Index: head/sys/amd64/include/clock.h
===================================================================
--- head/sys/amd64/include/clock.h	(revision 334203)
+++ head/sys/amd64/include/clock.h	(revision 334204)
@@ -1,45 +1,46 @@
 /*-
  * Kernel interface to machine-dependent clock driver.
  * Garrett Wollman, September 1994.
  * This file is in the public domain.
  *
  * $FreeBSD$
  */
 
 #ifndef _MACHINE_CLOCK_H_
 #define	_MACHINE_CLOCK_H_
 
 #ifdef _KERNEL
 /*
  * i386 to clock driver interface.
  * XXX large parts of the driver and its interface are misplaced.
  */
 extern int	clkintr_pending;
 extern u_int	i8254_freq;
 extern int	i8254_max_count;
 extern uint64_t	tsc_freq;
 extern int	tsc_is_invariant;
 extern int	tsc_perf_stat;
 #ifdef SMP
 extern int	smp_tsc;
 #endif
 
 void	i8254_init(void);
 void	i8254_delay(int);
 void	clock_init(void);
 
 /*
  * Driver to clock driver interface.
  */
 
 void	startrtclock(void);
 void	init_TSC(void);
+void	resume_TSC(void);
 
 #define	HAS_TIMER_SPKR 1
 int	timer_spkr_acquire(void);
 int	timer_spkr_release(void);
 void	timer_spkr_setfreq(int freq);
 
 #endif /* _KERNEL */
 
 #endif /* !_MACHINE_CLOCK_H_ */
Index: head/sys/dev/acpica/acpi.c
===================================================================
--- head/sys/dev/acpica/acpi.c	(revision 334203)
+++ head/sys/dev/acpica/acpi.c	(revision 334204)
@@ -1,4185 +1,4190 @@
 /*-
  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
  * Copyright (c) 2000, 2001 Michael Smith
  * Copyright (c) 2000 BSDi
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_acpi.h"
 
 #include <sys/param.h>
 #include <sys/kernel.h>
 #include <sys/proc.h>
 #include <sys/fcntl.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/bus.h>
 #include <sys/conf.h>
 #include <sys/ioccom.h>
 #include <sys/reboot.h>
 #include <sys/sysctl.h>
 #include <sys/ctype.h>
 #include <sys/linker.h>
 #include <sys/power.h>
 #include <sys/sbuf.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/timetc.h>
 
 #if defined(__i386__) || defined(__amd64__)
+#include <machine/clock.h>
 #include <machine/pci_cfgreg.h>
 #endif
 #include <machine/resource.h>
 #include <machine/bus.h>
 #include <sys/rman.h>
 #include <isa/isavar.h>
 #include <isa/pnpvar.h>
 
 #include <contrib/dev/acpica/include/acpi.h>
 #include <contrib/dev/acpica/include/accommon.h>
 #include <contrib/dev/acpica/include/acnamesp.h>
 
 #include <dev/acpica/acpivar.h>
 #include <dev/acpica/acpiio.h>
 
 #include <dev/pci/pcivar.h>
 
 #include <vm/vm_param.h>
 
 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
 
 /* Hooks for the ACPI CA debugging infrastructure */
 #define _COMPONENT	ACPI_BUS
 ACPI_MODULE_NAME("ACPI")
 
 static d_open_t		acpiopen;
 static d_close_t	acpiclose;
 static d_ioctl_t	acpiioctl;
 
 static struct cdevsw acpi_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_open =	acpiopen,
 	.d_close =	acpiclose,
 	.d_ioctl =	acpiioctl,
 	.d_name =	"acpi",
 };
 
 struct acpi_interface {
 	ACPI_STRING	*data;
 	int		num;
 };
 
 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
 static char *pcilink_ids[] = { "PNP0C0F", NULL };
 
 /* Global mutex for locking access to the ACPI subsystem. */
 struct mtx	acpi_mutex;
 struct callout	acpi_sleep_timer;
 
 /* Bitmap of device quirks. */
 int		acpi_quirks;
 
 /* Supported sleep states. */
 static BOOLEAN	acpi_sleep_states[ACPI_S_STATE_COUNT];
 
 static void	acpi_lookup(void *arg, const char *name, device_t *dev);
 static int	acpi_modevent(struct module *mod, int event, void *junk);
 static int	acpi_probe(device_t dev);
 static int	acpi_attach(device_t dev);
 static int	acpi_suspend(device_t dev);
 static int	acpi_resume(device_t dev);
 static int	acpi_shutdown(device_t dev);
 static device_t	acpi_add_child(device_t bus, u_int order, const char *name,
 			int unit);
 static int	acpi_print_child(device_t bus, device_t child);
 static void	acpi_probe_nomatch(device_t bus, device_t child);
 static void	acpi_driver_added(device_t dev, driver_t *driver);
 static int	acpi_read_ivar(device_t dev, device_t child, int index,
 			uintptr_t *result);
 static int	acpi_write_ivar(device_t dev, device_t child, int index,
 			uintptr_t value);
 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
 static void	acpi_reserve_resources(device_t dev);
 static int	acpi_sysres_alloc(device_t dev);
 static int	acpi_set_resource(device_t dev, device_t child, int type,
 			int rid, rman_res_t start, rman_res_t count);
 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
 			int type, int *rid, rman_res_t start, rman_res_t end,
 			rman_res_t count, u_int flags);
 static int	acpi_adjust_resource(device_t bus, device_t child, int type,
 			struct resource *r, rman_res_t start, rman_res_t end);
 static int	acpi_release_resource(device_t bus, device_t child, int type,
 			int rid, struct resource *r);
 static void	acpi_delete_resource(device_t bus, device_t child, int type,
 		    int rid);
 static uint32_t	acpi_isa_get_logicalid(device_t dev);
 static int	acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
 static char	*acpi_device_id_probe(device_t bus, device_t dev, char **ids);
 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
 		    ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
 		    ACPI_BUFFER *ret);
 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
 		    void *context, void **retval);
 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
 		    int max_depth, acpi_scan_cb_t user_fn, void *arg);
 static int	acpi_set_powerstate(device_t child, int state);
 static int	acpi_isa_pnp_probe(device_t bus, device_t child,
 		    struct isa_pnp_id *ids);
 static void	acpi_probe_children(device_t bus);
 static void	acpi_probe_order(ACPI_HANDLE handle, int *order);
 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
 		    void *context, void **status);
 static void	acpi_sleep_enable(void *arg);
 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
 static void	acpi_shutdown_final(void *arg, int howto);
 static void	acpi_enable_fixed_events(struct acpi_softc *sc);
 static BOOLEAN	acpi_has_hid(ACPI_HANDLE handle);
 static void	acpi_resync_clock(struct acpi_softc *sc);
 static int	acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
 static int	acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
 static int	acpi_wake_prep_walk(int sstate);
 static int	acpi_wake_sysctl_walk(device_t dev);
 static int	acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
 static void	acpi_system_eventhandler_sleep(void *arg, int state);
 static void	acpi_system_eventhandler_wakeup(void *arg, int state);
 static int	acpi_sname2sstate(const char *sname);
 static const char *acpi_sstate2sname(int sstate);
 static int	acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
 static int	acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
 static int	acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
 static int	acpi_pm_func(u_long cmd, void *arg, ...);
 static int	acpi_child_location_str_method(device_t acdev, device_t child,
 					       char *buf, size_t buflen);
 static int	acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
 					      char *buf, size_t buflen);
 #if defined(__i386__) || defined(__amd64__)
 static void	acpi_enable_pcie(void);
 #endif
 static void	acpi_hint_device_unit(device_t acdev, device_t child,
 		    const char *name, int *unitp);
 static void	acpi_reset_interfaces(device_t dev);
 
 static device_method_t acpi_methods[] = {
     /* Device interface */
     DEVMETHOD(device_probe,		acpi_probe),
     DEVMETHOD(device_attach,		acpi_attach),
     DEVMETHOD(device_shutdown,		acpi_shutdown),
     DEVMETHOD(device_detach,		bus_generic_detach),
     DEVMETHOD(device_suspend,		acpi_suspend),
     DEVMETHOD(device_resume,		acpi_resume),
 
     /* Bus interface */
     DEVMETHOD(bus_add_child,		acpi_add_child),
     DEVMETHOD(bus_print_child,		acpi_print_child),
     DEVMETHOD(bus_probe_nomatch,	acpi_probe_nomatch),
     DEVMETHOD(bus_driver_added,		acpi_driver_added),
     DEVMETHOD(bus_read_ivar,		acpi_read_ivar),
     DEVMETHOD(bus_write_ivar,		acpi_write_ivar),
     DEVMETHOD(bus_get_resource_list,	acpi_get_rlist),
     DEVMETHOD(bus_set_resource,		acpi_set_resource),
     DEVMETHOD(bus_get_resource,		bus_generic_rl_get_resource),
     DEVMETHOD(bus_alloc_resource,	acpi_alloc_resource),
     DEVMETHOD(bus_adjust_resource,	acpi_adjust_resource),
     DEVMETHOD(bus_release_resource,	acpi_release_resource),
     DEVMETHOD(bus_delete_resource,	acpi_delete_resource),
     DEVMETHOD(bus_child_pnpinfo_str,	acpi_child_pnpinfo_str_method),
     DEVMETHOD(bus_child_location_str,	acpi_child_location_str_method),
     DEVMETHOD(bus_activate_resource,	bus_generic_activate_resource),
     DEVMETHOD(bus_deactivate_resource,	bus_generic_deactivate_resource),
     DEVMETHOD(bus_setup_intr,		bus_generic_setup_intr),
     DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
     DEVMETHOD(bus_hint_device_unit,	acpi_hint_device_unit),
     DEVMETHOD(bus_get_cpus,		acpi_get_cpus),
     DEVMETHOD(bus_get_domain,		acpi_get_domain),
 
     /* ACPI bus */
     DEVMETHOD(acpi_id_probe,		acpi_device_id_probe),
     DEVMETHOD(acpi_evaluate_object,	acpi_device_eval_obj),
     DEVMETHOD(acpi_pwr_for_sleep,	acpi_device_pwr_for_sleep),
     DEVMETHOD(acpi_scan_children,	acpi_device_scan_children),
 
     /* ISA emulation */
     DEVMETHOD(isa_pnp_probe,		acpi_isa_pnp_probe),
 
     DEVMETHOD_END
 };
 
 static driver_t acpi_driver = {
     "acpi",
     acpi_methods,
     sizeof(struct acpi_softc),
 };
 
 static devclass_t acpi_devclass;
 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0);
 MODULE_VERSION(acpi, 1);
 
 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
 
 /* Local pools for managing system resources for ACPI child devices. */
 static struct rman acpi_rman_io, acpi_rman_mem;
 
 #define ACPI_MINIMUM_AWAKETIME	5
 
 /* Holds the description of the acpi0 device. */
 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
 
 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging");
 static char acpi_ca_version[12];
 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
 	      acpi_ca_version, 0, "Version of Intel ACPI-CA");
 
 /*
  * Allow overriding _OSI methods.
  */
 static char acpi_install_interface[256];
 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
     sizeof(acpi_install_interface));
 static char acpi_remove_interface[256];
 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
     sizeof(acpi_remove_interface));
 
 /* Allow users to dump Debug objects without ACPI debugger. */
 static int acpi_debug_objects;
 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
     CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I",
     "Enable Debug objects");
 
 /* Allow the interpreter to ignore common mistakes in BIOS. */
 static int acpi_interpreter_slack = 1;
 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
     &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
 
 /* Ignore register widths set by FADT and use default widths instead. */
 static int acpi_ignore_reg_width = 1;
 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
     &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
 
 /* Allow users to override quirks. */
 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
 
 int acpi_susp_bounce;
 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
 
 /*
  * ACPI can only be loaded as a module by the loader; activating it after
  * system bootstrap time is not useful, and can be fatal to the system.
  * It also cannot be unloaded, since the entire system bus hierarchy hangs
  * off it.
  */
 static int
 acpi_modevent(struct module *mod, int event, void *junk)
 {
     switch (event) {
     case MOD_LOAD:
 	if (!cold) {
 	    printf("The ACPI driver cannot be loaded after boot.\n");
 	    return (EPERM);
 	}
 	break;
     case MOD_UNLOAD:
 	if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
 	    return (EBUSY);
 	break;
     default:
 	break;
     }
     return (0);
 }
 
 /*
  * Perform early initialization.
  */
 ACPI_STATUS
 acpi_Startup(void)
 {
     static int started = 0;
     ACPI_STATUS status;
     int val;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     /* Only run the startup code once.  The MADT driver also calls this. */
     if (started)
 	return_VALUE (AE_OK);
     started = 1;
 
     /*
      * Initialize the ACPICA subsystem.
      */
     if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
 	printf("ACPI: Could not initialize Subsystem: %s\n",
 	    AcpiFormatException(status));
 	return_VALUE (status);
     }
 
     /*
      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
      * if more tables exist.
      */
     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
 	printf("ACPI: Table initialisation failed: %s\n",
 	    AcpiFormatException(status));
 	return_VALUE (status);
     }
 
     /* Set up any quirks we have for this system. */
     if (acpi_quirks == ACPI_Q_OK)
 	acpi_table_quirks(&acpi_quirks);
 
     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
 	acpi_quirks &= ~ACPI_Q_BROKEN;
     if (acpi_quirks & ACPI_Q_BROKEN) {
 	printf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
 	status = AE_SUPPORT;
     }
 
     return_VALUE (status);
 }
 
 /*
  * Detect ACPI and perform early initialisation.
  */
 int
 acpi_identify(void)
 {
     ACPI_TABLE_RSDP	*rsdp;
     ACPI_TABLE_HEADER	*rsdt;
     ACPI_PHYSICAL_ADDRESS paddr;
     struct sbuf		sb;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (!cold)
 	return (ENXIO);
 
     /* Check that we haven't been disabled with a hint. */
     if (resource_disabled("acpi", 0))
 	return (ENXIO);
 
     /* Check for other PM systems. */
     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
 	power_pm_get_type() != POWER_PM_TYPE_ACPI) {
 	printf("ACPI identify failed, other PM system enabled.\n");
 	return (ENXIO);
     }
 
     /* Initialize root tables. */
     if (ACPI_FAILURE(acpi_Startup())) {
 	printf("ACPI: Try disabling either ACPI or apic support.\n");
 	return (ENXIO);
     }
 
     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
 	(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
 	return (ENXIO);
     if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
     else
 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
 
     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
 	return (ENXIO);
     sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
     sbuf_trim(&sb);
     sbuf_putc(&sb, ' ');
     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
     sbuf_trim(&sb);
     sbuf_finish(&sb);
     sbuf_delete(&sb);
     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
 
     snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
 
     return (0);
 }
 
 /*
  * Fetch some descriptive data from ACPI to put in our attach message.
  */
 static int
 acpi_probe(device_t dev)
 {
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     device_set_desc(dev, acpi_desc);
 
     return_VALUE (BUS_PROBE_NOWILDCARD);
 }
 
 static int
 acpi_attach(device_t dev)
 {
     struct acpi_softc	*sc;
     ACPI_STATUS		status;
     int			error, state;
     UINT32		flags;
     UINT8		TypeA, TypeB;
     char		*env;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     sc = device_get_softc(dev);
     sc->acpi_dev = dev;
     callout_init(&sc->susp_force_to, 1);
 
     error = ENXIO;
 
     /* Initialize resource manager. */
     acpi_rman_io.rm_type = RMAN_ARRAY;
     acpi_rman_io.rm_start = 0;
     acpi_rman_io.rm_end = 0xffff;
     acpi_rman_io.rm_descr = "ACPI I/O ports";
     if (rman_init(&acpi_rman_io) != 0)
 	panic("acpi rman_init IO ports failed");
     acpi_rman_mem.rm_type = RMAN_ARRAY;
     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
     if (rman_init(&acpi_rman_mem) != 0)
 	panic("acpi rman_init memory failed");
 
     /* Initialise the ACPI mutex */
     mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
 
     /*
      * Set the globals from our tunables.  This is needed because ACPI-CA
      * uses UINT8 for some values and we have no tunable_byte.
      */
     AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
     AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
     AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
 
 #ifndef ACPI_DEBUG
     /*
      * Disable all debugging layers and levels.
      */
     AcpiDbgLayer = 0;
     AcpiDbgLevel = 0;
 #endif
 
     /* Override OS interfaces if the user requested. */
     acpi_reset_interfaces(dev);
 
     /* Load ACPI name space. */
     status = AcpiLoadTables();
     if (ACPI_FAILURE(status)) {
 	device_printf(dev, "Could not load Namespace: %s\n",
 		      AcpiFormatException(status));
 	goto out;
     }
 
 #if defined(__i386__) || defined(__amd64__)
     /* Handle MCFG table if present. */
     acpi_enable_pcie();
 #endif
 
