Index: head/lib/libc/sys/getsockopt.2 =================================================================== --- head/lib/libc/sys/getsockopt.2 (revision 338135) +++ head/lib/libc/sys/getsockopt.2 (revision 338136) @@ -1,588 +1,589 @@ .\" Copyright (c) 1983, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)getsockopt.2 8.4 (Berkeley) 5/2/95 .\" $FreeBSD$ .\" -.Dd May 9, 2018 +.Dd August 21, 2018 .Dt GETSOCKOPT 2 .Os .Sh NAME .Nm getsockopt , .Nm setsockopt .Nd get and set options on sockets .Sh LIBRARY .Lb libc .Sh SYNOPSIS .In sys/types.h .In sys/socket.h .Ft int .Fn getsockopt "int s" "int level" "int optname" "void * restrict optval" "socklen_t * restrict optlen" .Ft int .Fn setsockopt "int s" "int level" "int optname" "const void *optval" "socklen_t optlen" .Sh DESCRIPTION The .Fn getsockopt and .Fn setsockopt system calls manipulate the .Em options associated with a socket. Options may exist at multiple protocol levels; they are always present at the uppermost .Dq socket level. .Pp When manipulating socket options the level at which the option resides and the name of the option must be specified. To manipulate options at the socket level, .Fa level is specified as .Dv SOL_SOCKET . To manipulate options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For example, to indicate that an option is to be interpreted by the .Tn TCP protocol, .Fa level should be set to the protocol number of .Tn TCP ; see .Xr getprotoent 3 . .Pp The .Fa optval and .Fa optlen arguments are used to access option values for .Fn setsockopt . For .Fn getsockopt they identify a buffer in which the value for the requested option(s) are to be returned. For .Fn getsockopt , .Fa optlen is a value-result argument, initially containing the size of the buffer pointed to by .Fa optval , and modified on return to indicate the actual size of the value returned. If no option value is to be supplied or returned, .Fa optval may be NULL. .Pp The .Fa optname argument and any specified options are passed uninterpreted to the appropriate protocol module for interpretation. The include file .In sys/socket.h contains definitions for socket level options, described below. Options at other protocol levels vary in format and name; consult the appropriate entries in section 4 of the manual. .Pp Most socket-level options utilize an .Vt int argument for .Fa optval . For .Fn setsockopt , the argument should be non-zero to enable a boolean option, or zero if the option is to be disabled. .Dv SO_LINGER uses a .Vt "struct linger" argument, defined in .In sys/socket.h , which specifies the desired state of the option and the linger interval (see below). .Dv SO_SNDTIMEO and .Dv SO_RCVTIMEO use a .Vt "struct timeval" argument, defined in .In sys/time.h . .Pp The following options are recognized at the socket level. For protocol-specific options, see protocol manual pages, e.g. .Xr ip 4 or .Xr tcp 4 . Except as noted, each may be examined with .Fn getsockopt and set with .Fn setsockopt . .Bl -column SO_ACCEPTFILTER -offset indent .It Dv SO_DEBUG Ta "enables recording of debugging information" .It Dv SO_REUSEADDR Ta "enables local address reuse" .It Dv SO_REUSEPORT Ta "enables duplicate address and port bindings" .It Dv SO_REUSEPORT_LB Ta "enables duplicate address and port bindings with load balancing" .It Dv SO_KEEPALIVE Ta "enables keep connections alive" .It Dv SO_DONTROUTE Ta "enables routing bypass for outgoing messages" .It Dv SO_LINGER Ta "linger on close if data present" .It Dv SO_BROADCAST Ta "enables permission to transmit broadcast messages" .It Dv SO_OOBINLINE Ta "enables reception of out-of-band data in band" .It Dv SO_SNDBUF Ta "set buffer size for output" .It Dv SO_RCVBUF Ta "set buffer size for input" .It Dv SO_SNDLOWAT Ta "set minimum count for output" .It Dv SO_RCVLOWAT Ta "set minimum count for input" .It Dv SO_SNDTIMEO Ta "set timeout value for output" .It Dv SO_RCVTIMEO Ta "set timeout value for input" .It Dv SO_ACCEPTFILTER Ta "set accept filter on listening socket" .It Dv SO_NOSIGPIPE Ta controls generation of .Dv SIGPIPE for the socket .It Dv SO_TIMESTAMP Ta "enables reception of a timestamp with datagrams" .It Dv SO_BINTIME Ta "enables reception of a timestamp with datagrams" .It Dv SO_ACCEPTCONN Ta "get listening status of the socket (get only)" +.It Dv SO_DOMAIN Ta "get the domain of the socket (get only)" .It Dv SO_TYPE Ta "get the type of the socket (get only)" .It Dv SO_PROTOCOL Ta "get the protocol number for the socket (get only)" .It Dv SO_PROTOTYPE Ta "SunOS alias for the Linux SO_PROTOCOL (get only)" .It Dv SO_ERROR Ta "get and clear error on the socket (get only)" .It Dv SO_SETFIB Ta "set the associated FIB (routing table) for the socket (set only)" .El .Pp The following options are recognized in .Fx : .Bl -column SO_LISTENINCQLEN -offset indent .It Dv SO_LABEL Ta "get MAC label of the socket (get only)" .It Dv SO_PEERLABEL Ta "get socket's peer's MAC label (get only)" .It Dv SO_LISTENQLIMIT Ta "get backlog limit of the socket (get only)" .It Dv SO_LISTENQLEN Ta "get complete queue length of the socket (get only)" .It Dv SO_LISTENINCQLEN Ta "get incomplete queue length of the socket (get only)" .It Dv SO_USER_COOKIE Ta "set the 'so_user_cookie' value for the socket (uint32_t, set only)" .It Dv SO_TS_CLOCK Ta "set specific format of timestamp returned by SO_TIMESTAMP" .It Dv SO_MAX_PACING_RATE Ta "set the maximum transmit rate in bytes per second for the socket" .El .Pp .Dv SO_DEBUG enables debugging in the underlying protocol modules. .Pp .Dv SO_REUSEADDR indicates that the rules used in validating addresses supplied in a .Xr bind 2 system call should allow reuse of local addresses. .Pp .Dv SO_REUSEPORT allows completely duplicate bindings by multiple processes if they all set .Dv SO_REUSEPORT before binding the port. This option permits multiple instances of a program to each receive UDP/IP multicast or broadcast datagrams destined for the bound port. .Pp .Dv SO_REUSEPORT_LB allows completely duplicate bindings by multiple processes if they all set .Dv SO_REUSEPORT_LB before binding the port. Incoming TCP and UDP connections are distributed among the sharing processes based on a hash function of local port number, foreign IP address and port number. A maximum of 256 processes can share one socket. .Pp .Dv SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. Should the connected party fail to respond to these messages, the connection is considered broken and processes using the socket are notified via a .Dv SIGPIPE signal when attempting to send data. .Pp .Dv SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface according to the network portion of the destination address. .Pp .Dv SO_LINGER controls the action taken when unsent messages are queued on socket and a .Xr close 2 is performed. If the socket promises reliable delivery of data and .Dv SO_LINGER is set, the system will block the process on the .Xr close 2 attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a timeout period, termed the linger interval, is specified in seconds in the .Fn setsockopt system call when .Dv SO_LINGER is requested). If .Dv SO_LINGER is disabled and a .Xr close 2 is issued, the system will process the close in a manner that allows the process to continue as quickly as possible. .Pp The option .Dv SO_BROADCAST requests permission to send broadcast datagrams on the socket. Broadcast was a privileged operation in earlier versions of the system. .Pp With protocols that support out-of-band data, the .Dv SO_OOBINLINE option requests that out-of-band data be placed in the normal data input queue as received; it will then be accessible with .Xr recv 2 or .Xr read 2 calls without the .Dv MSG_OOB flag. Some protocols always behave as if this option is set. .Pp .Dv SO_SNDBUF and .Dv SO_RCVBUF are options to adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer size may be increased for high-volume connections, or may be decreased to limit the possible backlog of incoming data. The system places an absolute maximum on these values, which is accessible through the .Xr sysctl 3 MIB variable .Dq Li kern.ipc.maxsockbuf . .Pp .Dv SO_SNDLOWAT is an option to set the minimum count for output operations. Most output operations process all of the data supplied by the call, delivering data to the protocol for transmission and blocking as necessary for flow control. Nonblocking output operations will process as much data as permitted subject to flow control without blocking, but will process no data if flow control does not allow the smaller of the low water mark value or the entire request to be processed. A .Xr select 2 operation testing the ability to write to a socket will return true only if the low water mark amount could be processed. The default value for .Dv SO_SNDLOWAT is set to a convenient size for network efficiency, often 1024. .Pp .Dv SO_RCVLOWAT is an option to set the minimum count for input operations. In general, receive calls will block until any (non-zero) amount of data is received, then return with the smaller of the amount available or the amount requested. The default value for .Dv SO_RCVLOWAT is 1. If .Dv SO_RCVLOWAT is set to a larger value, blocking receive calls normally wait until they have received the smaller of the low water mark value or the requested amount. Receive calls may still return less than the low water mark if an error occurs, a signal is caught, or the type of data next in the receive queue is different from that which was returned. .Pp .Dv SO_SNDTIMEO is an option to set a timeout value for output operations. It accepts a .Vt "struct timeval" argument with the number of seconds and microseconds used to limit waits for output operations to complete. If a send operation has blocked for this much time, it returns with a partial count or with the error .Er EWOULDBLOCK if no data were sent. In the current implementation, this timer is restarted each time additional data are delivered to the protocol, implying that the limit applies to output portions ranging in size from the low water mark to the high water mark for output. .Pp .Dv SO_RCVTIMEO is an option to set a timeout value for input operations. It accepts a .Vt "struct timeval" argument with the number of seconds and microseconds used to limit waits for input operations to complete. In the current implementation, this timer is restarted each time additional data are received by the protocol, and thus the limit is in effect an inactivity timer. If a receive operation has been blocked for this much time without receiving additional data, it returns with a short count or with the error .Er EWOULDBLOCK if no data were received. .Pp .Dv SO_SETFIB can be used to over-ride the default FIB (routing table) for the given socket. The value must be from 0 to one less than the number returned from the sysctl .Em net.fibs . .Pp .Dv SO_USER_COOKIE can be used to set the uint32_t so_user_cookie field in the socket. The value is an uint32_t, and can be used in the kernel code that manipulates traffic related to the socket. The default value for the field is 0. As an example, the value can be used as the skipto target or pipe number in .Nm ipfw/dummynet . .Pp .Dv SO_ACCEPTFILTER places an .Xr accept_filter 9 on the socket, which will filter incoming connections on a listening stream socket before being presented for .Xr accept 2 . Once more, .Xr listen 2 must be called on the socket before trying to install the filter on it, or else the .Fn setsockopt system call will fail. .Bd -literal struct accept_filter_arg { char af_name[16]; char af_arg[256-16]; }; .Ed .Pp The .Fa optval argument should point to a .Fa struct accept_filter_arg that will select and configure the .Xr accept_filter 9 . The .Fa af_name argument should be filled with the name of the accept filter that the application wishes to place on the listening socket. The optional argument .Fa af_arg can be passed to the accept filter specified by .Fa af_name to provide additional configuration options at attach time. Passing in an .Fa optval of NULL will remove the filter. .Pp The .Dv SO_NOSIGPIPE option controls generation of the .Dv SIGPIPE signal normally sent when writing to a connected socket where the other end has been closed returns with the error .Er EPIPE . .Pp If the .Dv SO_TIMESTAMP or .Dv SO_BINTIME option is enabled on a .Dv SOCK_DGRAM socket, the .Xr recvmsg 2 call will return a timestamp corresponding to when the datagram was received. The .Va msg_control field in the .Vt msghdr structure points to a buffer that contains a .Vt cmsghdr structure followed by a .Vt "struct timeval" for .Dv SO_TIMESTAMP and .Vt "struct bintime" for .Dv SO_BINTIME . The .Vt cmsghdr fields have the following values for TIMESTAMP by default: .Bd -literal cmsg_len = CMSG_LEN(sizeof(struct timeval)); cmsg_level = SOL_SOCKET; cmsg_type = SCM_TIMESTAMP; .Ed .Pp and for .Dv SO_BINTIME : .Bd -literal cmsg_len = CMSG_LEN(sizeof(struct bintime)); cmsg_level = SOL_SOCKET; cmsg_type = SCM_BINTIME; .Ed .Pp Additional timestamp types are available by following .Dv SO_TIMESTAMP with .Dv SO_TS_CLOCK , which requests a specific timestamp format to be returned instead of .Dv SCM_TIMESTAMP when .Dv SO_TIMESTAMP is enabled. These .Dv SO_TS_CLOCK values are recognized in .Fx : .Bl -column SO_TS_CLOCK -offset indent .It Dv SO_TS_REALTIME_MICRO Ta "realtime (SCM_TIMESTAMP, struct timeval), default" .It Dv SO_TS_BINTIME Ta "realtime (SCM_BINTIME, struct bintime)" .It Dv SO_TS_REALTIME Ta "realtime (SCM_REALTIME, struct timespec)" .It Dv SO_TS_MONOTONIC Ta "monotonic time (SCM_MONOTONIC, struct timespec)" .El .Pp .Dv SO_ACCEPTCONN , .Dv SO_TYPE , .Dv SO_PROTOCOL (and its alias .Dv SO_PROTOTYPE ) and .Dv SO_ERROR are options used only with .Fn getsockopt . .Dv SO_ACCEPTCONN returns whether the socket is currently accepting connections, that is, whether or not the .Xr listen 2 system call was invoked on the socket. .Dv SO_TYPE returns the type of the socket, such as .Dv SOCK_STREAM ; it is useful for servers that inherit sockets on startup. .Dv SO_PROTOCOL returns the protocol number for the socket, for .Dv AF_INET and .Dv AF_INET6 address families. .Dv SO_ERROR returns any pending error on the socket and clears the error status. It may be used to check for asynchronous errors on connected datagram sockets or for other asynchronous errors. .Pp Finally, .Dv SO_LABEL returns the MAC label of the socket. .Dv SO_PEERLABEL returns the MAC label of the socket's peer. Note that your kernel must be compiled with MAC support. See .Xr mac 3 for more information. .Dv SO_LISTENQLIMIT returns the maximal number of queued connections, as set by .Xr listen 2 . .Dv SO_LISTENQLEN returns the number of unaccepted complete connections. .Dv SO_LISTENINCQLEN returns the number of unaccepted incomplete connections. .Pp .Dv SO_MAX_PACING_RATE instruct the socket and underlying network adapter layers to limit the transfer rate to the given unsigned 32-bit value in bytes per second. .Sh RETURN VALUES .Rv -std .Sh ERRORS The call succeeds unless: .Bl -tag -width Er .It Bq Er EBADF The argument .Fa s is not a valid descriptor. .It Bq Er ENOTSOCK The argument .Fa s is a file, not a socket. .It Bq Er ENOPROTOOPT The option is unknown at the level indicated. .It Bq Er EFAULT The address pointed to by .Fa optval is not in a valid part of the process address space. For .Fn getsockopt , this error may also be returned if .Fa optlen is not in a valid part of the process address space. .It Bq Er EINVAL Installing an .Xr accept_filter 9 on a non-listening socket was attempted. .It Bq Er ENOMEM A memory allocation failed that was required to service the request. .El .Sh SEE ALSO .Xr ioctl 2 , .Xr listen 2 , .Xr recvmsg 2 , .Xr socket 2 , .Xr getprotoent 3 , .Xr mac 3 , .Xr sysctl 3 , .Xr ip 4 , .Xr ip6 4 , .Xr sctp 4 , .Xr tcp 4 , .Xr protocols 5 , .Xr sysctl 8 , .Xr accept_filter 9 , .Xr bintime 9 .Sh HISTORY The .Fn getsockopt and .Fn setsockopt system calls appeared in .Bx 4.2 . .Sh BUGS Several of the socket options should be handled at lower levels of the system. Index: head/sys/kern/uipc_socket.c =================================================================== --- head/sys/kern/uipc_socket.c (revision 338135) +++ head/sys/kern/uipc_socket.c (revision 338136) @@ -1,4140 +1,4144 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2008 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ /* * Comments on the socket life cycle: * * soalloc() sets of socket layer state for a socket, called only by * socreate() and sonewconn(). Socket layer private. * * sodealloc() tears down socket layer state for a socket, called only by * sofree() and sonewconn(). Socket layer private. * * pru_attach() associates protocol layer state with an allocated socket; * called only once, may fail, aborting socket allocation. This is called * from socreate() and sonewconn(). Socket layer private. * * pru_detach() disassociates protocol layer state from an attached socket, * and will be called exactly once for sockets in which pru_attach() has * been successfully called. If pru_attach() returned an error, * pru_detach() will not be called. Socket layer private. * * pru_abort() and pru_close() notify the protocol layer that the last * consumer of a socket is starting to tear down the socket, and that the * protocol should terminate the connection. Historically, pru_abort() also * detached protocol state from the socket state, but this is no longer the * case. * * socreate() creates a socket and attaches protocol state. This is a public * interface that may be used by socket layer consumers to create new * sockets. * * sonewconn() creates a socket and attaches protocol state. This is a * public interface that may be used by protocols to create new sockets when * a new connection is received and will be available for accept() on a * listen socket. * * soclose() destroys a socket after possibly waiting for it to disconnect. * This is a public interface that socket consumers should use to close and * release a socket when done with it. * * soabort() destroys a socket without waiting for it to disconnect (used * only for incoming connections that are already partially or fully * connected). This is used internally by the socket layer when clearing * listen socket queues (due to overflow or close on the listen socket), but * is also a public interface protocols may use to abort connections in * their incomplete listen queues should they no longer be required. Sockets * placed in completed connection listen queues should not be aborted for * reasons described in the comment above the soclose() implementation. This * is not a general purpose close routine, and except in the specific * circumstances described here, should not be used. * * sofree() will free a socket and its protocol state if all references on * the socket have been released, and is the public interface to attempt to * free a socket when a reference is removed. This is a socket layer private * interface. * * NOTE: In addition to socreate() and soclose(), which provide a single * socket reference to the consumer to be managed as required, there are two * calls to explicitly manage socket references, soref(), and sorele(). * Currently, these are generally required only when transitioning a socket * from a listen queue to a file descriptor, in order to prevent garbage * collection of the socket at an untimely moment. For a number of reasons, * these interfaces are not preferred, and should be avoided. * * NOTE: With regard to VNETs the general rule is that callers do not set * curvnet. Exceptions to this rule include soabort(), sodisconnect(), * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() * and sorflush(), which are usually called from a pre-set VNET context. * sopoll() currently does not need a VNET context to be set. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include /* for struct knote */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #include #endif static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags); static void so_rdknl_lock(void *); static void so_rdknl_unlock(void *); static void so_rdknl_assert_locked(void *); static void so_rdknl_assert_unlocked(void *); static void so_wrknl_lock(void *); static void so_wrknl_unlock(void *); static void so_wrknl_assert_locked(void *); static void so_wrknl_assert_unlocked(void *); static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_soempty(struct knote *kn, long hint); static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); fo_kqfilter_t soo_kqfilter; static struct filterops soread_filtops = { .f_isfd = 1, .f_detach = filt_sordetach, .f_event = filt_soread, }; static struct filterops sowrite_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_sowrite, }; static struct filterops soempty_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_soempty, }; so_gen_t so_gencnt; /* generation count for sockets */ MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); #define VNET_SO_ASSERT(so) \ VNET_ASSERT(curvnet != NULL, \ ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); #define V_socket_hhh VNET(socket_hhh) /* * Limit on the number of connections in the listen queue waiting * for accept(2). * NB: The original sysctl somaxconn is still available but hidden * to prevent confusion about the actual purpose of this number. */ static u_int somaxconn = SOMAXCONN; static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS) { int error; int val; val = somaxconn; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); /* * The purpose of the UINT_MAX / 3 limit, is so that the formula * 3 * so_qlimit / 2 * below, will not overflow. */ if (val < 1 || val > UINT_MAX / 3) return (EINVAL); somaxconn = val; return (0); } SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size"); SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size (compat)"); static int numopensockets; SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, &numopensockets, 0, "Number of open sockets"); /* * accept_mtx locks down per-socket fields relating to accept queues. See * socketvar.h for an annotation of the protected fields of struct socket. */ struct mtx accept_mtx; MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); /* * so_global_mtx protects so_gencnt, numopensockets, and the per-socket * so_gencnt field. */ static struct mtx so_global_mtx; MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); /* * General IPC sysctl name space, used by sockets and a variety of other IPC * types. */ SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); /* * Initialize the socket subsystem and set up the socket * memory allocator. */ static uma_zone_t socket_zone; int maxsockets; static void socket_zone_change(void *tag) { maxsockets = uma_zone_set_max(socket_zone, maxsockets); } static void socket_hhook_register(int subtype) { if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, &V_socket_hhh[subtype], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register hook\n", __func__); } static void socket_hhook_deregister(int subtype) { if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) printf("%s: WARNING: unable to deregister hook\n", __func__); } static void socket_init(void *tag) { socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); maxsockets = uma_zone_set_max(socket_zone, maxsockets); uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, EVENTHANDLER_PRI_FIRST); } SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); static void socket_vnet_init(const void *unused __unused) { int i; /* We expect a contiguous range */ for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_register(i); } VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_init, NULL); static void socket_vnet_uninit(const void *unused __unused) { int i; for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_deregister(i); } VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_uninit, NULL); /* * Initialise maxsockets. This SYSINIT must be run after * tunable_mbinit(). */ static void init_maxsockets(void *ignored) { TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); maxsockets = imax(maxsockets, maxfiles); } SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); /* * Sysctl to get and set the maximum global sockets limit. Notify protocols * of the change so that they can update their dependent limits as required. */ static int sysctl_maxsockets(SYSCTL_HANDLER_ARGS) { int error, newmaxsockets; newmaxsockets = maxsockets; error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); if (error == 0 && req->newptr) { if (newmaxsockets > maxsockets && newmaxsockets <= maxfiles) { maxsockets = newmaxsockets; EVENTHANDLER_INVOKE(maxsockets_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, &maxsockets, 0, sysctl_maxsockets, "IU", "Maximum number of sockets available"); /* * Socket operation routines. These routines are called by the routines in * sys_socket.c or from a system process, and implement the semantics of * socket operations by switching out to the protocol specific routines. */ /* * Get a socket structure from our zone, and initialize it. Note that it * would probably be better to allocate socket and PCB at the same time, but * I'm not convinced that all the protocols can be easily modified to do * this. * * soalloc() returns a socket with a ref count of 0. */ static struct socket * soalloc(struct vnet *vnet) { struct socket *so; so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); if (so == NULL) return (NULL); #ifdef MAC if (mac_socket_init(so, M_NOWAIT) != 0) { uma_zfree(socket_zone, so); return (NULL); } #endif if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { uma_zfree(socket_zone, so); return (NULL); } /* * The socket locking protocol allows to lock 2 sockets at a time, * however, the first one must be a listening socket. WITNESS lacks * a feature to change class of an existing lock, so we use DUPOK. */ mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); so->so_rcv.sb_sel = &so->so_rdsel; so->so_snd.sb_sel = &so->so_wrsel; sx_init(&so->so_snd.sb_sx, "so_snd_sx"); sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); TAILQ_INIT(&so->so_snd.sb_aiojobq); TAILQ_INIT(&so->so_rcv.sb_aiojobq); TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); #ifdef VIMAGE VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet = vnet; #endif /* We shouldn't need the so_global_mtx */ if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { /* Do we need more comprehensive error returns? */ uma_zfree(socket_zone, so); return (NULL); } mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; ++numopensockets; #ifdef VIMAGE vnet->vnet_sockcnt++; #endif mtx_unlock(&so_global_mtx); return (so); } /* * Free the storage associated with a socket at the socket layer, tear down * locks, labels, etc. All protocol state is assumed already to have been * torn down (and possibly never set up) by the caller. */ static void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; --numopensockets; /* Could be below, but faster here. */ #ifdef VIMAGE VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet->vnet_sockcnt--; #endif mtx_unlock(&so_global_mtx); #ifdef MAC mac_socket_destroy(so); #endif hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); crfree(so->so_cred); khelp_destroy_osd(&so->osd); if (SOLISTENING(so)) { if (so->sol_accept_filter != NULL) accept_filt_setopt(so, NULL); } else { if (so->so_rcv.