Index: head/usr.bin/top/Makefile =================================================================== --- head/usr.bin/top/Makefile (revision 335538) +++ head/usr.bin/top/Makefile (revision 335539) @@ -1,20 +1,20 @@ # $FreeBSD$ .include PROG= top SRCS= commands.c display.c machine.c screen.c top.c \ username.c utils.c MAN= top.1 .if ${COMPILER_TYPE} == "gcc" .if ${COMPILER_VERSION} >= 50000 CFLAGS.gcc=-Wno-error=cast-qual -Wno-error=discarded-qualifiers -Wno-error=incompatible-pointer-types .else #base gcc NO_WERROR= .endif .endif CFLAGS.clang=-Wno-error=incompatible-pointer-types-discards-qualifiers -Wno-error=cast-qual -LIBADD= ncursesw m kvm jail util +LIBADD= ncursesw m kvm jail util sbuf .include Index: head/usr.bin/top/commands.c =================================================================== --- head/usr.bin/top/commands.c (revision 335538) +++ head/usr.bin/top/commands.c (revision 335539) @@ -1,518 +1,519 @@ /* * Top users/processes display for Unix + * Version 3 * * This program may be freely redistributed, * but this entire comment MUST remain intact. * * Copyright (c) 1984, 1989, William LeFebvre, Rice University * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University * * $FreeBSD$ */ /* * This file contains the routines that implement some of the interactive * mode commands. Note that some of the commands are implemented in-line * in "main". This is necessary because they change the global state of * "top" (i.e.: changing the number of processes to display). */ #include #include #include #include #include #include #include #include #include #include #include "commands.h" #include "top.h" #include "machine.h" static int err_compar(const void *p1, const void *p2); struct errs /* structure for a system-call error */ { int errnum; /* value of errno (that is, the actual error) */ char *arg; /* argument that caused the error */ }; static char *err_string(void); static int str_adderr(char *str, int len, int err); static int str_addarg(char *str, int len, char *arg, bool first); /* * show_help() - display the help screen; invoked in response to * either 'h' or '?'. */ const struct command all_commands[] = { {'C', "toggle the displaying of weighted CPU percentage", false, CMD_wcputog}, {'d', "change number of displays to show", false, CMD_displays}, {'e', "list errors generated by last \"kill\" or \"renice\" command", false, CMD_errors}, {'H', "toggle the displaying of threads", false, CMD_thrtog}, {'h', "show this help text", true, CMD_help}, {'?', NULL, true, CMD_help}, {'i', "toggle the displaying of idle processes", false, CMD_idletog}, {'I', NULL, false, CMD_idletog}, {'j', "toggle the displaying of jail ID", false, CMD_jidtog}, {'J', "display processes for only one jail (+ selects all jails)", false, CMD_jail}, {'k', "kill processes; send a signal to a list of processes", false, CMD_kill}, {'q', "quit" , true, CMD_quit}, {'m', "toggle the display between 'cpu' and 'io' modes", false, CMD_viewtog}, {'n', "change number of processes to display", false, CMD_number}, {'#', NULL, false, CMD_number}, {'o', "specify the sort order", false, CMD_order}, {'p', "display one process (+ selects all processes)", false, CMD_pid}, {'P', "toggle the displaying of per-CPU statistics", false, CMD_pcputog}, {'r', "renice a process", false, CMD_renice}, {'s', "change number of seconds to delay between updates", false, CMD_delay}, {'S', "toggle the displaying of system processes", false, CMD_viewsys}, {'a', "toggle the displaying of process titles", false, CMD_showargs}, {'T', "toggle the displaying of thread IDs", false, CMD_toggletid}, {'t', "toggle the display of this process", false, CMD_selftog}, {'u', "display processes for only one user (+ selects all users)", false, CMD_user}, {'w', "toggle the display of swap use for each process", false, CMD_swaptog}, {'z', "toggle the displaying of the system idle process", false, CMD_kidletog}, {' ', "update the display", false, CMD_update}, {0, NULL, true, CMD_NONE} }; void show_help(void) { const struct command *curcmd, *nextcmd; char keys[8] = ""; _Static_assert(sizeof(keys) >= sizeof("a or b"), "keys right size"); printf("Top version FreeBSD, %s\n", copyright); curcmd = all_commands; while (curcmd->c != 0) { if (overstrike && !curcmd->available_to_dumb) { ++curcmd; continue; } if (curcmd->desc == NULL) { /* we already printed this */ ++curcmd; continue; } nextcmd = curcmd + 1; if (nextcmd->desc == NULL && nextcmd->c != '\0') { sprintf(keys, "%c or %c", curcmd->c, nextcmd->c); } else if (curcmd->c == ' '){ /* special case space rather than introducing a "display string" to * the struct */ sprintf(keys, "SPC"); } else { sprintf(keys, "%c", curcmd->c); } printf("%s\t- %s\n", keys, curcmd->desc); ++curcmd; } if (overstrike) { fputs("\ Other commands are also available, but this terminal is not\n\ sophisticated enough to handle those commands gracefully.\n", stdout); } } /* * Utility routines that help with some of the commands. */ static char * next_field(char *str) { if ((str = strchr(str, ' ')) == NULL) { return(NULL); } *str = '\0'; while (*++str == ' ') /* loop */; /* if there is nothing left of the string, return NULL */ /* This fix is dedicated to Greg Earle */ return(*str == '\0' ? NULL : str); } static int scanint(char *str, int *intp) { int val = 0; char ch; /* if there is nothing left of the string, flag it as an error */ /* This fix is dedicated to Greg Earle */ if (*str == '\0') { return(-1); } while ((ch = *str++) != '\0') { if (isdigit(ch)) { val = val * 10 + (ch - '0'); } else if (isspace(ch)) { break; } else { return(-1); } } *intp = val; return(0); } /* * Some of the commands make system calls that could generate errors. * These errors are collected up in an array of structures for later * contemplation and display. Such routines return a string containing an * error message, or NULL if no errors occurred. The next few routines are * for manipulating and displaying these errors. We need an upper limit on * the number of errors, so we arbitrarily choose 20. */ #define ERRMAX 20 static struct errs errs[ERRMAX]; static int errcnt; static char err_toomany[] = " too many errors occurred"; static char err_listem[] = " Many errors occurred. Press `e' to display the list of errors."; /* These macros get used to reset and log the errors */ #define ERR_RESET errcnt = 0 #define ERROR(p, e) if (errcnt >= ERRMAX) \ { \ return(err_toomany); \ } \ else \ { \ errs[errcnt].arg = (p); \ errs[errcnt++].errnum = (e); \ } /* * err_string() - return an appropriate error string. This is what the * command will return for displaying. If no errors were logged, then * return NULL. The maximum length of the error string is defined by * "STRMAX". */ #define STRMAX 80 char * err_string(void) { struct errs *errp; int cnt = 0; bool first = true; int currerr = -1; int stringlen; /* characters still available in "string" */ static char string[STRMAX]; /* if there are no errors, return NULL */ if (errcnt == 0) { return(NULL); } /* sort the errors */ qsort((char *)errs, errcnt, sizeof(struct errs), err_compar); /* need a space at the front of the error string */ string[0] = ' '; string[1] = '\0'; stringlen = STRMAX - 2; /* loop thru the sorted list, building an error string */ while (cnt < errcnt) { errp = &(errs[cnt++]); if (errp->errnum != currerr) { if (currerr >= 0) { if ((stringlen = str_adderr(string, stringlen, currerr)) < 2) { return(err_listem); } strcat(string, "; "); /* we know there's more */ } currerr = errp->errnum; first = true; } if ((stringlen = str_addarg(string, stringlen, errp->arg, first)) ==0) { return(err_listem); } first = false; } /* add final message */ stringlen = str_adderr(string, stringlen, currerr); /* return the error string */ return(stringlen == 0 ? err_listem : string); } /* * str_adderr(str, len, err) - add an explanation of error "err" to * the string "str". */ static int str_adderr(char *str, int len, int err) { const char *msg; int msglen; msg = err == 0 ? "Not a number" : strerror(err); msglen = strlen(msg) + 2; if (len <= msglen) { return(0); } strcat(str, ": "); strcat(str, msg); return(len - msglen); } /* * str_addarg(str, len, arg, first) - add the string argument "arg" to * the string "str". This is the first in the group when "first" * is set (indicating that a comma should NOT be added to the front). */ static int str_addarg(char str[], int len, char arg[], bool first) { int arglen; arglen = strlen(arg); if (!first) { arglen += 2; } if (len <= arglen) { return(0); } if (!first) { strcat(str, ", "); } strcat(str, arg); return(len - arglen); } /* * err_compar(p1, p2) - comparison routine used by "qsort" * for sorting errors. */ static int err_compar(const void *p1, const void *p2) { int result; const struct errs * const g1 = (const struct errs * const)p1; const struct errs * const g2 = (const struct errs * const)p2; if ((result = g1->errnum - g2->errnum) == 0) { return(strcmp(g1->arg, g2->arg)); } return(result); } /* * error_count() - return the number of errors currently logged. */ int error_count(void) { return(errcnt); } /* * show_errors() - display on stdout the current log of errors. */ void show_errors(void) { int cnt = 0; struct errs *errp = errs; printf("%d error%s:\n\n", errcnt, errcnt == 1 ? "" : "s"); while (cnt++ < errcnt) { printf("%5s: %s\n", errp->arg, errp->errnum == 0 ? "Not a number" : strerror(errp->errnum)); errp++; } } static const char no_proc_specified[] = " no processes specified"; static const char invalid_signal_number[] = " invalid_signal_number"; static const char bad_signal_name[] = " bad signal name"; static const char bad_pri_value[] = " bad priority value"; static int signame_to_signum(const char * sig) { int n; if (strncasecmp(sig, "SIG", 3) == 0) sig += 3; for (n = 1; n < sys_nsig; n++) { if (!strcasecmp(sys_signame[n], sig)) return (n); } return (-1); } /* * kill_procs(str) - send signals to processes, much like the "kill" * command does; invoked in response to 'k'. */ const char * kill_procs(char *str) { char *nptr; int signum = SIGTERM; /* default */ int procnum; /* reset error array */ ERR_RESET; /* skip over leading white space */ while (isspace(*str)) str++; if (str[0] == '-') { /* explicit signal specified */ if ((nptr = next_field(str)) == NULL) { return(no_proc_specified); } if (isdigit(str[1])) { scanint(str + 1, &signum); if (signum <= 0 || signum >= NSIG) { return(invalid_signal_number); } } else { signum = signame_to_signum(str + 1); /* was it ever found */ if (signum == -1 ) { return(bad_signal_name); } } /* put the new pointer in place */ str = nptr; } /* loop thru the string, killing processes */ do { if (scanint(str, &procnum) == -1) { ERROR(str, 0); } else { /* go in for the kill */ if (kill(procnum, signum) == -1) { /* chalk up an error */ ERROR(str, errno); } } } while ((str = next_field(str)) != NULL); /* return appropriate error string */ return(err_string()); } /* * renice_procs(str) - change the "nice" of processes, much like the * "renice" command does; invoked in response to 'r'. */ const char * renice_procs(char *str) { char negate; int prio; int procnum; ERR_RESET; /* allow for negative priority values */ if ((negate = (*str == '-')) != 0) { /* move past the minus sign */ str++; } /* use procnum as a temporary holding place and get the number */ procnum = scanint(str, &prio); /* negate if necessary */ if (negate) { prio = -prio; } /* check for validity */ if (procnum == -1 || prio < PRIO_MIN || prio > PRIO_MAX) { return(bad_pri_value); } /* move to the first process number */ if ((str = next_field(str)) == NULL) { return(no_proc_specified); } /* loop thru the process numbers, renicing each one */ do { if (scanint(str, &procnum) == -1) { ERROR(str, 0); } if (setpriority(PRIO_PROCESS, procnum, prio) == -1) { ERROR(str, errno); } } while ((str = next_field(str)) != NULL); /* return appropriate error string */ return(err_string()); } Index: head/usr.bin/top/machine.c =================================================================== --- head/usr.bin/top/machine.c (revision 335538) +++ head/usr.bin/top/machine.c (revision 335539) @@ -1,1639 +1,1602 @@ /* * top - a top users display for Unix * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider * Thomas Moestl * Eitan Adler * * $FreeBSD$ */ #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "top.h" #include "display.h" #include "machine.h" #include "loadavg.h" #include "screen.h" #include "utils.h" #include "layout.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) -#define SMPUNAMELEN 13 -#define UPUNAMELEN 15 extern struct timeval timeout; static int smpmode; enum displaymodes displaymode; -static int namelength = 8; +static const int namelength = 10; /* TOP_JID_LEN based on max of 999999 */ -#define TOP_JID_LEN 7 -#define TOP_SWAP_LEN 6 -static int jidlength; -static int swaplength; +#define TOP_JID_LEN 6 +#define TOP_SWAP_LEN 5 static int cmdlengthdelta; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->ki_size / 1024) #define RU(pp) (&(pp)->ki_rusage) #define PCTCPU(pp) (pcpu[pp - pbase]) /* * These definitions control the format of the per-process area */ static const char io_header[] = " %s%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; static const char io_Proc_format[] = "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; -/* XXX: build up header instead of statically defining them. - * This will also allow for a "format string" to be supplied - * as an argument to top(1) instead of having predefined options */ -static const char smp_header_thr_and_pid[] = - " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; -static const char smp_header_id_only[] = - " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; static const char smp_Proc_format[] = - "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; + "%5d%*s %-*.