Index: head/sys/fs/nfsclient/nfs_clport.c =================================================================== --- head/sys/fs/nfsclient/nfs_clport.c (revision 340743) +++ head/sys/fs/nfsclient/nfs_clport.c (revision 340744) @@ -1,1386 +1,1386 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include /* * generally, I don't like #includes inside .h files, but it seems to * be the easiest way to handle the port. */ #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS dtrace_nfsclient_attrcache_flush_probe_func_t dtrace_nfscl_attrcache_flush_done_probe; uint32_t nfscl_attrcache_flush_done_id; dtrace_nfsclient_attrcache_get_hit_probe_func_t dtrace_nfscl_attrcache_get_hit_probe; uint32_t nfscl_attrcache_get_hit_id; dtrace_nfsclient_attrcache_get_miss_probe_func_t dtrace_nfscl_attrcache_get_miss_probe; uint32_t nfscl_attrcache_get_miss_id; dtrace_nfsclient_attrcache_load_probe_func_t dtrace_nfscl_attrcache_load_done_probe; uint32_t nfscl_attrcache_load_done_id; #endif /* !KDTRACE_HOOKS */ extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; extern struct vop_vector newnfs_vnodeops; extern struct vop_vector newnfs_fifoops; extern uma_zone_t newnfsnode_zone; extern struct buf_ops buf_ops_newnfs; extern int ncl_pbuf_freecnt; extern short nfsv4_cbport; extern int nfscl_enablecallb; extern int nfs_numnfscbd; extern int nfscl_inited; struct mtx ncl_iod_mutex; NFSDLOCKMUTEX; extern struct mtx nfsrv_dslock_mtx; extern void (*ncl_call_invalcaches)(struct vnode *); SYSCTL_DECL(_vfs_nfs); static int ncl_fileid_maxwarnings = 10; SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, &ncl_fileid_maxwarnings, 0, "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); static volatile int ncl_fileid_nwarnings; static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, struct nfsvattr *); /* * Comparison function for vfs_hash functions. */ int newnfs_vncmpf(struct vnode *vp, void *arg) { struct nfsfh *nfhp = (struct nfsfh *)arg; struct nfsnode *np = VTONFS(vp); if (np->n_fhp->nfh_len != nfhp->nfh_len || NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) return (1); return (0); } /* * Look up a vnode/nfsnode by file handle. * Callers must check for mount points!! * In all cases, a pointer to a * nfsnode structure is returned. * This variant takes a "struct nfsfh *" as second argument and uses * that structure up, either by hanging off the nfsnode or FREEing it. */ int nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, struct componentname *cnp, struct thread *td, struct nfsnode **npp, void *stuff, int lkflags) { struct nfsnode *np, *dnp; struct vnode *vp, *nvp; struct nfsv4node *newd, *oldd; int error; u_int hash; struct nfsmount *nmp; nmp = VFSTONFS(mntp); dnp = VTONFS(dvp); *npp = NULL; hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); error = vfs_hash_get(mntp, hash, lkflags, td, &nvp, newnfs_vncmpf, nfhp); if (error == 0 && nvp != NULL) { /* * I believe there is a slight chance that vgonel() could * get called on this vnode between when NFSVOPLOCK() drops * the VI_LOCK() and vget() acquires it again, so that it * hasn't yet had v_usecount incremented. If this were to * happen, the VI_DOOMED flag would be set, so check for * that here. Since we now have the v_usecount incremented, * we should be ok until we vrele() it, if the VI_DOOMED * flag isn't set now. */ VI_LOCK(nvp); if ((nvp->v_iflag & VI_DOOMED)) { VI_UNLOCK(nvp); vrele(nvp); error = ENOENT; } else { VI_UNLOCK(nvp); } } if (error) { free(nfhp, M_NFSFH); return (error); } if (nvp != NULL) { np = VTONFS(nvp); /* * For NFSv4, check to see if it is the same name and * replace the name, if it is different. */ oldd = newd = NULL; if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && nvp->v_type == VREG && (np->n_v4->n4_namelen != cnp->cn_namelen || NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), cnp->cn_namelen) || dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len))) { newd = malloc( sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); NFSLOCKNODE(np); if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG && (np->n_v4->n4_namelen != cnp->cn_namelen || NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), cnp->cn_namelen) || dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len))) { oldd = np->n_v4; np->n_v4 = newd; newd = NULL; np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; np->n_v4->n4_namelen = cnp->cn_namelen; NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len); NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), cnp->cn_namelen); } NFSUNLOCKNODE(np); } if (newd != NULL) free(newd, M_NFSV4NODE); if (oldd != NULL) free(oldd, M_NFSV4NODE); *npp = np; free(nfhp, M_NFSFH); return (0); } np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); if (error) { uma_zfree(newnfsnode_zone, np); free(nfhp, M_NFSFH); return (error); } vp = nvp; KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); vp->v_bufobj.bo_ops = &buf_ops_newnfs; vp->v_data = np; np->n_vnode = vp; /* * Initialize the mutex even if the vnode is going to be a loser. * This simplifies the logic in reclaim, which can then unconditionally * destroy the mutex (in the case of the loser, or if hash_insert * happened to return an error no special casing is needed). */ mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE | LK_CANRECURSE); /* * Are we getting the root? If so, make sure the vnode flags * are correct */ if ((nfhp->nfh_len == nmp->nm_fhsize) && !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { if (vp->v_type == VNON) vp->v_type = VDIR; vp->v_vflag |= VV_ROOT; } np->n_fhp = nfhp; /* * For NFSv4, we have to attach the directory file handle and * file name, so that Open Ops can be done later. */ if (nmp->nm_flag & NFSMNT_NFSV4) { np->n_v4 = malloc(sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; np->n_v4->n4_namelen = cnp->cn_namelen; NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len); NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), cnp->cn_namelen); } else { np->n_v4 = NULL; } /* * NFS supports recursive and shared locking. */ lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); VN_LOCK_AREC(vp); VN_LOCK_ASHARE(vp); error = insmntque(vp, mntp); if (error != 0) { *npp = NULL; mtx_destroy(&np->n_mtx); lockdestroy(&np->n_excl); free(nfhp, M_NFSFH); if (np->n_v4 != NULL) free(np->n_v4, M_NFSV4NODE); uma_zfree(newnfsnode_zone, np); return (error); } error = vfs_hash_insert(vp, hash, lkflags, td, &nvp, newnfs_vncmpf, nfhp); if (error) return (error); if (nvp != NULL) { *npp = VTONFS(nvp); /* vfs_hash_insert() vput()'s the losing vnode */ return (0); } *npp = np; return (0); } /* * Another variant of nfs_nget(). This one is only used by reopen. It * takes almost the same args as nfs_nget(), but only succeeds if an entry * exists in the cache. (Since files should already be "open" with a * vnode ref cnt on the node when reopen calls this, it should always * succeed.) * Also, don't get a vnode lock, since it may already be locked by some * other process that is handling it. This is ok, since all other threads * on the client are blocked by the nfsc_lock being exclusively held by the * caller of this function. */ int nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, struct thread *td, struct nfsnode **npp) { struct vnode *nvp; u_int hash; struct nfsfh *nfhp; int error; *npp = NULL; /* For forced dismounts, just return error. */ if (NFSCL_FORCEDISM(mntp)) return (EINTR); nfhp = malloc(sizeof (struct nfsfh) + fhsize, M_NFSFH, M_WAITOK); bcopy(fhp, &nfhp->nfh_fh[0], fhsize); nfhp->nfh_len = fhsize; hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); /* * First, try to get the vnode locked, but don't block for the lock. */ error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, newnfs_vncmpf, nfhp); if (error == 0 && nvp != NULL) { NFSVOPUNLOCK(nvp, 0); } else if (error == EBUSY) { /* * It is safe so long as a vflush() with * FORCECLOSE has not been done. Since the Renew thread is * stopped and the MNTK_UNMOUNTF flag is set before doing * a vflush() with FORCECLOSE, we should be ok here. */ if (NFSCL_FORCEDISM(mntp)) error = EINTR; else { vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); if (nvp == NULL) { error = ENOENT; } else if ((nvp->v_iflag & VI_DOOMED) != 0) { error = ENOENT; vrele(nvp); } else { error = 0; } } } free(nfhp, M_NFSFH); if (error) return (error); if (nvp != NULL) { *npp = VTONFS(nvp); return (0); } return (EINVAL); } static void nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, struct nfsvattr *newnap) { int off; if (ncl_fileid_maxwarnings >= 0 && ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) return; off = 0; if (ncl_fileid_maxwarnings >= 0) { if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) off = 1; } printf("newnfs: server '%s' error: fileid changed. " "fsid %jx:%jx: expected fileid %#jx, got %#jx. " "(BROKEN NFS SERVER OR MIDDLEWARE)\n", nmp->nm_com.nmcom_hostname, (uintmax_t)nmp->nm_fsid[0], (uintmax_t)nmp->nm_fsid[1], (uintmax_t)oldnap->na_fileid, (uintmax_t)newnap->na_fileid); if (off) printf("newnfs: Logged %d times about fileid corruption; " "going quiet to avoid spamming logs excessively. (Limit " "is: %d).\n", ncl_fileid_nwarnings, ncl_fileid_maxwarnings); } /* * Load the attribute cache (that lives in the nfsnode entry) with * the attributes of the second argument and * Iff vaper not NULL * copy the attributes to *vaper * Similar to nfs_loadattrcache(), except the attributes are passed in * instead of being parsed out of the mbuf list. */ int nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, void *stuff, int writeattr, int dontshrink) { struct vnode *vp = *vpp; struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; struct nfsnode *np; struct nfsmount *nmp; struct timespec mtime_save; u_quad_t nsize; int setnsize, error, force_fid_err; error = 0; setnsize = 0; nsize = 0; /* * If v_type == VNON it is a new node, so fill in the v_type, * n_mtime fields. Check to see if it represents a special * device, and if so, check for a possible alias. Once the * correct vnode has been obtained, fill in the rest of the * information. */ np = VTONFS(vp); NFSLOCKNODE(np); if (vp->v_type != nvap->va_type) { vp->v_type = nvap->va_type; if (vp->v_type == VFIFO) vp->v_op = &newnfs_fifoops; np->n_mtime = nvap->va_mtime; } nmp = VFSTONFS(vp->v_mount); vap = &np->n_vattr.na_vattr; mtime_save = vap->va_mtime; if (writeattr) { np->n_vattr.na_filerev = nap->na_filerev; np->n_vattr.na_size = nap->na_size; np->n_vattr.na_mtime = nap->na_mtime; np->n_vattr.na_ctime = nap->na_ctime; np->n_vattr.na_fsid = nap->na_fsid; np->n_vattr.na_mode = nap->na_mode; } else { force_fid_err = 0; KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, force_fid_err); /* * BROKEN NFS SERVER OR MIDDLEWARE * * Certain NFS servers (certain old proprietary filers ca. * 2006) or broken middleboxes (e.g. WAN accelerator products) * will respond to GETATTR requests with results for a * different fileid. * * The WAN accelerator we've observed not only serves stale * cache results for a given file, it also occasionally serves * results for wholly different files. This causes surprising * problems; for example the cached size attribute of a file * may truncate down and then back up, resulting in zero * regions in file contents read by applications. We observed * this reliably with Clang and .c files during parallel build. * A pcap revealed packet fragmentation and GETATTR RPC * responses with wholly wrong fileids. */ if ((np->n_vattr.na_fileid != 0 && np->n_vattr.na_fileid != nap->na_fileid) || force_fid_err) { nfscl_warn_fileid(nmp, &np->n_vattr, nap); error = EIDRM; goto out; } NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, sizeof (struct nfsvattr)); } /* * For NFSv4, if the node's fsid is not equal to the mount point's * fsid, return the low order 32bits of the node's fsid. This * allows getcwd(3) to work. There is a chance that the fsid might * be the same as a local fs, but since this is in an NFS mount * point, I don't think that will cause any problems? */ if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { /* * va_fsid needs to be set to some value derived from * np->n_vattr.na_filesid that is not equal * vp->v_mount->mnt_stat.f_fsid[0], so that it changes * from the value used for the top level server volume * in the mounted subtree. */ vn_fsid(vp, vap); if ((uint32_t)vap->va_fsid == np->n_vattr.na_filesid[0]) vap->va_fsid = hash32_buf( np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); } else vn_fsid(vp, vap); np->n_attrstamp = time_second; if (vap->va_size != np->n_size) { if (vap->va_type == VREG) { if (dontshrink && vap->va_size < np->n_size) { /* * We've been told not to shrink the file; * zero np->n_attrstamp to indicate that * the attributes are stale. */ vap->va_size = np->n_size; np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); vnode_pager_setsize(vp, np->n_size); } else if (np->n_flag & NMODIFIED) { /* * We've modified the file: Use the larger * of our size, and the server's size. */ if (vap->va_size < np->n_size) { vap->va_size = np->n_size; } else { np->n_size = vap->va_size; np->n_flag |= NSIZECHANGED; } vnode_pager_setsize(vp, np->n_size); } else if (vap->va_size < np->n_size) { /* * When shrinking the size, the call to * vnode_pager_setsize() cannot be done * with the mutex held, so delay it until * after the mtx_unlock call. */ nsize = np->n_size = vap->va_size; np->n_flag |= NSIZECHANGED; setnsize = 1; } else { np->n_size = vap->va_size; np->n_flag |= NSIZECHANGED; vnode_pager_setsize(vp, np->n_size); } } else { np->n_size = vap->va_size; } } /* * The following checks are added to prevent a race between (say) * a READDIR+ and a WRITE. * READDIR+, WRITE requests sent out. * READDIR+ resp, WRITE resp received on client. * However, the WRITE resp was handled before the READDIR+ resp * causing the post op attrs from the write to be loaded first * and the attrs from the READDIR+ to be loaded later. If this * happens, we have stale attrs loaded into the attrcache. * We detect this by for the mtime moving back. We invalidate the * attrcache when this happens. */ if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { /* Size changed or mtime went backwards */ np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } if (vaper != NULL) { NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); if (np->n_flag & NCHG) { if (np->n_flag & NACC) vaper->va_atime = np->n_atim; if (np->n_flag & NUPD) vaper->va_mtime = np->n_mtim; } } out: #ifdef KDTRACE_HOOKS if (np->n_attrstamp != 0) KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); #endif NFSUNLOCKNODE(np); if (setnsize) vnode_pager_setsize(vp, nsize); return (error); } /* * Fill in the client id name. For these bytes: * 1 - they must be unique * 2 - they should be persistent across client reboots * 1 is more critical than 2 * Use the mount point's unique id plus either the uuid or, if that * isn't set, random junk. */ void nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) { int uuidlen; /* * First, put in the 64bit mount point identifier. */ if (idlen >= sizeof (u_int64_t)) { NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); cp += sizeof (u_int64_t); idlen -= sizeof (u_int64_t); } /* * If uuid is non-zero length, use it. */ uuidlen = strlen(uuid); if (uuidlen > 0 && idlen >= uuidlen) { NFSBCOPY(uuid, cp, uuidlen); cp += uuidlen; idlen -= uuidlen; } /* * This only normally happens if the uuid isn't set. */ while (idlen > 0) { *cp++ = (u_int8_t)(arc4random() % 256); idlen--; } } /* * Fill in a lock owner name. For now, pid + the process's creation time. */ void nfscl_filllockowner(void *id, u_int8_t *cp, int flags) { union { u_int32_t lval; u_int8_t cval[4]; } tl; struct proc *p; if (id == NULL) { /* Return the single open_owner of all 0 bytes. */ bzero(cp, NFSV4CL_LOCKNAMELEN); return; } if ((flags & F_POSIX) != 0) { p = (struct proc *)id; tl.lval = p->p_pid; *cp++ = tl.cval[0]; *cp++ = tl.cval[1]; *cp++ = tl.cval[2]; *cp++ = tl.cval[3]; tl.lval = p->p_stats->p_start.tv_sec; *cp++ = tl.cval[0]; *cp++ = tl.cval[1]; *cp++ = tl.cval[2]; *cp++ = tl.cval[3]; tl.lval = p->p_stats->p_start.tv_usec; *cp++ = tl.cval[0]; *cp++ = tl.cval[1]; *cp++ = tl.cval[2]; *cp = tl.cval[3]; } else if ((flags & F_FLOCK) != 0) { bcopy(&id, cp, sizeof(id)); bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); } else { printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); bzero(cp, NFSV4CL_LOCKNAMELEN); } } /* * Find the parent process for the thread passed in as an argument. * If none exists, return NULL, otherwise return a thread for the parent. * (Can be any of the threads, since it is only used for td->td_proc.) */ NFSPROC_T * nfscl_getparent(struct thread *td) { struct proc *p; struct thread *ptd; if (td == NULL) return (NULL); p = td->td_proc; if (p->p_pid == 0) return (NULL); p = p->p_pptr; if (p == NULL) return (NULL); ptd = TAILQ_FIRST(&p->p_threads); return (ptd); } /* * Start up the renew kernel thread. */ static void start_nfscl(void *arg) { struct nfsclclient *clp; struct thread *td; clp = (struct nfsclclient *)arg; td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); nfscl_renewthread(clp, td); kproc_exit(0); } void nfscl_start_renewthread(struct nfsclclient *clp) { kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, "nfscl"); } /* * Handle wcc_data. * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr * as the first Op after