     /*
      * Note that some systems (specifically, those with namespace evaluation
      * issues that require the avoidance of parts of the namespace) must
      * avoid running _INI and _STA on everything, as well as dodging the final
      * object init pass.
      *
      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
      *
      * XXX We should arrange for the object init pass after we have attached
      *     all our child devices, but on many systems it works here.
      */
     flags = 0;
     if (testenv("debug.acpi.avoid"))
 	flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
 
     /* Bring the hardware and basic handlers online. */
     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
 	device_printf(dev, "Could not enable ACPI: %s\n",
 		      AcpiFormatException(status));
 	goto out;
     }
 
     /*
      * Call the ECDT probe function to provide EC functionality before
      * the namespace has been evaluated.
      *
      * XXX This happens before the sysresource devices have been probed and
      * attached so its resources come from nexus0.  In practice, this isn't
      * a problem but should be addressed eventually.
      */
     acpi_ec_ecdt_probe(dev);
 
     /* Bring device objects and regions online. */
     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
 	device_printf(dev, "Could not initialize ACPI objects: %s\n",
 		      AcpiFormatException(status));
 	goto out;
     }
 
     /*
      * Setup our sysctl tree.
      *
      * XXX: This doesn't check to make sure that none of these fail.
      */
     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
 			       SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
 			       device_get_name(dev), CTLFLAG_RD, 0, "");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD,
 	0, 0, acpi_supported_sleep_state_sysctl, "A",
 	"List supported ACPI sleep states.");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW,
 	&sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
 	"Power button ACPI sleep state.");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW,
 	&sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
 	"Sleep button ACPI sleep state.");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW,
 	&sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
 	"Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW,
 	&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW,
 	&sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
 	"sleep delay in seconds");
     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
 	&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
 	OID_AUTO, "handle_reboot", CTLFLAG_RW,
 	&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
 
     /*
      * Default to 1 second before sleeping to give some machines time to
      * stabilize.
      */
     sc->acpi_sleep_delay = 1;
     if (bootverbose)
 	sc->acpi_verbose = 1;
     if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
 	if (strcmp(env, "0") != 0)
 	    sc->acpi_verbose = 1;
 	freeenv(env);
     }
 
     /* Only enable reboot by default if the FADT says it is available. */
     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
 	sc->acpi_handle_reboot = 1;
 
 #if !ACPI_REDUCED_HARDWARE
     /* Only enable S4BIOS by default if the FACS says it is available. */
     if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
 	sc->acpi_s4bios = 1;
 #endif
 
     /* Probe all supported sleep states. */
     acpi_sleep_states[ACPI_STATE_S0] = TRUE;
     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
 	if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
 	    __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
 	    ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
 	    acpi_sleep_states[state] = TRUE;
 
     /*
      * Dispatch the default sleep state to devices.  The lid switch is set
      * to UNKNOWN by default to avoid surprising users.
      */
     sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
 	ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
     sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
     sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
 	ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
     sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
 	ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
 
     /* Pick the first valid sleep state for the sleep button default. */
     sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
 	if (acpi_sleep_states[state]) {
 	    sc->acpi_sleep_button_sx = state;
 	    break;
 	}
 
     acpi_enable_fixed_events(sc);
 
     /*
      * Scan the namespace and attach/initialise children.
      */
 
     /* Register our shutdown handler. */
     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
 	SHUTDOWN_PRI_LAST);
 
     /*
      * Register our acpi event handlers.
      * XXX should be configurable eg. via userland policy manager.
      */
     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
 	sc, ACPI_EVENT_PRI_LAST);
     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
 	sc, ACPI_EVENT_PRI_LAST);
 
     /* Flag our initial states. */
     sc->acpi_enabled = TRUE;
     sc->acpi_sstate = ACPI_STATE_S0;
     sc->acpi_sleep_disabled = TRUE;
 
     /* Create the control device */
     sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
 			      "acpi");
     sc->acpi_dev_t->si_drv1 = sc;
 
     if ((error = acpi_machdep_init(dev)))
 	goto out;
 
     /* Register ACPI again to pass the correct argument of pm_func. */
     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
 
     if (!acpi_disabled("bus")) {
 	EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
 	acpi_probe_children(dev);
     }
 
     /* Update all GPEs and enable runtime GPEs. */
     status = AcpiUpdateAllGpes();
     if (ACPI_FAILURE(status))
 	device_printf(dev, "Could not update all GPEs: %s\n",
 	    AcpiFormatException(status));
 
     /* Allow sleep request after a while. */
     callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
     callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
 	acpi_sleep_enable, sc);
 
     error = 0;
 
  out:
     return_VALUE (error);
 }
 
 static void
 acpi_set_power_children(device_t dev, int state)
 {
 	device_t child;
 	device_t *devlist;
 	int dstate, i, numdevs;
 
 	if (device_get_children(dev, &devlist, &numdevs) != 0)
 		return;
 
 	/*
 	 * Retrieve and set D-state for the sleep state if _SxD is present.
 	 * Skip children who aren't attached since they are handled separately.
 	 */
 	for (i = 0; i < numdevs; i++) {
 		child = devlist[i];
 		dstate = state;
 		if (device_is_attached(child) &&
 		    acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
 			acpi_set_powerstate(child, dstate);
 	}
 	free(devlist, M_TEMP);
 }
 
 static int
 acpi_suspend(device_t dev)
 {
     int error;
 
     GIANT_REQUIRED;
 
     error = bus_generic_suspend(dev);
     if (error == 0)
 	acpi_set_power_children(dev, ACPI_STATE_D3);
 
     return (error);
 }
 
 static int
 acpi_resume(device_t dev)
 {
 
     GIANT_REQUIRED;
 
     acpi_set_power_children(dev, ACPI_STATE_D0);
 
     return (bus_generic_resume(dev));
 }
 
 static int
 acpi_shutdown(device_t dev)
 {
 
     GIANT_REQUIRED;
 
     /* Allow children to shutdown first. */
     bus_generic_shutdown(dev);
 
     /*
      * Enable any GPEs that are able to power-on the system (i.e., RTC).
      * Also, disable any that are not valid for this state (most).
      */
     acpi_wake_prep_walk(ACPI_STATE_S5);
 
     return (0);
 }
 
 /*
  * Handle a new device being added
  */
 static device_t
 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
 {
     struct acpi_device	*ad;
     device_t		child;
 
     if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
 	return (NULL);
 
     resource_list_init(&ad->ad_rl);
 
     child = device_add_child_ordered(bus, order, name, unit);
     if (child != NULL)
 	device_set_ivars(child, ad);
     else
 	free(ad, M_ACPIDEV);
     return (child);
 }
 
 static int
 acpi_print_child(device_t bus, device_t child)
 {
     struct acpi_device	 *adev = device_get_ivars(child);
     struct resource_list *rl = &adev->ad_rl;
     int retval = 0;
 
     retval += bus_print_child_header(bus, child);
     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#jx");
     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%jd");
     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%jd");
     if (device_get_flags(child))
 	retval += printf(" flags %#x", device_get_flags(child));
     retval += bus_print_child_domain(bus, child);
     retval += bus_print_child_footer(bus, child);
 
     return (retval);
 }
 
 /*
  * If this device is an ACPI child but no one claimed it, attempt
  * to power it off.  We'll power it back up when a driver is added.
  *
  * XXX Disabled for now since many necessary devices (like fdc and
  * ATA) don't claim the devices we created for them but still expect
  * them to be powered up.
  */
 static void
 acpi_probe_nomatch(device_t bus, device_t child)
 {
 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
     acpi_set_powerstate(child, ACPI_STATE_D3);
 #endif
 }
 
 /*
  * If a new driver has a chance to probe a child, first power it up.
  *
  * XXX Disabled for now (see acpi_probe_nomatch for details).
  */
 static void
 acpi_driver_added(device_t dev, driver_t *driver)
 {
     device_t child, *devlist;
     int i, numdevs;
 
     DEVICE_IDENTIFY(driver, dev);
     if (device_get_children(dev, &devlist, &numdevs))
 	    return;
     for (i = 0; i < numdevs; i++) {
 	child = devlist[i];
 	if (device_get_state(child) == DS_NOTPRESENT) {
 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
 	    acpi_set_powerstate(child, ACPI_STATE_D0);
 	    if (device_probe_and_attach(child) != 0)
 		acpi_set_powerstate(child, ACPI_STATE_D3);
 #else
 	    device_probe_and_attach(child);
 #endif
 	}
     }
     free(devlist, M_TEMP);
 }
 
 /* Location hint for devctl(8) */
 static int
 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
     size_t buflen)
 {
     struct acpi_device *dinfo = device_get_ivars(child);
     char buf2[32];
     int pxm;
 
     if (dinfo->ad_handle) {
         snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
         if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
                 snprintf(buf2, 32, " _PXM=%d", pxm);
                 strlcat(buf, buf2, buflen);
         }
     } else {
         snprintf(buf, buflen, "unknown");
     }
     return (0);
 }
 
 /* PnP information for devctl(8) */
 static int
 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
     size_t buflen)
 {
     struct acpi_device *dinfo = device_get_ivars(child);
     ACPI_DEVICE_INFO *adinfo;
 
     if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) {
 	snprintf(buf, buflen, "unknown");
 	return (0);
     }
 
     snprintf(buf, buflen, "_HID=%s _UID=%lu",
 	(adinfo->Valid & ACPI_VALID_HID) ?
 	adinfo->HardwareId.String : "none",
 	(adinfo->Valid & ACPI_VALID_UID) ?
 	strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL);
     AcpiOsFree(adinfo);
 
     return (0);
 }
 
 /*
  * Handle per-device ivars
  */
 static int
 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
 {
     struct acpi_device	*ad;
 
     if ((ad = device_get_ivars(child)) == NULL) {
 	device_printf(child, "device has no ivars\n");
 	return (ENOENT);
     }
 
     /* ACPI and ISA compatibility ivars */
     switch(index) {
     case ACPI_IVAR_HANDLE:
 	*(ACPI_HANDLE *)result = ad->ad_handle;
 	break;
     case ACPI_IVAR_PRIVATE:
 	*(void **)result = ad->ad_private;
 	break;
     case ACPI_IVAR_FLAGS:
 	*(int *)result = ad->ad_flags;
 	break;
     case ISA_IVAR_VENDORID:
     case ISA_IVAR_SERIAL:
     case ISA_IVAR_COMPATID:
 	*(int *)result = -1;
 	break;
     case ISA_IVAR_LOGICALID:
 	*(int *)result = acpi_isa_get_logicalid(child);
 	break;
     case PCI_IVAR_CLASS:
 	*(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
 	break;
     case PCI_IVAR_SUBCLASS:
 	*(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
 	break;
     case PCI_IVAR_PROGIF:
 	*(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
 	break;
     default:
 	return (ENOENT);
     }
 
     return (0);
 }
 
 static int
 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
 {
     struct acpi_device	*ad;
 
     if ((ad = device_get_ivars(child)) == NULL) {
 	device_printf(child, "device has no ivars\n");
 	return (ENOENT);
     }
 
     switch(index) {
     case ACPI_IVAR_HANDLE:
 	ad->ad_handle = (ACPI_HANDLE)value;
 	break;
     case ACPI_IVAR_PRIVATE:
 	ad->ad_private = (void *)value;
 	break;
     case ACPI_IVAR_FLAGS:
 	ad->ad_flags = (int)value;
 	break;
     default:
 	panic("bad ivar write request (%d)", index);
 	return (ENOENT);
     }
 
     return (0);
 }
 
 /*
  * Handle child resource allocation/removal
  */
 static struct resource_list *
 acpi_get_rlist(device_t dev, device_t child)
 {
     struct acpi_device		*ad;
 
     ad = device_get_ivars(child);
     return (&ad->ad_rl);
 }
 
 static int
 acpi_match_resource_hint(device_t dev, int type, long value)
 {
     struct acpi_device *ad = device_get_ivars(dev);
     struct resource_list *rl = &ad->ad_rl;
     struct resource_list_entry *rle;
 
     STAILQ_FOREACH(rle, rl, link) {
 	if (rle->type != type)
 	    continue;
 	if (rle->start <= value && rle->end >= value)
 	    return (1);
     }
     return (0);
 }
 
 /*
  * Wire device unit numbers based on resource matches in hints.
  */
 static void
 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
     int *unitp)
 {
     const char *s;
     long value;
     int line, matches, unit;
 
     /*
      * Iterate over all the hints for the devices with the specified
      * name to see if one's resources are a subset of this device.
      */
     line = 0;
     while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
 	/* Must have an "at" for acpi or isa. */
 	resource_string_value(name, unit, "at", &s);
 	if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
 	    strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0))
 	    continue;
 
 	/*
 	 * Check for matching resources.  We must have at least one match.
 	 * Since I/O and memory resources cannot be shared, if we get a
 	 * match on either of those, ignore any mismatches in IRQs or DRQs.
 	 *
 	 * XXX: We may want to revisit this to be more lenient and wire
 	 * as long as it gets one match.
 	 */
 	matches = 0;
 	if (resource_long_value(name, unit, "port", &value) == 0) {
 	    /*
 	     * Floppy drive controllers are notorious for having a
 	     * wide variety of resources not all of which include the
 	     * first port that is specified by the hint (typically
 	     * 0x3f0) (see the comment above fdc_isa_alloc_resources()
 	     * in fdc_isa.c).  However, they do all seem to include
 	     * port + 2 (e.g. 0x3f2) so for a floppy device, look for
 	     * 'value + 2' in the port resources instead of the hint
 	     * value.
 	     */
 	    if (strcmp(name, "fdc") == 0)
 		value += 2;
 	    if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
 		matches++;
 	    else
 		continue;
 	}
 	if (resource_long_value(name, unit, "maddr", &value) == 0) {
 	    if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
 		matches++;
 	    else
 		continue;
 	}
 	if (matches > 0)
 	    goto matched;
 	if (resource_long_value(name, unit, "irq", &value) == 0) {
 	    if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
 		matches++;
 	    else
 		continue;
 	}
 	if (resource_long_value(name, unit, "drq", &value) == 0) {
 	    if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
 		matches++;
 	    else
 		continue;
 	}
 
     matched:
 	if (matches > 0) {
 	    /* We have a winner! */
 	    *unitp = unit;
 	    break;
 	}
     }
 }
 
 /*
  * Fetch the NUMA domain for a device by mapping the value returned by
  * _PXM to a NUMA domain.  If the device does not have a _PXM method,
  * -2 is returned.  If any other error occurs, -1 is returned.
  */
 static int
 acpi_parse_pxm(device_t dev)
 {
 #ifdef NUMA
 	ACPI_HANDLE handle;
 	ACPI_STATUS status;
 	int pxm;
 
 	handle = acpi_get_handle(dev);
 	if (handle == NULL)
 		return (-2);
 	status = acpi_GetInteger(handle, "_PXM", &pxm);
 	if (ACPI_SUCCESS(status))
 		return (acpi_map_pxm_to_vm_domainid(pxm));
 	if (status == AE_NOT_FOUND)
 		return (-2);
 #endif
 	return (-1);
 }
 
 int
 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
     cpuset_t *cpuset)
 {
 	int d, error;
 
 	d = acpi_parse_pxm(child);
 	if (d < 0)
 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
 
 	switch (op) {
 	case LOCAL_CPUS:
 		if (setsize != sizeof(cpuset_t))
 			return (EINVAL);
 		*cpuset = cpuset_domain[d];
 		return (0);
 	case INTR_CPUS:
 		error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
 		if (error != 0)
 			return (error);
 		if (setsize != sizeof(cpuset_t))
 			return (EINVAL);
 		CPU_AND(cpuset, &cpuset_domain[d]);
 		return (0);
 	default:
 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
 	}
 }
 
 /*
  * Fetch the NUMA domain for the given device 'dev'.
  *
  * If a device has a _PXM method, map that to a NUMA domain.
  * Otherwise, pass the request up to the parent.
  * If there's no matching domain or the domain cannot be
  * determined, return ENOENT.
  */
 int
 acpi_get_domain(device_t dev, device_t child, int *domain)
 {
 	int d;
 
 	d = acpi_parse_pxm(child);
 	if (d >= 0) {
 		*domain = d;
 		return (0);
 	}
 	if (d == -1)
 		return (ENOENT);
 
 	/* No _PXM node; go up a level */
 	return (bus_generic_get_domain(dev, child, domain));
 }
 
 /*
  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
  * duplicates, we merge any in the sysresource attach routine.
  */
 static int
 acpi_sysres_alloc(device_t dev)
 {
     struct resource *res;
     struct resource_list *rl;
     struct resource_list_entry *rle;
     struct rman *rm;
     device_t *children;
     int child_count, i;
 
     /*
      * Probe/attach any sysresource devices.  This would be unnecessary if we
      * had multi-pass probe/attach.
      */
     if (device_get_children(dev, &children, &child_count) != 0)
 	return (ENXIO);
     for (i = 0; i < child_count; i++) {
 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL)
 	    device_probe_and_attach(children[i]);
     }
     free(children, M_TEMP);
 
     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
     STAILQ_FOREACH(rle, rl, link) {
 	if (rle->res != NULL) {
 	    device_printf(dev, "duplicate resource for %jx\n", rle->start);
 	    continue;
 	}
 
