRV_CODE_LBN 60 #define ESF_DZ_DRV_CODE_WIDTH 4 #define ESF_DZ_DRV_SUB_CODE_LBN 56 #define ESF_DZ_DRV_SUB_CODE_WIDTH 4 #define ESE_DZ_DRV_TIMER_EV 3 #define ESE_DZ_DRV_START_UP_EV 2 #define ESE_DZ_DRV_WAKE_UP_EV 1 #define ESF_DZ_DRV_SUB_DATA_DW0_LBN 0 #define ESF_DZ_DRV_SUB_DATA_DW0_WIDTH 32 #define ESF_DZ_DRV_SUB_DATA_DW1_LBN 32 #define ESF_DZ_DRV_SUB_DATA_DW1_WIDTH 24 #define ESF_DZ_DRV_SUB_DATA_LBN 0 #define ESF_DZ_DRV_SUB_DATA_WIDTH 56 #define ESF_DZ_DRV_EVQ_ID_LBN 0 #define ESF_DZ_DRV_EVQ_ID_WIDTH 14 #define ESF_DZ_DRV_TMR_ID_LBN 0 #define ESF_DZ_DRV_TMR_ID_WIDTH 14 /* ES_EVENT_ENTRY */ #define ESF_DZ_EV_CODE_LBN 60 #define ESF_DZ_EV_CODE_WIDTH 4 #define ESE_DZ_EV_CODE_MCDI_EV 12 #define ESE_DZ_EV_CODE_DRIVER_EV 5 #define ESE_DZ_EV_CODE_TX_EV 2 #define ESE_DZ_EV_CODE_RX_EV 0 #define ESE_DZ_OTHER other #define ESF_DZ_EV_DATA_DW0_LBN 0 #define ESF_DZ_EV_DATA_DW0_WIDTH 32 #define ESF_DZ_EV_DATA_DW1_LBN 32 #define ESF_DZ_EV_DATA_DW1_WIDTH 28 #define ESF_DZ_EV_DATA_LBN 0 #define ESF_DZ_EV_DATA_WIDTH 60 /* ES_MC_EVENT */ #define ESF_DZ_MC_CODE_LBN 60 #define ESF_DZ_MC_CODE_WIDTH 4 #define ESF_DZ_MC_OVERRIDE_HOLDOFF_LBN 59 #define ESF_DZ_MC_OVERRIDE_HOLDOFF_WIDTH 1 #define ESF_DZ_MC_DROP_EVENT_LBN 58 #define ESF_DZ_MC_DROP_EVENT_WIDTH 1 #define ESF_DZ_MC_SOFT_DW0_LBN 0 #define ESF_DZ_MC_SOFT_DW0_WIDTH 32 #define ESF_DZ_MC_SOFT_DW1_LBN 32 #define ESF_DZ_MC_SOFT_DW1_WIDTH 26 #define ESF_DZ_MC_SOFT_LBN 0 #define ESF_DZ_MC_SOFT_WIDTH 58 /* ES_RX_EVENT */ #define ESF_DZ_RX_CODE_LBN 60 #define ESF_DZ_RX_CODE_WIDTH 4 #define ESF_DZ_RX_OVERRIDE_HOLDOFF_LBN 59 #define ESF_DZ_RX_OVERRIDE_HOLDOFF_WIDTH 1 #define ESF_DZ_RX_DROP_EVENT_LBN 58 #define ESF_DZ_RX_DROP_EVENT_WIDTH 1 #define ESF_DD_RX_EV_RSVD2_LBN 54 #define ESF_DD_RX_EV_RSVD2_WIDTH 4 #define ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR_LBN 57 #define ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR_WIDTH 1 #define ESF_EZ_RX_IP_INNER_CHKSUM_ERR_LBN 56 #define ESF_EZ_RX_IP_INNER_CHKSUM_ERR_WIDTH 1 #define ESF_EZ_RX_EV_RSVD2_LBN 54 #define ESF_EZ_RX_EV_RSVD2_WIDTH 2 #define ESF_DZ_RX_EV_SOFT2_LBN 52 #define ESF_DZ_RX_EV_SOFT2_WIDTH 2 #define ESF_DZ_RX_DSC_PTR_LBITS_LBN 48 #define ESF_DZ_RX_DSC_PTR_LBITS_WIDTH 4 -#define ESF_DZ_RX_L4_CLASS_LBN 45 -#define ESF_DZ_RX_L4_CLASS_WIDTH 3 -#define ESE_DZ_L4_CLASS_RSVD7 