Index: head/sys/dev/efidev/efirtc.c =================================================================== --- head/sys/dev/efidev/efirtc.c (revision 338434) +++ head/sys/dev/efidev/efirtc.c (revision 338435) @@ -1,206 +1,207 @@ /*- * Copyright (c) 2017 Andrew Turner * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "clock_if.h" static bool efirtc_zeroes_subseconds; static struct timespec efirtc_resadj; static const u_int us_per_s = 1000000; static const u_int ns_per_s = 1000000000; static const u_int ns_per_us = 1000; static void efirtc_identify(driver_t *driver, device_t parent) { /* Don't add the driver unless we have working runtime services. */ if (efi_rt_ok() != 0) return; if (device_find_child(parent, "efirtc", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "efirtc", -1) == NULL) device_printf(parent, "add child failed\n"); } static int efirtc_probe(device_t dev) { struct efi_tm tm; int error; /* * Check whether we can read the time. This will stop us from attaching * when there is EFI Runtime support but the gettime function is * unimplemented, e.g. on some builds of U-Boot. */ if ((error = efi_get_time(&tm)) != 0) { if (bootverbose) - device_printf(dev, "cannot read EFI realtime clock\n"); + device_printf(dev, "cannot read EFI realtime clock, " + "error %d\n", error); return (error); } device_set_desc(dev, "EFI Realtime Clock"); return (BUS_PROBE_DEFAULT); } static int efirtc_attach(device_t dev) { struct efi_tmcap tmcap; long res; int error; bzero(&tmcap, sizeof(tmcap)); if ((error = efi_get_time_capabilities(&tmcap)) != 0) { device_printf(dev, "cannot get EFI time capabilities"); return (error); } /* Translate resolution in Hz to tick length in usec. */ if (tmcap.tc_res == 0) res = us_per_s; /* 0 is insane, assume 1 Hz. */ else if (tmcap.tc_res > us_per_s) res = 1; /* 1us is the best we can represent */ else res = us_per_s / tmcap.tc_res; /* Clock rounding adjustment is 1/2 of resolution, in nsec. */ efirtc_resadj.tv_nsec = (res * ns_per_us) / 2; /* Does the clock zero the subseconds when time is set? */ efirtc_zeroes_subseconds = tmcap.tc_stz; /* * Register. If the clock zeroes out the subseconds when it's set, * schedule the SetTime calls to happen just before top-of-second. */ clock_register_flags(dev, res, CLOCKF_SETTIME_NO_ADJ); if (efirtc_zeroes_subseconds) clock_schedule(dev, ns_per_s - ns_per_us); return (0); } static int efirtc_detach(device_t dev) { clock_unregister(dev); return (0); } static int efirtc_gettime(device_t dev, struct timespec *ts) { struct clocktime ct; struct efi_tm tm; int error; error = efi_get_time(&tm); if (error != 0) return (error); ct.sec = tm.tm_sec; ct.min = tm.tm_min; ct.hour = tm.tm_hour; ct.day = tm.tm_mday; ct.mon = tm.tm_mon; ct.year = tm.tm_year; ct.nsec = tm.tm_nsec; clock_dbgprint_ct(dev, CLOCK_DBG_READ, &ct); return (clock_ct_to_ts(&ct, ts)); } static int efirtc_settime(device_t dev, struct timespec *ts) { struct clocktime ct; struct efi_tm tm; /* * We request a timespec with no resolution-adjustment so that we can * apply it ourselves based on whether or not the clock zeroes the * sub-second part of the time when setting the time. */ ts->tv_sec -= utc_offset(); if (!efirtc_zeroes_subseconds) timespecadd(ts, &efirtc_resadj, ts); clock_ts_to_ct(ts, &ct); clock_dbgprint_ct(dev, CLOCK_DBG_WRITE, &ct); bzero(&tm, sizeof(tm)); tm.tm_sec = ct.sec; tm.tm_min = ct.min; tm.tm_hour = ct.hour; tm.tm_mday = ct.day; tm.tm_mon = ct.mon; tm.tm_year = ct.year; tm.tm_nsec = ct.nsec; return (efi_set_time(&tm)); } static device_method_t efirtc_methods[] = { /* Device interface */ DEVMETHOD(device_identify, efirtc_identify), DEVMETHOD(device_probe, efirtc_probe), DEVMETHOD(device_attach, efirtc_attach), DEVMETHOD(device_detach, efirtc_detach), /* Clock interface */ DEVMETHOD(clock_gettime, efirtc_gettime), DEVMETHOD(clock_settime, efirtc_settime), DEVMETHOD_END }; static devclass_t efirtc_devclass; static driver_t efirtc_driver = { "efirtc", efirtc_methods, 0 }; DRIVER_MODULE(efirtc, nexus, efirtc_driver, efirtc_devclass, 0, 0); MODULE_VERSION(efirtc, 1); MODULE_DEPEND(efirtc, efirt, 1, 1, 1); Index: head/sys/kern/subr_rtc.c =================================================================== --- head/sys/kern/subr_rtc.c (revision 338434) +++ head/sys/kern/subr_rtc.c (revision 338435) @@ -1,424 +1,427 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2011 The FreeBSD Foundation * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Portions of this software were developed by Julien Ridoux at the University * of Melbourne under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: clock.c 1.18 91/01/21$ * from: @(#)clock.c 8.2 (Berkeley) 1/12/94 * from: NetBSD: clock_subr.c,v 1.6 2001/07/07 17:04:02 thorpej Exp * and * from: src/sys/i386/isa/clock.c,v 1.176 2001/09/04 */ /* * Helpers for time-of-day clocks. This is useful for architectures that need * support multiple models of such clocks, and generally serves to make the * code more machine-independent. * If the clock in question can also be used as a time counter, the driver * needs to initiate this. * This code is not yet used by all architectures. */ #include __FBSDID("$FreeBSD$"); #include "opt_ffclock.h" #include #include #include #include #include #include #include #include #include #include #ifdef FFCLOCK #include #endif #include #include "clock_if.h" static int show_io; SYSCTL_INT(_debug, OID_AUTO, clock_show_io, CTLFLAG_RWTUN, &show_io, 0, "Enable debug printing of RTC clock I/O; 1=reads, 2=writes, 3=both."); static int sysctl_clock_do_io(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_debug, OID_AUTO, clock_do_io, CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_clock_do_io, "I", "Trigger one-time IO on RTC clocks; 1=read (and discard), 2=write"); /* XXX: should be kern. now, it's no longer machdep. */ static int disable_rtc_set; SYSCTL_INT(_machdep, OID_AUTO, disable_rtc_set, CTLFLAG_RW, &disable_rtc_set, 0, "Disallow adjusting time-of-day clock"); /* * An instance of a realtime clock. A list of these tracks all the registered * clocks in the system. * * The resadj member is used to apply a "resolution adjustment" equal to half * the clock's resolution, which is useful mainly on clocks with a whole-second * resolution. Because the clock truncates the fractional part, adding half the * resolution performs 4/5 rounding. The same adjustment is applied to the * times returned from clock_gettime(), because the fraction returned will * always be zero, but on average the actual fraction at the time of the call * should be about .5. */ struct rtc_instance { device_t clockdev; int resolution; int flags; u_int schedns; struct timespec resadj; struct timeout_task stask; LIST_ENTRY(rtc_instance) rtc_entries; }; /* * Clocks are updated using a task running on taskqueue_thread. */ static void settime_task_func(void *arg, int pending); /* * Registered clocks are kept in a list which is sorted by resolution; the more * accurate clocks get the first shot at providing the time. */ LIST_HEAD(rtc_listhead, rtc_instance); static struct rtc_listhead rtc_list = LIST_HEAD_INITIALIZER(rtc_list); static struct sx rtc_list_lock; SX_SYSINIT(rtc_list_lock_init, &rtc_list_lock, "rtc list"); /* * On the task thread, invoke the clock_settime() method of the clock. Do so * holding no locks, so that clock drivers are free to do whatever kind of * locking or sleeping they need to. */ static void settime_task_func(void *arg, int pending) { struct timespec ts; struct rtc_instance *rtc; + int error; rtc = arg; if (!(rtc->flags & CLOCKF_SETTIME_NO_TS)) { getnanotime(&ts); if (!(rtc->flags & CLOCKF_SETTIME_NO_ADJ)) { ts.tv_sec -= utc_offset(); timespecadd(&ts, &rtc->resadj, &ts); } } else { ts.tv_sec = 0; ts.tv_nsec = 0; } - CLOCK_SETTIME(rtc->clockdev, &ts); + error = CLOCK_SETTIME(rtc->clockdev, &ts); + if (error != 0 && bootverbose) + device_printf(rtc->clockdev, "CLOCK_SETTIME error %d\n", error); } static void clock_dbgprint_hdr(device_t dev, int rw) { struct timespec now; getnanotime(&now); device_printf(dev, "%s at ", (rw & CLOCK_DBG_READ) ? "read " : "write"); clock_print_ts(&now, 9); printf(": "); } void clock_dbgprint_bcd(device_t dev, int rw, const struct bcd_clocktime *bct) { if (show_io & rw) { clock_dbgprint_hdr(dev, rw); clock_print_bcd(bct, 9); printf("\n"); } } void clock_dbgprint_ct(device_t dev, int rw, const struct clocktime *ct) { if (show_io & rw) { clock_dbgprint_hdr(dev, rw); clock_print_ct(ct, 9); printf("\n"); } } void clock_dbgprint_err(device_t dev, int rw, int err) { if (show_io & rw) { clock_dbgprint_hdr(dev, rw); printf("error = %d\n", err); } } void clock_dbgprint_ts(device_t dev, int rw, const struct timespec *ts) { if (show_io & rw) { clock_dbgprint_hdr(dev, rw); clock_print_ts(ts, 9); printf("\n"); } } void clock_register_flags(device_t clockdev, long resolution, int flags) { struct rtc_instance *rtc, *newrtc; newrtc = malloc(sizeof(*newrtc), M_DEVBUF, M_WAITOK); newrtc->clockdev = clockdev; newrtc->resolution = (int)resolution; newrtc->flags = flags; newrtc->schedns = 0; newrtc->resadj.tv_sec = newrtc->resolution / 2 / 1000000; newrtc->resadj.tv_nsec = newrtc->resolution / 2 % 1000000 * 1000; TIMEOUT_TASK_INIT(taskqueue_thread, &newrtc->stask, 0, settime_task_func, newrtc); sx_xlock(&rtc_list_lock); if (LIST_EMPTY(&rtc_list)) { LIST_INSERT_HEAD(&rtc_list, newrtc, rtc_entries); } else { LIST_FOREACH(rtc, &rtc_list, rtc_entries) { if (rtc->resolution > newrtc->resolution) { LIST_INSERT_BEFORE(rtc, newrtc, rtc_entries); break; } else if (LIST_NEXT(rtc, rtc_entries) == NULL) { LIST_INSERT_AFTER(rtc, newrtc, rtc_entries); break; } } } sx_xunlock(&rtc_list_lock); device_printf(clockdev, "registered as a time-of-day clock, resolution %d.