PutFH. * (For NFSv4, the postop attributes are after the Op, so they can't be * parsed here. A separate call to nfscl_postop_attr() is required.) */ int nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) { u_int32_t *tl; struct nfsnode *np = VTONFS(vp); struct nfsvattr nfsva; int error = 0; if (wccflagp != NULL) *wccflagp = 0; if (nd->nd_flag & ND_NFSV3) { *flagp = 0; NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); if (*tl == newnfs_true) { NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); if (wccflagp != NULL) { mtx_lock(&np->n_mtx); *wccflagp = (np->n_mtime.tv_sec == fxdr_unsigned(u_int32_t, *(tl + 2)) && np->n_mtime.tv_nsec == fxdr_unsigned(u_int32_t, *(tl + 3))); mtx_unlock(&np->n_mtx); } } error = nfscl_postop_attr(nd, nap, flagp, stuff); if (wccflagp != NULL && *flagp == 0) *wccflagp = 0; } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) == (ND_NFSV4 | ND_V4WCCATTR)) { error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, NULL, NULL, NULL, NULL, NULL); if (error) return (error); /* * Get rid of Op# and status for next op. */ NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*++tl) nd->nd_flag |= ND_NOMOREDATA; if (wccflagp != NULL && nfsva.na_vattr.va_mtime.tv_sec != 0) { mtx_lock(&np->n_mtx); *wccflagp = (np->n_mtime.tv_sec == nfsva.na_vattr.va_mtime.tv_sec && np->n_mtime.tv_nsec == nfsva.na_vattr.va_mtime.tv_sec); mtx_unlock(&np->n_mtx); } } nfsmout: return (error); } /* * Get postop attributes. */ int nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, void *stuff) { u_int32_t *tl; int error = 0; *retp = 0; if (nd->nd_flag & ND_NOMOREDATA) return (error); if (nd->nd_flag & ND_NFSV3) { NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); *retp = fxdr_unsigned(int, *tl); } else if (nd->nd_flag & ND_NFSV4) { /* * For NFSv4, the postop attr are at the end, so no point * in looking if nd_repstat != 0. */ if (!nd->nd_repstat) { NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*(tl + 1)) /* should never happen since nd_repstat != 0 */ nd->nd_flag |= ND_NOMOREDATA; else *retp = 1; } } else if (!nd->nd_repstat) { /* For NFSv2, the attributes are here iff nd_repstat == 0 */ *retp = 1; } if (*retp) { error = nfsm_loadattr(nd, nap); if (error) *retp = 0; } nfsmout: return (error); } /* * nfscl_request() - mostly a wrapper for newnfs_request(). */ int nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, struct ucred *cred, void *stuff) { int ret, vers; struct nfsmount *nmp; nmp = VFSTONFS(vp->v_mount); if (nd->nd_flag & ND_NFSV4) vers = NFS_VER4; else if (nd->nd_flag & ND_NFSV3) vers = NFS_VER3; else vers = NFS_VER2; ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, NFS_PROG, vers, NULL, 1, NULL, NULL); return (ret); } /* * fill in this bsden's variant of statfs using nfsstatfs. */ void nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) { struct statfs *sbp = (struct statfs *)statfs; if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { sbp->f_bsize = NFS_FABLKSIZE; sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; /* * Although sf_abytes is uint64_t and f_bavail is int64_t, * the value after dividing by NFS_FABLKSIZE is small * enough that it will fit in 63bits, so it is ok to * assign it to f_bavail without fear that it will become * negative. */ sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; sbp->f_files = sfp->sf_tfiles; /* Since f_ffree is int64_t, clip it to 63bits. */ if (sfp->sf_ffiles > INT64_MAX) sbp->f_ffree = INT64_MAX; else sbp->f_ffree = sfp->sf_ffiles; } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { /* * The type casts to (int32_t) ensure that this code is * compatible with the old NFS client, in that it will * propagate bit31 to the high order bits. This may or may * not be correct for NFSv2, but since it is a legacy * environment, I'd rather retain backwards compatibility. */ sbp->f_bsize = (int32_t)sfp->sf_bsize; sbp->f_blocks = (int32_t)sfp->sf_blocks; sbp->f_bfree = (int32_t)sfp->sf_bfree; sbp->f_bavail = (int32_t)sfp->sf_bavail; sbp->f_files = 0; sbp->f_ffree = 0; } } /* * Use the fsinfo stuff to update the mount point. */ void nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) { if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && fsp->fs_wtpref >= NFS_FABLKSIZE) nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & ~(NFS_FABLKSIZE - 1); if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); if (nmp->nm_wsize == 0) nmp->nm_wsize = fsp->fs_wtmax; } if (nmp->nm_wsize < NFS_FABLKSIZE) nmp->nm_wsize = NFS_FABLKSIZE; if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && fsp->fs_rtpref >= NFS_FABLKSIZE) nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & ~(NFS_FABLKSIZE - 1); if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); if (nmp->nm_rsize == 0) nmp->nm_rsize = fsp->fs_rtmax; } if (nmp->nm_rsize < NFS_FABLKSIZE) nmp->nm_rsize = NFS_FABLKSIZE; if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) && fsp->fs_dtpref >= NFS_DIRBLKSIZ) nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & ~(NFS_DIRBLKSIZ - 1); if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); if (nmp->nm_readdirsize == 0) nmp->nm_readdirsize = fsp->fs_rtmax; } if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) nmp->nm_readdirsize = NFS_DIRBLKSIZ; if (fsp->fs_maxfilesize > 0 && fsp->fs_maxfilesize < nmp->nm_maxfilesize) nmp->nm_maxfilesize = fsp->fs_maxfilesize; nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); nmp->nm_state |= NFSSTA_GOTFSINFO; } /* * Lookups source address which should be used to communicate with * @nmp and stores it inside @pdst. * * Returns 0 on success. */ u_int8_t * nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) { #if defined(INET6) || defined(INET) int error, fibnum; fibnum = curthread->td_proc->p_fibnum; #endif #ifdef INET if (nmp->nm_nam->sa_family == AF_INET) { struct sockaddr_in *sin; struct nhop4_extended nh_ext; sin = (struct sockaddr_in *)nmp->nm_nam; CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); error = fib4_lookup_nh_ext(fibnum, sin->sin_addr, 0, 0, &nh_ext); CURVNET_RESTORE(); if (error != 0) return (NULL); if ((ntohl(nh_ext.nh_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { /* Ignore loopback addresses */ return (NULL); } *isinet6p = 0; *((struct in_addr *)paddr) = nh_ext.nh_src; return (u_int8_t *)paddr; } #endif #ifdef INET6 if (nmp->nm_nam->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)nmp->nm_nam; CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, sin6->sin6_scope_id, NULL, paddr, NULL); CURVNET_RESTORE(); if (error != 0) return (NULL); if (IN6_IS_ADDR_LOOPBACK(paddr)) return (NULL); /* Scope is embedded in */ *isinet6p = 1; return (u_int8_t *)paddr; } #endif return (NULL); } /* * Copy NFS uid, gids from the cred structure. */ void newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) { int i; KASSERT(cr->cr_ngroups >= 0, ("newnfs_copyincred: negative cr_ngroups")); nfscr->nfsc_uid = cr->cr_uid; nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); for (i = 0; i < nfscr->nfsc_ngroups; i++) nfscr->nfsc_groups[i] = cr->cr_groups[i]; } /* * Do any client specific initialization. */ void nfscl_init(void) { static int inited = 0; if (inited) return; inited = 1; nfscl_inited = 1; ncl_pbuf_freecnt = nswbuf / 2 + 1; } /* * Check each of the attributes to be set, to ensure they aren't already * the correct value. Disable setting ones already correct. */ int nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) { if (vap->va_mode != (mode_t)VNOVAL) { if (vap->va_mode == nvap->na_mode) vap->va_mode = (mode_t)VNOVAL; } if (vap->va_uid != (uid_t)VNOVAL) { if (vap->va_uid == nvap->na_uid) vap->va_uid = (uid_t)VNOVAL; } if (vap->va_gid != (gid_t)VNOVAL) { if (vap->va_gid == nvap->na_gid) vap->va_gid = (gid_t)VNOVAL; } if (vap->va_size != VNOVAL) { if (vap->va_size == nvap->na_size) vap->va_size = VNOVAL; } /* * We are normally called with only a partially initialized * VAP. Since the NFSv3 spec says that server may use the * file attributes to store the verifier, the spec requires * us to do a SETATTR RPC. FreeBSD servers store the verifier * in atime, but we can't really assume that all servers will * so we ensure that our SETATTR sets both atime and mtime. * Set the VA_UTIMES_NULL flag for this case, so that * the server's time will be used. This is needed to * work around a bug in some Solaris servers, where * setting the time TOCLIENT causes the Setattr RPC * to return NFS_OK, but not set va_mode. */ if (vap->va_mtime.tv_sec == VNOVAL) { vfs_timestamp(&vap->va_mtime); vap->va_vaflags |= VA_UTIMES_NULL; } if (vap->va_atime.tv_sec == VNOVAL) vap->va_atime = vap->va_mtime; return (1); } /* * Map nfsv4 errors to errno.h errors. * The uid and gid arguments are only used for NFSERR_BADOWNER and that * error should only be returned for the Open, Create and Setattr Ops. * As such, most calls can just pass in 0 for those arguments. */ APPLESTATIC int nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) { struct proc *p; if (error < 10000 || error >= NFSERR_STALEWRITEVERF) return (error); if (td != NULL) p = td->td_proc; else p = NULL; switch (error) { case NFSERR_BADOWNER: tprintf(p, LOG_INFO, "No name and/or group mapping for uid,gid:(%d,%d)\n", uid, gid); return (EPERM); case NFSERR_BADNAME: case NFSERR_BADCHAR: printf("nfsv4 char/name not handled by server\n"); return (ENOENT); case NFSERR_STALECLIENTID: case NFSERR_STALESTATEID: case NFSERR_EXPIRED: case NFSERR_BADSTATEID: case NFSERR_BADSESSION: printf("nfsv4 recover err returned %d\n", error); return (EIO); case NFSERR_BADHANDLE: case NFSERR_SERVERFAULT: case NFSERR_BADTYPE: case NFSERR_FHEXPIRED: case NFSERR_RESOURCE: case NFSERR_MOVED: case NFSERR_NOFILEHANDLE: case NFSERR_MINORVERMISMATCH: case NFSERR_OLDSTATEID: case NFSERR_BADSEQID: case NFSERR_LEASEMOVED: case NFSERR_RECLAIMBAD: case NFSERR_BADXDR: case NFSERR_OPILLEGAL: printf("nfsv4 client/server protocol prob err=%d\n", error); return (EIO); default: tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); return (EIO); }; } /* * Check to see if the process for this owner exists. Return 1 if it doesn't * and 0 otherwise. */ int nfscl_procdoesntexist(u_int8_t *own) { union { u_int32_t lval; u_int8_t cval[4]; } tl; struct proc *p; pid_t pid; int i, ret = 0; /* For the single open_owner of all 0 bytes, just return 0. */ for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++) if (own[i] != 0) break; if (i == NFSV4CL_LOCKNAMELEN) return (0); tl.cval[0] = *own++; tl.cval[1] = *own++; tl.cval[2] = *own++; tl.cval[3] = *own++; pid = tl.lval; - p = pfind_locked(pid); + p = pfind(pid); if (p == NULL) return (1); if (p->p_stats == NULL) { PROC_UNLOCK(p); return (0); } tl.cval[0] = *own++; tl.cval[1] = *own++; tl.cval[2] = *own++; tl.cval[3] = *own++; if (tl.lval != p->p_stats->p_start.tv_sec) { ret = 1; } else { tl.cval[0] = *own++; tl.cval[1] = *own++; tl.cval[2] = *own++; tl.cval[3] = *own; if (tl.lval != p->p_stats->p_start.tv_usec) ret = 1; } PROC_UNLOCK(p); return (ret); } /* * - nfs pseudo system call for the client */ /* * MPSAFE */ static int nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) { struct file *fp; struct nfscbd_args nfscbdarg; struct nfsd_nfscbd_args nfscbdarg2; struct nameidata nd; struct nfscl_dumpmntopts dumpmntopts; cap_rights_t rights; char *buf; int error; struct mount *mp; struct nfsmount *nmp; if (uap->flag & NFSSVC_CBADDSOCK) { error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); if (error) return (error); /* * Since we don't know what rights might be required, * pretend that we need them all. It is better to be too * careful than too reckless. */ error = fget(td, nfscbdarg.sock, cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); if (error) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, td); return (EPERM); } error = nfscbd_addsock(fp); fdrop(fp, td); if (!error && nfscl_enablecallb == 0) { nfsv4_cbport = nfscbdarg.port; nfscl_enablecallb = 1; } } else if (uap->flag & NFSSVC_NFSCBD) { if (uap->argp == NULL) return (EINVAL); error = copyin(uap->argp, (caddr_t)&nfscbdarg2, sizeof(nfscbdarg2)); if (error) return (error); error = nfscbd_nfsd(td, &nfscbdarg2); } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || dumpmntopts.ndmnt_blen > 1024)) error = EINVAL; if (error == 0) error = nfsrv_lookupfilename(&nd, dumpmntopts.ndmnt_fname, td); if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, "nfs") != 0) { vput(nd.ni_vp); error = EINVAL; } if (error == 0) { buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, dumpmntopts.ndmnt_blen); vput(nd.ni_vp); error = copyout(buf, dumpmntopts.ndmnt_buf, dumpmntopts.ndmnt_blen); free(buf, M_TEMP); } } else if (uap->flag & NFSSVC_FORCEDISM) { buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL); if (error == 0) { nmp = NULL; mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (strcmp(mp->mnt_stat.f_mntonname, buf) == 0 && strcmp(mp->mnt_stat.f_fstypename, "nfs") == 0 && mp->mnt_data != NULL) { nmp = VFSTONFS(mp); NFSDDSLOCK(); if (nfsv4_findmirror(nmp) != NULL) { NFSDDSUNLOCK(); error = ENXIO; nmp = NULL; break; } mtx_lock(&nmp->nm_mtx); if ((nmp->nm_privflag & NFSMNTP_FORCEDISM) == 0) { nmp->nm_privflag |= (NFSMNTP_FORCEDISM | NFSMNTP_CANCELRPCS); mtx_unlock(&nmp->nm_mtx); } else { mtx_unlock(&nmp->nm_mtx); nmp = NULL; } NFSDDSUNLOCK(); break; } } mtx_unlock(&mountlist_mtx); if (nmp != NULL) { /* * Call newnfs_nmcancelreqs() to cause * any RPCs in progress on the mount point to * fail. * This will cause any process waiting for an * RPC to complete while holding a vnode lock * on the mounted-on vnode (such as "df" or * a non-forced "umount") to fail. * This will unlock the mounted-on vnode so * a forced dismount can succeed. * Then clear NFSMNTP_CANCELRPCS and wakeup(), * so that nfs_unmount() can complete. */ newnfs_nmcancelreqs(nmp); mtx_lock(&nmp->nm_mtx); nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS; wakeup(nmp); mtx_unlock(&nmp->nm_mtx); } else if (error == 0) error = EINVAL; } free(buf, M_TEMP); } else { error = EINVAL; } return (error); } extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); /* * Called once to initialize data structures... */ static int nfscl_modevent(module_t mod, int type, void *data) { int error = 0; static int loaded = 0; switch (type) { case MOD_LOAD: if (loaded) return (0); newnfs_portinit(); mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); nfscl_init(); NFSD_LOCK(); nfsrvd_cbinit(0); NFSD_UNLOCK(); ncl_call_invalcaches = ncl_invalcaches; nfsd_call_nfscl = nfssvc_nfscl; loaded = 1; break; case MOD_UNLOAD: if (nfs_numnfscbd != 0) { error = EBUSY; break; } /* * XXX: Unloading of nfscl module is unsupported. */ #if 0 ncl_call_invalcaches = NULL; nfsd_call_nfscl = NULL; /* and get rid of the mutexes */ mtx_destroy(&ncl_iod_mutex); loaded = 0; break; #else /* FALLTHROUGH */ #endif default: error = EOPNOTSUPP; break; } return error; } static moduledata_t nfscl_mod = { "nfscl", nfscl_modevent, NULL, }; DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); /* So that loader and kldload(2) can find us, wherever we are.. */ MODULE_VERSION(nfscl, 1); MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); MODULE_DEPEND(nfscl, krpc, 1, 1, 1); MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); Index: head/sys/fs/pseudofs/pseudofs_vnops.c =================================================================== --- head/sys/fs/pseudofs/pseudofs_vnops.c (revision 340743) +++ head/sys/fs/pseudofs/pseudofs_vnops.c (revision 340744) @@ -1,1063 +1,1063 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2001 Dag-Erling Coïdan Smørgrav * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_pseudofs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KASSERT_PN_IS_DIR(pn) \ KASSERT((pn)->pn_type == pfstype_root || \ (pn)->pn_type == pfstype_dir || \ (pn)->pn_type == pfstype_procdir, \ ("%s(): VDIR vnode refers to non-directory pfs_node", __func__)) #define KASSERT_PN_IS_FILE(pn) \ KASSERT((pn)->pn_type == pfstype_file, \ ("%s(): VREG vnode refers to non-file pfs_node", __func__)) #define KASSERT_PN_IS_LINK(pn) \ KASSERT((pn)->pn_type == pfstype_symlink, \ ("%s(): VLNK vnode refers to non-link pfs_node", __func__)) /* * Returns the fileno, adjusted for target pid */ static uint32_t pn_fileno(struct pfs_node *pn, pid_t pid) { KASSERT(pn->pn_fileno > 0, ("%s(): no fileno allocated", __func__)); if (pid != NO_PID) return (pn->pn_fileno * NO_PID + pid); return (pn->pn_fileno); } /* * Returns non-zero if given file is visible to given thread. */ static int pfs_visible_proc(struct thread *td, struct pfs_node *pn, struct proc *proc) { int visible; if (proc == NULL) return (0); PROC_LOCK_ASSERT(proc, MA_OWNED); visible = ((proc->p_flag & P_WEXIT) == 0); if (visible) visible = (p_cansee(td, proc) == 0); if (visible && pn->pn_vis != NULL) visible = pn_vis(td, proc, pn); if (!visible) return (0); return (1); } static int pfs_visible(struct thread *td, struct pfs_node *pn, pid_t pid, - bool allproc_locked, struct proc **p) + struct proc **p) { struct proc *proc; PFS_TRACE(("%s (pid: %d, req: %d)", pn->pn_name, pid, td->td_proc->p_pid)); if (p) *p = NULL; if (pid == NO_PID) PFS_RETURN (1); - proc = allproc_locked ? pfind_locked(pid) : pfind(pid); + proc = pfind(pid); if (proc == NULL) PFS_RETURN (0); if (pfs_visible_proc(td, pn, proc)) { if (p) *p = proc; else PROC_UNLOCK(proc); PFS_RETURN (1); } PROC_UNLOCK(proc); PFS_RETURN (0); } /* * Verify permissions */ static int pfs_access(struct vop_access_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct vattr vattr; int error; PFS_TRACE(("%s", pvd->pvd_pn->pn_name)); (void)pvd; error = VOP_GETATTR(vn, &vattr, va->a_cred); if (error) PFS_RETURN (error); error = vaccess(vn->v_type, vattr.va_mode, vattr.va_uid, vattr.va_gid, va->a_accmode, va->a_cred, NULL); PFS_RETURN (error); } /* * Close a file or directory */ static int pfs_close(struct vop_close_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct proc *proc; int error; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); /* * Do nothing unless this is the last close and the node has a * last-close handler. */ if (vrefcnt(vn) > 1 || pn->pn_close == NULL) PFS_RETURN (0); if (pvd->pvd_pid != NO_PID) { proc = pfind(pvd->pvd_pid); } else { proc = NULL; } error = pn_close(va->a_td, proc, pn); if (proc != NULL) PROC_UNLOCK(proc); PFS_RETURN (error); } /* * Get file attributes */ static int pfs_getattr(struct vop_getattr_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct vattr *vap = va->a_vap; struct proc *proc; int error = 0; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); - if (!pfs_visible(curthread, pn, pvd->pvd_pid, false, &proc)) + if (!pfs_visible(curthread, pn, pvd->pvd_pid, &proc)) PFS_RETURN (ENOENT); vap->va_type = vn->v_type; vap->va_fileid = pn_fileno(pn, pvd->pvd_pid); vap->va_flags = 0; vap->va_blocksize = PAGE_SIZE; vap->va_bytes = vap->va_size = 0; vap->va_filerev = 0; vap->va_fsid = vn->v_mount->mnt_stat.f_fsid.val[0]; vap->va_nlink = 1; nanotime(&vap->va_ctime); vap->va_atime = vap->va_mtime = vap->va_ctime; switch (pn->pn_type) { case pfstype_procdir: case pfstype_root: case pfstype_dir: #if 0 pfs_lock(pn); /* compute link count */ pfs_unlock(pn); #endif vap->va_mode = 0555; break; case pfstype_file: case pfstype_symlink: vap->va_mode = 0444; break; default: printf("shouldn't be here!