7 -#define ESE_DZ_L4_CLASS_RSVD6 6 -#define ESE_DZ_L4_CLASS_RSVD5 5 -#define ESE_DZ_L4_CLASS_RSVD4 4 -#define ESE_DZ_L4_CLASS_RSVD3 3 -#define ESE_DZ_L4_CLASS_UDP 2 -#define ESE_DZ_L4_CLASS_TCP 1 -#define ESE_DZ_L4_CLASS_UNKNOWN 0 +#define ESF_DE_RX_L4_CLASS_LBN 45 +#define ESF_DE_RX_L4_CLASS_WIDTH 3 +#define ESE_DE_L4_CLASS_RSVD7 7 +#define ESE_DE_L4_CLASS_RSVD6 6 +#define ESE_DE_L4_CLASS_RSVD5 5 +#define ESE_DE_L4_CLASS_RSVD4 4 +#define ESE_DE_L4_CLASS_RSVD3 3 +#define ESE_DE_L4_CLASS_UDP 2 +#define ESE_DE_L4_CLASS_TCP 1 +#define ESE_DE_L4_CLASS_UNKNOWN 0 +#define ESF_FZ_RX_FASTPD_INDCTR_LBN 47 +#define ESF_FZ_RX_FASTPD_INDCTR_WIDTH 1 +#define ESF_FZ_RX_L4_CLASS_LBN 45 +#define ESF_FZ_RX_L4_CLASS_WIDTH 2 +#define ESE_FZ_L4_CLASS_RSVD3 3 +#define ESE_FZ_L4_CLASS_UDP 2 +#define ESE_FZ_L4_CLASS_TCP 1 +#define ESE_FZ_L4_CLASS_UNKNOWN 0 #define ESF_DZ_RX_L3_CLASS_LBN 42 #define ESF_DZ_RX_L3_CLASS_WIDTH 3 #define ESE_DZ_L3_CLASS_RSVD7 7 #define ESE_DZ_L3_CLASS_IP6_FRAG 6 #define ESE_DZ_L3_CLASS_ARP 5 #define ESE_DZ_L3_CLASS_IP4_FRAG 4 #define ESE_DZ_L3_CLASS_FCOE 3 #define ESE_DZ_L3_CLASS_IP6 2 #define ESE_DZ_L3_CLASS_IP4 1 #define ESE_DZ_L3_CLASS_UNKNOWN 0 #define ESF_DZ_RX_ETH_TAG_CLASS_LBN 39 #define ESF_DZ_RX_ETH_TAG_CLASS_WIDTH 3 #define ESE_DZ_ETH_TAG_CLASS_RSVD7 7 #define ESE_DZ_ETH_TAG_CLASS_RSVD6 6 #define ESE_DZ_ETH_TAG_CLASS_RSVD5 5 #define ESE_DZ_ETH_TAG_CLASS_RSVD4 4 #define ESE_DZ_ETH_TAG_CLASS_RSVD3 3 #define ESE_DZ_ETH_TAG_CLASS_VLAN2 2 #define ESE_DZ_ETH_TAG_CLASS_VLAN1 1 #define ESE_DZ_ETH_TAG_CLASS_NONE 0 #define ESF_DZ_RX_ETH_BASE_CLASS_LBN 36 #define ESF_DZ_RX_ETH_BASE_CLASS_WIDTH 3 #define ESE_DZ_ETH_BASE_CLASS_LLC_SNAP 2 #define ESE_DZ_ETH_BASE_CLASS_LLC 1 #define ESE_DZ_ETH_BASE_CLASS_ETH2 0 #define ESF_DZ_RX_MAC_CLASS_LBN 35 #define ESF_DZ_RX_MAC_CLASS_WIDTH 1 #define ESE_DZ_MAC_CLASS_MCAST 1 #define ESE_DZ_MAC_CLASS_UCAST 0 #define ESF_DD_RX_EV_SOFT1_LBN 32 #define ESF_DD_RX_EV_SOFT1_WIDTH 3 #define ESF_EZ_RX_EV_SOFT1_LBN 34 #define ESF_EZ_RX_EV_SOFT1_WIDTH 1 #define ESF_EZ_RX_ENCAP_HDR_LBN 32 #define ESF_EZ_RX_ENCAP_HDR_WIDTH 2 #define ESE_EZ_ENCAP_HDR_GRE 2 #define ESE_EZ_ENCAP_HDR_VXLAN 1 #define ESE_EZ_ENCAP_HDR_NONE 0 #define ESF_DD_RX_EV_RSVD1_LBN 30 #define ESF_DD_RX_EV_RSVD1_WIDTH 2 #define ESF_EZ_RX_EV_RSVD1_LBN 31 #define