 	/* Only memory and IO resources are valid here. */
 	switch (rle->type) {
 	case SYS_RES_IOPORT:
 	    rm = &acpi_rman_io;
 	    break;
 	case SYS_RES_MEMORY:
 	    rm = &acpi_rman_mem;
 	    break;
 	default:
 	    continue;
 	}
 
 	/* Pre-allocate resource and add to our rman pool. */
 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
 	    &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0);
 	if (res != NULL) {
 	    rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
 	    rle->res = res;
 	} else if (bootverbose)
 	    device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
 		rle->start, rle->count, rle->type);
     }
     return (0);
 }
 
 /*
  * Reserve declared resources for devices found during attach once system
  * resources have been allocated.
  */
 static void
 acpi_reserve_resources(device_t dev)
 {
     struct resource_list_entry *rle;
     struct resource_list *rl;
     struct acpi_device *ad;
     struct acpi_softc *sc;
     device_t *children;
     int child_count, i;
 
     sc = device_get_softc(dev);
     if (device_get_children(dev, &children, &child_count) != 0)
 	return;
     for (i = 0; i < child_count; i++) {
 	ad = device_get_ivars(children[i]);
 	rl = &ad->ad_rl;
 
 	/* Don't reserve system resources. */
 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL)
 	    continue;
 
 	STAILQ_FOREACH(rle, rl, link) {
 	    /*
 	     * Don't reserve IRQ resources.  There are many sticky things
 	     * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
 	     * when using legacy routing).
 	     */
 	    if (rle->type == SYS_RES_IRQ)
 		continue;
 
 	    /*
 	     * Don't reserve the resource if it is already allocated.
 	     * The acpi_ec(4) driver can allocate its resources early
 	     * if ECDT is present.
 	     */
 	    if (rle->res != NULL)
 		continue;
 
 	    /*
 	     * Try to reserve the resource from our parent.  If this
 	     * fails because the resource is a system resource, just
 	     * let it be.  The resource range is already reserved so
 	     * that other devices will not use it.  If the driver
 	     * needs to allocate the resource, then
 	     * acpi_alloc_resource() will sub-alloc from the system
 	     * resource.
 	     */
 	    resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
 		rle->start, rle->end, rle->count, 0);
 	}
     }
     free(children, M_TEMP);
     sc->acpi_resources_reserved = 1;
 }
 
 static int
 acpi_set_resource(device_t dev, device_t child, int type, int rid,
     rman_res_t start, rman_res_t count)
 {
     struct acpi_softc *sc = device_get_softc(dev);
     struct acpi_device *ad = device_get_ivars(child);
     struct resource_list *rl = &ad->ad_rl;
 #if defined(__i386__) || defined(__amd64__)
     ACPI_DEVICE_INFO *devinfo;
 #endif
     rman_res_t end;
     
     /* Ignore IRQ resources for PCI link devices. */
     if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL)
 	return (0);
 
     /*
      * Ignore most resources for PCI root bridges.  Some BIOSes
      * incorrectly enumerate the memory ranges they decode as plain
      * memory resources instead of as ResourceProducer ranges.  Other
      * BIOSes incorrectly list system resource entries for I/O ranges
      * under the PCI bridge.  Do allow the one known-correct case on
      * x86 of a PCI bridge claiming the I/O ports used for PCI config
      * access.
      */
 #if defined(__i386__) || defined(__amd64__)
     if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
 	if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) {
 	    if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) {
 		if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) {
 		    AcpiOsFree(devinfo);
 		    return (0);
 		}
 	    }
 	    AcpiOsFree(devinfo);
 	}
     }
 #endif
 
     /* If the resource is already allocated, fail. */
     if (resource_list_busy(rl, type, rid))
 	return (EBUSY);
 
     /* If the resource is already reserved, release it. */
     if (resource_list_reserved(rl, type, rid))
 	resource_list_unreserve(rl, dev, child, type, rid);
 
     /* Add the resource. */
     end = (start + count - 1);
     resource_list_add(rl, type, rid, start, end, count);
 
     /* Don't reserve resources until the system resources are allocated. */
     if (!sc->acpi_resources_reserved)
 	return (0);
 
     /* Don't reserve system resources. */
     if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL)
 	return (0);
 
     /*
      * Don't reserve IRQ resources.  There are many sticky things to
      * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when
      * using legacy routing).
      */
     if (type == SYS_RES_IRQ)
 	return (0);
 
     /*
      * Reserve the resource.
      *
      * XXX: Ignores failure for now.  Failure here is probably a
      * BIOS/firmware bug?
      */
     resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0);
     return (0);
 }
 
 static struct resource *
 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 #ifndef INTRNG
     ACPI_RESOURCE ares;
 #endif
     struct acpi_device *ad;
     struct resource_list_entry *rle;
     struct resource_list *rl;
     struct resource *res;
     int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
 
     /*
      * First attempt at allocating the resource.  For direct children,
      * use resource_list_alloc() to handle reserved resources.  For
      * other devices, pass the request up to our parent.
      */
     if (bus == device_get_parent(child)) {
 	ad = device_get_ivars(child);
 	rl = &ad->ad_rl;
 
 	/*
 	 * Simulate the behavior of the ISA bus for direct children
 	 * devices.  That is, if a non-default range is specified for
 	 * a resource that doesn't exist, use bus_set_resource() to
 	 * add the resource before allocating it.  Note that these
 	 * resources will not be reserved.
 	 */
 	if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
 		resource_list_add(rl, type, *rid, start, end, count);
 	res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 	    flags);
 #ifndef INTRNG
 	if (res != NULL && type == SYS_RES_IRQ) {
 	    /*
 	     * Since bus_config_intr() takes immediate effect, we cannot
 	     * configure the interrupt associated with a device when we
 	     * parse the resources but have to defer it until a driver
 	     * actually allocates the interrupt via bus_alloc_resource().
 	     *
 	     * XXX: Should we handle the lookup failing?
 	     */
 	    if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
 		acpi_config_intr(child, &ares);
 	}
 #endif
 
 	/*
 	 * If this is an allocation of the "default" range for a given
 	 * RID, fetch the exact bounds for this resource from the
 	 * resource list entry to try to allocate the range from the
 	 * system resource regions.
 	 */
 	if (res == NULL && isdefault) {
 	    rle = resource_list_find(rl, type, *rid);
 	    if (rle != NULL) {
 		start = rle->start;
 		end = rle->end;
 		count = rle->count;
 	    }
 	}
     } else
 	res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
 	    start, end, count, flags);
 
     /*
      * If the first attempt failed and this is an allocation of a
      * specific range, try to satisfy the request via a suballocation
      * from our system resource regions.
      */
     if (res == NULL && start + count - 1 == end)
 	res = acpi_alloc_sysres(child, type, rid, start, end, count, flags);
     return (res);
 }
 
 /*
  * Attempt to allocate a specific resource range from the system
  * resource ranges.  Note that we only handle memory and I/O port
  * system resources.
  */
 struct resource *
 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start,
     rman_res_t end, rman_res_t count, u_int flags)
 {
     struct rman *rm;
     struct resource *res;
 
     switch (type) {
     case SYS_RES_IOPORT:
 	rm = &acpi_rman_io;
 	break;
     case SYS_RES_MEMORY:
 	rm = &acpi_rman_mem;
 	break;
     default:
 	return (NULL);
     }
 
     KASSERT(start + count - 1 == end, ("wildcard resource range"));
     res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
 	child);
     if (res == NULL)
 	return (NULL);
 
     rman_set_rid(res, *rid);
 
     /* If requested, activate the resource using the parent's method. */
     if (flags & RF_ACTIVE)
 	if (bus_activate_resource(child, type, *rid, res) != 0) {
 	    rman_release_resource(res);
 	    return (NULL);
 	}
 
     return (res);
 }
 
 static int
 acpi_is_resource_managed(int type, struct resource *r)
 {
 
     /* We only handle memory and IO resources through rman. */
     switch (type) {
     case SYS_RES_IOPORT:
 	return (rman_is_region_manager(r, &acpi_rman_io));
     case SYS_RES_MEMORY:
 	return (rman_is_region_manager(r, &acpi_rman_mem));
     }
     return (0);
 }
 
 static int
 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r,
     rman_res_t start, rman_res_t end)
 {
 
     if (acpi_is_resource_managed(type, r))
 	return (rman_adjust_resource(r, start, end));
     return (bus_generic_adjust_resource(bus, child, type, r, start, end));
 }
 
 static int
 acpi_release_resource(device_t bus, device_t child, int type, int rid,
     struct resource *r)
 {
     int ret;
 
     /*
      * If this resource belongs to one of our internal managers,
      * deactivate it and release it to the local pool.
      */
     if (acpi_is_resource_managed(type, r)) {
 	if (rman_get_flags(r) & RF_ACTIVE) {
 	    ret = bus_deactivate_resource(child, type, rid, r);
 	    if (ret != 0)
 		return (ret);
 	}
 	return (rman_release_resource(r));
     }
 
     return (bus_generic_rl_release_resource(bus, child, type, rid, r));
 }
 
 static void
 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
 {
     struct resource_list *rl;
 
     rl = acpi_get_rlist(bus, child);
     if (resource_list_busy(rl, type, rid)) {
 	device_printf(bus, "delete_resource: Resource still owned by child"
 	    " (type=%d, rid=%d)\n", type, rid);
 	return;
     }
     resource_list_unreserve(rl, bus, child, type, rid);
     resource_list_delete(rl, type, rid);
 }
 
 /* Allocate an IO port or memory resource, given its GAS. */
 int
 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
     struct resource **res, u_int flags)
 {
     int error, res_type;
 
     error = ENOMEM;
     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
 	return (EINVAL);
 
     /* We only support memory and IO spaces. */
     switch (gas->SpaceId) {
     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
 	res_type = SYS_RES_MEMORY;
 	break;
     case ACPI_ADR_SPACE_SYSTEM_IO:
 	res_type = SYS_RES_IOPORT;
 	break;
     default:
 	return (EOPNOTSUPP);
     }
 
     /*
      * If the register width is less than 8, assume the BIOS author means
      * it is a bit field and just allocate a byte.
      */
     if (gas->BitWidth && gas->BitWidth < 8)
 	gas->BitWidth = 8;
 
     /* Validate the address after we're sure we support the space. */
     if (gas->Address == 0 || gas->BitWidth == 0)
 	return (EINVAL);
 
     bus_set_resource(dev, res_type, *rid, gas->Address,
 	gas->BitWidth / 8);
     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
     if (*res != NULL) {
 	*type = res_type;
 	error = 0;
     } else
 	bus_delete_resource(dev, res_type, *rid);
 
     return (error);
 }
 
 /* Probe _HID and _CID for compatible ISA PNP ids. */
 static uint32_t
 acpi_isa_get_logicalid(device_t dev)
 {
     ACPI_DEVICE_INFO	*devinfo;
     ACPI_HANDLE		h;
     uint32_t		pnpid;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     /* Fetch and validate the HID. */
     if ((h = acpi_get_handle(dev)) == NULL ||
 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
 	return_VALUE (0);
 
     pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
 	devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
 	PNP_EISAID(devinfo->HardwareId.String) : 0;
     AcpiOsFree(devinfo);
 
     return_VALUE (pnpid);
 }
 
 static int
 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
 {
     ACPI_DEVICE_INFO	*devinfo;
     ACPI_PNP_DEVICE_ID	*ids;
     ACPI_HANDLE		h;
     uint32_t		*pnpid;
     int			i, valid;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     pnpid = cids;
 
     /* Fetch and validate the CID */
     if ((h = acpi_get_handle(dev)) == NULL ||
 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
 	return_VALUE (0);
 
     if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
 	AcpiOsFree(devinfo);
 	return_VALUE (0);
     }
 
     if (devinfo->CompatibleIdList.Count < count)
 	count = devinfo->CompatibleIdList.Count;
     ids = devinfo->CompatibleIdList.Ids;
     for (i = 0, valid = 0; i < count; i++)
 	if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
 	    strncmp(ids[i].String, "PNP", 3) == 0) {
 	    *pnpid++ = PNP_EISAID(ids[i].String);
 	    valid++;
 	}
     AcpiOsFree(devinfo);
 
     return_VALUE (valid);
 }
 
 static char *
 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 
 {
     ACPI_HANDLE h;
     ACPI_OBJECT_TYPE t;
     int i;
 
     h = acpi_get_handle(dev);
     if (ids == NULL || h == NULL)
 	return (NULL);
     t = acpi_get_type(dev);
     if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
 	return (NULL);
 
     /* Try to match one of the array of IDs with a HID or CID. */
     for (i = 0; ids[i] != NULL; i++) {
 	if (acpi_MatchHid(h, ids[i]))
 	    return (ids[i]);
     }
     return (NULL);
 }
 
 static ACPI_STATUS
 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
 {
     ACPI_HANDLE h;
 
     if (dev == NULL)
 	h = ACPI_ROOT_OBJECT;
     else if ((h = acpi_get_handle(dev)) == NULL)
 	return (AE_BAD_PARAMETER);
     return (AcpiEvaluateObject(h, pathname, parameters, ret));
 }
 
 int
 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
 {
     struct acpi_softc *sc;
     ACPI_HANDLE handle;
     ACPI_STATUS status;
     char sxd[8];
 
     handle = acpi_get_handle(dev);
 
     /*
      * XXX If we find these devices, don't try to power them down.
      * The serial and IRDA ports on my T23 hang the system when
      * set to D3 and it appears that such legacy devices may
      * need special handling in their drivers.
      */
     if (dstate == NULL || handle == NULL ||
 	acpi_MatchHid(handle, "PNP0500") ||
 	acpi_MatchHid(handle, "PNP0501") ||
 	acpi_MatchHid(handle, "PNP0502") ||
 	acpi_MatchHid(handle, "PNP0510") ||
 	acpi_MatchHid(handle, "PNP0511"))
 	return (ENXIO);
 
     /*
      * Override next state with the value from _SxD, if present.
      * Note illegal _S0D is evaluated because some systems expect this.
      */
     sc = device_get_softc(bus);
     snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
     status = acpi_GetInteger(handle, sxd, dstate);
     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
 	    device_printf(dev, "failed to get %s on %s: %s\n", sxd,
 		acpi_name(handle), AcpiFormatException(status));
 	    return (ENXIO);
     }
 
     return (0);
 }
 
 /* Callback arg for our implementation of walking the namespace. */
 struct acpi_device_scan_ctx {
     acpi_scan_cb_t	user_fn;
     void		*arg;
     ACPI_HANDLE		parent;
 };
 
 static ACPI_STATUS
 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
 {
     struct acpi_device_scan_ctx *ctx;
     device_t dev, old_dev;
     ACPI_STATUS status;
     ACPI_OBJECT_TYPE type;
 
     /*
      * Skip this device if we think we'll have trouble with it or it is
      * the parent where the scan began.
      */
     ctx = (struct acpi_device_scan_ctx *)arg;
     if (acpi_avoid(h) || h == ctx->parent)
 	return (AE_OK);
 
     /* If this is not a valid device type (e.g., a method), skip it. */
     if (ACPI_FAILURE(AcpiGetType(h, &type)))
 	return (AE_OK);
     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
 	type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
 	return (AE_OK);
 
     /*
      * Call the user function with the current device.  If it is unchanged
      * afterwards, return.  Otherwise, we update the handle to the new dev.
      */
     old_dev = acpi_get_device(h);
     dev = old_dev;
     status = ctx->user_fn(h, &dev, level, ctx->arg);
     if (ACPI_FAILURE(status) || old_dev == dev)
 	return (status);
 
     /* Remove the old child and its connection to the handle. */
     if (old_dev != NULL) {
 	device_delete_child(device_get_parent(old_dev), old_dev);
 	AcpiDetachData(h, acpi_fake_objhandler);
     }
 
     /* Recreate the handle association if the user created a device. */
     if (dev != NULL)
 	AcpiAttachData(h, acpi_fake_objhandler, dev);
 
     return (AE_OK);
 }
 
 static ACPI_STATUS
 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
     acpi_scan_cb_t user_fn, void *arg)
 {
     ACPI_HANDLE h;
     struct acpi_device_scan_ctx ctx;
 
     if (acpi_disabled("children"))
 	return (AE_OK);
 
     if (dev == NULL)
 	h = ACPI_ROOT_OBJECT;
     else if ((h = acpi_get_handle(dev)) == NULL)
 	return (AE_BAD_PARAMETER);
     ctx.user_fn = user_fn;
     ctx.arg = arg;
     ctx.parent = h;
     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
 	acpi_device_scan_cb, NULL, &ctx, NULL));
 }
 
 /*
  * Even though ACPI devices are not PCI, we use the PCI approach for setting
  * device power states since it's close enough to ACPI.
  */
 static int
 acpi_set_powerstate(device_t child, int state)
 {
     ACPI_HANDLE h;
     ACPI_STATUS status;
 
     h = acpi_get_handle(child);
     if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
 	return (EINVAL);
     if (h == NULL)
 	return (0);
 