*s %s%3d %4s%6s %5s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; -static char up_header_thr_and_pid[] = - " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; -static char up_header_id_only[] = - " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; static char up_Proc_format[] = - "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; + "%5d%*s %-*.*s %s%3d %4s%6s %5s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; - /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ static const char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static load_avg ccpu; /* these are used in the get_ functions */ static int lastpid; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ static const char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", " waiting, ", " lock, ", NULL }; static int process_states[nitems(procstatenames)]; /* these are for detailing the cpu states */ static int cpu_states[CPUSTATES]; static const char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ static const char *memorynames[] = { "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", "K Free", NULL }; static int memory_stats[nitems(memorynames)]; static const char *arcnames[] = { "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", NULL }; static int arc_stats[nitems(arcnames)]; static const char *carcnames[] = { "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", NULL }; static int carc_stats[nitems(carcnames)]; static const char *swapnames[] = { "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; static int swap_stats[nitems(swapnames)]; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; static struct kinfo_proc *previous_procs; static struct kinfo_proc **previous_pref; static int previous_proc_count = 0; static int previous_proc_count_max = 0; static int previous_thread; /* data used for recalculating pctcpu */ static double *pcpu; static struct timespec proc_uptime; static struct timeval proc_wall_time; static struct timeval previous_wall_time; static uint64_t previous_interval = 0; /* total number of io operations */ static long total_inblock; static long total_oublock; static long total_majflt; /* these are for getting the memory statistics */ static int arc_enabled; static int carc_enabled; static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* swap usage */ #define ki_swap(kip) \ ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) /* * Sorting orders. The first element is the default. */ static const char *ordernames[] = { "cpu", "size", "res", "time", "pri", "threads", "total", "read", "write", "fault", "vcsw", "ivcsw", "jid", "swap", "pid", NULL }; /* Per-cpu time states */ static int maxcpu; static int maxid; static int ncpus; static unsigned long cpumask; static long *times; static long *pcpu_cp_time; static long *pcpu_cp_old; static long *pcpu_cp_diff; static int *pcpu_cpu_states; static int compare_swap(const void *a, const void *b); static int compare_jid(const void *a, const void *b); static int compare_pid(const void *a, const void *b); static int compare_tid(const void *a, const void *b); static const char *format_nice(const struct kinfo_proc *pp); static void getsysctl(const char *name, void *ptr, size_t len); static int swapmode(int *retavail, int *retfree); static void update_layout(void); static int find_uid(uid_t needle, int *haystack); static int find_uid(uid_t needle, int *haystack) { size_t i = 0; for (; i < TOP_MAX_UIDS; ++i) if ((uid_t)haystack[i] == needle) return 1; return (0); } void toggle_pcpustats(void) { if (ncpus == 1) return; update_layout(); } /* Adjust display based on ncpus and the ARC state. */ static void update_layout(void) { y_mem = 3; y_arc = 4; y_carc = 5; y_swap = 4 + arc_enabled + carc_enabled; y_idlecursor = 5 + arc_enabled + carc_enabled; y_message = 5 + arc_enabled + carc_enabled; y_header = 6 + arc_enabled + carc_enabled; y_procs = 7 + arc_enabled + carc_enabled; Header_lines = 7 + arc_enabled + carc_enabled; if (pcpu_stats) { y_mem += ncpus - 1; y_arc += ncpus - 1; y_carc += ncpus - 1; y_swap += ncpus - 1; y_idlecursor += ncpus - 1; y_message += ncpus - 1; y_header += ncpus - 1; y_procs += ncpus - 1; Header_lines += ncpus - 1; } } int machine_init(struct statics *statics) { int i, j, empty, pagesize; uint64_t arc_size; int carc_en; size_t size; size = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &size, NULL, 0) != 0 && sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0) || size != sizeof(smpmode)) smpmode = 0; size = sizeof(arc_size); if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, NULL, 0) == 0 && arc_size != 0) arc_enabled = 1; size = sizeof(carc_en); if (arc_enabled && sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, NULL, 0) == 0 && carc_en == 1) carc_enabled = 1; - namelength = MAXLOGNAME; - if (smpmode && namelength > SMPUNAMELEN) - namelength = SMPUNAMELEN; - else if (namelength > UPUNAMELEN) - namelength = UPUNAMELEN; - kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); if (kd == NULL) return (-1); GETSYSCTL("kern.ccpu", ccpu); /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; pcpu = NULL; nproc = 0; onproc = -1; /* get the page size and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; if (arc_enabled) statics->arc_names = arcnames; else statics->arc_names = NULL; if (carc_enabled) statics->carc_names = carcnames; else statics->carc_names = NULL; statics->swap_names = swapnames; statics->order_names = ordernames; /* Allocate state for per-CPU stats. */ cpumask = 0; ncpus = 0; GETSYSCTL("kern.smp.maxcpus", maxcpu); times = calloc(maxcpu * CPUSTATES, sizeof(long)); if (times == NULL) err(1, "calloc for kern.smp.maxcpus"); size = sizeof(long) * maxcpu * CPUSTATES; if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); pcpu_cp_time = calloc(1, size); maxid = (size / CPUSTATES / sizeof(long)) - 1; for (i = 0; i <= maxid; i++) { empty = 1; for (j = 0; empty && j < CPUSTATES; j++) { if (times[i * CPUSTATES + j] != 0) empty = 0; } if (!empty) { cpumask |= (1ul << i); ncpus++; } } assert(ncpus > 0); pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); statics->ncpus = ncpus; update_layout(); /* all done! */ return (0); } -const char * +char * format_header(const char *uname_field) { - static char Header[128]; - const char *prehead; + static