Index: head/sys/conf/files.amd64 =================================================================== --- head/sys/conf/files.amd64 (revision 340927) +++ head/sys/conf/files.amd64 (revision 340928) @@ -1,759 +1,760 @@ # This file tells config what files go into building a kernel, # files marked standard are always included. # # $FreeBSD$ # # The long compile-with and dependency lines are required because of # limitations in config: backslash-newline doesn't work in strings, and # dependency lines other than the first are silently ignored. # # cloudabi32_vdso.o optional compat_cloudabi32 \ dependency "$S/contrib/cloudabi/cloudabi_vdso_i686_on_64bit.S" \ compile-with "${CC} -x assembler-with-cpp -m32 -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_i686_on_64bit.S -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "cloudabi32_vdso.o" # cloudabi32_vdso_blob.o optional compat_cloudabi32 \ dependency "cloudabi32_vdso.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf64-x86-64-freebsd --binary-architecture i386 cloudabi32_vdso.o ${.TARGET}" \ no-implicit-rule \ clean "cloudabi32_vdso_blob.o" # cloudabi64_vdso.o optional compat_cloudabi64 \ dependency "$S/contrib/cloudabi/cloudabi_vdso_x86_64.S" \ compile-with "${CC} -x assembler-with-cpp -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_x86_64.S -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "cloudabi64_vdso.o" # cloudabi64_vdso_blob.o optional compat_cloudabi64 \ dependency "cloudabi64_vdso.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf64-x86-64-freebsd --binary-architecture i386 cloudabi64_vdso.o ${.TARGET}" \ no-implicit-rule \ clean "cloudabi64_vdso_blob.o" # linux32_genassym.o optional compat_linux32 \ dependency "$S/amd64/linux32/linux32_genassym.c offset.inc" \ compile-with "${CC} ${CFLAGS:N-flto:N-fno-common} -c ${.IMPSRC}" \ no-obj no-implicit-rule \ clean "linux32_genassym.o" # linux32_assym.h optional compat_linux32 \ dependency "$S/kern/genassym.sh linux32_genassym.o" \ compile-with "sh $S/kern/genassym.sh linux32_genassym.o > ${.TARGET}" \ no-obj no-implicit-rule before-depend \ clean "linux32_assym.h" # linux32_locore.o optional compat_linux32 \ dependency "linux32_assym.h $S/amd64/linux32/linux32_locore.s" \ compile-with "${CC} -x assembler-with-cpp -DLOCORE -m32 -shared -s -pipe -I. -I$S -Werror -Wall -fPIC -fno-common -nostdinc -nostdlib -Wl,-T$S/amd64/linux32/linux32_vdso.lds.s -Wl,-soname=linux32_vdso.so,--eh-frame-hdr,-warn-common ${.IMPSRC} -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "linux32_locore.o" # linux32_vdso.so optional compat_linux32 \ dependency "linux32_locore.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf64-x86-64-freebsd --binary-architecture i386 linux32_locore.o ${.TARGET}" \ no-implicit-rule \ clean "linux32_vdso.so" # ia32_genassym.o standard \ dependency "$S/compat/ia32/ia32_genassym.c offset.inc" \ compile-with "${CC} ${CFLAGS:N-flto:N-fno-common} -c ${.IMPSRC}" \ no-obj no-implicit-rule \ clean "ia32_genassym.o" # ia32_assym.h standard \ dependency "$S/kern/genassym.sh ia32_genassym.o" \ compile-with "env NM='${NM}' NMFLAGS='${NMFLAGS}' sh $S/kern/genassym.sh ia32_genassym.o > ${.TARGET}" \ no-obj no-implicit-rule before-depend \ clean "ia32_assym.h" # font.h optional sc_dflt_font \ compile-with "uudecode < /usr/share/syscons/fonts/${SC_DFLT_FONT}-8x16.fnt && file2c 'static u_char dflt_font_16[16*256] = {' '};' < ${SC_DFLT_FONT}-8x16 > font.h && uudecode < /usr/share/syscons/fonts/${SC_DFLT_FONT}-8x14.fnt && file2c 'static u_char dflt_font_14[14*256] = {' '};' < ${SC_DFLT_FONT}-8x14 >> font.h && uudecode < /usr/share/syscons/fonts/${SC_DFLT_FONT}-8x8.fnt && file2c 'static u_char dflt_font_8[8*256] = {' '};' < ${SC_DFLT_FONT}-8x8 >> font.h" \ no-obj no-implicit-rule before-depend \ clean "font.h ${SC_DFLT_FONT}-8x14 ${SC_DFLT_FONT}-8x16 ${SC_DFLT_FONT}-8x8" # atkbdmap.h optional atkbd_dflt_keymap \ compile-with "kbdcontrol -P ${S:S/sys$/share/}/vt/keymaps -P ${S:S/sys$/share/}/syscons/keymaps -L ${ATKBD_DFLT_KEYMAP} | sed -e 's/^static keymap_t.* = /static keymap_t key_map = /' -e 's/^static accentmap_t.* = /static accentmap_t accent_map = /' > atkbdmap.h" \ no-obj no-implicit-rule before-depend \ clean "atkbdmap.h" # ukbdmap.h optional ukbd_dflt_keymap \ compile-with "kbdcontrol -P ${S:S/sys$/share/}/vt/keymaps -P ${S:S/sys$/share/}/syscons/keymaps -L ${UKBD_DFLT_KEYMAP} | sed -e 's/^static keymap_t.* = /static keymap_t key_map = /' -e 's/^static accentmap_t.* = /static accentmap_t accent_map = /' > ukbdmap.h" \ no-obj no-implicit-rule before-depend \ clean "ukbdmap.h" # hpt27xx_lib.o optional hpt27xx \ dependency "$S/dev/hpt27xx/amd64-elf.hpt27xx_lib.o.uu" \ compile-with "uudecode < $S/dev/hpt27xx/amd64-elf.hpt27xx_lib.o.uu" \ no-implicit-rule # hptmvraid.o optional hptmv \ dependency "$S/dev/hptmv/amd64-elf.raid.o.uu" \ compile-with "uudecode < $S/dev/hptmv/amd64-elf.raid.o.uu" \ no-implicit-rule # hptnr_lib.o optional hptnr \ dependency "$S/dev/hptnr/amd64-elf.hptnr_lib.o.uu" \ compile-with "uudecode < $S/dev/hptnr/amd64-elf.hptnr_lib.o.uu" \ no-implicit-rule # hptrr_lib.o optional hptrr \ dependency "$S/dev/hptrr/amd64-elf.hptrr_lib.o.uu" \ compile-with "uudecode < $S/dev/hptrr/amd64-elf.hptrr_lib.o.uu" \ no-implicit-rule # amd64/acpica/acpi_machdep.c optional acpi acpi_wakecode.o optional acpi \ dependency "$S/amd64/acpica/acpi_wakecode.S assym.inc" \ compile-with "${NORMAL_S}" \ no-obj no-implicit-rule before-depend \ clean "acpi_wakecode.o" acpi_wakecode.bin optional acpi \ dependency "acpi_wakecode.o" \ compile-with "${OBJCOPY} -S -O binary acpi_wakecode.o ${.TARGET}" \ no-obj no-implicit-rule before-depend \ clean "acpi_wakecode.bin" acpi_wakecode.h optional acpi \ dependency "acpi_wakecode.bin" \ compile-with "file2c -sx 'static char wakecode[] = {' '};' < acpi_wakecode.bin > ${.TARGET}" \ no-obj no-implicit-rule before-depend \ clean "acpi_wakecode.h" acpi_wakedata.h optional acpi \ dependency "acpi_wakecode.o" \ compile-with '${NM} -n --defined-only acpi_wakecode.o | while read offset dummy what; do echo "#define $${what} 0x$${offset}"; done > ${.TARGET}' \ no-obj no-implicit-rule before-depend \ clean "acpi_wakedata.h" # #amd64/amd64/apic_vector.S standard amd64/amd64/bios.c standard amd64/amd64/bpf_jit_machdep.c optional bpf_jitter amd64/amd64/copyout.c standard amd64/amd64/cpu_switch.S standard amd64/amd64/db_disasm.c optional ddb amd64/amd64/db_interface.c optional ddb amd64/amd64/db_trace.c optional ddb amd64/amd64/efirt_machdep.c optional efirt amd64/amd64/efirt_support.S optional efirt amd64/amd64/elf_machdep.c standard amd64/amd64/exception.S standard amd64/amd64/fpu.c standard amd64/amd64/gdb_machdep.c optional gdb amd64/amd64/in_cksum.c optional inet | inet6 amd64/amd64/initcpu.c standard amd64/amd64/io.c optional io amd64/amd64/locore.S standard no-obj amd64/amd64/xen-locore.S optional xenhvm amd64/amd64/machdep.c standard amd64/amd64/mem.c optional mem amd64/amd64/minidump_machdep.c standard amd64/amd64/mp_machdep.c optional smp amd64/amd64/mpboot.S optional smp amd64/amd64/pmap.c standard amd64/amd64/prof_machdep.c optional profiling-routine amd64/amd64/ptrace_machdep.c standard amd64/amd64/sigtramp.S standard amd64/amd64/support.S standard amd64/amd64/sys_machdep.c standard amd64/amd64/trap.c standard amd64/amd64/uio_machdep.c standard amd64/amd64/uma_machdep.c standard amd64/amd64/vm_machdep.c standard amd64/cloudabi32/cloudabi32_sysvec.c optional compat_cloudabi32 amd64/cloudabi64/cloudabi64_sysvec.c optional compat_cloudabi64 amd64/pci/pci_cfgreg.c optional pci cddl/contrib/opensolaris/common/atomic/amd64/opensolaris_atomic.S optional zfs | dtrace compile-with "${ZFS_S}" cddl/dev/dtrace/amd64/dtrace_asm.S optional dtrace compile-with "${DTRACE_S}" cddl/dev/dtrace/amd64/dtrace_subr.c optional dtrace compile-with "${DTRACE_C}" cddl/dev/fbt/x86/fbt_isa.c optional dtrace_fbt | dtraceall compile-with "${FBT_C}" cddl/dev/dtrace/x86/dis_tables.c optional dtrace_fbt | dtraceall compile-with "${DTRACE_C}" cddl/dev/dtrace/x86/instr_size.c optional dtrace_fbt | dtraceall compile-with "${DTRACE_C}" crypto/aesni/aeskeys_amd64.S optional aesni crypto/aesni/aesni.c optional aesni aesni_ghash.o optional aesni \ dependency "$S/crypto/aesni/aesni_ghash.c" \ compile-with "${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc} ${WERROR} ${NO_WCAST_QUAL} ${PROF} -mmmx -msse -msse4 -maes -mpclmul ${.IMPSRC}" \ no-implicit-rule \ clean "aesni_ghash.o" aesni_wrap.o optional aesni \ dependency "$S/crypto/aesni/aesni_wrap.c" \ compile-with "${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc} ${WERROR} ${NO_WCAST_QUAL} ${PROF} -mmmx -msse -msse4 -maes ${.IMPSRC}" \ no-implicit-rule \ clean "aesni_wrap.o" crypto/blowfish/bf_enc.c optional crypto | ipsec | ipsec_support crypto/des/des_enc.c optional crypto | ipsec | \ ipsec_support | netsmb intel_sha1.o optional aesni \ dependency "$S/crypto/aesni/intel_sha1.c" \ compile-with "${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc} ${WERROR} ${PROF} -mmmx -msse -msse4 -msha ${.IMPSRC}" \ no-implicit-rule \ clean "intel_sha1.o" intel_sha256.o optional aesni \ dependency "$S/crypto/aesni/intel_sha256.c" \ compile-with "${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc} ${WERROR} ${PROF} -mmmx -msse -msse4 -msha ${.IMPSRC}" \ no-implicit-rule \ clean "intel_sha256.o" crypto/via/padlock.c optional padlock crypto/via/padlock_cipher.c optional padlock crypto/via/padlock_hash.c optional padlock dev/acpica/acpi_if.m standard dev/acpica/acpi_hpet.c optional acpi dev/acpica/acpi_pci.c optional acpi pci dev/acpica/acpi_pci_link.c optional acpi pci dev/acpica/acpi_pcib.c optional acpi pci dev/acpica/acpi_pcib_acpi.c optional acpi pci dev/acpica/acpi_pcib_pci.c optional acpi pci dev/acpica/acpi_timer.c optional acpi dev/acpi_support/acpi_wmi_if.m standard dev/agp/agp_amd64.c optional agp dev/agp/agp_i810.c optional agp dev/agp/agp_via.c optional agp dev/amdgpio/amdgpio.c optional amdgpio dev/amdsbwd/amdsbwd.c optional amdsbwd dev/amdsmn/amdsmn.c optional amdsmn | amdtemp dev/amdtemp/amdtemp.c optional amdtemp dev/arcmsr/arcmsr.c optional arcmsr pci dev/asmc/asmc.c optional asmc isa dev/atkbdc/atkbd.c optional atkbd atkbdc dev/atkbdc/atkbd_atkbdc.c optional atkbd atkbdc dev/atkbdc/atkbdc.c optional atkbdc dev/atkbdc/atkbdc_isa.c optional atkbdc isa dev/atkbdc/atkbdc_subr.c optional atkbdc dev/atkbdc/psm.c optional psm atkbdc dev/bxe/bxe.c optional bxe pci dev/bxe/bxe_stats.c optional bxe pci dev/bxe/bxe_debug.c optional bxe pci dev/bxe/ecore_sp.c optional bxe pci dev/bxe/bxe_elink.c optional bxe pci dev/bxe/57710_init_values.c optional bxe pci dev/bxe/57711_init_values.c optional bxe pci dev/bxe/57712_init_values.c optional bxe pci dev/coretemp/coretemp.c optional coretemp dev/cpuctl/cpuctl.c optional cpuctl dev/dpms/dpms.c optional dpms # There are no systems with isa slots, so all ed isa entries should go.. dev/ed/if_ed_3c503.c optional ed isa ed_3c503 dev/ed/if_ed_isa.c optional ed isa dev/ed/if_ed_wd80x3.c optional ed isa dev/ed/if_ed_hpp.c optional ed isa ed_hpp dev/ed/if_ed_sic.c optional ed isa ed_sic dev/fb/fb.c optional fb | vga dev/fb/s3_pci.c optional s3pci dev/fb/vesa.c optional vga vesa dev/fb/vga.c optional vga dev/ichwd/ichwd.c optional ichwd dev/if_ndis/if_ndis.c optional ndis dev/if_ndis/if_ndis_pccard.c optional ndis pccard dev/if_ndis/if_ndis_pci.c optional ndis cardbus | ndis pci dev/if_ndis/if_ndis_usb.c optional ndis usb dev/imcsmb/imcsmb.c optional imcsmb dev/imcsmb/imcsmb_pci.c optional imcsmb pci dev/intel/spi.c optional intelspi dev/io/iodev.c optional io dev/ioat/ioat.c optional ioat pci dev/ioat/ioat_test.c optional ioat pci dev/ipmi/ipmi.c optional ipmi dev/ipmi/ipmi_acpi.c optional ipmi acpi dev/ipmi/ipmi_isa.c optional ipmi isa dev/ipmi/ipmi_kcs.c optional ipmi dev/ipmi/ipmi_smic.c optional ipmi dev/ipmi/ipmi_smbus.c optional ipmi smbus dev/ipmi/ipmi_smbios.c optional ipmi dev/ipmi/ipmi_ssif.c optional ipmi smbus dev/ipmi/ipmi_pci.c optional ipmi pci dev/ipmi/ipmi_linux.c optional ipmi compat_linux32 dev/ixl/if_ixl.c optional ixl pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/ixl_pf_main.c optional ixl pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/ixl_pf_qmgr.c optional ixl pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/ixl_pf_iov.c optional ixl pci pci_iov \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/ixl_pf_i2c.c optional ixl pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/if_iavf.c optional iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/iavf_vc.c optional iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/ixl_txrx.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_osdep.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_lan_hmc.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_hmc.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_common.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_nvm.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_adminq.c optional ixl pci | iavf pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/ixl/i40e_dcb.c optional ixl pci \ compile-with "${NORMAL_C} -I$S/dev/ixl" dev/fdc/fdc.c optional fdc dev/fdc/fdc_acpi.c optional fdc dev/fdc/fdc_isa.c optional fdc isa dev/fdc/fdc_pccard.c optional fdc pccard dev/gpio/bytgpio.c optional bytgpio dev/gpio/chvgpio.c optional chvgpio dev/hpt27xx/hpt27xx_os_bsd.c optional hpt27xx dev/hpt27xx/hpt27xx_osm_bsd.c optional hpt27xx dev/hpt27xx/hpt27xx_config.c optional hpt27xx dev/hptmv/entry.c optional hptmv dev/hptmv/mv.c optional hptmv dev/hptmv/gui_lib.c optional hptmv dev/hptmv/hptproc.c optional hptmv dev/hptmv/ioctl.c optional hptmv dev/hptnr/hptnr_os_bsd.c optional hptnr dev/hptnr/hptnr_osm_bsd.c optional hptnr dev/hptnr/hptnr_config.c optional hptnr dev/hptrr/hptrr_os_bsd.c optional hptrr dev/hptrr/hptrr_osm_bsd.c optional hptrr dev/hptrr/hptrr_config.c optional hptrr dev/hwpmc/hwpmc_amd.c optional hwpmc dev/hwpmc/hwpmc_intel.c optional hwpmc dev/hwpmc/hwpmc_core.c optional hwpmc dev/hwpmc/hwpmc_uncore.c optional hwpmc dev/hwpmc/hwpmc_tsc.c optional hwpmc dev/hwpmc/hwpmc_x86.c optional hwpmc dev/hyperv/input/hv_kbd.c optional hyperv dev/hyperv/input/hv_kbdc.c optional hyperv dev/hyperv/pcib/vmbus_pcib.c optional hyperv pci dev/hyperv/netvsc/hn_nvs.c optional hyperv dev/hyperv/netvsc/hn_rndis.c optional hyperv dev/hyperv/netvsc/if_hn.c optional hyperv dev/hyperv/storvsc/hv_storvsc_drv_freebsd.c optional hyperv dev/hyperv/utilities/hv_kvp.c optional hyperv dev/hyperv/utilities/hv_snapshot.c optional hyperv dev/hyperv/utilities/vmbus_heartbeat.c optional hyperv dev/hyperv/utilities/vmbus_ic.c optional hyperv dev/hyperv/utilities/vmbus_shutdown.c optional hyperv dev/hyperv/utilities/vmbus_timesync.c optional hyperv dev/hyperv/vmbus/hyperv.c optional hyperv dev/hyperv/vmbus/hyperv_busdma.c optional hyperv dev/hyperv/vmbus/vmbus.c optional hyperv pci dev/hyperv/vmbus/vmbus_br.c optional hyperv dev/hyperv/vmbus/vmbus_chan.c optional hyperv dev/hyperv/vmbus/vmbus_et.c optional hyperv dev/hyperv/vmbus/vmbus_if.m optional hyperv dev/hyperv/vmbus/vmbus_res.c optional hyperv dev/hyperv/vmbus/vmbus_xact.c optional hyperv dev/hyperv/vmbus/amd64/hyperv_machdep.c optional hyperv dev/hyperv/vmbus/amd64/vmbus_vector.S optional hyperv dev/nctgpio/nctgpio.c optional nctgpio dev/nfe/if_nfe.c optional nfe pci dev/ntb/if_ntb/if_ntb.c optional if_ntb dev/ntb/ntb_transport.c optional ntb_transport | if_ntb dev/ntb/ntb.c optional ntb | ntb_transport | if_ntb | ntb_hw_intel | ntb_hw_plx | ntb_hw dev/ntb/ntb_if.m optional ntb | ntb_transport | if_ntb | ntb_hw_intel | ntb_hw_plx | ntb_hw dev/ntb/ntb_hw/ntb_hw_intel.c optional ntb_hw_intel | ntb_hw dev/ntb/ntb_hw/ntb_hw_plx.c optional ntb_hw_plx | ntb_hw dev/nvd/nvd.c optional nvd nvme dev/nvme/nvme.c optional nvme dev/nvme/nvme_ctrlr.c optional nvme dev/nvme/nvme_ctrlr_cmd.c optional nvme dev/nvme/nvme_ns.c optional nvme dev/nvme/nvme_ns_cmd.c optional nvme dev/nvme/nvme_qpair.c optional nvme dev/nvme/nvme_sim.c optional nvme scbus dev/nvme/nvme_sysctl.c optional nvme dev/nvme/nvme_test.c optional nvme dev/nvme/nvme_util.c optional nvme dev/nvram/nvram.c optional nvram isa dev/random/ivy.c optional rdrand_rng dev/random/nehemiah.c optional padlock_rng dev/qlxge/qls_dbg.c optional qlxge pci dev/qlxge/qls_dump.c optional qlxge pci dev/qlxge/qls_hw.c optional qlxge pci dev/qlxge/qls_ioctl.c optional qlxge pci dev/qlxge/qls_isr.c optional qlxge pci dev/qlxge/qls_os.c optional qlxge pci dev/qlxgb/qla_dbg.c optional qlxgb pci dev/qlxgb/qla_hw.c optional qlxgb pci dev/qlxgb/qla_ioctl.c optional qlxgb pci dev/qlxgb/qla_isr.c optional qlxgb pci dev/qlxgb/qla_misc.c optional qlxgb pci dev/qlxgb/qla_os.c optional qlxgb pci dev/qlxgbe/ql_dbg.c optional qlxgbe pci dev/qlxgbe/ql_hw.c optional qlxgbe pci dev/qlxgbe/ql_ioctl.c optional qlxgbe pci dev/qlxgbe/ql_isr.c optional qlxgbe pci dev/qlxgbe/ql_misc.c optional qlxgbe pci dev/qlxgbe/ql_os.c optional qlxgbe pci dev/qlxgbe/ql_reset.c optional qlxgbe pci dev/qlnx/qlnxe/ecore_cxt.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_dbg_fw_funcs.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_dcbx.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_dev.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_hw.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_init_fw_funcs.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_init_ops.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_int.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_l2.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_mcp.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_sp_commands.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/ecore_spq.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/qlnx_ioctl.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/qlnx/qlnxe/qlnx_os.c optional qlnxe pci \ compile-with "${LINUXKPI_C}" dev/sfxge/common/ef10_ev.c optional sfxge pci dev/sfxge/common/ef10_filter.c optional sfxge pci dev/sfxge/common/ef10_intr.c optional sfxge pci dev/sfxge/common/ef10_mac.c optional sfxge pci dev/sfxge/common/ef10_mcdi.c optional sfxge pci dev/sfxge/common/ef10_nic.c optional sfxge pci dev/sfxge/common/ef10_nvram.c optional sfxge pci dev/sfxge/common/ef10_phy.c optional sfxge pci dev/sfxge/common/ef10_rx.c optional sfxge pci dev/sfxge/common/ef10_tx.c optional sfxge pci dev/sfxge/common/ef10_vpd.c optional sfxge pci dev/sfxge/common/efx_bootcfg.c optional sfxge pci dev/sfxge/common/efx_crc32.c optional sfxge pci dev/sfxge/common/efx_ev.c optional sfxge pci dev/sfxge/common/efx_filter.c optional sfxge pci dev/sfxge/common/efx_hash.c optional sfxge pci dev/sfxge/common/efx_intr.c optional sfxge pci dev/sfxge/common/efx_lic.c optional sfxge pci dev/sfxge/common/efx_mac.c optional sfxge pci dev/sfxge/common/efx_mcdi.c optional sfxge pci dev/sfxge/common/efx_mon.c optional sfxge pci dev/sfxge/common/efx_nic.c optional sfxge pci dev/sfxge/common/efx_nvram.c optional sfxge pci dev/sfxge/common/efx_phy.c optional sfxge pci dev/sfxge/common/efx_port.c optional sfxge pci dev/sfxge/common/efx_rx.c optional sfxge pci dev/sfxge/common/efx_sram.c optional sfxge pci +dev/sfxge/common/efx_tunnel.c optional sfxge pci dev/sfxge/common/efx_tx.c optional sfxge pci dev/sfxge/common/efx_vpd.c optional sfxge pci dev/sfxge/common/hunt_nic.c optional sfxge pci dev/sfxge/common/mcdi_mon.c optional sfxge pci dev/sfxge/common/medford_nic.c optional sfxge pci dev/sfxge/common/siena_mac.c optional sfxge pci dev/sfxge/common/siena_mcdi.c optional sfxge pci dev/sfxge/common/siena_nic.c optional sfxge pci dev/sfxge/common/siena_nvram.c optional sfxge pci dev/sfxge/common/siena_phy.c optional sfxge pci dev/sfxge/common/siena_sram.c optional sfxge pci dev/sfxge/common/siena_vpd.c optional sfxge pci dev/sfxge/sfxge.c optional sfxge pci dev/sfxge/sfxge_dma.c optional sfxge pci dev/sfxge/sfxge_ev.c optional sfxge pci dev/sfxge/sfxge_intr.c optional sfxge pci dev/sfxge/sfxge_mcdi.c optional sfxge pci dev/sfxge/sfxge_nvram.c optional sfxge pci dev/sfxge/sfxge_port.c optional sfxge pci dev/sfxge/sfxge_rx.c optional sfxge pci dev/sfxge/sfxge_tx.c optional sfxge pci dev/sio/sio.c optional sio dev/sio/sio_isa.c optional sio isa dev/sio/sio_pccard.c optional sio pccard dev/sio/sio_pci.c optional sio pci dev/sio/sio_puc.c optional sio puc dev/smartpqi/smartpqi_cam.c optional smartpqi dev/smartpqi/smartpqi_cmd.c optional smartpqi dev/smartpqi/smartpqi_discovery.c optional smartpqi dev/smartpqi/smartpqi_event.c optional smartpqi dev/smartpqi/smartpqi_helper.c optional smartpqi dev/smartpqi/smartpqi_init.c optional smartpqi dev/smartpqi/smartpqi_intr.c optional smartpqi dev/smartpqi/smartpqi_ioctl.c optional smartpqi dev/smartpqi/smartpqi_main.c optional smartpqi dev/smartpqi/smartpqi_mem.c optional smartpqi dev/smartpqi/smartpqi_misc.c optional smartpqi dev/smartpqi/smartpqi_queue.c optional smartpqi dev/smartpqi/smartpqi_request.c optional smartpqi dev/smartpqi/smartpqi_response.c optional smartpqi dev/smartpqi/smartpqi_sis.c optional smartpqi dev/smartpqi/smartpqi_tag.c optional smartpqi dev/speaker/spkr.c optional speaker dev/syscons/apm/apm_saver.c optional apm_saver apm dev/syscons/scterm-teken.c optional sc dev/syscons/scvesactl.c optional sc vga vesa dev/syscons/scvgarndr.c optional sc vga dev/syscons/scvtb.c optional sc dev/tpm/tpm.c optional tpm dev/tpm/tpm_acpi.c optional tpm acpi dev/tpm/tpm_isa.c optional tpm isa dev/uart/uart_cpu_x86.c optional uart dev/viawd/viawd.c optional viawd dev/vmware/vmxnet3/if_vmx.c optional vmx dev/vmware/vmci/vmci.c optional vmci dev/vmware/vmci/vmci_datagram.c optional vmci dev/vmware/vmci/vmci_doorbell.c optional vmci dev/vmware/vmci/vmci_driver.c optional vmci dev/vmware/vmci/vmci_event.c optional vmci dev/vmware/vmci/vmci_hashtable.c optional vmci dev/vmware/vmci/vmci_kernel_if.c optional vmci dev/vmware/vmci/vmci_qpair.c optional vmci dev/vmware/vmci/vmci_queue_pair.c optional vmci dev/vmware/vmci/vmci_resource.c optional vmci dev/wbwd/wbwd.c optional wbwd dev/xen/pci/xen_acpi_pci.c optional xenhvm dev/xen/pci/xen_pci.c optional xenhvm dev/isci/isci.c optional isci dev/isci/isci_controller.c optional isci dev/isci/isci_domain.c optional isci dev/isci/isci_interrupt.c optional isci dev/isci/isci_io_request.c optional isci dev/isci/isci_logger.c optional isci dev/isci/isci_oem_parameters.c optional isci dev/isci/isci_remote_device.c optional isci dev/isci/isci_sysctl.c optional isci dev/isci/isci_task_request.c optional isci dev/isci/isci_timer.c optional isci dev/isci/scil/sati.c optional isci dev/isci/scil/sati_abort_task_set.c optional isci dev/isci/scil/sati_atapi.c optional isci dev/isci/scil/sati_device.c optional isci dev/isci/scil/sati_inquiry.c optional isci dev/isci/scil/sati_log_sense.c optional isci dev/isci/scil/sati_lun_reset.c optional isci dev/isci/scil/sati_mode_pages.c optional isci dev/isci/scil/sati_mode_select.c optional isci dev/isci/scil/sati_mode_sense.c optional isci dev/isci/scil/sati_mode_sense_10.c optional isci dev/isci/scil/sati_mode_sense_6.c optional isci dev/isci/scil/sati_move.c optional isci dev/isci/scil/sati_passthrough.c optional isci dev/isci/scil/sati_read.c optional isci dev/isci/scil/sati_read_buffer.c optional isci dev/isci/scil/sati_read_capacity.c optional isci dev/isci/scil/sati_reassign_blocks.c optional isci dev/isci/scil/sati_report_luns.c optional isci dev/isci/scil/sati_request_sense.c optional isci dev/isci/scil/sati_start_stop_unit.c optional isci dev/isci/scil/sati_synchronize_cache.c optional isci dev/isci/scil/sati_test_unit_ready.c optional isci dev/isci/scil/sati_unmap.c optional isci dev/isci/scil/sati_util.c optional isci dev/isci/scil/sati_verify.c optional isci dev/isci/scil/sati_write.c optional isci dev/isci/scil/sati_write_and_verify.c optional isci dev/isci/scil/sati_write_buffer.c optional isci dev/isci/scil/sati_write_long.c optional isci dev/isci/scil/sci_abstract_list.c optional isci dev/isci/scil/sci_base_controller.c optional isci dev/isci/scil/sci_base_domain.c optional isci dev/isci/scil/sci_base_iterator.c optional isci dev/isci/scil/sci_base_library.c optional isci dev/isci/scil/sci_base_logger.c optional isci dev/isci/scil/sci_base_memory_descriptor_list.c optional isci dev/isci/scil/sci_base_memory_descriptor_list_decorator.c optional isci dev/isci/scil/sci_base_object.c optional isci dev/isci/scil/sci_base_observer.c optional isci dev/isci/scil/sci_base_phy.c optional isci dev/isci/scil/sci_base_port.c optional isci dev/isci/scil/sci_base_remote_device.c optional isci dev/isci/scil/sci_base_request.c optional isci dev/isci/scil/sci_base_state_machine.c optional isci dev/isci/scil/sci_base_state_machine_logger.c optional isci dev/isci/scil/sci_base_state_machine_observer.c optional isci dev/isci/scil/sci_base_subject.c optional isci dev/isci/scil/sci_util.c optional isci dev/isci/scil/scic_sds_controller.c optional isci dev/isci/scil/scic_sds_library.c optional isci dev/isci/scil/scic_sds_pci.c optional isci dev/isci/scil/scic_sds_phy.c optional isci dev/isci/scil/scic_sds_port.c optional isci dev/isci/scil/scic_sds_port_configuration_agent.c optional isci dev/isci/scil/scic_sds_remote_device.c optional isci dev/isci/scil/scic_sds_remote_node_context.c optional isci dev/isci/scil/scic_sds_remote_node_table.c optional isci dev/isci/scil/scic_sds_request.c optional isci