     /* Ignore errors if the power methods aren't present. */
     status = acpi_pwr_switch_consumer(h, state);
     if (ACPI_SUCCESS(status)) {
 	if (bootverbose)
 	    device_printf(child, "set ACPI power state D%d on %s\n",
 		state, acpi_name(h));
     } else if (status != AE_NOT_FOUND)
 	device_printf(child,
 	    "failed to set ACPI power state D%d on %s: %s\n", state,
 	    acpi_name(h), AcpiFormatException(status));
 
     return (0);
 }
 
 static int
 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
 {
     int			result, cid_count, i;
     uint32_t		lid, cids[8];
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     /*
      * ISA-style drivers attached to ACPI may persist and
      * probe manually if we return ENOENT.  We never want
      * that to happen, so don't ever return it.
      */
     result = ENXIO;
 
     /* Scan the supplied IDs for a match */
     lid = acpi_isa_get_logicalid(child);
     cid_count = acpi_isa_get_compatid(child, cids, 8);
     while (ids && ids->ip_id) {
 	if (lid == ids->ip_id) {
 	    result = 0;
 	    goto out;
 	}
 	for (i = 0; i < cid_count; i++) {
 	    if (cids[i] == ids->ip_id) {
 		result = 0;
 		goto out;
 	    }
 	}
 	ids++;
     }
 
  out:
     if (result == 0 && ids->ip_desc)
 	device_set_desc(child, ids->ip_desc);
 
     return_VALUE (result);
 }
 
 #if defined(__i386__) || defined(__amd64__)
 /*
  * Look for a MCFG table.  If it is present, use the settings for
  * domain (segment) 0 to setup PCI config space access via the memory
  * map.
  */
 static void
 acpi_enable_pcie(void)
 {
 	ACPI_TABLE_HEADER *hdr;
 	ACPI_MCFG_ALLOCATION *alloc, *end;
 	ACPI_STATUS status;
 
 	status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
 	if (ACPI_FAILURE(status))
 		return;
 
 	end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
 	alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
 	while (alloc < end) {
 		if (alloc->PciSegment == 0) {
 			pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
 			    alloc->EndBusNumber);
 			return;
 		}
 		alloc++;
 	}
 }
 #elif defined(__aarch64__)
 static void
 acpi_enable_pcie(device_t child, int segment)
 {
 	ACPI_TABLE_HEADER *hdr;
 	ACPI_MCFG_ALLOCATION *alloc, *end;
 	ACPI_STATUS status;
 
 	status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
 	if (ACPI_FAILURE(status))
 		return;
 
 	end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
 	alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
 	while (alloc < end) {
 		if (alloc->PciSegment == segment) {
 			bus_set_resource(child, SYS_RES_MEMORY, 0,
 			    alloc->Address, 0x10000000);
 			return;
 		}
 		alloc++;
 	}
 }
 #endif
 
 /*
  * Scan all of the ACPI namespace and attach child devices.
  *
  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
  * However, in violation of the spec, some systems place their PCI link
  * devices in \, so we have to walk the whole namespace.  We check the
  * type of namespace nodes, so this should be ok.
  */
 static void
 acpi_probe_children(device_t bus)
 {
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     /*
      * Scan the namespace and insert placeholders for all the devices that
      * we find.  We also probe/attach any early devices.
      *
      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
      * we want to create nodes for all devices, not just those that are
      * currently present. (This assumes that we don't want to create/remove
      * devices as they appear, which might be smarter.)
      */
     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
 	NULL, bus, NULL);
 
     /* Pre-allocate resources for our rman from any sysresource devices. */
     acpi_sysres_alloc(bus);
 
     /* Reserve resources already allocated to children. */
     acpi_reserve_resources(bus);
 
     /* Create any static children by calling device identify methods. */
     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
     bus_generic_probe(bus);
 
     /* Probe/attach all children, created statically and from the namespace. */
     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n"));
     bus_generic_attach(bus);
 
     /* Attach wake sysctls. */
     acpi_wake_sysctl_walk(bus);
 
     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
     return_VOID;
 }
 
 /*
  * Determine the probe order for a given device.
  */
 static void
 acpi_probe_order(ACPI_HANDLE handle, int *order)
 {
 	ACPI_OBJECT_TYPE type;
 
 	/*
 	 * 0. CPUs
 	 * 1. I/O port and memory system resource holders
 	 * 2. Clocks and timers (to handle early accesses)
 	 * 3. Embedded controllers (to handle early accesses)
 	 * 4. PCI Link Devices
 	 */
 	AcpiGetType(handle, &type);
 	if (type == ACPI_TYPE_PROCESSOR)
 		*order = 0;
 	else if (acpi_MatchHid(handle, "PNP0C01") ||
 	    acpi_MatchHid(handle, "PNP0C02"))
 		*order = 1;
 	else if (acpi_MatchHid(handle, "PNP0100") ||
 	    acpi_MatchHid(handle, "PNP0103") ||
 	    acpi_MatchHid(handle, "PNP0B00"))
 		*order = 2;
 	else if (acpi_MatchHid(handle, "PNP0C09"))
 		*order = 3;
 	else if (acpi_MatchHid(handle, "PNP0C0F"))
 		*order = 4;
 }
 
 /*
  * Evaluate a child device and determine whether we might attach a device to
  * it.
  */
 static ACPI_STATUS
 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
 {
     ACPI_DEVICE_INFO *devinfo;
     struct acpi_device	*ad;
 #ifdef __aarch64__
     int segment;
 #endif
     struct acpi_prw_data prw;
     ACPI_OBJECT_TYPE type;
     ACPI_HANDLE h;
     device_t bus, child;
     char *handle_str;
     int order;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (acpi_disabled("children"))
 	return_ACPI_STATUS (AE_OK);
 
     /* Skip this device if we think we'll have trouble with it. */
     if (acpi_avoid(handle))
 	return_ACPI_STATUS (AE_OK);
 
     bus = (device_t)context;
     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
 	handle_str = acpi_name(handle);
 	switch (type) {
 	case ACPI_TYPE_DEVICE:
 	    /*
 	     * Since we scan from \, be sure to skip system scope objects.
 	     * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
 	     * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
 	     * during the initialization and \_TZ_ is to support Notify() on it.
 	     */
 	    if (strcmp(handle_str, "\\_SB_") == 0 ||
 		strcmp(handle_str, "\\_TZ_") == 0)
 		break;
 	    if (acpi_parse_prw(handle, &prw) == 0)
 		AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
 
 	    /*
 	     * Ignore devices that do not have a _HID or _CID.  They should
 	     * be discovered by other buses (e.g. the PCI bus driver).
 	     */
 	    if (!acpi_has_hid(handle))
 		break;
 	    /* FALLTHROUGH */
 	case ACPI_TYPE_PROCESSOR:
 	case ACPI_TYPE_THERMAL:
 	case ACPI_TYPE_POWER:
 	    /* 
 	     * Create a placeholder device for this node.  Sort the
 	     * placeholder so that the probe/attach passes will run
 	     * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
 	     * are reserved for special objects (i.e., system
 	     * resources).
 	     */
 	    ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
 	    order = level * 10 + ACPI_DEV_BASE_ORDER;
 	    acpi_probe_order(handle, &order);
 	    child = BUS_ADD_CHILD(bus, order, NULL, -1);
 	    if (child == NULL)
 		break;
 
 	    /* Associate the handle with the device_t and vice versa. */
 	    acpi_set_handle(child, handle);
 	    AcpiAttachData(handle, acpi_fake_objhandler, child);
 
 	    /*
 	     * Check that the device is present.  If it's not present,
 	     * leave it disabled (so that we have a device_t attached to
 	     * the handle, but we don't probe it).
 	     *
 	     * XXX PCI link devices sometimes report "present" but not
 	     * "functional" (i.e. if disabled).  Go ahead and probe them
 	     * anyway since we may enable them later.
 	     */
 	    if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
 		/* Never disable PCI link devices. */
 		if (acpi_MatchHid(handle, "PNP0C0F"))
 		    break;
 		/*
 		 * Docking stations should remain enabled since the system
 		 * may be undocked at boot.
 		 */
 		if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
 		    break;
 
 		device_disable(child);
 		break;
 	    }
 
 	    /*
 	     * Get the device's resource settings and attach them.
 	     * Note that if the device has _PRS but no _CRS, we need
 	     * to decide when it's appropriate to try to configure the
 	     * device.  Ignore the return value here; it's OK for the
 	     * device not to have any resources.
 	     */
 	    acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
 
 	    ad = device_get_ivars(child);
 	    ad->ad_cls_class = 0xffffff;
 	    if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
 		if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
 		    devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
 		    ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
 			NULL, 16);
 		}
 #ifdef __aarch64__
 		if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) {
 		    if (ACPI_SUCCESS(acpi_GetInteger(handle, "_SEG", &segment))) {
 			acpi_enable_pcie(child, segment);
 		    }
 		}
 #endif
 		AcpiOsFree(devinfo);
 	    }
 	    break;
 	}
     }
 
     return_ACPI_STATUS (AE_OK);
 }
 
 /*
  * AcpiAttachData() requires an object handler but never uses it.  This is a
  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
  */
 void
 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
 {
 }
 
 static void
 acpi_shutdown_final(void *arg, int howto)
 {
     struct acpi_softc *sc = (struct acpi_softc *)arg;
     register_t intr;
     ACPI_STATUS status;
 
     /*
      * XXX Shutdown code should only run on the BSP (cpuid 0).
      * Some chipsets do not power off the system correctly if called from
      * an AP.
      */
     if ((howto & RB_POWEROFF) != 0) {
 	status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
 	if (ACPI_FAILURE(status)) {
 	    device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
 		AcpiFormatException(status));
 	    return;
 	}
 	device_printf(sc->acpi_dev, "Powering system off\n");
 	intr = intr_disable();
 	status = AcpiEnterSleepState(ACPI_STATE_S5);
 	if (ACPI_FAILURE(status)) {
 	    intr_restore(intr);
 	    device_printf(sc->acpi_dev, "power-off failed - %s\n",
 		AcpiFormatException(status));
 	} else {
 	    DELAY(1000000);
 	    intr_restore(intr);
 	    device_printf(sc->acpi_dev, "power-off failed - timeout\n");
 	}
     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
 	/* Reboot using the reset register. */
 	status = AcpiReset();
 	if (ACPI_SUCCESS(status)) {
 	    DELAY(1000000);
 	    device_printf(sc->acpi_dev, "reset failed - timeout\n");
 	} else if (status != AE_NOT_EXIST)
 	    device_printf(sc->acpi_dev, "reset failed - %s\n",
 		AcpiFormatException(status));
     } else if (sc->acpi_do_disable && panicstr == NULL) {
 	/*
 	 * Only disable ACPI if the user requested.  On some systems, writing
 	 * the disable value to SMI_CMD hangs the system.
 	 */
 	device_printf(sc->acpi_dev, "Shutting down\n");
 	AcpiTerminate();
     }
 }
 
 static void
 acpi_enable_fixed_events(struct acpi_softc *sc)
 {
     static int	first_time = 1;
 
     /* Enable and clear fixed events and install handlers. */
     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
 	AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
 	AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
 				     acpi_event_power_button_sleep, sc);
 	if (first_time)
 	    device_printf(sc->acpi_dev, "Power Button (fixed)\n");
     }
     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
 	AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
 	AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
 				     acpi_event_sleep_button_sleep, sc);
 	if (first_time)
 	    device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
     }
 
     first_time = 0;
 }
 
 /*
  * Returns true if the device is actually present and should
  * be attached to.  This requires the present, enabled, UI-visible 
  * and diagnostics-passed bits to be set.
  */
 BOOLEAN
 acpi_DeviceIsPresent(device_t dev)
 {
 	ACPI_HANDLE h;
 	UINT32 s;
 	ACPI_STATUS status;
 
 	h = acpi_get_handle(dev);
 	if (h == NULL)
 		return (FALSE);
 	status = acpi_GetInteger(h, "_STA", &s);
 
 	/* If no _STA method, must be present */
 	if (ACPI_FAILURE(status))
 		return (status == AE_NOT_FOUND ? TRUE : FALSE);
 
 	return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
 }
 
 /*
  * Returns true if the battery is actually present and inserted.
  */
 BOOLEAN
 acpi_BatteryIsPresent(device_t dev)
 {
 	ACPI_HANDLE h;
 	UINT32 s;
 	ACPI_STATUS status;
 
 	h = acpi_get_handle(dev);
 	if (h == NULL)
 		return (FALSE);
 	status = acpi_GetInteger(h, "_STA", &s);
 
 	/* If no _STA method, must be present */
 	if (ACPI_FAILURE(status))
 		return (status == AE_NOT_FOUND ? TRUE : FALSE);
 
 	return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
 }
 
 /*
  * Returns true if a device has at least one valid device ID.
  */
 static BOOLEAN
 acpi_has_hid(ACPI_HANDLE h)
 {
     ACPI_DEVICE_INFO	*devinfo;
     BOOLEAN		ret;
 
     if (h == NULL ||
 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
 	return (FALSE);
 
     ret = FALSE;
     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
 	ret = TRUE;
     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
 	if (devinfo->CompatibleIdList.Count > 0)
 	    ret = TRUE;
 
     AcpiOsFree(devinfo);
     return (ret);
 }
 
 /*
  * Match a HID string against a handle
  */
 BOOLEAN
 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 
 {
     ACPI_DEVICE_INFO	*devinfo;
     BOOLEAN		ret;
     int			i;
 
     if (hid == NULL || h == NULL ||
 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
 	return (FALSE);
 
     ret = FALSE;
     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
 	strcmp(hid, devinfo->HardwareId.String) == 0)
 	    ret = TRUE;
     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
 	for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
 	    if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
 		ret = TRUE;
 		break;
 	    }
 	}
 
     AcpiOsFree(devinfo);
     return (ret);
 }
 
 /*
  * Return the handle of a named object within our scope, ie. that of (parent)
  * or one if its parents.
  */
 ACPI_STATUS
 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
 {
     ACPI_HANDLE		r;
     ACPI_STATUS		status;
 
     /* Walk back up the tree to the root */
     for (;;) {
 	status = AcpiGetHandle(parent, path, &r);
 	if (ACPI_SUCCESS(status)) {
 	    *result = r;
 	    return (AE_OK);
 	}
 	/* XXX Return error here? */
 	if (status != AE_NOT_FOUND)
 	    return (AE_OK);
 	if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
 	    return (AE_NOT_FOUND);
 	parent = r;
     }
 }
 
 /*
  * Allocate a buffer with a preset data size.
  */
 ACPI_BUFFER *
 acpi_AllocBuffer(int size)
 {
     ACPI_BUFFER	*buf;
 
     if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
 	return (NULL);
     buf->Length = size;
     buf->Pointer = (void *)(buf + 1);
     return (buf);
 }
 
 ACPI_STATUS
 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
 {
     ACPI_OBJECT arg1;
     ACPI_OBJECT_LIST args;
 
     arg1.Type = ACPI_TYPE_INTEGER;
     arg1.Integer.Value = number;
     args.Count = 1;
     args.Pointer = &arg1;
 
     return (AcpiEvaluateObject(handle, path, &args, NULL));
 }
 
 /*
  * Evaluate a path that should return an integer.
  */
 ACPI_STATUS
 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
 {
     ACPI_STATUS	status;
     ACPI_BUFFER	buf;
     ACPI_OBJECT	param;
 
     if (handle == NULL)
 	handle = ACPI_ROOT_OBJECT;
 
     /*
      * Assume that what we've been pointed at is an Integer object, or
      * a method that will return an Integer.
      */
     buf.Pointer = &param;
     buf.Length = sizeof(param);
     status = AcpiEvaluateObject(handle, path, NULL, &buf);
     if (ACPI_SUCCESS(status)) {
 	if (param.Type == ACPI_TYPE_INTEGER)
 	    *number = param.Integer.Value;
 	else
 	    status = AE_TYPE;
     }
 
     /* 
      * In some applications, a method that's expected to return an Integer
      * may instead return a Buffer (probably to simplify some internal
      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
      * convert it into an Integer as best we can.
      *
      * This is a hack.
      */
     if (status == AE_BUFFER_OVERFLOW) {
 	if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
 	    status = AE_NO_MEMORY;
 	} else {
 	    status = AcpiEvaluateObject(handle, path, NULL, &buf);
 	    if (ACPI_SUCCESS(status))
 		status = acpi_ConvertBufferToInteger(&buf, number);
 	    AcpiOsFree(buf.Pointer);
 	}
     }
     return (status);
 }
 
 ACPI_STATUS
 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
 {
     ACPI_OBJECT	*p;
     UINT8	*val;
     int		i;
 
     p = (ACPI_OBJECT *)bufp->Pointer;
     if (p->Type == ACPI_TYPE_INTEGER) {
 	*number = p->Integer.Value;
 	return (AE_OK);
     }
     if (p->Type != ACPI_TYPE_BUFFER)
 	return (AE_TYPE);
     if (p->Buffer.Length > sizeof(int))
 	return (AE_BAD_DATA);
 