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); if (so->so_snd.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); sx_destroy(&so->so_snd.sb_sx); sx_destroy(&so->so_rcv.sb_sx); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); } mtx_destroy(&so->so_lock); uma_zfree(socket_zone, so); } /* * socreate returns a socket with a ref count of 1. The socket should be * closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td) { struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL) { /* No support for domain. */ if (pffinddomain(dom) == NULL) return (EAFNOSUPPORT); /* No support for socket type. */ if (proto == 0 && type != 0) return (EPROTOTYPE); return (EPROTONOSUPPORT); } if (prp->pr_usrreqs->pru_attach == NULL || prp->pr_usrreqs->pru_attach == pru_attach_notsupp) return (EPROTONOSUPPORT); if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) return (EPROTONOSUPPORT); if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(CRED_TO_VNET(cred)); if (so == NULL) return (ENOBUFS); so->so_type = type; so->so_cred = crhold(cred); if ((prp->pr_domain->dom_family == PF_INET) || (prp->pr_domain->dom_family == PF_INET6) || (prp->pr_domain->dom_family == PF_ROUTE)) so->so_fibnum = td->td_proc->p_fibnum; else so->so_fibnum = 0; so->so_proto = prp; #ifdef MAC mac_socket_create(cred, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. */ CURVNET_SET(so->so_vnet); error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); CURVNET_RESTORE(); if (error) { sodealloc(so); return (error); } soref(so); *aso = so; return (0); } #ifdef REGRESSION static int regression_sonewconn_earlytest = 1; SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); #endif /* * When an attempt at a new connection is noted on a socket which accepts * connections, sonewconn is called. If the connection is possible (subject * to space constraints, etc.) then we allocate a new structure, properly * linked into the data structure of the original socket, and return this. * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. * * Note: the ref count on the socket is 0 on return. */ struct socket * sonewconn(struct socket *head, int connstatus) { static struct timeval lastover; static struct timeval overinterval = { 60, 0 }; static int overcount; struct socket *so; u_int over; SOLISTEN_LOCK(head); over = (head->sol_qlen > 3 * head->sol_qlimit / 2); SOLISTEN_UNLOCK(head); #ifdef REGRESSION if (regression_sonewconn_earlytest && over) { #else if (over) { #endif overcount++; if (ratecheck(&lastover, &overinterval)) { log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " "%i already in queue awaiting acceptance " "(%d occurrences)\n", __func__, head->so_pcb, head->sol_qlen, overcount); overcount = 0; } return (NULL); } VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", __func__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_listen = head; so->so_type = head->so_type; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); VNET_SO_ASSERT(head); if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; so->so_snd.sb_lowat = head->sol_sbsnd_lowat; so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; so->so_snd.sb_timeo = head->sol_sbsnd_timeo; so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; SOLISTEN_LOCK(head); if (head->sol_accept_filter != NULL) connstatus = 0; so->so_state |= connstatus; so->so_options = head->so_options & ~SO_ACCEPTCONN; soref(head); /* A socket on (in)complete queue refs head. */ if (connstatus) { TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); so->so_qstate = SQ_COMP; head->sol_qlen++; solisten_wakeup(head); /* unlocks */ } else { /* * Keep removing sockets from the head until there's room for * us to insert on the tail. In pre-locking revisions, this * was a simple if(), but as we could be racing with other * threads and soabort() requires dropping locks, we must * loop waiting for the condition to be true. */ while (head->sol_incqlen > head->sol_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->sol_incomp); TAILQ_REMOVE(&head->sol_incomp, sp, so_list); head->sol_incqlen--; SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); sorele(head); /* does SOLISTEN_UNLOCK, head stays */ soabort(sp); SOLISTEN_LOCK(head); } TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); so->so_qstate = SQ_INCOMP; head->sol_incqlen++; SOLISTEN_UNLOCK(head); } return (so); } #ifdef SCTP /* * Socket part of sctp_peeloff(). Detach a new socket from an * association. The new socket is returned with a reference. */ struct socket * sopeeloff(struct socket *head) { struct socket *so; VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", __func__, __LINE__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_type = head->so_type; so->so_options = head->so_options; so->so_linger = head->so_linger; so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); VNET_SO_ASSERT(head); if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; so->so_snd.sb_lowat = head->so_snd.sb_lowat; so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; so->so_snd.sb_timeo = head->so_snd.sb_timeo; so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; soref(so); return (so); } #endif /* SCTP */ int sobind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); CURVNET_RESTORE(); return (error); } int sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); CURVNET_RESTORE(); return (error); } /* * solisten() transitions a socket from a non-listening state to a listening * state, but can also be used to update the listen queue depth on an * existing listen socket. The protocol will call back into the sockets * layer using solisten_proto_check() and solisten_proto() to check and set * socket-layer listen state. Call backs are used so that the protocol can * acquire both protocol and socket layer locks in whatever order is required * by the protocol. * * Protocol implementors are advised to hold the socket lock across the * socket-layer test and set to avoid races at the socket layer. */ int solisten(struct socket *so, int backlog, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); CURVNET_RESTORE(); return (error); } int solisten_proto_check(struct socket *so) { SOCK_LOCK_ASSERT(so); if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) return (EINVAL); return (0); } void solisten_proto(struct socket *so, int backlog) { int sbrcv_lowat, sbsnd_lowat; u_int sbrcv_hiwat, sbsnd_hiwat; short sbrcv_flags, sbsnd_flags; sbintime_t sbrcv_timeo, sbsnd_timeo; SOCK_LOCK_ASSERT(so); if (SOLISTENING(so)) goto listening; /* * Change this socket to listening state. */ sbrcv_lowat = so->so_rcv.sb_lowat; sbsnd_lowat = so->so_snd.sb_lowat; sbrcv_hiwat = so->so_rcv.sb_hiwat; sbsnd_hiwat = so->so_snd.sb_hiwat; sbrcv_flags = so->so_rcv.sb_flags; sbsnd_flags = so->so_snd.sb_flags; sbrcv_timeo = so->so_rcv.sb_timeo; sbsnd_timeo = so->so_snd.sb_timeo; sbdestroy(&so->so_snd, so); sbdestroy(&so->so_rcv, so); sx_destroy(&so->so_snd.sb_sx); sx_destroy(&so->so_rcv.sb_sx); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); #ifdef INVARIANTS bzero(&so->so_rcv, sizeof(struct socket) - offsetof(struct socket, so_rcv)); #endif so->sol_sbrcv_lowat = sbrcv_lowat; so->sol_sbsnd_lowat = sbsnd_lowat; so->sol_sbrcv_hiwat = sbrcv_hiwat; so->sol_sbsnd_hiwat = sbsnd_hiwat; so->sol_sbrcv_flags = sbrcv_flags; so->sol_sbsnd_flags = sbsnd_flags; so->sol_sbrcv_timeo = sbrcv_timeo; so->sol_sbsnd_timeo = sbsnd_timeo; so->sol_qlen = so->sol_incqlen = 0; TAILQ_INIT(&so->sol_incomp); TAILQ_INIT(&so->sol_comp); so->sol_accept_filter = NULL; so->sol_accept_filter_arg = NULL; so->sol_accept_filter_str = NULL; so->sol_upcall = NULL; so->sol_upcallarg = NULL; so->so_options |= SO_ACCEPTCONN; listening: if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->sol_qlimit = backlog; } /* * Wakeup listeners/subsystems once we have a complete connection. * Enters with lock, returns unlocked. */ void solisten_wakeup(struct socket *sol) { if (sol->sol_upcall != NULL) (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); else { selwakeuppri(&sol->so_rdsel, PSOCK); KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); } SOLISTEN_UNLOCK(sol); wakeup_one(&sol->sol_comp); } /* * Return single connection off a listening socket queue. Main consumer of * the function is kern_accept4(). Some modules, that do their own accept * management also use the function. * * Listening socket must be locked on entry and is returned unlocked on * return. * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. */ int solisten_dequeue(struct socket *head, struct socket **ret, int flags) { struct socket *so; int error; SOLISTEN_LOCK_ASSERT(head); while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && head->so_error == 0) { error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, "accept", 0); if (error != 0) { SOLISTEN_UNLOCK(head); return (error); } } if (head->so_error) { error = head->so_error; head->so_error = 0; SOLISTEN_UNLOCK(head); return (error); } if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) { SOLISTEN_UNLOCK(head); return (EWOULDBLOCK); } so = TAILQ_FIRST(&head->sol_comp); SOCK_LOCK(so); KASSERT(so->so_qstate == SQ_COMP, ("%s: so %p not SQ_COMP", __func__, so)); soref(so); head->sol_qlen--; so->so_qstate = SQ_NONE; so->so_listen = NULL; TAILQ_REMOVE(&head->sol_comp, so, so_list); if (flags & ACCEPT4_INHERIT) so->so_state |= (head->so_state & SS_NBIO); else so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; SOCK_UNLOCK(so); sorele(head); *ret = so; return (0); } /* * Evaluate the reference count and named references on a socket; if no * references remain, free it. This should be called whenever a reference is * released, such as in sorele(), but also when named reference flags are * cleared in socket or protocol code. * * sofree() will free the socket if: * * - There are no outstanding file descriptor references or related consumers * (so_count == 0). * * - The socket has been closed by user space, if ever open (SS_NOFDREF). * * - The protocol does not have an outstanding strong reference on the socket * (SS_PROTOREF). * * - The socket is not in a completed connection queue, so a process has been * notified that it is present. If it is removed, the user process may * block in accept() despite select() saying the socket was ready. */ void sofree(struct socket *so) { struct protosw *pr = so->so_proto; SOCK_LOCK_ASSERT(so); if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { SOCK_UNLOCK(so); return; } if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { struct socket *sol; sol = so->so_listen; KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); /* * To solve race between close of a listening socket and * a socket on its incomplete queue, we need to lock both. * The order is first listening socket, then regular. * Since we don't have SS_NOFDREF neither SS_PROTOREF, this * function and the listening socket are the only pointers * to so. To preserve so and sol, we reference both and then * relock. * After relock the socket may not move to so_comp since it * doesn't have PCB already, but it may be removed from * so_incomp. If that happens, we share responsiblity on * freeing the socket, but soclose() has already removed * it from queue. */ soref(sol); soref(so); SOCK_UNLOCK(so); SOLISTEN_LOCK(sol); SOCK_LOCK(so); if (so->so_qstate == SQ_INCOMP) { KASSERT(so->so_listen == sol, ("%s: so %p migrated out of sol %p", __func__, so, sol)); TAILQ_REMOVE(&sol->sol_incomp, so, so_list); sol->sol_incqlen--; /* This is guarenteed not to be the last. */ refcount_release(&sol->so_count); so->so_qstate = SQ_NONE; so->so_listen = NULL; } else KASSERT(so->so_listen == NULL, ("%s: so %p not on (in)comp with so_listen", __func__, so)); sorele(sol); KASSERT(so->so_count == 1, ("%s: so %p count %u", __func__, so, so->so_count)); so->so_count = 0; } if (SOLISTENING(so)) so->so_error = ECONNABORTED; SOCK_UNLOCK(so); VNET_SO_ASSERT(so); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(so); if (pr->pr_usrreqs->pru_detach != NULL) (*pr->pr_usrreqs->pru_detach)(so); /* * From this point on, we assume that no other references to this * socket exist anywhere else in the stack. Therefore, no locks need * to be acquired or held. * * We used to do a lot of socket buffer and socket locking here, as * well as invoke sorflush() and perform wakeups. The direct call to * dom_dispose() and sbrelease_internal() are an inlining of what was * necessary from sorflush(). * * Notice that the socket buffer and kqueue state are torn down * before calling pru_detach. This means that protocols shold not * assume they can perform socket wakeups, etc, in their detach code. */ if (!SOLISTENING(so)) { sbdestroy(&so->so_snd, so); sbdestroy(&so->so_rcv, so); } seldrain(&so->so_rdsel); seldrain(&so->so_wrsel); knlist_destroy(&so->so_rdsel.si_note); knlist_destroy(&so->so_wrsel.si_note); sodealloc(so); } /* * Close a socket on last file table reference removal. Initiate disconnect * if connected. Free socket when disconnect complete. * * This function will sorele() the socket. Note that soclose() may be called * prior to the ref count reaching zero. The actual socket structure will * not be freed until the ref count reaches zero. */ int soclose(struct socket *so) { struct accept_queue lqueue; bool listening; int error = 0; KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); CURVNET_SET(so->so_vnet); funsetown(&so->so_sigio); if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) { if (error == ENOTCONN) error = 0; goto