dev/isci/scil/scic_sds_sgpio.c optional isci dev/isci/scil/scic_sds_smp_remote_device.c optional isci dev/isci/scil/scic_sds_smp_request.c optional isci dev/isci/scil/scic_sds_ssp_request.c optional isci dev/isci/scil/scic_sds_stp_packet_request.c optional isci dev/isci/scil/scic_sds_stp_remote_device.c optional isci dev/isci/scil/scic_sds_stp_request.c optional isci dev/isci/scil/scic_sds_unsolicited_frame_control.c optional isci dev/isci/scil/scif_sas_controller.c optional isci dev/isci/scil/scif_sas_controller_state_handlers.c optional isci dev/isci/scil/scif_sas_controller_states.c optional isci dev/isci/scil/scif_sas_domain.c optional isci dev/isci/scil/scif_sas_domain_state_handlers.c optional isci dev/isci/scil/scif_sas_domain_states.c optional isci dev/isci/scil/scif_sas_high_priority_request_queue.c optional isci dev/isci/scil/scif_sas_internal_io_request.c optional isci dev/isci/scil/scif_sas_io_request.c optional isci dev/isci/scil/scif_sas_io_request_state_handlers.c optional isci dev/isci/scil/scif_sas_io_request_states.c optional isci dev/isci/scil/scif_sas_library.c optional isci dev/isci/scil/scif_sas_remote_device.c optional isci dev/isci/scil/scif_sas_remote_device_ready_substate_handlers.c optional isci dev/isci/scil/scif_sas_remote_device_ready_substates.c optional isci dev/isci/scil/scif_sas_remote_device_starting_substate_handlers.c optional isci dev/isci/scil/scif_sas_remote_device_starting_substates.c optional isci dev/isci/scil/scif_sas_remote_device_state_handlers.c optional isci dev/isci/scil/scif_sas_remote_device_states.c optional isci dev/isci/scil/scif_sas_request.c optional isci dev/isci/scil/scif_sas_smp_activity_clear_affiliation.c optional isci dev/isci/scil/scif_sas_smp_io_request.c optional isci dev/isci/scil/scif_sas_smp_phy.c optional isci dev/isci/scil/scif_sas_smp_remote_device.c optional isci dev/isci/scil/scif_sas_stp_io_request.c optional isci dev/isci/scil/scif_sas_stp_remote_device.c optional isci dev/isci/scil/scif_sas_stp_task_request.c optional isci dev/isci/scil/scif_sas_task_request.c optional isci dev/isci/scil/scif_sas_task_request_state_handlers.c optional isci dev/isci/scil/scif_sas_task_request_states.c optional isci dev/isci/scil/scif_sas_timer.c optional isci isa/syscons_isa.c optional sc isa/vga_isa.c optional vga kern/kern_clocksource.c standard kern/imgact_aout.c optional compat_aout kern/imgact_gzip.c optional gzip kern/link_elf_obj.c standard libkern/x86/crc32_sse42.c standard # # IA32 binary support # #amd64/ia32/ia32_exception.S optional compat_freebsd32 amd64/ia32/ia32_reg.c optional compat_freebsd32 amd64/ia32/ia32_signal.c optional compat_freebsd32 amd64/ia32/ia32_sigtramp.S optional compat_freebsd32 amd64/ia32/ia32_syscall.c optional compat_freebsd32 amd64/ia32/ia32_misc.c optional compat_freebsd32 compat/ia32/ia32_sysvec.c optional compat_freebsd32 compat/linprocfs/linprocfs.c optional linprocfs compat/linsysfs/linsysfs.c optional linsysfs # # Linux/i386 binary support # amd64/linux32/linux32_dummy.c optional compat_linux32 amd64/linux32/linux32_machdep.c optional compat_linux32 amd64/linux32/linux32_support.s optional compat_linux32 \ dependency "linux32_assym.h" amd64/linux32/linux32_sysent.c optional compat_linux32 amd64/linux32/linux32_sysvec.c optional compat_linux32 compat/linux/linux_emul.c optional compat_linux32 compat/linux/linux_errno.c optional compat_linux32 compat/linux/linux_file.c optional compat_linux32 compat/linux/linux_fork.c optional compat_linux32 compat/linux/linux_futex.c optional compat_linux32 compat/linux/linux_getcwd.c optional compat_linux32 compat/linux/linux_ioctl.c optional compat_linux32 compat/linux/linux_ipc.c optional compat_linux32 compat/linux/linux_mib.c optional compat_linux32 compat/linux/linux_misc.c optional compat_linux32 compat/linux/linux_mmap.c optional compat_linux32 compat/linux/linux_signal.c optional compat_linux32 compat/linux/linux_socket.c optional compat_linux32 compat/linux/linux_stats.c optional compat_linux32 compat/linux/linux_sysctl.c optional compat_linux32 compat/linux/linux_time.c optional compat_linux32 compat/linux/linux_timer.c optional compat_linux32 compat/linux/linux_uid16.c optional compat_linux32 compat/linux/linux_util.c optional compat_linux32 compat/linux/linux_vdso.c optional compat_linux32 compat/linux/linux_common.c optional compat_linux32 compat/linux/linux_event.c optional compat_linux32 compat/linux/linux.c optional compat_linux32 dev/amr/amr_linux.c optional compat_linux32 amr dev/mfi/mfi_linux.c optional compat_linux32 mfi # # Windows NDIS driver support # compat/ndis/kern_ndis.c optional ndisapi pci compat/ndis/kern_windrv.c optional ndisapi pci compat/ndis/subr_hal.c optional ndisapi pci compat/ndis/subr_ndis.c optional ndisapi pci compat/ndis/subr_ntoskrnl.c optional ndisapi pci compat/ndis/subr_pe.c optional ndisapi pci compat/ndis/subr_usbd.c optional ndisapi pci compat/ndis/winx64_wrap.S optional ndisapi pci # # x86 real mode BIOS emulator, required by dpms/pci/vesa # compat/x86bios/x86bios.c optional x86bios | dpms | pci | vesa contrib/x86emu/x86emu.c optional x86bios | dpms | pci | vesa # # bvm console # dev/bvm/bvm_console.c optional bvmconsole dev/bvm/bvm_dbg.c optional bvmdebug # # x86 shared code between IA32 and AMD64 architectures # x86/acpica/OsdEnvironment.c optional acpi x86/acpica/acpi_apm.c optional acpi x86/acpica/acpi_wakeup.c optional acpi x86/acpica/madt.c optional acpi x86/acpica/srat.c optional acpi x86/bios/smbios.c optional smbios x86/bios/vpd.c optional vpd x86/cpufreq/powernow.c optional cpufreq x86/cpufreq/est.c optional cpufreq x86/cpufreq/hwpstate.c optional cpufreq x86/cpufreq/p4tcc.c optional cpufreq x86/iommu/busdma_dmar.c optional acpi acpi_dmar pci x86/iommu/intel_ctx.c optional acpi acpi_dmar pci x86/iommu/intel_drv.c optional acpi acpi_dmar pci x86/iommu/intel_fault.c optional acpi acpi_dmar pci x86/iommu/intel_gas.c optional acpi acpi_dmar pci x86/iommu/intel_idpgtbl.c optional acpi acpi_dmar pci x86/iommu/intel_intrmap.c optional acpi acpi_dmar pci x86/iommu/intel_qi.c optional acpi acpi_dmar pci x86/iommu/intel_quirks.c optional acpi acpi_dmar pci x86/iommu/intel_utils.c optional acpi acpi_dmar pci x86/isa/atpic.c optional atpic isa x86/isa/atrtc.c standard x86/isa/clock.c standard x86/isa/elcr.c optional atpic isa | mptable x86/isa/isa.c standard x86/isa/isa_dma.c standard x86/isa/nmi.c standard x86/isa/orm.c optional isa x86/pci/pci_bus.c optional pci x86/pci/pci_early_quirks.c optional pci x86/pci/qpi.c optional pci x86/x86/autoconf.c standard x86/x86/bus_machdep.c standard x86/x86/busdma_bounce.c standard x86/x86/busdma_machdep.c standard x86/x86/cpu_machdep.c standard x86/x86/dump_machdep.c standard x86/x86/fdt_machdep.c optional fdt x86/x86/identcpu.c standard x86/x86/intr_machdep.c standard x86/x86/io_apic.c standard x86/x86/legacy.c standard x86/x86/local_apic.c standard x86/x86/mca.c standard x86/x86/x86_mem.c optional mem x86/x86/mptable.c optional mptable x86/x86/mptable_pci.c optional mptable pci x86/x86/mp_x86.c optional smp x86/x86/mp_watchdog.c optional mp_watchdog smp x86/x86/msi.c optional pci x86/x86/nexus.c standard x86/x86/pvclock.c standard x86/x86/stack_machdep.c optional ddb | stack x86/x86/tsc.c standard x86/x86/ucode.c standard x86/x86/delay.c standard x86/xen/hvm.c optional xenhvm x86/xen/xen_intr.c optional xenhvm x86/xen/pv.c optional xenhvm x86/xen/pvcpu_enum.c optional xenhvm x86/xen/xen_apic.c optional xenhvm x86/xen/xenpv.c optional xenhvm x86/xen/xen_nexus.c optional xenhvm x86/xen/xen_msi.c optional xenhvm x86/xen/xen_pci_bus.c optional xenhvm Index: head/sys/dev/sfxge/common/ef10_nic.c =================================================================== --- head/sys/dev/sfxge/common/ef10_nic.c (revision 340927) +++ head/sys/dev/sfxge/common/ef10_nic.c (revision 340928) @@ -1,1793 +1,1801 @@ /*- * Copyright (c) 2012-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_MCDI #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #include "ef10_tlv_layout.h" __checkReturn efx_rc_t efx_mcdi_get_port_assignment( __in efx_nic_t *enp, __out uint32_t *portp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN, MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_port_modes( __in efx_nic_t *enp, __out uint32_t *modesp, __out_opt uint32_t *current_modep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN, MC_CMD_GET_PORT_MODES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_MODES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* * Require only Modes and DefaultMode fields, unless the current mode * was requested (CurrentMode field was added for Medford). */ if (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) { rc = EMSGSIZE; goto fail2; } if ((current_modep != NULL) && (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) { rc = EMSGSIZE; goto fail3; } *modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES); if (current_modep != NULL) { *current_modep = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_CURRENT_MODE); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_port_mode_bandwidth( __in uint32_t port_mode, __out uint32_t *bandwidth_mbpsp) { uint32_t bandwidth; efx_rc_t rc; switch (port_mode) { case TLV_PORT_MODE_10G: bandwidth = 10000; break; case TLV_PORT_MODE_10G_10G: bandwidth = 10000 * 2; break; case TLV_PORT_MODE_10G_10G_10G_10G: case TLV_PORT_MODE_10G_10G_10G_10G_Q: case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2: case TLV_PORT_MODE_10G_10G_10G_10G_Q2: bandwidth = 10000 * 4; break; case TLV_PORT_MODE_40G: bandwidth = 40000; break; case TLV_PORT_MODE_40G_40G: bandwidth = 40000 * 2; break; case TLV_PORT_MODE_40G_10G_10G: case TLV_PORT_MODE_10G_10G_40G: bandwidth = 40000 + (10000 * 2); break; default: rc = EINVAL; goto fail1; } *bandwidth_mbpsp = bandwidth; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_alloc( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN, MC_CMD_VADAPTOR_ALLOC_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS, VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED, enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_free( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN, MC_CMD_VADAPTOR_FREE_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_mac_address_pf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_mac_address_vf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX; MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_clock( __in efx_nic_t *enp, __out uint32_t *sys_freqp, __out uint32_t *dpcpu_freqp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN, MC_CMD_GET_CLOCK_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_CLOCK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ); if (*sys_freqp == 0) { rc = EINVAL; goto fail3; } *dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ); if (*dpcpu_freqp == 0) { rc = EINVAL; goto fail4; } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_vector_cfg( __in efx_nic_t *enp, __out_opt uint32_t *vec_basep, __out_opt uint32_t *pf_nvecp, __out_opt uint32_t *vf_nvecp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN, MC_CMD_GET_VECTOR_CFG_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_VECTOR_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (vec_basep != NULL) *vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE); if (pf_nvecp != NULL) *pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF); if (vf_nvecp != NULL) *vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_vis( __in efx_nic_t *enp, __in uint32_t min_vi_count, __in uint32_t max_vi_count, __out uint32_t *vi_basep, __out uint32_t *vi_countp, __out uint32_t *vi_shiftp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN, MC_CMD_ALLOC_VIS_EXT_OUT_LEN)]; efx_rc_t rc; if (vi_countp == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_VIS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN; MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count); MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE); *vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT); /* Report VI_SHIFT if available (always zero for Huntington) */ if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN) *vi_shiftp = 0; else *vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_vis( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0); req.emr_cmd = MC_CMD_FREE_VIS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute_quiet(enp, &req); /* Ignore ELREADY (no allocated VIs, so nothing to free) */ if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_piobuf( __in efx_nic_t *enp, __out efx_piobuf_handle_t *handlep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN, MC_CMD_ALLOC_PIOBUF_OUT_LEN)]; efx_rc_t rc; if (handlep == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_piobuf( __in efx_nic_t *enp, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN, MC_CMD_FREE_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FREE_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_link_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_LINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_LINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle); MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_unlink_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_UNLINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void ef10_nic_alloc_piobufs( __in efx_nic_t *enp, __in uint32_t max_piobuf_count) { efx_piobuf_handle_t *handlep; unsigned int i; EFSYS_ASSERT3U(max_piobuf_count, <=, EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle)); enp->en_arch.ef10.ena_piobuf_count = 0; for (i = 0; i < max_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; if (efx_mcdi_alloc_piobuf(enp, handlep) != 0) goto fail1; enp->en_arch.ef10.ena_pio_alloc_map[i] = 0; enp->en_arch.ef10.ena_piobuf_count++; } return; fail1: for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } static void ef10_nic_free_piobufs( __in efx_nic_t *enp) { efx_piobuf_handle_t *handlep; unsigned int i; for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } /* Sub-allocate a block from a piobuf */ __checkReturn efx_rc_t ef10_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_drv_cfg_t *edcp = &enp->en_drv_cfg; uint32_t blk_per_buf; uint32_t buf, blk; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); EFSYS_ASSERT(bufnump); EFSYS_ASSERT(handlep); EFSYS_ASSERT(blknump); EFSYS_ASSERT(offsetp); EFSYS_ASSERT(sizep); if ((edcp->edc_pio_alloc_size == 0) || (enp->en_arch.ef10.ena_piobuf_count == 0)) { rc = ENOMEM; goto fail1; } blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size; for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) { uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf]; if (~(*map) == 0) continue; EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map))); for (blk = 0; blk < blk_per_buf; blk++) { if ((*map & (1u << blk)) == 0) { *map |= (1u << blk); goto done; } } } rc = ENOMEM; goto fail2; done: *handlep = enp->en_arch.ef10.ena_piobuf_handle[buf]; *bufnump = buf; *blknump = blk; *sizep = edcp->edc_pio_alloc_size; *offsetp = blk * (*sizep); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Free a piobuf sub-allocated block */ __checkReturn efx_rc_t ef10_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum) { uint32_t *map; efx_rc_t rc; if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) || (blknum >= (8 * sizeof (*map)))) { rc = EINVAL; goto fail1; } map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum]; if ((*map & (1u << blknum)) == 0) { rc = ENOENT; goto fail2; } *map &= ~(1u << blknum); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { return (efx_mcdi_link_piobuf(enp, vi_index, handle)); } __checkReturn efx_rc_t ef10_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index) { return (efx_mcdi_unlink_piobuf(enp, vi_index)); } static __checkReturn efx_rc_t ef10_mcdi_get_pf_count( __in efx_nic_t *enp, __out uint32_t *pf_countp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PF_COUNT_IN_LEN, MC_CMD_GET_PF_COUNT_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PF_COUNT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pf_countp = *MCDI_OUT(req, uint8_t, MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST); EFSYS_ASSERT(*pf_countp != 0); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_get_datapath_caps( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t flags; uint32_t flags2; uint32_t tso2nc; efx_rc_t rc; if ((rc = efx_mcdi_get_capabilities(enp, &flags, NULL, NULL, &flags2, &tso2nc)) != 0) goto fail1; if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0) goto fail1; #define CAP_FLAG(flags1, field) \ ((flags1) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN))) #define CAP_FLAG2(flags2, field) \ ((flags2) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN))) /* * Huntington RXDP firmware inserts a 0 or 14 byte prefix. * We only support the 14 byte prefix here. */ if (CAP_FLAG(flags, RX_PREFIX_LEN_14) == 0) { rc = ENOTSUP; goto fail2; } encp->enc_rx_prefix_size = 14; /* Check if the firmware supports TSO */ encp->enc_fw_assisted_tso_enabled = CAP_FLAG(flags, TX_TSO) ? B_TRUE : B_FALSE; /* Check if the firmware supports FATSOv2 */ encp->enc_fw_assisted_tso_v2_enabled = CAP_FLAG2(flags2, TX_TSO_V2) ? B_TRUE : B_FALSE; /* Get the number of TSO contexts (FATSOv2) */ encp->enc_fw_assisted_tso_v2_n_contexts = CAP_FLAG2(flags2, TX_TSO_V2) ? tso2nc : 0; /* Check if the firmware has vadapter/vport/vswitch support */ encp->enc_datapath_cap_evb = CAP_FLAG(flags, EVB) ? B_TRUE : B_FALSE; /* Check if the firmware supports VLAN insertion */ encp->enc_hw_tx_insert_vlan_enabled = CAP_FLAG(flags, TX_VLAN_INSERTION) ? B_TRUE : B_FALSE; /* Check if the firmware supports RX event batching */ encp->enc_rx_batching_enabled = CAP_FLAG(flags, RX_BATCHING) ? B_TRUE : B_FALSE; /* * Even if batching isn't reported as supported, we may still get * batched events. */ encp->enc_rx_batch_max = 16; /* Check if the firmware supports disabling scatter on RXQs */ encp->enc_rx_disable_scatter_supported = CAP_FLAG(flags, RX_DISABLE_SCATTER) ? B_TRUE : B_FALSE; /* Check if the firmware supports packed stream mode */ encp->enc_rx_packed_stream_supported = CAP_FLAG(flags, RX_PACKED_STREAM) ? B_TRUE : B_FALSE; /* * Check if the firmware supports configurable buffer sizes * for packed stream mode (otherwise buffer size is 1Mbyte) */ encp->enc_rx_var_packed_stream_supported = CAP_FLAG(flags, RX_PACKED_STREAM_VAR_BUFFERS) ? B_TRUE : B_FALSE; /* Check if the firmware supports set mac with running filters */ encp->enc_allow_set_mac_with_installed_filters = CAP_FLAG(flags, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) ? B_TRUE : B_FALSE; /* * Check if firmware supports the extended MC_CMD_SET_MAC, which allows * specifying which parameters to configure. */ encp->enc_enhanced_set_mac_supported = CAP_FLAG(flags, SET_MAC_ENHANCED) ? B_TRUE : B_FALSE; /* * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows * us to let the firmware choose the settings to use on an EVQ. */ encp->enc_init_evq_v2_supported = CAP_FLAG2(flags2, INIT_EVQ_V2) ? B_TRUE : B_FALSE; /* * Check if firmware-verified NVRAM updates must be used. * * The firmware trusted installer requires all NVRAM updates to use * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update) * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated * partition and report the result). */ encp->enc_nvram_update_verify_result_supported = CAP_FLAG2(flags2, NVRAM_UPDATE_REPORT_VERIFY_RESULT) ? B_TRUE : B_FALSE; /* * Check if firmware provides packet memory and Rx datapath * counters. */ encp->enc_pm_and_rxdp_counters = CAP_FLAG(flags, PM_AND_RXDP_COUNTERS) ? B_TRUE : B_FALSE; /* * Check if the 40G MAC hardware is capable of reporting * statistics for Tx size bins. */ encp->enc_mac_stats_40g_tx_size_bins = CAP_FLAG2(flags2, MAC_STATS_40G_TX_SIZE_BINS) ? B_TRUE : B_FALSE; /* * Check if firmware supports VXLAN and NVGRE tunnels. * The capability indicates Geneve protocol support as well. */ - if (CAP_FLAG(flags, VXLAN_NVGRE)) + if (CAP_FLAG(flags, VXLAN_NVGRE)) { encp->enc_tunnel_encapsulations_supported = (1u << EFX_TUNNEL_PROTOCOL_VXLAN) | (1u << EFX_TUNNEL_PROTOCOL_GENEVE) | (1u << EFX_TUNNEL_PROTOCOL_NVGRE); + + EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES == + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); + encp->enc_tunnel_config_udp_entries_max = + EFX_TUNNEL_MAXNENTRIES; + } else { + encp->enc_tunnel_config_udp_entries_max = 0; + } #undef CAP_FLAG #undef CAP_FLAG2 return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #define EF10_LEGACY_PF_PRIVILEGE_MASK \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS) #define EF10_LEGACY_VF_PRIVILEGE_MASK 0 __checkReturn efx_rc_t ef10_get_privilege_mask( __in efx_nic_t *enp, __out uint32_t *maskp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t mask; efx_rc_t rc; if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf, &mask)) != 0) { if (rc != ENOTSUP) goto fail1; /* Fallback for old firmware without privilege mask support */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { /* Assume PF has admin privilege */ mask = EF10_LEGACY_PF_PRIVILEGE_MASK; } else { /* VF is always unprivileged by default */ mask = EF10_LEGACY_VF_PRIVILEGE_MASK; } } *maskp = mask; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Table of mapping schemes from port number to the number of the external * connector on the board. The external numbering does not distinguish * off-board separated outputs such as from multi-headed cables. * * The count of adjacent port numbers that map to each external port * and the offset in the numbering, is determined by the chip family and * current port mode. * * For the Huntington family, the current port mode cannot be discovered, * so the mapping used is instead the last match in the table to the full * set of port modes to which the NIC can be configured. Therefore the * ordering of entries in the the mapping table is significant. */ static struct { efx_family_t family; uint32_t modes_mask; int32_t count; int32_t offset; } __ef10_external_port_mappings[] = { /* Supported modes with 1 output per external port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_10G) | (1 << TLV_PORT_MODE_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_10G_10G), 1, 1 }, { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_10G) | (1 << TLV_PORT_MODE_10G_10G), 1, 1 }, /* Supported modes with 2 outputs per external port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_40G) | (1 << TLV_PORT_MODE_40G_40G) | (1 << TLV_PORT_MODE_40G_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_40G), 2, 1 }, { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_40G) | (1 << TLV_PORT_MODE_40G_40G) | (1 << TLV_PORT_MODE_40G_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_40G) | (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2), 2, 1 }, /* Supported modes with 4 outputs per external port */ { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q) | (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1), 4, 1, }, { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q2), 4, 2 }, }; __checkReturn efx_rc_t ef10_external_port_mapping( __in efx_nic_t *enp, __in uint32_t port, __out uint8_t *external_portp) { efx_rc_t rc; int i; uint32_t port_modes; uint32_t matches; uint32_t current; int32_t count = 1; /* Default 1-1 mapping */ int32_t offset = 1; /* Default starting external port number */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, ¤t)) != 0) { /* * No current port mode information * - infer mapping from available modes */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, NULL)) != 0) { /* * No port mode information available * - use default mapping */ goto out; } } else { /* Only need to scan the current mode */ port_modes = 1 << current; } /* * Infer the internal port -> external port mapping from * the possible port modes for this NIC. */ for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) { if (__ef10_external_port_mappings[i].family != enp->en_family) continue; matches = (__ef10_external_port_mappings[i].modes_mask & port_modes); if (matches != 0) { count = __ef10_external_port_mappings[i].count; offset = __ef10_external_port_mappings[i].offset; port_modes &= ~matches; } } if (port_modes != 0) { /* Some advertised modes are not supported */ rc = ENOTSUP; goto fail1; } out: /* * Scale as required by last matched mode and then convert to * correctly offset numbering */ *external_portp = (uint8_t)((port / count) + offset); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_probe( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* Read and clear any assertion state */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; /* Exit the assertion handler */ if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) if (rc != EACCES) goto fail2; if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0) goto fail3; if ((rc = enop->eno_board_cfg(enp)) != 0) if (rc != EACCES) goto fail4; /* * Set default driver config limits (based on board config). * * FIXME: For now allocate a fixed number of VIs which is likely to be * sufficient and small enough to allow multiple functions on the same * port. */ edcp->edc_min_vi_count = edcp->edc_max_vi_count = MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit)); /* The client driver must configure and enable PIO buffer support */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0) goto fail5; #endif #if EFSYS_OPT_LOOPBACK if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0) goto fail6; #endif #if EFSYS_OPT_MON_STATS if ((rc = mcdi_mon_cfg_build(enp)) != 0) { /* Unprivileged functions do not have access to sensors */ if (rc != EACCES) goto fail7; } #endif encp->enc_features = enp->en_features; return (0); #if EFSYS_OPT_MON_STATS fail7: EFSYS_PROBE(fail7); #endif #if EFSYS_OPT_LOOPBACK fail6: EFSYS_PROBE(fail6); #endif #if EFSYS_OPT_MAC_STATS fail5: EFSYS_PROBE(fail5); #endif fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_evq_count, max_evq_count; uint32_t min_rxq_count, max_rxq_count; uint32_t min_txq_count, max_txq_count; efx_rc_t rc; if (edlp == NULL) { rc = EINVAL; goto fail1; } /* Get minimum required and maximum usable VI limits */ min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit); min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit); min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit); edcp->edc_min_vi_count = MAX(min_evq_count, MAX(min_rxq_count, min_txq_count)); max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit); max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit); max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit); edcp->edc_max_vi_count = MAX(max_evq_count, MAX(max_rxq_count, max_txq_count)); /* * Check limits for sub-allocated piobuf blocks. * PIO is optional, so don't fail if the limits are incorrect. */ if ((encp->enc_piobuf_size == 0) || (encp->enc_piobuf_limit == 0) || (edlp->edl_min_pio_alloc_size == 0) || (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) { /* Disable PIO */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; } else { uint32_t blk_size, blk_count, blks_per_piobuf; blk_size = MAX(edlp->edl_min_pio_alloc_size, encp->enc_piobuf_min_alloc_size); blks_per_piobuf = encp->enc_piobuf_size / blk_size; EFSYS_ASSERT3U(blks_per_piobuf, <=, 32); blk_count = (encp->enc_piobuf_limit * blks_per_piobuf); /* A zero max pio alloc count means unlimited */ if ((edlp->edl_max_pio_alloc_count > 0) && (edlp->edl_max_pio_alloc_count < blk_count)) { blk_count = edlp->edl_max_pio_alloc_count; } edcp->edc_pio_alloc_size = blk_size; edcp->edc_max_piobuf_count = (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN, MC_CMD_ENTITY_RESET_OUT_LEN)]; efx_rc_t rc; /* ef10_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail2; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ENTITY_RESET; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN; MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG, ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } /* Clear RX/TX DMA queue errors */ enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_init( __in efx_nic_t *enp) { efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_vi_count, max_vi_count; uint32_t vi_count, vi_base, vi_shift; uint32_t i; uint32_t retry; uint32_t delay_us; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* Enable reporting of some events (e.g. link change) */ if ((rc = efx_mcdi_log_ctrl(enp)) != 0) goto fail1; /* Allocate (optional) on-chip PIO buffers */ ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count); /* * For best performance, PIO writes should use a write-combined * (WC) memory mapping. Using a separate WC mapping for the PIO * aperture of each VI would be a burden to drivers (and not * possible if the host page size is >4Kbyte). * * To avoid this we use a single uncached (UC) mapping for VI * register access, and a single WC mapping for extra VIs used * for PIO writes. * * Each piobuf must be linked to a VI in the WC mapping, and to * each VI that is using a sub-allocated block from the piobuf. */ min_vi_count = edcp->edc_min_vi_count; max_vi_count = edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count; /* Ensure that the previously attached driver's VIs are freed */ if ((rc = efx_mcdi_free_vis(enp)) != 0) goto fail2; /* * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this * fails then retrying the request for fewer VI resources may succeed. */ vi_count = 0; if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count, &vi_base, &vi_count, &vi_shift)) != 0) goto fail3; EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count); if (vi_count < min_vi_count) { rc = ENOMEM; goto fail4; } enp->en_arch.ef10.ena_vi_base = vi_base; enp->en_arch.ef10.ena_vi_count = vi_count; enp->en_arch.ef10.ena_vi_shift = vi_shift; if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) { /* Not enough extra VIs to map piobufs */ ef10_nic_free_piobufs(enp); } enp->en_arch.ef10.ena_pio_write_vi_base = vi_count - enp->en_arch.ef10.ena_piobuf_count; /* Save UC memory mapping details */ enp->en_arch.ef10.ena_uc_mem_map_offset = 0; if (enp->en_arch.ef10.ena_piobuf_count > 0) { enp->en_arch.ef10.ena_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_pio_write_vi_base); } else { enp->en_arch.ef10.ena_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_vi_count); } /* Save WC memory mapping details */ enp->en_arch.ef10.ena_wc_mem_map_offset = enp->en_arch.ef10.ena_uc_mem_map_offset + enp->en_arch.ef10.ena_uc_mem_map_size; enp->en_arch.ef10.ena_wc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_piobuf_count); /* Link piobufs to extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_link_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i, enp->en_arch.ef10.ena_piobuf_handle[i]); if (rc != 0) break; } } /* * Allocate a vAdaptor attached to our upstream vPort/pPort. * * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF * driver has yet to bring up the EVB port. See bug 56147. In this case, * retry the request several times after waiting a while. The wait time * between retries starts small (10ms) and exponentially increases. * Total wait time is a little over two seconds. Retry logic in the * client driver may mean this whole loop is repeated if it continues to * fail. */ retry = 0; delay_us = 10000; while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) || (rc != ENOENT)) { /* * Do not retry alloc for PF, or for other errors on * a VF. */ goto fail5; } /* VF startup before PF is ready. Retry allocation. */ if (retry > 5) { /* Too many attempts */ rc = EINVAL; goto fail6; } EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry); EFSYS_SLEEP(delay_us); retry++; if (delay_us < 500000) delay_us <<= 2; } enp->en_vport_id = EVB_PORT_ID_ASSIGNED; enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2; return (0); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); ef10_nic_free_piobufs(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp) { EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* * Report VIs that the client driver can use. * Do not include VIs used for PIO buffer writes. */ *vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base; return (0); } __checkReturn efx_rc_t ef10_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep) { efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* * TODO: Specify host memory mapping alignment and granularity * in efx_drv_limits_t so that they can be taken into account * when allocating extra VIs for PIO writes. */ switch (region) { case EFX_REGION_VI: /* UC mapped memory BAR region for VI registers */ *offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_uc_mem_map_size; break; case EFX_REGION_PIO_WRITE_VI: /* WC mapped memory BAR region for piobuf writes */ *offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_wc_mem_map_size; break; default: rc = EINVAL; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_nic_fini( __in efx_nic_t *enp) { uint32_t i; efx_rc_t rc; (void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id); enp->en_vport_id = 0; /* Unlink piobufs from extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_unlink_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i); if (rc != 0) break; } } ef10_nic_free_piobufs(enp); (void) efx_mcdi_free_vis(enp); enp->en_arch.ef10.ena_vi_count = 0; } void ef10_nic_unprobe( __in efx_nic_t *enp) { #if EFSYS_OPT_MON_STATS mcdi_mon_cfg_free(enp); #endif /* EFSYS_OPT_MON_STATS */ (void) efx_mcdi_drv_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t ef10_nic_register_test( __in efx_nic_t *enp) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(enp)) _NOTE(CONSTANTCONDITION) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/efsys.h =================================================================== --- head/sys/dev/sfxge/common/efsys.h (revision 340927) +++ head/sys/dev/sfxge/common/efsys.h (revision 340928) @@ -1,1205 +1,1207 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010-2016 Solarflare Communications Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFSYS_H #define _SYS_EFSYS_H #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #include #include #include #include #include #include #define EFSYS_HAS_UINT64 1 #if defined(__x86_64__) #define EFSYS_USE_UINT64 1 #else #define EFSYS_USE_UINT64 0 #endif #define EFSYS_HAS_SSE2_M128 0 #if _BYTE_ORDER == _BIG_ENDIAN #define EFSYS_IS_BIG_ENDIAN 1 #define EFSYS_IS_LITTLE_ENDIAN 0 #elif _BYTE_ORDER == _LITTLE_ENDIAN #define EFSYS_IS_BIG_ENDIAN 0 #define EFSYS_IS_LITTLE_ENDIAN 1 #endif #include "efx_types.h" /* Common code requires this */ #if __FreeBSD_version < 800068 #define memmove(d, s, l) bcopy(s, d, l) #endif /* FreeBSD equivalents of Solaris things */ #ifndef _NOTE #define _NOTE(s) #endif #ifndef B_FALSE #define B_FALSE FALSE #endif #ifndef B_TRUE #define B_TRUE TRUE #endif #ifndef IS_P2ALIGNED #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) #endif #ifndef P2ROUNDUP #define P2ROUNDUP(x, align) (-(-(x) & -(align))) #endif #ifndef P2ALIGN #define P2ALIGN(_x, _a) ((_x) & -(_a)) #endif #ifndef IS2P #define ISP2(x) (((x) & ((x) - 1)) == 0) #endif #if defined(__x86_64__) && __FreeBSD_version >= 1000000 #define SFXGE_USE_BUS_SPACE_8 1 #if !defined(bus_space_read_stream_8) #define bus_space_read_stream_8(t, h, o) \ bus_space_read_8((t), (h), (o)) #define bus_space_write_stream_8(t, h, o, v) \ bus_space_write_8((t), (h), (o), (v)) #endif #endif #define ENOTACTIVE EINVAL /* Memory type to use on FreeBSD */ MALLOC_DECLARE(M_SFXGE); /* Machine dependend prefetch wrappers */ #if defined(__i386__) || defined(__amd64__) static __inline void prefetch_read_many(void *addr) { __asm__( "prefetcht0 (%0)" : : "r" (addr)); } static __inline void prefetch_read_once(void *addr) { __asm__( "prefetchnta (%0)" : : "r" (addr)); } #elif defined(__sparc64__) static __inline void prefetch_read_many(void *addr) { __asm__( "prefetch [%0], 0" : : "r" (addr)); } static __inline void prefetch_read_once(void *addr) { __asm__( "prefetch [%0], 1" : : "r" (addr)); } #else static __inline void prefetch_read_many(void *addr) { } static __inline void prefetch_read_once(void *addr) { } #endif #if defined(__i386__) || defined(__amd64__) #include #include #endif static __inline void sfxge_map_mbuf_fast(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf *m, bus_dma_segment_t *seg) { #if defined(__i386__) || defined(__amd64__) seg->ds_addr = pmap_kextract(mtod(m, vm_offset_t)); seg->ds_len = m->m_len; #else int nsegstmp; bus_dmamap_load_mbuf_sg(tag, map, m, seg, &nsegstmp, 0); #endif } /* Modifiers used for Windows builds */ #define __in #define __in_opt #define __in_ecount(_n) #define __in_ecount_opt(_n) #define __in_bcount(_n) #define __in_bcount_opt(_n) #define __out #define __out_opt #define __out_ecount(_n) #define __out_ecount_opt(_n) #define __out_bcount(_n) #define __out_bcount_opt(_n) #define __out_bcount_part(_n, _l) #define __out_bcount_part_opt(_n, _l) #define __deref_out #define __inout #define __inout_opt #define __inout_ecount(_n) #define __inout_ecount_opt(_n) #define __inout_bcount(_n) #define __inout_bcount_opt(_n) #define __inout_bcount_full_opt(_n) #define __deref_out_bcount_opt(n) #define __checkReturn #define __success(_x) #define __drv_when(_p, _c) /* Code inclusion options */ #define EFSYS_OPT_NAMES 1 #define EFSYS_OPT_SIENA 1 #define EFSYS_OPT_HUNTINGTON 1 #define EFSYS_OPT_MEDFORD 1 #ifdef DEBUG #define EFSYS_OPT_CHECK_REG 1 #else #define EFSYS_OPT_CHECK_REG 0 #endif #define EFSYS_OPT_MCDI 1 #define EFSYS_OPT_MCDI_LOGGING 0 #define EFSYS_OPT_MCDI_PROXY_AUTH 0 #define EFSYS_OPT_MAC_STATS 1 #define EFSYS_OPT_LOOPBACK 0 #define EFSYS_OPT_MON_MCDI 0 #define EFSYS_OPT_MON_STATS 0 #define EFSYS_OPT_PHY_STATS 1 #define EFSYS_OPT_BIST 1 #define EFSYS_OPT_PHY_LED_CONTROL 1 #define EFSYS_OPT_PHY_FLAGS 0 #define EFSYS_OPT_VPD 1 #define EFSYS_OPT_NVRAM 1 #define EFSYS_OPT_BOOTCFG 0 #define EFSYS_OPT_DIAG 0 #define EFSYS_OPT_RX_SCALE 1 #define EFSYS_OPT_QSTATS 1 #define EFSYS_OPT_FILTER 1 #define EFSYS_OPT_RX_SCATTER 0 #define EFSYS_OPT_EV_PREFETCH 0 #define EFSYS_OPT_DECODE_INTR_FATAL 1 #define EFSYS_OPT_LICENSING 0 #define EFSYS_OPT_ALLOW_UNCONFIGURED_NIC 0 #define EFSYS_OPT_RX_PACKED_STREAM 0 +#define EFSYS_OPT_TUNNEL 0 + /* ID */ typedef struct __efsys_identifier_s efsys_identifier_t; /* PROBE */ #ifndef DTRACE_PROBE #define EFSYS_PROBE(_name) #define EFSYS_PROBE1(_name, _type1, _arg1) #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) #else /* DTRACE_PROBE */ #define EFSYS_PROBE(_name) \ DTRACE_PROBE(_name) #define EFSYS_PROBE1(_name, _type1, _arg1) \ DTRACE_PROBE1(_name, _type1, _arg1) #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) \ DTRACE_PROBE2(_name, _type1, _arg1, _type2, _arg2) #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) \ DTRACE_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) \ DTRACE_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #ifdef DTRACE_PROBE5 #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) \ DTRACE_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #else #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) \ DTRACE_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #endif #ifdef DTRACE_PROBE6 #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) \ DTRACE_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #else #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) \ EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #endif #ifdef DTRACE_PROBE7 #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) \ DTRACE_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) #else #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) \ EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #endif #endif /* DTRACE_PROBE */ /* DMA */ typedef uint64_t efsys_dma_addr_t; typedef struct efsys_mem_s { bus_dma_tag_t esm_tag; bus_dmamap_t esm_map; caddr_t esm_base; efsys_dma_addr_t esm_addr; } efsys_mem_t; #define EFSYS_MEM_ZERO(_esmp, _size) \ do { \ (void) memset((_esmp)->esm_base, 0, (_size)); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_READD(_esmp, _offset, _edp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_edp)->ed_u32[0] = *addr; \ \ EFSYS_PROBE2(mem_readd, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if defined(__x86_64__) #define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \ do { \ uint64_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eqp)->eq_u64[0] = *addr; \ \ EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eqp)->eq_u32[0] = *addr++; \ (_eqp)->eq_u32[1] = *addr; \ \ EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #if defined(__x86_64__) #define EFSYS_MEM_READO(_esmp, _offset, _eop) \ do { \ uint64_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eop)->eo_u64[0] = *addr++; \ (_eop)->eo_u64[1] = *addr; \ \ EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_MEM_READO(_esmp, _offset, _eop) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eop)->eo_u32[0] = *addr++; \ (_eop)->eo_u32[1] = *addr++; \ (_eop)->eo_u32[2] = *addr++; \ (_eop)->eo_u32[3] = *addr; \ \ EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #define EFSYS_MEM_WRITED(_esmp, _offset, _edp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE2(mem_writed, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr = (_edp)->ed_u32[0]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if defined(__x86_64__) #define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \ do { \ uint64_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr = (_eqp)->eq_u64[0]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr++ = (_eqp)->eq_u32[0]; \ *addr = (_eqp)->eq_u32[1]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #if defined(__x86_64__) #define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \ do { \ uint64_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr++ = (_eop)->eo_u64[0]; \ *addr = (_eop)->eo_u64[1]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr++ = (_eop)->eo_u32[0]; \ *addr++ = (_eop)->eo_u32[1]; \ *addr++ = (_eop)->eo_u32[2]; \ *addr = (_eop)->eo_u32[3]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #define EFSYS_MEM_ADDR(_esmp) \ ((_esmp)->esm_addr) #define EFSYS_MEM_IS_NULL(_esmp) \ ((_esmp)->esm_base == NULL) /* BAR */ #define SFXGE_LOCK_NAME_MAX 16 typedef struct efsys_bar_s { struct mtx esb_lock; char esb_lock_name[SFXGE_LOCK_NAME_MAX]; bus_space_tag_t esb_tag; bus_space_handle_t esb_handle; int esb_rid; struct resource *esb_res; } efsys_bar_t; #define SFXGE_BAR_LOCK_INIT(_esbp, _ifname) \ do { \ snprintf((_esbp)->esb_lock_name, \ sizeof((_esbp)->esb_lock_name), \ "%s:bar", (_ifname)); \ mtx_init(&(_esbp)->esb_lock, (_esbp)->esb_lock_name, \ NULL, MTX_DEF); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define SFXGE_BAR_LOCK_DESTROY(_esbp) \ mtx_destroy(&(_esbp)->esb_lock) #define SFXGE_BAR_LOCK(_esbp) \ mtx_lock(&(_esbp)->esb_lock) #define SFXGE_BAR_UNLOCK(_esbp) \ mtx_unlock(&(_esbp)->esb_lock) #define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ (_edp)->ed_u32[0] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset)); \ \ EFSYS_PROBE2(bar_readd, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if defined(SFXGE_USE_BUS_SPACE_8) #define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ SFXGE_BAR_LOCK(_esbp); \ \ (_eqp)->eq_u64[0] = bus_space_read_stream_8( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset)); \ \ EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ (_eop)->eo_u64[0] = bus_space_read_stream_8( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset)); \ (_eop)->eo_u64[1] = bus_space_read_stream_8( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset) + 8); \ \ EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ SFXGE_BAR_LOCK(_esbp); \ \ (_eqp)->eq_u32[0] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset)); \ (_eqp)->eq_u32[1] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset) + 4); \ \ EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ (_eop)->eo_u32[0] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset)); \ (_eop)->eo_u32[1] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset) + 4); \ (_eop)->eo_u32[2] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset) + 8); \ (_eop)->eo_u32[3] = bus_space_read_stream_4( \ (_esbp)->esb_tag, (_esbp)->esb_handle, \ (_offset) + 12); \ \ EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ EFSYS_PROBE2(bar_writed, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ /* \ * Make sure that previous writes to the dword have \ * been done. It should be cheaper than barrier just \ * after the write below. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_dword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset), (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if defined(SFXGE_USE_BUS_SPACE_8) #define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ SFXGE_BAR_LOCK(_esbp); \ \ EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ /* \ * Make sure that previous writes to the qword have \ * been done. It should be cheaper than barrier just \ * after the write below. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_qword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_8((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset), (_eqp)->eq_u64[0]); \ \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ SFXGE_BAR_LOCK(_esbp); \ \ EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ /* \ * Make sure that previous writes to the qword have \ * been done. It should be cheaper than barrier just \ * after the last write below. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_qword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset), (_eqp)->eq_u32[0]); \ /* \ * It should be guaranteed that the last dword comes \ * the last, so barrier entire qword to be sure that \ * neither above nor below writes are reordered. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_qword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset) + 4, (_eqp)->eq_u32[1]); \ \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif /* * Guarantees 64bit aligned 64bit writes to write combined BAR mapping * (required by PIO hardware) */ #define EFSYS_BAR_WC_WRITEQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ (void) (_esbp); \ \ /* FIXME: Perform a 64-bit write */ \ KASSERT(0, ("not implemented")); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if defined(SFXGE_USE_BUS_SPACE_8) #define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ /* \ * Make sure that previous writes to the oword have \ * been done. It should be cheaper than barrier just \ * after the last write below. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_oword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_8((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset), (_eop)->eo_u64[0]); \ /* \ * It should be guaranteed that the last qword comes \ * the last, so barrier entire oword to be sure that \ * neither above nor below writes are reordered. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_oword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_8((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset) + 8, (_eop)->eo_u64[1]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_LOCK(_esbp); \ \ EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ /* \ * Make sure that previous writes to the oword have \ * been done. It should be cheaper than barrier just \ * after the last write below. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_oword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset), (_eop)->eo_u32[0]); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset) + 4, (_eop)->eo_u32[1]); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset) + 8, (_eop)->eo_u32[2]); \ /* \ * It should be guaranteed that the last dword comes \ * the last, so barrier entire oword to be sure that \ * neither above nor below writes are reordered. \ */ \ bus_space_barrier((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), sizeof (efx_oword_t), \ BUS_SPACE_BARRIER_WRITE); \ bus_space_write_stream_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, \ (_offset) + 12, (_eop)->eo_u32[3]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ SFXGE_BAR_UNLOCK(_esbp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif /* Use the standard octo-word write for doorbell writes */ #define EFSYS_BAR_DOORBELL_WRITEO(_esbp, _offset, _eop) \ do { \ EFSYS_BAR_WRITEO((_esbp), (_offset), (_eop), B_FALSE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* SPIN */ #define EFSYS_SPIN(_us) \ do { \ DELAY(_us); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_SLEEP EFSYS_SPIN /* BARRIERS */ #define EFSYS_MEM_READ_BARRIER() rmb() #define EFSYS_PIO_WRITE_BARRIER() /* DMA SYNC */ #define EFSYS_DMA_SYNC_FOR_KERNEL(_esmp, _offset, _size) \ do { \ bus_dmamap_sync((_esmp)->esm_tag, \ (_esmp)->esm_map, \ BUS_DMASYNC_POSTREAD); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_DMA_SYNC_FOR_DEVICE(_esmp, _offset, _size) \ do { \ bus_dmamap_sync((_esmp)->esm_tag, \ (_esmp)->esm_map, \ BUS_DMASYNC_PREWRITE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* TIMESTAMP */ typedef clock_t efsys_timestamp_t; #define EFSYS_TIMESTAMP(_usp) \ do { \ clock_t now; \ \ now = ticks; \ *(_usp) = now * hz / 1000000; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* KMEM */ #define EFSYS_KMEM_ALLOC(_esip, _size, _p) \ do { \ (_esip) = (_esip); \ /* \ * The macro is used in non-sleepable contexts, for \ * example, holding a mutex. \ */ \ (_p) = malloc((_size), M_SFXGE, M_NOWAIT|M_ZERO); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_KMEM_FREE(_esip, _size, _p) \ do { \ (void) (_esip); \ (void) (_size); \ free((_p), M_SFXGE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* LOCK */ typedef struct efsys_lock_s { struct mtx lock; char lock_name[SFXGE_LOCK_NAME_MAX]; } efsys_lock_t; #define SFXGE_EFSYS_LOCK_INIT(_eslp, _ifname, _label) \ do { \ efsys_lock_t *__eslp = (_eslp); \ \ snprintf((__eslp)->lock_name, \ sizeof((__eslp)->lock_name), \ "%s:%s", (_ifname), (_label)); \ mtx_init(&(__eslp)->lock, (__eslp)->lock_name, \ NULL, MTX_DEF); \ } while (B_FALSE) #define SFXGE_EFSYS_LOCK_DESTROY(_eslp) \ mtx_destroy(&(_eslp)->lock) #define SFXGE_EFSYS_LOCK(_eslp) \ mtx_lock(&(_eslp)->lock) #define SFXGE_EFSYS_UNLOCK(_eslp) \ mtx_unlock(&(_eslp)->lock) #define SFXGE_EFSYS_LOCK_ASSERT_OWNED(_eslp) \ mtx_assert(&(_eslp)->lock, MA_OWNED) typedef int efsys_lock_state_t; #define EFSYS_LOCK_MAGIC 0x000010c4 #define EFSYS_LOCK(_lockp, _state) \ do { \ SFXGE_EFSYS_LOCK(_lockp); \ (_state) = EFSYS_LOCK_MAGIC; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_UNLOCK(_lockp, _state) \ do { \ if ((_state) != EFSYS_LOCK_MAGIC) \ KASSERT(B_FALSE, ("not locked")); \ SFXGE_EFSYS_UNLOCK(_lockp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* STAT */ typedef uint64_t efsys_stat_t; #define EFSYS_STAT_INCR(_knp, _delta) \ do { \ *(_knp) += (_delta); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_DECR(_knp, _delta) \ do { \ *(_knp) -= (_delta); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET(_knp, _val) \ do { \ *(_knp) = (_val); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET_QWORD(_knp, _valp) \ do { \ *(_knp) = le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET_DWORD(_knp, _valp) \ do { \ *(_knp) = le32toh((_valp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_INCR_QWORD(_knp, _valp) \ do { \ *(_knp) += le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SUBR_QWORD(_knp, _valp) \ do { \ *(_knp) -= le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* ERR */ extern void sfxge_err(efsys_identifier_t *, unsigned int, uint32_t, uint32_t); #if EFSYS_OPT_DECODE_INTR_FATAL #define EFSYS_ERR(_esip, _code, _dword0, _dword1) \ do { \ sfxge_err((_esip), (_code), (_dword0), (_dword1)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif /* ASSERT */ #define EFSYS_ASSERT(_exp) do { \ if (!