     *number = 0;
     val = p->Buffer.Pointer;
     for (i = 0; i < p->Buffer.Length; i++)
 	*number += val[i] << (i * 8);
     return (AE_OK);
 }
 
 /*
  * Iterate over the elements of an a package object, calling the supplied
  * function for each element.
  *
  * XXX possible enhancement might be to abort traversal on error.
  */
 ACPI_STATUS
 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
 	void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
 {
     ACPI_OBJECT	*comp;
     int		i;
 
     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
 	return (AE_BAD_PARAMETER);
 
     /* Iterate over components */
     i = 0;
     comp = pkg->Package.Elements;
     for (; i < pkg->Package.Count; i++, comp++)
 	func(comp, arg);
 
     return (AE_OK);
 }
 
 /*
  * Find the (index)th resource object in a set.
  */
 ACPI_STATUS
 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
 {
     ACPI_RESOURCE	*rp;
     int			i;
 
     rp = (ACPI_RESOURCE *)buf->Pointer;
     i = index;
     while (i-- > 0) {
 	/* Range check */
 	if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
 	    return (AE_BAD_PARAMETER);
 
 	/* Check for terminator */
 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
 	    return (AE_NOT_FOUND);
 	rp = ACPI_NEXT_RESOURCE(rp);
     }
     if (resp != NULL)
 	*resp = rp;
 
     return (AE_OK);
 }
 
 /*
  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
  *
  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
  * resources.
  */
 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE	512
 
 ACPI_STATUS
 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
 {
     ACPI_RESOURCE	*rp;
     void		*newp;
 
     /* Initialise the buffer if necessary. */
     if (buf->Pointer == NULL) {
 	buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
 	if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
 	    return (AE_NO_MEMORY);
 	rp = (ACPI_RESOURCE *)buf->Pointer;
 	rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
 	rp->Length = ACPI_RS_SIZE_MIN;
     }
     if (res == NULL)
 	return (AE_OK);
 
     /*
      * Scan the current buffer looking for the terminator.
      * This will either find the terminator or hit the end
      * of the buffer and return an error.
      */
     rp = (ACPI_RESOURCE *)buf->Pointer;
     for (;;) {
 	/* Range check, don't go outside the buffer */
 	if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
 	    return (AE_BAD_PARAMETER);
 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
 	    break;
 	rp = ACPI_NEXT_RESOURCE(rp);
     }
 
     /*
      * Check the size of the buffer and expand if required.
      *
      * Required size is:
      *	size of existing resources before terminator + 
      *	size of new resource and header +
      * 	size of terminator.
      *
      * Note that this loop should really only run once, unless
      * for some reason we are stuffing a *really* huge resource.
      */
     while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 
 	    res->Length + ACPI_RS_SIZE_NO_DATA +
 	    ACPI_RS_SIZE_MIN) >= buf->Length) {
 	if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
 	    return (AE_NO_MEMORY);
 	bcopy(buf->Pointer, newp, buf->Length);
 	rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
 			       ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
 	AcpiOsFree(buf->Pointer);
 	buf->Pointer = newp;
 	buf->Length += buf->Length;
     }
 
     /* Insert the new resource. */
     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
 
     /* And add the terminator. */
     rp = ACPI_NEXT_RESOURCE(rp);
     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
     rp->Length = ACPI_RS_SIZE_MIN;
 
     return (AE_OK);
 }
 
 ACPI_STATUS
 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
     uint32_t *caps_in, uint32_t *caps_out, bool query)
 {
 	ACPI_OBJECT arg[4], *ret;
 	ACPI_OBJECT_LIST arglist;
 	ACPI_BUFFER buf;
 	ACPI_STATUS status;
 
 	arglist.Pointer = arg;
 	arglist.Count = 4;
 	arg[0].Type = ACPI_TYPE_BUFFER;
 	arg[0].Buffer.Length = ACPI_UUID_LENGTH;
 	arg[0].Buffer.Pointer = uuid;
 	arg[1].Type = ACPI_TYPE_INTEGER;
 	arg[1].Integer.Value = revision;
 	arg[2].Type = ACPI_TYPE_INTEGER;
 	arg[2].Integer.Value = count;
 	arg[3].Type = ACPI_TYPE_BUFFER;
 	arg[3].Buffer.Length = count * sizeof(*caps_in);
 	arg[3].Buffer.Pointer = (uint8_t *)caps_in;
 	caps_in[0] = query ? 1 : 0;
 	buf.Pointer = NULL;
 	buf.Length = ACPI_ALLOCATE_BUFFER;
 	status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
 	    ACPI_TYPE_BUFFER);
 	if (ACPI_FAILURE(status))
 		return (status);
 	if (caps_out != NULL) {
 		ret = buf.Pointer;
 		if (ret->Buffer.Length != count * sizeof(*caps_out)) {
 			AcpiOsFree(buf.Pointer);
 			return (AE_BUFFER_OVERFLOW);
 		}
 		bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
 	}
 	AcpiOsFree(buf.Pointer);
 	return (status);
 }
 
 /*
  * Set interrupt model.
  */
 ACPI_STATUS
 acpi_SetIntrModel(int model)
 {
 
     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
 }
 
 /*
  * Walk subtables of a table and call a callback routine for each
  * subtable.  The caller should provide the first subtable and a
  * pointer to the end of the table.  This can be used to walk tables
  * such as MADT and SRAT that use subtable entries.
  */
 void
 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
     void *arg)
 {
     ACPI_SUBTABLE_HEADER *entry;
 
     for (entry = first; (void *)entry < end; ) {
 	/* Avoid an infinite loop if we hit a bogus entry. */
 	if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
 	    return;
 
 	handler(entry, arg);
 	entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
     }
 }
 
 /*
  * DEPRECATED.  This interface has serious deficiencies and will be
  * removed.
  *
  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
  */
 ACPI_STATUS
 acpi_SetSleepState(struct acpi_softc *sc, int state)
 {
     static int once;
 
     if (!once) {
 	device_printf(sc->acpi_dev,
 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
 	once = 1;
     }
     return (acpi_EnterSleepState(sc, state));
 }
 
 #if defined(__amd64__) || defined(__i386__)
 static void
 acpi_sleep_force_task(void *context)
 {
     struct acpi_softc *sc = (struct acpi_softc *)context;
 
     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
 	device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
 	    sc->acpi_next_sstate);
 }
 
 static void
 acpi_sleep_force(void *arg)
 {
     struct acpi_softc *sc = (struct acpi_softc *)arg;
 
     device_printf(sc->acpi_dev,
 	"suspend request timed out, forcing sleep now\n");
     /*
      * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
      * Suspend from acpi_task thread instead.
      */
     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
 	acpi_sleep_force_task, sc)))
 	device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
 }
 #endif
 
 /*
  * Request that the system enter the given suspend state.  All /dev/apm
  * devices and devd(8) will be notified.  Userland then has a chance to
  * save state and acknowledge the request.  The system sleeps once all
  * acks are in.
  */
 int
 acpi_ReqSleepState(struct acpi_softc *sc, int state)
 {
 #if defined(__amd64__) || defined(__i386__)
     struct apm_clone_data *clone;
     ACPI_STATUS status;
 
     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
 	return (EINVAL);
     if (!acpi_sleep_states[state])
 	return (EOPNOTSUPP);
 
     /*
      * If a reboot/shutdown/suspend request is already in progress or
      * suspend is blocked due to an upcoming shutdown, just return.
      */
     if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
 	return (0);
     }
 
     /* Wait until sleep is enabled. */
     while (sc->acpi_sleep_disabled) {
 	AcpiOsSleep(1000);
     }
 
     ACPI_LOCK(acpi);
 
     sc->acpi_next_sstate = state;
 
     /* S5 (soft-off) should be entered directly with no waiting. */
     if (state == ACPI_STATE_S5) {
     	ACPI_UNLOCK(acpi);
 	status = acpi_EnterSleepState(sc, state);
 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
     }
 
     /* Record the pending state and notify all apm devices. */
     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
 	clone->notify_status = APM_EV_NONE;
 	if ((clone->flags & ACPI_EVF_DEVD) == 0) {
 	    selwakeuppri(&clone->sel_read, PZERO);
 	    KNOTE_LOCKED(&clone->sel_read.si_note, 0);
 	}
     }
 
     /* If devd(8) is not running, immediately enter the sleep state. */
     if (!devctl_process_running()) {
 	ACPI_UNLOCK(acpi);
 	status = acpi_EnterSleepState(sc, state);
 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
     }
 
     /*
      * Set a timeout to fire if userland doesn't ack the suspend request
      * in time.  This way we still eventually go to sleep if we were
      * overheating or running low on battery, even if userland is hung.
      * We cancel this timeout once all userland acks are in or the
      * suspend request is aborted.
      */
     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
     ACPI_UNLOCK(acpi);
 
     /* Now notify devd(8) also. */
     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
 
     return (0);
 #else
     /* This platform does not support acpi suspend/resume. */
     return (EOPNOTSUPP);
 #endif
 }
 
 /*
  * Acknowledge (or reject) a pending sleep state.  The caller has
  * prepared for suspend and is now ready for it to proceed.  If the
  * error argument is non-zero, it indicates suspend should be cancelled
  * and gives an errno value describing why.  Once all votes are in,
  * we suspend the system.
  */
 int
 acpi_AckSleepState(struct apm_clone_data *clone, int error)
 {
 #if defined(__amd64__) || defined(__i386__)
     struct acpi_softc *sc;
     int ret, sleeping;
 
     /* If no pending sleep state, return an error. */
     ACPI_LOCK(acpi);
     sc = clone->acpi_sc;
     if (sc->acpi_next_sstate == 0) {
     	ACPI_UNLOCK(acpi);
 	return (ENXIO);
     }
 
     /* Caller wants to abort suspend process. */
     if (error) {
 	sc->acpi_next_sstate = 0;
 	callout_stop(&sc->susp_force_to);
 	device_printf(sc->acpi_dev,
 	    "listener on %s cancelled the pending suspend\n",
 	    devtoname(clone->cdev));
     	ACPI_UNLOCK(acpi);
 	return (0);
     }
 
     /*
      * Mark this device as acking the suspend request.  Then, walk through
      * all devices, seeing if they agree yet.  We only count devices that
      * are writable since read-only devices couldn't ack the request.
      */
     sleeping = TRUE;
     clone->notify_status = APM_EV_ACKED;
     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
 	if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
 	    clone->notify_status != APM_EV_ACKED) {
 	    sleeping = FALSE;
 	    break;
 	}
     }
 
     /* If all devices have voted "yes", we will suspend now. */
     if (sleeping)
 	callout_stop(&sc->susp_force_to);
     ACPI_UNLOCK(acpi);
     ret = 0;
     if (sleeping) {
 	if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
 		ret = ENODEV;
     }
     return (ret);
 #else
     /* This platform does not support acpi suspend/resume. */
     return (EOPNOTSUPP);
 #endif
 }
 
 static void
 acpi_sleep_enable(void *arg)
 {
     struct acpi_softc	*sc = (struct acpi_softc *)arg;
 
     ACPI_LOCK_ASSERT(acpi);
 
     /* Reschedule if the system is not fully up and running. */
     if (!AcpiGbl_SystemAwakeAndRunning) {
 	callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
 	return;
     }
 
     sc->acpi_sleep_disabled = FALSE;
 }
 
 static ACPI_STATUS
 acpi_sleep_disable(struct acpi_softc *sc)
 {
     ACPI_STATUS		status;
 
     /* Fail if the system is not fully up and running. */
     if (!AcpiGbl_SystemAwakeAndRunning)
 	return (AE_ERROR);
 
     ACPI_LOCK(acpi);
     status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
     sc->acpi_sleep_disabled = TRUE;
     ACPI_UNLOCK(acpi);
 
     return (status);
 }
 
 enum acpi_sleep_state {
     ACPI_SS_NONE,
     ACPI_SS_GPE_SET,
     ACPI_SS_DEV_SUSPEND,
     ACPI_SS_SLP_PREP,
     ACPI_SS_SLEPT,
 };
 
 /*
  * Enter the desired system sleep state.
  *
  * Currently we support S1-S5 but S4 is only S4BIOS
  */
 static ACPI_STATUS
 acpi_EnterSleepState(struct acpi_softc *sc, int state)
 {
     register_t intr;
     ACPI_STATUS status;
     ACPI_EVENT_STATUS power_button_status;
     enum acpi_sleep_state slp_state;
     int sleep_result;
 
     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 
     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
 	return_ACPI_STATUS (AE_BAD_PARAMETER);
     if (!acpi_sleep_states[state]) {
 	device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
 	    state);
 	return (AE_SUPPORT);
     }
 
     /* Re-entry once we're suspending is not allowed. */
     status = acpi_sleep_disable(sc);
     if (ACPI_FAILURE(status)) {
 	device_printf(sc->acpi_dev,
 	    "suspend request ignored (not ready yet)\n");
 	return (status);
     }
 
     if (state == ACPI_STATE_S5) {
 	/*
 	 * Shut down cleanly and power off.  This will call us back through the
 	 * shutdown handlers.
 	 */
 	shutdown_nice(RB_POWEROFF);
 	return_ACPI_STATUS (AE_OK);
     }
 
     EVENTHANDLER_INVOKE(power_suspend_early);
     stop_all_proc();
     EVENTHANDLER_INVOKE(power_suspend);
 
 #ifdef EARLY_AP_STARTUP
     MPASS(mp_ncpus == 1 || smp_started);
     thread_lock(curthread);
     sched_bind(curthread, 0);
     thread_unlock(curthread);
 #else
     if (smp_started) {
 	thread_lock(curthread);
 	sched_bind(curthread, 0);
 	thread_unlock(curthread);
     }
 #endif
 
     /*
      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
      * drivers need this.
      */
     mtx_lock(&Giant);
 
     slp_state = ACPI_SS_NONE;
 
     sc->acpi_sstate = state;
 
     /* Enable any GPEs as appropriate and requested by the user. */
     acpi_wake_prep_walk(state);
     slp_state = ACPI_SS_GPE_SET;
 
     /*
      * Inform all devices that we are going to sleep.  If at least one
      * device fails, DEVICE_SUSPEND() automatically resumes the tree.
      *
      * XXX Note that a better two-pass approach with a 'veto' pass
      * followed by a "real thing" pass would be better, but the current
      * bus interface does not provide for this.
      */
     if (DEVICE_SUSPEND(root_bus) != 0) {
 	device_printf(sc->acpi_dev, "device_suspend failed\n");
 	goto backout;
     }
     slp_state = ACPI_SS_DEV_SUSPEND;
 
     status = AcpiEnterSleepStatePrep(state);
     if (ACPI_FAILURE(status)) {
 	device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
 		      AcpiFormatException(status));
 	goto backout;
     }
     slp_state = ACPI_SS_SLP_PREP;
 
     if (sc->acpi_sleep_delay > 0)
 	DELAY(sc->acpi_sleep_delay * 1000000);
 
     suspendclock();
     intr = intr_disable();
     if (state != ACPI_STATE_S1) {
 	sleep_result = acpi_sleep_machdep(sc, state);
 	acpi_wakeup_machdep(sc, state, sleep_result, 0);
 
 	/*
 	 * XXX According to ACPI specification SCI_EN bit should be restored
 	 * by ACPI platform (BIOS, firmware) to its pre-sleep state.
 	 * Unfortunately some BIOSes fail to do that and that leads to
 	 * unexpected and serious consequences during wake up like a system
 	 * getting stuck in SMI handlers.
 	 * This hack is picked up from Linux, which claims that it follows
 	 * Windows behavior.
 	 */
 	if (sleep_result == 1 && state != ACPI_STATE_S4)
 	    AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
 
 	AcpiLeaveSleepStatePrep(state);
 
 	if (sleep_result == 1 && state == ACPI_STATE_S3) {
 	    /*
 	     * Prevent mis-interpretation of the wakeup by power button
 	     * as a request for power off.
 	     * Ideally we should post an appropriate wakeup event,
 	     * perhaps using acpi_event_power_button_wake or alike.
 	     *
 	     * Clearing of power button status after wakeup is mandated
 	     * by ACPI specification in section "Fixed Power Button".
 	     *
 	     * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
 	     * status as 0/1 corressponding to inactive/active despite
 	     * its type being ACPI_EVENT_STATUS.  In other words,
 	     * we should not test for ACPI_EVENT_FLAG_SET for time being.
 	     */
 	    if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
 		&power_button_status)) && power_button_status != 0) {
 		AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
 		device_printf(sc->acpi_dev,
 		    "cleared fixed power button status\n");
 	    }
 	}
 
 	intr_restore(intr);
 
 	/* call acpi_wakeup_machdep() again with interrupt enabled */
 	acpi_wakeup_machdep(sc, state, sleep_result, 1);
 
 	if (sleep_result == -1)
 		goto backout;
 
