Index: stable/11/share/man/man4/inet.4 =================================================================== --- stable/11/share/man/man4/inet.4 (revision 337803) +++ stable/11/share/man/man4/inet.4 (revision 337804) @@ -1,279 +1,302 @@ .\" Copyright (c) 1983, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" From: @(#)inet.4 8.1 (Berkeley) 6/5/93 .\" $FreeBSD$ .\" -.Dd Feb 4, 2016 +.Dd August 14, 2018 .Dt INET 4 .Os .Sh NAME .Nm inet .Nd Internet protocol family .Sh SYNOPSIS .In sys/types.h .In netinet/in.h .Sh DESCRIPTION The Internet protocol family is a collection of protocols layered atop the .Em Internet Protocol .Pq Tn IP transport layer, and utilizing the Internet address format. The Internet family provides protocol support for the .Dv SOCK_STREAM , SOCK_DGRAM , and .Dv SOCK_RAW socket types; the .Dv SOCK_RAW interface provides access to the .Tn IP protocol. .Sh ADDRESSING Internet addresses are four byte quantities, stored in network standard format (on little endian machines, such as the .Tn alpha , .Tn amd64 and .Tn i386 these are word and byte reversed). The include file .In netinet/in.h defines this address as a discriminated union. .Pp Sockets bound to the Internet protocol family utilize the following addressing structure, .Bd -literal -offset indent struct sockaddr_in { uint8_t sin_len; sa_family_t sin_family; in_port_t sin_port; struct in_addr sin_addr; char sin_zero[8]; }; .Ed .Pp Sockets may be created with the local address .Dv INADDR_ANY to affect .Dq wildcard matching on incoming messages. The address in a .Xr connect 2 or .Xr sendto 2 call may be given as .Dv INADDR_ANY to mean .Dq this host . The distinguished address .Dv INADDR_BROADCAST is allowed as a shorthand for the broadcast address on the primary network if the first network configured supports broadcast. .Sh PROTOCOLS The Internet protocol family is comprised of the .Tn IP network protocol, Internet Control Message Protocol .Pq Tn ICMP , Internet Group Management Protocol .Pq Tn IGMP , Transmission Control Protocol .Pq Tn TCP , and User Datagram Protocol .Pq Tn UDP . .Tn TCP is used to support the .Dv SOCK_STREAM abstraction while .Tn UDP is used to support the .Dv SOCK_DGRAM abstraction. A raw interface to .Tn IP is available by creating an Internet socket of type .Dv SOCK_RAW . The .Tn ICMP message protocol is accessible from a raw socket. .Pp The .Nm address on an interface consist of the address itself, the netmask, either broadcast address in case of a broadcast interface or peers address in case of point-to-point interface. The following .Xr ioctl 2 commands are provided for a datagram socket in the Internet domain: .Pp .Bl -tag -width ".Dv SIOCGIFBRDADDR" -offset indent -compact .It Dv SIOCAIFADDR Add address to an interface. The command requires .Ft struct in_aliasreq as argument. .It Dv SIOCDIFADDR Delete address from an interface. The command requires .Ft struct ifreq as argument. .It Dv SIOCGIFADDR .It Dv SIOCGIFBRDADDR .It Dv SIOCGIFDSTADDR .It Dv SIOCGIFNETMASK Return address information from interface. The returned value is in .Ft struct ifreq . This way of address information retrieval is obsoleted, a preferred way is to use .Xr getifaddrs 3 API. .El .Ss MIB Variables A number of variables are implemented in the net.inet branch of the .Xr sysctl 3 MIB. In addition to the variables supported by the transport protocols (for which the respective manual pages may be consulted), the following general variables are defined: .Bl -tag -width IPCTL_ACCEPTSOURCEROUTE .It Dv IPCTL_FORWARDING .Pq ip.forwarding Boolean: enable/disable forwarding of IP packets. Defaults to off. .It Dv IPCTL_SENDREDIRECTS .Pq ip.redirect Boolean: enable/disable sending of ICMP redirects in response to .Tn IP packets for which a better, and for the sender directly reachable, route and next hop is known. Defaults to on. .It Dv IPCTL_DEFTTL .Pq ip.ttl Integer: default time-to-live .Pq Dq TTL to use for outgoing .Tn IP packets. .It Dv IPCTL_ACCEPTSOURCEROUTE .Pq ip.accept_sourceroute Boolean: enable/disable accepting of source-routed IP packets (default false). .It Dv IPCTL_SOURCEROUTE .Pq ip.sourceroute Boolean: enable/disable forwarding of source-routed IP packets (default false). .It Va ip.process_options Integer: control IP options processing. By setting this variable to 0, all IP options in the incoming packets will be ignored, and the packets will be passed unmodified. By setting to 1, IP options in the incoming packets will be processed accordingly. By setting to 2, an .Tn ICMP .Dq "prohibited by filter" message will be sent back in response to incoming packets with IP options. Default is 1. This .Xr sysctl 8 variable affects packets destined for a local host as well as packets forwarded to some other host. .It Va ip.rfc6864 Boolean: control IP IDs generation behaviour. True value enables RFC6864 support, which specifies that IP ID field of .Em atomic datagrams can be set to any value. The .Fx implementation sets it to zero. Enabled by default. .It Va ip.random_id Boolean: control IP IDs generation behaviour. Setting this .Xr sysctl 8 to 1 causes the ID field in .Em non-atomic IP datagrams (or all IP datagrams, if .Va ip.rfc6864 is disabled) to be randomized instead of incremented by 1 with each packet generated. This closes a minor information leak which allows remote observers to determine the rate of packet generation on the machine by watching the counter. At the same time, on high-speed links, it can decrease the ID reuse cycle greatly. Default is 0 (sequential IP IDs). IPv6 flow IDs and fragment IDs are always random. +.It Va ip.maxfrags +Integer: maximum number of fragments the host will accept and simultaneously +hold across all reassembly queues in all VNETs. +If set to 0, reassembly is disabled. +If set to -1, this limit is not applied. +This limit is recalculated when the number of mbuf clusters is changed. +This is a global limit. .It Va ip.maxfragpackets -Integer: maximum number of fragmented packets the host will accept and hold -in the reassembling queue simultaneously. -0 means that the host will not accept any fragmented packets. -\-1 means that the host will accept as many fragmented packets as it receives. +Integer: maximum number of fragmented packets the host will accept and +simultaneously hold in the reassembly queue for a particular VNET. +0 means that the host will not accept any fragmented packets for that VNET. +\-1 means that the host will not apply this limit for that VNET. +This limit is recalculated when the number of mbuf clusters is changed. +This is a per-VNET limit. +.It Va ip.maxfragbucketsize +Integer: maximum number of reassembly queues per bucket. +Fragmented packets are hashed to buckets. +Each bucket has a list of reassembly queues. +The system must compare the incoming packets to the existing reassembly queues +in the bucket to find a matching reassembly queue. +To preserve system resources, the system limits the number of reassembly +queues allowed in each bucket. +This limit is recalculated when the number of mbuf clusters is changed or +when the value of +.Va ip.maxfragpackets +changes. +This is a per-VNET limit. .It Va ip.maxfragsperpacket Integer: maximum number of fragments the host will accept and hold -in the reassembling queue for a packet. -0 means that the host will not accept any fragmented packets. +in the reassembly queue for a packet. +0 means that the host will not accept any fragmented packets for the VNET. +This is a per-VNET limit. .El .Sh SEE ALSO .Xr ioctl 2 , .Xr socket 2 , .Xr getifaddrs 3 , .Xr sysctl 3 , .Xr icmp 4 , .Xr intro 4 , .Xr ip 4 , .Xr ipfirewall 4 , .Xr route 4 , .Xr tcp 4 , .Xr udp 4 , .Xr pfil 9 .Rs .%T "An Introductory 4.3 BSD Interprocess Communication Tutorial" .%B PS1 .%N 7 .Re .Rs .%T "An Advanced 4.3 BSD Interprocess Communication Tutorial" .%B PS1 .%N 8 .Re .Sh HISTORY The .Nm protocol interface appeared in .Bx 4.2 . The .Dq protocol cloning code appeared in .Fx 2.1 . .Sh CAVEATS The Internet protocol support is subject to change as the Internet protocols develop. Users should not depend on details of the current implementation, but rather the services exported. Index: stable/11/share/man/man4/inet6.4 =================================================================== --- stable/11/share/man/man4/inet6.4 (revision 337803) +++ stable/11/share/man/man4/inet6.4 (revision 337804) @@ -1,431 +1,460 @@ .\" $KAME: inet6.4,v 1.21 2001/04/05 01:00:18 itojun Exp $ .\" .\" Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the project nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd September 2, 2009 +.Dd August 14, 2018 .Dt INET6 4 .Os .Sh NAME .Nm inet6 .Nd Internet protocol version 6 family .Sh SYNOPSIS .In sys/types.h .In netinet/in.h .Sh DESCRIPTION The .Nm family is an updated version of .Xr inet 4 family. While .Xr inet 4 implements Internet Protocol version 4, .Nm implements Internet Protocol version 6. .Pp .Nm is a collection of protocols layered atop the .Em Internet Protocol version 6 .Pq Tn IPv6 transport layer, and utilizing the IPv6 address format. The .Nm family provides protocol support for the .Dv SOCK_STREAM , SOCK_DGRAM , and .Dv SOCK_RAW socket types; the .Dv SOCK_RAW interface provides access to the .Tn IPv6 protocol. .Sh ADDRESSING IPv6 addresses are 16 byte quantities, stored in network standard byteorder. The include file .In netinet/in.h defines this address as a discriminated union. .Pp Sockets bound to the .Nm family utilize the following addressing structure: .Bd -literal -offset indent struct sockaddr_in6 { uint8_t sin6_len; sa_family_t sin6_family; in_port_t sin6_port; uint32_t sin6_flowinfo; struct in6_addr sin6_addr; uint32_t sin6_scope_id; }; .Ed .Pp Sockets may be created with the local address .Dq Dv :: (which is equal to IPv6 address .Dv 0:0:0:0:0:0:0:0 ) to affect .Dq wildcard matching on incoming messages. .Pp The IPv6 specification defines scoped addresses, like link-local or site-local addresses. A scoped address is ambiguous to the kernel, if it is specified without a scope identifier. To manipulate scoped addresses properly from the userland, programs must use the advanced API defined in RFC2292. A compact description of the advanced API is available in .Xr ip6 4 . If a scoped address is specified without an explicit scope, the kernel may raise an error. Note that scoped addresses are not for daily use at this moment, both from a specification and an implementation point of view. .Pp The KAME implementation supports an extended numeric IPv6 address notation for link-local addresses, like .Dq Li fe80::1%de0 to specify .Do .Li fe80::1 on .Li de0 interface .Dc . This notation is supported by .Xr getaddrinfo 3 and .Xr getnameinfo 3 . Some of normal userland programs, such as .Xr telnet 1 or .Xr ftp 1 , are able to use this notation. With special programs like .Xr ping6 8 , you can specify the outgoing interface by an extra command line option to disambiguate scoped addresses. .Pp Scoped addresses are handled specially in the kernel. In kernel structures like routing tables or interface structures, a scoped address will have its interface index embedded into the address. Therefore, the address in some kernel structures is not the same as that on the wire. The embedded index will become visible through a .Dv PF_ROUTE socket, kernel memory accesses via .Xr kvm 3 and on some other occasions. HOWEVER, users should never use the embedded form. For details please consult .Pa IMPLEMENTATION supplied with KAME kit. .Sh PROTOCOLS The .Nm family is comprised of the .Tn IPv6 network protocol, Internet Control Message Protocol version 6 .Pq Tn ICMPv6 , Transmission Control Protocol .Pq Tn TCP , and User Datagram Protocol .Pq Tn UDP . .Tn TCP is used to support the .Dv SOCK_STREAM abstraction while .Tn UDP is used to support the .Dv SOCK_DGRAM abstraction. Note that .Tn TCP and .Tn UDP are common to .Xr inet 4 and .Nm . A raw interface to .Tn IPv6 is available by creating an Internet socket of type .Dv SOCK_RAW . The .Tn ICMPv6 message protocol is accessible from a raw socket. .Ss MIB Variables A number of variables are implemented in the net.inet6 branch of the .Xr sysctl 3 MIB. In addition to the variables supported by the transport protocols (for which the respective manual pages may be consulted), the following general variables are defined: .Bl -tag -width IPV6CTL_MAXFRAGPACKETS .It Dv IPV6CTL_FORWARDING .Pq ip6.forwarding Boolean: enable/disable forwarding of .Tn IPv6 packets. Also, identify if the node is acting as a router. Defaults to off. .It Dv IPV6CTL_SENDREDIRECTS .Pq ip6.redirect Boolean: enable/disable sending of .Tn ICMPv6 redirects in response to unforwardable .Tn IPv6 packets. This option is ignored unless the node is routing .Tn IPv6 packets, and should normally be enabled on all systems. Defaults to on. .It Dv IPV6CTL_DEFHLIM .Pq ip6.hlim Integer: default hop limit value to use for outgoing .Tn IPv6 packets. This value applies to all the transport protocols on top of .Tn IPv6 . There are APIs to override the value. +.It Dv IPV6CTL_MAXFRAGS +.Pq ip6.maxfrags +Integer: maximum number of fragments the host will accept and simultaneously +hold across all reassembly queues in all VNETs. +If set to 0, fragment reassembly is disabled. +If set to -1, this limit is not applied. +This limit is recalculated when the number of mbuf clusters is changed. +This is a global limit. .It Dv IPV6CTL_MAXFRAGPACKETS .Pq ip6.maxfragpackets -Integer: default maximum number of fragmented packets the node will accept. -0 means that the node will not accept any fragmented packets. --1 means that the node will accept as many fragmented packets as it receives. -The flag is provided basically for avoiding possible DoS attacks. +Integer: maximum number of fragmented packets the node will accept and +simultaneously hold in the reassembly queue for a particular VNET. +0 means that the node will not accept any fragmented packets for that VNET. +-1 means that the node will not apply this limit for that VNET. +This limit is recalculated when the number of mbuf clusters is changed. +This is a per-VNET limit. +.It Dv IPV6CTL_MAXFRAGBUCKETSIZE +.Pq ip6.maxfragbucketsize +Integer: maximum number of reassembly queues per bucket. +Fragmented packets are hashed to buckets. +Each bucket has a list of reassembly queues. +The system must compare the incoming packets to the existing reassembly queues +in the bucket to find a matching reassembly queue. +To preserve system resources, the system limits the number of reassembly +queues allowed in each bucket. +This limit is recalculated when the number of mbuf clusters is changed or +when the value of +.Va ip6.maxfragpackets +changes. +This is a per-VNET limit. +.It Dv IPV6CTL_MAXFRAGSPERPACKET +.Pq ip6.maxfragsperpacket +Integer: maximum number of fragments the host will accept and hold in the +ressembly queue for a packet. +This is a per-VNET limit. .It Dv IPV6CTL_ACCEPT_RTADV .Pq ip6.accept_rtadv Boolean: the default value of a per-interface flag to enable/disable receiving of .Tn ICMPv6 router advertisement packets, and autoconfiguration of address prefixes and default routers. The node must be a host (not a router) for the option to be meaningful. Defaults to off. .It Dv IPV6CTL_AUTO_LINKLOCAL .Pq ip6.auto_linklocal Boolean: the default value of a per-interface flag to enable/disable performing automatic link-local address configuration. Defaults to on. .It Dv IPV6CTL_LOG_INTERVAL .Pq ip6.log_interval Integer: default interval between .Tn IPv6 packet forwarding engine log output (in seconds). .It Dv IPV6CTL_HDRNESTLIMIT .Pq ip6.hdrnestlimit Integer: default number of the maximum .Tn IPv6 extension headers permitted on incoming .Tn IPv6 packets. If set to 0, the node will accept as many extension headers as possible. .It Dv IPV6CTL_DAD_COUNT .Pq ip6.dad_count Integer: default number of .Tn IPv6 DAD .Pq duplicated address detection probe packets. The packets will be generated when .Tn IPv6 interface addresses are configured. .It Dv IPV6CTL_AUTO_FLOWLABEL .Pq ip6.auto_flowlabel Boolean: enable/disable automatic filling of .Tn IPv6 flowlabel field, for outstanding connected transport protocol packets. The field might be used by intermediate routers to identify packet flows. Defaults to on. .It Dv IPV6CTL_DEFMCASTHLIM .Pq ip6.defmcasthlim Integer: default hop limit value for an .Tn IPv6 multicast packet sourced by the node. This value applies to all the transport protocols on top of .Tn IPv6 . There are APIs to override the value as documented in .Xr ip6 4 . .It Dv IPV6CTL_GIF_HLIM .Pq ip6.gifhlim Integer: default maximum hop limit value for an .Tn IPv6 packet generated by .Xr gif 4 tunnel interface. .It Dv IPV6CTL_KAME_VERSION .Pq ip6.kame_version String: identifies the version of KAME .Tn IPv6 stack implemented in the kernel. .It Dv IPV6CTL_USE_DEPRECATED .Pq ip6.use_deprecated Boolean: enable/disable use of deprecated address, specified in RFC2462 5.5.4. Defaults to on. .It Dv IPV6CTL_RR_PRUNE .Pq ip6.rr_prune Integer: default interval between .Tn IPv6 router renumbering prefix babysitting, in seconds. .It Dv IPV6CTL_V6ONLY .Pq ip6.v6only Boolean: enable/disable the prohibited use of .Tn IPv4 mapped address on .Dv AF_INET6 sockets. Defaults to on. .El .Ss Interaction between IPv4/v6 sockets By default, .Fx does not route IPv4 traffic to .Dv AF_INET6 sockets. The default behavior intentionally violates RFC2553 for security reasons. Listen to two sockets if you want to accept both IPv4 and IPv6 traffic. IPv4 traffic may be routed with certain per-socket/per-node configuration, however, it is not recommended to do so. Consult .Xr ip6 4 for details. .Pp The behavior of .Dv AF_INET6 TCP/UDP socket is documented in RFC2553. Basically, it says this: .Bl -bullet -compact .It A specific bind on an .Dv AF_INET6 socket .Xr ( bind 2 with an address specified) should accept IPv6 traffic to that address only. .It If you perform a wildcard bind on an .Dv AF_INET6 socket .Xr ( bind 2 to IPv6 address .Li :: ) , and there is no wildcard bind .Dv AF_INET socket on that TCP/UDP port, IPv6 traffic as well as IPv4 traffic should be routed to that .Dv AF_INET6 socket. IPv4 traffic should be seen as if it came from an IPv6 address like .Li ::ffff:10.1.1.1 . This is called an IPv4 mapped address. .It If there are both a wildcard bind .Dv AF_INET socket and a wildcard bind .Dv AF_INET6 socket on one TCP/UDP port, they should behave separately. IPv4 traffic should be routed to the .Dv AF_INET socket and IPv6 should be routed to the .Dv AF_INET6 socket. .El .Pp However, RFC2553 does not define the ordering constraint between calls to .Xr bind 2 , nor how IPv4 TCP/UDP port numbers and IPv6 TCP/UDP port numbers relate to each other (should they be integrated or separated). Implemented behavior is very different from kernel to kernel. Therefore, it is unwise to rely too much upon the behavior of .Dv AF_INET6 wildcard bind sockets. It is recommended to listen to two sockets, one for .Dv AF_INET and another for .Dv AF_INET6 , when you would like to accept both IPv4 and IPv6 traffic. .Pp It should also be noted that malicious parties can take advantage of the complexity presented above, and are able to bypass access control, if the target node routes IPv4 traffic to .Dv AF_INET6 socket. Users are advised to take care handling connections from IPv4 mapped address to .Dv AF_INET6 sockets. .Sh SEE ALSO .Xr ioctl 2 , .Xr socket 2 , .Xr sysctl 3 , .Xr icmp6 4 , .Xr intro 4 , .Xr ip6 4 , .Xr tcp 4 , .Xr udp 4 .Sh STANDARDS .Rs .%A Tatsuya Jinmei .%A Atsushi Onoe .%T "An Extension of Format for IPv6 Scoped Addresses" .%R internet draft .%D June 2000 .%N draft-ietf-ipngwg-scopedaddr-format-02.txt .%O work in progress material .Re .Sh HISTORY The .Nm protocol interfaces are defined in RFC2553 and RFC2292. The implementation described herein appeared in the WIDE/KAME project. .Sh BUGS The IPv6 support is subject to change as the Internet protocols develop. Users should not depend on details of the current implementation, but rather the services exported. .Pp Users are suggested to implement .Dq version independent code as much as possible, as you will need to support both .Xr inet 4 and .Nm . Index: stable/11 =================================================================== --- stable/11 (revision 337803) +++ stable/11 (revision 337804) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r337788