Index: head/sys/dev/sfxge/common/efx_nvram.c =================================================================== --- head/sys/dev/sfxge/common/efx_nvram.c (revision 340824) +++ head/sys/dev/sfxge/common/efx_nvram.c (revision 340825) @@ -1,1077 +1,1077 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_NVRAM #if EFSYS_OPT_SIENA static const efx_nvram_ops_t __efx_nvram_siena_ops = { #if EFSYS_OPT_DIAG siena_nvram_test, /* envo_test */ #endif /* EFSYS_OPT_DIAG */ siena_nvram_type_to_partn, /* envo_type_to_partn */ siena_nvram_partn_size, /* envo_partn_size */ siena_nvram_partn_rw_start, /* envo_partn_rw_start */ siena_nvram_partn_read, /* envo_partn_read */ siena_nvram_partn_read, /* envo_partn_read_backup */ siena_nvram_partn_erase, /* envo_partn_erase */ siena_nvram_partn_write, /* envo_partn_write */ siena_nvram_partn_rw_finish, /* envo_partn_rw_finish */ siena_nvram_partn_get_version, /* envo_partn_get_version */ siena_nvram_partn_set_version, /* envo_partn_set_version */ NULL, /* envo_partn_validate */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static const efx_nvram_ops_t __efx_nvram_ef10_ops = { #if EFSYS_OPT_DIAG ef10_nvram_test, /* envo_test */ #endif /* EFSYS_OPT_DIAG */ ef10_nvram_type_to_partn, /* envo_type_to_partn */ ef10_nvram_partn_size, /* envo_partn_size */ ef10_nvram_partn_rw_start, /* envo_partn_rw_start */ ef10_nvram_partn_read, /* envo_partn_read */ ef10_nvram_partn_read_backup, /* envo_partn_read_backup */ ef10_nvram_partn_erase, /* envo_partn_erase */ ef10_nvram_partn_write, /* envo_partn_write */ ef10_nvram_partn_rw_finish, /* envo_partn_rw_finish */ ef10_nvram_partn_get_version, /* envo_partn_get_version */ ef10_nvram_partn_set_version, /* envo_partn_set_version */ ef10_nvram_buffer_validate, /* envo_buffer_validate */ }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp) { const efx_nvram_ops_t *envop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NVRAM)); switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: envop = &__efx_nvram_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: envop = &__efx_nvram_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: envop = &__efx_nvram_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } enp->en_envop = envop; enp->en_mod_flags |= EFX_MOD_NVRAM; enp->en_nvram_partn_locked = EFX_NVRAM_PARTN_INVALID; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp) { const efx_nvram_ops_t *envop = enp->en_envop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_test(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; if ((rc = envop->envo_partn_size(enp, partn, sizep)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); *sizep = 0; return (rc); } __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; if ((rc = envop->envo_partn_get_version(enp, partn, subtypep, version)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *chunk_sizep) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, EFX_NVRAM_PARTN_INVALID); if ((rc = envop->envo_partn_rw_start(enp, partn, chunk_sizep)) != 0) goto fail2; enp->en_nvram_partn_locked = partn; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, partn); if ((rc = envop->envo_partn_read(enp, partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Read from the backup (writeable) store of an A/B partition. * For non A/B partitions, there is only a single store, and so this * function has the same behaviour as efx_nvram_read_chunk(). */ __checkReturn efx_rc_t efx_nvram_read_backup( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, partn); if ((rc = envop->envo_partn_read_backup(enp, partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type) { const efx_nvram_ops_t *envop = enp->en_envop; unsigned int offset = 0; size_t size = 0; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, partn); if ((rc = envop->envo_partn_size(enp, partn, &size)) != 0) goto fail2; if ((rc = envop->envo_partn_erase(enp, partn, offset, size)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, partn); if ((rc = envop->envo_partn_write(enp, partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt uint32_t *verify_resultp) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; uint32_t verify_result = 0; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, partn); if ((rc = envop->envo_partn_rw_finish(enp, partn, &verify_result)) != 0) goto fail2; enp->en_nvram_partn_locked = EFX_NVRAM_PARTN_INVALID; if (verify_resultp != NULL) *verify_resultp = verify_result; return (0); fail2: EFSYS_PROBE(fail2); enp->en_nvram_partn_locked = EFX_NVRAM_PARTN_INVALID; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Always report verification result */ if (verify_resultp != NULL) *verify_resultp = verify_result; return (rc); } __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; /* * The Siena implementation of envo_set_version() will attempt to * acquire the NVRAM_UPDATE lock for the DYNAMIC_CONFIG partition. * Therefore, you can't have already acquired the NVRAM_UPDATE lock. */ EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, EFX_NVRAM_PARTN_INVALID); if ((rc = envop->envo_partn_set_version(enp, partn, version)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Validate buffer contents (before writing to flash) */ __checkReturn efx_rc_t efx_nvram_validate( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size) { const efx_nvram_ops_t *envop = enp->en_envop; uint32_t partn; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0) goto fail1; if (envop->envo_buffer_validate != NULL) { if ((rc = envop->envo_buffer_validate(enp, partn, partn_data, partn_size)) != 0) goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_nvram_fini( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM); EFSYS_ASSERT3U(enp->en_nvram_partn_locked, ==, EFX_NVRAM_PARTN_INVALID); enp->en_envop = NULL; enp->en_mod_flags &= ~EFX_MOD_NVRAM; } #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD /* * Internal MCDI request handling */ __checkReturn efx_rc_t efx_mcdi_nvram_partitions( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size, __out unsigned int *npartnp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_PARTITIONS_IN_LEN, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX)]; unsigned int npartn; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_PARTITIONS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_PARTITIONS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } npartn = MCDI_OUT_DWORD(req, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LEN(npartn)) { rc = ENOENT; goto fail3; } if (size < npartn * sizeof (uint32_t)) { rc = ENOSPC; goto fail3; } *npartnp = npartn; memcpy(data, MCDI_OUT2(req, uint32_t, NVRAM_PARTITIONS_OUT_TYPE_ID), (npartn * sizeof (uint32_t))); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_nvram_metadata( __in efx_nic_t *enp, __in uint32_t partn, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4], __out_bcount_opt(size) char *descp, __in size_t size) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_METADATA_IN_LEN, MC_CMD_NVRAM_METADATA_OUT_LENMAX)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_METADATA; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_METADATA_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_METADATA_OUT_LENMAX; MCDI_IN_SET_DWORD(req, NVRAM_METADATA_IN_TYPE, partn); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_METADATA_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS, NVRAM_METADATA_OUT_SUBTYPE_VALID)) { *subtypep = MCDI_OUT_DWORD(req, NVRAM_METADATA_OUT_SUBTYPE); } else { *subtypep = 0; } if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS, NVRAM_METADATA_OUT_VERSION_VALID)) { version[0] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_W); version[1] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_X); version[2] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Y); version[3] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Z); } else { version[0] = version[1] = version[2] = version[3] = 0; } if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS, NVRAM_METADATA_OUT_DESCRIPTION_VALID)) { /* Return optional descrition string */ if ((descp != NULL) && (size > 0)) { size_t desclen; descp[0] = '\0'; desclen = (req.emr_out_length_used - MC_CMD_NVRAM_METADATA_OUT_LEN(0)); EFSYS_ASSERT3U(desclen, <=, MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_MAXNUM); if (size < desclen) { rc = ENOSPC; goto fail3; } memcpy(descp, MCDI_OUT2(req, char, NVRAM_METADATA_OUT_DESCRIPTION), desclen); /* Ensure string is NUL terminated */ descp[desclen] = '\0'; } } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_nvram_info( __in efx_nic_t *enp, __in uint32_t partn, __out_opt size_t *sizep, __out_opt uint32_t *addressp, __out_opt uint32_t *erase_sizep, __out_opt uint32_t *write_sizep) { uint8_t payload[MAX(MC_CMD_NVRAM_INFO_IN_LEN, MC_CMD_NVRAM_INFO_V2_OUT_LEN)]; efx_mcdi_req_t req; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_INFO_V2_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_INFO_IN_TYPE, partn); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_INFO_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (sizep) *sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_SIZE); if (addressp) *addressp = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_PHYSADDR); if (erase_sizep) *erase_sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_ERASESIZE); if (write_sizep) { *write_sizep = (req.emr_out_length_used < MC_CMD_NVRAM_INFO_V2_OUT_LEN) ? 