 	/* Re-enable ACPI hardware on wakeup from sleep state 4. */
 	if (state == ACPI_STATE_S4)
 	    AcpiEnable();
     } else {
 	status = AcpiEnterSleepState(state);
 	AcpiLeaveSleepStatePrep(state);
 	intr_restore(intr);
 	if (ACPI_FAILURE(status)) {
 	    device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
 			  AcpiFormatException(status));
 	    goto backout;
 	}
     }
     slp_state = ACPI_SS_SLEPT;
 
     /*
      * Back out state according to how far along we got in the suspend
      * process.  This handles both the error and success cases.
      */
 backout:
     if (slp_state >= ACPI_SS_SLP_PREP)
 	resumeclock();
     if (slp_state >= ACPI_SS_GPE_SET) {
 	acpi_wake_prep_walk(state);
 	sc->acpi_sstate = ACPI_STATE_S0;
     }
     if (slp_state >= ACPI_SS_DEV_SUSPEND)
 	DEVICE_RESUME(root_bus);
     if (slp_state >= ACPI_SS_SLP_PREP)
 	AcpiLeaveSleepState(state);
     if (slp_state >= ACPI_SS_SLEPT) {
+#if defined(__i386__) || defined(__amd64__)
+	/* NB: we are still using ACPI timecounter at this point. */
+	resume_TSC();
+#endif
 	acpi_resync_clock(sc);
 	acpi_enable_fixed_events(sc);
     }
     sc->acpi_next_sstate = 0;
 
     mtx_unlock(&Giant);
 
 #ifdef EARLY_AP_STARTUP
     thread_lock(curthread);
     sched_unbind(curthread);
     thread_unlock(curthread);
 #else
     if (smp_started) {
 	thread_lock(curthread);
 	sched_unbind(curthread);
 	thread_unlock(curthread);
     }
 #endif
 
     resume_all_proc();
 
     EVENTHANDLER_INVOKE(power_resume);
 
     /* Allow another sleep request after a while. */
     callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
 
     /* Run /etc/rc.resume after we are back. */
     if (devctl_process_running())
 	acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
 
     return_ACPI_STATUS (status);
 }
 
 static void
 acpi_resync_clock(struct acpi_softc *sc)
 {
 
     /*
      * Warm up timecounter again and reset system clock.
      */
     (void)timecounter->tc_get_timecount(timecounter);
     (void)timecounter->tc_get_timecount(timecounter);
     inittodr(time_second + sc->acpi_sleep_delay);
 }
 
 /* Enable or disable the device's wake GPE. */
 int
 acpi_wake_set_enable(device_t dev, int enable)
 {
     struct acpi_prw_data prw;
     ACPI_STATUS status;
     int flags;
 
     /* Make sure the device supports waking the system and get the GPE. */
     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
 	return (ENXIO);
 
     flags = acpi_get_flags(dev);
     if (enable) {
 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
 	    ACPI_GPE_ENABLE);
 	if (ACPI_FAILURE(status)) {
 	    device_printf(dev, "enable wake failed\n");
 	    return (ENXIO);
 	}
 	acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
     } else {
 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
 	    ACPI_GPE_DISABLE);
 	if (ACPI_FAILURE(status)) {
 	    device_printf(dev, "disable wake failed\n");
 	    return (ENXIO);
 	}
 	acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
     }
 
     return (0);
 }
 
 static int
 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
 {
     struct acpi_prw_data prw;
     device_t dev;
 
     /* Check that this is a wake-capable device and get its GPE. */
     if (acpi_parse_prw(handle, &prw) != 0)
 	return (ENXIO);
     dev = acpi_get_device(handle);
 
     /*
      * The destination sleep state must be less than (i.e., higher power)
      * or equal to the value specified by _PRW.  If this GPE cannot be
      * enabled for the next sleep state, then disable it.  If it can and
      * the user requested it be enabled, turn on any required power resources
      * and set _PSW.
      */
     if (sstate > prw.lowest_wake) {
 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
 	if (bootverbose)
 	    device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
 		acpi_name(handle), sstate);
     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
 	acpi_pwr_wake_enable(handle, 1);
 	acpi_SetInteger(handle, "_PSW", 1);
 	if (bootverbose)
 	    device_printf(dev, "wake_prep enabled for %s (S%d)\n",
 		acpi_name(handle), sstate);
     }
 
     return (0);
 }
 
 static int
 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
 {
     struct acpi_prw_data prw;
     device_t dev;
 
     /*
      * Check that this is a wake-capable device and get its GPE.  Return
      * now if the user didn't enable this device for wake.
      */
     if (acpi_parse_prw(handle, &prw) != 0)
 	return (ENXIO);
     dev = acpi_get_device(handle);
     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
 	return (0);
 
     /*
      * If this GPE couldn't be enabled for the previous sleep state, it was
      * disabled before going to sleep so re-enable it.  If it was enabled,
      * clear _PSW and turn off any power resources it used.
      */
     if (sstate > prw.lowest_wake) {
 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
 	if (bootverbose)
 	    device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
     } else {
 	acpi_SetInteger(handle, "_PSW", 0);
 	acpi_pwr_wake_enable(handle, 0);
 	if (bootverbose)
 	    device_printf(dev, "run_prep cleaned up for %s\n",
 		acpi_name(handle));
     }
 
     return (0);
 }
 
 static ACPI_STATUS
 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
 {
     int sstate;
 
     /* If suspending, run the sleep prep function, otherwise wake. */
     sstate = *(int *)context;
     if (AcpiGbl_SystemAwakeAndRunning)
 	acpi_wake_sleep_prep(handle, sstate);
     else
 	acpi_wake_run_prep(handle, sstate);
     return (AE_OK);
 }
 
 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
 static int
 acpi_wake_prep_walk(int sstate)
 {
     ACPI_HANDLE sb_handle;
 
     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
 	AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
 	    acpi_wake_prep, NULL, &sstate, NULL);
     return (0);
 }
 
 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
 static int
 acpi_wake_sysctl_walk(device_t dev)
 {
     int error, i, numdevs;
     device_t *devlist;
     device_t child;
     ACPI_STATUS status;
 
     error = device_get_children(dev, &devlist, &numdevs);
     if (error != 0 || numdevs == 0) {
 	if (numdevs == 0)
 	    free(devlist, M_TEMP);
 	return (error);
     }
     for (i = 0; i < numdevs; i++) {
 	child = devlist[i];
 	acpi_wake_sysctl_walk(child);
 	if (!device_is_attached(child))
 	    continue;
 	status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
 	if (ACPI_SUCCESS(status)) {
 	    SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
 		SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
 		"wake", CTLTYPE_INT | CTLFLAG_RW, child, 0,
 		acpi_wake_set_sysctl, "I", "Device set to wake the system");
 	}
     }
     free(devlist, M_TEMP);
 
     return (0);
 }
 
 /* Enable or disable wake from userland. */
 static int
 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
 {
     int enable, error;
     device_t dev;
 
     dev = (device_t)arg1;
     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
 
     error = sysctl_handle_int(oidp, &enable, 0, req);
     if (error != 0 || req->newptr == NULL)
 	return (error);
     if (enable != 0 && enable != 1)
 	return (EINVAL);
 
     return (acpi_wake_set_enable(dev, enable));
 }
 
 /* Parse a device's _PRW into a structure. */
 int
 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
 {
     ACPI_STATUS			status;
     ACPI_BUFFER			prw_buffer;
     ACPI_OBJECT			*res, *res2;
     int				error, i, power_count;
 
     if (h == NULL || prw == NULL)
 	return (EINVAL);
 
     /*
      * The _PRW object (7.2.9) is only required for devices that have the
      * ability to wake the system from a sleeping state.
      */
     error = EINVAL;
     prw_buffer.Pointer = NULL;
     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
     if (ACPI_FAILURE(status))
 	return (ENOENT);
     res = (ACPI_OBJECT *)prw_buffer.Pointer;
     if (res == NULL)
 	return (ENOENT);
     if (!ACPI_PKG_VALID(res, 2))
 	goto out;
 
     /*
      * Element 1 of the _PRW object:
      * The lowest power system sleeping state that can be entered while still
      * providing wake functionality.  The sleeping state being entered must
      * be less than (i.e., higher power) or equal to this value.
      */
     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
 	goto out;
 
     /*
      * Element 0 of the _PRW object:
      */
     switch (res->Package.Elements[0].Type) {
     case ACPI_TYPE_INTEGER:
 	/*
 	 * If the data type of this package element is numeric, then this
 	 * _PRW package element is the bit index in the GPEx_EN, in the
 	 * GPE blocks described in the FADT, of the enable bit that is
 	 * enabled for the wake event.
 	 */
 	prw->gpe_handle = NULL;
 	prw->gpe_bit = res->Package.Elements[0].Integer.Value;
 	error = 0;
 	break;
     case ACPI_TYPE_PACKAGE:
 	/*
 	 * If the data type of this package element is a package, then this
 	 * _PRW package element is itself a package containing two
 	 * elements.  The first is an object reference to the GPE Block
 	 * device that contains the GPE that will be triggered by the wake
 	 * event.  The second element is numeric and it contains the bit
 	 * index in the GPEx_EN, in the GPE Block referenced by the
 	 * first element in the package, of the enable bit that is enabled for
 	 * the wake event.
 	 *
 	 * For example, if this field is a package then it is of the form:
 	 * Package() {\_SB.PCI0.ISA.GPE, 2}
 	 */
 	res2 = &res->Package.Elements[0];
 	if (!ACPI_PKG_VALID(res2, 2))
 	    goto out;
 	prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
 	if (prw->gpe_handle == NULL)
 	    goto out;
 	if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
 	    goto out;
 	error = 0;
 	break;
     default:
 	goto out;
     }
 
     /* Elements 2 to N of the _PRW object are power resources. */
     power_count = res->Package.Count - 2;
     if (power_count > ACPI_PRW_MAX_POWERRES) {
 	printf("ACPI device %s has too many power resources\n", acpi_name(h));
 	power_count = 0;
     }
     prw->power_res_count = power_count;
     for (i = 0; i < power_count; i++)
 	prw->power_res[i] = res->Package.Elements[i];
 
 out:
     if (prw_buffer.Pointer != NULL)
 	AcpiOsFree(prw_buffer.Pointer);
     return (error);
 }
 
 /*
  * ACPI Event Handlers
  */
 
 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
 
 static void
 acpi_system_eventhandler_sleep(void *arg, int state)
 {
     struct acpi_softc *sc = (struct acpi_softc *)arg;
     int ret;
 
     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 
     /* Check if button action is disabled or unknown. */
     if (state == ACPI_STATE_UNKNOWN)
 	return;
 
     /* Request that the system prepare to enter the given suspend state. */
     ret = acpi_ReqSleepState(sc, state);
     if (ret != 0)
 	device_printf(sc->acpi_dev,
 	    "request to enter state S%d failed (err %d)\n", state, ret);
 
     return_VOID;
 }
 
 static void
 acpi_system_eventhandler_wakeup(void *arg, int state)
 {
 
     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
 
     /* Currently, nothing to do for wakeup. */
 
     return_VOID;
 }
 
 /* 
  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
  */
 static void
 acpi_invoke_sleep_eventhandler(void *context)
 {
 
     EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
 }
 
 static void
 acpi_invoke_wake_eventhandler(void *context)
 {
 
     EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
 }
 
 UINT32
 acpi_event_power_button_sleep(void *context)
 {
     struct acpi_softc	*sc = (struct acpi_softc *)context;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
 	acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
     return_VALUE (ACPI_INTERRUPT_HANDLED);
 }
 
 UINT32
 acpi_event_power_button_wake(void *context)
 {
     struct acpi_softc	*sc = (struct acpi_softc *)context;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
 	acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
     return_VALUE (ACPI_INTERRUPT_HANDLED);
 }
 
 UINT32
 acpi_event_sleep_button_sleep(void *context)
 {
     struct acpi_softc	*sc = (struct acpi_softc *)context;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
 	acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
     return_VALUE (ACPI_INTERRUPT_HANDLED);
 }
 
 UINT32
 acpi_event_sleep_button_wake(void *context)
 {
     struct acpi_softc	*sc = (struct acpi_softc *)context;
 
     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
 
     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
 	acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
     return_VALUE (ACPI_INTERRUPT_HANDLED);
 }
 
 /*
  * XXX This static buffer is suboptimal.  There is no locking so only
  * use this for single-threaded callers.
  */
 char *
 acpi_name(ACPI_HANDLE handle)
 {
     ACPI_BUFFER buf;
     static char data[256];
 
     buf.Length = sizeof(data);
     buf.Pointer = data;
 
     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
 	return (data);
     return ("(unknown)");
 }
 
 /*
  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
  * parts of the namespace.
  */
 int
 acpi_avoid(ACPI_HANDLE handle)
 {
     char	*cp, *env, *np;
     int		len;
 
     np = acpi_name(handle);
     if (*np == '\\')
 	np++;
     if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
 	return (0);
 
     /* Scan the avoid list checking for a match */
     cp = env;
     for (;;) {
 	while (*cp != 0 && isspace(*cp))
 	    cp++;
 	if (*cp == 0)
 	    break;
 	len = 0;
 	while (cp[len] != 0 && !isspace(cp[len]))
 	    len++;
 	if (!strncmp(cp, np, len)) {
 	    freeenv(env);
 	    return(1);
 	}
 	cp += len;
     }
     freeenv(env);
 
     return (0);
 }
 
 /*
  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
  */
 int
 acpi_disabled(char *subsys)
 {
     char	*cp, *env;
     int		len;
 
     if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
 	return (0);
     if (strcmp(env, "all") == 0) {
 	freeenv(env);
 	return (1);
     }
 
     /* Scan the disable list, checking for a match. */
     cp = env;
     for (;;) {
 	while (*cp != '\0' && isspace(*cp))
 	    cp++;
 	if (*cp == '\0')
 	    break;
 	len = 0;
 	while (cp[len] != '\0' && !isspace(cp[len]))
 	    len++;
 	if (strncmp(cp, subsys, len) == 0) {
 	    freeenv(env);
 	    return (1);
 	}
 	cp += len;
     }
     freeenv(env);
 
     return (0);
 }
 
 static void
 acpi_lookup(void *arg, const char *name, device_t *dev)
 {
     ACPI_HANDLE handle;
 
     if (*dev != NULL)
 	return;
 
     /*
      * Allow any handle name that is specified as an absolute path and
      * starts with '\'.  We could restrict this to \_SB and friends,
      * but see acpi_probe_children() for notes on why we scan the entire
      * namespace for devices.
      *
      * XXX: The pathname argument to AcpiGetHandle() should be fixed to
      * be const.
      */
     if (name[0] != '\\')
 	return;
     if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
 	&handle)))
 	return;
     *dev = acpi_get_device(handle);
 }
 
 /*
  * Control interface.
  *
  * We multiplex ioctls for all participating ACPI devices here.  Individual 
  * drivers wanting to be accessible via /dev/acpi should use the
  * register/deregister interface to make their handlers visible.
  */
 struct acpi_ioctl_hook
 {
     TAILQ_ENTRY(acpi_ioctl_hook) link;
     u_long			 cmd;
     acpi_ioctl_fn		 fn;
     void			 *arg;
 };
 
 static TAILQ_HEAD(,acpi_ioctl_hook)	acpi_ioctl_hooks;
 static int				acpi_ioctl_hooks_initted;
 
 int
 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
 {
     struct acpi_ioctl_hook	*hp;
 
     if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
 	return (ENOMEM);
     hp->cmd = cmd;
     hp->fn = fn;
     hp->arg = arg;
 
     ACPI_LOCK(acpi);
     if (acpi_ioctl_hooks_initted == 0) {
 	TAILQ_INIT(&acpi_ioctl_hooks);
 	acpi_ioctl_hooks_initted = 1;
     }
     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
     ACPI_UNLOCK(acpi);
 
     return (0);
 }
 
 void
 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
 {
     struct acpi_ioctl_hook	*hp;
 
     ACPI_LOCK(acpi);
     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
 	if (hp->cmd == cmd && hp->fn == fn)
 	    break;
 
     if (hp != NULL) {
 	TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
 	free(hp, M_ACPIDEV);
     }
     ACPI_UNLOCK(acpi);
 }
 
 static int
 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
 {
     return (0);
 }
 
 static int
 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
 {
     return (0);
 }
 
 static int
 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
 {
     struct acpi_softc		*sc;
     struct acpi_ioctl_hook	*hp;
     int				error, state;
 
     error = 0;
     hp = NULL;
     sc = dev->si_drv1;
 
     /*
      * Scan the list of registered ioctls, looking for handlers.
      */
     ACPI_LOCK(acpi);
     if (acpi_ioctl_hooks_initted)
 	TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
 	    if (hp->cmd == cmd)
 		break;
 	}
     ACPI_UNLOCK(acpi);
     if (hp)
 	return (hp->fn(cmd, addr, hp->arg));
 
     /*
      * Core ioctls are not permitted for non-writable user.
      * Currently, other ioctls just fetch information.
      * Not changing system behavior.
      */
     if ((flag & FWRITE) == 0)
 	return (EPERM);
 