\n"); vap->va_mode = 0; break; } if (proc != NULL) { vap->va_uid = proc->p_ucred->cr_ruid; vap->va_gid = proc->p_ucred->cr_rgid; } else { vap->va_uid = 0; vap->va_gid = 0; } if (pn->pn_attr != NULL) error = pn_attr(curthread, proc, pn, vap); if(proc != NULL) PROC_UNLOCK(proc); PFS_RETURN (error); } /* * Perform an ioctl */ static int pfs_ioctl(struct vop_ioctl_args *va) { struct vnode *vn; struct pfs_vdata *pvd; struct pfs_node *pn; struct proc *proc; int error; vn = va->a_vp; vn_lock(vn, LK_SHARED | LK_RETRY); if (vn->v_iflag & VI_DOOMED) { VOP_UNLOCK(vn, 0); return (EBADF); } pvd = vn->v_data; pn = pvd->pvd_pn; PFS_TRACE(("%s: %lx", pn->pn_name, va->a_command)); pfs_assert_not_owned(pn); if (vn->v_type != VREG) { VOP_UNLOCK(vn, 0); PFS_RETURN (EINVAL); } KASSERT_PN_IS_FILE(pn); if (pn->pn_ioctl == NULL) { VOP_UNLOCK(vn, 0); PFS_RETURN (ENOTTY); } /* * This is necessary because process' privileges may * have changed since the open() call. */ - if (!pfs_visible(curthread, pn, pvd->pvd_pid, false, &proc)) { + if (!pfs_visible(curthread, pn, pvd->pvd_pid, &proc)) { VOP_UNLOCK(vn, 0); PFS_RETURN (EIO); } error = pn_ioctl(curthread, proc, pn, va->a_command, va->a_data); if (proc != NULL) PROC_UNLOCK(proc); VOP_UNLOCK(vn, 0); PFS_RETURN (error); } /* * Perform getextattr */ static int pfs_getextattr(struct vop_getextattr_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct proc *proc; int error; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); /* * This is necessary because either process' privileges may * have changed since the open() call. */ - if (!pfs_visible(curthread, pn, pvd->pvd_pid, false, &proc)) + if (!pfs_visible(curthread, pn, pvd->pvd_pid, &proc)) PFS_RETURN (EIO); if (pn->pn_getextattr == NULL) error = EOPNOTSUPP; else error = pn_getextattr(curthread, proc, pn, va->a_attrnamespace, va->a_name, va->a_uio, va->a_size, va->a_cred); if (proc != NULL) PROC_UNLOCK(proc); PFS_RETURN (error); } /* * Convert a vnode to its component name */ static int pfs_vptocnp(struct vop_vptocnp_args *ap) { struct vnode *vp = ap->a_vp; struct vnode **dvp = ap->a_vpp; struct pfs_vdata *pvd = vp->v_data; struct pfs_node *pd = pvd->pvd_pn; struct pfs_node *pn; struct mount *mp; char *buf = ap->a_buf; int *buflen = ap->a_buflen; char pidbuf[PFS_NAMELEN]; pid_t pid = pvd->pvd_pid; int len, i, error, locked; i = *buflen; error = 0; pfs_lock(pd); if (vp->v_type == VDIR && pd->pn_type == pfstype_root) { *dvp = vp; vhold(*dvp); pfs_unlock(pd); PFS_RETURN (0); } else if (vp->v_type == VDIR && pd->pn_type == pfstype_procdir) { len = snprintf(pidbuf, sizeof(pidbuf), "%d", pid); i -= len; if (i < 0) { error = ENOMEM; goto failed; } bcopy(pidbuf, buf + i, len); } else { len = strlen(pd->pn_name); i -= len; if (i < 0) { error = ENOMEM; goto failed; } bcopy(pd->pn_name, buf + i, len); } pn = pd->pn_parent; pfs_unlock(pd); mp = vp->v_mount; error = vfs_busy(mp, 0); if (error) return (error); /* * vp is held by caller. */ locked = VOP_ISLOCKED(vp); VOP_UNLOCK(vp, 0); error = pfs_vncache_alloc(mp, dvp, pn, pid); if (error) { vn_lock(vp, locked | LK_RETRY); vfs_unbusy(mp); PFS_RETURN(error); } *buflen = i; VOP_UNLOCK(*dvp, 0); vn_lock(vp, locked | LK_RETRY); vfs_unbusy(mp); PFS_RETURN (0); failed: pfs_unlock(pd); PFS_RETURN(error); } /* * Look up a file or directory */ static int pfs_lookup(struct vop_cachedlookup_args *va) { struct vnode *vn = va->a_dvp; struct vnode **vpp = va->a_vpp; struct componentname *cnp = va->a_cnp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pd = pvd->pvd_pn; struct pfs_node *pn, *pdn = NULL; struct mount *mp; pid_t pid = pvd->pvd_pid; char *pname; int error, i, namelen, visible; PFS_TRACE(("%.*s", (int)cnp->cn_namelen, cnp->cn_nameptr)); pfs_assert_not_owned(pd); if (vn->v_type != VDIR) PFS_RETURN (ENOTDIR); KASSERT_PN_IS_DIR(pd); error = VOP_ACCESS(vn, VEXEC, cnp->cn_cred, cnp->cn_thread); if (error) PFS_RETURN (error); /* * Don't support DELETE or RENAME. CREATE is supported so * that O_CREAT will work, but the lookup will still fail if * the file does not exist. */ if ((cnp->cn_flags & ISLASTCN) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) PFS_RETURN (EOPNOTSUPP); /* shortcut: check if the name is too long */ if (cnp->cn_namelen >= PFS_NAMELEN) PFS_RETURN (ENOENT); /* check that parent directory is visible... */ - if (!pfs_visible(curthread, pd, pvd->pvd_pid, false, NULL)) + if (!pfs_visible(curthread, pd, pvd->pvd_pid, NULL)) PFS_RETURN (ENOENT); /* self */ namelen = cnp->cn_namelen; pname = cnp->cn_nameptr; if (namelen == 1 && pname[0] == '.') { pn = pd; *vpp = vn; VREF(vn); PFS_RETURN (0); } mp = vn->v_mount; /* parent */ if (cnp->cn_flags & ISDOTDOT) { if (pd->pn_type == pfstype_root) PFS_RETURN (EIO); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); VOP_UNLOCK(vn, 0); error = vfs_busy(mp, 0); vn_lock(vn, LK_EXCLUSIVE | LK_RETRY); vfs_rel(mp); if (error != 0) PFS_RETURN(ENOENT); if (vn->v_iflag & VI_DOOMED) { vfs_unbusy(mp); PFS_RETURN(ENOENT); } } VOP_UNLOCK(vn, 0); KASSERT(pd->pn_parent != NULL, ("%s(): non-root directory has no parent", __func__)); /* * This one is tricky. Descendents of procdir nodes * inherit their parent's process affinity, but * there's no easy reverse mapping. For simplicity, * we assume that if this node is a procdir, its * parent isn't (which is correct as long as * descendents of procdir nodes are never procdir * nodes themselves) */ if (pd->pn_type == pfstype_procdir) pid = NO_PID; pfs_lock(pd); pn = pd->pn_parent; pfs_unlock(pd); goto got_pnode; } pfs_lock(pd); /* named node */ for (pn = pd->pn_nodes; pn != NULL; pn = pn->pn_next) if (pn->pn_type == pfstype_procdir) pdn = pn; else if (pn->pn_name[namelen] == '\0' && bcmp(pname, pn->pn_name, namelen) == 0) { pfs_unlock(pd); goto got_pnode; } /* process dependent node */ if ((pn = pdn) != NULL) { pid = 0; for (pid = 0, i = 0; i < namelen && isdigit(pname[i]); ++i) if ((pid = pid * 10 + pname[i] - '0') > PID_MAX) break; if (i == cnp->cn_namelen) { pfs_unlock(pd); goto got_pnode; } } pfs_unlock(pd); PFS_RETURN (ENOENT); got_pnode: pfs_assert_not_owned(pd); pfs_assert_not_owned(pn); - visible = pfs_visible(curthread, pn, pid, false, NULL); + visible = pfs_visible(curthread, pn, pid, NULL); if (!visible) { error = ENOENT; goto failed; } error = pfs_vncache_alloc(mp, vpp, pn, pid); if (error) goto failed; if (cnp->cn_flags & ISDOTDOT) { vfs_unbusy(mp); vn_lock(vn, LK_EXCLUSIVE | LK_RETRY); if (vn->v_iflag & VI_DOOMED) { vput(*vpp); *vpp = NULL; PFS_RETURN(ENOENT); } } if (cnp->cn_flags & MAKEENTRY && !(vn->v_iflag & VI_DOOMED)) cache_enter(vn, *vpp, cnp); PFS_RETURN (0); failed: if (cnp->cn_flags & ISDOTDOT) { vfs_unbusy(mp); vn_lock(vn, LK_EXCLUSIVE | LK_RETRY); *vpp = NULL; } PFS_RETURN(error); } /* * Open a file or directory. */ static int pfs_open(struct vop_open_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; int mode = va->a_mode; PFS_TRACE(("%s (mode 0x%x)", pn->pn_name, mode)); pfs_assert_not_owned(pn); /* check if the requested mode is permitted */ if (((mode & FREAD) && !(mode & PFS_RD)) || ((mode & FWRITE) && !(mode & PFS_WR))) PFS_RETURN (EPERM); /* we don't support locking */ if ((mode & O_SHLOCK) || (mode & O_EXLOCK)) PFS_RETURN (EOPNOTSUPP); PFS_RETURN (0); } /* * Read from a file */ static int pfs_read(struct vop_read_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct uio *uio = va->a_uio; struct proc *proc; struct sbuf *sb = NULL; int error, locked; off_t buflen; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); if (vn->v_type != VREG) PFS_RETURN (EINVAL); KASSERT_PN_IS_FILE(pn); if (!(pn->pn_flags & PFS_RD)) PFS_RETURN (EBADF); if (pn->pn_fill == NULL) PFS_RETURN (EIO); /* * This is necessary because either process' privileges may * have changed since the open() call. */ - if (!pfs_visible(curthread, pn, pvd->pvd_pid, false, &proc)) + if (!pfs_visible(curthread, pn, pvd->pvd_pid, &proc)) PFS_RETURN (EIO); if (proc != NULL) { _PHOLD(proc); PROC_UNLOCK(proc); } vhold(vn); locked = VOP_ISLOCKED(vn); VOP_UNLOCK(vn, 0); if (pn->pn_flags & PFS_RAWRD) { PFS_TRACE(("%zd resid", uio->uio_resid)); error = pn_fill(curthread, proc, pn, NULL, uio); PFS_TRACE(("%zd resid", uio->uio_resid)); goto ret; } if (uio->uio_resid < 0 || uio->uio_offset < 0 || uio->uio_resid > OFF_MAX - uio->uio_offset) { error = EINVAL; goto ret; } buflen = uio->uio_offset + uio->uio_resid; if (buflen > MAXPHYS) buflen = MAXPHYS; sb = sbuf_new(sb, NULL, buflen + 1, 0); if (sb == NULL) { error = EIO; goto ret; } error = pn_fill(curthread, proc, pn, sb, uio); if (error) { sbuf_delete(sb); goto ret; } /* * XXX: If the buffer overflowed, sbuf_len() will not return * the data length. Then just use the full length because an * overflowed sbuf must be full. */ if (sbuf_finish(sb) == 0) buflen = sbuf_len(sb); error = uiomove_frombuf(sbuf_data(sb), buflen, uio); sbuf_delete(sb); ret: vn_lock(vn, locked | LK_RETRY); vdrop(vn); if (proc != NULL) PRELE(proc); PFS_RETURN (error); } /* * Iterate through directory entries */ static int pfs_iterate(struct thread *td, struct proc *proc, struct pfs_node *pd, struct pfs_node **pn, struct proc **p) { int visible; sx_assert(&allproc_lock, SX_SLOCKED); pfs_assert_owned(pd); again: if (*pn == NULL) { /* first node */ *pn = pd->pn_nodes; } else if ((*pn)->pn_type != pfstype_procdir) { /* next node */ *pn = (*pn)->pn_next; } if (*pn != NULL && (*pn)->pn_type == pfstype_procdir) { /* next process */ if (*p == NULL) *p = LIST_FIRST(&allproc); else *p = LIST_NEXT(*p, p_list); /* out of processes: next node */ if (*p == NULL) *pn = (*pn)->pn_next; else PROC_LOCK(*p); } if ((*pn) == NULL) return (-1); if (*p != NULL) { visible = pfs_visible_proc(td, *pn, *p); PROC_UNLOCK(*p); } else if (proc != NULL) { visible = pfs_visible_proc(td, *pn, proc); } else { visible = 1; } if (!visible) goto again; return (0); } /* Directory entry list */ struct pfsentry { STAILQ_ENTRY(pfsentry) link; struct dirent entry; }; STAILQ_HEAD(pfsdirentlist, pfsentry); /* * Return directory entries. */ static int pfs_readdir(struct vop_readdir_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pd = pvd->pvd_pn; pid_t pid = pvd->pvd_pid; struct proc *p, *proc; struct pfs_node *pn; struct uio *uio; struct pfsentry *pfsent, *pfsent2; struct pfsdirentlist lst; off_t offset; int error, i, resid; STAILQ_INIT(&lst); error = 0; KASSERT(pd->pn_info == vn->v_mount->mnt_data, ("%s(): pn_info does not match mountpoint", __func__)); PFS_TRACE(("%s pid %lu", pd->pn_name, (unsigned long)pid)); pfs_assert_not_owned(pd); if (vn->v_type != VDIR) PFS_RETURN (ENOTDIR); KASSERT_PN_IS_DIR(pd); uio = va->a_uio; /* only allow reading entire entries */ offset = uio->uio_offset; resid = uio->uio_resid; if (offset < 0 || offset % PFS_DELEN != 0 || (resid && resid < PFS_DELEN)) PFS_RETURN (EINVAL); if (resid == 0) PFS_RETURN (0); sx_slock(&allproc_lock); pfs_lock(pd); /* check if the directory is visible to the caller */ - if (!pfs_visible(curthread, pd, pid, true, &proc)) { + if (!pfs_visible(curthread, pd, pid, &proc)) { sx_sunlock(&allproc_lock); pfs_unlock(pd); PFS_RETURN (ENOENT); } KASSERT(pid == NO_PID || proc != NULL, ("%s(): no process for pid %lu", __func__, (unsigned long)pid)); /* skip unwanted entries */ for (pn = NULL, p = NULL; offset > 0; offset -= PFS_DELEN) { if (pfs_iterate(curthread, proc, pd, &pn, &p) == -1) { /* nothing left... */ if (proc != NULL) PROC_UNLOCK(proc); pfs_unlock(pd); sx_sunlock(&allproc_lock); PFS_RETURN (0); } } /* fill in entries */ while (pfs_iterate(curthread, proc, pd, &pn, &p) != -1 && resid >= PFS_DELEN) { if ((pfsent = malloc(sizeof(struct pfsentry), M_IOV, M_NOWAIT | M_ZERO)) == NULL) { error = ENOMEM; break; } pfsent->entry.d_reclen = PFS_DELEN; pfsent->entry.d_fileno = pn_fileno(pn, pid); /* PFS_DELEN was picked to fit PFS_NAMLEN */ for (i = 0; i < PFS_NAMELEN - 1 && pn->pn_name[i] != '\0'; ++i) pfsent->entry.d_name[i] = pn->pn_name[i]; pfsent->entry.d_name[i] = 0; pfsent->entry.d_namlen = i; /* NOTE: d_off is the offset of the *next* entry. */ pfsent->entry.d_off = offset + PFS_DELEN; switch (pn->pn_type) { case pfstype_procdir: KASSERT(p != NULL, ("reached procdir node with p == NULL")); pfsent->entry.d_namlen = snprintf(pfsent->entry.d_name, PFS_NAMELEN, "%d", p->p_pid); /* fall through */ case pfstype_root: case pfstype_dir: case pfstype_this: case pfstype_parent: pfsent->entry.d_type = DT_DIR; break; case pfstype_file: pfsent->entry.d_type = DT_REG; break; case pfstype_symlink: pfsent->entry.d_type = DT_LNK; break; default: panic("%s has unexpected node type: %d", pn->pn_name, pn->pn_type); } PFS_TRACE(("%s", pfsent->entry.d_name)); STAILQ_INSERT_TAIL(&lst, pfsent, link); offset += PFS_DELEN; resid -= PFS_DELEN; } if (proc != NULL) PROC_UNLOCK(proc); pfs_unlock(pd); sx_sunlock(&allproc_lock); i = 0; STAILQ_FOREACH_SAFE(pfsent, &lst, link, pfsent2) { if (error == 0) error = uiomove(&pfsent->entry, PFS_DELEN, uio); free(pfsent, M_IOV); i++; } PFS_TRACE(("%ju bytes", (uintmax_t)(i * PFS_DELEN))); PFS_RETURN (error); } /* * Read a symbolic link */ static int pfs_readlink(struct vop_readlink_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct uio *uio = va->a_uio; struct proc *proc = NULL; char buf[PATH_MAX]; struct sbuf sb; int error, locked; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); if (vn->v_type != VLNK) PFS_RETURN (EINVAL); KASSERT_PN_IS_LINK(pn); if (pn->pn_fill == NULL) PFS_RETURN (EIO); if (pvd->pvd_pid != NO_PID) { if ((proc = pfind(pvd->pvd_pid)) == NULL) PFS_RETURN (EIO); if (proc->p_flag & P_WEXIT) { PROC_UNLOCK(proc); PFS_RETURN (EIO); } _PHOLD(proc); PROC_UNLOCK(proc); } vhold(vn); locked = VOP_ISLOCKED(vn); VOP_UNLOCK(vn, 0); /* sbuf_new() can't fail with a static buffer */ sbuf_new(&sb, buf, sizeof buf, 0); error = pn_fill(curthread, proc, pn, &sb, NULL); if (proc != NULL) PRELE(proc); vn_lock(vn, locked | LK_RETRY); vdrop(vn); if (error) { sbuf_delete(&sb); PFS_RETURN (error); } if (sbuf_finish(&sb) != 0) { sbuf_delete(&sb); PFS_RETURN (ENAMETOOLONG); } error = uiomove_frombuf(sbuf_data(&sb), sbuf_len(&sb), uio); sbuf_delete(&sb); PFS_RETURN (error); } /* * Reclaim a vnode */ static int pfs_reclaim(struct vop_reclaim_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); return (pfs_vncache_free(va->a_vp)); } /* * Set attributes */ static int pfs_setattr(struct vop_setattr_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); PFS_RETURN (EOPNOTSUPP); } /* * Write to a file */ static int pfs_write(struct vop_write_args *va) { struct vnode *vn = va->a_vp; struct pfs_vdata *pvd = vn->v_data; struct pfs_node *pn = pvd->pvd_pn; struct uio *uio = va->a_uio; struct proc *proc; struct sbuf sb; int error; PFS_TRACE(("%s", pn->pn_name)); pfs_assert_not_owned(pn); if (vn->v_type != VREG) PFS_RETURN (EINVAL); KASSERT_PN_IS_FILE(pn); if (!