drop; } } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep(&so->so_timeo, PSOCK | PCATCH, "soclos", so->so_linger * hz); if (error) break; } } } drop: if (so->so_proto->pr_usrreqs->pru_close != NULL) (*so->so_proto->pr_usrreqs->pru_close)(so); if (so->so_dtor != NULL) so->so_dtor(so); SOCK_LOCK(so); if ((listening = (so->so_options & SO_ACCEPTCONN))) { struct socket *sp; TAILQ_INIT(&lqueue); TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); so->sol_qlen = so->sol_incqlen = 0; TAILQ_FOREACH(sp, &lqueue, so_list) { SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); /* Guaranteed not to be the last. */ refcount_release(&so->so_count); } } KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); so->so_state |= SS_NOFDREF; sorele(so); if (listening) { struct socket *sp; TAILQ_FOREACH(sp, &lqueue, so_list) { SOCK_LOCK(sp); if (sp->so_count == 0) { SOCK_UNLOCK(sp); soabort(sp); } else /* sp is now in sofree() */ SOCK_UNLOCK(sp); } } CURVNET_RESTORE(); return (error); } /* * soabort() is used to abruptly tear down a connection, such as when a * resource limit is reached (listen queue depth exceeded), or if a listen * socket is closed while there are sockets waiting to be accepted. * * This interface is tricky, because it is called on an unreferenced socket, * and must be called only by a thread that has actually removed the socket * from the listen queue it was on, or races with other threads are risked. * * This interface will call into the protocol code, so must not be called * with any socket locks held. Protocols do call it while holding their own * recursible protocol mutexes, but this is something that should be subject * to review in the future. */ void soabort(struct socket *so) { /* * In as much as is possible, assert that no references to this * socket are held. This is not quite the same as asserting that the * current thread is responsible for arranging for no references, but * is as close as we can get for now. */ KASSERT(so->so_count == 0, ("soabort: so_count")); KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); KASSERT(so->so_qstate == SQ_NONE, ("soabort: !SQ_NONE")); VNET_SO_ASSERT(so); if (so->so_proto->pr_usrreqs->pru_abort != NULL) (*so->so_proto->pr_usrreqs->pru_abort)(so); SOCK_LOCK(so); sofree(so); } int soaccept(struct socket *so, struct sockaddr **nam) { int error; SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); so->so_state &= ~SS_NOFDREF; SOCK_UNLOCK(so); CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); CURVNET_RESTORE(); return (error); } int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (soconnectat(AT_FDCWD, so, nam, td)); } int soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); CURVNET_SET(so->so_vnet); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. This allows * user to disconnect by connecting to, e.g., a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection from * biting us. */ so->so_error = 0; if (fd == AT_FDCWD) { error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); } else { error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, so, nam, td); } } CURVNET_RESTORE(); return (error); } int soconnect2(struct socket *so1, struct socket *so2) { int error; CURVNET_SET(so1->so_vnet); error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); CURVNET_RESTORE(); return (error); } int sodisconnect(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); KASSERT(so->so_proto->pr_flags & PR_ATOMIC, ("sosend_dgram: !PR_ATOMIC")); if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. */ if (resid < 0) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection-based * socket if it supports implied connect. Return ENOTCONN if * not connected and no address is supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto out; } } else if (addr == NULL) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; SOCKBUF_UNLOCK(&so->so_snd); goto out; } } /* * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a * problem and need fixing. */ space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; space -= clen; SOCKBUF_UNLOCK(&so->so_snd); if (resid > space) { error = EMSGSIZE; goto out; } if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf chain. * If no data is to be copied in, a single empty mbuf * is returned. */ top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); if (top == NULL) { error = EFAULT; /* only possible error */ goto out; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } KASSERT(resid == 0, ("sosend_dgram: resid != 0")); /* * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock * than with. */ if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously done could be out * of date. We could have received a reset packet in an interrupt or * maybe we slept while doing page faults in uiomove() etc. We could * probably recheck again inside the locking protection here, but * there are probably other places that this also happens. We must * rethink this. */ VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands this flag and * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * Send on a socket. If send must go all at once and message is larger than * send buffering, then hard error. Lock against other senders. If must go * all at once and not enough room now, then inform user that this would * block and do nothing. Otherwise, if nonblocking, send as much as * possible. The data to be sent is described by "uio" if nonzero, otherwise * by the mbuf chain "top" (which must be null if uio is not). Data provided * in mbuf chain must be small enough to send all at once. * * Returns nonzero on error, timeout or signal; callers must check for short * counts if EINTR/ERESTART are returned. Data and control buffers are freed * on return. */ int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; int atomic = sosendallatonce(so) || top; if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) goto out; restart: do { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto release; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto release; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection- * based socket if it supports implied connect. * Return ENOTCONN if not connected and no address is * supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto release; } } else if (addr == NULL) { SOCKBUF_UNLOCK(&so->so_snd); if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; goto release; } } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) { SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; goto release; } if (space < resid + clen && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { SOCKBUF_UNLOCK(&so->so_snd); error = EWOULDBLOCK; goto release; } error = sbwait(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); if (error) goto release; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); space -= clen; do { if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf * chain. If resid is 0, which can happen * only if we have control to send, then * a single empty mbuf is returned. This * is a workaround to prevent protocol send * methods to panic. */ top = m_uiotombuf(uio, M_WAITOK, space, (atomic ? max_hdr : 0), (atomic ? M_PKTHDR : 0) | ((flags & MSG_EOR) ? M_EOR : 0)); if (top == NULL) { error = EFAULT; /* only possible error */ goto release; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date. We could have received * a reset packet in an interrupt or maybe we slept * while doing page faults in uiomove() etc. We * could probably recheck again inside the locking * protection here, but there are probably other * places that this also happens. We must rethink * this. */ VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands * this flag and nothing left to send then use * PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME. */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: sbunlock(&so->so_snd); out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { int error; CURVNET_SET(so->so_vnet); if (!SOLISTENING(so)) error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, control, flags, td); else { m_freem(top); m_freem(control); error = ENOTCONN; } CURVNET_RESTORE(); return (error); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); VNET_SO_ASSERT(so); m = m_get(M_WAITOK, MT_DATA); error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; do { error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Following replacement or removal of the first mbuf on the first mbuf chain * of a socket buffer, push necessary state changes back into the socket * buffer so that other consumers see the values consistently. 'nextrecord' * is the callers locally stored value of the original value of * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. * NOTE: 'nextrecord' may be NULL. */ static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) { SOCKBUF_LOCK_ASSERT(sb); /* * First, update for the new value of nextrecord. If necessary, make * it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect the new * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the * addition of a second clause that takes care of the case where * sb_mb has been updated, but remains the last record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. We depend on the way that * records are added to the sockbuf by sbappend. In particular, each record * (mbufs linked through m_next) must begin with an address if the protocol * so specifies, followed by an optional mbuf or mbufs containing ancillary * data, and then zero or more mbufs of data. In order to allow parallelism * between network receive and copying to user space, as well as avoid * sleeping with a mutex held, we release the socket buffer mutex during the * user space copy. Although the sockbuf is locked, new data may still be * appended, and thus we must maintain consistency of the sockbuf during that * time. * * The caller may receive the data as a single mbuf chain by supplying an * mbuf **mp0 for use in returning the chain. The uio is then used only for * the count in uio_resid. */ int soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, **mp; int flags, error, offset; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; ssize_t orig_resid = uio->uio_resid; mp = mp0; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp != NULL) *mp = NULL; if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) && uio->uio_resid) { VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, 0); } error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); if (error) return (error); restart: SOCKBUF_LOCK(&so->so_rcv); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more (subject * to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_DONTWAIT is not set */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && sbavail(&so->so_rcv) < uio->uio_resid) && sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { KASSERT(m != NULL || !sbavail(&so->so_rcv), ("receive: m == %p sbavail == %u", m, sbavail(&so->so_rcv))); if (so->so_error) { if (m != NULL) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); goto release; } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m == NULL) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } else goto dontblock; } for (; m != NULL; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { SOCKBUF_UNLOCK(&so->so_rcv); error = ENOTCONN; goto release; } if (uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (error) goto release; goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); orig_resid = 0; if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); controlp = &(*controlp)->m_next; } m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = so->so_rcv.sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if ((flags & MSG_PEEK) == 0) sockbuf_pushsync(&so->so_rcv, nextrecord); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); SOCKBUF_LOCK(&so->so_rcv); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { orig_resid = 0; while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } if (m != NULL) nextrecord = so->so_rcv.sb_mb->m_nextpkt; else nextrecord = so->so_rcv.sb_mb; orig_resid = 0; } if (m != NULL) { if ((flags & MSG_PEEK) == 0) { KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if ((flags & MSG_PEEK) == 0) { KASSERT(so->so_rcv.sb_mb == nextrecord, ("soreceive: sb_mb != nextrecord")); if (so->so_rcv.sb_mb == NULL) { KASSERT(so->so_rcv.sb_lastrecord == NULL, ("soreceive: sb_lastercord != NULL")); } } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * Now continue to read any data mbufs off of the head of the socket * buffer until the read request is satisfied. Note that 'type' is * used to store the type of any mbuf reads that have happened so far * such that soreceive() can stop reading if the type changes, which * causes soreceive() to return only one of regular data and inline * out-of-band data in a single socket receive operation. */ moff = 0; offset = 0; while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 && error == 0) { /* * If the type of mbuf has changed since the last mbuf * examined ('type'), end the receive operation. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { if (type != m->m_type) break; } else if (type == MT_OOBDATA) break; else KASSERT(m->m_type == MT_DATA, ("m->m_type == %d", m->m_type)); so->so_rcv.sb_state &= ~SBS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. Otherwise copy * them out via the uio, then free. Sockbuf must be * consistent here (points to current mbuf, it points to next * record) when we drop priority; we must note any additions * to the sockbuf when we block interrupts again. */ if (mp == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); error = uiomove(mtod(m, char *) + moff, (int)len, uio); SOCKBUF_LOCK(&so->so_rcv); if (error) { /* * The MT_SONAME mbuf has already been removed * from the record, so it is necessary to * remove the data mbufs, if any, to preserve * the invariant in the case of PR_ADDR that * requires MT_SONAME mbufs at the head of * each record. */ if (pr->pr_flags & PR_ATOMIC && ((flags & MSG_PEEK) == 0)) (void)sbdroprecord_locked(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } else uio->uio_resid -= len; SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp != NULL) { m->m_nextpkt = NULL; *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } sockbuf_pushsync(&so->so_rcv, nextrecord); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); } } else { if (flags & MSG_PEEK) moff += len; else { if (mp != NULL) { if (flags & MSG_DONTWAIT) { *mp = m_copym(m, 0, len, M_NOWAIT); if (*mp == NULL) { /* * m_copym() couldn't * allocate an mbuf. * Adjust uio_resid back * (it was adjusted * down by len bytes, * which we didn't end * up "copying" over). */ uio->uio_resid += len; break; } } else { SOCKBUF_UNLOCK(&so->so_rcv); *mp = m_copym(m, 0, len, M_WAITOK); SOCKBUF_LOCK(&so->so_rcv); } } sbcut_locked(&so->so_rcv, len); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SBS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), we * must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return with a * short count but without error. Keep sockbuf locked * against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && nextrecord == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) break; /* * Notify the protocol that some data has been * drained before blocking. */ if (pr->pr_flags & PR_WANTRCVD) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * We could receive some data while was notifying * the protocol. Skip blocking in this case. */ if (so->so_rcv.sb_mb == NULL) { error = sbwait(&so->so_rcv); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } m = so->so_rcv.sb_mb; if (m != NULL) nextrecord = m->m_nextpkt; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m != NULL && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord_locked(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * If soreceive() is being done from the socket callback, * then don't need to generate ACK to peer to update window, * since ACK will be generated on return to TCP. */ if (!(flags & MSG_SOCALLBCK) && (pr->pr_flags & PR_WANTRCVD)) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto restart; } SOCKBUF_UNLOCK(&so->so_rcv); if (flagsp != NULL) *flagsp |= flags; release: sbunlock(&so->so_rcv); return (error); } /* * Optimized version of soreceive() for stream (TCP) sockets. */ int soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int len = 0, error = 0, flags, oresid; struct sockbuf *sb; struct mbuf *m, *n = NULL; /* We only do stream sockets. */ if (so->so_type != SOCK_STREAM) return (EINVAL); if (psa != NULL) *psa = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (controlp != NULL) *controlp = NULL; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp0 != NULL) *mp0 = NULL; sb = &so->so_rcv; /* Prevent other readers from entering the socket. */ error = sblock(sb, SBLOCKWAIT(flags)); if (error) goto out; SOCKBUF_LOCK(sb); /* Easy one, no space to copyout anything. */ if (uio->uio_resid == 0) { error = EINVAL; goto out; } oresid = uio->uio_resid; /* We will never ever get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { error = ENOTCONN; goto out; } restart: SOCKBUF_LOCK_ASSERT(&so->so_rcv); /* Abort if socket has reported problems. */ if (so->so_error) { if (sbavail(sb) > 0) goto deliver; if (oresid > uio->uio_resid) goto out; error = so->so_error; if (!(flags & MSG_PEEK)) so->so_error = 0; goto out; } /* Door is closed. Deliver what is left, if any. */ if (sb->sb_state & SBS_CANTRCVMORE) { if (sbavail(sb) > 0) goto deliver; else goto out; } /* Socket buffer is empty and we shall not block. */ if (sbavail(sb) == 0 && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { error = EAGAIN; goto out; } /* Socket buffer got some data that we shall deliver now. */ if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)) || sbavail(sb) >= sb->sb_lowat || sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat) ) { goto deliver; } /* On MSG_WAITALL we must wait until all data or error arrives. */ if ((flags & MSG_WAITALL) && (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) goto deliver; /* * Wait and block until (more) data comes in. * NB: Drops the sockbuf lock during wait. */ error = sbwait(sb); if (error) goto out; goto restart; deliver: SOCKBUF_LOCK_ASSERT(&so->so_rcv); KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); /* Statistics. */ if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; /* Fill uio until full or current end of socket buffer is reached. */ len = min(uio->uio_resid, sbavail(sb)); if (mp0 != NULL) { /* Dequeue as many mbufs as possible. */ if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { if (*mp0 == NULL) *mp0 = sb->sb_mb; else m_cat(*mp0, sb->sb_mb); for (m = sb->sb_mb; m != NULL && m->m_len <= len; m = m->m_next) { KASSERT(!(m->m_flags & M_NOTAVAIL), ("%s: m %p not available", __func__, m)); len -= m->m_len; uio->uio_resid -= m->m_len; sbfree(sb, m); n = m; } n->m_next = NULL; sb->sb_mb = m; sb->sb_lastrecord = sb->sb_mb; if (sb->sb_mb == NULL) SB_EMPTY_FIXUP(sb); } /* Copy the remainder. */ if (len > 0) { KASSERT(sb->sb_mb != NULL, ("%s: len > 0 && sb->sb_mb empty", __func__)); m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); if (m == NULL) len = 0; /* Don't flush data from sockbuf. */ else uio->uio_resid -= len; if (*mp0 != NULL) m_cat(*mp0, m); else *mp0 = m; if (*mp0 == NULL) { error = ENOBUFS; goto out; } } } else { /* NB: Must unlock socket buffer as uiomove may sleep. */ SOCKBUF_UNLOCK(sb); error = m_mbuftouio(uio, sb->sb_mb, len); SOCKBUF_LOCK(sb); if (error) goto out; } SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); /* * Remove the delivered data from the socket buffer unless we * were only peeking. */ if (!(flags & MSG_PEEK)) { if (len > 0) sbdrop_locked(sb, len); /* Notify protocol that we drained some data. */ if ((so->so_proto->pr_flags & PR_WANTRCVD) && (((flags & MSG_WAITALL) && uio->uio_resid > 0) || !(flags & MSG_SOCALLBCK))) { SOCKBUF_UNLOCK(sb); VNET_SO_ASSERT(so); (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(sb); } } /* * For MSG_WAITALL we may have to loop again and wait for * more data to come in. */ if ((flags & MSG_WAITALL) && uio->uio_resid > 0) goto restart; out: SOCKBUF_LOCK_ASSERT(sb); SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); SOCKBUF_UNLOCK(sb); sbunlock(sb); return (error); } /* * Optimized version of soreceive() for simple datagram cases from userspace. * Unlike in the stream case, we're able to drop a datagram if copyout() * fails, and because we handle datagrams atomically, we don't need to use a * sleep lock to prevent I/O interlacing. */ int soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, *m2; int flags, error; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; /* * For any complicated cases, fall back to the full * soreceive_generic(). */ if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); /* * Enforce restrictions on use. */ KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, ("soreceive_dgram: wantrcvd")); KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, ("soreceive_dgram: SBS_RCVATMARK")); KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, ("soreceive_dgram: P_CONNREQUIRED")); /* * Loop blocking while waiting for a datagram. */ SOCKBUF_LOCK(&so->so_rcv); while ((m = so->so_rcv.sb_mb) == NULL) { KASSERT(sbavail(&so->so_rcv) == 0, ("soreceive_dgram: sb_mb NULL but sbavail %u", sbavail(&so->so_rcv))); if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); return (error); } if (so->so_rcv.sb_state & SBS_CANTRCVMORE || uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); return (0); } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); return (EWOULDBLOCK); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); return (error); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive_dgram: lastrecord != m")); } KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, ("soreceive_dgram: m_nextpkt != nextrecord")); /* * Pull 'm' and its chain off the front of the packet queue. */ so->so_rcv.sb_mb = NULL; sockbuf_pushsync(&so->so_rcv, nextrecord); /* * Walk 'm's chain and free that many bytes from the socket buffer. */ for (m2 = m; m2 != NULL; m2 = m2->m_next) sbfree(&so->so_rcv, m2); /* * Do a few last checks before we let go of the lock. */ SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); m = m_free(m); } if (m == NULL) { /* XXXRW: Can this happen? */ return (0); } /* * Packet to copyout() is now in 'm' and it is disconnected from the * queue. * * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. We call into the * protocol to perform externalization (or freeing if controlp == * NULL). In some cases there can be only MT_CONTROL mbufs without * MT_DATA mbufs. */ if (m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { m2 = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = m2; } while (m != NULL && m->m_type == MT_CONTROL); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } } KASSERT(m == NULL || m->m_type == MT_DATA, ("soreceive_dgram: !data")); while (m != NULL && uio->uio_resid > 0) { len = uio->uio_resid; if (len > m->m_len) len = m->m_len; error = uiomove(mtod(m, char *), (int)len, uio); if (error) { m_freem(m); return (error); } if (len == m->m_len) m = m_free(m); else { m->m_data += len; m->m_len -= len; } } if (m != NULL) { flags |= MSG_TRUNC; m_freem(m); } if (flagsp != NULL) *flagsp |= flags; return (0); } int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int error; CURVNET_SET(so->so_vnet); if (!SOLISTENING(so)) error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, controlp, flagsp)); else error = ENOTCONN; CURVNET_RESTORE(); return (error); } int soshutdown(struct socket *so, int how) { struct protosw *pr = so->so_proto; int error, soerror_enotconn; if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) return (EINVAL); soerror_enotconn = 0; if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { /* * POSIX mandates us to return ENOTCONN when shutdown(2) is * invoked on a datagram sockets, however historically we would * actually tear socket down. This is known to be leveraged by * some applications to unblock process waiting in recvXXX(2) * by other process that it shares that socket with. Try to meet * both backward-compatibility and POSIX requirements by forcing * ENOTCONN but still asking protocol to perform pru_shutdown(). */ if (so->so_type != SOCK_DGRAM) return (ENOTCONN); soerror_enotconn = 1; } CURVNET_SET(so->so_vnet); if (pr->pr_usrreqs->pru_flush != NULL) (*pr->pr_usrreqs->pru_flush)(so, how); if (how != SHUT_WR) sorflush(so); if (how != SHUT_RD) { error = (*pr->pr_usrreqs->pru_shutdown)(so); wakeup(&so->so_timeo); CURVNET_RESTORE(); return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); } wakeup(&so->so_timeo); CURVNET_RESTORE(); return (soerror_enotconn ? ENOTCONN : 0); } void sorflush(struct socket *so) { struct sockbuf *sb = &so->so_rcv; struct protosw *pr = so->so_proto; struct socket aso; VNET_SO_ASSERT(so); /* * In order to avoid calling dom_dispose with the socket buffer mutex * held, and in order to generally avoid holding the lock for a long * time, we make a copy of the socket buffer and clear the original * (except locks, state). The new socket buffer copy won't have * initialized locks so we can only call routines that won't use or * assert those locks. * * Dislodge threads currently blocked in receive and wait to acquire * a lock against other simultaneous readers before clearing the * socket buffer. Don't let our acquire be interrupted by a signal * despite any existing socket disposition on interruptable waiting. */ socantrcvmore(so); (void) sblock(sb, SBL_WAIT | SBL_NOINTR); /* * Invalidate/clear most of the sockbuf structure, but leave selinfo * and mutex data unchanged. */ SOCKBUF_LOCK(sb); bzero(&aso, sizeof(aso)); aso.so_pcb = so->so_pcb; bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); bzero(&sb->sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); SOCKBUF_UNLOCK(sb); sbunlock(sb); /* * Dispose of special rights and flush the copied socket. Don't call * any unsafe routines (that rely on locks being initialized) on aso. */ if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(&aso); sbrelease_internal(&aso.so_rcv, so); } /* * Wrapper for Socket established helper hook. * Parameters: socket, context of the hook point, hook id. */ static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) { struct socket_hhook_data hhook_data = { .so = so, .hctx = hctx, .m = NULL, .status = 0 }; CURVNET_SET(so->so_vnet); HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); CURVNET_RESTORE(); /* Ugly but needed, since hhooks return void for now */ return (hhook_data.status); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in an * additional variant to handle the case where the option value needs to be * some kind of integer, but not a specific size. In addition to their use * here, these functions are also called by the protocol-level pr_ctloutput() * routines. */ int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, but if we * don't get the minimum length the caller wants, we return EINVAL. * On success, sopt->sopt_valsize is set to however much we actually * retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return