     /* Core system ioctls. */
     switch (cmd) {
     case ACPIIO_REQSLPSTATE:
 	state = *(int *)addr;
 	if (state != ACPI_STATE_S5)
 	    return (acpi_ReqSleepState(sc, state));
 	device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
 	error = EOPNOTSUPP;
 	break;
     case ACPIIO_ACKSLPSTATE:
 	error = *(int *)addr;
 	error = acpi_AckSleepState(sc->acpi_clone, error);
 	break;
     case ACPIIO_SETSLPSTATE:	/* DEPRECATED */
 	state = *(int *)addr;
 	if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
 	    return (EINVAL);
 	if (!acpi_sleep_states[state])
 	    return (EOPNOTSUPP);
 	if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
 	    error = ENXIO;
 	break;
     default:
 	error = ENXIO;
 	break;
     }
 
     return (error);
 }
 
 static int
 acpi_sname2sstate(const char *sname)
 {
     int sstate;
 
     if (toupper(sname[0]) == 'S') {
 	sstate = sname[1] - '0';
 	if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
 	    sname[2] == '\0')
 	    return (sstate);
     } else if (strcasecmp(sname, "NONE") == 0)
 	return (ACPI_STATE_UNKNOWN);
     return (-1);
 }
 
 static const char *
 acpi_sstate2sname(int sstate)
 {
     static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
 
     if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
 	return (snames[sstate]);
     else if (sstate == ACPI_STATE_UNKNOWN)
 	return ("NONE");
     return (NULL);
 }
 
 static int
 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
 {
     int error;
     struct sbuf sb;
     UINT8 state;
 
     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
 	if (acpi_sleep_states[state])
 	    sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
     sbuf_trim(&sb);
     sbuf_finish(&sb);
     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
     sbuf_delete(&sb);
     return (error);
 }
 
 static int
 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
 {
     char sleep_state[10];
     int error, new_state, old_state;
 
     old_state = *(int *)oidp->oid_arg1;
     strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
     if (error == 0 && req->newptr != NULL) {
 	new_state = acpi_sname2sstate(sleep_state);
 	if (new_state < ACPI_STATE_S1)
 	    return (EINVAL);
 	if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
 	    return (EOPNOTSUPP);
 	if (new_state != old_state)
 	    *(int *)oidp->oid_arg1 = new_state;
     }
     return (error);
 }
 
 /* Inform devctl(4) when we receive a Notify. */
 void
 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
 {
     char		notify_buf[16];
     ACPI_BUFFER		handle_buf;
     ACPI_STATUS		status;
 
     if (subsystem == NULL)
 	return;
 
     handle_buf.Pointer = NULL;
     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
     status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
     if (ACPI_FAILURE(status))
 	return;
     snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
     AcpiOsFree(handle_buf.Pointer);
 }
 
 #ifdef ACPI_DEBUG
 /*
  * Support for parsing debug options from the kernel environment.
  *
  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
  * by specifying the names of the bits in the debug.acpi.layer and
  * debug.acpi.level environment variables.  Bits may be unset by 
  * prefixing the bit name with !.
  */
 struct debugtag
 {
     char	*name;
     UINT32	value;
 };
 
 static struct debugtag	dbg_layer[] = {
     {"ACPI_UTILITIES",		ACPI_UTILITIES},
     {"ACPI_HARDWARE",		ACPI_HARDWARE},
     {"ACPI_EVENTS",		ACPI_EVENTS},
     {"ACPI_TABLES",		ACPI_TABLES},
     {"ACPI_NAMESPACE",		ACPI_NAMESPACE},
     {"ACPI_PARSER",		ACPI_PARSER},
     {"ACPI_DISPATCHER",		ACPI_DISPATCHER},
     {"ACPI_EXECUTER",		ACPI_EXECUTER},
     {"ACPI_RESOURCES",		ACPI_RESOURCES},
     {"ACPI_CA_DEBUGGER",	ACPI_CA_DEBUGGER},
     {"ACPI_OS_SERVICES",	ACPI_OS_SERVICES},
     {"ACPI_CA_DISASSEMBLER",	ACPI_CA_DISASSEMBLER},
     {"ACPI_ALL_COMPONENTS",	ACPI_ALL_COMPONENTS},
 
     {"ACPI_AC_ADAPTER",		ACPI_AC_ADAPTER},
     {"ACPI_BATTERY",		ACPI_BATTERY},
     {"ACPI_BUS",		ACPI_BUS},
     {"ACPI_BUTTON",		ACPI_BUTTON},
     {"ACPI_EC", 		ACPI_EC},
     {"ACPI_FAN",		ACPI_FAN},
     {"ACPI_POWERRES",		ACPI_POWERRES},
     {"ACPI_PROCESSOR",		ACPI_PROCESSOR},
     {"ACPI_THERMAL",		ACPI_THERMAL},
     {"ACPI_TIMER",		ACPI_TIMER},
     {"ACPI_ALL_DRIVERS",	ACPI_ALL_DRIVERS},
     {NULL, 0}
 };
 
 static struct debugtag dbg_level[] = {
     {"ACPI_LV_INIT",		ACPI_LV_INIT},
     {"ACPI_LV_DEBUG_OBJECT",	ACPI_LV_DEBUG_OBJECT},
     {"ACPI_LV_INFO",		ACPI_LV_INFO},
     {"ACPI_LV_REPAIR",		ACPI_LV_REPAIR},
     {"ACPI_LV_ALL_EXCEPTIONS",	ACPI_LV_ALL_EXCEPTIONS},
 
     /* Trace verbosity level 1 [Standard Trace Level] */
     {"ACPI_LV_INIT_NAMES",	ACPI_LV_INIT_NAMES},
     {"ACPI_LV_PARSE",		ACPI_LV_PARSE},
     {"ACPI_LV_LOAD",		ACPI_LV_LOAD},
     {"ACPI_LV_DISPATCH",	ACPI_LV_DISPATCH},
     {"ACPI_LV_EXEC",		ACPI_LV_EXEC},
     {"ACPI_LV_NAMES",		ACPI_LV_NAMES},
     {"ACPI_LV_OPREGION",	ACPI_LV_OPREGION},
     {"ACPI_LV_BFIELD",		ACPI_LV_BFIELD},
     {"ACPI_LV_TABLES",		ACPI_LV_TABLES},
     {"ACPI_LV_VALUES",		ACPI_LV_VALUES},
     {"ACPI_LV_OBJECTS",		ACPI_LV_OBJECTS},
     {"ACPI_LV_RESOURCES",	ACPI_LV_RESOURCES},
     {"ACPI_LV_USER_REQUESTS",	ACPI_LV_USER_REQUESTS},
     {"ACPI_LV_PACKAGE",		ACPI_LV_PACKAGE},
     {"ACPI_LV_VERBOSITY1",	ACPI_LV_VERBOSITY1},
 
     /* Trace verbosity level 2 [Function tracing and memory allocation] */
     {"ACPI_LV_ALLOCATIONS",	ACPI_LV_ALLOCATIONS},
     {"ACPI_LV_FUNCTIONS",	ACPI_LV_FUNCTIONS},
     {"ACPI_LV_OPTIMIZATIONS",	ACPI_LV_OPTIMIZATIONS},
     {"ACPI_LV_VERBOSITY2",	ACPI_LV_VERBOSITY2},
     {"ACPI_LV_ALL",		ACPI_LV_ALL},
 
     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
     {"ACPI_LV_MUTEX",		ACPI_LV_MUTEX},
     {"ACPI_LV_THREADS",		ACPI_LV_THREADS},
     {"ACPI_LV_IO",		ACPI_LV_IO},
     {"ACPI_LV_INTERRUPTS",	ACPI_LV_INTERRUPTS},
     {"ACPI_LV_VERBOSITY3",	ACPI_LV_VERBOSITY3},
 
     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
     {"ACPI_LV_AML_DISASSEMBLE",	ACPI_LV_AML_DISASSEMBLE},
     {"ACPI_LV_VERBOSE_INFO",	ACPI_LV_VERBOSE_INFO},
     {"ACPI_LV_FULL_TABLES",	ACPI_LV_FULL_TABLES},
     {"ACPI_LV_EVENTS",		ACPI_LV_EVENTS},
     {"ACPI_LV_VERBOSE",		ACPI_LV_VERBOSE},
     {NULL, 0}
 };    
 
 static void
 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
 {
     char	*ep;
     int		i, l;
     int		set;
 
     while (*cp) {
 	if (isspace(*cp)) {
 	    cp++;
 	    continue;
 	}
 	ep = cp;
 	while (*ep && !isspace(*ep))
 	    ep++;
 	if (*cp == '!') {
 	    set = 0;
 	    cp++;
 	    if (cp == ep)
 		continue;
 	} else {
 	    set = 1;
 	}
 	l = ep - cp;
 	for (i = 0; tag[i].name != NULL; i++) {
 	    if (!strncmp(cp, tag[i].name, l)) {
 		if (set)
 		    *flag |= tag[i].value;
 		else
 		    *flag &= ~tag[i].value;
 	    }
 	}
 	cp = ep;
     }
 }
 
 static void
 acpi_set_debugging(void *junk)
 {
     char	*layer, *level;
 
     if (cold) {
 	AcpiDbgLayer = 0;
 	AcpiDbgLevel = 0;
     }
 
     layer = kern_getenv("debug.acpi.layer");
     level = kern_getenv("debug.acpi.level");
     if (layer == NULL && level == NULL)
 	return;
 
     printf("ACPI set debug");
     if (layer != NULL) {
 	if (strcmp("NONE", layer) != 0)
 	    printf(" layer '%s'", layer);
 	acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
 	freeenv(layer);
     }
     if (level != NULL) {
 	if (strcmp("NONE", level) != 0)
 	    printf(" level '%s'", level);
 	acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
 	freeenv(level);
     }
     printf("\n");
 }
 
 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
 	NULL);
 
 static int
 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
 {
     int		 error, *dbg;
     struct	 debugtag *tag;
     struct	 sbuf sb;
     char	 temp[128];
 
     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
 	return (ENOMEM);
     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
 	tag = &dbg_layer[0];
 	dbg = &AcpiDbgLayer;
     } else {
 	tag = &dbg_level[0];
 	dbg = &AcpiDbgLevel;
     }
 
     /* Get old values if this is a get request. */
     ACPI_SERIAL_BEGIN(acpi);
     if (*dbg == 0) {
 	sbuf_cpy(&sb, "NONE");
     } else if (req->newptr == NULL) {
 	for (; tag->name != NULL; tag++) {
 	    if ((*dbg & tag->value) == tag->value)
 		sbuf_printf(&sb, "%s ", tag->name);
 	}
     }
     sbuf_trim(&sb);
     sbuf_finish(&sb);
     strlcpy(temp, sbuf_data(&sb), sizeof(temp));
     sbuf_delete(&sb);
 
     error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
 
     /* Check for error or no change */
     if (error == 0 && req->newptr != NULL) {
 	*dbg = 0;
 	kern_setenv((char *)oidp->oid_arg1, temp);
 	acpi_set_debugging(NULL);
     }
     ACPI_SERIAL_END(acpi);
 
     return (error);
 }
 
 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING,
 	    "debug.acpi.layer", 0, acpi_debug_sysctl, "A", "");
 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING,
 	    "debug.acpi.level", 0, acpi_debug_sysctl, "A", "");
 #endif /* ACPI_DEBUG */
 
 static int
 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
 {
 	int	error;
 	int	old;
 
 	old = acpi_debug_objects;
 	error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (old == acpi_debug_objects || (old && acpi_debug_objects))
 		return (0);
 
 	ACPI_SERIAL_BEGIN(acpi);
 	AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
 	ACPI_SERIAL_END(acpi);
 
 	return (0);
 }
 
 static int
 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
 {
 	char *p;
 	size_t len;
 	int i, j;
 
 	p = str;
 	while (isspace(*p) || *p == ',')
 		p++;
 	len = strlen(p);
 	if (len == 0)
 		return (0);
 	p = strdup(p, M_TEMP);
 	for (i = 0; i < len; i++)
 		if (p[i] == ',')
 			p[i] = '\0';
 	i = j = 0;
 	while (i < len)
 		if (isspace(p[i]) || p[i] == '\0')
 			i++;
 		else {
 			i += strlen(p + i) + 1;
 			j++;
 		}
 	if (j == 0) {
 		free(p, M_TEMP);
 		return (0);
 	}
 	iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
 	iface->num = j;
 	i = j = 0;
 	while (i < len)
 		if (isspace(p[i]) || p[i] == '\0')
 			i++;
 		else {
 			iface->data[j] = p + i;
 			i += strlen(p + i) + 1;
 			j++;
 		}
 
 	return (j);
 }
 
 static void
 acpi_free_interfaces(struct acpi_interface *iface)
 {
 
 	free(iface->data[0], M_TEMP);
 	free(iface->data, M_TEMP);
 }
 
 static void
 acpi_reset_interfaces(device_t dev)
 {
 	struct acpi_interface list;
 	ACPI_STATUS status;
 	int i;
 
 	if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
 		for (i = 0; i < list.num; i++) {
 			status = AcpiInstallInterface(list.data[i]);
 			if (ACPI_FAILURE(status))
 				device_printf(dev,
 				    "failed to install _OSI(\"%s\"): %s\n",
 				    list.data[i], AcpiFormatException(status));
 			else if (bootverbose)
 				device_printf(dev, "installed _OSI(\"%s\")\n",
 				    list.data[i]);
 		}
 		acpi_free_interfaces(&list);
 	}
 	if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
 		for (i = 0; i < list.num; i++) {
 			status = AcpiRemoveInterface(list.data[i]);
 			if (ACPI_FAILURE(status))
 				device_printf(dev,
 				    "failed to remove _OSI(\"%s\"): %s\n",
 				    list.data[i], AcpiFormatException(status));
 			else if (bootverbose)
 				device_printf(dev, "removed _OSI(\"%s\")\n",
 				    list.data[i]);
 		}
 		acpi_free_interfaces(&list);
 	}
 }
 
 static int
 acpi_pm_func(u_long cmd, void *arg, ...)
 {
 	int	state, acpi_state;
 	int	error;
 	struct	acpi_softc *sc;
 	va_list	ap;
 
 	error = 0;
 	switch (cmd) {
 	case POWER_CMD_SUSPEND:
 		sc = (struct acpi_softc *)arg;
 		if (sc == NULL) {
 			error = EINVAL;
 			goto out;
 		}
 
 		va_start(ap, arg);
 		state = va_arg(ap, int);
 		va_end(ap);
 
 		switch (state) {
 		case POWER_SLEEP_STATE_STANDBY:
 			acpi_state = sc->acpi_standby_sx;
 			break;
 		case POWER_SLEEP_STATE_SUSPEND:
 			acpi_state = sc->acpi_suspend_sx;
 			break;
 		case POWER_SLEEP_STATE_HIBERNATE:
 			acpi_state = ACPI_STATE_S4;
 			break;
 		default:
 			error = EINVAL;
 			goto out;
 		}
 
 		if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
 			error = ENXIO;
 		break;
 	default:
 		error = EINVAL;
 		goto out;
 	}
 
 out:
 	return (error);
 }
 
 static void
 acpi_pm_register(void *arg)
 {
     if (!cold || resource_disabled("acpi", 0))
 	return;
 
     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
 }
 
 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
Index: head/sys/i386/include/clock.h
===================================================================
--- head/sys/i386/include/clock.h	(revision 334203)
+++ head/sys/i386/include/clock.h	(revision 334204)
@@ -1,43 +1,44 @@
 /*-
  * Kernel interface to machine-dependent clock driver.
  * Garrett Wollman, September 1994.
  * This file is in the public domain.
  *
  * $FreeBSD$
  */
 
 #ifndef _MACHINE_CLOCK_H_
 #define	_MACHINE_CLOCK_H_
 
 #ifdef _KERNEL
 /*
  * i386 to clock driver interface.
  * XXX large parts of the driver and its interface are misplaced.
  */
 extern int	clkintr_pending;
 extern u_int	i8254_freq;
 extern int	i8254_max_count;
 extern uint64_t	tsc_freq;
 extern int	tsc_is_invariant;
 extern int	tsc_perf_stat;
 
 void	i8254_init(void);
 void	i8254_delay(int);
 void	clock_init(void);
 
 /*
  * Driver to clock driver interface.
  */
 
 void	startrtclock(void);
 void	timer_restore(void);
 void	init_TSC(void);
+void	resume_TSC(void);
 
 #define	HAS_TIMER_SPKR 1
 int	timer_spkr_acquire(void);
 int	timer_spkr_release(void);
 void	timer_spkr_setfreq(int freq);
 
