Index: head/sys/cam/mmc/mmc_da.c
===================================================================
--- head/sys/cam/mmc/mmc_da.c	(revision 335364)
+++ head/sys/cam/mmc/mmc_da.c	(revision 335365)
@@ -1,1898 +1,1899 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2006 Bernd Walter <tisco@FreeBSD.org>
  * Copyright (c) 2006 M. Warner Losh <imp@FreeBSD.org>
  * Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
  * Copyright (c) 2015-2017 Ilya Bakulin <kibab@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer,
  *    without modification, immediately at the beginning of the file.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * Some code derived from the sys/dev/mmc and sys/cam/ata
  * Thanks to Warner Losh <imp@FreeBSD.org>, Alexander Motin <mav@FreeBSD.org>
  * Bernd Walter <tisco@FreeBSD.org>, and other authors.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 //#include "opt_sdda.h"
 
 #include <sys/param.h>
 
 #ifdef _KERNEL
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/bio.h>
 #include <sys/endian.h>
 #include <sys/taskqueue.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/conf.h>
 #include <sys/devicestat.h>
 #include <sys/eventhandler.h>
 #include <sys/malloc.h>
 #include <sys/cons.h>
 #include <sys/proc.h>
 #include <sys/reboot.h>
 #include <geom/geom_disk.h>
 #include <machine/_inttypes.h>  /* for PRIu64 */
 #endif /* _KERNEL */
 
 #ifndef _KERNEL
 #include <stdio.h>
 #include <string.h>
 #endif /* _KERNEL */
 
 #include <cam/cam.h>
 #include <cam/cam_ccb.h>
 #include <cam/cam_queue.h>
 #include <cam/cam_periph.h>
 #include <cam/cam_sim.h>
 #include <cam/cam_xpt.h>
 #include <cam/cam_xpt_sim.h>
 #include <cam/cam_xpt_periph.h>
 #include <cam/cam_xpt_internal.h>
 #include <cam/cam_debug.h>
 
 
 #include <cam/mmc/mmc_all.h>
 
 #include <machine/md_var.h>	/* geometry translation */
 
 #ifdef _KERNEL
 
 typedef enum {
 	SDDA_FLAG_OPEN		= 0x0002,
 	SDDA_FLAG_DIRTY		= 0x0004
 } sdda_flags;
 
 typedef enum {
 	SDDA_STATE_INIT,
 	SDDA_STATE_INVALID,
 	SDDA_STATE_NORMAL,
 	SDDA_STATE_PART_SWITCH,
 } sdda_state;
 
 #define	SDDA_FMT_BOOT		"sdda%dboot"
 #define	SDDA_FMT_GP		"sdda%dgp"
 #define	SDDA_FMT_RPMB		"sdda%drpmb"
 #define	SDDA_LABEL_ENH		"enh"
 
 #define	SDDA_PART_NAMELEN	(16 + 1)
 
 struct sdda_softc;
 
 struct sdda_part {
 	struct disk *disk;
 	struct bio_queue_head bio_queue;
 	sdda_flags flags;
 	struct sdda_softc *sc;
 	u_int cnt;
 	u_int type;
 	bool ro;
 	char name[SDDA_PART_NAMELEN];
 };
 
 struct sdda_softc {
 	int	 outstanding_cmds;	/* Number of active commands */
 	int	 refcount;		/* Active xpt_action() calls */
 	sdda_state state;
 	struct mmc_data *mmcdata;
 	struct cam_periph *periph;
 //	sdda_quirks quirks;
 	struct task start_init_task;
 	uint32_t raw_csd[4];
 	uint8_t raw_ext_csd[512]; /* MMC only? */
 	struct mmc_csd csd;
 	struct mmc_cid cid;
 	struct mmc_scr scr;
 	/* Calculated from CSD */
 	uint64_t sector_count;
 	uint64_t mediasize;
 
 	/* Calculated from CID */
 	char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */
 	char card_sn_string[16];/* Formatted serial # for disk->d_ident */
 	/* Determined from CSD + is highspeed card*/
 	uint32_t card_f_max;
 
 	/* Generic switch timeout */
 	uint32_t cmd6_time;
 	/* MMC partitions support */
 	struct sdda_part *part[MMC_PART_MAX];
 	uint8_t part_curr;	/* Partition currently switched to */
 	uint8_t part_requested; /* What partition we're currently switching to */
 	uint32_t part_time;	/* Partition switch timeout [us] */
 	off_t enh_base;		/* Enhanced user data area slice base ... */
 	off_t enh_size;		/* ... and size [bytes] */
 	int log_count;
 	struct timeval log_time;
 };
 
 #define ccb_bp		ppriv_ptr1
 
 static	disk_strategy_t	sddastrategy;
 static	periph_init_t	sddainit;
 static	void		sddaasync(void *callback_arg, u_int32_t code,
 				struct cam_path *path, void *arg);
 static	periph_ctor_t	sddaregister;
 static	periph_dtor_t	sddacleanup;
 static	periph_start_t	sddastart;
 static	periph_oninv_t	sddaoninvalidate;
 static	void		sddadone(struct cam_periph *periph,
 			       union ccb *done_ccb);
 static  int		sddaerror(union ccb *ccb, u_int32_t cam_flags,
 				u_int32_t sense_flags);
 
 static uint16_t get_rca(struct cam_periph *periph);
 static void sdda_start_init(void *context, union ccb *start_ccb);
 static void sdda_start_init_task(void *context, int pending);
 static void sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *start_ccb);
 static uint32_t sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb);
 static void sdda_init_switch_part(struct cam_periph *periph, union ccb *start_ccb, u_int part);
 static int mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca);
 static inline uint32_t mmc_get_sector_size(struct cam_periph *periph) {return MMC_SECTOR_SIZE;}
 
 /* TODO: actually issue GET_TRAN_SETTINGS to get R/O status */
 static inline bool sdda_get_read_only(struct cam_periph *periph, union ccb *start_ccb)
 {
 
 	return (false);
 }
 
 static uint32_t mmc_get_spec_vers(struct cam_periph *periph);
 static uint64_t mmc_get_media_size(struct cam_periph *periph);
 static uint32_t mmc_get_cmd6_timeout(struct cam_periph *periph);
 static void sdda_add_part(struct cam_periph *periph, u_int type,
     const char *name, u_int cnt, off_t media_size, bool ro);
 
 static struct periph_driver sddadriver =
 {
 	sddainit, "sdda",
 	TAILQ_HEAD_INITIALIZER(sddadriver.units), /* generation */ 0
 };
 
 PERIPHDRIVER_DECLARE(sdda, sddadriver);
 
 static MALLOC_DEFINE(M_SDDA, "sd_da", "sd_da buffers");
 
 static const int exp[8] = {
 	1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
 };
 
 static const int mant[16] = {
 	0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80
 };
 
 static const int cur_min[8] = {
 	500, 1000, 5000, 10000, 25000, 35000, 60000, 100000
 };
 
 static const int cur_max[8] = {
 	1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000
 };
 
 static uint16_t
 get_rca(struct cam_periph *periph) {
 	return periph->path->device->mmc_ident_data.card_rca;
 }
 
 static uint32_t
 mmc_get_bits(uint32_t *bits, int bit_len, int start, int size)
 {
 	const int i = (bit_len / 32) - (start / 32) - 1;
 	const int shift = start & 31;
 	uint32_t retval = bits[i] >> shift;
 	if (size + shift > 32)
 		retval |= bits[i - 1] << (32 - shift);
 	return (retval & ((1llu << size) - 1));
 }
 
 
 static void
 mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd)
 {
 	int v;
 	int m;
 	int e;
 