(_exp)) \ panic("%s", #_exp); \ } while (0) #define EFSYS_ASSERT3(_x, _op, _y, _t) do { \ const _t __x = (_t)(_x); \ const _t __y = (_t)(_y); \ if (!(__x _op __y)) \ panic("assertion failed at %s:%u", __FILE__, __LINE__); \ } while(0) #define EFSYS_ASSERT3U(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uint64_t) #define EFSYS_ASSERT3S(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, int64_t) #define EFSYS_ASSERT3P(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uintptr_t) /* ROTATE */ #define EFSYS_HAS_ROTL_DWORD 0 #ifdef __cplusplus } #endif #endif /* _SYS_EFSYS_H */ Index: head/sys/dev/sfxge/common/efx.h =================================================================== --- head/sys/dev/sfxge/common/efx.h (revision 340927) +++ head/sys/dev/sfxge/common/efx.h (revision 340928) @@ -1,2644 +1,2695 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_H #define _SYS_EFX_H #include "efsys.h" #include "efx_check.h" #include "efx_phy_ids.h" #ifdef __cplusplus extern "C" { #endif #define EFX_STATIC_ASSERT(_cond) \ ((void)sizeof (char[(_cond) ? 1 : -1])) #define EFX_ARRAY_SIZE(_array) \ (sizeof (_array) / sizeof ((_array)[0])) #define EFX_FIELD_OFFSET(_type, _field) \ ((size_t)&(((_type *)0)->_field)) /* The macro expands divider twice */ #define EFX_DIV_ROUND_UP(_n, _d) (((_n) + (_d) - 1) / (_d)) /* Return codes */ typedef __success(return == 0) int efx_rc_t; /* Chip families */ typedef enum efx_family_e { EFX_FAMILY_INVALID, EFX_FAMILY_FALCON, /* Obsolete and not supported */ EFX_FAMILY_SIENA, EFX_FAMILY_HUNTINGTON, EFX_FAMILY_MEDFORD, EFX_FAMILY_NTYPES } efx_family_t; extern __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp); #define EFX_PCI_VENID_SFC 0x1924 #define EFX_PCI_DEVID_FALCON 0x0710 /* SFC4000 */ #define EFX_PCI_DEVID_BETHPAGE 0x0803 /* SFC9020 */ #define EFX_PCI_DEVID_SIENA 0x0813 /* SFL9021 */ #define EFX_PCI_DEVID_SIENA_F1_UNINIT 0x0810 #define EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT 0x0901 #define EFX_PCI_DEVID_FARMINGDALE 0x0903 /* SFC9120 PF */ #define EFX_PCI_DEVID_GREENPORT 0x0923 /* SFC9140 PF */ #define EFX_PCI_DEVID_FARMINGDALE_VF 0x1903 /* SFC9120 VF */ #define EFX_PCI_DEVID_GREENPORT_VF 0x1923 /* SFC9140 VF */ #define EFX_PCI_DEVID_MEDFORD_PF_UNINIT 0x0913 #define EFX_PCI_DEVID_MEDFORD 0x0A03 /* SFC9240 PF */ #define EFX_PCI_DEVID_MEDFORD_VF 0x1A03 /* SFC9240 VF */ #define EFX_MEM_BAR 2 /* Error codes */ enum { EFX_ERR_INVALID, EFX_ERR_SRAM_OOB, EFX_ERR_BUFID_DC_OOB, EFX_ERR_MEM_PERR, EFX_ERR_RBUF_OWN, EFX_ERR_TBUF_OWN, EFX_ERR_RDESQ_OWN, EFX_ERR_TDESQ_OWN, EFX_ERR_EVQ_OWN, EFX_ERR_EVFF_OFLO, EFX_ERR_ILL_ADDR, EFX_ERR_SRAM_PERR, EFX_ERR_NCODES }; /* Calculate the IEEE 802.3 CRC32 of a MAC addr */ extern __checkReturn uint32_t efx_crc32_calculate( __in uint32_t crc_init, __in_ecount(length) uint8_t const *input, __in int length); /* Type prototypes */ typedef struct efx_rxq_s efx_rxq_t; /* NIC */ typedef struct efx_nic_s efx_nic_t; extern __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp); extern __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void efx_nic_fini( __in efx_nic_t *enp); extern void efx_nic_unprobe( __in efx_nic_t *enp); extern void efx_nic_destroy( __in efx_nic_t *enp); #define EFX_PCIE_LINK_SPEED_GEN1 1 #define EFX_PCIE_LINK_SPEED_GEN2 2 #define EFX_PCIE_LINK_SPEED_GEN3 3 typedef enum efx_pcie_link_performance_e { EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY, EFX_PCIE_LINK_PERFORMANCE_OPTIMAL } efx_pcie_link_performance_t; extern __checkReturn efx_rc_t efx_nic_calculate_pcie_link_bandwidth( __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out uint32_t *bandwidth_mbpsp); extern __checkReturn efx_rc_t efx_nic_check_pcie_link_speed( __in efx_nic_t *enp, __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out efx_pcie_link_performance_t *resultp); #if EFSYS_OPT_MCDI #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD /* Huntington and Medford require MCDIv2 commands */ #define WITH_MCDI_V2 1 #endif typedef struct efx_mcdi_req_s efx_mcdi_req_t; typedef enum efx_mcdi_exception_e { EFX_MCDI_EXCEPTION_MC_REBOOT, EFX_MCDI_EXCEPTION_MC_BADASSERT, } efx_mcdi_exception_t; #if EFSYS_OPT_MCDI_LOGGING typedef enum efx_log_msg_e { EFX_LOG_INVALID, EFX_LOG_MCDI_REQUEST, EFX_LOG_MCDI_RESPONSE, } efx_log_msg_t; #endif /* EFSYS_OPT_MCDI_LOGGING */ typedef struct efx_mcdi_transport_s { void *emt_context; efsys_mem_t *emt_dma_mem; void (*emt_execute)(void *, efx_mcdi_req_t *); void (*emt_ev_cpl)(void *); void (*emt_exception)(void *, efx_mcdi_exception_t); #if EFSYS_OPT_MCDI_LOGGING void (*emt_logger)(void *, efx_log_msg_t, void *, size_t, void *, size_t); #endif /* EFSYS_OPT_MCDI_LOGGING */ #if EFSYS_OPT_MCDI_PROXY_AUTH void (*emt_ev_proxy_response)(void *, uint32_t, efx_rc_t); #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ } efx_mcdi_transport_t; extern __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp); void efx_mcdi_new_epoch( __in efx_nic_t *enp); extern void efx_mcdi_get_timeout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *usec_timeoutp); extern void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl); extern __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp); extern void efx_mcdi_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_MCDI */ /* INTR */ #define EFX_NINTR_SIENA 1024 typedef enum efx_intr_type_e { EFX_INTR_INVALID = 0, EFX_INTR_LINE, EFX_INTR_MESSAGE, EFX_INTR_NTYPES } efx_intr_type_t; #define EFX_INTR_SIZE (sizeof (efx_oword_t)) extern __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); extern void efx_intr_enable( __in efx_nic_t *enp); extern void efx_intr_disable( __in efx_nic_t *enp); extern void efx_intr_disable_unlocked( __in efx_nic_t *enp); #define EFX_INTR_NEVQS 32 extern __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); extern void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *maskp); extern void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); extern void efx_intr_fatal( __in efx_nic_t *enp); extern void efx_intr_fini( __in efx_nic_t *enp); /* MAC */ #if EFSYS_OPT_MAC_STATS /* START MKCONFIG GENERATED EfxHeaderMacBlock e323546097fd7c65 */ typedef enum efx_mac_stat_e { EFX_MAC_RX_OCTETS, EFX_MAC_RX_PKTS, EFX_MAC_RX_UNICST_PKTS, EFX_MAC_RX_MULTICST_PKTS, EFX_MAC_RX_BRDCST_PKTS, EFX_MAC_RX_PAUSE_PKTS, EFX_MAC_RX_LE_64_PKTS, EFX_MAC_RX_65_TO_127_PKTS, EFX_MAC_RX_128_TO_255_PKTS, EFX_MAC_RX_256_TO_511_PKTS, EFX_MAC_RX_512_TO_1023_PKTS, EFX_MAC_RX_1024_TO_15XX_PKTS, EFX_MAC_RX_GE_15XX_PKTS, EFX_MAC_RX_ERRORS, EFX_MAC_RX_FCS_ERRORS, EFX_MAC_RX_DROP_EVENTS, EFX_MAC_RX_FALSE_CARRIER_ERRORS, EFX_MAC_RX_SYMBOL_ERRORS, EFX_MAC_RX_ALIGN_ERRORS, EFX_MAC_RX_INTERNAL_ERRORS, EFX_MAC_RX_JABBER_PKTS, EFX_MAC_RX_LANE0_CHAR_ERR, EFX_MAC_RX_LANE1_CHAR_ERR, EFX_MAC_RX_LANE2_CHAR_ERR, EFX_MAC_RX_LANE3_CHAR_ERR, EFX_MAC_RX_LANE0_DISP_ERR, EFX_MAC_RX_LANE1_DISP_ERR, EFX_MAC_RX_LANE2_DISP_ERR, EFX_MAC_RX_LANE3_DISP_ERR, EFX_MAC_RX_MATCH_FAULT, EFX_MAC_RX_NODESC_DROP_CNT, EFX_MAC_TX_OCTETS, EFX_MAC_TX_PKTS, EFX_MAC_TX_UNICST_PKTS, EFX_MAC_TX_MULTICST_PKTS, EFX_MAC_TX_BRDCST_PKTS, EFX_MAC_TX_PAUSE_PKTS, EFX_MAC_TX_LE_64_PKTS, EFX_MAC_TX_65_TO_127_PKTS, EFX_MAC_TX_128_TO_255_PKTS, EFX_MAC_TX_256_TO_511_PKTS, EFX_MAC_TX_512_TO_1023_PKTS, EFX_MAC_TX_1024_TO_15XX_PKTS, EFX_MAC_TX_GE_15XX_PKTS, EFX_MAC_TX_ERRORS, EFX_MAC_TX_SGL_COL_PKTS, EFX_MAC_TX_MULT_COL_PKTS, EFX_MAC_TX_EX_COL_PKTS, EFX_MAC_TX_LATE_COL_PKTS, EFX_MAC_TX_DEF_PKTS, EFX_MAC_TX_EX_DEF_PKTS, EFX_MAC_PM_TRUNC_BB_OVERFLOW, EFX_MAC_PM_DISCARD_BB_OVERFLOW, EFX_MAC_PM_TRUNC_VFIFO_FULL, EFX_MAC_PM_DISCARD_VFIFO_FULL, EFX_MAC_PM_TRUNC_QBB, EFX_MAC_PM_DISCARD_QBB, EFX_MAC_PM_DISCARD_MAPPING, EFX_MAC_RXDP_Q_DISABLED_PKTS, EFX_MAC_RXDP_DI_DROPPED_PKTS, EFX_MAC_RXDP_STREAMING_PKTS, EFX_MAC_RXDP_HLB_FETCH, EFX_MAC_RXDP_HLB_WAIT, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS, EFX_MAC_VADAPTER_RX_UNICAST_BYTES, EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_RX_MULTICAST_BYTES, EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_RX_BROADCAST_BYTES, EFX_MAC_VADAPTER_RX_BAD_PACKETS, EFX_MAC_VADAPTER_RX_BAD_BYTES, EFX_MAC_VADAPTER_RX_OVERFLOW, EFX_MAC_VADAPTER_TX_UNICAST_PACKETS, EFX_MAC_VADAPTER_TX_UNICAST_BYTES, EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_TX_MULTICAST_BYTES, EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_TX_BROADCAST_BYTES, EFX_MAC_VADAPTER_TX_BAD_PACKETS, EFX_MAC_VADAPTER_TX_BAD_BYTES, EFX_MAC_VADAPTER_TX_OVERFLOW, EFX_MAC_NSTATS } efx_mac_stat_t; /* END MKCONFIG GENERATED EfxHeaderMacBlock */ #endif /* EFSYS_OPT_MAC_STATS */ typedef enum efx_link_mode_e { EFX_LINK_UNKNOWN = 0, EFX_LINK_DOWN, EFX_LINK_10HDX, EFX_LINK_10FDX, EFX_LINK_100HDX, EFX_LINK_100FDX, EFX_LINK_1000HDX, EFX_LINK_1000FDX, EFX_LINK_10000FDX, EFX_LINK_40000FDX, EFX_LINK_NMODES } efx_link_mode_t; #define EFX_MAC_ADDR_LEN 6 #define EFX_MAC_ADDR_IS_MULTICAST(_address) (((uint8_t *)_address)[0] & 0x01) #define EFX_MAC_MULTICAST_LIST_MAX 256 #define EFX_MAC_SDU_MAX 9202 #define EFX_MAC_PDU_ADJUSTMENT \ (/* EtherII */ 14 \ + /* VLAN */ 4 \ + /* CRC */ 4 \ + /* bug16011 */ 16) \ #define EFX_MAC_PDU(_sdu) \ P2ROUNDUP((_sdu) + EFX_MAC_PDU_ADJUSTMENT, 8) /* * Due to the P2ROUNDUP in EFX_MAC_PDU(), EFX_MAC_SDU_FROM_PDU() may give * the SDU rounded up slightly. */ #define EFX_MAC_SDU_FROM_PDU(_pdu) ((_pdu) - EFX_MAC_PDU_ADJUSTMENT) #define EFX_MAC_PDU_MIN 60 #define EFX_MAC_PDU_MAX EFX_MAC_PDU(EFX_MAC_SDU_MAX) extern __checkReturn efx_rc_t efx_mac_pdu_get( __in efx_nic_t *enp, __out size_t *pdu); extern __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu); extern __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr); extern __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled); extern __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); #define EFX_FCNTL_RESPOND 0x00000001 #define EFX_FCNTL_GENERATE 0x00000002 extern __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg); extern void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp); #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_MAC_STATS_MASK_BITS_PER_PAGE (8 * sizeof (uint32_t)) #define EFX_MAC_STATS_MASK_NPAGES \ (P2ROUNDUP(EFX_MAC_NSTATS, EFX_MAC_STATS_MASK_BITS_PER_PAGE) / \ EFX_MAC_STATS_MASK_BITS_PER_PAGE) /* * Get mask of MAC statistics supported by the hardware. * * If mask_size is insufficient to return the mask, EINVAL error is * returned. EFX_MAC_STATS_MASK_NPAGES multiplied by size of the page * (which is sizeof (uint32_t)) is sufficient. */ extern __checkReturn efx_rc_t efx_mac_stats_get_mask( __in efx_nic_t *enp, __out_bcount(mask_size) uint32_t *maskp, __in size_t mask_size); #define EFX_MAC_STAT_SUPPORTED(_mask, _stat) \ ((_mask)[(_stat) / EFX_MAC_STATS_MASK_BITS_PER_PAGE] & \ (1ULL << ((_stat) & (EFX_MAC_STATS_MASK_BITS_PER_PAGE - 1)))) #define EFX_MAC_STATS_SIZE 0x400 extern __checkReturn efx_rc_t efx_mac_stats_clear( __in efx_nic_t *enp); /* * Upload mac statistics supported by the hardware into the given buffer. * * The reference buffer must be at least %EFX_MAC_STATS_SIZE bytes, * and page aligned. * * The hardware will only DMA statistics that it understands (of course). * Drivers should not make any assumptions about which statistics are * supported, especially when the statistics are generated by firmware. * * Thus, drivers should zero this buffer before use, so that not-understood * statistics read back as zero. */ extern __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); extern __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MON */ typedef enum efx_mon_type_e { EFX_MON_INVALID = 0, EFX_MON_SFC90X0, EFX_MON_SFC91X0, EFX_MON_SFC92X0, EFX_MON_NTYPES } efx_mon_type_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_name( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_init( __in efx_nic_t *enp); #if EFSYS_OPT_MON_STATS #define EFX_MON_STATS_PAGE_SIZE 0x100 #define EFX_MON_MASK_ELEMENT_SIZE 32 /* START MKCONFIG GENERATED MonitorHeaderStatsBlock aa0233c80156308e */ typedef enum efx_mon_stat_e { EFX_MON_STAT_2_5V, EFX_MON_STAT_VCCP1, EFX_MON_STAT_VCC, EFX_MON_STAT_5V, EFX_MON_STAT_12V, EFX_MON_STAT_VCCP2, EFX_MON_STAT_EXT_TEMP, EFX_MON_STAT_INT_TEMP, EFX_MON_STAT_AIN1, EFX_MON_STAT_AIN2, EFX_MON_STAT_INT_COOLING, EFX_MON_STAT_EXT_COOLING, EFX_MON_STAT_1V, EFX_MON_STAT_1_2V, EFX_MON_STAT_1_8V, EFX_MON_STAT_3_3V, EFX_MON_STAT_1_2VA, EFX_MON_STAT_VREF, EFX_MON_STAT_VAOE, EFX_MON_STAT_AOE_TEMP, EFX_MON_STAT_PSU_AOE_TEMP, EFX_MON_STAT_PSU_TEMP, EFX_MON_STAT_FAN0, EFX_MON_STAT_FAN1, EFX_MON_STAT_FAN2, EFX_MON_STAT_FAN3, EFX_MON_STAT_FAN4, EFX_MON_STAT_VAOE_IN, EFX_MON_STAT_IAOE, EFX_MON_STAT_IAOE_IN, EFX_MON_STAT_NIC_POWER, EFX_MON_STAT_0_9V, EFX_MON_STAT_I0_9V, EFX_MON_STAT_I1_2V, EFX_MON_STAT_0_9V_ADC, EFX_MON_STAT_INT_TEMP2, EFX_MON_STAT_VREG_TEMP, EFX_MON_STAT_VREG_0_9V_TEMP, EFX_MON_STAT_VREG_1_2V_TEMP, EFX_MON_STAT_INT_VPTAT, EFX_MON_STAT_INT_ADC_TEMP, EFX_MON_STAT_EXT_VPTAT, EFX_MON_STAT_EXT_ADC_TEMP, EFX_MON_STAT_AMBIENT_TEMP, EFX_MON_STAT_AIRFLOW, EFX_MON_STAT_VDD08D_VSS08D_CSR, EFX_MON_STAT_VDD08D_VSS08D_CSR_EXTADC, EFX_MON_STAT_HOTPOINT_TEMP, EFX_MON_STAT_PHY_POWER_SWITCH_PORT0, EFX_MON_STAT_PHY_POWER_SWITCH_PORT1, EFX_MON_STAT_MUM_VCC, EFX_MON_STAT_0V9_A, EFX_MON_STAT_I0V9_A, EFX_MON_STAT_0V9_A_TEMP, EFX_MON_STAT_0V9_B, EFX_MON_STAT_I0V9_B, EFX_MON_STAT_0V9_B_TEMP, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY_EXT_ADC, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_SODIMM_VOUT, EFX_MON_STAT_SODIMM_0_TEMP, EFX_MON_STAT_SODIMM_1_TEMP, EFX_MON_STAT_PHY0_VCC, EFX_MON_STAT_PHY1_VCC, EFX_MON_STAT_CONTROLLER_TDIODE_TEMP, EFX_MON_STAT_BOARD_FRONT_TEMP, EFX_MON_STAT_BOARD_BACK_TEMP, EFX_MON_STAT_I1V8, EFX_MON_STAT_I2V5, EFX_MON_NSTATS } efx_mon_stat_t; /* END MKCONFIG GENERATED MonitorHeaderStatsBlock */ typedef enum efx_mon_stat_state_e { EFX_MON_STAT_STATE_OK = 0, EFX_MON_STAT_STATE_WARNING = 1, EFX_MON_STAT_STATE_FATAL = 2, EFX_MON_STAT_STATE_BROKEN = 3, EFX_MON_STAT_STATE_NO_READING = 4, } efx_mon_stat_state_t; typedef struct efx_mon_stat_value_s { uint16_t emsv_value; uint16_t emsv_state; } efx_mon_stat_value_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_stat_name( __in efx_nic_t *enp, __in efx_mon_stat_t id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values); #endif /* EFSYS_OPT_MON_STATS */ extern void efx_mon_fini( __in efx_nic_t *enp); /* PHY */ extern __checkReturn efx_rc_t efx_phy_verify( __in efx_nic_t *enp); #if EFSYS_OPT_PHY_LED_CONTROL typedef enum efx_phy_led_mode_e { EFX_PHY_LED_DEFAULT = 0, EFX_PHY_LED_OFF, EFX_PHY_LED_ON, EFX_PHY_LED_FLASH, EFX_PHY_LED_NMODES } efx_phy_led_mode_t; extern __checkReturn efx_rc_t efx_phy_led_set( __in efx_nic_t *enp, __in efx_phy_led_mode_t mode); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ extern __checkReturn efx_rc_t efx_port_init( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK typedef enum efx_loopback_type_e { EFX_LOOPBACK_OFF = 0, EFX_LOOPBACK_DATA = 1, EFX_LOOPBACK_GMAC = 2, EFX_LOOPBACK_XGMII = 3, EFX_LOOPBACK_XGXS = 4, EFX_LOOPBACK_XAUI = 5, EFX_LOOPBACK_GMII = 6, EFX_LOOPBACK_SGMII = 7, EFX_LOOPBACK_XGBR = 8, EFX_LOOPBACK_XFI = 9, EFX_LOOPBACK_XAUI_FAR = 10, EFX_LOOPBACK_GMII_FAR = 11, EFX_LOOPBACK_SGMII_FAR = 12, EFX_LOOPBACK_XFI_FAR = 13, EFX_LOOPBACK_GPHY = 14, EFX_LOOPBACK_PHY_XS = 15, EFX_LOOPBACK_PCS = 16, EFX_LOOPBACK_PMA_PMD = 17, EFX_LOOPBACK_XPORT = 18, EFX_LOOPBACK_XGMII_WS = 19, EFX_LOOPBACK_XAUI_WS = 20, EFX_LOOPBACK_XAUI_WS_FAR = 21, EFX_LOOPBACK_XAUI_WS_NEAR = 22, EFX_LOOPBACK_GMII_WS = 23, EFX_LOOPBACK_XFI_WS = 24, EFX_LOOPBACK_XFI_WS_FAR = 25, EFX_LOOPBACK_PHYXS_WS = 26, EFX_LOOPBACK_PMA_INT = 27, EFX_LOOPBACK_SD_NEAR = 28, EFX_LOOPBACK_SD_FAR = 29, EFX_LOOPBACK_PMA_INT_WS = 30, EFX_LOOPBACK_SD_FEP2_WS = 31, EFX_LOOPBACK_SD_FEP1_5_WS = 32, EFX_LOOPBACK_SD_FEP_WS = 33, EFX_LOOPBACK_SD_FES_WS = 34, EFX_LOOPBACK_NTYPES } efx_loopback_type_t; typedef enum efx_loopback_kind_e { EFX_LOOPBACK_KIND_OFF = 0, EFX_LOOPBACK_KIND_ALL, EFX_LOOPBACK_KIND_MAC, EFX_LOOPBACK_KIND_PHY, EFX_LOOPBACK_NKINDS } efx_loopback_kind_t; extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp); extern __checkReturn efx_rc_t efx_port_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t type); #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_loopback_type_name( __in efx_nic_t *enp, __in efx_loopback_type_t type); #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_port_poll( __in efx_nic_t *enp, __out_opt efx_link_mode_t *link_modep); extern void efx_port_fini( __in efx_nic_t *enp); typedef enum efx_phy_cap_type_e { EFX_PHY_CAP_INVALID = 0, EFX_PHY_CAP_10HDX, EFX_PHY_CAP_10FDX, EFX_PHY_CAP_100HDX, EFX_PHY_CAP_100FDX, EFX_PHY_CAP_1000HDX, EFX_PHY_CAP_1000FDX, EFX_PHY_CAP_10000FDX, EFX_PHY_CAP_PAUSE, EFX_PHY_CAP_ASYM, EFX_PHY_CAP_AN, EFX_PHY_CAP_40000FDX, EFX_PHY_CAP_NTYPES } efx_phy_cap_type_t; #define EFX_PHY_CAP_CURRENT 0x00000000 #define EFX_PHY_CAP_DEFAULT 0x00000001 #define EFX_PHY_CAP_PERM 0x00000002 extern void efx_phy_adv_cap_get( __in efx_nic_t *enp, __in uint32_t flag, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_adv_cap_set( __in efx_nic_t *enp, __in uint32_t mask); extern void efx_phy_lp_cap_get( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); typedef enum efx_phy_media_type_e { EFX_PHY_MEDIA_INVALID = 0, EFX_PHY_MEDIA_XAUI, EFX_PHY_MEDIA_CX4, EFX_PHY_MEDIA_KX4, EFX_PHY_MEDIA_XFP, EFX_PHY_MEDIA_SFP_PLUS, EFX_PHY_MEDIA_BASE_T, EFX_PHY_MEDIA_QSFP_PLUS, EFX_PHY_MEDIA_NTYPES } efx_phy_media_type_t; /* * Get the type of medium currently used. If the board has ports for * modules, a module is present, and we recognise the media type of * the module, then this will be the media type of the module. * Otherwise it will be the media type of the port. */ extern void efx_phy_media_type_get( __in efx_nic_t *enp, __out efx_phy_media_type_t *typep); extern __checkReturn efx_rc_t efx_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data); #if EFSYS_OPT_PHY_STATS /* START MKCONFIG GENERATED PhyHeaderStatsBlock 30ed56ad501f8e36 */ typedef enum efx_phy_stat_e { EFX_PHY_STAT_OUI, EFX_PHY_STAT_PMA_PMD_LINK_UP, EFX_PHY_STAT_PMA_PMD_RX_FAULT, EFX_PHY_STAT_PMA_PMD_TX_FAULT, EFX_PHY_STAT_PMA_PMD_REV_A, EFX_PHY_STAT_PMA_PMD_REV_B, EFX_PHY_STAT_PMA_PMD_REV_C, EFX_PHY_STAT_PMA_PMD_REV_D, EFX_PHY_STAT_PCS_LINK_UP, EFX_PHY_STAT_PCS_RX_FAULT, EFX_PHY_STAT_PCS_TX_FAULT, EFX_PHY_STAT_PCS_BER, EFX_PHY_STAT_PCS_BLOCK_ERRORS, EFX_PHY_STAT_PHY_XS_LINK_UP, EFX_PHY_STAT_PHY_XS_RX_FAULT, EFX_PHY_STAT_PHY_XS_TX_FAULT, EFX_PHY_STAT_PHY_XS_ALIGN, EFX_PHY_STAT_PHY_XS_SYNC_A, EFX_PHY_STAT_PHY_XS_SYNC_B, EFX_PHY_STAT_PHY_XS_SYNC_C, EFX_PHY_STAT_PHY_XS_SYNC_D, EFX_PHY_STAT_AN_LINK_UP, EFX_PHY_STAT_AN_MASTER, EFX_PHY_STAT_AN_LOCAL_RX_OK, EFX_PHY_STAT_AN_REMOTE_RX_OK, EFX_PHY_STAT_CL22EXT_LINK_UP, EFX_PHY_STAT_SNR_A, EFX_PHY_STAT_SNR_B, EFX_PHY_STAT_SNR_C, EFX_PHY_STAT_SNR_D, EFX_PHY_STAT_PMA_PMD_SIGNAL_A, EFX_PHY_STAT_PMA_PMD_SIGNAL_B, EFX_PHY_STAT_PMA_PMD_SIGNAL_C, EFX_PHY_STAT_PMA_PMD_SIGNAL_D, EFX_PHY_STAT_AN_COMPLETE, EFX_PHY_STAT_PMA_PMD_REV_MAJOR, EFX_PHY_STAT_PMA_PMD_REV_MINOR, EFX_PHY_STAT_PMA_PMD_REV_MICRO, EFX_PHY_STAT_PCS_FW_VERSION_0, EFX_PHY_STAT_PCS_FW_VERSION_1, EFX_PHY_STAT_PCS_FW_VERSION_2, EFX_PHY_STAT_PCS_FW_VERSION_3, EFX_PHY_STAT_PCS_FW_BUILD_YY, EFX_PHY_STAT_PCS_FW_BUILD_MM, EFX_PHY_STAT_PCS_FW_BUILD_DD, EFX_PHY_STAT_PCS_OP_MODE, EFX_PHY_NSTATS } efx_phy_stat_t; /* END MKCONFIG GENERATED PhyHeaderStatsBlock */ #if EFSYS_OPT_NAMES extern const char * efx_phy_stat_name( __in efx_nic_t *enp, __in efx_phy_stat_t stat); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_STATS_SIZE 0x100 extern __checkReturn efx_rc_t efx_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST typedef enum efx_bist_type_e { EFX_BIST_TYPE_UNKNOWN, EFX_BIST_TYPE_PHY_NORMAL, EFX_BIST_TYPE_PHY_CABLE_SHORT, EFX_BIST_TYPE_PHY_CABLE_LONG, EFX_BIST_TYPE_MC_MEM, /* Test the MC DMEM and IMEM */ EFX_BIST_TYPE_SAT_MEM, /* Test the DMEM and IMEM of satellite cpus */ EFX_BIST_TYPE_REG, /* Test the register memories */ EFX_BIST_TYPE_NTYPES, } efx_bist_type_t; typedef enum efx_bist_result_e { EFX_BIST_RESULT_UNKNOWN, EFX_BIST_RESULT_RUNNING, EFX_BIST_RESULT_PASSED, EFX_BIST_RESULT_FAILED, } efx_bist_result_t; typedef enum efx_phy_cable_status_e { EFX_PHY_CABLE_STATUS_OK, EFX_PHY_CABLE_STATUS_INVALID, EFX_PHY_CABLE_STATUS_OPEN, EFX_PHY_CABLE_STATUS_INTRAPAIRSHORT, EFX_PHY_CABLE_STATUS_INTERPAIRSHORT, EFX_PHY_CABLE_STATUS_BUSY, } efx_phy_cable_status_t; typedef enum efx_bist_value_e { EFX_BIST_PHY_CABLE_LENGTH_A, EFX_BIST_PHY_CABLE_LENGTH_B, EFX_BIST_PHY_CABLE_LENGTH_C, EFX_BIST_PHY_CABLE_LENGTH_D, EFX_BIST_PHY_CABLE_STATUS_A, EFX_BIST_PHY_CABLE_STATUS_B, EFX_BIST_PHY_CABLE_STATUS_C, EFX_BIST_PHY_CABLE_STATUS_D, EFX_BIST_FAULT_CODE, /* * Memory BIST specific values. These match to the MC_CMD_BIST_POLL * response. */ EFX_BIST_MEM_TEST, EFX_BIST_MEM_ADDR, EFX_BIST_MEM_BUS, EFX_BIST_MEM_EXPECT, EFX_BIST_MEM_ACTUAL, EFX_BIST_MEM_ECC, EFX_BIST_MEM_ECC_PARITY, EFX_BIST_MEM_ECC_FATAL, EFX_BIST_NVALUES, } efx_bist_value_t; extern __checkReturn efx_rc_t efx_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t efx_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt uint32_t *value_maskp, __out_ecount_opt(count) unsigned long *valuesp, __in size_t count); extern void efx_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ #define EFX_FEATURE_IPV6 0x00000001 #define EFX_FEATURE_LFSR_HASH_INSERT 0x00000002 #define EFX_FEATURE_LINK_EVENTS 0x00000004 #define EFX_FEATURE_PERIODIC_MAC_STATS 0x00000008 #define EFX_FEATURE_MCDI 0x00000020 #define EFX_FEATURE_LOOKAHEAD_SPLIT 0x00000040 #define EFX_FEATURE_MAC_HEADER_FILTERS 0x00000080 #define EFX_FEATURE_TURBO 0x00000100 #define EFX_FEATURE_MCDI_DMA 0x00000200 #define EFX_FEATURE_TX_SRC_FILTERS 0x00000400 #define EFX_FEATURE_PIO_BUFFERS 0x00000800 #define EFX_FEATURE_FW_ASSISTED_TSO 0x00001000 #define EFX_FEATURE_FW_ASSISTED_TSO_V2 0x00002000 #define EFX_FEATURE_PACKED_STREAM 0x00004000 typedef enum efx_tunnel_protocol_e { EFX_TUNNEL_PROTOCOL_NONE = 0, EFX_TUNNEL_PROTOCOL_VXLAN, EFX_TUNNEL_PROTOCOL_GENEVE, EFX_TUNNEL_PROTOCOL_NVGRE, EFX_TUNNEL_NPROTOS } efx_tunnel_protocol_t; typedef struct efx_nic_cfg_s { uint32_t enc_board_type; uint32_t enc_phy_type; #if EFSYS_OPT_NAMES char enc_phy_name[21]; #endif char enc_phy_revision[21]; efx_mon_type_t enc_mon_type; #if EFSYS_OPT_MON_STATS uint32_t enc_mon_stat_dma_buf_size; uint32_t enc_mon_stat_mask[(EFX_MON_NSTATS + 31) / 32]; #endif unsigned int enc_features; uint8_t enc_mac_addr[6]; uint8_t enc_port; /* PHY port number */ uint32_t enc_intr_vec_base; uint32_t enc_intr_limit; uint32_t enc_evq_limit; uint32_t enc_txq_limit; uint32_t enc_rxq_limit; uint32_t enc_txq_max_ndescs; uint32_t enc_buftbl_limit; uint32_t enc_piobuf_limit; uint32_t enc_piobuf_size; uint32_t enc_piobuf_min_alloc_size; uint32_t enc_evq_timer_quantum_ns; uint32_t enc_evq_timer_max_us; uint32_t enc_clk_mult; uint32_t enc_rx_prefix_size; uint32_t enc_rx_buf_align_start; uint32_t enc_rx_buf_align_end; uint32_t enc_rx_scale_max_exclusive_contexts; #if EFSYS_OPT_LOOPBACK efx_qword_t enc_loopback_types[EFX_LINK_NMODES]; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t enc_phy_flags_mask; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL uint32_t enc_led_mask; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_STATS uint64_t enc_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_MCDI uint8_t enc_mcdi_mdio_channel; #if EFSYS_OPT_PHY_STATS uint32_t enc_mcdi_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_MON_STATS uint32_t *enc_mcdi_sensor_maskp; uint32_t enc_mcdi_sensor_mask_size; #endif /* EFSYS_OPT_MON_STATS */ #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_BIST uint32_t enc_bist_mask; #endif /* EFSYS_OPT_BIST */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD uint32_t enc_pf; uint32_t enc_vf; uint32_t enc_privilege_mask; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ boolean_t enc_bug26807_workaround; boolean_t enc_bug35388_workaround; boolean_t enc_bug41750_workaround; boolean_t enc_bug61265_workaround; boolean_t enc_rx_batching_enabled; /* Maximum number of descriptors completed in an rx event. */ uint32_t enc_rx_batch_max; /* Number of rx descriptors the hardware requires for a push. */ uint32_t enc_rx_push_align; /* Maximum amount of data in DMA descriptor */ uint32_t enc_tx_dma_desc_size_max; /* * Boundary