 #endif /* _KERNEL */
 
 #endif /* !_MACHINE_CLOCK_H_ */
Index: head/sys/x86/x86/tsc.c
===================================================================
--- head/sys/x86/x86/tsc.c	(revision 334203)
+++ head/sys/x86/x86/tsc.c	(revision 334204)
@@ -1,781 +1,805 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1998-2003 Poul-Henning Kamp
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_clock.h"
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/cpu.h>
 #include <sys/limits.h>
 #include <sys/malloc.h>
 #include <sys/systm.h>
 #include <sys/sysctl.h>
 #include <sys/time.h>
 #include <sys/timetc.h>
 #include <sys/kernel.h>
 #include <sys/power.h>
 #include <sys/smp.h>
 #include <sys/vdso.h>
 #include <machine/clock.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 #include <x86/vmware.h>
 #include <dev/acpica/acpi_hpet.h>
 
 #include "cpufreq_if.h"
 
 uint64_t	tsc_freq;
 int		tsc_is_invariant;
 int		tsc_perf_stat;
 
 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
 
 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
 
 #ifdef SMP
 int	smp_tsc;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
     "Indicates whether the TSC is safe to use in SMP mode");
 
 int	smp_tsc_adjust = 0;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
 #endif
 
 static int	tsc_shift = 1;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
 
 static int	tsc_disabled;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
     "Disable x86 Time Stamp Counter");
 
 static int	tsc_skip_calibration;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
 
 static void tsc_freq_changed(void *arg, const struct cf_level *level,
     int status);
 static void tsc_freq_changing(void *arg, const struct cf_level *level,
     int *status);
 static unsigned tsc_get_timecount(struct timecounter *tc);
 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
 static void tsc_levels_changed(void *arg, int unit);
 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
     struct timecounter *tc);
 #ifdef COMPAT_FREEBSD32
 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc);
 #endif
 
 static struct timecounter tsc_timecounter = {
 	.tc_get_timecount =		tsc_get_timecount,
 	.tc_counter_mask =		~0u,
 	.tc_name =			"TSC",
 	.tc_quality =			800,	/* adjusted in code */
 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
 #ifdef COMPAT_FREEBSD32
 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
 #endif
 };
 
 static void
 tsc_freq_vmware(void)
 {
 	u_int regs[4];
 
 	if (hv_high >= 0x40000010) {
 		do_cpuid(0x40000010, regs);
 		tsc_freq = regs[0] * 1000;
 	} else {
 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
 		if (regs[1] != UINT_MAX)
 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
 	}
 	tsc_is_invariant = 1;
 }
 
 /*
  * Calculate TSC frequency using information from the CPUID leaf 0x15
  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  It should be
  * an improvement over the parsing of the CPU model name in
  * tsc_freq_intel(), when available.
  */
 static bool
 tsc_freq_cpuid(void)
 {
 	u_int regs[4];
 
 	if (cpu_high < 0x15)
 		return (false);
 	do_cpuid(0x15, regs);
 	if (regs[0] == 0 || regs[1] == 0 || regs[2] == 0)
 		return (false);
 	tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
 	return (true);
 }
 
 static void
 tsc_freq_intel(void)
 {
 	char brand[48];
 	u_int regs[4];
 	uint64_t freq;
 	char *p;
 	u_int i;
 
 	/*
 	 * Intel Processor Identification and the CPUID Instruction
 	 * Application Note 485.
 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
 	 */
 	if (cpu_exthigh >= 0x80000004) {
 		p = brand;
 		for (i = 0x80000002; i < 0x80000005; i++) {
 			do_cpuid(i, regs);
 			memcpy(p, regs, sizeof(regs));
 			p += sizeof(regs);
 		}
 		p = NULL;
 		for (i = 0; i < sizeof(brand) - 1; i++)
 			if (brand[i] == 'H' && brand[i + 1] == 'z')
 				p = brand + i;
 		if (p != NULL) {
 			p -= 5;
 			switch (p[4]) {
 			case 'M':
 				i = 1;
 				break;
 			case 'G':
 				i = 1000;
 				break;
 			case 'T':
 				i = 1000000;
 				break;
 			default:
 				return;
 			}
 #define	C2D(c)	((c) - '0')
 			if (p[1] == '.') {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[2]) * 100;
 				freq += C2D(p[3]) * 10;
 				freq *= i * 1000;
 			} else {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[1]) * 100;
 				freq += C2D(p[2]) * 10;
 				freq += C2D(p[3]);
 				freq *= i * 1000000;
 			}
 #undef C2D
 			tsc_freq = freq;
 		}
 	}
 }
 
 static void
 probe_tsc_freq(void)
 {
 	u_int regs[4];
 	uint64_t tsc1, tsc2;
 
 	if (cpu_high >= 6) {
 		do_cpuid(6, regs);
 		if ((regs[2] & CPUID_PERF_STAT) != 0) {
 			/*
 			 * XXX Some emulators expose host CPUID without actual
 			 * support for these MSRs.  We must test whether they
 			 * really work.
 			 */
 			wrmsr(MSR_MPERF, 0);
 			wrmsr(MSR_APERF, 0);
 			DELAY(10);
 			if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
 				tsc_perf_stat = 1;
 		}
 	}
 
 	if (vm_guest == VM_GUEST_VMWARE) {
 		tsc_freq_vmware();
 		return;
 	}
 
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_mfence;
 		}
 		break;
 	case CPU_VENDOR_INTEL:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		if (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	}
 
 	if (tsc_skip_calibration) {
 		if (tsc_freq_cpuid())
 			;
 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
 			tsc_freq_intel();
 	} else {
 		if (bootverbose)
 			printf("Calibrating TSC clock ... ");
 		tsc1 = rdtsc();
 		DELAY(1000000);
 		tsc2 = rdtsc();
 		tsc_freq = tsc2 - tsc1;
 	}
 	if (bootverbose)
 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
 }
 
 void
 init_TSC(void)
 {
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 #ifdef __i386__
 	/* The TSC is known to be broken on certain CPUs. */
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 		switch (cpu_id & 0xFF0) {
 		case 0x500:
 			/* K5 Model 0 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			/*
 			 * http://www.centtech.com/c6_data_sheet.pdf
 			 *
 			 * I-12 RDTSC may return incoherent values in EDX:EAX
 			 * I-13 RDTSC hangs when certain event counters are used
 			 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_NSC:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			if ((cpu_id & CPUID_STEPPING) == 0)
 				return;
 			break;
 		}
 		break;
 	}
 #endif
 		
 	probe_tsc_freq();
 
 	/*
 	 * Inform CPU accounting about our boot-time clock rate.  This will
 	 * be updated if someone loads a cpufreq driver after boot that
 	 * discovers a new max frequency.
 	 */
 	if (tsc_freq != 0)
 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
 
 	if (tsc_is_invariant)
 		return;
 
 	/* Register to find out about changes in CPU frequency. */
 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
 }
 
 #ifdef SMP
 
 /*
  * RDTSC is not a serializing instruction, and does not drain
  * instruction stream, so we need to drain the stream before executing
  * it.  It could be fixed by use of RDTSCP, except the instruction is
  * not available everywhere.
  *
  * Use CPUID for draining in the boot-time SMP constistency test.  The
  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
  * and VIA) when SSE2 is present, and nothing on older machines which
  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
  *
  * Do not use do_cpuid(), since we do not need CPUID results, which
  * have to be written into memory with do_cpuid().
  */
 #define	TSC_READ(x)							\
 static void								\
 tsc_read_##x(void *arg)							\
 {									\
 	uint64_t *tsc = arg;						\
 	u_int cpu = PCPU_GET(cpuid);					\
 									\
 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
 	tsc[cpu * 3 + x] = rdtsc();					\
 }
 TSC_READ(0)
 TSC_READ(1)
 TSC_READ(2)
 #undef TSC_READ
 
 #define	N	1000
 
 static void
 comp_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d1, d2;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int i, j, size;
 
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
 		CPU_FOREACH(j) {
 			if (j == cpu)
 				continue;
 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
 			if (d1 <= 0 || d2 <= 0) {
 				smp_tsc = 0;
 				return;
 			}
 		}
 }
 
 static void
 adj_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d, min, max;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int first, i, size;
 
 	first = CPU_FIRST();
 	if (cpu == first)
 		return;
 	min = INT64_MIN;
 	max = INT64_MAX;
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
 		if (d < max)
 			max = d;
 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
 		if (d < max)
 			max = d;
 	}
 	if (min > max)
 		return;
 	d = min / 2 + max / 2;
 	__asm __volatile (
 		"movl $0x10, %%ecx\n\t"
 		"rdmsr\n\t"
 		"addl %%edi, %%eax\n\t"
 		"adcl %%esi, %%edx\n\t"
 		"wrmsr\n"
 		: /* No output */
 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
 		: "ax", "cx", "dx", "cc"
 	);
 }
 
 static int
-test_tsc(void)
+test_tsc(int adj_max_count)
 {
 	uint64_t *data, *tsc;
 	u_int i, size, adj;
 
 	if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
 		return (-100);
 	size = (mp_maxid + 1) * 3;
 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
 	adj = 0;
 retry:
 	for (i = 0, tsc = data; i < N; i++, tsc += size)
 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
 	smp_tsc = 1;	/* XXX */
 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
 	    smp_no_rendezvous_barrier, data);
-	if (!smp_tsc && adj < smp_tsc_adjust) {
+	if (!smp_tsc && adj < adj_max_count) {
 		adj++;
 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
 		    smp_no_rendezvous_barrier, data);
 		goto retry;
 	}
 	free(data, M_TEMP);
 	if (bootverbose)
 		printf("SMP: %sed TSC synchronization test%s\n",
 		    smp_tsc ? "pass" : "fail", 
 		    adj > 0 ? " after adjustment" : "");
 	if (smp_tsc && tsc_is_invariant) {
 		switch (cpu_vendor_id) {
 		case CPU_VENDOR_AMD:
 			/*
 			 * Starting with Family 15h processors, TSC clock
 			 * source is in the north bridge.  Check whether
 			 * we have a single-socket/multi-core platform.
 			 * XXX Need more work for complex cases.
 			 */
 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
 			    (amd_feature2 & AMDID2_CMP) == 0 ||
 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
 				break;
 			return (1000);
 		case CPU_VENDOR_INTEL:
 			/*
 			 * XXX Assume Intel platforms have synchronized TSCs.
 			 */
 			return (1000);
 		}
 		return (800);
 	}
 	return (-100);
 }
 
 #undef N
 
 #else
 
 /*
  * The function is not called, it is provided to avoid linking failure
  * on uniprocessor kernel.
  */
 static int
-test_tsc(void)
+test_tsc(int adj_max_count __unused)
 {
 
 	return (0);
 }
 
 #endif /* SMP */
 
 static void
 init_TSC_tc(void)
 {
 	uint64_t max_freq;
 	int shift;
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 	/*
 	 * Limit timecounter frequency to fit in an int and prevent it from
 	 * overflowing too fast.
 	 */
 	max_freq = UINT_MAX;
 
 	/*
 	 * We can not use the TSC if we support APM.  Precise timekeeping
 	 * on an APM'ed machine is at best a fools pursuit, since 
 	 * any and all of the time spent in various SMM code can't 
 	 * be reliably accounted for.  Reading the RTC is your only
 	 * source of reliable time info.  The i8254 loses too, of course,
 	 * but we need to have some kind of time...
 	 * We don't know at this point whether APM is going to be used
 	 * or not, nor when it might be activated.  Play it safe.
 	 */
 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
 		tsc_timecounter.tc_quality = -1000;
 		if (bootverbose)
 			printf("TSC timecounter disabled: APM enabled.\n");
 		goto init;
 	}
 
 	/*
 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
 	 * in either C2 or C3.  Disable use of C2 and C3 while using
 	 * the TSC as the timecounter.  The timecounter can be changed
 	 * to enable C2 and C3.
 	 *
 	 * Note that the TSC is used as the cputicker for computing
 	 * thread runtime regardless of the timecounter setting, so
 	 * using an alternate timecounter and enabling C2 or C3 can
 	 * result incorrect runtimes for kernel idle threads (but not
 	 * for any non-idle threads).
 	 */
 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
 		if (bootverbose)
 			printf("TSC timecounter disables C2 and C3.\n");
 	}
 
 	/*
 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
 	 * are synchronized.  If the user is sure that the system has
 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
 	 * environments, so it is set to a negative quality in those cases.
 	 */
 	if (mp_ncpus > 1)
-		tsc_timecounter.tc_quality = test_tsc();
+		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
 	else if (tsc_is_invariant)
 		tsc_timecounter.tc_quality = 1000;
 	max_freq >>= tsc_shift;
 
 init:
 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
 		;
 	if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
 		if (cpu_vendor_id == CPU_VENDOR_AMD) {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_mfence :
 			    tsc_get_timecount_mfence;
 		} else {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_lfence :
 			    tsc_get_timecount_lfence;
 		}
 	} else {
 		tsc_timecounter.tc_get_timecount = shift > 0 ?
 		    tsc_get_timecount_low : tsc_get_timecount;
 	}
 	if (shift > 0) {
 		tsc_timecounter.tc_name = "TSC-low";
 		if (bootverbose)
 			printf("TSC timecounter discards lower %d bit(s)\n",
 			    shift);
 	}
 	if (tsc_freq != 0) {
 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
 		tc_init(&tsc_timecounter);
 	}
 }
 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
+
+void
+resume_TSC(void)
+{
+	int quality;
+
+	/* If TSC was not good on boot, it is unlikely to become good now. */
+	if (tsc_timecounter.tc_quality < 0)
+		return;
+	/* Nothing to do with UP. */
+	if (mp_ncpus < 2)
+		return;
+
+	/*
+	 * If TSC was good, a single synchronization should be enough,
+	 * but honour smp_tsc_adjust if it's set.
+	 */
+	quality = test_tsc(MAX(smp_tsc_adjust, 1));
+	if (quality != tsc_timecounter.tc_quality) {
+		printf("TSC timecounter quality changed: %d -> %d\n",
+		    tsc_timecounter.tc_quality, quality);
+		tsc_timecounter.tc_quality = quality;
+	}
+}
 
 /*
  * When cpufreq levels change, find out about the (new) max frequency.  We
  * use this to update CPU accounting in case it got a lower estimate at boot.
  */
 static void
 tsc_levels_changed(void *arg, int unit)
 {
 	device_t cf_dev;
 	struct cf_level *levels;
 	int count, error;
 	uint64_t max_freq;
 
 	/* Only use values from the first CPU, assuming all are equal. */
 	if (unit != 0)
 		return;
 
 	/* Find the appropriate cpufreq device instance. */
 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
 	if (cf_dev == NULL) {
 		printf("tsc_levels_changed() called but no cpufreq device?\n");
 		return;
 	}
 
 	/* Get settings from the device and find the max frequency. */
 	count = 64;
 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
 	if (levels == NULL)
 		return;
 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
 	if (error == 0 && count != 0) {
 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
 		set_cputicker(rdtsc, max_freq, 1);
 	} else
 		printf("tsc_levels_changed: no max freq found\n");
 	free(levels, M_TEMP);
 }
 
 /*
  * If the TSC timecounter is in use, veto the pending change.  It may be
  * possible in the future to handle a dynamically-changing timecounter rate.
  */
 static void
 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
 {
 
 	if (*status != 0 || timecounter != &tsc_timecounter)
 		return;
 
 	printf("timecounter TSC must not be in use when "
 	    "changing frequencies; change denied\n");
 	*status = EBUSY;
 }
 
 /* Update TSC freq with the value indicated by the caller. */
 static void
 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
 {
 	uint64_t freq;
 
 	/* If there was an error during the transition, don't do anything. */
 	if (tsc_disabled || status != 0)
 		return;
 
 	/* Total setting for this level gives the new frequency in MHz. */
 	freq = (uint64_t)level->total_set.freq * 1000000;
 	atomic_store_rel_64(&tsc_freq, freq);
 	tsc_timecounter.tc_frequency =
 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
 }
 
 static int
 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	uint64_t freq;
 
 	freq = atomic_load_acq_64(&tsc_freq);
 	if (freq == 0)
 		return (EOPNOTSUPP);
 	error = sysctl_handle_64(oidp, &freq, 0, req);
 	if (error == 0 && req->newptr != NULL) {
 		atomic_store_rel_64(&tsc_freq, freq);
 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
 
 static u_int
 tsc_get_timecount(struct timecounter *tc __unused)
 {
 
 	return (rdtsc32());
 }
 
 static inline u_int
 tsc_get_timecount_low(struct timecounter *tc)
 {
 	uint32_t rv;
 
 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
 	return (rv);
 }
 
 static u_int
 tsc_get_timecount_lfence(struct timecounter *tc __unused)
 {
 
 	lfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_lfence(struct timecounter *tc)
 {
 
 	lfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static u_int
 tsc_get_timecount_mfence(struct timecounter *tc __unused)
 {
 
 	mfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_mfence(struct timecounter *tc)
 {
 
 	mfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static uint32_t
 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
 {
 
 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th->th_x86_hpet_idx = 0xffffffff;
 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
 	return (1);
 }
 
 #ifdef COMPAT_FREEBSD32
 static uint32_t
 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc)
 {
 
 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
 	return (1);
 }
 #endif