ESF_EZ_RX_EV_RSVD1_WIDTH 1 #define ESF_EZ_RX_ABORT_LBN 30 #define ESF_EZ_RX_ABORT_WIDTH 1 #define ESF_DZ_RX_ECC_ERR_LBN 29 #define ESF_DZ_RX_ECC_ERR_WIDTH 1 #define ESF_DZ_RX_CRC1_ERR_LBN 28 #define ESF_DZ_RX_CRC1_ERR_WIDTH 1 #define ESF_DZ_RX_CRC0_ERR_LBN 27 #define ESF_DZ_RX_CRC0_ERR_WIDTH 1 #define ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN 26 #define ESF_DZ_RX_TCPUDP_CKSUM_ERR_WIDTH 1 #define ESF_DZ_RX_IPCKSUM_ERR_LBN 25 #define ESF_DZ_RX_IPCKSUM_ERR_WIDTH 1 #define ESF_DZ_RX_ECRC_ERR_LBN 24 #define ESF_DZ_RX_ECRC_ERR_WIDTH 1 #define ESF_DZ_RX_QLABEL_LBN 16 #define ESF_DZ_RX_QLABEL_WIDTH 5 #define ESF_DZ_RX_PARSE_INCOMPLETE_LBN 15 #define ESF_DZ_RX_PARSE_INCOMPLETE_WIDTH 1 #define ESF_DZ_RX_CONT_LBN 14 #define ESF_DZ_RX_CONT_WIDTH 1 #define ESF_DZ_RX_BYTES_LBN 0 #define ESF_DZ_RX_BYTES_WIDTH 14 /* ES_RX_KER_DESC */ #define ESF_DZ_RX_KER_RESERVED_LBN 62 #define ESF_DZ_RX_KER_RESERVED_WIDTH 2 #define ESF_DZ_RX_KER_BYTE_CNT_LBN 48 #define ESF_DZ_RX_KER_BYTE_CNT_WIDTH 14 #define ESF_DZ_RX_KER_BUF_ADDR_DW0_LBN 0 #define ESF_DZ_RX_KER_BUF_ADDR_DW0_WIDTH 32 #define ESF_DZ_RX_KER_BUF_ADDR_DW1_LBN 32 #define ESF_DZ_RX_KER_BUF_ADDR_DW1_WIDTH 16 #define ESF_DZ_RX_KER_BUF_ADDR_LBN 0 #define ESF_DZ_RX_KER_BUF_ADDR_WIDTH 48 /* ES_TX_CSUM_TSTAMP_DESC */ #define ESF_DZ_TX_DESC_IS_OPT_LBN 63 #define ESF_DZ_TX_DESC_IS_OPT_WIDTH 1 #define ESF_DZ_TX_OPTION_TYPE_LBN 60 #define ESF_DZ_TX_OPTION_TYPE_WIDTH 3 #define ESE_DZ_TX_OPTION_DESC_TSO 7 #define ESE_DZ_TX_OPTION_DESC_VLAN 6 #define ESE_DZ_TX_OPTION_DESC_CRC_CSUM 0 #define ESF_DZ_TX_OPTION_TS_AT_TXDP_LBN 8 #define ESF_DZ_TX_OPTION_TS_AT_TXDP_WIDTH 1 #define ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM_LBN 7 #define ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM_WIDTH 1 #define ESF_DZ_TX_OPTION_INNER_IP_CSUM_LBN 6 #define ESF_DZ_TX_OPTION_INNER_IP_CSUM_WIDTH 1 #define ESF_DZ_TX_TIMESTAMP_LBN 5 #define ESF_DZ_TX_TIMESTAMP_WIDTH 1 #define ESF_DZ_TX_OPTION_CRC_MODE_LBN 2 #define ESF_DZ_TX_OPTION_CRC_MODE_WIDTH 3 #define ESE_DZ_TX_OPTION_CRC_FCOIP_MPA 5 #define ESE_DZ_TX_OPTION_CRC_FCOIP_FCOE 4 #define ESE_DZ_TX_OPTION_CRC_ISCSI_HDR_AND_PYLD 3 #define ESE_DZ_TX_OPTION_CRC_ISCSI_HDR 2 #define ESE_DZ_TX_OPTION_CRC_FCOE 1 #define ESE_DZ_TX_OPTION_CRC_OFF 0 #define ESF_DZ_TX_OPTION_UDP_TCP_CSUM_LBN 1 #define