EINVAL; if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_td != NULL) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(sopt->sopt_val, buf, valsize); return (0); } /* * Kernel version of setsockopt(2). * * XXX: optlen is size_t, not socklen_t */ int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen) { struct sockopt sopt; sopt.sopt_level = level; sopt.sopt_name = optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = optval; sopt.sopt_valsize = optlen; sopt.sopt_td = NULL; return (sosetopt(so, &sopt)); } int sosetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; sbintime_t val; uint32_t val32; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) { error = (*so->so_proto->pr_ctloutput)(so, sopt); CURVNET_RESTORE(); return (error); } error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_setopt(so, sopt); if (error) goto bad; break; case SO_LINGER: error = sooptcopyin(sopt, &l, sizeof l, sizeof l); if (error) goto bad; SOCK_LOCK(so); so->so_linger = l.l_linger; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; SOCK_UNLOCK(so); break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_REUSEPORT_LB: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: case SO_NO_DDP: case SO_NO_OFFLOAD: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; SOCK_LOCK(so); if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; SOCK_UNLOCK(so); break; case SO_SETFIB: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval >= rt_numfibs) { error = EINVAL; goto bad; } if (((so->so_proto->pr_domain->dom_family == PF_INET) || (so->so_proto->pr_domain->dom_family == PF_INET6) || (so->so_proto->pr_domain->dom_family == PF_ROUTE))) so->so_fibnum = optval; else so->so_fibnum = 0; break; case SO_USER_COOKIE: error = sooptcopyin(sopt, &val32, sizeof val32, sizeof val32); if (error) goto bad; so->so_user_cookie = val32; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; /* * Values < 1 make no sense for any of these options, * so disallow them. */ if (optval < 1) { error = EINVAL; goto bad; } error = sbsetopt(so, sopt->sopt_name, optval); break; case SO_SNDTIMEO: case SO_RCVTIMEO: #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; error = sooptcopyin(sopt, &tv32, sizeof tv32, sizeof tv32); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); } else #endif error = sooptcopyin(sopt, &tv, sizeof tv, sizeof tv); if (error) goto bad; if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { error = EDOM; goto bad; } if (tv.tv_sec > INT32_MAX) val = SBT_MAX; else val = tvtosbt(tv); switch (sopt->sopt_name) { case SO_SNDTIMEO: so->so_snd.sb_timeo = val; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = val; break; } break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof extmac, sizeof extmac); if (error) goto bad; error = mac_setsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); #else error = EOPNOTSUPP; #endif break; case SO_TS_CLOCK: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval > SO_TS_CLOCK_MAX) { error = EINVAL; goto bad; } so->so_ts_clock = optval; break; case SO_MAX_PACING_RATE: error = sooptcopyin(sopt, &val32, sizeof(val32), sizeof(val32)); if (error) goto bad; so->so_max_pacing_rate = val32; break; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto->pr_ctloutput != NULL) (void)(*so->so_proto->pr_ctloutput)(so, sopt); } bad: CURVNET_RESTORE(); return (error); } /* * Helper routine for getsockopt. */ int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, possibly * truncated to fit in the user's buffer. Traditional behavior is * that we always tell the user precisely how much we copied, rather * than something useful like the total amount we had available for * her. Note that this interface is not idempotent; the entire * answer must be generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != NULL) { if (sopt->sopt_td != NULL) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, sopt->sopt_val, valsize); } return (error); } int sogetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) error = (*so->so_proto->pr_ctloutput)(so, sopt); else error = ENOPROTOOPT; CURVNET_RESTORE(); return (error); } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_getopt(so, sopt); break; case SO_LINGER: SOCK_LOCK(so); l.l_onoff = so->so_options & SO_LINGER; l.l_linger = so->so_linger; SOCK_UNLOCK(so); error = sooptcopyout(sopt, &l, sizeof l); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_REUSEPORT_LB: case SO_BROADCAST: case SO_OOBINLINE: case SO_ACCEPTCONN: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof optval); break; + case SO_DOMAIN: + optval = so->so_proto->pr_domain->dom_family; + goto integer; + case SO_TYPE: optval = so->so_type; goto integer; case SO_PROTOCOL: optval = so->so_proto->pr_protocol; goto integer; case SO_ERROR: SOCK_LOCK(so); optval = so->so_error; so->so_error = 0; SOCK_UNLOCK(so); goto integer; case SO_SNDBUF: optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; CP(tv, tv32, tv_sec); CP(tv, tv32, tv_usec); error = sooptcopyout(sopt, &tv32, sizeof tv32); } else #endif error = sooptcopyout(sopt, &tv, sizeof tv); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_PEERLABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_peerlabel( sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_LISTENQLIMIT: optval = SOLISTENING(so) ? so->sol_qlimit : 0; goto integer; case SO_LISTENQLEN: optval = SOLISTENING(so) ? so->sol_qlen : 0; goto integer; case SO_LISTENINCQLEN: optval = SOLISTENING(so) ? so->sol_incqlen : 0; goto integer; case SO_TS_CLOCK: optval = so->so_ts_clock; goto integer; case SO_MAX_PACING_RATE: optval = so->so_max_pacing_rate; goto integer; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } } #ifdef MAC bad: #endif CURVNET_RESTORE(); return (error); } int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { m_freem(*mp); return ENOBUFS; } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(*mp); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return (0); } int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("ip6_sooptmcopyin"); return (0); } int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return(EINVAL); } sopt->sopt_valsize = valsize; return (0); } /* * sohasoutofband(): protocol notifies socket layer of the arrival of new * out-of-band data, which will then notify socket consumers. */ void sohasoutofband(struct socket *so) { if (so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGURG, 0); selwakeuppri(&so->so_rdsel, PSOCK); } int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { /* * We do not need to set or assert curvnet as long as everyone uses * sopoll_generic(). */ return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, td)); } int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { int revents; SOCK_LOCK(so); if (SOLISTENING(so)) { if (!(events & (POLLIN | POLLRDNORM))) revents = 0; else if (!TAILQ_EMPTY(&so->sol_comp)) revents = events & (POLLIN | POLLRDNORM); else { selrecord(td, &so->so_rdsel); revents = 0; } } else { revents = 0; SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); if (events & (POLLIN | POLLRDNORM)) if (soreadabledata(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if ((events & POLLINIGNEOF) == 0) { if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { revents |= events & (POLLIN | POLLRDNORM); if (so->so_snd.sb_state & SBS_CANTSENDMORE) revents |= POLLHUP; } } if (revents == 0) { if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { selrecord(td, &so->so_rdsel); so->so_rcv.sb_flags |= SB_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &so->so_wrsel); so->so_snd.sb_flags |= SB_SEL; } } SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); } SOCK_UNLOCK(so); return (revents); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; struct knlist *knl; switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &soread_filtops; knl = &so->so_rdsel.si_note; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; break; case EVFILT_EMPTY: kn->kn_fop = &soempty_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; break; default: return (EINVAL); } SOCK_LOCK(so); if (SOLISTENING(so)) { knlist_add(knl, kn, 1); } else { SOCKBUF_LOCK(sb); knlist_add(knl, kn, 1); sb->sb_flags |= SB_KNOTE; SOCKBUF_UNLOCK(sb); } SOCK_UNLOCK(so); return (0); } /* * Some routines that return EOPNOTSUPP for entry points that are not * supported by a protocol. Fill in as needed. */ int pru_accept_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) { return EOPNOTSUPP; } int pru_attach_notsupp(struct socket *so, int proto, struct thread *td) { return EOPNOTSUPP; } int pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect2_notsupp(struct socket *so1, struct socket *so2) { return EOPNOTSUPP; } int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { return EOPNOTSUPP; } int pru_disconnect_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) { return EOPNOTSUPP; } int pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_rcvd_notsupp(struct socket *so, int flags) { return EOPNOTSUPP; } int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) { return EOPNOTSUPP; } int pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { return EOPNOTSUPP; } int pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) { return (EOPNOTSUPP); } /* * This isn't really a ``null'' operation, but it's the default one and * doesn't do anything destructive. */ int pru_sense_null(struct socket *so, struct stat *sb) { sb->st_blksize = so->so_snd.sb_hiwat; return 0; } int pru_shutdown_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { return EOPNOTSUPP; } int pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { return EOPNOTSUPP; } int pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, struct thread *td) { return EOPNOTSUPP; } static void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_rdknl_lock(so); knlist_remove(&so->so_rdsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; so_rdknl_unlock(so); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) { SOCK_LOCK_ASSERT(so); kn->kn_data = so->sol_qlen; return (!TAILQ_EMPTY(&so->sol_comp)); } SOCKBUF_LOCK_ASSERT(&so->so_rcv); kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); if (kn->kn_sfflags & NOTE_LOWAT) { if (kn->kn_data >= kn->kn_sdata) return (1); } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) return (1); /* This hook returning non-zero indicates an event, not error */ return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); } static void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_wrknl_lock(so); knlist_remove(&so->so_wrsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; so_wrknl_unlock(so); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (0); SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbspace(&so->so_snd); hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (kn->kn_data >= so->so_snd.sb_lowat); } static int filt_soempty(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (1); SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbused(&so->so_snd); if (kn->kn_data == 0) return (1); else return (0); } int socheckuid(struct socket *so, uid_t uid) { if (so == NULL) return (EPERM); if (so->so_cred->cr_uid != uid) return (EPERM); return (0); } /* * These functions are used by protocols to notify the socket layer (and its * consumers) of state changes in the sockets driven by protocol-side events. */ /* * Procedures to manipulate state flags of socket and do appropriate wakeups. * * Normal sequence from the active (originating) side is that * soisconnecting() is called during processing of connect() call, resulting * in an eventual call to soisconnected() if/when the connection is * established. When the connection is torn down soisdisconnecting() is * called during processing of disconnect() call, and soisdisconnected() is * called when the connection to the peer is totally severed. The semantics * of these routines are such that connectionless protocols can call * soisconnected() and soisdisconnected() only, bypassing the in-progress * calls when setting up a ``connection'' takes no time. * * From the passive side, a socket is created with two queues of sockets: * so_incomp for connections in progress and so_comp for connections already * made and awaiting user acceptance. As a protocol is preparing incoming * connections, it creates a socket structure queued on so_incomp by calling * sonewconn(). When the connection is established, soisconnected() is * called, and transfers the socket structure to so_comp, making it available * to accept(). * * If a socket is closed with sockets on either so_incomp or so_comp, these * sockets are dropped. * * If higher-level protocols are implemented in the kernel, the wakeups done * here will sometimes cause software-interrupt process scheduling. */ void soisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; SOCK_UNLOCK(so); } void soisconnected(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; if (so->so_qstate == SQ_INCOMP) { struct socket *head = so->so_listen; int ret; KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); /* * Promoting a socket from incomplete queue to complete, we * need to go through reverse order of locking. We first do * trylock, and if that doesn't succeed, we go the hard way * leaving a reference and rechecking consistency after proper * locking. */ if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { soref(head); SOCK_UNLOCK(so); SOLISTEN_LOCK(head); SOCK_LOCK(so); if (__predict_false(head != so->so_listen)) { /* * The socket went off the listen queue, * should be lost race to close(2) of sol. * The socket is about to soabort(). */ SOCK_UNLOCK(so); sorele(head); return; } /* Not