(pn->pn_flags & PFS_WR)) PFS_RETURN (EBADF); if (pn->pn_fill == NULL) PFS_RETURN (EIO); /* * This is necessary because either process' privileges may * have changed since the open() call. */ - if (!pfs_visible(curthread, pn, pvd->pvd_pid, false, &proc)) + if (!pfs_visible(curthread, pn, pvd->pvd_pid, &proc)) PFS_RETURN (EIO); if (proc != NULL) { _PHOLD(proc); PROC_UNLOCK(proc); } if (pn->pn_flags & PFS_RAWWR) { error = pn_fill(curthread, proc, pn, NULL, uio); if (proc != NULL) PRELE(proc); PFS_RETURN (error); } sbuf_uionew(&sb, uio, &error); if (error) { if (proc != NULL) PRELE(proc); PFS_RETURN (error); } error = pn_fill(curthread, proc, pn, &sb, uio); sbuf_delete(&sb); if (proc != NULL) PRELE(proc); PFS_RETURN (error); } /* * Vnode operations */ struct vop_vector pfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = pfs_access, .vop_cachedlookup = pfs_lookup, .vop_close = pfs_close, .vop_create = VOP_EOPNOTSUPP, .vop_getattr = pfs_getattr, .vop_getextattr = pfs_getextattr, .vop_ioctl = pfs_ioctl, .vop_link = VOP_EOPNOTSUPP, .vop_lookup = vfs_cache_lookup, .vop_mkdir = VOP_EOPNOTSUPP, .vop_mknod = VOP_EOPNOTSUPP, .vop_open = pfs_open, .vop_read = pfs_read, .vop_readdir = pfs_readdir, .vop_readlink = pfs_readlink, .vop_reclaim = pfs_reclaim, .vop_remove = VOP_EOPNOTSUPP, .vop_rename = VOP_EOPNOTSUPP, .vop_rmdir = VOP_EOPNOTSUPP, .vop_setattr = pfs_setattr, .vop_symlink = VOP_EOPNOTSUPP, .vop_vptocnp = pfs_vptocnp, .vop_write = pfs_write, /* XXX I've probably forgotten a few that need VOP_EOPNOTSUPP */ }; Index: head/sys/kern/kern_proc.c =================================================================== --- head/sys/kern/kern_proc.c (revision 340743) +++ head/sys/kern/kern_proc.c (revision 340744) @@ -1,3228 +1,3207 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #endif SDT_PROVIDER_DEFINE(proc); MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread); static void pgadjustjobc(struct pgrp *pgrp, int entering); static void pgdelete(struct pgrp *); static int proc_ctor(void *mem, int size, void *arg, int flags); static void proc_dtor(void *mem, int size, void *arg); static int proc_init(void *mem, int size, int flags); static void proc_fini(void *mem, int size); static void pargs_free(struct pargs *pa); -static struct proc *zpfind_locked(pid_t pid); /* * Other process lists */ struct pidhashhead *pidhashtbl; struct sx *pidhashtbl_lock; u_long pidhash; u_long pidhashlock; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct sx __exclusive_cache_line allproc_lock; struct sx __exclusive_cache_line proctree_lock; struct mtx __exclusive_cache_line ppeers_lock; uma_zone_t proc_zone; /* * The offset of various fields in struct proc and struct thread. * These are used by kernel debuggers to enumerate kernel threads and * processes. */ const int proc_off_p_pid = offsetof(struct proc, p_pid); const int proc_off_p_comm = offsetof(struct proc, p_comm); const int proc_off_p_list = offsetof(struct proc, p_list); const int proc_off_p_threads = offsetof(struct proc, p_threads); const int thread_off_td_tid = offsetof(struct thread, td_tid); const int thread_off_td_name = offsetof(struct thread, td_name); const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); const int thread_off_td_pcb = offsetof(struct thread, td_pcb); const int thread_off_td_plist = offsetof(struct thread, td_plist); EVENTHANDLER_LIST_DEFINE(process_ctor); EVENTHANDLER_LIST_DEFINE(process_dtor); EVENTHANDLER_LIST_DEFINE(process_init); EVENTHANDLER_LIST_DEFINE(process_fini); EVENTHANDLER_LIST_DEFINE(process_exit); EVENTHANDLER_LIST_DEFINE(process_fork); EVENTHANDLER_LIST_DEFINE(process_exec); EVENTHANDLER_LIST_DECLARE(thread_ctor); EVENTHANDLER_LIST_DECLARE(thread_dtor); int kstack_pages = KSTACK_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "Kernel stack size in pages"); static int vmmap_skip_res_cnt = 0; SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, &vmmap_skip_res_cnt, 0, "Skip calculation of the pages resident count in kern.proc.vmmap"); CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #ifdef COMPAT_FREEBSD32 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); #endif /* * Initialize global process hashing structures. */ void procinit(void) { u_long i; sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pidhashlock = (pidhash + 1) / 64; if (pidhashlock > 0) pidhashlock--; pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), M_PROC, M_WAITOK | M_ZERO); for (i = 0; i < pidhashlock + 1; i++) sx_init(&pidhashtbl_lock[i], "pidhash"); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; struct thread *td; p = (struct proc *)mem; EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { /* Make sure all thread constructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); } return (0); } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); td_softdep_cleanup(td); MPASS(td->td_su == NULL); /* Make sure all thread destructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); } EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); } /* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); cv_init(&p->p_pwait, "ppwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ EVENTHANDLER_DIRECT_INVOKE(process_init, p); p->p_stats = pstats_alloc(); p->p_pgrp = NULL; return (0); } /* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; EVENTHANDLER_DIRECT_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); for (; p != curproc; p = proc_realparent(p)) { if (p->p_pid == 0) return (0); } return (1); } -struct proc * -pfind_locked(pid_t pid) +/* + * Locate a process by number. + * + * By not returning processes in the PRS_NEW state, we allow callers to avoid + * testing for that condition to avoid dereferencing p_ucred, et al. + */ +static __always_inline struct proc * +_pfind(pid_t pid, bool zombie) { struct proc *p; - sx_assert(&allproc_lock, SX_LOCKED); + p = curproc; + if (p->p_pid == pid) { + PROC_LOCK(p); + return (p); + } + sx_slock(PIDHASHLOCK(pid)); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); - if (p->p_state == PRS_NEW || p->p_state == PRS_ZOMBIE) { + if (p->p_state == PRS_NEW || + (zombie && p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); p = NULL; } break; } } + sx_sunlock(PIDHASHLOCK(pid)); return (p); } -/* - * Locate a process by number; return only "live" processes -- i.e., neither - * zombies nor newly born but incompletely initialized processes. By not - * returning processes in the PRS_NEW state, we allow callers to avoid - * testing for that condition to avoid dereferencing p_ucred, et al. - */ struct proc * pfind(pid_t pid) { - struct proc *p; - p = curproc; - if (p->p_pid == pid) { - PROC_LOCK(p); - return (p); - } - sx_slock(&allproc_lock); - p = pfind_locked(pid); - sx_sunlock(&allproc_lock); - return (p); + return (_pfind(pid, false)); } /* * Same as pfind but allow zombies. */ struct proc * pfind_any(pid_t pid) { - struct proc *p; - sx_slock(&allproc_lock); - p = pfind_locked(pid); - if (p == NULL) - p = zpfind_locked(pid); - sx_sunlock(&allproc_lock); - - return (p); + return (_pfind(pid, true)); } static struct proc * -pfind_tid_locked(pid_t tid) +pfind_tid(pid_t tid) { struct proc *p; struct thread *td; - sx_assert(&allproc_lock, SX_LOCKED); + sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) goto found; } PROC_UNLOCK(p); } found: + sx_sunlock(&allproc_lock); return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pid_t pgid) { struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Locate process and do additional manipulations, depending on flags. */ int pget(pid_t pid, int flags, struct proc **pp) { struct proc *p; int error; p = curproc; if (p->p_pid == pid) { PROC_LOCK(p); } else { - sx_slock(&allproc_lock); + p = NULL; if (pid <= PID_MAX) { - p = pfind_locked(pid); - if (p == NULL && (flags & PGET_NOTWEXIT) == 0) - p = zpfind_locked(pid); + if ((flags & PGET_NOTWEXIT) == 0) + p = pfind_any(pid); + else + p = pfind(pid); } else if ((flags & PGET_NOTID) == 0) { - p = pfind_tid_locked(pid); - } else { - p = NULL; + p = pfind_tid(pid); } - sx_sunlock(&allproc_lock); if (p == NULL) return (ESRCH); if ((flags & PGET_CANSEE) != 0) { error = p_cansee(curthread, p); if (error != 0) goto errout; } } if ((flags & PGET_CANDEBUG) != 0) { error = p_candebug(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { error = EPERM; goto errout; } if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto errout; } if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { /* * XXXRW: Not clear ESRCH is the right error during proc * execve(). */ error = ESRCH; goto errout; } if ((flags & PGET_HOLD) != 0) { _PHOLD(p); PROC_UNLOCK(p); } *pp = p; return (0); errout: PROC_UNLOCK(p); return (error); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); KASSERT(pgfind(pgid) == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; refcount_init(&sess->s_count, 1); sess->s_ttyvp = NULL; sess->s_ttydp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(struct proc *p, struct pgrp *pgrp) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(struct proc *p, struct pgrp *pgrp) { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(struct proc *p) { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(struct pgrp *pgrp) { struct session *savesess; struct tty *tp; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); tp = pgrp->pg_session->s_ttyp; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; PGRP_UNLOCK(pgrp); /* Remove the reference to the pgrp before deallocating it. */ if (tp != NULL) { tty_lock(tp); tty_rel_pgrp(tp, pgrp); } mtx_destroy(&pgrp->pg_mtx); free(pgrp, M_PGRP); sess_release(savesess); } static void pgadjustjobc(struct pgrp *pgrp, int entering) { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(struct proc *p, struct pgrp *pgrp, int entering) { struct pgrp *hispgrp; struct session *mysession; struct proc *q; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) pgadjustjobc(pgrp, entering); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(q, &p->p_children, p_sibling) { hispgrp = q->p_pgrp; if (hispgrp == pgrp || hispgrp->pg_session != mysession) continue; if (q->p_state == PRS_ZOMBIE) continue; pgadjustjobc(hispgrp, entering); } } void killjobc(void) { struct session *sp; struct tty *tp; struct proc *p; struct vnode *ttyvp; p = curproc; MPASS(p->p_flag & P_WEXIT); /* * Do a quick check to see if there is anything to do with the * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). */ PROC_LOCK(p); if (!SESS_LEADER(p) && (p->p_pgrp == p->p_pptr->p_pgrp) && LIST_EMPTY(&p->p_children)) { PROC_UNLOCK(p); return; } PROC_UNLOCK(p); sx_xlock(&proctree_lock); if (SESS_LEADER(p)) { sp = p->p_session; /* * s_ttyp is not zero'd; we use this to indicate that * the session once had a controlling terminal. (for * logging and informational purposes) */ SESS_LOCK(sp); ttyvp = sp->s_ttyvp; tp = sp->s_ttyp; sp->s_ttyvp = NULL; sp->s_ttydp = NULL; sp->s_leader = NULL; SESS_UNLOCK(sp); /* * Signal foreground pgrp and revoke access to * controlling terminal if it has not been revoked * already. * * Because the TTY may have been revoked in the mean * time and could already have a new session associated * with it, make sure we don't send a SIGHUP to a * foreground process group that does not belong to this * session. */ if (tp != NULL) { tty_lock(tp); if (tp->t_session == sp) tty_signal_pgrp(tp, SIGHUP); tty_unlock(tp); } if (ttyvp != NULL) { sx_xunlock(&proctree_lock); if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { VOP_REVOKE(ttyvp, REVOKEALL); VOP_UNLOCK(ttyvp, 0); } vrele(ttyvp); sx_xlock(&proctree_lock); } } fixjobc(p, p->p_pgrp, 0); sx_xunlock(&proctree_lock); } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(struct pgrp *pg) { struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); kern_psignal(p, SIGHUP); kern_psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } void sess_hold(struct session *s) { refcount_acquire(&s->s_count); } void sess_release(struct session *s) { if (refcount_release(&s->s_count)) { if (s->s_ttyp != NULL) { tty_lock(s->s_ttyp); tty_rel_sess(s->s_ttyp, s); } mtx_destroy(&s->s_mtx); free(s, M_SESSION); } } #ifdef DDB DB_SHOW_COMMAND(pgrpdump, pgrpdump) { struct pgrp *pgrp; struct proc *p; int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Calculate the kinfo_proc members which contain process-wide * informations. * Must be called with the target process locked. */ static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_estcpu = 0; kp->ki_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); kp->ki_pctcpu += sched_pctcpu(td); kp->ki_estcpu += sched_estcpu(td); thread_unlock(td); } } /* * Clear kinfo_proc and fill in any information that is common * to all threads in the process. * Must be called with the target process locked. */ static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) { struct thread *td0; struct tty *tp; struct session *sp; struct ucred *cred; struct sigacts *ps; struct timeval boottime; PROC_LOCK_ASSERT(p, MA_OWNED); bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; kp->ki_addr =/* p->p_addr; */0; /* XXX */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracevp; kp->ki_traceflag = p->p_traceflag; #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; kp->ki_flag = p->p_flag; kp->ki_flag2 = p->p_flag2; cred = p->p_ucred; if (cred) { kp->ki_uid = cred->cr_uid; kp->ki_ruid = cred->cr_ruid; kp->ki_svuid = cred->cr_svuid; kp->ki_cr_flags = 0; if (cred->cr_flags & CRED_FLAG_CAPMODE) kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; /* XXX bde doesn't like KI_NGROUPS */ if (cred->cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = cred->cr_ngroups; bcopy(cred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = cred->cr_rgid; kp->ki_svgid = cred->cr_svgid; /* If jailed(cred), emulate the old P_JAILED flag. */ if (jailed(cred)) { kp->ki_flag |= P_JAILED; /* If inside the jail, use 0 as a jail ID. */ if (cred->cr_prison != curthread->td_ucred->cr_prison) kp->ki_jid = cred->cr_prison->pr_id; } strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, sizeof(kp->ki_loginclass)); } ps = p->p_sigacts; if (ps) { mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ FOREACH_THREAD_IN_PROC(p, td0) { if (!TD_IS_SWAPPED(td0)) kp->ki_rssize += td0->td_kstack_pages; } kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } else if (p->p_state == PRS_ZOMBIE) kp->ki_stat = SZOMB; if (kp->ki_flag & P_INMEM) kp->ki_sflag = PS_INMEM; else kp->ki_sflag = 0; /* Calculate legacy swtime as seconds since 'swtick'. */ kp->ki_swtime = (ticks - p->p_swtick) / hz; kp->ki_pid = p->p_pid; kp->ki_nice = p->p_nice; kp->ki_fibnum = p->p_fibnum; kp->ki_start = p->p_stats->p_start; getboottime(&boottime); timevaladd(&kp->ki_start, &boottime); PROC_STATLOCK(p); rufetch(p, &kp->ki_rusage); kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); PROC_STATUNLOCK(p); calccru(p, &kp->ki_childutime, &kp->ki_childstime); /* Some callers want child times in a single value. */ kp->ki_childtime = kp->ki_childstime; timevaladd(&kp->ki_childtime, &kp->ki_childutime); FOREACH_THREAD_IN_PROC(p, td0) kp->ki_cow += td0->td_cow; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; /* XXX proctree_lock */ tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = tty_udev(tp); kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else { kp->ki_tdev = NODEV; kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ } if (p->p_comm[0] != '\0') strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); if (p->p_sysent && p->p_sysent->sv_name != NULL && p->p_sysent->sv_name[0] != '\0') strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); kp->ki_siglist = p->p_siglist; kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); kp->ki_acflag = p->p_acflag; kp->ki_lock = p->p_lock; if (p->p_pptr) { kp->ki_ppid = p->p_oppid; if (p->p_flag & P_TRACED) kp->ki_tracer = p->p_pptr->p_pid; } } /* * Fill in information that is thread specific. Must be called with * target process locked. If 'preferthread' is set, overwrite certain * process-related fields that are maintained for both threads and * processes. */ static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) { struct proc *p; p = td->td_proc; kp->ki_tdaddr = td; PROC_LOCK_ASSERT(p, MA_OWNED); if (preferthread) PROC_STATLOCK(p); thread_lock(td); if (td->td_wmesg != NULL) strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); else bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= sizeof(kp->ki_tdname)) { strlcpy(kp->ki_moretdname, td->td_name + sizeof(kp->ki_tdname) - 1, sizeof(kp->ki_moretdname)); } else { bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } else { kp->ki_kiflag &= ~KI_LOCKBLOCK; bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* approximate. */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else if (p->p_state == PRS_ZOMBIE) { kp->ki_stat = SZOMB; } else { kp->ki_stat = SIDL; } /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; /* * Note: legacy fields; clamp at the old NOCPU value and/or * the maximum u_char CPU value. */ if (td->td_lastcpu == NOCPU) kp->ki_lastcpu_old = NOCPU_OLD; else if (td->td_lastcpu > MAXCPU_OLD) kp->ki_lastcpu_old = MAXCPU_OLD; else kp->ki_lastcpu_old = td->td_lastcpu; if (td->td_oncpu == NOCPU) kp->ki_oncpu_old = NOCPU_OLD; else if (td->td_oncpu > MAXCPU_OLD) kp->ki_oncpu_old = MAXCPU_OLD; else kp->ki_oncpu_old = td->td_oncpu; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_tid = td->td_tid; kp->ki_numthreads = p->p_numthreads; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; kp->ki_slptime = (ticks - td->td_slptick) / hz; kp->ki_pri.pri_class = td->td_pri_class; kp->ki_pri.pri_user = td->td_user_pri; if (preferthread) { rufetchtd(td, &kp->ki_rusage); kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); kp->ki_pctcpu = sched_pctcpu(td); kp->ki_estcpu = sched_estcpu(td); kp->ki_cow = td->td_cow; } /* We can't get this anymore but ps etc never used it anyway. */ kp->ki_rqindex = 0; if (preferthread) kp->ki_siglist = td->td_siglist; kp->ki_sigmask = td->td_sigmask; thread_unlock(td); if (preferthread) PROC_STATUNLOCK(p); } /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { MPASS(FIRST_THREAD_IN_PROC(p) != NULL); fill_kinfo_proc_only(p, kp); fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); fill_kinfo_aggregate(p, kp); } struct pstats * pstats_alloc(void) { return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); } /* * Copy parts of p_stats; zero the rest of p_stats (statistics). */ void pstats_fork(struct pstats *src, struct pstats *dst) { bzero(&dst->pstat_startzero, __rangeof(struct pstats, pstat_startzero, pstat_endzero)); bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); } void pstats_free(struct pstats *ps) { free(ps, M_SUBPROC); } -static struct proc * -zpfind_locked(pid_t pid) -{ - struct proc *p; - - sx_assert(&allproc_lock, SX_LOCKED); - LIST_FOREACH(p, &zombproc, p_list) { - if (p->p_pid == pid) { - PROC_LOCK(p); - break; - } - } - return (p); -} - /* * Locate a zombie process by number */ struct proc * zpfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); - p = zpfind_locked(pid); + LIST_FOREACH(p, &zombproc, p_list) { + if (p->p_pid == pid) { + PROC_LOCK(p); + break; + } + } sx_sunlock(&allproc_lock); return (p); } #ifdef COMPAT_FREEBSD32 /* * This function is typically used to copy out the kernel address, so * it can be replaced by assignment of zero. */ static inline uint32_t ptr32_trim(void *ptr) { uintptr_t uptr; uptr = (uintptr_t)ptr; return ((uptr > UINT_MAX) ? 