ESF_DZ_TX_OPTION_UDP_TCP_CSUM_WIDTH 1 #define ESF_DZ_TX_OPTION_IP_CSUM_LBN 0 #define ESF_DZ_TX_OPTION_IP_CSUM_WIDTH 1 /* ES_TX_EVENT */ #define ESF_DZ_TX_CODE_LBN 60 #define ESF_DZ_TX_CODE_WIDTH 4 #define ESF_DZ_TX_OVERRIDE_HOLDOFF_LBN 59 #define ESF_DZ_TX_OVERRIDE_HOLDOFF_WIDTH 1 #define ESF_DZ_TX_DROP_EVENT_LBN 58 #define ESF_DZ_TX_DROP_EVENT_WIDTH 1 #define ESF_DD_TX_EV_RSVD_LBN 48 #define ESF_DD_TX_EV_RSVD_WIDTH 10 #define ESF_EZ_TCP_UDP_INNER_CHKSUM_ERR_LBN 57 #define ESF_EZ_TCP_UDP_INNER_CHKSUM_ERR_WIDTH 1 #define ESF_EZ_IP_INNER_CHKSUM_ERR_LBN 56 #define ESF_EZ_IP_INNER_CHKSUM_ERR_WIDTH 1 #define ESF_EZ_TX_EV_RSVD_LBN 48 #define ESF_EZ_TX_EV_RSVD_WIDTH 8 #define ESF_DZ_TX_SOFT2_LBN 32 #define ESF_DZ_TX_SOFT2_WIDTH 16 #define ESF_DD_TX_SOFT1_LBN 24 #define ESF_DD_TX_SOFT1_WIDTH 8 #define ESF_EZ_TX_CAN_MERGE_LBN 31 #define ESF_EZ_TX_CAN_MERGE_WIDTH 1 #define ESF_EZ_TX_SOFT1_LBN 24 #define ESF_EZ_TX_SOFT1_WIDTH 7 #define ESF_DZ_TX_QLABEL_LBN 16 #define ESF_DZ_TX_QLABEL_WIDTH 5 #define ESF_DZ_TX_DESCR_INDX_LBN 0 #define ESF_DZ_TX_DESCR_INDX_WIDTH 16 /* ES_TX_KER_DESC */ #define ESF_DZ_TX_KER_TYPE_LBN 63 #define ESF_DZ_TX_KER_TYPE_WIDTH 1 #define ESF_DZ_TX_KER_CONT_LBN 62 #define ESF_DZ_TX_KER_CONT_WIDTH 1 #define ESF_DZ_TX_KER_BYTE_CNT_LBN 48 #define ESF_DZ_TX_KER_BYTE_CNT_WIDTH 14 #define ESF_DZ_TX_KER_BUF_ADDR_DW0_LBN 0 #define ESF_DZ_TX_KER_BUF_ADDR_DW0_WIDTH 32 #define ESF_DZ_TX_KER_BUF_ADDR_DW1_LBN 32 #define ESF_DZ_TX_KER_BUF_ADDR_DW1_WIDTH 16 #define ESF_DZ_TX_KER_BUF_ADDR_LBN 0 #define ESF_DZ_TX_KER_BUF_ADDR_WIDTH 48 /* ES_TX_PIO_DESC */ #define ESF_DZ_TX_PIO_TYPE_LBN 63 #define ESF_DZ_TX_PIO_TYPE_WIDTH 1 #define ESF_DZ_TX_PIO_OPT_LBN 60 #define ESF_DZ_TX_PIO_OPT_WIDTH 3 #define ESF_DZ_TX_PIO_CONT_LBN 59 #define ESF_DZ_TX_PIO_CONT_WIDTH 1 #define ESF_DZ_TX_PIO_BYTE_CNT_LBN 32 #define ESF_DZ_TX_PIO_BYTE_CNT_WIDTH 12 #define ESF_DZ_TX_PIO_BUF_ADDR_LBN 0 #define ESF_DZ_TX_PIO_BUF_ADDR_WIDTH 12 /* ES_TX_TSO_DESC */ #define ESF_DZ_TX_DESC_IS_OPT_LBN 63 #define ESF_DZ_TX_DESC_IS_OPT_WIDTH 1 #define ESF_DZ_TX_OPTION_TYPE_LBN 60 #define ESF_DZ_TX_OPTION_TYPE_WIDTH 3 #define ESE_DZ_TX_OPTION_DESC_TSO 7 #define ESE_DZ_TX_OPTION_DESC_VLAN 6 #define ESE_DZ_TX_OPTION_DESC_CRC_CSUM 0 #define ESF_DZ_TX_TSO_OPTION_TYPE_LBN 56 #define ESF_DZ_TX_TSO_OPTION_TYPE_WIDTH 4 +#define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B 3 +#define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A 2 #define ESE_DZ_TX_TSO_OPTION_DESC_ENCAP 1 #define ESE_DZ_TX_TSO_OPTION_DESC_NORMAL 0 #define ESF_DZ_TX_TSO_TCP_FLAGS_LBN 48 #define ESF_DZ_TX_TSO_TCP_FLAGS_WIDTH 8 #define ESF_DZ_TX_TSO_IP_ID_LBN 32 #define ESF_DZ_TX_TSO_IP_ID_WIDTH 16 #define ESF_DZ_TX_TSO_TCP_SEQNO_LBN 0 #define ESF_DZ_TX_TSO_TCP_SEQNO_WIDTH 32 -/* TX_TSO_FATSO2A_DESC */ +/* ES_TX_TSO_V2_DESC_A */ #define ESF_DZ_TX_DESC_IS_OPT_LBN 63 #define ESF_DZ_TX_DESC_IS_OPT_WIDTH 1 #define ESF_DZ_TX_OPTION_TYPE_LBN 60 #define ESF_DZ_TX_OPTION_TYPE_WIDTH 3 #define ESE_DZ_TX_OPTION_DESC_TSO 7 #define ESE_DZ_TX_OPTION_DESC_VLAN 6 #define ESE_DZ_TX_OPTION_DESC_CRC_CSUM 0 #define ESF_DZ_TX_TSO_OPTION_TYPE_LBN 56 #define ESF_DZ_TX_TSO_OPTION_TYPE_WIDTH 4 #define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B 3 #define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A 2 #define ESE_DZ_TX_TSO_OPTION_DESC_ENCAP 1 #define ESE_DZ_TX_TSO_OPTION_DESC_NORMAL 0 #define ESF_DZ_TX_TSO_IP_ID_LBN 32 #define ESF_DZ_TX_TSO_IP_ID_WIDTH 16 #define ESF_DZ_TX_TSO_TCP_SEQNO_LBN 0 #define ESF_DZ_TX_TSO_TCP_SEQNO_WIDTH 32 -/* TX_TSO_FATSO2B_DESC */ +/* ES_TX_TSO_V2_DESC_B */ #define ESF_DZ_TX_DESC_IS_OPT_LBN 63 #define ESF_DZ_TX_DESC_IS_OPT_WIDTH 1 #define ESF_DZ_TX_OPTION_TYPE_LBN 60 #define ESF_DZ_TX_OPTION_TYPE_WIDTH 3 #define ESE_DZ_TX_OPTION_DESC_TSO 7 #define ESE_DZ_TX_OPTION_DESC_VLAN 6 #define ESE_DZ_TX_OPTION_DESC_CRC_CSUM 0 #define ESF_DZ_TX_TSO_OPTION_TYPE_LBN 56 #define ESF_DZ_TX_TSO_OPTION_TYPE_WIDTH 4 #define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B 3 #define ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A 2 #define ESE_DZ_TX_TSO_OPTION_DESC_ENCAP 1 #define ESE_DZ_TX_TSO_OPTION_DESC_NORMAL 0 -#define ESF_DZ_TX_TSO_OUTER_IP_ID_LBN 16 -#define ESF_DZ_TX_TSO_OUTER_IP_ID_WIDTH 16 #define ESF_DZ_TX_TSO_TCP_MSS_LBN 32 #define ESF_DZ_TX_TSO_TCP_MSS_WIDTH 16 -#define ESF_DZ_TX_TSO_INNER_PE_CSUM_LBN 0 -#define ESF_DZ_TX_TSO_INNER_PE_CSUM_WIDTH 16 +#define ESF_DZ_TX_TSO_OUTER_IPID_LBN 0 +#define ESF_DZ_TX_TSO_OUTER_IPID_WIDTH 16 /* ES_TX_VLAN_DESC */ #define ESF_DZ_TX_DESC_IS_OPT_LBN 63 #define ESF_DZ_TX_DESC_IS_OPT_WIDTH 1 #define ESF_DZ_TX_OPTION_TYPE_LBN 60 #define