%6.6ds\n", newrtc->resolution / 1000000, newrtc->resolution % 1000000); } void clock_register(device_t dev, long res) { clock_register_flags(dev, res, 0); } void clock_unregister(device_t clockdev) { struct rtc_instance *rtc, *tmp; sx_xlock(&rtc_list_lock); LIST_FOREACH_SAFE(rtc, &rtc_list, rtc_entries, tmp) { if (rtc->clockdev == clockdev) { LIST_REMOVE(rtc, rtc_entries); break; } } sx_xunlock(&rtc_list_lock); if (rtc != NULL) { taskqueue_cancel_timeout(taskqueue_thread, &rtc->stask, NULL); taskqueue_drain_timeout(taskqueue_thread, &rtc->stask); free(rtc, M_DEVBUF); } } void clock_schedule(device_t clockdev, u_int offsetns) { struct rtc_instance *rtc; sx_xlock(&rtc_list_lock); LIST_FOREACH(rtc, &rtc_list, rtc_entries) { if (rtc->clockdev == clockdev) { rtc->schedns = offsetns; break; } } sx_xunlock(&rtc_list_lock); } static int read_clocks(struct timespec *ts, bool debug_read) { struct rtc_instance *rtc; int error; error = ENXIO; sx_xlock(&rtc_list_lock); LIST_FOREACH(rtc, &rtc_list, rtc_entries) { if ((error = CLOCK_GETTIME(rtc->clockdev, ts)) != 0) continue; if (ts->tv_sec < 0 || ts->tv_nsec < 0) { error = EINVAL; continue; } if (!(rtc->flags & CLOCKF_GETTIME_NO_ADJ)) { timespecadd(ts, &rtc->resadj, ts); ts->tv_sec += utc_offset(); } if (!debug_read) { if (bootverbose) device_printf(rtc->clockdev, "providing initial system time\n"); break; } } sx_xunlock(&rtc_list_lock); return (error); } /* * Initialize the system time. Must be called from a context which does not * restrict any locking or sleeping that clock drivers may need to do. * * First attempt to get the time from a registered realtime clock. The clocks * are queried in order of resolution until one provides the time. If no clock * can provide the current time, use the 'base' time provided by the caller, if * non-zero. The 'base' time is potentially highly inaccurate, such as the last * known good value of the system clock, or even a filesystem last-updated * timestamp. It is used to prevent system time from appearing to move * backwards in logs. */ void inittodr(time_t base) { struct timespec ts; int error; error = read_clocks(&ts, false); /* * Do not report errors from each clock; it is expected that some clocks * cannot provide results in some situations. Only report problems when * no clocks could provide the time. */ if (error != 0) { switch (error) { case ENXIO: printf("Warning: no time-of-day clock registered, "); break; case EINVAL: printf("Warning: bad time from time-of-day clock, "); break; default: printf("Error reading time-of-day clock (%d), ", error); break; } printf("system time will not be set accurately\n"); ts.tv_sec = (base > 0) ? base : -1; ts.tv_nsec = 0; } if (ts.tv_sec >= 0) { tc_setclock(&ts); #ifdef FFCLOCK ffclock_reset_clock(&ts); #endif } } /* * Write system time back to all registered clocks, unless disabled by admin. * This can be called from a context that restricts locking and/or sleeping; the * actual updating is done asynchronously on a task thread. */ void resettodr(void) { struct timespec now; struct rtc_instance *rtc; sbintime_t sbt; long waitns; if (disable_rtc_set) return; sx_xlock(&rtc_list_lock); LIST_FOREACH(rtc, &rtc_list, rtc_entries) { if (rtc->schedns != 0) { getnanotime(&now); waitns = rtc->schedns - now.tv_nsec; if (waitns < 0) waitns += 1000000000; sbt = nstosbt(waitns); } else sbt = 0; taskqueue_enqueue_timeout_sbt(taskqueue_thread, &rtc->stask, -sbt, 0, C_PREL(31)); } sx_xunlock(&rtc_list_lock); } static int sysctl_clock_do_io(SYSCTL_HANDLER_ARGS) { struct timespec ts_discard; int error, value; value = 0; error = sysctl_handle_int(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); switch (value) { case CLOCK_DBG_READ: if (read_clocks(&ts_discard, true) == ENXIO) printf("No registered RTC clocks\n"); break; case CLOCK_DBG_WRITE: resettodr(); break; default: return (EINVAL); } return (0); }