the last one, as so holds a ref. */ refcount_release(&head->so_count); } again: if ((so->so_options & SO_ACCEPTFILTER) == 0) { TAILQ_REMOVE(&head->sol_incomp, so, so_list); head->sol_incqlen--; TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); head->sol_qlen++; so->so_qstate = SQ_COMP; SOCK_UNLOCK(so); solisten_wakeup(head); /* unlocks */ } else { SOCKBUF_LOCK(&so->so_rcv); soupcall_set(so, SO_RCV, head->sol_accept_filter->accf_callback, head->sol_accept_filter_arg); so->so_options &= ~SO_ACCEPTFILTER; ret = head->sol_accept_filter->accf_callback(so, head->sol_accept_filter_arg, M_NOWAIT); if (ret == SU_ISCONNECTED) { soupcall_clear(so, SO_RCV); SOCKBUF_UNLOCK(&so->so_rcv); goto again; } SOCKBUF_UNLOCK(&so->so_rcv); SOCK_UNLOCK(so); SOLISTEN_UNLOCK(head); } return; } SOCK_UNLOCK(so); wakeup(&so->so_timeo); sorwakeup(so); sowwakeup(so); } void soisdisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTING; so->so_state |= SS_ISDISCONNECTING; if (!SOLISTENING(so)) { SOCKBUF_LOCK(&so->so_rcv); socantrcvmore_locked(so); SOCKBUF_LOCK(&so->so_snd); socantsendmore_locked(so); } SOCK_UNLOCK(so); wakeup(&so->so_timeo); } void soisdisconnected(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISDISCONNECTED; if (!SOLISTENING(so)) { SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); socantrcvmore_locked(so); SOCKBUF_LOCK(&so->so_snd); sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); socantsendmore_locked(so); } else SOCK_UNLOCK(so); wakeup(&so->so_timeo); } /* * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. */ struct sockaddr * sodupsockaddr(const struct sockaddr *sa, int mflags) { struct sockaddr *sa2; sa2 = malloc(sa->sa_len, M_SONAME, mflags); if (sa2) bcopy(sa, sa2, sa->sa_len); return sa2; } /* * Register per-socket destructor. */ void sodtor_set(struct socket *so, so_dtor_t *func) { SOCK_LOCK_ASSERT(so); so->so_dtor = func; } /* * Register per-socket buffer upcalls. */ void soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; default: panic("soupcall_set: bad which"); } SOCKBUF_LOCK_ASSERT(sb); sb->sb_upcall = func; sb->sb_upcallarg = arg; sb->sb_flags |= SB_UPCALL; } void soupcall_clear(struct socket *so, int which) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; default: panic("soupcall_clear: bad which"); } SOCKBUF_LOCK_ASSERT(sb); KASSERT(sb->sb_upcall != NULL, ("%s: so %p no upcall to clear", __func__, so)); sb->sb_upcall = NULL; sb->sb_upcallarg = NULL; sb->sb_flags &= ~SB_UPCALL; } void solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) { SOLISTEN_LOCK_ASSERT(so); so->sol_upcall = func; so->sol_upcallarg = arg; } static void so_rdknl_lock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK(so); else SOCKBUF_LOCK(&so->so_rcv); } static void so_rdknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK(so); else SOCKBUF_UNLOCK(&so->so_rcv); } static void so_rdknl_assert_locked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK_ASSERT(so); else SOCKBUF_LOCK_ASSERT(&so->so_rcv); } static void so_rdknl_assert_unlocked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK_ASSERT(so); else SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); } static void so_wrknl_lock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK(so); else SOCKBUF_LOCK(&so->so_snd); } static void so_wrknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK(so); else SOCKBUF_UNLOCK(&so->so_snd); } static void so_wrknl_assert_locked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK_ASSERT(so); else SOCKBUF_LOCK_ASSERT(&so->so_snd); } static void so_wrknl_assert_unlocked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK_ASSERT(so); else SOCKBUF_UNLOCK_ASSERT(&so->so_snd); } /* * Create an external-format (``xsocket'') structure using the information in * the kernel-format socket structure pointed to by so. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void sotoxsocket(struct socket *so, struct xsocket *xso) { xso->xso_len = sizeof *xso; xso->xso_so = (uintptr_t)so; xso->so_type = so->so_type; xso->so_options = so->so_options; xso->so_linger = so->so_linger; xso->so_state = so->so_state; xso->so_pcb = (uintptr_t)so->so_pcb; xso->xso_protocol = so->so_proto->pr_protocol; xso->xso_family = so->so_proto->pr_domain->dom_family; xso->so_timeo = so->so_timeo; xso->so_error = so->so_error; xso->so_uid = so->so_cred->cr_uid; xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; if (SOLISTENING(so)) { xso->so_qlen = so->sol_qlen; xso->so_incqlen = so->sol_incqlen; xso->so_qlimit = so->sol_qlimit; xso->so_oobmark = 0; bzero(&xso->so_snd, sizeof(xso->so_snd)); bzero(&xso->so_rcv, sizeof(xso->so_rcv)); } else { xso->so_state |= so->so_qstate; xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; xso->so_oobmark = so->so_oobmark; sbtoxsockbuf(&so->so_snd, &xso->so_snd); sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); } } struct sockbuf * so_sockbuf_rcv(struct socket *so) { return (&so->so_rcv); } struct sockbuf * so_sockbuf_snd(struct socket *so) { return (&so->so_snd); } int so_state_get(const struct socket *so) { return (so->so_state); } void so_state_set(struct socket *so, int val) { so->so_state = val; } int so_options_get(const struct socket *so) { return (so->so_options); } void so_options_set(struct socket *so, int val) { so->so_options = val; } int so_error_get(const struct socket *so) { return (so->so_error); } void so_error_set(struct socket *so, int val) { so->so_error = val; } int so_linger_get(const struct socket *so) { return (so->so_linger); } void so_linger_set(struct socket *so, int val) { so->so_linger = val; } struct protosw * so_protosw_get(const struct socket *so) { return (so->so_proto); } void so_protosw_set(struct socket *so, struct protosw *val) { so->so_proto = val; } void so_sorwakeup(struct socket *so) { sorwakeup(so); } void so_sowwakeup(struct socket *so) { sowwakeup(so); } void so_sorwakeup_locked(struct socket *so) { sorwakeup_locked(so); } void so_sowwakeup_locked(struct socket *so) { sowwakeup_locked(so); } void so_lock(struct socket *so) { SOCK_LOCK(so); } void so_unlock(struct socket *so) { SOCK_UNLOCK(so); } Index: head/sys/sys/socket.h =================================================================== --- head/sys/sys/socket.h (revision 338135) +++ head/sys/sys/socket.h (revision 338136) @@ -1,730 +1,731 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1985, 1986, 1988, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)socket.h 8.4 (Berkeley) 2/21/94 * $FreeBSD$ */ #ifndef _SYS_SOCKET_H_ #define _SYS_SOCKET_H_ #include #include #include #include /* * Definitions related to sockets: types, address families, options. */ /* * Data types. */ #if __BSD_VISIBLE #ifndef _GID_T_DECLARED typedef __gid_t gid_t; #define _GID_T_DECLARED #endif #ifndef _OFF_T_DECLARED typedef __off_t off_t; #define _OFF_T_DECLARED #endif #ifndef _PID_T_DECLARED typedef __pid_t pid_t; #define _PID_T_DECLARED #endif #endif #ifndef _SA_FAMILY_T_DECLARED typedef __sa_family_t sa_family_t; #define _SA_FAMILY_T_DECLARED #endif #ifndef _SOCKLEN_T_DECLARED typedef __socklen_t socklen_t; #define _SOCKLEN_T_DECLARED #endif #ifndef _SSIZE_T_DECLARED typedef __ssize_t ssize_t; #define _SSIZE_T_DECLARED #endif #if __BSD_VISIBLE #ifndef _UID_T_DECLARED typedef __uid_t uid_t; #define _UID_T_DECLARED #endif #endif #ifndef _UINT32_T_DECLARED typedef __uint32_t uint32_t; #define _UINT32_T_DECLARED #endif #ifndef _UINTPTR_T_DECLARED typedef __uintptr_t uintptr_t; #define _UINTPTR_T_DECLARED #endif /* * Types */ #define SOCK_STREAM 1 /* stream socket */ #define SOCK_DGRAM 2 /* datagram socket */ #define SOCK_RAW 3 /* raw-protocol interface */ #if __BSD_VISIBLE #define SOCK_RDM 4 /* reliably-delivered message */ #endif #define SOCK_SEQPACKET 5 /* sequenced packet stream */ #if __BSD_VISIBLE /* * Creation flags, OR'ed into socket() and socketpair() type argument. */ #define SOCK_CLOEXEC 0x10000000 #define SOCK_NONBLOCK 0x20000000 #ifdef _KERNEL /* * Flags for accept1(), kern_accept4() and solisten_dequeue, in addition * to SOCK_CLOEXEC and SOCK_NONBLOCK. */ #define ACCEPT4_INHERIT 0x1 #define ACCEPT4_COMPAT 0x2 #endif /* _KERNEL */ #endif /* __BSD_VISIBLE */ /* * Option flags per-socket. */ #define SO_DEBUG 0x00000001 /* turn on debugging info recording */ #define SO_ACCEPTCONN 0x00000002 /* socket has had listen() */ #define SO_REUSEADDR 0x00000004 /* allow local address reuse */ #define SO_KEEPALIVE 0x00000008 /* keep connections alive */ #define SO_DONTROUTE 0x00000010 /* just use interface addresses */ #define SO_BROADCAST 0x00000020 /* permit sending of broadcast msgs */ #if __BSD_VISIBLE #define SO_USELOOPBACK 0x00000040 /* bypass hardware when possible */ #endif #define SO_LINGER 0x00000080 /* linger on close if data present */ #define SO_OOBINLINE 0x00000100 /* leave received OOB data in line */ #if __BSD_VISIBLE #define SO_REUSEPORT 0x00000200 /* allow local address & port reuse */ #define SO_TIMESTAMP 0x00000400 /* timestamp received dgram traffic */ #define SO_NOSIGPIPE 0x00000800 /* no SIGPIPE from EPIPE */ #define SO_ACCEPTFILTER 0x00001000 /* there is an accept filter */ #define SO_BINTIME 0x00002000 /* timestamp received dgram traffic */ #endif #define SO_NO_OFFLOAD 0x00004000 /* socket cannot be offloaded */ #define SO_NO_DDP 0x00008000 /* disable direct data placement */ #define SO_REUSEPORT_LB 0x00010000 /* reuse with load balancing */ /* * Additional options, not kept in so_options. */ #define SO_SNDBUF 0x1001 /* send buffer size */ #define SO_RCVBUF 0x1002 /* receive buffer size */ #define SO_SNDLOWAT 0x1003 /* send low-water mark */ #define SO_RCVLOWAT 0x1004 /* receive low-water mark */ #define SO_SNDTIMEO 0x1005 /* send timeout */ #define SO_RCVTIMEO 0x1006 /* receive timeout */ #define SO_ERROR 0x1007 /* get error status and clear */ #define SO_TYPE 0x1008 /* get socket type */ #if __BSD_VISIBLE #define SO_LABEL 0x1009 /* socket's MAC label */ #define SO_PEERLABEL 0x1010 /* socket's peer's MAC label */ #define SO_LISTENQLIMIT 0x1011 /* socket's backlog limit */ #define SO_LISTENQLEN 0x1012 /* socket's complete queue length */ #define SO_LISTENINCQLEN 0x1013 /* socket's incomplete queue length */ #define SO_SETFIB 0x1014 /* use this FIB to route */ #define SO_USER_COOKIE 0x1015 /* user cookie (dummynet etc.) */ #define SO_PROTOCOL 0x1016 /* get socket protocol (Linux name) */ #define SO_PROTOTYPE SO_PROTOCOL /* alias for SO_PROTOCOL (SunOS name) */ #define SO_TS_CLOCK 0x1017 /* clock type used for SO_TIMESTAMP */ #define SO_MAX_PACING_RATE 0x1018 /* socket's max TX pacing rate (Linux name) */ +#define SO_DOMAIN 0x1019 /* get socket domain */ #endif #if __BSD_VISIBLE #define SO_TS_REALTIME_MICRO 0 /* microsecond resolution, realtime */ #define SO_TS_BINTIME 1 /* sub-nanosecond resolution, realtime */ #define SO_TS_REALTIME 2 /* nanosecond resolution, realtime */ #define SO_TS_MONOTONIC 3 /* nanosecond resolution, monotonic */ #define SO_TS_DEFAULT SO_TS_REALTIME_MICRO #define SO_TS_CLOCK_MAX SO_TS_MONOTONIC #endif /* * Space reserved for new socket options added by third-party vendors. * This range applies to all socket option levels. New socket options * in FreeBSD should always use an option value less than SO_VENDOR. */ #if __BSD_VISIBLE #define SO_VENDOR 0x80000000 #endif /* * Structure used for manipulating linger option. */ struct linger { int l_onoff; /* option on/off */ int l_linger; /* linger time */ }; #if __BSD_VISIBLE struct accept_filter_arg { char af_name[16]; char af_arg[256-16]; }; #endif /* * Level number for (get/set)sockopt() to apply to socket itself. */ #define SOL_SOCKET 0xffff /* options for socket level */ /* * Address families. */ #define AF_UNSPEC 0 /* unspecified */ #if __BSD_VISIBLE #define AF_LOCAL AF_UNIX /* local to host (pipes, portals) */ #endif #define AF_UNIX 1 /* standardized name for AF_LOCAL */ #define AF_INET 2 /* internetwork: UDP, TCP, etc. */ #if __BSD_VISIBLE #define AF_IMPLINK 3 /* arpanet imp addresses */ #define AF_PUP 4 /* pup protocols: e.g. BSP */ #define AF_CHAOS 5 /* mit CHAOS protocols */ #define AF_NETBIOS 6 /* SMB protocols */ #define AF_ISO 7 /* ISO protocols */ #define AF_OSI AF_ISO #define AF_ECMA 8 /* European computer manufacturers */ #define AF_DATAKIT 9 /* datakit protocols */ #define AF_CCITT 10 /* CCITT protocols, X.25 etc */ #define AF_SNA 11 /* IBM SNA */ #define AF_DECnet 12 /* DECnet */ #define AF_DLI 13 /* DEC Direct data link interface */ #define AF_LAT 14 /* LAT */ #define AF_HYLINK 15 /* NSC Hyperchannel */ #define AF_APPLETALK 16 /* Apple Talk */ #define AF_ROUTE 17 /* Internal Routing Protocol */ #define AF_LINK 18 /* Link layer interface */ #define pseudo_AF_XTP 19 /* eXpress Transfer Protocol (no AF) */ #define AF_COIP 20 /* connection-oriented IP, aka ST II */ #define AF_CNT 21 /* Computer Network Technology */ #define pseudo_AF_RTIP 22 /* Help Identify RTIP packets */ #define AF_IPX 23 /* Novell Internet Protocol */ #define AF_SIP 24 /* Simple Internet Protocol */ #define pseudo_AF_PIP 25 /* Help Identify PIP packets */ #define AF_ISDN 26 /* Integrated Services Digital Network*/ #define AF_E164 AF_ISDN /* CCITT E.164 recommendation */ #define pseudo_AF_KEY 27 /* Internal key-management function */ #endif #define AF_INET6 28 /* IPv6 */ #if __BSD_VISIBLE #define AF_NATM 29 /* native ATM access */ #define AF_ATM 30 /* ATM */ #define pseudo_AF_HDRCMPLT 31 /* Used by BPF to not rewrite headers * in interface output routine */ #define AF_NETGRAPH 32 /* Netgraph sockets */ #define AF_SLOW 33 /* 802.3ad slow protocol */ #define AF_SCLUSTER 34 /* Sitara cluster protocol */ #define AF_ARP 35 #define AF_BLUETOOTH 36 /* Bluetooth sockets */ #define AF_IEEE80211 