0 : uptr); } #define PTRTRIM_CP(src,dst,fld) \ do { (dst).fld = ptr32_trim((src).fld); } while (0) static void freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) { int i; bzero(ki32, sizeof(struct kinfo_proc32)); ki32->ki_structsize = sizeof(struct kinfo_proc32); CP(*ki, *ki32, ki_layout); PTRTRIM_CP(*ki, *ki32, ki_args); PTRTRIM_CP(*ki, *ki32, ki_paddr); PTRTRIM_CP(*ki, *ki32, ki_addr); PTRTRIM_CP(*ki, *ki32, ki_tracep); PTRTRIM_CP(*ki, *ki32, ki_textvp); PTRTRIM_CP(*ki, *ki32, ki_fd); PTRTRIM_CP(*ki, *ki32, ki_vmspace); PTRTRIM_CP(*ki, *ki32, ki_wchan); CP(*ki, *ki32, ki_pid); CP(*ki, *ki32, ki_ppid); CP(*ki, *ki32, ki_pgid); CP(*ki, *ki32, ki_tpgid); CP(*ki, *ki32, ki_sid); CP(*ki, *ki32, ki_tsid); CP(*ki, *ki32, ki_jobc); CP(*ki, *ki32, ki_tdev); CP(*ki, *ki32, ki_tdev_freebsd11); CP(*ki, *ki32, ki_siglist); CP(*ki, *ki32, ki_sigmask); CP(*ki, *ki32, ki_sigignore); CP(*ki, *ki32, ki_sigcatch); CP(*ki, *ki32, ki_uid); CP(*ki, *ki32, ki_ruid); CP(*ki, *ki32, ki_svuid); CP(*ki, *ki32, ki_rgid); CP(*ki, *ki32, ki_svgid); CP(*ki, *ki32, ki_ngroups); for (i = 0; i < KI_NGROUPS; i++) CP(*ki, *ki32, ki_groups[i]); CP(*ki, *ki32, ki_size); CP(*ki, *ki32, ki_rssize); CP(*ki, *ki32, ki_swrss); CP(*ki, *ki32, ki_tsize); CP(*ki, *ki32, ki_dsize); CP(*ki, *ki32, ki_ssize); CP(*ki, *ki32, ki_xstat); CP(*ki, *ki32, ki_acflag); CP(*ki, *ki32, ki_pctcpu); CP(*ki, *ki32, ki_estcpu); CP(*ki, *ki32, ki_slptime); CP(*ki, *ki32, ki_swtime); CP(*ki, *ki32, ki_cow); CP(*ki, *ki32, ki_runtime); TV_CP(*ki, *ki32, ki_start); TV_CP(*ki, *ki32, ki_childtime); CP(*ki, *ki32, ki_flag); CP(*ki, *ki32, ki_kiflag); CP(*ki, *ki32, ki_traceflag); CP(*ki, *ki32, ki_stat); CP(*ki, *ki32, ki_nice); CP(*ki, *ki32, ki_lock); CP(*ki, *ki32, ki_rqindex); CP(*ki, *ki32, ki_oncpu); CP(*ki, *ki32, ki_lastcpu); /* XXX TODO: wrap cpu value as appropriate */ CP(*ki, *ki32, ki_oncpu_old); CP(*ki, *ki32, ki_lastcpu_old); bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); CP(*ki, *ki32, ki_tracer); CP(*ki, *ki32, ki_flag2); CP(*ki, *ki32, ki_fibnum); CP(*ki, *ki32, ki_cr_flags); CP(*ki, *ki32, ki_jid); CP(*ki, *ki32, ki_numthreads); CP(*ki, *ki32, ki_tid); CP(*ki, *ki32, ki_pri); freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); PTRTRIM_CP(*ki, *ki32, ki_pcb); PTRTRIM_CP(*ki, *ki32, ki_kstack); PTRTRIM_CP(*ki, *ki32, ki_udata); PTRTRIM_CP(*ki, *ki32, ki_tdaddr); CP(*ki, *ki32, ki_sflag); CP(*ki, *ki32, ki_tdflags); } #endif static ssize_t kern_proc_out_size(struct proc *p, int flags) { ssize_t size = 0; PROC_LOCK_ASSERT(p, MA_OWNED); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { size += sizeof(struct kinfo_proc32); } else #endif size += sizeof(struct kinfo_proc); } else { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) size += sizeof(struct kinfo_proc32) * p->p_numthreads; else #endif size += sizeof(struct kinfo_proc) * p->p_numthreads; } PROC_UNLOCK(p); return (size); } int kern_proc_out(struct proc *p, struct sbuf *sb, int flags) { struct thread *td; struct kinfo_proc ki; #ifdef COMPAT_FREEBSD32 struct kinfo_proc32 ki32; #endif int error; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(FIRST_THREAD_IN_PROC(p) != NULL); error = 0; fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; } else { FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &ki, 1); #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; if (error != 0) break; } } PROC_UNLOCK(p); return (error); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) { struct sbuf sb; struct kinfo_proc ki; int error, error2; if (req->oldptr == NULL) return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = kern_proc_out(p, &sb, flags); error2 = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0) return (error); else if (error2 != 0) return (error2); return (0); } int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) { struct proc *p; int error, i, j; for (i = 0; i < pidhashlock + 1; i++) { sx_slock(&pidhashtbl_lock[i]); for (j = i; j <= pidhash; j += pidhashlock + 1) { LIST_FOREACH(p, &pidhashtbl[j], p_hash) { if (p->p_state == PRS_NEW) continue; error = cb(p, cbarg); PROC_LOCK_ASSERT(p, MA_NOTOWNED); if (error != 0) { sx_sunlock(&pidhashtbl_lock[i]); return (error); } } } sx_sunlock(&pidhashtbl_lock[i]); } return (0); } struct kern_proc_out_args { struct sysctl_req *req; int flags; int oid_number; int *name; }; static int sysctl_kern_proc_iterate(struct proc *p, void *origarg) { struct kern_proc_out_args *arg = origarg; int *name = arg->name; int oid_number = arg->oid_number; int flags = arg->flags; struct sysctl_req *req = arg->req; int error = 0; PROC_LOCK(p); KASSERT(p->p_ucred != NULL, ("process credential is NULL for non-NEW proc")); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) goto skip; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid_number) { case KERN_PROC_GID: if (p->p_ucred->cr_gid != (gid_t)name[0]) goto skip; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) goto skip; break; case KERN_PROC_RGID: if (p->p_ucred->cr_rgid != (gid_t)name[0]) goto skip; break; case KERN_PROC_SESSION: if (p->p_session == NULL || p->p_session->s_sid != (pid_t)name[0]) goto skip; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) goto skip; /* XXX proctree_lock */ SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || tty_udev(p->p_session->s_ttyp) != (dev_t)name[0]) { SESS_UNLOCK(p->p_session); goto skip; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[0]) goto skip; break; case KERN_PROC_RUID: if (p->p_ucred->cr_ruid != (uid_t)name[0]) goto skip; break; case KERN_PROC_PROC: break; default: break; } error = sysctl_out_proc(p, req, flags); PROC_LOCK_ASSERT(p, MA_NOTOWNED); return (error); skip: PROC_UNLOCK(p); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { struct kern_proc_out_args iterarg; int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, oid_number; int error = 0; oid_number = oidp->oid_number; if (oid_number != KERN_PROC_ALL && (oid_number & KERN_PROC_INC_THREAD) == 0) flags = KERN_PROC_NOTHREADS; else { flags = 0; oid_number &= ~KERN_PROC_INC_THREAD; } #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) flags |= KERN_PROC_MASK32; #endif if (oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error == 0) error = sysctl_out_proc(p, req, flags); return (error); } switch (oid_number) { case KERN_PROC_ALL: if (namelen != 0) return (EINVAL); break; case KERN_PROC_PROC: if (namelen != 0 && namelen != 1) return (EINVAL); break; default: if (namelen != 1) return (EINVAL); break; } if (req->oldptr == NULL) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } else { error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); } iterarg.flags = flags; iterarg.oid_number = oid_number; iterarg.req = req; iterarg.name = name; error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); return (error); } struct pargs * pargs_alloc(int len) { struct pargs *pa; pa = malloc(sizeof(struct pargs) + len, M_PARGS, M_WAITOK); refcount_init(&pa->ar_ref, 1); pa->ar_length = len; return (pa); } static void pargs_free(struct pargs *pa) { free(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; refcount_acquire(&pa->ar_ref); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; if (refcount_release(&pa->ar_ref)) pargs_free(pa); } static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len) { ssize_t n; /* * This may return a short read if the string is shorter than the chunk * and is aligned at the end of the page, and the following page is not * mapped. */ n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); if (n <= 0) return (ENOMEM); return (0); } #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ enum proc_vector_type { PROC_ARG, PROC_ENV, PROC_AUX, }; #ifdef COMPAT_FREEBSD32 static int get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct freebsd32_ps_strings pss; Elf32_Auxinfo aux; vm_offset_t vptr, ptr; uint32_t *proc_vector32; char **proc_vector; size_t vsize, size; int i, error; error = 0; if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_ENV: vptr = (vm_offset_t)PTRIN(pss.ps_envstr); vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_AUX: vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + (pss.ps_nenvstr + 1) * sizeof(int32_t); if (vptr % 4 != 0) return (ENOEXEC); for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); } proc_vector32 = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { error = ENOMEM; goto done; } if (type == PROC_AUX) { *proc_vectorp = (char **)proc_vector32; *vsizep = vsize; return (0); } proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); for (i = 0; i < (int)vsize; i++) proc_vector[i] = PTRIN(proc_vector32[i]); *proc_vectorp = proc_vector; *vsizep = vsize; done: free(proc_vector32, M_TEMP); return (error); } #endif static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct ps_strings pss; Elf_Auxinfo aux; vm_offset_t vptr, ptr; char **proc_vector; size_t vsize, size; int i; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); #endif if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)pss.ps_argvstr; vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_ENV: vptr = (vm_offset_t)pss.ps_envstr; vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_AUX: /* * The aux array is just above env array on the stack. Check * that the address is naturally aligned. */ vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) * sizeof(char *); #if __ELF_WORD_SIZE == 64 if (vptr % sizeof(uint64_t) != 0) #else if (vptr % sizeof(uint32_t) != 0) #endif return (ENOEXEC); /* * We count the array size reading the aux vectors from the * stack until AT_NULL vector is returned. So (to keep the code * simple) we read the process stack twice: the first time here * to find the size and the second time when copying the vectors * to the allocated proc_vector. */ for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } /* * If the PROC_AUXV_MAX entries are iterated over, and we have * not reached AT_NULL, it is most likely we are reading wrong * data: either the process doesn't have auxv array or data has * been modified. Return the error in this case. */ if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); /* In case we are built without INVARIANTS. */ } proc_vector = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector, size) != size) { free(proc_vector, M_TEMP); return (ENOMEM); } *proc_vectorp = proc_vector; *vsizep = vsize; return (0); } #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type) { size_t done, len, nchr, vsize; int error, i; char **proc_vector, *sptr; char pss_string[GET_PS_STRINGS_CHUNK_SZ]; PROC_ASSERT_HELD(p); /* * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. */ nchr = 2 * (PATH_MAX + ARG_MAX); error = get_proc_vector(td, p, &proc_vector, &vsize, type); if (error != 0) return (error); for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { /* * The program may have scribbled into its argv array, e.g. to * remove some arguments. If that has happened, break out * before trying to read from NULL. */ if (proc_vector[i] == NULL) break; for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { error = proc_read_string(td, p, sptr, pss_string, sizeof(pss_string)); if (error != 0) goto done; len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); if (done + len >= nchr) len = nchr - done - 1; sbuf_bcat(sb, pss_string, len); if (len != GET_PS_STRINGS_CHUNK_SZ) break; done += GET_PS_STRINGS_CHUNK_SZ; } sbuf_bcat(sb, "", 1); done += len + 1; } done: free(proc_vector, M_TEMP); return (error); } int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ARG)); } int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ENV)); } int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) { size_t vsize, size; char **auxv; int error; error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); if (error == 0) { #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) size = vsize * sizeof(Elf32_Auxinfo); else #endif size = vsize * sizeof(Elf_Auxinfo); if (sbuf_bcat(sb, auxv, size) != 0) error = ENOMEM; free(auxv, M_TEMP); } return (error); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; struct sbuf sb; int flags, error = 0, error2; pid_t pid; if (namelen != 1) return (EINVAL); pid = (pid_t)name[0]; /* * If the query is for this process and it is single-threaded, there * is nobody to modify pargs, thus we can just read. */ p = curproc; if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && (pa = p->p_args) != NULL) return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); flags = PGET_CANSEE; if (req->newptr != NULL) flags |= PGET_ISCURRENT; error = pget(pid, flags, &p); if (error) return (error); pa = p->p_args; if (pa != NULL) { pargs_hold(pa); PROC_UNLOCK(p); error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { _PHOLD(p); PROC_UNLOCK(p); sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getargv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); if (error == 0 && error2 != 0) error = error2; } else { PROC_UNLOCK(p); } if (error != 0 || req->newptr == NULL) return (error); if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) return (ENOMEM); if (req->newlen == 0) { /* * Clear the argument pointer, so that we'll fetch arguments * with proc_getargv() until further notice. */ newpa = NULL; } else { newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } /* * This sysctl allows a process to retrieve environment of another process. */ static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getenvv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve ELF auxiliary vector of * another process. */ static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getauxv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve the path of the executable for * itself or another process. */ static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct vnode *vp; char *retbuf, *freebuf; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } vp = p->p_textvp; if (vp == NULL) { if (*pidp != -1) PROC_UNLOCK(p); return (0); } vref(vp); if (*pidp != -1) PROC_UNLOCK(p); error = vn_fullpath(req->td, vp, &retbuf, &freebuf); vrele(vp); if (error) return (error); error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); free(freebuf, M_TEMP); return (error); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; int error; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } #ifdef KINFO_OVMENTRY_SIZE CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) { vm_map_entry_t entry, tmp_entry; unsigned int last_timestamp; char *fullpath, *freepath; struct kinfo_ovmentry *kve; struct vattr va; struct ucred *cred; int error, *name; struct vnode *vp; struct proc *p; vm_map_t map; struct vmspace *vm; name = (int *)arg1; error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { vm_object_t obj, tobj, lobj; vm_offset_t addr; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; bzero(kve, sizeof(*kve)); kve->kve_structsize = sizeof(*kve); kve->kve_private_resident = 0; obj = entry->object.vm_object; if (obj != NULL) { VM_OBJECT_RLOCK(obj); if (obj->shadow_count == 1) kve->kve_private_resident = obj->resident_page_count; } kve->kve_resident = 0; addr = entry->start; while (addr < entry->end) { if (pmap_extract(map->pmap, addr)) kve->kve_resident++; addr += PAGE_SIZE; } for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { if (tobj != obj) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } kve->kve_start = (void*)entry->start; kve->kve_end = (void*)entry->end; kve->kve_offset += (off_t)entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; last_timestamp = map->timestamp; vm_map_unlock_read(map); kve->kve_fileid = 0; kve->kve_fsid = 0; freepath = NULL; fullpath = ""; if (lobj) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_fileid = va.va_fileid; /* truncate */ kve->kve_fsid = va.va_fsid; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kve, sizeof(*kve)); vm_map_lock_read(map); if (error) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, int *resident_count, bool *super) { vm_object_t obj, tobj; vm_page_t m, m_adv; vm_offset_t addr; vm_paddr_t locked_pa; vm_pindex_t pi, pi_adv, pindex; *super = false; *resident_count = 0; if (vmmap_skip_res_cnt) return; locked_pa = 0; obj = entry->object.vm_object; addr = entry->start; m_adv = NULL; pi = OFF_TO_IDX(entry->offset); for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { if (m_adv != NULL) { m = m_adv; } else { pi_adv = atop(entry->end - addr); pindex = pi; for (tobj = obj;; tobj = tobj->backing_object) { m = vm_page_find_least(tobj, pindex); if (m != NULL) { if (m->pindex == pindex) break; if (pi_adv > m->pindex - pindex) { pi_adv = m->pindex - pindex; m_adv = m; } } if (tobj->backing_object == NULL) goto next; pindex += OFF_TO_IDX(tobj-> backing_object_offset); } } m_adv = NULL; if (m->psind != 0 && addr + pagesizes[1] <= entry->end && (addr & (pagesizes[1] - 1)) == 0 && (pmap_mincore(map->pmap, addr, &locked_pa) & MINCORE_SUPER) != 0) { *super = true; pi_adv = atop(pagesizes[1]); } else { /* * We do not test the found page on validity. * Either the page is busy and being paged in, * or it was invalidated. The first case * should be counted as resident, the second * is not so clear; we do account both. */ pi_adv = 1; } *resident_count += pi_adv; next:; } PA_UNLOCK_COND(locked_pa); } /* * Must be called with the process locked and will return unlocked. */ int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) { vm_map_entry_t entry, tmp_entry; struct vattr va; vm_map_t map; vm_object_t obj, tobj, lobj; char *fullpath, *freepath; struct kinfo_vmentry *kve; struct ucred *cred; struct vnode *vp; struct vmspace *vm; vm_offset_t addr; unsigned int last_timestamp; int error; bool super; PROC_LOCK_ASSERT(p, MA_OWNED); _PHOLD(p); PROC_UNLOCK(p); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); error = 0; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; addr = entry->end; bzero(kve, sizeof(*kve)); obj = entry->object.vm_object; if (obj != NULL) { for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; lobj = tobj; } if (obj->backing_object == NULL) kve->kve_private_resident = obj->resident_page_count; kern_proc_vmmap_resident(map, entry, &kve->kve_resident, &super); if (super) kve->kve_flags |= KVME_FLAG_SUPER; for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj && tobj != lobj) VM_OBJECT_RUNLOCK(tobj); } } else { lobj = NULL; } kve->kve_start = entry->start; kve->kve_end = entry->end; kve->kve_offset += entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; if (entry->eflags & MAP_ENTRY_GROWS_UP) kve->kve_flags |= KVME_FLAG_GROWS_UP; if (entry->eflags & MAP_ENTRY_GROWS_DOWN) kve->kve_flags |= KVME_FLAG_GROWS_DOWN; last_timestamp = map->timestamp; vm_map_unlock_read(map); freepath = NULL; fullpath = ""; if (lobj != NULL) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; case OBJT_MGTDEVICE: kve->kve_type = KVME_TYPE_MGTDEVICE; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); kve->kve_vn_type = vntype_to_kinfo(vp->v_type); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_vn_fileid = va.va_fileid; kve->kve_vn_fsid = va.va_fsid; kve->kve_vn_fsid_freebsd11 = kve->kve_vn_fsid; /* truncate */ kve->kve_vn_mode = MAKEIMODE(va.va_type, va.va_mode); kve->kve_vn_size = va.va_size; kve->kve_vn_rdev = va.va_rdev; kve->kve_vn_rdev_freebsd11 = kve->kve_vn_rdev; /* truncate */ kve->kve_status = KF_ATTR_VALID; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); /* Pack record size down */ if ((flags & KERN_VMMAP_PACK_KINFO) != 0) kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + strlen(kve->kve_path) + 1; else kve->kve_structsize = sizeof(*kve); kve->kve_structsize = roundup(kve->kve_structsize, sizeof(uint64_t)); /* Halt filling and truncate rather than exceeding maxlen */ if (maxlen != -1 && maxlen < kve->kve_structsize) { error = 0; vm_map_lock_read(map); break; } else if (maxlen != -1) maxlen -= kve->kve_structsize; if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) error = ENOMEM; vm_map_lock_read(map); if (error != 0) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) { struct proc *p; struct sbuf sb; int error, error2, *name; name = (int *)arg1; sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); if (error != 0) { sbuf_delete(&sb); return (error); } error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); error2 = sbuf_finish(&sb); sbuf_delete(&sb); return (error != 0 ? error : error2); } #if defined(STACK) || defined(DDB) static int sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) { struct kinfo_kstack *kkstp; int error, i, *name, numthreads; lwpid_t *lwpidarray; struct thread *td; struct stack *st; struct sbuf sb; struct proc *p; name = (int *)arg1; error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); if (error != 0) return (error); kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); st = stack_create(M_WAITOK); lwpidarray = NULL; PROC_LOCK(p); do { if (lwpidarray != NULL) { free(lwpidarray, M_TEMP); lwpidarray = NULL; } numthreads = p->p_numthreads; PROC_UNLOCK(p); lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, M_WAITOK | M_ZERO); PROC_LOCK(p); } while (numthreads < p->p_numthreads); /* * XXXRW: During the below loop, execve(2) and countless other sorts * of changes could have taken place. Should we check to see if the * vmspace has been replaced, or the like, in order to prevent * giving a snapshot that spans, say, execve(2), with some threads * before and some after? Among other things, the credentials could * have changed, in which case the right to extract debug info might * no longer be assured. */ i = 0; FOREACH_THREAD_IN_PROC(p, td) { KASSERT(i < numthreads, ("sysctl_kern_proc_kstack: numthreads")); lwpidarray[i] = td->td_tid; i++; } numthreads = i; for (i = 0; i < numthreads; i++) { td = thread_find(p, lwpidarray[i]); if (td == NULL) { continue; } bzero(kkstp, sizeof(*kkstp)); (void)sbuf_new(&sb, kkstp->kkst_trace, sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); thread_lock(td); kkstp->kkst_tid = td->td_tid; if (TD_IS_SWAPPED(td)) { kkstp->kkst_state = KKST_STATE_SWAPPED; } else if (TD_IS_RUNNING(td)) { if (stack_save_td_running(st, td) == 0) kkstp->kkst_state = KKST_STATE_STACKOK; else kkstp->kkst_state = KKST_STATE_RUNNING; } else { kkstp->kkst_state = KKST_STATE_STACKOK; stack_save_td(st, td); } thread_unlock(td); PROC_UNLOCK(p); stack_sbuf_print(&sb, st); sbuf_finish(&sb); sbuf_delete(&sb); error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); PROC_LOCK(p); if (error) break; } _PRELE(p); PROC_UNLOCK(p); if (lwpidarray != NULL) free(lwpidarray, M_TEMP); stack_destroy(st); free(kkstp, M_TEMP); return (error); } #endif /* * This sysctl allows a process to retrieve the full list of groups from * itself or another process. */ static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct ucred *cred; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; PROC_LOCK(p); } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } cred = crhold(p->p_ucred); PROC_UNLOCK(p); error = SYSCTL_OUT(req, cred->cr_groups, cred->cr_ngroups * sizeof(gid_t)); crfree(cred); return (error); } /* * This sysctl allows a process to retrieve or/and set the resource limit for * another process. */ static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct rlimit rlim; struct proc *p; u_int which; int flags, error; if (namelen != 2) return (EINVAL); which = (u_int)name[1]; if (which >= RLIM_NLIMITS) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(rlim)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); /* * Retrieve limit. */ if (req->oldptr != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); } error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); if (error != 0) goto errout; /* * Set limit. */ if (req->newptr != NULL) { error = SYSCTL_IN(req, &rlim, sizeof(rlim)); if (error == 0) error = kern_proc_setrlimit(curthread, p, which, &rlim); } errout: PRELE(p); return (error); } /* * This sysctl allows a process to retrieve ps_strings structure location of * another process. */ static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; vm_offset_t ps_strings; int error; #ifdef COMPAT_FREEBSD32 uint32_t ps_strings32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { /* * We return 0 if the 32 bit emulation request is for a 64 bit * process. */ ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? PTROUT(p->p_sysent->sv_psstrings) : 0; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); return (error); } #endif ps_strings = p->p_sysent->sv_psstrings; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); return (error); } /* * This sysctl allows a process to retrieve umask of another process. */ static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int error; u_short fd_cmask; pid_t pid; if (namelen != 1) return (EINVAL); pid = (pid_t)name[0]; p = curproc; if (pid == p->p_pid || pid == 0) { fd_cmask = p->p_fd->fd_cmask; goto out; } error = pget(pid, PGET_WANTREAD, &p); if (error != 0) return (error); fd_cmask = p->p_fd->fd_cmask; PRELE(p); out: error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); return (error); } /* * This sysctl allows a process to set and retrieve binary osreldate of * another process. */ static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, error, osrel; if (namelen != 1) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(osrel)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); if (error != 0) goto errout; if (req->newptr != NULL) { error = SYSCTL_IN(req, &osrel, sizeof(osrel)); if (error != 0) goto errout; if (osrel < 0) { error = EINVAL; goto errout; } p->p_osrel = osrel; } errout: PRELE(p); return (error); } static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct kinfo_sigtramp kst; const struct sysentvec *sv; int error; #ifdef COMPAT_FREEBSD32 struct kinfo_sigtramp32 kst32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); sv = p->p_sysent; #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { bzero(&kst32, sizeof(kst32)); if (SV_PROC_FLAG(p, SV_ILP32)) { if (sv->sv_sigcode_base != 0) { kst32.ksigtramp_start = sv->sv_sigcode_base; kst32.ksigtramp_end = sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst32.ksigtramp_start = sv->sv_psstrings - *sv->sv_szsigcode; kst32.ksigtramp_end = sv->sv_psstrings; } } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); return (error); } #endif bzero(&kst, sizeof(kst)); if (sv->sv_sigcode_base != 0) { kst.ksigtramp_start = (char *)sv->sv_sigcode_base; kst.ksigtramp_end = (char *)sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst.ksigtramp_start = (char *)sv->sv_psstrings - *sv->sv_szsigcode; kst.ksigtramp_end = (char *)sv->sv_psstrings; } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst, sizeof(kst)); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_args, "Process argument list"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_env, "Process environment"); static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); #ifdef COMPAT_FREEBSD7 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); #if defined(STACK) || defined(DDB) static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, "Process ps_strings location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, "Process binary osreldate"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, "Process signal trampoline location"); int allproc_gen; /* * stop_all_proc() purpose is to stop all process which have usermode, * except current process for obvious reasons. This makes it somewhat * unreliable when invoked from multithreaded process. The service * must not be user-callable anyway. */ void stop_all_proc(void) { struct proc *cp, *p; int r, gen; bool restart, seen_stopped, seen_exiting, stopped_some; cp = curproc; allproc_loop: sx_xlock(&allproc_lock); gen = allproc_gen; seen_exiting = seen_stopped = stopped_some = restart = false; LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { PROC_UNLOCK(p); continue; } if ((p->p_flag & P_WEXIT) != 0) { seen_exiting = true; PROC_UNLOCK(p); continue; } if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { /* * Stopped processes are tolerated when there * are no other processes which might continue * them. P_STOPPED_SINGLE but not * P_TOTAL_STOP process still has at least one * thread running. */ seen_stopped = true; PROC_UNLOCK(p); continue; } _PHOLD(p); sx_xunlock(&allproc_lock); r = thread_single(p, SINGLE_ALLPROC); if (r != 0) restart = true; else stopped_some = true; _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } /* Catch forked children we did not see in iteration. */ if (gen != allproc_gen) restart = true; sx_xunlock(&allproc_lock); if (restart || stopped_some || seen_exiting || seen_stopped) { kern_yield(PRI_USER); goto allproc_loop; } } void resume_all_proc(void) { struct proc *cp, *p; cp = curproc; sx_xlock(&allproc_lock); again: LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & P_TOTAL_STOP) != 0) { sx_xunlock(&allproc_lock); _PHOLD(p); thread_single_end(p, SINGLE_ALLPROC); _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } else { PROC_UNLOCK(p); } } /* Did the loop above missed any stopped process ? */ FOREACH_PROC_IN_SYSTEM(p) { /* No need for proc lock. */ if ((p->p_flag & P_TOTAL_STOP) != 0) goto again; } sx_xunlock(&allproc_lock); } /* #define TOTAL_STOP_DEBUG 1 */ #ifdef TOTAL_STOP_DEBUG volatile static int ap_resume; #include static int sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) { int error, val; val = 0; ap_resume = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0) { stop_all_proc(); syncer_suspend(); while (ap_resume == 0) ; syncer_resume(); resume_all_proc(); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, sysctl_debug_stop_all_proc, "I", ""); #endif Index: head/sys/sys/proc.h =================================================================== --- head/sys/sys/proc.h (revision 340743) +++ head/sys/sys/proc.h (revision 340744) @@ -1,1169 +1,1168 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 * $FreeBSD$ */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #include #ifndef _KERNEL #include #endif #include #include #include #include #include #include #include /* XXX. */ #include #include #include #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #include #endif #include #include #include #include #include /* Machine-dependent proc substruct. */ #ifdef _KERNEL #include #endif /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { u_int s_count; /* Ref cnt; pgrps in session - atomic. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */ struct cdev_priv *s_ttydp; /* (m) Device of controlling tty. */ struct tty *s_ttyp; /* (e) Controlling tty. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members. */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Process group id. */ int pg_jobc; /* (m) Job control process count. */ struct mtx pg_mtx; /* Mutex to protect members */ }; /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[1]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by proc slock * k - only accessed by curthread * k*- only accessed by curthread and from an interrupt * kx- only accessed by curthread and by debugger * l - the attaching proc or attaching proc parent * m - Giant * n - not locked, lazy * o - ktrace lock * q - td_contested lock * r - p_peers lock * s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9) * t - thread lock * u - process stat lock * w - process timer lock * x - created at fork, only changes during single threading in exec * y - created at first aio, doesn't change until exit or exec at which * point we are single-threaded and only curthread changes it * z - zombie threads lock * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct cpuset; struct filecaps; struct filemon; struct kaioinfo; struct kaudit_record; struct kdtrace_proc; struct kdtrace_thread; struct mqueue_notifier; struct nlminfo; struct p_sched; struct proc; struct procdesc; struct racct; struct sbuf; struct sleepqueue; struct socket; struct syscall_args; struct td_sched; struct thread; struct trapframe; struct turnstile; struct vm_map; struct vm_map_entry; struct epoch_tracker; /* * XXX: Does this belong in resource.h or resourcevar.h instead? * Resource usage extension. The times in rusage structs in the kernel are * never up to date. The actual times are kept as runtimes and tick counts * (with control info in the "previous" times), and are converted when * userland asks for rusage info. Backwards compatibility prevents putting * this directly in the user-visible rusage struct. * * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux. * Locking for td_rux: (t) for all fields. */ struct rusage_ext { uint64_t rux_runtime; /* (cu) Real time. */ uint64_t rux_uticks; /* (cu) Statclock hits in user mode. */ uint64_t rux_sticks; /* (cu) Statclock hits in sys mode. */ uint64_t rux_iticks; /* (cu) Statclock hits in intr mode. */ uint64_t rux_uu; /* (c) Previous user time in usec. */ uint64_t rux_su; /* (c) Previous sys time in usec. */ uint64_t rux_tu; /* (c) Previous total time in usec. */ }; /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * Thread context. Processes may have multiple threads. */ struct thread { struct mtx *volatile td_lock; /* replaces sched lock */ struct proc *td_proc; /* (*) Associated process. */ TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */ TAILQ_ENTRY(thread) td_runq; /* (t) Run queue. */ TAILQ_ENTRY(thread) td_slpq; /* (t) Sleep queue. */ TAILQ_ENTRY(thread) td_lockq; /* (t) Lock queue. */ LIST_ENTRY(thread) td_hash; /* (d) Hash chain. */ struct cpuset *td_cpuset; /* (t) CPU affinity mask. */ struct domainset_ref td_domain; /* (a) NUMA