ESF_DZ_TX_OPTION_TYPE_WIDTH 3 #define ESE_DZ_TX_OPTION_DESC_TSO 7 #define ESE_DZ_TX_OPTION_DESC_VLAN 6 #define ESE_DZ_TX_OPTION_DESC_CRC_CSUM 0 #define ESF_DZ_TX_VLAN_OP_LBN 32 #define ESF_DZ_TX_VLAN_OP_WIDTH 2 #define ESF_DZ_TX_VLAN_TAG2_LBN 16 #define ESF_DZ_TX_VLAN_TAG2_WIDTH 16 #define ESF_DZ_TX_VLAN_TAG1_LBN 0 #define ESF_DZ_TX_VLAN_TAG1_WIDTH 16 /************************************************************************* * NOTE: the comment line above marks the end of the autogenerated section */ /* * The workaround for bug 35388 requires multiplexing writes through * the ERF_DZ_TX_DESC_WPTR address. * TX_DESC_UPD: 0ppppppppppp (bit 11 lost) * EVQ_RPTR: 1000hhhhhhhh, 1001llllllll (split into high and low bits) * EVQ_TMR: 11mmvvvvvvvv (bits 8:13 of value lost) */ #define ER_DD_EVQ_INDIRECT_OFST (ER_DZ_TX_DESC_UPD_REG_OFST + 2 * 4) #define ER_DD_EVQ_INDIRECT_STEP ER_DZ_TX_DESC_UPD_REG_STEP #define ERF_DD_EVQ_IND_RPTR_FLAGS_LBN 8 #define ERF_DD_EVQ_IND_RPTR_FLAGS_WIDTH 4 #define EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH 8 #define EFE_DD_EVQ_IND_RPTR_FLAGS_LOW 9 #define ERF_DD_EVQ_IND_RPTR_LBN 0 #define ERF_DD_EVQ_IND_RPTR_WIDTH 8 #define ERF_DD_EVQ_IND_TIMER_FLAGS_LBN 10 #define ERF_DD_EVQ_IND_TIMER_FLAGS_WIDTH 2 #define EFE_DD_EVQ_IND_TIMER_FLAGS 3 #define ERF_DD_EVQ_IND_TIMER_MODE_LBN 8 #define ERF_DD_EVQ_IND_TIMER_MODE_WIDTH 2 #define ERF_DD_EVQ_IND_TIMER_VAL_LBN 0 #define ERF_DD_EVQ_IND_TIMER_VAL_WIDTH 8 /* Packed stream magic doorbell command */ #define ERF_DZ_RX_DESC_MAGIC_DOORBELL_LBN 11 #define ERF_DZ_RX_DESC_MAGIC_DOORBELL_WIDTH 1 #define ERF_DZ_RX_DESC_MAGIC_CMD_LBN 8 #define ERF_DZ_RX_DESC_MAGIC_CMD_WIDTH 3 #define ERE_DZ_RX_DESC_MAGIC_CMD_PS_CREDITS 0 #define ERF_DZ_RX_DESC_MAGIC_DATA_LBN 0 #define ERF_DZ_RX_DESC_MAGIC_DATA_WIDTH 8 /* Packed stream RX packet prefix */ #define ES_DZ_PS_RX_PREFIX_TSTAMP_LBN 0 #define ES_DZ_PS_RX_PREFIX_TSTAMP_WIDTH 32 #define ES_DZ_PS_RX_PREFIX_CAP_LEN_LBN 32 #define ES_DZ_PS_RX_PREFIX_CAP_LEN_WIDTH 16 #define ES_DZ_PS_RX_PREFIX_ORIG_LEN_LBN 48 #define ES_DZ_PS_RX_PREFIX_ORIG_LEN_WIDTH 16 /* * An extra flag for the packed stream mode, * signalling the start of a new buffer */ #define ESF_DZ_RX_EV_ROTATE_LBN 53 #define ESF_DZ_RX_EV_ROTATE_WIDTH 1 #ifdef __cplusplus } #endif #endif /* _SYS_EFX_EF10_REGS_H */