0 : MCDI_OUT_DWORD(req, NVRAM_INFO_V2_OUT_WRITESIZE); } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * MC_CMD_NVRAM_UPDATE_START_V2 must be used to support firmware-verified * NVRAM updates. Older firmware will ignore the flags field in the request. */ __checkReturn efx_rc_t efx_mcdi_nvram_update_start( __in efx_nic_t *enp, __in uint32_t partn) { uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN, MC_CMD_NVRAM_UPDATE_START_OUT_LEN)]; efx_mcdi_req_t req; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_UPDATE_START; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_UPDATE_START_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_START_V2_IN_TYPE, partn); MCDI_IN_POPULATE_DWORD_1(req, NVRAM_UPDATE_START_V2_IN_FLAGS, NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_nvram_read( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size, __in uint32_t mode) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_READ_IN_V2_LEN, MC_CMD_NVRAM_READ_OUT_LENMAX)]; efx_rc_t rc; if (size > MC_CMD_NVRAM_READ_OUT_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_READ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_READ_IN_V2_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_READ_OUT_LENMAX; MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_TYPE, partn); MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_OFFSET, offset); MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_LENGTH, size); MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_MODE, mode); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_READ_OUT_LEN(size)) { rc = EMSGSIZE; goto fail2; } memcpy(data, MCDI_OUT2(req, uint8_t, NVRAM_READ_OUT_READ_BUFFER), size); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_nvram_erase( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __in size_t size) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_ERASE_IN_LEN, MC_CMD_NVRAM_ERASE_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_ERASE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_ERASE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_ERASE_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_TYPE, partn); MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_OFFSET, offset); MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_LENGTH, size); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * The NVRAM_WRITE MCDI command is a V1 command and so is supported by both * Sienna and EF10 based boards. However EF10 based boards support the use * of this command with payloads up to the maximum MCDI V2 payload length. */ __checkReturn efx_rc_t efx_mcdi_nvram_write( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size) { efx_mcdi_req_t req; uint8_t payload[MAX(MCDI_CTL_SDU_LEN_MAX_V1, MCDI_CTL_SDU_LEN_MAX_V2)]; efx_rc_t rc; size_t max_data_size; max_data_size = enp->en_nic_cfg.enc_mcdi_max_payload_length - MC_CMD_NVRAM_WRITE_IN_LEN(0); EFSYS_ASSERT3U(enp->en_nic_cfg.enc_mcdi_max_payload_length, >, 0); EFSYS_ASSERT3U(max_data_size, <, enp->en_nic_cfg.enc_mcdi_max_payload_length); if (size > max_data_size) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_WRITE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_WRITE_IN_LEN(size); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_WRITE_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_TYPE, partn); MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_OFFSET, offset); MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_LENGTH, size); memcpy(MCDI_IN2(req, uint8_t, NVRAM_WRITE_IN_WRITE_BUFFER), data, size); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * MC_CMD_NVRAM_UPDATE_FINISH_V2 must be used to support firmware-verified * NVRAM updates. Older firmware will ignore the flags field in the request. */ __checkReturn efx_rc_t efx_mcdi_nvram_update_finish( __in efx_nic_t *enp, __in uint32_t partn, __in boolean_t reboot, __out_opt uint32_t *verify_resultp) { const efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN)]; uint32_t verify_result = MC_CMD_NVRAM_VERIFY_RC_UNKNOWN; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_UPDATE_FINISH; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_V2_IN_TYPE, partn); MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_V2_IN_REBOOT, reboot); MCDI_IN_POPULATE_DWORD_1(req, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { verify_result = MC_CMD_NVRAM_VERIFY_RC_UNKNOWN; if (encp->enc_nvram_update_verify_result_supported) { /* Result of update verification is missing */ rc = EMSGSIZE; goto fail2; } } else { verify_result = MCDI_OUT_DWORD(req, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); } if ((encp->enc_nvram_update_verify_result_supported) && (verify_result != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)) { /* Update verification failed */ rc = EINVAL; goto fail3; } if (verify_resultp != NULL) *verify_resultp = verify_result; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Always report verification result */ if (verify_resultp != NULL) *verify_resultp = verify_result; return (rc); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_mcdi_nvram_test( __in efx_nic_t *enp, __in uint32_t partn) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_TEST_IN_LEN, MC_CMD_NVRAM_TEST_OUT_LEN)]; int result; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_TEST; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_TEST_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_TEST_OUT_LEN; MCDI_IN_SET_DWORD(req, NVRAM_TEST_IN_TYPE, partn); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_TEST_OUT_LEN) { rc = EMSGSIZE; goto fail2; } result = MCDI_OUT_DWORD(req, NVRAM_TEST_OUT_RESULT); if (result == MC_CMD_NVRAM_TEST_FAIL) { EFSYS_PROBE1(nvram_test_failure, int, partn); rc = (EINVAL); goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */