Index: stable/11/sys/x86/x86/cpu_machdep.c =================================================================== --- stable/11/sys/x86/x86/cpu_machdep.c (revision 334213) +++ stable/11/sys/x86/x86/cpu_machdep.c (revision 334214) @@ -1,942 +1,940 @@ /*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_atpic.h" #include "opt_compat.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_isa.h" #include "opt_kdb.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_perfmon.h" #include "opt_platform.h" #ifdef __i386__ #include "opt_apic.h" #include "opt_xbox.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#ifdef SMP #include -#endif #include #include #include #include #include #include #include #ifdef PERFMON #include #endif #include #ifdef SMP #include #endif #ifdef CPU_ELAN #include #endif #include #include #include #include #include #include #include #include #include #ifndef PC98 #include #endif #define STATE_RUNNING 0x0 #define STATE_MWAIT 0x1 #define STATE_SLEEPING 0x2 #ifdef SMP static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif /* * Machine dependent boot() routine * * I haven't seen anything to put here yet * Possibly some stuff might be grafted back here from boot() */ void cpu_boot(int howto) { } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { /* Not applicable */ } void acpi_cpu_c1(void) { __asm __volatile("sti; hlt"); } /* * Use mwait to pause execution while waiting for an interrupt or * another thread to signal that there is more work. * * NOTE: Interrupts will cause a wakeup; however, this function does * not enable interrupt handling. The caller is responsible to enable * interrupts. */ void acpi_cpu_idle_mwait(uint32_t mwait_hint) { int *state; uint64_t v; /* * A comment in Linux patch claims that 'CPUs run faster with * speculation protection disabled. All CPU threads in a core * must disable speculation protection for it to be * disabled. Disable it while we are idle so the other * hyperthread can run fast.' * * XXXKIB. Software coordination mode should be supported, * but all Intel CPUs provide hardware coordination. */ state = (int *)PCPU_PTR(monitorbuf); KASSERT(atomic_load_int(state) == STATE_SLEEPING, ("cpu_mwait_cx: wrong monitorbuf state")); atomic_store_int(state, STATE_MWAIT); if (PCPU_GET(ibpb_set) || hw_ssb_active) { v = rdmsr(MSR_IA32_SPEC_CTRL); wrmsr(MSR_IA32_SPEC_CTRL, v & ~(IA32_SPEC_CTRL_IBRS | IA32_SPEC_CTRL_STIBP | IA32_SPEC_CTRL_SSBD)); } else { v = 0; } cpu_monitor(state, 0, 0); if (atomic_load_int(state) == STATE_MWAIT) cpu_mwait(MWAIT_INTRBREAK, mwait_hint); /* * SSB cannot be disabled while we sleep, or rather, if it was * disabled, the sysctl thread will bind to our cpu to tweak * MSR. */ if (v != 0) wrmsr(MSR_IA32_SPEC_CTRL, v); /* * We should exit on any event that interrupts mwait, because * that event might be a wanted interrupt. */ atomic_store_int(state, STATE_RUNNING); } /* Get current clock frequency for the given cpu id. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { uint64_t tsc1, tsc2; uint64_t acnt, mcnt, perf; register_t reg; if (pcpu_find(cpu_id) == NULL || rate == NULL) return (EINVAL); #ifdef __i386__ if ((cpu_feature & CPUID_TSC) == 0) return (EOPNOTSUPP); #endif /* * If TSC is P-state invariant and APERF/MPERF MSRs do not exist, * DELAY(9) based logic fails. */ if (tsc_is_invariant && !tsc_perf_stat) return (EOPNOTSUPP); #ifdef SMP if (smp_cpus > 1) { /* Schedule ourselves on the indicated cpu. */ thread_lock(curthread); sched_bind(curthread, cpu_id); thread_unlock(curthread); } #endif /* Calibrate by measuring a short delay. */ reg = intr_disable(); if (tsc_is_invariant) { wrmsr(MSR_MPERF, 0); wrmsr(MSR_APERF, 0); tsc1 = rdtsc(); DELAY(1000); mcnt = rdmsr(MSR_MPERF); acnt = rdmsr(MSR_APERF); tsc2 = rdtsc(); intr_restore(reg); perf = 1000 * acnt / mcnt; *rate = (tsc2 - tsc1) * perf; } else { tsc1 = rdtsc(); DELAY(1000); tsc2 = rdtsc(); intr_restore(reg); *rate = (tsc2 - tsc1) * 1000; } #ifdef SMP if (smp_cpus > 1) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } #endif return (0); } /* * Shutdown the CPU as much as possible */ void cpu_halt(void) { for (;;) halt(); } static void cpu_reset_real(void) { struct region_descriptor null_idt; #ifndef PC98 int b; #endif disable_intr(); #ifdef CPU_ELAN if (elan_mmcr != NULL) elan_mmcr->RESCFG = 1; #endif #ifdef __i386__ if (cpu == CPU_GEODE1100) { /* Attempt Geode's own reset */ outl(0xcf8, 0x80009044ul); outl(0xcfc, 0xf); } #endif #ifdef PC98 /* * Attempt to do a CPU reset via CPU reset port. */ if ((inb(0x35) & 0xa0) != 0xa0) { outb(0x37, 0x0f); /* SHUT0 = 0. */ outb(0x37, 0x0b); /* SHUT1 = 0. */ } outb(0xf0, 0x00); /* Reset. */ #else #if !defined(BROKEN_KEYBOARD_RESET) /* * Attempt to do a CPU reset via the keyboard controller, * do not turn off GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ #endif /* * Attempt to force a reset via the Reset Control register at * I/O port 0xcf9. Bit 2 forces a system reset when it * transitions from 0 to 1. Bit 1 selects the type of reset * to attempt: 0 selects a "soft" reset, and 1 selects a * "hard" reset. We try a "hard" reset. The first write sets * bit 1 to select a "hard" reset and clears bit 2. The * second write forces a 0 -> 1 transition in bit 2 to trigger * a reset. */ outb(0xcf9, 0x2); outb(0xcf9, 0x6); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Fast A20 and Init register * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. * Bit 0 asserts INIT# when set to 1. We are careful to only * preserve bit 1 while setting bit 0. We also must clear bit * 0 before setting it if it isn't already clear. */ b = inb(0x92); if (b != 0xff) { if ((b & 0x1) != 0) outb(0x92, b & 0xfe); outb(0x92, b | 0x1); DELAY(500000); /* wait 0.5 sec to see if that did it */ } #endif /* PC98 */ printf("No known reset method worked, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ /* Wipe the IDT. */ null_idt.rd_limit = 0; null_idt.rd_base = 0; lidt(&null_idt); /* "good night, sweet prince .... " */ breakpoint(); /* NOTREACHED */ while(1); } #ifdef SMP static void cpu_reset_proxy(void) { cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ia32_pause(); /* Wait for other cpu to see that we've started */ printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); DELAY(1000000); cpu_reset_real(); } #endif void cpu_reset(void) { #ifdef SMP cpuset_t map; u_int cnt; if (smp_started) { map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) { printf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); } if (PCPU_GET(cpuid) != 0) { cpu_reset_proxyid = PCPU_GET(cpuid); cpustop_restartfunc = cpu_reset_proxy; cpu_reset_proxy_active = 0; printf("cpu_reset: Restarting BSP\n"); /* Restart CPU #0. */ CPU_SETOF(0, &started_cpus); wmb(); cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) { ia32_pause(); cnt++; /* Wait for BSP to announce restart */ } if (cpu_reset_proxy_active == 0) { printf("cpu_reset: Failed to restart BSP\n"); } else { cpu_reset_proxy_active = 2; while (1) ia32_pause(); /* NOTREACHED */ } } DELAY(1000000); } #endif cpu_reset_real(); /* NOTREACHED */ } bool cpu_mwait_usable(void) { return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags & (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) == (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK))); } void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */ static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */ static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */ SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait, 0, "Use MONITOR/MWAIT for short idle"); #ifndef PC98 static void cpu_idle_acpi(sbintime_t sbt) { int *state; state = (int *)PCPU_PTR(monitorbuf); atomic_store_int(state, STATE_SLEEPING); /* See comments in cpu_idle_hlt(). */ disable_intr(); if (sched_runnable()) enable_intr(); else if (cpu_idle_hook) cpu_idle_hook(sbt); else acpi_cpu_c1(); atomic_store_int(state, STATE_RUNNING); } #endif /* !PC98 */ static void cpu_idle_hlt(sbintime_t sbt) { int *state; state = (int *)PCPU_PTR(monitorbuf); atomic_store_int(state, STATE_SLEEPING); /* * Since we may be in a critical section from cpu_idle(), if * an interrupt fires during that critical section we may have * a pending preemption. If the CPU halts, then that thread * may not execute until a later interrupt awakens the CPU. * To handle this race, check for a runnable thread after * disabling interrupts and immediately return if one is * found. Also, we must absolutely guarentee that hlt is * the next instruction after sti. This ensures that any * interrupt that fires after the call to disable_intr() will * immediately awaken the CPU from hlt. Finally, please note * that on x86 this works fine because of interrupts enabled only * after the instruction following sti takes place, while IF is set * to 1 immediately, allowing hlt instruction to acknowledge the * interrupt. */ disable_intr(); if (sched_runnable()) enable_intr(); else acpi_cpu_c1(); atomic_store_int(state, STATE_RUNNING); } static void cpu_idle_mwait(sbintime_t sbt) { int *state; state = (int *)PCPU_PTR(monitorbuf); atomic_store_int(state, STATE_MWAIT); /* See comments in cpu_idle_hlt(). */ disable_intr(); if (sched_runnable()) { atomic_store_int(state, STATE_RUNNING); enable_intr(); return; } cpu_monitor(state, 0, 0); if (atomic_load_int(state) == STATE_MWAIT) __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0)); else enable_intr(); atomic_store_int(state, STATE_RUNNING); } static void cpu_idle_spin(sbintime_t sbt) { int *state; int i; state = (int *)PCPU_PTR(monitorbuf); atomic_store_int(state, STATE_RUNNING); /* * The sched_runnable() call is racy but as long as there is * a loop missing it one time will have just a little impact if any * (and it is much better than missing the check at all). */ for (i = 0; i < 1000; i++) { if (sched_runnable()) return; cpu_spinwait(); } } /* * C1E renders the local APIC timer dead, so we disable it by * reading the Interrupt Pending Message register and clearing * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27). * * Reference: * "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors" * #32559 revision 3.00+ */ #define MSR_AMDK8_IPM 0xc0010055 #define AMDK8_SMIONCMPHALT (1ULL << 27) #define AMDK8_C1EONCMPHALT (1ULL << 28) #define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT) void cpu_probe_amdc1e(void) { /* * Detect the presence of C1E capability mostly on latest * dual-cores (or future) k8 family. */ if (cpu_vendor_id == CPU_VENDOR_AMD && (cpu_id & 0x00000f00) == 0x00000f00 && (cpu_id & 0x0fff0000) >= 0x00040000) { cpu_ident_amdc1e = 1; } } #if defined(__i386__) && defined(PC98) void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt; #else void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi; #endif void cpu_idle(int busy) { uint64_t msr; sbintime_t sbt = -1; CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu); #ifdef MP_WATCHDOG ap_watchdog(PCPU_GET(cpuid)); #endif /* If we are busy - try to use fast methods. */ if (busy) { if ((cpu_feature2 & CPUID2_MON) && idle_mwait) { cpu_idle_mwait(busy); goto out; } } /* If we have time - switch timers into idle mode. */ if (!busy) { critical_enter(); sbt = cpu_idleclock(); } /* Apply AMD APIC timer C1E workaround. */ if (cpu_ident_amdc1e && cpu_disable_c3_sleep) { msr = rdmsr(MSR_AMDK8_IPM); if (msr & AMDK8_CMPHALT) wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT); } /* Call main idle method. */ cpu_idle_fn(sbt); /* Switch timers back into active mode. */ if (!busy) { cpu_activeclock(); critical_exit(); } out: CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu); } static int cpu_idle_apl31_workaround; SYSCTL_INT(_machdep, OID_AUTO, idle_apl31, CTLFLAG_RW, &cpu_idle_apl31_workaround, 0, "Apollo Lake APL31 MWAIT bug workaround"); int cpu_idle_wakeup(int cpu) { int *state; state = (int *)pcpu_find(cpu)->pc_monitorbuf; switch (atomic_load_int(state)) { case STATE_SLEEPING: return (0); case STATE_MWAIT: atomic_store_int(state, STATE_RUNNING); return (cpu_idle_apl31_workaround ? 0 : 1); case STATE_RUNNING: return (1); default: panic("bad monitor state"); return (1); } } /* * Ordered by speed/power consumption. */ static struct { void *id_fn; char *id_name; int id_cpuid2_flag; } idle_tbl[] = { { .id_fn = cpu_idle_spin, .id_name = "spin" }, { .id_fn = cpu_idle_mwait, .id_name = "mwait", .id_cpuid2_flag = CPUID2_MON }, { .id_fn = cpu_idle_hlt, .id_name = "hlt" }, #if !defined(__i386__) || !defined(PC98) { .id_fn = cpu_idle_acpi, .id_name = "acpi" }, #endif }; static int idle_sysctl_available(SYSCTL_HANDLER_ARGS) { char *avail, *p; int error; int i; avail = malloc(256, M_TEMP, M_WAITOK); p = avail; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_cpuid2_flag != 0 && (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) continue; #if !defined(__i386__) || !defined(PC98) if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; #endif p += sprintf(p, "%s%s", p != avail ? ", " : "", idle_tbl[i].id_name); } error = sysctl_handle_string(oidp, avail, 0, req); free(avail, M_TEMP); return (error); } SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD, 0, 0, idle_sysctl_available, "A", "list of available idle functions"); static bool cpu_idle_selector(const char *new_idle_name) { int i; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_cpuid2_flag != 0 && (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) continue; #if !defined(__i386__) || !defined(PC98) if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; #endif if (strcmp(idle_tbl[i].id_name, new_idle_name)) continue; cpu_idle_fn = idle_tbl[i].id_fn; if (bootverbose) printf("CPU idle set to %s\n", idle_tbl[i].id_name); return (true); } return (false); } static int cpu_idle_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16], *p; int error, i; p = "unknown"; for (i = 0; i < nitems(idle_tbl); i++) { if (idle_tbl[i].id_fn == cpu_idle_fn) { p = idle_tbl[i].id_name; break; } } strncpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); return (cpu_idle_selector(buf) ? 0 : EINVAL); } SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, cpu_idle_sysctl, "A", "currently selected idle function"); static void cpu_idle_tun(void *unused __unused) { char tunvar[16]; if (TUNABLE_STR_FETCH("machdep.idle", tunvar, sizeof(tunvar))) cpu_idle_selector(tunvar); if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_id == 0x506c9) { /* * Apollo Lake errata APL31 (public errata APL30). * Stores to the armed address range may not trigger * MWAIT to resume execution. OS needs to use * interrupts to wake processors from MWAIT-induced * sleep states. */ cpu_idle_apl31_workaround = 1; } TUNABLE_INT_FETCH("machdep.idle_apl31", &cpu_idle_apl31_workaround); } SYSINIT(cpu_idle_tun, SI_SUB_CPU, SI_ORDER_MIDDLE, cpu_idle_tun, NULL); static int panic_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN, &panic_on_nmi, 0, "Panic on NMI"); int nmi_is_broadcast = 1; SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN, &nmi_is_broadcast, 0, "Chipset NMI is broadcast"); #ifdef KDB int kdb_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RWTUN, &kdb_on_nmi, 0, "Go to KDB on NMI"); #endif #ifdef DEV_ISA void nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame) { /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(frame->tf_err) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton for debugging. */ if (kdb_on_nmi) { printf("NMI/cpu%d ... going to debugger\n", cpu); kdb_trap(type, 0, frame); } #endif /* KDB */ } else if (panic_on_nmi) { panic("NMI indicates hardware failure"); } } #endif void nmi_handle_intr(u_int type, struct trapframe *frame) { #ifdef DEV_ISA #ifdef SMP if (nmi_is_broadcast) { nmi_call_kdb_smp(type, frame); return; } #endif nmi_call_kdb(PCPU_GET(cpuid), type, frame); #endif } int hw_ibrs_active; int hw_ibrs_disable = 1; SYSCTL_INT(_hw, OID_AUTO, ibrs_active, CTLFLAG_RD, &hw_ibrs_active, 0, "Indirect Branch Restricted Speculation active"); void hw_ibrs_recalculate(void) { uint64_t v; if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_IBRS_ALL) != 0) { if (hw_ibrs_disable) { v = rdmsr(MSR_IA32_SPEC_CTRL); v &= ~(uint64_t)IA32_SPEC_CTRL_IBRS; wrmsr(MSR_IA32_SPEC_CTRL, v); } else { v = rdmsr(MSR_IA32_SPEC_CTRL); v |= IA32_SPEC_CTRL_IBRS; wrmsr(MSR_IA32_SPEC_CTRL, v); } return; } hw_ibrs_active = (cpu_stdext_feature3 & CPUID_STDEXT3_IBPB) != 0 && !hw_ibrs_disable; } static int hw_ibrs_disable_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = hw_ibrs_disable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); hw_ibrs_disable = val != 0; hw_ibrs_recalculate(); return (0); } SYSCTL_PROC(_hw, OID_AUTO, ibrs_disable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ibrs_disable_handler, "I", "Disable Indirect Branch Restricted Speculation"); int hw_ssb_active; int hw_ssb_disable; SYSCTL_INT(_hw, OID_AUTO, spec_store_bypass_disable_active, CTLFLAG_RD, &hw_ssb_active, 0, "Speculative Store Bypass Disable active"); static void hw_ssb_set_one(bool enable) { uint64_t v; v = rdmsr(MSR_IA32_SPEC_CTRL); if (enable) v |= (uint64_t)IA32_SPEC_CTRL_SSBD; else v &= ~(uint64_t)IA32_SPEC_CTRL_SSBD; wrmsr(MSR_IA32_SPEC_CTRL, v); } static void hw_ssb_set(bool enable, bool for_all_cpus) { struct thread *td; int bound_cpu, i, is_bound; if ((cpu_stdext_feature3 & CPUID_STDEXT3_SSBD) == 0) { hw_ssb_active = 0; return; } hw_ssb_active = enable; if (for_all_cpus) { td = curthread; thread_lock(td); is_bound = sched_is_bound(td); bound_cpu = td->td_oncpu; CPU_FOREACH(i) { sched_bind(td, i); hw_ssb_set_one(enable); } if (is_bound) sched_bind(td, bound_cpu); else sched_unbind(td); thread_unlock(td); } else { hw_ssb_set_one(enable); } } void hw_ssb_recalculate(bool all_cpus) { switch (hw_ssb_disable) { default: hw_ssb_disable = 0; /* FALLTHROUGH */ case 0: /* off */ hw_ssb_set(false, all_cpus); break; case 1: /* on */ hw_ssb_set(true, all_cpus); break; case 2: /* auto */ hw_ssb_set((cpu_ia32_arch_caps & IA32_ARCH_CAP_SSBD_NO) != 0 ? false : true, all_cpus); break; } } static int hw_ssb_disable_handler(SYSCTL_HANDLER_ARGS) { int error, val; val = hw_ssb_disable; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); hw_ssb_disable = val; hw_ssb_recalculate(true); return (0); } SYSCTL_PROC(_hw, OID_AUTO, spec_store_bypass_disable, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ssb_disable_handler, "I", "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto"); Index: stable/11 =================================================================== --- stable/11 (revision 334213) +++ stable/11 (revision 334214) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r334064