struct sbuf* header = NULL; - if (ps.jail) - jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ - else - jidlength = 0; + /* clean up from last time. */ + if (header != NULL) { + sbuf_delete(header); + } + header = sbuf_new_auto(); - if (ps.swap) - swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ - else - swaplength = 0; - switch (displaymode) { - case DISP_CPU: - /* - * The logic of picking the right header is confusing, and - * depends on too much. We should instead have a struct of - * "header name", and "header format" which we build up. - * This would also fix the duplicate of effort into up vs smp - * mode. - */ - if (smpmode) { - prehead = ps.thread ? - smp_header_id_only : smp_header_thr_and_pid; - snprintf(Header, sizeof(Header), prehead, - ps.thread_id ? " THR" : "PID", - jidlength, ps.jail ? " JID" : "", - namelength, namelength, uname_field, - swaplength, ps.swap ? " SWAP" : "", - ps.wcpu ? "WCPU" : "CPU"); - } else { - prehead = ps.thread ? - up_header_id_only : up_header_thr_and_pid; - snprintf(Header, sizeof(Header), prehead, - ps.thread_id ? " THR" : "PID", - jidlength, ps.jail ? " JID" : "", - namelength, namelength, uname_field, - swaplength, ps.swap ? " SWAP" : "", - ps.wcpu ? "WCPU" : "CPU"); - } + case DISP_CPU: { + sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); + sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, + ps.jail ? " JID" : ""); + sbuf_printf(header, " %-*.*s", namelength, namelength, uname_field); + sbuf_cat(header, " THR PRI NICE SIZE RES"); + sbuf_printf(header, "%*s", ps.swap ? TOP_SWAP_LEN : 0, + ps.swap ? " SWAP" : ""); + sbuf_printf(header, "%s", smpmode ? " STATE C " : " STATE "); + sbuf_cat(header, "TIME"); + sbuf_printf(header, " %7s", ps.wcpu ? "WCPU" : "CPU"); + sbuf_cat(header, " COMMAND"); + sbuf_finish(header); break; - case DISP_IO: - prehead = io_header; - snprintf(Header, sizeof(Header), prehead, + } + case DISP_IO: { + sbuf_printf(header, io_header, ps.thread_id ? " THR" : "PID", - jidlength, ps.jail ? " JID" : "", + ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", namelength, namelength, uname_field); break; + } case DISP_MAX: assert("displaymode must not be set to DISP_MAX"); } - cmdlengthdelta = strlen(Header) - 7; - return (Header); + + cmdlengthdelta = sbuf_len(header) - 7; + return sbuf_data(header); } static int swappgsin = -1; static int swappgsout = -1; void get_system_info(struct system_info *si) { struct loadavg sysload; int mib[2]; struct timeval boottime; uint64_t arc_stat, arc_stat2; int i, j; size_t size; /* get the CPU stats */ size = (maxid + 1) * CPUSTATES * sizeof(long); if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); GETSYSCTL("kern.cp_time", cp_time); GETSYSCTL("vm.loadavg", sysload); GETSYSCTL("kern.lastpid", lastpid); /* convert load averages to doubles */ for (i = 0; i < 3; i++) si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; /* convert cp_time counts to percentages */ for (i = j = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], &pcpu_cp_time[j * CPUSTATES], &pcpu_cp_old[j * CPUSTATES], &pcpu_cp_diff[j * CPUSTATES]); j++; } percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static long bufspace = 0; static uint64_t nspgsin, nspgsout; GETSYSCTL("vfs.bufspace", bufspace); GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(memory_stats[0]); memory_stats[1] = pagetok(memory_stats[1]); memory_stats[2] = pagetok(memory_stats[2]); memory_stats[3] = pagetok(memory_stats[3]); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(memory_stats[5]); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((nspgsin - swappgsin))); swap_stats[5] = pagetok(((nspgsout - swappgsout))); } swappgsin = nspgsin; swappgsout = nspgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } if (arc_enabled) { GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); arc_stats[0] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mfu_size", arc_stat); arc_stats[1] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mru_size", arc_stat); arc_stats[2] = arc_stat >> 10; GETSYSCTL("vfs.zfs.anon_size", arc_stat); arc_stats[3] = arc_stat >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); arc_stats[4] = (arc_stat + arc_stat2) >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); arc_stats[5] = arc_stat >> 10; si->arc = arc_stats; } if (carc_enabled) { GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); carc_stats[0] = arc_stat >> 10; carc_stats[2] = arc_stat >> 10; /* For ratio */ GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); carc_stats[1] = arc_stat >> 10; si->carc = carc_stats; } /* set arrays and strings */ if (pcpu_stats) { si->cpustates = pcpu_cpu_states; si->ncpus = ncpus; } else { si->cpustates = cpu_states; si->ncpus = 1; } si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } /* * Print how long system has been up. * (Found by looking getting "boottime" from the kernel) */ mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; size = sizeof(boottime); if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && boottime.tv_sec != 0) { si->boottime = boottime; } else { si->boottime.tv_sec = -1; } } #define NOPROC ((void *)-1) /* * We need to compare data from the old process entry with the new * process entry. * To facilitate doing this quickly we stash a pointer in the kinfo_proc * structure to cache the mapping. We also use a negative cache pointer * of NOPROC to avoid duplicate lookups. * XXX: this could be done when the actual processes are fetched, we do * it here out of laziness. */ static const struct kinfo_proc * get_old_proc(struct kinfo_proc *pp) { const struct kinfo_proc * const *oldpp, *oldp; /* * If this is the first fetch of the kinfo_procs then we don't have * any previous entries. */ if (previous_proc_count == 0) return (NULL); /* negative cache? */ if (pp->ki_udata == NOPROC) return (NULL); /* cached? */ if (pp->ki_udata != NULL) return (pp->ki_udata); /* * Not cached, * 1) look up based on pid. * 2) compare process start. * If we fail here, then setup a negative cache entry, otherwise * cache it. */ oldpp = bsearch(&pp, previous_pref, previous_proc_count, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); if (oldpp == NULL) { pp->ki_udata = NOPROC; return (NULL); } oldp = *oldpp; if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { pp->ki_udata = NOPROC; return (NULL); } pp->ki_udata = oldp; return (oldp); } /* * Return the total amount of IO done in blocks in/out and faults. * store the values individually in the pointers passed in. */ static long get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw) { const struct kinfo_proc *oldp; static struct kinfo_proc dummy; long ret; oldp = get_old_proc(pp); if (oldp == NULL) { memset(&dummy, 0, sizeof(dummy)); oldp = &dummy; } *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; ret = (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); return (ret); } /* * If there was a previous update, use the delta in ki_runtime over * the previous interval to calculate pctcpu. Otherwise, fall back * to using the kernel's ki_pctcpu. */ static double proc_calc_pctcpu(struct kinfo_proc *pp) { const struct kinfo_proc *oldp; if (previous_interval != 0) { oldp = get_old_proc(pp); if (oldp != NULL) return ((double)(pp->ki_runtime - oldp->ki_runtime) / previous_interval); /* * If this process/thread was created during the previous * interval, charge it's total runtime to the previous * interval. */ else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || (pp->ki_start.tv_sec == previous_wall_time.tv_sec && pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) return ((double)pp->ki_runtime / previous_interval); } return (pctdouble(pp->ki_pctcpu)); } /* * Return true if this process has used any CPU time since the * previous update. */ static int proc_used_cpu(struct kinfo_proc *pp) { const struct kinfo_proc *oldp; oldp = get_old_proc(pp); if (oldp == NULL) return (PCTCPU(pp) != 0); return (pp->ki_runtime != oldp->ki_runtime || RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); } /* * Return the total number of block in/out and faults by a process. */ static long get_io_total(const struct kinfo_proc *pp) { long dummy; return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); } static struct handle handle; void * get_process_info(struct system_info *si, struct process_select *sel, int (*compare)(const void *, const void *)) { int i; int total_procs; long p_io; long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; long nsec; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; struct timespec previous_proc_uptime; /* * If thread state was toggled, don't cache the previous processes. */ if (previous_thread != sel->thread) nproc = 0; previous_thread = sel->thread; /* * Save the previous process info. */ if (previous_proc_count_max < nproc) { free(previous_procs); previous_procs = calloc(nproc, sizeof(*previous_procs)); free(previous_pref); previous_pref = calloc(nproc, sizeof(*previous_pref)); if (previous_procs == NULL || previous_pref == NULL) { fprintf(stderr, "top: Out of memory.\n"); quit(TOP_EX_SYS_ERROR); } previous_proc_count_max = nproc; } if (nproc) { for (i = 0; i < nproc; i++) previous_pref[i] = &previous_procs[i]; memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); qsort(previous_pref, nproc, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); } previous_proc_count = nproc; previous_proc_uptime = proc_uptime; previous_wall_time = proc_wall_time; previous_interval = 0; pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 0, &nproc); gettimeofday(&proc_wall_time, NULL); if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) memset(&proc_uptime, 0, sizeof(proc_uptime)); else if (previous_proc_uptime.tv_sec != 0 && previous_proc_uptime.tv_nsec != 0) { previous_interval = (proc_uptime.tv_sec - previous_proc_uptime.tv_sec) * 1000000; nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; if (nsec < 0) { previous_interval -= 1000000; nsec += 1000000000; } previous_interval += nsec / 1000; } if (nproc > onproc) { pref = realloc(pref, sizeof(*pref) * nproc); pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); onproc = nproc; } if (pref == NULL || pbase == NULL || pcpu == NULL) { fprintf(stderr, "top: Out of memory.\n"); quit(TOP_EX_SYS_ERROR); } /* get a pointer to the states summary array */ si->procstates = process_states; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; total_inblock = 0; total_oublock = 0; total_majflt = 0; memset(process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { if (pp->ki_stat == 0) /* not in use */ continue; if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) /* skip self */ continue; if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) /* skip system process */ continue; p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw); total_inblock += p_inblock; total_oublock += p_oublock; total_majflt += p_majflt; total_procs++; process_states[(unsigned char)pp->ki_stat]++; if (pp->ki_stat == SZOMB) /* skip zombies */ continue; if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) /* skip kernel idle process */ continue; PCTCPU(pp) = proc_calc_pctcpu(pp); if (sel->thread && PCTCPU(pp) > 1.0) PCTCPU(pp) = 1.0; if (displaymode == DISP_CPU && !sel->idle && (!proc_used_cpu(pp) || pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) /* skip idle or non-running processes */ continue; if (displaymode == DISP_IO && !sel->idle && p_io == 0) /* skip processes that aren't doing I/O */ continue; if (sel->jid != -1 && pp->ki_jid != sel->jid) /* skip proc. that don't belong to the selected JID */ continue; if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) /* skip proc. that don't belong to the selected UID */ continue; if (sel->pid != -1 && pp->ki_pid != sel->pid) continue; *prefp++ = pp; active_procs++; } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort(pref, active_procs, sizeof(*pref), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_pactive = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return (&handle); } static char fmt[512]; /* static area where result is built */ char * format_next_process(void* xhandle, char *(*get_userid)(int), int flags) { struct kinfo_proc *pp; const struct kinfo_proc *oldp; long cputime; double pct; struct handle *hp; char status[22]; int cpu; size_t state; struct rusage ru, *rup; long p_tot, s_tot; const char *proc_fmt; char thr_buf[6]; - char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; + char jid_buf[TOP_JID_LEN], swap_buf[TOP_SWAP_LEN]; char *cmdbuf = NULL; char **args; const int cmdlen = 128; /* find and remember the next proc structure */ hp = (struct handle *)xhandle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's command name */ if ((pp->ki_flag & P_INMEM) == 0) { /* * Print swapped processes as */ size_t len; len = strlen(pp->ki_comm); if (len > sizeof(pp->ki_comm) - 3) len = sizeof(pp->ki_comm) - 3; memmove(pp->ki_comm + 1, pp->ki_comm, len); pp->ki_comm[0] = '<'; pp->ki_comm[len + 1] = '>'; pp->ki_comm[len + 2] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (pp->ki_runtime + 500000) / 1000000; /* calculate the base for cpu percentages */ pct = PCTCPU(pp); /* generate "STATE" field */ switch (state = pp->ki_stat) { case SRUN: if (smpmode && pp->ki_oncpu != NOCPU) sprintf(status, "CPU%d", pp->ki_oncpu); else strcpy(status, "RUN"); break; case SLOCK: if (pp->ki_kiflag & KI_LOCKBLOCK) { sprintf(status, "*%.6s", pp->ki_lockname); break; } /* fall through */ case SSLEEP: sprintf(status, "%.6s", pp->ki_wmesg); break; default: if (state < nitems(state_abbrev)) { sprintf(status, "%.6s", state_abbrev[state]); } else { sprintf(status, "?