 	memset(csd, 0, sizeof(*csd));
 	csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2);
 	if (v == 0) {
 		m = mmc_get_bits(raw_csd, 128, 115, 4);
 		e = mmc_get_bits(raw_csd, 128, 112, 3);
 		csd->tacc = (exp[e] * mant[m] + 9) / 10;
 		csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
 		m = mmc_get_bits(raw_csd, 128, 99, 4);
 		e = mmc_get_bits(raw_csd, 128, 96, 3);
 		csd->tran_speed = exp[e] * 10000 * mant[m];
 		csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
 		csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
 		csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
 		csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
 		csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
 		csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
 		csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
 		csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
 		csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
 		csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
 		m = mmc_get_bits(raw_csd, 128, 62, 12);
 		e = mmc_get_bits(raw_csd, 128, 47, 3);
 		csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
 		csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
 		csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
 		csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
 		csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
 		csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
 		csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
 		csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
 	} else if (v == 1) {
 		m = mmc_get_bits(raw_csd, 128, 115, 4);
 		e = mmc_get_bits(raw_csd, 128, 112, 3);
 		csd->tacc = (exp[e] * mant[m] + 9) / 10;
 		csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
 		m = mmc_get_bits(raw_csd, 128, 99, 4);
 		e = mmc_get_bits(raw_csd, 128, 96, 3);
 		csd->tran_speed = exp[e] * 10000 * mant[m];
 		csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
 		csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
 		csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
 		csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
 		csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
 		csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
 		csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) + 1) *
 		    512 * 1024;
 		csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
 		csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
 		csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
 		csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
 		csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
 		csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
 		csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
 	} else
 		panic("unknown SD CSD version");
 }
 
 static void
 mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd)
 {
 	int m;
 	int e;
 
 	memset(csd, 0, sizeof(*csd));
 	csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2);
 	csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4);
 	m = mmc_get_bits(raw_csd, 128, 115, 4);
 	e = mmc_get_bits(raw_csd, 128, 112, 3);
 	csd->tacc = exp[e] * mant[m] + 9 / 10;
 	csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
 	m = mmc_get_bits(raw_csd, 128, 99, 4);
 	e = mmc_get_bits(raw_csd, 128, 96, 3);
 	csd->tran_speed = exp[e] * 10000 * mant[m];
 	csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
 	csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
 	csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
 	csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
 	csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
 	csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
 	csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
 	csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
 	csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
 	csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
 	m = mmc_get_bits(raw_csd, 128, 62, 12);
 	e = mmc_get_bits(raw_csd, 128, 47, 3);
 	csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
 	csd->erase_blk_en = 0;
 	csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) *
 	    (mmc_get_bits(raw_csd, 128, 37, 5) + 1);
 	csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5);
 	csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
 	csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
 	csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
 	csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
 }
 
 static void
 mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid)
 {
 	int i;
 
 	/* There's no version info, so we take it on faith */
 	memset(cid, 0, sizeof(*cid));
 	cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
 	cid->oid = mmc_get_bits(raw_cid, 128, 104, 16);
 	for (i = 0; i < 5; i++)
 		cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
 	cid->pnm[5] = 0;
 	cid->prv = mmc_get_bits(raw_cid, 128, 56, 8);
 	cid->psn = mmc_get_bits(raw_cid, 128, 24, 32);
 	cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000;
 	cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4);
 }
 
 static void
 mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid)
 {
 	int i;
 
 	/* There's no version info, so we take it on faith */
 	memset(cid, 0, sizeof(*cid));
 	cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
 	cid->oid = mmc_get_bits(raw_cid, 128, 104, 8);
 	for (i = 0; i < 6; i++)
 		cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
 	cid->pnm[6] = 0;
 	cid->prv = mmc_get_bits(raw_cid, 128, 48, 8);
 	cid->psn = mmc_get_bits(raw_cid, 128, 16, 32);
 	cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4);
 	cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4) + 1997;
 }
 
 static void
 mmc_format_card_id_string(struct sdda_softc *sc, struct mmc_params *mmcp)
 {
 	char oidstr[8];
 	uint8_t c1;
 	uint8_t c2;
 
 	/*
 	 * Format a card ID string for use by the mmcsd driver, it's what
 	 * appears between the <> in the following:
 	 * mmcsd0: 968MB <SD SD01G 8.0 SN 2686905 Mfg 08/2008 by 3 TN> at mmc0
 	 * 22.5MHz/4bit/128-block
 	 *
 	 * Also format just the card serial number, which the mmcsd driver will
 	 * use as the disk->d_ident string.
 	 *
 	 * The card_id_string in mmc_ivars is currently allocated as 64 bytes,
 	 * and our max formatted length is currently 55 bytes if every field
 	 * contains the largest value.
 	 *
 	 * Sometimes the oid is two printable ascii chars; when it's not,
 	 * format it as 0xnnnn instead.
 	 */
 	c1 = (sc->cid.oid >> 8) & 0x0ff;
 	c2 = sc->cid.oid & 0x0ff;
 	if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f)
 		snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2);
 	else
 		snprintf(oidstr, sizeof(oidstr), "0x%04x", sc->cid.oid);
 	snprintf(sc->card_sn_string, sizeof(sc->card_sn_string),
 	    "%08X", sc->cid.psn);
 	snprintf(sc->card_id_string, sizeof(sc->card_id_string),
                  "%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s",
                  mmcp->card_features & CARD_FEATURE_MMC ? "MMC" : "SD",
                  mmcp->card_features & CARD_FEATURE_SDHC ? "HC" : "",
                  sc->cid.pnm, sc->cid.prv >> 4, sc->cid.prv & 0x0f,
                  sc->cid.psn, sc->cid.mdt_month, sc->cid.mdt_year,
                  sc->cid.mid, oidstr);
 }
 
 static int
 sddaopen(struct disk *dp)
 {
 	struct sdda_part *part;
 	struct cam_periph *periph;
 	struct sdda_softc *softc;
 	int error;
 
 	part = (struct sdda_part *)dp->d_drv1;
 	softc = part->sc;
 	periph = softc->periph;
 	if (cam_periph_acquire(periph) != 0) {
 		return(ENXIO);
 	}
 
 	cam_periph_lock(periph);
 	if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) {
 		cam_periph_unlock(periph);
 		cam_periph_release(periph);
 		return (error);
 	}
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaopen\n"));
 
 	part->flags |= SDDA_FLAG_OPEN;
 
 	cam_periph_unhold(periph);
 	cam_periph_unlock(periph);
 	return (0);
 }
 
 static int
 sddaclose(struct disk *dp)
 {
 	struct sdda_part *part;
 	struct	cam_periph *periph;
 	struct	sdda_softc *softc;
 
 	part = (struct sdda_part *)dp->d_drv1;
 	softc = part->sc;
 	periph = softc->periph;
 	part->flags &= ~SDDA_FLAG_OPEN;
 
 	cam_periph_lock(periph);
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaclose\n"));
 
 	while (softc->refcount != 0)
 		cam_periph_sleep(periph, &softc->refcount, PRIBIO, "sddaclose", 1);
 	cam_periph_unlock(periph);
 	cam_periph_release(periph);
 	return (0);
 }
 
 static void
 sddaschedule(struct cam_periph *periph)
 {
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 	struct sdda_part *part;
 	struct bio *bp;
 	int i;
 
 	/* Check if we have more work to do. */
 	/* Find partition that has outstanding commands. Prefer current partition. */
 	bp = bioq_first(&softc->part[softc->part_curr]->bio_queue);
 	if (bp == NULL) {
 		for (i = 0; i < MMC_PART_MAX; i++) {
 			if ((part = softc->part[i]) != NULL &&
 			    (bp = bioq_first(&softc->part[i]->bio_queue)) != NULL)
 				break;
 		}
 	}
 	if (bp != NULL) {
 		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 	}
 }
 
 /*
  * Actually translate the requested transfer into one the physical driver
  * can understand.  The transfer is described by a buf and will include
  * only one physical transfer.
  */
 static void
 sddastrategy(struct bio *bp)
 {
 	struct cam_periph *periph;
 	struct sdda_part *part;
 	struct sdda_softc *softc;
 
 	part = (struct sdda_part *)bp->bio_disk->d_drv1;
 	softc = part->sc;
 	periph = softc->periph;
 
 	cam_periph_lock(periph);
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastrategy(%p)\n", bp));
 
 	/*
 	 * If the device has been made invalid, error out
 	 */
 	if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
 		cam_periph_unlock(periph);
 		biofinish(bp, NULL, ENXIO);
 		return;
 	}
 
 	/*
 	 * Place it in the queue of disk activities for this disk
 	 */
 	bioq_disksort(&part->bio_queue, bp);
 
 	/*
 	 * Schedule ourselves for performing the work.
 	 */
 	sddaschedule(periph);
 	cam_periph_unlock(periph);
 
 	return;
 }
 
 static void
 sddainit(void)
 {
 	cam_status status;
 
 	/*
 	 * Install a global async callback.  This callback will
 	 * receive async callbacks like "new device found".
 	 */
 	status = xpt_register_async(AC_FOUND_DEVICE, sddaasync, NULL, NULL);
 
 	if (status != CAM_REQ_CMP) {
 		printf("sdda: Failed to attach master async callback "
 		       "due to status 0x%x!\n", status);
 	}
 }
 
 /*
  * Callback from GEOM, called when it has finished cleaning up its
  * resources.
  */
 static void
 sddadiskgonecb(struct disk *dp)
 {
 	struct cam_periph *periph;
 	struct sdda_part *part;
 
 	part = (struct sdda_part *)dp->d_drv1;
 	periph = part->sc->periph;
         CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddadiskgonecb\n"));
 
 	cam_periph_release(periph);
 }
 
 static void
 sddaoninvalidate(struct cam_periph *periph)
 {
 	struct sdda_softc *softc;
 	struct sdda_part *part;
 
 	softc = (struct sdda_softc *)periph->softc;
 
         CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaoninvalidate\n"));
 
 	/*
 	 * De-register any async callbacks.
 	 */
 	xpt_register_async(0, sddaasync, periph, periph->path);
 
 	/*
 	 * Return all queued I/O with ENXIO.
 	 * XXX Handle any transactions queued to the card
 	 *     with XPT_ABORT_CCB.
 	 */
         CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush start\n"));
 	for (int i = 0; i < MMC_PART_MAX; i++) {
 		if ((part = softc->part[i]) != NULL) {
 			bioq_flush(&part->bio_queue, NULL, ENXIO);
 			disk_gone(part->disk);
 		}
 	}
         CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush end\n"));
 
 }
 
 static void
 sddacleanup(struct cam_periph *periph)
 {
 	struct sdda_softc *softc;
 	struct sdda_part *part;
 	int i;
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddacleanup\n"));
 	softc = (struct sdda_softc *)periph->softc;
 
 	cam_periph_unlock(periph);
 
 	for (i = 0; i < MMC_PART_MAX; i++) {
 		if ((part = softc->part[i]) != NULL) {
 			disk_destroy(part->disk);
 			free(part, M_DEVBUF);
 			softc->part[i] = NULL;
 		}
 	}
 	free(softc, M_DEVBUF);
 	cam_periph_lock(periph);
 }
 
 static void
 sddaasync(void *callback_arg, u_int32_t code,
 	struct cam_path *path, void *arg)
 {
 	struct ccb_getdev cgd;
 	struct cam_periph *periph;
 	struct sdda_softc *softc;
 
 	periph = (struct cam_periph *)callback_arg;
         CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddaasync(code=%d)\n", code));
 	switch (code) {
 	case AC_FOUND_DEVICE:
 	{
                 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_FOUND_DEVICE\n"));
 		struct ccb_getdev *cgd;
 		cam_status status;
 
 		cgd = (struct ccb_getdev *)arg;
 		if (cgd == NULL)
 			break;
 
 		if (cgd->protocol != PROTO_MMCSD)
 			break;
 
                 if (!(path->device->mmc_ident_data.card_features & CARD_FEATURE_MEMORY)) {
                         CAM_DEBUG(path, CAM_DEBUG_TRACE, ("No memory on the card!\n"));
                         break;
                 }
 
 		/*
 		 * Allocate a peripheral instance for
 		 * this device and start the probe
 		 * process.
 		 */
 		status = cam_periph_alloc(sddaregister, sddaoninvalidate,
 					  sddacleanup, sddastart,
 					  "sdda", CAM_PERIPH_BIO,
 					  path, sddaasync,
 					  AC_FOUND_DEVICE, cgd);
 
 		if (status != CAM_REQ_CMP
 		 && status != CAM_REQ_INPROG)
 			printf("sddaasync: Unable to attach to new device "
 				"due to status 0x%x\n", status);
 		break;
 	}
 	case AC_GETDEV_CHANGED:
 	{
 		CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_GETDEV_CHANGED\n"));
 		softc = (struct sdda_softc *)periph->softc;
 		xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
 		xpt_action((union ccb *)&cgd);
 		cam_periph_async(periph, code, path, arg);
 		break;
 	}
 	case AC_ADVINFO_CHANGED:
 	{
 		uintptr_t buftype;
 		int i;
 
 		CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_ADVINFO_CHANGED\n"));
 		buftype = (uintptr_t)arg;
 		if (buftype == CDAI_TYPE_PHYS_PATH) {
 			struct sdda_softc *softc;
 			struct sdda_part *part;
 
 			softc = periph->softc;
 			for (i = 0; i < MMC_PART_MAX; i++) {
 				if ((part = softc->part[i]) != NULL) {
 					disk_attr_changed(part->disk, "GEOM::physpath",
 					    M_NOWAIT);
 				}
 			}
 		}
 		break;
 	}
 	default:
 		CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> default?!\n"));
 		cam_periph_async(periph, code, path, arg);
 		break;
 	}
 }
 
 
 static int
 sddagetattr(struct bio *bp)
 {
 	struct cam_periph *periph;
 	struct sdda_softc *softc;
 	struct sdda_part *part;
 	int ret;
 
 	part = (struct sdda_part *)bp->bio_disk->d_drv1;
 	softc = part->sc;
 	periph = softc->periph;
 	cam_periph_lock(periph);
 	ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute,
 	    periph->path);
 	cam_periph_unlock(periph);
 	if (ret == 0)
 		bp->bio_completed = bp->bio_length;
 	return (ret);
 }
 
 static cam_status
 sddaregister(struct cam_periph *periph, void *arg)
 {
 	struct sdda_softc *softc;
 	struct ccb_getdev *cgd;
 	union ccb *request_ccb;	/* CCB representing the probe request */
 
         CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaregister\n"));
 	cgd = (struct ccb_getdev *)arg;
 	if (cgd == NULL) {
 		printf("sddaregister: no getdev CCB, can't register device\n");
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	softc = (struct sdda_softc *)malloc(sizeof(*softc), M_DEVBUF,
 	    M_NOWAIT|M_ZERO);
 
 	if (softc == NULL) {
 		printf("sddaregister: Unable to probe new device. "
 		    "Unable to allocate softc\n");
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	softc->state = SDDA_STATE_INIT;
 	softc->mmcdata =
 		(struct mmc_data *)malloc(sizeof(struct mmc_data), M_DEVBUF, M_NOWAIT|M_ZERO);
 	periph->softc = softc;
 	softc->periph = periph;
 
 	request_ccb = (union ccb*) arg;
 	xpt_schedule(periph, CAM_PRIORITY_XPT);
 	TASK_INIT(&softc->start_init_task, 0, sdda_start_init_task, periph);
 	taskqueue_enqueue(taskqueue_thread, &softc->start_init_task);
 
 	return (CAM_REQ_CMP);
 }
 
 static int
 mmc_exec_app_cmd(struct cam_periph *periph, union ccb *ccb,
 	struct mmc_command *cmd) {
 	int err;
 
 	/* Send APP_CMD first */
 	memset(&ccb->mmcio.cmd, 0, sizeof(struct mmc_command));
 	memset(&ccb->mmcio.stop, 0, sizeof(struct mmc_command));
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ CAM_DIR_NONE,
 		       /*mmc_opcode*/ MMC_APP_CMD,
 		       /*mmc_arg*/ get_rca(periph) << 16,
 		       /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_AC,
 		       /*mmc_data*/ NULL,
 		       /*timeout*/ 0);
 
 	err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 	if (err != 0)
 		return err;
 	if (!(ccb->mmcio.cmd.resp[0] & R1_APP_CMD))
 		return MMC_ERR_FAILED;
 
 	/* Now exec actual command */
 	int flags = 0;
 	if (cmd->data != NULL) {
 		ccb->mmcio.cmd.data = cmd->data;
 		if (cmd->data->flags & MMC_DATA_READ)
 			flags |= CAM_DIR_IN;
 		if (cmd->data->flags & MMC_DATA_WRITE)
 			flags |= CAM_DIR_OUT;
 	} else flags = CAM_DIR_NONE;
 
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ flags,
 		       /*mmc_opcode*/ cmd->opcode,
 		       /*mmc_arg*/ cmd->arg,
 		       /*mmc_flags*/ cmd->flags,
 		       /*mmc_data*/ cmd->data,
 		       /*timeout*/ 0);
 
 	err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 	memcpy(cmd->resp, ccb->mmcio.cmd.resp, sizeof(cmd->resp));
 	cmd->error = ccb->mmcio.cmd.error;
 	if (err != 0)
 		return err;
 	return 0;
 }
 
 static int
 mmc_app_get_scr(struct cam_periph *periph, union ccb *ccb, uint32_t *rawscr) {
 	int err;
 	struct mmc_command cmd;
 	struct mmc_data d;
 
 	memset(&cmd, 0, sizeof(cmd));
 
 	memset(rawscr, 0, 8);
 	cmd.opcode = ACMD_SEND_SCR;
 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 	cmd.arg = 0;
 
 	d.data = rawscr;
 	d.len = 8;
 	d.flags = MMC_DATA_READ;
 	cmd.data = &d;
 
 	err = mmc_exec_app_cmd(periph, ccb, &cmd);
 	rawscr[0] = be32toh(rawscr[0]);
 	rawscr[1] = be32toh(rawscr[1]);
 	return (err);
 }
 
 static int
 mmc_send_ext_csd(struct cam_periph *periph, union ccb *ccb,
 		 uint8_t *rawextcsd, size_t buf_len) {
 	int err;
 	struct mmc_data d;
 
 	KASSERT(buf_len == 512, ("Buffer for ext csd must be 512 bytes"));
 	d.data = rawextcsd;
 	d.len = buf_len;
 	d.flags = MMC_DATA_READ;
 	memset(d.data, 0, d.len);
 
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ CAM_DIR_IN,
 		       /*mmc_opcode*/ MMC_SEND_EXT_CSD,
 		       /*mmc_arg*/ 0,
 		       /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
 		       /*mmc_data*/ &d,
 		       /*timeout*/ 0);
 
 	err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 	if (err != 0)
 		return (err);
 	return (MMC_ERR_NONE);
 }
 
 static void
 mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr)
 {
 	unsigned int scr_struct;
 
 	memset(scr, 0, sizeof(*scr));
 
 	scr_struct = mmc_get_bits(raw_scr, 64, 60, 4);
 	if (scr_struct != 0) {
 		printf("Unrecognised SCR structure version %d\n",
 		    scr_struct);
 		return;
 	}
 	scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4);
 	scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4);
 }
 
 static inline void
 mmc_switch_fill_mmcio(union ccb *ccb,
     uint8_t set, uint8_t index, uint8_t value, u_int timeout)
 {
 	int arg = (MMC_SWITCH_FUNC_WR << 24) |
 	    (index << 16) |
 	    (value << 8) |
 	    set;
 
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ CAM_DIR_NONE,
 		       /*mmc_opcode*/ MMC_SWITCH_FUNC,
 		       /*mmc_arg*/ arg,
 		       /*mmc_flags*/ MMC_RSP_R1B | MMC_CMD_AC,
 		       /*mmc_data*/ NULL,
 		       /*timeout*/ timeout);
 }
 
 static int
 mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca)
 {
 	int flags;
 
 	flags = (rca ? MMC_RSP_R1B : MMC_RSP_NONE) | MMC_CMD_AC;
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ CAM_DIR_IN,
 		       /*mmc_opcode*/ MMC_SELECT_CARD,
 		       /*mmc_arg*/ rca << 16,
 		       /*mmc_flags*/ flags,
 		       /*mmc_data*/ NULL,
 		       /*timeout*/ 0);
 
 	cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 
 	if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) {
 		if (ccb->mmcio.cmd.error != 0) {
 			CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 				  ("%s: MMC_SELECT command failed", __func__));
 			return EIO;
 		}
 		return 0; /* Normal return */
 	} else {
 		CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 			  ("%s: CAM request failed\n", __func__));
 		return EIO;
 	}
 }
 
 static int
 mmc_switch(struct cam_periph *periph, union ccb *ccb,
     uint8_t set, uint8_t index, uint8_t value, u_int timeout)
 {
 
 	mmc_switch_fill_mmcio(ccb, set, index, value, timeout);
 	cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 
 	if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) {
 		if (ccb->mmcio.cmd.error != 0) {
 			CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 				  ("%s: MMC command failed", __func__));
 			return (EIO);
 		}
 		return (0); /* Normal return */
 	} else {
 		CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 			  ("%s: CAM request failed\n", __func__));
 		return (EIO);
 	}
 
 }
 
 static uint32_t
 mmc_get_spec_vers(struct cam_periph *periph) {
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 
 	return (softc->csd.spec_vers);
 }
 
 static uint64_t
 mmc_get_media_size(struct cam_periph *periph) {
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 
 	return (softc->mediasize);
 }
 
 static uint32_t
 mmc_get_cmd6_timeout(struct cam_periph *periph)
 {
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 
 	if (mmc_get_spec_vers(periph) >= 6)
 		return (softc->raw_ext_csd[EXT_CSD_GEN_CMD6_TIME] * 10);
 	return (500 * 1000);
 }
 
 static int
 mmc_sd_switch(struct cam_periph *periph, union ccb *ccb,
 	      uint8_t mode, uint8_t grp, uint8_t value,
 	      uint8_t *res) {
 
 	struct mmc_data mmc_d;
 	uint32_t arg;
 
 	memset(res, 0, 64);
 	mmc_d.len = 64;
 	mmc_d.data = res;
 	mmc_d.flags = MMC_DATA_READ;
 
 	arg = mode << 31;			/* 0 - check, 1 - set */
 	arg |= 0x00FFFFFF;
 	arg &= ~(0xF << (grp * 4));
 	arg |= value << (grp * 4);
 
 	cam_fill_mmcio(&ccb->mmcio,
 		       /*retries*/ 0,
 		       /*cbfcnp*/ NULL,
 		       /*flags*/ CAM_DIR_IN,
 		       /*mmc_opcode*/ SD_SWITCH_FUNC,
 		       /*mmc_arg*/ arg,
 		       /*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
 		       /*mmc_data*/ &mmc_d,
 		       /*timeout*/ 0);
 
 	cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
 
 	if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) {
 		if (ccb->mmcio.cmd.error != 0) {
 			CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 				  ("%s: MMC command failed", __func__));
 			return EIO;
 		}
 		return 0; /* Normal return */
 	} else {
 		CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
 			  ("%s: CAM request failed\n", __func__));
 		return EIO;
 	}
 }
 
 static int
 mmc_set_timing(struct cam_periph *periph,
 	       union ccb *ccb,
 	       enum mmc_bus_timing timing)
 {
 	u_char switch_res[64];
 	int err;
 	uint8_t	value;
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 	struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
 
 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
 		  ("mmc_set_timing(timing=%d)", timing));
 	switch (timing) {
 	case bus_timing_normal:
 		value = 0;
 		break;
 	case bus_timing_hs:
 		value = 1;
 		break;
 	default:
 		return (MMC_ERR_INVALID);
 	}
 	if (mmcp->card_features & CARD_FEATURE_MMC) {
 		err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
 		    EXT_CSD_HS_TIMING, value, softc->cmd6_time);
 	} else {
 		err = mmc_sd_switch(periph, ccb, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1, value, switch_res);
 	}
 
 	/* Set high-speed timing on the host */
 	struct ccb_trans_settings_mmc *cts;
 	cts = &ccb->cts.proto_specific.mmc;
 	ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
 	ccb->ccb_h.flags = CAM_DIR_NONE;
 	ccb->ccb_h.retry_count = 0;
 	ccb->ccb_h.timeout = 100;
 	ccb->ccb_h.cbfcnp = NULL;
 	cts->ios.timing = timing;
 	cts->ios_valid = MMC_BT;
 	xpt_action(ccb);
 
 	return (err);
 }
 
 static void
 sdda_start_init_task(void *context, int pending) {
 	union ccb *new_ccb;
 	struct cam_periph *periph;
 
 	periph = (struct cam_periph *)context;
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init_task\n"));
 	new_ccb = xpt_alloc_ccb();
 	xpt_setup_ccb(&new_ccb->ccb_h, periph->path,
 		      CAM_PRIORITY_NONE);
 
 	cam_periph_lock(periph);
 	sdda_start_init(context, new_ccb);
 	cam_periph_unlock(periph);
 	xpt_free_ccb(new_ccb);
 }
 
 static void
 sdda_set_bus_width(struct cam_periph *periph, union ccb *ccb, int width) {
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 	struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
 	int err;
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_set_bus_width\n"));
 
 	/* First set for the card, then for the host */
 	if (mmcp->card_features & CARD_FEATURE_MMC) {
 		uint8_t	value;
 		switch (width) {
 		case bus_width_1:
 			value = EXT_CSD_BUS_WIDTH_1;
 			break;
 		case bus_width_4:
 			value = EXT_CSD_BUS_WIDTH_4;
 			break;
 		case bus_width_8:
 			value = EXT_CSD_BUS_WIDTH_8;
 			break;
 		default:
 			panic("Invalid bus width %d", width);
 		}
 		err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
 		    EXT_CSD_BUS_WIDTH, value, softc->cmd6_time);
 	} else {
 		/* For SD cards we send ACMD6 with the required bus width in arg */
 		struct mmc_command cmd;
 		memset(&cmd, 0, sizeof(struct mmc_command));
 		cmd.opcode = ACMD_SET_BUS_WIDTH;
 		cmd.arg = width;
 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 		err = mmc_exec_app_cmd(periph, ccb, &cmd);
 	}
 
 	if (err != MMC_ERR_NONE) {
 		CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Error %d when setting bus width on the card\n", err));
 		return;
 	}
 	/* Now card is done, set the host to the same width */
 	struct ccb_trans_settings_mmc *cts;
 	cts = &ccb->cts.proto_specific.mmc;
 	ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
 	ccb->ccb_h.flags = CAM_DIR_NONE;
 	ccb->ccb_h.retry_count = 0;
 	ccb->ccb_h.timeout = 100;
 	ccb->ccb_h.cbfcnp = NULL;
 	cts->ios.bus_width = width;
 	cts->ios_valid = MMC_BW;
 	xpt_action(ccb);
 }
 
 static inline const char
 *part_type(u_int type)
 {
 
 	switch (type) {
 	case EXT_CSD_PART_CONFIG_ACC_RPMB:
 		return ("RPMB");
 	case EXT_CSD_PART_CONFIG_ACC_DEFAULT:
 		return ("default");
 	case EXT_CSD_PART_CONFIG_ACC_BOOT0:
 		return ("boot0");
 	case EXT_CSD_PART_CONFIG_ACC_BOOT1:
 		return ("boot1");
 	case EXT_CSD_PART_CONFIG_ACC_GP0:
 	case EXT_CSD_PART_CONFIG_ACC_GP1:
 	case EXT_CSD_PART_CONFIG_ACC_GP2:
 	case EXT_CSD_PART_CONFIG_ACC_GP3:
 		return ("general purpose");
 	default:
 		return ("(unknown type)");
 	}
 }
 
 static inline const char
 *bus_width_str(enum mmc_bus_width w)
 {
 
 	switch (w) {
 	case bus_width_1:
 		return ("1-bit");
 	case bus_width_4:
 		return ("4-bit");
 	case bus_width_8:
 		return ("8-bit");
 	}
 }
 
 static uint32_t
 sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb)
 {
 	struct ccb_trans_settings_mmc *cts;
 
 	cts = &ccb->cts.proto_specific.mmc;
 
 	ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
 	ccb->ccb_h.flags = CAM_DIR_NONE;
 	ccb->ccb_h.retry_count = 0;
 	ccb->ccb_h.timeout = 100;
 	ccb->ccb_h.cbfcnp = NULL;
 	xpt_action(ccb);
 
 	if (ccb->ccb_h.status != CAM_REQ_CMP)
 		panic("Cannot get host caps");
 	return (cts->host_caps);
 }
 
 static void
 sdda_start_init(void *context, union ccb *start_ccb)
 {
 	struct cam_periph *periph = (struct cam_periph *)context;
 	struct ccb_trans_settings_mmc *cts;
 	uint32_t host_caps;
 	uint32_t sec_count;
 	int err;
 	int host_f_max;
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init\n"));
 	/* periph was held for us when this task was enqueued */
 	if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
 		cam_periph_release(periph);
 		return;
 	}
 
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 	//struct ccb_mmcio *mmcio = &start_ccb->mmcio;
 	struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
 	struct cam_ed *device = periph->path->device;
 
 	if (mmcp->card_features & CARD_FEATURE_MMC) {
 		mmc_decode_csd_mmc(mmcp->card_csd, &softc->csd);
 		mmc_decode_cid_mmc(mmcp->card_cid, &softc->cid);
 		if (mmc_get_spec_vers(periph) >= 4) {
 			err = mmc_send_ext_csd(periph, start_ccb,
 					       (uint8_t *)&softc->raw_ext_csd,
 					       sizeof(softc->raw_ext_csd));
 			if (err != 0) {
 				CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 				    ("Cannot read EXT_CSD, err %d", err));
 				return;
 			}
 		}
 	} else {
 		mmc_decode_csd_sd(mmcp->card_csd, &softc->csd);
 		mmc_decode_cid_sd(mmcp->card_cid, &softc->cid);
 	}
 
 	softc->sector_count = softc->csd.capacity / 512;
 	softc->mediasize = softc->csd.capacity;
 	softc->cmd6_time = mmc_get_cmd6_timeout(periph);
 
 	/* MMC >= 4.x have EXT_CSD that has its own opinion about capacity */
 	if (mmc_get_spec_vers(periph) >= 4) {
 		sec_count = softc->raw_ext_csd[EXT_CSD_SEC_CNT] +
 		    (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) +
 		    (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) +
 		    (softc->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
 		if (sec_count != 0) {
 			softc->sector_count = sec_count;
 			softc->mediasize = softc->sector_count * 512;
 			/* FIXME: there should be a better name for this option...*/
 			mmcp->card_features |= CARD_FEATURE_SDHC;
 		}
 
 	}
 	CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 	    ("Capacity: %"PRIu64", sectors: %"PRIu64"\n",
 		softc->mediasize,
 		softc->sector_count));
 	mmc_format_card_id_string(softc, mmcp);
 
 	/* Update info for CAM */
 	device->serial_num_len = strlen(softc->card_sn_string);
 	device->serial_num = (u_int8_t *)malloc((device->serial_num_len + 1),
 	    M_CAMXPT, M_NOWAIT);
 	strlcpy(device->serial_num, softc->card_sn_string, device->serial_num_len);
 
 	device->device_id_len = strlen(softc->card_id_string);
 	device->device_id = (u_int8_t *)malloc((device->device_id_len + 1),
 	    M_CAMXPT, M_NOWAIT);
 	strlcpy(device->device_id, softc->card_id_string, device->device_id_len);
 
 	strlcpy(mmcp->model, softc->card_id_string, sizeof(mmcp->model));
 
 	/* Set the clock frequency that the card can handle */
 	cts = &start_ccb->cts.proto_specific.mmc;
 
 	/* First, get the host's max freq */
 	start_ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
 	start_ccb->ccb_h.flags = CAM_DIR_NONE;
 	start_ccb->ccb_h.retry_count = 0;
 	start_ccb->ccb_h.timeout = 100;
 	start_ccb->ccb_h.cbfcnp = NULL;
 	xpt_action(start_ccb);
 
 	if (start_ccb->ccb_h.status != CAM_REQ_CMP)
 		panic("Cannot get max host freq");
 	host_f_max = cts->host_f_max;
 	host_caps = cts->host_caps;
 	if (cts->ios.bus_width != bus_width_1)
 		panic("Bus width in ios is not 1-bit");
 
 	/* Now check if the card supports High-speed */
 	softc->card_f_max = softc->csd.tran_speed;
 
 	if (host_caps & MMC_CAP_HSPEED) {
 		/* Find out if the card supports High speed timing */
 		if (mmcp->card_features & CARD_FEATURE_SD20) {
 			/* Get and decode SCR */
 			uint32_t rawscr;
 			uint8_t res[64];
 			if (mmc_app_get_scr(periph, start_ccb, &rawscr)) {
 				CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Cannot get SCR\n"));
 				goto finish_hs_tests;
 			}
 			mmc_app_decode_scr(&rawscr, &softc->scr);
 
 			if ((softc->scr.sda_vsn >= 1) && (softc->csd.ccc & (1<<10))) {
 				mmc_sd_switch(periph, start_ccb, SD_SWITCH_MODE_CHECK,
 					      SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE, res);
 				if (res[13] & 2) {
 					CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS\n"));
 					softc->card_f_max = SD_HS_MAX;
 				}
 
 				/*
 				 * We deselect then reselect the card here.  Some cards
 				 * become unselected and timeout with the above two
 				 * commands, although the state tables / diagrams in the
 				 * standard suggest they go back to the transfer state.
 				 * Other cards don't become deselected, and if we
 				 * attempt to blindly re-select them, we get timeout
 				 * errors from some controllers.  So we deselect then
 				 * reselect to handle all situations.
 				 */
 				mmc_select_card(periph, start_ccb, 0);
 				mmc_select_card(periph, start_ccb, get_rca(periph));
 			} else {
 				CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Not trying the switch\n"));
 				goto finish_hs_tests;
 			}
 		}
 
 		if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) {
 			if (softc->raw_ext_csd[EXT_CSD_CARD_TYPE]
 			    & EXT_CSD_CARD_TYPE_HS_52)
 				softc->card_f_max = MMC_TYPE_HS_52_MAX;
 			else if (softc->raw_ext_csd[EXT_CSD_CARD_TYPE]
 				 & EXT_CSD_CARD_TYPE_HS_26)
 				softc->card_f_max = MMC_TYPE_HS_26_MAX;
 		}
 	}
 	int f_max;
 finish_hs_tests:
 	f_max = min(host_f_max, softc->card_f_max);
 	CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Set SD freq to %d MHz (min out of host f=%d MHz and card f=%d MHz)\n", f_max  / 1000000, host_f_max / 1000000, softc->card_f_max / 1000000));
 
 	/* Enable high-speed timing on the card */
 	if (f_max > 25000000) {
 		err = mmc_set_timing(periph, start_ccb, bus_timing_hs);
 		if (err != MMC_ERR_NONE) {
 			CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Cannot switch card to high-speed mode"));
 			f_max = 25000000;
 		}
 	}
 	/* Set frequency on the controller */
 	start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
 	start_ccb->ccb_h.flags = CAM_DIR_NONE;
 	start_ccb->ccb_h.retry_count = 0;
 	start_ccb->ccb_h.timeout = 100;
 	start_ccb->ccb_h.cbfcnp = NULL;
 	cts->ios.clock = f_max;
 	cts->ios_valid = MMC_CLK;
 	xpt_action(start_ccb);
 
 	/* Set bus width */
 	enum mmc_bus_width desired_bus_width = bus_width_1;
 	enum mmc_bus_width max_host_bus_width =
 		(host_caps & MMC_CAP_8_BIT_DATA ? bus_width_8 :
 		 host_caps & MMC_CAP_4_BIT_DATA ? bus_width_4 : bus_width_1);
 	enum mmc_bus_width max_card_bus_width = bus_width_1;
 	if (mmcp->card_features & CARD_FEATURE_SD20 &&
 	    softc->scr.bus_widths & SD_SCR_BUS_WIDTH_4)
 		max_card_bus_width = bus_width_4;
 	/*
 	 * Unlike SD, MMC cards don't have any information about supported bus width...
 	 * So we need to perform read/write test to find out the width.
 	 */
 	/* TODO: figure out bus width for MMC; use 8-bit for now (to test on BBB) */
 	if (mmcp->card_features & CARD_FEATURE_MMC)
 		max_card_bus_width = bus_width_8;
 
 	desired_bus_width = min(max_host_bus_width, max_card_bus_width);
 	CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 		  ("Set bus width to %s (min of host %s and card %s)\n",
 		   bus_width_str(desired_bus_width),
 		   bus_width_str(max_host_bus_width),
 		   bus_width_str(max_card_bus_width)));
 	sdda_set_bus_width(periph, start_ccb, desired_bus_width);
 
 	softc->state = SDDA_STATE_NORMAL;
 
 	/* MMC partitions support */
 	if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) {
 		sdda_process_mmc_partitions(periph, start_ccb);
 	} else if (mmcp->card_features & CARD_FEATURE_SD20) {
 		/* For SD[HC] cards, just add one partition that is the whole card */
 		sdda_add_part(periph, 0, "sdda",
 		    periph->unit_number,
 		    mmc_get_media_size(periph),
 		    sdda_get_read_only(periph, start_ccb));
 		softc->part_curr = 0;
 	}
 
 	xpt_announce_periph(periph, softc->card_id_string);
 	/*
 	 * Add async callbacks for bus reset and bus device reset calls.
 	 * I don't bother checking if this fails as, in most cases,
 	 * the system will function just fine without them and the only
 	 * alternative would be to not attach the device on failure.
 	 */
 	xpt_register_async(AC_LOST_DEVICE | AC_GETDEV_CHANGED |
 	    AC_ADVINFO_CHANGED, sddaasync, periph, periph->path);
 }
 
 static void
 sdda_add_part(struct cam_periph *periph, u_int type, const char *name,
     u_int cnt, off_t media_size, bool ro)
 {
 	struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
 	struct sdda_part *part;
 	struct ccb_pathinq cpi;
 	u_int maxio;
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 	    ("Partition type '%s', size %ju %s\n",
 	    part_type(type),
 	    media_size,
 	    ro ? "(read-only)" : ""));
 
 	part = sc->part[type] = malloc(sizeof(*part), M_DEVBUF,
 	    M_WAITOK | M_ZERO);
 
 	part->cnt = cnt;
 	part->type = type;
 	part->ro = ro;
 	part->sc = sc;
 	snprintf(part->name, sizeof(part->name), name, periph->unit_number);
 
 	/*
 	 * Due to the nature of RPMB partition it doesn't make much sense
 	 * to add it as a disk. It would be more appropriate to create a
 	 * userland tool to operate on the partition or leverage the existing
 	 * tools from sysutils/mmc-utils.
 	 */
 	if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 		/* TODO: Create device, assign IOCTL handler */
 		CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 		    ("Don't know what to do with RPMB partitions yet\n"));
 		return;
 	}
 
 	bioq_init(&part->bio_queue);
 
 	bzero(&cpi, sizeof(cpi));
 	xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE);
 	cpi.ccb_h.func_code = XPT_PATH_INQ;
 	xpt_action((union ccb *)&cpi);
 
 	/*
 	 * Register this media as a disk
 	 */
 	(void)cam_periph_hold(periph, PRIBIO);
 	cam_periph_unlock(periph);
 
 	part->disk = disk_alloc();
 	part->disk->d_rotation_rate = DISK_RR_NON_ROTATING;
 	part->disk->d_devstat = devstat_new_entry(part->name,
 	    cnt, 512,
 	    DEVSTAT_ALL_SUPPORTED,
 	    DEVSTAT_TYPE_DIRECT | XPORT_DEVSTAT_TYPE(cpi.transport),
 	    DEVSTAT_PRIORITY_DISK);
 
 	part->disk->d_open = sddaopen;
 	part->disk->d_close = sddaclose;
 	part->disk->d_strategy = sddastrategy;
 	part->disk->d_getattr = sddagetattr;
 //	sc->disk->d_dump = sddadump;
 	part->disk->d_gone = sddadiskgonecb;
 	part->disk->d_name = part->name;
 	part->disk->d_drv1 = part;
 	maxio = cpi.maxio;		/* Honor max I/O size of SIM */
 	if (maxio == 0)
 		maxio = DFLTPHYS;	/* traditional default */
 	else if (maxio > MAXPHYS)
 		maxio = MAXPHYS;	/* for safety */
 	part->disk->d_maxsize = maxio;
 	part->disk->d_unit = cnt;
 	part->disk->d_flags = 0;
 	strlcpy(part->disk->d_descr, sc->card_id_string,
 	    MIN(sizeof(part->disk->d_descr), sizeof(sc->card_id_string)));
 	strlcpy(part->disk->d_ident, sc->card_sn_string,
 	    MIN(sizeof(part->disk->d_ident), sizeof(sc->card_sn_string)));
 	part->disk->d_hba_vendor = cpi.hba_vendor;
 	part->disk->d_hba_device = cpi.hba_device;
 	part->disk->d_hba_subvendor = cpi.hba_subvendor;
 	part->disk->d_hba_subdevice = cpi.hba_subdevice;
 
 	part->disk->d_sectorsize = mmc_get_sector_size(periph);
 	part->disk->d_mediasize = media_size;
 	part->disk->d_stripesize = 0;
 	part->disk->d_fwsectors = 0;
 	part->disk->d_fwheads = 0;
 
 	/*
 	 * Acquire a reference to the periph before we register with GEOM.
 	 * We'll release this reference once GEOM calls us back (via
 	 * sddadiskgonecb()) telling us that our provider has been freed.
 	 */
 	if (cam_periph_acquire(periph) != 0) {
 		xpt_print(periph->path, "%s: lost periph during "
 		    "registration!\n", __func__);
 		cam_periph_lock(periph);
 		return;
 	}
 	disk_create(part->disk, DISK_VERSION);
 	cam_periph_lock(periph);
 	cam_periph_unhold(periph);
 }
 
 /*
  * For MMC cards, process EXT_CSD and add partitions that are supported by
  * this device.
  */
 static void
 sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *ccb)
 {
 	struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
 	struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
 	off_t erase_size, sector_size, size, wp_size;
 	int i;
 	const uint8_t *ext_csd;
 	uint8_t rev;
 	bool comp, ro;
 
 	ext_csd = sc->raw_ext_csd;
 
 	/*
 	 * Enhanced user data area and general purpose partitions are only
 	 * supported in revision 1.4 (EXT_CSD_REV == 4) and later, the RPMB
 	 * partition in revision 1.5 (MMC v4.41, EXT_CSD_REV == 5) and later.
 	 */
 	rev = ext_csd[EXT_CSD_REV];
 
 	/*
 	 * Ignore user-creatable enhanced user data area and general purpose
 	 * partitions partitions as long as partitioning hasn't been finished.
 	 */
 	comp = (ext_csd[EXT_CSD_PART_SET] & EXT_CSD_PART_SET_COMPLETED) != 0;
 
 	/*
 	 * Add enhanced user data area slice, unless it spans the entirety of
 	 * the user data area.  The enhanced area is of a multiple of high
 	 * capacity write protect groups ((ERASE_GRP_SIZE + HC_WP_GRP_SIZE) *
 	 * 512 KB) and its offset given in either sectors or bytes, depending
 	 * on whether it's a high capacity device or not.
 	 * NB: The slicer and its slices need to be registered before adding
 	 *     the disk for the corresponding user data area as re-tasting is
 	 *     racy.
 	 */
 	sector_size = mmc_get_sector_size(periph);
 	size = ext_csd[EXT_CSD_ENH_SIZE_MULT] +
 		(ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) +
 		(ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16);
 	if (rev >= 4 && comp == TRUE && size > 0 &&
 	    (ext_csd[EXT_CSD_PART_SUPPORT] &
 		EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 &&
 	    (ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_USR)) != 0) {
 		erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
 			MMC_SECTOR_SIZE;
 		wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 		size *= erase_size * wp_size;
 		if (size != mmc_get_media_size(periph) * sector_size) {
 			sc->enh_size = size;
 			sc->enh_base = (ext_csd[EXT_CSD_ENH_START_ADDR] +
 			    (ext_csd[EXT_CSD_ENH_START_ADDR + 1] << 8) +
 			    (ext_csd[EXT_CSD_ENH_START_ADDR + 2] << 16) +
 			    (ext_csd[EXT_CSD_ENH_START_ADDR + 3] << 24)) *
 				((mmcp->card_features & CARD_FEATURE_SDHC) ? 1: MMC_SECTOR_SIZE);
 		} else
 			CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 			    ("enhanced user data area spans entire device"));
 	}
 
 	/*
 	 * Add default partition.  This may be the only one or the user
 	 * data area in case partitions are supported.
 	 */
 	ro = sdda_get_read_only(periph, ccb);
 	sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_DEFAULT, "sdda",
 	    periph->unit_number, mmc_get_media_size(periph), ro);
 	sc->part_curr = EXT_CSD_PART_CONFIG_ACC_DEFAULT;
 
 	if (mmc_get_spec_vers(periph) < 3)
 		return;
 
 	/* Belatedly announce enhanced user data slice. */
 	if (sc->enh_size != 0) {
 		CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 		    ("enhanced user data area off 0x%jx size %ju bytes\n",
 			sc->enh_base, sc->enh_size));
 	}
 
 	/*
 	 * Determine partition switch timeout (provided in units of 10 ms)
 	 * and ensure it's at least 300 ms as some eMMC chips lie.
 	 */
 	sc->part_time = max(ext_csd[EXT_CSD_PART_SWITCH_TO] * 10 * 1000,
 	    300 * 1000);
 
 	/* Add boot partitions, which are of a fixed multiple of 128 KB. */
 	size = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
 	if (size > 0 && (sdda_get_host_caps(periph, ccb) & MMC_CAP_BOOT_NOACC) == 0) {
 		sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT0,
 		    SDDA_FMT_BOOT, 0, size,
 		    ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
 		    EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK) != 0));
 		sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT1,
 		    SDDA_FMT_BOOT, 1, size,
 		    ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
 		    EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK) != 0));
 	}
 
 	/* Add RPMB partition, which also is of a fixed multiple of 128 KB. */
 	size = ext_csd[EXT_CSD_RPMB_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
 	if (rev >= 5 && size > 0)
 		sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_RPMB,
 		    SDDA_FMT_RPMB, 0, size, ro);
 
 	if (rev <= 3 || comp == FALSE)
 		return;
 
 	/*
 	 * Add general purpose partitions, which are of a multiple of high
 	 * capacity write protect groups, too.
 	 */
 	if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EN) != 0) {
 		erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
 			MMC_SECTOR_SIZE;
 		wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 		for (i = 0; i < MMC_PART_GP_MAX; i++) {
 			size = ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3] +
 				(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 1] << 8) +
 				(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 2] << 16);
 			if (size == 0)
 				continue;
 			sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_GP0 + i,
 			    SDDA_FMT_GP, i, size * erase_size * wp_size, ro);
 		}
 	}
 }
 
 /*
  * We cannot just call mmc_switch() since it will sleep, and we are in
  * GEOM context and cannot sleep. Instead, create an MMCIO request to switch
  * partitions and send it to h/w, and upon completion resume processing
  * the I/O queue.
  * This function cannot fail, instead check switch errors in sddadone().
  */
 static void
 sdda_init_switch_part(struct cam_periph *periph, union ccb *start_ccb, u_int part) {
 	struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
 	uint8_t value;
 
 	sc->part_requested = part;
 
 	value = (sc->raw_ext_csd[EXT_CSD_PART_CONFIG] &
 	    ~EXT_CSD_PART_CONFIG_ACC_MASK) | part;
 
 	mmc_switch_fill_mmcio(start_ccb, EXT_CSD_CMD_SET_NORMAL,
 	    EXT_CSD_PART_CONFIG, value, sc->part_time);
 	start_ccb->ccb_h.cbfcnp = sddadone;
 
 	sc->outstanding_cmds++;
 	cam_periph_unlock(periph);
 	xpt_action(start_ccb);
 	cam_periph_lock(periph);
 }
 
 /* Called with periph lock held! */
 static void
 sddastart(struct cam_periph *periph, union ccb *start_ccb)
 {
 	struct bio *bp;
 	struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
 	struct sdda_part *part;
 	struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
 	int part_index;
 
 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastart\n"));
 
 	if (softc->state != SDDA_STATE_NORMAL) {
 		CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("device is not in SDDA_STATE_NORMAL yet\n"));
 		xpt_release_ccb(start_ccb);
 		return;
 	}
 
 	/* Find partition that has outstanding commands.  Prefer current partition. */
 	part = softc->part[softc->part_curr];
 	bp = bioq_first(&part->bio_queue);
 	if (bp == NULL) {
 		for (part_index = 0; part_index < MMC_PART_MAX; part_index++) {
 			if ((part = softc->part[part_index]) != NULL &&
 			    (bp = bioq_first(&softc->part[part_index]->bio_queue)) != NULL)
 				break;
 		}
 	}
 	if (bp == NULL) {
 		xpt_release_ccb(start_ccb);
 		return;
 	}
 	if (part_index != softc->part_curr) {
 		CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
 		    ("Partition  %d -> %d\n", softc->part_curr, part_index));
 		/*
 		 * According to section "6.2.2 Command restrictions" of the eMMC
 		 * specification v5.1, CMD19/CMD21 aren't allowed to be used with
 		 * RPMB partitions.  So we pause re-tuning along with triggering
 		 * it up-front to decrease the likelihood of re-tuning becoming
 		 * necessary while accessing an RPMB partition.  Consequently, an
 		 * RPMB partition should immediately be switched away from again
 		 * after an access in order to allow for re-tuning to take place
 		 * anew.
 		 */
 		/* TODO: pause retune if switching to RPMB partition */
 		softc->state = SDDA_STATE_PART_SWITCH;
 		sdda_init_switch_part(periph, start_ccb, part_index);
 		return;
 	}
 
 	bioq_remove(&part->bio_queue, bp);
 
 	switch (bp->bio_cmd) {
 	case BIO_WRITE:
 		CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_WRITE\n"));
 		part->flags |= SDDA_FLAG_DIRTY;
 		/* FALLTHROUGH */
 	case BIO_READ:
 	{
 		struct ccb_mmcio *mmcio;
 		uint64_t blockno = bp->bio_pblkno;
 		uint16_t count = bp->bio_bcount / 512;
 		uint16_t opcode;
 
 		if (bp->bio_cmd == BIO_READ)
 			CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_READ\n"));
 		CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
 		    ("Block %"PRIu64" cnt %u\n", blockno, count));
 
 		/* Construct new MMC command */
 		if (bp->bio_cmd == BIO_READ) {
 			if (count > 1)
 				opcode = MMC_READ_MULTIPLE_BLOCK;
 			else
 				opcode = MMC_READ_SINGLE_BLOCK;
 		} else {
 			if (count > 1)
 				opcode = MMC_WRITE_MULTIPLE_BLOCK;
 			else
 				opcode = MMC_WRITE_BLOCK;
 		}
 
 		start_ccb->ccb_h.func_code = XPT_MMC_IO;
 		start_ccb->ccb_h.flags = (bp->bio_cmd == BIO_READ ? CAM_DIR_IN : CAM_DIR_OUT);
 		start_ccb->ccb_h.retry_count = 0;
 		start_ccb->ccb_h.timeout = 15 * 1000;
 		start_ccb->ccb_h.cbfcnp = sddadone;
 
 		mmcio = &start_ccb->mmcio;
 		mmcio->cmd.opcode = opcode;
 		mmcio->cmd.arg = blockno;
 		if (!(mmcp->card_features & CARD_FEATURE_SDHC))
 			mmcio->cmd.arg <<= 9;
 
 		mmcio->cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 		mmcio->cmd.data = softc->mmcdata;
 		mmcio->cmd.data->data = bp->bio_data;
 		mmcio->cmd.data->len = 512 * count;
 		mmcio->cmd.data->flags = (bp->bio_cmd == BIO_READ ? MMC_DATA_READ : MMC_DATA_WRITE);
 		/* Direct h/w to issue CMD12 upon completion */
 		if (count > 1) {
+			mmcio->cmd.data->flags |= MMC_DATA_MULTI;
 			mmcio->stop.opcode = MMC_STOP_TRANSMISSION;
 			mmcio->stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
 			mmcio->stop.arg = 0;
 		}
 
 		break;
 	}
 	case BIO_FLUSH:
 		CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_FLUSH\n"));
 		sddaschedule(periph);
 		break;
 	case BIO_DELETE:
 		CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_DELETE\n"));
 		sddaschedule(periph);
 		break;
 	}
 	start_ccb->ccb_h.ccb_bp = bp;
 	softc->outstanding_cmds++;
 	softc->refcount++;
 	cam_periph_unlock(periph);
 	xpt_action(start_ccb);
 	cam_periph_lock(periph);
 
 	/* May have more work to do, so ensure we stay scheduled */
 	sddaschedule(periph);
 }
 
 static void
 sddadone(struct cam_periph *periph, union ccb *done_ccb)
 {
 	struct bio *bp;
 	struct sdda_softc *softc;
 	struct ccb_mmcio *mmcio;
 	struct cam_path *path;
 	uint32_t card_status;
 	int error = 0;
 
 	softc = (struct sdda_softc *)periph->softc;
 	mmcio = &done_ccb->mmcio;
 	path = done_ccb->ccb_h.path;
 
 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddadone\n"));
 //        cam_periph_lock(periph);
 	if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
 		CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Error!!!\n"));
 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
 			cam_release_devq(path,
 			    /*relsim_flags*/0,
 			    /*reduction*/0,
 			    /*timeout*/0,
 			    /*getcount_only*/0);
 		error = 5; /* EIO */
 	} else {
 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
 			panic("REQ_CMP with QFRZN");
 		error = 0;
 	}
 
 	card_status = mmcio->cmd.resp[0];
 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
 	    ("Card status: %08x\n", R1_STATUS(card_status)));
 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
 	    ("Current state: %d\n", R1_CURRENT_STATE(card_status)));
 
 	/* Process result of switching MMC partitions */
 	if (softc->state == SDDA_STATE_PART_SWITCH) {
 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
 		    ("Compteting partition switch to %d\n", softc->part_requested));
 		softc->outstanding_cmds--;
 		/* Complete partition switch */
 		softc->state = SDDA_STATE_NORMAL;
 		if (error != MMC_ERR_NONE) {
 			/* TODO: Unpause retune if accessing RPMB */
 			xpt_release_ccb(done_ccb);
 			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 			return;
 		}
 
 		softc->raw_ext_csd[EXT_CSD_PART_CONFIG] =
 		    (softc->raw_ext_csd[EXT_CSD_PART_CONFIG] &
 			~EXT_CSD_PART_CONFIG_ACC_MASK) | softc->part_requested;
 		/* TODO: Unpause retune if accessing RPMB */
 		softc->part_curr = softc->part_requested;
 		xpt_release_ccb(done_ccb);
 
 		/* Return to processing BIO requests */
 		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 		return;
 	}
 
 	bp = (struct bio *)done_ccb->ccb_h.ccb_bp;
 	bp->bio_error = error;
 	if (error != 0) {
 		bp->bio_resid = bp->bio_bcount;
 		bp->bio_flags |= BIO_ERROR;
 	} else {
 		/* XXX: How many bytes remaining? */
 		bp->bio_resid = 0;
 		if (bp->bio_resid > 0)
 			bp->bio_flags |= BIO_ERROR;
 	}
 
 	softc->outstanding_cmds--;
 	xpt_release_ccb(done_ccb);
 	/*
 	 * Release the periph refcount taken in sddastart() for each CCB.
 	 */
 	KASSERT(softc->refcount >= 1, ("sddadone softc %p refcount %d", softc, softc->refcount));
 	softc->refcount--;
 	biodone(bp);
 }
 
 static int
 sddaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
 {
 	return(cam_periph_error(ccb, cam_flags, sense_flags));
 }
 #endif /* _KERNEL */