policy */ struct seltd *td_sel; /* Select queue/channel. */ struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */ struct turnstile *td_turnstile; /* (k) Associated turnstile. */ struct rl_q_entry *td_rlqe; /* (k) Associated range lock entry. */ struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */ lwpid_t td_tid; /* (b) Thread ID. */ sigqueue_t td_sigqueue; /* (c) Sigs arrived, not delivered. */ #define td_siglist td_sigqueue.sq_signals u_char td_lend_user_pri; /* (t) Lend user pri. */ /* Cleared during fork1() */ #define td_startzero td_epochnest u_char td_epochnest; /* (k) Epoch nest counter. */ int td_flags; /* (t) TDF_* flags. */ int td_inhibitors; /* (t) Why can not run. */ int td_pflags; /* (k) Private thread (TDP_*) flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ int td_sqqueue; /* (t) Sleepqueue queue blocked on. */ void *td_wchan; /* (t) Sleep address. */ const char *td_wmesg; /* (t) Reason for sleep. */ volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */ u_char td_tsqueue; /* (t) Turnstile queue blocked on. */ short td_locks; /* (k) Debug: count of non-spin locks */ short td_rw_rlocks; /* (k) Count of rwlock read locks. */ short td_sx_slocks; /* (k) Count of sx shared locks. */ short td_lk_slocks; /* (k) Count of lockmgr shared locks. */ short td_stopsched; /* (k) Scheduler stopped. */ struct turnstile *td_blocked; /* (t) Lock thread is blocked on. */ const char *td_lockname; /* (t) Name of lock blocked on. */ LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ int td_pinned; /* (k) Temporary cpu pin count. */ struct ucred *td_ucred; /* (k) Reference to credentials. */ struct plimit *td_limit; /* (k) Resource limits. */ int td_slptick; /* (t) Time at sleep. */ int td_blktick; /* (t) Time spent blocked. */ int td_swvoltick; /* (t) Time at last SW_VOL switch. */ int td_swinvoltick; /* (t) Time at last SW_INVOL switch. */ u_int td_cow; /* (*) Number of copy-on-write faults */ struct rusage td_ru; /* (t) rusage information. */ struct rusage_ext td_rux; /* (t) Internal rusage information. */ uint64_t td_incruntime; /* (t) Cpu ticks to transfer to proc. */ uint64_t td_runtime; /* (t) How many cpu ticks we've run. */ u_int td_pticks; /* (t) Statclock hits for profiling */ u_int td_sticks; /* (t) Statclock hits in system mode. */ u_int td_iticks; /* (t) Statclock hits in intr mode. */ u_int td_uticks; /* (t) Statclock hits in user mode. */ int td_intrval; /* (t) Return value for sleepq. */ sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */ volatile u_int td_generation; /* (k) For detection of preemption */ stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */ int td_xsig; /* (c) Signal for ptrace */ u_long td_profil_addr; /* (k) Temporary addr until AST. */ u_int td_profil_ticks; /* (k) Temporary ticks until AST. */ char td_name[MAXCOMLEN + 1]; /* (*) Thread name. */ struct file *td_fpop; /* (k) file referencing cdev under op */ int td_dbgflags; /* (c) Userland debugger flags */ siginfo_t td_si; /* (c) For debugger or core file */ int td_ng_outbound; /* (k) Thread entered ng from above. */ struct osd td_osd; /* (k) Object specific data. */ struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */ pid_t td_dbg_forked; /* (c) Child pid for debugger. */ u_int td_vp_reserv; /* (k) Count of reserved vnodes. */ int td_no_sleeping; /* (k) Sleeping disabled count. */ void *td_su; /* (k) FFS SU private */ sbintime_t td_sleeptimo; /* (t) Sleep timeout. */ int td_rtcgen; /* (s) rtc_generation of abs. sleep */ size_t td_vslock_sz; /* (k) amount of vslock-ed space */ #define td_endzero td_sigmask /* Copied during fork1() or create_thread(). */ #define td_startcopy td_endzero sigset_t td_sigmask; /* (c) Current signal mask. */ u_char td_rqindex; /* (t) Run queue index. */ u_char td_base_pri; /* (t) Thread base kernel priority. */ u_char td_priority; /* (t) Thread active priority. */ u_char td_pri_class; /* (t) Scheduling class. */ u_char td_user_pri; /* (t) User pri from estcpu and nice. */ u_char td_base_user_pri; /* (t) Base user pri */ u_char td_pre_epoch_prio; /* (k) User pri on entry to epoch */ uintptr_t td_rb_list; /* (k) Robust list head. */ uintptr_t td_rbp_list; /* (k) Robust priv list head. */ uintptr_t td_rb_inact; /* (k) Current in-action mutex loc. */ struct syscall_args td_sa; /* (kx) Syscall parameters. Copied on fork for child tracing. */ #define td_endcopy td_pcb /* * Fields that must be manually set in fork1() or create_thread() * or already have been set in the allocator, constructor, etc. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ enum { TDS_INACTIVE = 0x0, TDS_INHIBITED, TDS_CAN_RUN, TDS_RUNQ, TDS_RUNNING } td_state; /* (t) thread state */ union { register_t tdu_retval[2]; off_t tdu_off; } td_uretoff; /* (k) Syscall aux returns. */ #define td_retval td_uretoff.tdu_retval u_int td_cowgen; /* (k) Generation of COW pointers. */ /* LP64 hole */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ struct vm_object *td_kstack_obj;/* (a) Kstack object. */ vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */ int td_kstack_pages; /* (a) Size of the kstack. */ volatile u_int td_critnest; /* (k*) Critical section nest level. */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ struct kaudit_record *td_ar; /* (k) Active audit record, if any. */ struct lpohead td_lprof[2]; /* (a) lock profiling objects. */ struct kdtrace_thread *td_dtrace; /* (*) DTrace-specific data. */ int td_errno; /* Error returned by last syscall. */ /* LP64 hole */ struct vnet *td_vnet; /* (k) Effective vnet. */ const char *td_vnet_lpush; /* (k) Debugging vnet push / pop. */ struct trapframe *td_intr_frame;/* (k) Frame of the current irq */ struct proc *td_rfppwait_p; /* (k) The vforked child */ struct vm_page **td_ma; /* (k) uio pages held */ int td_ma_cnt; /* (k) size of *td_ma */ /* LP64 hole */ void *td_emuldata; /* Emulator state data */ int td_lastcpu; /* (t) Last cpu we were on. */ int td_oncpu; /* (t) Which cpu we are on. */ void *td_lkpi_task; /* LinuxKPI task struct pointer */ struct epoch_tracker *td_et; /* (k) compat KPI spare tracker */ int td_pmcpend; }; struct thread0_storage { struct thread t0st_thread; uint64_t t0st_sched[10]; }; struct mtx *thread_lock_block(struct thread *); void thread_lock_unblock(struct thread *, struct mtx *); void thread_lock_set(struct thread *, struct mtx *); #define THREAD_LOCK_ASSERT(td, type) \ do { \ struct mtx *__m = (td)->td_lock; \ if (__m != &blocked_lock) \ mtx_assert(__m, (type)); \ } while (0) #ifdef INVARIANTS #define THREAD_LOCKPTR_ASSERT(td, lock) \ do { \ struct mtx *__m = (td)->td_lock; \ KASSERT((__m == &blocked_lock || __m == (lock)), \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define TD_LOCKS_INC(td) ((td)->td_locks++) #define TD_LOCKS_DEC(td) do { \ KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0, \ ("thread %p owns no locks", (td))); \ (td)->td_locks--; \ } while (0) #else #define THREAD_LOCKPTR_ASSERT(td, lock) #define TD_LOCKS_INC(td) #define TD_LOCKS_DEC(td) #endif /* * Flags kept in td_flags: * To change these you MUST have the scheduler lock. */ #define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */ #define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */ #define TDF_INMEM 0x00000004 /* Thread's stack is in memory. */ #define TDF_SINTR 0x00000008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */ #define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */ #define TDF_CANSWAP 0x00000040 /* Thread can be swapped. */ #define TDF_SLEEPABORT 0x00000080 /* sleepq_abort was called. */ #define TDF_KTH_SUSP 0x00000100 /* kthread is suspended */ #define TDF_ALLPROCSUSP 0x00000200 /* suspended by SINGLE_ALLPROC */ #define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */ #define TDF_ASTPENDING 0x00000800 /* Thread has some asynchronous events. */ #define TDF_UNUSED12 0x00001000 /* --available-- */ #define TDF_SBDRY 0x00002000 /* Stop only on usermode boundary. */ #define TDF_UPIBLOCKED 0x00004000 /* Thread blocked on user PI mutex. */ #define TDF_NEEDSUSPCHK 0x00008000 /* Thread may need to suspend. */ #define TDF_NEEDRESCHED 0x00010000 /* Thread needs to yield. */ #define TDF_NEEDSIGCHK 0x00020000 /* Thread may need signal delivery. */ #define TDF_NOLOAD 0x00040000 /* Ignore during load avg calculations. */ #define TDF_SERESTART 0x00080000 /* ERESTART on stop attempts. */ #define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */ #define TDF_SEINTR 0x00200000 /* EINTR on stop attempts. */ #define TDF_SWAPINREQ 0x00400000 /* Swapin request due to wakeup. */ #define TDF_UNUSED23 0x00800000 /* --available-- */ #define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */ #define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */ #define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */ #define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */ #define TDF_ALRMPEND 0x10000000 /* Pending SIGVTALRM needs to be posted. */ #define TDF_PROFPEND 0x20000000 /* Pending SIGPROF needs to be posted. */ #define TDF_MACPEND 0x40000000 /* AST-based MAC event pending. */ /* Userland debug flags */ #define TDB_SUSPEND 0x00000001 /* Thread is suspended by debugger */ #define TDB_XSIG 0x00000002 /* Thread is exchanging signal under trace */ #define TDB_USERWR 0x00000004 /* Debugger modified memory or registers */ #define TDB_SCE 0x00000008 /* Thread performs syscall enter */ #define TDB_SCX 0x00000010 /* Thread performs syscall exit */ #define TDB_EXEC 0x00000020 /* TDB_SCX from exec(2) family */ #define TDB_FORK 0x00000040 /* TDB_SCX from fork(2) that created new process */ #define TDB_STOPATFORK 0x00000080 /* Stop at the return from fork (child only) */ #define TDB_CHILD 0x00000100 /* New child indicator for ptrace() */ #define TDB_BORN 0x00000200 /* New LWP indicator for ptrace() */ #define TDB_EXIT 0x00000400 /* Exiting LWP indicator for ptrace() */ #define TDB_VFORK 0x00000800 /* vfork indicator for ptrace() */ #define TDB_FSTP 0x00001000 /* The thread is PT_ATTACH leader */ #define TDB_STEP 0x00002000 /* (x86) PSL_T set for PT_STEP */ /* * "Private" flags kept in td_pflags: * These are only written by curthread and thus need no locking. */ #define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */ #define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */ #define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */ #define TDP_BUFNEED 0x00000008 /* Do not recurse into the buf flush */ #define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */ #define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */ #define TDP_DEADLKTREAT 0x00000040 /* Lock acquisition - deadlock treatment. */ #define TDP_NOFAULTING 0x00000080 /* Do not handle page faults. */ #define TDP_UNUSED9 0x00000100 /* --available-- */ #define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */ #define TDP_ITHREAD 0x00000400 /* Thread is an interrupt thread. */ #define TDP_SYNCIO 0x00000800 /* Local override, disable async i/o. */ #define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */ #define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */ #define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */ #define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */ #define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */ #define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */ #define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */ #define TDP_WAKEUP 0x00080000 /* Don't sleep in umtx cond_wait */ #define TDP_INBDFLUSH 0x00100000 /* Already in BO_BDFLUSH, do not recurse */ #define TDP_KTHREAD 0x00200000 /* This is an official kernel thread */ #define TDP_CALLCHAIN 0x00400000 /* Capture thread's callchain */ #define TDP_IGNSUSP 0x00800000 /* Permission to ignore the MNTK_SUSPEND* */ #define TDP_AUDITREC 0x01000000 /* Audit record pending on thread */ #define TDP_RFPPWAIT 0x02000000 /* Handle RFPPWAIT on syscall exit */ #define TDP_RESETSPUR 0x04000000 /* Reset spurious page fault history. */ #define TDP_NERRNO 0x08000000 /* Last errno is already in td_errno */ #define TDP_UIOHELD 0x10000000 /* Current uio has pages held in td_ma */ #define TDP_FORKING 0x20000000 /* Thread is being created through fork() */ #define TDP_EXECVMSPC 0x40000000 /* Execve destroyed old vmspace */ /* * Reasons that the current thread can not be run yet. * More than one may apply. */ #define TDI_SUSPENDED 0x0001 /* On suspension queue. */ #define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */ #define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */ #define TDI_LOCK 0x0008 /* Stopped on a lock. */ #define TDI_IWAIT 0x0010 /* Awaiting interrupt. */ #define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING) #define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL) #define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED) #define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED) #define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK) #define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT) #define TD_IS_RUNNING(td) ((td)->td_state == TDS_RUNNING) #define TD_ON_RUNQ(td) ((td)->td_state == TDS_RUNQ) #define TD_CAN_RUN(td) ((td)->td_state == TDS_CAN_RUN) #define TD_IS_INHIBITED(td) ((td)->td_state == TDS_INHIBITED) #define TD_ON_UPILOCK(td) ((td)->td_flags & TDF_UPIBLOCKED) #define TD_IS_IDLETHREAD(td) ((td)->td_flags & TDF_IDLETD) #define KTDSTATE(td) \ (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") #define TD_SET_INHIB(td, inhib) do { \ (td)->td_state = TDS_INHIBITED; \ (td)->td_inhibitors |= (inhib); \ } while (0) #define TD_CLR_INHIB(td, inhib) do { \ if (((td)->td_inhibitors & (inhib)) && \ (((td)->td_inhibitors &= ~(inhib)) == 0)) \ (td)->td_state = TDS_CAN_RUN; \ } while (0) #define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING) #define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED) #define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK) #define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED) #define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT) #define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING) #define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING) #define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED) #define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK) #define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED) #define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT) #define TD_SET_RUNNING(td) (td)->td_state = TDS_RUNNING #define TD_SET_RUNQ(td) (td)->td_state = TDS_RUNQ #define TD_SET_CAN_RUN(td) (td)->td_state = TDS_CAN_RUN #define TD_SBDRY_INTR(td) \ (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0) #define TD_SBDRY_ERRNO(td) \ (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART) /* * Process structure. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, thread) p_threads; /* (c) all threads. */ struct mtx p_slock; /* process spin lock */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Open files. */ struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (c) Resource limits. */ struct callout p_limco; /* (c) Limit callout handle */ struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */ int p_flag; /* (c) P_* flags. */ int p_flag2; /* (c) P2_* flags. */ enum { PRS_NEW = 0, /* In creation */ PRS_NORMAL, /* threads can be run. */ PRS_ZOMBIE } p_state; /* (j/c) Process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct proc *p_reaper; /* (e) My reaper. */ LIST_HEAD(, proc) p_reaplist; /* (e) List of my descendants (if I am reaper). */ LIST_ENTRY(proc) p_reapsibling; /* (e) List of siblings - descendants of the same reaper. */ struct mtx p_mtx; /* (n) Lock for this struct. */ struct mtx p_statmtx; /* Lock for the stats */ struct mtx p_itimmtx; /* Lock for the virt/prof timers */ struct mtx p_profmtx; /* Lock for the profiling */ struct ksiginfo *p_ksi; /* Locked by parent proc lock */ sigqueue_t p_sigqueue; /* (c) Sigs not delivered to a td. */ #define p_siglist p_sigqueue.sq_signals pid_t p_oppid; /* (c + e) Real parent pid. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_vmspace struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtick; /* (c) Tick when swapped in or out. */ u_int p_cowgen; /* (c) Generation of COW pointers. */ struct itimerval p_realtimer; /* (c) Alarm timer. */ struct rusage p_ru; /* (a) Exit information. */ struct rusage_ext p_rux; /* (cu) Internal resource usage. */ struct rusage_ext p_crux; /* (c) Internal child resource usage. */ int p_profthreads; /* (c) Num threads in addupc_task. */ volatile int p_exitthreads; /* (j) Number of threads exiting */ int p_traceflag; /* (o) Kernel trace points. */ struct vnode *p_tracevp; /* (c + o) Trace to vnode. */ struct ucred *p_tracecred; /* (o) Credentials to trace with. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ u_int p_lock; /* (c) Proclock (prevent swap) count. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_long p_code; /* (n) For core dump/debugger XXX. */ u_int p_stops; /* (c) Stop event bitmask. */ u_int p_stype; /* (c) Stop event type. */ char p_step; /* (c) Process is stopped. */ u_char p_pfsflags; /* (c) Procfs flags. */ u_int p_ptevents; /* (c + e) ptrace() event mask. */ struct nlminfo *p_nlminfo; /* (?) Only used by/for lockd. */ struct kaioinfo *p_aioinfo; /* (y) ASYNC I/O info. */ struct thread *p_singlethread;/* (c + j) If single threading this is it */ int p_suspcount; /* (j) Num threads in suspended mode. */ struct thread *p_xthread; /* (c) Trap thread */ int p_boundary_count;/* (j) Num threads at user boundary */ int p_pendingcnt; /* how many signals are pending */ struct itimers *p_itimers; /* (c) POSIX interval timers. */ struct procdesc *p_procdesc; /* (e) Process descriptor, if any. */ u_int p_treeflag; /* (e) P_TREE flags */ int p_pendingexits; /* (c) Count of pending thread exits. */ struct filemon *p_filemon; /* (c) filemon-specific data. */ int p_pdeathsig; /* (c) Signal from parent on exit. */ /* End area that is zeroed on creation. */ #define p_endzero p_magic /* The following fields are all copied upon creation in fork. */ #define p_startcopy p_endzero u_int p_magic; /* (b) Magic number. */ int p_osrel; /* (x) osreldate for the binary (from ELF note, if any) */ char p_comm[MAXCOMLEN + 1]; /* (x) Process name. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ rlim_t p_cpulimit; /* (c) Current CPU limit in seconds. */ signed char p_nice; /* (c) Process "nice" value. */ int p_fibnum; /* in this routing domain XXX MRT */ pid_t p_reapsubtree; /* (e) Pid of the direct child of the reaper which spawned our subtree. */ uint16_t p_elf_machine; /* (x) ELF machine type */ uint64_t p_elf_flags; /* (x) ELF flags */ /* End area that is copied on creation. */ #define p_endcopy p_xexit u_int p_xexit; /* (c) Exit code. */ u_int p_xsig; /* (c) Stop/kill sig. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct knlist *p_klist; /* (c) Knotes attached to this proc. */ int p_numthreads; /* (c) Number of threads. */ struct mdproc p_md; /* Any machine-dependent fields. */ struct callout p_itcallout; /* (h + c) Interval timer callout. */ u_short p_acflag; /* (c) Accounting flags. */ struct proc *p_peers; /* (r) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ struct label *p_label; /* (*) Proc (not subject) MAC label. */ STAILQ_HEAD(, ktr_request) p_ktr; /* (o) KTR event queue. */ LIST_HEAD(, mqueue_notifier) p_mqnotifier; /* (c) mqueue notifiers.*/ struct kdtrace_proc *p_dtrace; /* (*) DTrace-specific data. */ struct cv p_pwait; /* (*) wait cv for exit/exec. */ uint64_t p_prev_runtime; /* (c) Resource usage accounting. */ struct racct *p_racct; /* (b) Resource accounting. */ int p_throttled; /* (c) Flag for racct pcpu throttling */ /* * An orphan is the child that has been re-parented to the * debugger as a result of attaching to it. Need to keep * track of them for parent to be able to collect the exit * status of what used to be children. */ LIST_ENTRY(proc) p_orphan; /* (e) List of orphan processes. */ LIST_HEAD(, proc) p_orphans; /* (e) Pointer to list of orphans. */ }; #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU (-1) /* For when we aren't on a CPU. */ #define NOCPU_OLD (255) #define MAXCPU_OLD (254) #define PROC_SLOCK(p) mtx_lock_spin(&(p)->p_slock) #define PROC_SUNLOCK(p) mtx_unlock_spin(&(p)->p_slock) #define PROC_SLOCK_ASSERT(p, type) mtx_assert(&(p)->p_slock, (type)) #define PROC_STATLOCK(p) mtx_lock_spin(&(p)->p_statmtx) #define PROC_STATUNLOCK(p) mtx_unlock_spin(&(p)->p_statmtx) #define PROC_STATLOCK_ASSERT(p, type) mtx_assert(&(p)->p_statmtx, (type)) #define PROC_ITIMLOCK(p) mtx_lock_spin(&(p)->p_itimmtx) #define PROC_ITIMUNLOCK(p) mtx_unlock_spin(&(p)->p_itimmtx) #define PROC_ITIMLOCK_ASSERT(p, type) mtx_assert(&(p)->p_itimmtx, (type)) #define PROC_PROFLOCK(p) mtx_lock_spin(&(p)->p_profmtx) #define PROC_PROFUNLOCK(p) mtx_unlock_spin(&(p)->p_profmtx) #define PROC_PROFLOCK_ASSERT(p, type) mtx_assert(&(p)->p_profmtx, (type)) /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00002 /* Has a controlling terminal. */ #define P_KPROC 0x00004 /* Kernel process. */ #define P_UNUSED3 0x00008 /* --available-- */ #define P_PPWAIT 0x00010 /* Parent is waiting for child to exec/exit. */ #define P_PROFIL 0x00020 /* Has started profiling. */ #define P_STOPPROF 0x00040 /* Has thread requesting to stop profiling. */ #define P_HADTHREADS 0x00080 /* Has had threads (no cleanup shortcuts) */ #define P_SUGID 0x00100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00200 /* System proc: no sigs, stats or swapping. */ #define P_SINGLE_EXIT 0x00400 /* Threads suspending should exit, not wait. */ #define P_TRACED 0x00800 /* Debugged process being traced. */ #define P_WAITED 0x01000 /* Someone is waiting for us. */ #define P_WEXIT 0x02000 /* Working on exiting. */ #define P_EXEC 0x04000 /* Process called exec. */ #define P_WKILLED 0x08000 /* Killed, go to kernel/user boundary ASAP. */ #define P_CONTINUED 0x10000 /* Proc has continued from a stopped state. */ #define P_STOPPED_SIG 0x20000 /* Stopped due to SIGSTOP/SIGTSTP. */ #define P_STOPPED_TRACE 0x40000 /* Stopped because of tracing. */ #define P_STOPPED_SINGLE 0x80000 /* Only 1 thread can continue (not to user). */ #define P_PROTECTED 0x100000 /* Do not kill on memory overcommit. */ #define P_SIGEVENT 0x200000 /* Process pending signals changed. */ #define P_SINGLE_BOUNDARY 0x400000 /* Threads should suspend at user boundary. */ #define P_HWPMC 0x800000 /* Process is using HWPMCs */ #define P_JAILED 0x1000000 /* Process is in jail. */ #define P_TOTAL_STOP 0x2000000 /* Stopped in stop_all_proc. */ #define P_INEXEC 0x4000000 /* Process is in execve(). */ #define P_STATCHILD 0x8000000 /* Child process stopped or exited. */ #define P_INMEM 0x10000000 /* Loaded into memory. */ #define P_SWAPPINGOUT 0x20000000 /* Process is being swapped out. */ #define P_SWAPPINGIN 0x40000000 /* Process is being swapped in. */ #define P_PPTRACE 0x80000000 /* PT_TRACEME by vforked child. */ #define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE) #define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED) #define P_KILLED(p) ((p)->p_flag & P_WKILLED) /* These flags are kept in p_flag2. */ #define P2_INHERIT_PROTECTED 0x00000001 /* New children get P_PROTECTED. */ #define P2_NOTRACE 0x00000002 /* No ptrace(2) attach or coredumps. */ #define P2_NOTRACE_EXEC 0x00000004 /* Keep P2_NOPTRACE on exec(2). */ #define P2_AST_SU 0x00000008 /* Handles SU ast for kthreads. */ #define P2_PTRACE_FSTP 0x00000010 /* SIGSTOP from PT_ATTACH not yet handled. */ #define P2_TRAPCAP 0x00000020 /* SIGTRAP on ENOTCAPABLE */ /* Flags protected by proctree_lock, kept in p_treeflags. */ #define P_TREE_ORPHANED 0x00000001 /* Reparented, on orphan list */ #define P_TREE_FIRST_ORPHAN 0x00000002 /* First element of orphan list */ #define P_TREE_REAPER 0x00000004 /* Reaper of subtree */ /* * These were process status values (p_stat), now they are only used in * legacy conversion code. */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SLOCK 7 /* Blocked on a lock. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL /* Types and flags for mi_switch(). */ #define SW_TYPE_MASK 0xff /* First 8 bits are switch type */ #define SWT_NONE 0 /* Unspecified switch. */ #define SWT_PREEMPT 1 /* Switching due to preemption. */ #define SWT_OWEPREEMPT 2 /* Switching due to owepreempt. */ #define SWT_TURNSTILE 3 /* Turnstile contention. */ #define SWT_SLEEPQ 4 /* Sleepq wait. */ #define SWT_SLEEPQTIMO 5 /* Sleepq timeout wait. */ #define SWT_RELINQUISH 6 /* yield call. */ #define SWT_NEEDRESCHED 7 /* NEEDRESCHED was set. */ #define SWT_IDLE 8 /* Switching from the idle thread. */ #define SWT_IWAIT 9 /* Waiting for interrupts. */ #define SWT_SUSPEND 10 /* Thread suspended. */ #define SWT_REMOTEPREEMPT 11 /* Remote processor preempted. */ #define SWT_REMOTEWAKEIDLE 12 /* Remote processor preempted idle. */ #define SWT_COUNT 13 /* Number of switch types. */ /* Flags */ #define SW_VOL 0x0100 /* Voluntary switch. */ #define SW_INVOL 0x0200 /* Involuntary switch. */ #define SW_PREEMPT 0x0400 /* The invol switch is a preemption */ /* How values for thread_single(). */ #define SINGLE_NO_EXIT 0 #define SINGLE_EXIT 1 #define SINGLE_BOUNDARY 2 #define SINGLE_ALLPROC 3 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_PGRP); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads) /* * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit * in a pid_t, as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 extern pid_t pid_max; #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) #define STOPEVENT(p, e, v) do { \ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ "checking stopevent %d", (e)); \ if ((p)->p_stops & (e)) { \ PROC_LOCK(p); \ stopevent((p), (e), (v)); \ PROC_UNLOCK(p); \ } \ } while (0) #define _STOPEVENT(p, e, v) do { \ PROC_LOCK_ASSERT(p, MA_OWNED); \ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, \ "checking stopevent %d", (e)); \ if ((p)->p_stops & (e)) \ stopevent((p), (e), (v)); \ } while (0) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0) #define PGRP_UNLOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0) /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* * Non-zero p_lock ensures that: * - exit1() is not performed until p_lock reaches zero; * - the process' threads stack are not swapped out if they are currently * not (P_INMEM). * * PHOLD() asserts that the process (except the current process) is * not exiting, increments p_lock and swaps threads stacks into memory, * if needed. * _PHOLD() is same as PHOLD(), it takes the process locked. * _PHOLD_LITE() also takes the process locked, but comparing with * _PHOLD(), it only guarantees that exit1() is not executed, * faultin() is not called. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ if (((p)->p_flag & P_INMEM) == 0) \ faultin((p)); \ } while (0) #define _PHOLD_LITE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ } while (0) #define PROC_ASSERT_HELD(p) do { \ KASSERT((p)->p_lock > 0, ("process %p not held", p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ PROC_ASSERT_HELD(p); \ (--(p)->p_lock); \ if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0) \ wakeup(&(p)->p_lock); \ } while (0) #define PROC_ASSERT_NOT_HELD(p) do { \ KASSERT((p)->p_lock == 0, ("process %p held", p)); \ } while (0) #define PROC_UPDATE_COW(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ (p)->p_cowgen++; \ } while (0) /* Check whether a thread is safe to be swapped out. */ #define thread_safetoswapout(td) ((td)->td_flags & TDF_CANSWAP) /* Control whether or not it is safe for curthread to sleep. */ #define THREAD_NO_SLEEPING() ((curthread)->td_no_sleeping++) #define THREAD_SLEEPING_OK() ((curthread)->td_no_sleeping--) #define THREAD_CAN_SLEEP() ((curthread)->td_no_sleeping == 0) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) #define PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern struct sx *pidhashtbl_lock; extern u_long pidhash; extern u_long pidhashlock; #define TIDHASH(tid) (&tidhashtbl[(tid) & tidhash]) extern LIST_HEAD(tidhashhead, thread) *tidhashtbl; extern u_long tidhash; extern struct rwlock tidhash_lock; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern int allproc_gen; extern struct sx proctree_lock; extern struct mtx ppeers_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread0_storage thread0_st; /* Primary thread in proc0. */ #define thread0 (thread0_st.t0st_thread) extern struct vmspace vmspace0; /* VM space for proc0. */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int lastpid; extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ extern struct proclist zombproc; /* List of zombie processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct uma_zone *proc_zone; struct proc *pfind(pid_t); /* Find process by id. */ struct proc *pfind_any(pid_t); /* Find (zombie) process by id. */ -struct proc *pfind_locked(pid_t pid); struct pgrp *pgfind(pid_t); /* Find process group by id. */ struct proc *zpfind(pid_t); /* Find zombie process by id. */ struct fork_req { int fr_flags; int fr_pages; int *fr_pidp; struct proc **fr_procp; int *fr_pd_fd; int fr_pd_flags; struct filecaps *fr_pd_fcaps; }; /* * pget() flags. */ #define PGET_HOLD 0x00001 /* Hold the process. */ #define PGET_CANSEE 0x00002 /* Check against p_cansee(). */ #define PGET_CANDEBUG 0x00004 /* Check against p_candebug(). */ #define PGET_ISCURRENT 0x00008 /* Check that the found process is current. */ #define PGET_NOTWEXIT 0x00010 /* Check that the process is not in P_WEXIT. */ #define PGET_NOTINEXEC 0x00020 /* Check that the process is not in P_INEXEC. */ #define PGET_NOTID 0x00040 /* Do not assume tid if pid > PID_MAX. */ #define PGET_WANTREAD (PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT) int pget(pid_t pid, int flags, struct proc **pp); void ast(struct trapframe *framep); struct thread *choosethread(void); int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeothergids(struct ucred *u1, struct ucred *u2); int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); int cr_canseejailproc(struct ucred *u1, struct ucred *u2); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); void fixjobc(struct proc *p, struct pgrp *pgrp, int entering); int fork1(struct thread *, struct fork_req *); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); void kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry, int *resident_count, bool *super); void kern_yield(int); void kick_proc0(void); void killjobc(void); int leavepgrp(struct proc *p); int maybe_preempt(struct thread *td); void maybe_yield(void); void mi_switch(int flags, struct thread *newtd); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); int p_canwait(struct thread *td, struct proc *p); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_hold(struct pargs *pa); int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb); void procinit(void); int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg); void proc_linkup0(struct proc *p, struct thread *td); void proc_linkup(struct proc *p, struct thread *td); struct proc *proc_realparent(struct proc *child); void proc_reap(struct thread *td, struct proc *p, int *status, int options); void proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid); void proc_set_traced(struct proc *p, bool stop); void proc_wkilled(struct proc *p); struct pstats *pstats_alloc(void); void pstats_fork(struct pstats *src, struct pstats *dst); void pstats_free(struct pstats *ps); void reaper_abandon_children(struct proc *p, bool exiting); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void sess_hold(struct session *); void sess_release(struct session *); int setrunnable(struct thread *); void setsugid(struct proc *p); int should_yield(void); int sigonstack(size_t sp); void stopevent(struct proc *, u_int, u_int); struct thread *tdfind(lwpid_t, pid_t); void threadinit(void); void tidhash_add(struct thread *); void tidhash_remove(struct thread *); void cpu_idle(int); int cpu_idle_wakeup(int); extern void (*cpu_idle_hook)(sbintime_t); /* Hook to machdep CPU idler. */ void cpu_switch(struct thread *, struct thread *, struct mtx *); void cpu_throw(struct thread *, struct thread *) __dead2; void unsleep(struct thread *); void userret(struct thread *, struct trapframe *); void cpu_exit(struct thread *); void exit1(struct thread *, int, int) __dead2; void cpu_copy_thread(struct thread *td, struct thread *td0); int cpu_fetch_syscall_args(struct thread *td); void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *); void cpu_set_syscall_retval(struct thread *, int); void cpu_set_upcall(struct thread *, void (*)(void *), void *, stack_t *); int cpu_set_user_tls(struct thread *, void *tls_base); void cpu_thread_alloc(struct thread *); void cpu_thread_clean(struct thread *); void cpu_thread_exit(struct thread *); void cpu_thread_free(struct thread *); void cpu_thread_swapin(struct thread *); void cpu_thread_swapout(struct thread *); struct thread *thread_alloc(int pages); int thread_alloc_stack(struct thread *, int pages); void thread_cow_get_proc(struct thread *newtd, struct proc *p); void thread_cow_get(struct thread *newtd, struct thread *td); void thread_cow_free(struct thread *td); void thread_cow_update(struct thread *td); int thread_create(struct thread *td, struct rtprio *rtp, int (*initialize_thread)(struct thread *, void *), void *thunk); void thread_exit(void) __dead2; void thread_free(struct thread *td); void thread_link(struct thread *td, struct proc *p); void thread_reap(void); int thread_single(struct proc *p, int how); void thread_single_end(struct proc *p, int how); void thread_stash(struct thread *td); void thread_stopped(struct proc *p); void childproc_stopped(struct proc *child, int reason); void childproc_continued(struct proc *child); void childproc_exited(struct proc *child); int thread_suspend_check(int how); bool thread_suspend_check_needed(void); void thread_suspend_switch(struct thread *, struct proc *p); void thread_suspend_one(struct thread *td); void thread_unlink(struct thread *td); void thread_unsuspend(struct proc *p); void thread_wait(struct proc *p); struct thread *thread_find(struct proc *p, lwpid_t tid); void stop_all_proc(void); void resume_all_proc(void); static __inline int curthread_pflags_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags & flags); td->td_pflags |= flags; return (save); } static __inline void curthread_pflags_restore(int save) { curthread->td_pflags &= save; } static __inline __pure2 struct td_sched * td_get_sched(struct thread *td) { return ((struct td_sched *)&td[1]); } extern void (*softdep_ast_cleanup)(struct thread *); static __inline void td_softdep_cleanup(struct thread *td) { if (td->td_su != NULL && softdep_ast_cleanup != NULL) softdep_ast_cleanup(td); } #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */