Index: head/sys/netinet/tcp_input.c =================================================================== --- head/sys/netinet/tcp_input.c (revision 336931) +++ head/sys/netinet/tcp_input.c (revision 336932) @@ -1,3817 +1,3818 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 * The Regents of the University of California. All rights reserved. * Copyright (c) 2007-2008,2010 * Swinburne University of Technology, Melbourne, Australia. * Copyright (c) 2009-2010 Lawrence Stewart * Copyright (c) 2010 The FreeBSD Foundation * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed at the Centre for Advanced Internet * Architectures, Swinburne University of Technology, by Lawrence Stewart, * James Healy and David Hayes, made possible in part by a grant from the Cisco * University Research Program Fund at Community Foundation Silicon Valley. * * Portions of this software were developed at the Centre for Advanced * Internet Architectures, Swinburne University of Technology, Melbourne, * Australia by David Hayes under sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #ifdef TCP_HHOOK #include #endif #include #include #include /* for proc0 declaration */ #include #include #include #include #include #include #include #include #include /* before tcp_seq.h, for tcp_random18() */ #include #include #include #include #include #define TCPSTATES /* for logging */ #include #include #include #include #include #include /* required for icmp_var.h */ #include /* for ICMP_BANDLIM */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef TCPPCAP #include #endif #include #ifdef TCPDEBUG #include #endif /* TCPDEBUG */ #ifdef TCP_OFFLOAD #include #endif #include #include #include const int tcprexmtthresh = 3; int tcp_log_in_vain = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW, &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports"); VNET_DEFINE(int, blackhole) = 0; #define V_blackhole VNET(blackhole) SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(blackhole), 0, "Do not send RST on segments to closed ports"); VNET_DEFINE(int, tcp_delack_enabled) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_delack_enabled), 0, "Delay ACK to try and piggyback it onto a data packet"); VNET_DEFINE(int, drop_synfin) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(drop_synfin), 0, "Drop TCP packets with SYN+FIN set"); VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc6675_pipe), 0, "Use calculated pipe/in-flight bytes per RFC 6675"); VNET_DEFINE(int, tcp_do_rfc3042) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3042), 0, "Enable RFC 3042 (Limited Transmit)"); VNET_DEFINE(int, tcp_do_rfc3390) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3390), 0, "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); VNET_DEFINE(int, tcp_initcwnd_segments) = 10; SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0, "Slow-start flight size (initial congestion window) in number of segments"); VNET_DEFINE(int, tcp_do_rfc3465) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3465), 0, "Enable RFC 3465 (Appropriate Byte Counting)"); VNET_DEFINE(int, tcp_abc_l_var) = 2; SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_abc_l_var), 2, "Cap the max cwnd increment during slow-start to this number of segments"); static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN"); VNET_DEFINE(int, tcp_do_ecn) = 2; SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_ecn), 0, "TCP ECN support"); VNET_DEFINE(int, tcp_ecn_maxretries) = 1; SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ecn_maxretries), 0, "Max retries before giving up on ECN"); VNET_DEFINE(int, tcp_insecure_syn) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_insecure_syn), 0, "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets"); VNET_DEFINE(int, tcp_insecure_rst) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_insecure_rst), 0, "Follow RFC793 instead of RFC5961 criteria for accepting RST packets"); VNET_DEFINE(int, tcp_recvspace) = 1024*64; #define V_tcp_recvspace VNET(tcp_recvspace) SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size"); VNET_DEFINE(int, tcp_do_autorcvbuf) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_autorcvbuf), 0, "Enable automatic receive buffer sizing"); VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024; SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_autorcvbuf_inc), 0, "Incrementor step size of automatic receive buffer"); VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024; SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_autorcvbuf_max), 0, "Max size of automatic receive buffer"); VNET_DEFINE(struct inpcbhead, tcb); #define tcb6 tcb /* for KAME src sync over BSD*'s */ VNET_DEFINE(struct inpcbinfo, tcbinfo); /* * TCP statistics are stored in an array of counter(9)s, which size matches * size of struct tcpstat. TCP running connection count is a regular array. */ VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat, tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]); SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD | CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES, "TCP connection counts by TCP state"); static void tcp_vnet_init(const void *unused) { COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); } VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, tcp_vnet_init, NULL); #ifdef VIMAGE static void tcp_vnet_uninit(const void *unused) { COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); VNET_PCPUSTAT_FREE(tcpstat); } VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, tcp_vnet_uninit, NULL); #endif /* VIMAGE */ /* * Kernel module interface for updating tcpstat. The argument is an index * into tcpstat treated as an array. */ void kmod_tcpstat_inc(int statnum) { counter_u64_add(VNET(tcpstat)[statnum], 1); } #ifdef TCP_HHOOK /* * Wrapper for the TCP established input helper hook. */ void hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) { struct tcp_hhook_data hhook_data; if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) { hhook_data.tp = tp; hhook_data.th = th; hhook_data.to = to; hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data, tp->osd); } } #endif /* * CC wrapper hook functions */ void cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs, uint16_t type) { INP_WLOCK_ASSERT(tp->t_inpcb); tp->ccv->nsegs = nsegs; tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th); if (tp->snd_cwnd <= tp->snd_wnd) tp->ccv->flags |= CCF_CWND_LIMITED; else tp->ccv->flags &= ~CCF_CWND_LIMITED; if (type == CC_ACK) { if (tp->snd_cwnd > tp->snd_ssthresh) { tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, nsegs * V_tcp_abc_l_var * tcp_maxseg(tp)); if (tp->t_bytes_acked >= tp->snd_cwnd) { tp->t_bytes_acked -= tp->snd_cwnd; tp->ccv->flags |= CCF_ABC_SENTAWND; } } else { tp->ccv->flags &= ~CCF_ABC_SENTAWND; tp->t_bytes_acked = 0; } } if (CC_ALGO(tp)->ack_received != NULL) { /* XXXLAS: Find a way to live without this */ tp->ccv->curack = th->th_ack; CC_ALGO(tp)->ack_received(tp->ccv, type); } } void cc_conn_init(struct tcpcb *tp) { struct hc_metrics_lite metrics; struct inpcb *inp = tp->t_inpcb; u_int maxseg; int rtt; INP_WLOCK_ASSERT(tp->t_inpcb); tcp_hc_get(&inp->inp_inc, &metrics); maxseg = tcp_maxseg(tp); if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { tp->t_srtt = rtt; tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE; TCPSTAT_INC(tcps_usedrtt); if (metrics.rmx_rttvar) { tp->t_rttvar = metrics.rmx_rttvar; TCPSTAT_INC(tcps_usedrttvar); } else { /* default variation is +- 1 rtt */ tp->t_rttvar = tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; } TCPT_RANGESET(tp->t_rxtcur, ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, tp->t_rttmin, TCPTV_REXMTMAX); } if (metrics.rmx_ssthresh) { /* * There's some sort of gateway or interface * buffer limit on the path. Use this to set * the slow start threshold, but set the * threshold to no less than 2*mss. */ tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh); TCPSTAT_INC(tcps_usedssthresh); } /* * Set the initial slow-start flight size. * * RFC5681 Section 3.1 specifies the default conservative values. * RFC3390 specifies slightly more aggressive values. * RFC6928 increases it to ten segments. * Support for user specified value for initial flight size. * * If a SYN or SYN/ACK was lost and retransmitted, we have to * reduce the initial CWND to one segment as congestion is likely * requiring us to be cautious. */ if (tp->snd_cwnd == 1) tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */ else if (V_tcp_initcwnd_segments) tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg, max(2 * maxseg, V_tcp_initcwnd_segments * 1460)); else if (V_tcp_do_rfc3390) tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380)); else { /* Per RFC5681 Section 3.1 */ if (maxseg > 2190) tp->snd_cwnd = 2 * maxseg; else if (maxseg > 1095) tp->snd_cwnd = 3 * maxseg; else tp->snd_cwnd = 4 * maxseg; } if (CC_ALGO(tp)->conn_init != NULL) CC_ALGO(tp)->conn_init(tp->ccv); } void inline cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) { u_int maxseg; INP_WLOCK_ASSERT(tp->t_inpcb); switch(type) { case CC_NDUPACK: if (!IN_FASTRECOVERY(tp->t_flags)) { tp->snd_recover = tp->snd_max; if (tp->t_flags & TF_ECN_PERMIT) tp->t_flags |= TF_ECN_SND_CWR; } break; case CC_ECN: if (!IN_CONGRECOVERY(tp->t_flags)) { TCPSTAT_INC(tcps_ecn_rcwnd); tp->snd_recover = tp->snd_max; if (tp->t_flags & TF_ECN_PERMIT) tp->t_flags |= TF_ECN_SND_CWR; } break; case CC_RTO: maxseg = tcp_maxseg(tp); tp->t_dupacks = 0; tp->t_bytes_acked = 0; EXIT_RECOVERY(tp->t_flags); tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 / maxseg) * maxseg; tp->snd_cwnd = maxseg; break; case CC_RTO_ERR: TCPSTAT_INC(tcps_sndrexmitbad); /* RTO was unnecessary, so reset everything. */ tp->snd_cwnd = tp->snd_cwnd_prev; tp->snd_ssthresh = tp->snd_ssthresh_prev; tp->snd_recover = tp->snd_recover_prev; if (tp->t_flags & TF_WASFRECOVERY) ENTER_FASTRECOVERY(tp->t_flags); if (tp->t_flags & TF_WASCRECOVERY) ENTER_CONGRECOVERY(tp->t_flags); tp->snd_nxt = tp->snd_max; tp->t_flags &= ~TF_PREVVALID; tp->t_badrxtwin = 0; break; } if (CC_ALGO(tp)->cong_signal != NULL) { if (th != NULL) tp->ccv->curack = th->th_ack; CC_ALGO(tp)->cong_signal(tp->ccv, type); } } void inline cc_post_recovery(struct tcpcb *tp, struct tcphdr *th) { INP_WLOCK_ASSERT(tp->t_inpcb); /* XXXLAS: KASSERT that we're in recovery? */ if (CC_ALGO(tp)->post_recovery != NULL) { tp->ccv->curack = th->th_ack; CC_ALGO(tp)->post_recovery(tp->ccv); } /* XXXLAS: EXIT_RECOVERY ? */ tp->t_bytes_acked = 0; } /* * Indicate whether this ack should be delayed. We can delay the ack if * following conditions are met: * - There is no delayed ack timer in progress. * - Our last ack wasn't a 0-sized window. We never want to delay * the ack that opens up a 0-sized window. * - LRO wasn't used for this segment. We make sure by checking that the * segment size is not larger than the MSS. */ #define DELAY_ACK(tp, tlen) \ ((!tcp_timer_active(tp, TT_DELACK) && \ (tp->t_flags & TF_RXWIN0SENT) == 0) && \ (tlen <= tp->t_maxseg) && \ (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) static void inline cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos) { INP_WLOCK_ASSERT(tp->t_inpcb); if (CC_ALGO(tp)->ecnpkt_handler != NULL) { switch (iptos & IPTOS_ECN_MASK) { case IPTOS_ECN_CE: tp->ccv->flags |= CCF_IPHDR_CE; break; case IPTOS_ECN_ECT0: tp->ccv->flags &= ~CCF_IPHDR_CE; break; case IPTOS_ECN_ECT1: tp->ccv->flags &= ~CCF_IPHDR_CE; break; } if (th->th_flags & TH_CWR) tp->ccv->flags |= CCF_TCPHDR_CWR; else tp->ccv->flags &= ~CCF_TCPHDR_CWR; if (tp->t_flags & TF_DELACK) tp->ccv->flags |= CCF_DELACK; else tp->ccv->flags &= ~CCF_DELACK; CC_ALGO(tp)->ecnpkt_handler(tp->ccv); if (tp->ccv->flags & CCF_ACKNOW) tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); } } /* * TCP input handling is split into multiple parts: * tcp6_input is a thin wrapper around tcp_input for the extended * ip6_protox[] call format in ip6_input * tcp_input handles primary segment validation, inpcb lookup and * SYN processing on listen sockets * tcp_do_segment processes the ACK and text of the segment for * establishing, established and closing connections */ #ifdef INET6 int tcp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct in6_ifaddr *ia6; struct ip6_hdr *ip6; IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE); /* * draft-itojun-ipv6-tcp-to-anycast * better place to put this in? */ ip6 = mtod(m, struct ip6_hdr *); ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { struct ip6_hdr *ip6; ifa_free(&ia6->ia_ifa); ip6 = mtod(m, struct ip6_hdr *); icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); return (IPPROTO_DONE); } if (ia6) ifa_free(&ia6->ia_ifa); return (tcp_input(mp, offp, proto)); } #endif /* INET6 */ int tcp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct tcphdr *th = NULL; struct ip *ip = NULL; struct inpcb *inp = NULL; struct tcpcb *tp = NULL; struct socket *so = NULL; u_char *optp = NULL; int off0; int optlen = 0; #ifdef INET int len; #endif int tlen = 0, off; int drop_hdrlen; int thflags; int rstreason = 0; /* For badport_bandlim accounting purposes */ uint8_t iptos; struct m_tag *fwd_tag = NULL; struct epoch_tracker et; #ifdef INET6 struct ip6_hdr *ip6 = NULL; int isipv6; #else const void *ip6 = NULL; #endif /* INET6 */ struct tcpopt to; /* options in this segment */ char *s = NULL; /* address and port logging */ int ti_locked; #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif #ifdef INET6 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; #endif off0 = *offp; m = *mp; *mp = NULL; to.to_flags = 0; TCPSTAT_INC(tcps_rcvtotal); #ifdef INET6 if (isipv6) { /* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */ if (m->m_len < (sizeof(*ip6) + sizeof(*th))) { m = m_pullup(m, sizeof(*ip6) + sizeof(*th)); if (m == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } } ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)((caddr_t)ip6 + off0); tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) th->th_sum = m->m_pkthdr.csum_data; else th->th_sum = in6_cksum_pseudo(ip6, tlen, IPPROTO_TCP, m->m_pkthdr.csum_data); th->th_sum ^= 0xffff; } else th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen); if (th->th_sum) { TCPSTAT_INC(tcps_rcvbadsum); goto drop; } /* * Be proactive about unspecified IPv6 address in source. * As we use all-zero to indicate unbounded/unconnected pcb, * unspecified IPv6 address can be used to confuse us. * * Note that packets with unspecified IPv6 destination is * already dropped in ip6_input. */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { /* XXX stat */ goto drop; } iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff; } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { /* * Get IP and TCP header together in first mbuf. * Note: IP leaves IP header in first mbuf. */ if (off0 > sizeof (struct ip)) { ip_stripoptions(m); off0 = sizeof(struct ip); } if (m->m_len < sizeof (struct tcpiphdr)) { if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } } ip = mtod(m, struct ip *); th = (struct tcphdr *)((caddr_t)ip + off0); tlen = ntohs(ip->ip_len) - off0; iptos = ip->ip_tos; if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) th->th_sum = m->m_pkthdr.csum_data; else th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data + tlen + IPPROTO_TCP)); th->th_sum ^= 0xffff; } else { struct ipovly *ipov = (struct ipovly *)ip; /* * Checksum extended TCP header and data. */ len = off0 + tlen; bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); ipov->ih_len = htons(tlen); th->th_sum = in_cksum(m, len); /* Reset length for SDT probes. */ ip->ip_len = htons(len); /* Reset TOS bits */ ip->ip_tos = iptos; /* Re-initialization for later version check */ ip->ip_v = IPVERSION; ip->ip_hl = off0 >> 2; } if (th->th_sum) { TCPSTAT_INC(tcps_rcvbadsum); goto drop; } } #endif /* INET */ /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = th->th_off << 2; if (off < sizeof (struct tcphdr) || off > tlen) { TCPSTAT_INC(tcps_rcvbadoff); goto drop; } tlen -= off; /* tlen is used instead of ti->ti_len */ if (off > sizeof (struct tcphdr)) { #ifdef INET6 if (isipv6) { IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE); ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)((caddr_t)ip6 + off0); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { if (m->m_len < sizeof(struct ip) + off) { if ((m = m_pullup(m, sizeof (struct ip) + off)) == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); th = (struct tcphdr *)((caddr_t)ip + off0); } } #endif optlen = off - sizeof (struct tcphdr); optp = (u_char *)(th + 1); } thflags = th->th_flags; /* * Convert TCP protocol specific fields to host format. */ tcp_fields_to_host(th); /* * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options. */ drop_hdrlen = off0 + off; /* * Locate pcb for segment; if we're likely to add or remove a * connection then first acquire pcbinfo lock. There are three cases * where we might discover later we need a write lock despite the * flags: ACKs moving a connection out of the syncache, ACKs for a * connection in TIMEWAIT and SYNs not targeting a listening socket. */ if ((thflags & (TH_FIN | TH_RST)) != 0) { INP_INFO_RLOCK_ET(&V_tcbinfo, et); ti_locked = TI_RLOCKED; } else ti_locked = TI_UNLOCKED; /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ( #ifdef INET6 (isipv6 && (m->m_flags & M_IP6_NEXTHOP)) #ifdef INET || (!isipv6 && (m->m_flags & M_IP_NEXTHOP)) #endif #endif #if defined(INET) && !defined(INET6) (m->m_flags & M_IP_NEXTHOP) #endif ) fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); findpcb: #ifdef INVARIANTS if (ti_locked == TI_RLOCKED) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); } else { INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); } #endif #ifdef INET6 if (isipv6 && fwd_tag != NULL) { struct sockaddr_in6 *next_hop6; next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &next_hop6->sin6_addr, next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) : th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); } } else if (isipv6) { inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET if (fwd_tag != NULL) { struct sockaddr_in *next_hop; next_hop = (struct sockaddr_in *)(fwd_tag+1); /* * Transparently forwarded. Pretend to be the destination. * already got one like this? */ inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in_pcblookup(&V_tcbinfo, ip->ip_src, th->th_sport, next_hop->sin_addr, next_hop->sin_port ? ntohs(next_hop->sin_port) : th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); } } else inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, ip->ip_dst, th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); #endif /* INET */ /* * If the INPCB does not exist then all data in the incoming * segment is discarded and an appropriate RST is sent back. * XXX MRT Send RST using which routing table? */ if (inp == NULL) { /* * Log communication attempts to ports that are not * in use. */ if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) || tcp_log_in_vain == 2) { if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6))) log(LOG_INFO, "%s; %s: Connection attempt " "to closed port\n", s, __func__); } /* * When blackholing do not respond with a RST but * completely ignore the segment and drop it. */ if ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole == 2) goto dropunlock; rstreason = BANDLIM_RST_CLOSEDPORT; goto dropwithreset; } INP_WLOCK_ASSERT(inp); /* * While waiting for inp lock during the lookup, another thread * can have dropped the inpcb, in which case we need to loop back * and try to find a new inpcb to deliver to. */ if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); inp = NULL; goto findpcb; } if ((inp->inp_flowtype == M_HASHTYPE_NONE) && (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) && ((inp->inp_socket == NULL) || (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) { inp->inp_flowid = m->m_pkthdr.flowid; inp->inp_flowtype = M_HASHTYPE_GET(m); } #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET6 if (isipv6 && IPSEC_ENABLED(ipv6) && IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) { goto dropunlock; } #ifdef INET else #endif #endif /* INET6 */ #ifdef INET if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) { goto dropunlock; } #endif /* INET */ #endif /* IPSEC */ /* * Check the minimum TTL for socket. */ if (inp->inp_ip_minttl != 0) { #ifdef INET6 if (isipv6) { if (inp->inp_ip_minttl > ip6->ip6_hlim) goto dropunlock; } else #endif if (inp->inp_ip_minttl > ip->ip_ttl) goto dropunlock; } /* * A previous connection in TIMEWAIT state is supposed to catch stray * or duplicate segments arriving late. If this segment was a * legitimate new connection attempt, the old INPCB gets removed and * we can try again to find a listening socket. * * At this point, due to earlier optimism, we may hold only an inpcb * lock, and not the inpcbinfo write lock. If so, we need to try to * acquire it, or if that fails, acquire a reference on the inpcb, * drop all locks, acquire a global write lock, and then re-acquire * the inpcb lock. We may at that point discover that another thread * has tried to free the inpcb, in which case we need to loop back * and try to find a new inpcb to deliver to. * * XXXRW: It may be time to rethink timewait locking. */ if (inp->inp_flags & INP_TIMEWAIT) { if (ti_locked == TI_UNLOCKED) { INP_INFO_RLOCK_ET(&V_tcbinfo, et); ti_locked = TI_RLOCKED; } INP_INFO_RLOCK_ASSERT(&V_tcbinfo); if (thflags & TH_SYN) tcp_dooptions(&to, optp, optlen, TO_SYN); /* * NB: tcp_twcheck unlocks the INP and frees the mbuf. */ if (tcp_twcheck(inp, &to, th, m, tlen)) goto findpcb; INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); return (IPPROTO_DONE); } /* * The TCPCB may no longer exist if the connection is winding * down or it is in the CLOSED state. Either way we drop the * segment and send an appropriate response. */ tp = intotcpcb(inp); if (tp == NULL || tp->t_state == TCPS_CLOSED) { rstreason = BANDLIM_RST_CLOSEDPORT; goto dropwithreset; } #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_input(tp, m); m = NULL; /* consumed by the TOE driver */ goto dropunlock; } #endif /* * We've identified a valid inpcb, but it could be that we need an * inpcbinfo write lock but don't hold it. In this case, attempt to * acquire using the same strategy as the TIMEWAIT case above. If we * relock, we have to jump back to 'relocked' as the connection might * now be in TIMEWAIT. */ #ifdef INVARIANTS if ((thflags & (TH_FIN | TH_RST)) != 0) INP_INFO_RLOCK_ASSERT(&V_tcbinfo); #endif if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) || (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) && !IS_FASTOPEN(tp->t_flags)))) { if (ti_locked == TI_UNLOCKED) { INP_INFO_RLOCK_ET(&V_tcbinfo, et); ti_locked = TI_RLOCKED; } INP_INFO_RLOCK_ASSERT(&V_tcbinfo); } #ifdef MAC INP_WLOCK_ASSERT(inp); if (mac_inpcb_check_deliver(inp, m)) goto dropunlock; #endif so = inp->inp_socket; KASSERT(so != NULL, ("%s: so == NULL", __func__)); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) { ostate = tp->t_state; #ifdef INET6 if (isipv6) { bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6)); } else #endif bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); tcp_savetcp = *th; } #endif /* TCPDEBUG */ /* * When the socket is accepting connections (the INPCB is in LISTEN * state) we look into the SYN cache if this is a new connection * attempt or the completion of a previous one. */ KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN), ("%s: so accepting but tp %p not listening", __func__, tp)); if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) { struct in_conninfo inc; bzero(&inc, sizeof(inc)); #ifdef INET6 if (isipv6) { inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = ip6->ip6_src; inc.inc6_laddr = ip6->ip6_dst; } else #endif { inc.inc_faddr = ip->ip_src; inc.inc_laddr = ip->ip_dst; } inc.inc_fport = th->th_sport; inc.inc_lport = th->th_dport; inc.inc_fibnum = so->so_fibnum; /* * Check for an existing connection attempt in syncache if * the flag is only ACK. A successful lookup creates a new * socket appended to the listen queue in SYN_RECEIVED state. */ if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); /* * Parse the TCP options here because * syncookies need access to the reflected * timestamp. */ tcp_dooptions(&to, optp, optlen, 0); /* * NB: syncache_expand() doesn't unlock * inp and tcpinfo locks. */ rstreason = syncache_expand(&inc, &to, th, &so, m); if (rstreason < 0) { /* * A failing TCP MD5 signature comparison * must result in the segment being dropped * and must not produce any response back * to the sender. */ goto dropunlock; } else if (rstreason == 0) { /* * No syncache entry or ACK was not * for our SYN/ACK. Send a RST. * NB: syncache did its own logging * of the failure cause. */ rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } tfo_socket_result: if (so == NULL) { /* * We completed the 3-way handshake * but could not allocate a socket * either due to memory shortage, * listen queue length limits or * global socket limits. Send RST * or wait and have the remote end * retransmit the ACK for another * try. */ if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Socket allocation failed due to " "limits or memory shortage, %s\n", s, __func__, V_tcp_sc_rst_sock_fail ? "sending RST" : "try again"); if (V_tcp_sc_rst_sock_fail) { rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } else goto dropunlock; } /* * Socket is created in state SYN_RECEIVED. * Unlock the listen socket, lock the newly * created socket and update the tp variable. */ INP_WUNLOCK(inp); /* listen socket */ inp = sotoinpcb(so); /* * New connection inpcb is already locked by * syncache_expand(). */ INP_WLOCK_ASSERT(inp); tp = intotcpcb(inp); KASSERT(tp->t_state == TCPS_SYN_RECEIVED, ("%s: ", __func__)); /* * Process the segment and the data it * contains. tcp_do_segment() consumes * the mbuf chain and unlocks the inpcb. */ + TCP_PROBE5(receive, NULL, tp, m, tp, th); tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos); if (ti_locked == TI_RLOCKED) INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); return (IPPROTO_DONE); } /* * Segment flag validation for new connection attempts: * * Our (SYN|ACK) response was rejected. * Check with syncache and remove entry to prevent * retransmits. * * NB: syncache_chkrst does its own logging of failure * causes. */ if (thflags & TH_RST) { syncache_chkrst(&inc, th); goto dropunlock; } /* * We can't do anything without SYN. */ if ((thflags & TH_SYN) == 0) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN is missing, segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badsyn); goto dropunlock; } /* * (SYN|ACK) is bogus on a listen socket. */ if (thflags & TH_ACK) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN|ACK invalid, segment rejected\n", s, __func__); syncache_badack(&inc); /* XXX: Not needed! */ TCPSTAT_INC(tcps_badsyn); rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } /* * If the drop_synfin option is enabled, drop all * segments with both the SYN and FIN bits set. * This prevents e.g. nmap from identifying the * TCP/IP stack. * XXX: Poor reasoning. nmap has other methods * and is constantly refining its stack detection * strategies. * XXX: This is a violation of the TCP specification * and was used by RFC1644. */ if ((thflags & TH_FIN) && V_drop_synfin) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN|FIN segment ignored (based on " "sysctl setting)\n", s, __func__); TCPSTAT_INC(tcps_badsyn); goto dropunlock; } /* * Segment's flags are (SYN) or (SYN|FIN). * * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored * as they do not affect the state of the TCP FSM. * The data pointed to by TH_URG and th_urp is ignored. */ KASSERT((thflags & (TH_RST|TH_ACK)) == 0, ("%s: Listen socket: TH_RST or TH_ACK set", __func__)); KASSERT(thflags & (TH_SYN), ("%s: Listen socket: TH_SYN not set", __func__)); #ifdef INET6 /* * If deprecated address is forbidden, * we do not accept SYN to deprecated interface * address to prevent any new inbound connection from * getting established. * When we do not accept SYN, we send a TCP RST, * with deprecated source address (instead of dropping * it). We compromise it as it is much better for peer * to send a RST, and RST will be the final packet * for the exchange. * * If we do not forbid deprecated addresses, we accept * the SYN packet. RFC2462 does not suggest dropping * SYN in this case. * If we decipher RFC2462 5.5.4, it says like this: * 1. use of deprecated addr with existing * communication is okay - "SHOULD continue to be * used" * 2. use of it with new communication: * (2a) "SHOULD NOT be used if alternate address * with sufficient scope is available" * (2b) nothing mentioned otherwise. * Here we fall into (2b) case as we have no choice in * our source address selection - we must obey the peer. * * The wording in RFC2462 is confusing, and there are * multiple description text for deprecated address * handling - worse, they are not exactly the same. * I believe 5.5.4 is the best one, so we follow 5.5.4. */ if (isipv6 && !V_ip6_use_deprecated) { struct in6_ifaddr *ia6; ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia6 != NULL && (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { ifa_free(&ia6->ia_ifa); if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt to deprecated " "IPv6 address rejected\n", s, __func__); rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } if (ia6) ifa_free(&ia6->ia_ifa); } #endif /* INET6 */ /* * Basic sanity checks on incoming SYN requests: * Don't respond if the destination is a link layer * broadcast according to RFC1122 4.2.3.10, p. 104. * If it is from this socket it must be forged. * Don't respond if the source or destination is a * global or subnet broad- or multicast address. * Note that it is quite possible to receive unicast * link-layer packets with a broadcast IP address. Use * in_broadcast() to find them. */ if (m->m_flags & (M_BCAST|M_MCAST)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from broad- or multicast " "link layer address ignored\n", s, __func__); goto dropunlock; } #ifdef INET6 if (isipv6) { if (th->th_dport == th->th_sport && IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt to/from self " "ignored\n", s, __func__); goto dropunlock; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to multicast " "address ignored\n", s, __func__); goto dropunlock; } } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { if (th->th_dport == th->th_sport && ip->ip_dst.s_addr == ip->ip_src.s_addr) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to self " "ignored\n", s, __func__); goto dropunlock; } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to broad- " "or multicast address ignored\n", s, __func__); goto dropunlock; } } #endif /* * SYN appears to be valid. Create compressed TCP state * for syncache. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); tcp_dooptions(&to, optp, optlen, TO_SYN); if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL)) goto tfo_socket_result; /* * Entry added to syncache and mbuf consumed. * Only the listen socket is unlocked by syncache_add(). */ if (ti_locked == TI_RLOCKED) { INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); ti_locked = TI_UNLOCKED; } INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); return (IPPROTO_DONE); } else if (tp->t_state == TCPS_LISTEN) { /* * When a listen socket is torn down the SO_ACCEPTCONN * flag is removed first while connections are drained * from the accept queue in a unlock/lock cycle of the * ACCEPT_LOCK, opening a race condition allowing a SYN * attempt go through unhandled. */ goto dropunlock; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) { tcp_dooptions(&to, optp, optlen, thflags); if ((to.to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_nosigopt); goto dropunlock; } if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to.to_signature) != 0) goto dropunlock; } #endif TCP_PROBE5(receive, NULL, tp, m, tp, th); /* * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later * state. tcp_do_segment() always consumes the mbuf chain, unlocks * the inpcb, and unlocks pcbinfo. */ tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos); if (ti_locked == TI_RLOCKED) INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); return (IPPROTO_DONE); dropwithreset: TCP_PROBE5(receive, NULL, tp, m, tp, th); if (ti_locked == TI_RLOCKED) { INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); ti_locked = TI_UNLOCKED; } #ifdef INVARIANTS else { KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset " "ti_locked: %d", __func__, ti_locked)); INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); } #endif if (inp != NULL) { tcp_dropwithreset(m, th, tp, tlen, rstreason); INP_WUNLOCK(inp); } else tcp_dropwithreset(m, th, NULL, tlen, rstreason); m = NULL; /* mbuf chain got consumed. */ goto drop; dropunlock: if (m != NULL) TCP_PROBE5(receive, NULL, tp, m, tp, th); if (ti_locked == TI_RLOCKED) { INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); ti_locked = TI_UNLOCKED; } #ifdef INVARIANTS else { KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock " "ti_locked: %d", __func__, ti_locked)); INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); } #endif if (inp != NULL) INP_WUNLOCK(inp); drop: INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); if (s != NULL) free(s, M_TCPLOG); if (m != NULL) m_freem(m); return (IPPROTO_DONE); } /* * Automatic sizing of receive socket buffer. Often the send * buffer size is not optimally adjusted to the actual network * conditions at hand (delay bandwidth product). Setting the * buffer size too small limits throughput on links with high * bandwidth and high delay (eg. trans-continental/oceanic links). * * On the receive side the socket buffer memory is only rarely * used to any significant extent. This allows us to be much * more aggressive in scaling the receive socket buffer. For * the case that the buffer space is actually used to a large * extent and we run out of kernel memory we can simply drop * the new segments; TCP on the sender will just retransmit it * later. Setting the buffer size too big may only consume too * much kernel memory if the application doesn't read() from * the socket or packet loss or reordering makes use of the * reassembly queue. * * The criteria to step up the receive buffer one notch are: * 1. Application has not set receive buffer size with * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE. * 2. the number of bytes received during the time it takes * one timestamp to be reflected back to us (the RTT); * 3. received bytes per RTT is within seven eighth of the * current socket buffer size; * 4. receive buffer size has not hit maximal automatic size; * * This algorithm does one step per RTT at most and only if * we receive a bulk stream w/o packet losses or reorderings. * Shrinking the buffer during idle times is not necessary as * it doesn't consume any memory when idle. * * TODO: Only step up if the application is actually serving * the buffer to better manage the socket buffer resources. */ int tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int tlen) { int newsize = 0; if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) && tp->t_srtt != 0 && tp->rfbuf_ts != 0 && TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) > (tp->t_srtt >> TCP_RTT_SHIFT)) { if (tp->rfbuf_cnt > (so->so_rcv.sb_hiwat / 8 * 7) && so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) { newsize = min(so->so_rcv.sb_hiwat + V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max); } TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize); /* Start over with next RTT. */ tp->rfbuf_ts = 0; tp->rfbuf_cnt = 0; } else { tp->rfbuf_cnt += tlen; /* add up */ } return (newsize); } void tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos) { int thflags, acked, ourfinisacked, needoutput = 0, sack_changed; int rstreason, todrop, win; uint32_t tiwin; uint16_t nsegs; char *s; struct in_conninfo *inc; struct mbuf *mfree; struct tcpopt to; int tfo_syn; #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif thflags = th->th_flags; inc = &tp->t_inpcb->inp_inc; tp->sackhint.last_sack_ack = 0; sack_changed = 0; nsegs = max(1, m->m_pkthdr.lro_nsegs); /* * If this is either a state-changing packet or current state isn't * established, we require a write lock on tcbinfo. Otherwise, we * allow the tcbinfo to be in either alocked or unlocked, as the * caller may have unnecessarily acquired a write lock due to a race. */ if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 || tp->t_state != TCPS_ESTABLISHED) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); } INP_WLOCK_ASSERT(tp->t_inpcb); KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", __func__)); KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", __func__)); #ifdef TCPPCAP /* Save segment, if requested. */ tcp_pcap_add(th, m, &(tp->t_inpkts)); #endif TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, tlen, NULL, true); if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: " "SYN|FIN segment ignored (based on " "sysctl setting)\n", s, __func__); free(s, M_TCPLOG); } goto drop; } /* * If a segment with the ACK-bit set arrives in the SYN-SENT state * check SEQ.ACK first. */ if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } /* * Segment received on connection. * Reset idle time and keep-alive timer. * XXX: This should be done after segment * validation to ignore broken/spoofed segs. */ tp->t_rcvtime = ticks; /* * Scale up the window into a 32-bit value. * For the SYN_SENT state the scale is zero. */ tiwin = th->th_win << tp->snd_scale; /* * TCP ECN processing. */ if (tp->t_flags & TF_ECN_PERMIT) { if (thflags & TH_CWR) tp->t_flags &= ~TF_ECN_SND_ECE; switch (iptos & IPTOS_ECN_MASK) { case IPTOS_ECN_CE: tp->t_flags |= TF_ECN_SND_ECE; TCPSTAT_INC(tcps_ecn_ce); break; case IPTOS_ECN_ECT0: TCPSTAT_INC(tcps_ecn_ect0); break; case IPTOS_ECN_ECT1: TCPSTAT_INC(tcps_ecn_ect1); break; } /* Process a packet differently from RFC3168. */ cc_ecnpkt_handler(tp, th, iptos); /* Congestion experienced. */ if (thflags & TH_ECE) { cc_cong_signal(tp, th, CC_ECN); } } /* * Parse options on any incoming segment. */ tcp_dooptions(&to, (u_char *)(th + 1), (th->th_off << 2) - sizeof(struct tcphdr), (thflags & TH_SYN) ? TO_SYN : 0); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if ((tp->t_flags & TF_SIGNATURE) != 0 && (to.to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_sigopt); /* XXX: should drop? */ } #endif /* * If echoed timestamp is later than the current time, * fall back to non RFC1323 RTT calculation. Normalize * timestamp if syncookies were used when this connection * was established. */ if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { to.to_tsecr -= tp->ts_offset; if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) to.to_tsecr = 0; else if (tp->t_flags & TF_PREVVALID && tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) cc_cong_signal(tp, th, CC_RTO_ERR); } /* * Process options only when we get SYN/ACK back. The SYN case * for incoming connections is handled in tcp_syncache. * According to RFC1323 the window field in a SYN (i.e., a * or ) segment itself is never scaled. * XXX this is traditional behavior, may need to be cleaned up. */ if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) { tp->t_flags |= TF_RCVD_SCALE; tp->snd_scale = to.to_wscale; } /* * Initial send window. It will be updated with * the next incoming segment to the scaled value. */ tp->snd_wnd = th->th_win; if (to.to_flags & TOF_TS) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = to.to_tsval; tp->ts_recent_age = tcp_ts_getticks(); } if (to.to_flags & TOF_MSS) tcp_mss(tp, to.to_mss); if ((tp->t_flags & TF_SACK_PERMIT) && (to.to_flags & TOF_SACKPERM) == 0) tp->t_flags &= ~TF_SACK_PERMIT; if (IS_FASTOPEN(tp->t_flags)) { if (to.to_flags & TOF_FASTOPEN) { uint16_t mss; if (to.to_flags & TOF_MSS) mss = to.to_mss; else if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) mss = TCP6_MSS; else mss = TCP_MSS; tcp_fastopen_update_cache(tp, mss, to.to_tfo_len, to.to_tfo_cookie); } else tcp_fastopen_disable_path(tp); } } /* * If timestamps were negotiated during SYN/ACK they should * appear on every segment during this session and vice versa. */ if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp missing, " "no action\n", s, __func__); free(s, M_TCPLOG); } } if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp not expected, " "no action\n", s, __func__); free(s, M_TCPLOG); } } /* * Header prediction: check for the two common cases * of a uni-directional data xfer. If the packet has * no control flags, is in-sequence, the window didn't * change and we're not retransmitting, it's a * candidate. If the length is zero and the ack moved * forward, we're the sender side of the xfer. Just * free the data acked & wake any higher level process * that was blocked waiting for space. If the length * is non-zero and the ack didn't move, we're the * receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data to * the socket buffer and note that we need a delayed ack. * Make sure that the hidden state-flags are also off. * Since we check for TCPS_ESTABLISHED first, it can only * be TH_NEEDSYN. */ if (tp->t_state == TCPS_ESTABLISHED && th->th_seq == tp->rcv_nxt && (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && tp->snd_nxt == tp->snd_max && tiwin && tiwin == tp->snd_wnd && ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && LIST_EMPTY(&tp->t_segq) && ((to.to_flags & TOF_TS) == 0 || TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) { /* * If last ACK falls within this segment's sequence numbers, * record the timestamp. * NOTE that the test is modified according to the latest * proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if ((to.to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to.to_tsval; } if (tlen == 0) { if (SEQ_GT(th->th_ack, tp->snd_una) && SEQ_LEQ(th->th_ack, tp->snd_max) && !IN_RECOVERY(tp->t_flags) && (to.to_flags & TOF_SACK) == 0 && TAILQ_EMPTY(&tp->snd_holes)) { /* * This is a pure ack for outstanding data. */ TCPSTAT_INC(tcps_predack); /* * "bad retransmit" recovery without timestamps. */ if ((to.to_flags & TOF_TS) == 0 && tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID && (int)(ticks - tp->t_badrxtwin) < 0) { cc_cong_signal(tp, th, CC_RTO_ERR); } /* * Recalculate the transmit timer / rtt. * * Some boxes send broken timestamp replies * during the SYN+ACK phase, ignore * timestamps of 0 or we could calculate a * huge RTT and blow up the retransmit timer. */ if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to.to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) tp->t_rttlow = ticks - tp->t_rtttime; tcp_xmit_timer(tp, ticks - tp->t_rtttime); } acked = BYTES_THIS_ACK(tp, th); #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, &to); #endif TCPSTAT_ADD(tcps_rcvackpack, nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); sbdrop(&so->so_snd, acked); if (SEQ_GT(tp->snd_una, tp->snd_recover) && SEQ_LEQ(th->th_ack, tp->snd_recover)) tp->snd_recover = th->th_ack - 1; /* * Let the congestion control algorithm update * congestion control related information. This * typically means increasing the congestion * window. */ cc_ack_received(tp, th, nsegs, CC_ACK); tp->snd_una = th->th_ack; /* * Pull snd_wl2 up to prevent seq wrap relative * to th_ack. */ tp->snd_wl2 = th->th_ack; tp->t_dupacks = 0; m_freem(m); /* * If all outstanding data are acked, stop * retransmit timer, otherwise restart timer * using current (possibly backed-off) value. * If process is waiting for space, * wakeup/selwakeup/signal. If data * are ready to send, let tcp_output * decide between more output or persist. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); if (tp->snd_una == tp->snd_max) tcp_timer_activate(tp, TT_REXMT, 0); else if (!tcp_timer_active(tp, TT_PERSIST)) tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); sowwakeup(so); if (sbavail(&so->so_snd)) (void) tp->t_fb->tfb_tcp_output(tp); goto check_delack; } } else if (th->th_ack == tp->snd_una && tlen <= sbspace(&so->so_rcv)) { int newsize = 0; /* automatic sockbuf scaling */ /* * This is a pure, in-sequence data packet with * nothing on the reassembly queue and we have enough * buffer space to take it. */ /* Clean receiver SACK report if present */ if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks) tcp_clean_sackreport(tp); TCPSTAT_INC(tcps_preddat); tp->rcv_nxt += tlen; /* * Pull snd_wl1 up to prevent seq wrap relative to * th_seq. */ tp->snd_wl1 = th->th_seq; /* * Pull rcv_up up to prevent seq wrap relative to * rcv_nxt. */ tp->rcv_up = tp->rcv_nxt; TCPSTAT_ADD(tcps_rcvpack, nsegs); TCPSTAT_ADD(tcps_rcvbyte, tlen); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); newsize = tcp_autorcvbuf(m, th, so, tp, tlen); /* Add data to socket buffer. */ SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { m_freem(m); } else { /* * Set new socket buffer size. * Give up when limit is reached. */ if (newsize) if (!sbreserve_locked(&so->so_rcv, newsize, so, NULL)) so->so_rcv.sb_flags &= ~SB_AUTOSIZE; m_adj(m, drop_hdrlen); /* delayed header drop */ sbappendstream_locked(&so->so_rcv, m, 0); } /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); if (DELAY_ACK(tp, tlen)) { tp->t_flags |= TF_DELACK; } else { tp->t_flags |= TF_ACKNOW; tp->t_fb->tfb_tcp_output(tp); } goto check_delack; } } /* * Calculate amount of space in receive window, * and then do TCP input processing. * Receive window is amount of space in rcv queue, * but not less than advertised window. */ win = sbspace(&so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); switch (tp->t_state) { /* * If the state is SYN_RECEIVED: * if seg contains an ACK, but not for our SYN/ACK, send a RST. */ case TCPS_SYN_RECEIVED: if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->snd_una) || SEQ_GT(th->th_ack, tp->snd_max))) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } if (IS_FASTOPEN(tp->t_flags)) { /* * When a TFO connection is in SYN_RECEIVED, the * only valid packets are the initial SYN, a * retransmit/copy of the initial SYN (possibly with * a subset of the original data), a valid ACK, a * FIN, or a RST. */ if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } else if (thflags & TH_SYN) { /* non-initial SYN is ignored */ if ((tcp_timer_active(tp, TT_DELACK) || tcp_timer_active(tp, TT_REXMT))) goto drop; } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) { goto drop; } } break; /* * If the state is SYN_SENT: * if seg contains a RST with valid ACK (SEQ.ACK has already * been verified), then drop the connection. * if seg contains a RST without an ACK, drop the seg. * if seg does not contain SYN, then drop the seg. * Otherwise this is an acceptable SYN segment * initialize tp->rcv_nxt and tp->irs * if seg contains ack then advance tp->snd_una * if seg contains an ECE and ECN support is enabled, the stream * is ECN capable. * if SYN has been acked change to ESTABLISHED else SYN_RCVD state * arrange for segment to be acked (eventually) * continue processing rest of data/controls, beginning with URG */ case TCPS_SYN_SENT: if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) { TCP_PROBE5(connect__refused, NULL, tp, m, tp, th); tp = tcp_drop(tp, ECONNREFUSED); } if (thflags & TH_RST) goto drop; if (!(thflags & TH_SYN)) goto drop; tp->irs = th->th_seq; tcp_rcvseqinit(tp); if (thflags & TH_ACK) { int tfo_partial_ack = 0; TCPSTAT_INC(tcps_connects); soisconnected(so); #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif /* Do window scaling on this connection? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); tp->snd_una++; /* SYN is acked */ /* * If not all the data that was sent in the TFO SYN * has been acked, resend the remainder right away. */ if (IS_FASTOPEN(tp->t_flags) && (tp->snd_una != tp->snd_max)) { tp->snd_nxt = th->th_ack; tfo_partial_ack = 1; } /* * If there's data, delay ACK; if there's also a FIN * ACKNOW will be turned on later. */ if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack) tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); else tp->t_flags |= TF_ACKNOW; if ((thflags & TH_ECE) && V_tcp_do_ecn) { tp->t_flags |= TF_ECN_PERMIT; TCPSTAT_INC(tcps_ecn_shs); } /* * Received in SYN_SENT[*] state. * Transitions: * SYN_SENT --> ESTABLISHED * SYN_SENT* --> FIN_WAIT_1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; thflags &= ~TH_SYN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(connect__established, NULL, tp, m, tp, th); cc_conn_init(tp); tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); } } else { /* * Received initial SYN in SYN-SENT[*] state => * simultaneous open. * If it succeeds, connection is * half-synchronized. * Otherwise, do 3-way handshake: * SYN-SENT -> SYN-RECEIVED * SYN-SENT* -> SYN-RECEIVED* */ tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); tcp_timer_activate(tp, TT_REXMT, 0); tcp_state_change(tp, TCPS_SYN_RECEIVED); } INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(tp->t_inpcb); /* * Advance th->th_seq to correspond to first data byte. * If data, trim to stay within window, * dropping FIN if necessary. */ th->th_seq++; if (tlen > tp->rcv_wnd) { todrop = tlen - tp->rcv_wnd; m_adj(m, -todrop); tlen = tp->rcv_wnd; thflags &= ~TH_FIN; TCPSTAT_INC(tcps_rcvpackafterwin); TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); } tp->snd_wl1 = th->th_seq - 1; tp->rcv_up = th->th_seq; /* * Client side of transaction: already sent SYN and data. * If the remote host used T/TCP to validate the SYN, * our data will be ACK'd; if so, enter normal data segment * processing in the middle of step 5, ack processing. * Otherwise, goto step 6. */ if (thflags & TH_ACK) goto process_ACK; goto step6; /* * If the state is LAST_ACK or CLOSING or TIME_WAIT: * do normal processing. * * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. */ case TCPS_LAST_ACK: case TCPS_CLOSING: break; /* continue normal processing */ } /* * States other than LISTEN or SYN_SENT. * First check the RST flag and sequence number since reset segments * are exempt from the timestamp and connection count tests. This * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix * below which allowed reset segments in half the sequence space * to fall though and be processed (which gives forged reset * segments with a random sequence number a 50 percent chance of * killing a connection). * Then check timestamp, if present. * Then check the connection count, if present. * Then check that at least some bytes of segment are within * receive window. If segment begins before rcv_nxt, * drop leading data (and SYN); if nothing left, just ack. */ if (thflags & TH_RST) { /* * RFC5961 Section 3.2 * * - RST drops connection only if SEG.SEQ == RCV.NXT. * - If RST is in window, we send challenge ACK. * * Note: to take into account delayed ACKs, we should * test against last_ack_sent instead of rcv_nxt. * Note 2: we handle special case of closed window, not * covered by the RFC. */ if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); KASSERT(tp->t_state != TCPS_SYN_SENT, ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p", __func__, th, tp)); if (V_tcp_insecure_rst || tp->last_ack_sent == th->th_seq) { TCPSTAT_INC(tcps_drops); /* Drop the connection. */ switch (tp->t_state) { case TCPS_SYN_RECEIVED: so->so_error = ECONNREFUSED; goto close; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: so->so_error = ECONNRESET; close: /* FALLTHROUGH */ default: tp = tcp_close(tp); } } else { TCPSTAT_INC(tcps_badrst); /* Send challenge ACK. */ tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, tp->snd_nxt, TH_ACK); tp->last_ack_sent = tp->rcv_nxt; m = NULL; } } goto drop; } /* * RFC5961 Section 4.2 * Send challenge ACK for any SYN in synchronized state. */ if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT && tp->t_state != TCPS_SYN_RECEIVED) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); TCPSTAT_INC(tcps_badsyn); if (V_tcp_insecure_syn && SEQ_GEQ(th->th_seq, tp->last_ack_sent) && SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { tp = tcp_drop(tp, ECONNRESET); rstreason = BANDLIM_UNLIMITED; } else { /* Send challenge ACK. */ tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, tp->snd_nxt, TH_ACK); tp->last_ack_sent = tp->rcv_nxt; m = NULL; } goto drop; } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment * and it's less than ts_recent, drop it. */ if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to.to_tsval, tp->ts_recent)) { /* Check to see if ts_recent is over 24 days old. */ if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) { /* * Invalidate ts_recent. If this segment updates * ts_recent, the age will be reset later and ts_recent * will get a valid value. If it does not, setting * ts_recent to zero will at least satisfy the * requirement that zero be placed in the timestamp * echo reply when ts_recent isn't valid. The * age isn't reset until we get a valid ts_recent * because we don't want out-of-order segments to be * dropped when ts_recent is old. */ tp->ts_recent = 0; } else { TCPSTAT_INC(tcps_rcvduppack); TCPSTAT_ADD(tcps_rcvdupbyte, tlen); TCPSTAT_INC(tcps_pawsdrop); if (tlen) goto dropafterack; goto drop; } } /* * In the SYN-RECEIVED state, validate that the packet belongs to * this connection before trimming the data to fit the receive * window. Check the sequence number versus IRS since we know * the sequence numbers haven't wrapped. This is a partial fix * for the "LAND" DoS attack. */ if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } todrop = tp->rcv_nxt - th->th_seq; if (todrop > 0) { if (thflags & TH_SYN) { thflags &= ~TH_SYN; th->th_seq++; if (th->th_urp > 1) th->th_urp--; else thflags &= ~TH_URG; todrop--; } /* * Following if statement from Stevens, vol. 2, p. 960. */ if (todrop > tlen || (todrop == tlen && (thflags & TH_FIN) == 0)) { /* * Any valid FIN must be to the left of the window. * At this point the FIN must be a duplicate or out * of sequence; drop it. */ thflags &= ~TH_FIN; /* * Send an ACK to resynchronize and drop any data. * But keep on processing for RST or ACK. */ tp->t_flags |= TF_ACKNOW; todrop = tlen; TCPSTAT_INC(tcps_rcvduppack); TCPSTAT_ADD(tcps_rcvdupbyte, todrop); } else { TCPSTAT_INC(tcps_rcvpartduppack); TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop); } drop_hdrlen += todrop; /* drop from the top afterwards */ th->th_seq += todrop; tlen -= todrop; if (th->th_urp > todrop) th->th_urp -= todrop; else { thflags &= ~TH_URG; th->th_urp = 0; } } /* * If new data are received on a connection after the * user processes are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && tlen) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data " "after socket was closed, " "sending RST and removing tcpcb\n", s, __func__, tcpstates[tp->t_state], tlen); free(s, M_TCPLOG); } tp = tcp_close(tp); TCPSTAT_INC(tcps_rcvafterclose); rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } /* * If segment ends after window, drop trailing data * (and PUSH and FIN); if nothing left, just ACK. */ todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); if (todrop > 0) { TCPSTAT_INC(tcps_rcvpackafterwin); if (todrop >= tlen) { TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen); /* * If window is closed can only take segments at * window edge, and have to drop data and PUSH from * incoming segments. Continue processing, but * remember to ack. Otherwise, drop segment * and ack. */ if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; TCPSTAT_INC(tcps_rcvwinprobe); } else goto dropafterack; } else TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); m_adj(m, -todrop); tlen -= todrop; thflags &= ~(TH_PUSH|TH_FIN); } /* * If last ACK falls within this segment's sequence numbers, * record its timestamp. * NOTE: * 1) That the test incorporates suggestions from the latest * proposal of the tcplw@cray.com list (Braden 1993/04/26). * 2) That updating only on newer timestamps interferes with * our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. * 3) That we modify the segment boundary check to be * Last.ACK.Sent <= SEG.SEQ + SEG.Len * instead of RFC1323's * Last.ACK.Sent < SEG.SEQ + SEG.Len, * This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated * Vol. 2 p.869. In such cases, we can still calculate the * RTT correctly when RCV.NXT == Last.ACK.Sent. */ if ((to.to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN|TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to.to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN * flag is on (half-synchronized state), then queue data for * later processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_state == TCPS_SYN_RECEIVED || (tp->t_flags & TF_NEEDSYN)) { if (tp->t_state == TCPS_SYN_RECEIVED && IS_FASTOPEN(tp->t_flags)) { tp->snd_wnd = tiwin; cc_conn_init(tp); } goto step6; } else if (tp->t_flags & TF_ACKNOW) goto dropafterack; else goto drop; } /* * Ack processing. */ switch (tp->t_state) { /* * In SYN_RECEIVED state, the ack ACKs our SYN, so enter * ESTABLISHED state and continue processing. * The ACK was checked above. */ case TCPS_SYN_RECEIVED: TCPSTAT_INC(tcps_connects); soisconnected(so); /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; tp->snd_wnd = tiwin; } /* * Make transitions: * SYN-RECEIVED -> ESTABLISHED * SYN-RECEIVED* -> FIN-WAIT-1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(accept__established, NULL, tp, m, tp, th); if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; /* * Account for the ACK of our SYN prior to * regular ACK processing below. */ tp->snd_una++; } /* * TFO connections call cc_conn_init() during SYN * processing. Calling it again here for such * connections is not harmless as it would undo the * snd_cwnd reduction that occurs when a TFO SYN|ACK * is retransmitted. */ if (!IS_FASTOPEN(tp->t_flags)) cc_conn_init(tp); tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); } /* * If segment contains data or ACK, will call tcp_reass() * later; if not, do so now to pass queued data to user. */ if (tlen == 0 && (thflags & TH_FIN) == 0) (void) tcp_reass(tp, (struct tcphdr *)0, 0, (struct mbuf *)0); tp->snd_wl1 = th->th_seq - 1; /* FALLTHROUGH */ /* * In ESTABLISHED state: drop duplicate ACKs; ACK out of range * ACKs. If the ack is in the range * tp->snd_una < th->th_ack <= tp->snd_max * then advance tp->snd_una to th->th_ack and drop * data from the retransmission queue. If this ACK reflects * more up to date window information we update our window information. */ case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: if (SEQ_GT(th->th_ack, tp->snd_max)) { TCPSTAT_INC(tcps_rcvacktoomuch); goto dropafterack; } if ((tp->t_flags & TF_SACK_PERMIT) && ((to.to_flags & TOF_SACK) || !TAILQ_EMPTY(&tp->snd_holes))) sack_changed = tcp_sack_doack(tp, &to, th->th_ack); else /* * Reset the value so that previous (valid) value * from the last ack with SACK doesn't get used. */ tp->sackhint.sacked_bytes = 0; #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, &to); #endif if (SEQ_LEQ(th->th_ack, tp->snd_una)) { u_int maxseg; maxseg = tcp_maxseg(tp); if (tlen == 0 && (tiwin == tp->snd_wnd || (tp->t_flags & TF_SACK_PERMIT))) { /* * If this is the first time we've seen a * FIN from the remote, this is not a * duplicate and it needs to be processed * normally. This happens during a * simultaneous close. */ if ((thflags & TH_FIN) && (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { tp->t_dupacks = 0; break; } TCPSTAT_INC(tcps_rcvdupack); /* * If we have outstanding data (other than * a window probe), this is a completely * duplicate ack (ie, window info didn't * change and FIN isn't set), * the ack is the biggest we've * seen and we've seen exactly our rexmt * threshold of them, assume a packet * has been dropped and retransmit it. * Kludge snd_nxt & the congestion * window so we send only this one * packet. * * We know we're losing at the current * window size so do congestion avoidance * (set ssthresh to half the current window * and pull our congestion window back to * the new ssthresh). * * Dup acks mean that packets have left the * network (they're now cached at the receiver) * so bump cwnd by the amount in the receiver * to keep a constant cwnd packets in the * network. * * When using TCP ECN, notify the peer that * we reduced the cwnd. */ /* * Following 2 kinds of acks should not affect * dupack counting: * 1) Old acks * 2) Acks with SACK but without any new SACK * information in them. These could result from * any anomaly in the network like a switch * duplicating packets or a possible DoS attack. */ if (th->th_ack != tp->snd_una || ((tp->t_flags & TF_SACK_PERMIT) && !sack_changed)) break; else if (!tcp_timer_active(tp, TT_REXMT)) tp->t_dupacks = 0; else if (++tp->t_dupacks > tcprexmtthresh || IN_FASTRECOVERY(tp->t_flags)) { cc_ack_received(tp, th, nsegs, CC_DUPACK); if ((tp->t_flags & TF_SACK_PERMIT) && IN_FASTRECOVERY(tp->t_flags)) { int awnd; /* * Compute the amount of data in flight first. * We can inject new data into the pipe iff * we have less than 1/2 the original window's * worth of data in flight. */ if (V_tcp_do_rfc6675_pipe) awnd = tcp_compute_pipe(tp); else awnd = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit; if (awnd < tp->snd_ssthresh) { tp->snd_cwnd += maxseg; if (tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; } } else tp->snd_cwnd += maxseg; (void) tp->t_fb->tfb_tcp_output(tp); goto drop; } else if (tp->t_dupacks == tcprexmtthresh) { tcp_seq onxt = tp->snd_nxt; /* * If we're doing sack, check to * see if we're already in sack * recovery. If we're not doing sack, * check to see if we're in newreno * recovery. */ if (tp->t_flags & TF_SACK_PERMIT) { if (IN_FASTRECOVERY(tp->t_flags)) { tp->t_dupacks = 0; break; } } else { if (SEQ_LEQ(th->th_ack, tp->snd_recover)) { tp->t_dupacks = 0; break; } } /* Congestion signal before ack. */ cc_cong_signal(tp, th, CC_NDUPACK); cc_ack_received(tp, th, nsegs, CC_DUPACK); tcp_timer_activate(tp, TT_REXMT, 0); tp->t_rtttime = 0; if (tp->t_flags & TF_SACK_PERMIT) { TCPSTAT_INC( tcps_sack_recovery_episode); tp->sack_newdata = tp->snd_nxt; tp->snd_cwnd = maxseg; (void) tp->t_fb->tfb_tcp_output(tp); goto drop; } tp->snd_nxt = th->th_ack; tp->snd_cwnd = maxseg; (void) tp->t_fb->tfb_tcp_output(tp); KASSERT(tp->snd_limited <= 2, ("%s: tp->snd_limited too big", __func__)); tp->snd_cwnd = tp->snd_ssthresh + maxseg * (tp->t_dupacks - tp->snd_limited); if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; goto drop; } else if (V_tcp_do_rfc3042) { /* * Process first and second duplicate * ACKs. Each indicates a segment * leaving the network, creating room * for more. Make sure we can send a * packet on reception of each duplicate * ACK by increasing snd_cwnd by one * segment. Restore the original * snd_cwnd after packet transmission. */ cc_ack_received(tp, th, nsegs, CC_DUPACK); uint32_t oldcwnd = tp->snd_cwnd; tcp_seq oldsndmax = tp->snd_max; u_int sent; int avail; KASSERT(tp->t_dupacks == 1 || tp->t_dupacks == 2, ("%s: dupacks not 1 or 2", __func__)); if (tp->t_dupacks == 1) tp->snd_limited = 0; tp->snd_cwnd = (tp->snd_nxt - tp->snd_una) + (tp->t_dupacks - tp->snd_limited) * maxseg; /* * Only call tcp_output when there * is new data available to be sent. * Otherwise we would send pure ACKs. */ SOCKBUF_LOCK(&so->so_snd); avail = sbavail(&so->so_snd) - (tp->snd_nxt - tp->snd_una); SOCKBUF_UNLOCK(&so->so_snd); if (avail > 0) (void) tp->t_fb->tfb_tcp_output(tp); sent = tp->snd_max - oldsndmax; if (sent > maxseg) { KASSERT((tp->t_dupacks == 2 && tp->snd_limited == 0) || (sent == maxseg + 1 && tp->t_flags & TF_SENTFIN), ("%s: sent too much", __func__)); tp->snd_limited = 2; } else if (sent > 0) ++tp->snd_limited; tp->snd_cwnd = oldcwnd; goto drop; } } break; } else { /* * This ack is advancing the left edge, reset the * counter. */ tp->t_dupacks = 0; /* * If this ack also has new SACK info, increment the * counter as per rfc6675. */ if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed) tp->t_dupacks++; } KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("%s: th_ack <= snd_una", __func__)); /* * If the congestion window was inflated to account * for the other side's cached packets, retract it. */ if (IN_FASTRECOVERY(tp->t_flags)) { if (SEQ_LT(th->th_ack, tp->snd_recover)) { if (tp->t_flags & TF_SACK_PERMIT) tcp_sack_partialack(tp, th); else tcp_newreno_partial_ack(tp, th); } else cc_post_recovery(tp, th); } /* * If we reach this point, ACK is not a duplicate, * i.e., it ACKs something we sent. */ if (tp->t_flags & TF_NEEDSYN) { /* * T/TCP: Connection was half-synchronized, and our * SYN has been ACK'd (so connection is now fully * synchronized). Go to non-starred state, * increment snd_una for ACK of SYN, and check if * we can do window scaling. */ tp->t_flags &= ~TF_NEEDSYN; tp->snd_una++; /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; /* Send window already scaled. */ } } process_ACK: INP_WLOCK_ASSERT(tp->t_inpcb); acked = BYTES_THIS_ACK(tp, th); KASSERT(acked >= 0, ("%s: acked unexepectedly negative " "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__, tp->snd_una, th->th_ack, tp, m)); TCPSTAT_ADD(tcps_rcvackpack, nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); /* * If we just performed our first retransmit, and the ACK * arrives within our recovery window, then it was a mistake * to do the retransmit in the first place. Recover our * original cwnd and ssthresh, and proceed to transmit where * we left off. */ if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID && tp->t_badrxtwin && SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) cc_cong_signal(tp, th, CC_RTO_ERR); /* * If we have a timestamp reply, update smoothed * round trip time. If no timestamp is present but * transmit timer is running and timed sequence * number was acked, update smoothed round trip time. * Since we now have an rtt measurement, cancel the * timer backoff (cf., Phil Karn's retransmit alg.). * Recompute the initial retransmit timer. * * Some boxes send broken timestamp replies * during the SYN+ACK phase, ignore * timestamps of 0 or we could calculate a * huge RTT and blow up the retransmit timer. */ if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to.to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) tp->t_rttlow = ticks - tp->t_rtttime; tcp_xmit_timer(tp, ticks - tp->t_rtttime); } /* * If all outstanding data is acked, stop retransmit * timer and remember to restart (more output or persist). * If there is more data to be acked, restart retransmit * timer, using current (possibly backed-off) value. */ if (th->th_ack == tp->snd_max) { tcp_timer_activate(tp, TT_REXMT, 0); needoutput = 1; } else if (!tcp_timer_active(tp, TT_PERSIST)) tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); /* * If no data (only SYN) was ACK'd, * skip rest of ACK processing. */ if (acked == 0) goto step6; /* * Let the congestion control algorithm update congestion * control related information. This typically means increasing * the congestion window. */ cc_ack_received(tp, th, nsegs, CC_ACK); SOCKBUF_LOCK(&so->so_snd); if (acked > sbavail(&so->so_snd)) { if (tp->snd_wnd >= sbavail(&so->so_snd)) tp->snd_wnd -= sbavail(&so->so_snd); else tp->snd_wnd = 0; mfree = sbcut_locked(&so->so_snd, (int)sbavail(&so->so_snd)); ourfinisacked = 1; } else { mfree = sbcut_locked(&so->so_snd, acked); if (tp->snd_wnd >= (uint32_t) acked) tp->snd_wnd -= acked; else tp->snd_wnd = 0; ourfinisacked = 0; } /* NB: sowwakeup_locked() does an implicit unlock. */ sowwakeup_locked(so); m_freem(mfree); /* Detect una wraparound. */ if (!IN_RECOVERY(tp->t_flags) && SEQ_GT(tp->snd_una, tp->snd_recover) && SEQ_LEQ(th->th_ack, tp->snd_recover)) tp->snd_recover = th->th_ack - 1; /* XXXLAS: Can this be moved up into cc_post_recovery? */ if (IN_RECOVERY(tp->t_flags) && SEQ_GEQ(th->th_ack, tp->snd_recover)) { EXIT_RECOVERY(tp->t_flags); } tp->snd_una = th->th_ack; if (tp->t_flags & TF_SACK_PERMIT) { if (SEQ_GT(tp->snd_una, tp->snd_recover)) tp->snd_recover = tp->snd_una; } if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now acknowledged * then enter FIN_WAIT_2. */ case TCPS_FIN_WAIT_1: if (ourfinisacked) { /* * If we can't receive any more * data, then closing user can proceed. * Starting the timer is contrary to the * specification, but if we don't get a FIN * we'll hang forever. * * XXXjl: * we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } break; /* * In CLOSING STATE in addition to the processing for * the ESTABLISHED state if the ACK acknowledges our FIN * then enter the TIME-WAIT state, otherwise ignore * the segment. */ case TCPS_CLOSING: if (ourfinisacked) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); tcp_twstart(tp); m_freem(m); return; } break; /* * In LAST_ACK, we may still be waiting for data to drain * and/or to be acked, as well as for the ack of our FIN. * If our FIN is now acknowledged, delete the TCB, * enter the closed state and return. */ case TCPS_LAST_ACK: if (ourfinisacked) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); tp = tcp_close(tp); goto drop; } break; } } step6: INP_WLOCK_ASSERT(tp->t_inpcb); /* * Update window information. * Don't look at window if no ACK: TAC's send garbage on first SYN. */ if ((thflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { /* keep track of pure window updates */ if (tlen == 0 && tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) TCPSTAT_INC(tcps_rcvwinupd); tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; needoutput = 1; } /* * Process segments with URG. */ if ((thflags & TH_URG) && th->th_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept * random urgent pointers, we'll crash in * soreceive. It's hard to imagine someone * actually wanting to send this much urgent data. */ SOCKBUF_LOCK(&so->so_rcv); if (th->th_urp + sbavail(&so->so_rcv) > sb_max) { th->th_urp = 0; /* XXX */ thflags &= ~TH_URG; /* XXX */ SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ goto dodata; /* XXX */ } /* * If this segment advances the known urgent pointer, * then mark the data stream. This should not happen * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since * a FIN has been received from the remote side. * In these states we ignore the URG. * * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { tp->rcv_up = th->th_seq + th->th_urp; so->so_oobmark = sbavail(&so->so_rcv) + (tp->rcv_up - tp->rcv_nxt) - 1; if (so->so_oobmark == 0) so->so_rcv.sb_state |= SBS_RCVATMARK; sohasoutofband(so); tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); } SOCKBUF_UNLOCK(&so->so_rcv); /* * Remove out of band data so doesn't get presented to user. * This can happen independent of advancing the URG pointer, * but if two URG's are pending at once, some out-of-band * data may creep in... ick. */ if (th->th_urp <= (uint32_t)tlen && !(so->so_options & SO_OOBINLINE)) { /* hdr drop is delayed */ tcp_pulloutofband(so, th, m, drop_hdrlen); } } else { /* * If no out of band data is expected, * pull receive urgent pointer along * with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; } dodata: /* XXX */ INP_WLOCK_ASSERT(tp->t_inpcb); /* * Process the segment text, merging it into the TCP sequencing queue, * and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data * is presented to the user (this happens in tcp_usrreq.c, * case PRU_RCVD). If a FIN has already been received on this * connection then we just ignore the text. */ tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && IS_FASTOPEN(tp->t_flags)); if ((tlen || (thflags & TH_FIN) || tfo_syn) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { tcp_seq save_start = th->th_seq; m_adj(m, drop_hdrlen); /* delayed header drop */ /* * Insert segment which includes th into TCP reassembly queue * with control block tp. Set thflags to whether reassembly now * includes a segment with FIN. This handles the common case * inline (segment is the next to be received on an established * connection, and the queue is empty), avoiding linkage into * and removal from the queue and repetition of various * conversions. * Set DELACK for segments received in order, but ack * immediately when segments are out of order (so * fast retransmit can work). */ if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq) && (TCPS_HAVEESTABLISHED(tp->t_state) || tfo_syn)) { if (DELAY_ACK(tp, tlen) || tfo_syn) tp->t_flags |= TF_DELACK; else tp->t_flags |= TF_ACKNOW; tp->rcv_nxt += tlen; thflags = th->th_flags & TH_FIN; TCPSTAT_INC(tcps_rcvpack); TCPSTAT_ADD(tcps_rcvbyte, tlen); SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) m_freem(m); else sbappendstream_locked(&so->so_rcv, m, 0); /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); } else { /* * XXX: Due to the header drop above "th" is * theoretically invalid by now. Fortunately * m_adj() doesn't actually frees any mbufs * when trimming from the head. */ thflags = tcp_reass(tp, th, &tlen, m); tp->t_flags |= TF_ACKNOW; } if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT)) tcp_update_sack_list(tp, save_start, save_start + tlen); #if 0 /* * Note the amount of data that peer has sent into * our window, in order to estimate the sender's * buffer size. * XXX: Unused. */ if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); else len = so->so_rcv.sb_hiwat; #endif } else { m_freem(m); thflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know * that the connection is closing. */ if (thflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); /* * If connection is half-synchronized * (ie NEEDSYN flag on) then delay ACK, * so it may be piggybacked when SYN is sent. * Otherwise, since we received a FIN then no * more input can be expected, send ACK now. */ if (tp->t_flags & TF_NEEDSYN) tp->t_flags |= TF_DELACK; else tp->t_flags |= TF_ACKNOW; tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES * enter the CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_CLOSE_WAIT); break; /* * If still in FIN_WAIT_1 STATE FIN has not been acked so * enter the CLOSING state. */ case TCPS_FIN_WAIT_1: tcp_state_change(tp, TCPS_CLOSING); break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the other * standard timers. */ case TCPS_FIN_WAIT_2: INP_INFO_RLOCK_ASSERT(&V_tcbinfo); tcp_twstart(tp); return; } } #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); /* * Return any desired output. */ if (needoutput || (tp->t_flags & TF_ACKNOW)) (void) tp->t_fb->tfb_tcp_output(tp); check_delack: INP_WLOCK_ASSERT(tp->t_inpcb); if (tp->t_flags & TF_DELACK) { tp->t_flags &= ~TF_DELACK; tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); } INP_WUNLOCK(tp->t_inpcb); return; dropafterack: /* * Generate an ACK dropping incoming segment if it occupies * sequence space, where the ACK reflects our state. * * We can now skip the test for the RST flag since all * paths to this code happen after packets containing * RST have been dropped. * * In the SYN-RECEIVED state, don't send an ACK unless the * segment we received passes the SYN-RECEIVED ACK test. * If it fails send a RST. This breaks the loop in the * "LAND" DoS attack, and also prevents an ACK storm * between two listening ports that have been sent forged * SYN segments, each with the source address of the other. */ if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && (SEQ_GT(tp->snd_una, th->th_ack) || SEQ_GT(th->th_ack, tp->snd_max)) ) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); tp->t_flags |= TF_ACKNOW; (void) tp->t_fb->tfb_tcp_output(tp); INP_WUNLOCK(tp->t_inpcb); m_freem(m); return; dropwithreset: if (tp != NULL) { tcp_dropwithreset(m, th, tp, tlen, rstreason); INP_WUNLOCK(tp->t_inpcb); } else tcp_dropwithreset(m, th, NULL, tlen, rstreason); return; drop: /* * Drop space held by incoming segment and return. */ #ifdef TCPDEBUG if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); if (tp != NULL) INP_WUNLOCK(tp->t_inpcb); m_freem(m); } /* * Issue RST and make ACK acceptable to originator of segment. * The mbuf must still include the original packet header. * tp may be NULL. */ void tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int tlen, int rstreason) { #ifdef INET struct ip *ip; #endif #ifdef INET6 struct ip6_hdr *ip6; #endif if (tp != NULL) { INP_WLOCK_ASSERT(tp->t_inpcb); } /* Don't bother if destination was broadcast/multicast. */ if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) goto drop; #ifdef INET6 if (mtod(m, struct ip *)->ip_v == 6) { ip6 = mtod(m, struct ip6_hdr *); if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) goto drop; /* IPv6 anycast check is done at tcp6_input() */ } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip = mtod(m, struct ip *); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) goto drop; } #endif /* Perform bandwidth limiting. */ if (badport_bandlim(rstreason) < 0) goto drop; /* tcp_respond consumes the mbuf chain. */ if (th->th_flags & TH_ACK) { tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, TH_RST); } else { if (th->th_flags & TH_SYN) tlen++; if (th->th_flags & TH_FIN) tlen++; tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, (tcp_seq)0, TH_RST|TH_ACK); } return; drop: m_freem(m); } /* * Parse TCP options and place in tcpopt. */ void tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags) { int opt, optlen; to->to_flags = 0; for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { if (cnt < 2) break; optlen = cp[1]; if (optlen < 2 || optlen > cnt) break; } switch (opt) { case TCPOPT_MAXSEG: if (optlen != TCPOLEN_MAXSEG) continue; if (!(flags & TO_SYN)) continue; to->to_flags |= TOF_MSS; bcopy((char *)cp + 2, (char *)&to->to_mss, sizeof(to->to_mss)); to->to_mss = ntohs(to->to_mss); break; case TCPOPT_WINDOW: if (optlen != TCPOLEN_WINDOW) continue; if (!(flags & TO_SYN)) continue; to->to_flags |= TOF_SCALE; to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT); break; case TCPOPT_TIMESTAMP: if (optlen != TCPOLEN_TIMESTAMP) continue; to->to_flags |= TOF_TS; bcopy((char *)cp + 2, (char *)&to->to_tsval, sizeof(to->to_tsval)); to->to_tsval = ntohl(to->to_tsval); bcopy((char *)cp + 6, (char *)&to->to_tsecr, sizeof(to->to_tsecr)); to->to_tsecr = ntohl(to->to_tsecr); break; case TCPOPT_SIGNATURE: /* * In order to reply to a host which has set the * TCP_SIGNATURE option in its initial SYN, we have * to record the fact that the option was observed * here for the syncache code to perform the correct * response. */ if (optlen != TCPOLEN_SIGNATURE) continue; to->to_flags |= TOF_SIGNATURE; to->to_signature = cp + 2; break; case TCPOPT_SACK_PERMITTED: if (optlen != TCPOLEN_SACK_PERMITTED) continue; if (!(flags & TO_SYN)) continue; if (!V_tcp_do_sack) continue; to->to_flags |= TOF_SACKPERM; break; case TCPOPT_SACK: if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) continue; if (flags & TO_SYN) continue; to->to_flags |= TOF_SACK; to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; to->to_sacks = cp + 2; TCPSTAT_INC(tcps_sack_rcv_blocks); break; case TCPOPT_FAST_OPEN: /* * Cookie length validation is performed by the * server side cookie checking code or the client * side cookie cache update code. */ if (!(flags & TO_SYN)) continue; if (!V_tcp_fastopen_client_enable && !V_tcp_fastopen_server_enable) continue; to->to_flags |= TOF_FASTOPEN; to->to_tfo_len = optlen - 2; to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL; break; default: continue; } } } /* * Pull out of band byte out of a segment so * it doesn't appear in the user's data queue. * It is still reflected in the segment length for * sequencing purposes. */ void tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off) { int cnt = off + th->th_urp - 1; while (cnt >= 0) { if (m->m_len > cnt) { char *cp = mtod(m, caddr_t) + cnt; struct tcpcb *tp = sototcpcb(so); INP_WLOCK_ASSERT(tp->t_inpcb); tp->t_iobc = *cp; tp->t_oobflags |= TCPOOB_HAVEDATA; bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); m->m_len--; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len--; return; } cnt -= m->m_len; m = m->m_next; if (m == NULL) break; } panic("tcp_pulloutofband"); } /* * Collect new round-trip time estimate * and update averages and current timeout. */ void tcp_xmit_timer(struct tcpcb *tp, int rtt) { int delta; INP_WLOCK_ASSERT(tp->t_inpcb); TCPSTAT_INC(tcps_rttupdated); tp->t_rttupdated++; if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) { /* * srtt is stored as fixed point with 5 bits after the * binary point (i.e., scaled by 8). The following magic * is equivalent to the smoothing algorithm in rfc793 with * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed * point). Adjust rtt to origin 0. */ delta = ((rtt - 1) << TCP_DELTA_SHIFT) - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); if ((tp->t_srtt += delta) <= 0) tp->t_srtt = 1; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit * timer to smoothed rtt + 4 times the smoothed variance. * rttvar is stored as fixed point with 4 bits after the * binary point (scaled by 16). The following is * equivalent to rfc793 smoothing with an alpha of .75 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces * rfc793's wired-in beta. */ if (delta < 0) delta = -delta; delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); if ((tp->t_rttvar += delta) <= 0) tp->t_rttvar = 1; if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } else { /* * No rtt measurement yet - use the unsmoothed rtt. * Set the variance to half the rtt (so our first * retransmit happens at 3*rtt). */ tp->t_srtt = rtt << TCP_RTT_SHIFT; tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } tp->t_rtttime = 0; tp->t_rxtshift = 0; /* * the retransmit should happen at rtt + 4 * rttvar. * Because of the way we do the smoothing, srtt and rttvar * will each average +1/2 tick of bias. When we compute * the retransmit timer, we want 1/2 tick of rounding and * 1 extra tick because of +-1/2 tick uncertainty in the * firing of the timer. The bias will give us exactly the * 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below * the minimum feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); /* * We received an ack for a packet that wasn't retransmitted; * it is probably safe to discard any error indications we've * received recently. This isn't quite right, but close enough * for now (a route might have failed after we sent a segment, * and the return path might not be symmetrical). */ tp->t_softerror = 0; } /* * Determine a reasonable value for maxseg size. * If the route is known, check route for mtu. * If none, use an mss that can be handled on the outgoing interface * without forcing IP to fragment. If no route is found, route has no mtu, * or the destination isn't local, use a default, hopefully conservative * size (usually 512 or the default IP max size, but no more than the mtu * of the interface), as we can't discover anything about intervening * gateways or networks. We also initialize the congestion/slow start * window to be a single segment if the destination isn't local. * While looking at the routing entry, we also initialize other path-dependent * parameters from pre-set or cached values in the routing entry. * * NOTE that resulting t_maxseg doesn't include space for TCP options or * IP options, e.g. IPSEC data, since length of this data may vary, and * thus it is calculated for every segment separately in tcp_output(). * * NOTE that this routine is only called when we process an incoming * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS * settings are handled in tcp_mssopt(). */ void tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap) { int mss = 0; uint32_t maxmtu = 0; struct inpcb *inp = tp->t_inpcb; struct hc_metrics_lite metrics; #ifdef INET6 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; size_t min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : sizeof (struct tcpiphdr); #else const size_t min_protoh = sizeof(struct tcpiphdr); #endif INP_WLOCK_ASSERT(tp->t_inpcb); if (mtuoffer != -1) { KASSERT(offer == -1, ("%s: conflict", __func__)); offer = mtuoffer - min_protoh; } /* Initialize. */ #ifdef INET6 if (isipv6) { maxmtu = tcp_maxmtu6(&inp->inp_inc, cap); tp->t_maxseg = V_tcp_v6mssdflt; } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { maxmtu = tcp_maxmtu(&inp->inp_inc, cap); tp->t_maxseg = V_tcp_mssdflt; } #endif /* * No route to sender, stay with default mss and return. */ if (maxmtu == 0) { /* * In case we return early we need to initialize metrics * to a defined state as tcp_hc_get() would do for us * if there was no cache hit. */ if (metricptr != NULL) bzero(metricptr, sizeof(struct hc_metrics_lite)); return; } /* What have we got? */ switch (offer) { case 0: /* * Offer == 0 means that there was no MSS on the SYN * segment, in this case we use tcp_mssdflt as * already assigned to t_maxseg above. */ offer = tp->t_maxseg; break; case -1: /* * Offer == -1 means that we didn't receive SYN yet. */ /* FALLTHROUGH */ default: /* * Prevent DoS attack with too small MSS. Round up * to at least minmss. */ offer = max(offer, V_tcp_minmss); } /* * rmx information is now retrieved from tcp_hostcache. */ tcp_hc_get(&inp->inp_inc, &metrics); if (metricptr != NULL) bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite)); /* * If there's a discovered mtu in tcp hostcache, use it. * Else, use the link mtu. */ if (metrics.rmx_mtu) mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; else { #ifdef INET6 if (isipv6) { mss = maxmtu - min_protoh; if (!V_path_mtu_discovery && !in6_localaddr(&inp->in6p_faddr)) mss = min(mss, V_tcp_v6mssdflt); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { mss = maxmtu - min_protoh; if (!V_path_mtu_discovery && !in_localaddr(inp->inp_faddr)) mss = min(mss, V_tcp_mssdflt); } #endif /* * XXX - The above conditional (mss = maxmtu - min_protoh) * probably violates the TCP spec. * The problem is that, since we don't know the * other end's MSS, we are supposed to use a conservative * default. But, if we do that, then MTU discovery will * never actually take place, because the conservative * default is much less than the MTUs typically seen * on the Internet today. For the moment, we'll sweep * this under the carpet. * * The conservative default might not actually be a problem * if the only case this occurs is when sending an initial * SYN with options and data to a host we've never talked * to before. Then, they will reply with an MSS value which * will get recorded and the new parameters should get * recomputed. For Further Study. */ } mss = min(mss, offer); /* * Sanity check: make sure that maxseg will be large * enough to allow some data on segments even if the * all the option space is used (40bytes). Otherwise * funny things may happen in tcp_output. * * XXXGL: shouldn't we reserve space for IP/IPv6 options? */ mss = max(mss, 64); tp->t_maxseg = mss; } void tcp_mss(struct tcpcb *tp, int offer) { int mss; uint32_t bufsize; struct inpcb *inp; struct socket *so; struct hc_metrics_lite metrics; struct tcp_ifcap cap; KASSERT(tp != NULL, ("%s: tp == NULL", __func__)); bzero(&cap, sizeof(cap)); tcp_mss_update(tp, offer, -1, &metrics, &cap); mss = tp->t_maxseg; inp = tp->t_inpcb; /* * If there's a pipesize, change the socket buffer to that size, * don't change if sb_hiwat is different than default (then it * has been changed on purpose with setsockopt). * Make the socket buffers an integral number of mss units; * if the mss is larger than the socket buffer, decrease the mss. */ so = inp->inp_socket; SOCKBUF_LOCK(&so->so_snd); if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe) bufsize = metrics.rmx_sendpipe; else bufsize = so->so_snd.sb_hiwat; if (bufsize < mss) mss = bufsize; else { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; if (bufsize > so->so_snd.sb_hiwat) (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL); } SOCKBUF_UNLOCK(&so->so_snd); /* * Sanity check: make sure that maxseg will be large * enough to allow some data on segments even if the * all the option space is used (40bytes). Otherwise * funny things may happen in tcp_output. * * XXXGL: shouldn't we reserve space for IP/IPv6 options? */ tp->t_maxseg = max(mss, 64); SOCKBUF_LOCK(&so->so_rcv); if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe) bufsize = metrics.rmx_recvpipe; else bufsize = so->so_rcv.sb_hiwat; if (bufsize > mss) { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; if (bufsize > so->so_rcv.sb_hiwat) (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL); } SOCKBUF_UNLOCK(&so->so_rcv); /* Check the interface for TSO capabilities. */ if (cap.ifcap & CSUM_TSO) { tp->t_flags |= TF_TSO; tp->t_tsomax = cap.tsomax; tp->t_tsomaxsegcount = cap.tsomaxsegcount; tp->t_tsomaxsegsize = cap.tsomaxsegsize; } } /* * Determine the MSS option to send on an outgoing SYN. */ int tcp_mssopt(struct in_conninfo *inc) { int mss = 0; uint32_t thcmtu = 0; uint32_t maxmtu = 0; size_t min_protoh; KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { mss = V_tcp_v6mssdflt; maxmtu = tcp_maxmtu6(inc, NULL); min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { mss = V_tcp_mssdflt; maxmtu = tcp_maxmtu(inc, NULL); min_protoh = sizeof(struct tcpiphdr); } #endif #if defined(INET6) || defined(INET) thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ #endif if (maxmtu && thcmtu) mss = min(maxmtu, thcmtu) - min_protoh; else if (maxmtu || thcmtu) mss = max(maxmtu, thcmtu) - min_protoh; return (mss); } /* * On a partial ack arrives, force the retransmission of the * next unacknowledged segment. Do not clear tp->t_dupacks. * By setting snd_nxt to ti_ack, this forces retransmission timer to * be started again. */ void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) { tcp_seq onxt = tp->snd_nxt; uint32_t ocwnd = tp->snd_cwnd; u_int maxseg = tcp_maxseg(tp); INP_WLOCK_ASSERT(tp->t_inpcb); tcp_timer_activate(tp, TT_REXMT, 0); tp->t_rtttime = 0; tp->snd_nxt = th->th_ack; /* * Set snd_cwnd to one segment beyond acknowledged offset. * (tp->snd_una has not yet been updated when this function is called.) */ tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th); tp->t_flags |= TF_ACKNOW; (void) tp->t_fb->tfb_tcp_output(tp); tp->snd_cwnd = ocwnd; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; /* * Partial window deflation. Relies on fact that tp->snd_una * not updated yet. */ if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th)) tp->snd_cwnd -= BYTES_THIS_ACK(tp, th); else tp->snd_cwnd = 0; tp->snd_cwnd += maxseg; } int tcp_compute_pipe(struct tcpcb *tp) { return (tp->snd_max - tp->snd_una + tp->sackhint.sack_bytes_rexmit - tp->sackhint.sacked_bytes); } Index: head/sys/netinet/tcp_syncache.c =================================================================== --- head/sys/netinet/tcp_syncache.c (revision 336931) +++ head/sys/netinet/tcp_syncache.c (revision 336932) @@ -1,2247 +1,2255 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 McAfee, Inc. * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG * All rights reserved. * * This software was developed for the FreeBSD Project by Jonathan Lemon * and McAfee Research, the Security Research Division of McAfee, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. [2001 McAfee, Inc.] * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_pcbgroup.h" #include #include #include #include #include #include #include #include #include #include #include #include /* for proc0 declaration */ #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #endif #include #include #include #include #include #include #include #ifdef INET6 #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include VNET_DEFINE_STATIC(int, tcp_syncookies) = 1; #define V_tcp_syncookies VNET(tcp_syncookies) SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_syncookies), 0, "Use TCP SYN cookies if the syncache overflows"); VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0; #define V_tcp_syncookiesonly VNET(tcp_syncookiesonly) SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_syncookiesonly), 0, "Use only TCP SYN cookies"); VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1; #define V_functions_inherit_listen_socket_stack \ VNET(functions_inherit_listen_socket_stack) SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(functions_inherit_listen_socket_stack), 0, "Inherit listen socket's stack"); #ifdef TCP_OFFLOAD #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL) #endif static void syncache_drop(struct syncache *, struct syncache_head *); static void syncache_free(struct syncache *); static void syncache_insert(struct syncache *, struct syncache_head *); static int syncache_respond(struct syncache *, struct syncache_head *, int, const struct mbuf *); static struct socket *syncache_socket(struct syncache *, struct socket *, struct mbuf *m); static void syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout); static void syncache_timer(void *); static uint32_t syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t, uint8_t *, uintptr_t); static tcp_seq syncookie_generate(struct syncache_head *, struct syncache *); static struct syncache *syncookie_lookup(struct in_conninfo *, struct syncache_head *, struct syncache *, struct tcphdr *, struct tcpopt *, struct socket *); static void syncookie_reseed(void *); #ifdef INVARIANTS static int syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso); #endif /* * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies. * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds, * the odds are that the user has given up attempting to connect by then. */ #define SYNCACHE_MAXREXMTS 3 /* Arbitrary values */ #define TCP_SYNCACHE_HASHSIZE 512 #define TCP_SYNCACHE_BUCKETLIMIT 30 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache); #define V_tcp_syncache VNET(tcp_syncache) static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.bucket_limit), 0, "Per-bucket hash limit for syncache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.cache_limit), 0, "Overall entry limit for syncache"); SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET, &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache"); SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(tcp_syncache.hashsize), 0, "Size of TCP syncache hashtable"); static int sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS) { int error; u_int new; new = V_tcp_syncache.rexmt_limit; error = sysctl_handle_int(oidp, &new, 0, req); if ((error == 0) && (req->newptr != NULL)) { if (new > TCP_MAXRXTSHIFT) error = EINVAL; else V_tcp_syncache.rexmt_limit = new; } return (error); } SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, &VNET_NAME(tcp_syncache.rexmt_limit), 0, sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI", "Limit on SYN/ACK retransmissions"); VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1; SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0, "Send reset on socket allocation failure"); static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache"); #define SCH_LOCK(sch) mtx_lock(&(sch)->sch_mtx) #define SCH_UNLOCK(sch) mtx_unlock(&(sch)->sch_mtx) #define SCH_LOCK_ASSERT(sch) mtx_assert(&(sch)->sch_mtx, MA_OWNED) /* * Requires the syncache entry to be already removed from the bucket list. */ static void syncache_free(struct syncache *sc) { if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); if (sc->sc_cred) crfree(sc->sc_cred); #ifdef MAC mac_syncache_destroy(&sc->sc_label); #endif uma_zfree(V_tcp_syncache.zone, sc); } void syncache_init(void) { int i; V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT; V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS; V_tcp_syncache.hash_secret = arc4random(); TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize", &V_tcp_syncache.hashsize); TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit", &V_tcp_syncache.bucket_limit); if (!powerof2(V_tcp_syncache.hashsize) || V_tcp_syncache.hashsize == 0) { printf("WARNING: syncache hash size is not a power of 2.\n"); V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; } V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1; /* Set limits. */ V_tcp_syncache.cache_limit = V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit; TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit", &V_tcp_syncache.cache_limit); /* Allocate the hash table. */ V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize * sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO); #ifdef VIMAGE V_tcp_syncache.vnet = curvnet; #endif /* Initialize the hash buckets. */ for (i = 0; i < V_tcp_syncache.hashsize; i++) { TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket); mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head", NULL, MTX_DEF); callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer, &V_tcp_syncache.hashbase[i].sch_mtx, 0); V_tcp_syncache.hashbase[i].sch_length = 0; V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache; V_tcp_syncache.hashbase[i].sch_last_overflow = -(SYNCOOKIE_LIFETIME + 1); } /* Create the syncache entry zone. */ V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit); /* Start the SYN cookie reseeder callout. */ callout_init(&V_tcp_syncache.secret.reseed, 1); arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0); arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0); callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz, syncookie_reseed, &V_tcp_syncache); } #ifdef VIMAGE void syncache_destroy(void) { struct syncache_head *sch; struct syncache *sc, *nsc; int i; /* * Stop the re-seed timer before freeing resources. No need to * possibly schedule it another time. */ callout_drain(&V_tcp_syncache.secret.reseed); /* Cleanup hash buckets: stop timers, free entries, destroy locks. */ for (i = 0; i < V_tcp_syncache.hashsize; i++) { sch = &V_tcp_syncache.hashbase[i]; callout_drain(&sch->sch_timer); SCH_LOCK(sch); TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) syncache_drop(sc, sch); SCH_UNLOCK(sch); KASSERT(TAILQ_EMPTY(&sch->sch_bucket), ("%s: sch->sch_bucket not empty", __func__)); KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0", __func__, sch->sch_length)); mtx_destroy(&sch->sch_mtx); } KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0, ("%s: cache_count not 0", __func__)); /* Free the allocated global resources. */ uma_zdestroy(V_tcp_syncache.zone); free(V_tcp_syncache.hashbase, M_SYNCACHE); } #endif /* * Inserts a syncache entry into the specified bucket row. * Locks and unlocks the syncache_head autonomously. */ static void syncache_insert(struct syncache *sc, struct syncache_head *sch) { struct syncache *sc2; SCH_LOCK(sch); /* * Make sure that we don't overflow the per-bucket limit. * If the bucket is full, toss the oldest element. */ if (sch->sch_length >= V_tcp_syncache.bucket_limit) { KASSERT(!TAILQ_EMPTY(&sch->sch_bucket), ("sch->sch_length incorrect")); sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head); sch->sch_last_overflow = time_uptime; syncache_drop(sc2, sch); TCPSTAT_INC(tcps_sc_bucketoverflow); } /* Put it into the bucket. */ TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash); sch->sch_length++; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_added(tod, sc->sc_todctx); } #endif /* Reinitialize the bucket row's timer. */ if (sch->sch_length == 1) sch->sch_nextc = ticks + INT_MAX; syncache_timeout(sc, sch, 1); SCH_UNLOCK(sch); TCPSTATES_INC(TCPS_SYN_RECEIVED); TCPSTAT_INC(tcps_sc_added); } /* * Remove and free entry from syncache bucket row. * Expects locked syncache head. */ static void syncache_drop(struct syncache *sc, struct syncache_head *sch) { SCH_LOCK_ASSERT(sch); TCPSTATES_DEC(TCPS_SYN_RECEIVED); TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); sch->sch_length--; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_removed(tod, sc->sc_todctx); } #endif syncache_free(sc); } /* * Engage/reengage time on bucket row. */ static void syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout) { int rexmt; if (sc->sc_rxmits == 0) rexmt = TCPTV_RTOBASE; else TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits], tcp_rexmit_min, TCPTV_REXMTMAX); sc->sc_rxttime = ticks + rexmt; sc->sc_rxmits++; if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) { sch->sch_nextc = sc->sc_rxttime; if (docallout) callout_reset(&sch->sch_timer, sch->sch_nextc - ticks, syncache_timer, (void *)sch); } } /* * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted. * If we have retransmitted an entry the maximum number of times, expire it. * One separate timer for each bucket row. */ static void syncache_timer(void *xsch) { struct syncache_head *sch = (struct syncache_head *)xsch; struct syncache *sc, *nsc; int tick = ticks; char *s; CURVNET_SET(sch->sch_sc->vnet); /* NB: syncache_head has already been locked by the callout. */ SCH_LOCK_ASSERT(sch); /* * In the following cycle we may remove some entries and/or * advance some timeouts, so re-initialize the bucket timer. */ sch->sch_nextc = tick + INT_MAX; TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) { /* * We do not check if the listen socket still exists * and accept the case where the listen socket may be * gone by the time we resend the SYN/ACK. We do * not expect this to happens often. If it does, * then the RST will be sent by the time the remote * host does the SYN/ACK->ACK. */ if (TSTMP_GT(sc->sc_rxttime, tick)) { if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) sch->sch_nextc = sc->sc_rxttime; continue; } if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) { if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Retransmits exhausted, " "giving up and removing syncache entry\n", s, __func__); free(s, M_TCPLOG); } syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_stale); continue; } if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Response timeout, " "retransmitting (%u) SYN|ACK\n", s, __func__, sc->sc_rxmits); free(s, M_TCPLOG); } syncache_respond(sc, sch, 1, NULL); TCPSTAT_INC(tcps_sc_retransmitted); syncache_timeout(sc, sch, 0); } if (!TAILQ_EMPTY(&(sch)->sch_bucket)) callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick, syncache_timer, (void *)(sch)); CURVNET_RESTORE(); } /* * Find an entry in the syncache. * Returns always with locked syncache_head plus a matching entry or NULL. */ static struct syncache * syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp) { struct syncache *sc; struct syncache_head *sch; uint32_t hash; /* * The hash is built on foreign port + local port + foreign address. * We rely on the fact that struct in_conninfo starts with 16 bits * of foreign port, then 16 bits of local port then followed by 128 * bits of foreign address. In case of IPv4 address, the first 3 * 32-bit words of the address always are zeroes. */ hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5, V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask; sch = &V_tcp_syncache.hashbase[hash]; *schp = sch; SCH_LOCK(sch); /* Circle through bucket row to find matching entry. */ TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie, sizeof(struct in_endpoints)) == 0) break; return (sc); /* Always returns with locked sch. */ } /* * This function is called when we get a RST for a * non-existent connection, so that we can see if the * connection is in the syn cache. If it is, zap it. */ void syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th) { struct syncache *sc; struct syncache_head *sch; char *s = NULL; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); /* * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags. * See RFC 793 page 65, section SEGMENT ARRIVES. */ if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or " "FIN flag set, segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badrst); goto done; } /* * No corresponding connection was found in syncache. * If syncookies are enabled and possibly exclusively * used, or we are under memory pressure, a valid RST * may not find a syncache entry. In that case we're * done and no SYN|ACK retransmissions will happen. * Otherwise the RST was misdirected or spoofed. */ if (sc == NULL) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious RST without matching " "syncache entry (possibly syncookie only), " "segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badrst); goto done; } /* * If the RST bit is set, check the sequence number to see * if this is a valid reset segment. * RFC 793 page 37: * In all states except SYN-SENT, all reset (RST) segments * are validated by checking their SEQ-fields. A reset is * valid if its sequence number is in the window. * * The sequence number in the reset segment is normally an * echo of our outgoing acknowlegement numbers, but some hosts * send a reset with the sequence number at the rightmost edge * of our receive window, and we have to handle this case. */ if (SEQ_GEQ(th->th_seq, sc->sc_irs) && SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) { syncache_drop(sc, sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, " "connection attempt aborted by remote endpoint\n", s, __func__); TCPSTAT_INC(tcps_sc_reset); } else { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != " "IRS %u (+WND %u), segment ignored\n", s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd); TCPSTAT_INC(tcps_badrst); } done: if (s != NULL) free(s, M_TCPLOG); SCH_UNLOCK(sch); } void syncache_badack(struct in_conninfo *inc) { struct syncache *sc; struct syncache_head *sch; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); if (sc != NULL) { syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_badack); } SCH_UNLOCK(sch); } void syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq) { struct syncache *sc; struct syncache_head *sch; sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); if (sc == NULL) goto done; /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ if (ntohl(th_seq) != sc->sc_iss) goto done; /* * If we've rertransmitted 3 times and this is our second error, * we remove the entry. Otherwise, we allow it to continue on. * This prevents us from incorrectly nuking an entry during a * spurious network outage. * * See tcp_notify(). */ if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) { sc->sc_flags |= SCF_UNREACH; goto done; } syncache_drop(sc, sch); TCPSTAT_INC(tcps_sc_unreach); done: SCH_UNLOCK(sch); } /* * Build a new TCP socket structure from a syncache entry. * * On success return the newly created socket with its underlying inp locked. */ static struct socket * syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m) { struct tcp_function_block *blk; struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; int error; char *s; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); /* * Ok, create the full blown connection, and set things up * as they would have been set up if we had created the * connection when the SYN arrived. If we can't create * the connection, abort it. */ so = sonewconn(lso, 0); if (so == NULL) { /* * Drop the connection; we will either send a RST or * have the peer retransmit its SYN again after its * RTO and try again. */ TCPSTAT_INC(tcps_listendrop); if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Socket create failed " "due to limits or memory shortage\n", s, __func__); free(s, M_TCPLOG); } goto abort2; } #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif inp = sotoinpcb(so); inp->inp_inc.inc_fibnum = so->so_fibnum; INP_WLOCK(inp); /* * Exclusive pcbinfo lock is not required in syncache socket case even * if two inpcb locks can be acquired simultaneously: * - the inpcb in LISTEN state, * - the newly created inp. * * In this case, an inp cannot be at same time in LISTEN state and * just created by an accept() call. */ INP_HASH_WLOCK(&V_tcbinfo); /* Insert new socket into PCB hash list. */ inp->inp_inc.inc_flags = sc->sc_inc.inc_flags; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; inp->in6p_laddr = sc->sc_inc.inc6_laddr; } else { inp->inp_vflag &= ~INP_IPV6; inp->inp_vflag |= INP_IPV4; #endif inp->inp_laddr = sc->sc_inc.inc_laddr; #ifdef INET6 } #endif /* * If there's an mbuf and it has a flowid, then let's initialise the * inp with that particular flowid. */ if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { inp->inp_flowid = m->m_pkthdr.flowid; inp->inp_flowtype = M_HASHTYPE_GET(m); } /* * Install in the reservation hash table for now, but don't yet * install a connection group since the full 4-tuple isn't yet * configured. */ inp->inp_lport = sc->sc_inc.inc_lport; if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) { /* * Undo the assignments above if we failed to * put the PCB on the hash lists. */ #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) inp->in6p_laddr = in6addr_any; else #endif inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: in_pcbinshash failed " "with error %i\n", s, __func__, error); free(s, M_TCPLOG); } INP_HASH_WUNLOCK(&V_tcbinfo); goto abort; } #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { struct inpcb *oinp = sotoinpcb(lso); struct in6_addr laddr6; struct sockaddr_in6 sin6; /* * Inherit socket options from the listening socket. * Note that in6p_inputopts are not (and should not be) * copied, since it stores previously received options and is * used to detect if each new option is different than the * previous one and hence should be passed to a user. * If we copied in6p_inputopts, a user would not be able to * receive options just after calling the accept system call. */ inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS; if (oinp->in6p_outputopts) inp->in6p_outputopts = ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(sin6); sin6.sin6_addr = sc->sc_inc.inc6_faddr; sin6.sin6_port = sc->sc_inc.inc_fport; sin6.sin6_flowinfo = sin6.sin6_scope_id = 0; laddr6 = inp->in6p_laddr; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) inp->in6p_laddr = sc->sc_inc.inc6_laddr; if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6, thread0.td_ucred, m)) != 0) { inp->in6p_laddr = laddr6; if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed " "with error %i\n", s, __func__, error); free(s, M_TCPLOG); } INP_HASH_WUNLOCK(&V_tcbinfo); goto abort; } /* Override flowlabel from in6_pcbconnect. */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= sc->sc_flowlabel; } #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET { struct in_addr laddr; struct sockaddr_in sin; inp->inp_options = (m) ? ip_srcroute(m) : NULL; if (inp->inp_options == NULL) { inp->inp_options = sc->sc_ipopts; sc->sc_ipopts = NULL; } sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_addr = sc->sc_inc.inc_faddr; sin.sin_port = sc->sc_inc.inc_fport; bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero)); laddr = inp->inp_laddr; if (inp->inp_laddr.s_addr == INADDR_ANY) inp->inp_laddr = sc->sc_inc.inc_laddr; if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin, thread0.td_ucred, m)) != 0) { inp->inp_laddr = laddr; if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: in_pcbconnect failed " "with error %i\n", s, __func__, error); free(s, M_TCPLOG); } INP_HASH_WUNLOCK(&V_tcbinfo); goto abort; } } #endif /* INET */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Copy old policy into new socket's. */ if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0) printf("syncache_socket: could not copy policy\n"); #endif INP_HASH_WUNLOCK(&V_tcbinfo); tp = intotcpcb(inp); tcp_state_change(tp, TCPS_SYN_RECEIVED); tp->iss = sc->sc_iss; tp->irs = sc->sc_irs; tcp_rcvseqinit(tp); tcp_sendseqinit(tp); blk = sototcpcb(lso)->t_fb; if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) { /* * Our parents t_fb was not the default, * we need to release our ref on tp->t_fb and * pickup one on the new entry. */ struct tcp_function_block *rblk; rblk = find_and_ref_tcp_fb(blk); KASSERT(rblk != NULL, ("cannot find blk %p out of syncache?", blk)); if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_fb = rblk; /* * XXXrrs this is quite dangerous, it is possible * for the new function to fail to init. We also * are not asking if the handoff_is_ok though at * the very start thats probalbly ok. */ if (tp->t_fb->tfb_tcp_fb_init) { (*tp->t_fb->tfb_tcp_fb_init)(tp); } } tp->snd_wl1 = sc->sc_irs; tp->snd_max = tp->iss + 1; tp->snd_nxt = tp->iss + 1; tp->rcv_up = sc->sc_irs + 1; tp->rcv_wnd = sc->sc_wnd; tp->rcv_adv += tp->rcv_wnd; tp->last_ack_sent = tp->rcv_nxt; tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY); if (sc->sc_flags & SCF_NOOPT) tp->t_flags |= TF_NOOPT; else { if (sc->sc_flags & SCF_WINSCALE) { tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE; tp->snd_scale = sc->sc_requested_s_scale; tp->request_r_scale = sc->sc_requested_r_scale; } if (sc->sc_flags & SCF_TIMESTAMP) { tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP; tp->ts_recent = sc->sc_tsreflect; tp->ts_recent_age = tcp_ts_getticks(); tp->ts_offset = sc->sc_tsoff; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) tp->t_flags |= TF_SIGNATURE; #endif if (sc->sc_flags & SCF_SACK) tp->t_flags |= TF_SACK_PERMIT; } if (sc->sc_flags & SCF_ECN) tp->t_flags |= TF_ECN_PERMIT; /* * Set up MSS and get cached values from tcp_hostcache. * This might overwrite some of the defaults we just set. */ tcp_mss(tp, sc->sc_peer_mss); /* * If the SYN,ACK was retransmitted, indicate that CWND to be * limited to one segment in cc_conn_init(). * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits. */ if (sc->sc_rxmits > 1) tp->snd_cwnd = 1; #ifdef TCP_OFFLOAD /* * Allow a TOE driver to install its hooks. Note that we hold the * pcbinfo lock too and that prevents tcp_usr_accept from accepting a * new connection before the TOE driver has done its thing. */ if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_offload_socket(tod, sc->sc_todctx, so); } #endif /* * Copy and activate timers. */ tp->t_keepinit = sototcpcb(lso)->t_keepinit; tp->t_keepidle = sototcpcb(lso)->t_keepidle; tp->t_keepintvl = sototcpcb(lso)->t_keepintvl; tp->t_keepcnt = sototcpcb(lso)->t_keepcnt; tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); TCPSTAT_INC(tcps_accepts); return (so); abort: INP_WUNLOCK(inp); abort2: if (so != NULL) soabort(so); return (NULL); } /* * This function gets called when we receive an ACK for a * socket in the LISTEN state. We look up the connection * in the syncache, and if its there, we pull it out of * the cache and turn it into a full-blown connection in * the SYN-RECEIVED state. * * On syncache_socket() success the newly created socket * has its underlying inp locked. */ int syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct socket **lsop, struct mbuf *m) { struct syncache *sc; struct syncache_head *sch; struct syncache scs; char *s; /* * Global TCP locks are held because we manipulate the PCB lists * and create a new socket. */ INP_INFO_RLOCK_ASSERT(&V_tcbinfo); KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK, ("%s: can handle only ACK", __func__)); sc = syncache_lookup(inc, &sch); /* returns locked sch */ SCH_LOCK_ASSERT(sch); #ifdef INVARIANTS /* * Test code for syncookies comparing the syncache stored * values with the reconstructed values from the cookie. */ if (sc != NULL) syncookie_cmp(inc, sch, sc, th, to, *lsop); #endif if (sc == NULL) { /* * There is no syncache entry, so see if this ACK is * a returning syncookie. To do this, first: * A. Check if syncookies are used in case of syncache * overflows * B. See if this socket has had a syncache entry dropped in * the recent past. We don't want to accept a bogus * syncookie if we've never received a SYN or accept it * twice. * C. check that the syncookie is valid. If it is, then * cobble up a fake syncache entry, and return. */ if (!V_tcp_syncookies) { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious ACK, " "segment rejected (syncookies disabled)\n", s, __func__); goto failed; } if (!V_tcp_syncookiesonly && sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) { SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Spurious ACK, " "segment rejected (no syncache entry)\n", s, __func__); goto failed; } bzero(&scs, sizeof(scs)); sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop); SCH_UNLOCK(sch); if (sc == NULL) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Segment failed " "SYNCOOKIE authentication, segment rejected " "(probably spoofed)\n", s, __func__); goto failed; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* If received ACK has MD5 signature, check it. */ if ((to->to_flags & TOF_SIGNATURE) != 0 && (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0)) { /* Drop the ACK. */ if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment rejected, " "MD5 signature doesn't match.\n", s, __func__); free(s, M_TCPLOG); } TCPSTAT_INC(tcps_sig_err_sigopt); return (-1); /* Do not send RST */ } #endif /* TCP_SIGNATURE */ } else { #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * If listening socket requested TCP digests, check that * received ACK has signature and it is correct. * If not, drop the ACK and leave sc entry in th cache, * because SYN was received with correct signature. */ if (sc->sc_flags & SCF_SIGNATURE) { if ((to->to_flags & TOF_SIGNATURE) == 0) { /* No signature */ TCPSTAT_INC(tcps_sig_err_nosigopt); SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment " "rejected, MD5 signature wasn't " "provided.\n", s, __func__); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0) { /* Doesn't match or no SA */ SCH_UNLOCK(sch); if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Segment " "rejected, MD5 signature doesn't " "match.\n", s, __func__); free(s, M_TCPLOG); } return (-1); /* Do not send RST */ } } #endif /* TCP_SIGNATURE */ /* * Pull out the entry to unlock the bucket row. * * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not * tcp_state_change(). The tcpcb is not existent at this * moment. A new one will be allocated via syncache_socket-> * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then * syncache_socket() will change it to TCPS_SYN_RECEIVED. */ TCPSTATES_DEC(TCPS_SYN_RECEIVED); TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); sch->sch_length--; #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; tod->tod_syncache_removed(tod, sc->sc_todctx); } #endif SCH_UNLOCK(sch); } /* * Segment validation: * ACK must match our initial sequence number + 1 (the SYN|ACK). */ if (th->th_ack != sc->sc_iss + 1) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment " "rejected\n", s, __func__, th->th_ack, sc->sc_iss); goto failed; } /* * The SEQ must fall in the window starting at the received * initial receive sequence number + 1 (the SYN). */ if (SEQ_LEQ(th->th_seq, sc->sc_irs) || SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment " "rejected\n", s, __func__, th->th_seq, sc->sc_irs); goto failed; } /* * If timestamps were not negotiated during SYN/ACK they * must not appear on any segment during this session. */ if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Timestamp not expected, " "segment rejected\n", s, __func__); goto failed; } /* * If timestamps were negotiated during SYN/ACK they should * appear on every segment during this session. * XXXAO: This is only informal as there have been unverified * reports of non-compliants stacks. */ if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp missing, " "no action\n", s, __func__); free(s, M_TCPLOG); s = NULL; } } *lsop = syncache_socket(sc, *lsop, m); if (*lsop == NULL) TCPSTAT_INC(tcps_sc_aborted); else TCPSTAT_INC(tcps_sc_completed); /* how do we find the inp for the new socket? */ if (sc != &scs) syncache_free(sc); return (1); failed: if (sc != NULL && sc != &scs) syncache_free(sc); if (s != NULL) free(s, M_TCPLOG); *lsop = NULL; return (0); } static void syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m, uint64_t response_cookie) { struct inpcb *inp; struct tcpcb *tp; unsigned int *pending_counter; /* * Global TCP locks are held because we manipulate the PCB lists * and create a new socket. */ INP_INFO_RLOCK_ASSERT(&V_tcbinfo); pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending; *lsop = syncache_socket(sc, *lsop, m); if (*lsop == NULL) { TCPSTAT_INC(tcps_sc_aborted); atomic_subtract_int(pending_counter, 1); } else { soisconnected(*lsop); inp = sotoinpcb(*lsop); tp = intotcpcb(inp); tp->t_flags |= TF_FASTOPEN; tp->t_tfo_cookie.server = response_cookie; tp->snd_max = tp->iss; tp->snd_nxt = tp->iss; tp->t_tfo_pending = pending_counter; TCPSTAT_INC(tcps_sc_completed); } } /* * Given a LISTEN socket and an inbound SYN request, add * this to the syn cache, and send back a segment: * * to the source. * * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN. * Doing so would require that we hold onto the data and deliver it * to the application. However, if we are the target of a SYN-flood * DoS attack, an attacker could send data which would eventually * consume all available buffer space if it were ACKed. By not ACKing * the data, we avoid this DoS scenario. * * The exception to the above is when a SYN with a valid TCP Fast Open (TFO) * cookie is processed and a new socket is created. In this case, any data * accompanying the SYN will be queued to the socket by tcp_input() and will * be ACKed either when the application sends response data or the delayed * ACK timer expires, whichever comes first. */ int syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod, void *todctx) { struct tcpcb *tp; struct socket *so; struct syncache *sc = NULL; struct syncache_head *sch; struct mbuf *ipopts = NULL; u_int ltflags; int win, ip_ttl, ip_tos; char *s; int rv = 0; #ifdef INET6 int autoflowlabel = 0; #endif #ifdef MAC struct label *maclabel; #endif struct syncache scs; struct ucred *cred; uint64_t tfo_response_cookie; unsigned int *tfo_pending = NULL; int tfo_cookie_valid = 0; int tfo_response_cookie_valid = 0; INP_WLOCK_ASSERT(inp); /* listen socket */ KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN, ("%s: unexpected tcp flags", __func__)); /* * Combine all so/tp operations very early to drop the INP lock as * soon as possible. */ so = *lsop; KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so)); tp = sototcpcb(so); cred = crhold(so->so_cred); #ifdef INET6 if ((inc->inc_flags & INC_ISIPV6) && (inp->inp_flags & IN6P_AUTOFLOWLABEL)) autoflowlabel = 1; #endif ip_ttl = inp->inp_ip_ttl; ip_tos = inp->inp_ip_tos; win = so->sol_sbrcv_hiwat; ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE)); if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) && (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) { /* * Limit the number of pending TFO connections to * approximately half of the queue limit. This prevents TFO * SYN floods from starving the service by filling the * listen queue with bogus TFO connections. */ if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <= (so->sol_qlimit / 2)) { int result; result = tcp_fastopen_check_cookie(inc, to->to_tfo_cookie, to->to_tfo_len, &tfo_response_cookie); tfo_cookie_valid = (result > 0); tfo_response_cookie_valid = (result >= 0); } /* * Remember the TFO pending counter as it will have to be * decremented below if we don't make it to syncache_tfo_expand(). */ tfo_pending = tp->t_tfo_pending; } /* By the time we drop the lock these should no longer be used. */ so = NULL; tp = NULL; #ifdef MAC if (mac_syncache_init(&maclabel) != 0) { INP_WUNLOCK(inp); goto done; } else mac_syncache_create(maclabel, inp); #endif if (!tfo_cookie_valid) INP_WUNLOCK(inp); /* * Remember the IP options, if any. */ #ifdef INET6 if (!(inc->inc_flags & INC_ISIPV6)) #endif #ifdef INET ipopts = (m) ? ip_srcroute(m) : NULL; #else ipopts = NULL; #endif #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * If listening socket requested TCP digests, check that received * SYN has signature and it is correct. If signature doesn't match * or TCP_SIGNATURE support isn't enabled, drop the packet. */ if (ltflags & TF_SIGNATURE) { if ((to->to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_nosigopt); goto done; } if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to->to_signature) != 0) goto done; } #endif /* TCP_SIGNATURE */ /* * See if we already have an entry for this connection. * If we do, resend the SYN,ACK, and reset the retransmit timer. * * XXX: should the syncache be re-initialized with the contents * of the new SYN here (which may have different options?) * * XXX: We do not check the sequence number to see if this is a * real retransmit or a new connection attempt. The question is * how to handle such a case; either ignore it as spoofed, or * drop the current entry and create a new one? */ sc = syncache_lookup(inc, &sch); /* returns locked entry */ SCH_LOCK_ASSERT(sch); if (sc != NULL) { if (tfo_cookie_valid) INP_WUNLOCK(inp); TCPSTAT_INC(tcps_sc_dupsyn); if (ipopts) { /* * If we were remembering a previous source route, * forget it and use the new one we've been given. */ if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); sc->sc_ipopts = ipopts; } /* * Update timestamp if present. */ if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) sc->sc_tsreflect = to->to_tsval; else sc->sc_flags &= ~SCF_TIMESTAMP; #ifdef MAC /* * Since we have already unconditionally allocated label * storage, free it up. The syncache entry will already * have an initialized label we can use. */ mac_syncache_destroy(&maclabel); #endif + TCP_PROBE5(receive, NULL, NULL, m, NULL, th); /* Retransmit SYN|ACK and reset retransmit count. */ if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Received duplicate SYN, " "resetting timer and retransmitting SYN|ACK\n", s, __func__); free(s, M_TCPLOG); } if (syncache_respond(sc, sch, 1, m) == 0) { sc->sc_rxmits = 0; syncache_timeout(sc, sch, 1); TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); } SCH_UNLOCK(sch); - goto done; + goto donenoprobe; } if (tfo_cookie_valid) { bzero(&scs, sizeof(scs)); sc = &scs; goto skip_alloc; } sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO); if (sc == NULL) { /* * The zone allocator couldn't provide more entries. * Treat this as if the cache was full; drop the oldest * entry and insert the new one. */ TCPSTAT_INC(tcps_sc_zonefail); if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) { sch->sch_last_overflow = time_uptime; syncache_drop(sc, sch); } sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO); if (sc == NULL) { if (V_tcp_syncookies) { bzero(&scs, sizeof(scs)); sc = &scs; } else { SCH_UNLOCK(sch); if (ipopts) (void) m_free(ipopts); goto done; } } } skip_alloc: if (!tfo_cookie_valid && tfo_response_cookie_valid) sc->sc_tfo_cookie = &tfo_response_cookie; /* * Fill in the syncache values. */ #ifdef MAC sc->sc_label = maclabel; #endif sc->sc_cred = cred; cred = NULL; sc->sc_ipopts = ipopts; bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo)); #ifdef INET6 if (!(inc->inc_flags & INC_ISIPV6)) #endif { sc->sc_ip_tos = ip_tos; sc->sc_ip_ttl = ip_ttl; } #ifdef TCP_OFFLOAD sc->sc_tod = tod; sc->sc_todctx = todctx; #endif sc->sc_irs = th->th_seq; sc->sc_iss = arc4random(); sc->sc_flags = 0; sc->sc_flowlabel = 0; /* * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN]. * win was derived from socket earlier in the function. */ win = imax(win, 0); win = imin(win, TCP_MAXWIN); sc->sc_wnd = win; if (V_tcp_do_rfc1323) { /* * A timestamp received in a SYN makes * it ok to send timestamp requests and replies. */ if (to->to_flags & TOF_TS) { sc->sc_tsreflect = to->to_tsval; sc->sc_flags |= SCF_TIMESTAMP; } if (to->to_flags & TOF_SCALE) { int wscale = 0; /* * Pick the smallest possible scaling factor that * will still allow us to scale up to sb_max, aka * kern.ipc.maxsockbuf. * * We do this because there are broken firewalls that * will corrupt the window scale option, leading to * the other endpoint believing that our advertised * window is unscaled. At scale factors larger than * 5 the unscaled window will drop below 1500 bytes, * leading to serious problems when traversing these * broken firewalls. * * With the default maxsockbuf of 256K, a scale factor * of 3 will be chosen by this algorithm. Those who * choose a larger maxsockbuf should watch out * for the compatibility problems mentioned above. * * RFC1323: The Window field in a SYN (i.e., a * or ) segment itself is never scaled. */ while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max) wscale++; sc->sc_requested_r_scale = wscale; sc->sc_requested_s_scale = to->to_wscale; sc->sc_flags |= SCF_WINSCALE; } } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* * If listening socket requested TCP digests, flag this in the * syncache so that syncache_respond() will do the right thing * with the SYN+ACK. */ if (ltflags & TF_SIGNATURE) sc->sc_flags |= SCF_SIGNATURE; #endif /* TCP_SIGNATURE */ if (to->to_flags & TOF_SACKPERM) sc->sc_flags |= SCF_SACK; if (to->to_flags & TOF_MSS) sc->sc_peer_mss = to->to_mss; /* peer mss may be zero */ if (ltflags & TF_NOOPT) sc->sc_flags |= SCF_NOOPT; if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn) sc->sc_flags |= SCF_ECN; if (V_tcp_syncookies) sc->sc_iss = syncookie_generate(sch, sc); #ifdef INET6 if (autoflowlabel) { if (V_tcp_syncookies) sc->sc_flowlabel = sc->sc_iss; else sc->sc_flowlabel = ip6_randomflowlabel(); sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK; } #endif SCH_UNLOCK(sch); if (tfo_cookie_valid) { syncache_tfo_expand(sc, lsop, m, tfo_response_cookie); /* INP_WUNLOCK(inp) will be performed by the caller */ rv = 1; goto tfo_expanded; } + TCP_PROBE5(receive, NULL, NULL, m, NULL, th); /* * Do a standard 3-way handshake. */ if (syncache_respond(sc, sch, 0, m) == 0) { if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs) syncache_free(sc); else if (sc != &scs) syncache_insert(sc, sch); /* locks and unlocks sch */ TCPSTAT_INC(tcps_sndacks); TCPSTAT_INC(tcps_sndtotal); } else { if (sc != &scs) syncache_free(sc); TCPSTAT_INC(tcps_sc_dropped); } + goto donenoprobe; done: + TCP_PROBE5(receive, NULL, NULL, m, NULL, th); +donenoprobe: if (m) { *lsop = NULL; m_freem(m); } /* * If tfo_pending is not NULL here, then a TFO SYN that did not * result in a new socket was processed and the associated pending * counter has not yet been decremented. All such TFO processing paths * transit this point. */ if (tfo_pending != NULL) tcp_fastopen_decrement_counter(tfo_pending); tfo_expanded: if (cred != NULL) crfree(cred); #ifdef MAC if (sc == &scs) mac_syncache_destroy(&maclabel); #endif return (rv); } /* * Send SYN|ACK to the peer. Either in response to the peer's SYN, * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL. */ static int syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked, const struct mbuf *m0) { struct ip *ip = NULL; struct mbuf *m; struct tcphdr *th = NULL; int optlen, error = 0; /* Make compiler happy */ u_int16_t hlen, tlen, mssopt; struct tcpopt to; #ifdef INET6 struct ip6_hdr *ip6 = NULL; #endif hlen = #ifdef INET6 (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) : #endif sizeof(struct ip); tlen = hlen + sizeof(struct tcphdr); /* Determine MSS we advertize to other end of connection. */ mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss); /* XXX: Assume that the entire packet will fit in a header mbuf. */ KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN, ("syncache: mbuf too small")); /* Create the IP+TCP header from scratch. */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); #ifdef MAC mac_syncache_create_mbuf(sc->sc_label, m); #endif m->m_data += max_linkhdr; m->m_len = tlen; m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_src = sc->sc_inc.inc6_laddr; ip6->ip6_dst = sc->sc_inc.inc6_faddr; ip6->ip6_plen = htons(tlen - hlen); /* ip6_hlim is set after checksum */ ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK; ip6->ip6_flow |= sc->sc_flowlabel; th = (struct tcphdr *)(ip6 + 1); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { ip = mtod(m, struct ip *); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(struct ip) >> 2; ip->ip_len = htons(tlen); ip->ip_id = 0; ip->ip_off = 0; ip->ip_sum = 0; ip->ip_p = IPPROTO_TCP; ip->ip_src = sc->sc_inc.inc_laddr; ip->ip_dst = sc->sc_inc.inc_faddr; ip->ip_ttl = sc->sc_ip_ttl; ip->ip_tos = sc->sc_ip_tos; /* * See if we should do MTU discovery. Route lookups are * expensive, so we will only unset the DF bit if: * * 1) path_mtu_discovery is disabled * 2) the SCF_UNREACH flag has been set */ if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0)) ip->ip_off |= htons(IP_DF); th = (struct tcphdr *)(ip + 1); } #endif /* INET */ th->th_sport = sc->sc_inc.inc_lport; th->th_dport = sc->sc_inc.inc_fport; th->th_seq = htonl(sc->sc_iss); th->th_ack = htonl(sc->sc_irs + 1); th->th_off = sizeof(struct tcphdr) >> 2; th->th_x2 = 0; th->th_flags = TH_SYN|TH_ACK; th->th_win = htons(sc->sc_wnd); th->th_urp = 0; if (sc->sc_flags & SCF_ECN) { th->th_flags |= TH_ECE; TCPSTAT_INC(tcps_ecn_shs); } /* Tack on the TCP options. */ if ((sc->sc_flags & SCF_NOOPT) == 0) { to.to_flags = 0; to.to_mss = mssopt; to.to_flags = TOF_MSS; if (sc->sc_flags & SCF_WINSCALE) { to.to_wscale = sc->sc_requested_r_scale; to.to_flags |= TOF_SCALE; } if (sc->sc_flags & SCF_TIMESTAMP) { to.to_tsval = sc->sc_tsoff + tcp_ts_getticks(); to.to_tsecr = sc->sc_tsreflect; to.to_flags |= TOF_TS; } if (sc->sc_flags & SCF_SACK) to.to_flags |= TOF_SACKPERM; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif if (sc->sc_tfo_cookie) { to.to_flags |= TOF_FASTOPEN; to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; to.to_tfo_cookie = sc->sc_tfo_cookie; /* don't send cookie again when retransmitting response */ sc->sc_tfo_cookie = NULL; } optlen = tcp_addoptions(&to, (u_char *)(th + 1)); /* Adjust headers by option size. */ th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; m->m_len += optlen; m->m_pkthdr.len += optlen; #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen); else #endif ip->ip_len = htons(ntohs(ip->ip_len) + optlen); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (sc->sc_flags & SCF_SIGNATURE) { KASSERT(to.to_flags & TOF_SIGNATURE, ("tcp_addoptions() didn't set tcp_signature")); /* NOTE: to.to_signature is inside of mbuf */ if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, to.to_signature) != 0) { m_freem(m); return (EACCES); } } #endif } else optlen = 0; M_SETFIB(m, sc->sc_inc.inc_fibnum); m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); /* * If we have peer's SYN and it has a flowid, then let's assign it to * our SYN|ACK. ip6_output() and ip_output() will not assign flowid * to SYN|ACK due to lack of inp here. */ if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) { m->m_pkthdr.flowid = m0->m_pkthdr.flowid; M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0)); } #ifdef INET6 if (sc->sc_inc.inc_flags & INC_ISIPV6) { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen, IPPROTO_TCP, 0); ip6->ip6_hlim = in6_selecthlim(NULL, NULL); #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; error = tod->tod_syncache_respond(tod, sc->sc_todctx, m); return (error); } #endif + TCP_PROBE5(send, NULL, NULL, ip6, NULL, th); error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { m->m_pkthdr.csum_flags = CSUM_TCP; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(tlen + optlen - hlen + IPPROTO_TCP)); #ifdef TCP_OFFLOAD if (ADDED_BY_TOE(sc)) { struct toedev *tod = sc->sc_tod; error = tod->tod_syncache_respond(tod, sc->sc_todctx, m); return (error); } #endif + TCP_PROBE5(send, NULL, NULL, ip, NULL, th); error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL); } #endif return (error); } /* * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks * that exceed the capacity of the syncache by avoiding the storage of any * of the SYNs we receive. Syncookies defend against blind SYN flooding * attacks where the attacker does not have access to our responses. * * Syncookies encode and include all necessary information about the * connection setup within the SYN|ACK that we send back. That way we * can avoid keeping any local state until the ACK to our SYN|ACK returns * (if ever). Normally the syncache and syncookies are running in parallel * with the latter taking over when the former is exhausted. When matching * syncache entry is found the syncookie is ignored. * * The only reliable information persisting the 3WHS is our initial sequence * number ISS of 32 bits. Syncookies embed a cryptographically sufficient * strong hash (MAC) value and a few bits of TCP SYN options in the ISS * of our SYN|ACK. The MAC can be recomputed when the ACK to our SYN|ACK * returns and signifies a legitimate connection if it matches the ACK. * * The available space of 32 bits to store the hash and to encode the SYN * option information is very tight and we should have at least 24 bits for * the MAC to keep the number of guesses by blind spoofing reasonably high. * * SYN option information we have to encode to fully restore a connection: * MSS: is imporant to chose an optimal segment size to avoid IP level * fragmentation along the path. The common MSS values can be encoded * in a 3-bit table. Uncommon values are captured by the next lower value * in the table leading to a slight increase in packetization overhead. * WSCALE: is necessary to allow large windows to be used for high delay- * bandwidth product links. Not scaling the window when it was initially * negotiated is bad for performance as lack of scaling further decreases * the apparent available send window. We only need to encode the WSCALE * we received from the remote end. Our end can be recalculated at any * time. The common WSCALE values can be encoded in a 3-bit table. * Uncommon values are captured by the next lower value in the table * making us under-estimate the available window size halving our * theoretically possible maximum throughput for that connection. * SACK: Greatly assists in packet loss recovery and requires 1 bit. * TIMESTAMP and SIGNATURE is not encoded because they are permanent options * that are included in all segments on a connection. We enable them when * the ACK has them. * * Security of syncookies and attack vectors: * * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod) * together with the gloabl secret to make it unique per connection attempt. * Thus any change of any of those parameters results in a different MAC output * in an unpredictable way unless a collision is encountered. 24 bits of the * MAC are embedded into the ISS. * * To prevent replay attacks two rotating global secrets are updated with a * new random value every 15 seconds. The life-time of a syncookie is thus * 15-30 seconds. * * Vector 1: Attacking the secret. This requires finding a weakness in the * MAC itself or the way it is used here. The attacker can do a chosen plain * text attack by varying and testing the all parameters under his control. * The strength depends on the size and randomness of the secret, and the * cryptographic security of the MAC function. Due to the constant updating * of the secret the attacker has at most 29.999 seconds to find the secret * and launch spoofed connections. After that he has to start all over again. * * Vector 2: Collision attack on the MAC of a single ACK. With a 24 bit MAC * size an average of 4,823 attempts are required for a 50% chance of success * to spoof a single syncookie (birthday collision paradox). However the * attacker is blind and doesn't know if one of his attempts succeeded unless * he has a side channel to interfere success from. A single connection setup * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets. * This many attempts are required for each one blind spoofed connection. For * every additional spoofed connection he has to launch another N attempts. * Thus for a sustained rate 100 spoofed connections per second approximately * 1,800,000 packets per second would have to be sent. * * NB: The MAC function should be fast so that it doesn't become a CPU * exhaustion attack vector itself. * * References: * RFC4987 TCP SYN Flooding Attacks and Common Mitigations * SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996 * http://cr.yp.to/syncookies.html (overview) * http://cr.yp.to/syncookies/archive (details) * * * Schematic construction of a syncookie enabled Initial Sequence Number: * 0 1 2 3 * 12345678901234567890123456789012 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP| * * x 24 MAC (truncated) * W 3 Send Window Scale index * M 3 MSS index * S 1 SACK permitted * P 1 Odd/even secret */ /* * Distribution and probability of certain MSS values. Those in between are * rounded down to the next lower one. * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011] * .2% .3% 5% 7% 7% 20% 15% 45% */ static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 }; /* * Distribution and probability of certain WSCALE values. We have to map the * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3 * bits based on prevalence of certain values. Where we don't have an exact * match for are rounded down to the next lower one letting us under-estimate * the true available window. At the moment this would happen only for the * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer * and window size). The absence of the WSCALE option (no scaling in either * direction) is encoded with index zero. * [WSCALE values histograms, Allman, 2012] * X 10 10 35 5 6 14 10% by host * X 11 4 5 5 18 49 3% by connections */ static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 }; /* * Compute the MAC for the SYN cookie. SIPHASH-2-4 is chosen for its speed * and good cryptographic properties. */ static uint32_t syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags, uint8_t *secbits, uintptr_t secmod) { SIPHASH_CTX ctx; uint32_t siphash[2]; SipHash24_Init(&ctx); SipHash_SetKey(&ctx, secbits); switch (inc->inc_flags & INC_ISIPV6) { #ifdef INET case 0: SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr)); SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr)); break; #endif #ifdef INET6 case INC_ISIPV6: SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr)); SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr)); break; #endif } SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport)); SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport)); SipHash_Update(&ctx, &irs, sizeof(irs)); SipHash_Update(&ctx, &flags, sizeof(flags)); SipHash_Update(&ctx, &secmod, sizeof(secmod)); SipHash_Final((u_int8_t *)&siphash, &ctx); return (siphash[0] ^ siphash[1]); } static tcp_seq syncookie_generate(struct syncache_head *sch, struct syncache *sc) { u_int i, secbit, wscale; uint32_t iss, hash; uint8_t *secbits; union syncookie cookie; SCH_LOCK_ASSERT(sch); cookie.cookie = 0; /* Map our computed MSS into the 3-bit index. */ for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0; i--) ; cookie.flags.mss_idx = i; /* * Map the send window scale into the 3-bit index but only if * the wscale option was received. */ if (sc->sc_flags & SCF_WINSCALE) { wscale = sc->sc_requested_s_scale; for (i = nitems(tcp_sc_wstab) - 1; tcp_sc_wstab[i] > wscale && i > 0; i--) ; cookie.flags.wscale_idx = i; } /* Can we do SACK? */ if (sc->sc_flags & SCF_SACK) cookie.flags.sack_ok = 1; /* Which of the two secrets to use. */ secbit = sch->sch_sc->secret.oddeven & 0x1; cookie.flags.odd_even = secbit; secbits = sch->sch_sc->secret.key[secbit]; hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits, (uintptr_t)sch); /* * Put the flags into the hash and XOR them to get better ISS number * variance. This doesn't enhance the cryptographic strength and is * done to prevent the 8 cookie bits from showing up directly on the * wire. */ iss = hash & ~0xff; iss |= cookie.cookie ^ (hash >> 24); /* Randomize the timestamp. */ if (sc->sc_flags & SCF_TIMESTAMP) { sc->sc_tsoff = arc4random() - tcp_ts_getticks(); } TCPSTAT_INC(tcps_sc_sendcookie); return (iss); } static struct syncache * syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso) { uint32_t hash; uint8_t *secbits; tcp_seq ack, seq; int wnd, wscale = 0; union syncookie cookie; SCH_LOCK_ASSERT(sch); /* * Pull information out of SYN-ACK/ACK and revert sequence number * advances. */ ack = th->th_ack - 1; seq = th->th_seq - 1; /* * Unpack the flags containing enough information to restore the * connection. */ cookie.cookie = (ack & 0xff) ^ (ack >> 24); /* Which of the two secrets to use. */ secbits = sch->sch_sc->secret.key[cookie.flags.odd_even]; hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch); /* The recomputed hash matches the ACK if this was a genuine cookie. */ if ((ack & ~0xff) != (hash & ~0xff)) return (NULL); /* Fill in the syncache values. */ sc->sc_flags = 0; bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo)); sc->sc_ipopts = NULL; sc->sc_irs = seq; sc->sc_iss = ack; switch (inc->inc_flags & INC_ISIPV6) { #ifdef INET case 0: sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl; sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos; break; #endif #ifdef INET6 case INC_ISIPV6: if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL) sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK; break; #endif } sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx]; /* We can simply recompute receive window scale we sent earlier. */ while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max) wscale++; /* Only use wscale if it was enabled in the orignal SYN. */ if (cookie.flags.wscale_idx > 0) { sc->sc_requested_r_scale = wscale; sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx]; sc->sc_flags |= SCF_WINSCALE; } wnd = lso->sol_sbrcv_hiwat; wnd = imax(wnd, 0); wnd = imin(wnd, TCP_MAXWIN); sc->sc_wnd = wnd; if (cookie.flags.sack_ok) sc->sc_flags |= SCF_SACK; if (to->to_flags & TOF_TS) { sc->sc_flags |= SCF_TIMESTAMP; sc->sc_tsreflect = to->to_tsval; sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks(); } if (to->to_flags & TOF_SIGNATURE) sc->sc_flags |= SCF_SIGNATURE; sc->sc_rxmits = 0; TCPSTAT_INC(tcps_sc_recvcookie); return (sc); } #ifdef INVARIANTS static int syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch, struct syncache *sc, struct tcphdr *th, struct tcpopt *to, struct socket *lso) { struct syncache scs, *scx; char *s; bzero(&scs, sizeof(scs)); scx = syncookie_lookup(inc, sch, &scs, th, to, lso); if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL) return (0); if (scx != NULL) { if (sc->sc_peer_mss != scx->sc_peer_mss) log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n", s, __func__, sc->sc_peer_mss, scx->sc_peer_mss); if (sc->sc_requested_r_scale != scx->sc_requested_r_scale) log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n", s, __func__, sc->sc_requested_r_scale, scx->sc_requested_r_scale); if (sc->sc_requested_s_scale != scx->sc_requested_s_scale) log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n", s, __func__, sc->sc_requested_s_scale, scx->sc_requested_s_scale); if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK)) log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__); } if (s != NULL) free(s, M_TCPLOG); return (0); } #endif /* INVARIANTS */ static void syncookie_reseed(void *arg) { struct tcp_syncache *sc = arg; uint8_t *secbits; int secbit; /* * Reseeding the secret doesn't have to be protected by a lock. * It only must be ensured that the new random values are visible * to all CPUs in a SMP environment. The atomic with release * semantics ensures that. */ secbit = (sc->secret.oddeven & 0x1) ? 0 : 1; secbits = sc->secret.key[secbit]; arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0); atomic_add_rel_int(&sc->secret.oddeven, 1); /* Reschedule ourself. */ callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz); } /* * Exports the syncache entries to userland so that netstat can display * them alongside the other sockets. This function is intended to be * called only from tcp_pcblist. * * Due to concurrency on an active system, the number of pcbs exported * may have no relation to max_pcbs. max_pcbs merely indicates the * amount of space the caller allocated for this function to use. */ int syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported) { struct xtcpcb xt; struct syncache *sc; struct syncache_head *sch; int count, error, i; for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) { sch = &V_tcp_syncache.hashbase[i]; SCH_LOCK(sch); TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) { if (count >= max_pcbs) { SCH_UNLOCK(sch); goto exit; } if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0) continue; bzero(&xt, sizeof(xt)); xt.xt_len = sizeof(xt); if (sc->sc_inc.inc_flags & INC_ISIPV6) xt.xt_inp.inp_vflag = INP_IPV6; else xt.xt_inp.inp_vflag = INP_IPV4; bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo)); xt.t_state = TCPS_SYN_RECEIVED; xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP; xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket); xt.xt_inp.xi_socket.so_type = SOCK_STREAM; xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING; error = SYSCTL_OUT(req, &xt, sizeof xt); if (error) { SCH_UNLOCK(sch); goto exit; } count++; } SCH_UNLOCK(sch); } exit: *pcbs_exported = count; return error; } Index: head/sys/netinet/tcp_timewait.c =================================================================== --- head/sys/netinet/tcp_timewait.c (revision 336931) +++ head/sys/netinet/tcp_timewait.c (revision 336932) @@ -1,755 +1,763 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #include #include #include #include #include #ifndef INVARIANTS #include #endif #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #endif #include #include #include #include #include #ifdef INET6 #include #endif #include #ifdef TCPDEBUG #include #endif #ifdef INET6 #include #endif #include #include VNET_DEFINE_STATIC(uma_zone_t, tcptw_zone); #define V_tcptw_zone VNET(tcptw_zone) static int maxtcptw; /* * The timed wait queue contains references to each of the TCP sessions * currently in the TIME_WAIT state. The queue pointers, including the * queue pointers in each tcptw structure, are protected using the global * timewait lock, which must be held over queue iteration and modification. * * Rules on tcptw usage: * - a inpcb is always freed _after_ its tcptw * - a tcptw relies on its inpcb reference counting for memory stability * - a tcptw is dereferenceable only while its inpcb is locked */ VNET_DEFINE_STATIC(TAILQ_HEAD(, tcptw), twq_2msl); #define V_twq_2msl VNET(twq_2msl) /* Global timewait lock */ VNET_DEFINE_STATIC(struct rwlock, tw_lock); #define V_tw_lock VNET(tw_lock) #define TW_LOCK_INIT(tw, d) rw_init_flags(&(tw), (d), 0) #define TW_LOCK_DESTROY(tw) rw_destroy(&(tw)) #define TW_RLOCK(tw) rw_rlock(&(tw)) #define TW_WLOCK(tw) rw_wlock(&(tw)) #define TW_RUNLOCK(tw) rw_runlock(&(tw)) #define TW_WUNLOCK(tw) rw_wunlock(&(tw)) #define TW_LOCK_ASSERT(tw) rw_assert(&(tw), RA_LOCKED) #define TW_RLOCK_ASSERT(tw) rw_assert(&(tw), RA_RLOCKED) #define TW_WLOCK_ASSERT(tw) rw_assert(&(tw), RA_WLOCKED) #define TW_UNLOCK_ASSERT(tw) rw_assert(&(tw), RA_UNLOCKED) static void tcp_tw_2msl_reset(struct tcptw *, int); static void tcp_tw_2msl_stop(struct tcptw *, int); static int tcp_twrespond(struct tcptw *, int); static int tcptw_auto_size(void) { int halfrange; /* * Max out at half the ephemeral port range so that TIME_WAIT * sockets don't tie up too many ephemeral ports. */ if (V_ipport_lastauto > V_ipport_firstauto) halfrange = (V_ipport_lastauto - V_ipport_firstauto) / 2; else halfrange = (V_ipport_firstauto - V_ipport_lastauto) / 2; /* Protect against goofy port ranges smaller than 32. */ return (imin(imax(halfrange, 32), maxsockets / 5)); } static int sysctl_maxtcptw(SYSCTL_HANDLER_ARGS) { int error, new; if (maxtcptw == 0) new = tcptw_auto_size(); else new = maxtcptw; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) if (new >= 32) { maxtcptw = new; uma_zone_set_max(V_tcptw_zone, maxtcptw); } return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW, &maxtcptw, 0, sysctl_maxtcptw, "IU", "Maximum number of compressed TCP TIME_WAIT entries"); VNET_DEFINE_STATIC(int, nolocaltimewait) = 0; #define V_nolocaltimewait VNET(nolocaltimewait) SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nolocaltimewait), 0, "Do not create compressed TCP TIME_WAIT entries for local connections"); void tcp_tw_zone_change(void) { if (maxtcptw == 0) uma_zone_set_max(V_tcptw_zone, tcptw_auto_size()); } void tcp_tw_init(void) { V_tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw); if (maxtcptw == 0) uma_zone_set_max(V_tcptw_zone, tcptw_auto_size()); else uma_zone_set_max(V_tcptw_zone, maxtcptw); TAILQ_INIT(&V_twq_2msl); TW_LOCK_INIT(V_tw_lock, "tcptw"); } #ifdef VIMAGE void tcp_tw_destroy(void) { struct tcptw *tw; struct epoch_tracker et; INP_INFO_RLOCK_ET(&V_tcbinfo, et); while ((tw = TAILQ_FIRST(&V_twq_2msl)) != NULL) tcp_twclose(tw, 0); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); TW_LOCK_DESTROY(V_tw_lock); uma_zdestroy(V_tcptw_zone); } #endif /* * Move a TCP connection into TIME_WAIT state. * tcbinfo is locked. * inp is locked, and is unlocked before returning. */ void tcp_twstart(struct tcpcb *tp) { struct tcptw twlocal, *tw; struct inpcb *inp = tp->t_inpcb; struct socket *so; bool acknow, local; #ifdef INET6 bool isipv6 = inp->inp_inc.inc_flags & INC_ISIPV6; #endif INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); /* A dropped inp should never transition to TIME_WAIT state. */ KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("tcp_twstart: " "(inp->inp_flags & INP_DROPPED) != 0")); if (V_nolocaltimewait) { #ifdef INET6 if (isipv6) local = in6_localaddr(&inp->in6p_faddr); else #endif #ifdef INET local = in_localip(inp->inp_faddr); #else local = false; #endif } else local = false; /* * For use only by DTrace. We do not reference the state * after this point so modifying it in place is not a problem. */ tcp_state_change(tp, TCPS_TIME_WAIT); if (local) tw = &twlocal; else tw = uma_zalloc(V_tcptw_zone, M_NOWAIT); if (tw == NULL) { /* * Reached limit on total number of TIMEWAIT connections * allowed. Remove a connection from TIMEWAIT queue in LRU * fashion to make room for this connection. * * XXX: Check if it possible to always have enough room * in advance based on guarantees provided by uma_zalloc(). */ tw = tcp_tw_2msl_scan(1); if (tw == NULL) { tp = tcp_close(tp); if (tp != NULL) INP_WUNLOCK(inp); return; } } /* * For !local case the tcptw will hold a reference on its inpcb * until tcp_twclose is called. */ tw->tw_inpcb = inp; /* * Recover last window size sent. */ if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale; else tw->last_win = 0; /* * Set t_recent if timestamps are used on the connection. */ if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) == (TF_REQ_TSTMP|TF_RCVD_TSTMP)) { tw->t_recent = tp->ts_recent; tw->ts_offset = tp->ts_offset; } else { tw->t_recent = 0; tw->ts_offset = 0; } tw->snd_nxt = tp->snd_nxt; tw->rcv_nxt = tp->rcv_nxt; tw->iss = tp->iss; tw->irs = tp->irs; tw->t_starttime = tp->t_starttime; tw->tw_time = 0; /* XXX * If this code will * be used for fin-wait-2 state also, then we may need * a ts_recent from the last segment. */ acknow = tp->t_flags & TF_ACKNOW; /* * First, discard tcpcb state, which includes stopping its timers and * freeing it. tcp_discardcb() used to also release the inpcb, but * that work is now done in the caller. * * Note: soisdisconnected() call used to be made in tcp_discardcb(), * and might not be needed here any longer. */ tcp_discardcb(tp); so = inp->inp_socket; soisdisconnected(so); tw->tw_so_options = so->so_options; inp->inp_flags |= INP_TIMEWAIT; if (acknow) tcp_twrespond(tw, TH_ACK); if (local) in_pcbdrop(inp); else { in_pcbref(inp); /* Reference from tw */ tw->tw_cred = crhold(so->so_cred); inp->inp_ppcb = tw; TCPSTATES_INC(TCPS_TIME_WAIT); tcp_tw_2msl_reset(tw, 0); } /* * If the inpcb owns the sole reference to the socket, then we can * detach and free the socket as it is not needed in time wait. */ if (inp->inp_flags & INP_SOCKREF) { KASSERT(so->so_state & SS_PROTOREF, ("tcp_twstart: !SS_PROTOREF")); inp->inp_flags &= ~INP_SOCKREF; INP_WUNLOCK(inp); SOCK_LOCK(so); so->so_state &= ~SS_PROTOREF; sofree(so); } else INP_WUNLOCK(inp); } /* * Returns 1 if the TIME_WAIT state was killed and we should start over, * looking for a pcb in the listen state. Returns 0 otherwise. */ int tcp_twcheck(struct inpcb *inp, struct tcpopt *to __unused, struct tcphdr *th, struct mbuf *m, int tlen) { struct tcptw *tw; int thflags; tcp_seq seq; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); /* * XXXRW: Time wait state for inpcb has been recycled, but inpcb is * still present. This is undesirable, but temporarily necessary * until we work out how to handle inpcb's who's timewait state has * been removed. */ tw = intotw(inp); if (tw == NULL) goto drop; thflags = th->th_flags; /* * NOTE: for FIN_WAIT_2 (to be added later), * must validate sequence number before accepting RST */ /* * If the segment contains RST: * Drop the segment - see Stevens, vol. 2, p. 964 and * RFC 1337. */ if (thflags & TH_RST) goto drop; #if 0 /* PAWS not needed at the moment */ /* * RFC 1323 PAWS: If we have a timestamp reply on this segment * and it's less than ts_recent, drop it. */ if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to.to_tsval, tp->ts_recent)) { if ((thflags & TH_ACK) == 0) goto drop; goto ack; } /* * ts_recent is never updated because we never accept new segments. */ #endif /* * If a new connection request is received * while in TIME_WAIT, drop the old connection * and start over if the sequence numbers * are above the previous ones. */ if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) { tcp_twclose(tw, 0); return (1); } /* * Drop the segment if it does not contain an ACK. */ if ((thflags & TH_ACK) == 0) goto drop; /* * Reset the 2MSL timer if this is a duplicate FIN. */ if (thflags & TH_FIN) { seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0); if (seq + 1 == tw->rcv_nxt) tcp_tw_2msl_reset(tw, 1); } /* * Acknowledge the segment if it has data or is not a duplicate ACK. */ if (thflags != TH_ACK || tlen != 0 || - th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt) + th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt) { + TCP_PROBE5(receive, NULL, NULL, m, NULL, th); tcp_twrespond(tw, TH_ACK); + goto dropnoprobe; + } drop: + TCP_PROBE5(receive, NULL, NULL, m, NULL, th); +dropnoprobe: INP_WUNLOCK(inp); m_freem(m); return (0); } void tcp_twclose(struct tcptw *tw, int reuse) { struct socket *so; struct inpcb *inp; /* * At this point, we are in one of two situations: * * (1) We have no socket, just an inpcb<->twtcp pair. We can free * all state. * * (2) We have a socket -- if we own a reference, release it and * notify the socket layer. */ inp = tw->tw_inpcb; KASSERT((inp->inp_flags & INP_TIMEWAIT), ("tcp_twclose: !timewait")); KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw")); INP_INFO_RLOCK_ASSERT(&V_tcbinfo); /* in_pcbfree() */ INP_WLOCK_ASSERT(inp); tcp_tw_2msl_stop(tw, reuse); inp->inp_ppcb = NULL; in_pcbdrop(inp); so = inp->inp_socket; if (so != NULL) { /* * If there's a socket, handle two cases: first, we own a * strong reference, which we will now release, or we don't * in which case another reference exists (XXXRW: think * about this more), and we don't need to take action. */ if (inp->inp_flags & INP_SOCKREF) { inp->inp_flags &= ~INP_SOCKREF; INP_WUNLOCK(inp); SOCK_LOCK(so); KASSERT(so->so_state & SS_PROTOREF, ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF")); so->so_state &= ~SS_PROTOREF; sofree(so); } else { /* * If we don't own the only reference, the socket and * inpcb need to be left around to be handled by * tcp_usr_detach() later. */ INP_WUNLOCK(inp); } } else { /* * The socket has been already cleaned-up for us, only free the * inpcb. */ in_pcbfree(inp); } TCPSTAT_INC(tcps_closed); } static int tcp_twrespond(struct tcptw *tw, int flags) { struct inpcb *inp = tw->tw_inpcb; #if defined(INET6) || defined(INET) struct tcphdr *th = NULL; #endif struct mbuf *m; #ifdef INET struct ip *ip = NULL; #endif u_int hdrlen, optlen; int error = 0; /* Keep compiler happy */ struct tcpopt to; #ifdef INET6 struct ip6_hdr *ip6 = NULL; int isipv6 = inp->inp_inc.inc_flags & INC_ISIPV6; #endif hdrlen = 0; /* Keep compiler happy */ INP_WLOCK_ASSERT(inp); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m->m_data += max_linkhdr; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif #ifdef INET6 if (isipv6) { hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)(ip6 + 1); tcpip_fillheaders(inp, ip6, th); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { hdrlen = sizeof(struct tcpiphdr); ip = mtod(m, struct ip *); th = (struct tcphdr *)(ip + 1); tcpip_fillheaders(inp, ip, th); } #endif to.to_flags = 0; /* * Send a timestamp and echo-reply if both our side and our peer * have sent timestamps in our SYN's and this is not a RST. */ if (tw->t_recent && flags == TH_ACK) { to.to_flags |= TOF_TS; to.to_tsval = tcp_ts_getticks() + tw->ts_offset; to.to_tsecr = tw->t_recent; } optlen = tcp_addoptions(&to, (u_char *)(th + 1)); m->m_len = hdrlen + optlen; m->m_pkthdr.len = m->m_len; KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small")); th->th_seq = htonl(tw->snd_nxt); th->th_ack = htonl(tw->rcv_nxt); th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; th->th_flags = flags; th->th_win = htons(tw->last_win); m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); #ifdef INET6 if (isipv6) { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; th->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr) + optlen, IPPROTO_TCP, 0); ip6->ip6_hlim = in6_selecthlim(inp, NULL); + TCP_PROBE5(send, NULL, NULL, ip6, NULL, th); error = ip6_output(m, inp->in6p_outputopts, NULL, (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { m->m_pkthdr.csum_flags = CSUM_TCP; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP)); ip->ip_len = htons(m->m_pkthdr.len); if (V_path_mtu_discovery) ip->ip_off |= htons(IP_DF); + TCP_PROBE5(send, NULL, NULL, ip, NULL, th); error = ip_output(m, inp->inp_options, NULL, ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), NULL, inp); } #endif if (flags & TH_ACK) TCPSTAT_INC(tcps_sndacks); else TCPSTAT_INC(tcps_sndctrl); TCPSTAT_INC(tcps_sndtotal); return (error); } static void tcp_tw_2msl_reset(struct tcptw *tw, int rearm) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(tw->tw_inpcb); TW_WLOCK(V_tw_lock); if (rearm) TAILQ_REMOVE(&V_twq_2msl, tw, tw_2msl); tw->tw_time = ticks + 2 * tcp_msl; TAILQ_INSERT_TAIL(&V_twq_2msl, tw, tw_2msl); TW_WUNLOCK(V_tw_lock); } static void tcp_tw_2msl_stop(struct tcptw *tw, int reuse) { struct ucred *cred; struct inpcb *inp; int released __unused; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); TW_WLOCK(V_tw_lock); inp = tw->tw_inpcb; tw->tw_inpcb = NULL; TAILQ_REMOVE(&V_twq_2msl, tw, tw_2msl); cred = tw->tw_cred; tw->tw_cred = NULL; TW_WUNLOCK(V_tw_lock); if (cred != NULL) crfree(cred); released = in_pcbrele_wlocked(inp); KASSERT(!released, ("%s: inp should not be released here", __func__)); if (!reuse) uma_zfree(V_tcptw_zone, tw); TCPSTATES_DEC(TCPS_TIME_WAIT); } struct tcptw * tcp_tw_2msl_scan(int reuse) { struct tcptw *tw; struct inpcb *inp; struct epoch_tracker et; #ifdef INVARIANTS if (reuse) { /* * Exclusive pcbinfo lock is not required in reuse case even if * two inpcb locks can be acquired simultaneously: * - the inpcb transitioning to TIME_WAIT state in * tcp_tw_start(), * - the inpcb closed by tcp_twclose(). * * It is because only inpcbs in FIN_WAIT2 or CLOSING states can * transition in TIME_WAIT state. Then a pcbcb cannot be in * TIME_WAIT list and transitioning to TIME_WAIT state at same * time. */ INP_INFO_RLOCK_ASSERT(&V_tcbinfo); } #endif for (;;) { TW_RLOCK(V_tw_lock); tw = TAILQ_FIRST(&V_twq_2msl); if (tw == NULL || (!reuse && (tw->tw_time - ticks) > 0)) { TW_RUNLOCK(V_tw_lock); break; } KASSERT(tw->tw_inpcb != NULL, ("%s: tw->tw_inpcb == NULL", __func__)); inp = tw->tw_inpcb; in_pcbref(inp); TW_RUNLOCK(V_tw_lock); INP_INFO_RLOCK_ET(&V_tcbinfo, et); INP_WLOCK(inp); tw = intotw(inp); if (in_pcbrele_wlocked(inp)) { if (__predict_true(tw == NULL)) { INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); continue; } else { /* This should not happen as in TIMEWAIT * state the inp should not be destroyed * before its tcptw. If INVARIANTS is * defined panic. */ #ifdef INVARIANTS panic("%s: Panic before an infinite " "loop: INP_TIMEWAIT && (INP_FREED " "|| inp last reference) && tw != " "NULL", __func__); #else log(LOG_ERR, "%s: Avoid an infinite " "loop: INP_TIMEWAIT && (INP_FREED " "|| inp last reference) && tw != " "NULL", __func__); #endif INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); break; } } if (tw == NULL) { /* tcp_twclose() has already been called */ INP_WUNLOCK(inp); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); continue; } tcp_twclose(tw, reuse); INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); if (reuse) return tw; } return NULL; }