37 /* IEEE 802.11 protocol */ #define AF_INET_SDP 40 /* OFED Socket Direct Protocol ipv4 */ #define AF_INET6_SDP 42 /* OFED Socket Direct Protocol ipv6 */ #define AF_MAX 42 /* * When allocating a new AF_ constant, please only allocate * even numbered constants for FreeBSD until 134 as odd numbered AF_ * constants 39-133 are now reserved for vendors. */ #define AF_VENDOR00 39 #define AF_VENDOR01 41 #define AF_VENDOR02 43 #define AF_VENDOR03 45 #define AF_VENDOR04 47 #define AF_VENDOR05 49 #define AF_VENDOR06 51 #define AF_VENDOR07 53 #define AF_VENDOR08 55 #define AF_VENDOR09 57 #define AF_VENDOR10 59 #define AF_VENDOR11 61 #define AF_VENDOR12 63 #define AF_VENDOR13 65 #define AF_VENDOR14 67 #define AF_VENDOR15 69 #define AF_VENDOR16 71 #define AF_VENDOR17 73 #define AF_VENDOR18 75 #define AF_VENDOR19 77 #define AF_VENDOR20 79 #define AF_VENDOR21 81 #define AF_VENDOR22 83 #define AF_VENDOR23 85 #define AF_VENDOR24 87 #define AF_VENDOR25 89 #define AF_VENDOR26 91 #define AF_VENDOR27 93 #define AF_VENDOR28 95 #define AF_VENDOR29 97 #define AF_VENDOR30 99 #define AF_VENDOR31 101 #define AF_VENDOR32 103 #define AF_VENDOR33 105 #define AF_VENDOR34 107 #define AF_VENDOR35 109 #define AF_VENDOR36 111 #define AF_VENDOR37 113 #define AF_VENDOR38 115 #define AF_VENDOR39 117 #define AF_VENDOR40 119 #define AF_VENDOR41 121 #define AF_VENDOR42 123 #define AF_VENDOR43 125 #define AF_VENDOR44 127 #define AF_VENDOR45 129 #define AF_VENDOR46 131 #define AF_VENDOR47 133 #endif /* * Structure used by kernel to store most * addresses. */ struct sockaddr { unsigned char sa_len; /* total length */ sa_family_t sa_family; /* address family */ char sa_data[14]; /* actually longer; address value */ }; #if __BSD_VISIBLE #define SOCK_MAXADDRLEN 255 /* longest possible addresses */ /* * Structure used by kernel to pass protocol * information in raw sockets. */ struct sockproto { unsigned short sp_family; /* address family */ unsigned short sp_protocol; /* protocol */ }; #endif #include #if __BSD_VISIBLE /* * Protocol families, same as address families for now. */ #define PF_UNSPEC AF_UNSPEC #define PF_LOCAL AF_LOCAL #define PF_UNIX PF_LOCAL /* backward compatibility */ #define PF_INET AF_INET #define PF_IMPLINK AF_IMPLINK #define PF_PUP AF_PUP #define PF_CHAOS AF_CHAOS #define PF_NETBIOS AF_NETBIOS #define PF_ISO AF_ISO #define PF_OSI AF_ISO #define PF_ECMA AF_ECMA #define PF_DATAKIT AF_DATAKIT #define PF_CCITT AF_CCITT #define PF_SNA AF_SNA #define PF_DECnet AF_DECnet #define PF_DLI AF_DLI #define PF_LAT AF_LAT #define PF_HYLINK AF_HYLINK #define PF_APPLETALK AF_APPLETALK #define PF_ROUTE AF_ROUTE #define PF_LINK AF_LINK #define PF_XTP pseudo_AF_XTP /* really just proto family, no AF */ #define PF_COIP AF_COIP #define PF_CNT AF_CNT #define PF_SIP AF_SIP #define PF_IPX AF_IPX #define PF_RTIP pseudo_AF_RTIP /* same format as AF_INET */ #define PF_PIP pseudo_AF_PIP #define PF_ISDN AF_ISDN #define PF_KEY pseudo_AF_KEY #define PF_INET6 AF_INET6 #define PF_NATM AF_NATM #define PF_ATM AF_ATM #define PF_NETGRAPH AF_NETGRAPH #define PF_SLOW AF_SLOW #define PF_SCLUSTER AF_SCLUSTER #define PF_ARP AF_ARP #define PF_BLUETOOTH AF_BLUETOOTH #define PF_IEEE80211 AF_IEEE80211 #define PF_INET_SDP AF_INET_SDP #define PF_INET6_SDP AF_INET6_SDP #define PF_MAX AF_MAX /* * Definitions for network related sysctl, CTL_NET. * * Second level is protocol family. * Third level is protocol number. * * Further levels are defined by the individual families. */ /* * PF_ROUTE - Routing table * * Three additional levels are defined: * Fourth: address family, 0 is wildcard * Fifth: type of info, defined below * Sixth: flag(s) to mask with for NET_RT_FLAGS */ #define NET_RT_DUMP 1 /* dump; may limit to a.f. */ #define NET_RT_FLAGS 2 /* by flags, e.g. RESOLVING */ #define NET_RT_IFLIST 3 /* survey interface list */ #define NET_RT_IFMALIST 4 /* return multicast address list */ #define NET_RT_IFLISTL 5 /* Survey interface list, using 'l'en * versions of msghdr structs. */ #endif /* __BSD_VISIBLE */ /* * Maximum queue length specifiable by listen. */ #define SOMAXCONN 128 /* * Message header for recvmsg and sendmsg calls. * Used value-result for recvmsg, value only for sendmsg. */ struct msghdr { void *msg_name; /* optional address */ socklen_t msg_namelen; /* size of address */ struct iovec *msg_iov; /* scatter/gather array */ int msg_iovlen; /* # elements in msg_iov */ void *msg_control; /* ancillary data, see below */ socklen_t msg_controllen; /* ancillary data buffer len */ int msg_flags; /* flags on received message */ }; #define MSG_OOB 0x00000001 /* process out-of-band data */ #define MSG_PEEK 0x00000002 /* peek at incoming message */ #define MSG_DONTROUTE 0x00000004 /* send without using routing tables */ #define MSG_EOR 0x00000008 /* data completes record */ #define MSG_TRUNC 0x00000010 /* data discarded before delivery */ #define MSG_CTRUNC 0x00000020 /* control data lost before delivery */ #define MSG_WAITALL 0x00000040 /* wait for full request or error */ #if __BSD_VISIBLE #define MSG_DONTWAIT 0x00000080 /* this message should be nonblocking */ #define MSG_EOF 0x00000100 /* data completes connection */ /* 0x00000200 unused */ /* 0x00000400 unused */ /* 0x00000800 unused */ /* 0x00001000 unused */ #define MSG_NOTIFICATION 0x00002000 /* SCTP notification */ #define MSG_NBIO 0x00004000 /* FIONBIO mode, used by fifofs */ #define MSG_COMPAT 0x00008000 /* used in sendit() */ #endif #ifdef _KERNEL #define MSG_SOCALLBCK 0x00010000 /* for use by socket callbacks - soreceive (TCP) */ #endif #if __POSIX_VISIBLE >= 200809 #define MSG_NOSIGNAL 0x00020000 /* do not generate SIGPIPE on EOF */ #endif #if __BSD_VISIBLE #define MSG_CMSG_CLOEXEC 0x00040000 /* make received fds close-on-exec */ #define MSG_WAITFORONE 0x00080000 /* for recvmmsg() */ #endif #ifdef _KERNEL #define MSG_MORETOCOME 0x00100000 /* additional data pending */ #endif /* * Header for ancillary data objects in msg_control buffer. * Used for additional information with/about a datagram * not expressible by flags. The format is a sequence * of message elements headed by cmsghdr structures. */ struct cmsghdr { socklen_t cmsg_len; /* data byte count, including hdr */ int cmsg_level; /* originating protocol */ int cmsg_type; /* protocol-specific type */ /* followed by u_char cmsg_data[]; */ }; #if __BSD_VISIBLE /* * While we may have more groups than this, the cmsgcred struct must * be able to fit in an mbuf and we have historically supported a * maximum of 16 groups. */ #define CMGROUP_MAX 16 /* * Credentials structure, used to verify the identity of a peer * process that has sent us a message. This is allocated by the * peer process but filled in by the kernel. This prevents the * peer from lying about its identity. (Note that cmcred_groups[0] * is the effective GID.) */ struct cmsgcred { pid_t cmcred_pid; /* PID of sending process */ uid_t cmcred_uid; /* real UID of sending process */ uid_t cmcred_euid; /* effective UID of sending process */ gid_t cmcred_gid; /* real GID of sending process */ short cmcred_ngroups; /* number or groups */ gid_t cmcred_groups[CMGROUP_MAX]; /* groups */ }; /* * Socket credentials. */ struct sockcred { uid_t sc_uid; /* real user id */ uid_t sc_euid; /* effective user id */ gid_t sc_gid; /* real group id */ gid_t sc_egid; /* effective group id */ int sc_ngroups; /* number of supplemental groups */ gid_t sc_groups[1]; /* variable length */ }; /* * Compute size of a sockcred structure with groups. */ #define SOCKCREDSIZE(ngrps) \ (sizeof(struct sockcred) + (sizeof(gid_t) * ((ngrps) - 1))) #endif /* __BSD_VISIBLE */ /* given pointer to struct cmsghdr, return pointer to data */ #define CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ _ALIGN(sizeof(struct cmsghdr))) /* given pointer to struct cmsghdr, return pointer to next cmsghdr */ #define CMSG_NXTHDR(mhdr, cmsg) \ ((char *)(cmsg) == (char *)0 ? CMSG_FIRSTHDR(mhdr) : \ ((char *)(cmsg) + _ALIGN(((struct cmsghdr *)(cmsg))->cmsg_len) + \ _ALIGN(sizeof(struct cmsghdr)) > \ (char *)(mhdr)->msg_control + (mhdr)->msg_controllen) ? \ (struct cmsghdr *)0 : \ (struct cmsghdr *)(void *)((char *)(cmsg) + \ _ALIGN(((struct cmsghdr *)(cmsg))->cmsg_len))) /* * RFC 2292 requires to check msg_controllen, in case that the kernel returns * an empty list for some reasons. */ #define CMSG_FIRSTHDR(mhdr) \ ((mhdr)->msg_controllen >= sizeof(struct cmsghdr) ? \ (struct cmsghdr *)(mhdr)->msg_control : \ (struct cmsghdr *)0) #if __BSD_VISIBLE /* RFC 2292 additions */ #define CMSG_SPACE(l) (_ALIGN(sizeof(struct cmsghdr)) + _ALIGN(l)) #define CMSG_LEN(l) (_ALIGN(sizeof(struct cmsghdr)) + (l)) #endif #ifdef _KERNEL #define CMSG_ALIGN(n) _ALIGN(n) #endif /* "Socket"-level control message types: */ #define SCM_RIGHTS 0x01 /* access rights (array of int) */ #if __BSD_VISIBLE #define SCM_TIMESTAMP 0x02 /* timestamp (struct timeval) */ #define SCM_CREDS 0x03 /* process creds (struct cmsgcred) */ #define SCM_BINTIME 0x04 /* timestamp (struct bintime) */ #define SCM_REALTIME 0x05 /* timestamp (struct timespec) */ #define SCM_MONOTONIC 0x06 /* timestamp (struct timespec) */ #define SCM_TIME_INFO 0x07 /* timestamp info */ struct sock_timestamp_info { __uint32_t st_info_flags; __uint32_t st_info_pad0; __uint64_t st_info_rsv[7]; }; #define ST_INFO_HW 0x0001 /* SCM_TIMESTAMP was hw */ #define ST_INFO_HW_HPREC 0x0002 /* SCM_TIMESTAMP was hw-assisted on entrance */ #endif #if __BSD_VISIBLE /* * 4.3 compat sockaddr, move to compat file later */ struct osockaddr { unsigned short sa_family; /* address family */ char sa_data[14]; /* up to 14 bytes of direct address */ }; /* * 4.3-compat message header (move to compat file later). */ struct omsghdr { char *msg_name; /* optional address */ int msg_namelen; /* size of address */ struct iovec *msg_iov; /* scatter/gather array */ int msg_iovlen; /* # elements in msg_iov */ char *msg_accrights; /* access rights sent/received */ int msg_accrightslen; }; #endif /* * howto arguments for shutdown(2), specified by Posix.1g. */ #define SHUT_RD 0 /* shut down the reading side */ #define SHUT_WR 1 /* shut down the writing side */ #define SHUT_RDWR 2 /* shut down both sides */ #if __BSD_VISIBLE /* for SCTP */ /* we cheat and use the SHUT_XX defines for these */ #define PRU_FLUSH_RD SHUT_RD #define PRU_FLUSH_WR SHUT_WR #define PRU_FLUSH_RDWR SHUT_RDWR #endif #if __BSD_VISIBLE /* * sendfile(2) header/trailer struct */ struct sf_hdtr { struct iovec *headers; /* pointer to an array of header struct iovec's */ int hdr_cnt; /* number of header iovec's */ struct iovec *trailers; /* pointer to an array of trailer struct iovec's */ int trl_cnt; /* number of trailer iovec's */ }; /* * Sendfile-specific flag(s) */ #define SF_NODISKIO 0x00000001 #define SF_MNOWAIT 0x00000002 /* obsolete */ #define SF_SYNC 0x00000004 #define SF_USER_READAHEAD 0x00000008 #define SF_NOCACHE 0x00000010 #define SF_FLAGS(rh, flags) (((rh) << 16) | (flags)) #ifdef _KERNEL #define SF_READAHEAD(flags) ((flags) >> 16) #endif /* _KERNEL */ /* * Sendmmsg/recvmmsg specific structure(s) */ struct mmsghdr { struct msghdr msg_hdr; /* message header */ ssize_t msg_len; /* message length */ }; #endif /* __BSD_VISIBLE */ #ifndef _KERNEL #include __BEGIN_DECLS int accept(int, struct sockaddr * __restrict, socklen_t * __restrict); int bind(int, const struct sockaddr *, socklen_t); int connect(int, const struct sockaddr *, socklen_t); #if __BSD_VISIBLE int accept4(int, struct sockaddr * __restrict, socklen_t * __restrict, int); int bindat(int, int, const struct sockaddr *, socklen_t); int connectat(int, int, const struct sockaddr *, socklen_t); #endif int getpeername(int, struct sockaddr * __restrict, socklen_t * __restrict); int getsockname(int, struct sockaddr * __restrict, socklen_t * __restrict); int getsockopt(int, int, int, void * __restrict, socklen_t * __restrict); int listen(int, int); ssize_t recv(int, void *, size_t, int); ssize_t recvfrom(int, void *, size_t, int, struct sockaddr * __restrict, socklen_t * __restrict); ssize_t recvmsg(int, struct msghdr *, int); #if __BSD_VISIBLE struct timespec; ssize_t recvmmsg(int, struct mmsghdr * __restrict, size_t, int, const struct timespec * __restrict); #endif ssize_t send(int, const void *, size_t, int); ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *, socklen_t); ssize_t sendmsg(int, const struct msghdr *, int); #if __BSD_VISIBLE int sendfile(int, int, off_t, size_t, struct sf_hdtr *, off_t *, int); ssize_t sendmmsg(int, struct mmsghdr * __restrict, size_t, int); int setfib(int); #endif int setsockopt(int, int, int, const void *, socklen_t); int shutdown(int, int); int sockatmark(int); int socket(int, int, int); int socketpair(int, int, int, int *); __END_DECLS #endif /* !_KERNEL */ #ifdef _KERNEL struct socket; struct tcpcb *so_sototcpcb(struct socket *so); struct inpcb *so_sotoinpcb(struct socket *so); struct sockbuf *so_sockbuf_snd(struct socket *); struct sockbuf *so_sockbuf_rcv(struct socket *); int so_state_get(const struct socket *); void so_state_set(struct socket *, int); int so_options_get(const struct socket *); void so_options_set(struct socket *, int); int so_error_get(const struct socket *); void so_error_set(struct socket *, int); int so_linger_get(const struct socket *); void so_linger_set(struct socket *, int); struct protosw *so_protosw_get(const struct socket *); void so_protosw_set(struct socket *, struct protosw *); void so_sorwakeup_locked(struct socket *so); void so_sowwakeup_locked(struct socket *so); void so_sorwakeup(struct socket *so); void so_sowwakeup(struct socket *so); void so_lock(struct socket *so); void so_unlock(struct socket *so); #endif /* _KERNEL */ #endif /* !_SYS_SOCKET_H_ */