%5zu", state); } break; } cmdbuf = calloc(cmdlen + 1, 1); if (cmdbuf == NULL) { warn("calloc(%d)", cmdlen + 1); return NULL; } if (!(flags & FMT_SHOWARGS)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); } else { snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); } } else { if (pp->ki_flag & P_SYSTEM || pp->ki_args == NULL || (args = kvm_getargv(kd, pp, cmdlen)) == NULL || !(*args)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, cmdlen, "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); } else { snprintf(cmdbuf, cmdlen, "[%s]", pp->ki_comm); } } else { const char *src; char *dst, *argbuf; const char *cmd; size_t argbuflen; size_t len; argbuflen = cmdlen * 4; argbuf = calloc(argbuflen + 1, 1); if (argbuf == NULL) { warn("calloc(%zu)", argbuflen + 1); free(cmdbuf); return NULL; } dst = argbuf; /* Extract cmd name from argv */ cmd = strrchr(*args, '/'); if (cmd == NULL) cmd = *args; else cmd++; for (; (src = *args++) != NULL; ) { if (*src == '\0') continue; len = (argbuflen - (dst - argbuf) - 1) / 4; strvisx(dst, src, MIN(strlen(src), len), VIS_NL | VIS_CSTYLE); while (*dst != '\0') dst++; if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) *dst++ = ' '; /* add delimiting space */ } if (dst != argbuf && dst[-1] == ' ') dst--; *dst = '\0'; if (strcmp(cmd, pp->ki_comm) != 0) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlen, "%s (%s){%s%s}", argbuf, pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); else snprintf(cmdbuf, cmdlen, "%s (%s)", argbuf, pp->ki_comm); } else { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlen, "%s{%s%s}", argbuf, pp->ki_tdname, pp->ki_moretdname); else strlcpy(cmdbuf, argbuf, cmdlen); } free(argbuf); } } if (ps.jail == 0) jid_buf[0] = '\0'; else snprintf(jid_buf, sizeof(jid_buf), "%*d", - jidlength - 1, pp->ki_jid); + TOP_JID_LEN - 1, pp->ki_jid); if (ps.swap == 0) swap_buf[0] = '\0'; else snprintf(swap_buf, sizeof(swap_buf), "%*s", - swaplength - 1, + TOP_SWAP_LEN - 1, format_k(pagetok(ki_swap(pp)))); /* XXX */ if (displaymode == DISP_IO) { oldp = get_old_proc(pp); if (oldp != NULL) { ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; rup = &ru; } else { rup = RU(pp); } p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; s_tot = total_inblock + total_oublock + total_majflt; snprintf(fmt, sizeof(fmt), io_Proc_format, pp->ki_pid, - jidlength, jid_buf, + ps.jail ? TOP_JID_LEN : 0, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), rup->ru_nvcsw, rup->ru_nivcsw, rup->ru_inblock, rup->ru_oublock, rup->ru_majflt, p_tot, s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); return (fmt); } /* format this entry */ if (smpmode) { if (state == SRUN && pp->ki_oncpu != NOCPU) cpu = pp->ki_oncpu; else cpu = pp->ki_lastcpu; } else cpu = 0; proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; if (ps.thread != 0) thr_buf[0] = '\0'; else snprintf(thr_buf, sizeof(thr_buf), "%*d ", (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); + snprintf(fmt, sizeof(fmt), proc_fmt, (ps.thread_id) ? pp->ki_tid : pp->ki_pid, - jidlength, jid_buf, + ps.jail ? TOP_JID_LEN : 0, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), thr_buf, pp->ki_pri.pri_level - PZERO, format_nice(pp), format_k(PROCSIZE(pp)), format_k(pagetok(pp->ki_rssize)), - swaplength, swaplength, swap_buf, + ps.swap ? TOP_SWAP_LEN : 0, ps.swap ? TOP_SWAP_LEN : 0, swap_buf, status, cpu, format_time(cputime), ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); /* return the result */ return (fmt); } static void getsysctl(const char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, strerror(errno)); quit(TOP_EX_SYS_ERROR); } if (nlen != len) { fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name, (unsigned long)len, (unsigned long)nlen); quit(TOP_EX_SYS_ERROR); } } static const char * format_nice(const struct kinfo_proc *pp) { const char *fifo, *kproc; int rtpri; static char nicebuf[4 + 1]; fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; switch (PRI_BASE(pp->ki_pri.pri_class)) { case PRI_ITHD: return ("-"); case PRI_REALTIME: /* * XXX: the kernel doesn't tell us the original rtprio and * doesn't really know what it was, so to recover it we * must be more chummy with the implementation than the * implementation is with itself. pri_user gives a * constant "base" priority, but is only initialized * properly for user threads. pri_native gives what the * kernel calls the "base" priority, but it isn't constant * since it is changed by priority propagation. pri_native * also isn't properly initialized for all threads, but it * is properly initialized for kernel realtime and idletime * threads. Thus we use pri_user for the base priority of * user threads (it is always correct) and pri_native for * the base priority of kernel realtime and idletime threads * (there is nothing better, and it is usually correct). * * The field width and thus the buffer are too small for * values like "kr31F", but such values shouldn't occur, * and if they do then the tailing "F" is not displayed. */ rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_REALTIME; snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", kproc, rtpri, fifo); break; case PRI_TIMESHARE: if (pp->ki_flag & P_KPROC) return ("-"); snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); break; case PRI_IDLE: /* XXX: as above. */ rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_IDLE; snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", kproc, rtpri, fifo); break; default: return ("?"); } return (nicebuf); } /* comparison routines for qsort */ static int compare_pid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); return ((*pp1)->ki_pid - (*pp2)->ki_pid); } static int compare_tid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); return ((*pp1)->ki_tid - (*pp2)->ki_tid); } /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static int sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU(a, b) do { \ double diff; \ if (ps.wcpu) \ diff = weighted_cpu(PCTCPU((b)), (b)) - \ weighted_cpu(PCTCPU((a)), (a)); \ else \ diff = PCTCPU((b)) - PCTCPU((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_CPTICKS(a, b) do { \ int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_STATE(a, b) do { \ int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_PRIO(a, b) do { \ int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_THREADS(a, b) do { \ int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_RSSIZE(a, b) do { \ long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_MEM(a, b) do { \ long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_JID(a, b) do { \ int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_SWAP(a, b) do { \ int diff = (int)ki_swap(b) - (int)ki_swap(a); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) /* compare_cpu - the comparison function for sorting by cpu percentage */ static int compare_cpu(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_MEM(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_time - the comparison function for sorting by total cpu time */ static int compare_time(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_prio - the comparison function for sorting by priority */ static int compare_prio(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_PRIO(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_threads - the comparison function for sorting by threads */ static int compare_threads(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_THREADS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_jid - the comparison function for sorting by jid */ static int compare_jid(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_JID(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_swap - the comparison function for sorting by swap */ static int compare_swap(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_SWAP(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* assorted comparison functions for sorting by i/o */ static int compare_iototal(const void *arg1, const void *arg2) { const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; return (get_io_total(p2) - get_io_total(p1)); } static int compare_ioread(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, inp1, inp2; (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); return (inp2 - inp1); } static int compare_iowrite(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, oup1, oup2; (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); return (oup2 - oup1); } static int compare_iofault(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); return (flp2 - flp1); } static int compare_vcsw(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); return (flp2 - flp1); } static int compare_ivcsw(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); return (flp2 - flp1); } int (*compares[])(const void *arg1, const void *arg2) = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, compare_threads, compare_iototal, compare_ioread, compare_iowrite, compare_iofault, compare_vcsw, compare_ivcsw, compare_jid, compare_swap, NULL }; /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. */ int proc_owner(int pid) { int cnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->ki_pid == (pid_t)pid) return ((int)pp->ki_ruid); } return (-1); } static int swapmode(int *retavail, int *retfree) { int n; struct kvm_swap swapary[1]; static int pagesize = 0; static unsigned long swap_maxpages = 0; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); if (pagesize == 0) pagesize = getpagesize(); if (swap_maxpages == 0) GETSYSCTL("vm.swap_maxpages", swap_maxpages); /* ksw_total contains the total size of swap all devices which may exceed the maximum swap size allocatable in the system */ if ( swapary[0].ksw_total > swap_maxpages ) swapary[0].ksw_total = swap_maxpages; *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); return (n); } Index: head/usr.bin/top/machine.h =================================================================== --- head/usr.bin/top/machine.h (revision 335538) +++ head/usr.bin/top/machine.h (revision 335539) @@ -1,96 +1,96 @@ /* * $FreeBSD$ */ /* * This file defines the interface between top and the machine-dependent * module. It is NOT machine dependent and should not need to be changed * for any specific machine. */ #ifndef MACHINE_H #define MACHINE_H #include #include #define NUM_AVERAGES 3 /* Log base 2 of 1024 is 10 (2^10 == 1024) */ #define LOG1024 10 /* * the statics struct is filled in by machine_init */ struct statics { const char * const *procstate_names; const char * const *cpustate_names; const char * const *memory_names; const char * const *arc_names; const char * const *carc_names; const char * const *swap_names; const char * const *order_names; int ncpus; }; /* * the system_info struct is filled in by a machine dependent routine. */ struct system_info { int last_pid; double load_avg[NUM_AVERAGES]; int p_total; int p_pactive; /* number of procs considered "active" */ int *procstates; int *cpustates; int *memory; int *arc; int *carc; int *swap; struct timeval boottime; int ncpus; }; /* * the process_select struct tells get_process_info what processes * and information we are interested in seeing */ struct process_select { bool idle; /* show idle processes */ bool self; /* show self */ bool system; /* show system processes */ bool thread; /* show threads */ bool thread_id; /* show thread ids */ #define TOP_MAX_UIDS 8 int uid[TOP_MAX_UIDS]; /* only these uids (unless uid[0] == -1) */ bool wcpu; /* show weighted cpu */ int jid; /* only this jid (unless jid == -1) */ bool jail; /* show jail ID */ bool swap; /* show swap usage */ bool kidle; /* show per-CPU idle threads */ int pid; /* only this pid (unless pid == -1) */ const char *command; /* only this command (unless == NULL) */ }; /* routines defined by the machine dependent module */ -const char *format_header(const char *uname_field); +char *format_header(const char *uname_field); char *format_next_process(void* handle, char *(*get_userid)(int), int flags); void toggle_pcpustats(void); void get_system_info(struct system_info *si); int machine_init(struct statics *statics); int proc_owner(int pid); /* non-int routines typically used by the machine dependent module */ extern struct process_select ps; void * get_process_info(struct system_info *si, struct process_select *sel, int (*compare)(const void *, const void *)); #endif /* MACHINE_H */ Index: head/usr.bin/top/utils.c =================================================================== --- head/usr.bin/top/utils.c (revision 335538) +++ head/usr.bin/top/utils.c (revision 335539) @@ -1,332 +1,330 @@ /* * This program may be freely redistributed, * but this entire comment MUST remain intact. * * Copyright (c) 2018, Eitan Adler * Copyright (c) 1984, 1989, William LeFebvre, Rice University * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University * * $FreeBSD$ */ /* * This file contains various handy utilities used by top. */ #include "top.