which DMA descriptor data must not cross or 0 if no * limitation. */ uint32_t enc_tx_dma_desc_boundary; /* * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint32_t enc_tx_tso_tcp_header_offset_limit; boolean_t enc_fw_assisted_tso_enabled; boolean_t enc_fw_assisted_tso_v2_enabled; /* Number of TSO contexts on the NIC (FATSOv2) */ uint32_t enc_fw_assisted_tso_v2_n_contexts; boolean_t enc_hw_tx_insert_vlan_enabled; /* Number of PFs on the NIC */ uint32_t enc_hw_pf_count; /* Datapath firmware vadapter/vport/vswitch support */ boolean_t enc_datapath_cap_evb; boolean_t enc_rx_disable_scatter_supported; boolean_t enc_allow_set_mac_with_installed_filters; boolean_t enc_enhanced_set_mac_supported; boolean_t enc_init_evq_v2_supported; boolean_t enc_rx_packed_stream_supported; boolean_t enc_rx_var_packed_stream_supported; boolean_t enc_pm_and_rxdp_counters; boolean_t enc_mac_stats_40g_tx_size_bins; uint32_t enc_tunnel_encapsulations_supported; + /* + * NIC global maximum for unique UDP tunnel ports shared by all + * functions. + */ + uint32_t enc_tunnel_config_udp_entries_max; /* External port identifier */ uint8_t enc_external_port; uint32_t enc_mcdi_max_payload_length; /* VPD may be per-PF or global */ boolean_t enc_vpd_is_global; /* Minimum unidirectional bandwidth in Mb/s to max out all ports */ uint32_t enc_required_pcie_bandwidth_mbps; uint32_t enc_max_pcie_link_gen; /* Firmware verifies integrity of NVRAM updates */ uint32_t enc_nvram_update_verify_result_supported; } efx_nic_cfg_t; #define EFX_PCI_FUNCTION_IS_PF(_encp) ((_encp)->enc_vf == 0xffff) #define EFX_PCI_FUNCTION_IS_VF(_encp) ((_encp)->enc_vf != 0xffff) #define EFX_PCI_FUNCTION(_encp) \ (EFX_PCI_FUNCTION_IS_PF(_encp) ? (_encp)->enc_pf : (_encp)->enc_vf) #define EFX_PCI_VF_PARENT(_encp) ((_encp)->enc_pf) extern const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp); typedef struct efx_nic_fw_info_s { /* Basic FW version information */ uint16_t enfi_mc_fw_version[4]; /* * If datapath capabilities can be detected, * additional FW information is to be shown */ boolean_t enfi_dpcpu_fw_ids_valid; /* Rx and Tx datapath CPU FW IDs */ uint16_t enfi_rx_dpcpu_fw_id; uint16_t enfi_tx_dpcpu_fw_id; } efx_nic_fw_info_t; extern __checkReturn efx_rc_t efx_nic_get_fw_version( __in efx_nic_t *enp, __out efx_nic_fw_info_t *enfip); /* Driver resource limits (minimum required/maximum usable). */ typedef struct efx_drv_limits_s { uint32_t edl_min_evq_count; uint32_t edl_max_evq_count; uint32_t edl_min_rxq_count; uint32_t edl_max_rxq_count; uint32_t edl_min_txq_count; uint32_t edl_max_txq_count; /* PIO blocks (sub-allocated from piobuf) */ uint32_t edl_min_pio_alloc_size; uint32_t edl_max_pio_alloc_count; } efx_drv_limits_t; extern __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); typedef enum efx_nic_region_e { EFX_REGION_VI, /* Memory BAR UC mapping */ EFX_REGION_PIO_WRITE_VI, /* Memory BAR WC mapping */ } efx_nic_region_t; extern __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp); #if EFSYS_OPT_VPD typedef enum efx_vpd_tag_e { EFX_VPD_ID = 0x02, EFX_VPD_END = 0x0f, EFX_VPD_RO = 0x10, EFX_VPD_RW = 0x11, } efx_vpd_tag_t; typedef uint16_t efx_vpd_keyword_t; typedef struct efx_vpd_value_s { efx_vpd_tag_t evv_tag; efx_vpd_keyword_t evv_keyword; uint8_t evv_length; uint8_t evv_value[0x100]; } efx_vpd_value_t; #define EFX_VPD_KEYWORD(x, y) ((x) | ((y) << 8)) extern __checkReturn efx_rc_t efx_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_set( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_next( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* NVRAM */ #if EFSYS_OPT_NVRAM typedef enum efx_nvram_type_e { EFX_NVRAM_INVALID = 0, EFX_NVRAM_BOOTROM, EFX_NVRAM_BOOTROM_CFG, EFX_NVRAM_MC_FIRMWARE, EFX_NVRAM_MC_GOLDEN, EFX_NVRAM_PHY, EFX_NVRAM_NULLPHY, EFX_NVRAM_FPGA, EFX_NVRAM_FCFW, EFX_NVRAM_CPLD, EFX_NVRAM_FPGA_BACKUP, EFX_NVRAM_DYNAMIC_CFG, EFX_NVRAM_LICENSE, EFX_NVRAM_UEFIROM, EFX_NVRAM_MUM_FIRMWARE, EFX_NVRAM_NTYPES, } efx_nvram_type_t; extern __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *pref_chunkp); extern __checkReturn efx_rc_t efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt uint32_t *verify_resultp); extern __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_read_backup( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_validate( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size); extern __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_nvram_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_BOOTCFG /* Report size and offset of bootcfg sector in NVRAM partition. */ extern __checkReturn efx_rc_t efx_bootcfg_sector_info( __in efx_nic_t *enp, __in uint32_t pf, __out_opt uint32_t *sector_countp, __out size_t *offsetp, __out size_t *max_sizep); /* * Copy bootcfg sector data to a target buffer which may differ in size. * Optionally corrects format errors in source buffer. */ extern efx_rc_t efx_bootcfg_copy_sector( __in efx_nic_t *enp, __inout_bcount(sector_length) uint8_t *sector, __in size_t sector_length, __out_bcount(data_size) uint8_t *data, __in size_t data_size, __in boolean_t handle_format_errors); extern efx_rc_t efx_bootcfg_read( __in efx_nic_t *enp, __out_bcount(size) uint8_t *data, __in size_t size); extern efx_rc_t efx_bootcfg_write( __in efx_nic_t *enp, __in_bcount(size) uint8_t *data, __in size_t size); #endif /* EFSYS_OPT_BOOTCFG */ #if EFSYS_OPT_DIAG typedef enum efx_pattern_type_t { EFX_PATTERN_BYTE_INCREMENT = 0, EFX_PATTERN_ALL_THE_SAME, EFX_PATTERN_BIT_ALTERNATE, EFX_PATTERN_BYTE_ALTERNATE, EFX_PATTERN_BYTE_CHANGING, EFX_PATTERN_BIT_SWEEP, EFX_PATTERN_NTYPES } efx_pattern_type_t; typedef void (*efx_sram_pattern_fn_t)( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp); extern __checkReturn efx_rc_t efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n); extern void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n); #define EFX_BUF_TBL_SIZE 0x20000 #define EFX_BUF_SIZE 4096 /* EV */ typedef struct efx_evq_s efx_evq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderEventQueueBlock 6f3843f5fe7cc843 */ typedef enum efx_ev_qstat_e { EV_ALL, EV_RX, EV_RX_OK, EV_RX_FRM_TRUNC, EV_RX_TOBE_DISC, EV_RX_PAUSE_FRM_ERR, EV_RX_BUF_OWNER_ID_ERR, EV_RX_IPV4_HDR_CHKSUM_ERR, EV_RX_TCP_UDP_CHKSUM_ERR, EV_RX_ETH_CRC_ERR, EV_RX_IP_FRAG_ERR, EV_RX_MCAST_PKT, EV_RX_MCAST_HASH_MATCH, EV_RX_TCP_IPV4, EV_RX_TCP_IPV6, EV_RX_UDP_IPV4, EV_RX_UDP_IPV6, EV_RX_OTHER_IPV4, EV_RX_OTHER_IPV6, EV_RX_NON_IP, EV_RX_BATCH, EV_TX, EV_TX_WQ_FF_FULL, EV_TX_PKT_ERR, EV_TX_PKT_TOO_BIG, EV_TX_UNEXPECTED, EV_GLOBAL, EV_GLOBAL_MNT, EV_DRIVER, EV_DRIVER_SRM_UPD_DONE, EV_DRIVER_TX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_FAILED, EV_DRIVER_RX_DSC_ERROR, EV_DRIVER_TX_DSC_ERROR, EV_DRV_GEN, EV_MCDI_RESPONSE, EV_NQSTATS } efx_ev_qstat_t; /* END MKCONFIG GENERATED EfxHeaderEventQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp); extern void efx_ev_fini( __in efx_nic_t *enp); #define EFX_EVQ_MAXNEVS 32768 #define EFX_EVQ_MINNEVS 512 #define EFX_EVQ_SIZE(_nevs) ((_nevs) * sizeof (efx_qword_t)) #define EFX_EVQ_NBUFS(_nevs) (EFX_EVQ_SIZE(_nevs) / EFX_BUF_SIZE) #define EFX_EVQ_FLAGS_TYPE_MASK (0x3) #define EFX_EVQ_FLAGS_TYPE_AUTO (0x0) #define EFX_EVQ_FLAGS_TYPE_THROUGHPUT (0x1) #define EFX_EVQ_FLAGS_TYPE_LOW_LATENCY (0x2) #define EFX_EVQ_FLAGS_NOTIFY_MASK (0xC) #define EFX_EVQ_FLAGS_NOTIFY_INTERRUPT (0x0) /* Interrupting (default) */ #define EFX_EVQ_FLAGS_NOTIFY_DISABLED (0x4) /* Non-interrupting */ extern __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in uint32_t us, __in uint32_t flags, __deref_out efx_evq_t **eepp); extern void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); typedef __checkReturn boolean_t (*efx_initialized_ev_t)( __in_opt void *arg); #define EFX_PKT_UNICAST 0x0004 #define EFX_PKT_START 0x0008 #define EFX_PKT_VLAN_TAGGED 0x0010 #define EFX_CKSUM_TCPUDP 0x0020 #define EFX_CKSUM_IPV4 0x0040 #define EFX_PKT_CONT 0x0080 #define EFX_CHECK_VLAN 0x0100 #define EFX_PKT_TCP 0x0200 #define EFX_PKT_UDP 0x0400 #define EFX_PKT_IPV4 0x0800 #define EFX_PKT_IPV6 0x1000 #define EFX_PKT_PREFIX_LEN 0x2000 #define EFX_ADDR_MISMATCH 0x4000 #define EFX_DISCARD 0x8000 /* * The following flags are used only for packed stream * mode. The values for the flags are reused to fit into 16 bit, * since EFX_PKT_START and EFX_PKT_CONT are never used in * packed stream mode */ #define EFX_PKT_PACKED_STREAM_NEW_BUFFER EFX_PKT_START #define EFX_PKT_PACKED_STREAM_PARSE_INCOMPLETE EFX_PKT_CONT #define EFX_EV_RX_NLABELS 32 #define EFX_EV_TX_NLABELS 32 typedef __checkReturn boolean_t (*efx_rx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t size, __in uint16_t flags); #if EFSYS_OPT_RX_PACKED_STREAM /* * Packed stream mode is documented in SF-112241-TC. * The general idea is that, instead of putting each incoming * packet into a separate buffer which is specified in a RX * descriptor, a large buffer is provided to the hardware and * packets are put there in a continuous stream. * The main advantage of such an approach is that RX queue refilling * happens much less frequently. */ typedef __checkReturn boolean_t (*efx_rx_ps_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t pkt_count, __in uint16_t flags); #endif typedef __checkReturn boolean_t (*efx_tx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id); #define EFX_EXCEPTION_RX_RECOVERY 0x00000001 #define EFX_EXCEPTION_RX_DSC_ERROR 0x00000002 #define EFX_EXCEPTION_TX_DSC_ERROR 0x00000003 #define EFX_EXCEPTION_UNKNOWN_SENSOREVT 0x00000004 #define EFX_EXCEPTION_FWALERT_SRAM 0x00000005 #define EFX_EXCEPTION_UNKNOWN_FWALERT 0x00000006 #define EFX_EXCEPTION_RX_ERROR 0x00000007 #define EFX_EXCEPTION_TX_ERROR 0x00000008 #define EFX_EXCEPTION_EV_ERROR 0x00000009 typedef __checkReturn boolean_t (*efx_exception_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t data); typedef __checkReturn boolean_t (*efx_rxq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_rxq_flush_failed_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_txq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t txq_index); typedef __checkReturn boolean_t (*efx_software_ev_t)( __in_opt void *arg, __in uint16_t magic); typedef __checkReturn boolean_t (*efx_sram_ev_t)( __in_opt void *arg, __in uint32_t code); #define EFX_SRAM_CLEAR 0 #define EFX_SRAM_UPDATE 1 #define EFX_SRAM_ILLEGAL_CLEAR 2 typedef __checkReturn boolean_t (*efx_wake_up_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_timer_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_link_change_ev_t)( __in_opt void *arg, __in efx_link_mode_t link_mode); #if EFSYS_OPT_MON_STATS typedef __checkReturn boolean_t (*efx_monitor_ev_t)( __in_opt void *arg, __in efx_mon_stat_t id, __in efx_mon_stat_value_t value); #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS typedef __checkReturn boolean_t (*efx_mac_stats_ev_t)( __in_opt void *arg, __in uint32_t generation); #endif /* EFSYS_OPT_MAC_STATS */ typedef struct efx_ev_callbacks_s { efx_initialized_ev_t eec_initialized; efx_rx_ev_t eec_rx; #if EFSYS_OPT_RX_PACKED_STREAM efx_rx_ps_ev_t eec_rx_ps; #endif efx_tx_ev_t eec_tx; efx_exception_ev_t eec_exception; efx_rxq_flush_done_ev_t eec_rxq_flush_done; efx_rxq_flush_failed_ev_t eec_rxq_flush_failed; efx_txq_flush_done_ev_t eec_txq_flush_done; efx_software_ev_t eec_software; efx_sram_ev_t eec_sram; efx_wake_up_ev_t eec_wake_up; efx_timer_ev_t eec_timer; efx_link_change_ev_t eec_link_change; #if EFSYS_OPT_MON_STATS efx_monitor_ev_t eec_monitor; #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS efx_mac_stats_ev_t eec_mac_stats; #endif /* EFSYS_OPT_MAC_STATS */ } efx_ev_callbacks_t; extern __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_EV_PREFETCH extern void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count); #endif /* EFSYS_OPT_EV_PREFETCH */ extern void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); extern __checkReturn efx_rc_t efx_ev_usecs_to_ticks( __in efx_nic_t *enp, __in unsigned int usecs, __out unsigned int *ticksp); extern __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); extern __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_ev_qdestroy( __in efx_evq_t *eep); /* RX */ extern __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp); extern void efx_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ /* Handle to represent use of the default RSS context. */ #define EFX_RSS_CONTEXT_DEFAULT 0xffffffff #if EFSYS_OPT_RX_SCALE typedef enum efx_rx_hash_alg_e { EFX_RX_HASHALG_LFSR = 0, EFX_RX_HASHALG_TOEPLITZ } efx_rx_hash_alg_t; #define EFX_RX_HASH_IPV4 (1U << 0) #define EFX_RX_HASH_TCPIPV4 (1U << 1) #define EFX_RX_HASH_IPV6 (1U << 2) #define EFX_RX_HASH_TCPIPV6 (1U << 3) typedef unsigned int efx_rx_hash_type_t; typedef enum efx_rx_hash_support_e { EFX_RX_HASH_UNAVAILABLE = 0, /* Hardware hash not inserted */ EFX_RX_HASH_AVAILABLE /* Insert hash with/without RSS */ } efx_rx_hash_support_t; #define EFX_RSS_KEY_SIZE 40 /* RSS key size (bytes) */ #define EFX_RSS_TBL_SIZE 128 /* Rows in RX indirection table */ #define EFX_MAXRSS 64 /* RX indirection entry range */ #define EFX_MAXRSS_LEGACY 16 /* See bug16611 and bug17213 */ typedef enum efx_rx_scale_context_type_e { EFX_RX_SCALE_UNAVAILABLE = 0, /* No RX scale context */ EFX_RX_SCALE_EXCLUSIVE, /* Writable key/indirection table */ EFX_RX_SCALE_SHARED /* Read-only key/indirection table */ } efx_rx_scale_context_type_t; extern __checkReturn efx_rc_t efx_rx_hash_default_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_default_support_get( __in efx_nic_t *enp, __out efx_rx_scale_context_type_t *typep); extern __checkReturn efx_rc_t efx_rx_scale_context_alloc( __in efx_nic_t *enp, __in efx_rx_scale_context_type_t type, __in uint32_t num_queues, __out uint32_t *rss_contextp); extern __checkReturn efx_rc_t efx_rx_scale_context_free( __in efx_nic_t *enp, __in uint32_t rss_context); extern __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) uint8_t *key, __in size_t n); extern __checkReturn uint32_t efx_pseudo_hdr_hash_get( __in efx_rxq_t *erp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t efx_pseudo_hdr_pkt_length_get( __in efx_rxq_t *erp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp); #define EFX_RXQ_MAXNDESCS 4096 #define EFX_RXQ_MINNDESCS 512 #define EFX_RXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_RXQ_NBUFS(_ndescs) (EFX_RXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_RXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_RXQ_DC_NDESCS(_dcsize) (8 << _dcsize) typedef enum efx_rxq_type_e { EFX_RXQ_TYPE_DEFAULT, EFX_RXQ_TYPE_PACKED_STREAM, EFX_RXQ_NTYPES } efx_rxq_type_t; /* * Dummy flag to be used instead of 0 to make it clear that the argument * is receive queue flags. */ #define EFX_RXQ_FLAG_NONE 0x0 #define EFX_RXQ_FLAG_SCATTER 0x1 /* * If tunnels are supported and Rx event can provide information about * either outer or inner packet classes (e.g. SFN8xxx adapters with * full-feature firmware variant running), outer classes are requested by * default. However, if the driver supports tunnels, the flag allows to * request inner classes which are required to be able to interpret inner * Rx checksum offload results. */ #define EFX_RXQ_FLAG_INNER_CLASSES 0x2 extern __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in unsigned int flags, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); #if EFSYS_OPT_RX_PACKED_STREAM #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_1M (1U * 1024 * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_512K (512U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_256K (256U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_128K (128U * 1024) #define EFX_RXQ_PACKED_STREAM_BUF_SIZE_64K (64U * 1024) extern __checkReturn efx_rc_t efx_rx_qcreate_packed_stream( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in uint32_t ps_buf_size, __in efsys_mem_t *esmp, __in size_t ndescs, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); #endif typedef struct efx_buffer_s { efsys_dma_addr_t eb_addr; size_t eb_size; boolean_t eb_eop; } efx_buffer_t; typedef struct efx_desc_s { efx_qword_t ed_eq; } efx_desc_t; extern void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(ndescs) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int ndescs, __in unsigned int completed, __in unsigned int added); extern void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); #if EFSYS_OPT_RX_PACKED_STREAM extern void efx_rx_qpush_ps_credits( __in efx_rxq_t *erp); extern __checkReturn uint8_t * efx_rx_qps_packet_info( __in efx_rxq_t *erp, __in uint8_t *buffer, __in uint32_t buffer_length, __in uint32_t current_offset, __out uint16_t *lengthp, __out uint32_t *next_offsetp, __out uint32_t *timestamp); #endif extern __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp); extern void efx_rx_qenable( __in efx_rxq_t *erp); extern void efx_rx_qdestroy( __in efx_rxq_t *erp); /* TX */ typedef struct efx_txq_s efx_txq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderTransmitQueueBlock 12dff8778598b2db */ typedef enum efx_tx_qstat_e { TX_POST, TX_POST_PIO, TX_NQSTATS } efx_tx_qstat_t; /* END MKCONFIG GENERATED EfxHeaderTransmitQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_tx_init( __in efx_nic_t *enp); extern void efx_tx_fini( __in efx_nic_t *enp); #define EFX_TXQ_MINNDESCS 512 #define EFX_TXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_TXQ_NBUFS(_ndescs) (EFX_TXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_TXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_TXQ_MAX_BUFS 8 /* Maximum independent of EFX_BUG35388_WORKAROUND. */ #define EFX_TXQ_CKSUM_IPV4 0x0001 #define EFX_TXQ_CKSUM_TCPUDP 0x0002 #define EFX_TXQ_FATSOV2 0x0004 #define EFX_TXQ_CKSUM_INNER_IPV4 0x0008 #define EFX_TXQ_CKSUM_INNER_TCPUDP 0x0010 extern __checkReturn efx_rc_t efx_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __deref_out efx_txq_t **etpp, __out unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpost( __in efx_txq_t *etp, __in_ecount(ndescs) efx_buffer_t *eb, __in unsigned int ndescs, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern void efx_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t efx_tx_qflush( __in efx_txq_t *etp); extern void efx_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_enable( __in efx_txq_t *etp); extern void efx_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t efx_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void efx_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void efx_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); /* Number of FATSOv2 option descriptors */ #define EFX_TX_FATSOV2_OPT_NDESCS 2 /* Maximum number of DMA segments per TSO packet (not superframe) */ #define EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX 24 extern void efx_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count); extern void efx_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_tx_qstat_name( __in efx_nic_t *etp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_tx_qdestroy( __in efx_txq_t *etp); /* FILTER */ #if EFSYS_OPT_FILTER #define EFX_ETHER_TYPE_IPV4 0x0800 #define EFX_ETHER_TYPE_IPV6 0x86DD #define EFX_IPPROTO_TCP 6 #define EFX_IPPROTO_UDP 17 #define EFX_IPPROTO_GRE 47 /* Use RSS to spread across multiple queues */ #define EFX_FILTER_FLAG_RX_RSS 0x01 /* Enable RX scatter */ #define EFX_FILTER_FLAG_RX_SCATTER 0x02 /* * Override an automatic filter (priority EFX_FILTER_PRI_AUTO). * May only be set by the filter implementation for each type. * A removal request will restore the automatic filter in its place. */ #define EFX_FILTER_FLAG_RX_OVER_AUTO 0x04 /* Filter is for RX */ #define EFX_FILTER_FLAG_RX 0x08 /* Filter is for TX */ #define EFX_FILTER_FLAG_TX 0x10 typedef uint8_t efx_filter_flags_t; /* * Flags which specify the fields to match on. The values are the same as in the * MC_CMD_FILTER_OP/MC_CMD_FILTER_OP_EXT commands. */ /* Match by remote IP host address */ #define EFX_FILTER_MATCH_REM_HOST 0x00000001 /* Match by local IP host address */ #define EFX_FILTER_MATCH_LOC_HOST 0x00000002 /* Match by remote MAC address */ #define EFX_FILTER_MATCH_REM_MAC 0x00000004 /* Match by remote TCP/UDP port */ #define EFX_FILTER_MATCH_REM_PORT 0x00000008 /* Match by remote TCP/UDP port */ #define EFX_FILTER_MATCH_LOC_MAC 0x00000010 /* Match by local TCP/UDP port */ #define EFX_FILTER_MATCH_LOC_PORT 0x00000020 /* Match by Ether-type */ #define EFX_FILTER_MATCH_ETHER_TYPE 0x00000040 /* Match by inner VLAN ID */ #define EFX_FILTER_MATCH_INNER_VID 0x00000080 /* Match by outer VLAN ID */ #define EFX_FILTER_MATCH_OUTER_VID 0x00000100 /* Match by IP transport protocol */ #define EFX_FILTER_MATCH_IP_PROTO 0x00000200 /* For encapsulated packets, match all multicast inner frames */ #define EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 0x01000000 /* For encapsulated packets, match all unicast inner frames */ #define EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST 0x02000000 /* Match otherwise-unmatched multicast and broadcast packets */ #define EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 0x40000000 /* Match otherwise-unmatched unicast packets */ #define EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 0x80000000 typedef uint32_t efx_filter_match_flags_t; typedef enum efx_filter_priority_s { EFX_FILTER_PRI_HINT = 0, /* Performance hint */ EFX_FILTER_PRI_AUTO, /* Automatic filter based on device * address list or hardware * requirements. This may only be used * by the filter implementation for * each NIC type. */ EFX_FILTER_PRI_MANUAL, /* Manually configured filter */ EFX_FILTER_PRI_REQUIRED, /* Required for correct behaviour of the * client (e.g. SR-IOV, HyperV VMQ etc.) */ } efx_filter_priority_t; /* * FIXME: All these fields are assumed to be in little-endian byte order. * It may be better for some to be big-endian. See bug42804. */ typedef struct efx_filter_spec_s { efx_filter_match_flags_t efs_match_flags; uint8_t efs_priority; efx_filter_flags_t efs_flags; uint16_t efs_dmaq_id; uint32_t efs_rss_context; uint16_t efs_outer_vid; uint16_t efs_inner_vid; uint8_t efs_loc_mac[EFX_MAC_ADDR_LEN]; uint8_t efs_rem_mac[EFX_MAC_ADDR_LEN]; uint16_t efs_ether_type; uint8_t efs_ip_proto; efx_tunnel_protocol_t efs_encap_type; uint16_t efs_loc_port; uint16_t efs_rem_port; efx_oword_t efs_rem_host; efx_oword_t efs_loc_host; } efx_filter_spec_t; /* Default values for use in filter specifications */ #define EFX_FILTER_SPEC_RX_DMAQ_ID_DROP 0xfff #define EFX_FILTER_SPEC_VID_UNSPEC 0xffff extern __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp); extern void efx_filter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out_ecount(buffer_length) uint32_t *buffer, __in size_t buffer_length, __out size_t *list_lengthp); extern void efx_filter_spec_init_rx( __out efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flags_t flags, __in efx_rxq_t *erp); extern void efx_filter_spec_init_tx( __out efx_filter_spec_t *spec, __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport); extern __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr); extern void efx_filter_spec_set_ether_type( __inout efx_filter_spec_t *spec, __in uint16_t ether_type); extern __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec); typedef enum efx_filter_inner_frame_match_e { EFX_FILTER_INNER_FRAME_MATCH_OTHER = 0, EFX_FILTER_INNER_FRAME_MATCH_UNKNOWN_MCAST_DST, EFX_FILTER_INNER_FRAME_MATCH_UNKNOWN_UCAST_DST } efx_filter_inner_frame_match_t; extern __checkReturn efx_rc_t efx_filter_spec_set_encap_type( __inout efx_filter_spec_t *spec, __in efx_tunnel_protocol_t encap_type, __in efx_filter_inner_frame_match_t inner_frame_match); #if EFSYS_OPT_RX_SCALE extern __checkReturn efx_rc_t efx_filter_spec_set_rss_context( __inout efx_filter_spec_t *spec, __in uint32_t rss_context); #endif #endif /* EFSYS_OPT_FILTER */ /* HASH */ extern __checkReturn uint32_t efx_hash_dwords( __in_ecount(count) uint32_t const *input, __in size_t count, __in uint32_t init); extern __checkReturn uint32_t efx_hash_bytes( __in_ecount(length) uint8_t const *input, __in size_t length, __in uint32_t init); #if EFSYS_OPT_LICENSING /* LICENSING */ typedef struct efx_key_stats_s { uint32_t eks_valid; uint32_t eks_invalid; uint32_t eks_blacklisted; uint32_t eks_unverifiable; uint32_t eks_wrong_node; uint32_t eks_licensed_apps_lo; uint32_t eks_licensed_apps_hi; uint32_t eks_licensed_features_lo; uint32_t eks_licensed_features_hi; } efx_key_stats_t; extern __checkReturn efx_rc_t efx_lic_init( __in efx_nic_t *enp); extern void efx_lic_fini( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_lic_check_support( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_update_licenses( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_get_key_stats( __in efx_nic_t *enp, __out efx_key_stats_t *ksp); extern __checkReturn efx_rc_t efx_lic_app_state( __in efx_nic_t *enp, __in uint64_t app_id, __out boolean_t *licensedp); extern __checkReturn efx_rc_t efx_lic_get_id( __in efx_nic_t *enp, __in size_t buffer_size, __out uint32_t *typep, __out size_t *lengthp, __out_opt uint8_t *bufferp); extern __checkReturn efx_rc_t efx_lic_find_start( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __out uint32_t *startp); extern __checkReturn efx_rc_t efx_lic_find_end( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *endp); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_find_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *startp, __out