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include int atoiwi(const char *str) { size_t len; len = strlen(str); if (len != 0) { if (strncmp(str, "infinity", len) == 0 || strncmp(str, "all", len) == 0 || strncmp(str, "maximum", len) == 0) { return(Infinity); } else if (str[0] == '-') { return(Invalid); } else { return((int)strtol(str, NULL, 10)); } } return(0); } /* * itoa - convert integer (decimal) to ascii string for positive numbers * only (we don't bother with negative numbers since we know we * don't use them). */ /* * How do we know that 16 will suffice? * Because the biggest number that we will * ever convert will be 2^32-1, which is 10 * digits. */ _Static_assert(sizeof(int) <= 4, "buffer too small for this sized int"); char * itoa(unsigned int val) { static char buffer[16]; /* result is built here */ /* 16 is sufficient since the largest number we will ever convert will be 2^32-1, which is 10 digits. */ sprintf(buffer, "%u", val); return (buffer); } /* * itoa7(val) - like itoa, except the number is right justified in a 7 * character field. This code is a duplication of itoa instead of * a front end to a more general routine for efficiency. */ char * itoa7(int val) { static char buffer[16]; /* result is built here */ /* 16 is sufficient since the largest number we will ever convert will be 2^32-1, which is 10 digits. */ sprintf(buffer, "%6u", val); return (buffer); } /* * digits(val) - return number of decimal digits in val. Only works for * non-negative numbers. */ int __pure2 digits(int val) { int cnt = 0; if (val == 0) { return 1; } while (val > 0) { cnt++; val /= 10; } return(cnt); } /* * string_index(string, array) - find string in array and return index */ int string_index(const char *string, const char * const *array) { size_t i = 0; while (*array != NULL) { if (strcmp(string, *array) == 0) { return(i); } array++; i++; } return(-1); } /* * argparse(line, cntp) - parse arguments in string "line", separating them * out into an argv-like array, and setting *cntp to the number of * arguments encountered. This is a simple parser that doesn't understand * squat about quotes. */ const char * const * argparse(char *line, int *cntp) { const char **ap; static const char *argv[1024] = {0}; *cntp = 1; ap = &argv[1]; while ((*ap = strsep(&line, " ")) != NULL) { if (**ap != '\0') { (*cntp)++; if (*cntp >= (int)nitems(argv)) { break; } ap++; } } return (argv); } /* * percentages(cnt, out, new, old, diffs) - calculate percentage change * between array "old" and "new", putting the percentages i "out". * "cnt" is size of each array and "diffs" is used for scratch space. * The array "old" is updated on each call. * The routine assumes modulo arithmetic. This function is especially * useful on for calculating cpu state percentages. */ long percentages(int cnt, int *out, long *new, long *old, long *diffs) { int i; long change; long total_change; long *dp; long half_total; /* initialization */ total_change = 0; dp = diffs; /* calculate changes for each state and the overall change */ for (i = 0; i < cnt; i++) { if ((change = *new - *old) < 0) { /* this only happens when the counter wraps */ change = (int) ((unsigned long)*new-(unsigned long)*old); } total_change += (*dp++ = change); *old++ = *new++; } /* avoid divide by zero potential */ if (total_change == 0) { total_change = 1; } /* calculate percentages based on overall change, rounding up */ half_total = total_change / 2l; for (i = 0; i < cnt; i++) { *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); } /* return the total in case the caller wants to use it */ return(total_change); } /* format_time(seconds) - format number of seconds into a suitable * display that will fit within 6 characters. Note that this * routine builds its string in a static area. If it needs * to be called more than once without overwriting previous data, * then we will need to adopt a technique similar to the * one used for format_k. */ /* Explanation: We want to keep the output within 6 characters. For low values we use the format mm:ss. For values that exceed 999:59, we switch to a format that displays hours and fractions: hhh.tH. For values that exceed 999.9, we use hhhh.t and drop the "H" designator. For values that exceed 9999.9, we use "???". */ const char * format_time(long seconds) { static char result[10]; /* sanity protection */ if (seconds < 0 || seconds > (99999l * 360l)) { strcpy(result, " ???"); } else if (seconds >= (1000l * 60l)) { /* alternate (slow) method displaying hours and tenths */ sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l)); /* It is possible that the sprintf took more than 6 characters. If so, then the "H" appears as result[6]. If not, then there is a \0 in result[6]. Either way, it is safe to step on. */ result[6] = '\0'; } else { /* standard method produces MMM:SS */ sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l); } return(result); } /* * format_k(amt) - format a kilobyte memory value, returning a string * suitable for display. Returns a pointer to a static - * area that changes each call. "amt" is converted to a - * string with a trailing "K". If "amt" is 10000 or greater, - * then it is formatted as megabytes (rounded) with a - * trailing "M". + * area that changes each call. "amt" is converted to a fixed + * size humanize_number call */ /* * Compromise time. We need to return a string, but we don't want the * caller to have to worry about freeing a dynamically allocated string. * Unfortunately, we can't just return a pointer to a static area as one * of the common uses of this function is in a large call to sprintf where * it might get invoked several times. Our compromise is to maintain an * array of strings and cycle thru them with each invocation. We make the * array large enough to handle the above mentioned case. The constant * NUM_STRINGS defines the number of strings in this array: we can tolerate * up to NUM_STRINGS calls before we start overwriting old information. * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer * to convert the modulo operation into something quicker. What a hack! */ #define NUM_STRINGS 8 char * format_k(int64_t amt) { static char retarray[NUM_STRINGS][16]; static int index = 0; char *ret; ret = retarray[index]; index = (index + 1) % NUM_STRINGS; - humanize_number(ret, 6, amt * 1024, "", HN_AUTOSCALE, HN_NOSPACE); + humanize_number(ret, 5, amt * 1024, "", HN_AUTOSCALE, HN_NOSPACE); return (ret); } int find_pid(pid_t pid) { kvm_t *kd = NULL; struct kinfo_proc *pbase = NULL; int nproc; int ret = 0; kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, NULL); if (kd == NULL) { fprintf(stderr, "top: kvm_open() failed.\n"); quit(TOP_EX_SYS_ERROR); } pbase = kvm_getprocs(kd, KERN_PROC_PID, pid, &nproc); if (pbase == NULL) { goto done; } if ((nproc == 1) && (pbase->ki_pid == pid)) { ret = 1; } done: kvm_close(kd); return ret; }