uint32_t *lengthp); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_validate_key( __in efx_nic_t *enp, __in_bcount(length) caddr_t keyp, __in uint32_t length); extern __checkReturn efx_rc_t efx_lic_read_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __out_bcount_part(key_max_size, *lengthp) caddr_t keyp, __in size_t key_max_size, __out uint32_t *lengthp); extern __checkReturn efx_rc_t efx_lic_write_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in_bcount(length) caddr_t keyp, __in uint32_t length, __out uint32_t *lengthp); __checkReturn efx_rc_t efx_lic_delete_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __in uint32_t end, __out uint32_t *deltap); extern __checkReturn efx_rc_t efx_lic_create_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); extern __checkReturn efx_rc_t efx_lic_finish_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); #endif /* EFSYS_OPT_LICENSING */ +/* TUNNEL */ + +#if EFSYS_OPT_TUNNEL + +extern __checkReturn efx_rc_t +efx_tunnel_init( + __in efx_nic_t *enp); + +extern void +efx_tunnel_fini( + __in efx_nic_t *enp); + +/* + * For overlay network encapsulation using UDP, the firmware needs to know + * the configured UDP port for the overlay so it can decode encapsulated + * frames correctly. + * The UDP port/protocol list is global. + */ + +extern __checkReturn efx_rc_t +efx_tunnel_config_udp_add( + __in efx_nic_t *enp, + __in uint16_t port /* host/cpu-endian */, + __in efx_tunnel_protocol_t protocol); + +extern __checkReturn efx_rc_t +efx_tunnel_config_udp_remove( + __in efx_nic_t *enp, + __in uint16_t port /* host/cpu-endian */, + __in efx_tunnel_protocol_t protocol); + +extern void +efx_tunnel_config_clear( + __in efx_nic_t *enp); + +/** + * Apply tunnel UDP ports configuration to hardware. + * + * EAGAIN is returned if hardware will be reset (datapath and management CPU + * reboot). + */ +extern __checkReturn efx_rc_t +efx_tunnel_reconfigure( + __in efx_nic_t *enp); + +#endif /* EFSYS_OPT_TUNNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_EFX_H */ Index: head/sys/dev/sfxge/common/efx_check.h =================================================================== --- head/sys/dev/sfxge/common/efx_check.h (revision 340927) +++ head/sys/dev/sfxge/common/efx_check.h (revision 340928) @@ -1,349 +1,356 @@ /*- * Copyright (c) 2012-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_CHECK_H #define _SYS_EFX_CHECK_H #include "efsys.h" /* * Check that the efsys.h header in client code has a valid combination of * EFSYS_OPT_xxx options. * * NOTE: Keep checks for obsolete options here to ensure that they are removed * from client code (and do not reappear in merges from other branches). */ #ifdef EFSYS_OPT_FALCON # error "FALCON is obsolete and is not supported." #endif /* Support NVRAM based boot config */ #if EFSYS_OPT_BOOTCFG # if !EFSYS_OPT_NVRAM # error "BOOTCFG requires NVRAM" # endif #endif /* EFSYS_OPT_BOOTCFG */ /* Verify chip implements accessed registers */ #if EFSYS_OPT_CHECK_REG # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "CHECK_REG requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_CHECK_REG */ /* Decode fatal errors */ #if EFSYS_OPT_DECODE_INTR_FATAL # if !EFSYS_OPT_SIENA # error "INTR_FATAL requires SIENA" # endif #endif /* EFSYS_OPT_DECODE_INTR_FATAL */ /* Support diagnostic hardware tests */ #if EFSYS_OPT_DIAG # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "DIAG requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_DIAG */ /* Support optimized EVQ data access */ #if EFSYS_OPT_EV_PREFETCH # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "EV_PREFETCH requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_EV_PREFETCH */ #ifdef EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE # error "FALCON_NIC_CFG_OVERRIDE is obsolete and is not supported." #endif /* Support hardware packet filters */ #if EFSYS_OPT_FILTER # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "FILTER requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_FILTER */ #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # if !EFSYS_OPT_FILTER # error "HUNTINGTON or MEDFORD requires FILTER" # endif #endif /* EFSYS_OPT_HUNTINGTON */ /* Support hardware loopback modes */ #if EFSYS_OPT_LOOPBACK # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "LOOPBACK requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_LOOPBACK */ #ifdef EFSYS_OPT_MAC_FALCON_GMAC # error "MAC_FALCON_GMAC is obsolete and is not supported." #endif #ifdef EFSYS_OPT_MAC_FALCON_XMAC # error "MAC_FALCON_XMAC is obsolete and is not supported." #endif /* Support MAC statistics */ #if EFSYS_OPT_MAC_STATS # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MAC_STATS requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MAC_STATS */ /* Support management controller messages */ #if EFSYS_OPT_MCDI # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MCDI requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MCDI */ #if (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # if !EFSYS_OPT_MCDI # error "SIENA or HUNTINGTON or MEDFORD requires MCDI" # endif #endif /* Support MCDI logging */ #if EFSYS_OPT_MCDI_LOGGING # if !EFSYS_OPT_MCDI # error "MCDI_LOGGING requires MCDI" # endif #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Support MCDI proxy authorization */ #if EFSYS_OPT_MCDI_PROXY_AUTH # if !EFSYS_OPT_MCDI # error "MCDI_PROXY_AUTH requires MCDI" # endif #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ #ifdef EFSYS_OPT_MON_LM87 # error "MON_LM87 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_MON_MAX6647 # error "MON_MAX6647 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_MON_NULL # error "MON_NULL is obsolete and is not supported." #endif #ifdef EFSYS_OPT_MON_SIENA # error "MON_SIENA is obsolete (replaced by MON_MCDI)." #endif #ifdef EFSYS_OPT_MON_HUNTINGTON # error "MON_HUNTINGTON is obsolete (replaced by MON_MCDI)." #endif /* Support monitor statistics (voltage/temperature) */ #if EFSYS_OPT_MON_STATS # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MON_STATS requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MON_STATS */ /* Support Monitor via mcdi */ #if EFSYS_OPT_MON_MCDI # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MON_MCDI requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MON_MCDI*/ /* Support printable names for statistics */ #if EFSYS_OPT_NAMES # if !(EFSYS_OPT_LOOPBACK || EFSYS_OPT_MAC_STATS || EFSYS_OPT_MCDI || \ EFSYS_MON_STATS || EFSYS_OPT_PHY_STATS || EFSYS_OPT_QSTATS) # error "NAMES requires LOOPBACK or xxxSTATS or MCDI" # endif #endif /* EFSYS_OPT_NAMES */ /* Support non volatile configuration */ #if EFSYS_OPT_NVRAM # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "NVRAM requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_NVRAM */ #ifdef EFSYS_OPT_NVRAM_FALCON_BOOTROM # error "NVRAM_FALCON_BOOTROM is obsolete and is not supported." #endif #ifdef EFSYS_OPT_NVRAM_SFT9001 # error "NVRAM_SFT9001 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_NVRAM_SFX7101 # error "NVRAM_SFX7101 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PCIE_TUNE # error "PCIE_TUNE is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_BIST # error "PHY_BIST is obsolete (replaced by BIST)." #endif /* Support PHY flags */ #if EFSYS_OPT_PHY_FLAGS # if !EFSYS_OPT_SIENA # error "PHY_FLAGS requires SIENA" # endif #endif /* EFSYS_OPT_PHY_FLAGS */ /* Support for PHY LED control */ #if EFSYS_OPT_PHY_LED_CONTROL # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "PHY_LED_CONTROL requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #ifdef EFSYS_OPT_PHY_NULL # error "PHY_NULL is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_PM8358 # error "PHY_PM8358 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_PROPS # error "PHY_PROPS is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_QT2022C2 # error "PHY_QT2022C2 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_QT2025C # error "PHY_QT2025C is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_SFT9001 # error "PHY_SFT9001 is obsolete and is not supported." #endif #ifdef EFSYS_OPT_PHY_SFX7101 # error "PHY_SFX7101 is obsolete and is not supported." #endif /* Support PHY statistics */ #if EFSYS_OPT_PHY_STATS # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "PHY_STATS requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_PHY_STATS */ #ifdef EFSYS_OPT_PHY_TXC43128 # error "PHY_TXC43128 is obsolete and is not supported." #endif /* Support EVQ/RXQ/TXQ statistics */ #if EFSYS_OPT_QSTATS # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "QSTATS requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_QSTATS */ #ifdef EFSYS_OPT_RX_HDR_SPLIT # error "RX_HDR_SPLIT is obsolete and is not supported" #endif /* Support receive scaling (RSS) */ #if EFSYS_OPT_RX_SCALE # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "RX_SCALE requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_RX_SCALE */ /* Support receive scatter DMA */ #if EFSYS_OPT_RX_SCATTER # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "RX_SCATTER requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_RX_SCATTER */ #ifdef EFSYS_OPT_STAT_NAME # error "STAT_NAME is obsolete (replaced by NAMES)." #endif /* Support PCI Vital Product Data (VPD) */ #if EFSYS_OPT_VPD # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "VPD requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_VPD */ /* Support Wake on LAN */ #ifdef EFSYS_OPT_WOL # error "WOL is obsolete and is not supported" #endif /* EFSYS_OPT_WOL */ #ifdef EFSYS_OPT_MCAST_FILTER_LIST # error "MCAST_FILTER_LIST is obsolete and is not supported" #endif /* Support BIST */ #if EFSYS_OPT_BIST # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "BIST requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_BIST */ /* Support MCDI licensing API */ #if EFSYS_OPT_LICENSING # if !EFSYS_OPT_MCDI # error "LICENSING requires MCDI" # endif # if !EFSYS_HAS_UINT64 # error "LICENSING requires UINT64" # endif #endif /* EFSYS_OPT_LICENSING */ /* Support adapters with missing static config (for factory use only) */ #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC # if !EFSYS_OPT_MEDFORD # error "ALLOW_UNCONFIGURED_NIC requires MEDFORD" # endif #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */ /* Support packed stream mode */ #if EFSYS_OPT_RX_PACKED_STREAM # if !(EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "PACKED_STREAM requires HUNTINGTON or MEDFORD" # endif #endif +/* Support hardware assistance for tunnels */ +#if EFSYS_OPT_TUNNEL +# if !EFSYS_OPT_MEDFORD +# error "TUNNEL requires MEDFORD" +# endif +#endif /* EFSYS_OPT_TUNNEL */ + #endif /* _SYS_EFX_CHECK_H */ Index: head/sys/dev/sfxge/common/efx_impl.h =================================================================== --- head/sys/dev/sfxge/common/efx_impl.h (revision 340927) +++ head/sys/dev/sfxge/common/efx_impl.h (revision 340928) @@ -1,1182 +1,1209 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_IMPL_H #define _SYS_EFX_IMPL_H #include "efx.h" #include "efx_regs.h" #include "efx_regs_ef10.h" /* FIXME: Add definition for driver generated software events */ #ifndef ESE_DZ_EV_CODE_DRV_GEN_EV #define ESE_DZ_EV_CODE_DRV_GEN_EV FSE_AZ_EV_CODE_DRV_GEN_EV #endif #if EFSYS_OPT_SIENA #include "siena_impl.h" #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON #include "hunt_impl.h" #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD #include "medford_impl.h" #endif /* EFSYS_OPT_MEDFORD */ #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) #include "ef10_impl.h" #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ #ifdef __cplusplus extern "C" { #endif #define EFX_MOD_MCDI 0x00000001 #define EFX_MOD_PROBE 0x00000002 #define EFX_MOD_NVRAM 0x00000004 #define EFX_MOD_VPD 0x00000008 #define EFX_MOD_NIC 0x00000010 #define EFX_MOD_INTR 0x00000020 #define EFX_MOD_EV 0x00000040 #define EFX_MOD_RX 0x00000080 #define EFX_MOD_TX 0x00000100 #define EFX_MOD_PORT 0x00000200 #define EFX_MOD_MON 0x00000400 #define EFX_MOD_FILTER 0x00001000 #define EFX_MOD_LIC 0x00002000 +#define EFX_MOD_TUNNEL 0x00004000 #define EFX_RESET_PHY 0x00000001 #define EFX_RESET_RXQ_ERR 0x00000002 #define EFX_RESET_TXQ_ERR 0x00000004 typedef enum efx_mac_type_e { EFX_MAC_INVALID = 0, EFX_MAC_SIENA, EFX_MAC_HUNTINGTON, EFX_MAC_MEDFORD, EFX_MAC_NTYPES } efx_mac_type_t; typedef struct efx_ev_ops_s { efx_rc_t (*eevo_init)(efx_nic_t *); void (*eevo_fini)(efx_nic_t *); efx_rc_t (*eevo_qcreate)(efx_nic_t *, unsigned int, efsys_mem_t *, size_t, uint32_t, uint32_t, uint32_t, efx_evq_t *); void (*eevo_qdestroy)(efx_evq_t *); efx_rc_t (*eevo_qprime)(efx_evq_t *, unsigned int); void (*eevo_qpost)(efx_evq_t *, uint16_t); efx_rc_t (*eevo_qmoderate)(efx_evq_t *, unsigned int); #if EFSYS_OPT_QSTATS void (*eevo_qstats_update)(efx_evq_t *, efsys_stat_t *); #endif } efx_ev_ops_t; typedef struct efx_tx_ops_s { efx_rc_t (*etxo_init)(efx_nic_t *); void (*etxo_fini)(efx_nic_t *); efx_rc_t (*etxo_qcreate)(efx_nic_t *, unsigned int, unsigned int, efsys_mem_t *, size_t, uint32_t, uint16_t, efx_evq_t *, efx_txq_t *, unsigned int *); void (*etxo_qdestroy)(efx_txq_t *); efx_rc_t (*etxo_qpost)(efx_txq_t *, efx_buffer_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qpush)(efx_txq_t *, unsigned int, unsigned int); efx_rc_t (*etxo_qpace)(efx_txq_t *, unsigned int); efx_rc_t (*etxo_qflush)(efx_txq_t *); void (*etxo_qenable)(efx_txq_t *); efx_rc_t (*etxo_qpio_enable)(efx_txq_t *); void (*etxo_qpio_disable)(efx_txq_t *); efx_rc_t (*etxo_qpio_write)(efx_txq_t *, uint8_t *, size_t, size_t); efx_rc_t (*etxo_qpio_post)(efx_txq_t *, size_t, unsigned int, unsigned int *); efx_rc_t (*etxo_qdesc_post)(efx_txq_t *, efx_desc_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qdesc_dma_create)(efx_txq_t *, efsys_dma_addr_t, size_t, boolean_t, efx_desc_t *); void (*etxo_qdesc_tso_create)(efx_txq_t *, uint16_t, uint32_t, uint8_t, efx_desc_t *); void (*etxo_qdesc_tso2_create)(efx_txq_t *, uint16_t, uint32_t, uint16_t, efx_desc_t *, int); void (*etxo_qdesc_vlantci_create)(efx_txq_t *, uint16_t, efx_desc_t *); #if EFSYS_OPT_QSTATS void (*etxo_qstats_update)(efx_txq_t *, efsys_stat_t *); #endif } efx_tx_ops_t; typedef struct efx_rx_ops_s { efx_rc_t (*erxo_init)(efx_nic_t *); void (*erxo_fini)(efx_nic_t *); #if EFSYS_OPT_RX_SCATTER efx_rc_t (*erxo_scatter_enable)(efx_nic_t *, unsigned int); #endif #if EFSYS_OPT_RX_SCALE efx_rc_t (*erxo_scale_context_alloc)(efx_nic_t *, efx_rx_scale_context_type_t, uint32_t, uint32_t *); efx_rc_t (*erxo_scale_context_free)(efx_nic_t *, uint32_t); efx_rc_t (*erxo_scale_mode_set)(efx_nic_t *, uint32_t, efx_rx_hash_alg_t, efx_rx_hash_type_t, boolean_t); efx_rc_t (*erxo_scale_key_set)(efx_nic_t *, uint32_t, uint8_t *, size_t); efx_rc_t (*erxo_scale_tbl_set)(efx_nic_t *, uint32_t, unsigned int *, size_t); uint32_t (*erxo_prefix_hash)(efx_nic_t *, efx_rx_hash_alg_t, uint8_t *); #endif /* EFSYS_OPT_RX_SCALE */ efx_rc_t (*erxo_prefix_pktlen)(efx_nic_t *, uint8_t *, uint16_t *); void (*erxo_qpost)(efx_rxq_t *, efsys_dma_addr_t *, size_t, unsigned int, unsigned int, unsigned int); void (*erxo_qpush)(efx_rxq_t *, unsigned int, unsigned int *); #if EFSYS_OPT_RX_PACKED_STREAM void (*erxo_qpush_ps_credits)(efx_rxq_t *); uint8_t * (*erxo_qps_packet_info)(efx_rxq_t *, uint8_t *, uint32_t, uint32_t, uint16_t *, uint32_t *, uint32_t *); #endif efx_rc_t (*erxo_qflush)(efx_rxq_t *); void (*erxo_qenable)(efx_rxq_t *); efx_rc_t (*erxo_qcreate)(efx_nic_t *enp, unsigned int, unsigned int, efx_rxq_type_t, uint32_t, efsys_mem_t *, size_t, uint32_t, unsigned int, efx_evq_t *, efx_rxq_t *); void (*erxo_qdestroy)(efx_rxq_t *); } efx_rx_ops_t; typedef struct efx_mac_ops_s { efx_rc_t (*emo_poll)(efx_nic_t *, efx_link_mode_t *); efx_rc_t (*emo_up)(efx_nic_t *, boolean_t *); efx_rc_t (*emo_addr_set)(efx_nic_t *); efx_rc_t (*emo_pdu_set)(efx_nic_t *); efx_rc_t (*emo_pdu_get)(efx_nic_t *, size_t *); efx_rc_t (*emo_reconfigure)(efx_nic_t *); efx_rc_t (*emo_multicast_list_set)(efx_nic_t *); efx_rc_t (*emo_filter_default_rxq_set)(efx_nic_t *, efx_rxq_t *, boolean_t); void (*emo_filter_default_rxq_clear)(efx_nic_t *); #if EFSYS_OPT_LOOPBACK efx_rc_t (*emo_loopback_set)(efx_nic_t *, efx_link_mode_t, efx_loopback_type_t); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS efx_rc_t (*emo_stats_get_mask)(efx_nic_t *, uint32_t *, size_t); efx_rc_t (*emo_stats_clear)(efx_nic_t *); efx_rc_t (*emo_stats_upload)(efx_nic_t *, efsys_mem_t *); efx_rc_t (*emo_stats_periodic)(efx_nic_t *, efsys_mem_t *, uint16_t, boolean_t); efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efsys_stat_t *, uint32_t *); #endif /* EFSYS_OPT_MAC_STATS */ } efx_mac_ops_t; typedef struct efx_phy_ops_s { efx_rc_t (*epo_power)(efx_nic_t *, boolean_t); /* optional */ efx_rc_t (*epo_reset)(efx_nic_t *); efx_rc_t (*epo_reconfigure)(efx_nic_t *); efx_rc_t (*epo_verify)(efx_nic_t *); efx_rc_t (*epo_oui_get)(efx_nic_t *, uint32_t *); #if EFSYS_OPT_PHY_STATS efx_rc_t (*epo_stats_update)(efx_nic_t *, efsys_mem_t *, uint32_t *); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST efx_rc_t (*epo_bist_enable_offline)(efx_nic_t *); efx_rc_t (*epo_bist_start)(efx_nic_t *, efx_bist_type_t); efx_rc_t (*epo_bist_poll)(efx_nic_t *, efx_bist_type_t, efx_bist_result_t *, uint32_t *, unsigned long *, size_t); void (*epo_bist_stop)(efx_nic_t *, efx_bist_type_t); #endif /* EFSYS_OPT_BIST */ } efx_phy_ops_t; #if EFSYS_OPT_FILTER typedef struct efx_filter_ops_s { efx_rc_t (*efo_init)(efx_nic_t *); void (*efo_fini)(efx_nic_t *); efx_rc_t (*efo_restore)(efx_nic_t *); efx_rc_t (*efo_add)(efx_nic_t *, efx_filter_spec_t *, boolean_t may_replace); efx_rc_t (*efo_delete)(efx_nic_t *, efx_filter_spec_t *); efx_rc_t (*efo_supported_filters)(efx_nic_t *, uint32_t *, size_t, size_t *); efx_rc_t (*efo_reconfigure)(efx_nic_t *, uint8_t const *, boolean_t, boolean_t, boolean_t, boolean_t, uint8_t const *, uint32_t); } efx_filter_ops_t; extern __checkReturn efx_rc_t efx_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in uint32_t count); #endif /* EFSYS_OPT_FILTER */ +#if EFSYS_OPT_TUNNEL +typedef struct efx_tunnel_ops_s { + boolean_t (*eto_udp_encap_supported)(efx_nic_t *); + efx_rc_t (*eto_reconfigure)(efx_nic_t *); +} efx_tunnel_ops_t; +#endif /* EFSYS_OPT_TUNNEL */ typedef struct efx_port_s { efx_mac_type_t ep_mac_type; uint32_t ep_phy_type; uint8_t ep_port; uint32_t ep_mac_pdu; uint8_t ep_mac_addr[6]; efx_link_mode_t ep_link_mode; boolean_t ep_all_unicst; boolean_t ep_mulcst; boolean_t ep_all_mulcst; boolean_t ep_brdcst; unsigned int ep_fcntl; boolean_t ep_fcntl_autoneg; efx_oword_t ep_multicst_hash[2]; uint8_t ep_mulcst_addr_list[EFX_MAC_ADDR_LEN * EFX_MAC_MULTICAST_LIST_MAX]; uint32_t ep_mulcst_addr_count; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t ep_loopback_type; efx_link_mode_t ep_loopback_link_mode; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t ep_phy_flags; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL efx_phy_led_mode_t ep_phy_led_mode; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ efx_phy_media_type_t ep_fixed_port_type; efx_phy_media_type_t ep_module_type; uint32_t ep_adv_cap_mask; uint32_t ep_lp_cap_mask; uint32_t ep_default_adv_cap_mask; uint32_t ep_phy_cap_mask; boolean_t ep_mac_drain; #if EFSYS_OPT_BIST efx_bist_type_t ep_current_bist; #endif const efx_mac_ops_t *ep_emop; const efx_phy_ops_t *ep_epop; } efx_port_t; typedef struct efx_mon_ops_s { #if EFSYS_OPT_MON_STATS efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efx_mon_stat_value_t *); #endif /* EFSYS_OPT_MON_STATS */ } efx_mon_ops_t; typedef struct efx_mon_s { efx_mon_type_t em_type; const efx_mon_ops_t *em_emop; } efx_mon_t; typedef struct efx_intr_ops_s { efx_rc_t (*eio_init)(efx_nic_t *, efx_intr_type_t, efsys_mem_t *); void (*eio_enable)(efx_nic_t *); void (*eio_disable)(efx_nic_t *); void (*eio_disable_unlocked)(efx_nic_t *); efx_rc_t (*eio_trigger)(efx_nic_t *, unsigned int); void (*eio_status_line)(efx_nic_t *, boolean_t *, uint32_t *); void (*eio_status_message)(efx_nic_t *, unsigned int, boolean_t *); void (*eio_fatal)(efx_nic_t *); void (*eio_fini)(efx_nic_t *); } efx_intr_ops_t; typedef struct efx_intr_s { const efx_intr_ops_t *ei_eiop; efsys_mem_t *ei_esmp; efx_intr_type_t ei_type; unsigned int ei_level; } efx_intr_t; typedef struct efx_nic_ops_s { efx_rc_t (*eno_probe)(efx_nic_t *); efx_rc_t (*eno_board_cfg)(efx_nic_t *); efx_rc_t (*eno_set_drv_limits)(efx_nic_t *, efx_drv_limits_t*); efx_rc_t (*eno_reset)(efx_nic_t *); efx_rc_t (*eno_init)(efx_nic_t *); efx_rc_t (*eno_get_vi_pool)(efx_nic_t *, uint32_t *); efx_rc_t (*eno_get_bar_region)(efx_nic_t *, efx_nic_region_t, uint32_t *, size_t *); #if EFSYS_OPT_DIAG efx_rc_t (*eno_register_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ void (*eno_fini)(efx_nic_t *); void (*eno_unprobe)(efx_nic_t *); } efx_nic_ops_t; #ifndef EFX_TXQ_LIMIT_TARGET #define EFX_TXQ_LIMIT_TARGET 259 #endif #ifndef EFX_RXQ_LIMIT_TARGET #define EFX_RXQ_LIMIT_TARGET 512 #endif #if EFSYS_OPT_FILTER typedef struct siena_filter_spec_s { uint8_t sfs_type; uint32_t sfs_flags; uint32_t sfs_dmaq_id; uint32_t sfs_dword[3]; } siena_filter_spec_t; typedef enum siena_filter_type_e { EFX_SIENA_FILTER_RX_TCP_FULL, /* TCP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_RX_TCP_WILD, /* TCP/IPv4 {dIP,dTCP, -, -} */ EFX_SIENA_FILTER_RX_UDP_FULL, /* UDP/IPv4 {dIP,dUDP,sIP,sUDP} */ EFX_SIENA_FILTER_RX_UDP_WILD, /* UDP/IPv4 {dIP,dUDP, -, -} */ EFX_SIENA_FILTER_RX_MAC_FULL, /* Ethernet {dMAC,VLAN} */ EFX_SIENA_FILTER_RX_MAC_WILD, /* Ethernet {dMAC, -} */ EFX_SIENA_FILTER_TX_TCP_FULL, /* TCP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_TX_TCP_WILD, /* TCP/IPv4 { -, -,sIP,sTCP} */ EFX_SIENA_FILTER_TX_UDP_FULL, /* UDP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_TX_UDP_WILD, /* UDP/IPv4 { -, -,sIP,sUDP} */ EFX_SIENA_FILTER_TX_MAC_FULL, /* Ethernet {sMAC,VLAN} */ EFX_SIENA_FILTER_TX_MAC_WILD, /* Ethernet {sMAC, -} */ EFX_SIENA_FILTER_NTYPES } siena_filter_type_t; typedef enum siena_filter_tbl_id_e { EFX_SIENA_FILTER_TBL_RX_IP = 0, EFX_SIENA_FILTER_TBL_RX_MAC, EFX_SIENA_FILTER_TBL_TX_IP, EFX_SIENA_FILTER_TBL_TX_MAC, EFX_SIENA_FILTER_NTBLS } siena_filter_tbl_id_t; typedef struct siena_filter_tbl_s { int sft_size; /* number of entries */ int sft_used; /* active count */ uint32_t *sft_bitmap; /* active bitmap */ siena_filter_spec_t *sft_spec; /* array of saved specs */ } siena_filter_tbl_t; typedef struct siena_filter_s { siena_filter_tbl_t sf_tbl[EFX_SIENA_FILTER_NTBLS]; unsigned int sf_depth[EFX_SIENA_FILTER_NTYPES]; } siena_filter_t; typedef struct efx_filter_s { #if EFSYS_OPT_SIENA siena_filter_t *ef_siena_filter; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD ef10_filter_table_t *ef_ef10_filter_table; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ } efx_filter_t; extern void siena_filter_tbl_clear( __in efx_nic_t *enp, __in siena_filter_tbl_id_t tbl); #endif /* EFSYS_OPT_FILTER */ #if EFSYS_OPT_MCDI +#define EFX_TUNNEL_MAXNENTRIES (16) + +#if EFSYS_OPT_TUNNEL + +typedef struct efx_tunnel_udp_entry_s { + uint16_t etue_port; /* host/cpu-endian */ + uint16_t etue_protocol; +} efx_tunnel_udp_entry_t; + +typedef struct efx_tunnel_cfg_s { + efx_tunnel_udp_entry_t etc_udp_entries[EFX_TUNNEL_MAXNENTRIES]; + unsigned int etc_udp_entries_num; +} efx_tunnel_cfg_t; + +#endif /* EFSYS_OPT_TUNNEL */ + typedef struct efx_mcdi_ops_s { efx_rc_t (*emco_init)(efx_nic_t *, const efx_mcdi_transport_t *); void (*emco_send_request)(efx_nic_t *, void *, size_t, void *, size_t); efx_rc_t (*emco_poll_reboot)(efx_nic_t *); boolean_t (*emco_poll_response)(efx_nic_t *); void (*emco_read_response)(efx_nic_t *, void *, size_t, size_t); void (*emco_fini)(efx_nic_t *); efx_rc_t (*emco_feature_supported)(efx_nic_t *, efx_mcdi_feature_id_t, boolean_t *); void (*emco_get_timeout)(efx_nic_t *, efx_mcdi_req_t *, uint32_t *); } efx_mcdi_ops_t; typedef struct efx_mcdi_s { const efx_mcdi_ops_t *em_emcop; const efx_mcdi_transport_t *em_emtp; efx_mcdi_iface_t em_emip; } efx_mcdi_t; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM /* Invalid partition ID for en_nvram_partn_locked field of efx_nc_t */ #define EFX_NVRAM_PARTN_INVALID (0xffffffffu) typedef struct efx_nvram_ops_s { #if EFSYS_OPT_DIAG efx_rc_t (*envo_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ efx_rc_t (*envo_type_to_partn)(efx_nic_t *, efx_nvram_type_t, uint32_t *); efx_rc_t (*envo_partn_size)(efx_nic_t *, uint32_t, size_t *); efx_rc_t (*envo_partn_rw_start)(efx_nic_t *, uint32_t, size_t *); efx_rc_t (*envo_partn_read)(efx_nic_t *, uint32_t, unsigned int, caddr_t, size_t); efx_rc_t (*envo_partn_read_backup)(efx_nic_t *, uint32_t, unsigned int, caddr_t, size_t); efx_rc_t (*envo_partn_erase)(efx_nic_t *, uint32_t, unsigned int, size_t); efx_rc_t (*envo_partn_write)(efx_nic_t *, uint32_t, unsigned int, caddr_t, size_t); efx_rc_t (*envo_partn_rw_finish)(efx_nic_t *, uint32_t, uint32_t *); efx_rc_t (*envo_partn_get_version)(efx_nic_t *, uint32_t, uint32_t *, uint16_t *); efx_rc_t (*envo_partn_set_version)(efx_nic_t *, uint32_t, uint16_t *); efx_rc_t (*envo_buffer_validate)(efx_nic_t *, uint32_t, caddr_t, size_t); } efx_nvram_ops_t; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD typedef struct efx_vpd_ops_s { efx_rc_t (*evpdo_init)(efx_nic_t *); efx_rc_t (*evpdo_size)(efx_nic_t *, size_t *); efx_rc_t (*evpdo_read)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_verify)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_reinit)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_get)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_set)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_next)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *, unsigned int *); efx_rc_t (*evpdo_write)(efx_nic_t *, caddr_t, size_t); void (*evpdo_fini)(efx_nic_t *); } efx_vpd_ops_t; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM __checkReturn efx_rc_t efx_mcdi_nvram_partitions( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size, __out unsigned int *npartnp); __checkReturn efx_rc_t efx_mcdi_nvram_metadata( __in efx_nic_t *enp, __in uint32_t partn, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4], __out_bcount_opt(size) char *descp, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_info( __in efx_nic_t *enp, __in uint32_t partn, __out_opt size_t *sizep, __out_opt uint32_t *addressp, __out_opt uint32_t *erase_sizep, __out_opt uint32_t *write_sizep); __checkReturn efx_rc_t efx_mcdi_nvram_update_start( __in efx_nic_t *enp, __in uint32_t partn); __checkReturn efx_rc_t efx_mcdi_nvram_read( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size, __in uint32_t mode); __checkReturn efx_rc_t efx_mcdi_nvram_erase( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_write( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_update_finish( __in efx_nic_t *enp, __in uint32_t partn, __in boolean_t reboot, __out_opt uint32_t *verify_resultp); #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_mcdi_nvram_test( __in efx_nic_t *enp, __in uint32_t partn); #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ #if EFSYS_OPT_LICENSING typedef struct efx_lic_ops_s { efx_rc_t (*elo_update_licenses)(efx_nic_t *); efx_rc_t (*elo_get_key_stats)(efx_nic_t *, efx_key_stats_t *); efx_rc_t (*elo_app_state)(efx_nic_t *, uint64_t, boolean_t *); efx_rc_t (*elo_get_id)(efx_nic_t *, size_t, uint32_t *, size_t *, uint8_t *); efx_rc_t (*elo_find_start) (efx_nic_t *, caddr_t, size_t, uint32_t *); efx_rc_t (*elo_find_end)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t *); boolean_t (*elo_find_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t *, uint32_t *); boolean_t (*elo_validate_key)(efx_nic_t *, caddr_t, uint32_t); efx_rc_t (*elo_read_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t, caddr_t, size_t, uint32_t *); efx_rc_t (*elo_write_key)(efx_nic_t *, caddr_t, size_t, uint32_t, caddr_t, uint32_t, uint32_t *); efx_rc_t (*elo_delete_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t, uint32_t, uint32_t *); efx_rc_t (*elo_create_partition)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*elo_finish_partition)(efx_nic_t *, caddr_t, size_t); } efx_lic_ops_t; #endif typedef struct efx_drv_cfg_s { uint32_t edc_min_vi_count; uint32_t edc_max_vi_count; uint32_t edc_max_piobuf_count; uint32_t edc_pio_alloc_size; } efx_drv_cfg_t; struct efx_nic_s { uint32_t en_magic; efx_family_t en_family; uint32_t en_features; efsys_identifier_t *en_esip; efsys_lock_t *en_eslp; efsys_bar_t *en_esbp; unsigned int en_mod_flags; unsigned int en_reset_flags; efx_nic_cfg_t en_nic_cfg; efx_drv_cfg_t en_drv_cfg; efx_port_t en_port; efx_mon_t en_mon; efx_intr_t en_intr; uint32_t en_ev_qcount; uint32_t en_rx_qcount; uint32_t en_tx_qcount; const efx_nic_ops_t *en_enop; const efx_ev_ops_t *en_eevop; const efx_tx_ops_t *en_etxop; const efx_rx_ops_t *en_erxop; #if EFSYS_OPT_FILTER efx_filter_t en_filter; const efx_filter_ops_t *en_efop; #endif /* EFSYS_OPT_FILTER */ +#if EFSYS_OPT_TUNNEL + efx_tunnel_cfg_t en_tunnel_cfg; + const efx_tunnel_ops_t *en_etop; +#endif /* EFSYS_OPT_TUNNEL */ #if EFSYS_OPT_MCDI efx_mcdi_t en_mcdi; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM uint32_t en_nvram_partn_locked; const efx_nvram_ops_t *en_envop; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD const efx_vpd_ops_t *en_evpdop; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_RX_SCALE efx_rx_hash_support_t en_hash_support; efx_rx_scale_context_type_t en_rss_context_type; uint32_t en_rss_context; #endif /* EFSYS_OPT_RX_SCALE */ uint32_t en_vport_id; #if EFSYS_OPT_LICENSING const efx_lic_ops_t *en_elop; boolean_t en_licensing_supported; #endif union { #if EFSYS_OPT_SIENA struct { #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD unsigned int enu_partn_mask; #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD caddr_t enu_svpd; size_t enu_svpd_length; #endif /* EFSYS_OPT_VPD */ int enu_unused; } siena; #endif /* EFSYS_OPT_SIENA */ int enu_unused; } en_u; #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) union en_arch { struct { int ena_vi_base; int ena_vi_count; int ena_vi_shift; #if EFSYS_OPT_VPD caddr_t ena_svpd; size_t ena_svpd_length; #endif /* EFSYS_OPT_VPD */ efx_piobuf_handle_t ena_piobuf_handle[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_piobuf_count; uint32_t ena_pio_alloc_map[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_pio_write_vi_base; /* Memory BAR mapping regions */ uint32_t ena_uc_mem_map_offset; size_t ena_uc_mem_map_size; uint32_t ena_wc_mem_map_offset; size_t ena_wc_mem_map_size; } ef10; } en_arch; #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ }; #define EFX_NIC_MAGIC 0x02121996 typedef boolean_t (*efx_ev_handler_t)(efx_evq_t *, efx_qword_t *, const efx_ev_callbacks_t *, void *); typedef struct efx_evq_rxq_state_s { unsigned int eers_rx_read_ptr; unsigned int eers_rx_mask; #if EFSYS_OPT_RX_PACKED_STREAM unsigned int eers_rx_stream_npackets; boolean_t eers_rx_packed_stream; unsigned int eers_rx_packed_stream_credits; #endif } efx_evq_rxq_state_t; struct efx_evq_s { uint32_t ee_magic; efx_nic_t *ee_enp; unsigned int ee_index; unsigned int ee_mask; efsys_mem_t *ee_esmp; #if EFSYS_OPT_QSTATS uint32_t ee_stat[EV_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ efx_ev_handler_t ee_rx; efx_ev_handler_t ee_tx; efx_ev_handler_t ee_driver; efx_ev_handler_t ee_global; efx_ev_handler_t ee_drv_gen; #if EFSYS_OPT_MCDI efx_ev_handler_t ee_mcdi; #endif /* EFSYS_OPT_MCDI */ efx_evq_rxq_state_t ee_rxq_state[EFX_EV_RX_NLABELS]; uint32_t ee_flags; }; #define EFX_EVQ_MAGIC 0x08081997 #define EFX_EVQ_SIENA_TIMER_QUANTUM_NS 6144 /* 768 cycles */ struct efx_rxq_s { uint32_t er_magic; efx_nic_t *er_enp; efx_evq_t *er_eep; unsigned int er_index; unsigned int er_label; unsigned int er_mask; efsys_mem_t *er_esmp; efx_evq_rxq_state_t *er_ev_qstate; }; #define EFX_RXQ_MAGIC 0x15022005 struct efx_txq_s { uint32_t et_magic; efx_nic_t *et_enp; unsigned int et_index; unsigned int et_mask; efsys_mem_t *et_esmp; #if EFSYS_OPT_HUNTINGTON uint32_t et_pio_bufnum; uint32_t et_pio_blknum; uint32_t et_pio_write_offset; uint32_t et_pio_offset; size_t et_pio_size; #endif #if EFSYS_OPT_QSTATS uint32_t et_stat[TX_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ }; #define EFX_TXQ_MAGIC 0x05092005 #define EFX_MAC_ADDR_COPY(_dst, _src) \ do { \ (_dst)[0] = (_src)[0]; \ (_dst)[1] = (_src)[1]; \ (_dst)[2] = (_src)[2]; \ (_dst)[3] = (_src)[3]; \ (_dst)[4] = (_src)[4]; \ (_dst)[5] = (_src)[5]; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_MAC_BROADCAST_ADDR_SET(_dst) \ do { \ uint16_t *_d = (uint16_t *)(_dst); \ _d[0] = 0xffff; \ _d[1] = 0xffff; \ _d[2] = 0xffff; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if EFSYS_OPT_CHECK_REG #define EFX_CHECK_REG(_enp, _reg) \ do { \ const char *name = #_reg; \ char min = name[4]; \ char max = name[5]; \ char rev; \ \ switch ((_enp)->en_family) { \ case EFX_FAMILY_SIENA: \ rev = 'C'; \ break; \ \ case EFX_FAMILY_HUNTINGTON: \ rev = 'D'; \ break; \ \ case EFX_FAMILY_MEDFORD: \ rev = 'E'; \ break; \ \ default: \ rev = '?'; \ break; \ } \ \ EFSYS_ASSERT3S(rev, >=, min); \ EFSYS_ASSERT3S(rev, <=, max); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_CHECK_REG(_enp, _reg) do { \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #define EFX_BAR_READD(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ EFSYS_PROBE3(efx_bar_readd, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITED(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE3(efx_bar_writed, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ EFSYS_PROBE4(efx_bar_readq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_writeq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ EFSYS_PROBE6(efx_bar_reado, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE6(efx_bar_writeo, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READD(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ EFSYS_PROBE4(efx_bar_tbl_readd, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED2(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (2 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED3(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (3 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ EFSYS_PROBE5(efx_bar_tbl_readq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE5(efx_bar_tbl_writeq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ EFSYS_PROBE7(efx_bar_tbl_reado, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_writeo, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* * Allow drivers to perform optimised 128-bit doorbell writes. * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are * special-cased in the BIU on the Falcon/Siena and EF10 architectures to avoid * the need for locking in the host, and are the only ones known to be safe to * use 128-bites write with. */ #define EFX_BAR_TBL_DOORBELL_WRITEO(_enp, _reg, _index, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_doorbell_writeo, \ const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_DOORBELL_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_DMA_SYNC_QUEUE_FOR_DEVICE(_esmp, _entries, _wptr, _owptr) \ do { \ unsigned int _new = (_wptr); \ unsigned int _old = (_owptr); \ \ if ((_new) >= (_old)) \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ (_old) * sizeof (efx_desc_t), \ ((_new) - (_old)) * sizeof (efx_desc_t)); \ else \ /* \ * It is cheaper to sync entire map than sync \ * two parts especially when offset/size are \ * ignored and entire map is synced in any case.\ */ \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ 0, \ (_entries) * sizeof (efx_desc_t)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) extern __checkReturn efx_rc_t efx_mac_select( __in efx_nic_t *enp); extern void efx_mac_multicast_hash_compute( __in_ecount(6*count) uint8_t const *addrs, __in int count, __out efx_oword_t *hash_low, __out efx_oword_t *hash_high); extern __checkReturn efx_rc_t efx_phy_probe( __in efx_nic_t *enp); extern void efx_phy_unprobe( __in efx_nic_t *enp); #if EFSYS_OPT_VPD /* VPD utility functions */ extern __checkReturn efx_rc_t efx_vpd_hunk_length( __in_bcount(size) caddr_t data, __in size_t size, __out size_t *lengthp); extern __checkReturn efx_rc_t efx_vpd_hunk_verify( __in_bcount(size) caddr_t data, __in size_t size, __out_opt boolean_t *cksummedp); extern __checkReturn efx_rc_t efx_vpd_hunk_reinit( __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t wantpid); extern __checkReturn efx_rc_t efx_vpd_hunk_get( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_tag_t tag, __in efx_vpd_keyword_t keyword, __out unsigned int *payloadp, __out uint8_t *paylenp); extern __checkReturn efx_rc_t efx_vpd_hunk_next( __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_tag_t *tagp, __out efx_vpd_keyword_t *keyword, __out_opt unsigned int *payloadp, __out_opt uint8_t *paylenp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_hunk_set( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp); extern __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp); #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_MAC_STATS /* * Closed range of stats (i.e. the first and the last are included). * The last must be greater or equal (if the range is one item only) to * the first. */ struct efx_mac_stats_range { efx_mac_stat_t first; efx_mac_stat_t last; }; extern efx_rc_t efx_mac_stats_mask_add_ranges( __inout_bcount(mask_size) uint32_t *maskp, __in size_t mask_size, __in_ecount(rng_count) const struct efx_mac_stats_range *rngp, __in unsigned int rng_count); #endif /* EFSYS_OPT_MAC_STATS */ #ifdef __cplusplus } #endif #endif /* _SYS_EFX_IMPL_H */ Index: head/sys/dev/sfxge/common/efx_mcdi.h =================================================================== --- head/sys/dev/sfxge/common/efx_mcdi.h (revision 340927) +++ head/sys/dev/sfxge/common/efx_mcdi.h (revision 340928) @@ -1,419 +1,423 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_MCDI_H #define _SYS_EFX_MCDI_H #include "efx.h" #include "efx_regs_mcdi.h" #ifdef __cplusplus extern "C" { #endif /* * A reboot/assertion causes the MCDI status word to be set after the * command word is set or a REBOOT event is sent. If we notice a reboot * via these mechanisms then wait 10ms for the status word to be set. */ #define EFX_MCDI_STATUS_SLEEP_US 10000 struct efx_mcdi_req_s { boolean_t emr_quiet; /* Inputs: Command #, input buffer and length */ unsigned int emr_cmd; uint8_t *emr_in_buf; size_t emr_in_length; /* Outputs: retcode, buffer, length, and length used */ efx_rc_t emr_rc; uint8_t *emr_out_buf; size_t emr_out_length; size_t emr_out_length_used; /* Internals: low level transport details */ unsigned int emr_err_code; unsigned int emr_err_arg; #if EFSYS_OPT_MCDI_PROXY_AUTH uint32_t emr_proxy_handle; #endif }; typedef struct efx_mcdi_iface_s { unsigned int emi_port; unsigned int emi_max_version; unsigned int emi_seq; efx_mcdi_req_t *emi_pending_req; boolean_t emi_ev_cpl; boolean_t emi_new_epoch; int emi_aborted; uint32_t emi_poll_cnt; uint32_t emi_mc_reboot_status; } efx_mcdi_iface_t; extern void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp); extern void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp); extern void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode); #if EFSYS_OPT_MCDI_PROXY_AUTH extern __checkReturn efx_rc_t efx_mcdi_get_proxy_handle( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *handlep); extern void efx_mcdi_ev_proxy_response( __in efx_nic_t *enp, __in unsigned int handle, __in unsigned int status); #endif extern void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc); extern __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err); extern void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc); typedef enum efx_mcdi_boot_e { EFX_MCDI_BOOT_PRIMARY, EFX_MCDI_BOOT_SECONDARY, EFX_MCDI_BOOT_ROM, } efx_mcdi_boot_t; extern __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp); extern __checkReturn efx_rc_t efx_mcdi_get_capabilities( __in efx_nic_t *enp, __out_opt uint32_t *flagsp, __out_opt uint16_t *rx_dpcpu_fw_idp, __out_opt uint16_t *tx_dpcpu_fw_idp, __out_opt uint32_t *flags2p, __out_opt uint32_t *tso2ncp); extern __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach); extern __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]); extern __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_mac_spoofing_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); #if EFSYS_OPT_BIST #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD extern __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp); #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ extern __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ extern __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp); extern __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); #if EFSYS_OPT_LOOPBACK extern __checkReturn efx_rc_t efx_mcdi_get_loopback_modes( __in efx_nic_t *enp); #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_mcdi_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data); #define MCDI_IN(_emr, _type, _ofst) \ ((_type *)((_emr).emr_in_buf + (_ofst))) #define MCDI_IN2(_emr, _type, _ofst) \ MCDI_IN(_emr, _type, MC_CMD_ ## _ofst ## _OFST) #define MCDI_IN_SET_BYTE(_emr, _ofst, _value) \ EFX_POPULATE_BYTE_1(*MCDI_IN2(_emr, efx_byte_t, _ofst), \ EFX_BYTE_0, _value) #define MCDI_IN_SET_WORD(_emr, _ofst, _value) \ EFX_POPULATE_WORD_1(*MCDI_IN2(_emr, efx_word_t, _ofst), \ EFX_WORD_0, _value) #define MCDI_IN_SET_DWORD(_emr, _ofst, _value) \ EFX_POPULATE_DWORD_1(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ EFX_DWORD_0, _value) #define MCDI_IN_SET_DWORD_FIELD(_emr, _ofst, _field, _value) \ EFX_SET_DWORD_FIELD(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field, _value) #define MCDI_IN_POPULATE_DWORD_1(_emr, _ofst, _field1, _value1) \ EFX_POPULATE_DWORD_1(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1) #define MCDI_IN_POPULATE_DWORD_2(_emr, _ofst, _field1, _value1, \ _field2, _value2) \ EFX_POPULATE_DWORD_2(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2) #define MCDI_IN_POPULATE_DWORD_3(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3) \ EFX_POPULATE_DWORD_3(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3) #define MCDI_IN_POPULATE_DWORD_4(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4) \ EFX_POPULATE_DWORD_4(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4) #define MCDI_IN_POPULATE_DWORD_5(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5) \ EFX_POPULATE_DWORD_5(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5) #define MCDI_IN_POPULATE_DWORD_6(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6) \ EFX_POPULATE_DWORD_6(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6) #define MCDI_IN_POPULATE_DWORD_7(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7) \ EFX_POPULATE_DWORD_7(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7) #define MCDI_IN_POPULATE_DWORD_8(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8) \ EFX_POPULATE_DWORD_8(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8) #define MCDI_IN_POPULATE_DWORD_9(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8, _field9, _value9) \ EFX_POPULATE_DWORD_9(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8, \ MC_CMD_ ## _field9, _value9) #define MCDI_IN_POPULATE_DWORD_10(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8, _field9, _value9, _field10, _value10) \ EFX_POPULATE_DWORD_10(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8, \ MC_CMD_ ## _field9, _value9, \ MC_CMD_ ## _field10, _value10) #define MCDI_OUT(_emr, _type, _ofst) \ ((_type *)((_emr).emr_out_buf + (_ofst))) #define MCDI_OUT2(_emr, _type, _ofst) \ MCDI_OUT(_emr, _type, MC_CMD_ ## _ofst ## _OFST) #define MCDI_OUT_BYTE(_emr, _ofst) \ EFX_BYTE_FIELD(*MCDI_OUT2(_emr, efx_byte_t, _ofst), \ EFX_BYTE_0) #define MCDI_OUT_WORD(_emr, _ofst) \ EFX_WORD_FIELD(*MCDI_OUT2(_emr, efx_word_t, _ofst), \ EFX_WORD_0) +#define MCDI_OUT_WORD_FIELD(_emr, _ofst, _field) \ + EFX_WORD_FIELD(*MCDI_OUT2(_emr, efx_word_t, _ofst), \ + MC_CMD_ ## _field) + #define MCDI_OUT_DWORD(_emr, _ofst) \ EFX_DWORD_FIELD(*MCDI_OUT2(_emr, efx_dword_t, _ofst), \ EFX_DWORD_0) #define MCDI_OUT_DWORD_FIELD(_emr, _ofst, _field) \ EFX_DWORD_FIELD(*MCDI_OUT2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field) #define MCDI_EV_FIELD(_eqp, _field) \ EFX_QWORD_FIELD(*_eqp, MCDI_EVENT_ ## _field) #define MCDI_CMD_DWORD_FIELD(_edp, _field) \ EFX_DWORD_FIELD(*_edp, MC_CMD_ ## _field) #define EFX_MCDI_HAVE_PRIVILEGE(mask, priv) \ (((mask) & (MC_CMD_PRIVILEGE_MASK_IN_GRP_ ## priv)) == \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ ## priv)) typedef enum efx_mcdi_feature_id_e { EFX_MCDI_FEATURE_FW_UPDATE = 0, EFX_MCDI_FEATURE_LINK_CONTROL, EFX_MCDI_FEATURE_MACADDR_CHANGE, EFX_MCDI_FEATURE_MAC_SPOOFING, EFX_MCDI_FEATURE_NIDS } efx_mcdi_feature_id_t; #ifdef __cplusplus } #endif #endif /* _SYS_EFX_MCDI_H */ Index: head/sys/dev/sfxge/common/efx_nic.c =================================================================== --- head/sys/dev/sfxge/common/efx_nic.c (revision 340927) +++ head/sys/dev/sfxge/common/efx_nic.c (revision 340928) @@ -1,911 +1,914 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp) { if (venid == EFX_PCI_VENID_SFC) { switch (devid) { #if EFSYS_OPT_SIENA case EFX_PCI_DEVID_SIENA_F1_UNINIT: /* * Hardware default for PF0 of uninitialised Siena. * manftest must be able to cope with this device id. */ *efp = EFX_FAMILY_SIENA; return (0); case EFX_PCI_DEVID_BETHPAGE: case EFX_PCI_DEVID_SIENA: *efp = EFX_FAMILY_SIENA; return (0); #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT: /* * Hardware default for PF0 of uninitialised Huntington. * manftest must be able to cope with this device id. */ *efp = EFX_FAMILY_HUNTINGTON; return (0); case EFX_PCI_DEVID_FARMINGDALE: case EFX_PCI_DEVID_GREENPORT: *efp = EFX_FAMILY_HUNTINGTON; return (0); case EFX_PCI_DEVID_FARMINGDALE_VF: case EFX_PCI_DEVID_GREENPORT_VF: *efp = EFX_FAMILY_HUNTINGTON; return (0); #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_PCI_DEVID_MEDFORD_PF_UNINIT: /* * Hardware default for PF0 of uninitialised Medford. * manftest must be able to cope with this device id. */ *efp = EFX_FAMILY_MEDFORD; return (0); case EFX_PCI_DEVID_MEDFORD: *efp = EFX_FAMILY_MEDFORD; return (0); case EFX_PCI_DEVID_MEDFORD_VF: *efp = EFX_FAMILY_MEDFORD; return (0); #endif /* EFSYS_OPT_MEDFORD */ case EFX_PCI_DEVID_FALCON: /* Obsolete, not supported */ default: break; } } *efp = EFX_FAMILY_INVALID; return (ENOTSUP); } #if EFSYS_OPT_SIENA static const efx_nic_ops_t __efx_nic_siena_ops = { siena_nic_probe, /* eno_probe */ NULL, /* eno_board_cfg */ NULL, /* eno_set_drv_limits */ siena_nic_reset, /* eno_reset */ siena_nic_init, /* eno_init */ NULL, /* eno_get_vi_pool */ NULL, /* eno_get_bar_region */ #if EFSYS_OPT_DIAG siena_nic_register_test, /* eno_register_test */ #endif /* EFSYS_OPT_DIAG */ siena_nic_fini, /* eno_fini */ siena_nic_unprobe, /* eno_unprobe */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON static const efx_nic_ops_t __efx_nic_hunt_ops = { ef10_nic_probe, /* eno_probe */ hunt_board_cfg, /* eno_board_cfg */ ef10_nic_set_drv_limits, /* eno_set_drv_limits */ ef10_nic_reset, /* eno_reset */ ef10_nic_init, /* eno_init */ ef10_nic_get_vi_pool, /* eno_get_vi_pool */ ef10_nic_get_bar_region, /* eno_get_bar_region */ #if EFSYS_OPT_DIAG ef10_nic_register_test, /* eno_register_test */ #endif /* EFSYS_OPT_DIAG */ ef10_nic_fini, /* eno_fini */ ef10_nic_unprobe, /* eno_unprobe */ }; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD static const efx_nic_ops_t __efx_nic_medford_ops = { ef10_nic_probe, /* eno_probe */ medford_board_cfg, /* eno_board_cfg */ ef10_nic_set_drv_limits, /* eno_set_drv_limits */ ef10_nic_reset, /* eno_reset */ ef10_nic_init, /* eno_init */ ef10_nic_get_vi_pool, /* eno_get_vi_pool */ ef10_nic_get_bar_region, /* eno_get_bar_region */ #if EFSYS_OPT_DIAG ef10_nic_register_test, /* eno_register_test */ #endif /* EFSYS_OPT_DIAG */ ef10_nic_fini, /* eno_fini */ ef10_nic_unprobe, /* eno_unprobe */ }; #endif /* EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp) { efx_nic_t *enp; efx_rc_t rc; EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID); EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES); /* Allocate a NIC object */ EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp); if (enp == NULL) { rc = ENOMEM; goto fail1; } enp->en_magic = EFX_NIC_MAGIC; switch (family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: enp->en_enop = &__efx_nic_siena_ops; enp->en_features = EFX_FEATURE_IPV6 | EFX_FEATURE_LFSR_HASH_INSERT | EFX_FEATURE_LINK_EVENTS | EFX_FEATURE_PERIODIC_MAC_STATS | EFX_FEATURE_MCDI | EFX_FEATURE_LOOKAHEAD_SPLIT | EFX_FEATURE_MAC_HEADER_FILTERS | EFX_FEATURE_TX_SRC_FILTERS; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: enp->en_enop = &__efx_nic_hunt_ops; enp->en_features = EFX_FEATURE_IPV6 | EFX_FEATURE_LINK_EVENTS | EFX_FEATURE_PERIODIC_MAC_STATS | EFX_FEATURE_MCDI | EFX_FEATURE_MAC_HEADER_FILTERS | EFX_FEATURE_MCDI_DMA | EFX_FEATURE_PIO_BUFFERS | EFX_FEATURE_FW_ASSISTED_TSO | EFX_FEATURE_FW_ASSISTED_TSO_V2 | EFX_FEATURE_PACKED_STREAM; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: enp->en_enop = &__efx_nic_medford_ops; /* * FW_ASSISTED_TSO omitted as Medford only supports firmware * assisted TSO version 2, not the v1 scheme used on Huntington. */ enp->en_features = EFX_FEATURE_IPV6 | EFX_FEATURE_LINK_EVENTS | EFX_FEATURE_PERIODIC_MAC_STATS | EFX_FEATURE_MCDI | EFX_FEATURE_MAC_HEADER_FILTERS | EFX_FEATURE_MCDI_DMA | EFX_FEATURE_PIO_BUFFERS | EFX_FEATURE_FW_ASSISTED_TSO_V2 | EFX_FEATURE_PACKED_STREAM; break; #endif /* EFSYS_OPT_MEDFORD */ default: rc = ENOTSUP; goto fail2; } enp->en_family = family; enp->en_esip = esip; enp->en_esbp = esbp; enp->en_eslp = eslp; *enpp = enp; return (0); fail2: EFSYS_PROBE(fail2); enp->en_magic = 0; /* Free the NIC object */ EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp) { const efx_nic_ops_t *enop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); #if EFSYS_OPT_MCDI EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); #endif /* EFSYS_OPT_MCDI */ EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE)); enop = enp->en_enop; if ((rc = enop->eno_probe(enp)) != 0) goto fail1; if ((rc = efx_phy_probe(enp)) != 0) goto fail2; enp->en_mod_flags |= EFX_MOD_PROBE; return (0); fail2: EFSYS_PROBE(fail2); enop->eno_unprobe(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp) { const efx_nic_ops_t *enop = enp->en_enop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); if (enop->eno_set_drv_limits != NULL) { if ((rc = enop->eno_set_drv_limits(enp, edlp)) != 0) goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep) { const efx_nic_ops_t *enop = enp->en_enop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); if (enop->eno_get_bar_region == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = (enop->eno_get_bar_region)(enp, region, offsetp, sizep)) != 0) { goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp) { const efx_nic_ops_t *enop = enp->en_enop; efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); if (enop->eno_get_vi_pool != NULL) { uint32_t vi_count = 0; if ((rc = (enop->eno_get_vi_pool)(enp, &vi_count)) != 0) goto fail1; *evq_countp = vi_count; *rxq_countp = vi_count; *txq_countp = vi_count; } else { /* Use NIC limits as default value */ *evq_countp = encp->enc_evq_limit; *rxq_countp = encp->enc_rxq_limit; *txq_countp = encp->enc_txq_limit; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); if (enp->en_mod_flags & EFX_MOD_NIC) { rc = EINVAL; goto fail1; } if ((rc = enop->eno_init(enp)) != 0) goto fail2; enp->en_mod_flags |= EFX_MOD_NIC; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_nic_fini( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); enop->eno_fini(enp); enp->en_mod_flags &= ~EFX_MOD_NIC; } void efx_nic_unprobe( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); #if EFSYS_OPT_MCDI EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); #endif /* EFSYS_OPT_MCDI */ EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); efx_phy_unprobe(enp); enop->eno_unprobe(enp); enp->en_mod_flags &= ~EFX_MOD_PROBE; } void efx_nic_destroy( __in efx_nic_t *enp) { efsys_identifier_t *esip = enp->en_esip; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); enp->en_family = EFX_FAMILY_INVALID; enp->en_esip = NULL; enp->en_esbp = NULL; enp->en_eslp = NULL; enp->en_enop = NULL; enp->en_magic = 0; /* Free the NIC object */ EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp); } __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; unsigned int mod_flags; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE); /* - * All modules except the MCDI, PROBE, NVRAM, VPD, MON + * All modules except the MCDI, PROBE, NVRAM, VPD, MON, TUNNEL * (which we do not reset here) must have been shut down or never * initialized. * * A rule of thumb here is: If the controller or MC reboots, is *any* * state lost. If it's lost and needs reapplying, then the module * *must* not be initialised during the reset. */ mod_flags = enp->en_mod_flags; mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM | - EFX_MOD_VPD | EFX_MOD_MON); + EFX_MOD_VPD | EFX_MOD_MON); +#if EFSYS_OPT_TUNNEL + mod_flags &= ~EFX_MOD_TUNNEL; +#endif /* EFSYS_OPT_TUNNEL */ EFSYS_ASSERT3U(mod_flags, ==, 0); if (mod_flags != 0) { rc = EINVAL; goto fail1; } if ((rc = enop->eno_reset(enp)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); return (&(enp->en_nic_cfg)); } __checkReturn efx_rc_t efx_nic_get_fw_version( __in efx_nic_t *enp, __out efx_nic_fw_info_t *enfip) { uint16_t mc_fw_version[4]; efx_rc_t rc; if (enfip == NULL) { rc = EINVAL; goto fail1; } EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); rc = efx_mcdi_version(enp, mc_fw_version, NULL, NULL); if (rc != 0) goto fail2; rc = efx_mcdi_get_capabilities(enp, NULL, &enfip->enfi_rx_dpcpu_fw_id, &enfip->enfi_tx_dpcpu_fw_id, NULL, NULL); if (rc == 0) { enfip->enfi_dpcpu_fw_ids_valid = B_TRUE; } else if (rc == ENOTSUP) { enfip->enfi_dpcpu_fw_ids_valid = B_FALSE; enfip->enfi_rx_dpcpu_fw_id = 0; enfip->enfi_tx_dpcpu_fw_id = 0; } else { goto fail3; } memcpy(enfip->enfi_mc_fw_version, mc_fw_version, sizeof (mc_fw_version)); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); if ((rc = enop->eno_register_test(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #if EFSYS_OPT_LOOPBACK extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp) { efx_qword_t mask; EFSYS_ASSERT3U(loopback_kind, <, EFX_LOOPBACK_NKINDS); EFSYS_ASSERT(maskp != NULL); /* Assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespace agree */ EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_NONE == EFX_LOOPBACK_OFF); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_DATA == EFX_LOOPBACK_DATA); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMAC == EFX_LOOPBACK_GMAC); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII == EFX_LOOPBACK_XGMII); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGXS == EFX_LOOPBACK_XGXS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI == EFX_LOOPBACK_XAUI); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII == EFX_LOOPBACK_GMII); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII == EFX_LOOPBACK_SGMII); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGBR == EFX_LOOPBACK_XGBR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI == EFX_LOOPBACK_XFI); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_FAR == EFX_LOOPBACK_XAUI_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_FAR == EFX_LOOPBACK_GMII_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII_FAR == EFX_LOOPBACK_SGMII_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_FAR == EFX_LOOPBACK_XFI_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GPHY == EFX_LOOPBACK_GPHY); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS == EFX_LOOPBACK_PHY_XS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PCS == EFX_LOOPBACK_PCS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMAPMD == EFX_LOOPBACK_PMA_PMD); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XPORT == EFX_LOOPBACK_XPORT); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII_WS == EFX_LOOPBACK_XGMII_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS == EFX_LOOPBACK_XAUI_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_FAR == EFX_LOOPBACK_XAUI_WS_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_NEAR == EFX_LOOPBACK_XAUI_WS_NEAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_WS == EFX_LOOPBACK_GMII_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS == EFX_LOOPBACK_XFI_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS_FAR == EFX_LOOPBACK_XFI_WS_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS_WS == EFX_LOOPBACK_PHYXS_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT == EFX_LOOPBACK_PMA_INT); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_NEAR == EFX_LOOPBACK_SD_NEAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FAR == EFX_LOOPBACK_SD_FAR); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT_WS == EFX_LOOPBACK_PMA_INT_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP2_WS == EFX_LOOPBACK_SD_FEP2_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP1_5_WS == EFX_LOOPBACK_SD_FEP1_5_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP_WS == EFX_LOOPBACK_SD_FEP_WS); EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FES_WS == EFX_LOOPBACK_SD_FES_WS); /* Build bitmask of possible loopback types */ EFX_ZERO_QWORD(mask); if ((loopback_kind == EFX_LOOPBACK_KIND_OFF) || (loopback_kind == EFX_LOOPBACK_KIND_ALL)) { EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_OFF); } if ((loopback_kind == EFX_LOOPBACK_KIND_MAC) || (loopback_kind == EFX_LOOPBACK_KIND_ALL)) { /* * The "MAC" grouping has historically been used by drivers to * mean loopbacks supported by on-chip hardware. Keep that * meaning here, and include on-chip PHY layer loopbacks. */ EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_DATA); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMAC); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGMII); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGXS); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGBR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI_FAR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII_FAR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII_FAR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI_FAR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_INT); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_NEAR); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_FAR); } if ((loopback_kind == EFX_LOOPBACK_KIND_PHY) || (loopback_kind == EFX_LOOPBACK_KIND_ALL)) { /* * The "PHY" grouping has historically been used by drivers to * mean loopbacks supported by off-chip hardware. Keep that * meaning here. */ EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GPHY); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PHY_XS); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PCS); EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_PMD); } *maskp = mask; } __checkReturn efx_rc_t efx_mcdi_get_loopback_modes( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_LOOPBACK_MODES_IN_LEN, MC_CMD_GET_LOOPBACK_MODES_OUT_LEN)]; efx_qword_t mask; efx_qword_t modes; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_LOOPBACK_MODES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_LOOPBACK_MODES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST + MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN) { rc = EMSGSIZE; goto fail2; } /* * We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree * in efx_loopback_mask() and in siena_phy.c:siena_phy_get_link(). */ efx_loopback_mask(EFX_LOOPBACK_KIND_ALL, &mask); EFX_AND_QWORD(mask, *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_SUGGESTED)); modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_100M); EFX_AND_QWORD(modes, mask); encp->enc_loopback_types[EFX_LINK_100FDX] = modes; modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_1G); EFX_AND_QWORD(modes, mask); encp->enc_loopback_types[EFX_LINK_1000FDX] = modes; modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_10G); EFX_AND_QWORD(modes, mask); encp->enc_loopback_types[EFX_LINK_10000FDX] = modes; if (req.emr_out_length_used >= MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST + MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN) { /* Response includes 40G loopback modes */ modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_40G); EFX_AND_QWORD(modes, mask); encp->enc_loopback_types[EFX_LINK_40000FDX] = modes; } EFX_ZERO_QWORD(modes); EFX_SET_QWORD_BIT(modes, EFX_LOOPBACK_OFF); EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100FDX]); EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_1000FDX]); EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_10000FDX]); EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_40000FDX]); encp->enc_loopback_types[EFX_LINK_UNKNOWN] = modes; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_LOOPBACK */ __checkReturn efx_rc_t efx_nic_calculate_pcie_link_bandwidth( __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out uint32_t *bandwidth_mbpsp) { uint32_t lane_bandwidth; uint32_t total_bandwidth; efx_rc_t rc; if ((pcie_link_width == 0) || (pcie_link_width > 16) || !ISP2(pcie_link_width)) { rc = EINVAL; goto fail1; } switch (pcie_link_gen) { case EFX_PCIE_LINK_SPEED_GEN1: /* 2.5 Gb/s raw bandwidth with 8b/10b encoding */ lane_bandwidth = 2000; break; case EFX_PCIE_LINK_SPEED_GEN2: /* 5.0 Gb/s raw bandwidth with 8b/10b encoding */ lane_bandwidth = 4000; break; case EFX_PCIE_LINK_SPEED_GEN3: /* 8.0 Gb/s raw bandwidth with 128b/130b encoding */ lane_bandwidth = 7877; break; default: rc = EINVAL; goto fail2; } total_bandwidth = lane_bandwidth * pcie_link_width; *bandwidth_mbpsp = total_bandwidth; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nic_check_pcie_link_speed( __in efx_nic_t *enp, __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out efx_pcie_link_performance_t *resultp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t bandwidth; efx_pcie_link_performance_t result; efx_rc_t rc; if ((encp->enc_required_pcie_bandwidth_mbps == 0) || (pcie_link_width == 0) || (pcie_link_width == 32) || (pcie_link_gen == 0)) { /* * No usable info on what is required and/or in use. In virtual * machines, sometimes the PCIe link width is reported as 0 or * 32, or the speed as 0. */ result = EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH; goto out; } /* Calculate the available bandwidth in megabits per second */ rc = efx_nic_calculate_pcie_link_bandwidth(pcie_link_width, pcie_link_gen, &bandwidth); if (rc != 0) goto fail1; if (bandwidth < encp->enc_required_pcie_bandwidth_mbps) { result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH; } else if (pcie_link_gen < encp->enc_max_pcie_link_gen) { /* The link provides enough bandwidth but not optimal latency */ result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY; } else { result = EFX_PCIE_LINK_PERFORMANCE_OPTIMAL; } out: *resultp = result; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } Index: head/sys/dev/sfxge/common/efx_tunnel.c =================================================================== --- head/sys/dev/sfxge/common/efx_tunnel.c (nonexistent) +++ head/sys/dev/sfxge/common/efx_tunnel.c (revision 340928) @@ -0,0 +1,492 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (c) 2017-2018 Solarflare Communications Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; + * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR + * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are + * those of the authors and should not be interpreted as representing official + * policies, either expressed or implied, of the FreeBSD Project. + */ + +#include +__FBSDID("$FreeBSD$"); + +#include "efx.h" +#include "efx_impl.h" + + +#if EFSYS_OPT_TUNNEL + +#if EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON +static const efx_tunnel_ops_t __efx_tunnel_dummy_ops = { + NULL, /* eto_udp_encap_supported */ + NULL, /* eto_reconfigure */ +}; +#endif /* EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON */ + +#if EFSYS_OPT_MEDFORD +static __checkReturn boolean_t +medford_udp_encap_supported( + __in efx_nic_t *enp); + +static __checkReturn efx_rc_t +medford_tunnel_reconfigure( + __in efx_nic_t *enp); + +static const efx_tunnel_ops_t __efx_tunnel_medford_ops = { + medford_udp_encap_supported, /* eto_udp_encap_supported */ + medford_tunnel_reconfigure, /* eto_reconfigure */ +}; +#endif /* EFSYS_OPT_MEDFORD */ + +static __checkReturn efx_rc_t +efx_mcdi_set_tunnel_encap_udp_ports( + __in efx_nic_t *enp, + __in efx_tunnel_cfg_t *etcp, + __in boolean_t unloading, + __out boolean_t *resetting) +{ + efx_mcdi_req_t req; + uint8_t payload[MAX(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX, + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN)]; + efx_word_t flags; + efx_rc_t rc; + unsigned int i; + unsigned int entries_num; + + if (etcp == NULL) + entries_num = 0; + else + entries_num = etcp->etc_udp_entries_num; + + (void) memset(payload, 0, sizeof (payload)); + req.emr_cmd = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS; + req.emr_in_buf = payload; + req.emr_in_length = + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(entries_num); + req.emr_out_buf = payload; + req.emr_out_length = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN; + + EFX_POPULATE_WORD_1(flags, + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING, + (unloading == B_TRUE) ? 1 : 0); + MCDI_IN_SET_WORD(req, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS, + EFX_WORD_FIELD(flags, EFX_WORD_0)); + + MCDI_IN_SET_WORD(req, SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES, + entries_num); + + for (i = 0; i < entries_num; ++i) { + uint16_t mcdi_udp_protocol; + + switch (etcp->etc_udp_entries[i].etue_protocol) { + case EFX_TUNNEL_PROTOCOL_VXLAN: + mcdi_udp_protocol = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; + break; + case EFX_TUNNEL_PROTOCOL_GENEVE: + mcdi_udp_protocol = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; + break; + default: + rc = EINVAL; + goto fail1; + } + + /* + * UDP port is MCDI native little-endian in the request + * and EFX_POPULATE_DWORD cares about conversion from + * host/CPU byte order to little-endian. + */ + EFX_STATIC_ASSERT(sizeof (efx_dword_t) == + TUNNEL_ENCAP_UDP_PORT_ENTRY_LEN); + EFX_POPULATE_DWORD_2( + MCDI_IN2(req, efx_dword_t, + SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES)[i], + TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT, + etcp->etc_udp_entries[i].etue_port, + TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL, + mcdi_udp_protocol); + } + + efx_mcdi_execute(enp, &req); + + if (req.emr_rc != 0) { + rc = req.emr_rc; + goto fail2; + } + + if (req.emr_out_length_used != + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN) { + rc = EMSGSIZE; + goto fail3; + } + + *resetting = MCDI_OUT_WORD_FIELD(req, + SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS, + SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING); + + return (0); + +fail3: + EFSYS_PROBE(fail3); + +fail2: + EFSYS_PROBE(fail2); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + + return (rc); +} + + __checkReturn efx_rc_t +efx_tunnel_init( + __in efx_nic_t *enp) +{ + efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg; + const efx_tunnel_ops_t *etop; + efx_rc_t rc; + + EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); + EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TUNNEL)); + + EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES == + MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); + + switch (enp->en_family) { +#if EFSYS_OPT_SIENA + case EFX_FAMILY_SIENA: + etop = &__efx_tunnel_dummy_ops; + break; +#endif /* EFSYS_OPT_SIENA */ + +#if EFSYS_OPT_HUNTINGTON + case EFX_FAMILY_HUNTINGTON: + etop = &__efx_tunnel_dummy_ops; + break; +#endif /* EFSYS_OPT_HUNTINGTON */ + +#if EFSYS_OPT_MEDFORD + case EFX_FAMILY_MEDFORD: + etop = &__efx_tunnel_medford_ops; + break; +#endif /* EFSYS_OPT_MEDFORD */ + + default: + EFSYS_ASSERT(0); + rc = ENOTSUP; + goto fail1; + } + + memset(etcp->etc_udp_entries, 0, sizeof (etcp->etc_udp_entries)); + etcp->etc_udp_entries_num = 0; + + enp->en_etop = etop; + enp->en_mod_flags |= EFX_MOD_TUNNEL; + + return (0); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + + enp->en_etop = NULL; + enp->en_mod_flags &= ~EFX_MOD_TUNNEL; + + return (rc); +} + + void +efx_tunnel_fini( + __in efx_nic_t *enp) +{ + boolean_t resetting; + + EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL); + + if ((enp->en_etop->eto_udp_encap_supported != NULL) && + enp->en_etop->eto_udp_encap_supported(enp)) { + /* + * The UNLOADING flag allows the MC to suppress the datapath + * reset if it was set on the last call to + * MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS by all functions + */ + (void) efx_mcdi_set_tunnel_encap_udp_ports(enp, NULL, B_TRUE, + &resetting); + } + + enp->en_etop = NULL; + enp->en_mod_flags &= ~EFX_MOD_TUNNEL; +} + +static __checkReturn efx_rc_t +efx_tunnel_config_find_udp_tunnel_entry( + __in efx_tunnel_cfg_t *etcp, + __in uint16_t port, + __out unsigned int *entryp) +{ + unsigned int i; + + for (i = 0; i < etcp->etc_udp_entries_num; ++i) { + efx_tunnel_udp_entry_t *p = &etcp->etc_udp_entries[i]; + + if (p->etue_port == port) { + *entryp = i; + return (0); + } + } + + return (ENOENT); +} + + __checkReturn efx_rc_t +efx_tunnel_config_udp_add( + __in efx_nic_t *enp, + __in uint16_t port /* host/cpu-endian */, + __in efx_tunnel_protocol_t protocol) +{ + const efx_nic_cfg_t *encp = &enp->en_nic_cfg; + efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg; + efsys_lock_state_t state; + efx_rc_t rc; + unsigned int entry; + + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL); + + if (protocol >= EFX_TUNNEL_NPROTOS) { + rc = EINVAL; + goto fail1; + } + + if ((encp->enc_tunnel_encapsulations_supported & + (1u << protocol)) == 0) { + rc = ENOTSUP; + goto fail2; + } + + EFSYS_LOCK(enp->en_eslp, state); + + rc = efx_tunnel_config_find_udp_tunnel_entry(etcp, port, &entry); + if (rc == 0) { + rc = EEXIST; + goto fail3; + } + + if (etcp->etc_udp_entries_num == + encp->enc_tunnel_config_udp_entries_max) { + rc = ENOSPC; + goto fail4; + } + + etcp->etc_udp_entries[etcp->etc_udp_entries_num].etue_port = port; + etcp->etc_udp_entries[etcp->etc_udp_entries_num].etue_protocol = + protocol; + + etcp->etc_udp_entries_num++; + + EFSYS_UNLOCK(enp->en_eslp, state); + + return (0); + +fail4: + EFSYS_PROBE(fail4); + +fail3: + EFSYS_PROBE(fail3); + EFSYS_UNLOCK(enp->en_eslp, state); + +fail2: + EFSYS_PROBE(fail2); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + + return (rc); +} + + __checkReturn efx_rc_t +efx_tunnel_config_udp_remove( + __in efx_nic_t *enp, + __in uint16_t port /* host/cpu-endian */, + __in efx_tunnel_protocol_t protocol) +{ + efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg; + efsys_lock_state_t state; + unsigned int entry; + efx_rc_t rc; + + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL); + + EFSYS_LOCK(enp->en_eslp, state); + + rc = efx_tunnel_config_find_udp_tunnel_entry(etcp, port, &entry); + if (rc != 0) + goto fail1; + + if (etcp->etc_udp_entries[entry].etue_protocol != protocol) { + rc = EINVAL; + goto fail2; + } + + EFSYS_ASSERT3U(etcp->etc_udp_entries_num, >, 0); + etcp->etc_udp_entries_num--; + + if (entry < etcp->etc_udp_entries_num) { + memmove(&etcp->etc_udp_entries[entry], + &etcp->etc_udp_entries[entry + 1], + (etcp->etc_udp_entries_num - entry) * + sizeof (etcp->etc_udp_entries[0])); + } + + memset(&etcp->etc_udp_entries[etcp->etc_udp_entries_num], 0, + sizeof (etcp->etc_udp_entries[0])); + + EFSYS_UNLOCK(enp->en_eslp, state); + + return (0); + +fail2: + EFSYS_PROBE(fail2); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + EFSYS_UNLOCK(enp->en_eslp, state); + + return (rc); +} + + void +efx_tunnel_config_clear( + __in efx_nic_t *enp) +{ + efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg; + efsys_lock_state_t state; + + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL); + + EFSYS_LOCK(enp->en_eslp, state); + + etcp->etc_udp_entries_num = 0; + memset(etcp->etc_udp_entries, 0, sizeof (etcp->etc_udp_entries)); + + EFSYS_UNLOCK(enp->en_eslp, state); +} + + __checkReturn efx_rc_t +efx_tunnel_reconfigure( + __in efx_nic_t *enp) +{ + const efx_tunnel_ops_t *etop = enp->en_etop; + efx_rc_t rc; + + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL); + + if (etop->eto_reconfigure == NULL) { + rc = ENOTSUP; + goto fail1; + } + + if ((rc = enp->en_etop->eto_reconfigure(enp)) != 0) + goto fail2; + + return (0); + +fail2: + EFSYS_PROBE(fail2); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + + return (rc); +} + +#if EFSYS_OPT_MEDFORD +static __checkReturn boolean_t +medford_udp_encap_supported( + __in efx_nic_t *enp) +{ + const efx_nic_cfg_t *encp = &enp->en_nic_cfg; + uint32_t udp_tunnels_mask = 0; + + udp_tunnels_mask |= (1u << EFX_TUNNEL_PROTOCOL_VXLAN); + udp_tunnels_mask |= (1u << EFX_TUNNEL_PROTOCOL_GENEVE); + + return ((encp->enc_tunnel_encapsulations_supported & + udp_tunnels_mask) == 0 ? B_FALSE : B_TRUE); +} + +static __checkReturn efx_rc_t +medford_tunnel_reconfigure( + __in efx_nic_t *enp) +{ + efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg; + efx_rc_t rc; + boolean_t resetting; + efsys_lock_state_t state; + efx_tunnel_cfg_t etc; + + EFSYS_LOCK(enp->en_eslp, state); + memcpy(&etc, etcp, sizeof (etc)); + EFSYS_UNLOCK(enp->en_eslp, state); + + if (medford_udp_encap_supported(enp) == B_FALSE) { + /* + * It is OK to apply empty UDP tunnel ports when UDP + * tunnel encapsulations are not supported - just nothing + * should be done. + */ + if (etc.etc_udp_entries_num == 0) + return (0); + rc = ENOTSUP; + goto fail1; + } else { + /* + * All PCI functions can see a reset upon the + * MCDI request completion + */ + rc = efx_mcdi_set_tunnel_encap_udp_ports(enp, &etc, B_FALSE, + &resetting); + if (rc != 0) + goto fail2; + + /* + * Although the caller should be able to handle MC reboot, + * it might come in handy to report the impending reboot + * by returning EAGAIN + */ + return ((resetting) ? EAGAIN : 0); + } +fail2: + EFSYS_PROBE(fail2); + +fail1: + EFSYS_PROBE1(fail1, efx_rc_t, rc); + + return (rc); +} +#endif /* EFSYS_OPT_MEDFORD */ + +#endif /* EFSYS_OPT_TUNNEL */ Property changes on: head/sys/dev/sfxge/common/efx_tunnel.c ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: head/sys/modules/sfxge/Makefile =================================================================== --- head/sys/modules/sfxge/Makefile (revision 340927) +++ head/sys/modules/sfxge/Makefile (revision 340928) @@ -1,45 +1,45 @@ # $FreeBSD$ KMOD= sfxge SFXGE= ${SRCTOP}/sys/dev/sfxge SRCS= device_if.h bus_if.h pci_if.h SRCS+= opt_inet.h opt_inet6.h opt_sched.h opt_rss.h .PATH: ${SRCTOP}/sys/dev/sfxge SRCS+= sfxge.c sfxge_dma.c sfxge_ev.c SRCS+= sfxge_intr.c sfxge_mcdi.c sfxge_nvram.c SRCS+= sfxge_port.c sfxge_rx.c sfxge_tx.c SRCS+= sfxge.h sfxge_rx.h sfxge_tx.h sfxge_version.h .PATH: ${SRCTOP}/sys/dev/sfxge/common SRCS+= efx_bootcfg.c efx_crc32.c efx_ev.c efx_intr.c efx_lic.c efx_mac.c SRCS+= efx_mcdi.c efx_mon.c efx_nic.c -SRCS+= efx_nvram.c efx_phy.c efx_port.c efx_rx.c efx_sram.c efx_tx.c -SRCS+= efx_vpd.c efx_filter.c efx_hash.c +SRCS+= efx_nvram.c efx_phy.c efx_port.c efx_rx.c efx_sram.c efx_tunnel.c +SRCS+= efx_tx.c efx_vpd.c efx_filter.c efx_hash.c SRCS+= efsys.h SRCS+= efx.h efx_check.h efx_impl.h efx_mcdi.h efx_regs.h efx_regs_ef10.h SRCS+= efx_regs_mcdi.h efx_regs_pci.h efx_types.h efx_phy_ids.h SRCS+= ef10_tlv_layout.h SRCS+= mcdi_mon.c mcdi_mon.h SRCS+= siena_mac.c siena_mcdi.c siena_nic.c siena_nvram.c siena_phy.c SRCS+= siena_sram.c siena_vpd.c SRCS+= siena_flash.h siena_impl.h SRCS+= ef10_ev.c ef10_filter.c ef10_intr.c ef10_mac.c ef10_mcdi.c ef10_nic.c SRCS+= ef10_nvram.c ef10_phy.c ef10_rx.c ef10_tx.c ef10_vpd.c SRCS+= ef10_impl.h SRCS+= hunt_nic.c SRCS+= hunt_impl.h SRCS+= medford_nic.c SRCS+= medford_impl.h # Extra debug checks #CFLAGS += -DDEBUG=1 .include